xref: /openbmc/linux/mm/memory.c (revision 643d1f7f)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 
54 #include <asm/pgalloc.h>
55 #include <asm/uaccess.h>
56 #include <asm/tlb.h>
57 #include <asm/tlbflush.h>
58 #include <asm/pgtable.h>
59 
60 #include <linux/swapops.h>
61 #include <linux/elf.h>
62 
63 #ifndef CONFIG_NEED_MULTIPLE_NODES
64 /* use the per-pgdat data instead for discontigmem - mbligh */
65 unsigned long max_mapnr;
66 struct page *mem_map;
67 
68 EXPORT_SYMBOL(max_mapnr);
69 EXPORT_SYMBOL(mem_map);
70 #endif
71 
72 unsigned long num_physpages;
73 /*
74  * A number of key systems in x86 including ioremap() rely on the assumption
75  * that high_memory defines the upper bound on direct map memory, then end
76  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
77  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
78  * and ZONE_HIGHMEM.
79  */
80 void * high_memory;
81 
82 EXPORT_SYMBOL(num_physpages);
83 EXPORT_SYMBOL(high_memory);
84 
85 int randomize_va_space __read_mostly = 1;
86 
87 static int __init disable_randmaps(char *s)
88 {
89 	randomize_va_space = 0;
90 	return 1;
91 }
92 __setup("norandmaps", disable_randmaps);
93 
94 
95 /*
96  * If a p?d_bad entry is found while walking page tables, report
97  * the error, before resetting entry to p?d_none.  Usually (but
98  * very seldom) called out from the p?d_none_or_clear_bad macros.
99  */
100 
101 void pgd_clear_bad(pgd_t *pgd)
102 {
103 	pgd_ERROR(*pgd);
104 	pgd_clear(pgd);
105 }
106 
107 void pud_clear_bad(pud_t *pud)
108 {
109 	pud_ERROR(*pud);
110 	pud_clear(pud);
111 }
112 
113 void pmd_clear_bad(pmd_t *pmd)
114 {
115 	pmd_ERROR(*pmd);
116 	pmd_clear(pmd);
117 }
118 
119 /*
120  * Note: this doesn't free the actual pages themselves. That
121  * has been handled earlier when unmapping all the memory regions.
122  */
123 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
124 {
125 	struct page *page = pmd_page(*pmd);
126 	pmd_clear(pmd);
127 	pte_lock_deinit(page);
128 	pte_free_tlb(tlb, page);
129 	dec_zone_page_state(page, NR_PAGETABLE);
130 	tlb->mm->nr_ptes--;
131 }
132 
133 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
134 				unsigned long addr, unsigned long end,
135 				unsigned long floor, unsigned long ceiling)
136 {
137 	pmd_t *pmd;
138 	unsigned long next;
139 	unsigned long start;
140 
141 	start = addr;
142 	pmd = pmd_offset(pud, addr);
143 	do {
144 		next = pmd_addr_end(addr, end);
145 		if (pmd_none_or_clear_bad(pmd))
146 			continue;
147 		free_pte_range(tlb, pmd);
148 	} while (pmd++, addr = next, addr != end);
149 
150 	start &= PUD_MASK;
151 	if (start < floor)
152 		return;
153 	if (ceiling) {
154 		ceiling &= PUD_MASK;
155 		if (!ceiling)
156 			return;
157 	}
158 	if (end - 1 > ceiling - 1)
159 		return;
160 
161 	pmd = pmd_offset(pud, start);
162 	pud_clear(pud);
163 	pmd_free_tlb(tlb, pmd);
164 }
165 
166 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
167 				unsigned long addr, unsigned long end,
168 				unsigned long floor, unsigned long ceiling)
169 {
170 	pud_t *pud;
171 	unsigned long next;
172 	unsigned long start;
173 
174 	start = addr;
175 	pud = pud_offset(pgd, addr);
176 	do {
177 		next = pud_addr_end(addr, end);
178 		if (pud_none_or_clear_bad(pud))
179 			continue;
180 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
181 	} while (pud++, addr = next, addr != end);
182 
183 	start &= PGDIR_MASK;
184 	if (start < floor)
185 		return;
186 	if (ceiling) {
187 		ceiling &= PGDIR_MASK;
188 		if (!ceiling)
189 			return;
190 	}
191 	if (end - 1 > ceiling - 1)
192 		return;
193 
194 	pud = pud_offset(pgd, start);
195 	pgd_clear(pgd);
196 	pud_free_tlb(tlb, pud);
197 }
198 
199 /*
200  * This function frees user-level page tables of a process.
201  *
202  * Must be called with pagetable lock held.
203  */
204 void free_pgd_range(struct mmu_gather **tlb,
205 			unsigned long addr, unsigned long end,
206 			unsigned long floor, unsigned long ceiling)
207 {
208 	pgd_t *pgd;
209 	unsigned long next;
210 	unsigned long start;
211 
212 	/*
213 	 * The next few lines have given us lots of grief...
214 	 *
215 	 * Why are we testing PMD* at this top level?  Because often
216 	 * there will be no work to do at all, and we'd prefer not to
217 	 * go all the way down to the bottom just to discover that.
218 	 *
219 	 * Why all these "- 1"s?  Because 0 represents both the bottom
220 	 * of the address space and the top of it (using -1 for the
221 	 * top wouldn't help much: the masks would do the wrong thing).
222 	 * The rule is that addr 0 and floor 0 refer to the bottom of
223 	 * the address space, but end 0 and ceiling 0 refer to the top
224 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
225 	 * that end 0 case should be mythical).
226 	 *
227 	 * Wherever addr is brought up or ceiling brought down, we must
228 	 * be careful to reject "the opposite 0" before it confuses the
229 	 * subsequent tests.  But what about where end is brought down
230 	 * by PMD_SIZE below? no, end can't go down to 0 there.
231 	 *
232 	 * Whereas we round start (addr) and ceiling down, by different
233 	 * masks at different levels, in order to test whether a table
234 	 * now has no other vmas using it, so can be freed, we don't
235 	 * bother to round floor or end up - the tests don't need that.
236 	 */
237 
238 	addr &= PMD_MASK;
239 	if (addr < floor) {
240 		addr += PMD_SIZE;
241 		if (!addr)
242 			return;
243 	}
244 	if (ceiling) {
245 		ceiling &= PMD_MASK;
246 		if (!ceiling)
247 			return;
248 	}
249 	if (end - 1 > ceiling - 1)
250 		end -= PMD_SIZE;
251 	if (addr > end - 1)
252 		return;
253 
254 	start = addr;
255 	pgd = pgd_offset((*tlb)->mm, addr);
256 	do {
257 		next = pgd_addr_end(addr, end);
258 		if (pgd_none_or_clear_bad(pgd))
259 			continue;
260 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling);
261 	} while (pgd++, addr = next, addr != end);
262 }
263 
264 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma,
265 		unsigned long floor, unsigned long ceiling)
266 {
267 	while (vma) {
268 		struct vm_area_struct *next = vma->vm_next;
269 		unsigned long addr = vma->vm_start;
270 
271 		/*
272 		 * Hide vma from rmap and vmtruncate before freeing pgtables
273 		 */
274 		anon_vma_unlink(vma);
275 		unlink_file_vma(vma);
276 
277 		if (is_vm_hugetlb_page(vma)) {
278 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
279 				floor, next? next->vm_start: ceiling);
280 		} else {
281 			/*
282 			 * Optimization: gather nearby vmas into one call down
283 			 */
284 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
285 			       && !is_vm_hugetlb_page(next)) {
286 				vma = next;
287 				next = vma->vm_next;
288 				anon_vma_unlink(vma);
289 				unlink_file_vma(vma);
290 			}
291 			free_pgd_range(tlb, addr, vma->vm_end,
292 				floor, next? next->vm_start: ceiling);
293 		}
294 		vma = next;
295 	}
296 }
297 
298 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
299 {
300 	struct page *new = pte_alloc_one(mm, address);
301 	if (!new)
302 		return -ENOMEM;
303 
304 	pte_lock_init(new);
305 	spin_lock(&mm->page_table_lock);
306 	if (pmd_present(*pmd)) {	/* Another has populated it */
307 		pte_lock_deinit(new);
308 		pte_free(new);
309 	} else {
310 		mm->nr_ptes++;
311 		inc_zone_page_state(new, NR_PAGETABLE);
312 		pmd_populate(mm, pmd, new);
313 	}
314 	spin_unlock(&mm->page_table_lock);
315 	return 0;
316 }
317 
318 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
319 {
320 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
321 	if (!new)
322 		return -ENOMEM;
323 
324 	spin_lock(&init_mm.page_table_lock);
325 	if (pmd_present(*pmd))		/* Another has populated it */
326 		pte_free_kernel(new);
327 	else
328 		pmd_populate_kernel(&init_mm, pmd, new);
329 	spin_unlock(&init_mm.page_table_lock);
330 	return 0;
331 }
332 
333 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
334 {
335 	if (file_rss)
336 		add_mm_counter(mm, file_rss, file_rss);
337 	if (anon_rss)
338 		add_mm_counter(mm, anon_rss, anon_rss);
339 }
340 
341 /*
342  * This function is called to print an error when a bad pte
343  * is found. For example, we might have a PFN-mapped pte in
344  * a region that doesn't allow it.
345  *
346  * The calling function must still handle the error.
347  */
348 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
349 {
350 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
351 			"vm_flags = %lx, vaddr = %lx\n",
352 		(long long)pte_val(pte),
353 		(vma->vm_mm == current->mm ? current->comm : "???"),
354 		vma->vm_flags, vaddr);
355 	dump_stack();
356 }
357 
358 static inline int is_cow_mapping(unsigned int flags)
359 {
360 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
361 }
362 
363 /*
364  * This function gets the "struct page" associated with a pte.
365  *
366  * NOTE! Some mappings do not have "struct pages". A raw PFN mapping
367  * will have each page table entry just pointing to a raw page frame
368  * number, and as far as the VM layer is concerned, those do not have
369  * pages associated with them - even if the PFN might point to memory
370  * that otherwise is perfectly fine and has a "struct page".
371  *
372  * The way we recognize those mappings is through the rules set up
373  * by "remap_pfn_range()": the vma will have the VM_PFNMAP bit set,
374  * and the vm_pgoff will point to the first PFN mapped: thus every
375  * page that is a raw mapping will always honor the rule
376  *
377  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
378  *
379  * and if that isn't true, the page has been COW'ed (in which case it
380  * _does_ have a "struct page" associated with it even if it is in a
381  * VM_PFNMAP range).
382  */
383 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
384 {
385 	unsigned long pfn = pte_pfn(pte);
386 
387 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
388 		unsigned long off = (addr - vma->vm_start) >> PAGE_SHIFT;
389 		if (pfn == vma->vm_pgoff + off)
390 			return NULL;
391 		if (!is_cow_mapping(vma->vm_flags))
392 			return NULL;
393 	}
394 
395 #ifdef CONFIG_DEBUG_VM
396 	/*
397 	 * Add some anal sanity checks for now. Eventually,
398 	 * we should just do "return pfn_to_page(pfn)", but
399 	 * in the meantime we check that we get a valid pfn,
400 	 * and that the resulting page looks ok.
401 	 */
402 	if (unlikely(!pfn_valid(pfn))) {
403 		print_bad_pte(vma, pte, addr);
404 		return NULL;
405 	}
406 #endif
407 
408 	/*
409 	 * NOTE! We still have PageReserved() pages in the page
410 	 * tables.
411 	 *
412 	 * The PAGE_ZERO() pages and various VDSO mappings can
413 	 * cause them to exist.
414 	 */
415 	return pfn_to_page(pfn);
416 }
417 
418 /*
419  * copy one vm_area from one task to the other. Assumes the page tables
420  * already present in the new task to be cleared in the whole range
421  * covered by this vma.
422  */
423 
424 static inline void
425 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
426 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
427 		unsigned long addr, int *rss)
428 {
429 	unsigned long vm_flags = vma->vm_flags;
430 	pte_t pte = *src_pte;
431 	struct page *page;
432 
433 	/* pte contains position in swap or file, so copy. */
434 	if (unlikely(!pte_present(pte))) {
435 		if (!pte_file(pte)) {
436 			swp_entry_t entry = pte_to_swp_entry(pte);
437 
438 			swap_duplicate(entry);
439 			/* make sure dst_mm is on swapoff's mmlist. */
440 			if (unlikely(list_empty(&dst_mm->mmlist))) {
441 				spin_lock(&mmlist_lock);
442 				if (list_empty(&dst_mm->mmlist))
443 					list_add(&dst_mm->mmlist,
444 						 &src_mm->mmlist);
445 				spin_unlock(&mmlist_lock);
446 			}
447 			if (is_write_migration_entry(entry) &&
448 					is_cow_mapping(vm_flags)) {
449 				/*
450 				 * COW mappings require pages in both parent
451 				 * and child to be set to read.
452 				 */
453 				make_migration_entry_read(&entry);
454 				pte = swp_entry_to_pte(entry);
455 				set_pte_at(src_mm, addr, src_pte, pte);
456 			}
457 		}
458 		goto out_set_pte;
459 	}
460 
461 	/*
462 	 * If it's a COW mapping, write protect it both
463 	 * in the parent and the child
464 	 */
465 	if (is_cow_mapping(vm_flags)) {
466 		ptep_set_wrprotect(src_mm, addr, src_pte);
467 		pte = pte_wrprotect(pte);
468 	}
469 
470 	/*
471 	 * If it's a shared mapping, mark it clean in
472 	 * the child
473 	 */
474 	if (vm_flags & VM_SHARED)
475 		pte = pte_mkclean(pte);
476 	pte = pte_mkold(pte);
477 
478 	page = vm_normal_page(vma, addr, pte);
479 	if (page) {
480 		get_page(page);
481 		page_dup_rmap(page, vma, addr);
482 		rss[!!PageAnon(page)]++;
483 	}
484 
485 out_set_pte:
486 	set_pte_at(dst_mm, addr, dst_pte, pte);
487 }
488 
489 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
490 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
491 		unsigned long addr, unsigned long end)
492 {
493 	pte_t *src_pte, *dst_pte;
494 	spinlock_t *src_ptl, *dst_ptl;
495 	int progress = 0;
496 	int rss[2];
497 
498 again:
499 	rss[1] = rss[0] = 0;
500 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
501 	if (!dst_pte)
502 		return -ENOMEM;
503 	src_pte = pte_offset_map_nested(src_pmd, addr);
504 	src_ptl = pte_lockptr(src_mm, src_pmd);
505 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
506 	arch_enter_lazy_mmu_mode();
507 
508 	do {
509 		/*
510 		 * We are holding two locks at this point - either of them
511 		 * could generate latencies in another task on another CPU.
512 		 */
513 		if (progress >= 32) {
514 			progress = 0;
515 			if (need_resched() ||
516 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
517 				break;
518 		}
519 		if (pte_none(*src_pte)) {
520 			progress++;
521 			continue;
522 		}
523 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
524 		progress += 8;
525 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
526 
527 	arch_leave_lazy_mmu_mode();
528 	spin_unlock(src_ptl);
529 	pte_unmap_nested(src_pte - 1);
530 	add_mm_rss(dst_mm, rss[0], rss[1]);
531 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
532 	cond_resched();
533 	if (addr != end)
534 		goto again;
535 	return 0;
536 }
537 
538 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
539 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
540 		unsigned long addr, unsigned long end)
541 {
542 	pmd_t *src_pmd, *dst_pmd;
543 	unsigned long next;
544 
545 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
546 	if (!dst_pmd)
547 		return -ENOMEM;
548 	src_pmd = pmd_offset(src_pud, addr);
549 	do {
550 		next = pmd_addr_end(addr, end);
551 		if (pmd_none_or_clear_bad(src_pmd))
552 			continue;
553 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
554 						vma, addr, next))
555 			return -ENOMEM;
556 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
557 	return 0;
558 }
559 
560 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
561 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
562 		unsigned long addr, unsigned long end)
563 {
564 	pud_t *src_pud, *dst_pud;
565 	unsigned long next;
566 
567 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
568 	if (!dst_pud)
569 		return -ENOMEM;
570 	src_pud = pud_offset(src_pgd, addr);
571 	do {
572 		next = pud_addr_end(addr, end);
573 		if (pud_none_or_clear_bad(src_pud))
574 			continue;
575 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
576 						vma, addr, next))
577 			return -ENOMEM;
578 	} while (dst_pud++, src_pud++, addr = next, addr != end);
579 	return 0;
580 }
581 
582 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
583 		struct vm_area_struct *vma)
584 {
585 	pgd_t *src_pgd, *dst_pgd;
586 	unsigned long next;
587 	unsigned long addr = vma->vm_start;
588 	unsigned long end = vma->vm_end;
589 
590 	/*
591 	 * Don't copy ptes where a page fault will fill them correctly.
592 	 * Fork becomes much lighter when there are big shared or private
593 	 * readonly mappings. The tradeoff is that copy_page_range is more
594 	 * efficient than faulting.
595 	 */
596 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
597 		if (!vma->anon_vma)
598 			return 0;
599 	}
600 
601 	if (is_vm_hugetlb_page(vma))
602 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
603 
604 	dst_pgd = pgd_offset(dst_mm, addr);
605 	src_pgd = pgd_offset(src_mm, addr);
606 	do {
607 		next = pgd_addr_end(addr, end);
608 		if (pgd_none_or_clear_bad(src_pgd))
609 			continue;
610 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
611 						vma, addr, next))
612 			return -ENOMEM;
613 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
614 	return 0;
615 }
616 
617 static unsigned long zap_pte_range(struct mmu_gather *tlb,
618 				struct vm_area_struct *vma, pmd_t *pmd,
619 				unsigned long addr, unsigned long end,
620 				long *zap_work, struct zap_details *details)
621 {
622 	struct mm_struct *mm = tlb->mm;
623 	pte_t *pte;
624 	spinlock_t *ptl;
625 	int file_rss = 0;
626 	int anon_rss = 0;
627 
628 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
629 	arch_enter_lazy_mmu_mode();
630 	do {
631 		pte_t ptent = *pte;
632 		if (pte_none(ptent)) {
633 			(*zap_work)--;
634 			continue;
635 		}
636 
637 		(*zap_work) -= PAGE_SIZE;
638 
639 		if (pte_present(ptent)) {
640 			struct page *page;
641 
642 			page = vm_normal_page(vma, addr, ptent);
643 			if (unlikely(details) && page) {
644 				/*
645 				 * unmap_shared_mapping_pages() wants to
646 				 * invalidate cache without truncating:
647 				 * unmap shared but keep private pages.
648 				 */
649 				if (details->check_mapping &&
650 				    details->check_mapping != page->mapping)
651 					continue;
652 				/*
653 				 * Each page->index must be checked when
654 				 * invalidating or truncating nonlinear.
655 				 */
656 				if (details->nonlinear_vma &&
657 				    (page->index < details->first_index ||
658 				     page->index > details->last_index))
659 					continue;
660 			}
661 			ptent = ptep_get_and_clear_full(mm, addr, pte,
662 							tlb->fullmm);
663 			tlb_remove_tlb_entry(tlb, pte, addr);
664 			if (unlikely(!page))
665 				continue;
666 			if (unlikely(details) && details->nonlinear_vma
667 			    && linear_page_index(details->nonlinear_vma,
668 						addr) != page->index)
669 				set_pte_at(mm, addr, pte,
670 					   pgoff_to_pte(page->index));
671 			if (PageAnon(page))
672 				anon_rss--;
673 			else {
674 				if (pte_dirty(ptent))
675 					set_page_dirty(page);
676 				if (pte_young(ptent))
677 					SetPageReferenced(page);
678 				file_rss--;
679 			}
680 			page_remove_rmap(page, vma);
681 			tlb_remove_page(tlb, page);
682 			continue;
683 		}
684 		/*
685 		 * If details->check_mapping, we leave swap entries;
686 		 * if details->nonlinear_vma, we leave file entries.
687 		 */
688 		if (unlikely(details))
689 			continue;
690 		if (!pte_file(ptent))
691 			free_swap_and_cache(pte_to_swp_entry(ptent));
692 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
693 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
694 
695 	add_mm_rss(mm, file_rss, anon_rss);
696 	arch_leave_lazy_mmu_mode();
697 	pte_unmap_unlock(pte - 1, ptl);
698 
699 	return addr;
700 }
701 
702 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
703 				struct vm_area_struct *vma, pud_t *pud,
704 				unsigned long addr, unsigned long end,
705 				long *zap_work, struct zap_details *details)
706 {
707 	pmd_t *pmd;
708 	unsigned long next;
709 
710 	pmd = pmd_offset(pud, addr);
711 	do {
712 		next = pmd_addr_end(addr, end);
713 		if (pmd_none_or_clear_bad(pmd)) {
714 			(*zap_work)--;
715 			continue;
716 		}
717 		next = zap_pte_range(tlb, vma, pmd, addr, next,
718 						zap_work, details);
719 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
720 
721 	return addr;
722 }
723 
724 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
725 				struct vm_area_struct *vma, pgd_t *pgd,
726 				unsigned long addr, unsigned long end,
727 				long *zap_work, struct zap_details *details)
728 {
729 	pud_t *pud;
730 	unsigned long next;
731 
732 	pud = pud_offset(pgd, addr);
733 	do {
734 		next = pud_addr_end(addr, end);
735 		if (pud_none_or_clear_bad(pud)) {
736 			(*zap_work)--;
737 			continue;
738 		}
739 		next = zap_pmd_range(tlb, vma, pud, addr, next,
740 						zap_work, details);
741 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
742 
743 	return addr;
744 }
745 
746 static unsigned long unmap_page_range(struct mmu_gather *tlb,
747 				struct vm_area_struct *vma,
748 				unsigned long addr, unsigned long end,
749 				long *zap_work, struct zap_details *details)
750 {
751 	pgd_t *pgd;
752 	unsigned long next;
753 
754 	if (details && !details->check_mapping && !details->nonlinear_vma)
755 		details = NULL;
756 
757 	BUG_ON(addr >= end);
758 	tlb_start_vma(tlb, vma);
759 	pgd = pgd_offset(vma->vm_mm, addr);
760 	do {
761 		next = pgd_addr_end(addr, end);
762 		if (pgd_none_or_clear_bad(pgd)) {
763 			(*zap_work)--;
764 			continue;
765 		}
766 		next = zap_pud_range(tlb, vma, pgd, addr, next,
767 						zap_work, details);
768 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
769 	tlb_end_vma(tlb, vma);
770 
771 	return addr;
772 }
773 
774 #ifdef CONFIG_PREEMPT
775 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
776 #else
777 /* No preempt: go for improved straight-line efficiency */
778 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
779 #endif
780 
781 /**
782  * unmap_vmas - unmap a range of memory covered by a list of vma's
783  * @tlbp: address of the caller's struct mmu_gather
784  * @vma: the starting vma
785  * @start_addr: virtual address at which to start unmapping
786  * @end_addr: virtual address at which to end unmapping
787  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
788  * @details: details of nonlinear truncation or shared cache invalidation
789  *
790  * Returns the end address of the unmapping (restart addr if interrupted).
791  *
792  * Unmap all pages in the vma list.
793  *
794  * We aim to not hold locks for too long (for scheduling latency reasons).
795  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
796  * return the ending mmu_gather to the caller.
797  *
798  * Only addresses between `start' and `end' will be unmapped.
799  *
800  * The VMA list must be sorted in ascending virtual address order.
801  *
802  * unmap_vmas() assumes that the caller will flush the whole unmapped address
803  * range after unmap_vmas() returns.  So the only responsibility here is to
804  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
805  * drops the lock and schedules.
806  */
807 unsigned long unmap_vmas(struct mmu_gather **tlbp,
808 		struct vm_area_struct *vma, unsigned long start_addr,
809 		unsigned long end_addr, unsigned long *nr_accounted,
810 		struct zap_details *details)
811 {
812 	long zap_work = ZAP_BLOCK_SIZE;
813 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
814 	int tlb_start_valid = 0;
815 	unsigned long start = start_addr;
816 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
817 	int fullmm = (*tlbp)->fullmm;
818 
819 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
820 		unsigned long end;
821 
822 		start = max(vma->vm_start, start_addr);
823 		if (start >= vma->vm_end)
824 			continue;
825 		end = min(vma->vm_end, end_addr);
826 		if (end <= vma->vm_start)
827 			continue;
828 
829 		if (vma->vm_flags & VM_ACCOUNT)
830 			*nr_accounted += (end - start) >> PAGE_SHIFT;
831 
832 		while (start != end) {
833 			if (!tlb_start_valid) {
834 				tlb_start = start;
835 				tlb_start_valid = 1;
836 			}
837 
838 			if (unlikely(is_vm_hugetlb_page(vma))) {
839 				unmap_hugepage_range(vma, start, end);
840 				zap_work -= (end - start) /
841 						(HPAGE_SIZE / PAGE_SIZE);
842 				start = end;
843 			} else
844 				start = unmap_page_range(*tlbp, vma,
845 						start, end, &zap_work, details);
846 
847 			if (zap_work > 0) {
848 				BUG_ON(start != end);
849 				break;
850 			}
851 
852 			tlb_finish_mmu(*tlbp, tlb_start, start);
853 
854 			if (need_resched() ||
855 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
856 				if (i_mmap_lock) {
857 					*tlbp = NULL;
858 					goto out;
859 				}
860 				cond_resched();
861 			}
862 
863 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
864 			tlb_start_valid = 0;
865 			zap_work = ZAP_BLOCK_SIZE;
866 		}
867 	}
868 out:
869 	return start;	/* which is now the end (or restart) address */
870 }
871 
872 /**
873  * zap_page_range - remove user pages in a given range
874  * @vma: vm_area_struct holding the applicable pages
875  * @address: starting address of pages to zap
876  * @size: number of bytes to zap
877  * @details: details of nonlinear truncation or shared cache invalidation
878  */
879 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
880 		unsigned long size, struct zap_details *details)
881 {
882 	struct mm_struct *mm = vma->vm_mm;
883 	struct mmu_gather *tlb;
884 	unsigned long end = address + size;
885 	unsigned long nr_accounted = 0;
886 
887 	lru_add_drain();
888 	tlb = tlb_gather_mmu(mm, 0);
889 	update_hiwater_rss(mm);
890 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
891 	if (tlb)
892 		tlb_finish_mmu(tlb, address, end);
893 	return end;
894 }
895 
896 /*
897  * Do a quick page-table lookup for a single page.
898  */
899 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
900 			unsigned int flags)
901 {
902 	pgd_t *pgd;
903 	pud_t *pud;
904 	pmd_t *pmd;
905 	pte_t *ptep, pte;
906 	spinlock_t *ptl;
907 	struct page *page;
908 	struct mm_struct *mm = vma->vm_mm;
909 
910 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
911 	if (!IS_ERR(page)) {
912 		BUG_ON(flags & FOLL_GET);
913 		goto out;
914 	}
915 
916 	page = NULL;
917 	pgd = pgd_offset(mm, address);
918 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
919 		goto no_page_table;
920 
921 	pud = pud_offset(pgd, address);
922 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
923 		goto no_page_table;
924 
925 	pmd = pmd_offset(pud, address);
926 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
927 		goto no_page_table;
928 
929 	if (pmd_huge(*pmd)) {
930 		BUG_ON(flags & FOLL_GET);
931 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
932 		goto out;
933 	}
934 
935 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
936 	if (!ptep)
937 		goto out;
938 
939 	pte = *ptep;
940 	if (!pte_present(pte))
941 		goto unlock;
942 	if ((flags & FOLL_WRITE) && !pte_write(pte))
943 		goto unlock;
944 	page = vm_normal_page(vma, address, pte);
945 	if (unlikely(!page))
946 		goto unlock;
947 
948 	if (flags & FOLL_GET)
949 		get_page(page);
950 	if (flags & FOLL_TOUCH) {
951 		if ((flags & FOLL_WRITE) &&
952 		    !pte_dirty(pte) && !PageDirty(page))
953 			set_page_dirty(page);
954 		mark_page_accessed(page);
955 	}
956 unlock:
957 	pte_unmap_unlock(ptep, ptl);
958 out:
959 	return page;
960 
961 no_page_table:
962 	/*
963 	 * When core dumping an enormous anonymous area that nobody
964 	 * has touched so far, we don't want to allocate page tables.
965 	 */
966 	if (flags & FOLL_ANON) {
967 		page = ZERO_PAGE(0);
968 		if (flags & FOLL_GET)
969 			get_page(page);
970 		BUG_ON(flags & FOLL_WRITE);
971 	}
972 	return page;
973 }
974 
975 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
976 		unsigned long start, int len, int write, int force,
977 		struct page **pages, struct vm_area_struct **vmas)
978 {
979 	int i;
980 	unsigned int vm_flags;
981 
982 	/*
983 	 * Require read or write permissions.
984 	 * If 'force' is set, we only require the "MAY" flags.
985 	 */
986 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
987 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
988 	i = 0;
989 
990 	do {
991 		struct vm_area_struct *vma;
992 		unsigned int foll_flags;
993 
994 		vma = find_extend_vma(mm, start);
995 		if (!vma && in_gate_area(tsk, start)) {
996 			unsigned long pg = start & PAGE_MASK;
997 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
998 			pgd_t *pgd;
999 			pud_t *pud;
1000 			pmd_t *pmd;
1001 			pte_t *pte;
1002 			if (write) /* user gate pages are read-only */
1003 				return i ? : -EFAULT;
1004 			if (pg > TASK_SIZE)
1005 				pgd = pgd_offset_k(pg);
1006 			else
1007 				pgd = pgd_offset_gate(mm, pg);
1008 			BUG_ON(pgd_none(*pgd));
1009 			pud = pud_offset(pgd, pg);
1010 			BUG_ON(pud_none(*pud));
1011 			pmd = pmd_offset(pud, pg);
1012 			if (pmd_none(*pmd))
1013 				return i ? : -EFAULT;
1014 			pte = pte_offset_map(pmd, pg);
1015 			if (pte_none(*pte)) {
1016 				pte_unmap(pte);
1017 				return i ? : -EFAULT;
1018 			}
1019 			if (pages) {
1020 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1021 				pages[i] = page;
1022 				if (page)
1023 					get_page(page);
1024 			}
1025 			pte_unmap(pte);
1026 			if (vmas)
1027 				vmas[i] = gate_vma;
1028 			i++;
1029 			start += PAGE_SIZE;
1030 			len--;
1031 			continue;
1032 		}
1033 
1034 		if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1035 				|| !(vm_flags & vma->vm_flags))
1036 			return i ? : -EFAULT;
1037 
1038 		if (is_vm_hugetlb_page(vma)) {
1039 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1040 						&start, &len, i, write);
1041 			continue;
1042 		}
1043 
1044 		foll_flags = FOLL_TOUCH;
1045 		if (pages)
1046 			foll_flags |= FOLL_GET;
1047 		if (!write && !(vma->vm_flags & VM_LOCKED) &&
1048 		    (!vma->vm_ops || (!vma->vm_ops->nopage &&
1049 					!vma->vm_ops->fault)))
1050 			foll_flags |= FOLL_ANON;
1051 
1052 		do {
1053 			struct page *page;
1054 
1055 			/*
1056 			 * If tsk is ooming, cut off its access to large memory
1057 			 * allocations. It has a pending SIGKILL, but it can't
1058 			 * be processed until returning to user space.
1059 			 */
1060 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1061 				return -ENOMEM;
1062 
1063 			if (write)
1064 				foll_flags |= FOLL_WRITE;
1065 
1066 			cond_resched();
1067 			while (!(page = follow_page(vma, start, foll_flags))) {
1068 				int ret;
1069 				ret = handle_mm_fault(mm, vma, start,
1070 						foll_flags & FOLL_WRITE);
1071 				if (ret & VM_FAULT_ERROR) {
1072 					if (ret & VM_FAULT_OOM)
1073 						return i ? i : -ENOMEM;
1074 					else if (ret & VM_FAULT_SIGBUS)
1075 						return i ? i : -EFAULT;
1076 					BUG();
1077 				}
1078 				if (ret & VM_FAULT_MAJOR)
1079 					tsk->maj_flt++;
1080 				else
1081 					tsk->min_flt++;
1082 
1083 				/*
1084 				 * The VM_FAULT_WRITE bit tells us that
1085 				 * do_wp_page has broken COW when necessary,
1086 				 * even if maybe_mkwrite decided not to set
1087 				 * pte_write. We can thus safely do subsequent
1088 				 * page lookups as if they were reads.
1089 				 */
1090 				if (ret & VM_FAULT_WRITE)
1091 					foll_flags &= ~FOLL_WRITE;
1092 
1093 				cond_resched();
1094 			}
1095 			if (pages) {
1096 				pages[i] = page;
1097 
1098 				flush_anon_page(vma, page, start);
1099 				flush_dcache_page(page);
1100 			}
1101 			if (vmas)
1102 				vmas[i] = vma;
1103 			i++;
1104 			start += PAGE_SIZE;
1105 			len--;
1106 		} while (len && start < vma->vm_end);
1107 	} while (len);
1108 	return i;
1109 }
1110 EXPORT_SYMBOL(get_user_pages);
1111 
1112 pte_t * fastcall get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)
1113 {
1114 	pgd_t * pgd = pgd_offset(mm, addr);
1115 	pud_t * pud = pud_alloc(mm, pgd, addr);
1116 	if (pud) {
1117 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1118 		if (pmd)
1119 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1120 	}
1121 	return NULL;
1122 }
1123 
1124 /*
1125  * This is the old fallback for page remapping.
1126  *
1127  * For historical reasons, it only allows reserved pages. Only
1128  * old drivers should use this, and they needed to mark their
1129  * pages reserved for the old functions anyway.
1130  */
1131 static int insert_page(struct mm_struct *mm, unsigned long addr, struct page *page, pgprot_t prot)
1132 {
1133 	int retval;
1134 	pte_t *pte;
1135 	spinlock_t *ptl;
1136 
1137 	retval = -EINVAL;
1138 	if (PageAnon(page))
1139 		goto out;
1140 	retval = -ENOMEM;
1141 	flush_dcache_page(page);
1142 	pte = get_locked_pte(mm, addr, &ptl);
1143 	if (!pte)
1144 		goto out;
1145 	retval = -EBUSY;
1146 	if (!pte_none(*pte))
1147 		goto out_unlock;
1148 
1149 	/* Ok, finally just insert the thing.. */
1150 	get_page(page);
1151 	inc_mm_counter(mm, file_rss);
1152 	page_add_file_rmap(page);
1153 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1154 
1155 	retval = 0;
1156 out_unlock:
1157 	pte_unmap_unlock(pte, ptl);
1158 out:
1159 	return retval;
1160 }
1161 
1162 /**
1163  * vm_insert_page - insert single page into user vma
1164  * @vma: user vma to map to
1165  * @addr: target user address of this page
1166  * @page: source kernel page
1167  *
1168  * This allows drivers to insert individual pages they've allocated
1169  * into a user vma.
1170  *
1171  * The page has to be a nice clean _individual_ kernel allocation.
1172  * If you allocate a compound page, you need to have marked it as
1173  * such (__GFP_COMP), or manually just split the page up yourself
1174  * (see split_page()).
1175  *
1176  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1177  * took an arbitrary page protection parameter. This doesn't allow
1178  * that. Your vma protection will have to be set up correctly, which
1179  * means that if you want a shared writable mapping, you'd better
1180  * ask for a shared writable mapping!
1181  *
1182  * The page does not need to be reserved.
1183  */
1184 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, struct page *page)
1185 {
1186 	if (addr < vma->vm_start || addr >= vma->vm_end)
1187 		return -EFAULT;
1188 	if (!page_count(page))
1189 		return -EINVAL;
1190 	vma->vm_flags |= VM_INSERTPAGE;
1191 	return insert_page(vma->vm_mm, addr, page, vma->vm_page_prot);
1192 }
1193 EXPORT_SYMBOL(vm_insert_page);
1194 
1195 /**
1196  * vm_insert_pfn - insert single pfn into user vma
1197  * @vma: user vma to map to
1198  * @addr: target user address of this page
1199  * @pfn: source kernel pfn
1200  *
1201  * Similar to vm_inert_page, this allows drivers to insert individual pages
1202  * they've allocated into a user vma. Same comments apply.
1203  *
1204  * This function should only be called from a vm_ops->fault handler, and
1205  * in that case the handler should return NULL.
1206  */
1207 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1208 		unsigned long pfn)
1209 {
1210 	struct mm_struct *mm = vma->vm_mm;
1211 	int retval;
1212 	pte_t *pte, entry;
1213 	spinlock_t *ptl;
1214 
1215 	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
1216 	BUG_ON(is_cow_mapping(vma->vm_flags));
1217 
1218 	retval = -ENOMEM;
1219 	pte = get_locked_pte(mm, addr, &ptl);
1220 	if (!pte)
1221 		goto out;
1222 	retval = -EBUSY;
1223 	if (!pte_none(*pte))
1224 		goto out_unlock;
1225 
1226 	/* Ok, finally just insert the thing.. */
1227 	entry = pfn_pte(pfn, vma->vm_page_prot);
1228 	set_pte_at(mm, addr, pte, entry);
1229 	update_mmu_cache(vma, addr, entry);
1230 
1231 	retval = 0;
1232 out_unlock:
1233 	pte_unmap_unlock(pte, ptl);
1234 
1235 out:
1236 	return retval;
1237 }
1238 EXPORT_SYMBOL(vm_insert_pfn);
1239 
1240 /*
1241  * maps a range of physical memory into the requested pages. the old
1242  * mappings are removed. any references to nonexistent pages results
1243  * in null mappings (currently treated as "copy-on-access")
1244  */
1245 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1246 			unsigned long addr, unsigned long end,
1247 			unsigned long pfn, pgprot_t prot)
1248 {
1249 	pte_t *pte;
1250 	spinlock_t *ptl;
1251 
1252 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1253 	if (!pte)
1254 		return -ENOMEM;
1255 	arch_enter_lazy_mmu_mode();
1256 	do {
1257 		BUG_ON(!pte_none(*pte));
1258 		set_pte_at(mm, addr, pte, pfn_pte(pfn, prot));
1259 		pfn++;
1260 	} while (pte++, addr += PAGE_SIZE, addr != end);
1261 	arch_leave_lazy_mmu_mode();
1262 	pte_unmap_unlock(pte - 1, ptl);
1263 	return 0;
1264 }
1265 
1266 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1267 			unsigned long addr, unsigned long end,
1268 			unsigned long pfn, pgprot_t prot)
1269 {
1270 	pmd_t *pmd;
1271 	unsigned long next;
1272 
1273 	pfn -= addr >> PAGE_SHIFT;
1274 	pmd = pmd_alloc(mm, pud, addr);
1275 	if (!pmd)
1276 		return -ENOMEM;
1277 	do {
1278 		next = pmd_addr_end(addr, end);
1279 		if (remap_pte_range(mm, pmd, addr, next,
1280 				pfn + (addr >> PAGE_SHIFT), prot))
1281 			return -ENOMEM;
1282 	} while (pmd++, addr = next, addr != end);
1283 	return 0;
1284 }
1285 
1286 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1287 			unsigned long addr, unsigned long end,
1288 			unsigned long pfn, pgprot_t prot)
1289 {
1290 	pud_t *pud;
1291 	unsigned long next;
1292 
1293 	pfn -= addr >> PAGE_SHIFT;
1294 	pud = pud_alloc(mm, pgd, addr);
1295 	if (!pud)
1296 		return -ENOMEM;
1297 	do {
1298 		next = pud_addr_end(addr, end);
1299 		if (remap_pmd_range(mm, pud, addr, next,
1300 				pfn + (addr >> PAGE_SHIFT), prot))
1301 			return -ENOMEM;
1302 	} while (pud++, addr = next, addr != end);
1303 	return 0;
1304 }
1305 
1306 /**
1307  * remap_pfn_range - remap kernel memory to userspace
1308  * @vma: user vma to map to
1309  * @addr: target user address to start at
1310  * @pfn: physical address of kernel memory
1311  * @size: size of map area
1312  * @prot: page protection flags for this mapping
1313  *
1314  *  Note: this is only safe if the mm semaphore is held when called.
1315  */
1316 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1317 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1318 {
1319 	pgd_t *pgd;
1320 	unsigned long next;
1321 	unsigned long end = addr + PAGE_ALIGN(size);
1322 	struct mm_struct *mm = vma->vm_mm;
1323 	int err;
1324 
1325 	/*
1326 	 * Physically remapped pages are special. Tell the
1327 	 * rest of the world about it:
1328 	 *   VM_IO tells people not to look at these pages
1329 	 *	(accesses can have side effects).
1330 	 *   VM_RESERVED is specified all over the place, because
1331 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1332 	 *	in 2.6 the LRU scan won't even find its pages, so this
1333 	 *	flag means no more than count its pages in reserved_vm,
1334 	 * 	and omit it from core dump, even when VM_IO turned off.
1335 	 *   VM_PFNMAP tells the core MM that the base pages are just
1336 	 *	raw PFN mappings, and do not have a "struct page" associated
1337 	 *	with them.
1338 	 *
1339 	 * There's a horrible special case to handle copy-on-write
1340 	 * behaviour that some programs depend on. We mark the "original"
1341 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1342 	 */
1343 	if (is_cow_mapping(vma->vm_flags)) {
1344 		if (addr != vma->vm_start || end != vma->vm_end)
1345 			return -EINVAL;
1346 		vma->vm_pgoff = pfn;
1347 	}
1348 
1349 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1350 
1351 	BUG_ON(addr >= end);
1352 	pfn -= addr >> PAGE_SHIFT;
1353 	pgd = pgd_offset(mm, addr);
1354 	flush_cache_range(vma, addr, end);
1355 	do {
1356 		next = pgd_addr_end(addr, end);
1357 		err = remap_pud_range(mm, pgd, addr, next,
1358 				pfn + (addr >> PAGE_SHIFT), prot);
1359 		if (err)
1360 			break;
1361 	} while (pgd++, addr = next, addr != end);
1362 	return err;
1363 }
1364 EXPORT_SYMBOL(remap_pfn_range);
1365 
1366 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1367 				     unsigned long addr, unsigned long end,
1368 				     pte_fn_t fn, void *data)
1369 {
1370 	pte_t *pte;
1371 	int err;
1372 	struct page *pmd_page;
1373 	spinlock_t *uninitialized_var(ptl);
1374 
1375 	pte = (mm == &init_mm) ?
1376 		pte_alloc_kernel(pmd, addr) :
1377 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1378 	if (!pte)
1379 		return -ENOMEM;
1380 
1381 	BUG_ON(pmd_huge(*pmd));
1382 
1383 	pmd_page = pmd_page(*pmd);
1384 
1385 	do {
1386 		err = fn(pte, pmd_page, addr, data);
1387 		if (err)
1388 			break;
1389 	} while (pte++, addr += PAGE_SIZE, addr != end);
1390 
1391 	if (mm != &init_mm)
1392 		pte_unmap_unlock(pte-1, ptl);
1393 	return err;
1394 }
1395 
1396 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1397 				     unsigned long addr, unsigned long end,
1398 				     pte_fn_t fn, void *data)
1399 {
1400 	pmd_t *pmd;
1401 	unsigned long next;
1402 	int err;
1403 
1404 	pmd = pmd_alloc(mm, pud, addr);
1405 	if (!pmd)
1406 		return -ENOMEM;
1407 	do {
1408 		next = pmd_addr_end(addr, end);
1409 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1410 		if (err)
1411 			break;
1412 	} while (pmd++, addr = next, addr != end);
1413 	return err;
1414 }
1415 
1416 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1417 				     unsigned long addr, unsigned long end,
1418 				     pte_fn_t fn, void *data)
1419 {
1420 	pud_t *pud;
1421 	unsigned long next;
1422 	int err;
1423 
1424 	pud = pud_alloc(mm, pgd, addr);
1425 	if (!pud)
1426 		return -ENOMEM;
1427 	do {
1428 		next = pud_addr_end(addr, end);
1429 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1430 		if (err)
1431 			break;
1432 	} while (pud++, addr = next, addr != end);
1433 	return err;
1434 }
1435 
1436 /*
1437  * Scan a region of virtual memory, filling in page tables as necessary
1438  * and calling a provided function on each leaf page table.
1439  */
1440 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1441 			unsigned long size, pte_fn_t fn, void *data)
1442 {
1443 	pgd_t *pgd;
1444 	unsigned long next;
1445 	unsigned long end = addr + size;
1446 	int err;
1447 
1448 	BUG_ON(addr >= end);
1449 	pgd = pgd_offset(mm, addr);
1450 	do {
1451 		next = pgd_addr_end(addr, end);
1452 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1453 		if (err)
1454 			break;
1455 	} while (pgd++, addr = next, addr != end);
1456 	return err;
1457 }
1458 EXPORT_SYMBOL_GPL(apply_to_page_range);
1459 
1460 /*
1461  * handle_pte_fault chooses page fault handler according to an entry
1462  * which was read non-atomically.  Before making any commitment, on
1463  * those architectures or configurations (e.g. i386 with PAE) which
1464  * might give a mix of unmatched parts, do_swap_page and do_file_page
1465  * must check under lock before unmapping the pte and proceeding
1466  * (but do_wp_page is only called after already making such a check;
1467  * and do_anonymous_page and do_no_page can safely check later on).
1468  */
1469 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1470 				pte_t *page_table, pte_t orig_pte)
1471 {
1472 	int same = 1;
1473 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1474 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1475 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1476 		spin_lock(ptl);
1477 		same = pte_same(*page_table, orig_pte);
1478 		spin_unlock(ptl);
1479 	}
1480 #endif
1481 	pte_unmap(page_table);
1482 	return same;
1483 }
1484 
1485 /*
1486  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1487  * servicing faults for write access.  In the normal case, do always want
1488  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1489  * that do not have writing enabled, when used by access_process_vm.
1490  */
1491 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1492 {
1493 	if (likely(vma->vm_flags & VM_WRITE))
1494 		pte = pte_mkwrite(pte);
1495 	return pte;
1496 }
1497 
1498 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1499 {
1500 	/*
1501 	 * If the source page was a PFN mapping, we don't have
1502 	 * a "struct page" for it. We do a best-effort copy by
1503 	 * just copying from the original user address. If that
1504 	 * fails, we just zero-fill it. Live with it.
1505 	 */
1506 	if (unlikely(!src)) {
1507 		void *kaddr = kmap_atomic(dst, KM_USER0);
1508 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1509 
1510 		/*
1511 		 * This really shouldn't fail, because the page is there
1512 		 * in the page tables. But it might just be unreadable,
1513 		 * in which case we just give up and fill the result with
1514 		 * zeroes.
1515 		 */
1516 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1517 			memset(kaddr, 0, PAGE_SIZE);
1518 		kunmap_atomic(kaddr, KM_USER0);
1519 		flush_dcache_page(dst);
1520 		return;
1521 
1522 	}
1523 	copy_user_highpage(dst, src, va, vma);
1524 }
1525 
1526 /*
1527  * This routine handles present pages, when users try to write
1528  * to a shared page. It is done by copying the page to a new address
1529  * and decrementing the shared-page counter for the old page.
1530  *
1531  * Note that this routine assumes that the protection checks have been
1532  * done by the caller (the low-level page fault routine in most cases).
1533  * Thus we can safely just mark it writable once we've done any necessary
1534  * COW.
1535  *
1536  * We also mark the page dirty at this point even though the page will
1537  * change only once the write actually happens. This avoids a few races,
1538  * and potentially makes it more efficient.
1539  *
1540  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1541  * but allow concurrent faults), with pte both mapped and locked.
1542  * We return with mmap_sem still held, but pte unmapped and unlocked.
1543  */
1544 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1545 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1546 		spinlock_t *ptl, pte_t orig_pte)
1547 {
1548 	struct page *old_page, *new_page;
1549 	pte_t entry;
1550 	int reuse = 0, ret = 0;
1551 	int page_mkwrite = 0;
1552 	struct page *dirty_page = NULL;
1553 
1554 	old_page = vm_normal_page(vma, address, orig_pte);
1555 	if (!old_page)
1556 		goto gotten;
1557 
1558 	/*
1559 	 * Take out anonymous pages first, anonymous shared vmas are
1560 	 * not dirty accountable.
1561 	 */
1562 	if (PageAnon(old_page)) {
1563 		if (!TestSetPageLocked(old_page)) {
1564 			reuse = can_share_swap_page(old_page);
1565 			unlock_page(old_page);
1566 		}
1567 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1568 					(VM_WRITE|VM_SHARED))) {
1569 		/*
1570 		 * Only catch write-faults on shared writable pages,
1571 		 * read-only shared pages can get COWed by
1572 		 * get_user_pages(.write=1, .force=1).
1573 		 */
1574 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1575 			/*
1576 			 * Notify the address space that the page is about to
1577 			 * become writable so that it can prohibit this or wait
1578 			 * for the page to get into an appropriate state.
1579 			 *
1580 			 * We do this without the lock held, so that it can
1581 			 * sleep if it needs to.
1582 			 */
1583 			page_cache_get(old_page);
1584 			pte_unmap_unlock(page_table, ptl);
1585 
1586 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1587 				goto unwritable_page;
1588 
1589 			/*
1590 			 * Since we dropped the lock we need to revalidate
1591 			 * the PTE as someone else may have changed it.  If
1592 			 * they did, we just return, as we can count on the
1593 			 * MMU to tell us if they didn't also make it writable.
1594 			 */
1595 			page_table = pte_offset_map_lock(mm, pmd, address,
1596 							 &ptl);
1597 			page_cache_release(old_page);
1598 			if (!pte_same(*page_table, orig_pte))
1599 				goto unlock;
1600 
1601 			page_mkwrite = 1;
1602 		}
1603 		dirty_page = old_page;
1604 		get_page(dirty_page);
1605 		reuse = 1;
1606 	}
1607 
1608 	if (reuse) {
1609 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1610 		entry = pte_mkyoung(orig_pte);
1611 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1612 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1613 			update_mmu_cache(vma, address, entry);
1614 		ret |= VM_FAULT_WRITE;
1615 		goto unlock;
1616 	}
1617 
1618 	/*
1619 	 * Ok, we need to copy. Oh, well..
1620 	 */
1621 	page_cache_get(old_page);
1622 gotten:
1623 	pte_unmap_unlock(page_table, ptl);
1624 
1625 	if (unlikely(anon_vma_prepare(vma)))
1626 		goto oom;
1627 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1628 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1629 	if (!new_page)
1630 		goto oom;
1631 	cow_user_page(new_page, old_page, address, vma);
1632 
1633 	/*
1634 	 * Re-check the pte - we dropped the lock
1635 	 */
1636 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1637 	if (likely(pte_same(*page_table, orig_pte))) {
1638 		if (old_page) {
1639 			page_remove_rmap(old_page, vma);
1640 			if (!PageAnon(old_page)) {
1641 				dec_mm_counter(mm, file_rss);
1642 				inc_mm_counter(mm, anon_rss);
1643 			}
1644 		} else
1645 			inc_mm_counter(mm, anon_rss);
1646 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1647 		entry = mk_pte(new_page, vma->vm_page_prot);
1648 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1649 		/*
1650 		 * Clear the pte entry and flush it first, before updating the
1651 		 * pte with the new entry. This will avoid a race condition
1652 		 * seen in the presence of one thread doing SMC and another
1653 		 * thread doing COW.
1654 		 */
1655 		ptep_clear_flush(vma, address, page_table);
1656 		set_pte_at(mm, address, page_table, entry);
1657 		update_mmu_cache(vma, address, entry);
1658 		lru_cache_add_active(new_page);
1659 		page_add_new_anon_rmap(new_page, vma, address);
1660 
1661 		/* Free the old page.. */
1662 		new_page = old_page;
1663 		ret |= VM_FAULT_WRITE;
1664 	}
1665 	if (new_page)
1666 		page_cache_release(new_page);
1667 	if (old_page)
1668 		page_cache_release(old_page);
1669 unlock:
1670 	pte_unmap_unlock(page_table, ptl);
1671 	if (dirty_page) {
1672 		if (vma->vm_file)
1673 			file_update_time(vma->vm_file);
1674 
1675 		/*
1676 		 * Yes, Virginia, this is actually required to prevent a race
1677 		 * with clear_page_dirty_for_io() from clearing the page dirty
1678 		 * bit after it clear all dirty ptes, but before a racing
1679 		 * do_wp_page installs a dirty pte.
1680 		 *
1681 		 * do_no_page is protected similarly.
1682 		 */
1683 		wait_on_page_locked(dirty_page);
1684 		set_page_dirty_balance(dirty_page, page_mkwrite);
1685 		put_page(dirty_page);
1686 	}
1687 	return ret;
1688 oom:
1689 	if (old_page)
1690 		page_cache_release(old_page);
1691 	return VM_FAULT_OOM;
1692 
1693 unwritable_page:
1694 	page_cache_release(old_page);
1695 	return VM_FAULT_SIGBUS;
1696 }
1697 
1698 /*
1699  * Helper functions for unmap_mapping_range().
1700  *
1701  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1702  *
1703  * We have to restart searching the prio_tree whenever we drop the lock,
1704  * since the iterator is only valid while the lock is held, and anyway
1705  * a later vma might be split and reinserted earlier while lock dropped.
1706  *
1707  * The list of nonlinear vmas could be handled more efficiently, using
1708  * a placeholder, but handle it in the same way until a need is shown.
1709  * It is important to search the prio_tree before nonlinear list: a vma
1710  * may become nonlinear and be shifted from prio_tree to nonlinear list
1711  * while the lock is dropped; but never shifted from list to prio_tree.
1712  *
1713  * In order to make forward progress despite restarting the search,
1714  * vm_truncate_count is used to mark a vma as now dealt with, so we can
1715  * quickly skip it next time around.  Since the prio_tree search only
1716  * shows us those vmas affected by unmapping the range in question, we
1717  * can't efficiently keep all vmas in step with mapping->truncate_count:
1718  * so instead reset them all whenever it wraps back to 0 (then go to 1).
1719  * mapping->truncate_count and vma->vm_truncate_count are protected by
1720  * i_mmap_lock.
1721  *
1722  * In order to make forward progress despite repeatedly restarting some
1723  * large vma, note the restart_addr from unmap_vmas when it breaks out:
1724  * and restart from that address when we reach that vma again.  It might
1725  * have been split or merged, shrunk or extended, but never shifted: so
1726  * restart_addr remains valid so long as it remains in the vma's range.
1727  * unmap_mapping_range forces truncate_count to leap over page-aligned
1728  * values so we can save vma's restart_addr in its truncate_count field.
1729  */
1730 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1731 
1732 static void reset_vma_truncate_counts(struct address_space *mapping)
1733 {
1734 	struct vm_area_struct *vma;
1735 	struct prio_tree_iter iter;
1736 
1737 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1738 		vma->vm_truncate_count = 0;
1739 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1740 		vma->vm_truncate_count = 0;
1741 }
1742 
1743 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1744 		unsigned long start_addr, unsigned long end_addr,
1745 		struct zap_details *details)
1746 {
1747 	unsigned long restart_addr;
1748 	int need_break;
1749 
1750 	/*
1751 	 * files that support invalidating or truncating portions of the
1752 	 * file from under mmaped areas must have their ->fault function
1753 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
1754 	 * This provides synchronisation against concurrent unmapping here.
1755 	 */
1756 
1757 again:
1758 	restart_addr = vma->vm_truncate_count;
1759 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1760 		start_addr = restart_addr;
1761 		if (start_addr >= end_addr) {
1762 			/* Top of vma has been split off since last time */
1763 			vma->vm_truncate_count = details->truncate_count;
1764 			return 0;
1765 		}
1766 	}
1767 
1768 	restart_addr = zap_page_range(vma, start_addr,
1769 					end_addr - start_addr, details);
1770 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1771 
1772 	if (restart_addr >= end_addr) {
1773 		/* We have now completed this vma: mark it so */
1774 		vma->vm_truncate_count = details->truncate_count;
1775 		if (!need_break)
1776 			return 0;
1777 	} else {
1778 		/* Note restart_addr in vma's truncate_count field */
1779 		vma->vm_truncate_count = restart_addr;
1780 		if (!need_break)
1781 			goto again;
1782 	}
1783 
1784 	spin_unlock(details->i_mmap_lock);
1785 	cond_resched();
1786 	spin_lock(details->i_mmap_lock);
1787 	return -EINTR;
1788 }
1789 
1790 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
1791 					    struct zap_details *details)
1792 {
1793 	struct vm_area_struct *vma;
1794 	struct prio_tree_iter iter;
1795 	pgoff_t vba, vea, zba, zea;
1796 
1797 restart:
1798 	vma_prio_tree_foreach(vma, &iter, root,
1799 			details->first_index, details->last_index) {
1800 		/* Skip quickly over those we have already dealt with */
1801 		if (vma->vm_truncate_count == details->truncate_count)
1802 			continue;
1803 
1804 		vba = vma->vm_pgoff;
1805 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
1806 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
1807 		zba = details->first_index;
1808 		if (zba < vba)
1809 			zba = vba;
1810 		zea = details->last_index;
1811 		if (zea > vea)
1812 			zea = vea;
1813 
1814 		if (unmap_mapping_range_vma(vma,
1815 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
1816 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
1817 				details) < 0)
1818 			goto restart;
1819 	}
1820 }
1821 
1822 static inline void unmap_mapping_range_list(struct list_head *head,
1823 					    struct zap_details *details)
1824 {
1825 	struct vm_area_struct *vma;
1826 
1827 	/*
1828 	 * In nonlinear VMAs there is no correspondence between virtual address
1829 	 * offset and file offset.  So we must perform an exhaustive search
1830 	 * across *all* the pages in each nonlinear VMA, not just the pages
1831 	 * whose virtual address lies outside the file truncation point.
1832 	 */
1833 restart:
1834 	list_for_each_entry(vma, head, shared.vm_set.list) {
1835 		/* Skip quickly over those we have already dealt with */
1836 		if (vma->vm_truncate_count == details->truncate_count)
1837 			continue;
1838 		details->nonlinear_vma = vma;
1839 		if (unmap_mapping_range_vma(vma, vma->vm_start,
1840 					vma->vm_end, details) < 0)
1841 			goto restart;
1842 	}
1843 }
1844 
1845 /**
1846  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
1847  * @mapping: the address space containing mmaps to be unmapped.
1848  * @holebegin: byte in first page to unmap, relative to the start of
1849  * the underlying file.  This will be rounded down to a PAGE_SIZE
1850  * boundary.  Note that this is different from vmtruncate(), which
1851  * must keep the partial page.  In contrast, we must get rid of
1852  * partial pages.
1853  * @holelen: size of prospective hole in bytes.  This will be rounded
1854  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
1855  * end of the file.
1856  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
1857  * but 0 when invalidating pagecache, don't throw away private data.
1858  */
1859 void unmap_mapping_range(struct address_space *mapping,
1860 		loff_t const holebegin, loff_t const holelen, int even_cows)
1861 {
1862 	struct zap_details details;
1863 	pgoff_t hba = holebegin >> PAGE_SHIFT;
1864 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1865 
1866 	/* Check for overflow. */
1867 	if (sizeof(holelen) > sizeof(hlen)) {
1868 		long long holeend =
1869 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1870 		if (holeend & ~(long long)ULONG_MAX)
1871 			hlen = ULONG_MAX - hba + 1;
1872 	}
1873 
1874 	details.check_mapping = even_cows? NULL: mapping;
1875 	details.nonlinear_vma = NULL;
1876 	details.first_index = hba;
1877 	details.last_index = hba + hlen - 1;
1878 	if (details.last_index < details.first_index)
1879 		details.last_index = ULONG_MAX;
1880 	details.i_mmap_lock = &mapping->i_mmap_lock;
1881 
1882 	spin_lock(&mapping->i_mmap_lock);
1883 
1884 	/* Protect against endless unmapping loops */
1885 	mapping->truncate_count++;
1886 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
1887 		if (mapping->truncate_count == 0)
1888 			reset_vma_truncate_counts(mapping);
1889 		mapping->truncate_count++;
1890 	}
1891 	details.truncate_count = mapping->truncate_count;
1892 
1893 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
1894 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
1895 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
1896 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
1897 	spin_unlock(&mapping->i_mmap_lock);
1898 }
1899 EXPORT_SYMBOL(unmap_mapping_range);
1900 
1901 /**
1902  * vmtruncate - unmap mappings "freed" by truncate() syscall
1903  * @inode: inode of the file used
1904  * @offset: file offset to start truncating
1905  *
1906  * NOTE! We have to be ready to update the memory sharing
1907  * between the file and the memory map for a potential last
1908  * incomplete page.  Ugly, but necessary.
1909  */
1910 int vmtruncate(struct inode * inode, loff_t offset)
1911 {
1912 	struct address_space *mapping = inode->i_mapping;
1913 	unsigned long limit;
1914 
1915 	if (inode->i_size < offset)
1916 		goto do_expand;
1917 	/*
1918 	 * truncation of in-use swapfiles is disallowed - it would cause
1919 	 * subsequent swapout to scribble on the now-freed blocks.
1920 	 */
1921 	if (IS_SWAPFILE(inode))
1922 		goto out_busy;
1923 	i_size_write(inode, offset);
1924 
1925 	/*
1926 	 * unmap_mapping_range is called twice, first simply for efficiency
1927 	 * so that truncate_inode_pages does fewer single-page unmaps. However
1928 	 * after this first call, and before truncate_inode_pages finishes,
1929 	 * it is possible for private pages to be COWed, which remain after
1930 	 * truncate_inode_pages finishes, hence the second unmap_mapping_range
1931 	 * call must be made for correctness.
1932 	 */
1933 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1934 	truncate_inode_pages(mapping, offset);
1935 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
1936 	goto out_truncate;
1937 
1938 do_expand:
1939 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1940 	if (limit != RLIM_INFINITY && offset > limit)
1941 		goto out_sig;
1942 	if (offset > inode->i_sb->s_maxbytes)
1943 		goto out_big;
1944 	i_size_write(inode, offset);
1945 
1946 out_truncate:
1947 	if (inode->i_op && inode->i_op->truncate)
1948 		inode->i_op->truncate(inode);
1949 	return 0;
1950 out_sig:
1951 	send_sig(SIGXFSZ, current, 0);
1952 out_big:
1953 	return -EFBIG;
1954 out_busy:
1955 	return -ETXTBSY;
1956 }
1957 EXPORT_SYMBOL(vmtruncate);
1958 
1959 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
1960 {
1961 	struct address_space *mapping = inode->i_mapping;
1962 
1963 	/*
1964 	 * If the underlying filesystem is not going to provide
1965 	 * a way to truncate a range of blocks (punch a hole) -
1966 	 * we should return failure right now.
1967 	 */
1968 	if (!inode->i_op || !inode->i_op->truncate_range)
1969 		return -ENOSYS;
1970 
1971 	mutex_lock(&inode->i_mutex);
1972 	down_write(&inode->i_alloc_sem);
1973 	unmap_mapping_range(mapping, offset, (end - offset), 1);
1974 	truncate_inode_pages_range(mapping, offset, end);
1975 	unmap_mapping_range(mapping, offset, (end - offset), 1);
1976 	inode->i_op->truncate_range(inode, offset, end);
1977 	up_write(&inode->i_alloc_sem);
1978 	mutex_unlock(&inode->i_mutex);
1979 
1980 	return 0;
1981 }
1982 
1983 /**
1984  * swapin_readahead - swap in pages in hope we need them soon
1985  * @entry: swap entry of this memory
1986  * @addr: address to start
1987  * @vma: user vma this addresses belong to
1988  *
1989  * Primitive swap readahead code. We simply read an aligned block of
1990  * (1 << page_cluster) entries in the swap area. This method is chosen
1991  * because it doesn't cost us any seek time.  We also make sure to queue
1992  * the 'original' request together with the readahead ones...
1993  *
1994  * This has been extended to use the NUMA policies from the mm triggering
1995  * the readahead.
1996  *
1997  * Caller must hold down_read on the vma->vm_mm if vma is not NULL.
1998  */
1999 void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma)
2000 {
2001 #ifdef CONFIG_NUMA
2002 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL;
2003 #endif
2004 	int i, num;
2005 	struct page *new_page;
2006 	unsigned long offset;
2007 
2008 	/*
2009 	 * Get the number of handles we should do readahead io to.
2010 	 */
2011 	num = valid_swaphandles(entry, &offset);
2012 	for (i = 0; i < num; offset++, i++) {
2013 		/* Ok, do the async read-ahead now */
2014 		new_page = read_swap_cache_async(swp_entry(swp_type(entry),
2015 							   offset), vma, addr);
2016 		if (!new_page)
2017 			break;
2018 		page_cache_release(new_page);
2019 #ifdef CONFIG_NUMA
2020 		/*
2021 		 * Find the next applicable VMA for the NUMA policy.
2022 		 */
2023 		addr += PAGE_SIZE;
2024 		if (addr == 0)
2025 			vma = NULL;
2026 		if (vma) {
2027 			if (addr >= vma->vm_end) {
2028 				vma = next_vma;
2029 				next_vma = vma ? vma->vm_next : NULL;
2030 			}
2031 			if (vma && addr < vma->vm_start)
2032 				vma = NULL;
2033 		} else {
2034 			if (next_vma && addr >= next_vma->vm_start) {
2035 				vma = next_vma;
2036 				next_vma = vma->vm_next;
2037 			}
2038 		}
2039 #endif
2040 	}
2041 	lru_add_drain();	/* Push any new pages onto the LRU now */
2042 }
2043 
2044 /*
2045  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2046  * but allow concurrent faults), and pte mapped but not yet locked.
2047  * We return with mmap_sem still held, but pte unmapped and unlocked.
2048  */
2049 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2050 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2051 		int write_access, pte_t orig_pte)
2052 {
2053 	spinlock_t *ptl;
2054 	struct page *page;
2055 	swp_entry_t entry;
2056 	pte_t pte;
2057 	int ret = 0;
2058 
2059 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2060 		goto out;
2061 
2062 	entry = pte_to_swp_entry(orig_pte);
2063 	if (is_migration_entry(entry)) {
2064 		migration_entry_wait(mm, pmd, address);
2065 		goto out;
2066 	}
2067 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2068 	page = lookup_swap_cache(entry);
2069 	if (!page) {
2070 		grab_swap_token(); /* Contend for token _before_ read-in */
2071  		swapin_readahead(entry, address, vma);
2072  		page = read_swap_cache_async(entry, vma, address);
2073 		if (!page) {
2074 			/*
2075 			 * Back out if somebody else faulted in this pte
2076 			 * while we released the pte lock.
2077 			 */
2078 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2079 			if (likely(pte_same(*page_table, orig_pte)))
2080 				ret = VM_FAULT_OOM;
2081 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2082 			goto unlock;
2083 		}
2084 
2085 		/* Had to read the page from swap area: Major fault */
2086 		ret = VM_FAULT_MAJOR;
2087 		count_vm_event(PGMAJFAULT);
2088 	}
2089 
2090 	mark_page_accessed(page);
2091 	lock_page(page);
2092 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2093 
2094 	/*
2095 	 * Back out if somebody else already faulted in this pte.
2096 	 */
2097 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2098 	if (unlikely(!pte_same(*page_table, orig_pte)))
2099 		goto out_nomap;
2100 
2101 	if (unlikely(!PageUptodate(page))) {
2102 		ret = VM_FAULT_SIGBUS;
2103 		goto out_nomap;
2104 	}
2105 
2106 	/* The page isn't present yet, go ahead with the fault. */
2107 
2108 	inc_mm_counter(mm, anon_rss);
2109 	pte = mk_pte(page, vma->vm_page_prot);
2110 	if (write_access && can_share_swap_page(page)) {
2111 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2112 		write_access = 0;
2113 	}
2114 
2115 	flush_icache_page(vma, page);
2116 	set_pte_at(mm, address, page_table, pte);
2117 	page_add_anon_rmap(page, vma, address);
2118 
2119 	swap_free(entry);
2120 	if (vm_swap_full())
2121 		remove_exclusive_swap_page(page);
2122 	unlock_page(page);
2123 
2124 	if (write_access) {
2125 		/* XXX: We could OR the do_wp_page code with this one? */
2126 		if (do_wp_page(mm, vma, address,
2127 				page_table, pmd, ptl, pte) & VM_FAULT_OOM)
2128 			ret = VM_FAULT_OOM;
2129 		goto out;
2130 	}
2131 
2132 	/* No need to invalidate - it was non-present before */
2133 	update_mmu_cache(vma, address, pte);
2134 unlock:
2135 	pte_unmap_unlock(page_table, ptl);
2136 out:
2137 	return ret;
2138 out_nomap:
2139 	pte_unmap_unlock(page_table, ptl);
2140 	unlock_page(page);
2141 	page_cache_release(page);
2142 	return ret;
2143 }
2144 
2145 /*
2146  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2147  * but allow concurrent faults), and pte mapped but not yet locked.
2148  * We return with mmap_sem still held, but pte unmapped and unlocked.
2149  */
2150 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2151 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2152 		int write_access)
2153 {
2154 	struct page *page;
2155 	spinlock_t *ptl;
2156 	pte_t entry;
2157 
2158 	/* Allocate our own private page. */
2159 	pte_unmap(page_table);
2160 
2161 	if (unlikely(anon_vma_prepare(vma)))
2162 		goto oom;
2163 	page = alloc_zeroed_user_highpage_movable(vma, address);
2164 	if (!page)
2165 		goto oom;
2166 
2167 	entry = mk_pte(page, vma->vm_page_prot);
2168 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2169 
2170 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2171 	if (!pte_none(*page_table))
2172 		goto release;
2173 	inc_mm_counter(mm, anon_rss);
2174 	lru_cache_add_active(page);
2175 	page_add_new_anon_rmap(page, vma, address);
2176 	set_pte_at(mm, address, page_table, entry);
2177 
2178 	/* No need to invalidate - it was non-present before */
2179 	update_mmu_cache(vma, address, entry);
2180 unlock:
2181 	pte_unmap_unlock(page_table, ptl);
2182 	return 0;
2183 release:
2184 	page_cache_release(page);
2185 	goto unlock;
2186 oom:
2187 	return VM_FAULT_OOM;
2188 }
2189 
2190 /*
2191  * __do_fault() tries to create a new page mapping. It aggressively
2192  * tries to share with existing pages, but makes a separate copy if
2193  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2194  * the next page fault.
2195  *
2196  * As this is called only for pages that do not currently exist, we
2197  * do not need to flush old virtual caches or the TLB.
2198  *
2199  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2200  * but allow concurrent faults), and pte neither mapped nor locked.
2201  * We return with mmap_sem still held, but pte unmapped and unlocked.
2202  */
2203 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2204 		unsigned long address, pmd_t *pmd,
2205 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2206 {
2207 	pte_t *page_table;
2208 	spinlock_t *ptl;
2209 	struct page *page;
2210 	pte_t entry;
2211 	int anon = 0;
2212 	struct page *dirty_page = NULL;
2213 	struct vm_fault vmf;
2214 	int ret;
2215 	int page_mkwrite = 0;
2216 
2217 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2218 	vmf.pgoff = pgoff;
2219 	vmf.flags = flags;
2220 	vmf.page = NULL;
2221 
2222 	BUG_ON(vma->vm_flags & VM_PFNMAP);
2223 
2224 	if (likely(vma->vm_ops->fault)) {
2225 		ret = vma->vm_ops->fault(vma, &vmf);
2226 		if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2227 			return ret;
2228 	} else {
2229 		/* Legacy ->nopage path */
2230 		ret = 0;
2231 		vmf.page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret);
2232 		/* no page was available -- either SIGBUS or OOM */
2233 		if (unlikely(vmf.page == NOPAGE_SIGBUS))
2234 			return VM_FAULT_SIGBUS;
2235 		else if (unlikely(vmf.page == NOPAGE_OOM))
2236 			return VM_FAULT_OOM;
2237 	}
2238 
2239 	/*
2240 	 * For consistency in subsequent calls, make the faulted page always
2241 	 * locked.
2242 	 */
2243 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2244 		lock_page(vmf.page);
2245 	else
2246 		VM_BUG_ON(!PageLocked(vmf.page));
2247 
2248 	/*
2249 	 * Should we do an early C-O-W break?
2250 	 */
2251 	page = vmf.page;
2252 	if (flags & FAULT_FLAG_WRITE) {
2253 		if (!(vma->vm_flags & VM_SHARED)) {
2254 			anon = 1;
2255 			if (unlikely(anon_vma_prepare(vma))) {
2256 				ret = VM_FAULT_OOM;
2257 				goto out;
2258 			}
2259 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2260 						vma, address);
2261 			if (!page) {
2262 				ret = VM_FAULT_OOM;
2263 				goto out;
2264 			}
2265 			copy_user_highpage(page, vmf.page, address, vma);
2266 		} else {
2267 			/*
2268 			 * If the page will be shareable, see if the backing
2269 			 * address space wants to know that the page is about
2270 			 * to become writable
2271 			 */
2272 			if (vma->vm_ops->page_mkwrite) {
2273 				unlock_page(page);
2274 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2275 					ret = VM_FAULT_SIGBUS;
2276 					anon = 1; /* no anon but release vmf.page */
2277 					goto out_unlocked;
2278 				}
2279 				lock_page(page);
2280 				/*
2281 				 * XXX: this is not quite right (racy vs
2282 				 * invalidate) to unlock and relock the page
2283 				 * like this, however a better fix requires
2284 				 * reworking page_mkwrite locking API, which
2285 				 * is better done later.
2286 				 */
2287 				if (!page->mapping) {
2288 					ret = 0;
2289 					anon = 1; /* no anon but release vmf.page */
2290 					goto out;
2291 				}
2292 				page_mkwrite = 1;
2293 			}
2294 		}
2295 
2296 	}
2297 
2298 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2299 
2300 	/*
2301 	 * This silly early PAGE_DIRTY setting removes a race
2302 	 * due to the bad i386 page protection. But it's valid
2303 	 * for other architectures too.
2304 	 *
2305 	 * Note that if write_access is true, we either now have
2306 	 * an exclusive copy of the page, or this is a shared mapping,
2307 	 * so we can make it writable and dirty to avoid having to
2308 	 * handle that later.
2309 	 */
2310 	/* Only go through if we didn't race with anybody else... */
2311 	if (likely(pte_same(*page_table, orig_pte))) {
2312 		flush_icache_page(vma, page);
2313 		entry = mk_pte(page, vma->vm_page_prot);
2314 		if (flags & FAULT_FLAG_WRITE)
2315 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2316 		set_pte_at(mm, address, page_table, entry);
2317 		if (anon) {
2318                         inc_mm_counter(mm, anon_rss);
2319                         lru_cache_add_active(page);
2320                         page_add_new_anon_rmap(page, vma, address);
2321 		} else {
2322 			inc_mm_counter(mm, file_rss);
2323 			page_add_file_rmap(page);
2324 			if (flags & FAULT_FLAG_WRITE) {
2325 				dirty_page = page;
2326 				get_page(dirty_page);
2327 			}
2328 		}
2329 
2330 		/* no need to invalidate: a not-present page won't be cached */
2331 		update_mmu_cache(vma, address, entry);
2332 	} else {
2333 		if (anon)
2334 			page_cache_release(page);
2335 		else
2336 			anon = 1; /* no anon but release faulted_page */
2337 	}
2338 
2339 	pte_unmap_unlock(page_table, ptl);
2340 
2341 out:
2342 	unlock_page(vmf.page);
2343 out_unlocked:
2344 	if (anon)
2345 		page_cache_release(vmf.page);
2346 	else if (dirty_page) {
2347 		if (vma->vm_file)
2348 			file_update_time(vma->vm_file);
2349 
2350 		set_page_dirty_balance(dirty_page, page_mkwrite);
2351 		put_page(dirty_page);
2352 	}
2353 
2354 	return ret;
2355 }
2356 
2357 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2358 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2359 		int write_access, pte_t orig_pte)
2360 {
2361 	pgoff_t pgoff = (((address & PAGE_MASK)
2362 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2363 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2364 
2365 	pte_unmap(page_table);
2366 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2367 }
2368 
2369 
2370 /*
2371  * do_no_pfn() tries to create a new page mapping for a page without
2372  * a struct_page backing it
2373  *
2374  * As this is called only for pages that do not currently exist, we
2375  * do not need to flush old virtual caches or the TLB.
2376  *
2377  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2378  * but allow concurrent faults), and pte mapped but not yet locked.
2379  * We return with mmap_sem still held, but pte unmapped and unlocked.
2380  *
2381  * It is expected that the ->nopfn handler always returns the same pfn
2382  * for a given virtual mapping.
2383  *
2384  * Mark this `noinline' to prevent it from bloating the main pagefault code.
2385  */
2386 static noinline int do_no_pfn(struct mm_struct *mm, struct vm_area_struct *vma,
2387 		     unsigned long address, pte_t *page_table, pmd_t *pmd,
2388 		     int write_access)
2389 {
2390 	spinlock_t *ptl;
2391 	pte_t entry;
2392 	unsigned long pfn;
2393 
2394 	pte_unmap(page_table);
2395 	BUG_ON(!(vma->vm_flags & VM_PFNMAP));
2396 	BUG_ON(is_cow_mapping(vma->vm_flags));
2397 
2398 	pfn = vma->vm_ops->nopfn(vma, address & PAGE_MASK);
2399 	if (unlikely(pfn == NOPFN_OOM))
2400 		return VM_FAULT_OOM;
2401 	else if (unlikely(pfn == NOPFN_SIGBUS))
2402 		return VM_FAULT_SIGBUS;
2403 	else if (unlikely(pfn == NOPFN_REFAULT))
2404 		return 0;
2405 
2406 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2407 
2408 	/* Only go through if we didn't race with anybody else... */
2409 	if (pte_none(*page_table)) {
2410 		entry = pfn_pte(pfn, vma->vm_page_prot);
2411 		if (write_access)
2412 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2413 		set_pte_at(mm, address, page_table, entry);
2414 	}
2415 	pte_unmap_unlock(page_table, ptl);
2416 	return 0;
2417 }
2418 
2419 /*
2420  * Fault of a previously existing named mapping. Repopulate the pte
2421  * from the encoded file_pte if possible. This enables swappable
2422  * nonlinear vmas.
2423  *
2424  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2425  * but allow concurrent faults), and pte mapped but not yet locked.
2426  * We return with mmap_sem still held, but pte unmapped and unlocked.
2427  */
2428 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2429 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2430 		int write_access, pte_t orig_pte)
2431 {
2432 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2433 				(write_access ? FAULT_FLAG_WRITE : 0);
2434 	pgoff_t pgoff;
2435 
2436 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2437 		return 0;
2438 
2439 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2440 			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2441 		/*
2442 		 * Page table corrupted: show pte and kill process.
2443 		 */
2444 		print_bad_pte(vma, orig_pte, address);
2445 		return VM_FAULT_OOM;
2446 	}
2447 
2448 	pgoff = pte_to_pgoff(orig_pte);
2449 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2450 }
2451 
2452 /*
2453  * These routines also need to handle stuff like marking pages dirty
2454  * and/or accessed for architectures that don't do it in hardware (most
2455  * RISC architectures).  The early dirtying is also good on the i386.
2456  *
2457  * There is also a hook called "update_mmu_cache()" that architectures
2458  * with external mmu caches can use to update those (ie the Sparc or
2459  * PowerPC hashed page tables that act as extended TLBs).
2460  *
2461  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2462  * but allow concurrent faults), and pte mapped but not yet locked.
2463  * We return with mmap_sem still held, but pte unmapped and unlocked.
2464  */
2465 static inline int handle_pte_fault(struct mm_struct *mm,
2466 		struct vm_area_struct *vma, unsigned long address,
2467 		pte_t *pte, pmd_t *pmd, int write_access)
2468 {
2469 	pte_t entry;
2470 	spinlock_t *ptl;
2471 
2472 	entry = *pte;
2473 	if (!pte_present(entry)) {
2474 		if (pte_none(entry)) {
2475 			if (vma->vm_ops) {
2476 				if (vma->vm_ops->fault || vma->vm_ops->nopage)
2477 					return do_linear_fault(mm, vma, address,
2478 						pte, pmd, write_access, entry);
2479 				if (unlikely(vma->vm_ops->nopfn))
2480 					return do_no_pfn(mm, vma, address, pte,
2481 							 pmd, write_access);
2482 			}
2483 			return do_anonymous_page(mm, vma, address,
2484 						 pte, pmd, write_access);
2485 		}
2486 		if (pte_file(entry))
2487 			return do_nonlinear_fault(mm, vma, address,
2488 					pte, pmd, write_access, entry);
2489 		return do_swap_page(mm, vma, address,
2490 					pte, pmd, write_access, entry);
2491 	}
2492 
2493 	ptl = pte_lockptr(mm, pmd);
2494 	spin_lock(ptl);
2495 	if (unlikely(!pte_same(*pte, entry)))
2496 		goto unlock;
2497 	if (write_access) {
2498 		if (!pte_write(entry))
2499 			return do_wp_page(mm, vma, address,
2500 					pte, pmd, ptl, entry);
2501 		entry = pte_mkdirty(entry);
2502 	}
2503 	entry = pte_mkyoung(entry);
2504 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2505 		update_mmu_cache(vma, address, entry);
2506 	} else {
2507 		/*
2508 		 * This is needed only for protection faults but the arch code
2509 		 * is not yet telling us if this is a protection fault or not.
2510 		 * This still avoids useless tlb flushes for .text page faults
2511 		 * with threads.
2512 		 */
2513 		if (write_access)
2514 			flush_tlb_page(vma, address);
2515 	}
2516 unlock:
2517 	pte_unmap_unlock(pte, ptl);
2518 	return 0;
2519 }
2520 
2521 /*
2522  * By the time we get here, we already hold the mm semaphore
2523  */
2524 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2525 		unsigned long address, int write_access)
2526 {
2527 	pgd_t *pgd;
2528 	pud_t *pud;
2529 	pmd_t *pmd;
2530 	pte_t *pte;
2531 
2532 	__set_current_state(TASK_RUNNING);
2533 
2534 	count_vm_event(PGFAULT);
2535 
2536 	if (unlikely(is_vm_hugetlb_page(vma)))
2537 		return hugetlb_fault(mm, vma, address, write_access);
2538 
2539 	pgd = pgd_offset(mm, address);
2540 	pud = pud_alloc(mm, pgd, address);
2541 	if (!pud)
2542 		return VM_FAULT_OOM;
2543 	pmd = pmd_alloc(mm, pud, address);
2544 	if (!pmd)
2545 		return VM_FAULT_OOM;
2546 	pte = pte_alloc_map(mm, pmd, address);
2547 	if (!pte)
2548 		return VM_FAULT_OOM;
2549 
2550 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2551 }
2552 
2553 #ifndef __PAGETABLE_PUD_FOLDED
2554 /*
2555  * Allocate page upper directory.
2556  * We've already handled the fast-path in-line.
2557  */
2558 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2559 {
2560 	pud_t *new = pud_alloc_one(mm, address);
2561 	if (!new)
2562 		return -ENOMEM;
2563 
2564 	spin_lock(&mm->page_table_lock);
2565 	if (pgd_present(*pgd))		/* Another has populated it */
2566 		pud_free(new);
2567 	else
2568 		pgd_populate(mm, pgd, new);
2569 	spin_unlock(&mm->page_table_lock);
2570 	return 0;
2571 }
2572 #endif /* __PAGETABLE_PUD_FOLDED */
2573 
2574 #ifndef __PAGETABLE_PMD_FOLDED
2575 /*
2576  * Allocate page middle directory.
2577  * We've already handled the fast-path in-line.
2578  */
2579 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2580 {
2581 	pmd_t *new = pmd_alloc_one(mm, address);
2582 	if (!new)
2583 		return -ENOMEM;
2584 
2585 	spin_lock(&mm->page_table_lock);
2586 #ifndef __ARCH_HAS_4LEVEL_HACK
2587 	if (pud_present(*pud))		/* Another has populated it */
2588 		pmd_free(new);
2589 	else
2590 		pud_populate(mm, pud, new);
2591 #else
2592 	if (pgd_present(*pud))		/* Another has populated it */
2593 		pmd_free(new);
2594 	else
2595 		pgd_populate(mm, pud, new);
2596 #endif /* __ARCH_HAS_4LEVEL_HACK */
2597 	spin_unlock(&mm->page_table_lock);
2598 	return 0;
2599 }
2600 #endif /* __PAGETABLE_PMD_FOLDED */
2601 
2602 int make_pages_present(unsigned long addr, unsigned long end)
2603 {
2604 	int ret, len, write;
2605 	struct vm_area_struct * vma;
2606 
2607 	vma = find_vma(current->mm, addr);
2608 	if (!vma)
2609 		return -1;
2610 	write = (vma->vm_flags & VM_WRITE) != 0;
2611 	BUG_ON(addr >= end);
2612 	BUG_ON(end > vma->vm_end);
2613 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2614 	ret = get_user_pages(current, current->mm, addr,
2615 			len, write, 0, NULL, NULL);
2616 	if (ret < 0)
2617 		return ret;
2618 	return ret == len ? 0 : -1;
2619 }
2620 
2621 /*
2622  * Map a vmalloc()-space virtual address to the physical page.
2623  */
2624 struct page * vmalloc_to_page(void * vmalloc_addr)
2625 {
2626 	unsigned long addr = (unsigned long) vmalloc_addr;
2627 	struct page *page = NULL;
2628 	pgd_t *pgd = pgd_offset_k(addr);
2629 	pud_t *pud;
2630 	pmd_t *pmd;
2631 	pte_t *ptep, pte;
2632 
2633 	if (!pgd_none(*pgd)) {
2634 		pud = pud_offset(pgd, addr);
2635 		if (!pud_none(*pud)) {
2636 			pmd = pmd_offset(pud, addr);
2637 			if (!pmd_none(*pmd)) {
2638 				ptep = pte_offset_map(pmd, addr);
2639 				pte = *ptep;
2640 				if (pte_present(pte))
2641 					page = pte_page(pte);
2642 				pte_unmap(ptep);
2643 			}
2644 		}
2645 	}
2646 	return page;
2647 }
2648 
2649 EXPORT_SYMBOL(vmalloc_to_page);
2650 
2651 /*
2652  * Map a vmalloc()-space virtual address to the physical page frame number.
2653  */
2654 unsigned long vmalloc_to_pfn(void * vmalloc_addr)
2655 {
2656 	return page_to_pfn(vmalloc_to_page(vmalloc_addr));
2657 }
2658 
2659 EXPORT_SYMBOL(vmalloc_to_pfn);
2660 
2661 #if !defined(__HAVE_ARCH_GATE_AREA)
2662 
2663 #if defined(AT_SYSINFO_EHDR)
2664 static struct vm_area_struct gate_vma;
2665 
2666 static int __init gate_vma_init(void)
2667 {
2668 	gate_vma.vm_mm = NULL;
2669 	gate_vma.vm_start = FIXADDR_USER_START;
2670 	gate_vma.vm_end = FIXADDR_USER_END;
2671 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2672 	gate_vma.vm_page_prot = __P101;
2673 	/*
2674 	 * Make sure the vDSO gets into every core dump.
2675 	 * Dumping its contents makes post-mortem fully interpretable later
2676 	 * without matching up the same kernel and hardware config to see
2677 	 * what PC values meant.
2678 	 */
2679 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2680 	return 0;
2681 }
2682 __initcall(gate_vma_init);
2683 #endif
2684 
2685 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2686 {
2687 #ifdef AT_SYSINFO_EHDR
2688 	return &gate_vma;
2689 #else
2690 	return NULL;
2691 #endif
2692 }
2693 
2694 int in_gate_area_no_task(unsigned long addr)
2695 {
2696 #ifdef AT_SYSINFO_EHDR
2697 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2698 		return 1;
2699 #endif
2700 	return 0;
2701 }
2702 
2703 #endif	/* __HAVE_ARCH_GATE_AREA */
2704 
2705 /*
2706  * Access another process' address space.
2707  * Source/target buffer must be kernel space,
2708  * Do not walk the page table directly, use get_user_pages
2709  */
2710 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2711 {
2712 	struct mm_struct *mm;
2713 	struct vm_area_struct *vma;
2714 	struct page *page;
2715 	void *old_buf = buf;
2716 
2717 	mm = get_task_mm(tsk);
2718 	if (!mm)
2719 		return 0;
2720 
2721 	down_read(&mm->mmap_sem);
2722 	/* ignore errors, just check how much was successfully transferred */
2723 	while (len) {
2724 		int bytes, ret, offset;
2725 		void *maddr;
2726 
2727 		ret = get_user_pages(tsk, mm, addr, 1,
2728 				write, 1, &page, &vma);
2729 		if (ret <= 0)
2730 			break;
2731 
2732 		bytes = len;
2733 		offset = addr & (PAGE_SIZE-1);
2734 		if (bytes > PAGE_SIZE-offset)
2735 			bytes = PAGE_SIZE-offset;
2736 
2737 		maddr = kmap(page);
2738 		if (write) {
2739 			copy_to_user_page(vma, page, addr,
2740 					  maddr + offset, buf, bytes);
2741 			set_page_dirty_lock(page);
2742 		} else {
2743 			copy_from_user_page(vma, page, addr,
2744 					    buf, maddr + offset, bytes);
2745 		}
2746 		kunmap(page);
2747 		page_cache_release(page);
2748 		len -= bytes;
2749 		buf += bytes;
2750 		addr += bytes;
2751 	}
2752 	up_read(&mm->mmap_sem);
2753 	mmput(mm);
2754 
2755 	return buf - old_buf;
2756 }
2757 
2758 /*
2759  * Print the name of a VMA.
2760  */
2761 void print_vma_addr(char *prefix, unsigned long ip)
2762 {
2763 	struct mm_struct *mm = current->mm;
2764 	struct vm_area_struct *vma;
2765 
2766 	down_read(&mm->mmap_sem);
2767 	vma = find_vma(mm, ip);
2768 	if (vma && vma->vm_file) {
2769 		struct file *f = vma->vm_file;
2770 		char *buf = (char *)__get_free_page(GFP_KERNEL);
2771 		if (buf) {
2772 			char *p, *s;
2773 
2774 			p = d_path(f->f_dentry, f->f_vfsmnt, buf, PAGE_SIZE);
2775 			if (IS_ERR(p))
2776 				p = "?";
2777 			s = strrchr(p, '/');
2778 			if (s)
2779 				p = s+1;
2780 			printk("%s%s[%lx+%lx]", prefix, p,
2781 					vma->vm_start,
2782 					vma->vm_end - vma->vm_start);
2783 			free_page((unsigned long)buf);
2784 		}
2785 	}
2786 	up_read(&current->mm->mmap_sem);
2787 }
2788