xref: /openbmc/linux/mm/memory.c (revision 62e7ca52)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71 
72 #include "internal.h"
73 
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77 
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82 
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86 
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95 
96 EXPORT_SYMBOL(high_memory);
97 
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 					1;
107 #else
108 					2;
109 #endif
110 
111 static int __init disable_randmaps(char *s)
112 {
113 	randomize_va_space = 0;
114 	return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117 
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120 
121 /*
122  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123  */
124 static int __init init_zero_pfn(void)
125 {
126 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 	return 0;
128 }
129 core_initcall(init_zero_pfn);
130 
131 
132 #if defined(SPLIT_RSS_COUNTING)
133 
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136 	int i;
137 
138 	for (i = 0; i < NR_MM_COUNTERS; i++) {
139 		if (current->rss_stat.count[i]) {
140 			add_mm_counter(mm, i, current->rss_stat.count[i]);
141 			current->rss_stat.count[i] = 0;
142 		}
143 	}
144 	current->rss_stat.events = 0;
145 }
146 
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149 	struct task_struct *task = current;
150 
151 	if (likely(task->mm == mm))
152 		task->rss_stat.count[member] += val;
153 	else
154 		add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158 
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH	(64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163 	if (unlikely(task != current))
164 		return;
165 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 		sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169 
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172 
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176 
177 #endif /* SPLIT_RSS_COUNTING */
178 
179 #ifdef HAVE_GENERIC_MMU_GATHER
180 
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183 	struct mmu_gather_batch *batch;
184 
185 	batch = tlb->active;
186 	if (batch->next) {
187 		tlb->active = batch->next;
188 		return 1;
189 	}
190 
191 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 		return 0;
193 
194 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 	if (!batch)
196 		return 0;
197 
198 	tlb->batch_count++;
199 	batch->next = NULL;
200 	batch->nr   = 0;
201 	batch->max  = MAX_GATHER_BATCH;
202 
203 	tlb->active->next = batch;
204 	tlb->active = batch;
205 
206 	return 1;
207 }
208 
209 /* tlb_gather_mmu
210  *	Called to initialize an (on-stack) mmu_gather structure for page-table
211  *	tear-down from @mm. The @fullmm argument is used when @mm is without
212  *	users and we're going to destroy the full address space (exit/execve).
213  */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
215 {
216 	tlb->mm = mm;
217 
218 	/* Is it from 0 to ~0? */
219 	tlb->fullmm     = !(start | (end+1));
220 	tlb->need_flush_all = 0;
221 	tlb->start	= start;
222 	tlb->end	= end;
223 	tlb->need_flush = 0;
224 	tlb->local.next = NULL;
225 	tlb->local.nr   = 0;
226 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227 	tlb->active     = &tlb->local;
228 	tlb->batch_count = 0;
229 
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 	tlb->batch = NULL;
232 #endif
233 }
234 
235 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
236 {
237 	tlb->need_flush = 0;
238 	tlb_flush(tlb);
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 	tlb_table_flush(tlb);
241 #endif
242 }
243 
244 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
245 {
246 	struct mmu_gather_batch *batch;
247 
248 	for (batch = &tlb->local; batch; batch = batch->next) {
249 		free_pages_and_swap_cache(batch->pages, batch->nr);
250 		batch->nr = 0;
251 	}
252 	tlb->active = &tlb->local;
253 }
254 
255 void tlb_flush_mmu(struct mmu_gather *tlb)
256 {
257 	if (!tlb->need_flush)
258 		return;
259 	tlb_flush_mmu_tlbonly(tlb);
260 	tlb_flush_mmu_free(tlb);
261 }
262 
263 /* tlb_finish_mmu
264  *	Called at the end of the shootdown operation to free up any resources
265  *	that were required.
266  */
267 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
268 {
269 	struct mmu_gather_batch *batch, *next;
270 
271 	tlb_flush_mmu(tlb);
272 
273 	/* keep the page table cache within bounds */
274 	check_pgt_cache();
275 
276 	for (batch = tlb->local.next; batch; batch = next) {
277 		next = batch->next;
278 		free_pages((unsigned long)batch, 0);
279 	}
280 	tlb->local.next = NULL;
281 }
282 
283 /* __tlb_remove_page
284  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
285  *	handling the additional races in SMP caused by other CPUs caching valid
286  *	mappings in their TLBs. Returns the number of free page slots left.
287  *	When out of page slots we must call tlb_flush_mmu().
288  */
289 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
290 {
291 	struct mmu_gather_batch *batch;
292 
293 	VM_BUG_ON(!tlb->need_flush);
294 
295 	batch = tlb->active;
296 	batch->pages[batch->nr++] = page;
297 	if (batch->nr == batch->max) {
298 		if (!tlb_next_batch(tlb))
299 			return 0;
300 		batch = tlb->active;
301 	}
302 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
303 
304 	return batch->max - batch->nr;
305 }
306 
307 #endif /* HAVE_GENERIC_MMU_GATHER */
308 
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
310 
311 /*
312  * See the comment near struct mmu_table_batch.
313  */
314 
315 static void tlb_remove_table_smp_sync(void *arg)
316 {
317 	/* Simply deliver the interrupt */
318 }
319 
320 static void tlb_remove_table_one(void *table)
321 {
322 	/*
323 	 * This isn't an RCU grace period and hence the page-tables cannot be
324 	 * assumed to be actually RCU-freed.
325 	 *
326 	 * It is however sufficient for software page-table walkers that rely on
327 	 * IRQ disabling. See the comment near struct mmu_table_batch.
328 	 */
329 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
330 	__tlb_remove_table(table);
331 }
332 
333 static void tlb_remove_table_rcu(struct rcu_head *head)
334 {
335 	struct mmu_table_batch *batch;
336 	int i;
337 
338 	batch = container_of(head, struct mmu_table_batch, rcu);
339 
340 	for (i = 0; i < batch->nr; i++)
341 		__tlb_remove_table(batch->tables[i]);
342 
343 	free_page((unsigned long)batch);
344 }
345 
346 void tlb_table_flush(struct mmu_gather *tlb)
347 {
348 	struct mmu_table_batch **batch = &tlb->batch;
349 
350 	if (*batch) {
351 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
352 		*batch = NULL;
353 	}
354 }
355 
356 void tlb_remove_table(struct mmu_gather *tlb, void *table)
357 {
358 	struct mmu_table_batch **batch = &tlb->batch;
359 
360 	tlb->need_flush = 1;
361 
362 	/*
363 	 * When there's less then two users of this mm there cannot be a
364 	 * concurrent page-table walk.
365 	 */
366 	if (atomic_read(&tlb->mm->mm_users) < 2) {
367 		__tlb_remove_table(table);
368 		return;
369 	}
370 
371 	if (*batch == NULL) {
372 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373 		if (*batch == NULL) {
374 			tlb_remove_table_one(table);
375 			return;
376 		}
377 		(*batch)->nr = 0;
378 	}
379 	(*batch)->tables[(*batch)->nr++] = table;
380 	if ((*batch)->nr == MAX_TABLE_BATCH)
381 		tlb_table_flush(tlb);
382 }
383 
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
385 
386 /*
387  * Note: this doesn't free the actual pages themselves. That
388  * has been handled earlier when unmapping all the memory regions.
389  */
390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391 			   unsigned long addr)
392 {
393 	pgtable_t token = pmd_pgtable(*pmd);
394 	pmd_clear(pmd);
395 	pte_free_tlb(tlb, token, addr);
396 	atomic_long_dec(&tlb->mm->nr_ptes);
397 }
398 
399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400 				unsigned long addr, unsigned long end,
401 				unsigned long floor, unsigned long ceiling)
402 {
403 	pmd_t *pmd;
404 	unsigned long next;
405 	unsigned long start;
406 
407 	start = addr;
408 	pmd = pmd_offset(pud, addr);
409 	do {
410 		next = pmd_addr_end(addr, end);
411 		if (pmd_none_or_clear_bad(pmd))
412 			continue;
413 		free_pte_range(tlb, pmd, addr);
414 	} while (pmd++, addr = next, addr != end);
415 
416 	start &= PUD_MASK;
417 	if (start < floor)
418 		return;
419 	if (ceiling) {
420 		ceiling &= PUD_MASK;
421 		if (!ceiling)
422 			return;
423 	}
424 	if (end - 1 > ceiling - 1)
425 		return;
426 
427 	pmd = pmd_offset(pud, start);
428 	pud_clear(pud);
429 	pmd_free_tlb(tlb, pmd, start);
430 }
431 
432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433 				unsigned long addr, unsigned long end,
434 				unsigned long floor, unsigned long ceiling)
435 {
436 	pud_t *pud;
437 	unsigned long next;
438 	unsigned long start;
439 
440 	start = addr;
441 	pud = pud_offset(pgd, addr);
442 	do {
443 		next = pud_addr_end(addr, end);
444 		if (pud_none_or_clear_bad(pud))
445 			continue;
446 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
447 	} while (pud++, addr = next, addr != end);
448 
449 	start &= PGDIR_MASK;
450 	if (start < floor)
451 		return;
452 	if (ceiling) {
453 		ceiling &= PGDIR_MASK;
454 		if (!ceiling)
455 			return;
456 	}
457 	if (end - 1 > ceiling - 1)
458 		return;
459 
460 	pud = pud_offset(pgd, start);
461 	pgd_clear(pgd);
462 	pud_free_tlb(tlb, pud, start);
463 }
464 
465 /*
466  * This function frees user-level page tables of a process.
467  */
468 void free_pgd_range(struct mmu_gather *tlb,
469 			unsigned long addr, unsigned long end,
470 			unsigned long floor, unsigned long ceiling)
471 {
472 	pgd_t *pgd;
473 	unsigned long next;
474 
475 	/*
476 	 * The next few lines have given us lots of grief...
477 	 *
478 	 * Why are we testing PMD* at this top level?  Because often
479 	 * there will be no work to do at all, and we'd prefer not to
480 	 * go all the way down to the bottom just to discover that.
481 	 *
482 	 * Why all these "- 1"s?  Because 0 represents both the bottom
483 	 * of the address space and the top of it (using -1 for the
484 	 * top wouldn't help much: the masks would do the wrong thing).
485 	 * The rule is that addr 0 and floor 0 refer to the bottom of
486 	 * the address space, but end 0 and ceiling 0 refer to the top
487 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 	 * that end 0 case should be mythical).
489 	 *
490 	 * Wherever addr is brought up or ceiling brought down, we must
491 	 * be careful to reject "the opposite 0" before it confuses the
492 	 * subsequent tests.  But what about where end is brought down
493 	 * by PMD_SIZE below? no, end can't go down to 0 there.
494 	 *
495 	 * Whereas we round start (addr) and ceiling down, by different
496 	 * masks at different levels, in order to test whether a table
497 	 * now has no other vmas using it, so can be freed, we don't
498 	 * bother to round floor or end up - the tests don't need that.
499 	 */
500 
501 	addr &= PMD_MASK;
502 	if (addr < floor) {
503 		addr += PMD_SIZE;
504 		if (!addr)
505 			return;
506 	}
507 	if (ceiling) {
508 		ceiling &= PMD_MASK;
509 		if (!ceiling)
510 			return;
511 	}
512 	if (end - 1 > ceiling - 1)
513 		end -= PMD_SIZE;
514 	if (addr > end - 1)
515 		return;
516 
517 	pgd = pgd_offset(tlb->mm, addr);
518 	do {
519 		next = pgd_addr_end(addr, end);
520 		if (pgd_none_or_clear_bad(pgd))
521 			continue;
522 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
523 	} while (pgd++, addr = next, addr != end);
524 }
525 
526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
527 		unsigned long floor, unsigned long ceiling)
528 {
529 	while (vma) {
530 		struct vm_area_struct *next = vma->vm_next;
531 		unsigned long addr = vma->vm_start;
532 
533 		/*
534 		 * Hide vma from rmap and truncate_pagecache before freeing
535 		 * pgtables
536 		 */
537 		unlink_anon_vmas(vma);
538 		unlink_file_vma(vma);
539 
540 		if (is_vm_hugetlb_page(vma)) {
541 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
542 				floor, next? next->vm_start: ceiling);
543 		} else {
544 			/*
545 			 * Optimization: gather nearby vmas into one call down
546 			 */
547 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
548 			       && !is_vm_hugetlb_page(next)) {
549 				vma = next;
550 				next = vma->vm_next;
551 				unlink_anon_vmas(vma);
552 				unlink_file_vma(vma);
553 			}
554 			free_pgd_range(tlb, addr, vma->vm_end,
555 				floor, next? next->vm_start: ceiling);
556 		}
557 		vma = next;
558 	}
559 }
560 
561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562 		pmd_t *pmd, unsigned long address)
563 {
564 	spinlock_t *ptl;
565 	pgtable_t new = pte_alloc_one(mm, address);
566 	int wait_split_huge_page;
567 	if (!new)
568 		return -ENOMEM;
569 
570 	/*
571 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 	 * visible before the pte is made visible to other CPUs by being
573 	 * put into page tables.
574 	 *
575 	 * The other side of the story is the pointer chasing in the page
576 	 * table walking code (when walking the page table without locking;
577 	 * ie. most of the time). Fortunately, these data accesses consist
578 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 	 * being the notable exception) will already guarantee loads are
580 	 * seen in-order. See the alpha page table accessors for the
581 	 * smp_read_barrier_depends() barriers in page table walking code.
582 	 */
583 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
584 
585 	ptl = pmd_lock(mm, pmd);
586 	wait_split_huge_page = 0;
587 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
588 		atomic_long_inc(&mm->nr_ptes);
589 		pmd_populate(mm, pmd, new);
590 		new = NULL;
591 	} else if (unlikely(pmd_trans_splitting(*pmd)))
592 		wait_split_huge_page = 1;
593 	spin_unlock(ptl);
594 	if (new)
595 		pte_free(mm, new);
596 	if (wait_split_huge_page)
597 		wait_split_huge_page(vma->anon_vma, pmd);
598 	return 0;
599 }
600 
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 {
603 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 	if (!new)
605 		return -ENOMEM;
606 
607 	smp_wmb(); /* See comment in __pte_alloc */
608 
609 	spin_lock(&init_mm.page_table_lock);
610 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
611 		pmd_populate_kernel(&init_mm, pmd, new);
612 		new = NULL;
613 	} else
614 		VM_BUG_ON(pmd_trans_splitting(*pmd));
615 	spin_unlock(&init_mm.page_table_lock);
616 	if (new)
617 		pte_free_kernel(&init_mm, new);
618 	return 0;
619 }
620 
621 static inline void init_rss_vec(int *rss)
622 {
623 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624 }
625 
626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
627 {
628 	int i;
629 
630 	if (current->mm == mm)
631 		sync_mm_rss(mm);
632 	for (i = 0; i < NR_MM_COUNTERS; i++)
633 		if (rss[i])
634 			add_mm_counter(mm, i, rss[i]);
635 }
636 
637 /*
638  * This function is called to print an error when a bad pte
639  * is found. For example, we might have a PFN-mapped pte in
640  * a region that doesn't allow it.
641  *
642  * The calling function must still handle the error.
643  */
644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645 			  pte_t pte, struct page *page)
646 {
647 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648 	pud_t *pud = pud_offset(pgd, addr);
649 	pmd_t *pmd = pmd_offset(pud, addr);
650 	struct address_space *mapping;
651 	pgoff_t index;
652 	static unsigned long resume;
653 	static unsigned long nr_shown;
654 	static unsigned long nr_unshown;
655 
656 	/*
657 	 * Allow a burst of 60 reports, then keep quiet for that minute;
658 	 * or allow a steady drip of one report per second.
659 	 */
660 	if (nr_shown == 60) {
661 		if (time_before(jiffies, resume)) {
662 			nr_unshown++;
663 			return;
664 		}
665 		if (nr_unshown) {
666 			printk(KERN_ALERT
667 				"BUG: Bad page map: %lu messages suppressed\n",
668 				nr_unshown);
669 			nr_unshown = 0;
670 		}
671 		nr_shown = 0;
672 	}
673 	if (nr_shown++ == 0)
674 		resume = jiffies + 60 * HZ;
675 
676 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677 	index = linear_page_index(vma, addr);
678 
679 	printk(KERN_ALERT
680 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
681 		current->comm,
682 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
683 	if (page)
684 		dump_page(page, "bad pte");
685 	printk(KERN_ALERT
686 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
688 	/*
689 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
690 	 */
691 	if (vma->vm_ops)
692 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693 		       vma->vm_ops->fault);
694 	if (vma->vm_file)
695 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696 		       vma->vm_file->f_op->mmap);
697 	dump_stack();
698 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
699 }
700 
701 /*
702  * vm_normal_page -- This function gets the "struct page" associated with a pte.
703  *
704  * "Special" mappings do not wish to be associated with a "struct page" (either
705  * it doesn't exist, or it exists but they don't want to touch it). In this
706  * case, NULL is returned here. "Normal" mappings do have a struct page.
707  *
708  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
709  * pte bit, in which case this function is trivial. Secondly, an architecture
710  * may not have a spare pte bit, which requires a more complicated scheme,
711  * described below.
712  *
713  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
714  * special mapping (even if there are underlying and valid "struct pages").
715  * COWed pages of a VM_PFNMAP are always normal.
716  *
717  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
718  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
719  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
720  * mapping will always honor the rule
721  *
722  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
723  *
724  * And for normal mappings this is false.
725  *
726  * This restricts such mappings to be a linear translation from virtual address
727  * to pfn. To get around this restriction, we allow arbitrary mappings so long
728  * as the vma is not a COW mapping; in that case, we know that all ptes are
729  * special (because none can have been COWed).
730  *
731  *
732  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
733  *
734  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
735  * page" backing, however the difference is that _all_ pages with a struct
736  * page (that is, those where pfn_valid is true) are refcounted and considered
737  * normal pages by the VM. The disadvantage is that pages are refcounted
738  * (which can be slower and simply not an option for some PFNMAP users). The
739  * advantage is that we don't have to follow the strict linearity rule of
740  * PFNMAP mappings in order to support COWable mappings.
741  *
742  */
743 #ifdef __HAVE_ARCH_PTE_SPECIAL
744 # define HAVE_PTE_SPECIAL 1
745 #else
746 # define HAVE_PTE_SPECIAL 0
747 #endif
748 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
749 				pte_t pte)
750 {
751 	unsigned long pfn = pte_pfn(pte);
752 
753 	if (HAVE_PTE_SPECIAL) {
754 		if (likely(!pte_special(pte) || pte_numa(pte)))
755 			goto check_pfn;
756 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
757 			return NULL;
758 		if (!is_zero_pfn(pfn))
759 			print_bad_pte(vma, addr, pte, NULL);
760 		return NULL;
761 	}
762 
763 	/* !HAVE_PTE_SPECIAL case follows: */
764 
765 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
766 		if (vma->vm_flags & VM_MIXEDMAP) {
767 			if (!pfn_valid(pfn))
768 				return NULL;
769 			goto out;
770 		} else {
771 			unsigned long off;
772 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
773 			if (pfn == vma->vm_pgoff + off)
774 				return NULL;
775 			if (!is_cow_mapping(vma->vm_flags))
776 				return NULL;
777 		}
778 	}
779 
780 check_pfn:
781 	if (unlikely(pfn > highest_memmap_pfn)) {
782 		print_bad_pte(vma, addr, pte, NULL);
783 		return NULL;
784 	}
785 
786 	if (is_zero_pfn(pfn))
787 		return NULL;
788 
789 	/*
790 	 * NOTE! We still have PageReserved() pages in the page tables.
791 	 * eg. VDSO mappings can cause them to exist.
792 	 */
793 out:
794 	return pfn_to_page(pfn);
795 }
796 
797 /*
798  * copy one vm_area from one task to the other. Assumes the page tables
799  * already present in the new task to be cleared in the whole range
800  * covered by this vma.
801  */
802 
803 static inline unsigned long
804 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
805 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
806 		unsigned long addr, int *rss)
807 {
808 	unsigned long vm_flags = vma->vm_flags;
809 	pte_t pte = *src_pte;
810 	struct page *page;
811 
812 	/* pte contains position in swap or file, so copy. */
813 	if (unlikely(!pte_present(pte))) {
814 		if (!pte_file(pte)) {
815 			swp_entry_t entry = pte_to_swp_entry(pte);
816 
817 			if (swap_duplicate(entry) < 0)
818 				return entry.val;
819 
820 			/* make sure dst_mm is on swapoff's mmlist. */
821 			if (unlikely(list_empty(&dst_mm->mmlist))) {
822 				spin_lock(&mmlist_lock);
823 				if (list_empty(&dst_mm->mmlist))
824 					list_add(&dst_mm->mmlist,
825 						 &src_mm->mmlist);
826 				spin_unlock(&mmlist_lock);
827 			}
828 			if (likely(!non_swap_entry(entry)))
829 				rss[MM_SWAPENTS]++;
830 			else if (is_migration_entry(entry)) {
831 				page = migration_entry_to_page(entry);
832 
833 				if (PageAnon(page))
834 					rss[MM_ANONPAGES]++;
835 				else
836 					rss[MM_FILEPAGES]++;
837 
838 				if (is_write_migration_entry(entry) &&
839 				    is_cow_mapping(vm_flags)) {
840 					/*
841 					 * COW mappings require pages in both
842 					 * parent and child to be set to read.
843 					 */
844 					make_migration_entry_read(&entry);
845 					pte = swp_entry_to_pte(entry);
846 					if (pte_swp_soft_dirty(*src_pte))
847 						pte = pte_swp_mksoft_dirty(pte);
848 					set_pte_at(src_mm, addr, src_pte, pte);
849 				}
850 			}
851 		}
852 		goto out_set_pte;
853 	}
854 
855 	/*
856 	 * If it's a COW mapping, write protect it both
857 	 * in the parent and the child
858 	 */
859 	if (is_cow_mapping(vm_flags)) {
860 		ptep_set_wrprotect(src_mm, addr, src_pte);
861 		pte = pte_wrprotect(pte);
862 	}
863 
864 	/*
865 	 * If it's a shared mapping, mark it clean in
866 	 * the child
867 	 */
868 	if (vm_flags & VM_SHARED)
869 		pte = pte_mkclean(pte);
870 	pte = pte_mkold(pte);
871 
872 	page = vm_normal_page(vma, addr, pte);
873 	if (page) {
874 		get_page(page);
875 		page_dup_rmap(page);
876 		if (PageAnon(page))
877 			rss[MM_ANONPAGES]++;
878 		else
879 			rss[MM_FILEPAGES]++;
880 	}
881 
882 out_set_pte:
883 	set_pte_at(dst_mm, addr, dst_pte, pte);
884 	return 0;
885 }
886 
887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
888 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
889 		   unsigned long addr, unsigned long end)
890 {
891 	pte_t *orig_src_pte, *orig_dst_pte;
892 	pte_t *src_pte, *dst_pte;
893 	spinlock_t *src_ptl, *dst_ptl;
894 	int progress = 0;
895 	int rss[NR_MM_COUNTERS];
896 	swp_entry_t entry = (swp_entry_t){0};
897 
898 again:
899 	init_rss_vec(rss);
900 
901 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
902 	if (!dst_pte)
903 		return -ENOMEM;
904 	src_pte = pte_offset_map(src_pmd, addr);
905 	src_ptl = pte_lockptr(src_mm, src_pmd);
906 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
907 	orig_src_pte = src_pte;
908 	orig_dst_pte = dst_pte;
909 	arch_enter_lazy_mmu_mode();
910 
911 	do {
912 		/*
913 		 * We are holding two locks at this point - either of them
914 		 * could generate latencies in another task on another CPU.
915 		 */
916 		if (progress >= 32) {
917 			progress = 0;
918 			if (need_resched() ||
919 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
920 				break;
921 		}
922 		if (pte_none(*src_pte)) {
923 			progress++;
924 			continue;
925 		}
926 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
927 							vma, addr, rss);
928 		if (entry.val)
929 			break;
930 		progress += 8;
931 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
932 
933 	arch_leave_lazy_mmu_mode();
934 	spin_unlock(src_ptl);
935 	pte_unmap(orig_src_pte);
936 	add_mm_rss_vec(dst_mm, rss);
937 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
938 	cond_resched();
939 
940 	if (entry.val) {
941 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
942 			return -ENOMEM;
943 		progress = 0;
944 	}
945 	if (addr != end)
946 		goto again;
947 	return 0;
948 }
949 
950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
951 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
952 		unsigned long addr, unsigned long end)
953 {
954 	pmd_t *src_pmd, *dst_pmd;
955 	unsigned long next;
956 
957 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
958 	if (!dst_pmd)
959 		return -ENOMEM;
960 	src_pmd = pmd_offset(src_pud, addr);
961 	do {
962 		next = pmd_addr_end(addr, end);
963 		if (pmd_trans_huge(*src_pmd)) {
964 			int err;
965 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
966 			err = copy_huge_pmd(dst_mm, src_mm,
967 					    dst_pmd, src_pmd, addr, vma);
968 			if (err == -ENOMEM)
969 				return -ENOMEM;
970 			if (!err)
971 				continue;
972 			/* fall through */
973 		}
974 		if (pmd_none_or_clear_bad(src_pmd))
975 			continue;
976 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
977 						vma, addr, next))
978 			return -ENOMEM;
979 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
980 	return 0;
981 }
982 
983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
984 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
985 		unsigned long addr, unsigned long end)
986 {
987 	pud_t *src_pud, *dst_pud;
988 	unsigned long next;
989 
990 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
991 	if (!dst_pud)
992 		return -ENOMEM;
993 	src_pud = pud_offset(src_pgd, addr);
994 	do {
995 		next = pud_addr_end(addr, end);
996 		if (pud_none_or_clear_bad(src_pud))
997 			continue;
998 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
999 						vma, addr, next))
1000 			return -ENOMEM;
1001 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1002 	return 0;
1003 }
1004 
1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1006 		struct vm_area_struct *vma)
1007 {
1008 	pgd_t *src_pgd, *dst_pgd;
1009 	unsigned long next;
1010 	unsigned long addr = vma->vm_start;
1011 	unsigned long end = vma->vm_end;
1012 	unsigned long mmun_start;	/* For mmu_notifiers */
1013 	unsigned long mmun_end;		/* For mmu_notifiers */
1014 	bool is_cow;
1015 	int ret;
1016 
1017 	/*
1018 	 * Don't copy ptes where a page fault will fill them correctly.
1019 	 * Fork becomes much lighter when there are big shared or private
1020 	 * readonly mappings. The tradeoff is that copy_page_range is more
1021 	 * efficient than faulting.
1022 	 */
1023 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1024 			       VM_PFNMAP | VM_MIXEDMAP))) {
1025 		if (!vma->anon_vma)
1026 			return 0;
1027 	}
1028 
1029 	if (is_vm_hugetlb_page(vma))
1030 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1031 
1032 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1033 		/*
1034 		 * We do not free on error cases below as remove_vma
1035 		 * gets called on error from higher level routine
1036 		 */
1037 		ret = track_pfn_copy(vma);
1038 		if (ret)
1039 			return ret;
1040 	}
1041 
1042 	/*
1043 	 * We need to invalidate the secondary MMU mappings only when
1044 	 * there could be a permission downgrade on the ptes of the
1045 	 * parent mm. And a permission downgrade will only happen if
1046 	 * is_cow_mapping() returns true.
1047 	 */
1048 	is_cow = is_cow_mapping(vma->vm_flags);
1049 	mmun_start = addr;
1050 	mmun_end   = end;
1051 	if (is_cow)
1052 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1053 						    mmun_end);
1054 
1055 	ret = 0;
1056 	dst_pgd = pgd_offset(dst_mm, addr);
1057 	src_pgd = pgd_offset(src_mm, addr);
1058 	do {
1059 		next = pgd_addr_end(addr, end);
1060 		if (pgd_none_or_clear_bad(src_pgd))
1061 			continue;
1062 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1063 					    vma, addr, next))) {
1064 			ret = -ENOMEM;
1065 			break;
1066 		}
1067 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1068 
1069 	if (is_cow)
1070 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1071 	return ret;
1072 }
1073 
1074 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1075 				struct vm_area_struct *vma, pmd_t *pmd,
1076 				unsigned long addr, unsigned long end,
1077 				struct zap_details *details)
1078 {
1079 	struct mm_struct *mm = tlb->mm;
1080 	int force_flush = 0;
1081 	int rss[NR_MM_COUNTERS];
1082 	spinlock_t *ptl;
1083 	pte_t *start_pte;
1084 	pte_t *pte;
1085 
1086 again:
1087 	init_rss_vec(rss);
1088 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1089 	pte = start_pte;
1090 	arch_enter_lazy_mmu_mode();
1091 	do {
1092 		pte_t ptent = *pte;
1093 		if (pte_none(ptent)) {
1094 			continue;
1095 		}
1096 
1097 		if (pte_present(ptent)) {
1098 			struct page *page;
1099 
1100 			page = vm_normal_page(vma, addr, ptent);
1101 			if (unlikely(details) && page) {
1102 				/*
1103 				 * unmap_shared_mapping_pages() wants to
1104 				 * invalidate cache without truncating:
1105 				 * unmap shared but keep private pages.
1106 				 */
1107 				if (details->check_mapping &&
1108 				    details->check_mapping != page->mapping)
1109 					continue;
1110 				/*
1111 				 * Each page->index must be checked when
1112 				 * invalidating or truncating nonlinear.
1113 				 */
1114 				if (details->nonlinear_vma &&
1115 				    (page->index < details->first_index ||
1116 				     page->index > details->last_index))
1117 					continue;
1118 			}
1119 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1120 							tlb->fullmm);
1121 			tlb_remove_tlb_entry(tlb, pte, addr);
1122 			if (unlikely(!page))
1123 				continue;
1124 			if (unlikely(details) && details->nonlinear_vma
1125 			    && linear_page_index(details->nonlinear_vma,
1126 						addr) != page->index) {
1127 				pte_t ptfile = pgoff_to_pte(page->index);
1128 				if (pte_soft_dirty(ptent))
1129 					pte_file_mksoft_dirty(ptfile);
1130 				set_pte_at(mm, addr, pte, ptfile);
1131 			}
1132 			if (PageAnon(page))
1133 				rss[MM_ANONPAGES]--;
1134 			else {
1135 				if (pte_dirty(ptent)) {
1136 					force_flush = 1;
1137 					set_page_dirty(page);
1138 				}
1139 				if (pte_young(ptent) &&
1140 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1141 					mark_page_accessed(page);
1142 				rss[MM_FILEPAGES]--;
1143 			}
1144 			page_remove_rmap(page);
1145 			if (unlikely(page_mapcount(page) < 0))
1146 				print_bad_pte(vma, addr, ptent, page);
1147 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1148 				force_flush = 1;
1149 				break;
1150 			}
1151 			continue;
1152 		}
1153 		/*
1154 		 * If details->check_mapping, we leave swap entries;
1155 		 * if details->nonlinear_vma, we leave file entries.
1156 		 */
1157 		if (unlikely(details))
1158 			continue;
1159 		if (pte_file(ptent)) {
1160 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1161 				print_bad_pte(vma, addr, ptent, NULL);
1162 		} else {
1163 			swp_entry_t entry = pte_to_swp_entry(ptent);
1164 
1165 			if (!non_swap_entry(entry))
1166 				rss[MM_SWAPENTS]--;
1167 			else if (is_migration_entry(entry)) {
1168 				struct page *page;
1169 
1170 				page = migration_entry_to_page(entry);
1171 
1172 				if (PageAnon(page))
1173 					rss[MM_ANONPAGES]--;
1174 				else
1175 					rss[MM_FILEPAGES]--;
1176 			}
1177 			if (unlikely(!free_swap_and_cache(entry)))
1178 				print_bad_pte(vma, addr, ptent, NULL);
1179 		}
1180 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1181 	} while (pte++, addr += PAGE_SIZE, addr != end);
1182 
1183 	add_mm_rss_vec(mm, rss);
1184 	arch_leave_lazy_mmu_mode();
1185 
1186 	/* Do the actual TLB flush before dropping ptl */
1187 	if (force_flush) {
1188 		unsigned long old_end;
1189 
1190 		/*
1191 		 * Flush the TLB just for the previous segment,
1192 		 * then update the range to be the remaining
1193 		 * TLB range.
1194 		 */
1195 		old_end = tlb->end;
1196 		tlb->end = addr;
1197 		tlb_flush_mmu_tlbonly(tlb);
1198 		tlb->start = addr;
1199 		tlb->end = old_end;
1200 	}
1201 	pte_unmap_unlock(start_pte, ptl);
1202 
1203 	/*
1204 	 * If we forced a TLB flush (either due to running out of
1205 	 * batch buffers or because we needed to flush dirty TLB
1206 	 * entries before releasing the ptl), free the batched
1207 	 * memory too. Restart if we didn't do everything.
1208 	 */
1209 	if (force_flush) {
1210 		force_flush = 0;
1211 		tlb_flush_mmu_free(tlb);
1212 
1213 		if (addr != end)
1214 			goto again;
1215 	}
1216 
1217 	return addr;
1218 }
1219 
1220 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1221 				struct vm_area_struct *vma, pud_t *pud,
1222 				unsigned long addr, unsigned long end,
1223 				struct zap_details *details)
1224 {
1225 	pmd_t *pmd;
1226 	unsigned long next;
1227 
1228 	pmd = pmd_offset(pud, addr);
1229 	do {
1230 		next = pmd_addr_end(addr, end);
1231 		if (pmd_trans_huge(*pmd)) {
1232 			if (next - addr != HPAGE_PMD_SIZE) {
1233 #ifdef CONFIG_DEBUG_VM
1234 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1235 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1236 						__func__, addr, end,
1237 						vma->vm_start,
1238 						vma->vm_end);
1239 					BUG();
1240 				}
1241 #endif
1242 				split_huge_page_pmd(vma, addr, pmd);
1243 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1244 				goto next;
1245 			/* fall through */
1246 		}
1247 		/*
1248 		 * Here there can be other concurrent MADV_DONTNEED or
1249 		 * trans huge page faults running, and if the pmd is
1250 		 * none or trans huge it can change under us. This is
1251 		 * because MADV_DONTNEED holds the mmap_sem in read
1252 		 * mode.
1253 		 */
1254 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1255 			goto next;
1256 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1257 next:
1258 		cond_resched();
1259 	} while (pmd++, addr = next, addr != end);
1260 
1261 	return addr;
1262 }
1263 
1264 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1265 				struct vm_area_struct *vma, pgd_t *pgd,
1266 				unsigned long addr, unsigned long end,
1267 				struct zap_details *details)
1268 {
1269 	pud_t *pud;
1270 	unsigned long next;
1271 
1272 	pud = pud_offset(pgd, addr);
1273 	do {
1274 		next = pud_addr_end(addr, end);
1275 		if (pud_none_or_clear_bad(pud))
1276 			continue;
1277 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1278 	} while (pud++, addr = next, addr != end);
1279 
1280 	return addr;
1281 }
1282 
1283 static void unmap_page_range(struct mmu_gather *tlb,
1284 			     struct vm_area_struct *vma,
1285 			     unsigned long addr, unsigned long end,
1286 			     struct zap_details *details)
1287 {
1288 	pgd_t *pgd;
1289 	unsigned long next;
1290 
1291 	if (details && !details->check_mapping && !details->nonlinear_vma)
1292 		details = NULL;
1293 
1294 	BUG_ON(addr >= end);
1295 	mem_cgroup_uncharge_start();
1296 	tlb_start_vma(tlb, vma);
1297 	pgd = pgd_offset(vma->vm_mm, addr);
1298 	do {
1299 		next = pgd_addr_end(addr, end);
1300 		if (pgd_none_or_clear_bad(pgd))
1301 			continue;
1302 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1303 	} while (pgd++, addr = next, addr != end);
1304 	tlb_end_vma(tlb, vma);
1305 	mem_cgroup_uncharge_end();
1306 }
1307 
1308 
1309 static void unmap_single_vma(struct mmu_gather *tlb,
1310 		struct vm_area_struct *vma, unsigned long start_addr,
1311 		unsigned long end_addr,
1312 		struct zap_details *details)
1313 {
1314 	unsigned long start = max(vma->vm_start, start_addr);
1315 	unsigned long end;
1316 
1317 	if (start >= vma->vm_end)
1318 		return;
1319 	end = min(vma->vm_end, end_addr);
1320 	if (end <= vma->vm_start)
1321 		return;
1322 
1323 	if (vma->vm_file)
1324 		uprobe_munmap(vma, start, end);
1325 
1326 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1327 		untrack_pfn(vma, 0, 0);
1328 
1329 	if (start != end) {
1330 		if (unlikely(is_vm_hugetlb_page(vma))) {
1331 			/*
1332 			 * It is undesirable to test vma->vm_file as it
1333 			 * should be non-null for valid hugetlb area.
1334 			 * However, vm_file will be NULL in the error
1335 			 * cleanup path of mmap_region. When
1336 			 * hugetlbfs ->mmap method fails,
1337 			 * mmap_region() nullifies vma->vm_file
1338 			 * before calling this function to clean up.
1339 			 * Since no pte has actually been setup, it is
1340 			 * safe to do nothing in this case.
1341 			 */
1342 			if (vma->vm_file) {
1343 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1344 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1345 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1346 			}
1347 		} else
1348 			unmap_page_range(tlb, vma, start, end, details);
1349 	}
1350 }
1351 
1352 /**
1353  * unmap_vmas - unmap a range of memory covered by a list of vma's
1354  * @tlb: address of the caller's struct mmu_gather
1355  * @vma: the starting vma
1356  * @start_addr: virtual address at which to start unmapping
1357  * @end_addr: virtual address at which to end unmapping
1358  *
1359  * Unmap all pages in the vma list.
1360  *
1361  * Only addresses between `start' and `end' will be unmapped.
1362  *
1363  * The VMA list must be sorted in ascending virtual address order.
1364  *
1365  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1366  * range after unmap_vmas() returns.  So the only responsibility here is to
1367  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1368  * drops the lock and schedules.
1369  */
1370 void unmap_vmas(struct mmu_gather *tlb,
1371 		struct vm_area_struct *vma, unsigned long start_addr,
1372 		unsigned long end_addr)
1373 {
1374 	struct mm_struct *mm = vma->vm_mm;
1375 
1376 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1377 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1378 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1379 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1380 }
1381 
1382 /**
1383  * zap_page_range - remove user pages in a given range
1384  * @vma: vm_area_struct holding the applicable pages
1385  * @start: starting address of pages to zap
1386  * @size: number of bytes to zap
1387  * @details: details of nonlinear truncation or shared cache invalidation
1388  *
1389  * Caller must protect the VMA list
1390  */
1391 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1392 		unsigned long size, struct zap_details *details)
1393 {
1394 	struct mm_struct *mm = vma->vm_mm;
1395 	struct mmu_gather tlb;
1396 	unsigned long end = start + size;
1397 
1398 	lru_add_drain();
1399 	tlb_gather_mmu(&tlb, mm, start, end);
1400 	update_hiwater_rss(mm);
1401 	mmu_notifier_invalidate_range_start(mm, start, end);
1402 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1403 		unmap_single_vma(&tlb, vma, start, end, details);
1404 	mmu_notifier_invalidate_range_end(mm, start, end);
1405 	tlb_finish_mmu(&tlb, start, end);
1406 }
1407 
1408 /**
1409  * zap_page_range_single - remove user pages in a given range
1410  * @vma: vm_area_struct holding the applicable pages
1411  * @address: starting address of pages to zap
1412  * @size: number of bytes to zap
1413  * @details: details of nonlinear truncation or shared cache invalidation
1414  *
1415  * The range must fit into one VMA.
1416  */
1417 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1418 		unsigned long size, struct zap_details *details)
1419 {
1420 	struct mm_struct *mm = vma->vm_mm;
1421 	struct mmu_gather tlb;
1422 	unsigned long end = address + size;
1423 
1424 	lru_add_drain();
1425 	tlb_gather_mmu(&tlb, mm, address, end);
1426 	update_hiwater_rss(mm);
1427 	mmu_notifier_invalidate_range_start(mm, address, end);
1428 	unmap_single_vma(&tlb, vma, address, end, details);
1429 	mmu_notifier_invalidate_range_end(mm, address, end);
1430 	tlb_finish_mmu(&tlb, address, end);
1431 }
1432 
1433 /**
1434  * zap_vma_ptes - remove ptes mapping the vma
1435  * @vma: vm_area_struct holding ptes to be zapped
1436  * @address: starting address of pages to zap
1437  * @size: number of bytes to zap
1438  *
1439  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1440  *
1441  * The entire address range must be fully contained within the vma.
1442  *
1443  * Returns 0 if successful.
1444  */
1445 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1446 		unsigned long size)
1447 {
1448 	if (address < vma->vm_start || address + size > vma->vm_end ||
1449 	    		!(vma->vm_flags & VM_PFNMAP))
1450 		return -1;
1451 	zap_page_range_single(vma, address, size, NULL);
1452 	return 0;
1453 }
1454 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1455 
1456 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1457 			spinlock_t **ptl)
1458 {
1459 	pgd_t * pgd = pgd_offset(mm, addr);
1460 	pud_t * pud = pud_alloc(mm, pgd, addr);
1461 	if (pud) {
1462 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1463 		if (pmd) {
1464 			VM_BUG_ON(pmd_trans_huge(*pmd));
1465 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1466 		}
1467 	}
1468 	return NULL;
1469 }
1470 
1471 /*
1472  * This is the old fallback for page remapping.
1473  *
1474  * For historical reasons, it only allows reserved pages. Only
1475  * old drivers should use this, and they needed to mark their
1476  * pages reserved for the old functions anyway.
1477  */
1478 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1479 			struct page *page, pgprot_t prot)
1480 {
1481 	struct mm_struct *mm = vma->vm_mm;
1482 	int retval;
1483 	pte_t *pte;
1484 	spinlock_t *ptl;
1485 
1486 	retval = -EINVAL;
1487 	if (PageAnon(page))
1488 		goto out;
1489 	retval = -ENOMEM;
1490 	flush_dcache_page(page);
1491 	pte = get_locked_pte(mm, addr, &ptl);
1492 	if (!pte)
1493 		goto out;
1494 	retval = -EBUSY;
1495 	if (!pte_none(*pte))
1496 		goto out_unlock;
1497 
1498 	/* Ok, finally just insert the thing.. */
1499 	get_page(page);
1500 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1501 	page_add_file_rmap(page);
1502 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1503 
1504 	retval = 0;
1505 	pte_unmap_unlock(pte, ptl);
1506 	return retval;
1507 out_unlock:
1508 	pte_unmap_unlock(pte, ptl);
1509 out:
1510 	return retval;
1511 }
1512 
1513 /**
1514  * vm_insert_page - insert single page into user vma
1515  * @vma: user vma to map to
1516  * @addr: target user address of this page
1517  * @page: source kernel page
1518  *
1519  * This allows drivers to insert individual pages they've allocated
1520  * into a user vma.
1521  *
1522  * The page has to be a nice clean _individual_ kernel allocation.
1523  * If you allocate a compound page, you need to have marked it as
1524  * such (__GFP_COMP), or manually just split the page up yourself
1525  * (see split_page()).
1526  *
1527  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1528  * took an arbitrary page protection parameter. This doesn't allow
1529  * that. Your vma protection will have to be set up correctly, which
1530  * means that if you want a shared writable mapping, you'd better
1531  * ask for a shared writable mapping!
1532  *
1533  * The page does not need to be reserved.
1534  *
1535  * Usually this function is called from f_op->mmap() handler
1536  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1537  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1538  * function from other places, for example from page-fault handler.
1539  */
1540 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1541 			struct page *page)
1542 {
1543 	if (addr < vma->vm_start || addr >= vma->vm_end)
1544 		return -EFAULT;
1545 	if (!page_count(page))
1546 		return -EINVAL;
1547 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1548 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1549 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1550 		vma->vm_flags |= VM_MIXEDMAP;
1551 	}
1552 	return insert_page(vma, addr, page, vma->vm_page_prot);
1553 }
1554 EXPORT_SYMBOL(vm_insert_page);
1555 
1556 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1557 			unsigned long pfn, pgprot_t prot)
1558 {
1559 	struct mm_struct *mm = vma->vm_mm;
1560 	int retval;
1561 	pte_t *pte, entry;
1562 	spinlock_t *ptl;
1563 
1564 	retval = -ENOMEM;
1565 	pte = get_locked_pte(mm, addr, &ptl);
1566 	if (!pte)
1567 		goto out;
1568 	retval = -EBUSY;
1569 	if (!pte_none(*pte))
1570 		goto out_unlock;
1571 
1572 	/* Ok, finally just insert the thing.. */
1573 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1574 	set_pte_at(mm, addr, pte, entry);
1575 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1576 
1577 	retval = 0;
1578 out_unlock:
1579 	pte_unmap_unlock(pte, ptl);
1580 out:
1581 	return retval;
1582 }
1583 
1584 /**
1585  * vm_insert_pfn - insert single pfn into user vma
1586  * @vma: user vma to map to
1587  * @addr: target user address of this page
1588  * @pfn: source kernel pfn
1589  *
1590  * Similar to vm_insert_page, this allows drivers to insert individual pages
1591  * they've allocated into a user vma. Same comments apply.
1592  *
1593  * This function should only be called from a vm_ops->fault handler, and
1594  * in that case the handler should return NULL.
1595  *
1596  * vma cannot be a COW mapping.
1597  *
1598  * As this is called only for pages that do not currently exist, we
1599  * do not need to flush old virtual caches or the TLB.
1600  */
1601 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1602 			unsigned long pfn)
1603 {
1604 	int ret;
1605 	pgprot_t pgprot = vma->vm_page_prot;
1606 	/*
1607 	 * Technically, architectures with pte_special can avoid all these
1608 	 * restrictions (same for remap_pfn_range).  However we would like
1609 	 * consistency in testing and feature parity among all, so we should
1610 	 * try to keep these invariants in place for everybody.
1611 	 */
1612 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1613 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1614 						(VM_PFNMAP|VM_MIXEDMAP));
1615 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1616 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1617 
1618 	if (addr < vma->vm_start || addr >= vma->vm_end)
1619 		return -EFAULT;
1620 	if (track_pfn_insert(vma, &pgprot, pfn))
1621 		return -EINVAL;
1622 
1623 	ret = insert_pfn(vma, addr, pfn, pgprot);
1624 
1625 	return ret;
1626 }
1627 EXPORT_SYMBOL(vm_insert_pfn);
1628 
1629 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1630 			unsigned long pfn)
1631 {
1632 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1633 
1634 	if (addr < vma->vm_start || addr >= vma->vm_end)
1635 		return -EFAULT;
1636 
1637 	/*
1638 	 * If we don't have pte special, then we have to use the pfn_valid()
1639 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1640 	 * refcount the page if pfn_valid is true (hence insert_page rather
1641 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1642 	 * without pte special, it would there be refcounted as a normal page.
1643 	 */
1644 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1645 		struct page *page;
1646 
1647 		page = pfn_to_page(pfn);
1648 		return insert_page(vma, addr, page, vma->vm_page_prot);
1649 	}
1650 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1651 }
1652 EXPORT_SYMBOL(vm_insert_mixed);
1653 
1654 /*
1655  * maps a range of physical memory into the requested pages. the old
1656  * mappings are removed. any references to nonexistent pages results
1657  * in null mappings (currently treated as "copy-on-access")
1658  */
1659 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1660 			unsigned long addr, unsigned long end,
1661 			unsigned long pfn, pgprot_t prot)
1662 {
1663 	pte_t *pte;
1664 	spinlock_t *ptl;
1665 
1666 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1667 	if (!pte)
1668 		return -ENOMEM;
1669 	arch_enter_lazy_mmu_mode();
1670 	do {
1671 		BUG_ON(!pte_none(*pte));
1672 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1673 		pfn++;
1674 	} while (pte++, addr += PAGE_SIZE, addr != end);
1675 	arch_leave_lazy_mmu_mode();
1676 	pte_unmap_unlock(pte - 1, ptl);
1677 	return 0;
1678 }
1679 
1680 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1681 			unsigned long addr, unsigned long end,
1682 			unsigned long pfn, pgprot_t prot)
1683 {
1684 	pmd_t *pmd;
1685 	unsigned long next;
1686 
1687 	pfn -= addr >> PAGE_SHIFT;
1688 	pmd = pmd_alloc(mm, pud, addr);
1689 	if (!pmd)
1690 		return -ENOMEM;
1691 	VM_BUG_ON(pmd_trans_huge(*pmd));
1692 	do {
1693 		next = pmd_addr_end(addr, end);
1694 		if (remap_pte_range(mm, pmd, addr, next,
1695 				pfn + (addr >> PAGE_SHIFT), prot))
1696 			return -ENOMEM;
1697 	} while (pmd++, addr = next, addr != end);
1698 	return 0;
1699 }
1700 
1701 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1702 			unsigned long addr, unsigned long end,
1703 			unsigned long pfn, pgprot_t prot)
1704 {
1705 	pud_t *pud;
1706 	unsigned long next;
1707 
1708 	pfn -= addr >> PAGE_SHIFT;
1709 	pud = pud_alloc(mm, pgd, addr);
1710 	if (!pud)
1711 		return -ENOMEM;
1712 	do {
1713 		next = pud_addr_end(addr, end);
1714 		if (remap_pmd_range(mm, pud, addr, next,
1715 				pfn + (addr >> PAGE_SHIFT), prot))
1716 			return -ENOMEM;
1717 	} while (pud++, addr = next, addr != end);
1718 	return 0;
1719 }
1720 
1721 /**
1722  * remap_pfn_range - remap kernel memory to userspace
1723  * @vma: user vma to map to
1724  * @addr: target user address to start at
1725  * @pfn: physical address of kernel memory
1726  * @size: size of map area
1727  * @prot: page protection flags for this mapping
1728  *
1729  *  Note: this is only safe if the mm semaphore is held when called.
1730  */
1731 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1732 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1733 {
1734 	pgd_t *pgd;
1735 	unsigned long next;
1736 	unsigned long end = addr + PAGE_ALIGN(size);
1737 	struct mm_struct *mm = vma->vm_mm;
1738 	int err;
1739 
1740 	/*
1741 	 * Physically remapped pages are special. Tell the
1742 	 * rest of the world about it:
1743 	 *   VM_IO tells people not to look at these pages
1744 	 *	(accesses can have side effects).
1745 	 *   VM_PFNMAP tells the core MM that the base pages are just
1746 	 *	raw PFN mappings, and do not have a "struct page" associated
1747 	 *	with them.
1748 	 *   VM_DONTEXPAND
1749 	 *      Disable vma merging and expanding with mremap().
1750 	 *   VM_DONTDUMP
1751 	 *      Omit vma from core dump, even when VM_IO turned off.
1752 	 *
1753 	 * There's a horrible special case to handle copy-on-write
1754 	 * behaviour that some programs depend on. We mark the "original"
1755 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1756 	 * See vm_normal_page() for details.
1757 	 */
1758 	if (is_cow_mapping(vma->vm_flags)) {
1759 		if (addr != vma->vm_start || end != vma->vm_end)
1760 			return -EINVAL;
1761 		vma->vm_pgoff = pfn;
1762 	}
1763 
1764 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1765 	if (err)
1766 		return -EINVAL;
1767 
1768 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1769 
1770 	BUG_ON(addr >= end);
1771 	pfn -= addr >> PAGE_SHIFT;
1772 	pgd = pgd_offset(mm, addr);
1773 	flush_cache_range(vma, addr, end);
1774 	do {
1775 		next = pgd_addr_end(addr, end);
1776 		err = remap_pud_range(mm, pgd, addr, next,
1777 				pfn + (addr >> PAGE_SHIFT), prot);
1778 		if (err)
1779 			break;
1780 	} while (pgd++, addr = next, addr != end);
1781 
1782 	if (err)
1783 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1784 
1785 	return err;
1786 }
1787 EXPORT_SYMBOL(remap_pfn_range);
1788 
1789 /**
1790  * vm_iomap_memory - remap memory to userspace
1791  * @vma: user vma to map to
1792  * @start: start of area
1793  * @len: size of area
1794  *
1795  * This is a simplified io_remap_pfn_range() for common driver use. The
1796  * driver just needs to give us the physical memory range to be mapped,
1797  * we'll figure out the rest from the vma information.
1798  *
1799  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1800  * whatever write-combining details or similar.
1801  */
1802 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1803 {
1804 	unsigned long vm_len, pfn, pages;
1805 
1806 	/* Check that the physical memory area passed in looks valid */
1807 	if (start + len < start)
1808 		return -EINVAL;
1809 	/*
1810 	 * You *really* shouldn't map things that aren't page-aligned,
1811 	 * but we've historically allowed it because IO memory might
1812 	 * just have smaller alignment.
1813 	 */
1814 	len += start & ~PAGE_MASK;
1815 	pfn = start >> PAGE_SHIFT;
1816 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1817 	if (pfn + pages < pfn)
1818 		return -EINVAL;
1819 
1820 	/* We start the mapping 'vm_pgoff' pages into the area */
1821 	if (vma->vm_pgoff > pages)
1822 		return -EINVAL;
1823 	pfn += vma->vm_pgoff;
1824 	pages -= vma->vm_pgoff;
1825 
1826 	/* Can we fit all of the mapping? */
1827 	vm_len = vma->vm_end - vma->vm_start;
1828 	if (vm_len >> PAGE_SHIFT > pages)
1829 		return -EINVAL;
1830 
1831 	/* Ok, let it rip */
1832 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1833 }
1834 EXPORT_SYMBOL(vm_iomap_memory);
1835 
1836 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1837 				     unsigned long addr, unsigned long end,
1838 				     pte_fn_t fn, void *data)
1839 {
1840 	pte_t *pte;
1841 	int err;
1842 	pgtable_t token;
1843 	spinlock_t *uninitialized_var(ptl);
1844 
1845 	pte = (mm == &init_mm) ?
1846 		pte_alloc_kernel(pmd, addr) :
1847 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1848 	if (!pte)
1849 		return -ENOMEM;
1850 
1851 	BUG_ON(pmd_huge(*pmd));
1852 
1853 	arch_enter_lazy_mmu_mode();
1854 
1855 	token = pmd_pgtable(*pmd);
1856 
1857 	do {
1858 		err = fn(pte++, token, addr, data);
1859 		if (err)
1860 			break;
1861 	} while (addr += PAGE_SIZE, addr != end);
1862 
1863 	arch_leave_lazy_mmu_mode();
1864 
1865 	if (mm != &init_mm)
1866 		pte_unmap_unlock(pte-1, ptl);
1867 	return err;
1868 }
1869 
1870 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1871 				     unsigned long addr, unsigned long end,
1872 				     pte_fn_t fn, void *data)
1873 {
1874 	pmd_t *pmd;
1875 	unsigned long next;
1876 	int err;
1877 
1878 	BUG_ON(pud_huge(*pud));
1879 
1880 	pmd = pmd_alloc(mm, pud, addr);
1881 	if (!pmd)
1882 		return -ENOMEM;
1883 	do {
1884 		next = pmd_addr_end(addr, end);
1885 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1886 		if (err)
1887 			break;
1888 	} while (pmd++, addr = next, addr != end);
1889 	return err;
1890 }
1891 
1892 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1893 				     unsigned long addr, unsigned long end,
1894 				     pte_fn_t fn, void *data)
1895 {
1896 	pud_t *pud;
1897 	unsigned long next;
1898 	int err;
1899 
1900 	pud = pud_alloc(mm, pgd, addr);
1901 	if (!pud)
1902 		return -ENOMEM;
1903 	do {
1904 		next = pud_addr_end(addr, end);
1905 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1906 		if (err)
1907 			break;
1908 	} while (pud++, addr = next, addr != end);
1909 	return err;
1910 }
1911 
1912 /*
1913  * Scan a region of virtual memory, filling in page tables as necessary
1914  * and calling a provided function on each leaf page table.
1915  */
1916 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1917 			unsigned long size, pte_fn_t fn, void *data)
1918 {
1919 	pgd_t *pgd;
1920 	unsigned long next;
1921 	unsigned long end = addr + size;
1922 	int err;
1923 
1924 	BUG_ON(addr >= end);
1925 	pgd = pgd_offset(mm, addr);
1926 	do {
1927 		next = pgd_addr_end(addr, end);
1928 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1929 		if (err)
1930 			break;
1931 	} while (pgd++, addr = next, addr != end);
1932 
1933 	return err;
1934 }
1935 EXPORT_SYMBOL_GPL(apply_to_page_range);
1936 
1937 /*
1938  * handle_pte_fault chooses page fault handler according to an entry
1939  * which was read non-atomically.  Before making any commitment, on
1940  * those architectures or configurations (e.g. i386 with PAE) which
1941  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1942  * must check under lock before unmapping the pte and proceeding
1943  * (but do_wp_page is only called after already making such a check;
1944  * and do_anonymous_page can safely check later on).
1945  */
1946 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1947 				pte_t *page_table, pte_t orig_pte)
1948 {
1949 	int same = 1;
1950 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1951 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1952 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1953 		spin_lock(ptl);
1954 		same = pte_same(*page_table, orig_pte);
1955 		spin_unlock(ptl);
1956 	}
1957 #endif
1958 	pte_unmap(page_table);
1959 	return same;
1960 }
1961 
1962 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1963 {
1964 	debug_dma_assert_idle(src);
1965 
1966 	/*
1967 	 * If the source page was a PFN mapping, we don't have
1968 	 * a "struct page" for it. We do a best-effort copy by
1969 	 * just copying from the original user address. If that
1970 	 * fails, we just zero-fill it. Live with it.
1971 	 */
1972 	if (unlikely(!src)) {
1973 		void *kaddr = kmap_atomic(dst);
1974 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1975 
1976 		/*
1977 		 * This really shouldn't fail, because the page is there
1978 		 * in the page tables. But it might just be unreadable,
1979 		 * in which case we just give up and fill the result with
1980 		 * zeroes.
1981 		 */
1982 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1983 			clear_page(kaddr);
1984 		kunmap_atomic(kaddr);
1985 		flush_dcache_page(dst);
1986 	} else
1987 		copy_user_highpage(dst, src, va, vma);
1988 }
1989 
1990 /*
1991  * Notify the address space that the page is about to become writable so that
1992  * it can prohibit this or wait for the page to get into an appropriate state.
1993  *
1994  * We do this without the lock held, so that it can sleep if it needs to.
1995  */
1996 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1997 	       unsigned long address)
1998 {
1999 	struct vm_fault vmf;
2000 	int ret;
2001 
2002 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2003 	vmf.pgoff = page->index;
2004 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2005 	vmf.page = page;
2006 
2007 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2008 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2009 		return ret;
2010 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2011 		lock_page(page);
2012 		if (!page->mapping) {
2013 			unlock_page(page);
2014 			return 0; /* retry */
2015 		}
2016 		ret |= VM_FAULT_LOCKED;
2017 	} else
2018 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2019 	return ret;
2020 }
2021 
2022 /*
2023  * This routine handles present pages, when users try to write
2024  * to a shared page. It is done by copying the page to a new address
2025  * and decrementing the shared-page counter for the old page.
2026  *
2027  * Note that this routine assumes that the protection checks have been
2028  * done by the caller (the low-level page fault routine in most cases).
2029  * Thus we can safely just mark it writable once we've done any necessary
2030  * COW.
2031  *
2032  * We also mark the page dirty at this point even though the page will
2033  * change only once the write actually happens. This avoids a few races,
2034  * and potentially makes it more efficient.
2035  *
2036  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2037  * but allow concurrent faults), with pte both mapped and locked.
2038  * We return with mmap_sem still held, but pte unmapped and unlocked.
2039  */
2040 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2041 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2042 		spinlock_t *ptl, pte_t orig_pte)
2043 	__releases(ptl)
2044 {
2045 	struct page *old_page, *new_page = NULL;
2046 	pte_t entry;
2047 	int ret = 0;
2048 	int page_mkwrite = 0;
2049 	struct page *dirty_page = NULL;
2050 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2051 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2052 
2053 	old_page = vm_normal_page(vma, address, orig_pte);
2054 	if (!old_page) {
2055 		/*
2056 		 * VM_MIXEDMAP !pfn_valid() case
2057 		 *
2058 		 * We should not cow pages in a shared writeable mapping.
2059 		 * Just mark the pages writable as we can't do any dirty
2060 		 * accounting on raw pfn maps.
2061 		 */
2062 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2063 				     (VM_WRITE|VM_SHARED))
2064 			goto reuse;
2065 		goto gotten;
2066 	}
2067 
2068 	/*
2069 	 * Take out anonymous pages first, anonymous shared vmas are
2070 	 * not dirty accountable.
2071 	 */
2072 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2073 		if (!trylock_page(old_page)) {
2074 			page_cache_get(old_page);
2075 			pte_unmap_unlock(page_table, ptl);
2076 			lock_page(old_page);
2077 			page_table = pte_offset_map_lock(mm, pmd, address,
2078 							 &ptl);
2079 			if (!pte_same(*page_table, orig_pte)) {
2080 				unlock_page(old_page);
2081 				goto unlock;
2082 			}
2083 			page_cache_release(old_page);
2084 		}
2085 		if (reuse_swap_page(old_page)) {
2086 			/*
2087 			 * The page is all ours.  Move it to our anon_vma so
2088 			 * the rmap code will not search our parent or siblings.
2089 			 * Protected against the rmap code by the page lock.
2090 			 */
2091 			page_move_anon_rmap(old_page, vma, address);
2092 			unlock_page(old_page);
2093 			goto reuse;
2094 		}
2095 		unlock_page(old_page);
2096 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2097 					(VM_WRITE|VM_SHARED))) {
2098 		/*
2099 		 * Only catch write-faults on shared writable pages,
2100 		 * read-only shared pages can get COWed by
2101 		 * get_user_pages(.write=1, .force=1).
2102 		 */
2103 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2104 			int tmp;
2105 			page_cache_get(old_page);
2106 			pte_unmap_unlock(page_table, ptl);
2107 			tmp = do_page_mkwrite(vma, old_page, address);
2108 			if (unlikely(!tmp || (tmp &
2109 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2110 				page_cache_release(old_page);
2111 				return tmp;
2112 			}
2113 			/*
2114 			 * Since we dropped the lock we need to revalidate
2115 			 * the PTE as someone else may have changed it.  If
2116 			 * they did, we just return, as we can count on the
2117 			 * MMU to tell us if they didn't also make it writable.
2118 			 */
2119 			page_table = pte_offset_map_lock(mm, pmd, address,
2120 							 &ptl);
2121 			if (!pte_same(*page_table, orig_pte)) {
2122 				unlock_page(old_page);
2123 				goto unlock;
2124 			}
2125 
2126 			page_mkwrite = 1;
2127 		}
2128 		dirty_page = old_page;
2129 		get_page(dirty_page);
2130 
2131 reuse:
2132 		/*
2133 		 * Clear the pages cpupid information as the existing
2134 		 * information potentially belongs to a now completely
2135 		 * unrelated process.
2136 		 */
2137 		if (old_page)
2138 			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2139 
2140 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2141 		entry = pte_mkyoung(orig_pte);
2142 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2143 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2144 			update_mmu_cache(vma, address, page_table);
2145 		pte_unmap_unlock(page_table, ptl);
2146 		ret |= VM_FAULT_WRITE;
2147 
2148 		if (!dirty_page)
2149 			return ret;
2150 
2151 		/*
2152 		 * Yes, Virginia, this is actually required to prevent a race
2153 		 * with clear_page_dirty_for_io() from clearing the page dirty
2154 		 * bit after it clear all dirty ptes, but before a racing
2155 		 * do_wp_page installs a dirty pte.
2156 		 *
2157 		 * do_shared_fault is protected similarly.
2158 		 */
2159 		if (!page_mkwrite) {
2160 			wait_on_page_locked(dirty_page);
2161 			set_page_dirty_balance(dirty_page);
2162 			/* file_update_time outside page_lock */
2163 			if (vma->vm_file)
2164 				file_update_time(vma->vm_file);
2165 		}
2166 		put_page(dirty_page);
2167 		if (page_mkwrite) {
2168 			struct address_space *mapping = dirty_page->mapping;
2169 
2170 			set_page_dirty(dirty_page);
2171 			unlock_page(dirty_page);
2172 			page_cache_release(dirty_page);
2173 			if (mapping)	{
2174 				/*
2175 				 * Some device drivers do not set page.mapping
2176 				 * but still dirty their pages
2177 				 */
2178 				balance_dirty_pages_ratelimited(mapping);
2179 			}
2180 		}
2181 
2182 		return ret;
2183 	}
2184 
2185 	/*
2186 	 * Ok, we need to copy. Oh, well..
2187 	 */
2188 	page_cache_get(old_page);
2189 gotten:
2190 	pte_unmap_unlock(page_table, ptl);
2191 
2192 	if (unlikely(anon_vma_prepare(vma)))
2193 		goto oom;
2194 
2195 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2196 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2197 		if (!new_page)
2198 			goto oom;
2199 	} else {
2200 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2201 		if (!new_page)
2202 			goto oom;
2203 		cow_user_page(new_page, old_page, address, vma);
2204 	}
2205 	__SetPageUptodate(new_page);
2206 
2207 	if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
2208 		goto oom_free_new;
2209 
2210 	mmun_start  = address & PAGE_MASK;
2211 	mmun_end    = mmun_start + PAGE_SIZE;
2212 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2213 
2214 	/*
2215 	 * Re-check the pte - we dropped the lock
2216 	 */
2217 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2218 	if (likely(pte_same(*page_table, orig_pte))) {
2219 		if (old_page) {
2220 			if (!PageAnon(old_page)) {
2221 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2222 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2223 			}
2224 		} else
2225 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2226 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2227 		entry = mk_pte(new_page, vma->vm_page_prot);
2228 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2229 		/*
2230 		 * Clear the pte entry and flush it first, before updating the
2231 		 * pte with the new entry. This will avoid a race condition
2232 		 * seen in the presence of one thread doing SMC and another
2233 		 * thread doing COW.
2234 		 */
2235 		ptep_clear_flush(vma, address, page_table);
2236 		page_add_new_anon_rmap(new_page, vma, address);
2237 		/*
2238 		 * We call the notify macro here because, when using secondary
2239 		 * mmu page tables (such as kvm shadow page tables), we want the
2240 		 * new page to be mapped directly into the secondary page table.
2241 		 */
2242 		set_pte_at_notify(mm, address, page_table, entry);
2243 		update_mmu_cache(vma, address, page_table);
2244 		if (old_page) {
2245 			/*
2246 			 * Only after switching the pte to the new page may
2247 			 * we remove the mapcount here. Otherwise another
2248 			 * process may come and find the rmap count decremented
2249 			 * before the pte is switched to the new page, and
2250 			 * "reuse" the old page writing into it while our pte
2251 			 * here still points into it and can be read by other
2252 			 * threads.
2253 			 *
2254 			 * The critical issue is to order this
2255 			 * page_remove_rmap with the ptp_clear_flush above.
2256 			 * Those stores are ordered by (if nothing else,)
2257 			 * the barrier present in the atomic_add_negative
2258 			 * in page_remove_rmap.
2259 			 *
2260 			 * Then the TLB flush in ptep_clear_flush ensures that
2261 			 * no process can access the old page before the
2262 			 * decremented mapcount is visible. And the old page
2263 			 * cannot be reused until after the decremented
2264 			 * mapcount is visible. So transitively, TLBs to
2265 			 * old page will be flushed before it can be reused.
2266 			 */
2267 			page_remove_rmap(old_page);
2268 		}
2269 
2270 		/* Free the old page.. */
2271 		new_page = old_page;
2272 		ret |= VM_FAULT_WRITE;
2273 	} else
2274 		mem_cgroup_uncharge_page(new_page);
2275 
2276 	if (new_page)
2277 		page_cache_release(new_page);
2278 unlock:
2279 	pte_unmap_unlock(page_table, ptl);
2280 	if (mmun_end > mmun_start)
2281 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2282 	if (old_page) {
2283 		/*
2284 		 * Don't let another task, with possibly unlocked vma,
2285 		 * keep the mlocked page.
2286 		 */
2287 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2288 			lock_page(old_page);	/* LRU manipulation */
2289 			munlock_vma_page(old_page);
2290 			unlock_page(old_page);
2291 		}
2292 		page_cache_release(old_page);
2293 	}
2294 	return ret;
2295 oom_free_new:
2296 	page_cache_release(new_page);
2297 oom:
2298 	if (old_page)
2299 		page_cache_release(old_page);
2300 	return VM_FAULT_OOM;
2301 }
2302 
2303 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2304 		unsigned long start_addr, unsigned long end_addr,
2305 		struct zap_details *details)
2306 {
2307 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2308 }
2309 
2310 static inline void unmap_mapping_range_tree(struct rb_root *root,
2311 					    struct zap_details *details)
2312 {
2313 	struct vm_area_struct *vma;
2314 	pgoff_t vba, vea, zba, zea;
2315 
2316 	vma_interval_tree_foreach(vma, root,
2317 			details->first_index, details->last_index) {
2318 
2319 		vba = vma->vm_pgoff;
2320 		vea = vba + vma_pages(vma) - 1;
2321 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2322 		zba = details->first_index;
2323 		if (zba < vba)
2324 			zba = vba;
2325 		zea = details->last_index;
2326 		if (zea > vea)
2327 			zea = vea;
2328 
2329 		unmap_mapping_range_vma(vma,
2330 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2331 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2332 				details);
2333 	}
2334 }
2335 
2336 static inline void unmap_mapping_range_list(struct list_head *head,
2337 					    struct zap_details *details)
2338 {
2339 	struct vm_area_struct *vma;
2340 
2341 	/*
2342 	 * In nonlinear VMAs there is no correspondence between virtual address
2343 	 * offset and file offset.  So we must perform an exhaustive search
2344 	 * across *all* the pages in each nonlinear VMA, not just the pages
2345 	 * whose virtual address lies outside the file truncation point.
2346 	 */
2347 	list_for_each_entry(vma, head, shared.nonlinear) {
2348 		details->nonlinear_vma = vma;
2349 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2350 	}
2351 }
2352 
2353 /**
2354  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2355  * @mapping: the address space containing mmaps to be unmapped.
2356  * @holebegin: byte in first page to unmap, relative to the start of
2357  * the underlying file.  This will be rounded down to a PAGE_SIZE
2358  * boundary.  Note that this is different from truncate_pagecache(), which
2359  * must keep the partial page.  In contrast, we must get rid of
2360  * partial pages.
2361  * @holelen: size of prospective hole in bytes.  This will be rounded
2362  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2363  * end of the file.
2364  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2365  * but 0 when invalidating pagecache, don't throw away private data.
2366  */
2367 void unmap_mapping_range(struct address_space *mapping,
2368 		loff_t const holebegin, loff_t const holelen, int even_cows)
2369 {
2370 	struct zap_details details;
2371 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2372 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2373 
2374 	/* Check for overflow. */
2375 	if (sizeof(holelen) > sizeof(hlen)) {
2376 		long long holeend =
2377 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2378 		if (holeend & ~(long long)ULONG_MAX)
2379 			hlen = ULONG_MAX - hba + 1;
2380 	}
2381 
2382 	details.check_mapping = even_cows? NULL: mapping;
2383 	details.nonlinear_vma = NULL;
2384 	details.first_index = hba;
2385 	details.last_index = hba + hlen - 1;
2386 	if (details.last_index < details.first_index)
2387 		details.last_index = ULONG_MAX;
2388 
2389 
2390 	mutex_lock(&mapping->i_mmap_mutex);
2391 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2392 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2393 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2394 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2395 	mutex_unlock(&mapping->i_mmap_mutex);
2396 }
2397 EXPORT_SYMBOL(unmap_mapping_range);
2398 
2399 /*
2400  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2401  * but allow concurrent faults), and pte mapped but not yet locked.
2402  * We return with pte unmapped and unlocked.
2403  *
2404  * We return with the mmap_sem locked or unlocked in the same cases
2405  * as does filemap_fault().
2406  */
2407 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2408 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2409 		unsigned int flags, pte_t orig_pte)
2410 {
2411 	spinlock_t *ptl;
2412 	struct page *page, *swapcache;
2413 	swp_entry_t entry;
2414 	pte_t pte;
2415 	int locked;
2416 	struct mem_cgroup *ptr;
2417 	int exclusive = 0;
2418 	int ret = 0;
2419 
2420 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2421 		goto out;
2422 
2423 	entry = pte_to_swp_entry(orig_pte);
2424 	if (unlikely(non_swap_entry(entry))) {
2425 		if (is_migration_entry(entry)) {
2426 			migration_entry_wait(mm, pmd, address);
2427 		} else if (is_hwpoison_entry(entry)) {
2428 			ret = VM_FAULT_HWPOISON;
2429 		} else {
2430 			print_bad_pte(vma, address, orig_pte, NULL);
2431 			ret = VM_FAULT_SIGBUS;
2432 		}
2433 		goto out;
2434 	}
2435 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2436 	page = lookup_swap_cache(entry);
2437 	if (!page) {
2438 		page = swapin_readahead(entry,
2439 					GFP_HIGHUSER_MOVABLE, vma, address);
2440 		if (!page) {
2441 			/*
2442 			 * Back out if somebody else faulted in this pte
2443 			 * while we released the pte lock.
2444 			 */
2445 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2446 			if (likely(pte_same(*page_table, orig_pte)))
2447 				ret = VM_FAULT_OOM;
2448 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2449 			goto unlock;
2450 		}
2451 
2452 		/* Had to read the page from swap area: Major fault */
2453 		ret = VM_FAULT_MAJOR;
2454 		count_vm_event(PGMAJFAULT);
2455 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2456 	} else if (PageHWPoison(page)) {
2457 		/*
2458 		 * hwpoisoned dirty swapcache pages are kept for killing
2459 		 * owner processes (which may be unknown at hwpoison time)
2460 		 */
2461 		ret = VM_FAULT_HWPOISON;
2462 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2463 		swapcache = page;
2464 		goto out_release;
2465 	}
2466 
2467 	swapcache = page;
2468 	locked = lock_page_or_retry(page, mm, flags);
2469 
2470 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2471 	if (!locked) {
2472 		ret |= VM_FAULT_RETRY;
2473 		goto out_release;
2474 	}
2475 
2476 	/*
2477 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2478 	 * release the swapcache from under us.  The page pin, and pte_same
2479 	 * test below, are not enough to exclude that.  Even if it is still
2480 	 * swapcache, we need to check that the page's swap has not changed.
2481 	 */
2482 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2483 		goto out_page;
2484 
2485 	page = ksm_might_need_to_copy(page, vma, address);
2486 	if (unlikely(!page)) {
2487 		ret = VM_FAULT_OOM;
2488 		page = swapcache;
2489 		goto out_page;
2490 	}
2491 
2492 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2493 		ret = VM_FAULT_OOM;
2494 		goto out_page;
2495 	}
2496 
2497 	/*
2498 	 * Back out if somebody else already faulted in this pte.
2499 	 */
2500 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2501 	if (unlikely(!pte_same(*page_table, orig_pte)))
2502 		goto out_nomap;
2503 
2504 	if (unlikely(!PageUptodate(page))) {
2505 		ret = VM_FAULT_SIGBUS;
2506 		goto out_nomap;
2507 	}
2508 
2509 	/*
2510 	 * The page isn't present yet, go ahead with the fault.
2511 	 *
2512 	 * Be careful about the sequence of operations here.
2513 	 * To get its accounting right, reuse_swap_page() must be called
2514 	 * while the page is counted on swap but not yet in mapcount i.e.
2515 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2516 	 * must be called after the swap_free(), or it will never succeed.
2517 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2518 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2519 	 * in page->private. In this case, a record in swap_cgroup  is silently
2520 	 * discarded at swap_free().
2521 	 */
2522 
2523 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2524 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2525 	pte = mk_pte(page, vma->vm_page_prot);
2526 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2527 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2528 		flags &= ~FAULT_FLAG_WRITE;
2529 		ret |= VM_FAULT_WRITE;
2530 		exclusive = 1;
2531 	}
2532 	flush_icache_page(vma, page);
2533 	if (pte_swp_soft_dirty(orig_pte))
2534 		pte = pte_mksoft_dirty(pte);
2535 	set_pte_at(mm, address, page_table, pte);
2536 	if (page == swapcache)
2537 		do_page_add_anon_rmap(page, vma, address, exclusive);
2538 	else /* ksm created a completely new copy */
2539 		page_add_new_anon_rmap(page, vma, address);
2540 	/* It's better to call commit-charge after rmap is established */
2541 	mem_cgroup_commit_charge_swapin(page, ptr);
2542 
2543 	swap_free(entry);
2544 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2545 		try_to_free_swap(page);
2546 	unlock_page(page);
2547 	if (page != swapcache) {
2548 		/*
2549 		 * Hold the lock to avoid the swap entry to be reused
2550 		 * until we take the PT lock for the pte_same() check
2551 		 * (to avoid false positives from pte_same). For
2552 		 * further safety release the lock after the swap_free
2553 		 * so that the swap count won't change under a
2554 		 * parallel locked swapcache.
2555 		 */
2556 		unlock_page(swapcache);
2557 		page_cache_release(swapcache);
2558 	}
2559 
2560 	if (flags & FAULT_FLAG_WRITE) {
2561 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2562 		if (ret & VM_FAULT_ERROR)
2563 			ret &= VM_FAULT_ERROR;
2564 		goto out;
2565 	}
2566 
2567 	/* No need to invalidate - it was non-present before */
2568 	update_mmu_cache(vma, address, page_table);
2569 unlock:
2570 	pte_unmap_unlock(page_table, ptl);
2571 out:
2572 	return ret;
2573 out_nomap:
2574 	mem_cgroup_cancel_charge_swapin(ptr);
2575 	pte_unmap_unlock(page_table, ptl);
2576 out_page:
2577 	unlock_page(page);
2578 out_release:
2579 	page_cache_release(page);
2580 	if (page != swapcache) {
2581 		unlock_page(swapcache);
2582 		page_cache_release(swapcache);
2583 	}
2584 	return ret;
2585 }
2586 
2587 /*
2588  * This is like a special single-page "expand_{down|up}wards()",
2589  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2590  * doesn't hit another vma.
2591  */
2592 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2593 {
2594 	address &= PAGE_MASK;
2595 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2596 		struct vm_area_struct *prev = vma->vm_prev;
2597 
2598 		/*
2599 		 * Is there a mapping abutting this one below?
2600 		 *
2601 		 * That's only ok if it's the same stack mapping
2602 		 * that has gotten split..
2603 		 */
2604 		if (prev && prev->vm_end == address)
2605 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2606 
2607 		expand_downwards(vma, address - PAGE_SIZE);
2608 	}
2609 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2610 		struct vm_area_struct *next = vma->vm_next;
2611 
2612 		/* As VM_GROWSDOWN but s/below/above/ */
2613 		if (next && next->vm_start == address + PAGE_SIZE)
2614 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2615 
2616 		expand_upwards(vma, address + PAGE_SIZE);
2617 	}
2618 	return 0;
2619 }
2620 
2621 /*
2622  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2623  * but allow concurrent faults), and pte mapped but not yet locked.
2624  * We return with mmap_sem still held, but pte unmapped and unlocked.
2625  */
2626 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2627 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2628 		unsigned int flags)
2629 {
2630 	struct page *page;
2631 	spinlock_t *ptl;
2632 	pte_t entry;
2633 
2634 	pte_unmap(page_table);
2635 
2636 	/* Check if we need to add a guard page to the stack */
2637 	if (check_stack_guard_page(vma, address) < 0)
2638 		return VM_FAULT_SIGBUS;
2639 
2640 	/* Use the zero-page for reads */
2641 	if (!(flags & FAULT_FLAG_WRITE)) {
2642 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2643 						vma->vm_page_prot));
2644 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2645 		if (!pte_none(*page_table))
2646 			goto unlock;
2647 		goto setpte;
2648 	}
2649 
2650 	/* Allocate our own private page. */
2651 	if (unlikely(anon_vma_prepare(vma)))
2652 		goto oom;
2653 	page = alloc_zeroed_user_highpage_movable(vma, address);
2654 	if (!page)
2655 		goto oom;
2656 	/*
2657 	 * The memory barrier inside __SetPageUptodate makes sure that
2658 	 * preceeding stores to the page contents become visible before
2659 	 * the set_pte_at() write.
2660 	 */
2661 	__SetPageUptodate(page);
2662 
2663 	if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
2664 		goto oom_free_page;
2665 
2666 	entry = mk_pte(page, vma->vm_page_prot);
2667 	if (vma->vm_flags & VM_WRITE)
2668 		entry = pte_mkwrite(pte_mkdirty(entry));
2669 
2670 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2671 	if (!pte_none(*page_table))
2672 		goto release;
2673 
2674 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2675 	page_add_new_anon_rmap(page, vma, address);
2676 setpte:
2677 	set_pte_at(mm, address, page_table, entry);
2678 
2679 	/* No need to invalidate - it was non-present before */
2680 	update_mmu_cache(vma, address, page_table);
2681 unlock:
2682 	pte_unmap_unlock(page_table, ptl);
2683 	return 0;
2684 release:
2685 	mem_cgroup_uncharge_page(page);
2686 	page_cache_release(page);
2687 	goto unlock;
2688 oom_free_page:
2689 	page_cache_release(page);
2690 oom:
2691 	return VM_FAULT_OOM;
2692 }
2693 
2694 /*
2695  * The mmap_sem must have been held on entry, and may have been
2696  * released depending on flags and vma->vm_ops->fault() return value.
2697  * See filemap_fault() and __lock_page_retry().
2698  */
2699 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2700 		pgoff_t pgoff, unsigned int flags, struct page **page)
2701 {
2702 	struct vm_fault vmf;
2703 	int ret;
2704 
2705 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2706 	vmf.pgoff = pgoff;
2707 	vmf.flags = flags;
2708 	vmf.page = NULL;
2709 
2710 	ret = vma->vm_ops->fault(vma, &vmf);
2711 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2712 		return ret;
2713 
2714 	if (unlikely(PageHWPoison(vmf.page))) {
2715 		if (ret & VM_FAULT_LOCKED)
2716 			unlock_page(vmf.page);
2717 		page_cache_release(vmf.page);
2718 		return VM_FAULT_HWPOISON;
2719 	}
2720 
2721 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2722 		lock_page(vmf.page);
2723 	else
2724 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2725 
2726 	*page = vmf.page;
2727 	return ret;
2728 }
2729 
2730 /**
2731  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2732  *
2733  * @vma: virtual memory area
2734  * @address: user virtual address
2735  * @page: page to map
2736  * @pte: pointer to target page table entry
2737  * @write: true, if new entry is writable
2738  * @anon: true, if it's anonymous page
2739  *
2740  * Caller must hold page table lock relevant for @pte.
2741  *
2742  * Target users are page handler itself and implementations of
2743  * vm_ops->map_pages.
2744  */
2745 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2746 		struct page *page, pte_t *pte, bool write, bool anon)
2747 {
2748 	pte_t entry;
2749 
2750 	flush_icache_page(vma, page);
2751 	entry = mk_pte(page, vma->vm_page_prot);
2752 	if (write)
2753 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2754 	else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2755 		entry = pte_mksoft_dirty(entry);
2756 	if (anon) {
2757 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2758 		page_add_new_anon_rmap(page, vma, address);
2759 	} else {
2760 		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2761 		page_add_file_rmap(page);
2762 	}
2763 	set_pte_at(vma->vm_mm, address, pte, entry);
2764 
2765 	/* no need to invalidate: a not-present page won't be cached */
2766 	update_mmu_cache(vma, address, pte);
2767 }
2768 
2769 static unsigned long fault_around_bytes __read_mostly =
2770 	rounddown_pow_of_two(65536);
2771 
2772 #ifdef CONFIG_DEBUG_FS
2773 static int fault_around_bytes_get(void *data, u64 *val)
2774 {
2775 	*val = fault_around_bytes;
2776 	return 0;
2777 }
2778 
2779 /*
2780  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2781  * rounded down to nearest page order. It's what do_fault_around() expects to
2782  * see.
2783  */
2784 static int fault_around_bytes_set(void *data, u64 val)
2785 {
2786 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2787 		return -EINVAL;
2788 	if (val > PAGE_SIZE)
2789 		fault_around_bytes = rounddown_pow_of_two(val);
2790 	else
2791 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2792 	return 0;
2793 }
2794 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2795 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2796 
2797 static int __init fault_around_debugfs(void)
2798 {
2799 	void *ret;
2800 
2801 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2802 			&fault_around_bytes_fops);
2803 	if (!ret)
2804 		pr_warn("Failed to create fault_around_bytes in debugfs");
2805 	return 0;
2806 }
2807 late_initcall(fault_around_debugfs);
2808 #endif
2809 
2810 /*
2811  * do_fault_around() tries to map few pages around the fault address. The hope
2812  * is that the pages will be needed soon and this will lower the number of
2813  * faults to handle.
2814  *
2815  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2816  * not ready to be mapped: not up-to-date, locked, etc.
2817  *
2818  * This function is called with the page table lock taken. In the split ptlock
2819  * case the page table lock only protects only those entries which belong to
2820  * the page table corresponding to the fault address.
2821  *
2822  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2823  * only once.
2824  *
2825  * fault_around_pages() defines how many pages we'll try to map.
2826  * do_fault_around() expects it to return a power of two less than or equal to
2827  * PTRS_PER_PTE.
2828  *
2829  * The virtual address of the area that we map is naturally aligned to the
2830  * fault_around_pages() value (and therefore to page order).  This way it's
2831  * easier to guarantee that we don't cross page table boundaries.
2832  */
2833 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2834 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2835 {
2836 	unsigned long start_addr, nr_pages, mask;
2837 	pgoff_t max_pgoff;
2838 	struct vm_fault vmf;
2839 	int off;
2840 
2841 	nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2842 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2843 
2844 	start_addr = max(address & mask, vma->vm_start);
2845 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2846 	pte -= off;
2847 	pgoff -= off;
2848 
2849 	/*
2850 	 *  max_pgoff is either end of page table or end of vma
2851 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2852 	 */
2853 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2854 		PTRS_PER_PTE - 1;
2855 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2856 			pgoff + nr_pages - 1);
2857 
2858 	/* Check if it makes any sense to call ->map_pages */
2859 	while (!pte_none(*pte)) {
2860 		if (++pgoff > max_pgoff)
2861 			return;
2862 		start_addr += PAGE_SIZE;
2863 		if (start_addr >= vma->vm_end)
2864 			return;
2865 		pte++;
2866 	}
2867 
2868 	vmf.virtual_address = (void __user *) start_addr;
2869 	vmf.pte = pte;
2870 	vmf.pgoff = pgoff;
2871 	vmf.max_pgoff = max_pgoff;
2872 	vmf.flags = flags;
2873 	vma->vm_ops->map_pages(vma, &vmf);
2874 }
2875 
2876 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2877 		unsigned long address, pmd_t *pmd,
2878 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2879 {
2880 	struct page *fault_page;
2881 	spinlock_t *ptl;
2882 	pte_t *pte;
2883 	int ret = 0;
2884 
2885 	/*
2886 	 * Let's call ->map_pages() first and use ->fault() as fallback
2887 	 * if page by the offset is not ready to be mapped (cold cache or
2888 	 * something).
2889 	 */
2890 	if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2891 	    fault_around_bytes >> PAGE_SHIFT > 1) {
2892 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2893 		do_fault_around(vma, address, pte, pgoff, flags);
2894 		if (!pte_same(*pte, orig_pte))
2895 			goto unlock_out;
2896 		pte_unmap_unlock(pte, ptl);
2897 	}
2898 
2899 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2900 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2901 		return ret;
2902 
2903 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2904 	if (unlikely(!pte_same(*pte, orig_pte))) {
2905 		pte_unmap_unlock(pte, ptl);
2906 		unlock_page(fault_page);
2907 		page_cache_release(fault_page);
2908 		return ret;
2909 	}
2910 	do_set_pte(vma, address, fault_page, pte, false, false);
2911 	unlock_page(fault_page);
2912 unlock_out:
2913 	pte_unmap_unlock(pte, ptl);
2914 	return ret;
2915 }
2916 
2917 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2918 		unsigned long address, pmd_t *pmd,
2919 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2920 {
2921 	struct page *fault_page, *new_page;
2922 	spinlock_t *ptl;
2923 	pte_t *pte;
2924 	int ret;
2925 
2926 	if (unlikely(anon_vma_prepare(vma)))
2927 		return VM_FAULT_OOM;
2928 
2929 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2930 	if (!new_page)
2931 		return VM_FAULT_OOM;
2932 
2933 	if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
2934 		page_cache_release(new_page);
2935 		return VM_FAULT_OOM;
2936 	}
2937 
2938 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2939 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2940 		goto uncharge_out;
2941 
2942 	copy_user_highpage(new_page, fault_page, address, vma);
2943 	__SetPageUptodate(new_page);
2944 
2945 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2946 	if (unlikely(!pte_same(*pte, orig_pte))) {
2947 		pte_unmap_unlock(pte, ptl);
2948 		unlock_page(fault_page);
2949 		page_cache_release(fault_page);
2950 		goto uncharge_out;
2951 	}
2952 	do_set_pte(vma, address, new_page, pte, true, true);
2953 	pte_unmap_unlock(pte, ptl);
2954 	unlock_page(fault_page);
2955 	page_cache_release(fault_page);
2956 	return ret;
2957 uncharge_out:
2958 	mem_cgroup_uncharge_page(new_page);
2959 	page_cache_release(new_page);
2960 	return ret;
2961 }
2962 
2963 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2964 		unsigned long address, pmd_t *pmd,
2965 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2966 {
2967 	struct page *fault_page;
2968 	struct address_space *mapping;
2969 	spinlock_t *ptl;
2970 	pte_t *pte;
2971 	int dirtied = 0;
2972 	int ret, tmp;
2973 
2974 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2975 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2976 		return ret;
2977 
2978 	/*
2979 	 * Check if the backing address space wants to know that the page is
2980 	 * about to become writable
2981 	 */
2982 	if (vma->vm_ops->page_mkwrite) {
2983 		unlock_page(fault_page);
2984 		tmp = do_page_mkwrite(vma, fault_page, address);
2985 		if (unlikely(!tmp ||
2986 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2987 			page_cache_release(fault_page);
2988 			return tmp;
2989 		}
2990 	}
2991 
2992 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2993 	if (unlikely(!pte_same(*pte, orig_pte))) {
2994 		pte_unmap_unlock(pte, ptl);
2995 		unlock_page(fault_page);
2996 		page_cache_release(fault_page);
2997 		return ret;
2998 	}
2999 	do_set_pte(vma, address, fault_page, pte, true, false);
3000 	pte_unmap_unlock(pte, ptl);
3001 
3002 	if (set_page_dirty(fault_page))
3003 		dirtied = 1;
3004 	mapping = fault_page->mapping;
3005 	unlock_page(fault_page);
3006 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3007 		/*
3008 		 * Some device drivers do not set page.mapping but still
3009 		 * dirty their pages
3010 		 */
3011 		balance_dirty_pages_ratelimited(mapping);
3012 	}
3013 
3014 	/* file_update_time outside page_lock */
3015 	if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3016 		file_update_time(vma->vm_file);
3017 
3018 	return ret;
3019 }
3020 
3021 /*
3022  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3023  * but allow concurrent faults).
3024  * The mmap_sem may have been released depending on flags and our
3025  * return value.  See filemap_fault() and __lock_page_or_retry().
3026  */
3027 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3028 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3029 		unsigned int flags, pte_t orig_pte)
3030 {
3031 	pgoff_t pgoff = (((address & PAGE_MASK)
3032 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3033 
3034 	pte_unmap(page_table);
3035 	if (!(flags & FAULT_FLAG_WRITE))
3036 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3037 				orig_pte);
3038 	if (!(vma->vm_flags & VM_SHARED))
3039 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3040 				orig_pte);
3041 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3042 }
3043 
3044 /*
3045  * Fault of a previously existing named mapping. Repopulate the pte
3046  * from the encoded file_pte if possible. This enables swappable
3047  * nonlinear vmas.
3048  *
3049  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3050  * but allow concurrent faults), and pte mapped but not yet locked.
3051  * We return with pte unmapped and unlocked.
3052  * The mmap_sem may have been released depending on flags and our
3053  * return value.  See filemap_fault() and __lock_page_or_retry().
3054  */
3055 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3056 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3057 		unsigned int flags, pte_t orig_pte)
3058 {
3059 	pgoff_t pgoff;
3060 
3061 	flags |= FAULT_FLAG_NONLINEAR;
3062 
3063 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3064 		return 0;
3065 
3066 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3067 		/*
3068 		 * Page table corrupted: show pte and kill process.
3069 		 */
3070 		print_bad_pte(vma, address, orig_pte, NULL);
3071 		return VM_FAULT_SIGBUS;
3072 	}
3073 
3074 	pgoff = pte_to_pgoff(orig_pte);
3075 	if (!(flags & FAULT_FLAG_WRITE))
3076 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3077 				orig_pte);
3078 	if (!(vma->vm_flags & VM_SHARED))
3079 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3080 				orig_pte);
3081 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3082 }
3083 
3084 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3085 				unsigned long addr, int page_nid,
3086 				int *flags)
3087 {
3088 	get_page(page);
3089 
3090 	count_vm_numa_event(NUMA_HINT_FAULTS);
3091 	if (page_nid == numa_node_id()) {
3092 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3093 		*flags |= TNF_FAULT_LOCAL;
3094 	}
3095 
3096 	return mpol_misplaced(page, vma, addr);
3097 }
3098 
3099 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3100 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3101 {
3102 	struct page *page = NULL;
3103 	spinlock_t *ptl;
3104 	int page_nid = -1;
3105 	int last_cpupid;
3106 	int target_nid;
3107 	bool migrated = false;
3108 	int flags = 0;
3109 
3110 	/*
3111 	* The "pte" at this point cannot be used safely without
3112 	* validation through pte_unmap_same(). It's of NUMA type but
3113 	* the pfn may be screwed if the read is non atomic.
3114 	*
3115 	* ptep_modify_prot_start is not called as this is clearing
3116 	* the _PAGE_NUMA bit and it is not really expected that there
3117 	* would be concurrent hardware modifications to the PTE.
3118 	*/
3119 	ptl = pte_lockptr(mm, pmd);
3120 	spin_lock(ptl);
3121 	if (unlikely(!pte_same(*ptep, pte))) {
3122 		pte_unmap_unlock(ptep, ptl);
3123 		goto out;
3124 	}
3125 
3126 	pte = pte_mknonnuma(pte);
3127 	set_pte_at(mm, addr, ptep, pte);
3128 	update_mmu_cache(vma, addr, ptep);
3129 
3130 	page = vm_normal_page(vma, addr, pte);
3131 	if (!page) {
3132 		pte_unmap_unlock(ptep, ptl);
3133 		return 0;
3134 	}
3135 	BUG_ON(is_zero_pfn(page_to_pfn(page)));
3136 
3137 	/*
3138 	 * Avoid grouping on DSO/COW pages in specific and RO pages
3139 	 * in general, RO pages shouldn't hurt as much anyway since
3140 	 * they can be in shared cache state.
3141 	 */
3142 	if (!pte_write(pte))
3143 		flags |= TNF_NO_GROUP;
3144 
3145 	/*
3146 	 * Flag if the page is shared between multiple address spaces. This
3147 	 * is later used when determining whether to group tasks together
3148 	 */
3149 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3150 		flags |= TNF_SHARED;
3151 
3152 	last_cpupid = page_cpupid_last(page);
3153 	page_nid = page_to_nid(page);
3154 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3155 	pte_unmap_unlock(ptep, ptl);
3156 	if (target_nid == -1) {
3157 		put_page(page);
3158 		goto out;
3159 	}
3160 
3161 	/* Migrate to the requested node */
3162 	migrated = migrate_misplaced_page(page, vma, target_nid);
3163 	if (migrated) {
3164 		page_nid = target_nid;
3165 		flags |= TNF_MIGRATED;
3166 	}
3167 
3168 out:
3169 	if (page_nid != -1)
3170 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3171 	return 0;
3172 }
3173 
3174 /*
3175  * These routines also need to handle stuff like marking pages dirty
3176  * and/or accessed for architectures that don't do it in hardware (most
3177  * RISC architectures).  The early dirtying is also good on the i386.
3178  *
3179  * There is also a hook called "update_mmu_cache()" that architectures
3180  * with external mmu caches can use to update those (ie the Sparc or
3181  * PowerPC hashed page tables that act as extended TLBs).
3182  *
3183  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3184  * but allow concurrent faults), and pte mapped but not yet locked.
3185  * We return with pte unmapped and unlocked.
3186  *
3187  * The mmap_sem may have been released depending on flags and our
3188  * return value.  See filemap_fault() and __lock_page_or_retry().
3189  */
3190 static int handle_pte_fault(struct mm_struct *mm,
3191 		     struct vm_area_struct *vma, unsigned long address,
3192 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3193 {
3194 	pte_t entry;
3195 	spinlock_t *ptl;
3196 
3197 	entry = ACCESS_ONCE(*pte);
3198 	if (!pte_present(entry)) {
3199 		if (pte_none(entry)) {
3200 			if (vma->vm_ops) {
3201 				if (likely(vma->vm_ops->fault))
3202 					return do_linear_fault(mm, vma, address,
3203 						pte, pmd, flags, entry);
3204 			}
3205 			return do_anonymous_page(mm, vma, address,
3206 						 pte, pmd, flags);
3207 		}
3208 		if (pte_file(entry))
3209 			return do_nonlinear_fault(mm, vma, address,
3210 					pte, pmd, flags, entry);
3211 		return do_swap_page(mm, vma, address,
3212 					pte, pmd, flags, entry);
3213 	}
3214 
3215 	if (pte_numa(entry))
3216 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3217 
3218 	ptl = pte_lockptr(mm, pmd);
3219 	spin_lock(ptl);
3220 	if (unlikely(!pte_same(*pte, entry)))
3221 		goto unlock;
3222 	if (flags & FAULT_FLAG_WRITE) {
3223 		if (!pte_write(entry))
3224 			return do_wp_page(mm, vma, address,
3225 					pte, pmd, ptl, entry);
3226 		entry = pte_mkdirty(entry);
3227 	}
3228 	entry = pte_mkyoung(entry);
3229 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3230 		update_mmu_cache(vma, address, pte);
3231 	} else {
3232 		/*
3233 		 * This is needed only for protection faults but the arch code
3234 		 * is not yet telling us if this is a protection fault or not.
3235 		 * This still avoids useless tlb flushes for .text page faults
3236 		 * with threads.
3237 		 */
3238 		if (flags & FAULT_FLAG_WRITE)
3239 			flush_tlb_fix_spurious_fault(vma, address);
3240 	}
3241 unlock:
3242 	pte_unmap_unlock(pte, ptl);
3243 	return 0;
3244 }
3245 
3246 /*
3247  * By the time we get here, we already hold the mm semaphore
3248  *
3249  * The mmap_sem may have been released depending on flags and our
3250  * return value.  See filemap_fault() and __lock_page_or_retry().
3251  */
3252 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3253 			     unsigned long address, unsigned int flags)
3254 {
3255 	pgd_t *pgd;
3256 	pud_t *pud;
3257 	pmd_t *pmd;
3258 	pte_t *pte;
3259 
3260 	if (unlikely(is_vm_hugetlb_page(vma)))
3261 		return hugetlb_fault(mm, vma, address, flags);
3262 
3263 	pgd = pgd_offset(mm, address);
3264 	pud = pud_alloc(mm, pgd, address);
3265 	if (!pud)
3266 		return VM_FAULT_OOM;
3267 	pmd = pmd_alloc(mm, pud, address);
3268 	if (!pmd)
3269 		return VM_FAULT_OOM;
3270 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3271 		int ret = VM_FAULT_FALLBACK;
3272 		if (!vma->vm_ops)
3273 			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3274 					pmd, flags);
3275 		if (!(ret & VM_FAULT_FALLBACK))
3276 			return ret;
3277 	} else {
3278 		pmd_t orig_pmd = *pmd;
3279 		int ret;
3280 
3281 		barrier();
3282 		if (pmd_trans_huge(orig_pmd)) {
3283 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3284 
3285 			/*
3286 			 * If the pmd is splitting, return and retry the
3287 			 * the fault.  Alternative: wait until the split
3288 			 * is done, and goto retry.
3289 			 */
3290 			if (pmd_trans_splitting(orig_pmd))
3291 				return 0;
3292 
3293 			if (pmd_numa(orig_pmd))
3294 				return do_huge_pmd_numa_page(mm, vma, address,
3295 							     orig_pmd, pmd);
3296 
3297 			if (dirty && !pmd_write(orig_pmd)) {
3298 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3299 							  orig_pmd);
3300 				if (!(ret & VM_FAULT_FALLBACK))
3301 					return ret;
3302 			} else {
3303 				huge_pmd_set_accessed(mm, vma, address, pmd,
3304 						      orig_pmd, dirty);
3305 				return 0;
3306 			}
3307 		}
3308 	}
3309 
3310 	/*
3311 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3312 	 * run pte_offset_map on the pmd, if an huge pmd could
3313 	 * materialize from under us from a different thread.
3314 	 */
3315 	if (unlikely(pmd_none(*pmd)) &&
3316 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3317 		return VM_FAULT_OOM;
3318 	/* if an huge pmd materialized from under us just retry later */
3319 	if (unlikely(pmd_trans_huge(*pmd)))
3320 		return 0;
3321 	/*
3322 	 * A regular pmd is established and it can't morph into a huge pmd
3323 	 * from under us anymore at this point because we hold the mmap_sem
3324 	 * read mode and khugepaged takes it in write mode. So now it's
3325 	 * safe to run pte_offset_map().
3326 	 */
3327 	pte = pte_offset_map(pmd, address);
3328 
3329 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3330 }
3331 
3332 /*
3333  * By the time we get here, we already hold the mm semaphore
3334  *
3335  * The mmap_sem may have been released depending on flags and our
3336  * return value.  See filemap_fault() and __lock_page_or_retry().
3337  */
3338 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3339 		    unsigned long address, unsigned int flags)
3340 {
3341 	int ret;
3342 
3343 	__set_current_state(TASK_RUNNING);
3344 
3345 	count_vm_event(PGFAULT);
3346 	mem_cgroup_count_vm_event(mm, PGFAULT);
3347 
3348 	/* do counter updates before entering really critical section. */
3349 	check_sync_rss_stat(current);
3350 
3351 	/*
3352 	 * Enable the memcg OOM handling for faults triggered in user
3353 	 * space.  Kernel faults are handled more gracefully.
3354 	 */
3355 	if (flags & FAULT_FLAG_USER)
3356 		mem_cgroup_oom_enable();
3357 
3358 	ret = __handle_mm_fault(mm, vma, address, flags);
3359 
3360 	if (flags & FAULT_FLAG_USER) {
3361 		mem_cgroup_oom_disable();
3362                 /*
3363                  * The task may have entered a memcg OOM situation but
3364                  * if the allocation error was handled gracefully (no
3365                  * VM_FAULT_OOM), there is no need to kill anything.
3366                  * Just clean up the OOM state peacefully.
3367                  */
3368                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3369                         mem_cgroup_oom_synchronize(false);
3370 	}
3371 
3372 	return ret;
3373 }
3374 
3375 #ifndef __PAGETABLE_PUD_FOLDED
3376 /*
3377  * Allocate page upper directory.
3378  * We've already handled the fast-path in-line.
3379  */
3380 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3381 {
3382 	pud_t *new = pud_alloc_one(mm, address);
3383 	if (!new)
3384 		return -ENOMEM;
3385 
3386 	smp_wmb(); /* See comment in __pte_alloc */
3387 
3388 	spin_lock(&mm->page_table_lock);
3389 	if (pgd_present(*pgd))		/* Another has populated it */
3390 		pud_free(mm, new);
3391 	else
3392 		pgd_populate(mm, pgd, new);
3393 	spin_unlock(&mm->page_table_lock);
3394 	return 0;
3395 }
3396 #endif /* __PAGETABLE_PUD_FOLDED */
3397 
3398 #ifndef __PAGETABLE_PMD_FOLDED
3399 /*
3400  * Allocate page middle directory.
3401  * We've already handled the fast-path in-line.
3402  */
3403 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3404 {
3405 	pmd_t *new = pmd_alloc_one(mm, address);
3406 	if (!new)
3407 		return -ENOMEM;
3408 
3409 	smp_wmb(); /* See comment in __pte_alloc */
3410 
3411 	spin_lock(&mm->page_table_lock);
3412 #ifndef __ARCH_HAS_4LEVEL_HACK
3413 	if (pud_present(*pud))		/* Another has populated it */
3414 		pmd_free(mm, new);
3415 	else
3416 		pud_populate(mm, pud, new);
3417 #else
3418 	if (pgd_present(*pud))		/* Another has populated it */
3419 		pmd_free(mm, new);
3420 	else
3421 		pgd_populate(mm, pud, new);
3422 #endif /* __ARCH_HAS_4LEVEL_HACK */
3423 	spin_unlock(&mm->page_table_lock);
3424 	return 0;
3425 }
3426 #endif /* __PAGETABLE_PMD_FOLDED */
3427 
3428 #if !defined(__HAVE_ARCH_GATE_AREA)
3429 
3430 #if defined(AT_SYSINFO_EHDR)
3431 static struct vm_area_struct gate_vma;
3432 
3433 static int __init gate_vma_init(void)
3434 {
3435 	gate_vma.vm_mm = NULL;
3436 	gate_vma.vm_start = FIXADDR_USER_START;
3437 	gate_vma.vm_end = FIXADDR_USER_END;
3438 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3439 	gate_vma.vm_page_prot = __P101;
3440 
3441 	return 0;
3442 }
3443 __initcall(gate_vma_init);
3444 #endif
3445 
3446 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3447 {
3448 #ifdef AT_SYSINFO_EHDR
3449 	return &gate_vma;
3450 #else
3451 	return NULL;
3452 #endif
3453 }
3454 
3455 int in_gate_area_no_mm(unsigned long addr)
3456 {
3457 #ifdef AT_SYSINFO_EHDR
3458 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3459 		return 1;
3460 #endif
3461 	return 0;
3462 }
3463 
3464 #endif	/* __HAVE_ARCH_GATE_AREA */
3465 
3466 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3467 		pte_t **ptepp, spinlock_t **ptlp)
3468 {
3469 	pgd_t *pgd;
3470 	pud_t *pud;
3471 	pmd_t *pmd;
3472 	pte_t *ptep;
3473 
3474 	pgd = pgd_offset(mm, address);
3475 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3476 		goto out;
3477 
3478 	pud = pud_offset(pgd, address);
3479 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3480 		goto out;
3481 
3482 	pmd = pmd_offset(pud, address);
3483 	VM_BUG_ON(pmd_trans_huge(*pmd));
3484 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3485 		goto out;
3486 
3487 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3488 	if (pmd_huge(*pmd))
3489 		goto out;
3490 
3491 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3492 	if (!ptep)
3493 		goto out;
3494 	if (!pte_present(*ptep))
3495 		goto unlock;
3496 	*ptepp = ptep;
3497 	return 0;
3498 unlock:
3499 	pte_unmap_unlock(ptep, *ptlp);
3500 out:
3501 	return -EINVAL;
3502 }
3503 
3504 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3505 			     pte_t **ptepp, spinlock_t **ptlp)
3506 {
3507 	int res;
3508 
3509 	/* (void) is needed to make gcc happy */
3510 	(void) __cond_lock(*ptlp,
3511 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3512 	return res;
3513 }
3514 
3515 /**
3516  * follow_pfn - look up PFN at a user virtual address
3517  * @vma: memory mapping
3518  * @address: user virtual address
3519  * @pfn: location to store found PFN
3520  *
3521  * Only IO mappings and raw PFN mappings are allowed.
3522  *
3523  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3524  */
3525 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3526 	unsigned long *pfn)
3527 {
3528 	int ret = -EINVAL;
3529 	spinlock_t *ptl;
3530 	pte_t *ptep;
3531 
3532 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3533 		return ret;
3534 
3535 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3536 	if (ret)
3537 		return ret;
3538 	*pfn = pte_pfn(*ptep);
3539 	pte_unmap_unlock(ptep, ptl);
3540 	return 0;
3541 }
3542 EXPORT_SYMBOL(follow_pfn);
3543 
3544 #ifdef CONFIG_HAVE_IOREMAP_PROT
3545 int follow_phys(struct vm_area_struct *vma,
3546 		unsigned long address, unsigned int flags,
3547 		unsigned long *prot, resource_size_t *phys)
3548 {
3549 	int ret = -EINVAL;
3550 	pte_t *ptep, pte;
3551 	spinlock_t *ptl;
3552 
3553 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3554 		goto out;
3555 
3556 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3557 		goto out;
3558 	pte = *ptep;
3559 
3560 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3561 		goto unlock;
3562 
3563 	*prot = pgprot_val(pte_pgprot(pte));
3564 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3565 
3566 	ret = 0;
3567 unlock:
3568 	pte_unmap_unlock(ptep, ptl);
3569 out:
3570 	return ret;
3571 }
3572 
3573 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3574 			void *buf, int len, int write)
3575 {
3576 	resource_size_t phys_addr;
3577 	unsigned long prot = 0;
3578 	void __iomem *maddr;
3579 	int offset = addr & (PAGE_SIZE-1);
3580 
3581 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3582 		return -EINVAL;
3583 
3584 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3585 	if (write)
3586 		memcpy_toio(maddr + offset, buf, len);
3587 	else
3588 		memcpy_fromio(buf, maddr + offset, len);
3589 	iounmap(maddr);
3590 
3591 	return len;
3592 }
3593 EXPORT_SYMBOL_GPL(generic_access_phys);
3594 #endif
3595 
3596 /*
3597  * Access another process' address space as given in mm.  If non-NULL, use the
3598  * given task for page fault accounting.
3599  */
3600 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3601 		unsigned long addr, void *buf, int len, int write)
3602 {
3603 	struct vm_area_struct *vma;
3604 	void *old_buf = buf;
3605 
3606 	down_read(&mm->mmap_sem);
3607 	/* ignore errors, just check how much was successfully transferred */
3608 	while (len) {
3609 		int bytes, ret, offset;
3610 		void *maddr;
3611 		struct page *page = NULL;
3612 
3613 		ret = get_user_pages(tsk, mm, addr, 1,
3614 				write, 1, &page, &vma);
3615 		if (ret <= 0) {
3616 #ifndef CONFIG_HAVE_IOREMAP_PROT
3617 			break;
3618 #else
3619 			/*
3620 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3621 			 * we can access using slightly different code.
3622 			 */
3623 			vma = find_vma(mm, addr);
3624 			if (!vma || vma->vm_start > addr)
3625 				break;
3626 			if (vma->vm_ops && vma->vm_ops->access)
3627 				ret = vma->vm_ops->access(vma, addr, buf,
3628 							  len, write);
3629 			if (ret <= 0)
3630 				break;
3631 			bytes = ret;
3632 #endif
3633 		} else {
3634 			bytes = len;
3635 			offset = addr & (PAGE_SIZE-1);
3636 			if (bytes > PAGE_SIZE-offset)
3637 				bytes = PAGE_SIZE-offset;
3638 
3639 			maddr = kmap(page);
3640 			if (write) {
3641 				copy_to_user_page(vma, page, addr,
3642 						  maddr + offset, buf, bytes);
3643 				set_page_dirty_lock(page);
3644 			} else {
3645 				copy_from_user_page(vma, page, addr,
3646 						    buf, maddr + offset, bytes);
3647 			}
3648 			kunmap(page);
3649 			page_cache_release(page);
3650 		}
3651 		len -= bytes;
3652 		buf += bytes;
3653 		addr += bytes;
3654 	}
3655 	up_read(&mm->mmap_sem);
3656 
3657 	return buf - old_buf;
3658 }
3659 
3660 /**
3661  * access_remote_vm - access another process' address space
3662  * @mm:		the mm_struct of the target address space
3663  * @addr:	start address to access
3664  * @buf:	source or destination buffer
3665  * @len:	number of bytes to transfer
3666  * @write:	whether the access is a write
3667  *
3668  * The caller must hold a reference on @mm.
3669  */
3670 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3671 		void *buf, int len, int write)
3672 {
3673 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3674 }
3675 
3676 /*
3677  * Access another process' address space.
3678  * Source/target buffer must be kernel space,
3679  * Do not walk the page table directly, use get_user_pages
3680  */
3681 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3682 		void *buf, int len, int write)
3683 {
3684 	struct mm_struct *mm;
3685 	int ret;
3686 
3687 	mm = get_task_mm(tsk);
3688 	if (!mm)
3689 		return 0;
3690 
3691 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3692 	mmput(mm);
3693 
3694 	return ret;
3695 }
3696 
3697 /*
3698  * Print the name of a VMA.
3699  */
3700 void print_vma_addr(char *prefix, unsigned long ip)
3701 {
3702 	struct mm_struct *mm = current->mm;
3703 	struct vm_area_struct *vma;
3704 
3705 	/*
3706 	 * Do not print if we are in atomic
3707 	 * contexts (in exception stacks, etc.):
3708 	 */
3709 	if (preempt_count())
3710 		return;
3711 
3712 	down_read(&mm->mmap_sem);
3713 	vma = find_vma(mm, ip);
3714 	if (vma && vma->vm_file) {
3715 		struct file *f = vma->vm_file;
3716 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3717 		if (buf) {
3718 			char *p;
3719 
3720 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3721 			if (IS_ERR(p))
3722 				p = "?";
3723 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3724 					vma->vm_start,
3725 					vma->vm_end - vma->vm_start);
3726 			free_page((unsigned long)buf);
3727 		}
3728 	}
3729 	up_read(&mm->mmap_sem);
3730 }
3731 
3732 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3733 void might_fault(void)
3734 {
3735 	/*
3736 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3737 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3738 	 * get paged out, therefore we'll never actually fault, and the
3739 	 * below annotations will generate false positives.
3740 	 */
3741 	if (segment_eq(get_fs(), KERNEL_DS))
3742 		return;
3743 
3744 	/*
3745 	 * it would be nicer only to annotate paths which are not under
3746 	 * pagefault_disable, however that requires a larger audit and
3747 	 * providing helpers like get_user_atomic.
3748 	 */
3749 	if (in_atomic())
3750 		return;
3751 
3752 	__might_sleep(__FILE__, __LINE__, 0);
3753 
3754 	if (current->mm)
3755 		might_lock_read(&current->mm->mmap_sem);
3756 }
3757 EXPORT_SYMBOL(might_fault);
3758 #endif
3759 
3760 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3761 static void clear_gigantic_page(struct page *page,
3762 				unsigned long addr,
3763 				unsigned int pages_per_huge_page)
3764 {
3765 	int i;
3766 	struct page *p = page;
3767 
3768 	might_sleep();
3769 	for (i = 0; i < pages_per_huge_page;
3770 	     i++, p = mem_map_next(p, page, i)) {
3771 		cond_resched();
3772 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3773 	}
3774 }
3775 void clear_huge_page(struct page *page,
3776 		     unsigned long addr, unsigned int pages_per_huge_page)
3777 {
3778 	int i;
3779 
3780 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3781 		clear_gigantic_page(page, addr, pages_per_huge_page);
3782 		return;
3783 	}
3784 
3785 	might_sleep();
3786 	for (i = 0; i < pages_per_huge_page; i++) {
3787 		cond_resched();
3788 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3789 	}
3790 }
3791 
3792 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3793 				    unsigned long addr,
3794 				    struct vm_area_struct *vma,
3795 				    unsigned int pages_per_huge_page)
3796 {
3797 	int i;
3798 	struct page *dst_base = dst;
3799 	struct page *src_base = src;
3800 
3801 	for (i = 0; i < pages_per_huge_page; ) {
3802 		cond_resched();
3803 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3804 
3805 		i++;
3806 		dst = mem_map_next(dst, dst_base, i);
3807 		src = mem_map_next(src, src_base, i);
3808 	}
3809 }
3810 
3811 void copy_user_huge_page(struct page *dst, struct page *src,
3812 			 unsigned long addr, struct vm_area_struct *vma,
3813 			 unsigned int pages_per_huge_page)
3814 {
3815 	int i;
3816 
3817 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3818 		copy_user_gigantic_page(dst, src, addr, vma,
3819 					pages_per_huge_page);
3820 		return;
3821 	}
3822 
3823 	might_sleep();
3824 	for (i = 0; i < pages_per_huge_page; i++) {
3825 		cond_resched();
3826 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3827 	}
3828 }
3829 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3830 
3831 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3832 
3833 static struct kmem_cache *page_ptl_cachep;
3834 
3835 void __init ptlock_cache_init(void)
3836 {
3837 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3838 			SLAB_PANIC, NULL);
3839 }
3840 
3841 bool ptlock_alloc(struct page *page)
3842 {
3843 	spinlock_t *ptl;
3844 
3845 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3846 	if (!ptl)
3847 		return false;
3848 	page->ptl = ptl;
3849 	return true;
3850 }
3851 
3852 void ptlock_free(struct page *page)
3853 {
3854 	kmem_cache_free(page_ptl_cachep, page->ptl);
3855 }
3856 #endif
3857