xref: /openbmc/linux/mm/memory.c (revision 68198dca)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/sched/task.h>
47 #include <linux/hugetlb.h>
48 #include <linux/mman.h>
49 #include <linux/swap.h>
50 #include <linux/highmem.h>
51 #include <linux/pagemap.h>
52 #include <linux/memremap.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/export.h>
56 #include <linux/delayacct.h>
57 #include <linux/init.h>
58 #include <linux/pfn_t.h>
59 #include <linux/writeback.h>
60 #include <linux/memcontrol.h>
61 #include <linux/mmu_notifier.h>
62 #include <linux/kallsyms.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 
74 #include <asm/io.h>
75 #include <asm/mmu_context.h>
76 #include <asm/pgalloc.h>
77 #include <linux/uaccess.h>
78 #include <asm/tlb.h>
79 #include <asm/tlbflush.h>
80 #include <asm/pgtable.h>
81 
82 #include "internal.h"
83 
84 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
86 #endif
87 
88 #ifndef CONFIG_NEED_MULTIPLE_NODES
89 /* use the per-pgdat data instead for discontigmem - mbligh */
90 unsigned long max_mapnr;
91 EXPORT_SYMBOL(max_mapnr);
92 
93 struct page *mem_map;
94 EXPORT_SYMBOL(mem_map);
95 #endif
96 
97 /*
98  * A number of key systems in x86 including ioremap() rely on the assumption
99  * that high_memory defines the upper bound on direct map memory, then end
100  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
101  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
102  * and ZONE_HIGHMEM.
103  */
104 void *high_memory;
105 EXPORT_SYMBOL(high_memory);
106 
107 /*
108  * Randomize the address space (stacks, mmaps, brk, etc.).
109  *
110  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
111  *   as ancient (libc5 based) binaries can segfault. )
112  */
113 int randomize_va_space __read_mostly =
114 #ifdef CONFIG_COMPAT_BRK
115 					1;
116 #else
117 					2;
118 #endif
119 
120 static int __init disable_randmaps(char *s)
121 {
122 	randomize_va_space = 0;
123 	return 1;
124 }
125 __setup("norandmaps", disable_randmaps);
126 
127 unsigned long zero_pfn __read_mostly;
128 EXPORT_SYMBOL(zero_pfn);
129 
130 unsigned long highest_memmap_pfn __read_mostly;
131 
132 /*
133  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
134  */
135 static int __init init_zero_pfn(void)
136 {
137 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
138 	return 0;
139 }
140 core_initcall(init_zero_pfn);
141 
142 
143 #if defined(SPLIT_RSS_COUNTING)
144 
145 void sync_mm_rss(struct mm_struct *mm)
146 {
147 	int i;
148 
149 	for (i = 0; i < NR_MM_COUNTERS; i++) {
150 		if (current->rss_stat.count[i]) {
151 			add_mm_counter(mm, i, current->rss_stat.count[i]);
152 			current->rss_stat.count[i] = 0;
153 		}
154 	}
155 	current->rss_stat.events = 0;
156 }
157 
158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
159 {
160 	struct task_struct *task = current;
161 
162 	if (likely(task->mm == mm))
163 		task->rss_stat.count[member] += val;
164 	else
165 		add_mm_counter(mm, member, val);
166 }
167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
169 
170 /* sync counter once per 64 page faults */
171 #define TASK_RSS_EVENTS_THRESH	(64)
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 	if (unlikely(task != current))
175 		return;
176 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
177 		sync_mm_rss(task->mm);
178 }
179 #else /* SPLIT_RSS_COUNTING */
180 
181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
183 
184 static void check_sync_rss_stat(struct task_struct *task)
185 {
186 }
187 
188 #endif /* SPLIT_RSS_COUNTING */
189 
190 #ifdef HAVE_GENERIC_MMU_GATHER
191 
192 static bool tlb_next_batch(struct mmu_gather *tlb)
193 {
194 	struct mmu_gather_batch *batch;
195 
196 	batch = tlb->active;
197 	if (batch->next) {
198 		tlb->active = batch->next;
199 		return true;
200 	}
201 
202 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
203 		return false;
204 
205 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
206 	if (!batch)
207 		return false;
208 
209 	tlb->batch_count++;
210 	batch->next = NULL;
211 	batch->nr   = 0;
212 	batch->max  = MAX_GATHER_BATCH;
213 
214 	tlb->active->next = batch;
215 	tlb->active = batch;
216 
217 	return true;
218 }
219 
220 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
221 				unsigned long start, unsigned long end)
222 {
223 	tlb->mm = mm;
224 
225 	/* Is it from 0 to ~0? */
226 	tlb->fullmm     = !(start | (end+1));
227 	tlb->need_flush_all = 0;
228 	tlb->local.next = NULL;
229 	tlb->local.nr   = 0;
230 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
231 	tlb->active     = &tlb->local;
232 	tlb->batch_count = 0;
233 
234 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
235 	tlb->batch = NULL;
236 #endif
237 	tlb->page_size = 0;
238 
239 	__tlb_reset_range(tlb);
240 }
241 
242 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
243 {
244 	if (!tlb->end)
245 		return;
246 
247 	tlb_flush(tlb);
248 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
249 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
250 	tlb_table_flush(tlb);
251 #endif
252 	__tlb_reset_range(tlb);
253 }
254 
255 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
256 {
257 	struct mmu_gather_batch *batch;
258 
259 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
260 		free_pages_and_swap_cache(batch->pages, batch->nr);
261 		batch->nr = 0;
262 	}
263 	tlb->active = &tlb->local;
264 }
265 
266 void tlb_flush_mmu(struct mmu_gather *tlb)
267 {
268 	tlb_flush_mmu_tlbonly(tlb);
269 	tlb_flush_mmu_free(tlb);
270 }
271 
272 /* tlb_finish_mmu
273  *	Called at the end of the shootdown operation to free up any resources
274  *	that were required.
275  */
276 void arch_tlb_finish_mmu(struct mmu_gather *tlb,
277 		unsigned long start, unsigned long end, bool force)
278 {
279 	struct mmu_gather_batch *batch, *next;
280 
281 	if (force)
282 		__tlb_adjust_range(tlb, start, end - start);
283 
284 	tlb_flush_mmu(tlb);
285 
286 	/* keep the page table cache within bounds */
287 	check_pgt_cache();
288 
289 	for (batch = tlb->local.next; batch; batch = next) {
290 		next = batch->next;
291 		free_pages((unsigned long)batch, 0);
292 	}
293 	tlb->local.next = NULL;
294 }
295 
296 /* __tlb_remove_page
297  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
298  *	handling the additional races in SMP caused by other CPUs caching valid
299  *	mappings in their TLBs. Returns the number of free page slots left.
300  *	When out of page slots we must call tlb_flush_mmu().
301  *returns true if the caller should flush.
302  */
303 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
304 {
305 	struct mmu_gather_batch *batch;
306 
307 	VM_BUG_ON(!tlb->end);
308 	VM_WARN_ON(tlb->page_size != page_size);
309 
310 	batch = tlb->active;
311 	/*
312 	 * Add the page and check if we are full. If so
313 	 * force a flush.
314 	 */
315 	batch->pages[batch->nr++] = page;
316 	if (batch->nr == batch->max) {
317 		if (!tlb_next_batch(tlb))
318 			return true;
319 		batch = tlb->active;
320 	}
321 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
322 
323 	return false;
324 }
325 
326 #endif /* HAVE_GENERIC_MMU_GATHER */
327 
328 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
329 
330 /*
331  * See the comment near struct mmu_table_batch.
332  */
333 
334 static void tlb_remove_table_smp_sync(void *arg)
335 {
336 	/* Simply deliver the interrupt */
337 }
338 
339 static void tlb_remove_table_one(void *table)
340 {
341 	/*
342 	 * This isn't an RCU grace period and hence the page-tables cannot be
343 	 * assumed to be actually RCU-freed.
344 	 *
345 	 * It is however sufficient for software page-table walkers that rely on
346 	 * IRQ disabling. See the comment near struct mmu_table_batch.
347 	 */
348 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
349 	__tlb_remove_table(table);
350 }
351 
352 static void tlb_remove_table_rcu(struct rcu_head *head)
353 {
354 	struct mmu_table_batch *batch;
355 	int i;
356 
357 	batch = container_of(head, struct mmu_table_batch, rcu);
358 
359 	for (i = 0; i < batch->nr; i++)
360 		__tlb_remove_table(batch->tables[i]);
361 
362 	free_page((unsigned long)batch);
363 }
364 
365 void tlb_table_flush(struct mmu_gather *tlb)
366 {
367 	struct mmu_table_batch **batch = &tlb->batch;
368 
369 	if (*batch) {
370 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
371 		*batch = NULL;
372 	}
373 }
374 
375 void tlb_remove_table(struct mmu_gather *tlb, void *table)
376 {
377 	struct mmu_table_batch **batch = &tlb->batch;
378 
379 	/*
380 	 * When there's less then two users of this mm there cannot be a
381 	 * concurrent page-table walk.
382 	 */
383 	if (atomic_read(&tlb->mm->mm_users) < 2) {
384 		__tlb_remove_table(table);
385 		return;
386 	}
387 
388 	if (*batch == NULL) {
389 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
390 		if (*batch == NULL) {
391 			tlb_remove_table_one(table);
392 			return;
393 		}
394 		(*batch)->nr = 0;
395 	}
396 	(*batch)->tables[(*batch)->nr++] = table;
397 	if ((*batch)->nr == MAX_TABLE_BATCH)
398 		tlb_table_flush(tlb);
399 }
400 
401 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
402 
403 /* tlb_gather_mmu
404  *	Called to initialize an (on-stack) mmu_gather structure for page-table
405  *	tear-down from @mm. The @fullmm argument is used when @mm is without
406  *	users and we're going to destroy the full address space (exit/execve).
407  */
408 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
409 			unsigned long start, unsigned long end)
410 {
411 	arch_tlb_gather_mmu(tlb, mm, start, end);
412 	inc_tlb_flush_pending(tlb->mm);
413 }
414 
415 void tlb_finish_mmu(struct mmu_gather *tlb,
416 		unsigned long start, unsigned long end)
417 {
418 	/*
419 	 * If there are parallel threads are doing PTE changes on same range
420 	 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
421 	 * flush by batching, a thread has stable TLB entry can fail to flush
422 	 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
423 	 * forcefully if we detect parallel PTE batching threads.
424 	 */
425 	bool force = mm_tlb_flush_nested(tlb->mm);
426 
427 	arch_tlb_finish_mmu(tlb, start, end, force);
428 	dec_tlb_flush_pending(tlb->mm);
429 }
430 
431 /*
432  * Note: this doesn't free the actual pages themselves. That
433  * has been handled earlier when unmapping all the memory regions.
434  */
435 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
436 			   unsigned long addr)
437 {
438 	pgtable_t token = pmd_pgtable(*pmd);
439 	pmd_clear(pmd);
440 	pte_free_tlb(tlb, token, addr);
441 	mm_dec_nr_ptes(tlb->mm);
442 }
443 
444 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
445 				unsigned long addr, unsigned long end,
446 				unsigned long floor, unsigned long ceiling)
447 {
448 	pmd_t *pmd;
449 	unsigned long next;
450 	unsigned long start;
451 
452 	start = addr;
453 	pmd = pmd_offset(pud, addr);
454 	do {
455 		next = pmd_addr_end(addr, end);
456 		if (pmd_none_or_clear_bad(pmd))
457 			continue;
458 		free_pte_range(tlb, pmd, addr);
459 	} while (pmd++, addr = next, addr != end);
460 
461 	start &= PUD_MASK;
462 	if (start < floor)
463 		return;
464 	if (ceiling) {
465 		ceiling &= PUD_MASK;
466 		if (!ceiling)
467 			return;
468 	}
469 	if (end - 1 > ceiling - 1)
470 		return;
471 
472 	pmd = pmd_offset(pud, start);
473 	pud_clear(pud);
474 	pmd_free_tlb(tlb, pmd, start);
475 	mm_dec_nr_pmds(tlb->mm);
476 }
477 
478 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
479 				unsigned long addr, unsigned long end,
480 				unsigned long floor, unsigned long ceiling)
481 {
482 	pud_t *pud;
483 	unsigned long next;
484 	unsigned long start;
485 
486 	start = addr;
487 	pud = pud_offset(p4d, addr);
488 	do {
489 		next = pud_addr_end(addr, end);
490 		if (pud_none_or_clear_bad(pud))
491 			continue;
492 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
493 	} while (pud++, addr = next, addr != end);
494 
495 	start &= P4D_MASK;
496 	if (start < floor)
497 		return;
498 	if (ceiling) {
499 		ceiling &= P4D_MASK;
500 		if (!ceiling)
501 			return;
502 	}
503 	if (end - 1 > ceiling - 1)
504 		return;
505 
506 	pud = pud_offset(p4d, start);
507 	p4d_clear(p4d);
508 	pud_free_tlb(tlb, pud, start);
509 	mm_dec_nr_puds(tlb->mm);
510 }
511 
512 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
513 				unsigned long addr, unsigned long end,
514 				unsigned long floor, unsigned long ceiling)
515 {
516 	p4d_t *p4d;
517 	unsigned long next;
518 	unsigned long start;
519 
520 	start = addr;
521 	p4d = p4d_offset(pgd, addr);
522 	do {
523 		next = p4d_addr_end(addr, end);
524 		if (p4d_none_or_clear_bad(p4d))
525 			continue;
526 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
527 	} while (p4d++, addr = next, addr != end);
528 
529 	start &= PGDIR_MASK;
530 	if (start < floor)
531 		return;
532 	if (ceiling) {
533 		ceiling &= PGDIR_MASK;
534 		if (!ceiling)
535 			return;
536 	}
537 	if (end - 1 > ceiling - 1)
538 		return;
539 
540 	p4d = p4d_offset(pgd, start);
541 	pgd_clear(pgd);
542 	p4d_free_tlb(tlb, p4d, start);
543 }
544 
545 /*
546  * This function frees user-level page tables of a process.
547  */
548 void free_pgd_range(struct mmu_gather *tlb,
549 			unsigned long addr, unsigned long end,
550 			unsigned long floor, unsigned long ceiling)
551 {
552 	pgd_t *pgd;
553 	unsigned long next;
554 
555 	/*
556 	 * The next few lines have given us lots of grief...
557 	 *
558 	 * Why are we testing PMD* at this top level?  Because often
559 	 * there will be no work to do at all, and we'd prefer not to
560 	 * go all the way down to the bottom just to discover that.
561 	 *
562 	 * Why all these "- 1"s?  Because 0 represents both the bottom
563 	 * of the address space and the top of it (using -1 for the
564 	 * top wouldn't help much: the masks would do the wrong thing).
565 	 * The rule is that addr 0 and floor 0 refer to the bottom of
566 	 * the address space, but end 0 and ceiling 0 refer to the top
567 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
568 	 * that end 0 case should be mythical).
569 	 *
570 	 * Wherever addr is brought up or ceiling brought down, we must
571 	 * be careful to reject "the opposite 0" before it confuses the
572 	 * subsequent tests.  But what about where end is brought down
573 	 * by PMD_SIZE below? no, end can't go down to 0 there.
574 	 *
575 	 * Whereas we round start (addr) and ceiling down, by different
576 	 * masks at different levels, in order to test whether a table
577 	 * now has no other vmas using it, so can be freed, we don't
578 	 * bother to round floor or end up - the tests don't need that.
579 	 */
580 
581 	addr &= PMD_MASK;
582 	if (addr < floor) {
583 		addr += PMD_SIZE;
584 		if (!addr)
585 			return;
586 	}
587 	if (ceiling) {
588 		ceiling &= PMD_MASK;
589 		if (!ceiling)
590 			return;
591 	}
592 	if (end - 1 > ceiling - 1)
593 		end -= PMD_SIZE;
594 	if (addr > end - 1)
595 		return;
596 	/*
597 	 * We add page table cache pages with PAGE_SIZE,
598 	 * (see pte_free_tlb()), flush the tlb if we need
599 	 */
600 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
601 	pgd = pgd_offset(tlb->mm, addr);
602 	do {
603 		next = pgd_addr_end(addr, end);
604 		if (pgd_none_or_clear_bad(pgd))
605 			continue;
606 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
607 	} while (pgd++, addr = next, addr != end);
608 }
609 
610 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
611 		unsigned long floor, unsigned long ceiling)
612 {
613 	while (vma) {
614 		struct vm_area_struct *next = vma->vm_next;
615 		unsigned long addr = vma->vm_start;
616 
617 		/*
618 		 * Hide vma from rmap and truncate_pagecache before freeing
619 		 * pgtables
620 		 */
621 		unlink_anon_vmas(vma);
622 		unlink_file_vma(vma);
623 
624 		if (is_vm_hugetlb_page(vma)) {
625 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
626 				floor, next ? next->vm_start : ceiling);
627 		} else {
628 			/*
629 			 * Optimization: gather nearby vmas into one call down
630 			 */
631 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
632 			       && !is_vm_hugetlb_page(next)) {
633 				vma = next;
634 				next = vma->vm_next;
635 				unlink_anon_vmas(vma);
636 				unlink_file_vma(vma);
637 			}
638 			free_pgd_range(tlb, addr, vma->vm_end,
639 				floor, next ? next->vm_start : ceiling);
640 		}
641 		vma = next;
642 	}
643 }
644 
645 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
646 {
647 	spinlock_t *ptl;
648 	pgtable_t new = pte_alloc_one(mm, address);
649 	if (!new)
650 		return -ENOMEM;
651 
652 	/*
653 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
654 	 * visible before the pte is made visible to other CPUs by being
655 	 * put into page tables.
656 	 *
657 	 * The other side of the story is the pointer chasing in the page
658 	 * table walking code (when walking the page table without locking;
659 	 * ie. most of the time). Fortunately, these data accesses consist
660 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
661 	 * being the notable exception) will already guarantee loads are
662 	 * seen in-order. See the alpha page table accessors for the
663 	 * smp_read_barrier_depends() barriers in page table walking code.
664 	 */
665 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
666 
667 	ptl = pmd_lock(mm, pmd);
668 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
669 		mm_inc_nr_ptes(mm);
670 		pmd_populate(mm, pmd, new);
671 		new = NULL;
672 	}
673 	spin_unlock(ptl);
674 	if (new)
675 		pte_free(mm, new);
676 	return 0;
677 }
678 
679 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
680 {
681 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
682 	if (!new)
683 		return -ENOMEM;
684 
685 	smp_wmb(); /* See comment in __pte_alloc */
686 
687 	spin_lock(&init_mm.page_table_lock);
688 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
689 		pmd_populate_kernel(&init_mm, pmd, new);
690 		new = NULL;
691 	}
692 	spin_unlock(&init_mm.page_table_lock);
693 	if (new)
694 		pte_free_kernel(&init_mm, new);
695 	return 0;
696 }
697 
698 static inline void init_rss_vec(int *rss)
699 {
700 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
701 }
702 
703 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
704 {
705 	int i;
706 
707 	if (current->mm == mm)
708 		sync_mm_rss(mm);
709 	for (i = 0; i < NR_MM_COUNTERS; i++)
710 		if (rss[i])
711 			add_mm_counter(mm, i, rss[i]);
712 }
713 
714 /*
715  * This function is called to print an error when a bad pte
716  * is found. For example, we might have a PFN-mapped pte in
717  * a region that doesn't allow it.
718  *
719  * The calling function must still handle the error.
720  */
721 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
722 			  pte_t pte, struct page *page)
723 {
724 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
725 	p4d_t *p4d = p4d_offset(pgd, addr);
726 	pud_t *pud = pud_offset(p4d, addr);
727 	pmd_t *pmd = pmd_offset(pud, addr);
728 	struct address_space *mapping;
729 	pgoff_t index;
730 	static unsigned long resume;
731 	static unsigned long nr_shown;
732 	static unsigned long nr_unshown;
733 
734 	/*
735 	 * Allow a burst of 60 reports, then keep quiet for that minute;
736 	 * or allow a steady drip of one report per second.
737 	 */
738 	if (nr_shown == 60) {
739 		if (time_before(jiffies, resume)) {
740 			nr_unshown++;
741 			return;
742 		}
743 		if (nr_unshown) {
744 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
745 				 nr_unshown);
746 			nr_unshown = 0;
747 		}
748 		nr_shown = 0;
749 	}
750 	if (nr_shown++ == 0)
751 		resume = jiffies + 60 * HZ;
752 
753 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
754 	index = linear_page_index(vma, addr);
755 
756 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
757 		 current->comm,
758 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
759 	if (page)
760 		dump_page(page, "bad pte");
761 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
762 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
763 	/*
764 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
765 	 */
766 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
767 		 vma->vm_file,
768 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
769 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
770 		 mapping ? mapping->a_ops->readpage : NULL);
771 	dump_stack();
772 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
773 }
774 
775 /*
776  * vm_normal_page -- This function gets the "struct page" associated with a pte.
777  *
778  * "Special" mappings do not wish to be associated with a "struct page" (either
779  * it doesn't exist, or it exists but they don't want to touch it). In this
780  * case, NULL is returned here. "Normal" mappings do have a struct page.
781  *
782  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
783  * pte bit, in which case this function is trivial. Secondly, an architecture
784  * may not have a spare pte bit, which requires a more complicated scheme,
785  * described below.
786  *
787  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
788  * special mapping (even if there are underlying and valid "struct pages").
789  * COWed pages of a VM_PFNMAP are always normal.
790  *
791  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
792  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
793  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
794  * mapping will always honor the rule
795  *
796  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
797  *
798  * And for normal mappings this is false.
799  *
800  * This restricts such mappings to be a linear translation from virtual address
801  * to pfn. To get around this restriction, we allow arbitrary mappings so long
802  * as the vma is not a COW mapping; in that case, we know that all ptes are
803  * special (because none can have been COWed).
804  *
805  *
806  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
807  *
808  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
809  * page" backing, however the difference is that _all_ pages with a struct
810  * page (that is, those where pfn_valid is true) are refcounted and considered
811  * normal pages by the VM. The disadvantage is that pages are refcounted
812  * (which can be slower and simply not an option for some PFNMAP users). The
813  * advantage is that we don't have to follow the strict linearity rule of
814  * PFNMAP mappings in order to support COWable mappings.
815  *
816  */
817 #ifdef __HAVE_ARCH_PTE_SPECIAL
818 # define HAVE_PTE_SPECIAL 1
819 #else
820 # define HAVE_PTE_SPECIAL 0
821 #endif
822 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
823 			     pte_t pte, bool with_public_device)
824 {
825 	unsigned long pfn = pte_pfn(pte);
826 
827 	if (HAVE_PTE_SPECIAL) {
828 		if (likely(!pte_special(pte)))
829 			goto check_pfn;
830 		if (vma->vm_ops && vma->vm_ops->find_special_page)
831 			return vma->vm_ops->find_special_page(vma, addr);
832 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
833 			return NULL;
834 		if (is_zero_pfn(pfn))
835 			return NULL;
836 
837 		/*
838 		 * Device public pages are special pages (they are ZONE_DEVICE
839 		 * pages but different from persistent memory). They behave
840 		 * allmost like normal pages. The difference is that they are
841 		 * not on the lru and thus should never be involve with any-
842 		 * thing that involve lru manipulation (mlock, numa balancing,
843 		 * ...).
844 		 *
845 		 * This is why we still want to return NULL for such page from
846 		 * vm_normal_page() so that we do not have to special case all
847 		 * call site of vm_normal_page().
848 		 */
849 		if (likely(pfn <= highest_memmap_pfn)) {
850 			struct page *page = pfn_to_page(pfn);
851 
852 			if (is_device_public_page(page)) {
853 				if (with_public_device)
854 					return page;
855 				return NULL;
856 			}
857 		}
858 		print_bad_pte(vma, addr, pte, NULL);
859 		return NULL;
860 	}
861 
862 	/* !HAVE_PTE_SPECIAL case follows: */
863 
864 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
865 		if (vma->vm_flags & VM_MIXEDMAP) {
866 			if (!pfn_valid(pfn))
867 				return NULL;
868 			goto out;
869 		} else {
870 			unsigned long off;
871 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
872 			if (pfn == vma->vm_pgoff + off)
873 				return NULL;
874 			if (!is_cow_mapping(vma->vm_flags))
875 				return NULL;
876 		}
877 	}
878 
879 	if (is_zero_pfn(pfn))
880 		return NULL;
881 check_pfn:
882 	if (unlikely(pfn > highest_memmap_pfn)) {
883 		print_bad_pte(vma, addr, pte, NULL);
884 		return NULL;
885 	}
886 
887 	/*
888 	 * NOTE! We still have PageReserved() pages in the page tables.
889 	 * eg. VDSO mappings can cause them to exist.
890 	 */
891 out:
892 	return pfn_to_page(pfn);
893 }
894 
895 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
896 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
897 				pmd_t pmd)
898 {
899 	unsigned long pfn = pmd_pfn(pmd);
900 
901 	/*
902 	 * There is no pmd_special() but there may be special pmds, e.g.
903 	 * in a direct-access (dax) mapping, so let's just replicate the
904 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
905 	 */
906 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
907 		if (vma->vm_flags & VM_MIXEDMAP) {
908 			if (!pfn_valid(pfn))
909 				return NULL;
910 			goto out;
911 		} else {
912 			unsigned long off;
913 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
914 			if (pfn == vma->vm_pgoff + off)
915 				return NULL;
916 			if (!is_cow_mapping(vma->vm_flags))
917 				return NULL;
918 		}
919 	}
920 
921 	if (is_zero_pfn(pfn))
922 		return NULL;
923 	if (unlikely(pfn > highest_memmap_pfn))
924 		return NULL;
925 
926 	/*
927 	 * NOTE! We still have PageReserved() pages in the page tables.
928 	 * eg. VDSO mappings can cause them to exist.
929 	 */
930 out:
931 	return pfn_to_page(pfn);
932 }
933 #endif
934 
935 /*
936  * copy one vm_area from one task to the other. Assumes the page tables
937  * already present in the new task to be cleared in the whole range
938  * covered by this vma.
939  */
940 
941 static inline unsigned long
942 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
944 		unsigned long addr, int *rss)
945 {
946 	unsigned long vm_flags = vma->vm_flags;
947 	pte_t pte = *src_pte;
948 	struct page *page;
949 
950 	/* pte contains position in swap or file, so copy. */
951 	if (unlikely(!pte_present(pte))) {
952 		swp_entry_t entry = pte_to_swp_entry(pte);
953 
954 		if (likely(!non_swap_entry(entry))) {
955 			if (swap_duplicate(entry) < 0)
956 				return entry.val;
957 
958 			/* make sure dst_mm is on swapoff's mmlist. */
959 			if (unlikely(list_empty(&dst_mm->mmlist))) {
960 				spin_lock(&mmlist_lock);
961 				if (list_empty(&dst_mm->mmlist))
962 					list_add(&dst_mm->mmlist,
963 							&src_mm->mmlist);
964 				spin_unlock(&mmlist_lock);
965 			}
966 			rss[MM_SWAPENTS]++;
967 		} else if (is_migration_entry(entry)) {
968 			page = migration_entry_to_page(entry);
969 
970 			rss[mm_counter(page)]++;
971 
972 			if (is_write_migration_entry(entry) &&
973 					is_cow_mapping(vm_flags)) {
974 				/*
975 				 * COW mappings require pages in both
976 				 * parent and child to be set to read.
977 				 */
978 				make_migration_entry_read(&entry);
979 				pte = swp_entry_to_pte(entry);
980 				if (pte_swp_soft_dirty(*src_pte))
981 					pte = pte_swp_mksoft_dirty(pte);
982 				set_pte_at(src_mm, addr, src_pte, pte);
983 			}
984 		} else if (is_device_private_entry(entry)) {
985 			page = device_private_entry_to_page(entry);
986 
987 			/*
988 			 * Update rss count even for unaddressable pages, as
989 			 * they should treated just like normal pages in this
990 			 * respect.
991 			 *
992 			 * We will likely want to have some new rss counters
993 			 * for unaddressable pages, at some point. But for now
994 			 * keep things as they are.
995 			 */
996 			get_page(page);
997 			rss[mm_counter(page)]++;
998 			page_dup_rmap(page, false);
999 
1000 			/*
1001 			 * We do not preserve soft-dirty information, because so
1002 			 * far, checkpoint/restore is the only feature that
1003 			 * requires that. And checkpoint/restore does not work
1004 			 * when a device driver is involved (you cannot easily
1005 			 * save and restore device driver state).
1006 			 */
1007 			if (is_write_device_private_entry(entry) &&
1008 			    is_cow_mapping(vm_flags)) {
1009 				make_device_private_entry_read(&entry);
1010 				pte = swp_entry_to_pte(entry);
1011 				set_pte_at(src_mm, addr, src_pte, pte);
1012 			}
1013 		}
1014 		goto out_set_pte;
1015 	}
1016 
1017 	/*
1018 	 * If it's a COW mapping, write protect it both
1019 	 * in the parent and the child
1020 	 */
1021 	if (is_cow_mapping(vm_flags)) {
1022 		ptep_set_wrprotect(src_mm, addr, src_pte);
1023 		pte = pte_wrprotect(pte);
1024 	}
1025 
1026 	/*
1027 	 * If it's a shared mapping, mark it clean in
1028 	 * the child
1029 	 */
1030 	if (vm_flags & VM_SHARED)
1031 		pte = pte_mkclean(pte);
1032 	pte = pte_mkold(pte);
1033 
1034 	page = vm_normal_page(vma, addr, pte);
1035 	if (page) {
1036 		get_page(page);
1037 		page_dup_rmap(page, false);
1038 		rss[mm_counter(page)]++;
1039 	} else if (pte_devmap(pte)) {
1040 		page = pte_page(pte);
1041 
1042 		/*
1043 		 * Cache coherent device memory behave like regular page and
1044 		 * not like persistent memory page. For more informations see
1045 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1046 		 */
1047 		if (is_device_public_page(page)) {
1048 			get_page(page);
1049 			page_dup_rmap(page, false);
1050 			rss[mm_counter(page)]++;
1051 		}
1052 	}
1053 
1054 out_set_pte:
1055 	set_pte_at(dst_mm, addr, dst_pte, pte);
1056 	return 0;
1057 }
1058 
1059 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1060 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1061 		   unsigned long addr, unsigned long end)
1062 {
1063 	pte_t *orig_src_pte, *orig_dst_pte;
1064 	pte_t *src_pte, *dst_pte;
1065 	spinlock_t *src_ptl, *dst_ptl;
1066 	int progress = 0;
1067 	int rss[NR_MM_COUNTERS];
1068 	swp_entry_t entry = (swp_entry_t){0};
1069 
1070 again:
1071 	init_rss_vec(rss);
1072 
1073 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1074 	if (!dst_pte)
1075 		return -ENOMEM;
1076 	src_pte = pte_offset_map(src_pmd, addr);
1077 	src_ptl = pte_lockptr(src_mm, src_pmd);
1078 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1079 	orig_src_pte = src_pte;
1080 	orig_dst_pte = dst_pte;
1081 	arch_enter_lazy_mmu_mode();
1082 
1083 	do {
1084 		/*
1085 		 * We are holding two locks at this point - either of them
1086 		 * could generate latencies in another task on another CPU.
1087 		 */
1088 		if (progress >= 32) {
1089 			progress = 0;
1090 			if (need_resched() ||
1091 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1092 				break;
1093 		}
1094 		if (pte_none(*src_pte)) {
1095 			progress++;
1096 			continue;
1097 		}
1098 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1099 							vma, addr, rss);
1100 		if (entry.val)
1101 			break;
1102 		progress += 8;
1103 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1104 
1105 	arch_leave_lazy_mmu_mode();
1106 	spin_unlock(src_ptl);
1107 	pte_unmap(orig_src_pte);
1108 	add_mm_rss_vec(dst_mm, rss);
1109 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1110 	cond_resched();
1111 
1112 	if (entry.val) {
1113 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1114 			return -ENOMEM;
1115 		progress = 0;
1116 	}
1117 	if (addr != end)
1118 		goto again;
1119 	return 0;
1120 }
1121 
1122 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1124 		unsigned long addr, unsigned long end)
1125 {
1126 	pmd_t *src_pmd, *dst_pmd;
1127 	unsigned long next;
1128 
1129 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1130 	if (!dst_pmd)
1131 		return -ENOMEM;
1132 	src_pmd = pmd_offset(src_pud, addr);
1133 	do {
1134 		next = pmd_addr_end(addr, end);
1135 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1136 			|| pmd_devmap(*src_pmd)) {
1137 			int err;
1138 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1139 			err = copy_huge_pmd(dst_mm, src_mm,
1140 					    dst_pmd, src_pmd, addr, vma);
1141 			if (err == -ENOMEM)
1142 				return -ENOMEM;
1143 			if (!err)
1144 				continue;
1145 			/* fall through */
1146 		}
1147 		if (pmd_none_or_clear_bad(src_pmd))
1148 			continue;
1149 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1150 						vma, addr, next))
1151 			return -ENOMEM;
1152 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1153 	return 0;
1154 }
1155 
1156 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1157 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1158 		unsigned long addr, unsigned long end)
1159 {
1160 	pud_t *src_pud, *dst_pud;
1161 	unsigned long next;
1162 
1163 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1164 	if (!dst_pud)
1165 		return -ENOMEM;
1166 	src_pud = pud_offset(src_p4d, addr);
1167 	do {
1168 		next = pud_addr_end(addr, end);
1169 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1170 			int err;
1171 
1172 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1173 			err = copy_huge_pud(dst_mm, src_mm,
1174 					    dst_pud, src_pud, addr, vma);
1175 			if (err == -ENOMEM)
1176 				return -ENOMEM;
1177 			if (!err)
1178 				continue;
1179 			/* fall through */
1180 		}
1181 		if (pud_none_or_clear_bad(src_pud))
1182 			continue;
1183 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1184 						vma, addr, next))
1185 			return -ENOMEM;
1186 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1187 	return 0;
1188 }
1189 
1190 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1191 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1192 		unsigned long addr, unsigned long end)
1193 {
1194 	p4d_t *src_p4d, *dst_p4d;
1195 	unsigned long next;
1196 
1197 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1198 	if (!dst_p4d)
1199 		return -ENOMEM;
1200 	src_p4d = p4d_offset(src_pgd, addr);
1201 	do {
1202 		next = p4d_addr_end(addr, end);
1203 		if (p4d_none_or_clear_bad(src_p4d))
1204 			continue;
1205 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1206 						vma, addr, next))
1207 			return -ENOMEM;
1208 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1209 	return 0;
1210 }
1211 
1212 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1213 		struct vm_area_struct *vma)
1214 {
1215 	pgd_t *src_pgd, *dst_pgd;
1216 	unsigned long next;
1217 	unsigned long addr = vma->vm_start;
1218 	unsigned long end = vma->vm_end;
1219 	unsigned long mmun_start;	/* For mmu_notifiers */
1220 	unsigned long mmun_end;		/* For mmu_notifiers */
1221 	bool is_cow;
1222 	int ret;
1223 
1224 	/*
1225 	 * Don't copy ptes where a page fault will fill them correctly.
1226 	 * Fork becomes much lighter when there are big shared or private
1227 	 * readonly mappings. The tradeoff is that copy_page_range is more
1228 	 * efficient than faulting.
1229 	 */
1230 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1231 			!vma->anon_vma)
1232 		return 0;
1233 
1234 	if (is_vm_hugetlb_page(vma))
1235 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1236 
1237 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1238 		/*
1239 		 * We do not free on error cases below as remove_vma
1240 		 * gets called on error from higher level routine
1241 		 */
1242 		ret = track_pfn_copy(vma);
1243 		if (ret)
1244 			return ret;
1245 	}
1246 
1247 	/*
1248 	 * We need to invalidate the secondary MMU mappings only when
1249 	 * there could be a permission downgrade on the ptes of the
1250 	 * parent mm. And a permission downgrade will only happen if
1251 	 * is_cow_mapping() returns true.
1252 	 */
1253 	is_cow = is_cow_mapping(vma->vm_flags);
1254 	mmun_start = addr;
1255 	mmun_end   = end;
1256 	if (is_cow)
1257 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1258 						    mmun_end);
1259 
1260 	ret = 0;
1261 	dst_pgd = pgd_offset(dst_mm, addr);
1262 	src_pgd = pgd_offset(src_mm, addr);
1263 	do {
1264 		next = pgd_addr_end(addr, end);
1265 		if (pgd_none_or_clear_bad(src_pgd))
1266 			continue;
1267 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1268 					    vma, addr, next))) {
1269 			ret = -ENOMEM;
1270 			break;
1271 		}
1272 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1273 
1274 	if (is_cow)
1275 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1276 	return ret;
1277 }
1278 
1279 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1280 				struct vm_area_struct *vma, pmd_t *pmd,
1281 				unsigned long addr, unsigned long end,
1282 				struct zap_details *details)
1283 {
1284 	struct mm_struct *mm = tlb->mm;
1285 	int force_flush = 0;
1286 	int rss[NR_MM_COUNTERS];
1287 	spinlock_t *ptl;
1288 	pte_t *start_pte;
1289 	pte_t *pte;
1290 	swp_entry_t entry;
1291 
1292 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1293 again:
1294 	init_rss_vec(rss);
1295 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1296 	pte = start_pte;
1297 	flush_tlb_batched_pending(mm);
1298 	arch_enter_lazy_mmu_mode();
1299 	do {
1300 		pte_t ptent = *pte;
1301 		if (pte_none(ptent))
1302 			continue;
1303 
1304 		if (pte_present(ptent)) {
1305 			struct page *page;
1306 
1307 			page = _vm_normal_page(vma, addr, ptent, true);
1308 			if (unlikely(details) && page) {
1309 				/*
1310 				 * unmap_shared_mapping_pages() wants to
1311 				 * invalidate cache without truncating:
1312 				 * unmap shared but keep private pages.
1313 				 */
1314 				if (details->check_mapping &&
1315 				    details->check_mapping != page_rmapping(page))
1316 					continue;
1317 			}
1318 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1319 							tlb->fullmm);
1320 			tlb_remove_tlb_entry(tlb, pte, addr);
1321 			if (unlikely(!page))
1322 				continue;
1323 
1324 			if (!PageAnon(page)) {
1325 				if (pte_dirty(ptent)) {
1326 					force_flush = 1;
1327 					set_page_dirty(page);
1328 				}
1329 				if (pte_young(ptent) &&
1330 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1331 					mark_page_accessed(page);
1332 			}
1333 			rss[mm_counter(page)]--;
1334 			page_remove_rmap(page, false);
1335 			if (unlikely(page_mapcount(page) < 0))
1336 				print_bad_pte(vma, addr, ptent, page);
1337 			if (unlikely(__tlb_remove_page(tlb, page))) {
1338 				force_flush = 1;
1339 				addr += PAGE_SIZE;
1340 				break;
1341 			}
1342 			continue;
1343 		}
1344 
1345 		entry = pte_to_swp_entry(ptent);
1346 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1347 			struct page *page = device_private_entry_to_page(entry);
1348 
1349 			if (unlikely(details && details->check_mapping)) {
1350 				/*
1351 				 * unmap_shared_mapping_pages() wants to
1352 				 * invalidate cache without truncating:
1353 				 * unmap shared but keep private pages.
1354 				 */
1355 				if (details->check_mapping !=
1356 				    page_rmapping(page))
1357 					continue;
1358 			}
1359 
1360 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1361 			rss[mm_counter(page)]--;
1362 			page_remove_rmap(page, false);
1363 			put_page(page);
1364 			continue;
1365 		}
1366 
1367 		/* If details->check_mapping, we leave swap entries. */
1368 		if (unlikely(details))
1369 			continue;
1370 
1371 		entry = pte_to_swp_entry(ptent);
1372 		if (!non_swap_entry(entry))
1373 			rss[MM_SWAPENTS]--;
1374 		else if (is_migration_entry(entry)) {
1375 			struct page *page;
1376 
1377 			page = migration_entry_to_page(entry);
1378 			rss[mm_counter(page)]--;
1379 		}
1380 		if (unlikely(!free_swap_and_cache(entry)))
1381 			print_bad_pte(vma, addr, ptent, NULL);
1382 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1383 	} while (pte++, addr += PAGE_SIZE, addr != end);
1384 
1385 	add_mm_rss_vec(mm, rss);
1386 	arch_leave_lazy_mmu_mode();
1387 
1388 	/* Do the actual TLB flush before dropping ptl */
1389 	if (force_flush)
1390 		tlb_flush_mmu_tlbonly(tlb);
1391 	pte_unmap_unlock(start_pte, ptl);
1392 
1393 	/*
1394 	 * If we forced a TLB flush (either due to running out of
1395 	 * batch buffers or because we needed to flush dirty TLB
1396 	 * entries before releasing the ptl), free the batched
1397 	 * memory too. Restart if we didn't do everything.
1398 	 */
1399 	if (force_flush) {
1400 		force_flush = 0;
1401 		tlb_flush_mmu_free(tlb);
1402 		if (addr != end)
1403 			goto again;
1404 	}
1405 
1406 	return addr;
1407 }
1408 
1409 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1410 				struct vm_area_struct *vma, pud_t *pud,
1411 				unsigned long addr, unsigned long end,
1412 				struct zap_details *details)
1413 {
1414 	pmd_t *pmd;
1415 	unsigned long next;
1416 
1417 	pmd = pmd_offset(pud, addr);
1418 	do {
1419 		next = pmd_addr_end(addr, end);
1420 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1421 			if (next - addr != HPAGE_PMD_SIZE) {
1422 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1423 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1424 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1425 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1426 				goto next;
1427 			/* fall through */
1428 		}
1429 		/*
1430 		 * Here there can be other concurrent MADV_DONTNEED or
1431 		 * trans huge page faults running, and if the pmd is
1432 		 * none or trans huge it can change under us. This is
1433 		 * because MADV_DONTNEED holds the mmap_sem in read
1434 		 * mode.
1435 		 */
1436 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1437 			goto next;
1438 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1439 next:
1440 		cond_resched();
1441 	} while (pmd++, addr = next, addr != end);
1442 
1443 	return addr;
1444 }
1445 
1446 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1447 				struct vm_area_struct *vma, p4d_t *p4d,
1448 				unsigned long addr, unsigned long end,
1449 				struct zap_details *details)
1450 {
1451 	pud_t *pud;
1452 	unsigned long next;
1453 
1454 	pud = pud_offset(p4d, addr);
1455 	do {
1456 		next = pud_addr_end(addr, end);
1457 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1458 			if (next - addr != HPAGE_PUD_SIZE) {
1459 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1460 				split_huge_pud(vma, pud, addr);
1461 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1462 				goto next;
1463 			/* fall through */
1464 		}
1465 		if (pud_none_or_clear_bad(pud))
1466 			continue;
1467 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1468 next:
1469 		cond_resched();
1470 	} while (pud++, addr = next, addr != end);
1471 
1472 	return addr;
1473 }
1474 
1475 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1476 				struct vm_area_struct *vma, pgd_t *pgd,
1477 				unsigned long addr, unsigned long end,
1478 				struct zap_details *details)
1479 {
1480 	p4d_t *p4d;
1481 	unsigned long next;
1482 
1483 	p4d = p4d_offset(pgd, addr);
1484 	do {
1485 		next = p4d_addr_end(addr, end);
1486 		if (p4d_none_or_clear_bad(p4d))
1487 			continue;
1488 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1489 	} while (p4d++, addr = next, addr != end);
1490 
1491 	return addr;
1492 }
1493 
1494 void unmap_page_range(struct mmu_gather *tlb,
1495 			     struct vm_area_struct *vma,
1496 			     unsigned long addr, unsigned long end,
1497 			     struct zap_details *details)
1498 {
1499 	pgd_t *pgd;
1500 	unsigned long next;
1501 
1502 	BUG_ON(addr >= end);
1503 	tlb_start_vma(tlb, vma);
1504 	pgd = pgd_offset(vma->vm_mm, addr);
1505 	do {
1506 		next = pgd_addr_end(addr, end);
1507 		if (pgd_none_or_clear_bad(pgd))
1508 			continue;
1509 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1510 	} while (pgd++, addr = next, addr != end);
1511 	tlb_end_vma(tlb, vma);
1512 }
1513 
1514 
1515 static void unmap_single_vma(struct mmu_gather *tlb,
1516 		struct vm_area_struct *vma, unsigned long start_addr,
1517 		unsigned long end_addr,
1518 		struct zap_details *details)
1519 {
1520 	unsigned long start = max(vma->vm_start, start_addr);
1521 	unsigned long end;
1522 
1523 	if (start >= vma->vm_end)
1524 		return;
1525 	end = min(vma->vm_end, end_addr);
1526 	if (end <= vma->vm_start)
1527 		return;
1528 
1529 	if (vma->vm_file)
1530 		uprobe_munmap(vma, start, end);
1531 
1532 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1533 		untrack_pfn(vma, 0, 0);
1534 
1535 	if (start != end) {
1536 		if (unlikely(is_vm_hugetlb_page(vma))) {
1537 			/*
1538 			 * It is undesirable to test vma->vm_file as it
1539 			 * should be non-null for valid hugetlb area.
1540 			 * However, vm_file will be NULL in the error
1541 			 * cleanup path of mmap_region. When
1542 			 * hugetlbfs ->mmap method fails,
1543 			 * mmap_region() nullifies vma->vm_file
1544 			 * before calling this function to clean up.
1545 			 * Since no pte has actually been setup, it is
1546 			 * safe to do nothing in this case.
1547 			 */
1548 			if (vma->vm_file) {
1549 				i_mmap_lock_write(vma->vm_file->f_mapping);
1550 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1551 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1552 			}
1553 		} else
1554 			unmap_page_range(tlb, vma, start, end, details);
1555 	}
1556 }
1557 
1558 /**
1559  * unmap_vmas - unmap a range of memory covered by a list of vma's
1560  * @tlb: address of the caller's struct mmu_gather
1561  * @vma: the starting vma
1562  * @start_addr: virtual address at which to start unmapping
1563  * @end_addr: virtual address at which to end unmapping
1564  *
1565  * Unmap all pages in the vma list.
1566  *
1567  * Only addresses between `start' and `end' will be unmapped.
1568  *
1569  * The VMA list must be sorted in ascending virtual address order.
1570  *
1571  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1572  * range after unmap_vmas() returns.  So the only responsibility here is to
1573  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1574  * drops the lock and schedules.
1575  */
1576 void unmap_vmas(struct mmu_gather *tlb,
1577 		struct vm_area_struct *vma, unsigned long start_addr,
1578 		unsigned long end_addr)
1579 {
1580 	struct mm_struct *mm = vma->vm_mm;
1581 
1582 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1583 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1584 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1585 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1586 }
1587 
1588 /**
1589  * zap_page_range - remove user pages in a given range
1590  * @vma: vm_area_struct holding the applicable pages
1591  * @start: starting address of pages to zap
1592  * @size: number of bytes to zap
1593  *
1594  * Caller must protect the VMA list
1595  */
1596 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1597 		unsigned long size)
1598 {
1599 	struct mm_struct *mm = vma->vm_mm;
1600 	struct mmu_gather tlb;
1601 	unsigned long end = start + size;
1602 
1603 	lru_add_drain();
1604 	tlb_gather_mmu(&tlb, mm, start, end);
1605 	update_hiwater_rss(mm);
1606 	mmu_notifier_invalidate_range_start(mm, start, end);
1607 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
1608 		unmap_single_vma(&tlb, vma, start, end, NULL);
1609 
1610 		/*
1611 		 * zap_page_range does not specify whether mmap_sem should be
1612 		 * held for read or write. That allows parallel zap_page_range
1613 		 * operations to unmap a PTE and defer a flush meaning that
1614 		 * this call observes pte_none and fails to flush the TLB.
1615 		 * Rather than adding a complex API, ensure that no stale
1616 		 * TLB entries exist when this call returns.
1617 		 */
1618 		flush_tlb_range(vma, start, end);
1619 	}
1620 
1621 	mmu_notifier_invalidate_range_end(mm, start, end);
1622 	tlb_finish_mmu(&tlb, start, end);
1623 }
1624 
1625 /**
1626  * zap_page_range_single - remove user pages in a given range
1627  * @vma: vm_area_struct holding the applicable pages
1628  * @address: starting address of pages to zap
1629  * @size: number of bytes to zap
1630  * @details: details of shared cache invalidation
1631  *
1632  * The range must fit into one VMA.
1633  */
1634 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1635 		unsigned long size, struct zap_details *details)
1636 {
1637 	struct mm_struct *mm = vma->vm_mm;
1638 	struct mmu_gather tlb;
1639 	unsigned long end = address + size;
1640 
1641 	lru_add_drain();
1642 	tlb_gather_mmu(&tlb, mm, address, end);
1643 	update_hiwater_rss(mm);
1644 	mmu_notifier_invalidate_range_start(mm, address, end);
1645 	unmap_single_vma(&tlb, vma, address, end, details);
1646 	mmu_notifier_invalidate_range_end(mm, address, end);
1647 	tlb_finish_mmu(&tlb, address, end);
1648 }
1649 
1650 /**
1651  * zap_vma_ptes - remove ptes mapping the vma
1652  * @vma: vm_area_struct holding ptes to be zapped
1653  * @address: starting address of pages to zap
1654  * @size: number of bytes to zap
1655  *
1656  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1657  *
1658  * The entire address range must be fully contained within the vma.
1659  *
1660  * Returns 0 if successful.
1661  */
1662 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1663 		unsigned long size)
1664 {
1665 	if (address < vma->vm_start || address + size > vma->vm_end ||
1666 	    		!(vma->vm_flags & VM_PFNMAP))
1667 		return -1;
1668 	zap_page_range_single(vma, address, size, NULL);
1669 	return 0;
1670 }
1671 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1672 
1673 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1674 			spinlock_t **ptl)
1675 {
1676 	pgd_t *pgd;
1677 	p4d_t *p4d;
1678 	pud_t *pud;
1679 	pmd_t *pmd;
1680 
1681 	pgd = pgd_offset(mm, addr);
1682 	p4d = p4d_alloc(mm, pgd, addr);
1683 	if (!p4d)
1684 		return NULL;
1685 	pud = pud_alloc(mm, p4d, addr);
1686 	if (!pud)
1687 		return NULL;
1688 	pmd = pmd_alloc(mm, pud, addr);
1689 	if (!pmd)
1690 		return NULL;
1691 
1692 	VM_BUG_ON(pmd_trans_huge(*pmd));
1693 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1694 }
1695 
1696 /*
1697  * This is the old fallback for page remapping.
1698  *
1699  * For historical reasons, it only allows reserved pages. Only
1700  * old drivers should use this, and they needed to mark their
1701  * pages reserved for the old functions anyway.
1702  */
1703 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1704 			struct page *page, pgprot_t prot)
1705 {
1706 	struct mm_struct *mm = vma->vm_mm;
1707 	int retval;
1708 	pte_t *pte;
1709 	spinlock_t *ptl;
1710 
1711 	retval = -EINVAL;
1712 	if (PageAnon(page))
1713 		goto out;
1714 	retval = -ENOMEM;
1715 	flush_dcache_page(page);
1716 	pte = get_locked_pte(mm, addr, &ptl);
1717 	if (!pte)
1718 		goto out;
1719 	retval = -EBUSY;
1720 	if (!pte_none(*pte))
1721 		goto out_unlock;
1722 
1723 	/* Ok, finally just insert the thing.. */
1724 	get_page(page);
1725 	inc_mm_counter_fast(mm, mm_counter_file(page));
1726 	page_add_file_rmap(page, false);
1727 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1728 
1729 	retval = 0;
1730 	pte_unmap_unlock(pte, ptl);
1731 	return retval;
1732 out_unlock:
1733 	pte_unmap_unlock(pte, ptl);
1734 out:
1735 	return retval;
1736 }
1737 
1738 /**
1739  * vm_insert_page - insert single page into user vma
1740  * @vma: user vma to map to
1741  * @addr: target user address of this page
1742  * @page: source kernel page
1743  *
1744  * This allows drivers to insert individual pages they've allocated
1745  * into a user vma.
1746  *
1747  * The page has to be a nice clean _individual_ kernel allocation.
1748  * If you allocate a compound page, you need to have marked it as
1749  * such (__GFP_COMP), or manually just split the page up yourself
1750  * (see split_page()).
1751  *
1752  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1753  * took an arbitrary page protection parameter. This doesn't allow
1754  * that. Your vma protection will have to be set up correctly, which
1755  * means that if you want a shared writable mapping, you'd better
1756  * ask for a shared writable mapping!
1757  *
1758  * The page does not need to be reserved.
1759  *
1760  * Usually this function is called from f_op->mmap() handler
1761  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1762  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1763  * function from other places, for example from page-fault handler.
1764  */
1765 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1766 			struct page *page)
1767 {
1768 	if (addr < vma->vm_start || addr >= vma->vm_end)
1769 		return -EFAULT;
1770 	if (!page_count(page))
1771 		return -EINVAL;
1772 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1773 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1774 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1775 		vma->vm_flags |= VM_MIXEDMAP;
1776 	}
1777 	return insert_page(vma, addr, page, vma->vm_page_prot);
1778 }
1779 EXPORT_SYMBOL(vm_insert_page);
1780 
1781 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1782 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1783 {
1784 	struct mm_struct *mm = vma->vm_mm;
1785 	int retval;
1786 	pte_t *pte, entry;
1787 	spinlock_t *ptl;
1788 
1789 	retval = -ENOMEM;
1790 	pte = get_locked_pte(mm, addr, &ptl);
1791 	if (!pte)
1792 		goto out;
1793 	retval = -EBUSY;
1794 	if (!pte_none(*pte)) {
1795 		if (mkwrite) {
1796 			/*
1797 			 * For read faults on private mappings the PFN passed
1798 			 * in may not match the PFN we have mapped if the
1799 			 * mapped PFN is a writeable COW page.  In the mkwrite
1800 			 * case we are creating a writable PTE for a shared
1801 			 * mapping and we expect the PFNs to match.
1802 			 */
1803 			if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1804 				goto out_unlock;
1805 			entry = *pte;
1806 			goto out_mkwrite;
1807 		} else
1808 			goto out_unlock;
1809 	}
1810 
1811 	/* Ok, finally just insert the thing.. */
1812 	if (pfn_t_devmap(pfn))
1813 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1814 	else
1815 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1816 
1817 out_mkwrite:
1818 	if (mkwrite) {
1819 		entry = pte_mkyoung(entry);
1820 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1821 	}
1822 
1823 	set_pte_at(mm, addr, pte, entry);
1824 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1825 
1826 	retval = 0;
1827 out_unlock:
1828 	pte_unmap_unlock(pte, ptl);
1829 out:
1830 	return retval;
1831 }
1832 
1833 /**
1834  * vm_insert_pfn - insert single pfn into user vma
1835  * @vma: user vma to map to
1836  * @addr: target user address of this page
1837  * @pfn: source kernel pfn
1838  *
1839  * Similar to vm_insert_page, this allows drivers to insert individual pages
1840  * they've allocated into a user vma. Same comments apply.
1841  *
1842  * This function should only be called from a vm_ops->fault handler, and
1843  * in that case the handler should return NULL.
1844  *
1845  * vma cannot be a COW mapping.
1846  *
1847  * As this is called only for pages that do not currently exist, we
1848  * do not need to flush old virtual caches or the TLB.
1849  */
1850 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1851 			unsigned long pfn)
1852 {
1853 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1854 }
1855 EXPORT_SYMBOL(vm_insert_pfn);
1856 
1857 /**
1858  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1859  * @vma: user vma to map to
1860  * @addr: target user address of this page
1861  * @pfn: source kernel pfn
1862  * @pgprot: pgprot flags for the inserted page
1863  *
1864  * This is exactly like vm_insert_pfn, except that it allows drivers to
1865  * to override pgprot on a per-page basis.
1866  *
1867  * This only makes sense for IO mappings, and it makes no sense for
1868  * cow mappings.  In general, using multiple vmas is preferable;
1869  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1870  * impractical.
1871  */
1872 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1873 			unsigned long pfn, pgprot_t pgprot)
1874 {
1875 	int ret;
1876 	/*
1877 	 * Technically, architectures with pte_special can avoid all these
1878 	 * restrictions (same for remap_pfn_range).  However we would like
1879 	 * consistency in testing and feature parity among all, so we should
1880 	 * try to keep these invariants in place for everybody.
1881 	 */
1882 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1883 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1884 						(VM_PFNMAP|VM_MIXEDMAP));
1885 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1886 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1887 
1888 	if (addr < vma->vm_start || addr >= vma->vm_end)
1889 		return -EFAULT;
1890 
1891 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1892 
1893 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1894 			false);
1895 
1896 	return ret;
1897 }
1898 EXPORT_SYMBOL(vm_insert_pfn_prot);
1899 
1900 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1901 			pfn_t pfn, bool mkwrite)
1902 {
1903 	pgprot_t pgprot = vma->vm_page_prot;
1904 
1905 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1906 
1907 	if (addr < vma->vm_start || addr >= vma->vm_end)
1908 		return -EFAULT;
1909 
1910 	track_pfn_insert(vma, &pgprot, pfn);
1911 
1912 	/*
1913 	 * If we don't have pte special, then we have to use the pfn_valid()
1914 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1915 	 * refcount the page if pfn_valid is true (hence insert_page rather
1916 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1917 	 * without pte special, it would there be refcounted as a normal page.
1918 	 */
1919 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1920 		struct page *page;
1921 
1922 		/*
1923 		 * At this point we are committed to insert_page()
1924 		 * regardless of whether the caller specified flags that
1925 		 * result in pfn_t_has_page() == false.
1926 		 */
1927 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1928 		return insert_page(vma, addr, page, pgprot);
1929 	}
1930 	return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1931 }
1932 
1933 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1934 			pfn_t pfn)
1935 {
1936 	return __vm_insert_mixed(vma, addr, pfn, false);
1937 
1938 }
1939 EXPORT_SYMBOL(vm_insert_mixed);
1940 
1941 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1942 			pfn_t pfn)
1943 {
1944 	return __vm_insert_mixed(vma, addr, pfn, true);
1945 }
1946 EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1947 
1948 /*
1949  * maps a range of physical memory into the requested pages. the old
1950  * mappings are removed. any references to nonexistent pages results
1951  * in null mappings (currently treated as "copy-on-access")
1952  */
1953 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1954 			unsigned long addr, unsigned long end,
1955 			unsigned long pfn, pgprot_t prot)
1956 {
1957 	pte_t *pte;
1958 	spinlock_t *ptl;
1959 
1960 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1961 	if (!pte)
1962 		return -ENOMEM;
1963 	arch_enter_lazy_mmu_mode();
1964 	do {
1965 		BUG_ON(!pte_none(*pte));
1966 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1967 		pfn++;
1968 	} while (pte++, addr += PAGE_SIZE, addr != end);
1969 	arch_leave_lazy_mmu_mode();
1970 	pte_unmap_unlock(pte - 1, ptl);
1971 	return 0;
1972 }
1973 
1974 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1975 			unsigned long addr, unsigned long end,
1976 			unsigned long pfn, pgprot_t prot)
1977 {
1978 	pmd_t *pmd;
1979 	unsigned long next;
1980 
1981 	pfn -= addr >> PAGE_SHIFT;
1982 	pmd = pmd_alloc(mm, pud, addr);
1983 	if (!pmd)
1984 		return -ENOMEM;
1985 	VM_BUG_ON(pmd_trans_huge(*pmd));
1986 	do {
1987 		next = pmd_addr_end(addr, end);
1988 		if (remap_pte_range(mm, pmd, addr, next,
1989 				pfn + (addr >> PAGE_SHIFT), prot))
1990 			return -ENOMEM;
1991 	} while (pmd++, addr = next, addr != end);
1992 	return 0;
1993 }
1994 
1995 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1996 			unsigned long addr, unsigned long end,
1997 			unsigned long pfn, pgprot_t prot)
1998 {
1999 	pud_t *pud;
2000 	unsigned long next;
2001 
2002 	pfn -= addr >> PAGE_SHIFT;
2003 	pud = pud_alloc(mm, p4d, addr);
2004 	if (!pud)
2005 		return -ENOMEM;
2006 	do {
2007 		next = pud_addr_end(addr, end);
2008 		if (remap_pmd_range(mm, pud, addr, next,
2009 				pfn + (addr >> PAGE_SHIFT), prot))
2010 			return -ENOMEM;
2011 	} while (pud++, addr = next, addr != end);
2012 	return 0;
2013 }
2014 
2015 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2016 			unsigned long addr, unsigned long end,
2017 			unsigned long pfn, pgprot_t prot)
2018 {
2019 	p4d_t *p4d;
2020 	unsigned long next;
2021 
2022 	pfn -= addr >> PAGE_SHIFT;
2023 	p4d = p4d_alloc(mm, pgd, addr);
2024 	if (!p4d)
2025 		return -ENOMEM;
2026 	do {
2027 		next = p4d_addr_end(addr, end);
2028 		if (remap_pud_range(mm, p4d, addr, next,
2029 				pfn + (addr >> PAGE_SHIFT), prot))
2030 			return -ENOMEM;
2031 	} while (p4d++, addr = next, addr != end);
2032 	return 0;
2033 }
2034 
2035 /**
2036  * remap_pfn_range - remap kernel memory to userspace
2037  * @vma: user vma to map to
2038  * @addr: target user address to start at
2039  * @pfn: physical address of kernel memory
2040  * @size: size of map area
2041  * @prot: page protection flags for this mapping
2042  *
2043  *  Note: this is only safe if the mm semaphore is held when called.
2044  */
2045 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2046 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2047 {
2048 	pgd_t *pgd;
2049 	unsigned long next;
2050 	unsigned long end = addr + PAGE_ALIGN(size);
2051 	struct mm_struct *mm = vma->vm_mm;
2052 	unsigned long remap_pfn = pfn;
2053 	int err;
2054 
2055 	/*
2056 	 * Physically remapped pages are special. Tell the
2057 	 * rest of the world about it:
2058 	 *   VM_IO tells people not to look at these pages
2059 	 *	(accesses can have side effects).
2060 	 *   VM_PFNMAP tells the core MM that the base pages are just
2061 	 *	raw PFN mappings, and do not have a "struct page" associated
2062 	 *	with them.
2063 	 *   VM_DONTEXPAND
2064 	 *      Disable vma merging and expanding with mremap().
2065 	 *   VM_DONTDUMP
2066 	 *      Omit vma from core dump, even when VM_IO turned off.
2067 	 *
2068 	 * There's a horrible special case to handle copy-on-write
2069 	 * behaviour that some programs depend on. We mark the "original"
2070 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2071 	 * See vm_normal_page() for details.
2072 	 */
2073 	if (is_cow_mapping(vma->vm_flags)) {
2074 		if (addr != vma->vm_start || end != vma->vm_end)
2075 			return -EINVAL;
2076 		vma->vm_pgoff = pfn;
2077 	}
2078 
2079 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2080 	if (err)
2081 		return -EINVAL;
2082 
2083 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2084 
2085 	BUG_ON(addr >= end);
2086 	pfn -= addr >> PAGE_SHIFT;
2087 	pgd = pgd_offset(mm, addr);
2088 	flush_cache_range(vma, addr, end);
2089 	do {
2090 		next = pgd_addr_end(addr, end);
2091 		err = remap_p4d_range(mm, pgd, addr, next,
2092 				pfn + (addr >> PAGE_SHIFT), prot);
2093 		if (err)
2094 			break;
2095 	} while (pgd++, addr = next, addr != end);
2096 
2097 	if (err)
2098 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2099 
2100 	return err;
2101 }
2102 EXPORT_SYMBOL(remap_pfn_range);
2103 
2104 /**
2105  * vm_iomap_memory - remap memory to userspace
2106  * @vma: user vma to map to
2107  * @start: start of area
2108  * @len: size of area
2109  *
2110  * This is a simplified io_remap_pfn_range() for common driver use. The
2111  * driver just needs to give us the physical memory range to be mapped,
2112  * we'll figure out the rest from the vma information.
2113  *
2114  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2115  * whatever write-combining details or similar.
2116  */
2117 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2118 {
2119 	unsigned long vm_len, pfn, pages;
2120 
2121 	/* Check that the physical memory area passed in looks valid */
2122 	if (start + len < start)
2123 		return -EINVAL;
2124 	/*
2125 	 * You *really* shouldn't map things that aren't page-aligned,
2126 	 * but we've historically allowed it because IO memory might
2127 	 * just have smaller alignment.
2128 	 */
2129 	len += start & ~PAGE_MASK;
2130 	pfn = start >> PAGE_SHIFT;
2131 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2132 	if (pfn + pages < pfn)
2133 		return -EINVAL;
2134 
2135 	/* We start the mapping 'vm_pgoff' pages into the area */
2136 	if (vma->vm_pgoff > pages)
2137 		return -EINVAL;
2138 	pfn += vma->vm_pgoff;
2139 	pages -= vma->vm_pgoff;
2140 
2141 	/* Can we fit all of the mapping? */
2142 	vm_len = vma->vm_end - vma->vm_start;
2143 	if (vm_len >> PAGE_SHIFT > pages)
2144 		return -EINVAL;
2145 
2146 	/* Ok, let it rip */
2147 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2148 }
2149 EXPORT_SYMBOL(vm_iomap_memory);
2150 
2151 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2152 				     unsigned long addr, unsigned long end,
2153 				     pte_fn_t fn, void *data)
2154 {
2155 	pte_t *pte;
2156 	int err;
2157 	pgtable_t token;
2158 	spinlock_t *uninitialized_var(ptl);
2159 
2160 	pte = (mm == &init_mm) ?
2161 		pte_alloc_kernel(pmd, addr) :
2162 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2163 	if (!pte)
2164 		return -ENOMEM;
2165 
2166 	BUG_ON(pmd_huge(*pmd));
2167 
2168 	arch_enter_lazy_mmu_mode();
2169 
2170 	token = pmd_pgtable(*pmd);
2171 
2172 	do {
2173 		err = fn(pte++, token, addr, data);
2174 		if (err)
2175 			break;
2176 	} while (addr += PAGE_SIZE, addr != end);
2177 
2178 	arch_leave_lazy_mmu_mode();
2179 
2180 	if (mm != &init_mm)
2181 		pte_unmap_unlock(pte-1, ptl);
2182 	return err;
2183 }
2184 
2185 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2186 				     unsigned long addr, unsigned long end,
2187 				     pte_fn_t fn, void *data)
2188 {
2189 	pmd_t *pmd;
2190 	unsigned long next;
2191 	int err;
2192 
2193 	BUG_ON(pud_huge(*pud));
2194 
2195 	pmd = pmd_alloc(mm, pud, addr);
2196 	if (!pmd)
2197 		return -ENOMEM;
2198 	do {
2199 		next = pmd_addr_end(addr, end);
2200 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2201 		if (err)
2202 			break;
2203 	} while (pmd++, addr = next, addr != end);
2204 	return err;
2205 }
2206 
2207 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2208 				     unsigned long addr, unsigned long end,
2209 				     pte_fn_t fn, void *data)
2210 {
2211 	pud_t *pud;
2212 	unsigned long next;
2213 	int err;
2214 
2215 	pud = pud_alloc(mm, p4d, addr);
2216 	if (!pud)
2217 		return -ENOMEM;
2218 	do {
2219 		next = pud_addr_end(addr, end);
2220 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2221 		if (err)
2222 			break;
2223 	} while (pud++, addr = next, addr != end);
2224 	return err;
2225 }
2226 
2227 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2228 				     unsigned long addr, unsigned long end,
2229 				     pte_fn_t fn, void *data)
2230 {
2231 	p4d_t *p4d;
2232 	unsigned long next;
2233 	int err;
2234 
2235 	p4d = p4d_alloc(mm, pgd, addr);
2236 	if (!p4d)
2237 		return -ENOMEM;
2238 	do {
2239 		next = p4d_addr_end(addr, end);
2240 		err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2241 		if (err)
2242 			break;
2243 	} while (p4d++, addr = next, addr != end);
2244 	return err;
2245 }
2246 
2247 /*
2248  * Scan a region of virtual memory, filling in page tables as necessary
2249  * and calling a provided function on each leaf page table.
2250  */
2251 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2252 			unsigned long size, pte_fn_t fn, void *data)
2253 {
2254 	pgd_t *pgd;
2255 	unsigned long next;
2256 	unsigned long end = addr + size;
2257 	int err;
2258 
2259 	if (WARN_ON(addr >= end))
2260 		return -EINVAL;
2261 
2262 	pgd = pgd_offset(mm, addr);
2263 	do {
2264 		next = pgd_addr_end(addr, end);
2265 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2266 		if (err)
2267 			break;
2268 	} while (pgd++, addr = next, addr != end);
2269 
2270 	return err;
2271 }
2272 EXPORT_SYMBOL_GPL(apply_to_page_range);
2273 
2274 /*
2275  * handle_pte_fault chooses page fault handler according to an entry which was
2276  * read non-atomically.  Before making any commitment, on those architectures
2277  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2278  * parts, do_swap_page must check under lock before unmapping the pte and
2279  * proceeding (but do_wp_page is only called after already making such a check;
2280  * and do_anonymous_page can safely check later on).
2281  */
2282 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2283 				pte_t *page_table, pte_t orig_pte)
2284 {
2285 	int same = 1;
2286 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2287 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2288 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2289 		spin_lock(ptl);
2290 		same = pte_same(*page_table, orig_pte);
2291 		spin_unlock(ptl);
2292 	}
2293 #endif
2294 	pte_unmap(page_table);
2295 	return same;
2296 }
2297 
2298 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2299 {
2300 	debug_dma_assert_idle(src);
2301 
2302 	/*
2303 	 * If the source page was a PFN mapping, we don't have
2304 	 * a "struct page" for it. We do a best-effort copy by
2305 	 * just copying from the original user address. If that
2306 	 * fails, we just zero-fill it. Live with it.
2307 	 */
2308 	if (unlikely(!src)) {
2309 		void *kaddr = kmap_atomic(dst);
2310 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2311 
2312 		/*
2313 		 * This really shouldn't fail, because the page is there
2314 		 * in the page tables. But it might just be unreadable,
2315 		 * in which case we just give up and fill the result with
2316 		 * zeroes.
2317 		 */
2318 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2319 			clear_page(kaddr);
2320 		kunmap_atomic(kaddr);
2321 		flush_dcache_page(dst);
2322 	} else
2323 		copy_user_highpage(dst, src, va, vma);
2324 }
2325 
2326 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2327 {
2328 	struct file *vm_file = vma->vm_file;
2329 
2330 	if (vm_file)
2331 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2332 
2333 	/*
2334 	 * Special mappings (e.g. VDSO) do not have any file so fake
2335 	 * a default GFP_KERNEL for them.
2336 	 */
2337 	return GFP_KERNEL;
2338 }
2339 
2340 /*
2341  * Notify the address space that the page is about to become writable so that
2342  * it can prohibit this or wait for the page to get into an appropriate state.
2343  *
2344  * We do this without the lock held, so that it can sleep if it needs to.
2345  */
2346 static int do_page_mkwrite(struct vm_fault *vmf)
2347 {
2348 	int ret;
2349 	struct page *page = vmf->page;
2350 	unsigned int old_flags = vmf->flags;
2351 
2352 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2353 
2354 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2355 	/* Restore original flags so that caller is not surprised */
2356 	vmf->flags = old_flags;
2357 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2358 		return ret;
2359 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2360 		lock_page(page);
2361 		if (!page->mapping) {
2362 			unlock_page(page);
2363 			return 0; /* retry */
2364 		}
2365 		ret |= VM_FAULT_LOCKED;
2366 	} else
2367 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2368 	return ret;
2369 }
2370 
2371 /*
2372  * Handle dirtying of a page in shared file mapping on a write fault.
2373  *
2374  * The function expects the page to be locked and unlocks it.
2375  */
2376 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2377 				    struct page *page)
2378 {
2379 	struct address_space *mapping;
2380 	bool dirtied;
2381 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2382 
2383 	dirtied = set_page_dirty(page);
2384 	VM_BUG_ON_PAGE(PageAnon(page), page);
2385 	/*
2386 	 * Take a local copy of the address_space - page.mapping may be zeroed
2387 	 * by truncate after unlock_page().   The address_space itself remains
2388 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2389 	 * release semantics to prevent the compiler from undoing this copying.
2390 	 */
2391 	mapping = page_rmapping(page);
2392 	unlock_page(page);
2393 
2394 	if ((dirtied || page_mkwrite) && mapping) {
2395 		/*
2396 		 * Some device drivers do not set page.mapping
2397 		 * but still dirty their pages
2398 		 */
2399 		balance_dirty_pages_ratelimited(mapping);
2400 	}
2401 
2402 	if (!page_mkwrite)
2403 		file_update_time(vma->vm_file);
2404 }
2405 
2406 /*
2407  * Handle write page faults for pages that can be reused in the current vma
2408  *
2409  * This can happen either due to the mapping being with the VM_SHARED flag,
2410  * or due to us being the last reference standing to the page. In either
2411  * case, all we need to do here is to mark the page as writable and update
2412  * any related book-keeping.
2413  */
2414 static inline void wp_page_reuse(struct vm_fault *vmf)
2415 	__releases(vmf->ptl)
2416 {
2417 	struct vm_area_struct *vma = vmf->vma;
2418 	struct page *page = vmf->page;
2419 	pte_t entry;
2420 	/*
2421 	 * Clear the pages cpupid information as the existing
2422 	 * information potentially belongs to a now completely
2423 	 * unrelated process.
2424 	 */
2425 	if (page)
2426 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2427 
2428 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2429 	entry = pte_mkyoung(vmf->orig_pte);
2430 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2431 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2432 		update_mmu_cache(vma, vmf->address, vmf->pte);
2433 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2434 }
2435 
2436 /*
2437  * Handle the case of a page which we actually need to copy to a new page.
2438  *
2439  * Called with mmap_sem locked and the old page referenced, but
2440  * without the ptl held.
2441  *
2442  * High level logic flow:
2443  *
2444  * - Allocate a page, copy the content of the old page to the new one.
2445  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2446  * - Take the PTL. If the pte changed, bail out and release the allocated page
2447  * - If the pte is still the way we remember it, update the page table and all
2448  *   relevant references. This includes dropping the reference the page-table
2449  *   held to the old page, as well as updating the rmap.
2450  * - In any case, unlock the PTL and drop the reference we took to the old page.
2451  */
2452 static int wp_page_copy(struct vm_fault *vmf)
2453 {
2454 	struct vm_area_struct *vma = vmf->vma;
2455 	struct mm_struct *mm = vma->vm_mm;
2456 	struct page *old_page = vmf->page;
2457 	struct page *new_page = NULL;
2458 	pte_t entry;
2459 	int page_copied = 0;
2460 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2461 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2462 	struct mem_cgroup *memcg;
2463 
2464 	if (unlikely(anon_vma_prepare(vma)))
2465 		goto oom;
2466 
2467 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2468 		new_page = alloc_zeroed_user_highpage_movable(vma,
2469 							      vmf->address);
2470 		if (!new_page)
2471 			goto oom;
2472 	} else {
2473 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2474 				vmf->address);
2475 		if (!new_page)
2476 			goto oom;
2477 		cow_user_page(new_page, old_page, vmf->address, vma);
2478 	}
2479 
2480 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2481 		goto oom_free_new;
2482 
2483 	__SetPageUptodate(new_page);
2484 
2485 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2486 
2487 	/*
2488 	 * Re-check the pte - we dropped the lock
2489 	 */
2490 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2491 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2492 		if (old_page) {
2493 			if (!PageAnon(old_page)) {
2494 				dec_mm_counter_fast(mm,
2495 						mm_counter_file(old_page));
2496 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2497 			}
2498 		} else {
2499 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2500 		}
2501 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2502 		entry = mk_pte(new_page, vma->vm_page_prot);
2503 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2504 		/*
2505 		 * Clear the pte entry and flush it first, before updating the
2506 		 * pte with the new entry. This will avoid a race condition
2507 		 * seen in the presence of one thread doing SMC and another
2508 		 * thread doing COW.
2509 		 */
2510 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2511 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2512 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2513 		lru_cache_add_active_or_unevictable(new_page, vma);
2514 		/*
2515 		 * We call the notify macro here because, when using secondary
2516 		 * mmu page tables (such as kvm shadow page tables), we want the
2517 		 * new page to be mapped directly into the secondary page table.
2518 		 */
2519 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2520 		update_mmu_cache(vma, vmf->address, vmf->pte);
2521 		if (old_page) {
2522 			/*
2523 			 * Only after switching the pte to the new page may
2524 			 * we remove the mapcount here. Otherwise another
2525 			 * process may come and find the rmap count decremented
2526 			 * before the pte is switched to the new page, and
2527 			 * "reuse" the old page writing into it while our pte
2528 			 * here still points into it and can be read by other
2529 			 * threads.
2530 			 *
2531 			 * The critical issue is to order this
2532 			 * page_remove_rmap with the ptp_clear_flush above.
2533 			 * Those stores are ordered by (if nothing else,)
2534 			 * the barrier present in the atomic_add_negative
2535 			 * in page_remove_rmap.
2536 			 *
2537 			 * Then the TLB flush in ptep_clear_flush ensures that
2538 			 * no process can access the old page before the
2539 			 * decremented mapcount is visible. And the old page
2540 			 * cannot be reused until after the decremented
2541 			 * mapcount is visible. So transitively, TLBs to
2542 			 * old page will be flushed before it can be reused.
2543 			 */
2544 			page_remove_rmap(old_page, false);
2545 		}
2546 
2547 		/* Free the old page.. */
2548 		new_page = old_page;
2549 		page_copied = 1;
2550 	} else {
2551 		mem_cgroup_cancel_charge(new_page, memcg, false);
2552 	}
2553 
2554 	if (new_page)
2555 		put_page(new_page);
2556 
2557 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2558 	/*
2559 	 * No need to double call mmu_notifier->invalidate_range() callback as
2560 	 * the above ptep_clear_flush_notify() did already call it.
2561 	 */
2562 	mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2563 	if (old_page) {
2564 		/*
2565 		 * Don't let another task, with possibly unlocked vma,
2566 		 * keep the mlocked page.
2567 		 */
2568 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2569 			lock_page(old_page);	/* LRU manipulation */
2570 			if (PageMlocked(old_page))
2571 				munlock_vma_page(old_page);
2572 			unlock_page(old_page);
2573 		}
2574 		put_page(old_page);
2575 	}
2576 	return page_copied ? VM_FAULT_WRITE : 0;
2577 oom_free_new:
2578 	put_page(new_page);
2579 oom:
2580 	if (old_page)
2581 		put_page(old_page);
2582 	return VM_FAULT_OOM;
2583 }
2584 
2585 /**
2586  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2587  *			  writeable once the page is prepared
2588  *
2589  * @vmf: structure describing the fault
2590  *
2591  * This function handles all that is needed to finish a write page fault in a
2592  * shared mapping due to PTE being read-only once the mapped page is prepared.
2593  * It handles locking of PTE and modifying it. The function returns
2594  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2595  * lock.
2596  *
2597  * The function expects the page to be locked or other protection against
2598  * concurrent faults / writeback (such as DAX radix tree locks).
2599  */
2600 int finish_mkwrite_fault(struct vm_fault *vmf)
2601 {
2602 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2603 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2604 				       &vmf->ptl);
2605 	/*
2606 	 * We might have raced with another page fault while we released the
2607 	 * pte_offset_map_lock.
2608 	 */
2609 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2610 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2611 		return VM_FAULT_NOPAGE;
2612 	}
2613 	wp_page_reuse(vmf);
2614 	return 0;
2615 }
2616 
2617 /*
2618  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2619  * mapping
2620  */
2621 static int wp_pfn_shared(struct vm_fault *vmf)
2622 {
2623 	struct vm_area_struct *vma = vmf->vma;
2624 
2625 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2626 		int ret;
2627 
2628 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2629 		vmf->flags |= FAULT_FLAG_MKWRITE;
2630 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2631 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2632 			return ret;
2633 		return finish_mkwrite_fault(vmf);
2634 	}
2635 	wp_page_reuse(vmf);
2636 	return VM_FAULT_WRITE;
2637 }
2638 
2639 static int wp_page_shared(struct vm_fault *vmf)
2640 	__releases(vmf->ptl)
2641 {
2642 	struct vm_area_struct *vma = vmf->vma;
2643 
2644 	get_page(vmf->page);
2645 
2646 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2647 		int tmp;
2648 
2649 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2650 		tmp = do_page_mkwrite(vmf);
2651 		if (unlikely(!tmp || (tmp &
2652 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2653 			put_page(vmf->page);
2654 			return tmp;
2655 		}
2656 		tmp = finish_mkwrite_fault(vmf);
2657 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2658 			unlock_page(vmf->page);
2659 			put_page(vmf->page);
2660 			return tmp;
2661 		}
2662 	} else {
2663 		wp_page_reuse(vmf);
2664 		lock_page(vmf->page);
2665 	}
2666 	fault_dirty_shared_page(vma, vmf->page);
2667 	put_page(vmf->page);
2668 
2669 	return VM_FAULT_WRITE;
2670 }
2671 
2672 /*
2673  * This routine handles present pages, when users try to write
2674  * to a shared page. It is done by copying the page to a new address
2675  * and decrementing the shared-page counter for the old page.
2676  *
2677  * Note that this routine assumes that the protection checks have been
2678  * done by the caller (the low-level page fault routine in most cases).
2679  * Thus we can safely just mark it writable once we've done any necessary
2680  * COW.
2681  *
2682  * We also mark the page dirty at this point even though the page will
2683  * change only once the write actually happens. This avoids a few races,
2684  * and potentially makes it more efficient.
2685  *
2686  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2687  * but allow concurrent faults), with pte both mapped and locked.
2688  * We return with mmap_sem still held, but pte unmapped and unlocked.
2689  */
2690 static int do_wp_page(struct vm_fault *vmf)
2691 	__releases(vmf->ptl)
2692 {
2693 	struct vm_area_struct *vma = vmf->vma;
2694 
2695 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2696 	if (!vmf->page) {
2697 		/*
2698 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2699 		 * VM_PFNMAP VMA.
2700 		 *
2701 		 * We should not cow pages in a shared writeable mapping.
2702 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2703 		 */
2704 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2705 				     (VM_WRITE|VM_SHARED))
2706 			return wp_pfn_shared(vmf);
2707 
2708 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2709 		return wp_page_copy(vmf);
2710 	}
2711 
2712 	/*
2713 	 * Take out anonymous pages first, anonymous shared vmas are
2714 	 * not dirty accountable.
2715 	 */
2716 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2717 		int total_map_swapcount;
2718 		if (!trylock_page(vmf->page)) {
2719 			get_page(vmf->page);
2720 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2721 			lock_page(vmf->page);
2722 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2723 					vmf->address, &vmf->ptl);
2724 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2725 				unlock_page(vmf->page);
2726 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2727 				put_page(vmf->page);
2728 				return 0;
2729 			}
2730 			put_page(vmf->page);
2731 		}
2732 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2733 			if (total_map_swapcount == 1) {
2734 				/*
2735 				 * The page is all ours. Move it to
2736 				 * our anon_vma so the rmap code will
2737 				 * not search our parent or siblings.
2738 				 * Protected against the rmap code by
2739 				 * the page lock.
2740 				 */
2741 				page_move_anon_rmap(vmf->page, vma);
2742 			}
2743 			unlock_page(vmf->page);
2744 			wp_page_reuse(vmf);
2745 			return VM_FAULT_WRITE;
2746 		}
2747 		unlock_page(vmf->page);
2748 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2749 					(VM_WRITE|VM_SHARED))) {
2750 		return wp_page_shared(vmf);
2751 	}
2752 
2753 	/*
2754 	 * Ok, we need to copy. Oh, well..
2755 	 */
2756 	get_page(vmf->page);
2757 
2758 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2759 	return wp_page_copy(vmf);
2760 }
2761 
2762 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2763 		unsigned long start_addr, unsigned long end_addr,
2764 		struct zap_details *details)
2765 {
2766 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2767 }
2768 
2769 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2770 					    struct zap_details *details)
2771 {
2772 	struct vm_area_struct *vma;
2773 	pgoff_t vba, vea, zba, zea;
2774 
2775 	vma_interval_tree_foreach(vma, root,
2776 			details->first_index, details->last_index) {
2777 
2778 		vba = vma->vm_pgoff;
2779 		vea = vba + vma_pages(vma) - 1;
2780 		zba = details->first_index;
2781 		if (zba < vba)
2782 			zba = vba;
2783 		zea = details->last_index;
2784 		if (zea > vea)
2785 			zea = vea;
2786 
2787 		unmap_mapping_range_vma(vma,
2788 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2789 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2790 				details);
2791 	}
2792 }
2793 
2794 /**
2795  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2796  * address_space corresponding to the specified page range in the underlying
2797  * file.
2798  *
2799  * @mapping: the address space containing mmaps to be unmapped.
2800  * @holebegin: byte in first page to unmap, relative to the start of
2801  * the underlying file.  This will be rounded down to a PAGE_SIZE
2802  * boundary.  Note that this is different from truncate_pagecache(), which
2803  * must keep the partial page.  In contrast, we must get rid of
2804  * partial pages.
2805  * @holelen: size of prospective hole in bytes.  This will be rounded
2806  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2807  * end of the file.
2808  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2809  * but 0 when invalidating pagecache, don't throw away private data.
2810  */
2811 void unmap_mapping_range(struct address_space *mapping,
2812 		loff_t const holebegin, loff_t const holelen, int even_cows)
2813 {
2814 	struct zap_details details = { };
2815 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2816 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2817 
2818 	/* Check for overflow. */
2819 	if (sizeof(holelen) > sizeof(hlen)) {
2820 		long long holeend =
2821 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2822 		if (holeend & ~(long long)ULONG_MAX)
2823 			hlen = ULONG_MAX - hba + 1;
2824 	}
2825 
2826 	details.check_mapping = even_cows ? NULL : mapping;
2827 	details.first_index = hba;
2828 	details.last_index = hba + hlen - 1;
2829 	if (details.last_index < details.first_index)
2830 		details.last_index = ULONG_MAX;
2831 
2832 	i_mmap_lock_write(mapping);
2833 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2834 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2835 	i_mmap_unlock_write(mapping);
2836 }
2837 EXPORT_SYMBOL(unmap_mapping_range);
2838 
2839 /*
2840  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2841  * but allow concurrent faults), and pte mapped but not yet locked.
2842  * We return with pte unmapped and unlocked.
2843  *
2844  * We return with the mmap_sem locked or unlocked in the same cases
2845  * as does filemap_fault().
2846  */
2847 int do_swap_page(struct vm_fault *vmf)
2848 {
2849 	struct vm_area_struct *vma = vmf->vma;
2850 	struct page *page = NULL, *swapcache = NULL;
2851 	struct mem_cgroup *memcg;
2852 	struct vma_swap_readahead swap_ra;
2853 	swp_entry_t entry;
2854 	pte_t pte;
2855 	int locked;
2856 	int exclusive = 0;
2857 	int ret = 0;
2858 	bool vma_readahead = swap_use_vma_readahead();
2859 
2860 	if (vma_readahead)
2861 		page = swap_readahead_detect(vmf, &swap_ra);
2862 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) {
2863 		if (page)
2864 			put_page(page);
2865 		goto out;
2866 	}
2867 
2868 	entry = pte_to_swp_entry(vmf->orig_pte);
2869 	if (unlikely(non_swap_entry(entry))) {
2870 		if (is_migration_entry(entry)) {
2871 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2872 					     vmf->address);
2873 		} else if (is_device_private_entry(entry)) {
2874 			/*
2875 			 * For un-addressable device memory we call the pgmap
2876 			 * fault handler callback. The callback must migrate
2877 			 * the page back to some CPU accessible page.
2878 			 */
2879 			ret = device_private_entry_fault(vma, vmf->address, entry,
2880 						 vmf->flags, vmf->pmd);
2881 		} else if (is_hwpoison_entry(entry)) {
2882 			ret = VM_FAULT_HWPOISON;
2883 		} else {
2884 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2885 			ret = VM_FAULT_SIGBUS;
2886 		}
2887 		goto out;
2888 	}
2889 
2890 
2891 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2892 	if (!page)
2893 		page = lookup_swap_cache(entry, vma_readahead ? vma : NULL,
2894 					 vmf->address);
2895 	if (!page) {
2896 		struct swap_info_struct *si = swp_swap_info(entry);
2897 
2898 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2899 				__swap_count(si, entry) == 1) {
2900 			/* skip swapcache */
2901 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2902 			if (page) {
2903 				__SetPageLocked(page);
2904 				__SetPageSwapBacked(page);
2905 				set_page_private(page, entry.val);
2906 				lru_cache_add_anon(page);
2907 				swap_readpage(page, true);
2908 			}
2909 		} else {
2910 			if (vma_readahead)
2911 				page = do_swap_page_readahead(entry,
2912 					GFP_HIGHUSER_MOVABLE, vmf, &swap_ra);
2913 			else
2914 				page = swapin_readahead(entry,
2915 				       GFP_HIGHUSER_MOVABLE, vma, vmf->address);
2916 			swapcache = page;
2917 		}
2918 
2919 		if (!page) {
2920 			/*
2921 			 * Back out if somebody else faulted in this pte
2922 			 * while we released the pte lock.
2923 			 */
2924 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2925 					vmf->address, &vmf->ptl);
2926 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2927 				ret = VM_FAULT_OOM;
2928 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2929 			goto unlock;
2930 		}
2931 
2932 		/* Had to read the page from swap area: Major fault */
2933 		ret = VM_FAULT_MAJOR;
2934 		count_vm_event(PGMAJFAULT);
2935 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2936 	} else if (PageHWPoison(page)) {
2937 		/*
2938 		 * hwpoisoned dirty swapcache pages are kept for killing
2939 		 * owner processes (which may be unknown at hwpoison time)
2940 		 */
2941 		ret = VM_FAULT_HWPOISON;
2942 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2943 		swapcache = page;
2944 		goto out_release;
2945 	}
2946 
2947 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2948 
2949 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2950 	if (!locked) {
2951 		ret |= VM_FAULT_RETRY;
2952 		goto out_release;
2953 	}
2954 
2955 	/*
2956 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2957 	 * release the swapcache from under us.  The page pin, and pte_same
2958 	 * test below, are not enough to exclude that.  Even if it is still
2959 	 * swapcache, we need to check that the page's swap has not changed.
2960 	 */
2961 	if (unlikely((!PageSwapCache(page) ||
2962 			page_private(page) != entry.val)) && swapcache)
2963 		goto out_page;
2964 
2965 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2966 	if (unlikely(!page)) {
2967 		ret = VM_FAULT_OOM;
2968 		page = swapcache;
2969 		goto out_page;
2970 	}
2971 
2972 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2973 				&memcg, false)) {
2974 		ret = VM_FAULT_OOM;
2975 		goto out_page;
2976 	}
2977 
2978 	/*
2979 	 * Back out if somebody else already faulted in this pte.
2980 	 */
2981 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2982 			&vmf->ptl);
2983 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2984 		goto out_nomap;
2985 
2986 	if (unlikely(!PageUptodate(page))) {
2987 		ret = VM_FAULT_SIGBUS;
2988 		goto out_nomap;
2989 	}
2990 
2991 	/*
2992 	 * The page isn't present yet, go ahead with the fault.
2993 	 *
2994 	 * Be careful about the sequence of operations here.
2995 	 * To get its accounting right, reuse_swap_page() must be called
2996 	 * while the page is counted on swap but not yet in mapcount i.e.
2997 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2998 	 * must be called after the swap_free(), or it will never succeed.
2999 	 */
3000 
3001 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3002 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3003 	pte = mk_pte(page, vma->vm_page_prot);
3004 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3005 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3006 		vmf->flags &= ~FAULT_FLAG_WRITE;
3007 		ret |= VM_FAULT_WRITE;
3008 		exclusive = RMAP_EXCLUSIVE;
3009 	}
3010 	flush_icache_page(vma, page);
3011 	if (pte_swp_soft_dirty(vmf->orig_pte))
3012 		pte = pte_mksoft_dirty(pte);
3013 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3014 	vmf->orig_pte = pte;
3015 
3016 	/* ksm created a completely new copy */
3017 	if (unlikely(page != swapcache && swapcache)) {
3018 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3019 		mem_cgroup_commit_charge(page, memcg, false, false);
3020 		lru_cache_add_active_or_unevictable(page, vma);
3021 	} else {
3022 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3023 		mem_cgroup_commit_charge(page, memcg, true, false);
3024 		activate_page(page);
3025 	}
3026 
3027 	swap_free(entry);
3028 	if (mem_cgroup_swap_full(page) ||
3029 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3030 		try_to_free_swap(page);
3031 	unlock_page(page);
3032 	if (page != swapcache && swapcache) {
3033 		/*
3034 		 * Hold the lock to avoid the swap entry to be reused
3035 		 * until we take the PT lock for the pte_same() check
3036 		 * (to avoid false positives from pte_same). For
3037 		 * further safety release the lock after the swap_free
3038 		 * so that the swap count won't change under a
3039 		 * parallel locked swapcache.
3040 		 */
3041 		unlock_page(swapcache);
3042 		put_page(swapcache);
3043 	}
3044 
3045 	if (vmf->flags & FAULT_FLAG_WRITE) {
3046 		ret |= do_wp_page(vmf);
3047 		if (ret & VM_FAULT_ERROR)
3048 			ret &= VM_FAULT_ERROR;
3049 		goto out;
3050 	}
3051 
3052 	/* No need to invalidate - it was non-present before */
3053 	update_mmu_cache(vma, vmf->address, vmf->pte);
3054 unlock:
3055 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3056 out:
3057 	return ret;
3058 out_nomap:
3059 	mem_cgroup_cancel_charge(page, memcg, false);
3060 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3061 out_page:
3062 	unlock_page(page);
3063 out_release:
3064 	put_page(page);
3065 	if (page != swapcache && swapcache) {
3066 		unlock_page(swapcache);
3067 		put_page(swapcache);
3068 	}
3069 	return ret;
3070 }
3071 
3072 /*
3073  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3074  * but allow concurrent faults), and pte mapped but not yet locked.
3075  * We return with mmap_sem still held, but pte unmapped and unlocked.
3076  */
3077 static int do_anonymous_page(struct vm_fault *vmf)
3078 {
3079 	struct vm_area_struct *vma = vmf->vma;
3080 	struct mem_cgroup *memcg;
3081 	struct page *page;
3082 	int ret = 0;
3083 	pte_t entry;
3084 
3085 	/* File mapping without ->vm_ops ? */
3086 	if (vma->vm_flags & VM_SHARED)
3087 		return VM_FAULT_SIGBUS;
3088 
3089 	/*
3090 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3091 	 * pte_offset_map() on pmds where a huge pmd might be created
3092 	 * from a different thread.
3093 	 *
3094 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3095 	 * parallel threads are excluded by other means.
3096 	 *
3097 	 * Here we only have down_read(mmap_sem).
3098 	 */
3099 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3100 		return VM_FAULT_OOM;
3101 
3102 	/* See the comment in pte_alloc_one_map() */
3103 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3104 		return 0;
3105 
3106 	/* Use the zero-page for reads */
3107 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3108 			!mm_forbids_zeropage(vma->vm_mm)) {
3109 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3110 						vma->vm_page_prot));
3111 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3112 				vmf->address, &vmf->ptl);
3113 		if (!pte_none(*vmf->pte))
3114 			goto unlock;
3115 		ret = check_stable_address_space(vma->vm_mm);
3116 		if (ret)
3117 			goto unlock;
3118 		/* Deliver the page fault to userland, check inside PT lock */
3119 		if (userfaultfd_missing(vma)) {
3120 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3121 			return handle_userfault(vmf, VM_UFFD_MISSING);
3122 		}
3123 		goto setpte;
3124 	}
3125 
3126 	/* Allocate our own private page. */
3127 	if (unlikely(anon_vma_prepare(vma)))
3128 		goto oom;
3129 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3130 	if (!page)
3131 		goto oom;
3132 
3133 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
3134 		goto oom_free_page;
3135 
3136 	/*
3137 	 * The memory barrier inside __SetPageUptodate makes sure that
3138 	 * preceeding stores to the page contents become visible before
3139 	 * the set_pte_at() write.
3140 	 */
3141 	__SetPageUptodate(page);
3142 
3143 	entry = mk_pte(page, vma->vm_page_prot);
3144 	if (vma->vm_flags & VM_WRITE)
3145 		entry = pte_mkwrite(pte_mkdirty(entry));
3146 
3147 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3148 			&vmf->ptl);
3149 	if (!pte_none(*vmf->pte))
3150 		goto release;
3151 
3152 	ret = check_stable_address_space(vma->vm_mm);
3153 	if (ret)
3154 		goto release;
3155 
3156 	/* Deliver the page fault to userland, check inside PT lock */
3157 	if (userfaultfd_missing(vma)) {
3158 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3159 		mem_cgroup_cancel_charge(page, memcg, false);
3160 		put_page(page);
3161 		return handle_userfault(vmf, VM_UFFD_MISSING);
3162 	}
3163 
3164 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3165 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3166 	mem_cgroup_commit_charge(page, memcg, false, false);
3167 	lru_cache_add_active_or_unevictable(page, vma);
3168 setpte:
3169 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3170 
3171 	/* No need to invalidate - it was non-present before */
3172 	update_mmu_cache(vma, vmf->address, vmf->pte);
3173 unlock:
3174 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3175 	return ret;
3176 release:
3177 	mem_cgroup_cancel_charge(page, memcg, false);
3178 	put_page(page);
3179 	goto unlock;
3180 oom_free_page:
3181 	put_page(page);
3182 oom:
3183 	return VM_FAULT_OOM;
3184 }
3185 
3186 /*
3187  * The mmap_sem must have been held on entry, and may have been
3188  * released depending on flags and vma->vm_ops->fault() return value.
3189  * See filemap_fault() and __lock_page_retry().
3190  */
3191 static int __do_fault(struct vm_fault *vmf)
3192 {
3193 	struct vm_area_struct *vma = vmf->vma;
3194 	int ret;
3195 
3196 	ret = vma->vm_ops->fault(vmf);
3197 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3198 			    VM_FAULT_DONE_COW)))
3199 		return ret;
3200 
3201 	if (unlikely(PageHWPoison(vmf->page))) {
3202 		if (ret & VM_FAULT_LOCKED)
3203 			unlock_page(vmf->page);
3204 		put_page(vmf->page);
3205 		vmf->page = NULL;
3206 		return VM_FAULT_HWPOISON;
3207 	}
3208 
3209 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3210 		lock_page(vmf->page);
3211 	else
3212 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3213 
3214 	return ret;
3215 }
3216 
3217 /*
3218  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3219  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3220  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3221  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3222  */
3223 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3224 {
3225 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3226 }
3227 
3228 static int pte_alloc_one_map(struct vm_fault *vmf)
3229 {
3230 	struct vm_area_struct *vma = vmf->vma;
3231 
3232 	if (!pmd_none(*vmf->pmd))
3233 		goto map_pte;
3234 	if (vmf->prealloc_pte) {
3235 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3236 		if (unlikely(!pmd_none(*vmf->pmd))) {
3237 			spin_unlock(vmf->ptl);
3238 			goto map_pte;
3239 		}
3240 
3241 		mm_inc_nr_ptes(vma->vm_mm);
3242 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3243 		spin_unlock(vmf->ptl);
3244 		vmf->prealloc_pte = NULL;
3245 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3246 		return VM_FAULT_OOM;
3247 	}
3248 map_pte:
3249 	/*
3250 	 * If a huge pmd materialized under us just retry later.  Use
3251 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3252 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3253 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3254 	 * running immediately after a huge pmd fault in a different thread of
3255 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3256 	 * All we have to ensure is that it is a regular pmd that we can walk
3257 	 * with pte_offset_map() and we can do that through an atomic read in
3258 	 * C, which is what pmd_trans_unstable() provides.
3259 	 */
3260 	if (pmd_devmap_trans_unstable(vmf->pmd))
3261 		return VM_FAULT_NOPAGE;
3262 
3263 	/*
3264 	 * At this point we know that our vmf->pmd points to a page of ptes
3265 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3266 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3267 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3268 	 * be valid and we will re-check to make sure the vmf->pte isn't
3269 	 * pte_none() under vmf->ptl protection when we return to
3270 	 * alloc_set_pte().
3271 	 */
3272 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3273 			&vmf->ptl);
3274 	return 0;
3275 }
3276 
3277 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3278 
3279 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3280 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3281 		unsigned long haddr)
3282 {
3283 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3284 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3285 		return false;
3286 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3287 		return false;
3288 	return true;
3289 }
3290 
3291 static void deposit_prealloc_pte(struct vm_fault *vmf)
3292 {
3293 	struct vm_area_struct *vma = vmf->vma;
3294 
3295 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3296 	/*
3297 	 * We are going to consume the prealloc table,
3298 	 * count that as nr_ptes.
3299 	 */
3300 	mm_inc_nr_ptes(vma->vm_mm);
3301 	vmf->prealloc_pte = NULL;
3302 }
3303 
3304 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3305 {
3306 	struct vm_area_struct *vma = vmf->vma;
3307 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3308 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3309 	pmd_t entry;
3310 	int i, ret;
3311 
3312 	if (!transhuge_vma_suitable(vma, haddr))
3313 		return VM_FAULT_FALLBACK;
3314 
3315 	ret = VM_FAULT_FALLBACK;
3316 	page = compound_head(page);
3317 
3318 	/*
3319 	 * Archs like ppc64 need additonal space to store information
3320 	 * related to pte entry. Use the preallocated table for that.
3321 	 */
3322 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3323 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3324 		if (!vmf->prealloc_pte)
3325 			return VM_FAULT_OOM;
3326 		smp_wmb(); /* See comment in __pte_alloc() */
3327 	}
3328 
3329 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3330 	if (unlikely(!pmd_none(*vmf->pmd)))
3331 		goto out;
3332 
3333 	for (i = 0; i < HPAGE_PMD_NR; i++)
3334 		flush_icache_page(vma, page + i);
3335 
3336 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3337 	if (write)
3338 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3339 
3340 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3341 	page_add_file_rmap(page, true);
3342 	/*
3343 	 * deposit and withdraw with pmd lock held
3344 	 */
3345 	if (arch_needs_pgtable_deposit())
3346 		deposit_prealloc_pte(vmf);
3347 
3348 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3349 
3350 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3351 
3352 	/* fault is handled */
3353 	ret = 0;
3354 	count_vm_event(THP_FILE_MAPPED);
3355 out:
3356 	spin_unlock(vmf->ptl);
3357 	return ret;
3358 }
3359 #else
3360 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3361 {
3362 	BUILD_BUG();
3363 	return 0;
3364 }
3365 #endif
3366 
3367 /**
3368  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3369  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3370  *
3371  * @vmf: fault environment
3372  * @memcg: memcg to charge page (only for private mappings)
3373  * @page: page to map
3374  *
3375  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3376  * return.
3377  *
3378  * Target users are page handler itself and implementations of
3379  * vm_ops->map_pages.
3380  */
3381 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3382 		struct page *page)
3383 {
3384 	struct vm_area_struct *vma = vmf->vma;
3385 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3386 	pte_t entry;
3387 	int ret;
3388 
3389 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3390 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3391 		/* THP on COW? */
3392 		VM_BUG_ON_PAGE(memcg, page);
3393 
3394 		ret = do_set_pmd(vmf, page);
3395 		if (ret != VM_FAULT_FALLBACK)
3396 			return ret;
3397 	}
3398 
3399 	if (!vmf->pte) {
3400 		ret = pte_alloc_one_map(vmf);
3401 		if (ret)
3402 			return ret;
3403 	}
3404 
3405 	/* Re-check under ptl */
3406 	if (unlikely(!pte_none(*vmf->pte)))
3407 		return VM_FAULT_NOPAGE;
3408 
3409 	flush_icache_page(vma, page);
3410 	entry = mk_pte(page, vma->vm_page_prot);
3411 	if (write)
3412 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3413 	/* copy-on-write page */
3414 	if (write && !(vma->vm_flags & VM_SHARED)) {
3415 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3416 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3417 		mem_cgroup_commit_charge(page, memcg, false, false);
3418 		lru_cache_add_active_or_unevictable(page, vma);
3419 	} else {
3420 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3421 		page_add_file_rmap(page, false);
3422 	}
3423 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3424 
3425 	/* no need to invalidate: a not-present page won't be cached */
3426 	update_mmu_cache(vma, vmf->address, vmf->pte);
3427 
3428 	return 0;
3429 }
3430 
3431 
3432 /**
3433  * finish_fault - finish page fault once we have prepared the page to fault
3434  *
3435  * @vmf: structure describing the fault
3436  *
3437  * This function handles all that is needed to finish a page fault once the
3438  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3439  * given page, adds reverse page mapping, handles memcg charges and LRU
3440  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3441  * error.
3442  *
3443  * The function expects the page to be locked and on success it consumes a
3444  * reference of a page being mapped (for the PTE which maps it).
3445  */
3446 int finish_fault(struct vm_fault *vmf)
3447 {
3448 	struct page *page;
3449 	int ret = 0;
3450 
3451 	/* Did we COW the page? */
3452 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3453 	    !(vmf->vma->vm_flags & VM_SHARED))
3454 		page = vmf->cow_page;
3455 	else
3456 		page = vmf->page;
3457 
3458 	/*
3459 	 * check even for read faults because we might have lost our CoWed
3460 	 * page
3461 	 */
3462 	if (!(vmf->vma->vm_flags & VM_SHARED))
3463 		ret = check_stable_address_space(vmf->vma->vm_mm);
3464 	if (!ret)
3465 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3466 	if (vmf->pte)
3467 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3468 	return ret;
3469 }
3470 
3471 static unsigned long fault_around_bytes __read_mostly =
3472 	rounddown_pow_of_two(65536);
3473 
3474 #ifdef CONFIG_DEBUG_FS
3475 static int fault_around_bytes_get(void *data, u64 *val)
3476 {
3477 	*val = fault_around_bytes;
3478 	return 0;
3479 }
3480 
3481 /*
3482  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3483  * rounded down to nearest page order. It's what do_fault_around() expects to
3484  * see.
3485  */
3486 static int fault_around_bytes_set(void *data, u64 val)
3487 {
3488 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3489 		return -EINVAL;
3490 	if (val > PAGE_SIZE)
3491 		fault_around_bytes = rounddown_pow_of_two(val);
3492 	else
3493 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3494 	return 0;
3495 }
3496 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3497 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3498 
3499 static int __init fault_around_debugfs(void)
3500 {
3501 	void *ret;
3502 
3503 	ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3504 			&fault_around_bytes_fops);
3505 	if (!ret)
3506 		pr_warn("Failed to create fault_around_bytes in debugfs");
3507 	return 0;
3508 }
3509 late_initcall(fault_around_debugfs);
3510 #endif
3511 
3512 /*
3513  * do_fault_around() tries to map few pages around the fault address. The hope
3514  * is that the pages will be needed soon and this will lower the number of
3515  * faults to handle.
3516  *
3517  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3518  * not ready to be mapped: not up-to-date, locked, etc.
3519  *
3520  * This function is called with the page table lock taken. In the split ptlock
3521  * case the page table lock only protects only those entries which belong to
3522  * the page table corresponding to the fault address.
3523  *
3524  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3525  * only once.
3526  *
3527  * fault_around_pages() defines how many pages we'll try to map.
3528  * do_fault_around() expects it to return a power of two less than or equal to
3529  * PTRS_PER_PTE.
3530  *
3531  * The virtual address of the area that we map is naturally aligned to the
3532  * fault_around_pages() value (and therefore to page order).  This way it's
3533  * easier to guarantee that we don't cross page table boundaries.
3534  */
3535 static int do_fault_around(struct vm_fault *vmf)
3536 {
3537 	unsigned long address = vmf->address, nr_pages, mask;
3538 	pgoff_t start_pgoff = vmf->pgoff;
3539 	pgoff_t end_pgoff;
3540 	int off, ret = 0;
3541 
3542 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3543 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3544 
3545 	vmf->address = max(address & mask, vmf->vma->vm_start);
3546 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3547 	start_pgoff -= off;
3548 
3549 	/*
3550 	 *  end_pgoff is either end of page table or end of vma
3551 	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3552 	 */
3553 	end_pgoff = start_pgoff -
3554 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3555 		PTRS_PER_PTE - 1;
3556 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3557 			start_pgoff + nr_pages - 1);
3558 
3559 	if (pmd_none(*vmf->pmd)) {
3560 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3561 						  vmf->address);
3562 		if (!vmf->prealloc_pte)
3563 			goto out;
3564 		smp_wmb(); /* See comment in __pte_alloc() */
3565 	}
3566 
3567 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3568 
3569 	/* Huge page is mapped? Page fault is solved */
3570 	if (pmd_trans_huge(*vmf->pmd)) {
3571 		ret = VM_FAULT_NOPAGE;
3572 		goto out;
3573 	}
3574 
3575 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3576 	if (!vmf->pte)
3577 		goto out;
3578 
3579 	/* check if the page fault is solved */
3580 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3581 	if (!pte_none(*vmf->pte))
3582 		ret = VM_FAULT_NOPAGE;
3583 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3584 out:
3585 	vmf->address = address;
3586 	vmf->pte = NULL;
3587 	return ret;
3588 }
3589 
3590 static int do_read_fault(struct vm_fault *vmf)
3591 {
3592 	struct vm_area_struct *vma = vmf->vma;
3593 	int ret = 0;
3594 
3595 	/*
3596 	 * Let's call ->map_pages() first and use ->fault() as fallback
3597 	 * if page by the offset is not ready to be mapped (cold cache or
3598 	 * something).
3599 	 */
3600 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3601 		ret = do_fault_around(vmf);
3602 		if (ret)
3603 			return ret;
3604 	}
3605 
3606 	ret = __do_fault(vmf);
3607 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3608 		return ret;
3609 
3610 	ret |= finish_fault(vmf);
3611 	unlock_page(vmf->page);
3612 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3613 		put_page(vmf->page);
3614 	return ret;
3615 }
3616 
3617 static int do_cow_fault(struct vm_fault *vmf)
3618 {
3619 	struct vm_area_struct *vma = vmf->vma;
3620 	int ret;
3621 
3622 	if (unlikely(anon_vma_prepare(vma)))
3623 		return VM_FAULT_OOM;
3624 
3625 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3626 	if (!vmf->cow_page)
3627 		return VM_FAULT_OOM;
3628 
3629 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3630 				&vmf->memcg, false)) {
3631 		put_page(vmf->cow_page);
3632 		return VM_FAULT_OOM;
3633 	}
3634 
3635 	ret = __do_fault(vmf);
3636 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3637 		goto uncharge_out;
3638 	if (ret & VM_FAULT_DONE_COW)
3639 		return ret;
3640 
3641 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3642 	__SetPageUptodate(vmf->cow_page);
3643 
3644 	ret |= finish_fault(vmf);
3645 	unlock_page(vmf->page);
3646 	put_page(vmf->page);
3647 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3648 		goto uncharge_out;
3649 	return ret;
3650 uncharge_out:
3651 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3652 	put_page(vmf->cow_page);
3653 	return ret;
3654 }
3655 
3656 static int do_shared_fault(struct vm_fault *vmf)
3657 {
3658 	struct vm_area_struct *vma = vmf->vma;
3659 	int ret, tmp;
3660 
3661 	ret = __do_fault(vmf);
3662 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3663 		return ret;
3664 
3665 	/*
3666 	 * Check if the backing address space wants to know that the page is
3667 	 * about to become writable
3668 	 */
3669 	if (vma->vm_ops->page_mkwrite) {
3670 		unlock_page(vmf->page);
3671 		tmp = do_page_mkwrite(vmf);
3672 		if (unlikely(!tmp ||
3673 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3674 			put_page(vmf->page);
3675 			return tmp;
3676 		}
3677 	}
3678 
3679 	ret |= finish_fault(vmf);
3680 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3681 					VM_FAULT_RETRY))) {
3682 		unlock_page(vmf->page);
3683 		put_page(vmf->page);
3684 		return ret;
3685 	}
3686 
3687 	fault_dirty_shared_page(vma, vmf->page);
3688 	return ret;
3689 }
3690 
3691 /*
3692  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3693  * but allow concurrent faults).
3694  * The mmap_sem may have been released depending on flags and our
3695  * return value.  See filemap_fault() and __lock_page_or_retry().
3696  */
3697 static int do_fault(struct vm_fault *vmf)
3698 {
3699 	struct vm_area_struct *vma = vmf->vma;
3700 	int ret;
3701 
3702 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3703 	if (!vma->vm_ops->fault)
3704 		ret = VM_FAULT_SIGBUS;
3705 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3706 		ret = do_read_fault(vmf);
3707 	else if (!(vma->vm_flags & VM_SHARED))
3708 		ret = do_cow_fault(vmf);
3709 	else
3710 		ret = do_shared_fault(vmf);
3711 
3712 	/* preallocated pagetable is unused: free it */
3713 	if (vmf->prealloc_pte) {
3714 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3715 		vmf->prealloc_pte = NULL;
3716 	}
3717 	return ret;
3718 }
3719 
3720 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3721 				unsigned long addr, int page_nid,
3722 				int *flags)
3723 {
3724 	get_page(page);
3725 
3726 	count_vm_numa_event(NUMA_HINT_FAULTS);
3727 	if (page_nid == numa_node_id()) {
3728 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3729 		*flags |= TNF_FAULT_LOCAL;
3730 	}
3731 
3732 	return mpol_misplaced(page, vma, addr);
3733 }
3734 
3735 static int do_numa_page(struct vm_fault *vmf)
3736 {
3737 	struct vm_area_struct *vma = vmf->vma;
3738 	struct page *page = NULL;
3739 	int page_nid = -1;
3740 	int last_cpupid;
3741 	int target_nid;
3742 	bool migrated = false;
3743 	pte_t pte;
3744 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3745 	int flags = 0;
3746 
3747 	/*
3748 	 * The "pte" at this point cannot be used safely without
3749 	 * validation through pte_unmap_same(). It's of NUMA type but
3750 	 * the pfn may be screwed if the read is non atomic.
3751 	 */
3752 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3753 	spin_lock(vmf->ptl);
3754 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3755 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3756 		goto out;
3757 	}
3758 
3759 	/*
3760 	 * Make it present again, Depending on how arch implementes non
3761 	 * accessible ptes, some can allow access by kernel mode.
3762 	 */
3763 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3764 	pte = pte_modify(pte, vma->vm_page_prot);
3765 	pte = pte_mkyoung(pte);
3766 	if (was_writable)
3767 		pte = pte_mkwrite(pte);
3768 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3769 	update_mmu_cache(vma, vmf->address, vmf->pte);
3770 
3771 	page = vm_normal_page(vma, vmf->address, pte);
3772 	if (!page) {
3773 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3774 		return 0;
3775 	}
3776 
3777 	/* TODO: handle PTE-mapped THP */
3778 	if (PageCompound(page)) {
3779 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3780 		return 0;
3781 	}
3782 
3783 	/*
3784 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3785 	 * much anyway since they can be in shared cache state. This misses
3786 	 * the case where a mapping is writable but the process never writes
3787 	 * to it but pte_write gets cleared during protection updates and
3788 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3789 	 * background writeback, dirty balancing and application behaviour.
3790 	 */
3791 	if (!pte_write(pte))
3792 		flags |= TNF_NO_GROUP;
3793 
3794 	/*
3795 	 * Flag if the page is shared between multiple address spaces. This
3796 	 * is later used when determining whether to group tasks together
3797 	 */
3798 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3799 		flags |= TNF_SHARED;
3800 
3801 	last_cpupid = page_cpupid_last(page);
3802 	page_nid = page_to_nid(page);
3803 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3804 			&flags);
3805 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3806 	if (target_nid == -1) {
3807 		put_page(page);
3808 		goto out;
3809 	}
3810 
3811 	/* Migrate to the requested node */
3812 	migrated = migrate_misplaced_page(page, vma, target_nid);
3813 	if (migrated) {
3814 		page_nid = target_nid;
3815 		flags |= TNF_MIGRATED;
3816 	} else
3817 		flags |= TNF_MIGRATE_FAIL;
3818 
3819 out:
3820 	if (page_nid != -1)
3821 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3822 	return 0;
3823 }
3824 
3825 static inline int create_huge_pmd(struct vm_fault *vmf)
3826 {
3827 	if (vma_is_anonymous(vmf->vma))
3828 		return do_huge_pmd_anonymous_page(vmf);
3829 	if (vmf->vma->vm_ops->huge_fault)
3830 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3831 	return VM_FAULT_FALLBACK;
3832 }
3833 
3834 /* `inline' is required to avoid gcc 4.1.2 build error */
3835 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3836 {
3837 	if (vma_is_anonymous(vmf->vma))
3838 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3839 	if (vmf->vma->vm_ops->huge_fault)
3840 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3841 
3842 	/* COW handled on pte level: split pmd */
3843 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3844 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3845 
3846 	return VM_FAULT_FALLBACK;
3847 }
3848 
3849 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3850 {
3851 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3852 }
3853 
3854 static int create_huge_pud(struct vm_fault *vmf)
3855 {
3856 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3857 	/* No support for anonymous transparent PUD pages yet */
3858 	if (vma_is_anonymous(vmf->vma))
3859 		return VM_FAULT_FALLBACK;
3860 	if (vmf->vma->vm_ops->huge_fault)
3861 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3862 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3863 	return VM_FAULT_FALLBACK;
3864 }
3865 
3866 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3867 {
3868 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3869 	/* No support for anonymous transparent PUD pages yet */
3870 	if (vma_is_anonymous(vmf->vma))
3871 		return VM_FAULT_FALLBACK;
3872 	if (vmf->vma->vm_ops->huge_fault)
3873 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3874 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3875 	return VM_FAULT_FALLBACK;
3876 }
3877 
3878 /*
3879  * These routines also need to handle stuff like marking pages dirty
3880  * and/or accessed for architectures that don't do it in hardware (most
3881  * RISC architectures).  The early dirtying is also good on the i386.
3882  *
3883  * There is also a hook called "update_mmu_cache()" that architectures
3884  * with external mmu caches can use to update those (ie the Sparc or
3885  * PowerPC hashed page tables that act as extended TLBs).
3886  *
3887  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3888  * concurrent faults).
3889  *
3890  * The mmap_sem may have been released depending on flags and our return value.
3891  * See filemap_fault() and __lock_page_or_retry().
3892  */
3893 static int handle_pte_fault(struct vm_fault *vmf)
3894 {
3895 	pte_t entry;
3896 
3897 	if (unlikely(pmd_none(*vmf->pmd))) {
3898 		/*
3899 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3900 		 * want to allocate huge page, and if we expose page table
3901 		 * for an instant, it will be difficult to retract from
3902 		 * concurrent faults and from rmap lookups.
3903 		 */
3904 		vmf->pte = NULL;
3905 	} else {
3906 		/* See comment in pte_alloc_one_map() */
3907 		if (pmd_devmap_trans_unstable(vmf->pmd))
3908 			return 0;
3909 		/*
3910 		 * A regular pmd is established and it can't morph into a huge
3911 		 * pmd from under us anymore at this point because we hold the
3912 		 * mmap_sem read mode and khugepaged takes it in write mode.
3913 		 * So now it's safe to run pte_offset_map().
3914 		 */
3915 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3916 		vmf->orig_pte = *vmf->pte;
3917 
3918 		/*
3919 		 * some architectures can have larger ptes than wordsize,
3920 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3921 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3922 		 * accesses.  The code below just needs a consistent view
3923 		 * for the ifs and we later double check anyway with the
3924 		 * ptl lock held. So here a barrier will do.
3925 		 */
3926 		barrier();
3927 		if (pte_none(vmf->orig_pte)) {
3928 			pte_unmap(vmf->pte);
3929 			vmf->pte = NULL;
3930 		}
3931 	}
3932 
3933 	if (!vmf->pte) {
3934 		if (vma_is_anonymous(vmf->vma))
3935 			return do_anonymous_page(vmf);
3936 		else
3937 			return do_fault(vmf);
3938 	}
3939 
3940 	if (!pte_present(vmf->orig_pte))
3941 		return do_swap_page(vmf);
3942 
3943 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3944 		return do_numa_page(vmf);
3945 
3946 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3947 	spin_lock(vmf->ptl);
3948 	entry = vmf->orig_pte;
3949 	if (unlikely(!pte_same(*vmf->pte, entry)))
3950 		goto unlock;
3951 	if (vmf->flags & FAULT_FLAG_WRITE) {
3952 		if (!pte_write(entry))
3953 			return do_wp_page(vmf);
3954 		entry = pte_mkdirty(entry);
3955 	}
3956 	entry = pte_mkyoung(entry);
3957 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3958 				vmf->flags & FAULT_FLAG_WRITE)) {
3959 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3960 	} else {
3961 		/*
3962 		 * This is needed only for protection faults but the arch code
3963 		 * is not yet telling us if this is a protection fault or not.
3964 		 * This still avoids useless tlb flushes for .text page faults
3965 		 * with threads.
3966 		 */
3967 		if (vmf->flags & FAULT_FLAG_WRITE)
3968 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3969 	}
3970 unlock:
3971 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3972 	return 0;
3973 }
3974 
3975 /*
3976  * By the time we get here, we already hold the mm semaphore
3977  *
3978  * The mmap_sem may have been released depending on flags and our
3979  * return value.  See filemap_fault() and __lock_page_or_retry().
3980  */
3981 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3982 		unsigned int flags)
3983 {
3984 	struct vm_fault vmf = {
3985 		.vma = vma,
3986 		.address = address & PAGE_MASK,
3987 		.flags = flags,
3988 		.pgoff = linear_page_index(vma, address),
3989 		.gfp_mask = __get_fault_gfp_mask(vma),
3990 	};
3991 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
3992 	struct mm_struct *mm = vma->vm_mm;
3993 	pgd_t *pgd;
3994 	p4d_t *p4d;
3995 	int ret;
3996 
3997 	pgd = pgd_offset(mm, address);
3998 	p4d = p4d_alloc(mm, pgd, address);
3999 	if (!p4d)
4000 		return VM_FAULT_OOM;
4001 
4002 	vmf.pud = pud_alloc(mm, p4d, address);
4003 	if (!vmf.pud)
4004 		return VM_FAULT_OOM;
4005 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4006 		ret = create_huge_pud(&vmf);
4007 		if (!(ret & VM_FAULT_FALLBACK))
4008 			return ret;
4009 	} else {
4010 		pud_t orig_pud = *vmf.pud;
4011 
4012 		barrier();
4013 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4014 
4015 			/* NUMA case for anonymous PUDs would go here */
4016 
4017 			if (dirty && !pud_write(orig_pud)) {
4018 				ret = wp_huge_pud(&vmf, orig_pud);
4019 				if (!(ret & VM_FAULT_FALLBACK))
4020 					return ret;
4021 			} else {
4022 				huge_pud_set_accessed(&vmf, orig_pud);
4023 				return 0;
4024 			}
4025 		}
4026 	}
4027 
4028 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4029 	if (!vmf.pmd)
4030 		return VM_FAULT_OOM;
4031 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4032 		ret = create_huge_pmd(&vmf);
4033 		if (!(ret & VM_FAULT_FALLBACK))
4034 			return ret;
4035 	} else {
4036 		pmd_t orig_pmd = *vmf.pmd;
4037 
4038 		barrier();
4039 		if (unlikely(is_swap_pmd(orig_pmd))) {
4040 			VM_BUG_ON(thp_migration_supported() &&
4041 					  !is_pmd_migration_entry(orig_pmd));
4042 			if (is_pmd_migration_entry(orig_pmd))
4043 				pmd_migration_entry_wait(mm, vmf.pmd);
4044 			return 0;
4045 		}
4046 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4047 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4048 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4049 
4050 			if (dirty && !pmd_write(orig_pmd)) {
4051 				ret = wp_huge_pmd(&vmf, orig_pmd);
4052 				if (!(ret & VM_FAULT_FALLBACK))
4053 					return ret;
4054 			} else {
4055 				huge_pmd_set_accessed(&vmf, orig_pmd);
4056 				return 0;
4057 			}
4058 		}
4059 	}
4060 
4061 	return handle_pte_fault(&vmf);
4062 }
4063 
4064 /*
4065  * By the time we get here, we already hold the mm semaphore
4066  *
4067  * The mmap_sem may have been released depending on flags and our
4068  * return value.  See filemap_fault() and __lock_page_or_retry().
4069  */
4070 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4071 		unsigned int flags)
4072 {
4073 	int ret;
4074 
4075 	__set_current_state(TASK_RUNNING);
4076 
4077 	count_vm_event(PGFAULT);
4078 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4079 
4080 	/* do counter updates before entering really critical section. */
4081 	check_sync_rss_stat(current);
4082 
4083 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4084 					    flags & FAULT_FLAG_INSTRUCTION,
4085 					    flags & FAULT_FLAG_REMOTE))
4086 		return VM_FAULT_SIGSEGV;
4087 
4088 	/*
4089 	 * Enable the memcg OOM handling for faults triggered in user
4090 	 * space.  Kernel faults are handled more gracefully.
4091 	 */
4092 	if (flags & FAULT_FLAG_USER)
4093 		mem_cgroup_oom_enable();
4094 
4095 	if (unlikely(is_vm_hugetlb_page(vma)))
4096 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4097 	else
4098 		ret = __handle_mm_fault(vma, address, flags);
4099 
4100 	if (flags & FAULT_FLAG_USER) {
4101 		mem_cgroup_oom_disable();
4102 		/*
4103 		 * The task may have entered a memcg OOM situation but
4104 		 * if the allocation error was handled gracefully (no
4105 		 * VM_FAULT_OOM), there is no need to kill anything.
4106 		 * Just clean up the OOM state peacefully.
4107 		 */
4108 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4109 			mem_cgroup_oom_synchronize(false);
4110 	}
4111 
4112 	return ret;
4113 }
4114 EXPORT_SYMBOL_GPL(handle_mm_fault);
4115 
4116 #ifndef __PAGETABLE_P4D_FOLDED
4117 /*
4118  * Allocate p4d page table.
4119  * We've already handled the fast-path in-line.
4120  */
4121 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4122 {
4123 	p4d_t *new = p4d_alloc_one(mm, address);
4124 	if (!new)
4125 		return -ENOMEM;
4126 
4127 	smp_wmb(); /* See comment in __pte_alloc */
4128 
4129 	spin_lock(&mm->page_table_lock);
4130 	if (pgd_present(*pgd))		/* Another has populated it */
4131 		p4d_free(mm, new);
4132 	else
4133 		pgd_populate(mm, pgd, new);
4134 	spin_unlock(&mm->page_table_lock);
4135 	return 0;
4136 }
4137 #endif /* __PAGETABLE_P4D_FOLDED */
4138 
4139 #ifndef __PAGETABLE_PUD_FOLDED
4140 /*
4141  * Allocate page upper directory.
4142  * We've already handled the fast-path in-line.
4143  */
4144 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4145 {
4146 	pud_t *new = pud_alloc_one(mm, address);
4147 	if (!new)
4148 		return -ENOMEM;
4149 
4150 	smp_wmb(); /* See comment in __pte_alloc */
4151 
4152 	spin_lock(&mm->page_table_lock);
4153 #ifndef __ARCH_HAS_5LEVEL_HACK
4154 	if (!p4d_present(*p4d)) {
4155 		mm_inc_nr_puds(mm);
4156 		p4d_populate(mm, p4d, new);
4157 	} else	/* Another has populated it */
4158 		pud_free(mm, new);
4159 #else
4160 	if (!pgd_present(*p4d)) {
4161 		mm_inc_nr_puds(mm);
4162 		pgd_populate(mm, p4d, new);
4163 	} else	/* Another has populated it */
4164 		pud_free(mm, new);
4165 #endif /* __ARCH_HAS_5LEVEL_HACK */
4166 	spin_unlock(&mm->page_table_lock);
4167 	return 0;
4168 }
4169 #endif /* __PAGETABLE_PUD_FOLDED */
4170 
4171 #ifndef __PAGETABLE_PMD_FOLDED
4172 /*
4173  * Allocate page middle directory.
4174  * We've already handled the fast-path in-line.
4175  */
4176 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4177 {
4178 	spinlock_t *ptl;
4179 	pmd_t *new = pmd_alloc_one(mm, address);
4180 	if (!new)
4181 		return -ENOMEM;
4182 
4183 	smp_wmb(); /* See comment in __pte_alloc */
4184 
4185 	ptl = pud_lock(mm, pud);
4186 #ifndef __ARCH_HAS_4LEVEL_HACK
4187 	if (!pud_present(*pud)) {
4188 		mm_inc_nr_pmds(mm);
4189 		pud_populate(mm, pud, new);
4190 	} else	/* Another has populated it */
4191 		pmd_free(mm, new);
4192 #else
4193 	if (!pgd_present(*pud)) {
4194 		mm_inc_nr_pmds(mm);
4195 		pgd_populate(mm, pud, new);
4196 	} else /* Another has populated it */
4197 		pmd_free(mm, new);
4198 #endif /* __ARCH_HAS_4LEVEL_HACK */
4199 	spin_unlock(ptl);
4200 	return 0;
4201 }
4202 #endif /* __PAGETABLE_PMD_FOLDED */
4203 
4204 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4205 			    unsigned long *start, unsigned long *end,
4206 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4207 {
4208 	pgd_t *pgd;
4209 	p4d_t *p4d;
4210 	pud_t *pud;
4211 	pmd_t *pmd;
4212 	pte_t *ptep;
4213 
4214 	pgd = pgd_offset(mm, address);
4215 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4216 		goto out;
4217 
4218 	p4d = p4d_offset(pgd, address);
4219 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4220 		goto out;
4221 
4222 	pud = pud_offset(p4d, address);
4223 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4224 		goto out;
4225 
4226 	pmd = pmd_offset(pud, address);
4227 	VM_BUG_ON(pmd_trans_huge(*pmd));
4228 
4229 	if (pmd_huge(*pmd)) {
4230 		if (!pmdpp)
4231 			goto out;
4232 
4233 		if (start && end) {
4234 			*start = address & PMD_MASK;
4235 			*end = *start + PMD_SIZE;
4236 			mmu_notifier_invalidate_range_start(mm, *start, *end);
4237 		}
4238 		*ptlp = pmd_lock(mm, pmd);
4239 		if (pmd_huge(*pmd)) {
4240 			*pmdpp = pmd;
4241 			return 0;
4242 		}
4243 		spin_unlock(*ptlp);
4244 		if (start && end)
4245 			mmu_notifier_invalidate_range_end(mm, *start, *end);
4246 	}
4247 
4248 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4249 		goto out;
4250 
4251 	if (start && end) {
4252 		*start = address & PAGE_MASK;
4253 		*end = *start + PAGE_SIZE;
4254 		mmu_notifier_invalidate_range_start(mm, *start, *end);
4255 	}
4256 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4257 	if (!pte_present(*ptep))
4258 		goto unlock;
4259 	*ptepp = ptep;
4260 	return 0;
4261 unlock:
4262 	pte_unmap_unlock(ptep, *ptlp);
4263 	if (start && end)
4264 		mmu_notifier_invalidate_range_end(mm, *start, *end);
4265 out:
4266 	return -EINVAL;
4267 }
4268 
4269 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4270 			     pte_t **ptepp, spinlock_t **ptlp)
4271 {
4272 	int res;
4273 
4274 	/* (void) is needed to make gcc happy */
4275 	(void) __cond_lock(*ptlp,
4276 			   !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4277 						    ptepp, NULL, ptlp)));
4278 	return res;
4279 }
4280 
4281 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4282 			     unsigned long *start, unsigned long *end,
4283 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4284 {
4285 	int res;
4286 
4287 	/* (void) is needed to make gcc happy */
4288 	(void) __cond_lock(*ptlp,
4289 			   !(res = __follow_pte_pmd(mm, address, start, end,
4290 						    ptepp, pmdpp, ptlp)));
4291 	return res;
4292 }
4293 EXPORT_SYMBOL(follow_pte_pmd);
4294 
4295 /**
4296  * follow_pfn - look up PFN at a user virtual address
4297  * @vma: memory mapping
4298  * @address: user virtual address
4299  * @pfn: location to store found PFN
4300  *
4301  * Only IO mappings and raw PFN mappings are allowed.
4302  *
4303  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4304  */
4305 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4306 	unsigned long *pfn)
4307 {
4308 	int ret = -EINVAL;
4309 	spinlock_t *ptl;
4310 	pte_t *ptep;
4311 
4312 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4313 		return ret;
4314 
4315 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4316 	if (ret)
4317 		return ret;
4318 	*pfn = pte_pfn(*ptep);
4319 	pte_unmap_unlock(ptep, ptl);
4320 	return 0;
4321 }
4322 EXPORT_SYMBOL(follow_pfn);
4323 
4324 #ifdef CONFIG_HAVE_IOREMAP_PROT
4325 int follow_phys(struct vm_area_struct *vma,
4326 		unsigned long address, unsigned int flags,
4327 		unsigned long *prot, resource_size_t *phys)
4328 {
4329 	int ret = -EINVAL;
4330 	pte_t *ptep, pte;
4331 	spinlock_t *ptl;
4332 
4333 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4334 		goto out;
4335 
4336 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4337 		goto out;
4338 	pte = *ptep;
4339 
4340 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4341 		goto unlock;
4342 
4343 	*prot = pgprot_val(pte_pgprot(pte));
4344 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4345 
4346 	ret = 0;
4347 unlock:
4348 	pte_unmap_unlock(ptep, ptl);
4349 out:
4350 	return ret;
4351 }
4352 
4353 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4354 			void *buf, int len, int write)
4355 {
4356 	resource_size_t phys_addr;
4357 	unsigned long prot = 0;
4358 	void __iomem *maddr;
4359 	int offset = addr & (PAGE_SIZE-1);
4360 
4361 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4362 		return -EINVAL;
4363 
4364 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4365 	if (write)
4366 		memcpy_toio(maddr + offset, buf, len);
4367 	else
4368 		memcpy_fromio(buf, maddr + offset, len);
4369 	iounmap(maddr);
4370 
4371 	return len;
4372 }
4373 EXPORT_SYMBOL_GPL(generic_access_phys);
4374 #endif
4375 
4376 /*
4377  * Access another process' address space as given in mm.  If non-NULL, use the
4378  * given task for page fault accounting.
4379  */
4380 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4381 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4382 {
4383 	struct vm_area_struct *vma;
4384 	void *old_buf = buf;
4385 	int write = gup_flags & FOLL_WRITE;
4386 
4387 	down_read(&mm->mmap_sem);
4388 	/* ignore errors, just check how much was successfully transferred */
4389 	while (len) {
4390 		int bytes, ret, offset;
4391 		void *maddr;
4392 		struct page *page = NULL;
4393 
4394 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4395 				gup_flags, &page, &vma, NULL);
4396 		if (ret <= 0) {
4397 #ifndef CONFIG_HAVE_IOREMAP_PROT
4398 			break;
4399 #else
4400 			/*
4401 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4402 			 * we can access using slightly different code.
4403 			 */
4404 			vma = find_vma(mm, addr);
4405 			if (!vma || vma->vm_start > addr)
4406 				break;
4407 			if (vma->vm_ops && vma->vm_ops->access)
4408 				ret = vma->vm_ops->access(vma, addr, buf,
4409 							  len, write);
4410 			if (ret <= 0)
4411 				break;
4412 			bytes = ret;
4413 #endif
4414 		} else {
4415 			bytes = len;
4416 			offset = addr & (PAGE_SIZE-1);
4417 			if (bytes > PAGE_SIZE-offset)
4418 				bytes = PAGE_SIZE-offset;
4419 
4420 			maddr = kmap(page);
4421 			if (write) {
4422 				copy_to_user_page(vma, page, addr,
4423 						  maddr + offset, buf, bytes);
4424 				set_page_dirty_lock(page);
4425 			} else {
4426 				copy_from_user_page(vma, page, addr,
4427 						    buf, maddr + offset, bytes);
4428 			}
4429 			kunmap(page);
4430 			put_page(page);
4431 		}
4432 		len -= bytes;
4433 		buf += bytes;
4434 		addr += bytes;
4435 	}
4436 	up_read(&mm->mmap_sem);
4437 
4438 	return buf - old_buf;
4439 }
4440 
4441 /**
4442  * access_remote_vm - access another process' address space
4443  * @mm:		the mm_struct of the target address space
4444  * @addr:	start address to access
4445  * @buf:	source or destination buffer
4446  * @len:	number of bytes to transfer
4447  * @gup_flags:	flags modifying lookup behaviour
4448  *
4449  * The caller must hold a reference on @mm.
4450  */
4451 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4452 		void *buf, int len, unsigned int gup_flags)
4453 {
4454 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4455 }
4456 
4457 /*
4458  * Access another process' address space.
4459  * Source/target buffer must be kernel space,
4460  * Do not walk the page table directly, use get_user_pages
4461  */
4462 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4463 		void *buf, int len, unsigned int gup_flags)
4464 {
4465 	struct mm_struct *mm;
4466 	int ret;
4467 
4468 	mm = get_task_mm(tsk);
4469 	if (!mm)
4470 		return 0;
4471 
4472 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4473 
4474 	mmput(mm);
4475 
4476 	return ret;
4477 }
4478 EXPORT_SYMBOL_GPL(access_process_vm);
4479 
4480 /*
4481  * Print the name of a VMA.
4482  */
4483 void print_vma_addr(char *prefix, unsigned long ip)
4484 {
4485 	struct mm_struct *mm = current->mm;
4486 	struct vm_area_struct *vma;
4487 
4488 	/*
4489 	 * we might be running from an atomic context so we cannot sleep
4490 	 */
4491 	if (!down_read_trylock(&mm->mmap_sem))
4492 		return;
4493 
4494 	vma = find_vma(mm, ip);
4495 	if (vma && vma->vm_file) {
4496 		struct file *f = vma->vm_file;
4497 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4498 		if (buf) {
4499 			char *p;
4500 
4501 			p = file_path(f, buf, PAGE_SIZE);
4502 			if (IS_ERR(p))
4503 				p = "?";
4504 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4505 					vma->vm_start,
4506 					vma->vm_end - vma->vm_start);
4507 			free_page((unsigned long)buf);
4508 		}
4509 	}
4510 	up_read(&mm->mmap_sem);
4511 }
4512 
4513 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4514 void __might_fault(const char *file, int line)
4515 {
4516 	/*
4517 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4518 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4519 	 * get paged out, therefore we'll never actually fault, and the
4520 	 * below annotations will generate false positives.
4521 	 */
4522 	if (uaccess_kernel())
4523 		return;
4524 	if (pagefault_disabled())
4525 		return;
4526 	__might_sleep(file, line, 0);
4527 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4528 	if (current->mm)
4529 		might_lock_read(&current->mm->mmap_sem);
4530 #endif
4531 }
4532 EXPORT_SYMBOL(__might_fault);
4533 #endif
4534 
4535 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4536 static void clear_gigantic_page(struct page *page,
4537 				unsigned long addr,
4538 				unsigned int pages_per_huge_page)
4539 {
4540 	int i;
4541 	struct page *p = page;
4542 
4543 	might_sleep();
4544 	for (i = 0; i < pages_per_huge_page;
4545 	     i++, p = mem_map_next(p, page, i)) {
4546 		cond_resched();
4547 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4548 	}
4549 }
4550 void clear_huge_page(struct page *page,
4551 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4552 {
4553 	int i, n, base, l;
4554 	unsigned long addr = addr_hint &
4555 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4556 
4557 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4558 		clear_gigantic_page(page, addr, pages_per_huge_page);
4559 		return;
4560 	}
4561 
4562 	/* Clear sub-page to access last to keep its cache lines hot */
4563 	might_sleep();
4564 	n = (addr_hint - addr) / PAGE_SIZE;
4565 	if (2 * n <= pages_per_huge_page) {
4566 		/* If sub-page to access in first half of huge page */
4567 		base = 0;
4568 		l = n;
4569 		/* Clear sub-pages at the end of huge page */
4570 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4571 			cond_resched();
4572 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4573 		}
4574 	} else {
4575 		/* If sub-page to access in second half of huge page */
4576 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4577 		l = pages_per_huge_page - n;
4578 		/* Clear sub-pages at the begin of huge page */
4579 		for (i = 0; i < base; i++) {
4580 			cond_resched();
4581 			clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4582 		}
4583 	}
4584 	/*
4585 	 * Clear remaining sub-pages in left-right-left-right pattern
4586 	 * towards the sub-page to access
4587 	 */
4588 	for (i = 0; i < l; i++) {
4589 		int left_idx = base + i;
4590 		int right_idx = base + 2 * l - 1 - i;
4591 
4592 		cond_resched();
4593 		clear_user_highpage(page + left_idx,
4594 				    addr + left_idx * PAGE_SIZE);
4595 		cond_resched();
4596 		clear_user_highpage(page + right_idx,
4597 				    addr + right_idx * PAGE_SIZE);
4598 	}
4599 }
4600 
4601 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4602 				    unsigned long addr,
4603 				    struct vm_area_struct *vma,
4604 				    unsigned int pages_per_huge_page)
4605 {
4606 	int i;
4607 	struct page *dst_base = dst;
4608 	struct page *src_base = src;
4609 
4610 	for (i = 0; i < pages_per_huge_page; ) {
4611 		cond_resched();
4612 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4613 
4614 		i++;
4615 		dst = mem_map_next(dst, dst_base, i);
4616 		src = mem_map_next(src, src_base, i);
4617 	}
4618 }
4619 
4620 void copy_user_huge_page(struct page *dst, struct page *src,
4621 			 unsigned long addr, struct vm_area_struct *vma,
4622 			 unsigned int pages_per_huge_page)
4623 {
4624 	int i;
4625 
4626 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4627 		copy_user_gigantic_page(dst, src, addr, vma,
4628 					pages_per_huge_page);
4629 		return;
4630 	}
4631 
4632 	might_sleep();
4633 	for (i = 0; i < pages_per_huge_page; i++) {
4634 		cond_resched();
4635 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4636 	}
4637 }
4638 
4639 long copy_huge_page_from_user(struct page *dst_page,
4640 				const void __user *usr_src,
4641 				unsigned int pages_per_huge_page,
4642 				bool allow_pagefault)
4643 {
4644 	void *src = (void *)usr_src;
4645 	void *page_kaddr;
4646 	unsigned long i, rc = 0;
4647 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4648 
4649 	for (i = 0; i < pages_per_huge_page; i++) {
4650 		if (allow_pagefault)
4651 			page_kaddr = kmap(dst_page + i);
4652 		else
4653 			page_kaddr = kmap_atomic(dst_page + i);
4654 		rc = copy_from_user(page_kaddr,
4655 				(const void __user *)(src + i * PAGE_SIZE),
4656 				PAGE_SIZE);
4657 		if (allow_pagefault)
4658 			kunmap(dst_page + i);
4659 		else
4660 			kunmap_atomic(page_kaddr);
4661 
4662 		ret_val -= (PAGE_SIZE - rc);
4663 		if (rc)
4664 			break;
4665 
4666 		cond_resched();
4667 	}
4668 	return ret_val;
4669 }
4670 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4671 
4672 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4673 
4674 static struct kmem_cache *page_ptl_cachep;
4675 
4676 void __init ptlock_cache_init(void)
4677 {
4678 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4679 			SLAB_PANIC, NULL);
4680 }
4681 
4682 bool ptlock_alloc(struct page *page)
4683 {
4684 	spinlock_t *ptl;
4685 
4686 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4687 	if (!ptl)
4688 		return false;
4689 	page->ptl = ptl;
4690 	return true;
4691 }
4692 
4693 void ptlock_free(struct page *page)
4694 {
4695 	kmem_cache_free(page_ptl_cachep, page->ptl);
4696 }
4697 #endif
4698