1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 #include <linux/memcontrol.h> 54 #include <linux/mmu_notifier.h> 55 56 #include <asm/pgalloc.h> 57 #include <asm/uaccess.h> 58 #include <asm/tlb.h> 59 #include <asm/tlbflush.h> 60 #include <asm/pgtable.h> 61 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 65 #include "internal.h" 66 67 #ifndef CONFIG_NEED_MULTIPLE_NODES 68 /* use the per-pgdat data instead for discontigmem - mbligh */ 69 unsigned long max_mapnr; 70 struct page *mem_map; 71 72 EXPORT_SYMBOL(max_mapnr); 73 EXPORT_SYMBOL(mem_map); 74 #endif 75 76 unsigned long num_physpages; 77 /* 78 * A number of key systems in x86 including ioremap() rely on the assumption 79 * that high_memory defines the upper bound on direct map memory, then end 80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 82 * and ZONE_HIGHMEM. 83 */ 84 void * high_memory; 85 86 EXPORT_SYMBOL(num_physpages); 87 EXPORT_SYMBOL(high_memory); 88 89 /* 90 * Randomize the address space (stacks, mmaps, brk, etc.). 91 * 92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 93 * as ancient (libc5 based) binaries can segfault. ) 94 */ 95 int randomize_va_space __read_mostly = 96 #ifdef CONFIG_COMPAT_BRK 97 1; 98 #else 99 2; 100 #endif 101 102 static int __init disable_randmaps(char *s) 103 { 104 randomize_va_space = 0; 105 return 1; 106 } 107 __setup("norandmaps", disable_randmaps); 108 109 110 /* 111 * If a p?d_bad entry is found while walking page tables, report 112 * the error, before resetting entry to p?d_none. Usually (but 113 * very seldom) called out from the p?d_none_or_clear_bad macros. 114 */ 115 116 void pgd_clear_bad(pgd_t *pgd) 117 { 118 pgd_ERROR(*pgd); 119 pgd_clear(pgd); 120 } 121 122 void pud_clear_bad(pud_t *pud) 123 { 124 pud_ERROR(*pud); 125 pud_clear(pud); 126 } 127 128 void pmd_clear_bad(pmd_t *pmd) 129 { 130 pmd_ERROR(*pmd); 131 pmd_clear(pmd); 132 } 133 134 /* 135 * Note: this doesn't free the actual pages themselves. That 136 * has been handled earlier when unmapping all the memory regions. 137 */ 138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) 139 { 140 pgtable_t token = pmd_pgtable(*pmd); 141 pmd_clear(pmd); 142 pte_free_tlb(tlb, token); 143 tlb->mm->nr_ptes--; 144 } 145 146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 147 unsigned long addr, unsigned long end, 148 unsigned long floor, unsigned long ceiling) 149 { 150 pmd_t *pmd; 151 unsigned long next; 152 unsigned long start; 153 154 start = addr; 155 pmd = pmd_offset(pud, addr); 156 do { 157 next = pmd_addr_end(addr, end); 158 if (pmd_none_or_clear_bad(pmd)) 159 continue; 160 free_pte_range(tlb, pmd); 161 } while (pmd++, addr = next, addr != end); 162 163 start &= PUD_MASK; 164 if (start < floor) 165 return; 166 if (ceiling) { 167 ceiling &= PUD_MASK; 168 if (!ceiling) 169 return; 170 } 171 if (end - 1 > ceiling - 1) 172 return; 173 174 pmd = pmd_offset(pud, start); 175 pud_clear(pud); 176 pmd_free_tlb(tlb, pmd); 177 } 178 179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 180 unsigned long addr, unsigned long end, 181 unsigned long floor, unsigned long ceiling) 182 { 183 pud_t *pud; 184 unsigned long next; 185 unsigned long start; 186 187 start = addr; 188 pud = pud_offset(pgd, addr); 189 do { 190 next = pud_addr_end(addr, end); 191 if (pud_none_or_clear_bad(pud)) 192 continue; 193 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 194 } while (pud++, addr = next, addr != end); 195 196 start &= PGDIR_MASK; 197 if (start < floor) 198 return; 199 if (ceiling) { 200 ceiling &= PGDIR_MASK; 201 if (!ceiling) 202 return; 203 } 204 if (end - 1 > ceiling - 1) 205 return; 206 207 pud = pud_offset(pgd, start); 208 pgd_clear(pgd); 209 pud_free_tlb(tlb, pud); 210 } 211 212 /* 213 * This function frees user-level page tables of a process. 214 * 215 * Must be called with pagetable lock held. 216 */ 217 void free_pgd_range(struct mmu_gather *tlb, 218 unsigned long addr, unsigned long end, 219 unsigned long floor, unsigned long ceiling) 220 { 221 pgd_t *pgd; 222 unsigned long next; 223 unsigned long start; 224 225 /* 226 * The next few lines have given us lots of grief... 227 * 228 * Why are we testing PMD* at this top level? Because often 229 * there will be no work to do at all, and we'd prefer not to 230 * go all the way down to the bottom just to discover that. 231 * 232 * Why all these "- 1"s? Because 0 represents both the bottom 233 * of the address space and the top of it (using -1 for the 234 * top wouldn't help much: the masks would do the wrong thing). 235 * The rule is that addr 0 and floor 0 refer to the bottom of 236 * the address space, but end 0 and ceiling 0 refer to the top 237 * Comparisons need to use "end - 1" and "ceiling - 1" (though 238 * that end 0 case should be mythical). 239 * 240 * Wherever addr is brought up or ceiling brought down, we must 241 * be careful to reject "the opposite 0" before it confuses the 242 * subsequent tests. But what about where end is brought down 243 * by PMD_SIZE below? no, end can't go down to 0 there. 244 * 245 * Whereas we round start (addr) and ceiling down, by different 246 * masks at different levels, in order to test whether a table 247 * now has no other vmas using it, so can be freed, we don't 248 * bother to round floor or end up - the tests don't need that. 249 */ 250 251 addr &= PMD_MASK; 252 if (addr < floor) { 253 addr += PMD_SIZE; 254 if (!addr) 255 return; 256 } 257 if (ceiling) { 258 ceiling &= PMD_MASK; 259 if (!ceiling) 260 return; 261 } 262 if (end - 1 > ceiling - 1) 263 end -= PMD_SIZE; 264 if (addr > end - 1) 265 return; 266 267 start = addr; 268 pgd = pgd_offset(tlb->mm, addr); 269 do { 270 next = pgd_addr_end(addr, end); 271 if (pgd_none_or_clear_bad(pgd)) 272 continue; 273 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 274 } while (pgd++, addr = next, addr != end); 275 } 276 277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 278 unsigned long floor, unsigned long ceiling) 279 { 280 while (vma) { 281 struct vm_area_struct *next = vma->vm_next; 282 unsigned long addr = vma->vm_start; 283 284 /* 285 * Hide vma from rmap and vmtruncate before freeing pgtables 286 */ 287 anon_vma_unlink(vma); 288 unlink_file_vma(vma); 289 290 if (is_vm_hugetlb_page(vma)) { 291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 292 floor, next? next->vm_start: ceiling); 293 } else { 294 /* 295 * Optimization: gather nearby vmas into one call down 296 */ 297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 298 && !is_vm_hugetlb_page(next)) { 299 vma = next; 300 next = vma->vm_next; 301 anon_vma_unlink(vma); 302 unlink_file_vma(vma); 303 } 304 free_pgd_range(tlb, addr, vma->vm_end, 305 floor, next? next->vm_start: ceiling); 306 } 307 vma = next; 308 } 309 } 310 311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 312 { 313 pgtable_t new = pte_alloc_one(mm, address); 314 if (!new) 315 return -ENOMEM; 316 317 /* 318 * Ensure all pte setup (eg. pte page lock and page clearing) are 319 * visible before the pte is made visible to other CPUs by being 320 * put into page tables. 321 * 322 * The other side of the story is the pointer chasing in the page 323 * table walking code (when walking the page table without locking; 324 * ie. most of the time). Fortunately, these data accesses consist 325 * of a chain of data-dependent loads, meaning most CPUs (alpha 326 * being the notable exception) will already guarantee loads are 327 * seen in-order. See the alpha page table accessors for the 328 * smp_read_barrier_depends() barriers in page table walking code. 329 */ 330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 331 332 spin_lock(&mm->page_table_lock); 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 334 mm->nr_ptes++; 335 pmd_populate(mm, pmd, new); 336 new = NULL; 337 } 338 spin_unlock(&mm->page_table_lock); 339 if (new) 340 pte_free(mm, new); 341 return 0; 342 } 343 344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 345 { 346 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 347 if (!new) 348 return -ENOMEM; 349 350 smp_wmb(); /* See comment in __pte_alloc */ 351 352 spin_lock(&init_mm.page_table_lock); 353 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 354 pmd_populate_kernel(&init_mm, pmd, new); 355 new = NULL; 356 } 357 spin_unlock(&init_mm.page_table_lock); 358 if (new) 359 pte_free_kernel(&init_mm, new); 360 return 0; 361 } 362 363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 364 { 365 if (file_rss) 366 add_mm_counter(mm, file_rss, file_rss); 367 if (anon_rss) 368 add_mm_counter(mm, anon_rss, anon_rss); 369 } 370 371 /* 372 * This function is called to print an error when a bad pte 373 * is found. For example, we might have a PFN-mapped pte in 374 * a region that doesn't allow it. 375 * 376 * The calling function must still handle the error. 377 */ 378 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte, 379 unsigned long vaddr) 380 { 381 printk(KERN_ERR "Bad pte = %08llx, process = %s, " 382 "vm_flags = %lx, vaddr = %lx\n", 383 (long long)pte_val(pte), 384 (vma->vm_mm == current->mm ? current->comm : "???"), 385 vma->vm_flags, vaddr); 386 dump_stack(); 387 } 388 389 static inline int is_cow_mapping(unsigned int flags) 390 { 391 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 392 } 393 394 /* 395 * vm_normal_page -- This function gets the "struct page" associated with a pte. 396 * 397 * "Special" mappings do not wish to be associated with a "struct page" (either 398 * it doesn't exist, or it exists but they don't want to touch it). In this 399 * case, NULL is returned here. "Normal" mappings do have a struct page. 400 * 401 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 402 * pte bit, in which case this function is trivial. Secondly, an architecture 403 * may not have a spare pte bit, which requires a more complicated scheme, 404 * described below. 405 * 406 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 407 * special mapping (even if there are underlying and valid "struct pages"). 408 * COWed pages of a VM_PFNMAP are always normal. 409 * 410 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 411 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 412 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 413 * mapping will always honor the rule 414 * 415 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 416 * 417 * And for normal mappings this is false. 418 * 419 * This restricts such mappings to be a linear translation from virtual address 420 * to pfn. To get around this restriction, we allow arbitrary mappings so long 421 * as the vma is not a COW mapping; in that case, we know that all ptes are 422 * special (because none can have been COWed). 423 * 424 * 425 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 426 * 427 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 428 * page" backing, however the difference is that _all_ pages with a struct 429 * page (that is, those where pfn_valid is true) are refcounted and considered 430 * normal pages by the VM. The disadvantage is that pages are refcounted 431 * (which can be slower and simply not an option for some PFNMAP users). The 432 * advantage is that we don't have to follow the strict linearity rule of 433 * PFNMAP mappings in order to support COWable mappings. 434 * 435 */ 436 #ifdef __HAVE_ARCH_PTE_SPECIAL 437 # define HAVE_PTE_SPECIAL 1 438 #else 439 # define HAVE_PTE_SPECIAL 0 440 #endif 441 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 442 pte_t pte) 443 { 444 unsigned long pfn; 445 446 if (HAVE_PTE_SPECIAL) { 447 if (likely(!pte_special(pte))) { 448 VM_BUG_ON(!pfn_valid(pte_pfn(pte))); 449 return pte_page(pte); 450 } 451 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 452 return NULL; 453 } 454 455 /* !HAVE_PTE_SPECIAL case follows: */ 456 457 pfn = pte_pfn(pte); 458 459 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 460 if (vma->vm_flags & VM_MIXEDMAP) { 461 if (!pfn_valid(pfn)) 462 return NULL; 463 goto out; 464 } else { 465 unsigned long off; 466 off = (addr - vma->vm_start) >> PAGE_SHIFT; 467 if (pfn == vma->vm_pgoff + off) 468 return NULL; 469 if (!is_cow_mapping(vma->vm_flags)) 470 return NULL; 471 } 472 } 473 474 VM_BUG_ON(!pfn_valid(pfn)); 475 476 /* 477 * NOTE! We still have PageReserved() pages in the page tables. 478 * 479 * eg. VDSO mappings can cause them to exist. 480 */ 481 out: 482 return pfn_to_page(pfn); 483 } 484 485 /* 486 * copy one vm_area from one task to the other. Assumes the page tables 487 * already present in the new task to be cleared in the whole range 488 * covered by this vma. 489 */ 490 491 static inline void 492 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 493 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 494 unsigned long addr, int *rss) 495 { 496 unsigned long vm_flags = vma->vm_flags; 497 pte_t pte = *src_pte; 498 struct page *page; 499 500 /* pte contains position in swap or file, so copy. */ 501 if (unlikely(!pte_present(pte))) { 502 if (!pte_file(pte)) { 503 swp_entry_t entry = pte_to_swp_entry(pte); 504 505 swap_duplicate(entry); 506 /* make sure dst_mm is on swapoff's mmlist. */ 507 if (unlikely(list_empty(&dst_mm->mmlist))) { 508 spin_lock(&mmlist_lock); 509 if (list_empty(&dst_mm->mmlist)) 510 list_add(&dst_mm->mmlist, 511 &src_mm->mmlist); 512 spin_unlock(&mmlist_lock); 513 } 514 if (is_write_migration_entry(entry) && 515 is_cow_mapping(vm_flags)) { 516 /* 517 * COW mappings require pages in both parent 518 * and child to be set to read. 519 */ 520 make_migration_entry_read(&entry); 521 pte = swp_entry_to_pte(entry); 522 set_pte_at(src_mm, addr, src_pte, pte); 523 } 524 } 525 goto out_set_pte; 526 } 527 528 /* 529 * If it's a COW mapping, write protect it both 530 * in the parent and the child 531 */ 532 if (is_cow_mapping(vm_flags)) { 533 ptep_set_wrprotect(src_mm, addr, src_pte); 534 pte = pte_wrprotect(pte); 535 } 536 537 /* 538 * If it's a shared mapping, mark it clean in 539 * the child 540 */ 541 if (vm_flags & VM_SHARED) 542 pte = pte_mkclean(pte); 543 pte = pte_mkold(pte); 544 545 page = vm_normal_page(vma, addr, pte); 546 if (page) { 547 get_page(page); 548 page_dup_rmap(page, vma, addr); 549 rss[!!PageAnon(page)]++; 550 } 551 552 out_set_pte: 553 set_pte_at(dst_mm, addr, dst_pte, pte); 554 } 555 556 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 557 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 558 unsigned long addr, unsigned long end) 559 { 560 pte_t *src_pte, *dst_pte; 561 spinlock_t *src_ptl, *dst_ptl; 562 int progress = 0; 563 int rss[2]; 564 565 again: 566 rss[1] = rss[0] = 0; 567 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 568 if (!dst_pte) 569 return -ENOMEM; 570 src_pte = pte_offset_map_nested(src_pmd, addr); 571 src_ptl = pte_lockptr(src_mm, src_pmd); 572 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 573 arch_enter_lazy_mmu_mode(); 574 575 do { 576 /* 577 * We are holding two locks at this point - either of them 578 * could generate latencies in another task on another CPU. 579 */ 580 if (progress >= 32) { 581 progress = 0; 582 if (need_resched() || 583 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 584 break; 585 } 586 if (pte_none(*src_pte)) { 587 progress++; 588 continue; 589 } 590 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 591 progress += 8; 592 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 593 594 arch_leave_lazy_mmu_mode(); 595 spin_unlock(src_ptl); 596 pte_unmap_nested(src_pte - 1); 597 add_mm_rss(dst_mm, rss[0], rss[1]); 598 pte_unmap_unlock(dst_pte - 1, dst_ptl); 599 cond_resched(); 600 if (addr != end) 601 goto again; 602 return 0; 603 } 604 605 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 606 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 607 unsigned long addr, unsigned long end) 608 { 609 pmd_t *src_pmd, *dst_pmd; 610 unsigned long next; 611 612 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 613 if (!dst_pmd) 614 return -ENOMEM; 615 src_pmd = pmd_offset(src_pud, addr); 616 do { 617 next = pmd_addr_end(addr, end); 618 if (pmd_none_or_clear_bad(src_pmd)) 619 continue; 620 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 621 vma, addr, next)) 622 return -ENOMEM; 623 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 624 return 0; 625 } 626 627 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 628 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 629 unsigned long addr, unsigned long end) 630 { 631 pud_t *src_pud, *dst_pud; 632 unsigned long next; 633 634 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 635 if (!dst_pud) 636 return -ENOMEM; 637 src_pud = pud_offset(src_pgd, addr); 638 do { 639 next = pud_addr_end(addr, end); 640 if (pud_none_or_clear_bad(src_pud)) 641 continue; 642 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 643 vma, addr, next)) 644 return -ENOMEM; 645 } while (dst_pud++, src_pud++, addr = next, addr != end); 646 return 0; 647 } 648 649 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 650 struct vm_area_struct *vma) 651 { 652 pgd_t *src_pgd, *dst_pgd; 653 unsigned long next; 654 unsigned long addr = vma->vm_start; 655 unsigned long end = vma->vm_end; 656 int ret; 657 658 /* 659 * Don't copy ptes where a page fault will fill them correctly. 660 * Fork becomes much lighter when there are big shared or private 661 * readonly mappings. The tradeoff is that copy_page_range is more 662 * efficient than faulting. 663 */ 664 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 665 if (!vma->anon_vma) 666 return 0; 667 } 668 669 if (is_vm_hugetlb_page(vma)) 670 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 671 672 if (unlikely(is_pfn_mapping(vma))) { 673 /* 674 * We do not free on error cases below as remove_vma 675 * gets called on error from higher level routine 676 */ 677 ret = track_pfn_vma_copy(vma); 678 if (ret) 679 return ret; 680 } 681 682 /* 683 * We need to invalidate the secondary MMU mappings only when 684 * there could be a permission downgrade on the ptes of the 685 * parent mm. And a permission downgrade will only happen if 686 * is_cow_mapping() returns true. 687 */ 688 if (is_cow_mapping(vma->vm_flags)) 689 mmu_notifier_invalidate_range_start(src_mm, addr, end); 690 691 ret = 0; 692 dst_pgd = pgd_offset(dst_mm, addr); 693 src_pgd = pgd_offset(src_mm, addr); 694 do { 695 next = pgd_addr_end(addr, end); 696 if (pgd_none_or_clear_bad(src_pgd)) 697 continue; 698 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 699 vma, addr, next))) { 700 ret = -ENOMEM; 701 break; 702 } 703 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 704 705 if (is_cow_mapping(vma->vm_flags)) 706 mmu_notifier_invalidate_range_end(src_mm, 707 vma->vm_start, end); 708 return ret; 709 } 710 711 static unsigned long zap_pte_range(struct mmu_gather *tlb, 712 struct vm_area_struct *vma, pmd_t *pmd, 713 unsigned long addr, unsigned long end, 714 long *zap_work, struct zap_details *details) 715 { 716 struct mm_struct *mm = tlb->mm; 717 pte_t *pte; 718 spinlock_t *ptl; 719 int file_rss = 0; 720 int anon_rss = 0; 721 722 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 723 arch_enter_lazy_mmu_mode(); 724 do { 725 pte_t ptent = *pte; 726 if (pte_none(ptent)) { 727 (*zap_work)--; 728 continue; 729 } 730 731 (*zap_work) -= PAGE_SIZE; 732 733 if (pte_present(ptent)) { 734 struct page *page; 735 736 page = vm_normal_page(vma, addr, ptent); 737 if (unlikely(details) && page) { 738 /* 739 * unmap_shared_mapping_pages() wants to 740 * invalidate cache without truncating: 741 * unmap shared but keep private pages. 742 */ 743 if (details->check_mapping && 744 details->check_mapping != page->mapping) 745 continue; 746 /* 747 * Each page->index must be checked when 748 * invalidating or truncating nonlinear. 749 */ 750 if (details->nonlinear_vma && 751 (page->index < details->first_index || 752 page->index > details->last_index)) 753 continue; 754 } 755 ptent = ptep_get_and_clear_full(mm, addr, pte, 756 tlb->fullmm); 757 tlb_remove_tlb_entry(tlb, pte, addr); 758 if (unlikely(!page)) 759 continue; 760 if (unlikely(details) && details->nonlinear_vma 761 && linear_page_index(details->nonlinear_vma, 762 addr) != page->index) 763 set_pte_at(mm, addr, pte, 764 pgoff_to_pte(page->index)); 765 if (PageAnon(page)) 766 anon_rss--; 767 else { 768 if (pte_dirty(ptent)) 769 set_page_dirty(page); 770 if (pte_young(ptent)) 771 SetPageReferenced(page); 772 file_rss--; 773 } 774 page_remove_rmap(page, vma); 775 tlb_remove_page(tlb, page); 776 continue; 777 } 778 /* 779 * If details->check_mapping, we leave swap entries; 780 * if details->nonlinear_vma, we leave file entries. 781 */ 782 if (unlikely(details)) 783 continue; 784 if (!pte_file(ptent)) 785 free_swap_and_cache(pte_to_swp_entry(ptent)); 786 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 787 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 788 789 add_mm_rss(mm, file_rss, anon_rss); 790 arch_leave_lazy_mmu_mode(); 791 pte_unmap_unlock(pte - 1, ptl); 792 793 return addr; 794 } 795 796 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 797 struct vm_area_struct *vma, pud_t *pud, 798 unsigned long addr, unsigned long end, 799 long *zap_work, struct zap_details *details) 800 { 801 pmd_t *pmd; 802 unsigned long next; 803 804 pmd = pmd_offset(pud, addr); 805 do { 806 next = pmd_addr_end(addr, end); 807 if (pmd_none_or_clear_bad(pmd)) { 808 (*zap_work)--; 809 continue; 810 } 811 next = zap_pte_range(tlb, vma, pmd, addr, next, 812 zap_work, details); 813 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 814 815 return addr; 816 } 817 818 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 819 struct vm_area_struct *vma, pgd_t *pgd, 820 unsigned long addr, unsigned long end, 821 long *zap_work, struct zap_details *details) 822 { 823 pud_t *pud; 824 unsigned long next; 825 826 pud = pud_offset(pgd, addr); 827 do { 828 next = pud_addr_end(addr, end); 829 if (pud_none_or_clear_bad(pud)) { 830 (*zap_work)--; 831 continue; 832 } 833 next = zap_pmd_range(tlb, vma, pud, addr, next, 834 zap_work, details); 835 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 836 837 return addr; 838 } 839 840 static unsigned long unmap_page_range(struct mmu_gather *tlb, 841 struct vm_area_struct *vma, 842 unsigned long addr, unsigned long end, 843 long *zap_work, struct zap_details *details) 844 { 845 pgd_t *pgd; 846 unsigned long next; 847 848 if (details && !details->check_mapping && !details->nonlinear_vma) 849 details = NULL; 850 851 BUG_ON(addr >= end); 852 tlb_start_vma(tlb, vma); 853 pgd = pgd_offset(vma->vm_mm, addr); 854 do { 855 next = pgd_addr_end(addr, end); 856 if (pgd_none_or_clear_bad(pgd)) { 857 (*zap_work)--; 858 continue; 859 } 860 next = zap_pud_range(tlb, vma, pgd, addr, next, 861 zap_work, details); 862 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 863 tlb_end_vma(tlb, vma); 864 865 return addr; 866 } 867 868 #ifdef CONFIG_PREEMPT 869 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 870 #else 871 /* No preempt: go for improved straight-line efficiency */ 872 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 873 #endif 874 875 /** 876 * unmap_vmas - unmap a range of memory covered by a list of vma's 877 * @tlbp: address of the caller's struct mmu_gather 878 * @vma: the starting vma 879 * @start_addr: virtual address at which to start unmapping 880 * @end_addr: virtual address at which to end unmapping 881 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 882 * @details: details of nonlinear truncation or shared cache invalidation 883 * 884 * Returns the end address of the unmapping (restart addr if interrupted). 885 * 886 * Unmap all pages in the vma list. 887 * 888 * We aim to not hold locks for too long (for scheduling latency reasons). 889 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 890 * return the ending mmu_gather to the caller. 891 * 892 * Only addresses between `start' and `end' will be unmapped. 893 * 894 * The VMA list must be sorted in ascending virtual address order. 895 * 896 * unmap_vmas() assumes that the caller will flush the whole unmapped address 897 * range after unmap_vmas() returns. So the only responsibility here is to 898 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 899 * drops the lock and schedules. 900 */ 901 unsigned long unmap_vmas(struct mmu_gather **tlbp, 902 struct vm_area_struct *vma, unsigned long start_addr, 903 unsigned long end_addr, unsigned long *nr_accounted, 904 struct zap_details *details) 905 { 906 long zap_work = ZAP_BLOCK_SIZE; 907 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 908 int tlb_start_valid = 0; 909 unsigned long start = start_addr; 910 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 911 int fullmm = (*tlbp)->fullmm; 912 struct mm_struct *mm = vma->vm_mm; 913 914 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 915 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 916 unsigned long end; 917 918 start = max(vma->vm_start, start_addr); 919 if (start >= vma->vm_end) 920 continue; 921 end = min(vma->vm_end, end_addr); 922 if (end <= vma->vm_start) 923 continue; 924 925 if (vma->vm_flags & VM_ACCOUNT) 926 *nr_accounted += (end - start) >> PAGE_SHIFT; 927 928 if (unlikely(is_pfn_mapping(vma))) 929 untrack_pfn_vma(vma, 0, 0); 930 931 while (start != end) { 932 if (!tlb_start_valid) { 933 tlb_start = start; 934 tlb_start_valid = 1; 935 } 936 937 if (unlikely(is_vm_hugetlb_page(vma))) { 938 /* 939 * It is undesirable to test vma->vm_file as it 940 * should be non-null for valid hugetlb area. 941 * However, vm_file will be NULL in the error 942 * cleanup path of do_mmap_pgoff. When 943 * hugetlbfs ->mmap method fails, 944 * do_mmap_pgoff() nullifies vma->vm_file 945 * before calling this function to clean up. 946 * Since no pte has actually been setup, it is 947 * safe to do nothing in this case. 948 */ 949 if (vma->vm_file) { 950 unmap_hugepage_range(vma, start, end, NULL); 951 zap_work -= (end - start) / 952 pages_per_huge_page(hstate_vma(vma)); 953 } 954 955 start = end; 956 } else 957 start = unmap_page_range(*tlbp, vma, 958 start, end, &zap_work, details); 959 960 if (zap_work > 0) { 961 BUG_ON(start != end); 962 break; 963 } 964 965 tlb_finish_mmu(*tlbp, tlb_start, start); 966 967 if (need_resched() || 968 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 969 if (i_mmap_lock) { 970 *tlbp = NULL; 971 goto out; 972 } 973 cond_resched(); 974 } 975 976 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 977 tlb_start_valid = 0; 978 zap_work = ZAP_BLOCK_SIZE; 979 } 980 } 981 out: 982 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 983 return start; /* which is now the end (or restart) address */ 984 } 985 986 /** 987 * zap_page_range - remove user pages in a given range 988 * @vma: vm_area_struct holding the applicable pages 989 * @address: starting address of pages to zap 990 * @size: number of bytes to zap 991 * @details: details of nonlinear truncation or shared cache invalidation 992 */ 993 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 994 unsigned long size, struct zap_details *details) 995 { 996 struct mm_struct *mm = vma->vm_mm; 997 struct mmu_gather *tlb; 998 unsigned long end = address + size; 999 unsigned long nr_accounted = 0; 1000 1001 lru_add_drain(); 1002 tlb = tlb_gather_mmu(mm, 0); 1003 update_hiwater_rss(mm); 1004 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1005 if (tlb) 1006 tlb_finish_mmu(tlb, address, end); 1007 return end; 1008 } 1009 1010 /** 1011 * zap_vma_ptes - remove ptes mapping the vma 1012 * @vma: vm_area_struct holding ptes to be zapped 1013 * @address: starting address of pages to zap 1014 * @size: number of bytes to zap 1015 * 1016 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1017 * 1018 * The entire address range must be fully contained within the vma. 1019 * 1020 * Returns 0 if successful. 1021 */ 1022 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1023 unsigned long size) 1024 { 1025 if (address < vma->vm_start || address + size > vma->vm_end || 1026 !(vma->vm_flags & VM_PFNMAP)) 1027 return -1; 1028 zap_page_range(vma, address, size, NULL); 1029 return 0; 1030 } 1031 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1032 1033 /* 1034 * Do a quick page-table lookup for a single page. 1035 */ 1036 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1037 unsigned int flags) 1038 { 1039 pgd_t *pgd; 1040 pud_t *pud; 1041 pmd_t *pmd; 1042 pte_t *ptep, pte; 1043 spinlock_t *ptl; 1044 struct page *page; 1045 struct mm_struct *mm = vma->vm_mm; 1046 1047 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1048 if (!IS_ERR(page)) { 1049 BUG_ON(flags & FOLL_GET); 1050 goto out; 1051 } 1052 1053 page = NULL; 1054 pgd = pgd_offset(mm, address); 1055 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1056 goto no_page_table; 1057 1058 pud = pud_offset(pgd, address); 1059 if (pud_none(*pud)) 1060 goto no_page_table; 1061 if (pud_huge(*pud)) { 1062 BUG_ON(flags & FOLL_GET); 1063 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1064 goto out; 1065 } 1066 if (unlikely(pud_bad(*pud))) 1067 goto no_page_table; 1068 1069 pmd = pmd_offset(pud, address); 1070 if (pmd_none(*pmd)) 1071 goto no_page_table; 1072 if (pmd_huge(*pmd)) { 1073 BUG_ON(flags & FOLL_GET); 1074 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1075 goto out; 1076 } 1077 if (unlikely(pmd_bad(*pmd))) 1078 goto no_page_table; 1079 1080 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1081 1082 pte = *ptep; 1083 if (!pte_present(pte)) 1084 goto no_page; 1085 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1086 goto unlock; 1087 page = vm_normal_page(vma, address, pte); 1088 if (unlikely(!page)) 1089 goto bad_page; 1090 1091 if (flags & FOLL_GET) 1092 get_page(page); 1093 if (flags & FOLL_TOUCH) { 1094 if ((flags & FOLL_WRITE) && 1095 !pte_dirty(pte) && !PageDirty(page)) 1096 set_page_dirty(page); 1097 mark_page_accessed(page); 1098 } 1099 unlock: 1100 pte_unmap_unlock(ptep, ptl); 1101 out: 1102 return page; 1103 1104 bad_page: 1105 pte_unmap_unlock(ptep, ptl); 1106 return ERR_PTR(-EFAULT); 1107 1108 no_page: 1109 pte_unmap_unlock(ptep, ptl); 1110 if (!pte_none(pte)) 1111 return page; 1112 /* Fall through to ZERO_PAGE handling */ 1113 no_page_table: 1114 /* 1115 * When core dumping an enormous anonymous area that nobody 1116 * has touched so far, we don't want to allocate page tables. 1117 */ 1118 if (flags & FOLL_ANON) { 1119 page = ZERO_PAGE(0); 1120 if (flags & FOLL_GET) 1121 get_page(page); 1122 BUG_ON(flags & FOLL_WRITE); 1123 } 1124 return page; 1125 } 1126 1127 /* Can we do the FOLL_ANON optimization? */ 1128 static inline int use_zero_page(struct vm_area_struct *vma) 1129 { 1130 /* 1131 * We don't want to optimize FOLL_ANON for make_pages_present() 1132 * when it tries to page in a VM_LOCKED region. As to VM_SHARED, 1133 * we want to get the page from the page tables to make sure 1134 * that we serialize and update with any other user of that 1135 * mapping. 1136 */ 1137 if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) 1138 return 0; 1139 /* 1140 * And if we have a fault routine, it's not an anonymous region. 1141 */ 1142 return !vma->vm_ops || !vma->vm_ops->fault; 1143 } 1144 1145 1146 1147 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1148 unsigned long start, int len, int flags, 1149 struct page **pages, struct vm_area_struct **vmas) 1150 { 1151 int i; 1152 unsigned int vm_flags = 0; 1153 int write = !!(flags & GUP_FLAGS_WRITE); 1154 int force = !!(flags & GUP_FLAGS_FORCE); 1155 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); 1156 1157 if (len <= 0) 1158 return 0; 1159 /* 1160 * Require read or write permissions. 1161 * If 'force' is set, we only require the "MAY" flags. 1162 */ 1163 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1164 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1165 i = 0; 1166 1167 do { 1168 struct vm_area_struct *vma; 1169 unsigned int foll_flags; 1170 1171 vma = find_extend_vma(mm, start); 1172 if (!vma && in_gate_area(tsk, start)) { 1173 unsigned long pg = start & PAGE_MASK; 1174 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1175 pgd_t *pgd; 1176 pud_t *pud; 1177 pmd_t *pmd; 1178 pte_t *pte; 1179 1180 /* user gate pages are read-only */ 1181 if (!ignore && write) 1182 return i ? : -EFAULT; 1183 if (pg > TASK_SIZE) 1184 pgd = pgd_offset_k(pg); 1185 else 1186 pgd = pgd_offset_gate(mm, pg); 1187 BUG_ON(pgd_none(*pgd)); 1188 pud = pud_offset(pgd, pg); 1189 BUG_ON(pud_none(*pud)); 1190 pmd = pmd_offset(pud, pg); 1191 if (pmd_none(*pmd)) 1192 return i ? : -EFAULT; 1193 pte = pte_offset_map(pmd, pg); 1194 if (pte_none(*pte)) { 1195 pte_unmap(pte); 1196 return i ? : -EFAULT; 1197 } 1198 if (pages) { 1199 struct page *page = vm_normal_page(gate_vma, start, *pte); 1200 pages[i] = page; 1201 if (page) 1202 get_page(page); 1203 } 1204 pte_unmap(pte); 1205 if (vmas) 1206 vmas[i] = gate_vma; 1207 i++; 1208 start += PAGE_SIZE; 1209 len--; 1210 continue; 1211 } 1212 1213 if (!vma || 1214 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1215 (!ignore && !(vm_flags & vma->vm_flags))) 1216 return i ? : -EFAULT; 1217 1218 if (is_vm_hugetlb_page(vma)) { 1219 i = follow_hugetlb_page(mm, vma, pages, vmas, 1220 &start, &len, i, write); 1221 continue; 1222 } 1223 1224 foll_flags = FOLL_TOUCH; 1225 if (pages) 1226 foll_flags |= FOLL_GET; 1227 if (!write && use_zero_page(vma)) 1228 foll_flags |= FOLL_ANON; 1229 1230 do { 1231 struct page *page; 1232 1233 /* 1234 * If tsk is ooming, cut off its access to large memory 1235 * allocations. It has a pending SIGKILL, but it can't 1236 * be processed until returning to user space. 1237 */ 1238 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE))) 1239 return i ? i : -ENOMEM; 1240 1241 if (write) 1242 foll_flags |= FOLL_WRITE; 1243 1244 cond_resched(); 1245 while (!(page = follow_page(vma, start, foll_flags))) { 1246 int ret; 1247 ret = handle_mm_fault(mm, vma, start, 1248 foll_flags & FOLL_WRITE); 1249 if (ret & VM_FAULT_ERROR) { 1250 if (ret & VM_FAULT_OOM) 1251 return i ? i : -ENOMEM; 1252 else if (ret & VM_FAULT_SIGBUS) 1253 return i ? i : -EFAULT; 1254 BUG(); 1255 } 1256 if (ret & VM_FAULT_MAJOR) 1257 tsk->maj_flt++; 1258 else 1259 tsk->min_flt++; 1260 1261 /* 1262 * The VM_FAULT_WRITE bit tells us that 1263 * do_wp_page has broken COW when necessary, 1264 * even if maybe_mkwrite decided not to set 1265 * pte_write. We can thus safely do subsequent 1266 * page lookups as if they were reads. 1267 */ 1268 if (ret & VM_FAULT_WRITE) 1269 foll_flags &= ~FOLL_WRITE; 1270 1271 cond_resched(); 1272 } 1273 if (IS_ERR(page)) 1274 return i ? i : PTR_ERR(page); 1275 if (pages) { 1276 pages[i] = page; 1277 1278 flush_anon_page(vma, page, start); 1279 flush_dcache_page(page); 1280 } 1281 if (vmas) 1282 vmas[i] = vma; 1283 i++; 1284 start += PAGE_SIZE; 1285 len--; 1286 } while (len && start < vma->vm_end); 1287 } while (len); 1288 return i; 1289 } 1290 1291 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1292 unsigned long start, int len, int write, int force, 1293 struct page **pages, struct vm_area_struct **vmas) 1294 { 1295 int flags = 0; 1296 1297 if (write) 1298 flags |= GUP_FLAGS_WRITE; 1299 if (force) 1300 flags |= GUP_FLAGS_FORCE; 1301 1302 return __get_user_pages(tsk, mm, 1303 start, len, flags, 1304 pages, vmas); 1305 } 1306 1307 EXPORT_SYMBOL(get_user_pages); 1308 1309 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1310 spinlock_t **ptl) 1311 { 1312 pgd_t * pgd = pgd_offset(mm, addr); 1313 pud_t * pud = pud_alloc(mm, pgd, addr); 1314 if (pud) { 1315 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1316 if (pmd) 1317 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1318 } 1319 return NULL; 1320 } 1321 1322 /* 1323 * This is the old fallback for page remapping. 1324 * 1325 * For historical reasons, it only allows reserved pages. Only 1326 * old drivers should use this, and they needed to mark their 1327 * pages reserved for the old functions anyway. 1328 */ 1329 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1330 struct page *page, pgprot_t prot) 1331 { 1332 struct mm_struct *mm = vma->vm_mm; 1333 int retval; 1334 pte_t *pte; 1335 spinlock_t *ptl; 1336 1337 retval = -EINVAL; 1338 if (PageAnon(page)) 1339 goto out; 1340 retval = -ENOMEM; 1341 flush_dcache_page(page); 1342 pte = get_locked_pte(mm, addr, &ptl); 1343 if (!pte) 1344 goto out; 1345 retval = -EBUSY; 1346 if (!pte_none(*pte)) 1347 goto out_unlock; 1348 1349 /* Ok, finally just insert the thing.. */ 1350 get_page(page); 1351 inc_mm_counter(mm, file_rss); 1352 page_add_file_rmap(page); 1353 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1354 1355 retval = 0; 1356 pte_unmap_unlock(pte, ptl); 1357 return retval; 1358 out_unlock: 1359 pte_unmap_unlock(pte, ptl); 1360 out: 1361 return retval; 1362 } 1363 1364 /** 1365 * vm_insert_page - insert single page into user vma 1366 * @vma: user vma to map to 1367 * @addr: target user address of this page 1368 * @page: source kernel page 1369 * 1370 * This allows drivers to insert individual pages they've allocated 1371 * into a user vma. 1372 * 1373 * The page has to be a nice clean _individual_ kernel allocation. 1374 * If you allocate a compound page, you need to have marked it as 1375 * such (__GFP_COMP), or manually just split the page up yourself 1376 * (see split_page()). 1377 * 1378 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1379 * took an arbitrary page protection parameter. This doesn't allow 1380 * that. Your vma protection will have to be set up correctly, which 1381 * means that if you want a shared writable mapping, you'd better 1382 * ask for a shared writable mapping! 1383 * 1384 * The page does not need to be reserved. 1385 */ 1386 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1387 struct page *page) 1388 { 1389 if (addr < vma->vm_start || addr >= vma->vm_end) 1390 return -EFAULT; 1391 if (!page_count(page)) 1392 return -EINVAL; 1393 vma->vm_flags |= VM_INSERTPAGE; 1394 return insert_page(vma, addr, page, vma->vm_page_prot); 1395 } 1396 EXPORT_SYMBOL(vm_insert_page); 1397 1398 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1399 unsigned long pfn, pgprot_t prot) 1400 { 1401 struct mm_struct *mm = vma->vm_mm; 1402 int retval; 1403 pte_t *pte, entry; 1404 spinlock_t *ptl; 1405 1406 retval = -ENOMEM; 1407 pte = get_locked_pte(mm, addr, &ptl); 1408 if (!pte) 1409 goto out; 1410 retval = -EBUSY; 1411 if (!pte_none(*pte)) 1412 goto out_unlock; 1413 1414 /* Ok, finally just insert the thing.. */ 1415 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1416 set_pte_at(mm, addr, pte, entry); 1417 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ 1418 1419 retval = 0; 1420 out_unlock: 1421 pte_unmap_unlock(pte, ptl); 1422 out: 1423 return retval; 1424 } 1425 1426 /** 1427 * vm_insert_pfn - insert single pfn into user vma 1428 * @vma: user vma to map to 1429 * @addr: target user address of this page 1430 * @pfn: source kernel pfn 1431 * 1432 * Similar to vm_inert_page, this allows drivers to insert individual pages 1433 * they've allocated into a user vma. Same comments apply. 1434 * 1435 * This function should only be called from a vm_ops->fault handler, and 1436 * in that case the handler should return NULL. 1437 * 1438 * vma cannot be a COW mapping. 1439 * 1440 * As this is called only for pages that do not currently exist, we 1441 * do not need to flush old virtual caches or the TLB. 1442 */ 1443 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1444 unsigned long pfn) 1445 { 1446 int ret; 1447 /* 1448 * Technically, architectures with pte_special can avoid all these 1449 * restrictions (same for remap_pfn_range). However we would like 1450 * consistency in testing and feature parity among all, so we should 1451 * try to keep these invariants in place for everybody. 1452 */ 1453 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1454 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1455 (VM_PFNMAP|VM_MIXEDMAP)); 1456 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1457 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1458 1459 if (addr < vma->vm_start || addr >= vma->vm_end) 1460 return -EFAULT; 1461 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE)) 1462 return -EINVAL; 1463 1464 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1465 1466 if (ret) 1467 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1468 1469 return ret; 1470 } 1471 EXPORT_SYMBOL(vm_insert_pfn); 1472 1473 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1474 unsigned long pfn) 1475 { 1476 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1477 1478 if (addr < vma->vm_start || addr >= vma->vm_end) 1479 return -EFAULT; 1480 1481 /* 1482 * If we don't have pte special, then we have to use the pfn_valid() 1483 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1484 * refcount the page if pfn_valid is true (hence insert_page rather 1485 * than insert_pfn). 1486 */ 1487 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1488 struct page *page; 1489 1490 page = pfn_to_page(pfn); 1491 return insert_page(vma, addr, page, vma->vm_page_prot); 1492 } 1493 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1494 } 1495 EXPORT_SYMBOL(vm_insert_mixed); 1496 1497 /* 1498 * maps a range of physical memory into the requested pages. the old 1499 * mappings are removed. any references to nonexistent pages results 1500 * in null mappings (currently treated as "copy-on-access") 1501 */ 1502 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1503 unsigned long addr, unsigned long end, 1504 unsigned long pfn, pgprot_t prot) 1505 { 1506 pte_t *pte; 1507 spinlock_t *ptl; 1508 1509 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1510 if (!pte) 1511 return -ENOMEM; 1512 arch_enter_lazy_mmu_mode(); 1513 do { 1514 BUG_ON(!pte_none(*pte)); 1515 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1516 pfn++; 1517 } while (pte++, addr += PAGE_SIZE, addr != end); 1518 arch_leave_lazy_mmu_mode(); 1519 pte_unmap_unlock(pte - 1, ptl); 1520 return 0; 1521 } 1522 1523 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1524 unsigned long addr, unsigned long end, 1525 unsigned long pfn, pgprot_t prot) 1526 { 1527 pmd_t *pmd; 1528 unsigned long next; 1529 1530 pfn -= addr >> PAGE_SHIFT; 1531 pmd = pmd_alloc(mm, pud, addr); 1532 if (!pmd) 1533 return -ENOMEM; 1534 do { 1535 next = pmd_addr_end(addr, end); 1536 if (remap_pte_range(mm, pmd, addr, next, 1537 pfn + (addr >> PAGE_SHIFT), prot)) 1538 return -ENOMEM; 1539 } while (pmd++, addr = next, addr != end); 1540 return 0; 1541 } 1542 1543 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1544 unsigned long addr, unsigned long end, 1545 unsigned long pfn, pgprot_t prot) 1546 { 1547 pud_t *pud; 1548 unsigned long next; 1549 1550 pfn -= addr >> PAGE_SHIFT; 1551 pud = pud_alloc(mm, pgd, addr); 1552 if (!pud) 1553 return -ENOMEM; 1554 do { 1555 next = pud_addr_end(addr, end); 1556 if (remap_pmd_range(mm, pud, addr, next, 1557 pfn + (addr >> PAGE_SHIFT), prot)) 1558 return -ENOMEM; 1559 } while (pud++, addr = next, addr != end); 1560 return 0; 1561 } 1562 1563 /** 1564 * remap_pfn_range - remap kernel memory to userspace 1565 * @vma: user vma to map to 1566 * @addr: target user address to start at 1567 * @pfn: physical address of kernel memory 1568 * @size: size of map area 1569 * @prot: page protection flags for this mapping 1570 * 1571 * Note: this is only safe if the mm semaphore is held when called. 1572 */ 1573 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1574 unsigned long pfn, unsigned long size, pgprot_t prot) 1575 { 1576 pgd_t *pgd; 1577 unsigned long next; 1578 unsigned long end = addr + PAGE_ALIGN(size); 1579 struct mm_struct *mm = vma->vm_mm; 1580 int err; 1581 1582 /* 1583 * Physically remapped pages are special. Tell the 1584 * rest of the world about it: 1585 * VM_IO tells people not to look at these pages 1586 * (accesses can have side effects). 1587 * VM_RESERVED is specified all over the place, because 1588 * in 2.4 it kept swapout's vma scan off this vma; but 1589 * in 2.6 the LRU scan won't even find its pages, so this 1590 * flag means no more than count its pages in reserved_vm, 1591 * and omit it from core dump, even when VM_IO turned off. 1592 * VM_PFNMAP tells the core MM that the base pages are just 1593 * raw PFN mappings, and do not have a "struct page" associated 1594 * with them. 1595 * 1596 * There's a horrible special case to handle copy-on-write 1597 * behaviour that some programs depend on. We mark the "original" 1598 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1599 */ 1600 if (addr == vma->vm_start && end == vma->vm_end) 1601 vma->vm_pgoff = pfn; 1602 else if (is_cow_mapping(vma->vm_flags)) 1603 return -EINVAL; 1604 1605 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1606 1607 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size)); 1608 if (err) 1609 return -EINVAL; 1610 1611 BUG_ON(addr >= end); 1612 pfn -= addr >> PAGE_SHIFT; 1613 pgd = pgd_offset(mm, addr); 1614 flush_cache_range(vma, addr, end); 1615 do { 1616 next = pgd_addr_end(addr, end); 1617 err = remap_pud_range(mm, pgd, addr, next, 1618 pfn + (addr >> PAGE_SHIFT), prot); 1619 if (err) 1620 break; 1621 } while (pgd++, addr = next, addr != end); 1622 1623 if (err) 1624 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1625 1626 return err; 1627 } 1628 EXPORT_SYMBOL(remap_pfn_range); 1629 1630 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1631 unsigned long addr, unsigned long end, 1632 pte_fn_t fn, void *data) 1633 { 1634 pte_t *pte; 1635 int err; 1636 pgtable_t token; 1637 spinlock_t *uninitialized_var(ptl); 1638 1639 pte = (mm == &init_mm) ? 1640 pte_alloc_kernel(pmd, addr) : 1641 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1642 if (!pte) 1643 return -ENOMEM; 1644 1645 BUG_ON(pmd_huge(*pmd)); 1646 1647 token = pmd_pgtable(*pmd); 1648 1649 do { 1650 err = fn(pte, token, addr, data); 1651 if (err) 1652 break; 1653 } while (pte++, addr += PAGE_SIZE, addr != end); 1654 1655 if (mm != &init_mm) 1656 pte_unmap_unlock(pte-1, ptl); 1657 return err; 1658 } 1659 1660 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1661 unsigned long addr, unsigned long end, 1662 pte_fn_t fn, void *data) 1663 { 1664 pmd_t *pmd; 1665 unsigned long next; 1666 int err; 1667 1668 BUG_ON(pud_huge(*pud)); 1669 1670 pmd = pmd_alloc(mm, pud, addr); 1671 if (!pmd) 1672 return -ENOMEM; 1673 do { 1674 next = pmd_addr_end(addr, end); 1675 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1676 if (err) 1677 break; 1678 } while (pmd++, addr = next, addr != end); 1679 return err; 1680 } 1681 1682 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1683 unsigned long addr, unsigned long end, 1684 pte_fn_t fn, void *data) 1685 { 1686 pud_t *pud; 1687 unsigned long next; 1688 int err; 1689 1690 pud = pud_alloc(mm, pgd, addr); 1691 if (!pud) 1692 return -ENOMEM; 1693 do { 1694 next = pud_addr_end(addr, end); 1695 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1696 if (err) 1697 break; 1698 } while (pud++, addr = next, addr != end); 1699 return err; 1700 } 1701 1702 /* 1703 * Scan a region of virtual memory, filling in page tables as necessary 1704 * and calling a provided function on each leaf page table. 1705 */ 1706 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1707 unsigned long size, pte_fn_t fn, void *data) 1708 { 1709 pgd_t *pgd; 1710 unsigned long next; 1711 unsigned long start = addr, end = addr + size; 1712 int err; 1713 1714 BUG_ON(addr >= end); 1715 mmu_notifier_invalidate_range_start(mm, start, end); 1716 pgd = pgd_offset(mm, addr); 1717 do { 1718 next = pgd_addr_end(addr, end); 1719 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1720 if (err) 1721 break; 1722 } while (pgd++, addr = next, addr != end); 1723 mmu_notifier_invalidate_range_end(mm, start, end); 1724 return err; 1725 } 1726 EXPORT_SYMBOL_GPL(apply_to_page_range); 1727 1728 /* 1729 * handle_pte_fault chooses page fault handler according to an entry 1730 * which was read non-atomically. Before making any commitment, on 1731 * those architectures or configurations (e.g. i386 with PAE) which 1732 * might give a mix of unmatched parts, do_swap_page and do_file_page 1733 * must check under lock before unmapping the pte and proceeding 1734 * (but do_wp_page is only called after already making such a check; 1735 * and do_anonymous_page and do_no_page can safely check later on). 1736 */ 1737 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1738 pte_t *page_table, pte_t orig_pte) 1739 { 1740 int same = 1; 1741 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1742 if (sizeof(pte_t) > sizeof(unsigned long)) { 1743 spinlock_t *ptl = pte_lockptr(mm, pmd); 1744 spin_lock(ptl); 1745 same = pte_same(*page_table, orig_pte); 1746 spin_unlock(ptl); 1747 } 1748 #endif 1749 pte_unmap(page_table); 1750 return same; 1751 } 1752 1753 /* 1754 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1755 * servicing faults for write access. In the normal case, do always want 1756 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1757 * that do not have writing enabled, when used by access_process_vm. 1758 */ 1759 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1760 { 1761 if (likely(vma->vm_flags & VM_WRITE)) 1762 pte = pte_mkwrite(pte); 1763 return pte; 1764 } 1765 1766 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1767 { 1768 /* 1769 * If the source page was a PFN mapping, we don't have 1770 * a "struct page" for it. We do a best-effort copy by 1771 * just copying from the original user address. If that 1772 * fails, we just zero-fill it. Live with it. 1773 */ 1774 if (unlikely(!src)) { 1775 void *kaddr = kmap_atomic(dst, KM_USER0); 1776 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1777 1778 /* 1779 * This really shouldn't fail, because the page is there 1780 * in the page tables. But it might just be unreadable, 1781 * in which case we just give up and fill the result with 1782 * zeroes. 1783 */ 1784 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1785 memset(kaddr, 0, PAGE_SIZE); 1786 kunmap_atomic(kaddr, KM_USER0); 1787 flush_dcache_page(dst); 1788 } else 1789 copy_user_highpage(dst, src, va, vma); 1790 } 1791 1792 /* 1793 * This routine handles present pages, when users try to write 1794 * to a shared page. It is done by copying the page to a new address 1795 * and decrementing the shared-page counter for the old page. 1796 * 1797 * Note that this routine assumes that the protection checks have been 1798 * done by the caller (the low-level page fault routine in most cases). 1799 * Thus we can safely just mark it writable once we've done any necessary 1800 * COW. 1801 * 1802 * We also mark the page dirty at this point even though the page will 1803 * change only once the write actually happens. This avoids a few races, 1804 * and potentially makes it more efficient. 1805 * 1806 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1807 * but allow concurrent faults), with pte both mapped and locked. 1808 * We return with mmap_sem still held, but pte unmapped and unlocked. 1809 */ 1810 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1811 unsigned long address, pte_t *page_table, pmd_t *pmd, 1812 spinlock_t *ptl, pte_t orig_pte) 1813 { 1814 struct page *old_page, *new_page; 1815 pte_t entry; 1816 int reuse = 0, ret = 0; 1817 int page_mkwrite = 0; 1818 struct page *dirty_page = NULL; 1819 1820 old_page = vm_normal_page(vma, address, orig_pte); 1821 if (!old_page) { 1822 /* 1823 * VM_MIXEDMAP !pfn_valid() case 1824 * 1825 * We should not cow pages in a shared writeable mapping. 1826 * Just mark the pages writable as we can't do any dirty 1827 * accounting on raw pfn maps. 1828 */ 1829 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1830 (VM_WRITE|VM_SHARED)) 1831 goto reuse; 1832 goto gotten; 1833 } 1834 1835 /* 1836 * Take out anonymous pages first, anonymous shared vmas are 1837 * not dirty accountable. 1838 */ 1839 if (PageAnon(old_page)) { 1840 if (trylock_page(old_page)) { 1841 reuse = can_share_swap_page(old_page); 1842 unlock_page(old_page); 1843 } 1844 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1845 (VM_WRITE|VM_SHARED))) { 1846 /* 1847 * Only catch write-faults on shared writable pages, 1848 * read-only shared pages can get COWed by 1849 * get_user_pages(.write=1, .force=1). 1850 */ 1851 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 1852 /* 1853 * Notify the address space that the page is about to 1854 * become writable so that it can prohibit this or wait 1855 * for the page to get into an appropriate state. 1856 * 1857 * We do this without the lock held, so that it can 1858 * sleep if it needs to. 1859 */ 1860 page_cache_get(old_page); 1861 pte_unmap_unlock(page_table, ptl); 1862 1863 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0) 1864 goto unwritable_page; 1865 1866 /* 1867 * Since we dropped the lock we need to revalidate 1868 * the PTE as someone else may have changed it. If 1869 * they did, we just return, as we can count on the 1870 * MMU to tell us if they didn't also make it writable. 1871 */ 1872 page_table = pte_offset_map_lock(mm, pmd, address, 1873 &ptl); 1874 page_cache_release(old_page); 1875 if (!pte_same(*page_table, orig_pte)) 1876 goto unlock; 1877 1878 page_mkwrite = 1; 1879 } 1880 dirty_page = old_page; 1881 get_page(dirty_page); 1882 reuse = 1; 1883 } 1884 1885 if (reuse) { 1886 reuse: 1887 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1888 entry = pte_mkyoung(orig_pte); 1889 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1890 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 1891 update_mmu_cache(vma, address, entry); 1892 ret |= VM_FAULT_WRITE; 1893 goto unlock; 1894 } 1895 1896 /* 1897 * Ok, we need to copy. Oh, well.. 1898 */ 1899 page_cache_get(old_page); 1900 gotten: 1901 pte_unmap_unlock(page_table, ptl); 1902 1903 if (unlikely(anon_vma_prepare(vma))) 1904 goto oom; 1905 VM_BUG_ON(old_page == ZERO_PAGE(0)); 1906 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 1907 if (!new_page) 1908 goto oom; 1909 /* 1910 * Don't let another task, with possibly unlocked vma, 1911 * keep the mlocked page. 1912 */ 1913 if (vma->vm_flags & VM_LOCKED) { 1914 lock_page(old_page); /* for LRU manipulation */ 1915 clear_page_mlock(old_page); 1916 unlock_page(old_page); 1917 } 1918 cow_user_page(new_page, old_page, address, vma); 1919 __SetPageUptodate(new_page); 1920 1921 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 1922 goto oom_free_new; 1923 1924 /* 1925 * Re-check the pte - we dropped the lock 1926 */ 1927 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 1928 if (likely(pte_same(*page_table, orig_pte))) { 1929 if (old_page) { 1930 if (!PageAnon(old_page)) { 1931 dec_mm_counter(mm, file_rss); 1932 inc_mm_counter(mm, anon_rss); 1933 } 1934 } else 1935 inc_mm_counter(mm, anon_rss); 1936 flush_cache_page(vma, address, pte_pfn(orig_pte)); 1937 entry = mk_pte(new_page, vma->vm_page_prot); 1938 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1939 /* 1940 * Clear the pte entry and flush it first, before updating the 1941 * pte with the new entry. This will avoid a race condition 1942 * seen in the presence of one thread doing SMC and another 1943 * thread doing COW. 1944 */ 1945 ptep_clear_flush_notify(vma, address, page_table); 1946 SetPageSwapBacked(new_page); 1947 lru_cache_add_active_or_unevictable(new_page, vma); 1948 page_add_new_anon_rmap(new_page, vma, address); 1949 1950 //TODO: is this safe? do_anonymous_page() does it this way. 1951 set_pte_at(mm, address, page_table, entry); 1952 update_mmu_cache(vma, address, entry); 1953 if (old_page) { 1954 /* 1955 * Only after switching the pte to the new page may 1956 * we remove the mapcount here. Otherwise another 1957 * process may come and find the rmap count decremented 1958 * before the pte is switched to the new page, and 1959 * "reuse" the old page writing into it while our pte 1960 * here still points into it and can be read by other 1961 * threads. 1962 * 1963 * The critical issue is to order this 1964 * page_remove_rmap with the ptp_clear_flush above. 1965 * Those stores are ordered by (if nothing else,) 1966 * the barrier present in the atomic_add_negative 1967 * in page_remove_rmap. 1968 * 1969 * Then the TLB flush in ptep_clear_flush ensures that 1970 * no process can access the old page before the 1971 * decremented mapcount is visible. And the old page 1972 * cannot be reused until after the decremented 1973 * mapcount is visible. So transitively, TLBs to 1974 * old page will be flushed before it can be reused. 1975 */ 1976 page_remove_rmap(old_page, vma); 1977 } 1978 1979 /* Free the old page.. */ 1980 new_page = old_page; 1981 ret |= VM_FAULT_WRITE; 1982 } else 1983 mem_cgroup_uncharge_page(new_page); 1984 1985 if (new_page) 1986 page_cache_release(new_page); 1987 if (old_page) 1988 page_cache_release(old_page); 1989 unlock: 1990 pte_unmap_unlock(page_table, ptl); 1991 if (dirty_page) { 1992 if (vma->vm_file) 1993 file_update_time(vma->vm_file); 1994 1995 /* 1996 * Yes, Virginia, this is actually required to prevent a race 1997 * with clear_page_dirty_for_io() from clearing the page dirty 1998 * bit after it clear all dirty ptes, but before a racing 1999 * do_wp_page installs a dirty pte. 2000 * 2001 * do_no_page is protected similarly. 2002 */ 2003 wait_on_page_locked(dirty_page); 2004 set_page_dirty_balance(dirty_page, page_mkwrite); 2005 put_page(dirty_page); 2006 } 2007 return ret; 2008 oom_free_new: 2009 page_cache_release(new_page); 2010 oom: 2011 if (old_page) 2012 page_cache_release(old_page); 2013 return VM_FAULT_OOM; 2014 2015 unwritable_page: 2016 page_cache_release(old_page); 2017 return VM_FAULT_SIGBUS; 2018 } 2019 2020 /* 2021 * Helper functions for unmap_mapping_range(). 2022 * 2023 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2024 * 2025 * We have to restart searching the prio_tree whenever we drop the lock, 2026 * since the iterator is only valid while the lock is held, and anyway 2027 * a later vma might be split and reinserted earlier while lock dropped. 2028 * 2029 * The list of nonlinear vmas could be handled more efficiently, using 2030 * a placeholder, but handle it in the same way until a need is shown. 2031 * It is important to search the prio_tree before nonlinear list: a vma 2032 * may become nonlinear and be shifted from prio_tree to nonlinear list 2033 * while the lock is dropped; but never shifted from list to prio_tree. 2034 * 2035 * In order to make forward progress despite restarting the search, 2036 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2037 * quickly skip it next time around. Since the prio_tree search only 2038 * shows us those vmas affected by unmapping the range in question, we 2039 * can't efficiently keep all vmas in step with mapping->truncate_count: 2040 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2041 * mapping->truncate_count and vma->vm_truncate_count are protected by 2042 * i_mmap_lock. 2043 * 2044 * In order to make forward progress despite repeatedly restarting some 2045 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2046 * and restart from that address when we reach that vma again. It might 2047 * have been split or merged, shrunk or extended, but never shifted: so 2048 * restart_addr remains valid so long as it remains in the vma's range. 2049 * unmap_mapping_range forces truncate_count to leap over page-aligned 2050 * values so we can save vma's restart_addr in its truncate_count field. 2051 */ 2052 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2053 2054 static void reset_vma_truncate_counts(struct address_space *mapping) 2055 { 2056 struct vm_area_struct *vma; 2057 struct prio_tree_iter iter; 2058 2059 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2060 vma->vm_truncate_count = 0; 2061 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2062 vma->vm_truncate_count = 0; 2063 } 2064 2065 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2066 unsigned long start_addr, unsigned long end_addr, 2067 struct zap_details *details) 2068 { 2069 unsigned long restart_addr; 2070 int need_break; 2071 2072 /* 2073 * files that support invalidating or truncating portions of the 2074 * file from under mmaped areas must have their ->fault function 2075 * return a locked page (and set VM_FAULT_LOCKED in the return). 2076 * This provides synchronisation against concurrent unmapping here. 2077 */ 2078 2079 again: 2080 restart_addr = vma->vm_truncate_count; 2081 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2082 start_addr = restart_addr; 2083 if (start_addr >= end_addr) { 2084 /* Top of vma has been split off since last time */ 2085 vma->vm_truncate_count = details->truncate_count; 2086 return 0; 2087 } 2088 } 2089 2090 restart_addr = zap_page_range(vma, start_addr, 2091 end_addr - start_addr, details); 2092 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2093 2094 if (restart_addr >= end_addr) { 2095 /* We have now completed this vma: mark it so */ 2096 vma->vm_truncate_count = details->truncate_count; 2097 if (!need_break) 2098 return 0; 2099 } else { 2100 /* Note restart_addr in vma's truncate_count field */ 2101 vma->vm_truncate_count = restart_addr; 2102 if (!need_break) 2103 goto again; 2104 } 2105 2106 spin_unlock(details->i_mmap_lock); 2107 cond_resched(); 2108 spin_lock(details->i_mmap_lock); 2109 return -EINTR; 2110 } 2111 2112 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2113 struct zap_details *details) 2114 { 2115 struct vm_area_struct *vma; 2116 struct prio_tree_iter iter; 2117 pgoff_t vba, vea, zba, zea; 2118 2119 restart: 2120 vma_prio_tree_foreach(vma, &iter, root, 2121 details->first_index, details->last_index) { 2122 /* Skip quickly over those we have already dealt with */ 2123 if (vma->vm_truncate_count == details->truncate_count) 2124 continue; 2125 2126 vba = vma->vm_pgoff; 2127 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2128 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2129 zba = details->first_index; 2130 if (zba < vba) 2131 zba = vba; 2132 zea = details->last_index; 2133 if (zea > vea) 2134 zea = vea; 2135 2136 if (unmap_mapping_range_vma(vma, 2137 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2138 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2139 details) < 0) 2140 goto restart; 2141 } 2142 } 2143 2144 static inline void unmap_mapping_range_list(struct list_head *head, 2145 struct zap_details *details) 2146 { 2147 struct vm_area_struct *vma; 2148 2149 /* 2150 * In nonlinear VMAs there is no correspondence between virtual address 2151 * offset and file offset. So we must perform an exhaustive search 2152 * across *all* the pages in each nonlinear VMA, not just the pages 2153 * whose virtual address lies outside the file truncation point. 2154 */ 2155 restart: 2156 list_for_each_entry(vma, head, shared.vm_set.list) { 2157 /* Skip quickly over those we have already dealt with */ 2158 if (vma->vm_truncate_count == details->truncate_count) 2159 continue; 2160 details->nonlinear_vma = vma; 2161 if (unmap_mapping_range_vma(vma, vma->vm_start, 2162 vma->vm_end, details) < 0) 2163 goto restart; 2164 } 2165 } 2166 2167 /** 2168 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2169 * @mapping: the address space containing mmaps to be unmapped. 2170 * @holebegin: byte in first page to unmap, relative to the start of 2171 * the underlying file. This will be rounded down to a PAGE_SIZE 2172 * boundary. Note that this is different from vmtruncate(), which 2173 * must keep the partial page. In contrast, we must get rid of 2174 * partial pages. 2175 * @holelen: size of prospective hole in bytes. This will be rounded 2176 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2177 * end of the file. 2178 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2179 * but 0 when invalidating pagecache, don't throw away private data. 2180 */ 2181 void unmap_mapping_range(struct address_space *mapping, 2182 loff_t const holebegin, loff_t const holelen, int even_cows) 2183 { 2184 struct zap_details details; 2185 pgoff_t hba = holebegin >> PAGE_SHIFT; 2186 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2187 2188 /* Check for overflow. */ 2189 if (sizeof(holelen) > sizeof(hlen)) { 2190 long long holeend = 2191 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2192 if (holeend & ~(long long)ULONG_MAX) 2193 hlen = ULONG_MAX - hba + 1; 2194 } 2195 2196 details.check_mapping = even_cows? NULL: mapping; 2197 details.nonlinear_vma = NULL; 2198 details.first_index = hba; 2199 details.last_index = hba + hlen - 1; 2200 if (details.last_index < details.first_index) 2201 details.last_index = ULONG_MAX; 2202 details.i_mmap_lock = &mapping->i_mmap_lock; 2203 2204 spin_lock(&mapping->i_mmap_lock); 2205 2206 /* Protect against endless unmapping loops */ 2207 mapping->truncate_count++; 2208 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2209 if (mapping->truncate_count == 0) 2210 reset_vma_truncate_counts(mapping); 2211 mapping->truncate_count++; 2212 } 2213 details.truncate_count = mapping->truncate_count; 2214 2215 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2216 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2217 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2218 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2219 spin_unlock(&mapping->i_mmap_lock); 2220 } 2221 EXPORT_SYMBOL(unmap_mapping_range); 2222 2223 /** 2224 * vmtruncate - unmap mappings "freed" by truncate() syscall 2225 * @inode: inode of the file used 2226 * @offset: file offset to start truncating 2227 * 2228 * NOTE! We have to be ready to update the memory sharing 2229 * between the file and the memory map for a potential last 2230 * incomplete page. Ugly, but necessary. 2231 */ 2232 int vmtruncate(struct inode * inode, loff_t offset) 2233 { 2234 if (inode->i_size < offset) { 2235 unsigned long limit; 2236 2237 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2238 if (limit != RLIM_INFINITY && offset > limit) 2239 goto out_sig; 2240 if (offset > inode->i_sb->s_maxbytes) 2241 goto out_big; 2242 i_size_write(inode, offset); 2243 } else { 2244 struct address_space *mapping = inode->i_mapping; 2245 2246 /* 2247 * truncation of in-use swapfiles is disallowed - it would 2248 * cause subsequent swapout to scribble on the now-freed 2249 * blocks. 2250 */ 2251 if (IS_SWAPFILE(inode)) 2252 return -ETXTBSY; 2253 i_size_write(inode, offset); 2254 2255 /* 2256 * unmap_mapping_range is called twice, first simply for 2257 * efficiency so that truncate_inode_pages does fewer 2258 * single-page unmaps. However after this first call, and 2259 * before truncate_inode_pages finishes, it is possible for 2260 * private pages to be COWed, which remain after 2261 * truncate_inode_pages finishes, hence the second 2262 * unmap_mapping_range call must be made for correctness. 2263 */ 2264 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2265 truncate_inode_pages(mapping, offset); 2266 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2267 } 2268 2269 if (inode->i_op && inode->i_op->truncate) 2270 inode->i_op->truncate(inode); 2271 return 0; 2272 2273 out_sig: 2274 send_sig(SIGXFSZ, current, 0); 2275 out_big: 2276 return -EFBIG; 2277 } 2278 EXPORT_SYMBOL(vmtruncate); 2279 2280 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2281 { 2282 struct address_space *mapping = inode->i_mapping; 2283 2284 /* 2285 * If the underlying filesystem is not going to provide 2286 * a way to truncate a range of blocks (punch a hole) - 2287 * we should return failure right now. 2288 */ 2289 if (!inode->i_op || !inode->i_op->truncate_range) 2290 return -ENOSYS; 2291 2292 mutex_lock(&inode->i_mutex); 2293 down_write(&inode->i_alloc_sem); 2294 unmap_mapping_range(mapping, offset, (end - offset), 1); 2295 truncate_inode_pages_range(mapping, offset, end); 2296 unmap_mapping_range(mapping, offset, (end - offset), 1); 2297 inode->i_op->truncate_range(inode, offset, end); 2298 up_write(&inode->i_alloc_sem); 2299 mutex_unlock(&inode->i_mutex); 2300 2301 return 0; 2302 } 2303 2304 /* 2305 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2306 * but allow concurrent faults), and pte mapped but not yet locked. 2307 * We return with mmap_sem still held, but pte unmapped and unlocked. 2308 */ 2309 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2310 unsigned long address, pte_t *page_table, pmd_t *pmd, 2311 int write_access, pte_t orig_pte) 2312 { 2313 spinlock_t *ptl; 2314 struct page *page; 2315 swp_entry_t entry; 2316 pte_t pte; 2317 int ret = 0; 2318 2319 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2320 goto out; 2321 2322 entry = pte_to_swp_entry(orig_pte); 2323 if (is_migration_entry(entry)) { 2324 migration_entry_wait(mm, pmd, address); 2325 goto out; 2326 } 2327 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2328 page = lookup_swap_cache(entry); 2329 if (!page) { 2330 grab_swap_token(); /* Contend for token _before_ read-in */ 2331 page = swapin_readahead(entry, 2332 GFP_HIGHUSER_MOVABLE, vma, address); 2333 if (!page) { 2334 /* 2335 * Back out if somebody else faulted in this pte 2336 * while we released the pte lock. 2337 */ 2338 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2339 if (likely(pte_same(*page_table, orig_pte))) 2340 ret = VM_FAULT_OOM; 2341 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2342 goto unlock; 2343 } 2344 2345 /* Had to read the page from swap area: Major fault */ 2346 ret = VM_FAULT_MAJOR; 2347 count_vm_event(PGMAJFAULT); 2348 } 2349 2350 mark_page_accessed(page); 2351 2352 lock_page(page); 2353 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2354 2355 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2356 ret = VM_FAULT_OOM; 2357 unlock_page(page); 2358 goto out; 2359 } 2360 2361 /* 2362 * Back out if somebody else already faulted in this pte. 2363 */ 2364 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2365 if (unlikely(!pte_same(*page_table, orig_pte))) 2366 goto out_nomap; 2367 2368 if (unlikely(!PageUptodate(page))) { 2369 ret = VM_FAULT_SIGBUS; 2370 goto out_nomap; 2371 } 2372 2373 /* The page isn't present yet, go ahead with the fault. */ 2374 2375 inc_mm_counter(mm, anon_rss); 2376 pte = mk_pte(page, vma->vm_page_prot); 2377 if (write_access && can_share_swap_page(page)) { 2378 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2379 write_access = 0; 2380 } 2381 2382 flush_icache_page(vma, page); 2383 set_pte_at(mm, address, page_table, pte); 2384 page_add_anon_rmap(page, vma, address); 2385 2386 swap_free(entry); 2387 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2388 remove_exclusive_swap_page(page); 2389 unlock_page(page); 2390 2391 if (write_access) { 2392 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2393 if (ret & VM_FAULT_ERROR) 2394 ret &= VM_FAULT_ERROR; 2395 goto out; 2396 } 2397 2398 /* No need to invalidate - it was non-present before */ 2399 update_mmu_cache(vma, address, pte); 2400 unlock: 2401 pte_unmap_unlock(page_table, ptl); 2402 out: 2403 return ret; 2404 out_nomap: 2405 mem_cgroup_uncharge_page(page); 2406 pte_unmap_unlock(page_table, ptl); 2407 unlock_page(page); 2408 page_cache_release(page); 2409 return ret; 2410 } 2411 2412 /* 2413 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2414 * but allow concurrent faults), and pte mapped but not yet locked. 2415 * We return with mmap_sem still held, but pte unmapped and unlocked. 2416 */ 2417 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2418 unsigned long address, pte_t *page_table, pmd_t *pmd, 2419 int write_access) 2420 { 2421 struct page *page; 2422 spinlock_t *ptl; 2423 pte_t entry; 2424 2425 /* Allocate our own private page. */ 2426 pte_unmap(page_table); 2427 2428 if (unlikely(anon_vma_prepare(vma))) 2429 goto oom; 2430 page = alloc_zeroed_user_highpage_movable(vma, address); 2431 if (!page) 2432 goto oom; 2433 __SetPageUptodate(page); 2434 2435 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) 2436 goto oom_free_page; 2437 2438 entry = mk_pte(page, vma->vm_page_prot); 2439 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2440 2441 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2442 if (!pte_none(*page_table)) 2443 goto release; 2444 inc_mm_counter(mm, anon_rss); 2445 SetPageSwapBacked(page); 2446 lru_cache_add_active_or_unevictable(page, vma); 2447 page_add_new_anon_rmap(page, vma, address); 2448 set_pte_at(mm, address, page_table, entry); 2449 2450 /* No need to invalidate - it was non-present before */ 2451 update_mmu_cache(vma, address, entry); 2452 unlock: 2453 pte_unmap_unlock(page_table, ptl); 2454 return 0; 2455 release: 2456 mem_cgroup_uncharge_page(page); 2457 page_cache_release(page); 2458 goto unlock; 2459 oom_free_page: 2460 page_cache_release(page); 2461 oom: 2462 return VM_FAULT_OOM; 2463 } 2464 2465 /* 2466 * __do_fault() tries to create a new page mapping. It aggressively 2467 * tries to share with existing pages, but makes a separate copy if 2468 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2469 * the next page fault. 2470 * 2471 * As this is called only for pages that do not currently exist, we 2472 * do not need to flush old virtual caches or the TLB. 2473 * 2474 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2475 * but allow concurrent faults), and pte neither mapped nor locked. 2476 * We return with mmap_sem still held, but pte unmapped and unlocked. 2477 */ 2478 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2479 unsigned long address, pmd_t *pmd, 2480 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2481 { 2482 pte_t *page_table; 2483 spinlock_t *ptl; 2484 struct page *page; 2485 pte_t entry; 2486 int anon = 0; 2487 int charged = 0; 2488 struct page *dirty_page = NULL; 2489 struct vm_fault vmf; 2490 int ret; 2491 int page_mkwrite = 0; 2492 2493 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2494 vmf.pgoff = pgoff; 2495 vmf.flags = flags; 2496 vmf.page = NULL; 2497 2498 ret = vma->vm_ops->fault(vma, &vmf); 2499 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2500 return ret; 2501 2502 /* 2503 * For consistency in subsequent calls, make the faulted page always 2504 * locked. 2505 */ 2506 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2507 lock_page(vmf.page); 2508 else 2509 VM_BUG_ON(!PageLocked(vmf.page)); 2510 2511 /* 2512 * Should we do an early C-O-W break? 2513 */ 2514 page = vmf.page; 2515 if (flags & FAULT_FLAG_WRITE) { 2516 if (!(vma->vm_flags & VM_SHARED)) { 2517 anon = 1; 2518 if (unlikely(anon_vma_prepare(vma))) { 2519 ret = VM_FAULT_OOM; 2520 goto out; 2521 } 2522 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2523 vma, address); 2524 if (!page) { 2525 ret = VM_FAULT_OOM; 2526 goto out; 2527 } 2528 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) { 2529 ret = VM_FAULT_OOM; 2530 page_cache_release(page); 2531 goto out; 2532 } 2533 charged = 1; 2534 /* 2535 * Don't let another task, with possibly unlocked vma, 2536 * keep the mlocked page. 2537 */ 2538 if (vma->vm_flags & VM_LOCKED) 2539 clear_page_mlock(vmf.page); 2540 copy_user_highpage(page, vmf.page, address, vma); 2541 __SetPageUptodate(page); 2542 } else { 2543 /* 2544 * If the page will be shareable, see if the backing 2545 * address space wants to know that the page is about 2546 * to become writable 2547 */ 2548 if (vma->vm_ops->page_mkwrite) { 2549 unlock_page(page); 2550 if (vma->vm_ops->page_mkwrite(vma, page) < 0) { 2551 ret = VM_FAULT_SIGBUS; 2552 anon = 1; /* no anon but release vmf.page */ 2553 goto out_unlocked; 2554 } 2555 lock_page(page); 2556 /* 2557 * XXX: this is not quite right (racy vs 2558 * invalidate) to unlock and relock the page 2559 * like this, however a better fix requires 2560 * reworking page_mkwrite locking API, which 2561 * is better done later. 2562 */ 2563 if (!page->mapping) { 2564 ret = 0; 2565 anon = 1; /* no anon but release vmf.page */ 2566 goto out; 2567 } 2568 page_mkwrite = 1; 2569 } 2570 } 2571 2572 } 2573 2574 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2575 2576 /* 2577 * This silly early PAGE_DIRTY setting removes a race 2578 * due to the bad i386 page protection. But it's valid 2579 * for other architectures too. 2580 * 2581 * Note that if write_access is true, we either now have 2582 * an exclusive copy of the page, or this is a shared mapping, 2583 * so we can make it writable and dirty to avoid having to 2584 * handle that later. 2585 */ 2586 /* Only go through if we didn't race with anybody else... */ 2587 if (likely(pte_same(*page_table, orig_pte))) { 2588 flush_icache_page(vma, page); 2589 entry = mk_pte(page, vma->vm_page_prot); 2590 if (flags & FAULT_FLAG_WRITE) 2591 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2592 if (anon) { 2593 inc_mm_counter(mm, anon_rss); 2594 SetPageSwapBacked(page); 2595 lru_cache_add_active_or_unevictable(page, vma); 2596 page_add_new_anon_rmap(page, vma, address); 2597 } else { 2598 inc_mm_counter(mm, file_rss); 2599 page_add_file_rmap(page); 2600 if (flags & FAULT_FLAG_WRITE) { 2601 dirty_page = page; 2602 get_page(dirty_page); 2603 } 2604 } 2605 //TODO: is this safe? do_anonymous_page() does it this way. 2606 set_pte_at(mm, address, page_table, entry); 2607 2608 /* no need to invalidate: a not-present page won't be cached */ 2609 update_mmu_cache(vma, address, entry); 2610 } else { 2611 if (charged) 2612 mem_cgroup_uncharge_page(page); 2613 if (anon) 2614 page_cache_release(page); 2615 else 2616 anon = 1; /* no anon but release faulted_page */ 2617 } 2618 2619 pte_unmap_unlock(page_table, ptl); 2620 2621 out: 2622 unlock_page(vmf.page); 2623 out_unlocked: 2624 if (anon) 2625 page_cache_release(vmf.page); 2626 else if (dirty_page) { 2627 if (vma->vm_file) 2628 file_update_time(vma->vm_file); 2629 2630 set_page_dirty_balance(dirty_page, page_mkwrite); 2631 put_page(dirty_page); 2632 } 2633 2634 return ret; 2635 } 2636 2637 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2638 unsigned long address, pte_t *page_table, pmd_t *pmd, 2639 int write_access, pte_t orig_pte) 2640 { 2641 pgoff_t pgoff = (((address & PAGE_MASK) 2642 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2643 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0); 2644 2645 pte_unmap(page_table); 2646 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2647 } 2648 2649 /* 2650 * Fault of a previously existing named mapping. Repopulate the pte 2651 * from the encoded file_pte if possible. This enables swappable 2652 * nonlinear vmas. 2653 * 2654 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2655 * but allow concurrent faults), and pte mapped but not yet locked. 2656 * We return with mmap_sem still held, but pte unmapped and unlocked. 2657 */ 2658 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2659 unsigned long address, pte_t *page_table, pmd_t *pmd, 2660 int write_access, pte_t orig_pte) 2661 { 2662 unsigned int flags = FAULT_FLAG_NONLINEAR | 2663 (write_access ? FAULT_FLAG_WRITE : 0); 2664 pgoff_t pgoff; 2665 2666 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2667 return 0; 2668 2669 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) || 2670 !(vma->vm_flags & VM_CAN_NONLINEAR))) { 2671 /* 2672 * Page table corrupted: show pte and kill process. 2673 */ 2674 print_bad_pte(vma, orig_pte, address); 2675 return VM_FAULT_OOM; 2676 } 2677 2678 pgoff = pte_to_pgoff(orig_pte); 2679 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2680 } 2681 2682 /* 2683 * These routines also need to handle stuff like marking pages dirty 2684 * and/or accessed for architectures that don't do it in hardware (most 2685 * RISC architectures). The early dirtying is also good on the i386. 2686 * 2687 * There is also a hook called "update_mmu_cache()" that architectures 2688 * with external mmu caches can use to update those (ie the Sparc or 2689 * PowerPC hashed page tables that act as extended TLBs). 2690 * 2691 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2692 * but allow concurrent faults), and pte mapped but not yet locked. 2693 * We return with mmap_sem still held, but pte unmapped and unlocked. 2694 */ 2695 static inline int handle_pte_fault(struct mm_struct *mm, 2696 struct vm_area_struct *vma, unsigned long address, 2697 pte_t *pte, pmd_t *pmd, int write_access) 2698 { 2699 pte_t entry; 2700 spinlock_t *ptl; 2701 2702 entry = *pte; 2703 if (!pte_present(entry)) { 2704 if (pte_none(entry)) { 2705 if (vma->vm_ops) { 2706 if (likely(vma->vm_ops->fault)) 2707 return do_linear_fault(mm, vma, address, 2708 pte, pmd, write_access, entry); 2709 } 2710 return do_anonymous_page(mm, vma, address, 2711 pte, pmd, write_access); 2712 } 2713 if (pte_file(entry)) 2714 return do_nonlinear_fault(mm, vma, address, 2715 pte, pmd, write_access, entry); 2716 return do_swap_page(mm, vma, address, 2717 pte, pmd, write_access, entry); 2718 } 2719 2720 ptl = pte_lockptr(mm, pmd); 2721 spin_lock(ptl); 2722 if (unlikely(!pte_same(*pte, entry))) 2723 goto unlock; 2724 if (write_access) { 2725 if (!pte_write(entry)) 2726 return do_wp_page(mm, vma, address, 2727 pte, pmd, ptl, entry); 2728 entry = pte_mkdirty(entry); 2729 } 2730 entry = pte_mkyoung(entry); 2731 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) { 2732 update_mmu_cache(vma, address, entry); 2733 } else { 2734 /* 2735 * This is needed only for protection faults but the arch code 2736 * is not yet telling us if this is a protection fault or not. 2737 * This still avoids useless tlb flushes for .text page faults 2738 * with threads. 2739 */ 2740 if (write_access) 2741 flush_tlb_page(vma, address); 2742 } 2743 unlock: 2744 pte_unmap_unlock(pte, ptl); 2745 return 0; 2746 } 2747 2748 /* 2749 * By the time we get here, we already hold the mm semaphore 2750 */ 2751 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2752 unsigned long address, int write_access) 2753 { 2754 pgd_t *pgd; 2755 pud_t *pud; 2756 pmd_t *pmd; 2757 pte_t *pte; 2758 2759 __set_current_state(TASK_RUNNING); 2760 2761 count_vm_event(PGFAULT); 2762 2763 if (unlikely(is_vm_hugetlb_page(vma))) 2764 return hugetlb_fault(mm, vma, address, write_access); 2765 2766 pgd = pgd_offset(mm, address); 2767 pud = pud_alloc(mm, pgd, address); 2768 if (!pud) 2769 return VM_FAULT_OOM; 2770 pmd = pmd_alloc(mm, pud, address); 2771 if (!pmd) 2772 return VM_FAULT_OOM; 2773 pte = pte_alloc_map(mm, pmd, address); 2774 if (!pte) 2775 return VM_FAULT_OOM; 2776 2777 return handle_pte_fault(mm, vma, address, pte, pmd, write_access); 2778 } 2779 2780 #ifndef __PAGETABLE_PUD_FOLDED 2781 /* 2782 * Allocate page upper directory. 2783 * We've already handled the fast-path in-line. 2784 */ 2785 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2786 { 2787 pud_t *new = pud_alloc_one(mm, address); 2788 if (!new) 2789 return -ENOMEM; 2790 2791 smp_wmb(); /* See comment in __pte_alloc */ 2792 2793 spin_lock(&mm->page_table_lock); 2794 if (pgd_present(*pgd)) /* Another has populated it */ 2795 pud_free(mm, new); 2796 else 2797 pgd_populate(mm, pgd, new); 2798 spin_unlock(&mm->page_table_lock); 2799 return 0; 2800 } 2801 #endif /* __PAGETABLE_PUD_FOLDED */ 2802 2803 #ifndef __PAGETABLE_PMD_FOLDED 2804 /* 2805 * Allocate page middle directory. 2806 * We've already handled the fast-path in-line. 2807 */ 2808 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2809 { 2810 pmd_t *new = pmd_alloc_one(mm, address); 2811 if (!new) 2812 return -ENOMEM; 2813 2814 smp_wmb(); /* See comment in __pte_alloc */ 2815 2816 spin_lock(&mm->page_table_lock); 2817 #ifndef __ARCH_HAS_4LEVEL_HACK 2818 if (pud_present(*pud)) /* Another has populated it */ 2819 pmd_free(mm, new); 2820 else 2821 pud_populate(mm, pud, new); 2822 #else 2823 if (pgd_present(*pud)) /* Another has populated it */ 2824 pmd_free(mm, new); 2825 else 2826 pgd_populate(mm, pud, new); 2827 #endif /* __ARCH_HAS_4LEVEL_HACK */ 2828 spin_unlock(&mm->page_table_lock); 2829 return 0; 2830 } 2831 #endif /* __PAGETABLE_PMD_FOLDED */ 2832 2833 int make_pages_present(unsigned long addr, unsigned long end) 2834 { 2835 int ret, len, write; 2836 struct vm_area_struct * vma; 2837 2838 vma = find_vma(current->mm, addr); 2839 if (!vma) 2840 return -ENOMEM; 2841 write = (vma->vm_flags & VM_WRITE) != 0; 2842 BUG_ON(addr >= end); 2843 BUG_ON(end > vma->vm_end); 2844 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 2845 ret = get_user_pages(current, current->mm, addr, 2846 len, write, 0, NULL, NULL); 2847 if (ret < 0) 2848 return ret; 2849 return ret == len ? 0 : -EFAULT; 2850 } 2851 2852 #if !defined(__HAVE_ARCH_GATE_AREA) 2853 2854 #if defined(AT_SYSINFO_EHDR) 2855 static struct vm_area_struct gate_vma; 2856 2857 static int __init gate_vma_init(void) 2858 { 2859 gate_vma.vm_mm = NULL; 2860 gate_vma.vm_start = FIXADDR_USER_START; 2861 gate_vma.vm_end = FIXADDR_USER_END; 2862 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 2863 gate_vma.vm_page_prot = __P101; 2864 /* 2865 * Make sure the vDSO gets into every core dump. 2866 * Dumping its contents makes post-mortem fully interpretable later 2867 * without matching up the same kernel and hardware config to see 2868 * what PC values meant. 2869 */ 2870 gate_vma.vm_flags |= VM_ALWAYSDUMP; 2871 return 0; 2872 } 2873 __initcall(gate_vma_init); 2874 #endif 2875 2876 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 2877 { 2878 #ifdef AT_SYSINFO_EHDR 2879 return &gate_vma; 2880 #else 2881 return NULL; 2882 #endif 2883 } 2884 2885 int in_gate_area_no_task(unsigned long addr) 2886 { 2887 #ifdef AT_SYSINFO_EHDR 2888 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 2889 return 1; 2890 #endif 2891 return 0; 2892 } 2893 2894 #endif /* __HAVE_ARCH_GATE_AREA */ 2895 2896 #ifdef CONFIG_HAVE_IOREMAP_PROT 2897 int follow_phys(struct vm_area_struct *vma, 2898 unsigned long address, unsigned int flags, 2899 unsigned long *prot, resource_size_t *phys) 2900 { 2901 pgd_t *pgd; 2902 pud_t *pud; 2903 pmd_t *pmd; 2904 pte_t *ptep, pte; 2905 spinlock_t *ptl; 2906 resource_size_t phys_addr = 0; 2907 struct mm_struct *mm = vma->vm_mm; 2908 int ret = -EINVAL; 2909 2910 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 2911 goto out; 2912 2913 pgd = pgd_offset(mm, address); 2914 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 2915 goto out; 2916 2917 pud = pud_offset(pgd, address); 2918 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 2919 goto out; 2920 2921 pmd = pmd_offset(pud, address); 2922 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 2923 goto out; 2924 2925 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 2926 if (pmd_huge(*pmd)) 2927 goto out; 2928 2929 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 2930 if (!ptep) 2931 goto out; 2932 2933 pte = *ptep; 2934 if (!pte_present(pte)) 2935 goto unlock; 2936 if ((flags & FOLL_WRITE) && !pte_write(pte)) 2937 goto unlock; 2938 phys_addr = pte_pfn(pte); 2939 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */ 2940 2941 *prot = pgprot_val(pte_pgprot(pte)); 2942 *phys = phys_addr; 2943 ret = 0; 2944 2945 unlock: 2946 pte_unmap_unlock(ptep, ptl); 2947 out: 2948 return ret; 2949 } 2950 2951 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2952 void *buf, int len, int write) 2953 { 2954 resource_size_t phys_addr; 2955 unsigned long prot = 0; 2956 void *maddr; 2957 int offset = addr & (PAGE_SIZE-1); 2958 2959 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 2960 return -EINVAL; 2961 2962 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 2963 if (write) 2964 memcpy_toio(maddr + offset, buf, len); 2965 else 2966 memcpy_fromio(buf, maddr + offset, len); 2967 iounmap(maddr); 2968 2969 return len; 2970 } 2971 #endif 2972 2973 /* 2974 * Access another process' address space. 2975 * Source/target buffer must be kernel space, 2976 * Do not walk the page table directly, use get_user_pages 2977 */ 2978 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 2979 { 2980 struct mm_struct *mm; 2981 struct vm_area_struct *vma; 2982 void *old_buf = buf; 2983 2984 mm = get_task_mm(tsk); 2985 if (!mm) 2986 return 0; 2987 2988 down_read(&mm->mmap_sem); 2989 /* ignore errors, just check how much was successfully transferred */ 2990 while (len) { 2991 int bytes, ret, offset; 2992 void *maddr; 2993 struct page *page = NULL; 2994 2995 ret = get_user_pages(tsk, mm, addr, 1, 2996 write, 1, &page, &vma); 2997 if (ret <= 0) { 2998 /* 2999 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3000 * we can access using slightly different code. 3001 */ 3002 #ifdef CONFIG_HAVE_IOREMAP_PROT 3003 vma = find_vma(mm, addr); 3004 if (!vma) 3005 break; 3006 if (vma->vm_ops && vma->vm_ops->access) 3007 ret = vma->vm_ops->access(vma, addr, buf, 3008 len, write); 3009 if (ret <= 0) 3010 #endif 3011 break; 3012 bytes = ret; 3013 } else { 3014 bytes = len; 3015 offset = addr & (PAGE_SIZE-1); 3016 if (bytes > PAGE_SIZE-offset) 3017 bytes = PAGE_SIZE-offset; 3018 3019 maddr = kmap(page); 3020 if (write) { 3021 copy_to_user_page(vma, page, addr, 3022 maddr + offset, buf, bytes); 3023 set_page_dirty_lock(page); 3024 } else { 3025 copy_from_user_page(vma, page, addr, 3026 buf, maddr + offset, bytes); 3027 } 3028 kunmap(page); 3029 page_cache_release(page); 3030 } 3031 len -= bytes; 3032 buf += bytes; 3033 addr += bytes; 3034 } 3035 up_read(&mm->mmap_sem); 3036 mmput(mm); 3037 3038 return buf - old_buf; 3039 } 3040 3041 /* 3042 * Print the name of a VMA. 3043 */ 3044 void print_vma_addr(char *prefix, unsigned long ip) 3045 { 3046 struct mm_struct *mm = current->mm; 3047 struct vm_area_struct *vma; 3048 3049 /* 3050 * Do not print if we are in atomic 3051 * contexts (in exception stacks, etc.): 3052 */ 3053 if (preempt_count()) 3054 return; 3055 3056 down_read(&mm->mmap_sem); 3057 vma = find_vma(mm, ip); 3058 if (vma && vma->vm_file) { 3059 struct file *f = vma->vm_file; 3060 char *buf = (char *)__get_free_page(GFP_KERNEL); 3061 if (buf) { 3062 char *p, *s; 3063 3064 p = d_path(&f->f_path, buf, PAGE_SIZE); 3065 if (IS_ERR(p)) 3066 p = "?"; 3067 s = strrchr(p, '/'); 3068 if (s) 3069 p = s+1; 3070 printk("%s%s[%lx+%lx]", prefix, p, 3071 vma->vm_start, 3072 vma->vm_end - vma->vm_start); 3073 free_page((unsigned long)buf); 3074 } 3075 } 3076 up_read(¤t->mm->mmap_sem); 3077 } 3078 3079 #ifdef CONFIG_PROVE_LOCKING 3080 void might_fault(void) 3081 { 3082 might_sleep(); 3083 /* 3084 * it would be nicer only to annotate paths which are not under 3085 * pagefault_disable, however that requires a larger audit and 3086 * providing helpers like get_user_atomic. 3087 */ 3088 if (!in_atomic() && current->mm) 3089 might_lock_read(¤t->mm->mmap_sem); 3090 } 3091 EXPORT_SYMBOL(might_fault); 3092 #endif 3093