xref: /openbmc/linux/mm/memory.c (revision 652afc27b26859a0ea5f6db681d80b83d2c43cf8)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/tlb.h>
59 #include <asm/tlbflush.h>
60 #include <asm/pgtable.h>
61 
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 
65 #include "internal.h"
66 
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71 
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75 
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85 
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88 
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 					1;
98 #else
99 					2;
100 #endif
101 
102 static int __init disable_randmaps(char *s)
103 {
104 	randomize_va_space = 0;
105 	return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108 
109 
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115 
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 	pgd_ERROR(*pgd);
119 	pgd_clear(pgd);
120 }
121 
122 void pud_clear_bad(pud_t *pud)
123 {
124 	pud_ERROR(*pud);
125 	pud_clear(pud);
126 }
127 
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 	pmd_ERROR(*pmd);
131 	pmd_clear(pmd);
132 }
133 
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140 	pgtable_t token = pmd_pgtable(*pmd);
141 	pmd_clear(pmd);
142 	pte_free_tlb(tlb, token);
143 	tlb->mm->nr_ptes--;
144 }
145 
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 				unsigned long addr, unsigned long end,
148 				unsigned long floor, unsigned long ceiling)
149 {
150 	pmd_t *pmd;
151 	unsigned long next;
152 	unsigned long start;
153 
154 	start = addr;
155 	pmd = pmd_offset(pud, addr);
156 	do {
157 		next = pmd_addr_end(addr, end);
158 		if (pmd_none_or_clear_bad(pmd))
159 			continue;
160 		free_pte_range(tlb, pmd);
161 	} while (pmd++, addr = next, addr != end);
162 
163 	start &= PUD_MASK;
164 	if (start < floor)
165 		return;
166 	if (ceiling) {
167 		ceiling &= PUD_MASK;
168 		if (!ceiling)
169 			return;
170 	}
171 	if (end - 1 > ceiling - 1)
172 		return;
173 
174 	pmd = pmd_offset(pud, start);
175 	pud_clear(pud);
176 	pmd_free_tlb(tlb, pmd);
177 }
178 
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 				unsigned long addr, unsigned long end,
181 				unsigned long floor, unsigned long ceiling)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 	unsigned long start;
186 
187 	start = addr;
188 	pud = pud_offset(pgd, addr);
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (pud_none_or_clear_bad(pud))
192 			continue;
193 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 	} while (pud++, addr = next, addr != end);
195 
196 	start &= PGDIR_MASK;
197 	if (start < floor)
198 		return;
199 	if (ceiling) {
200 		ceiling &= PGDIR_MASK;
201 		if (!ceiling)
202 			return;
203 	}
204 	if (end - 1 > ceiling - 1)
205 		return;
206 
207 	pud = pud_offset(pgd, start);
208 	pgd_clear(pgd);
209 	pud_free_tlb(tlb, pud);
210 }
211 
212 /*
213  * This function frees user-level page tables of a process.
214  *
215  * Must be called with pagetable lock held.
216  */
217 void free_pgd_range(struct mmu_gather *tlb,
218 			unsigned long addr, unsigned long end,
219 			unsigned long floor, unsigned long ceiling)
220 {
221 	pgd_t *pgd;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	/*
226 	 * The next few lines have given us lots of grief...
227 	 *
228 	 * Why are we testing PMD* at this top level?  Because often
229 	 * there will be no work to do at all, and we'd prefer not to
230 	 * go all the way down to the bottom just to discover that.
231 	 *
232 	 * Why all these "- 1"s?  Because 0 represents both the bottom
233 	 * of the address space and the top of it (using -1 for the
234 	 * top wouldn't help much: the masks would do the wrong thing).
235 	 * The rule is that addr 0 and floor 0 refer to the bottom of
236 	 * the address space, but end 0 and ceiling 0 refer to the top
237 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 	 * that end 0 case should be mythical).
239 	 *
240 	 * Wherever addr is brought up or ceiling brought down, we must
241 	 * be careful to reject "the opposite 0" before it confuses the
242 	 * subsequent tests.  But what about where end is brought down
243 	 * by PMD_SIZE below? no, end can't go down to 0 there.
244 	 *
245 	 * Whereas we round start (addr) and ceiling down, by different
246 	 * masks at different levels, in order to test whether a table
247 	 * now has no other vmas using it, so can be freed, we don't
248 	 * bother to round floor or end up - the tests don't need that.
249 	 */
250 
251 	addr &= PMD_MASK;
252 	if (addr < floor) {
253 		addr += PMD_SIZE;
254 		if (!addr)
255 			return;
256 	}
257 	if (ceiling) {
258 		ceiling &= PMD_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		end -= PMD_SIZE;
264 	if (addr > end - 1)
265 		return;
266 
267 	start = addr;
268 	pgd = pgd_offset(tlb->mm, addr);
269 	do {
270 		next = pgd_addr_end(addr, end);
271 		if (pgd_none_or_clear_bad(pgd))
272 			continue;
273 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 	} while (pgd++, addr = next, addr != end);
275 }
276 
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 		unsigned long floor, unsigned long ceiling)
279 {
280 	while (vma) {
281 		struct vm_area_struct *next = vma->vm_next;
282 		unsigned long addr = vma->vm_start;
283 
284 		/*
285 		 * Hide vma from rmap and vmtruncate before freeing pgtables
286 		 */
287 		anon_vma_unlink(vma);
288 		unlink_file_vma(vma);
289 
290 		if (is_vm_hugetlb_page(vma)) {
291 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 				floor, next? next->vm_start: ceiling);
293 		} else {
294 			/*
295 			 * Optimization: gather nearby vmas into one call down
296 			 */
297 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 			       && !is_vm_hugetlb_page(next)) {
299 				vma = next;
300 				next = vma->vm_next;
301 				anon_vma_unlink(vma);
302 				unlink_file_vma(vma);
303 			}
304 			free_pgd_range(tlb, addr, vma->vm_end,
305 				floor, next? next->vm_start: ceiling);
306 		}
307 		vma = next;
308 	}
309 }
310 
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313 	pgtable_t new = pte_alloc_one(mm, address);
314 	if (!new)
315 		return -ENOMEM;
316 
317 	/*
318 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 	 * visible before the pte is made visible to other CPUs by being
320 	 * put into page tables.
321 	 *
322 	 * The other side of the story is the pointer chasing in the page
323 	 * table walking code (when walking the page table without locking;
324 	 * ie. most of the time). Fortunately, these data accesses consist
325 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 	 * being the notable exception) will already guarantee loads are
327 	 * seen in-order. See the alpha page table accessors for the
328 	 * smp_read_barrier_depends() barriers in page table walking code.
329 	 */
330 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331 
332 	spin_lock(&mm->page_table_lock);
333 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334 		mm->nr_ptes++;
335 		pmd_populate(mm, pmd, new);
336 		new = NULL;
337 	}
338 	spin_unlock(&mm->page_table_lock);
339 	if (new)
340 		pte_free(mm, new);
341 	return 0;
342 }
343 
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 	if (!new)
348 		return -ENOMEM;
349 
350 	smp_wmb(); /* See comment in __pte_alloc */
351 
352 	spin_lock(&init_mm.page_table_lock);
353 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
354 		pmd_populate_kernel(&init_mm, pmd, new);
355 		new = NULL;
356 	}
357 	spin_unlock(&init_mm.page_table_lock);
358 	if (new)
359 		pte_free_kernel(&init_mm, new);
360 	return 0;
361 }
362 
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365 	if (file_rss)
366 		add_mm_counter(mm, file_rss, file_rss);
367 	if (anon_rss)
368 		add_mm_counter(mm, anon_rss, anon_rss);
369 }
370 
371 /*
372  * This function is called to print an error when a bad pte
373  * is found. For example, we might have a PFN-mapped pte in
374  * a region that doesn't allow it.
375  *
376  * The calling function must still handle the error.
377  */
378 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379 			  unsigned long vaddr)
380 {
381 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382 			"vm_flags = %lx, vaddr = %lx\n",
383 		(long long)pte_val(pte),
384 		(vma->vm_mm == current->mm ? current->comm : "???"),
385 		vma->vm_flags, vaddr);
386 	dump_stack();
387 }
388 
389 static inline int is_cow_mapping(unsigned int flags)
390 {
391 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
392 }
393 
394 /*
395  * vm_normal_page -- This function gets the "struct page" associated with a pte.
396  *
397  * "Special" mappings do not wish to be associated with a "struct page" (either
398  * it doesn't exist, or it exists but they don't want to touch it). In this
399  * case, NULL is returned here. "Normal" mappings do have a struct page.
400  *
401  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402  * pte bit, in which case this function is trivial. Secondly, an architecture
403  * may not have a spare pte bit, which requires a more complicated scheme,
404  * described below.
405  *
406  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407  * special mapping (even if there are underlying and valid "struct pages").
408  * COWed pages of a VM_PFNMAP are always normal.
409  *
410  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
412  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413  * mapping will always honor the rule
414  *
415  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416  *
417  * And for normal mappings this is false.
418  *
419  * This restricts such mappings to be a linear translation from virtual address
420  * to pfn. To get around this restriction, we allow arbitrary mappings so long
421  * as the vma is not a COW mapping; in that case, we know that all ptes are
422  * special (because none can have been COWed).
423  *
424  *
425  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
426  *
427  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428  * page" backing, however the difference is that _all_ pages with a struct
429  * page (that is, those where pfn_valid is true) are refcounted and considered
430  * normal pages by the VM. The disadvantage is that pages are refcounted
431  * (which can be slower and simply not an option for some PFNMAP users). The
432  * advantage is that we don't have to follow the strict linearity rule of
433  * PFNMAP mappings in order to support COWable mappings.
434  *
435  */
436 #ifdef __HAVE_ARCH_PTE_SPECIAL
437 # define HAVE_PTE_SPECIAL 1
438 #else
439 # define HAVE_PTE_SPECIAL 0
440 #endif
441 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442 				pte_t pte)
443 {
444 	unsigned long pfn;
445 
446 	if (HAVE_PTE_SPECIAL) {
447 		if (likely(!pte_special(pte))) {
448 			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449 			return pte_page(pte);
450 		}
451 		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452 		return NULL;
453 	}
454 
455 	/* !HAVE_PTE_SPECIAL case follows: */
456 
457 	pfn = pte_pfn(pte);
458 
459 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460 		if (vma->vm_flags & VM_MIXEDMAP) {
461 			if (!pfn_valid(pfn))
462 				return NULL;
463 			goto out;
464 		} else {
465 			unsigned long off;
466 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
467 			if (pfn == vma->vm_pgoff + off)
468 				return NULL;
469 			if (!is_cow_mapping(vma->vm_flags))
470 				return NULL;
471 		}
472 	}
473 
474 	VM_BUG_ON(!pfn_valid(pfn));
475 
476 	/*
477 	 * NOTE! We still have PageReserved() pages in the page tables.
478 	 *
479 	 * eg. VDSO mappings can cause them to exist.
480 	 */
481 out:
482 	return pfn_to_page(pfn);
483 }
484 
485 /*
486  * copy one vm_area from one task to the other. Assumes the page tables
487  * already present in the new task to be cleared in the whole range
488  * covered by this vma.
489  */
490 
491 static inline void
492 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
494 		unsigned long addr, int *rss)
495 {
496 	unsigned long vm_flags = vma->vm_flags;
497 	pte_t pte = *src_pte;
498 	struct page *page;
499 
500 	/* pte contains position in swap or file, so copy. */
501 	if (unlikely(!pte_present(pte))) {
502 		if (!pte_file(pte)) {
503 			swp_entry_t entry = pte_to_swp_entry(pte);
504 
505 			swap_duplicate(entry);
506 			/* make sure dst_mm is on swapoff's mmlist. */
507 			if (unlikely(list_empty(&dst_mm->mmlist))) {
508 				spin_lock(&mmlist_lock);
509 				if (list_empty(&dst_mm->mmlist))
510 					list_add(&dst_mm->mmlist,
511 						 &src_mm->mmlist);
512 				spin_unlock(&mmlist_lock);
513 			}
514 			if (is_write_migration_entry(entry) &&
515 					is_cow_mapping(vm_flags)) {
516 				/*
517 				 * COW mappings require pages in both parent
518 				 * and child to be set to read.
519 				 */
520 				make_migration_entry_read(&entry);
521 				pte = swp_entry_to_pte(entry);
522 				set_pte_at(src_mm, addr, src_pte, pte);
523 			}
524 		}
525 		goto out_set_pte;
526 	}
527 
528 	/*
529 	 * If it's a COW mapping, write protect it both
530 	 * in the parent and the child
531 	 */
532 	if (is_cow_mapping(vm_flags)) {
533 		ptep_set_wrprotect(src_mm, addr, src_pte);
534 		pte = pte_wrprotect(pte);
535 	}
536 
537 	/*
538 	 * If it's a shared mapping, mark it clean in
539 	 * the child
540 	 */
541 	if (vm_flags & VM_SHARED)
542 		pte = pte_mkclean(pte);
543 	pte = pte_mkold(pte);
544 
545 	page = vm_normal_page(vma, addr, pte);
546 	if (page) {
547 		get_page(page);
548 		page_dup_rmap(page, vma, addr);
549 		rss[!!PageAnon(page)]++;
550 	}
551 
552 out_set_pte:
553 	set_pte_at(dst_mm, addr, dst_pte, pte);
554 }
555 
556 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558 		unsigned long addr, unsigned long end)
559 {
560 	pte_t *src_pte, *dst_pte;
561 	spinlock_t *src_ptl, *dst_ptl;
562 	int progress = 0;
563 	int rss[2];
564 
565 again:
566 	rss[1] = rss[0] = 0;
567 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
568 	if (!dst_pte)
569 		return -ENOMEM;
570 	src_pte = pte_offset_map_nested(src_pmd, addr);
571 	src_ptl = pte_lockptr(src_mm, src_pmd);
572 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
573 	arch_enter_lazy_mmu_mode();
574 
575 	do {
576 		/*
577 		 * We are holding two locks at this point - either of them
578 		 * could generate latencies in another task on another CPU.
579 		 */
580 		if (progress >= 32) {
581 			progress = 0;
582 			if (need_resched() ||
583 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
584 				break;
585 		}
586 		if (pte_none(*src_pte)) {
587 			progress++;
588 			continue;
589 		}
590 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
591 		progress += 8;
592 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
593 
594 	arch_leave_lazy_mmu_mode();
595 	spin_unlock(src_ptl);
596 	pte_unmap_nested(src_pte - 1);
597 	add_mm_rss(dst_mm, rss[0], rss[1]);
598 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
599 	cond_resched();
600 	if (addr != end)
601 		goto again;
602 	return 0;
603 }
604 
605 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607 		unsigned long addr, unsigned long end)
608 {
609 	pmd_t *src_pmd, *dst_pmd;
610 	unsigned long next;
611 
612 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613 	if (!dst_pmd)
614 		return -ENOMEM;
615 	src_pmd = pmd_offset(src_pud, addr);
616 	do {
617 		next = pmd_addr_end(addr, end);
618 		if (pmd_none_or_clear_bad(src_pmd))
619 			continue;
620 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621 						vma, addr, next))
622 			return -ENOMEM;
623 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
624 	return 0;
625 }
626 
627 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629 		unsigned long addr, unsigned long end)
630 {
631 	pud_t *src_pud, *dst_pud;
632 	unsigned long next;
633 
634 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635 	if (!dst_pud)
636 		return -ENOMEM;
637 	src_pud = pud_offset(src_pgd, addr);
638 	do {
639 		next = pud_addr_end(addr, end);
640 		if (pud_none_or_clear_bad(src_pud))
641 			continue;
642 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643 						vma, addr, next))
644 			return -ENOMEM;
645 	} while (dst_pud++, src_pud++, addr = next, addr != end);
646 	return 0;
647 }
648 
649 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 		struct vm_area_struct *vma)
651 {
652 	pgd_t *src_pgd, *dst_pgd;
653 	unsigned long next;
654 	unsigned long addr = vma->vm_start;
655 	unsigned long end = vma->vm_end;
656 	int ret;
657 
658 	/*
659 	 * Don't copy ptes where a page fault will fill them correctly.
660 	 * Fork becomes much lighter when there are big shared or private
661 	 * readonly mappings. The tradeoff is that copy_page_range is more
662 	 * efficient than faulting.
663 	 */
664 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
665 		if (!vma->anon_vma)
666 			return 0;
667 	}
668 
669 	if (is_vm_hugetlb_page(vma))
670 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
671 
672 	if (unlikely(is_pfn_mapping(vma))) {
673 		/*
674 		 * We do not free on error cases below as remove_vma
675 		 * gets called on error from higher level routine
676 		 */
677 		ret = track_pfn_vma_copy(vma);
678 		if (ret)
679 			return ret;
680 	}
681 
682 	/*
683 	 * We need to invalidate the secondary MMU mappings only when
684 	 * there could be a permission downgrade on the ptes of the
685 	 * parent mm. And a permission downgrade will only happen if
686 	 * is_cow_mapping() returns true.
687 	 */
688 	if (is_cow_mapping(vma->vm_flags))
689 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
690 
691 	ret = 0;
692 	dst_pgd = pgd_offset(dst_mm, addr);
693 	src_pgd = pgd_offset(src_mm, addr);
694 	do {
695 		next = pgd_addr_end(addr, end);
696 		if (pgd_none_or_clear_bad(src_pgd))
697 			continue;
698 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
699 					    vma, addr, next))) {
700 			ret = -ENOMEM;
701 			break;
702 		}
703 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
704 
705 	if (is_cow_mapping(vma->vm_flags))
706 		mmu_notifier_invalidate_range_end(src_mm,
707 						  vma->vm_start, end);
708 	return ret;
709 }
710 
711 static unsigned long zap_pte_range(struct mmu_gather *tlb,
712 				struct vm_area_struct *vma, pmd_t *pmd,
713 				unsigned long addr, unsigned long end,
714 				long *zap_work, struct zap_details *details)
715 {
716 	struct mm_struct *mm = tlb->mm;
717 	pte_t *pte;
718 	spinlock_t *ptl;
719 	int file_rss = 0;
720 	int anon_rss = 0;
721 
722 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
723 	arch_enter_lazy_mmu_mode();
724 	do {
725 		pte_t ptent = *pte;
726 		if (pte_none(ptent)) {
727 			(*zap_work)--;
728 			continue;
729 		}
730 
731 		(*zap_work) -= PAGE_SIZE;
732 
733 		if (pte_present(ptent)) {
734 			struct page *page;
735 
736 			page = vm_normal_page(vma, addr, ptent);
737 			if (unlikely(details) && page) {
738 				/*
739 				 * unmap_shared_mapping_pages() wants to
740 				 * invalidate cache without truncating:
741 				 * unmap shared but keep private pages.
742 				 */
743 				if (details->check_mapping &&
744 				    details->check_mapping != page->mapping)
745 					continue;
746 				/*
747 				 * Each page->index must be checked when
748 				 * invalidating or truncating nonlinear.
749 				 */
750 				if (details->nonlinear_vma &&
751 				    (page->index < details->first_index ||
752 				     page->index > details->last_index))
753 					continue;
754 			}
755 			ptent = ptep_get_and_clear_full(mm, addr, pte,
756 							tlb->fullmm);
757 			tlb_remove_tlb_entry(tlb, pte, addr);
758 			if (unlikely(!page))
759 				continue;
760 			if (unlikely(details) && details->nonlinear_vma
761 			    && linear_page_index(details->nonlinear_vma,
762 						addr) != page->index)
763 				set_pte_at(mm, addr, pte,
764 					   pgoff_to_pte(page->index));
765 			if (PageAnon(page))
766 				anon_rss--;
767 			else {
768 				if (pte_dirty(ptent))
769 					set_page_dirty(page);
770 				if (pte_young(ptent))
771 					SetPageReferenced(page);
772 				file_rss--;
773 			}
774 			page_remove_rmap(page, vma);
775 			tlb_remove_page(tlb, page);
776 			continue;
777 		}
778 		/*
779 		 * If details->check_mapping, we leave swap entries;
780 		 * if details->nonlinear_vma, we leave file entries.
781 		 */
782 		if (unlikely(details))
783 			continue;
784 		if (!pte_file(ptent))
785 			free_swap_and_cache(pte_to_swp_entry(ptent));
786 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
787 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
788 
789 	add_mm_rss(mm, file_rss, anon_rss);
790 	arch_leave_lazy_mmu_mode();
791 	pte_unmap_unlock(pte - 1, ptl);
792 
793 	return addr;
794 }
795 
796 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
797 				struct vm_area_struct *vma, pud_t *pud,
798 				unsigned long addr, unsigned long end,
799 				long *zap_work, struct zap_details *details)
800 {
801 	pmd_t *pmd;
802 	unsigned long next;
803 
804 	pmd = pmd_offset(pud, addr);
805 	do {
806 		next = pmd_addr_end(addr, end);
807 		if (pmd_none_or_clear_bad(pmd)) {
808 			(*zap_work)--;
809 			continue;
810 		}
811 		next = zap_pte_range(tlb, vma, pmd, addr, next,
812 						zap_work, details);
813 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
814 
815 	return addr;
816 }
817 
818 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
819 				struct vm_area_struct *vma, pgd_t *pgd,
820 				unsigned long addr, unsigned long end,
821 				long *zap_work, struct zap_details *details)
822 {
823 	pud_t *pud;
824 	unsigned long next;
825 
826 	pud = pud_offset(pgd, addr);
827 	do {
828 		next = pud_addr_end(addr, end);
829 		if (pud_none_or_clear_bad(pud)) {
830 			(*zap_work)--;
831 			continue;
832 		}
833 		next = zap_pmd_range(tlb, vma, pud, addr, next,
834 						zap_work, details);
835 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
836 
837 	return addr;
838 }
839 
840 static unsigned long unmap_page_range(struct mmu_gather *tlb,
841 				struct vm_area_struct *vma,
842 				unsigned long addr, unsigned long end,
843 				long *zap_work, struct zap_details *details)
844 {
845 	pgd_t *pgd;
846 	unsigned long next;
847 
848 	if (details && !details->check_mapping && !details->nonlinear_vma)
849 		details = NULL;
850 
851 	BUG_ON(addr >= end);
852 	tlb_start_vma(tlb, vma);
853 	pgd = pgd_offset(vma->vm_mm, addr);
854 	do {
855 		next = pgd_addr_end(addr, end);
856 		if (pgd_none_or_clear_bad(pgd)) {
857 			(*zap_work)--;
858 			continue;
859 		}
860 		next = zap_pud_range(tlb, vma, pgd, addr, next,
861 						zap_work, details);
862 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
863 	tlb_end_vma(tlb, vma);
864 
865 	return addr;
866 }
867 
868 #ifdef CONFIG_PREEMPT
869 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
870 #else
871 /* No preempt: go for improved straight-line efficiency */
872 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
873 #endif
874 
875 /**
876  * unmap_vmas - unmap a range of memory covered by a list of vma's
877  * @tlbp: address of the caller's struct mmu_gather
878  * @vma: the starting vma
879  * @start_addr: virtual address at which to start unmapping
880  * @end_addr: virtual address at which to end unmapping
881  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
882  * @details: details of nonlinear truncation or shared cache invalidation
883  *
884  * Returns the end address of the unmapping (restart addr if interrupted).
885  *
886  * Unmap all pages in the vma list.
887  *
888  * We aim to not hold locks for too long (for scheduling latency reasons).
889  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
890  * return the ending mmu_gather to the caller.
891  *
892  * Only addresses between `start' and `end' will be unmapped.
893  *
894  * The VMA list must be sorted in ascending virtual address order.
895  *
896  * unmap_vmas() assumes that the caller will flush the whole unmapped address
897  * range after unmap_vmas() returns.  So the only responsibility here is to
898  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
899  * drops the lock and schedules.
900  */
901 unsigned long unmap_vmas(struct mmu_gather **tlbp,
902 		struct vm_area_struct *vma, unsigned long start_addr,
903 		unsigned long end_addr, unsigned long *nr_accounted,
904 		struct zap_details *details)
905 {
906 	long zap_work = ZAP_BLOCK_SIZE;
907 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
908 	int tlb_start_valid = 0;
909 	unsigned long start = start_addr;
910 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
911 	int fullmm = (*tlbp)->fullmm;
912 	struct mm_struct *mm = vma->vm_mm;
913 
914 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
915 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
916 		unsigned long end;
917 
918 		start = max(vma->vm_start, start_addr);
919 		if (start >= vma->vm_end)
920 			continue;
921 		end = min(vma->vm_end, end_addr);
922 		if (end <= vma->vm_start)
923 			continue;
924 
925 		if (vma->vm_flags & VM_ACCOUNT)
926 			*nr_accounted += (end - start) >> PAGE_SHIFT;
927 
928 		if (unlikely(is_pfn_mapping(vma)))
929 			untrack_pfn_vma(vma, 0, 0);
930 
931 		while (start != end) {
932 			if (!tlb_start_valid) {
933 				tlb_start = start;
934 				tlb_start_valid = 1;
935 			}
936 
937 			if (unlikely(is_vm_hugetlb_page(vma))) {
938 				/*
939 				 * It is undesirable to test vma->vm_file as it
940 				 * should be non-null for valid hugetlb area.
941 				 * However, vm_file will be NULL in the error
942 				 * cleanup path of do_mmap_pgoff. When
943 				 * hugetlbfs ->mmap method fails,
944 				 * do_mmap_pgoff() nullifies vma->vm_file
945 				 * before calling this function to clean up.
946 				 * Since no pte has actually been setup, it is
947 				 * safe to do nothing in this case.
948 				 */
949 				if (vma->vm_file) {
950 					unmap_hugepage_range(vma, start, end, NULL);
951 					zap_work -= (end - start) /
952 					pages_per_huge_page(hstate_vma(vma));
953 				}
954 
955 				start = end;
956 			} else
957 				start = unmap_page_range(*tlbp, vma,
958 						start, end, &zap_work, details);
959 
960 			if (zap_work > 0) {
961 				BUG_ON(start != end);
962 				break;
963 			}
964 
965 			tlb_finish_mmu(*tlbp, tlb_start, start);
966 
967 			if (need_resched() ||
968 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
969 				if (i_mmap_lock) {
970 					*tlbp = NULL;
971 					goto out;
972 				}
973 				cond_resched();
974 			}
975 
976 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
977 			tlb_start_valid = 0;
978 			zap_work = ZAP_BLOCK_SIZE;
979 		}
980 	}
981 out:
982 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
983 	return start;	/* which is now the end (or restart) address */
984 }
985 
986 /**
987  * zap_page_range - remove user pages in a given range
988  * @vma: vm_area_struct holding the applicable pages
989  * @address: starting address of pages to zap
990  * @size: number of bytes to zap
991  * @details: details of nonlinear truncation or shared cache invalidation
992  */
993 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
994 		unsigned long size, struct zap_details *details)
995 {
996 	struct mm_struct *mm = vma->vm_mm;
997 	struct mmu_gather *tlb;
998 	unsigned long end = address + size;
999 	unsigned long nr_accounted = 0;
1000 
1001 	lru_add_drain();
1002 	tlb = tlb_gather_mmu(mm, 0);
1003 	update_hiwater_rss(mm);
1004 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1005 	if (tlb)
1006 		tlb_finish_mmu(tlb, address, end);
1007 	return end;
1008 }
1009 
1010 /**
1011  * zap_vma_ptes - remove ptes mapping the vma
1012  * @vma: vm_area_struct holding ptes to be zapped
1013  * @address: starting address of pages to zap
1014  * @size: number of bytes to zap
1015  *
1016  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1017  *
1018  * The entire address range must be fully contained within the vma.
1019  *
1020  * Returns 0 if successful.
1021  */
1022 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1023 		unsigned long size)
1024 {
1025 	if (address < vma->vm_start || address + size > vma->vm_end ||
1026 	    		!(vma->vm_flags & VM_PFNMAP))
1027 		return -1;
1028 	zap_page_range(vma, address, size, NULL);
1029 	return 0;
1030 }
1031 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1032 
1033 /*
1034  * Do a quick page-table lookup for a single page.
1035  */
1036 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1037 			unsigned int flags)
1038 {
1039 	pgd_t *pgd;
1040 	pud_t *pud;
1041 	pmd_t *pmd;
1042 	pte_t *ptep, pte;
1043 	spinlock_t *ptl;
1044 	struct page *page;
1045 	struct mm_struct *mm = vma->vm_mm;
1046 
1047 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1048 	if (!IS_ERR(page)) {
1049 		BUG_ON(flags & FOLL_GET);
1050 		goto out;
1051 	}
1052 
1053 	page = NULL;
1054 	pgd = pgd_offset(mm, address);
1055 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1056 		goto no_page_table;
1057 
1058 	pud = pud_offset(pgd, address);
1059 	if (pud_none(*pud))
1060 		goto no_page_table;
1061 	if (pud_huge(*pud)) {
1062 		BUG_ON(flags & FOLL_GET);
1063 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1064 		goto out;
1065 	}
1066 	if (unlikely(pud_bad(*pud)))
1067 		goto no_page_table;
1068 
1069 	pmd = pmd_offset(pud, address);
1070 	if (pmd_none(*pmd))
1071 		goto no_page_table;
1072 	if (pmd_huge(*pmd)) {
1073 		BUG_ON(flags & FOLL_GET);
1074 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1075 		goto out;
1076 	}
1077 	if (unlikely(pmd_bad(*pmd)))
1078 		goto no_page_table;
1079 
1080 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1081 
1082 	pte = *ptep;
1083 	if (!pte_present(pte))
1084 		goto no_page;
1085 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1086 		goto unlock;
1087 	page = vm_normal_page(vma, address, pte);
1088 	if (unlikely(!page))
1089 		goto bad_page;
1090 
1091 	if (flags & FOLL_GET)
1092 		get_page(page);
1093 	if (flags & FOLL_TOUCH) {
1094 		if ((flags & FOLL_WRITE) &&
1095 		    !pte_dirty(pte) && !PageDirty(page))
1096 			set_page_dirty(page);
1097 		mark_page_accessed(page);
1098 	}
1099 unlock:
1100 	pte_unmap_unlock(ptep, ptl);
1101 out:
1102 	return page;
1103 
1104 bad_page:
1105 	pte_unmap_unlock(ptep, ptl);
1106 	return ERR_PTR(-EFAULT);
1107 
1108 no_page:
1109 	pte_unmap_unlock(ptep, ptl);
1110 	if (!pte_none(pte))
1111 		return page;
1112 	/* Fall through to ZERO_PAGE handling */
1113 no_page_table:
1114 	/*
1115 	 * When core dumping an enormous anonymous area that nobody
1116 	 * has touched so far, we don't want to allocate page tables.
1117 	 */
1118 	if (flags & FOLL_ANON) {
1119 		page = ZERO_PAGE(0);
1120 		if (flags & FOLL_GET)
1121 			get_page(page);
1122 		BUG_ON(flags & FOLL_WRITE);
1123 	}
1124 	return page;
1125 }
1126 
1127 /* Can we do the FOLL_ANON optimization? */
1128 static inline int use_zero_page(struct vm_area_struct *vma)
1129 {
1130 	/*
1131 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1132 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1133 	 * we want to get the page from the page tables to make sure
1134 	 * that we serialize and update with any other user of that
1135 	 * mapping.
1136 	 */
1137 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1138 		return 0;
1139 	/*
1140 	 * And if we have a fault routine, it's not an anonymous region.
1141 	 */
1142 	return !vma->vm_ops || !vma->vm_ops->fault;
1143 }
1144 
1145 
1146 
1147 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1148 		     unsigned long start, int len, int flags,
1149 		struct page **pages, struct vm_area_struct **vmas)
1150 {
1151 	int i;
1152 	unsigned int vm_flags = 0;
1153 	int write = !!(flags & GUP_FLAGS_WRITE);
1154 	int force = !!(flags & GUP_FLAGS_FORCE);
1155 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1156 
1157 	if (len <= 0)
1158 		return 0;
1159 	/*
1160 	 * Require read or write permissions.
1161 	 * If 'force' is set, we only require the "MAY" flags.
1162 	 */
1163 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1164 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1165 	i = 0;
1166 
1167 	do {
1168 		struct vm_area_struct *vma;
1169 		unsigned int foll_flags;
1170 
1171 		vma = find_extend_vma(mm, start);
1172 		if (!vma && in_gate_area(tsk, start)) {
1173 			unsigned long pg = start & PAGE_MASK;
1174 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1175 			pgd_t *pgd;
1176 			pud_t *pud;
1177 			pmd_t *pmd;
1178 			pte_t *pte;
1179 
1180 			/* user gate pages are read-only */
1181 			if (!ignore && write)
1182 				return i ? : -EFAULT;
1183 			if (pg > TASK_SIZE)
1184 				pgd = pgd_offset_k(pg);
1185 			else
1186 				pgd = pgd_offset_gate(mm, pg);
1187 			BUG_ON(pgd_none(*pgd));
1188 			pud = pud_offset(pgd, pg);
1189 			BUG_ON(pud_none(*pud));
1190 			pmd = pmd_offset(pud, pg);
1191 			if (pmd_none(*pmd))
1192 				return i ? : -EFAULT;
1193 			pte = pte_offset_map(pmd, pg);
1194 			if (pte_none(*pte)) {
1195 				pte_unmap(pte);
1196 				return i ? : -EFAULT;
1197 			}
1198 			if (pages) {
1199 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1200 				pages[i] = page;
1201 				if (page)
1202 					get_page(page);
1203 			}
1204 			pte_unmap(pte);
1205 			if (vmas)
1206 				vmas[i] = gate_vma;
1207 			i++;
1208 			start += PAGE_SIZE;
1209 			len--;
1210 			continue;
1211 		}
1212 
1213 		if (!vma ||
1214 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1215 		    (!ignore && !(vm_flags & vma->vm_flags)))
1216 			return i ? : -EFAULT;
1217 
1218 		if (is_vm_hugetlb_page(vma)) {
1219 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1220 						&start, &len, i, write);
1221 			continue;
1222 		}
1223 
1224 		foll_flags = FOLL_TOUCH;
1225 		if (pages)
1226 			foll_flags |= FOLL_GET;
1227 		if (!write && use_zero_page(vma))
1228 			foll_flags |= FOLL_ANON;
1229 
1230 		do {
1231 			struct page *page;
1232 
1233 			/*
1234 			 * If tsk is ooming, cut off its access to large memory
1235 			 * allocations. It has a pending SIGKILL, but it can't
1236 			 * be processed until returning to user space.
1237 			 */
1238 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1239 				return i ? i : -ENOMEM;
1240 
1241 			if (write)
1242 				foll_flags |= FOLL_WRITE;
1243 
1244 			cond_resched();
1245 			while (!(page = follow_page(vma, start, foll_flags))) {
1246 				int ret;
1247 				ret = handle_mm_fault(mm, vma, start,
1248 						foll_flags & FOLL_WRITE);
1249 				if (ret & VM_FAULT_ERROR) {
1250 					if (ret & VM_FAULT_OOM)
1251 						return i ? i : -ENOMEM;
1252 					else if (ret & VM_FAULT_SIGBUS)
1253 						return i ? i : -EFAULT;
1254 					BUG();
1255 				}
1256 				if (ret & VM_FAULT_MAJOR)
1257 					tsk->maj_flt++;
1258 				else
1259 					tsk->min_flt++;
1260 
1261 				/*
1262 				 * The VM_FAULT_WRITE bit tells us that
1263 				 * do_wp_page has broken COW when necessary,
1264 				 * even if maybe_mkwrite decided not to set
1265 				 * pte_write. We can thus safely do subsequent
1266 				 * page lookups as if they were reads.
1267 				 */
1268 				if (ret & VM_FAULT_WRITE)
1269 					foll_flags &= ~FOLL_WRITE;
1270 
1271 				cond_resched();
1272 			}
1273 			if (IS_ERR(page))
1274 				return i ? i : PTR_ERR(page);
1275 			if (pages) {
1276 				pages[i] = page;
1277 
1278 				flush_anon_page(vma, page, start);
1279 				flush_dcache_page(page);
1280 			}
1281 			if (vmas)
1282 				vmas[i] = vma;
1283 			i++;
1284 			start += PAGE_SIZE;
1285 			len--;
1286 		} while (len && start < vma->vm_end);
1287 	} while (len);
1288 	return i;
1289 }
1290 
1291 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1292 		unsigned long start, int len, int write, int force,
1293 		struct page **pages, struct vm_area_struct **vmas)
1294 {
1295 	int flags = 0;
1296 
1297 	if (write)
1298 		flags |= GUP_FLAGS_WRITE;
1299 	if (force)
1300 		flags |= GUP_FLAGS_FORCE;
1301 
1302 	return __get_user_pages(tsk, mm,
1303 				start, len, flags,
1304 				pages, vmas);
1305 }
1306 
1307 EXPORT_SYMBOL(get_user_pages);
1308 
1309 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1310 			spinlock_t **ptl)
1311 {
1312 	pgd_t * pgd = pgd_offset(mm, addr);
1313 	pud_t * pud = pud_alloc(mm, pgd, addr);
1314 	if (pud) {
1315 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1316 		if (pmd)
1317 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1318 	}
1319 	return NULL;
1320 }
1321 
1322 /*
1323  * This is the old fallback for page remapping.
1324  *
1325  * For historical reasons, it only allows reserved pages. Only
1326  * old drivers should use this, and they needed to mark their
1327  * pages reserved for the old functions anyway.
1328  */
1329 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1330 			struct page *page, pgprot_t prot)
1331 {
1332 	struct mm_struct *mm = vma->vm_mm;
1333 	int retval;
1334 	pte_t *pte;
1335 	spinlock_t *ptl;
1336 
1337 	retval = -EINVAL;
1338 	if (PageAnon(page))
1339 		goto out;
1340 	retval = -ENOMEM;
1341 	flush_dcache_page(page);
1342 	pte = get_locked_pte(mm, addr, &ptl);
1343 	if (!pte)
1344 		goto out;
1345 	retval = -EBUSY;
1346 	if (!pte_none(*pte))
1347 		goto out_unlock;
1348 
1349 	/* Ok, finally just insert the thing.. */
1350 	get_page(page);
1351 	inc_mm_counter(mm, file_rss);
1352 	page_add_file_rmap(page);
1353 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1354 
1355 	retval = 0;
1356 	pte_unmap_unlock(pte, ptl);
1357 	return retval;
1358 out_unlock:
1359 	pte_unmap_unlock(pte, ptl);
1360 out:
1361 	return retval;
1362 }
1363 
1364 /**
1365  * vm_insert_page - insert single page into user vma
1366  * @vma: user vma to map to
1367  * @addr: target user address of this page
1368  * @page: source kernel page
1369  *
1370  * This allows drivers to insert individual pages they've allocated
1371  * into a user vma.
1372  *
1373  * The page has to be a nice clean _individual_ kernel allocation.
1374  * If you allocate a compound page, you need to have marked it as
1375  * such (__GFP_COMP), or manually just split the page up yourself
1376  * (see split_page()).
1377  *
1378  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1379  * took an arbitrary page protection parameter. This doesn't allow
1380  * that. Your vma protection will have to be set up correctly, which
1381  * means that if you want a shared writable mapping, you'd better
1382  * ask for a shared writable mapping!
1383  *
1384  * The page does not need to be reserved.
1385  */
1386 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1387 			struct page *page)
1388 {
1389 	if (addr < vma->vm_start || addr >= vma->vm_end)
1390 		return -EFAULT;
1391 	if (!page_count(page))
1392 		return -EINVAL;
1393 	vma->vm_flags |= VM_INSERTPAGE;
1394 	return insert_page(vma, addr, page, vma->vm_page_prot);
1395 }
1396 EXPORT_SYMBOL(vm_insert_page);
1397 
1398 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1399 			unsigned long pfn, pgprot_t prot)
1400 {
1401 	struct mm_struct *mm = vma->vm_mm;
1402 	int retval;
1403 	pte_t *pte, entry;
1404 	spinlock_t *ptl;
1405 
1406 	retval = -ENOMEM;
1407 	pte = get_locked_pte(mm, addr, &ptl);
1408 	if (!pte)
1409 		goto out;
1410 	retval = -EBUSY;
1411 	if (!pte_none(*pte))
1412 		goto out_unlock;
1413 
1414 	/* Ok, finally just insert the thing.. */
1415 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1416 	set_pte_at(mm, addr, pte, entry);
1417 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1418 
1419 	retval = 0;
1420 out_unlock:
1421 	pte_unmap_unlock(pte, ptl);
1422 out:
1423 	return retval;
1424 }
1425 
1426 /**
1427  * vm_insert_pfn - insert single pfn into user vma
1428  * @vma: user vma to map to
1429  * @addr: target user address of this page
1430  * @pfn: source kernel pfn
1431  *
1432  * Similar to vm_inert_page, this allows drivers to insert individual pages
1433  * they've allocated into a user vma. Same comments apply.
1434  *
1435  * This function should only be called from a vm_ops->fault handler, and
1436  * in that case the handler should return NULL.
1437  *
1438  * vma cannot be a COW mapping.
1439  *
1440  * As this is called only for pages that do not currently exist, we
1441  * do not need to flush old virtual caches or the TLB.
1442  */
1443 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1444 			unsigned long pfn)
1445 {
1446 	int ret;
1447 	/*
1448 	 * Technically, architectures with pte_special can avoid all these
1449 	 * restrictions (same for remap_pfn_range).  However we would like
1450 	 * consistency in testing and feature parity among all, so we should
1451 	 * try to keep these invariants in place for everybody.
1452 	 */
1453 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1454 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1455 						(VM_PFNMAP|VM_MIXEDMAP));
1456 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1457 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1458 
1459 	if (addr < vma->vm_start || addr >= vma->vm_end)
1460 		return -EFAULT;
1461 	if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1462 		return -EINVAL;
1463 
1464 	ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1465 
1466 	if (ret)
1467 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1468 
1469 	return ret;
1470 }
1471 EXPORT_SYMBOL(vm_insert_pfn);
1472 
1473 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1474 			unsigned long pfn)
1475 {
1476 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1477 
1478 	if (addr < vma->vm_start || addr >= vma->vm_end)
1479 		return -EFAULT;
1480 
1481 	/*
1482 	 * If we don't have pte special, then we have to use the pfn_valid()
1483 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1484 	 * refcount the page if pfn_valid is true (hence insert_page rather
1485 	 * than insert_pfn).
1486 	 */
1487 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1488 		struct page *page;
1489 
1490 		page = pfn_to_page(pfn);
1491 		return insert_page(vma, addr, page, vma->vm_page_prot);
1492 	}
1493 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1494 }
1495 EXPORT_SYMBOL(vm_insert_mixed);
1496 
1497 /*
1498  * maps a range of physical memory into the requested pages. the old
1499  * mappings are removed. any references to nonexistent pages results
1500  * in null mappings (currently treated as "copy-on-access")
1501  */
1502 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1503 			unsigned long addr, unsigned long end,
1504 			unsigned long pfn, pgprot_t prot)
1505 {
1506 	pte_t *pte;
1507 	spinlock_t *ptl;
1508 
1509 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1510 	if (!pte)
1511 		return -ENOMEM;
1512 	arch_enter_lazy_mmu_mode();
1513 	do {
1514 		BUG_ON(!pte_none(*pte));
1515 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1516 		pfn++;
1517 	} while (pte++, addr += PAGE_SIZE, addr != end);
1518 	arch_leave_lazy_mmu_mode();
1519 	pte_unmap_unlock(pte - 1, ptl);
1520 	return 0;
1521 }
1522 
1523 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1524 			unsigned long addr, unsigned long end,
1525 			unsigned long pfn, pgprot_t prot)
1526 {
1527 	pmd_t *pmd;
1528 	unsigned long next;
1529 
1530 	pfn -= addr >> PAGE_SHIFT;
1531 	pmd = pmd_alloc(mm, pud, addr);
1532 	if (!pmd)
1533 		return -ENOMEM;
1534 	do {
1535 		next = pmd_addr_end(addr, end);
1536 		if (remap_pte_range(mm, pmd, addr, next,
1537 				pfn + (addr >> PAGE_SHIFT), prot))
1538 			return -ENOMEM;
1539 	} while (pmd++, addr = next, addr != end);
1540 	return 0;
1541 }
1542 
1543 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1544 			unsigned long addr, unsigned long end,
1545 			unsigned long pfn, pgprot_t prot)
1546 {
1547 	pud_t *pud;
1548 	unsigned long next;
1549 
1550 	pfn -= addr >> PAGE_SHIFT;
1551 	pud = pud_alloc(mm, pgd, addr);
1552 	if (!pud)
1553 		return -ENOMEM;
1554 	do {
1555 		next = pud_addr_end(addr, end);
1556 		if (remap_pmd_range(mm, pud, addr, next,
1557 				pfn + (addr >> PAGE_SHIFT), prot))
1558 			return -ENOMEM;
1559 	} while (pud++, addr = next, addr != end);
1560 	return 0;
1561 }
1562 
1563 /**
1564  * remap_pfn_range - remap kernel memory to userspace
1565  * @vma: user vma to map to
1566  * @addr: target user address to start at
1567  * @pfn: physical address of kernel memory
1568  * @size: size of map area
1569  * @prot: page protection flags for this mapping
1570  *
1571  *  Note: this is only safe if the mm semaphore is held when called.
1572  */
1573 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1574 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1575 {
1576 	pgd_t *pgd;
1577 	unsigned long next;
1578 	unsigned long end = addr + PAGE_ALIGN(size);
1579 	struct mm_struct *mm = vma->vm_mm;
1580 	int err;
1581 
1582 	/*
1583 	 * Physically remapped pages are special. Tell the
1584 	 * rest of the world about it:
1585 	 *   VM_IO tells people not to look at these pages
1586 	 *	(accesses can have side effects).
1587 	 *   VM_RESERVED is specified all over the place, because
1588 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1589 	 *	in 2.6 the LRU scan won't even find its pages, so this
1590 	 *	flag means no more than count its pages in reserved_vm,
1591 	 * 	and omit it from core dump, even when VM_IO turned off.
1592 	 *   VM_PFNMAP tells the core MM that the base pages are just
1593 	 *	raw PFN mappings, and do not have a "struct page" associated
1594 	 *	with them.
1595 	 *
1596 	 * There's a horrible special case to handle copy-on-write
1597 	 * behaviour that some programs depend on. We mark the "original"
1598 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1599 	 */
1600 	if (addr == vma->vm_start && end == vma->vm_end)
1601 		vma->vm_pgoff = pfn;
1602 	else if (is_cow_mapping(vma->vm_flags))
1603 		return -EINVAL;
1604 
1605 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1606 
1607 	err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1608 	if (err)
1609 		return -EINVAL;
1610 
1611 	BUG_ON(addr >= end);
1612 	pfn -= addr >> PAGE_SHIFT;
1613 	pgd = pgd_offset(mm, addr);
1614 	flush_cache_range(vma, addr, end);
1615 	do {
1616 		next = pgd_addr_end(addr, end);
1617 		err = remap_pud_range(mm, pgd, addr, next,
1618 				pfn + (addr >> PAGE_SHIFT), prot);
1619 		if (err)
1620 			break;
1621 	} while (pgd++, addr = next, addr != end);
1622 
1623 	if (err)
1624 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1625 
1626 	return err;
1627 }
1628 EXPORT_SYMBOL(remap_pfn_range);
1629 
1630 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1631 				     unsigned long addr, unsigned long end,
1632 				     pte_fn_t fn, void *data)
1633 {
1634 	pte_t *pte;
1635 	int err;
1636 	pgtable_t token;
1637 	spinlock_t *uninitialized_var(ptl);
1638 
1639 	pte = (mm == &init_mm) ?
1640 		pte_alloc_kernel(pmd, addr) :
1641 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1642 	if (!pte)
1643 		return -ENOMEM;
1644 
1645 	BUG_ON(pmd_huge(*pmd));
1646 
1647 	token = pmd_pgtable(*pmd);
1648 
1649 	do {
1650 		err = fn(pte, token, addr, data);
1651 		if (err)
1652 			break;
1653 	} while (pte++, addr += PAGE_SIZE, addr != end);
1654 
1655 	if (mm != &init_mm)
1656 		pte_unmap_unlock(pte-1, ptl);
1657 	return err;
1658 }
1659 
1660 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1661 				     unsigned long addr, unsigned long end,
1662 				     pte_fn_t fn, void *data)
1663 {
1664 	pmd_t *pmd;
1665 	unsigned long next;
1666 	int err;
1667 
1668 	BUG_ON(pud_huge(*pud));
1669 
1670 	pmd = pmd_alloc(mm, pud, addr);
1671 	if (!pmd)
1672 		return -ENOMEM;
1673 	do {
1674 		next = pmd_addr_end(addr, end);
1675 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1676 		if (err)
1677 			break;
1678 	} while (pmd++, addr = next, addr != end);
1679 	return err;
1680 }
1681 
1682 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1683 				     unsigned long addr, unsigned long end,
1684 				     pte_fn_t fn, void *data)
1685 {
1686 	pud_t *pud;
1687 	unsigned long next;
1688 	int err;
1689 
1690 	pud = pud_alloc(mm, pgd, addr);
1691 	if (!pud)
1692 		return -ENOMEM;
1693 	do {
1694 		next = pud_addr_end(addr, end);
1695 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1696 		if (err)
1697 			break;
1698 	} while (pud++, addr = next, addr != end);
1699 	return err;
1700 }
1701 
1702 /*
1703  * Scan a region of virtual memory, filling in page tables as necessary
1704  * and calling a provided function on each leaf page table.
1705  */
1706 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1707 			unsigned long size, pte_fn_t fn, void *data)
1708 {
1709 	pgd_t *pgd;
1710 	unsigned long next;
1711 	unsigned long start = addr, end = addr + size;
1712 	int err;
1713 
1714 	BUG_ON(addr >= end);
1715 	mmu_notifier_invalidate_range_start(mm, start, end);
1716 	pgd = pgd_offset(mm, addr);
1717 	do {
1718 		next = pgd_addr_end(addr, end);
1719 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1720 		if (err)
1721 			break;
1722 	} while (pgd++, addr = next, addr != end);
1723 	mmu_notifier_invalidate_range_end(mm, start, end);
1724 	return err;
1725 }
1726 EXPORT_SYMBOL_GPL(apply_to_page_range);
1727 
1728 /*
1729  * handle_pte_fault chooses page fault handler according to an entry
1730  * which was read non-atomically.  Before making any commitment, on
1731  * those architectures or configurations (e.g. i386 with PAE) which
1732  * might give a mix of unmatched parts, do_swap_page and do_file_page
1733  * must check under lock before unmapping the pte and proceeding
1734  * (but do_wp_page is only called after already making such a check;
1735  * and do_anonymous_page and do_no_page can safely check later on).
1736  */
1737 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1738 				pte_t *page_table, pte_t orig_pte)
1739 {
1740 	int same = 1;
1741 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1742 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1743 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1744 		spin_lock(ptl);
1745 		same = pte_same(*page_table, orig_pte);
1746 		spin_unlock(ptl);
1747 	}
1748 #endif
1749 	pte_unmap(page_table);
1750 	return same;
1751 }
1752 
1753 /*
1754  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1755  * servicing faults for write access.  In the normal case, do always want
1756  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1757  * that do not have writing enabled, when used by access_process_vm.
1758  */
1759 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1760 {
1761 	if (likely(vma->vm_flags & VM_WRITE))
1762 		pte = pte_mkwrite(pte);
1763 	return pte;
1764 }
1765 
1766 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1767 {
1768 	/*
1769 	 * If the source page was a PFN mapping, we don't have
1770 	 * a "struct page" for it. We do a best-effort copy by
1771 	 * just copying from the original user address. If that
1772 	 * fails, we just zero-fill it. Live with it.
1773 	 */
1774 	if (unlikely(!src)) {
1775 		void *kaddr = kmap_atomic(dst, KM_USER0);
1776 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1777 
1778 		/*
1779 		 * This really shouldn't fail, because the page is there
1780 		 * in the page tables. But it might just be unreadable,
1781 		 * in which case we just give up and fill the result with
1782 		 * zeroes.
1783 		 */
1784 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1785 			memset(kaddr, 0, PAGE_SIZE);
1786 		kunmap_atomic(kaddr, KM_USER0);
1787 		flush_dcache_page(dst);
1788 	} else
1789 		copy_user_highpage(dst, src, va, vma);
1790 }
1791 
1792 /*
1793  * This routine handles present pages, when users try to write
1794  * to a shared page. It is done by copying the page to a new address
1795  * and decrementing the shared-page counter for the old page.
1796  *
1797  * Note that this routine assumes that the protection checks have been
1798  * done by the caller (the low-level page fault routine in most cases).
1799  * Thus we can safely just mark it writable once we've done any necessary
1800  * COW.
1801  *
1802  * We also mark the page dirty at this point even though the page will
1803  * change only once the write actually happens. This avoids a few races,
1804  * and potentially makes it more efficient.
1805  *
1806  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1807  * but allow concurrent faults), with pte both mapped and locked.
1808  * We return with mmap_sem still held, but pte unmapped and unlocked.
1809  */
1810 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1811 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1812 		spinlock_t *ptl, pte_t orig_pte)
1813 {
1814 	struct page *old_page, *new_page;
1815 	pte_t entry;
1816 	int reuse = 0, ret = 0;
1817 	int page_mkwrite = 0;
1818 	struct page *dirty_page = NULL;
1819 
1820 	old_page = vm_normal_page(vma, address, orig_pte);
1821 	if (!old_page) {
1822 		/*
1823 		 * VM_MIXEDMAP !pfn_valid() case
1824 		 *
1825 		 * We should not cow pages in a shared writeable mapping.
1826 		 * Just mark the pages writable as we can't do any dirty
1827 		 * accounting on raw pfn maps.
1828 		 */
1829 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1830 				     (VM_WRITE|VM_SHARED))
1831 			goto reuse;
1832 		goto gotten;
1833 	}
1834 
1835 	/*
1836 	 * Take out anonymous pages first, anonymous shared vmas are
1837 	 * not dirty accountable.
1838 	 */
1839 	if (PageAnon(old_page)) {
1840 		if (trylock_page(old_page)) {
1841 			reuse = can_share_swap_page(old_page);
1842 			unlock_page(old_page);
1843 		}
1844 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1845 					(VM_WRITE|VM_SHARED))) {
1846 		/*
1847 		 * Only catch write-faults on shared writable pages,
1848 		 * read-only shared pages can get COWed by
1849 		 * get_user_pages(.write=1, .force=1).
1850 		 */
1851 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1852 			/*
1853 			 * Notify the address space that the page is about to
1854 			 * become writable so that it can prohibit this or wait
1855 			 * for the page to get into an appropriate state.
1856 			 *
1857 			 * We do this without the lock held, so that it can
1858 			 * sleep if it needs to.
1859 			 */
1860 			page_cache_get(old_page);
1861 			pte_unmap_unlock(page_table, ptl);
1862 
1863 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1864 				goto unwritable_page;
1865 
1866 			/*
1867 			 * Since we dropped the lock we need to revalidate
1868 			 * the PTE as someone else may have changed it.  If
1869 			 * they did, we just return, as we can count on the
1870 			 * MMU to tell us if they didn't also make it writable.
1871 			 */
1872 			page_table = pte_offset_map_lock(mm, pmd, address,
1873 							 &ptl);
1874 			page_cache_release(old_page);
1875 			if (!pte_same(*page_table, orig_pte))
1876 				goto unlock;
1877 
1878 			page_mkwrite = 1;
1879 		}
1880 		dirty_page = old_page;
1881 		get_page(dirty_page);
1882 		reuse = 1;
1883 	}
1884 
1885 	if (reuse) {
1886 reuse:
1887 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1888 		entry = pte_mkyoung(orig_pte);
1889 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1890 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1891 			update_mmu_cache(vma, address, entry);
1892 		ret |= VM_FAULT_WRITE;
1893 		goto unlock;
1894 	}
1895 
1896 	/*
1897 	 * Ok, we need to copy. Oh, well..
1898 	 */
1899 	page_cache_get(old_page);
1900 gotten:
1901 	pte_unmap_unlock(page_table, ptl);
1902 
1903 	if (unlikely(anon_vma_prepare(vma)))
1904 		goto oom;
1905 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1906 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1907 	if (!new_page)
1908 		goto oom;
1909 	/*
1910 	 * Don't let another task, with possibly unlocked vma,
1911 	 * keep the mlocked page.
1912 	 */
1913 	if (vma->vm_flags & VM_LOCKED) {
1914 		lock_page(old_page);	/* for LRU manipulation */
1915 		clear_page_mlock(old_page);
1916 		unlock_page(old_page);
1917 	}
1918 	cow_user_page(new_page, old_page, address, vma);
1919 	__SetPageUptodate(new_page);
1920 
1921 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1922 		goto oom_free_new;
1923 
1924 	/*
1925 	 * Re-check the pte - we dropped the lock
1926 	 */
1927 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1928 	if (likely(pte_same(*page_table, orig_pte))) {
1929 		if (old_page) {
1930 			if (!PageAnon(old_page)) {
1931 				dec_mm_counter(mm, file_rss);
1932 				inc_mm_counter(mm, anon_rss);
1933 			}
1934 		} else
1935 			inc_mm_counter(mm, anon_rss);
1936 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1937 		entry = mk_pte(new_page, vma->vm_page_prot);
1938 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1939 		/*
1940 		 * Clear the pte entry and flush it first, before updating the
1941 		 * pte with the new entry. This will avoid a race condition
1942 		 * seen in the presence of one thread doing SMC and another
1943 		 * thread doing COW.
1944 		 */
1945 		ptep_clear_flush_notify(vma, address, page_table);
1946 		SetPageSwapBacked(new_page);
1947 		lru_cache_add_active_or_unevictable(new_page, vma);
1948 		page_add_new_anon_rmap(new_page, vma, address);
1949 
1950 //TODO:  is this safe?  do_anonymous_page() does it this way.
1951 		set_pte_at(mm, address, page_table, entry);
1952 		update_mmu_cache(vma, address, entry);
1953 		if (old_page) {
1954 			/*
1955 			 * Only after switching the pte to the new page may
1956 			 * we remove the mapcount here. Otherwise another
1957 			 * process may come and find the rmap count decremented
1958 			 * before the pte is switched to the new page, and
1959 			 * "reuse" the old page writing into it while our pte
1960 			 * here still points into it and can be read by other
1961 			 * threads.
1962 			 *
1963 			 * The critical issue is to order this
1964 			 * page_remove_rmap with the ptp_clear_flush above.
1965 			 * Those stores are ordered by (if nothing else,)
1966 			 * the barrier present in the atomic_add_negative
1967 			 * in page_remove_rmap.
1968 			 *
1969 			 * Then the TLB flush in ptep_clear_flush ensures that
1970 			 * no process can access the old page before the
1971 			 * decremented mapcount is visible. And the old page
1972 			 * cannot be reused until after the decremented
1973 			 * mapcount is visible. So transitively, TLBs to
1974 			 * old page will be flushed before it can be reused.
1975 			 */
1976 			page_remove_rmap(old_page, vma);
1977 		}
1978 
1979 		/* Free the old page.. */
1980 		new_page = old_page;
1981 		ret |= VM_FAULT_WRITE;
1982 	} else
1983 		mem_cgroup_uncharge_page(new_page);
1984 
1985 	if (new_page)
1986 		page_cache_release(new_page);
1987 	if (old_page)
1988 		page_cache_release(old_page);
1989 unlock:
1990 	pte_unmap_unlock(page_table, ptl);
1991 	if (dirty_page) {
1992 		if (vma->vm_file)
1993 			file_update_time(vma->vm_file);
1994 
1995 		/*
1996 		 * Yes, Virginia, this is actually required to prevent a race
1997 		 * with clear_page_dirty_for_io() from clearing the page dirty
1998 		 * bit after it clear all dirty ptes, but before a racing
1999 		 * do_wp_page installs a dirty pte.
2000 		 *
2001 		 * do_no_page is protected similarly.
2002 		 */
2003 		wait_on_page_locked(dirty_page);
2004 		set_page_dirty_balance(dirty_page, page_mkwrite);
2005 		put_page(dirty_page);
2006 	}
2007 	return ret;
2008 oom_free_new:
2009 	page_cache_release(new_page);
2010 oom:
2011 	if (old_page)
2012 		page_cache_release(old_page);
2013 	return VM_FAULT_OOM;
2014 
2015 unwritable_page:
2016 	page_cache_release(old_page);
2017 	return VM_FAULT_SIGBUS;
2018 }
2019 
2020 /*
2021  * Helper functions for unmap_mapping_range().
2022  *
2023  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2024  *
2025  * We have to restart searching the prio_tree whenever we drop the lock,
2026  * since the iterator is only valid while the lock is held, and anyway
2027  * a later vma might be split and reinserted earlier while lock dropped.
2028  *
2029  * The list of nonlinear vmas could be handled more efficiently, using
2030  * a placeholder, but handle it in the same way until a need is shown.
2031  * It is important to search the prio_tree before nonlinear list: a vma
2032  * may become nonlinear and be shifted from prio_tree to nonlinear list
2033  * while the lock is dropped; but never shifted from list to prio_tree.
2034  *
2035  * In order to make forward progress despite restarting the search,
2036  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2037  * quickly skip it next time around.  Since the prio_tree search only
2038  * shows us those vmas affected by unmapping the range in question, we
2039  * can't efficiently keep all vmas in step with mapping->truncate_count:
2040  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2041  * mapping->truncate_count and vma->vm_truncate_count are protected by
2042  * i_mmap_lock.
2043  *
2044  * In order to make forward progress despite repeatedly restarting some
2045  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2046  * and restart from that address when we reach that vma again.  It might
2047  * have been split or merged, shrunk or extended, but never shifted: so
2048  * restart_addr remains valid so long as it remains in the vma's range.
2049  * unmap_mapping_range forces truncate_count to leap over page-aligned
2050  * values so we can save vma's restart_addr in its truncate_count field.
2051  */
2052 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2053 
2054 static void reset_vma_truncate_counts(struct address_space *mapping)
2055 {
2056 	struct vm_area_struct *vma;
2057 	struct prio_tree_iter iter;
2058 
2059 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2060 		vma->vm_truncate_count = 0;
2061 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2062 		vma->vm_truncate_count = 0;
2063 }
2064 
2065 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2066 		unsigned long start_addr, unsigned long end_addr,
2067 		struct zap_details *details)
2068 {
2069 	unsigned long restart_addr;
2070 	int need_break;
2071 
2072 	/*
2073 	 * files that support invalidating or truncating portions of the
2074 	 * file from under mmaped areas must have their ->fault function
2075 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2076 	 * This provides synchronisation against concurrent unmapping here.
2077 	 */
2078 
2079 again:
2080 	restart_addr = vma->vm_truncate_count;
2081 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2082 		start_addr = restart_addr;
2083 		if (start_addr >= end_addr) {
2084 			/* Top of vma has been split off since last time */
2085 			vma->vm_truncate_count = details->truncate_count;
2086 			return 0;
2087 		}
2088 	}
2089 
2090 	restart_addr = zap_page_range(vma, start_addr,
2091 					end_addr - start_addr, details);
2092 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2093 
2094 	if (restart_addr >= end_addr) {
2095 		/* We have now completed this vma: mark it so */
2096 		vma->vm_truncate_count = details->truncate_count;
2097 		if (!need_break)
2098 			return 0;
2099 	} else {
2100 		/* Note restart_addr in vma's truncate_count field */
2101 		vma->vm_truncate_count = restart_addr;
2102 		if (!need_break)
2103 			goto again;
2104 	}
2105 
2106 	spin_unlock(details->i_mmap_lock);
2107 	cond_resched();
2108 	spin_lock(details->i_mmap_lock);
2109 	return -EINTR;
2110 }
2111 
2112 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2113 					    struct zap_details *details)
2114 {
2115 	struct vm_area_struct *vma;
2116 	struct prio_tree_iter iter;
2117 	pgoff_t vba, vea, zba, zea;
2118 
2119 restart:
2120 	vma_prio_tree_foreach(vma, &iter, root,
2121 			details->first_index, details->last_index) {
2122 		/* Skip quickly over those we have already dealt with */
2123 		if (vma->vm_truncate_count == details->truncate_count)
2124 			continue;
2125 
2126 		vba = vma->vm_pgoff;
2127 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2128 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2129 		zba = details->first_index;
2130 		if (zba < vba)
2131 			zba = vba;
2132 		zea = details->last_index;
2133 		if (zea > vea)
2134 			zea = vea;
2135 
2136 		if (unmap_mapping_range_vma(vma,
2137 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2138 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2139 				details) < 0)
2140 			goto restart;
2141 	}
2142 }
2143 
2144 static inline void unmap_mapping_range_list(struct list_head *head,
2145 					    struct zap_details *details)
2146 {
2147 	struct vm_area_struct *vma;
2148 
2149 	/*
2150 	 * In nonlinear VMAs there is no correspondence between virtual address
2151 	 * offset and file offset.  So we must perform an exhaustive search
2152 	 * across *all* the pages in each nonlinear VMA, not just the pages
2153 	 * whose virtual address lies outside the file truncation point.
2154 	 */
2155 restart:
2156 	list_for_each_entry(vma, head, shared.vm_set.list) {
2157 		/* Skip quickly over those we have already dealt with */
2158 		if (vma->vm_truncate_count == details->truncate_count)
2159 			continue;
2160 		details->nonlinear_vma = vma;
2161 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2162 					vma->vm_end, details) < 0)
2163 			goto restart;
2164 	}
2165 }
2166 
2167 /**
2168  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2169  * @mapping: the address space containing mmaps to be unmapped.
2170  * @holebegin: byte in first page to unmap, relative to the start of
2171  * the underlying file.  This will be rounded down to a PAGE_SIZE
2172  * boundary.  Note that this is different from vmtruncate(), which
2173  * must keep the partial page.  In contrast, we must get rid of
2174  * partial pages.
2175  * @holelen: size of prospective hole in bytes.  This will be rounded
2176  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2177  * end of the file.
2178  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2179  * but 0 when invalidating pagecache, don't throw away private data.
2180  */
2181 void unmap_mapping_range(struct address_space *mapping,
2182 		loff_t const holebegin, loff_t const holelen, int even_cows)
2183 {
2184 	struct zap_details details;
2185 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2186 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2187 
2188 	/* Check for overflow. */
2189 	if (sizeof(holelen) > sizeof(hlen)) {
2190 		long long holeend =
2191 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2192 		if (holeend & ~(long long)ULONG_MAX)
2193 			hlen = ULONG_MAX - hba + 1;
2194 	}
2195 
2196 	details.check_mapping = even_cows? NULL: mapping;
2197 	details.nonlinear_vma = NULL;
2198 	details.first_index = hba;
2199 	details.last_index = hba + hlen - 1;
2200 	if (details.last_index < details.first_index)
2201 		details.last_index = ULONG_MAX;
2202 	details.i_mmap_lock = &mapping->i_mmap_lock;
2203 
2204 	spin_lock(&mapping->i_mmap_lock);
2205 
2206 	/* Protect against endless unmapping loops */
2207 	mapping->truncate_count++;
2208 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2209 		if (mapping->truncate_count == 0)
2210 			reset_vma_truncate_counts(mapping);
2211 		mapping->truncate_count++;
2212 	}
2213 	details.truncate_count = mapping->truncate_count;
2214 
2215 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2216 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2217 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2218 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2219 	spin_unlock(&mapping->i_mmap_lock);
2220 }
2221 EXPORT_SYMBOL(unmap_mapping_range);
2222 
2223 /**
2224  * vmtruncate - unmap mappings "freed" by truncate() syscall
2225  * @inode: inode of the file used
2226  * @offset: file offset to start truncating
2227  *
2228  * NOTE! We have to be ready to update the memory sharing
2229  * between the file and the memory map for a potential last
2230  * incomplete page.  Ugly, but necessary.
2231  */
2232 int vmtruncate(struct inode * inode, loff_t offset)
2233 {
2234 	if (inode->i_size < offset) {
2235 		unsigned long limit;
2236 
2237 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2238 		if (limit != RLIM_INFINITY && offset > limit)
2239 			goto out_sig;
2240 		if (offset > inode->i_sb->s_maxbytes)
2241 			goto out_big;
2242 		i_size_write(inode, offset);
2243 	} else {
2244 		struct address_space *mapping = inode->i_mapping;
2245 
2246 		/*
2247 		 * truncation of in-use swapfiles is disallowed - it would
2248 		 * cause subsequent swapout to scribble on the now-freed
2249 		 * blocks.
2250 		 */
2251 		if (IS_SWAPFILE(inode))
2252 			return -ETXTBSY;
2253 		i_size_write(inode, offset);
2254 
2255 		/*
2256 		 * unmap_mapping_range is called twice, first simply for
2257 		 * efficiency so that truncate_inode_pages does fewer
2258 		 * single-page unmaps.  However after this first call, and
2259 		 * before truncate_inode_pages finishes, it is possible for
2260 		 * private pages to be COWed, which remain after
2261 		 * truncate_inode_pages finishes, hence the second
2262 		 * unmap_mapping_range call must be made for correctness.
2263 		 */
2264 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2265 		truncate_inode_pages(mapping, offset);
2266 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2267 	}
2268 
2269 	if (inode->i_op && inode->i_op->truncate)
2270 		inode->i_op->truncate(inode);
2271 	return 0;
2272 
2273 out_sig:
2274 	send_sig(SIGXFSZ, current, 0);
2275 out_big:
2276 	return -EFBIG;
2277 }
2278 EXPORT_SYMBOL(vmtruncate);
2279 
2280 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2281 {
2282 	struct address_space *mapping = inode->i_mapping;
2283 
2284 	/*
2285 	 * If the underlying filesystem is not going to provide
2286 	 * a way to truncate a range of blocks (punch a hole) -
2287 	 * we should return failure right now.
2288 	 */
2289 	if (!inode->i_op || !inode->i_op->truncate_range)
2290 		return -ENOSYS;
2291 
2292 	mutex_lock(&inode->i_mutex);
2293 	down_write(&inode->i_alloc_sem);
2294 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2295 	truncate_inode_pages_range(mapping, offset, end);
2296 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2297 	inode->i_op->truncate_range(inode, offset, end);
2298 	up_write(&inode->i_alloc_sem);
2299 	mutex_unlock(&inode->i_mutex);
2300 
2301 	return 0;
2302 }
2303 
2304 /*
2305  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2306  * but allow concurrent faults), and pte mapped but not yet locked.
2307  * We return with mmap_sem still held, but pte unmapped and unlocked.
2308  */
2309 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2310 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2311 		int write_access, pte_t orig_pte)
2312 {
2313 	spinlock_t *ptl;
2314 	struct page *page;
2315 	swp_entry_t entry;
2316 	pte_t pte;
2317 	int ret = 0;
2318 
2319 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2320 		goto out;
2321 
2322 	entry = pte_to_swp_entry(orig_pte);
2323 	if (is_migration_entry(entry)) {
2324 		migration_entry_wait(mm, pmd, address);
2325 		goto out;
2326 	}
2327 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2328 	page = lookup_swap_cache(entry);
2329 	if (!page) {
2330 		grab_swap_token(); /* Contend for token _before_ read-in */
2331 		page = swapin_readahead(entry,
2332 					GFP_HIGHUSER_MOVABLE, vma, address);
2333 		if (!page) {
2334 			/*
2335 			 * Back out if somebody else faulted in this pte
2336 			 * while we released the pte lock.
2337 			 */
2338 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2339 			if (likely(pte_same(*page_table, orig_pte)))
2340 				ret = VM_FAULT_OOM;
2341 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2342 			goto unlock;
2343 		}
2344 
2345 		/* Had to read the page from swap area: Major fault */
2346 		ret = VM_FAULT_MAJOR;
2347 		count_vm_event(PGMAJFAULT);
2348 	}
2349 
2350 	mark_page_accessed(page);
2351 
2352 	lock_page(page);
2353 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2354 
2355 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2356 		ret = VM_FAULT_OOM;
2357 		unlock_page(page);
2358 		goto out;
2359 	}
2360 
2361 	/*
2362 	 * Back out if somebody else already faulted in this pte.
2363 	 */
2364 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2365 	if (unlikely(!pte_same(*page_table, orig_pte)))
2366 		goto out_nomap;
2367 
2368 	if (unlikely(!PageUptodate(page))) {
2369 		ret = VM_FAULT_SIGBUS;
2370 		goto out_nomap;
2371 	}
2372 
2373 	/* The page isn't present yet, go ahead with the fault. */
2374 
2375 	inc_mm_counter(mm, anon_rss);
2376 	pte = mk_pte(page, vma->vm_page_prot);
2377 	if (write_access && can_share_swap_page(page)) {
2378 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2379 		write_access = 0;
2380 	}
2381 
2382 	flush_icache_page(vma, page);
2383 	set_pte_at(mm, address, page_table, pte);
2384 	page_add_anon_rmap(page, vma, address);
2385 
2386 	swap_free(entry);
2387 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2388 		remove_exclusive_swap_page(page);
2389 	unlock_page(page);
2390 
2391 	if (write_access) {
2392 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2393 		if (ret & VM_FAULT_ERROR)
2394 			ret &= VM_FAULT_ERROR;
2395 		goto out;
2396 	}
2397 
2398 	/* No need to invalidate - it was non-present before */
2399 	update_mmu_cache(vma, address, pte);
2400 unlock:
2401 	pte_unmap_unlock(page_table, ptl);
2402 out:
2403 	return ret;
2404 out_nomap:
2405 	mem_cgroup_uncharge_page(page);
2406 	pte_unmap_unlock(page_table, ptl);
2407 	unlock_page(page);
2408 	page_cache_release(page);
2409 	return ret;
2410 }
2411 
2412 /*
2413  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2414  * but allow concurrent faults), and pte mapped but not yet locked.
2415  * We return with mmap_sem still held, but pte unmapped and unlocked.
2416  */
2417 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2418 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2419 		int write_access)
2420 {
2421 	struct page *page;
2422 	spinlock_t *ptl;
2423 	pte_t entry;
2424 
2425 	/* Allocate our own private page. */
2426 	pte_unmap(page_table);
2427 
2428 	if (unlikely(anon_vma_prepare(vma)))
2429 		goto oom;
2430 	page = alloc_zeroed_user_highpage_movable(vma, address);
2431 	if (!page)
2432 		goto oom;
2433 	__SetPageUptodate(page);
2434 
2435 	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2436 		goto oom_free_page;
2437 
2438 	entry = mk_pte(page, vma->vm_page_prot);
2439 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2440 
2441 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2442 	if (!pte_none(*page_table))
2443 		goto release;
2444 	inc_mm_counter(mm, anon_rss);
2445 	SetPageSwapBacked(page);
2446 	lru_cache_add_active_or_unevictable(page, vma);
2447 	page_add_new_anon_rmap(page, vma, address);
2448 	set_pte_at(mm, address, page_table, entry);
2449 
2450 	/* No need to invalidate - it was non-present before */
2451 	update_mmu_cache(vma, address, entry);
2452 unlock:
2453 	pte_unmap_unlock(page_table, ptl);
2454 	return 0;
2455 release:
2456 	mem_cgroup_uncharge_page(page);
2457 	page_cache_release(page);
2458 	goto unlock;
2459 oom_free_page:
2460 	page_cache_release(page);
2461 oom:
2462 	return VM_FAULT_OOM;
2463 }
2464 
2465 /*
2466  * __do_fault() tries to create a new page mapping. It aggressively
2467  * tries to share with existing pages, but makes a separate copy if
2468  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2469  * the next page fault.
2470  *
2471  * As this is called only for pages that do not currently exist, we
2472  * do not need to flush old virtual caches or the TLB.
2473  *
2474  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2475  * but allow concurrent faults), and pte neither mapped nor locked.
2476  * We return with mmap_sem still held, but pte unmapped and unlocked.
2477  */
2478 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2479 		unsigned long address, pmd_t *pmd,
2480 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2481 {
2482 	pte_t *page_table;
2483 	spinlock_t *ptl;
2484 	struct page *page;
2485 	pte_t entry;
2486 	int anon = 0;
2487 	int charged = 0;
2488 	struct page *dirty_page = NULL;
2489 	struct vm_fault vmf;
2490 	int ret;
2491 	int page_mkwrite = 0;
2492 
2493 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2494 	vmf.pgoff = pgoff;
2495 	vmf.flags = flags;
2496 	vmf.page = NULL;
2497 
2498 	ret = vma->vm_ops->fault(vma, &vmf);
2499 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2500 		return ret;
2501 
2502 	/*
2503 	 * For consistency in subsequent calls, make the faulted page always
2504 	 * locked.
2505 	 */
2506 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2507 		lock_page(vmf.page);
2508 	else
2509 		VM_BUG_ON(!PageLocked(vmf.page));
2510 
2511 	/*
2512 	 * Should we do an early C-O-W break?
2513 	 */
2514 	page = vmf.page;
2515 	if (flags & FAULT_FLAG_WRITE) {
2516 		if (!(vma->vm_flags & VM_SHARED)) {
2517 			anon = 1;
2518 			if (unlikely(anon_vma_prepare(vma))) {
2519 				ret = VM_FAULT_OOM;
2520 				goto out;
2521 			}
2522 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2523 						vma, address);
2524 			if (!page) {
2525 				ret = VM_FAULT_OOM;
2526 				goto out;
2527 			}
2528 			if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2529 				ret = VM_FAULT_OOM;
2530 				page_cache_release(page);
2531 				goto out;
2532 			}
2533 			charged = 1;
2534 			/*
2535 			 * Don't let another task, with possibly unlocked vma,
2536 			 * keep the mlocked page.
2537 			 */
2538 			if (vma->vm_flags & VM_LOCKED)
2539 				clear_page_mlock(vmf.page);
2540 			copy_user_highpage(page, vmf.page, address, vma);
2541 			__SetPageUptodate(page);
2542 		} else {
2543 			/*
2544 			 * If the page will be shareable, see if the backing
2545 			 * address space wants to know that the page is about
2546 			 * to become writable
2547 			 */
2548 			if (vma->vm_ops->page_mkwrite) {
2549 				unlock_page(page);
2550 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2551 					ret = VM_FAULT_SIGBUS;
2552 					anon = 1; /* no anon but release vmf.page */
2553 					goto out_unlocked;
2554 				}
2555 				lock_page(page);
2556 				/*
2557 				 * XXX: this is not quite right (racy vs
2558 				 * invalidate) to unlock and relock the page
2559 				 * like this, however a better fix requires
2560 				 * reworking page_mkwrite locking API, which
2561 				 * is better done later.
2562 				 */
2563 				if (!page->mapping) {
2564 					ret = 0;
2565 					anon = 1; /* no anon but release vmf.page */
2566 					goto out;
2567 				}
2568 				page_mkwrite = 1;
2569 			}
2570 		}
2571 
2572 	}
2573 
2574 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2575 
2576 	/*
2577 	 * This silly early PAGE_DIRTY setting removes a race
2578 	 * due to the bad i386 page protection. But it's valid
2579 	 * for other architectures too.
2580 	 *
2581 	 * Note that if write_access is true, we either now have
2582 	 * an exclusive copy of the page, or this is a shared mapping,
2583 	 * so we can make it writable and dirty to avoid having to
2584 	 * handle that later.
2585 	 */
2586 	/* Only go through if we didn't race with anybody else... */
2587 	if (likely(pte_same(*page_table, orig_pte))) {
2588 		flush_icache_page(vma, page);
2589 		entry = mk_pte(page, vma->vm_page_prot);
2590 		if (flags & FAULT_FLAG_WRITE)
2591 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2592 		if (anon) {
2593 			inc_mm_counter(mm, anon_rss);
2594 			SetPageSwapBacked(page);
2595 			lru_cache_add_active_or_unevictable(page, vma);
2596 			page_add_new_anon_rmap(page, vma, address);
2597 		} else {
2598 			inc_mm_counter(mm, file_rss);
2599 			page_add_file_rmap(page);
2600 			if (flags & FAULT_FLAG_WRITE) {
2601 				dirty_page = page;
2602 				get_page(dirty_page);
2603 			}
2604 		}
2605 //TODO:  is this safe?  do_anonymous_page() does it this way.
2606 		set_pte_at(mm, address, page_table, entry);
2607 
2608 		/* no need to invalidate: a not-present page won't be cached */
2609 		update_mmu_cache(vma, address, entry);
2610 	} else {
2611 		if (charged)
2612 			mem_cgroup_uncharge_page(page);
2613 		if (anon)
2614 			page_cache_release(page);
2615 		else
2616 			anon = 1; /* no anon but release faulted_page */
2617 	}
2618 
2619 	pte_unmap_unlock(page_table, ptl);
2620 
2621 out:
2622 	unlock_page(vmf.page);
2623 out_unlocked:
2624 	if (anon)
2625 		page_cache_release(vmf.page);
2626 	else if (dirty_page) {
2627 		if (vma->vm_file)
2628 			file_update_time(vma->vm_file);
2629 
2630 		set_page_dirty_balance(dirty_page, page_mkwrite);
2631 		put_page(dirty_page);
2632 	}
2633 
2634 	return ret;
2635 }
2636 
2637 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2638 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2639 		int write_access, pte_t orig_pte)
2640 {
2641 	pgoff_t pgoff = (((address & PAGE_MASK)
2642 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2643 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2644 
2645 	pte_unmap(page_table);
2646 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2647 }
2648 
2649 /*
2650  * Fault of a previously existing named mapping. Repopulate the pte
2651  * from the encoded file_pte if possible. This enables swappable
2652  * nonlinear vmas.
2653  *
2654  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2655  * but allow concurrent faults), and pte mapped but not yet locked.
2656  * We return with mmap_sem still held, but pte unmapped and unlocked.
2657  */
2658 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2659 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2660 		int write_access, pte_t orig_pte)
2661 {
2662 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2663 				(write_access ? FAULT_FLAG_WRITE : 0);
2664 	pgoff_t pgoff;
2665 
2666 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2667 		return 0;
2668 
2669 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2670 			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2671 		/*
2672 		 * Page table corrupted: show pte and kill process.
2673 		 */
2674 		print_bad_pte(vma, orig_pte, address);
2675 		return VM_FAULT_OOM;
2676 	}
2677 
2678 	pgoff = pte_to_pgoff(orig_pte);
2679 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2680 }
2681 
2682 /*
2683  * These routines also need to handle stuff like marking pages dirty
2684  * and/or accessed for architectures that don't do it in hardware (most
2685  * RISC architectures).  The early dirtying is also good on the i386.
2686  *
2687  * There is also a hook called "update_mmu_cache()" that architectures
2688  * with external mmu caches can use to update those (ie the Sparc or
2689  * PowerPC hashed page tables that act as extended TLBs).
2690  *
2691  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2692  * but allow concurrent faults), and pte mapped but not yet locked.
2693  * We return with mmap_sem still held, but pte unmapped and unlocked.
2694  */
2695 static inline int handle_pte_fault(struct mm_struct *mm,
2696 		struct vm_area_struct *vma, unsigned long address,
2697 		pte_t *pte, pmd_t *pmd, int write_access)
2698 {
2699 	pte_t entry;
2700 	spinlock_t *ptl;
2701 
2702 	entry = *pte;
2703 	if (!pte_present(entry)) {
2704 		if (pte_none(entry)) {
2705 			if (vma->vm_ops) {
2706 				if (likely(vma->vm_ops->fault))
2707 					return do_linear_fault(mm, vma, address,
2708 						pte, pmd, write_access, entry);
2709 			}
2710 			return do_anonymous_page(mm, vma, address,
2711 						 pte, pmd, write_access);
2712 		}
2713 		if (pte_file(entry))
2714 			return do_nonlinear_fault(mm, vma, address,
2715 					pte, pmd, write_access, entry);
2716 		return do_swap_page(mm, vma, address,
2717 					pte, pmd, write_access, entry);
2718 	}
2719 
2720 	ptl = pte_lockptr(mm, pmd);
2721 	spin_lock(ptl);
2722 	if (unlikely(!pte_same(*pte, entry)))
2723 		goto unlock;
2724 	if (write_access) {
2725 		if (!pte_write(entry))
2726 			return do_wp_page(mm, vma, address,
2727 					pte, pmd, ptl, entry);
2728 		entry = pte_mkdirty(entry);
2729 	}
2730 	entry = pte_mkyoung(entry);
2731 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2732 		update_mmu_cache(vma, address, entry);
2733 	} else {
2734 		/*
2735 		 * This is needed only for protection faults but the arch code
2736 		 * is not yet telling us if this is a protection fault or not.
2737 		 * This still avoids useless tlb flushes for .text page faults
2738 		 * with threads.
2739 		 */
2740 		if (write_access)
2741 			flush_tlb_page(vma, address);
2742 	}
2743 unlock:
2744 	pte_unmap_unlock(pte, ptl);
2745 	return 0;
2746 }
2747 
2748 /*
2749  * By the time we get here, we already hold the mm semaphore
2750  */
2751 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2752 		unsigned long address, int write_access)
2753 {
2754 	pgd_t *pgd;
2755 	pud_t *pud;
2756 	pmd_t *pmd;
2757 	pte_t *pte;
2758 
2759 	__set_current_state(TASK_RUNNING);
2760 
2761 	count_vm_event(PGFAULT);
2762 
2763 	if (unlikely(is_vm_hugetlb_page(vma)))
2764 		return hugetlb_fault(mm, vma, address, write_access);
2765 
2766 	pgd = pgd_offset(mm, address);
2767 	pud = pud_alloc(mm, pgd, address);
2768 	if (!pud)
2769 		return VM_FAULT_OOM;
2770 	pmd = pmd_alloc(mm, pud, address);
2771 	if (!pmd)
2772 		return VM_FAULT_OOM;
2773 	pte = pte_alloc_map(mm, pmd, address);
2774 	if (!pte)
2775 		return VM_FAULT_OOM;
2776 
2777 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2778 }
2779 
2780 #ifndef __PAGETABLE_PUD_FOLDED
2781 /*
2782  * Allocate page upper directory.
2783  * We've already handled the fast-path in-line.
2784  */
2785 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2786 {
2787 	pud_t *new = pud_alloc_one(mm, address);
2788 	if (!new)
2789 		return -ENOMEM;
2790 
2791 	smp_wmb(); /* See comment in __pte_alloc */
2792 
2793 	spin_lock(&mm->page_table_lock);
2794 	if (pgd_present(*pgd))		/* Another has populated it */
2795 		pud_free(mm, new);
2796 	else
2797 		pgd_populate(mm, pgd, new);
2798 	spin_unlock(&mm->page_table_lock);
2799 	return 0;
2800 }
2801 #endif /* __PAGETABLE_PUD_FOLDED */
2802 
2803 #ifndef __PAGETABLE_PMD_FOLDED
2804 /*
2805  * Allocate page middle directory.
2806  * We've already handled the fast-path in-line.
2807  */
2808 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2809 {
2810 	pmd_t *new = pmd_alloc_one(mm, address);
2811 	if (!new)
2812 		return -ENOMEM;
2813 
2814 	smp_wmb(); /* See comment in __pte_alloc */
2815 
2816 	spin_lock(&mm->page_table_lock);
2817 #ifndef __ARCH_HAS_4LEVEL_HACK
2818 	if (pud_present(*pud))		/* Another has populated it */
2819 		pmd_free(mm, new);
2820 	else
2821 		pud_populate(mm, pud, new);
2822 #else
2823 	if (pgd_present(*pud))		/* Another has populated it */
2824 		pmd_free(mm, new);
2825 	else
2826 		pgd_populate(mm, pud, new);
2827 #endif /* __ARCH_HAS_4LEVEL_HACK */
2828 	spin_unlock(&mm->page_table_lock);
2829 	return 0;
2830 }
2831 #endif /* __PAGETABLE_PMD_FOLDED */
2832 
2833 int make_pages_present(unsigned long addr, unsigned long end)
2834 {
2835 	int ret, len, write;
2836 	struct vm_area_struct * vma;
2837 
2838 	vma = find_vma(current->mm, addr);
2839 	if (!vma)
2840 		return -ENOMEM;
2841 	write = (vma->vm_flags & VM_WRITE) != 0;
2842 	BUG_ON(addr >= end);
2843 	BUG_ON(end > vma->vm_end);
2844 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2845 	ret = get_user_pages(current, current->mm, addr,
2846 			len, write, 0, NULL, NULL);
2847 	if (ret < 0)
2848 		return ret;
2849 	return ret == len ? 0 : -EFAULT;
2850 }
2851 
2852 #if !defined(__HAVE_ARCH_GATE_AREA)
2853 
2854 #if defined(AT_SYSINFO_EHDR)
2855 static struct vm_area_struct gate_vma;
2856 
2857 static int __init gate_vma_init(void)
2858 {
2859 	gate_vma.vm_mm = NULL;
2860 	gate_vma.vm_start = FIXADDR_USER_START;
2861 	gate_vma.vm_end = FIXADDR_USER_END;
2862 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2863 	gate_vma.vm_page_prot = __P101;
2864 	/*
2865 	 * Make sure the vDSO gets into every core dump.
2866 	 * Dumping its contents makes post-mortem fully interpretable later
2867 	 * without matching up the same kernel and hardware config to see
2868 	 * what PC values meant.
2869 	 */
2870 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2871 	return 0;
2872 }
2873 __initcall(gate_vma_init);
2874 #endif
2875 
2876 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2877 {
2878 #ifdef AT_SYSINFO_EHDR
2879 	return &gate_vma;
2880 #else
2881 	return NULL;
2882 #endif
2883 }
2884 
2885 int in_gate_area_no_task(unsigned long addr)
2886 {
2887 #ifdef AT_SYSINFO_EHDR
2888 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2889 		return 1;
2890 #endif
2891 	return 0;
2892 }
2893 
2894 #endif	/* __HAVE_ARCH_GATE_AREA */
2895 
2896 #ifdef CONFIG_HAVE_IOREMAP_PROT
2897 int follow_phys(struct vm_area_struct *vma,
2898 		unsigned long address, unsigned int flags,
2899 		unsigned long *prot, resource_size_t *phys)
2900 {
2901 	pgd_t *pgd;
2902 	pud_t *pud;
2903 	pmd_t *pmd;
2904 	pte_t *ptep, pte;
2905 	spinlock_t *ptl;
2906 	resource_size_t phys_addr = 0;
2907 	struct mm_struct *mm = vma->vm_mm;
2908 	int ret = -EINVAL;
2909 
2910 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2911 		goto out;
2912 
2913 	pgd = pgd_offset(mm, address);
2914 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2915 		goto out;
2916 
2917 	pud = pud_offset(pgd, address);
2918 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2919 		goto out;
2920 
2921 	pmd = pmd_offset(pud, address);
2922 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2923 		goto out;
2924 
2925 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
2926 	if (pmd_huge(*pmd))
2927 		goto out;
2928 
2929 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2930 	if (!ptep)
2931 		goto out;
2932 
2933 	pte = *ptep;
2934 	if (!pte_present(pte))
2935 		goto unlock;
2936 	if ((flags & FOLL_WRITE) && !pte_write(pte))
2937 		goto unlock;
2938 	phys_addr = pte_pfn(pte);
2939 	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2940 
2941 	*prot = pgprot_val(pte_pgprot(pte));
2942 	*phys = phys_addr;
2943 	ret = 0;
2944 
2945 unlock:
2946 	pte_unmap_unlock(ptep, ptl);
2947 out:
2948 	return ret;
2949 }
2950 
2951 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2952 			void *buf, int len, int write)
2953 {
2954 	resource_size_t phys_addr;
2955 	unsigned long prot = 0;
2956 	void *maddr;
2957 	int offset = addr & (PAGE_SIZE-1);
2958 
2959 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
2960 		return -EINVAL;
2961 
2962 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2963 	if (write)
2964 		memcpy_toio(maddr + offset, buf, len);
2965 	else
2966 		memcpy_fromio(buf, maddr + offset, len);
2967 	iounmap(maddr);
2968 
2969 	return len;
2970 }
2971 #endif
2972 
2973 /*
2974  * Access another process' address space.
2975  * Source/target buffer must be kernel space,
2976  * Do not walk the page table directly, use get_user_pages
2977  */
2978 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2979 {
2980 	struct mm_struct *mm;
2981 	struct vm_area_struct *vma;
2982 	void *old_buf = buf;
2983 
2984 	mm = get_task_mm(tsk);
2985 	if (!mm)
2986 		return 0;
2987 
2988 	down_read(&mm->mmap_sem);
2989 	/* ignore errors, just check how much was successfully transferred */
2990 	while (len) {
2991 		int bytes, ret, offset;
2992 		void *maddr;
2993 		struct page *page = NULL;
2994 
2995 		ret = get_user_pages(tsk, mm, addr, 1,
2996 				write, 1, &page, &vma);
2997 		if (ret <= 0) {
2998 			/*
2999 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3000 			 * we can access using slightly different code.
3001 			 */
3002 #ifdef CONFIG_HAVE_IOREMAP_PROT
3003 			vma = find_vma(mm, addr);
3004 			if (!vma)
3005 				break;
3006 			if (vma->vm_ops && vma->vm_ops->access)
3007 				ret = vma->vm_ops->access(vma, addr, buf,
3008 							  len, write);
3009 			if (ret <= 0)
3010 #endif
3011 				break;
3012 			bytes = ret;
3013 		} else {
3014 			bytes = len;
3015 			offset = addr & (PAGE_SIZE-1);
3016 			if (bytes > PAGE_SIZE-offset)
3017 				bytes = PAGE_SIZE-offset;
3018 
3019 			maddr = kmap(page);
3020 			if (write) {
3021 				copy_to_user_page(vma, page, addr,
3022 						  maddr + offset, buf, bytes);
3023 				set_page_dirty_lock(page);
3024 			} else {
3025 				copy_from_user_page(vma, page, addr,
3026 						    buf, maddr + offset, bytes);
3027 			}
3028 			kunmap(page);
3029 			page_cache_release(page);
3030 		}
3031 		len -= bytes;
3032 		buf += bytes;
3033 		addr += bytes;
3034 	}
3035 	up_read(&mm->mmap_sem);
3036 	mmput(mm);
3037 
3038 	return buf - old_buf;
3039 }
3040 
3041 /*
3042  * Print the name of a VMA.
3043  */
3044 void print_vma_addr(char *prefix, unsigned long ip)
3045 {
3046 	struct mm_struct *mm = current->mm;
3047 	struct vm_area_struct *vma;
3048 
3049 	/*
3050 	 * Do not print if we are in atomic
3051 	 * contexts (in exception stacks, etc.):
3052 	 */
3053 	if (preempt_count())
3054 		return;
3055 
3056 	down_read(&mm->mmap_sem);
3057 	vma = find_vma(mm, ip);
3058 	if (vma && vma->vm_file) {
3059 		struct file *f = vma->vm_file;
3060 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3061 		if (buf) {
3062 			char *p, *s;
3063 
3064 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3065 			if (IS_ERR(p))
3066 				p = "?";
3067 			s = strrchr(p, '/');
3068 			if (s)
3069 				p = s+1;
3070 			printk("%s%s[%lx+%lx]", prefix, p,
3071 					vma->vm_start,
3072 					vma->vm_end - vma->vm_start);
3073 			free_page((unsigned long)buf);
3074 		}
3075 	}
3076 	up_read(&current->mm->mmap_sem);
3077 }
3078 
3079 #ifdef CONFIG_PROVE_LOCKING
3080 void might_fault(void)
3081 {
3082 	might_sleep();
3083 	/*
3084 	 * it would be nicer only to annotate paths which are not under
3085 	 * pagefault_disable, however that requires a larger audit and
3086 	 * providing helpers like get_user_atomic.
3087 	 */
3088 	if (!in_atomic() && current->mm)
3089 		might_lock_read(&current->mm->mmap_sem);
3090 }
3091 EXPORT_SYMBOL(might_fault);
3092 #endif
3093