1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 #include <linux/dma-debug.h> 63 #include <linux/debugfs.h> 64 65 #include <asm/io.h> 66 #include <asm/pgalloc.h> 67 #include <asm/uaccess.h> 68 #include <asm/tlb.h> 69 #include <asm/tlbflush.h> 70 #include <asm/pgtable.h> 71 72 #include "internal.h" 73 74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 76 #endif 77 78 #ifndef CONFIG_NEED_MULTIPLE_NODES 79 /* use the per-pgdat data instead for discontigmem - mbligh */ 80 unsigned long max_mapnr; 81 struct page *mem_map; 82 83 EXPORT_SYMBOL(max_mapnr); 84 EXPORT_SYMBOL(mem_map); 85 #endif 86 87 /* 88 * A number of key systems in x86 including ioremap() rely on the assumption 89 * that high_memory defines the upper bound on direct map memory, then end 90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 92 * and ZONE_HIGHMEM. 93 */ 94 void * high_memory; 95 96 EXPORT_SYMBOL(high_memory); 97 98 /* 99 * Randomize the address space (stacks, mmaps, brk, etc.). 100 * 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 102 * as ancient (libc5 based) binaries can segfault. ) 103 */ 104 int randomize_va_space __read_mostly = 105 #ifdef CONFIG_COMPAT_BRK 106 1; 107 #else 108 2; 109 #endif 110 111 static int __init disable_randmaps(char *s) 112 { 113 randomize_va_space = 0; 114 return 1; 115 } 116 __setup("norandmaps", disable_randmaps); 117 118 unsigned long zero_pfn __read_mostly; 119 unsigned long highest_memmap_pfn __read_mostly; 120 121 EXPORT_SYMBOL(zero_pfn); 122 123 /* 124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 125 */ 126 static int __init init_zero_pfn(void) 127 { 128 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 129 return 0; 130 } 131 core_initcall(init_zero_pfn); 132 133 134 #if defined(SPLIT_RSS_COUNTING) 135 136 void sync_mm_rss(struct mm_struct *mm) 137 { 138 int i; 139 140 for (i = 0; i < NR_MM_COUNTERS; i++) { 141 if (current->rss_stat.count[i]) { 142 add_mm_counter(mm, i, current->rss_stat.count[i]); 143 current->rss_stat.count[i] = 0; 144 } 145 } 146 current->rss_stat.events = 0; 147 } 148 149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 150 { 151 struct task_struct *task = current; 152 153 if (likely(task->mm == mm)) 154 task->rss_stat.count[member] += val; 155 else 156 add_mm_counter(mm, member, val); 157 } 158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 160 161 /* sync counter once per 64 page faults */ 162 #define TASK_RSS_EVENTS_THRESH (64) 163 static void check_sync_rss_stat(struct task_struct *task) 164 { 165 if (unlikely(task != current)) 166 return; 167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 168 sync_mm_rss(task->mm); 169 } 170 #else /* SPLIT_RSS_COUNTING */ 171 172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 174 175 static void check_sync_rss_stat(struct task_struct *task) 176 { 177 } 178 179 #endif /* SPLIT_RSS_COUNTING */ 180 181 #ifdef HAVE_GENERIC_MMU_GATHER 182 183 static int tlb_next_batch(struct mmu_gather *tlb) 184 { 185 struct mmu_gather_batch *batch; 186 187 batch = tlb->active; 188 if (batch->next) { 189 tlb->active = batch->next; 190 return 1; 191 } 192 193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 194 return 0; 195 196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 197 if (!batch) 198 return 0; 199 200 tlb->batch_count++; 201 batch->next = NULL; 202 batch->nr = 0; 203 batch->max = MAX_GATHER_BATCH; 204 205 tlb->active->next = batch; 206 tlb->active = batch; 207 208 return 1; 209 } 210 211 /* tlb_gather_mmu 212 * Called to initialize an (on-stack) mmu_gather structure for page-table 213 * tear-down from @mm. The @fullmm argument is used when @mm is without 214 * users and we're going to destroy the full address space (exit/execve). 215 */ 216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 217 { 218 tlb->mm = mm; 219 220 /* Is it from 0 to ~0? */ 221 tlb->fullmm = !(start | (end+1)); 222 tlb->need_flush_all = 0; 223 tlb->start = start; 224 tlb->end = end; 225 tlb->need_flush = 0; 226 tlb->local.next = NULL; 227 tlb->local.nr = 0; 228 tlb->local.max = ARRAY_SIZE(tlb->__pages); 229 tlb->active = &tlb->local; 230 tlb->batch_count = 0; 231 232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 233 tlb->batch = NULL; 234 #endif 235 } 236 237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 238 { 239 tlb->need_flush = 0; 240 tlb_flush(tlb); 241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 242 tlb_table_flush(tlb); 243 #endif 244 } 245 246 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 247 { 248 struct mmu_gather_batch *batch; 249 250 for (batch = &tlb->local; batch; batch = batch->next) { 251 free_pages_and_swap_cache(batch->pages, batch->nr); 252 batch->nr = 0; 253 } 254 tlb->active = &tlb->local; 255 } 256 257 void tlb_flush_mmu(struct mmu_gather *tlb) 258 { 259 if (!tlb->need_flush) 260 return; 261 tlb_flush_mmu_tlbonly(tlb); 262 tlb_flush_mmu_free(tlb); 263 } 264 265 /* tlb_finish_mmu 266 * Called at the end of the shootdown operation to free up any resources 267 * that were required. 268 */ 269 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 270 { 271 struct mmu_gather_batch *batch, *next; 272 273 tlb_flush_mmu(tlb); 274 275 /* keep the page table cache within bounds */ 276 check_pgt_cache(); 277 278 for (batch = tlb->local.next; batch; batch = next) { 279 next = batch->next; 280 free_pages((unsigned long)batch, 0); 281 } 282 tlb->local.next = NULL; 283 } 284 285 /* __tlb_remove_page 286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 287 * handling the additional races in SMP caused by other CPUs caching valid 288 * mappings in their TLBs. Returns the number of free page slots left. 289 * When out of page slots we must call tlb_flush_mmu(). 290 */ 291 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 292 { 293 struct mmu_gather_batch *batch; 294 295 VM_BUG_ON(!tlb->need_flush); 296 297 batch = tlb->active; 298 batch->pages[batch->nr++] = page; 299 if (batch->nr == batch->max) { 300 if (!tlb_next_batch(tlb)) 301 return 0; 302 batch = tlb->active; 303 } 304 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 305 306 return batch->max - batch->nr; 307 } 308 309 #endif /* HAVE_GENERIC_MMU_GATHER */ 310 311 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 312 313 /* 314 * See the comment near struct mmu_table_batch. 315 */ 316 317 static void tlb_remove_table_smp_sync(void *arg) 318 { 319 /* Simply deliver the interrupt */ 320 } 321 322 static void tlb_remove_table_one(void *table) 323 { 324 /* 325 * This isn't an RCU grace period and hence the page-tables cannot be 326 * assumed to be actually RCU-freed. 327 * 328 * It is however sufficient for software page-table walkers that rely on 329 * IRQ disabling. See the comment near struct mmu_table_batch. 330 */ 331 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 332 __tlb_remove_table(table); 333 } 334 335 static void tlb_remove_table_rcu(struct rcu_head *head) 336 { 337 struct mmu_table_batch *batch; 338 int i; 339 340 batch = container_of(head, struct mmu_table_batch, rcu); 341 342 for (i = 0; i < batch->nr; i++) 343 __tlb_remove_table(batch->tables[i]); 344 345 free_page((unsigned long)batch); 346 } 347 348 void tlb_table_flush(struct mmu_gather *tlb) 349 { 350 struct mmu_table_batch **batch = &tlb->batch; 351 352 if (*batch) { 353 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 354 *batch = NULL; 355 } 356 } 357 358 void tlb_remove_table(struct mmu_gather *tlb, void *table) 359 { 360 struct mmu_table_batch **batch = &tlb->batch; 361 362 tlb->need_flush = 1; 363 364 /* 365 * When there's less then two users of this mm there cannot be a 366 * concurrent page-table walk. 367 */ 368 if (atomic_read(&tlb->mm->mm_users) < 2) { 369 __tlb_remove_table(table); 370 return; 371 } 372 373 if (*batch == NULL) { 374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 375 if (*batch == NULL) { 376 tlb_remove_table_one(table); 377 return; 378 } 379 (*batch)->nr = 0; 380 } 381 (*batch)->tables[(*batch)->nr++] = table; 382 if ((*batch)->nr == MAX_TABLE_BATCH) 383 tlb_table_flush(tlb); 384 } 385 386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 387 388 /* 389 * Note: this doesn't free the actual pages themselves. That 390 * has been handled earlier when unmapping all the memory regions. 391 */ 392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 393 unsigned long addr) 394 { 395 pgtable_t token = pmd_pgtable(*pmd); 396 pmd_clear(pmd); 397 pte_free_tlb(tlb, token, addr); 398 atomic_long_dec(&tlb->mm->nr_ptes); 399 } 400 401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 402 unsigned long addr, unsigned long end, 403 unsigned long floor, unsigned long ceiling) 404 { 405 pmd_t *pmd; 406 unsigned long next; 407 unsigned long start; 408 409 start = addr; 410 pmd = pmd_offset(pud, addr); 411 do { 412 next = pmd_addr_end(addr, end); 413 if (pmd_none_or_clear_bad(pmd)) 414 continue; 415 free_pte_range(tlb, pmd, addr); 416 } while (pmd++, addr = next, addr != end); 417 418 start &= PUD_MASK; 419 if (start < floor) 420 return; 421 if (ceiling) { 422 ceiling &= PUD_MASK; 423 if (!ceiling) 424 return; 425 } 426 if (end - 1 > ceiling - 1) 427 return; 428 429 pmd = pmd_offset(pud, start); 430 pud_clear(pud); 431 pmd_free_tlb(tlb, pmd, start); 432 } 433 434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 435 unsigned long addr, unsigned long end, 436 unsigned long floor, unsigned long ceiling) 437 { 438 pud_t *pud; 439 unsigned long next; 440 unsigned long start; 441 442 start = addr; 443 pud = pud_offset(pgd, addr); 444 do { 445 next = pud_addr_end(addr, end); 446 if (pud_none_or_clear_bad(pud)) 447 continue; 448 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 449 } while (pud++, addr = next, addr != end); 450 451 start &= PGDIR_MASK; 452 if (start < floor) 453 return; 454 if (ceiling) { 455 ceiling &= PGDIR_MASK; 456 if (!ceiling) 457 return; 458 } 459 if (end - 1 > ceiling - 1) 460 return; 461 462 pud = pud_offset(pgd, start); 463 pgd_clear(pgd); 464 pud_free_tlb(tlb, pud, start); 465 } 466 467 /* 468 * This function frees user-level page tables of a process. 469 */ 470 void free_pgd_range(struct mmu_gather *tlb, 471 unsigned long addr, unsigned long end, 472 unsigned long floor, unsigned long ceiling) 473 { 474 pgd_t *pgd; 475 unsigned long next; 476 477 /* 478 * The next few lines have given us lots of grief... 479 * 480 * Why are we testing PMD* at this top level? Because often 481 * there will be no work to do at all, and we'd prefer not to 482 * go all the way down to the bottom just to discover that. 483 * 484 * Why all these "- 1"s? Because 0 represents both the bottom 485 * of the address space and the top of it (using -1 for the 486 * top wouldn't help much: the masks would do the wrong thing). 487 * The rule is that addr 0 and floor 0 refer to the bottom of 488 * the address space, but end 0 and ceiling 0 refer to the top 489 * Comparisons need to use "end - 1" and "ceiling - 1" (though 490 * that end 0 case should be mythical). 491 * 492 * Wherever addr is brought up or ceiling brought down, we must 493 * be careful to reject "the opposite 0" before it confuses the 494 * subsequent tests. But what about where end is brought down 495 * by PMD_SIZE below? no, end can't go down to 0 there. 496 * 497 * Whereas we round start (addr) and ceiling down, by different 498 * masks at different levels, in order to test whether a table 499 * now has no other vmas using it, so can be freed, we don't 500 * bother to round floor or end up - the tests don't need that. 501 */ 502 503 addr &= PMD_MASK; 504 if (addr < floor) { 505 addr += PMD_SIZE; 506 if (!addr) 507 return; 508 } 509 if (ceiling) { 510 ceiling &= PMD_MASK; 511 if (!ceiling) 512 return; 513 } 514 if (end - 1 > ceiling - 1) 515 end -= PMD_SIZE; 516 if (addr > end - 1) 517 return; 518 519 pgd = pgd_offset(tlb->mm, addr); 520 do { 521 next = pgd_addr_end(addr, end); 522 if (pgd_none_or_clear_bad(pgd)) 523 continue; 524 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 525 } while (pgd++, addr = next, addr != end); 526 } 527 528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 529 unsigned long floor, unsigned long ceiling) 530 { 531 while (vma) { 532 struct vm_area_struct *next = vma->vm_next; 533 unsigned long addr = vma->vm_start; 534 535 /* 536 * Hide vma from rmap and truncate_pagecache before freeing 537 * pgtables 538 */ 539 unlink_anon_vmas(vma); 540 unlink_file_vma(vma); 541 542 if (is_vm_hugetlb_page(vma)) { 543 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 544 floor, next? next->vm_start: ceiling); 545 } else { 546 /* 547 * Optimization: gather nearby vmas into one call down 548 */ 549 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 550 && !is_vm_hugetlb_page(next)) { 551 vma = next; 552 next = vma->vm_next; 553 unlink_anon_vmas(vma); 554 unlink_file_vma(vma); 555 } 556 free_pgd_range(tlb, addr, vma->vm_end, 557 floor, next? next->vm_start: ceiling); 558 } 559 vma = next; 560 } 561 } 562 563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 564 pmd_t *pmd, unsigned long address) 565 { 566 spinlock_t *ptl; 567 pgtable_t new = pte_alloc_one(mm, address); 568 int wait_split_huge_page; 569 if (!new) 570 return -ENOMEM; 571 572 /* 573 * Ensure all pte setup (eg. pte page lock and page clearing) are 574 * visible before the pte is made visible to other CPUs by being 575 * put into page tables. 576 * 577 * The other side of the story is the pointer chasing in the page 578 * table walking code (when walking the page table without locking; 579 * ie. most of the time). Fortunately, these data accesses consist 580 * of a chain of data-dependent loads, meaning most CPUs (alpha 581 * being the notable exception) will already guarantee loads are 582 * seen in-order. See the alpha page table accessors for the 583 * smp_read_barrier_depends() barriers in page table walking code. 584 */ 585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 586 587 ptl = pmd_lock(mm, pmd); 588 wait_split_huge_page = 0; 589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 590 atomic_long_inc(&mm->nr_ptes); 591 pmd_populate(mm, pmd, new); 592 new = NULL; 593 } else if (unlikely(pmd_trans_splitting(*pmd))) 594 wait_split_huge_page = 1; 595 spin_unlock(ptl); 596 if (new) 597 pte_free(mm, new); 598 if (wait_split_huge_page) 599 wait_split_huge_page(vma->anon_vma, pmd); 600 return 0; 601 } 602 603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 604 { 605 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 606 if (!new) 607 return -ENOMEM; 608 609 smp_wmb(); /* See comment in __pte_alloc */ 610 611 spin_lock(&init_mm.page_table_lock); 612 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 613 pmd_populate_kernel(&init_mm, pmd, new); 614 new = NULL; 615 } else 616 VM_BUG_ON(pmd_trans_splitting(*pmd)); 617 spin_unlock(&init_mm.page_table_lock); 618 if (new) 619 pte_free_kernel(&init_mm, new); 620 return 0; 621 } 622 623 static inline void init_rss_vec(int *rss) 624 { 625 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 626 } 627 628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 629 { 630 int i; 631 632 if (current->mm == mm) 633 sync_mm_rss(mm); 634 for (i = 0; i < NR_MM_COUNTERS; i++) 635 if (rss[i]) 636 add_mm_counter(mm, i, rss[i]); 637 } 638 639 /* 640 * This function is called to print an error when a bad pte 641 * is found. For example, we might have a PFN-mapped pte in 642 * a region that doesn't allow it. 643 * 644 * The calling function must still handle the error. 645 */ 646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 647 pte_t pte, struct page *page) 648 { 649 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 650 pud_t *pud = pud_offset(pgd, addr); 651 pmd_t *pmd = pmd_offset(pud, addr); 652 struct address_space *mapping; 653 pgoff_t index; 654 static unsigned long resume; 655 static unsigned long nr_shown; 656 static unsigned long nr_unshown; 657 658 /* 659 * Allow a burst of 60 reports, then keep quiet for that minute; 660 * or allow a steady drip of one report per second. 661 */ 662 if (nr_shown == 60) { 663 if (time_before(jiffies, resume)) { 664 nr_unshown++; 665 return; 666 } 667 if (nr_unshown) { 668 printk(KERN_ALERT 669 "BUG: Bad page map: %lu messages suppressed\n", 670 nr_unshown); 671 nr_unshown = 0; 672 } 673 nr_shown = 0; 674 } 675 if (nr_shown++ == 0) 676 resume = jiffies + 60 * HZ; 677 678 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 679 index = linear_page_index(vma, addr); 680 681 printk(KERN_ALERT 682 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 683 current->comm, 684 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 685 if (page) 686 dump_page(page, "bad pte"); 687 printk(KERN_ALERT 688 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 689 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 690 /* 691 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 692 */ 693 if (vma->vm_ops) 694 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 695 vma->vm_ops->fault); 696 if (vma->vm_file) 697 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 698 vma->vm_file->f_op->mmap); 699 dump_stack(); 700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 701 } 702 703 /* 704 * vm_normal_page -- This function gets the "struct page" associated with a pte. 705 * 706 * "Special" mappings do not wish to be associated with a "struct page" (either 707 * it doesn't exist, or it exists but they don't want to touch it). In this 708 * case, NULL is returned here. "Normal" mappings do have a struct page. 709 * 710 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 711 * pte bit, in which case this function is trivial. Secondly, an architecture 712 * may not have a spare pte bit, which requires a more complicated scheme, 713 * described below. 714 * 715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 716 * special mapping (even if there are underlying and valid "struct pages"). 717 * COWed pages of a VM_PFNMAP are always normal. 718 * 719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 722 * mapping will always honor the rule 723 * 724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 725 * 726 * And for normal mappings this is false. 727 * 728 * This restricts such mappings to be a linear translation from virtual address 729 * to pfn. To get around this restriction, we allow arbitrary mappings so long 730 * as the vma is not a COW mapping; in that case, we know that all ptes are 731 * special (because none can have been COWed). 732 * 733 * 734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 735 * 736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 737 * page" backing, however the difference is that _all_ pages with a struct 738 * page (that is, those where pfn_valid is true) are refcounted and considered 739 * normal pages by the VM. The disadvantage is that pages are refcounted 740 * (which can be slower and simply not an option for some PFNMAP users). The 741 * advantage is that we don't have to follow the strict linearity rule of 742 * PFNMAP mappings in order to support COWable mappings. 743 * 744 */ 745 #ifdef __HAVE_ARCH_PTE_SPECIAL 746 # define HAVE_PTE_SPECIAL 1 747 #else 748 # define HAVE_PTE_SPECIAL 0 749 #endif 750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 751 pte_t pte) 752 { 753 unsigned long pfn = pte_pfn(pte); 754 755 if (HAVE_PTE_SPECIAL) { 756 if (likely(!pte_special(pte))) 757 goto check_pfn; 758 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 759 return NULL; 760 if (!is_zero_pfn(pfn)) 761 print_bad_pte(vma, addr, pte, NULL); 762 return NULL; 763 } 764 765 /* !HAVE_PTE_SPECIAL case follows: */ 766 767 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 768 if (vma->vm_flags & VM_MIXEDMAP) { 769 if (!pfn_valid(pfn)) 770 return NULL; 771 goto out; 772 } else { 773 unsigned long off; 774 off = (addr - vma->vm_start) >> PAGE_SHIFT; 775 if (pfn == vma->vm_pgoff + off) 776 return NULL; 777 if (!is_cow_mapping(vma->vm_flags)) 778 return NULL; 779 } 780 } 781 782 if (is_zero_pfn(pfn)) 783 return NULL; 784 check_pfn: 785 if (unlikely(pfn > highest_memmap_pfn)) { 786 print_bad_pte(vma, addr, pte, NULL); 787 return NULL; 788 } 789 790 /* 791 * NOTE! We still have PageReserved() pages in the page tables. 792 * eg. VDSO mappings can cause them to exist. 793 */ 794 out: 795 return pfn_to_page(pfn); 796 } 797 798 /* 799 * copy one vm_area from one task to the other. Assumes the page tables 800 * already present in the new task to be cleared in the whole range 801 * covered by this vma. 802 */ 803 804 static inline unsigned long 805 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 806 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 807 unsigned long addr, int *rss) 808 { 809 unsigned long vm_flags = vma->vm_flags; 810 pte_t pte = *src_pte; 811 struct page *page; 812 813 /* pte contains position in swap or file, so copy. */ 814 if (unlikely(!pte_present(pte))) { 815 if (!pte_file(pte)) { 816 swp_entry_t entry = pte_to_swp_entry(pte); 817 818 if (swap_duplicate(entry) < 0) 819 return entry.val; 820 821 /* make sure dst_mm is on swapoff's mmlist. */ 822 if (unlikely(list_empty(&dst_mm->mmlist))) { 823 spin_lock(&mmlist_lock); 824 if (list_empty(&dst_mm->mmlist)) 825 list_add(&dst_mm->mmlist, 826 &src_mm->mmlist); 827 spin_unlock(&mmlist_lock); 828 } 829 if (likely(!non_swap_entry(entry))) 830 rss[MM_SWAPENTS]++; 831 else if (is_migration_entry(entry)) { 832 page = migration_entry_to_page(entry); 833 834 if (PageAnon(page)) 835 rss[MM_ANONPAGES]++; 836 else 837 rss[MM_FILEPAGES]++; 838 839 if (is_write_migration_entry(entry) && 840 is_cow_mapping(vm_flags)) { 841 /* 842 * COW mappings require pages in both 843 * parent and child to be set to read. 844 */ 845 make_migration_entry_read(&entry); 846 pte = swp_entry_to_pte(entry); 847 if (pte_swp_soft_dirty(*src_pte)) 848 pte = pte_swp_mksoft_dirty(pte); 849 set_pte_at(src_mm, addr, src_pte, pte); 850 } 851 } 852 } 853 goto out_set_pte; 854 } 855 856 /* 857 * If it's a COW mapping, write protect it both 858 * in the parent and the child 859 */ 860 if (is_cow_mapping(vm_flags)) { 861 ptep_set_wrprotect(src_mm, addr, src_pte); 862 pte = pte_wrprotect(pte); 863 } 864 865 /* 866 * If it's a shared mapping, mark it clean in 867 * the child 868 */ 869 if (vm_flags & VM_SHARED) 870 pte = pte_mkclean(pte); 871 pte = pte_mkold(pte); 872 873 page = vm_normal_page(vma, addr, pte); 874 if (page) { 875 get_page(page); 876 page_dup_rmap(page); 877 if (PageAnon(page)) 878 rss[MM_ANONPAGES]++; 879 else 880 rss[MM_FILEPAGES]++; 881 } 882 883 out_set_pte: 884 set_pte_at(dst_mm, addr, dst_pte, pte); 885 return 0; 886 } 887 888 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 889 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 890 unsigned long addr, unsigned long end) 891 { 892 pte_t *orig_src_pte, *orig_dst_pte; 893 pte_t *src_pte, *dst_pte; 894 spinlock_t *src_ptl, *dst_ptl; 895 int progress = 0; 896 int rss[NR_MM_COUNTERS]; 897 swp_entry_t entry = (swp_entry_t){0}; 898 899 again: 900 init_rss_vec(rss); 901 902 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 903 if (!dst_pte) 904 return -ENOMEM; 905 src_pte = pte_offset_map(src_pmd, addr); 906 src_ptl = pte_lockptr(src_mm, src_pmd); 907 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 908 orig_src_pte = src_pte; 909 orig_dst_pte = dst_pte; 910 arch_enter_lazy_mmu_mode(); 911 912 do { 913 /* 914 * We are holding two locks at this point - either of them 915 * could generate latencies in another task on another CPU. 916 */ 917 if (progress >= 32) { 918 progress = 0; 919 if (need_resched() || 920 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 921 break; 922 } 923 if (pte_none(*src_pte)) { 924 progress++; 925 continue; 926 } 927 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 928 vma, addr, rss); 929 if (entry.val) 930 break; 931 progress += 8; 932 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 933 934 arch_leave_lazy_mmu_mode(); 935 spin_unlock(src_ptl); 936 pte_unmap(orig_src_pte); 937 add_mm_rss_vec(dst_mm, rss); 938 pte_unmap_unlock(orig_dst_pte, dst_ptl); 939 cond_resched(); 940 941 if (entry.val) { 942 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 943 return -ENOMEM; 944 progress = 0; 945 } 946 if (addr != end) 947 goto again; 948 return 0; 949 } 950 951 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 952 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 953 unsigned long addr, unsigned long end) 954 { 955 pmd_t *src_pmd, *dst_pmd; 956 unsigned long next; 957 958 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 959 if (!dst_pmd) 960 return -ENOMEM; 961 src_pmd = pmd_offset(src_pud, addr); 962 do { 963 next = pmd_addr_end(addr, end); 964 if (pmd_trans_huge(*src_pmd)) { 965 int err; 966 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 967 err = copy_huge_pmd(dst_mm, src_mm, 968 dst_pmd, src_pmd, addr, vma); 969 if (err == -ENOMEM) 970 return -ENOMEM; 971 if (!err) 972 continue; 973 /* fall through */ 974 } 975 if (pmd_none_or_clear_bad(src_pmd)) 976 continue; 977 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 978 vma, addr, next)) 979 return -ENOMEM; 980 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 981 return 0; 982 } 983 984 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 985 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 986 unsigned long addr, unsigned long end) 987 { 988 pud_t *src_pud, *dst_pud; 989 unsigned long next; 990 991 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 992 if (!dst_pud) 993 return -ENOMEM; 994 src_pud = pud_offset(src_pgd, addr); 995 do { 996 next = pud_addr_end(addr, end); 997 if (pud_none_or_clear_bad(src_pud)) 998 continue; 999 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1000 vma, addr, next)) 1001 return -ENOMEM; 1002 } while (dst_pud++, src_pud++, addr = next, addr != end); 1003 return 0; 1004 } 1005 1006 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1007 struct vm_area_struct *vma) 1008 { 1009 pgd_t *src_pgd, *dst_pgd; 1010 unsigned long next; 1011 unsigned long addr = vma->vm_start; 1012 unsigned long end = vma->vm_end; 1013 unsigned long mmun_start; /* For mmu_notifiers */ 1014 unsigned long mmun_end; /* For mmu_notifiers */ 1015 bool is_cow; 1016 int ret; 1017 1018 /* 1019 * Don't copy ptes where a page fault will fill them correctly. 1020 * Fork becomes much lighter when there are big shared or private 1021 * readonly mappings. The tradeoff is that copy_page_range is more 1022 * efficient than faulting. 1023 */ 1024 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1025 VM_PFNMAP | VM_MIXEDMAP))) { 1026 if (!vma->anon_vma) 1027 return 0; 1028 } 1029 1030 if (is_vm_hugetlb_page(vma)) 1031 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1032 1033 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1034 /* 1035 * We do not free on error cases below as remove_vma 1036 * gets called on error from higher level routine 1037 */ 1038 ret = track_pfn_copy(vma); 1039 if (ret) 1040 return ret; 1041 } 1042 1043 /* 1044 * We need to invalidate the secondary MMU mappings only when 1045 * there could be a permission downgrade on the ptes of the 1046 * parent mm. And a permission downgrade will only happen if 1047 * is_cow_mapping() returns true. 1048 */ 1049 is_cow = is_cow_mapping(vma->vm_flags); 1050 mmun_start = addr; 1051 mmun_end = end; 1052 if (is_cow) 1053 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1054 mmun_end); 1055 1056 ret = 0; 1057 dst_pgd = pgd_offset(dst_mm, addr); 1058 src_pgd = pgd_offset(src_mm, addr); 1059 do { 1060 next = pgd_addr_end(addr, end); 1061 if (pgd_none_or_clear_bad(src_pgd)) 1062 continue; 1063 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1064 vma, addr, next))) { 1065 ret = -ENOMEM; 1066 break; 1067 } 1068 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1069 1070 if (is_cow) 1071 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1072 return ret; 1073 } 1074 1075 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1076 struct vm_area_struct *vma, pmd_t *pmd, 1077 unsigned long addr, unsigned long end, 1078 struct zap_details *details) 1079 { 1080 struct mm_struct *mm = tlb->mm; 1081 int force_flush = 0; 1082 int rss[NR_MM_COUNTERS]; 1083 spinlock_t *ptl; 1084 pte_t *start_pte; 1085 pte_t *pte; 1086 1087 again: 1088 init_rss_vec(rss); 1089 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1090 pte = start_pte; 1091 arch_enter_lazy_mmu_mode(); 1092 do { 1093 pte_t ptent = *pte; 1094 if (pte_none(ptent)) { 1095 continue; 1096 } 1097 1098 if (pte_present(ptent)) { 1099 struct page *page; 1100 1101 page = vm_normal_page(vma, addr, ptent); 1102 if (unlikely(details) && page) { 1103 /* 1104 * unmap_shared_mapping_pages() wants to 1105 * invalidate cache without truncating: 1106 * unmap shared but keep private pages. 1107 */ 1108 if (details->check_mapping && 1109 details->check_mapping != page->mapping) 1110 continue; 1111 /* 1112 * Each page->index must be checked when 1113 * invalidating or truncating nonlinear. 1114 */ 1115 if (details->nonlinear_vma && 1116 (page->index < details->first_index || 1117 page->index > details->last_index)) 1118 continue; 1119 } 1120 ptent = ptep_get_and_clear_full(mm, addr, pte, 1121 tlb->fullmm); 1122 tlb_remove_tlb_entry(tlb, pte, addr); 1123 if (unlikely(!page)) 1124 continue; 1125 if (unlikely(details) && details->nonlinear_vma 1126 && linear_page_index(details->nonlinear_vma, 1127 addr) != page->index) { 1128 pte_t ptfile = pgoff_to_pte(page->index); 1129 if (pte_soft_dirty(ptent)) 1130 ptfile = pte_file_mksoft_dirty(ptfile); 1131 set_pte_at(mm, addr, pte, ptfile); 1132 } 1133 if (PageAnon(page)) 1134 rss[MM_ANONPAGES]--; 1135 else { 1136 if (pte_dirty(ptent)) { 1137 force_flush = 1; 1138 set_page_dirty(page); 1139 } 1140 if (pte_young(ptent) && 1141 likely(!(vma->vm_flags & VM_SEQ_READ))) 1142 mark_page_accessed(page); 1143 rss[MM_FILEPAGES]--; 1144 } 1145 page_remove_rmap(page); 1146 if (unlikely(page_mapcount(page) < 0)) 1147 print_bad_pte(vma, addr, ptent, page); 1148 if (unlikely(!__tlb_remove_page(tlb, page))) { 1149 force_flush = 1; 1150 addr += PAGE_SIZE; 1151 break; 1152 } 1153 continue; 1154 } 1155 /* 1156 * If details->check_mapping, we leave swap entries; 1157 * if details->nonlinear_vma, we leave file entries. 1158 */ 1159 if (unlikely(details)) 1160 continue; 1161 if (pte_file(ptent)) { 1162 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1163 print_bad_pte(vma, addr, ptent, NULL); 1164 } else { 1165 swp_entry_t entry = pte_to_swp_entry(ptent); 1166 1167 if (!non_swap_entry(entry)) 1168 rss[MM_SWAPENTS]--; 1169 else if (is_migration_entry(entry)) { 1170 struct page *page; 1171 1172 page = migration_entry_to_page(entry); 1173 1174 if (PageAnon(page)) 1175 rss[MM_ANONPAGES]--; 1176 else 1177 rss[MM_FILEPAGES]--; 1178 } 1179 if (unlikely(!free_swap_and_cache(entry))) 1180 print_bad_pte(vma, addr, ptent, NULL); 1181 } 1182 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1183 } while (pte++, addr += PAGE_SIZE, addr != end); 1184 1185 add_mm_rss_vec(mm, rss); 1186 arch_leave_lazy_mmu_mode(); 1187 1188 /* Do the actual TLB flush before dropping ptl */ 1189 if (force_flush) { 1190 unsigned long old_end; 1191 1192 /* 1193 * Flush the TLB just for the previous segment, 1194 * then update the range to be the remaining 1195 * TLB range. 1196 */ 1197 old_end = tlb->end; 1198 tlb->end = addr; 1199 tlb_flush_mmu_tlbonly(tlb); 1200 tlb->start = addr; 1201 tlb->end = old_end; 1202 } 1203 pte_unmap_unlock(start_pte, ptl); 1204 1205 /* 1206 * If we forced a TLB flush (either due to running out of 1207 * batch buffers or because we needed to flush dirty TLB 1208 * entries before releasing the ptl), free the batched 1209 * memory too. Restart if we didn't do everything. 1210 */ 1211 if (force_flush) { 1212 force_flush = 0; 1213 tlb_flush_mmu_free(tlb); 1214 1215 if (addr != end) 1216 goto again; 1217 } 1218 1219 return addr; 1220 } 1221 1222 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1223 struct vm_area_struct *vma, pud_t *pud, 1224 unsigned long addr, unsigned long end, 1225 struct zap_details *details) 1226 { 1227 pmd_t *pmd; 1228 unsigned long next; 1229 1230 pmd = pmd_offset(pud, addr); 1231 do { 1232 next = pmd_addr_end(addr, end); 1233 if (pmd_trans_huge(*pmd)) { 1234 if (next - addr != HPAGE_PMD_SIZE) { 1235 #ifdef CONFIG_DEBUG_VM 1236 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1237 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1238 __func__, addr, end, 1239 vma->vm_start, 1240 vma->vm_end); 1241 BUG(); 1242 } 1243 #endif 1244 split_huge_page_pmd(vma, addr, pmd); 1245 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1246 goto next; 1247 /* fall through */ 1248 } 1249 /* 1250 * Here there can be other concurrent MADV_DONTNEED or 1251 * trans huge page faults running, and if the pmd is 1252 * none or trans huge it can change under us. This is 1253 * because MADV_DONTNEED holds the mmap_sem in read 1254 * mode. 1255 */ 1256 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1257 goto next; 1258 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1259 next: 1260 cond_resched(); 1261 } while (pmd++, addr = next, addr != end); 1262 1263 return addr; 1264 } 1265 1266 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1267 struct vm_area_struct *vma, pgd_t *pgd, 1268 unsigned long addr, unsigned long end, 1269 struct zap_details *details) 1270 { 1271 pud_t *pud; 1272 unsigned long next; 1273 1274 pud = pud_offset(pgd, addr); 1275 do { 1276 next = pud_addr_end(addr, end); 1277 if (pud_none_or_clear_bad(pud)) 1278 continue; 1279 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1280 } while (pud++, addr = next, addr != end); 1281 1282 return addr; 1283 } 1284 1285 static void unmap_page_range(struct mmu_gather *tlb, 1286 struct vm_area_struct *vma, 1287 unsigned long addr, unsigned long end, 1288 struct zap_details *details) 1289 { 1290 pgd_t *pgd; 1291 unsigned long next; 1292 1293 if (details && !details->check_mapping && !details->nonlinear_vma) 1294 details = NULL; 1295 1296 BUG_ON(addr >= end); 1297 tlb_start_vma(tlb, vma); 1298 pgd = pgd_offset(vma->vm_mm, addr); 1299 do { 1300 next = pgd_addr_end(addr, end); 1301 if (pgd_none_or_clear_bad(pgd)) 1302 continue; 1303 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1304 } while (pgd++, addr = next, addr != end); 1305 tlb_end_vma(tlb, vma); 1306 } 1307 1308 1309 static void unmap_single_vma(struct mmu_gather *tlb, 1310 struct vm_area_struct *vma, unsigned long start_addr, 1311 unsigned long end_addr, 1312 struct zap_details *details) 1313 { 1314 unsigned long start = max(vma->vm_start, start_addr); 1315 unsigned long end; 1316 1317 if (start >= vma->vm_end) 1318 return; 1319 end = min(vma->vm_end, end_addr); 1320 if (end <= vma->vm_start) 1321 return; 1322 1323 if (vma->vm_file) 1324 uprobe_munmap(vma, start, end); 1325 1326 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1327 untrack_pfn(vma, 0, 0); 1328 1329 if (start != end) { 1330 if (unlikely(is_vm_hugetlb_page(vma))) { 1331 /* 1332 * It is undesirable to test vma->vm_file as it 1333 * should be non-null for valid hugetlb area. 1334 * However, vm_file will be NULL in the error 1335 * cleanup path of mmap_region. When 1336 * hugetlbfs ->mmap method fails, 1337 * mmap_region() nullifies vma->vm_file 1338 * before calling this function to clean up. 1339 * Since no pte has actually been setup, it is 1340 * safe to do nothing in this case. 1341 */ 1342 if (vma->vm_file) { 1343 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1344 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1345 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1346 } 1347 } else 1348 unmap_page_range(tlb, vma, start, end, details); 1349 } 1350 } 1351 1352 /** 1353 * unmap_vmas - unmap a range of memory covered by a list of vma's 1354 * @tlb: address of the caller's struct mmu_gather 1355 * @vma: the starting vma 1356 * @start_addr: virtual address at which to start unmapping 1357 * @end_addr: virtual address at which to end unmapping 1358 * 1359 * Unmap all pages in the vma list. 1360 * 1361 * Only addresses between `start' and `end' will be unmapped. 1362 * 1363 * The VMA list must be sorted in ascending virtual address order. 1364 * 1365 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1366 * range after unmap_vmas() returns. So the only responsibility here is to 1367 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1368 * drops the lock and schedules. 1369 */ 1370 void unmap_vmas(struct mmu_gather *tlb, 1371 struct vm_area_struct *vma, unsigned long start_addr, 1372 unsigned long end_addr) 1373 { 1374 struct mm_struct *mm = vma->vm_mm; 1375 1376 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1377 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1378 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1379 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1380 } 1381 1382 /** 1383 * zap_page_range - remove user pages in a given range 1384 * @vma: vm_area_struct holding the applicable pages 1385 * @start: starting address of pages to zap 1386 * @size: number of bytes to zap 1387 * @details: details of nonlinear truncation or shared cache invalidation 1388 * 1389 * Caller must protect the VMA list 1390 */ 1391 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1392 unsigned long size, struct zap_details *details) 1393 { 1394 struct mm_struct *mm = vma->vm_mm; 1395 struct mmu_gather tlb; 1396 unsigned long end = start + size; 1397 1398 lru_add_drain(); 1399 tlb_gather_mmu(&tlb, mm, start, end); 1400 update_hiwater_rss(mm); 1401 mmu_notifier_invalidate_range_start(mm, start, end); 1402 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1403 unmap_single_vma(&tlb, vma, start, end, details); 1404 mmu_notifier_invalidate_range_end(mm, start, end); 1405 tlb_finish_mmu(&tlb, start, end); 1406 } 1407 1408 /** 1409 * zap_page_range_single - remove user pages in a given range 1410 * @vma: vm_area_struct holding the applicable pages 1411 * @address: starting address of pages to zap 1412 * @size: number of bytes to zap 1413 * @details: details of nonlinear truncation or shared cache invalidation 1414 * 1415 * The range must fit into one VMA. 1416 */ 1417 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1418 unsigned long size, struct zap_details *details) 1419 { 1420 struct mm_struct *mm = vma->vm_mm; 1421 struct mmu_gather tlb; 1422 unsigned long end = address + size; 1423 1424 lru_add_drain(); 1425 tlb_gather_mmu(&tlb, mm, address, end); 1426 update_hiwater_rss(mm); 1427 mmu_notifier_invalidate_range_start(mm, address, end); 1428 unmap_single_vma(&tlb, vma, address, end, details); 1429 mmu_notifier_invalidate_range_end(mm, address, end); 1430 tlb_finish_mmu(&tlb, address, end); 1431 } 1432 1433 /** 1434 * zap_vma_ptes - remove ptes mapping the vma 1435 * @vma: vm_area_struct holding ptes to be zapped 1436 * @address: starting address of pages to zap 1437 * @size: number of bytes to zap 1438 * 1439 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1440 * 1441 * The entire address range must be fully contained within the vma. 1442 * 1443 * Returns 0 if successful. 1444 */ 1445 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1446 unsigned long size) 1447 { 1448 if (address < vma->vm_start || address + size > vma->vm_end || 1449 !(vma->vm_flags & VM_PFNMAP)) 1450 return -1; 1451 zap_page_range_single(vma, address, size, NULL); 1452 return 0; 1453 } 1454 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1455 1456 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1457 spinlock_t **ptl) 1458 { 1459 pgd_t * pgd = pgd_offset(mm, addr); 1460 pud_t * pud = pud_alloc(mm, pgd, addr); 1461 if (pud) { 1462 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1463 if (pmd) { 1464 VM_BUG_ON(pmd_trans_huge(*pmd)); 1465 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1466 } 1467 } 1468 return NULL; 1469 } 1470 1471 /* 1472 * This is the old fallback for page remapping. 1473 * 1474 * For historical reasons, it only allows reserved pages. Only 1475 * old drivers should use this, and they needed to mark their 1476 * pages reserved for the old functions anyway. 1477 */ 1478 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1479 struct page *page, pgprot_t prot) 1480 { 1481 struct mm_struct *mm = vma->vm_mm; 1482 int retval; 1483 pte_t *pte; 1484 spinlock_t *ptl; 1485 1486 retval = -EINVAL; 1487 if (PageAnon(page)) 1488 goto out; 1489 retval = -ENOMEM; 1490 flush_dcache_page(page); 1491 pte = get_locked_pte(mm, addr, &ptl); 1492 if (!pte) 1493 goto out; 1494 retval = -EBUSY; 1495 if (!pte_none(*pte)) 1496 goto out_unlock; 1497 1498 /* Ok, finally just insert the thing.. */ 1499 get_page(page); 1500 inc_mm_counter_fast(mm, MM_FILEPAGES); 1501 page_add_file_rmap(page); 1502 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1503 1504 retval = 0; 1505 pte_unmap_unlock(pte, ptl); 1506 return retval; 1507 out_unlock: 1508 pte_unmap_unlock(pte, ptl); 1509 out: 1510 return retval; 1511 } 1512 1513 /** 1514 * vm_insert_page - insert single page into user vma 1515 * @vma: user vma to map to 1516 * @addr: target user address of this page 1517 * @page: source kernel page 1518 * 1519 * This allows drivers to insert individual pages they've allocated 1520 * into a user vma. 1521 * 1522 * The page has to be a nice clean _individual_ kernel allocation. 1523 * If you allocate a compound page, you need to have marked it as 1524 * such (__GFP_COMP), or manually just split the page up yourself 1525 * (see split_page()). 1526 * 1527 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1528 * took an arbitrary page protection parameter. This doesn't allow 1529 * that. Your vma protection will have to be set up correctly, which 1530 * means that if you want a shared writable mapping, you'd better 1531 * ask for a shared writable mapping! 1532 * 1533 * The page does not need to be reserved. 1534 * 1535 * Usually this function is called from f_op->mmap() handler 1536 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1537 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1538 * function from other places, for example from page-fault handler. 1539 */ 1540 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1541 struct page *page) 1542 { 1543 if (addr < vma->vm_start || addr >= vma->vm_end) 1544 return -EFAULT; 1545 if (!page_count(page)) 1546 return -EINVAL; 1547 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1548 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1549 BUG_ON(vma->vm_flags & VM_PFNMAP); 1550 vma->vm_flags |= VM_MIXEDMAP; 1551 } 1552 return insert_page(vma, addr, page, vma->vm_page_prot); 1553 } 1554 EXPORT_SYMBOL(vm_insert_page); 1555 1556 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1557 unsigned long pfn, pgprot_t prot) 1558 { 1559 struct mm_struct *mm = vma->vm_mm; 1560 int retval; 1561 pte_t *pte, entry; 1562 spinlock_t *ptl; 1563 1564 retval = -ENOMEM; 1565 pte = get_locked_pte(mm, addr, &ptl); 1566 if (!pte) 1567 goto out; 1568 retval = -EBUSY; 1569 if (!pte_none(*pte)) 1570 goto out_unlock; 1571 1572 /* Ok, finally just insert the thing.. */ 1573 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1574 set_pte_at(mm, addr, pte, entry); 1575 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1576 1577 retval = 0; 1578 out_unlock: 1579 pte_unmap_unlock(pte, ptl); 1580 out: 1581 return retval; 1582 } 1583 1584 /** 1585 * vm_insert_pfn - insert single pfn into user vma 1586 * @vma: user vma to map to 1587 * @addr: target user address of this page 1588 * @pfn: source kernel pfn 1589 * 1590 * Similar to vm_insert_page, this allows drivers to insert individual pages 1591 * they've allocated into a user vma. Same comments apply. 1592 * 1593 * This function should only be called from a vm_ops->fault handler, and 1594 * in that case the handler should return NULL. 1595 * 1596 * vma cannot be a COW mapping. 1597 * 1598 * As this is called only for pages that do not currently exist, we 1599 * do not need to flush old virtual caches or the TLB. 1600 */ 1601 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1602 unsigned long pfn) 1603 { 1604 int ret; 1605 pgprot_t pgprot = vma->vm_page_prot; 1606 /* 1607 * Technically, architectures with pte_special can avoid all these 1608 * restrictions (same for remap_pfn_range). However we would like 1609 * consistency in testing and feature parity among all, so we should 1610 * try to keep these invariants in place for everybody. 1611 */ 1612 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1613 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1614 (VM_PFNMAP|VM_MIXEDMAP)); 1615 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1616 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1617 1618 if (addr < vma->vm_start || addr >= vma->vm_end) 1619 return -EFAULT; 1620 if (track_pfn_insert(vma, &pgprot, pfn)) 1621 return -EINVAL; 1622 1623 ret = insert_pfn(vma, addr, pfn, pgprot); 1624 1625 return ret; 1626 } 1627 EXPORT_SYMBOL(vm_insert_pfn); 1628 1629 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1630 unsigned long pfn) 1631 { 1632 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1633 1634 if (addr < vma->vm_start || addr >= vma->vm_end) 1635 return -EFAULT; 1636 1637 /* 1638 * If we don't have pte special, then we have to use the pfn_valid() 1639 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1640 * refcount the page if pfn_valid is true (hence insert_page rather 1641 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1642 * without pte special, it would there be refcounted as a normal page. 1643 */ 1644 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1645 struct page *page; 1646 1647 page = pfn_to_page(pfn); 1648 return insert_page(vma, addr, page, vma->vm_page_prot); 1649 } 1650 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1651 } 1652 EXPORT_SYMBOL(vm_insert_mixed); 1653 1654 /* 1655 * maps a range of physical memory into the requested pages. the old 1656 * mappings are removed. any references to nonexistent pages results 1657 * in null mappings (currently treated as "copy-on-access") 1658 */ 1659 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1660 unsigned long addr, unsigned long end, 1661 unsigned long pfn, pgprot_t prot) 1662 { 1663 pte_t *pte; 1664 spinlock_t *ptl; 1665 1666 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1667 if (!pte) 1668 return -ENOMEM; 1669 arch_enter_lazy_mmu_mode(); 1670 do { 1671 BUG_ON(!pte_none(*pte)); 1672 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1673 pfn++; 1674 } while (pte++, addr += PAGE_SIZE, addr != end); 1675 arch_leave_lazy_mmu_mode(); 1676 pte_unmap_unlock(pte - 1, ptl); 1677 return 0; 1678 } 1679 1680 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1681 unsigned long addr, unsigned long end, 1682 unsigned long pfn, pgprot_t prot) 1683 { 1684 pmd_t *pmd; 1685 unsigned long next; 1686 1687 pfn -= addr >> PAGE_SHIFT; 1688 pmd = pmd_alloc(mm, pud, addr); 1689 if (!pmd) 1690 return -ENOMEM; 1691 VM_BUG_ON(pmd_trans_huge(*pmd)); 1692 do { 1693 next = pmd_addr_end(addr, end); 1694 if (remap_pte_range(mm, pmd, addr, next, 1695 pfn + (addr >> PAGE_SHIFT), prot)) 1696 return -ENOMEM; 1697 } while (pmd++, addr = next, addr != end); 1698 return 0; 1699 } 1700 1701 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1702 unsigned long addr, unsigned long end, 1703 unsigned long pfn, pgprot_t prot) 1704 { 1705 pud_t *pud; 1706 unsigned long next; 1707 1708 pfn -= addr >> PAGE_SHIFT; 1709 pud = pud_alloc(mm, pgd, addr); 1710 if (!pud) 1711 return -ENOMEM; 1712 do { 1713 next = pud_addr_end(addr, end); 1714 if (remap_pmd_range(mm, pud, addr, next, 1715 pfn + (addr >> PAGE_SHIFT), prot)) 1716 return -ENOMEM; 1717 } while (pud++, addr = next, addr != end); 1718 return 0; 1719 } 1720 1721 /** 1722 * remap_pfn_range - remap kernel memory to userspace 1723 * @vma: user vma to map to 1724 * @addr: target user address to start at 1725 * @pfn: physical address of kernel memory 1726 * @size: size of map area 1727 * @prot: page protection flags for this mapping 1728 * 1729 * Note: this is only safe if the mm semaphore is held when called. 1730 */ 1731 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1732 unsigned long pfn, unsigned long size, pgprot_t prot) 1733 { 1734 pgd_t *pgd; 1735 unsigned long next; 1736 unsigned long end = addr + PAGE_ALIGN(size); 1737 struct mm_struct *mm = vma->vm_mm; 1738 int err; 1739 1740 /* 1741 * Physically remapped pages are special. Tell the 1742 * rest of the world about it: 1743 * VM_IO tells people not to look at these pages 1744 * (accesses can have side effects). 1745 * VM_PFNMAP tells the core MM that the base pages are just 1746 * raw PFN mappings, and do not have a "struct page" associated 1747 * with them. 1748 * VM_DONTEXPAND 1749 * Disable vma merging and expanding with mremap(). 1750 * VM_DONTDUMP 1751 * Omit vma from core dump, even when VM_IO turned off. 1752 * 1753 * There's a horrible special case to handle copy-on-write 1754 * behaviour that some programs depend on. We mark the "original" 1755 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1756 * See vm_normal_page() for details. 1757 */ 1758 if (is_cow_mapping(vma->vm_flags)) { 1759 if (addr != vma->vm_start || end != vma->vm_end) 1760 return -EINVAL; 1761 vma->vm_pgoff = pfn; 1762 } 1763 1764 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1765 if (err) 1766 return -EINVAL; 1767 1768 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1769 1770 BUG_ON(addr >= end); 1771 pfn -= addr >> PAGE_SHIFT; 1772 pgd = pgd_offset(mm, addr); 1773 flush_cache_range(vma, addr, end); 1774 do { 1775 next = pgd_addr_end(addr, end); 1776 err = remap_pud_range(mm, pgd, addr, next, 1777 pfn + (addr >> PAGE_SHIFT), prot); 1778 if (err) 1779 break; 1780 } while (pgd++, addr = next, addr != end); 1781 1782 if (err) 1783 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1784 1785 return err; 1786 } 1787 EXPORT_SYMBOL(remap_pfn_range); 1788 1789 /** 1790 * vm_iomap_memory - remap memory to userspace 1791 * @vma: user vma to map to 1792 * @start: start of area 1793 * @len: size of area 1794 * 1795 * This is a simplified io_remap_pfn_range() for common driver use. The 1796 * driver just needs to give us the physical memory range to be mapped, 1797 * we'll figure out the rest from the vma information. 1798 * 1799 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1800 * whatever write-combining details or similar. 1801 */ 1802 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1803 { 1804 unsigned long vm_len, pfn, pages; 1805 1806 /* Check that the physical memory area passed in looks valid */ 1807 if (start + len < start) 1808 return -EINVAL; 1809 /* 1810 * You *really* shouldn't map things that aren't page-aligned, 1811 * but we've historically allowed it because IO memory might 1812 * just have smaller alignment. 1813 */ 1814 len += start & ~PAGE_MASK; 1815 pfn = start >> PAGE_SHIFT; 1816 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1817 if (pfn + pages < pfn) 1818 return -EINVAL; 1819 1820 /* We start the mapping 'vm_pgoff' pages into the area */ 1821 if (vma->vm_pgoff > pages) 1822 return -EINVAL; 1823 pfn += vma->vm_pgoff; 1824 pages -= vma->vm_pgoff; 1825 1826 /* Can we fit all of the mapping? */ 1827 vm_len = vma->vm_end - vma->vm_start; 1828 if (vm_len >> PAGE_SHIFT > pages) 1829 return -EINVAL; 1830 1831 /* Ok, let it rip */ 1832 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1833 } 1834 EXPORT_SYMBOL(vm_iomap_memory); 1835 1836 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1837 unsigned long addr, unsigned long end, 1838 pte_fn_t fn, void *data) 1839 { 1840 pte_t *pte; 1841 int err; 1842 pgtable_t token; 1843 spinlock_t *uninitialized_var(ptl); 1844 1845 pte = (mm == &init_mm) ? 1846 pte_alloc_kernel(pmd, addr) : 1847 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1848 if (!pte) 1849 return -ENOMEM; 1850 1851 BUG_ON(pmd_huge(*pmd)); 1852 1853 arch_enter_lazy_mmu_mode(); 1854 1855 token = pmd_pgtable(*pmd); 1856 1857 do { 1858 err = fn(pte++, token, addr, data); 1859 if (err) 1860 break; 1861 } while (addr += PAGE_SIZE, addr != end); 1862 1863 arch_leave_lazy_mmu_mode(); 1864 1865 if (mm != &init_mm) 1866 pte_unmap_unlock(pte-1, ptl); 1867 return err; 1868 } 1869 1870 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1871 unsigned long addr, unsigned long end, 1872 pte_fn_t fn, void *data) 1873 { 1874 pmd_t *pmd; 1875 unsigned long next; 1876 int err; 1877 1878 BUG_ON(pud_huge(*pud)); 1879 1880 pmd = pmd_alloc(mm, pud, addr); 1881 if (!pmd) 1882 return -ENOMEM; 1883 do { 1884 next = pmd_addr_end(addr, end); 1885 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1886 if (err) 1887 break; 1888 } while (pmd++, addr = next, addr != end); 1889 return err; 1890 } 1891 1892 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1893 unsigned long addr, unsigned long end, 1894 pte_fn_t fn, void *data) 1895 { 1896 pud_t *pud; 1897 unsigned long next; 1898 int err; 1899 1900 pud = pud_alloc(mm, pgd, addr); 1901 if (!pud) 1902 return -ENOMEM; 1903 do { 1904 next = pud_addr_end(addr, end); 1905 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1906 if (err) 1907 break; 1908 } while (pud++, addr = next, addr != end); 1909 return err; 1910 } 1911 1912 /* 1913 * Scan a region of virtual memory, filling in page tables as necessary 1914 * and calling a provided function on each leaf page table. 1915 */ 1916 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1917 unsigned long size, pte_fn_t fn, void *data) 1918 { 1919 pgd_t *pgd; 1920 unsigned long next; 1921 unsigned long end = addr + size; 1922 int err; 1923 1924 BUG_ON(addr >= end); 1925 pgd = pgd_offset(mm, addr); 1926 do { 1927 next = pgd_addr_end(addr, end); 1928 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1929 if (err) 1930 break; 1931 } while (pgd++, addr = next, addr != end); 1932 1933 return err; 1934 } 1935 EXPORT_SYMBOL_GPL(apply_to_page_range); 1936 1937 /* 1938 * handle_pte_fault chooses page fault handler according to an entry 1939 * which was read non-atomically. Before making any commitment, on 1940 * those architectures or configurations (e.g. i386 with PAE) which 1941 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 1942 * must check under lock before unmapping the pte and proceeding 1943 * (but do_wp_page is only called after already making such a check; 1944 * and do_anonymous_page can safely check later on). 1945 */ 1946 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1947 pte_t *page_table, pte_t orig_pte) 1948 { 1949 int same = 1; 1950 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1951 if (sizeof(pte_t) > sizeof(unsigned long)) { 1952 spinlock_t *ptl = pte_lockptr(mm, pmd); 1953 spin_lock(ptl); 1954 same = pte_same(*page_table, orig_pte); 1955 spin_unlock(ptl); 1956 } 1957 #endif 1958 pte_unmap(page_table); 1959 return same; 1960 } 1961 1962 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1963 { 1964 debug_dma_assert_idle(src); 1965 1966 /* 1967 * If the source page was a PFN mapping, we don't have 1968 * a "struct page" for it. We do a best-effort copy by 1969 * just copying from the original user address. If that 1970 * fails, we just zero-fill it. Live with it. 1971 */ 1972 if (unlikely(!src)) { 1973 void *kaddr = kmap_atomic(dst); 1974 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1975 1976 /* 1977 * This really shouldn't fail, because the page is there 1978 * in the page tables. But it might just be unreadable, 1979 * in which case we just give up and fill the result with 1980 * zeroes. 1981 */ 1982 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1983 clear_page(kaddr); 1984 kunmap_atomic(kaddr); 1985 flush_dcache_page(dst); 1986 } else 1987 copy_user_highpage(dst, src, va, vma); 1988 } 1989 1990 /* 1991 * Notify the address space that the page is about to become writable so that 1992 * it can prohibit this or wait for the page to get into an appropriate state. 1993 * 1994 * We do this without the lock held, so that it can sleep if it needs to. 1995 */ 1996 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 1997 unsigned long address) 1998 { 1999 struct vm_fault vmf; 2000 int ret; 2001 2002 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2003 vmf.pgoff = page->index; 2004 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2005 vmf.page = page; 2006 2007 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 2008 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2009 return ret; 2010 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2011 lock_page(page); 2012 if (!page->mapping) { 2013 unlock_page(page); 2014 return 0; /* retry */ 2015 } 2016 ret |= VM_FAULT_LOCKED; 2017 } else 2018 VM_BUG_ON_PAGE(!PageLocked(page), page); 2019 return ret; 2020 } 2021 2022 /* 2023 * This routine handles present pages, when users try to write 2024 * to a shared page. It is done by copying the page to a new address 2025 * and decrementing the shared-page counter for the old page. 2026 * 2027 * Note that this routine assumes that the protection checks have been 2028 * done by the caller (the low-level page fault routine in most cases). 2029 * Thus we can safely just mark it writable once we've done any necessary 2030 * COW. 2031 * 2032 * We also mark the page dirty at this point even though the page will 2033 * change only once the write actually happens. This avoids a few races, 2034 * and potentially makes it more efficient. 2035 * 2036 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2037 * but allow concurrent faults), with pte both mapped and locked. 2038 * We return with mmap_sem still held, but pte unmapped and unlocked. 2039 */ 2040 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2041 unsigned long address, pte_t *page_table, pmd_t *pmd, 2042 spinlock_t *ptl, pte_t orig_pte) 2043 __releases(ptl) 2044 { 2045 struct page *old_page, *new_page = NULL; 2046 pte_t entry; 2047 int ret = 0; 2048 int page_mkwrite = 0; 2049 struct page *dirty_page = NULL; 2050 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2051 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2052 struct mem_cgroup *memcg; 2053 2054 old_page = vm_normal_page(vma, address, orig_pte); 2055 if (!old_page) { 2056 /* 2057 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2058 * VM_PFNMAP VMA. 2059 * 2060 * We should not cow pages in a shared writeable mapping. 2061 * Just mark the pages writable as we can't do any dirty 2062 * accounting on raw pfn maps. 2063 */ 2064 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2065 (VM_WRITE|VM_SHARED)) 2066 goto reuse; 2067 goto gotten; 2068 } 2069 2070 /* 2071 * Take out anonymous pages first, anonymous shared vmas are 2072 * not dirty accountable. 2073 */ 2074 if (PageAnon(old_page) && !PageKsm(old_page)) { 2075 if (!trylock_page(old_page)) { 2076 page_cache_get(old_page); 2077 pte_unmap_unlock(page_table, ptl); 2078 lock_page(old_page); 2079 page_table = pte_offset_map_lock(mm, pmd, address, 2080 &ptl); 2081 if (!pte_same(*page_table, orig_pte)) { 2082 unlock_page(old_page); 2083 goto unlock; 2084 } 2085 page_cache_release(old_page); 2086 } 2087 if (reuse_swap_page(old_page)) { 2088 /* 2089 * The page is all ours. Move it to our anon_vma so 2090 * the rmap code will not search our parent or siblings. 2091 * Protected against the rmap code by the page lock. 2092 */ 2093 page_move_anon_rmap(old_page, vma, address); 2094 unlock_page(old_page); 2095 goto reuse; 2096 } 2097 unlock_page(old_page); 2098 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2099 (VM_WRITE|VM_SHARED))) { 2100 /* 2101 * Only catch write-faults on shared writable pages, 2102 * read-only shared pages can get COWed by 2103 * get_user_pages(.write=1, .force=1). 2104 */ 2105 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2106 int tmp; 2107 page_cache_get(old_page); 2108 pte_unmap_unlock(page_table, ptl); 2109 tmp = do_page_mkwrite(vma, old_page, address); 2110 if (unlikely(!tmp || (tmp & 2111 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2112 page_cache_release(old_page); 2113 return tmp; 2114 } 2115 /* 2116 * Since we dropped the lock we need to revalidate 2117 * the PTE as someone else may have changed it. If 2118 * they did, we just return, as we can count on the 2119 * MMU to tell us if they didn't also make it writable. 2120 */ 2121 page_table = pte_offset_map_lock(mm, pmd, address, 2122 &ptl); 2123 if (!pte_same(*page_table, orig_pte)) { 2124 unlock_page(old_page); 2125 goto unlock; 2126 } 2127 2128 page_mkwrite = 1; 2129 } 2130 dirty_page = old_page; 2131 get_page(dirty_page); 2132 2133 reuse: 2134 /* 2135 * Clear the pages cpupid information as the existing 2136 * information potentially belongs to a now completely 2137 * unrelated process. 2138 */ 2139 if (old_page) 2140 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1); 2141 2142 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2143 entry = pte_mkyoung(orig_pte); 2144 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2145 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2146 update_mmu_cache(vma, address, page_table); 2147 pte_unmap_unlock(page_table, ptl); 2148 ret |= VM_FAULT_WRITE; 2149 2150 if (!dirty_page) 2151 return ret; 2152 2153 /* 2154 * Yes, Virginia, this is actually required to prevent a race 2155 * with clear_page_dirty_for_io() from clearing the page dirty 2156 * bit after it clear all dirty ptes, but before a racing 2157 * do_wp_page installs a dirty pte. 2158 * 2159 * do_shared_fault is protected similarly. 2160 */ 2161 if (!page_mkwrite) { 2162 wait_on_page_locked(dirty_page); 2163 set_page_dirty_balance(dirty_page); 2164 /* file_update_time outside page_lock */ 2165 if (vma->vm_file) 2166 file_update_time(vma->vm_file); 2167 } 2168 put_page(dirty_page); 2169 if (page_mkwrite) { 2170 struct address_space *mapping = dirty_page->mapping; 2171 2172 set_page_dirty(dirty_page); 2173 unlock_page(dirty_page); 2174 page_cache_release(dirty_page); 2175 if (mapping) { 2176 /* 2177 * Some device drivers do not set page.mapping 2178 * but still dirty their pages 2179 */ 2180 balance_dirty_pages_ratelimited(mapping); 2181 } 2182 } 2183 2184 return ret; 2185 } 2186 2187 /* 2188 * Ok, we need to copy. Oh, well.. 2189 */ 2190 page_cache_get(old_page); 2191 gotten: 2192 pte_unmap_unlock(page_table, ptl); 2193 2194 if (unlikely(anon_vma_prepare(vma))) 2195 goto oom; 2196 2197 if (is_zero_pfn(pte_pfn(orig_pte))) { 2198 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2199 if (!new_page) 2200 goto oom; 2201 } else { 2202 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2203 if (!new_page) 2204 goto oom; 2205 cow_user_page(new_page, old_page, address, vma); 2206 } 2207 __SetPageUptodate(new_page); 2208 2209 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) 2210 goto oom_free_new; 2211 2212 mmun_start = address & PAGE_MASK; 2213 mmun_end = mmun_start + PAGE_SIZE; 2214 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2215 2216 /* 2217 * Re-check the pte - we dropped the lock 2218 */ 2219 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2220 if (likely(pte_same(*page_table, orig_pte))) { 2221 if (old_page) { 2222 if (!PageAnon(old_page)) { 2223 dec_mm_counter_fast(mm, MM_FILEPAGES); 2224 inc_mm_counter_fast(mm, MM_ANONPAGES); 2225 } 2226 } else 2227 inc_mm_counter_fast(mm, MM_ANONPAGES); 2228 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2229 entry = mk_pte(new_page, vma->vm_page_prot); 2230 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2231 /* 2232 * Clear the pte entry and flush it first, before updating the 2233 * pte with the new entry. This will avoid a race condition 2234 * seen in the presence of one thread doing SMC and another 2235 * thread doing COW. 2236 */ 2237 ptep_clear_flush(vma, address, page_table); 2238 page_add_new_anon_rmap(new_page, vma, address); 2239 mem_cgroup_commit_charge(new_page, memcg, false); 2240 lru_cache_add_active_or_unevictable(new_page, vma); 2241 /* 2242 * We call the notify macro here because, when using secondary 2243 * mmu page tables (such as kvm shadow page tables), we want the 2244 * new page to be mapped directly into the secondary page table. 2245 */ 2246 set_pte_at_notify(mm, address, page_table, entry); 2247 update_mmu_cache(vma, address, page_table); 2248 if (old_page) { 2249 /* 2250 * Only after switching the pte to the new page may 2251 * we remove the mapcount here. Otherwise another 2252 * process may come and find the rmap count decremented 2253 * before the pte is switched to the new page, and 2254 * "reuse" the old page writing into it while our pte 2255 * here still points into it and can be read by other 2256 * threads. 2257 * 2258 * The critical issue is to order this 2259 * page_remove_rmap with the ptp_clear_flush above. 2260 * Those stores are ordered by (if nothing else,) 2261 * the barrier present in the atomic_add_negative 2262 * in page_remove_rmap. 2263 * 2264 * Then the TLB flush in ptep_clear_flush ensures that 2265 * no process can access the old page before the 2266 * decremented mapcount is visible. And the old page 2267 * cannot be reused until after the decremented 2268 * mapcount is visible. So transitively, TLBs to 2269 * old page will be flushed before it can be reused. 2270 */ 2271 page_remove_rmap(old_page); 2272 } 2273 2274 /* Free the old page.. */ 2275 new_page = old_page; 2276 ret |= VM_FAULT_WRITE; 2277 } else 2278 mem_cgroup_cancel_charge(new_page, memcg); 2279 2280 if (new_page) 2281 page_cache_release(new_page); 2282 unlock: 2283 pte_unmap_unlock(page_table, ptl); 2284 if (mmun_end > mmun_start) 2285 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2286 if (old_page) { 2287 /* 2288 * Don't let another task, with possibly unlocked vma, 2289 * keep the mlocked page. 2290 */ 2291 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2292 lock_page(old_page); /* LRU manipulation */ 2293 munlock_vma_page(old_page); 2294 unlock_page(old_page); 2295 } 2296 page_cache_release(old_page); 2297 } 2298 return ret; 2299 oom_free_new: 2300 page_cache_release(new_page); 2301 oom: 2302 if (old_page) 2303 page_cache_release(old_page); 2304 return VM_FAULT_OOM; 2305 } 2306 2307 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2308 unsigned long start_addr, unsigned long end_addr, 2309 struct zap_details *details) 2310 { 2311 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2312 } 2313 2314 static inline void unmap_mapping_range_tree(struct rb_root *root, 2315 struct zap_details *details) 2316 { 2317 struct vm_area_struct *vma; 2318 pgoff_t vba, vea, zba, zea; 2319 2320 vma_interval_tree_foreach(vma, root, 2321 details->first_index, details->last_index) { 2322 2323 vba = vma->vm_pgoff; 2324 vea = vba + vma_pages(vma) - 1; 2325 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2326 zba = details->first_index; 2327 if (zba < vba) 2328 zba = vba; 2329 zea = details->last_index; 2330 if (zea > vea) 2331 zea = vea; 2332 2333 unmap_mapping_range_vma(vma, 2334 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2335 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2336 details); 2337 } 2338 } 2339 2340 static inline void unmap_mapping_range_list(struct list_head *head, 2341 struct zap_details *details) 2342 { 2343 struct vm_area_struct *vma; 2344 2345 /* 2346 * In nonlinear VMAs there is no correspondence between virtual address 2347 * offset and file offset. So we must perform an exhaustive search 2348 * across *all* the pages in each nonlinear VMA, not just the pages 2349 * whose virtual address lies outside the file truncation point. 2350 */ 2351 list_for_each_entry(vma, head, shared.nonlinear) { 2352 details->nonlinear_vma = vma; 2353 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2354 } 2355 } 2356 2357 /** 2358 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2359 * @mapping: the address space containing mmaps to be unmapped. 2360 * @holebegin: byte in first page to unmap, relative to the start of 2361 * the underlying file. This will be rounded down to a PAGE_SIZE 2362 * boundary. Note that this is different from truncate_pagecache(), which 2363 * must keep the partial page. In contrast, we must get rid of 2364 * partial pages. 2365 * @holelen: size of prospective hole in bytes. This will be rounded 2366 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2367 * end of the file. 2368 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2369 * but 0 when invalidating pagecache, don't throw away private data. 2370 */ 2371 void unmap_mapping_range(struct address_space *mapping, 2372 loff_t const holebegin, loff_t const holelen, int even_cows) 2373 { 2374 struct zap_details details; 2375 pgoff_t hba = holebegin >> PAGE_SHIFT; 2376 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2377 2378 /* Check for overflow. */ 2379 if (sizeof(holelen) > sizeof(hlen)) { 2380 long long holeend = 2381 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2382 if (holeend & ~(long long)ULONG_MAX) 2383 hlen = ULONG_MAX - hba + 1; 2384 } 2385 2386 details.check_mapping = even_cows? NULL: mapping; 2387 details.nonlinear_vma = NULL; 2388 details.first_index = hba; 2389 details.last_index = hba + hlen - 1; 2390 if (details.last_index < details.first_index) 2391 details.last_index = ULONG_MAX; 2392 2393 2394 mutex_lock(&mapping->i_mmap_mutex); 2395 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2396 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2397 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2398 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2399 mutex_unlock(&mapping->i_mmap_mutex); 2400 } 2401 EXPORT_SYMBOL(unmap_mapping_range); 2402 2403 /* 2404 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2405 * but allow concurrent faults), and pte mapped but not yet locked. 2406 * We return with pte unmapped and unlocked. 2407 * 2408 * We return with the mmap_sem locked or unlocked in the same cases 2409 * as does filemap_fault(). 2410 */ 2411 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2412 unsigned long address, pte_t *page_table, pmd_t *pmd, 2413 unsigned int flags, pte_t orig_pte) 2414 { 2415 spinlock_t *ptl; 2416 struct page *page, *swapcache; 2417 struct mem_cgroup *memcg; 2418 swp_entry_t entry; 2419 pte_t pte; 2420 int locked; 2421 int exclusive = 0; 2422 int ret = 0; 2423 2424 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2425 goto out; 2426 2427 entry = pte_to_swp_entry(orig_pte); 2428 if (unlikely(non_swap_entry(entry))) { 2429 if (is_migration_entry(entry)) { 2430 migration_entry_wait(mm, pmd, address); 2431 } else if (is_hwpoison_entry(entry)) { 2432 ret = VM_FAULT_HWPOISON; 2433 } else { 2434 print_bad_pte(vma, address, orig_pte, NULL); 2435 ret = VM_FAULT_SIGBUS; 2436 } 2437 goto out; 2438 } 2439 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2440 page = lookup_swap_cache(entry); 2441 if (!page) { 2442 page = swapin_readahead(entry, 2443 GFP_HIGHUSER_MOVABLE, vma, address); 2444 if (!page) { 2445 /* 2446 * Back out if somebody else faulted in this pte 2447 * while we released the pte lock. 2448 */ 2449 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2450 if (likely(pte_same(*page_table, orig_pte))) 2451 ret = VM_FAULT_OOM; 2452 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2453 goto unlock; 2454 } 2455 2456 /* Had to read the page from swap area: Major fault */ 2457 ret = VM_FAULT_MAJOR; 2458 count_vm_event(PGMAJFAULT); 2459 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2460 } else if (PageHWPoison(page)) { 2461 /* 2462 * hwpoisoned dirty swapcache pages are kept for killing 2463 * owner processes (which may be unknown at hwpoison time) 2464 */ 2465 ret = VM_FAULT_HWPOISON; 2466 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2467 swapcache = page; 2468 goto out_release; 2469 } 2470 2471 swapcache = page; 2472 locked = lock_page_or_retry(page, mm, flags); 2473 2474 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2475 if (!locked) { 2476 ret |= VM_FAULT_RETRY; 2477 goto out_release; 2478 } 2479 2480 /* 2481 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2482 * release the swapcache from under us. The page pin, and pte_same 2483 * test below, are not enough to exclude that. Even if it is still 2484 * swapcache, we need to check that the page's swap has not changed. 2485 */ 2486 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2487 goto out_page; 2488 2489 page = ksm_might_need_to_copy(page, vma, address); 2490 if (unlikely(!page)) { 2491 ret = VM_FAULT_OOM; 2492 page = swapcache; 2493 goto out_page; 2494 } 2495 2496 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) { 2497 ret = VM_FAULT_OOM; 2498 goto out_page; 2499 } 2500 2501 /* 2502 * Back out if somebody else already faulted in this pte. 2503 */ 2504 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2505 if (unlikely(!pte_same(*page_table, orig_pte))) 2506 goto out_nomap; 2507 2508 if (unlikely(!PageUptodate(page))) { 2509 ret = VM_FAULT_SIGBUS; 2510 goto out_nomap; 2511 } 2512 2513 /* 2514 * The page isn't present yet, go ahead with the fault. 2515 * 2516 * Be careful about the sequence of operations here. 2517 * To get its accounting right, reuse_swap_page() must be called 2518 * while the page is counted on swap but not yet in mapcount i.e. 2519 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2520 * must be called after the swap_free(), or it will never succeed. 2521 */ 2522 2523 inc_mm_counter_fast(mm, MM_ANONPAGES); 2524 dec_mm_counter_fast(mm, MM_SWAPENTS); 2525 pte = mk_pte(page, vma->vm_page_prot); 2526 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2527 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2528 flags &= ~FAULT_FLAG_WRITE; 2529 ret |= VM_FAULT_WRITE; 2530 exclusive = 1; 2531 } 2532 flush_icache_page(vma, page); 2533 if (pte_swp_soft_dirty(orig_pte)) 2534 pte = pte_mksoft_dirty(pte); 2535 set_pte_at(mm, address, page_table, pte); 2536 if (page == swapcache) { 2537 do_page_add_anon_rmap(page, vma, address, exclusive); 2538 mem_cgroup_commit_charge(page, memcg, true); 2539 } else { /* ksm created a completely new copy */ 2540 page_add_new_anon_rmap(page, vma, address); 2541 mem_cgroup_commit_charge(page, memcg, false); 2542 lru_cache_add_active_or_unevictable(page, vma); 2543 } 2544 2545 swap_free(entry); 2546 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2547 try_to_free_swap(page); 2548 unlock_page(page); 2549 if (page != swapcache) { 2550 /* 2551 * Hold the lock to avoid the swap entry to be reused 2552 * until we take the PT lock for the pte_same() check 2553 * (to avoid false positives from pte_same). For 2554 * further safety release the lock after the swap_free 2555 * so that the swap count won't change under a 2556 * parallel locked swapcache. 2557 */ 2558 unlock_page(swapcache); 2559 page_cache_release(swapcache); 2560 } 2561 2562 if (flags & FAULT_FLAG_WRITE) { 2563 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2564 if (ret & VM_FAULT_ERROR) 2565 ret &= VM_FAULT_ERROR; 2566 goto out; 2567 } 2568 2569 /* No need to invalidate - it was non-present before */ 2570 update_mmu_cache(vma, address, page_table); 2571 unlock: 2572 pte_unmap_unlock(page_table, ptl); 2573 out: 2574 return ret; 2575 out_nomap: 2576 mem_cgroup_cancel_charge(page, memcg); 2577 pte_unmap_unlock(page_table, ptl); 2578 out_page: 2579 unlock_page(page); 2580 out_release: 2581 page_cache_release(page); 2582 if (page != swapcache) { 2583 unlock_page(swapcache); 2584 page_cache_release(swapcache); 2585 } 2586 return ret; 2587 } 2588 2589 /* 2590 * This is like a special single-page "expand_{down|up}wards()", 2591 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2592 * doesn't hit another vma. 2593 */ 2594 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2595 { 2596 address &= PAGE_MASK; 2597 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2598 struct vm_area_struct *prev = vma->vm_prev; 2599 2600 /* 2601 * Is there a mapping abutting this one below? 2602 * 2603 * That's only ok if it's the same stack mapping 2604 * that has gotten split.. 2605 */ 2606 if (prev && prev->vm_end == address) 2607 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2608 2609 expand_downwards(vma, address - PAGE_SIZE); 2610 } 2611 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2612 struct vm_area_struct *next = vma->vm_next; 2613 2614 /* As VM_GROWSDOWN but s/below/above/ */ 2615 if (next && next->vm_start == address + PAGE_SIZE) 2616 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2617 2618 expand_upwards(vma, address + PAGE_SIZE); 2619 } 2620 return 0; 2621 } 2622 2623 /* 2624 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2625 * but allow concurrent faults), and pte mapped but not yet locked. 2626 * We return with mmap_sem still held, but pte unmapped and unlocked. 2627 */ 2628 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2629 unsigned long address, pte_t *page_table, pmd_t *pmd, 2630 unsigned int flags) 2631 { 2632 struct mem_cgroup *memcg; 2633 struct page *page; 2634 spinlock_t *ptl; 2635 pte_t entry; 2636 2637 pte_unmap(page_table); 2638 2639 /* Check if we need to add a guard page to the stack */ 2640 if (check_stack_guard_page(vma, address) < 0) 2641 return VM_FAULT_SIGBUS; 2642 2643 /* Use the zero-page for reads */ 2644 if (!(flags & FAULT_FLAG_WRITE)) { 2645 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2646 vma->vm_page_prot)); 2647 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2648 if (!pte_none(*page_table)) 2649 goto unlock; 2650 goto setpte; 2651 } 2652 2653 /* Allocate our own private page. */ 2654 if (unlikely(anon_vma_prepare(vma))) 2655 goto oom; 2656 page = alloc_zeroed_user_highpage_movable(vma, address); 2657 if (!page) 2658 goto oom; 2659 /* 2660 * The memory barrier inside __SetPageUptodate makes sure that 2661 * preceeding stores to the page contents become visible before 2662 * the set_pte_at() write. 2663 */ 2664 __SetPageUptodate(page); 2665 2666 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) 2667 goto oom_free_page; 2668 2669 entry = mk_pte(page, vma->vm_page_prot); 2670 if (vma->vm_flags & VM_WRITE) 2671 entry = pte_mkwrite(pte_mkdirty(entry)); 2672 2673 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2674 if (!pte_none(*page_table)) 2675 goto release; 2676 2677 inc_mm_counter_fast(mm, MM_ANONPAGES); 2678 page_add_new_anon_rmap(page, vma, address); 2679 mem_cgroup_commit_charge(page, memcg, false); 2680 lru_cache_add_active_or_unevictable(page, vma); 2681 setpte: 2682 set_pte_at(mm, address, page_table, entry); 2683 2684 /* No need to invalidate - it was non-present before */ 2685 update_mmu_cache(vma, address, page_table); 2686 unlock: 2687 pte_unmap_unlock(page_table, ptl); 2688 return 0; 2689 release: 2690 mem_cgroup_cancel_charge(page, memcg); 2691 page_cache_release(page); 2692 goto unlock; 2693 oom_free_page: 2694 page_cache_release(page); 2695 oom: 2696 return VM_FAULT_OOM; 2697 } 2698 2699 /* 2700 * The mmap_sem must have been held on entry, and may have been 2701 * released depending on flags and vma->vm_ops->fault() return value. 2702 * See filemap_fault() and __lock_page_retry(). 2703 */ 2704 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2705 pgoff_t pgoff, unsigned int flags, struct page **page) 2706 { 2707 struct vm_fault vmf; 2708 int ret; 2709 2710 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2711 vmf.pgoff = pgoff; 2712 vmf.flags = flags; 2713 vmf.page = NULL; 2714 2715 ret = vma->vm_ops->fault(vma, &vmf); 2716 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2717 return ret; 2718 2719 if (unlikely(PageHWPoison(vmf.page))) { 2720 if (ret & VM_FAULT_LOCKED) 2721 unlock_page(vmf.page); 2722 page_cache_release(vmf.page); 2723 return VM_FAULT_HWPOISON; 2724 } 2725 2726 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2727 lock_page(vmf.page); 2728 else 2729 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2730 2731 *page = vmf.page; 2732 return ret; 2733 } 2734 2735 /** 2736 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2737 * 2738 * @vma: virtual memory area 2739 * @address: user virtual address 2740 * @page: page to map 2741 * @pte: pointer to target page table entry 2742 * @write: true, if new entry is writable 2743 * @anon: true, if it's anonymous page 2744 * 2745 * Caller must hold page table lock relevant for @pte. 2746 * 2747 * Target users are page handler itself and implementations of 2748 * vm_ops->map_pages. 2749 */ 2750 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2751 struct page *page, pte_t *pte, bool write, bool anon) 2752 { 2753 pte_t entry; 2754 2755 flush_icache_page(vma, page); 2756 entry = mk_pte(page, vma->vm_page_prot); 2757 if (write) 2758 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2759 else if (pte_file(*pte) && pte_file_soft_dirty(*pte)) 2760 entry = pte_mksoft_dirty(entry); 2761 if (anon) { 2762 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2763 page_add_new_anon_rmap(page, vma, address); 2764 } else { 2765 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES); 2766 page_add_file_rmap(page); 2767 } 2768 set_pte_at(vma->vm_mm, address, pte, entry); 2769 2770 /* no need to invalidate: a not-present page won't be cached */ 2771 update_mmu_cache(vma, address, pte); 2772 } 2773 2774 static unsigned long fault_around_bytes __read_mostly = 2775 rounddown_pow_of_two(65536); 2776 2777 #ifdef CONFIG_DEBUG_FS 2778 static int fault_around_bytes_get(void *data, u64 *val) 2779 { 2780 *val = fault_around_bytes; 2781 return 0; 2782 } 2783 2784 /* 2785 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2786 * rounded down to nearest page order. It's what do_fault_around() expects to 2787 * see. 2788 */ 2789 static int fault_around_bytes_set(void *data, u64 val) 2790 { 2791 if (val / PAGE_SIZE > PTRS_PER_PTE) 2792 return -EINVAL; 2793 if (val > PAGE_SIZE) 2794 fault_around_bytes = rounddown_pow_of_two(val); 2795 else 2796 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2797 return 0; 2798 } 2799 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2800 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2801 2802 static int __init fault_around_debugfs(void) 2803 { 2804 void *ret; 2805 2806 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2807 &fault_around_bytes_fops); 2808 if (!ret) 2809 pr_warn("Failed to create fault_around_bytes in debugfs"); 2810 return 0; 2811 } 2812 late_initcall(fault_around_debugfs); 2813 #endif 2814 2815 /* 2816 * do_fault_around() tries to map few pages around the fault address. The hope 2817 * is that the pages will be needed soon and this will lower the number of 2818 * faults to handle. 2819 * 2820 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2821 * not ready to be mapped: not up-to-date, locked, etc. 2822 * 2823 * This function is called with the page table lock taken. In the split ptlock 2824 * case the page table lock only protects only those entries which belong to 2825 * the page table corresponding to the fault address. 2826 * 2827 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2828 * only once. 2829 * 2830 * fault_around_pages() defines how many pages we'll try to map. 2831 * do_fault_around() expects it to return a power of two less than or equal to 2832 * PTRS_PER_PTE. 2833 * 2834 * The virtual address of the area that we map is naturally aligned to the 2835 * fault_around_pages() value (and therefore to page order). This way it's 2836 * easier to guarantee that we don't cross page table boundaries. 2837 */ 2838 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2839 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2840 { 2841 unsigned long start_addr, nr_pages, mask; 2842 pgoff_t max_pgoff; 2843 struct vm_fault vmf; 2844 int off; 2845 2846 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2847 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2848 2849 start_addr = max(address & mask, vma->vm_start); 2850 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2851 pte -= off; 2852 pgoff -= off; 2853 2854 /* 2855 * max_pgoff is either end of page table or end of vma 2856 * or fault_around_pages() from pgoff, depending what is nearest. 2857 */ 2858 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2859 PTRS_PER_PTE - 1; 2860 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2861 pgoff + nr_pages - 1); 2862 2863 /* Check if it makes any sense to call ->map_pages */ 2864 while (!pte_none(*pte)) { 2865 if (++pgoff > max_pgoff) 2866 return; 2867 start_addr += PAGE_SIZE; 2868 if (start_addr >= vma->vm_end) 2869 return; 2870 pte++; 2871 } 2872 2873 vmf.virtual_address = (void __user *) start_addr; 2874 vmf.pte = pte; 2875 vmf.pgoff = pgoff; 2876 vmf.max_pgoff = max_pgoff; 2877 vmf.flags = flags; 2878 vma->vm_ops->map_pages(vma, &vmf); 2879 } 2880 2881 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2882 unsigned long address, pmd_t *pmd, 2883 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2884 { 2885 struct page *fault_page; 2886 spinlock_t *ptl; 2887 pte_t *pte; 2888 int ret = 0; 2889 2890 /* 2891 * Let's call ->map_pages() first and use ->fault() as fallback 2892 * if page by the offset is not ready to be mapped (cold cache or 2893 * something). 2894 */ 2895 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) && 2896 fault_around_bytes >> PAGE_SHIFT > 1) { 2897 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2898 do_fault_around(vma, address, pte, pgoff, flags); 2899 if (!pte_same(*pte, orig_pte)) 2900 goto unlock_out; 2901 pte_unmap_unlock(pte, ptl); 2902 } 2903 2904 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2905 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2906 return ret; 2907 2908 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2909 if (unlikely(!pte_same(*pte, orig_pte))) { 2910 pte_unmap_unlock(pte, ptl); 2911 unlock_page(fault_page); 2912 page_cache_release(fault_page); 2913 return ret; 2914 } 2915 do_set_pte(vma, address, fault_page, pte, false, false); 2916 unlock_page(fault_page); 2917 unlock_out: 2918 pte_unmap_unlock(pte, ptl); 2919 return ret; 2920 } 2921 2922 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2923 unsigned long address, pmd_t *pmd, 2924 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2925 { 2926 struct page *fault_page, *new_page; 2927 struct mem_cgroup *memcg; 2928 spinlock_t *ptl; 2929 pte_t *pte; 2930 int ret; 2931 2932 if (unlikely(anon_vma_prepare(vma))) 2933 return VM_FAULT_OOM; 2934 2935 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2936 if (!new_page) 2937 return VM_FAULT_OOM; 2938 2939 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) { 2940 page_cache_release(new_page); 2941 return VM_FAULT_OOM; 2942 } 2943 2944 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2945 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2946 goto uncharge_out; 2947 2948 copy_user_highpage(new_page, fault_page, address, vma); 2949 __SetPageUptodate(new_page); 2950 2951 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2952 if (unlikely(!pte_same(*pte, orig_pte))) { 2953 pte_unmap_unlock(pte, ptl); 2954 unlock_page(fault_page); 2955 page_cache_release(fault_page); 2956 goto uncharge_out; 2957 } 2958 do_set_pte(vma, address, new_page, pte, true, true); 2959 mem_cgroup_commit_charge(new_page, memcg, false); 2960 lru_cache_add_active_or_unevictable(new_page, vma); 2961 pte_unmap_unlock(pte, ptl); 2962 unlock_page(fault_page); 2963 page_cache_release(fault_page); 2964 return ret; 2965 uncharge_out: 2966 mem_cgroup_cancel_charge(new_page, memcg); 2967 page_cache_release(new_page); 2968 return ret; 2969 } 2970 2971 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2972 unsigned long address, pmd_t *pmd, 2973 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2974 { 2975 struct page *fault_page; 2976 struct address_space *mapping; 2977 spinlock_t *ptl; 2978 pte_t *pte; 2979 int dirtied = 0; 2980 int ret, tmp; 2981 2982 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2983 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2984 return ret; 2985 2986 /* 2987 * Check if the backing address space wants to know that the page is 2988 * about to become writable 2989 */ 2990 if (vma->vm_ops->page_mkwrite) { 2991 unlock_page(fault_page); 2992 tmp = do_page_mkwrite(vma, fault_page, address); 2993 if (unlikely(!tmp || 2994 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2995 page_cache_release(fault_page); 2996 return tmp; 2997 } 2998 } 2999 3000 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 3001 if (unlikely(!pte_same(*pte, orig_pte))) { 3002 pte_unmap_unlock(pte, ptl); 3003 unlock_page(fault_page); 3004 page_cache_release(fault_page); 3005 return ret; 3006 } 3007 do_set_pte(vma, address, fault_page, pte, true, false); 3008 pte_unmap_unlock(pte, ptl); 3009 3010 if (set_page_dirty(fault_page)) 3011 dirtied = 1; 3012 mapping = fault_page->mapping; 3013 unlock_page(fault_page); 3014 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3015 /* 3016 * Some device drivers do not set page.mapping but still 3017 * dirty their pages 3018 */ 3019 balance_dirty_pages_ratelimited(mapping); 3020 } 3021 3022 /* file_update_time outside page_lock */ 3023 if (vma->vm_file && !vma->vm_ops->page_mkwrite) 3024 file_update_time(vma->vm_file); 3025 3026 return ret; 3027 } 3028 3029 /* 3030 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3031 * but allow concurrent faults). 3032 * The mmap_sem may have been released depending on flags and our 3033 * return value. See filemap_fault() and __lock_page_or_retry(). 3034 */ 3035 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3036 unsigned long address, pte_t *page_table, pmd_t *pmd, 3037 unsigned int flags, pte_t orig_pte) 3038 { 3039 pgoff_t pgoff = (((address & PAGE_MASK) 3040 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3041 3042 pte_unmap(page_table); 3043 if (!(flags & FAULT_FLAG_WRITE)) 3044 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3045 orig_pte); 3046 if (!(vma->vm_flags & VM_SHARED)) 3047 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3048 orig_pte); 3049 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3050 } 3051 3052 /* 3053 * Fault of a previously existing named mapping. Repopulate the pte 3054 * from the encoded file_pte if possible. This enables swappable 3055 * nonlinear vmas. 3056 * 3057 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3058 * but allow concurrent faults), and pte mapped but not yet locked. 3059 * We return with pte unmapped and unlocked. 3060 * The mmap_sem may have been released depending on flags and our 3061 * return value. See filemap_fault() and __lock_page_or_retry(). 3062 */ 3063 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3064 unsigned long address, pte_t *page_table, pmd_t *pmd, 3065 unsigned int flags, pte_t orig_pte) 3066 { 3067 pgoff_t pgoff; 3068 3069 flags |= FAULT_FLAG_NONLINEAR; 3070 3071 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3072 return 0; 3073 3074 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3075 /* 3076 * Page table corrupted: show pte and kill process. 3077 */ 3078 print_bad_pte(vma, address, orig_pte, NULL); 3079 return VM_FAULT_SIGBUS; 3080 } 3081 3082 pgoff = pte_to_pgoff(orig_pte); 3083 if (!(flags & FAULT_FLAG_WRITE)) 3084 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3085 orig_pte); 3086 if (!(vma->vm_flags & VM_SHARED)) 3087 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3088 orig_pte); 3089 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3090 } 3091 3092 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3093 unsigned long addr, int page_nid, 3094 int *flags) 3095 { 3096 get_page(page); 3097 3098 count_vm_numa_event(NUMA_HINT_FAULTS); 3099 if (page_nid == numa_node_id()) { 3100 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3101 *flags |= TNF_FAULT_LOCAL; 3102 } 3103 3104 return mpol_misplaced(page, vma, addr); 3105 } 3106 3107 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3108 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3109 { 3110 struct page *page = NULL; 3111 spinlock_t *ptl; 3112 int page_nid = -1; 3113 int last_cpupid; 3114 int target_nid; 3115 bool migrated = false; 3116 int flags = 0; 3117 3118 /* 3119 * The "pte" at this point cannot be used safely without 3120 * validation through pte_unmap_same(). It's of NUMA type but 3121 * the pfn may be screwed if the read is non atomic. 3122 * 3123 * ptep_modify_prot_start is not called as this is clearing 3124 * the _PAGE_NUMA bit and it is not really expected that there 3125 * would be concurrent hardware modifications to the PTE. 3126 */ 3127 ptl = pte_lockptr(mm, pmd); 3128 spin_lock(ptl); 3129 if (unlikely(!pte_same(*ptep, pte))) { 3130 pte_unmap_unlock(ptep, ptl); 3131 goto out; 3132 } 3133 3134 pte = pte_mknonnuma(pte); 3135 set_pte_at(mm, addr, ptep, pte); 3136 update_mmu_cache(vma, addr, ptep); 3137 3138 page = vm_normal_page(vma, addr, pte); 3139 if (!page) { 3140 pte_unmap_unlock(ptep, ptl); 3141 return 0; 3142 } 3143 BUG_ON(is_zero_pfn(page_to_pfn(page))); 3144 3145 /* 3146 * Avoid grouping on DSO/COW pages in specific and RO pages 3147 * in general, RO pages shouldn't hurt as much anyway since 3148 * they can be in shared cache state. 3149 */ 3150 if (!pte_write(pte)) 3151 flags |= TNF_NO_GROUP; 3152 3153 /* 3154 * Flag if the page is shared between multiple address spaces. This 3155 * is later used when determining whether to group tasks together 3156 */ 3157 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3158 flags |= TNF_SHARED; 3159 3160 last_cpupid = page_cpupid_last(page); 3161 page_nid = page_to_nid(page); 3162 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3163 pte_unmap_unlock(ptep, ptl); 3164 if (target_nid == -1) { 3165 put_page(page); 3166 goto out; 3167 } 3168 3169 /* Migrate to the requested node */ 3170 migrated = migrate_misplaced_page(page, vma, target_nid); 3171 if (migrated) { 3172 page_nid = target_nid; 3173 flags |= TNF_MIGRATED; 3174 } 3175 3176 out: 3177 if (page_nid != -1) 3178 task_numa_fault(last_cpupid, page_nid, 1, flags); 3179 return 0; 3180 } 3181 3182 /* 3183 * These routines also need to handle stuff like marking pages dirty 3184 * and/or accessed for architectures that don't do it in hardware (most 3185 * RISC architectures). The early dirtying is also good on the i386. 3186 * 3187 * There is also a hook called "update_mmu_cache()" that architectures 3188 * with external mmu caches can use to update those (ie the Sparc or 3189 * PowerPC hashed page tables that act as extended TLBs). 3190 * 3191 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3192 * but allow concurrent faults), and pte mapped but not yet locked. 3193 * We return with pte unmapped and unlocked. 3194 * 3195 * The mmap_sem may have been released depending on flags and our 3196 * return value. See filemap_fault() and __lock_page_or_retry(). 3197 */ 3198 static int handle_pte_fault(struct mm_struct *mm, 3199 struct vm_area_struct *vma, unsigned long address, 3200 pte_t *pte, pmd_t *pmd, unsigned int flags) 3201 { 3202 pte_t entry; 3203 spinlock_t *ptl; 3204 3205 entry = ACCESS_ONCE(*pte); 3206 if (!pte_present(entry)) { 3207 if (pte_none(entry)) { 3208 if (vma->vm_ops) { 3209 if (likely(vma->vm_ops->fault)) 3210 return do_linear_fault(mm, vma, address, 3211 pte, pmd, flags, entry); 3212 } 3213 return do_anonymous_page(mm, vma, address, 3214 pte, pmd, flags); 3215 } 3216 if (pte_file(entry)) 3217 return do_nonlinear_fault(mm, vma, address, 3218 pte, pmd, flags, entry); 3219 return do_swap_page(mm, vma, address, 3220 pte, pmd, flags, entry); 3221 } 3222 3223 if (pte_numa(entry)) 3224 return do_numa_page(mm, vma, address, entry, pte, pmd); 3225 3226 ptl = pte_lockptr(mm, pmd); 3227 spin_lock(ptl); 3228 if (unlikely(!pte_same(*pte, entry))) 3229 goto unlock; 3230 if (flags & FAULT_FLAG_WRITE) { 3231 if (!pte_write(entry)) 3232 return do_wp_page(mm, vma, address, 3233 pte, pmd, ptl, entry); 3234 entry = pte_mkdirty(entry); 3235 } 3236 entry = pte_mkyoung(entry); 3237 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3238 update_mmu_cache(vma, address, pte); 3239 } else { 3240 /* 3241 * This is needed only for protection faults but the arch code 3242 * is not yet telling us if this is a protection fault or not. 3243 * This still avoids useless tlb flushes for .text page faults 3244 * with threads. 3245 */ 3246 if (flags & FAULT_FLAG_WRITE) 3247 flush_tlb_fix_spurious_fault(vma, address); 3248 } 3249 unlock: 3250 pte_unmap_unlock(pte, ptl); 3251 return 0; 3252 } 3253 3254 /* 3255 * By the time we get here, we already hold the mm semaphore 3256 * 3257 * The mmap_sem may have been released depending on flags and our 3258 * return value. See filemap_fault() and __lock_page_or_retry(). 3259 */ 3260 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3261 unsigned long address, unsigned int flags) 3262 { 3263 pgd_t *pgd; 3264 pud_t *pud; 3265 pmd_t *pmd; 3266 pte_t *pte; 3267 3268 if (unlikely(is_vm_hugetlb_page(vma))) 3269 return hugetlb_fault(mm, vma, address, flags); 3270 3271 pgd = pgd_offset(mm, address); 3272 pud = pud_alloc(mm, pgd, address); 3273 if (!pud) 3274 return VM_FAULT_OOM; 3275 pmd = pmd_alloc(mm, pud, address); 3276 if (!pmd) 3277 return VM_FAULT_OOM; 3278 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3279 int ret = VM_FAULT_FALLBACK; 3280 if (!vma->vm_ops) 3281 ret = do_huge_pmd_anonymous_page(mm, vma, address, 3282 pmd, flags); 3283 if (!(ret & VM_FAULT_FALLBACK)) 3284 return ret; 3285 } else { 3286 pmd_t orig_pmd = *pmd; 3287 int ret; 3288 3289 barrier(); 3290 if (pmd_trans_huge(orig_pmd)) { 3291 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3292 3293 /* 3294 * If the pmd is splitting, return and retry the 3295 * the fault. Alternative: wait until the split 3296 * is done, and goto retry. 3297 */ 3298 if (pmd_trans_splitting(orig_pmd)) 3299 return 0; 3300 3301 if (pmd_numa(orig_pmd)) 3302 return do_huge_pmd_numa_page(mm, vma, address, 3303 orig_pmd, pmd); 3304 3305 if (dirty && !pmd_write(orig_pmd)) { 3306 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3307 orig_pmd); 3308 if (!(ret & VM_FAULT_FALLBACK)) 3309 return ret; 3310 } else { 3311 huge_pmd_set_accessed(mm, vma, address, pmd, 3312 orig_pmd, dirty); 3313 return 0; 3314 } 3315 } 3316 } 3317 3318 /* 3319 * Use __pte_alloc instead of pte_alloc_map, because we can't 3320 * run pte_offset_map on the pmd, if an huge pmd could 3321 * materialize from under us from a different thread. 3322 */ 3323 if (unlikely(pmd_none(*pmd)) && 3324 unlikely(__pte_alloc(mm, vma, pmd, address))) 3325 return VM_FAULT_OOM; 3326 /* if an huge pmd materialized from under us just retry later */ 3327 if (unlikely(pmd_trans_huge(*pmd))) 3328 return 0; 3329 /* 3330 * A regular pmd is established and it can't morph into a huge pmd 3331 * from under us anymore at this point because we hold the mmap_sem 3332 * read mode and khugepaged takes it in write mode. So now it's 3333 * safe to run pte_offset_map(). 3334 */ 3335 pte = pte_offset_map(pmd, address); 3336 3337 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3338 } 3339 3340 /* 3341 * By the time we get here, we already hold the mm semaphore 3342 * 3343 * The mmap_sem may have been released depending on flags and our 3344 * return value. See filemap_fault() and __lock_page_or_retry(). 3345 */ 3346 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3347 unsigned long address, unsigned int flags) 3348 { 3349 int ret; 3350 3351 __set_current_state(TASK_RUNNING); 3352 3353 count_vm_event(PGFAULT); 3354 mem_cgroup_count_vm_event(mm, PGFAULT); 3355 3356 /* do counter updates before entering really critical section. */ 3357 check_sync_rss_stat(current); 3358 3359 /* 3360 * Enable the memcg OOM handling for faults triggered in user 3361 * space. Kernel faults are handled more gracefully. 3362 */ 3363 if (flags & FAULT_FLAG_USER) 3364 mem_cgroup_oom_enable(); 3365 3366 ret = __handle_mm_fault(mm, vma, address, flags); 3367 3368 if (flags & FAULT_FLAG_USER) { 3369 mem_cgroup_oom_disable(); 3370 /* 3371 * The task may have entered a memcg OOM situation but 3372 * if the allocation error was handled gracefully (no 3373 * VM_FAULT_OOM), there is no need to kill anything. 3374 * Just clean up the OOM state peacefully. 3375 */ 3376 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3377 mem_cgroup_oom_synchronize(false); 3378 } 3379 3380 return ret; 3381 } 3382 3383 #ifndef __PAGETABLE_PUD_FOLDED 3384 /* 3385 * Allocate page upper directory. 3386 * We've already handled the fast-path in-line. 3387 */ 3388 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3389 { 3390 pud_t *new = pud_alloc_one(mm, address); 3391 if (!new) 3392 return -ENOMEM; 3393 3394 smp_wmb(); /* See comment in __pte_alloc */ 3395 3396 spin_lock(&mm->page_table_lock); 3397 if (pgd_present(*pgd)) /* Another has populated it */ 3398 pud_free(mm, new); 3399 else 3400 pgd_populate(mm, pgd, new); 3401 spin_unlock(&mm->page_table_lock); 3402 return 0; 3403 } 3404 #endif /* __PAGETABLE_PUD_FOLDED */ 3405 3406 #ifndef __PAGETABLE_PMD_FOLDED 3407 /* 3408 * Allocate page middle directory. 3409 * We've already handled the fast-path in-line. 3410 */ 3411 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3412 { 3413 pmd_t *new = pmd_alloc_one(mm, address); 3414 if (!new) 3415 return -ENOMEM; 3416 3417 smp_wmb(); /* See comment in __pte_alloc */ 3418 3419 spin_lock(&mm->page_table_lock); 3420 #ifndef __ARCH_HAS_4LEVEL_HACK 3421 if (pud_present(*pud)) /* Another has populated it */ 3422 pmd_free(mm, new); 3423 else 3424 pud_populate(mm, pud, new); 3425 #else 3426 if (pgd_present(*pud)) /* Another has populated it */ 3427 pmd_free(mm, new); 3428 else 3429 pgd_populate(mm, pud, new); 3430 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3431 spin_unlock(&mm->page_table_lock); 3432 return 0; 3433 } 3434 #endif /* __PAGETABLE_PMD_FOLDED */ 3435 3436 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3437 pte_t **ptepp, spinlock_t **ptlp) 3438 { 3439 pgd_t *pgd; 3440 pud_t *pud; 3441 pmd_t *pmd; 3442 pte_t *ptep; 3443 3444 pgd = pgd_offset(mm, address); 3445 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3446 goto out; 3447 3448 pud = pud_offset(pgd, address); 3449 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3450 goto out; 3451 3452 pmd = pmd_offset(pud, address); 3453 VM_BUG_ON(pmd_trans_huge(*pmd)); 3454 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3455 goto out; 3456 3457 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3458 if (pmd_huge(*pmd)) 3459 goto out; 3460 3461 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3462 if (!ptep) 3463 goto out; 3464 if (!pte_present(*ptep)) 3465 goto unlock; 3466 *ptepp = ptep; 3467 return 0; 3468 unlock: 3469 pte_unmap_unlock(ptep, *ptlp); 3470 out: 3471 return -EINVAL; 3472 } 3473 3474 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3475 pte_t **ptepp, spinlock_t **ptlp) 3476 { 3477 int res; 3478 3479 /* (void) is needed to make gcc happy */ 3480 (void) __cond_lock(*ptlp, 3481 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3482 return res; 3483 } 3484 3485 /** 3486 * follow_pfn - look up PFN at a user virtual address 3487 * @vma: memory mapping 3488 * @address: user virtual address 3489 * @pfn: location to store found PFN 3490 * 3491 * Only IO mappings and raw PFN mappings are allowed. 3492 * 3493 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3494 */ 3495 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3496 unsigned long *pfn) 3497 { 3498 int ret = -EINVAL; 3499 spinlock_t *ptl; 3500 pte_t *ptep; 3501 3502 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3503 return ret; 3504 3505 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3506 if (ret) 3507 return ret; 3508 *pfn = pte_pfn(*ptep); 3509 pte_unmap_unlock(ptep, ptl); 3510 return 0; 3511 } 3512 EXPORT_SYMBOL(follow_pfn); 3513 3514 #ifdef CONFIG_HAVE_IOREMAP_PROT 3515 int follow_phys(struct vm_area_struct *vma, 3516 unsigned long address, unsigned int flags, 3517 unsigned long *prot, resource_size_t *phys) 3518 { 3519 int ret = -EINVAL; 3520 pte_t *ptep, pte; 3521 spinlock_t *ptl; 3522 3523 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3524 goto out; 3525 3526 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3527 goto out; 3528 pte = *ptep; 3529 3530 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3531 goto unlock; 3532 3533 *prot = pgprot_val(pte_pgprot(pte)); 3534 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3535 3536 ret = 0; 3537 unlock: 3538 pte_unmap_unlock(ptep, ptl); 3539 out: 3540 return ret; 3541 } 3542 3543 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3544 void *buf, int len, int write) 3545 { 3546 resource_size_t phys_addr; 3547 unsigned long prot = 0; 3548 void __iomem *maddr; 3549 int offset = addr & (PAGE_SIZE-1); 3550 3551 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3552 return -EINVAL; 3553 3554 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3555 if (write) 3556 memcpy_toio(maddr + offset, buf, len); 3557 else 3558 memcpy_fromio(buf, maddr + offset, len); 3559 iounmap(maddr); 3560 3561 return len; 3562 } 3563 EXPORT_SYMBOL_GPL(generic_access_phys); 3564 #endif 3565 3566 /* 3567 * Access another process' address space as given in mm. If non-NULL, use the 3568 * given task for page fault accounting. 3569 */ 3570 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3571 unsigned long addr, void *buf, int len, int write) 3572 { 3573 struct vm_area_struct *vma; 3574 void *old_buf = buf; 3575 3576 down_read(&mm->mmap_sem); 3577 /* ignore errors, just check how much was successfully transferred */ 3578 while (len) { 3579 int bytes, ret, offset; 3580 void *maddr; 3581 struct page *page = NULL; 3582 3583 ret = get_user_pages(tsk, mm, addr, 1, 3584 write, 1, &page, &vma); 3585 if (ret <= 0) { 3586 #ifndef CONFIG_HAVE_IOREMAP_PROT 3587 break; 3588 #else 3589 /* 3590 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3591 * we can access using slightly different code. 3592 */ 3593 vma = find_vma(mm, addr); 3594 if (!vma || vma->vm_start > addr) 3595 break; 3596 if (vma->vm_ops && vma->vm_ops->access) 3597 ret = vma->vm_ops->access(vma, addr, buf, 3598 len, write); 3599 if (ret <= 0) 3600 break; 3601 bytes = ret; 3602 #endif 3603 } else { 3604 bytes = len; 3605 offset = addr & (PAGE_SIZE-1); 3606 if (bytes > PAGE_SIZE-offset) 3607 bytes = PAGE_SIZE-offset; 3608 3609 maddr = kmap(page); 3610 if (write) { 3611 copy_to_user_page(vma, page, addr, 3612 maddr + offset, buf, bytes); 3613 set_page_dirty_lock(page); 3614 } else { 3615 copy_from_user_page(vma, page, addr, 3616 buf, maddr + offset, bytes); 3617 } 3618 kunmap(page); 3619 page_cache_release(page); 3620 } 3621 len -= bytes; 3622 buf += bytes; 3623 addr += bytes; 3624 } 3625 up_read(&mm->mmap_sem); 3626 3627 return buf - old_buf; 3628 } 3629 3630 /** 3631 * access_remote_vm - access another process' address space 3632 * @mm: the mm_struct of the target address space 3633 * @addr: start address to access 3634 * @buf: source or destination buffer 3635 * @len: number of bytes to transfer 3636 * @write: whether the access is a write 3637 * 3638 * The caller must hold a reference on @mm. 3639 */ 3640 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3641 void *buf, int len, int write) 3642 { 3643 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3644 } 3645 3646 /* 3647 * Access another process' address space. 3648 * Source/target buffer must be kernel space, 3649 * Do not walk the page table directly, use get_user_pages 3650 */ 3651 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3652 void *buf, int len, int write) 3653 { 3654 struct mm_struct *mm; 3655 int ret; 3656 3657 mm = get_task_mm(tsk); 3658 if (!mm) 3659 return 0; 3660 3661 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3662 mmput(mm); 3663 3664 return ret; 3665 } 3666 3667 /* 3668 * Print the name of a VMA. 3669 */ 3670 void print_vma_addr(char *prefix, unsigned long ip) 3671 { 3672 struct mm_struct *mm = current->mm; 3673 struct vm_area_struct *vma; 3674 3675 /* 3676 * Do not print if we are in atomic 3677 * contexts (in exception stacks, etc.): 3678 */ 3679 if (preempt_count()) 3680 return; 3681 3682 down_read(&mm->mmap_sem); 3683 vma = find_vma(mm, ip); 3684 if (vma && vma->vm_file) { 3685 struct file *f = vma->vm_file; 3686 char *buf = (char *)__get_free_page(GFP_KERNEL); 3687 if (buf) { 3688 char *p; 3689 3690 p = d_path(&f->f_path, buf, PAGE_SIZE); 3691 if (IS_ERR(p)) 3692 p = "?"; 3693 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3694 vma->vm_start, 3695 vma->vm_end - vma->vm_start); 3696 free_page((unsigned long)buf); 3697 } 3698 } 3699 up_read(&mm->mmap_sem); 3700 } 3701 3702 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3703 void might_fault(void) 3704 { 3705 /* 3706 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3707 * holding the mmap_sem, this is safe because kernel memory doesn't 3708 * get paged out, therefore we'll never actually fault, and the 3709 * below annotations will generate false positives. 3710 */ 3711 if (segment_eq(get_fs(), KERNEL_DS)) 3712 return; 3713 3714 /* 3715 * it would be nicer only to annotate paths which are not under 3716 * pagefault_disable, however that requires a larger audit and 3717 * providing helpers like get_user_atomic. 3718 */ 3719 if (in_atomic()) 3720 return; 3721 3722 __might_sleep(__FILE__, __LINE__, 0); 3723 3724 if (current->mm) 3725 might_lock_read(¤t->mm->mmap_sem); 3726 } 3727 EXPORT_SYMBOL(might_fault); 3728 #endif 3729 3730 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3731 static void clear_gigantic_page(struct page *page, 3732 unsigned long addr, 3733 unsigned int pages_per_huge_page) 3734 { 3735 int i; 3736 struct page *p = page; 3737 3738 might_sleep(); 3739 for (i = 0; i < pages_per_huge_page; 3740 i++, p = mem_map_next(p, page, i)) { 3741 cond_resched(); 3742 clear_user_highpage(p, addr + i * PAGE_SIZE); 3743 } 3744 } 3745 void clear_huge_page(struct page *page, 3746 unsigned long addr, unsigned int pages_per_huge_page) 3747 { 3748 int i; 3749 3750 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3751 clear_gigantic_page(page, addr, pages_per_huge_page); 3752 return; 3753 } 3754 3755 might_sleep(); 3756 for (i = 0; i < pages_per_huge_page; i++) { 3757 cond_resched(); 3758 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3759 } 3760 } 3761 3762 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3763 unsigned long addr, 3764 struct vm_area_struct *vma, 3765 unsigned int pages_per_huge_page) 3766 { 3767 int i; 3768 struct page *dst_base = dst; 3769 struct page *src_base = src; 3770 3771 for (i = 0; i < pages_per_huge_page; ) { 3772 cond_resched(); 3773 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3774 3775 i++; 3776 dst = mem_map_next(dst, dst_base, i); 3777 src = mem_map_next(src, src_base, i); 3778 } 3779 } 3780 3781 void copy_user_huge_page(struct page *dst, struct page *src, 3782 unsigned long addr, struct vm_area_struct *vma, 3783 unsigned int pages_per_huge_page) 3784 { 3785 int i; 3786 3787 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3788 copy_user_gigantic_page(dst, src, addr, vma, 3789 pages_per_huge_page); 3790 return; 3791 } 3792 3793 might_sleep(); 3794 for (i = 0; i < pages_per_huge_page; i++) { 3795 cond_resched(); 3796 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3797 } 3798 } 3799 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3800 3801 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3802 3803 static struct kmem_cache *page_ptl_cachep; 3804 3805 void __init ptlock_cache_init(void) 3806 { 3807 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3808 SLAB_PANIC, NULL); 3809 } 3810 3811 bool ptlock_alloc(struct page *page) 3812 { 3813 spinlock_t *ptl; 3814 3815 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3816 if (!ptl) 3817 return false; 3818 page->ptl = ptl; 3819 return true; 3820 } 3821 3822 void ptlock_free(struct page *page) 3823 { 3824 kmem_cache_free(page_ptl_cachep, page->ptl); 3825 } 3826 #endif 3827