xref: /openbmc/linux/mm/memory.c (revision 5f32c314)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 
64 #include <asm/io.h>
65 #include <asm/pgalloc.h>
66 #include <asm/uaccess.h>
67 #include <asm/tlb.h>
68 #include <asm/tlbflush.h>
69 #include <asm/pgtable.h>
70 
71 #include "internal.h"
72 
73 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
74 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75 #endif
76 
77 #ifndef CONFIG_NEED_MULTIPLE_NODES
78 /* use the per-pgdat data instead for discontigmem - mbligh */
79 unsigned long max_mapnr;
80 struct page *mem_map;
81 
82 EXPORT_SYMBOL(max_mapnr);
83 EXPORT_SYMBOL(mem_map);
84 #endif
85 
86 /*
87  * A number of key systems in x86 including ioremap() rely on the assumption
88  * that high_memory defines the upper bound on direct map memory, then end
89  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
90  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91  * and ZONE_HIGHMEM.
92  */
93 void * high_memory;
94 
95 EXPORT_SYMBOL(high_memory);
96 
97 /*
98  * Randomize the address space (stacks, mmaps, brk, etc.).
99  *
100  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
101  *   as ancient (libc5 based) binaries can segfault. )
102  */
103 int randomize_va_space __read_mostly =
104 #ifdef CONFIG_COMPAT_BRK
105 					1;
106 #else
107 					2;
108 #endif
109 
110 static int __init disable_randmaps(char *s)
111 {
112 	randomize_va_space = 0;
113 	return 1;
114 }
115 __setup("norandmaps", disable_randmaps);
116 
117 unsigned long zero_pfn __read_mostly;
118 unsigned long highest_memmap_pfn __read_mostly;
119 
120 /*
121  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
122  */
123 static int __init init_zero_pfn(void)
124 {
125 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
126 	return 0;
127 }
128 core_initcall(init_zero_pfn);
129 
130 
131 #if defined(SPLIT_RSS_COUNTING)
132 
133 void sync_mm_rss(struct mm_struct *mm)
134 {
135 	int i;
136 
137 	for (i = 0; i < NR_MM_COUNTERS; i++) {
138 		if (current->rss_stat.count[i]) {
139 			add_mm_counter(mm, i, current->rss_stat.count[i]);
140 			current->rss_stat.count[i] = 0;
141 		}
142 	}
143 	current->rss_stat.events = 0;
144 }
145 
146 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
147 {
148 	struct task_struct *task = current;
149 
150 	if (likely(task->mm == mm))
151 		task->rss_stat.count[member] += val;
152 	else
153 		add_mm_counter(mm, member, val);
154 }
155 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
156 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
157 
158 /* sync counter once per 64 page faults */
159 #define TASK_RSS_EVENTS_THRESH	(64)
160 static void check_sync_rss_stat(struct task_struct *task)
161 {
162 	if (unlikely(task != current))
163 		return;
164 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
165 		sync_mm_rss(task->mm);
166 }
167 #else /* SPLIT_RSS_COUNTING */
168 
169 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
170 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
171 
172 static void check_sync_rss_stat(struct task_struct *task)
173 {
174 }
175 
176 #endif /* SPLIT_RSS_COUNTING */
177 
178 #ifdef HAVE_GENERIC_MMU_GATHER
179 
180 static int tlb_next_batch(struct mmu_gather *tlb)
181 {
182 	struct mmu_gather_batch *batch;
183 
184 	batch = tlb->active;
185 	if (batch->next) {
186 		tlb->active = batch->next;
187 		return 1;
188 	}
189 
190 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
191 		return 0;
192 
193 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
194 	if (!batch)
195 		return 0;
196 
197 	tlb->batch_count++;
198 	batch->next = NULL;
199 	batch->nr   = 0;
200 	batch->max  = MAX_GATHER_BATCH;
201 
202 	tlb->active->next = batch;
203 	tlb->active = batch;
204 
205 	return 1;
206 }
207 
208 /* tlb_gather_mmu
209  *	Called to initialize an (on-stack) mmu_gather structure for page-table
210  *	tear-down from @mm. The @fullmm argument is used when @mm is without
211  *	users and we're going to destroy the full address space (exit/execve).
212  */
213 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
214 {
215 	tlb->mm = mm;
216 
217 	/* Is it from 0 to ~0? */
218 	tlb->fullmm     = !(start | (end+1));
219 	tlb->need_flush_all = 0;
220 	tlb->start	= start;
221 	tlb->end	= end;
222 	tlb->need_flush = 0;
223 	tlb->local.next = NULL;
224 	tlb->local.nr   = 0;
225 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226 	tlb->active     = &tlb->local;
227 	tlb->batch_count = 0;
228 
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 	tlb->batch = NULL;
231 #endif
232 }
233 
234 void tlb_flush_mmu(struct mmu_gather *tlb)
235 {
236 	struct mmu_gather_batch *batch;
237 
238 	if (!tlb->need_flush)
239 		return;
240 	tlb->need_flush = 0;
241 	tlb_flush(tlb);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 	tlb_table_flush(tlb);
244 #endif
245 
246 	for (batch = &tlb->local; batch; batch = batch->next) {
247 		free_pages_and_swap_cache(batch->pages, batch->nr);
248 		batch->nr = 0;
249 	}
250 	tlb->active = &tlb->local;
251 }
252 
253 /* tlb_finish_mmu
254  *	Called at the end of the shootdown operation to free up any resources
255  *	that were required.
256  */
257 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
258 {
259 	struct mmu_gather_batch *batch, *next;
260 
261 	tlb_flush_mmu(tlb);
262 
263 	/* keep the page table cache within bounds */
264 	check_pgt_cache();
265 
266 	for (batch = tlb->local.next; batch; batch = next) {
267 		next = batch->next;
268 		free_pages((unsigned long)batch, 0);
269 	}
270 	tlb->local.next = NULL;
271 }
272 
273 /* __tlb_remove_page
274  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
275  *	handling the additional races in SMP caused by other CPUs caching valid
276  *	mappings in their TLBs. Returns the number of free page slots left.
277  *	When out of page slots we must call tlb_flush_mmu().
278  */
279 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
280 {
281 	struct mmu_gather_batch *batch;
282 
283 	VM_BUG_ON(!tlb->need_flush);
284 
285 	batch = tlb->active;
286 	batch->pages[batch->nr++] = page;
287 	if (batch->nr == batch->max) {
288 		if (!tlb_next_batch(tlb))
289 			return 0;
290 		batch = tlb->active;
291 	}
292 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
293 
294 	return batch->max - batch->nr;
295 }
296 
297 #endif /* HAVE_GENERIC_MMU_GATHER */
298 
299 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
300 
301 /*
302  * See the comment near struct mmu_table_batch.
303  */
304 
305 static void tlb_remove_table_smp_sync(void *arg)
306 {
307 	/* Simply deliver the interrupt */
308 }
309 
310 static void tlb_remove_table_one(void *table)
311 {
312 	/*
313 	 * This isn't an RCU grace period and hence the page-tables cannot be
314 	 * assumed to be actually RCU-freed.
315 	 *
316 	 * It is however sufficient for software page-table walkers that rely on
317 	 * IRQ disabling. See the comment near struct mmu_table_batch.
318 	 */
319 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
320 	__tlb_remove_table(table);
321 }
322 
323 static void tlb_remove_table_rcu(struct rcu_head *head)
324 {
325 	struct mmu_table_batch *batch;
326 	int i;
327 
328 	batch = container_of(head, struct mmu_table_batch, rcu);
329 
330 	for (i = 0; i < batch->nr; i++)
331 		__tlb_remove_table(batch->tables[i]);
332 
333 	free_page((unsigned long)batch);
334 }
335 
336 void tlb_table_flush(struct mmu_gather *tlb)
337 {
338 	struct mmu_table_batch **batch = &tlb->batch;
339 
340 	if (*batch) {
341 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
342 		*batch = NULL;
343 	}
344 }
345 
346 void tlb_remove_table(struct mmu_gather *tlb, void *table)
347 {
348 	struct mmu_table_batch **batch = &tlb->batch;
349 
350 	tlb->need_flush = 1;
351 
352 	/*
353 	 * When there's less then two users of this mm there cannot be a
354 	 * concurrent page-table walk.
355 	 */
356 	if (atomic_read(&tlb->mm->mm_users) < 2) {
357 		__tlb_remove_table(table);
358 		return;
359 	}
360 
361 	if (*batch == NULL) {
362 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
363 		if (*batch == NULL) {
364 			tlb_remove_table_one(table);
365 			return;
366 		}
367 		(*batch)->nr = 0;
368 	}
369 	(*batch)->tables[(*batch)->nr++] = table;
370 	if ((*batch)->nr == MAX_TABLE_BATCH)
371 		tlb_table_flush(tlb);
372 }
373 
374 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
375 
376 /*
377  * Note: this doesn't free the actual pages themselves. That
378  * has been handled earlier when unmapping all the memory regions.
379  */
380 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
381 			   unsigned long addr)
382 {
383 	pgtable_t token = pmd_pgtable(*pmd);
384 	pmd_clear(pmd);
385 	pte_free_tlb(tlb, token, addr);
386 	atomic_long_dec(&tlb->mm->nr_ptes);
387 }
388 
389 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
390 				unsigned long addr, unsigned long end,
391 				unsigned long floor, unsigned long ceiling)
392 {
393 	pmd_t *pmd;
394 	unsigned long next;
395 	unsigned long start;
396 
397 	start = addr;
398 	pmd = pmd_offset(pud, addr);
399 	do {
400 		next = pmd_addr_end(addr, end);
401 		if (pmd_none_or_clear_bad(pmd))
402 			continue;
403 		free_pte_range(tlb, pmd, addr);
404 	} while (pmd++, addr = next, addr != end);
405 
406 	start &= PUD_MASK;
407 	if (start < floor)
408 		return;
409 	if (ceiling) {
410 		ceiling &= PUD_MASK;
411 		if (!ceiling)
412 			return;
413 	}
414 	if (end - 1 > ceiling - 1)
415 		return;
416 
417 	pmd = pmd_offset(pud, start);
418 	pud_clear(pud);
419 	pmd_free_tlb(tlb, pmd, start);
420 }
421 
422 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
423 				unsigned long addr, unsigned long end,
424 				unsigned long floor, unsigned long ceiling)
425 {
426 	pud_t *pud;
427 	unsigned long next;
428 	unsigned long start;
429 
430 	start = addr;
431 	pud = pud_offset(pgd, addr);
432 	do {
433 		next = pud_addr_end(addr, end);
434 		if (pud_none_or_clear_bad(pud))
435 			continue;
436 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
437 	} while (pud++, addr = next, addr != end);
438 
439 	start &= PGDIR_MASK;
440 	if (start < floor)
441 		return;
442 	if (ceiling) {
443 		ceiling &= PGDIR_MASK;
444 		if (!ceiling)
445 			return;
446 	}
447 	if (end - 1 > ceiling - 1)
448 		return;
449 
450 	pud = pud_offset(pgd, start);
451 	pgd_clear(pgd);
452 	pud_free_tlb(tlb, pud, start);
453 }
454 
455 /*
456  * This function frees user-level page tables of a process.
457  */
458 void free_pgd_range(struct mmu_gather *tlb,
459 			unsigned long addr, unsigned long end,
460 			unsigned long floor, unsigned long ceiling)
461 {
462 	pgd_t *pgd;
463 	unsigned long next;
464 
465 	/*
466 	 * The next few lines have given us lots of grief...
467 	 *
468 	 * Why are we testing PMD* at this top level?  Because often
469 	 * there will be no work to do at all, and we'd prefer not to
470 	 * go all the way down to the bottom just to discover that.
471 	 *
472 	 * Why all these "- 1"s?  Because 0 represents both the bottom
473 	 * of the address space and the top of it (using -1 for the
474 	 * top wouldn't help much: the masks would do the wrong thing).
475 	 * The rule is that addr 0 and floor 0 refer to the bottom of
476 	 * the address space, but end 0 and ceiling 0 refer to the top
477 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
478 	 * that end 0 case should be mythical).
479 	 *
480 	 * Wherever addr is brought up or ceiling brought down, we must
481 	 * be careful to reject "the opposite 0" before it confuses the
482 	 * subsequent tests.  But what about where end is brought down
483 	 * by PMD_SIZE below? no, end can't go down to 0 there.
484 	 *
485 	 * Whereas we round start (addr) and ceiling down, by different
486 	 * masks at different levels, in order to test whether a table
487 	 * now has no other vmas using it, so can be freed, we don't
488 	 * bother to round floor or end up - the tests don't need that.
489 	 */
490 
491 	addr &= PMD_MASK;
492 	if (addr < floor) {
493 		addr += PMD_SIZE;
494 		if (!addr)
495 			return;
496 	}
497 	if (ceiling) {
498 		ceiling &= PMD_MASK;
499 		if (!ceiling)
500 			return;
501 	}
502 	if (end - 1 > ceiling - 1)
503 		end -= PMD_SIZE;
504 	if (addr > end - 1)
505 		return;
506 
507 	pgd = pgd_offset(tlb->mm, addr);
508 	do {
509 		next = pgd_addr_end(addr, end);
510 		if (pgd_none_or_clear_bad(pgd))
511 			continue;
512 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
513 	} while (pgd++, addr = next, addr != end);
514 }
515 
516 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
517 		unsigned long floor, unsigned long ceiling)
518 {
519 	while (vma) {
520 		struct vm_area_struct *next = vma->vm_next;
521 		unsigned long addr = vma->vm_start;
522 
523 		/*
524 		 * Hide vma from rmap and truncate_pagecache before freeing
525 		 * pgtables
526 		 */
527 		unlink_anon_vmas(vma);
528 		unlink_file_vma(vma);
529 
530 		if (is_vm_hugetlb_page(vma)) {
531 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
532 				floor, next? next->vm_start: ceiling);
533 		} else {
534 			/*
535 			 * Optimization: gather nearby vmas into one call down
536 			 */
537 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
538 			       && !is_vm_hugetlb_page(next)) {
539 				vma = next;
540 				next = vma->vm_next;
541 				unlink_anon_vmas(vma);
542 				unlink_file_vma(vma);
543 			}
544 			free_pgd_range(tlb, addr, vma->vm_end,
545 				floor, next? next->vm_start: ceiling);
546 		}
547 		vma = next;
548 	}
549 }
550 
551 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
552 		pmd_t *pmd, unsigned long address)
553 {
554 	spinlock_t *ptl;
555 	pgtable_t new = pte_alloc_one(mm, address);
556 	int wait_split_huge_page;
557 	if (!new)
558 		return -ENOMEM;
559 
560 	/*
561 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
562 	 * visible before the pte is made visible to other CPUs by being
563 	 * put into page tables.
564 	 *
565 	 * The other side of the story is the pointer chasing in the page
566 	 * table walking code (when walking the page table without locking;
567 	 * ie. most of the time). Fortunately, these data accesses consist
568 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
569 	 * being the notable exception) will already guarantee loads are
570 	 * seen in-order. See the alpha page table accessors for the
571 	 * smp_read_barrier_depends() barriers in page table walking code.
572 	 */
573 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
574 
575 	ptl = pmd_lock(mm, pmd);
576 	wait_split_huge_page = 0;
577 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
578 		atomic_long_inc(&mm->nr_ptes);
579 		pmd_populate(mm, pmd, new);
580 		new = NULL;
581 	} else if (unlikely(pmd_trans_splitting(*pmd)))
582 		wait_split_huge_page = 1;
583 	spin_unlock(ptl);
584 	if (new)
585 		pte_free(mm, new);
586 	if (wait_split_huge_page)
587 		wait_split_huge_page(vma->anon_vma, pmd);
588 	return 0;
589 }
590 
591 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
592 {
593 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
594 	if (!new)
595 		return -ENOMEM;
596 
597 	smp_wmb(); /* See comment in __pte_alloc */
598 
599 	spin_lock(&init_mm.page_table_lock);
600 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
601 		pmd_populate_kernel(&init_mm, pmd, new);
602 		new = NULL;
603 	} else
604 		VM_BUG_ON(pmd_trans_splitting(*pmd));
605 	spin_unlock(&init_mm.page_table_lock);
606 	if (new)
607 		pte_free_kernel(&init_mm, new);
608 	return 0;
609 }
610 
611 static inline void init_rss_vec(int *rss)
612 {
613 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
614 }
615 
616 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
617 {
618 	int i;
619 
620 	if (current->mm == mm)
621 		sync_mm_rss(mm);
622 	for (i = 0; i < NR_MM_COUNTERS; i++)
623 		if (rss[i])
624 			add_mm_counter(mm, i, rss[i]);
625 }
626 
627 /*
628  * This function is called to print an error when a bad pte
629  * is found. For example, we might have a PFN-mapped pte in
630  * a region that doesn't allow it.
631  *
632  * The calling function must still handle the error.
633  */
634 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
635 			  pte_t pte, struct page *page)
636 {
637 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
638 	pud_t *pud = pud_offset(pgd, addr);
639 	pmd_t *pmd = pmd_offset(pud, addr);
640 	struct address_space *mapping;
641 	pgoff_t index;
642 	static unsigned long resume;
643 	static unsigned long nr_shown;
644 	static unsigned long nr_unshown;
645 
646 	/*
647 	 * Allow a burst of 60 reports, then keep quiet for that minute;
648 	 * or allow a steady drip of one report per second.
649 	 */
650 	if (nr_shown == 60) {
651 		if (time_before(jiffies, resume)) {
652 			nr_unshown++;
653 			return;
654 		}
655 		if (nr_unshown) {
656 			printk(KERN_ALERT
657 				"BUG: Bad page map: %lu messages suppressed\n",
658 				nr_unshown);
659 			nr_unshown = 0;
660 		}
661 		nr_shown = 0;
662 	}
663 	if (nr_shown++ == 0)
664 		resume = jiffies + 60 * HZ;
665 
666 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
667 	index = linear_page_index(vma, addr);
668 
669 	printk(KERN_ALERT
670 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
671 		current->comm,
672 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
673 	if (page)
674 		dump_page(page, "bad pte");
675 	printk(KERN_ALERT
676 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
677 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
678 	/*
679 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
680 	 */
681 	if (vma->vm_ops)
682 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
683 		       vma->vm_ops->fault);
684 	if (vma->vm_file)
685 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
686 		       vma->vm_file->f_op->mmap);
687 	dump_stack();
688 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
689 }
690 
691 static inline bool is_cow_mapping(vm_flags_t flags)
692 {
693 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
694 }
695 
696 /*
697  * vm_normal_page -- This function gets the "struct page" associated with a pte.
698  *
699  * "Special" mappings do not wish to be associated with a "struct page" (either
700  * it doesn't exist, or it exists but they don't want to touch it). In this
701  * case, NULL is returned here. "Normal" mappings do have a struct page.
702  *
703  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704  * pte bit, in which case this function is trivial. Secondly, an architecture
705  * may not have a spare pte bit, which requires a more complicated scheme,
706  * described below.
707  *
708  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709  * special mapping (even if there are underlying and valid "struct pages").
710  * COWed pages of a VM_PFNMAP are always normal.
711  *
712  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715  * mapping will always honor the rule
716  *
717  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718  *
719  * And for normal mappings this is false.
720  *
721  * This restricts such mappings to be a linear translation from virtual address
722  * to pfn. To get around this restriction, we allow arbitrary mappings so long
723  * as the vma is not a COW mapping; in that case, we know that all ptes are
724  * special (because none can have been COWed).
725  *
726  *
727  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
728  *
729  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730  * page" backing, however the difference is that _all_ pages with a struct
731  * page (that is, those where pfn_valid is true) are refcounted and considered
732  * normal pages by the VM. The disadvantage is that pages are refcounted
733  * (which can be slower and simply not an option for some PFNMAP users). The
734  * advantage is that we don't have to follow the strict linearity rule of
735  * PFNMAP mappings in order to support COWable mappings.
736  *
737  */
738 #ifdef __HAVE_ARCH_PTE_SPECIAL
739 # define HAVE_PTE_SPECIAL 1
740 #else
741 # define HAVE_PTE_SPECIAL 0
742 #endif
743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744 				pte_t pte)
745 {
746 	unsigned long pfn = pte_pfn(pte);
747 
748 	if (HAVE_PTE_SPECIAL) {
749 		if (likely(!pte_special(pte)))
750 			goto check_pfn;
751 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752 			return NULL;
753 		if (!is_zero_pfn(pfn))
754 			print_bad_pte(vma, addr, pte, NULL);
755 		return NULL;
756 	}
757 
758 	/* !HAVE_PTE_SPECIAL case follows: */
759 
760 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761 		if (vma->vm_flags & VM_MIXEDMAP) {
762 			if (!pfn_valid(pfn))
763 				return NULL;
764 			goto out;
765 		} else {
766 			unsigned long off;
767 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
768 			if (pfn == vma->vm_pgoff + off)
769 				return NULL;
770 			if (!is_cow_mapping(vma->vm_flags))
771 				return NULL;
772 		}
773 	}
774 
775 	if (is_zero_pfn(pfn))
776 		return NULL;
777 check_pfn:
778 	if (unlikely(pfn > highest_memmap_pfn)) {
779 		print_bad_pte(vma, addr, pte, NULL);
780 		return NULL;
781 	}
782 
783 	/*
784 	 * NOTE! We still have PageReserved() pages in the page tables.
785 	 * eg. VDSO mappings can cause them to exist.
786 	 */
787 out:
788 	return pfn_to_page(pfn);
789 }
790 
791 /*
792  * copy one vm_area from one task to the other. Assumes the page tables
793  * already present in the new task to be cleared in the whole range
794  * covered by this vma.
795  */
796 
797 static inline unsigned long
798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
799 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
800 		unsigned long addr, int *rss)
801 {
802 	unsigned long vm_flags = vma->vm_flags;
803 	pte_t pte = *src_pte;
804 	struct page *page;
805 
806 	/* pte contains position in swap or file, so copy. */
807 	if (unlikely(!pte_present(pte))) {
808 		if (!pte_file(pte)) {
809 			swp_entry_t entry = pte_to_swp_entry(pte);
810 
811 			if (swap_duplicate(entry) < 0)
812 				return entry.val;
813 
814 			/* make sure dst_mm is on swapoff's mmlist. */
815 			if (unlikely(list_empty(&dst_mm->mmlist))) {
816 				spin_lock(&mmlist_lock);
817 				if (list_empty(&dst_mm->mmlist))
818 					list_add(&dst_mm->mmlist,
819 						 &src_mm->mmlist);
820 				spin_unlock(&mmlist_lock);
821 			}
822 			if (likely(!non_swap_entry(entry)))
823 				rss[MM_SWAPENTS]++;
824 			else if (is_migration_entry(entry)) {
825 				page = migration_entry_to_page(entry);
826 
827 				if (PageAnon(page))
828 					rss[MM_ANONPAGES]++;
829 				else
830 					rss[MM_FILEPAGES]++;
831 
832 				if (is_write_migration_entry(entry) &&
833 				    is_cow_mapping(vm_flags)) {
834 					/*
835 					 * COW mappings require pages in both
836 					 * parent and child to be set to read.
837 					 */
838 					make_migration_entry_read(&entry);
839 					pte = swp_entry_to_pte(entry);
840 					if (pte_swp_soft_dirty(*src_pte))
841 						pte = pte_swp_mksoft_dirty(pte);
842 					set_pte_at(src_mm, addr, src_pte, pte);
843 				}
844 			}
845 		}
846 		goto out_set_pte;
847 	}
848 
849 	/*
850 	 * If it's a COW mapping, write protect it both
851 	 * in the parent and the child
852 	 */
853 	if (is_cow_mapping(vm_flags)) {
854 		ptep_set_wrprotect(src_mm, addr, src_pte);
855 		pte = pte_wrprotect(pte);
856 	}
857 
858 	/*
859 	 * If it's a shared mapping, mark it clean in
860 	 * the child
861 	 */
862 	if (vm_flags & VM_SHARED)
863 		pte = pte_mkclean(pte);
864 	pte = pte_mkold(pte);
865 
866 	page = vm_normal_page(vma, addr, pte);
867 	if (page) {
868 		get_page(page);
869 		page_dup_rmap(page);
870 		if (PageAnon(page))
871 			rss[MM_ANONPAGES]++;
872 		else
873 			rss[MM_FILEPAGES]++;
874 	}
875 
876 out_set_pte:
877 	set_pte_at(dst_mm, addr, dst_pte, pte);
878 	return 0;
879 }
880 
881 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
883 		   unsigned long addr, unsigned long end)
884 {
885 	pte_t *orig_src_pte, *orig_dst_pte;
886 	pte_t *src_pte, *dst_pte;
887 	spinlock_t *src_ptl, *dst_ptl;
888 	int progress = 0;
889 	int rss[NR_MM_COUNTERS];
890 	swp_entry_t entry = (swp_entry_t){0};
891 
892 again:
893 	init_rss_vec(rss);
894 
895 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
896 	if (!dst_pte)
897 		return -ENOMEM;
898 	src_pte = pte_offset_map(src_pmd, addr);
899 	src_ptl = pte_lockptr(src_mm, src_pmd);
900 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
901 	orig_src_pte = src_pte;
902 	orig_dst_pte = dst_pte;
903 	arch_enter_lazy_mmu_mode();
904 
905 	do {
906 		/*
907 		 * We are holding two locks at this point - either of them
908 		 * could generate latencies in another task on another CPU.
909 		 */
910 		if (progress >= 32) {
911 			progress = 0;
912 			if (need_resched() ||
913 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
914 				break;
915 		}
916 		if (pte_none(*src_pte)) {
917 			progress++;
918 			continue;
919 		}
920 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
921 							vma, addr, rss);
922 		if (entry.val)
923 			break;
924 		progress += 8;
925 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
926 
927 	arch_leave_lazy_mmu_mode();
928 	spin_unlock(src_ptl);
929 	pte_unmap(orig_src_pte);
930 	add_mm_rss_vec(dst_mm, rss);
931 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
932 	cond_resched();
933 
934 	if (entry.val) {
935 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
936 			return -ENOMEM;
937 		progress = 0;
938 	}
939 	if (addr != end)
940 		goto again;
941 	return 0;
942 }
943 
944 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
946 		unsigned long addr, unsigned long end)
947 {
948 	pmd_t *src_pmd, *dst_pmd;
949 	unsigned long next;
950 
951 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
952 	if (!dst_pmd)
953 		return -ENOMEM;
954 	src_pmd = pmd_offset(src_pud, addr);
955 	do {
956 		next = pmd_addr_end(addr, end);
957 		if (pmd_trans_huge(*src_pmd)) {
958 			int err;
959 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
960 			err = copy_huge_pmd(dst_mm, src_mm,
961 					    dst_pmd, src_pmd, addr, vma);
962 			if (err == -ENOMEM)
963 				return -ENOMEM;
964 			if (!err)
965 				continue;
966 			/* fall through */
967 		}
968 		if (pmd_none_or_clear_bad(src_pmd))
969 			continue;
970 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
971 						vma, addr, next))
972 			return -ENOMEM;
973 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
974 	return 0;
975 }
976 
977 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
979 		unsigned long addr, unsigned long end)
980 {
981 	pud_t *src_pud, *dst_pud;
982 	unsigned long next;
983 
984 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
985 	if (!dst_pud)
986 		return -ENOMEM;
987 	src_pud = pud_offset(src_pgd, addr);
988 	do {
989 		next = pud_addr_end(addr, end);
990 		if (pud_none_or_clear_bad(src_pud))
991 			continue;
992 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
993 						vma, addr, next))
994 			return -ENOMEM;
995 	} while (dst_pud++, src_pud++, addr = next, addr != end);
996 	return 0;
997 }
998 
999 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1000 		struct vm_area_struct *vma)
1001 {
1002 	pgd_t *src_pgd, *dst_pgd;
1003 	unsigned long next;
1004 	unsigned long addr = vma->vm_start;
1005 	unsigned long end = vma->vm_end;
1006 	unsigned long mmun_start;	/* For mmu_notifiers */
1007 	unsigned long mmun_end;		/* For mmu_notifiers */
1008 	bool is_cow;
1009 	int ret;
1010 
1011 	/*
1012 	 * Don't copy ptes where a page fault will fill them correctly.
1013 	 * Fork becomes much lighter when there are big shared or private
1014 	 * readonly mappings. The tradeoff is that copy_page_range is more
1015 	 * efficient than faulting.
1016 	 */
1017 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1018 			       VM_PFNMAP | VM_MIXEDMAP))) {
1019 		if (!vma->anon_vma)
1020 			return 0;
1021 	}
1022 
1023 	if (is_vm_hugetlb_page(vma))
1024 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1025 
1026 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1027 		/*
1028 		 * We do not free on error cases below as remove_vma
1029 		 * gets called on error from higher level routine
1030 		 */
1031 		ret = track_pfn_copy(vma);
1032 		if (ret)
1033 			return ret;
1034 	}
1035 
1036 	/*
1037 	 * We need to invalidate the secondary MMU mappings only when
1038 	 * there could be a permission downgrade on the ptes of the
1039 	 * parent mm. And a permission downgrade will only happen if
1040 	 * is_cow_mapping() returns true.
1041 	 */
1042 	is_cow = is_cow_mapping(vma->vm_flags);
1043 	mmun_start = addr;
1044 	mmun_end   = end;
1045 	if (is_cow)
1046 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1047 						    mmun_end);
1048 
1049 	ret = 0;
1050 	dst_pgd = pgd_offset(dst_mm, addr);
1051 	src_pgd = pgd_offset(src_mm, addr);
1052 	do {
1053 		next = pgd_addr_end(addr, end);
1054 		if (pgd_none_or_clear_bad(src_pgd))
1055 			continue;
1056 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1057 					    vma, addr, next))) {
1058 			ret = -ENOMEM;
1059 			break;
1060 		}
1061 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1062 
1063 	if (is_cow)
1064 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1065 	return ret;
1066 }
1067 
1068 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1069 				struct vm_area_struct *vma, pmd_t *pmd,
1070 				unsigned long addr, unsigned long end,
1071 				struct zap_details *details)
1072 {
1073 	struct mm_struct *mm = tlb->mm;
1074 	int force_flush = 0;
1075 	int rss[NR_MM_COUNTERS];
1076 	spinlock_t *ptl;
1077 	pte_t *start_pte;
1078 	pte_t *pte;
1079 
1080 again:
1081 	init_rss_vec(rss);
1082 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1083 	pte = start_pte;
1084 	arch_enter_lazy_mmu_mode();
1085 	do {
1086 		pte_t ptent = *pte;
1087 		if (pte_none(ptent)) {
1088 			continue;
1089 		}
1090 
1091 		if (pte_present(ptent)) {
1092 			struct page *page;
1093 
1094 			page = vm_normal_page(vma, addr, ptent);
1095 			if (unlikely(details) && page) {
1096 				/*
1097 				 * unmap_shared_mapping_pages() wants to
1098 				 * invalidate cache without truncating:
1099 				 * unmap shared but keep private pages.
1100 				 */
1101 				if (details->check_mapping &&
1102 				    details->check_mapping != page->mapping)
1103 					continue;
1104 				/*
1105 				 * Each page->index must be checked when
1106 				 * invalidating or truncating nonlinear.
1107 				 */
1108 				if (details->nonlinear_vma &&
1109 				    (page->index < details->first_index ||
1110 				     page->index > details->last_index))
1111 					continue;
1112 			}
1113 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1114 							tlb->fullmm);
1115 			tlb_remove_tlb_entry(tlb, pte, addr);
1116 			if (unlikely(!page))
1117 				continue;
1118 			if (unlikely(details) && details->nonlinear_vma
1119 			    && linear_page_index(details->nonlinear_vma,
1120 						addr) != page->index) {
1121 				pte_t ptfile = pgoff_to_pte(page->index);
1122 				if (pte_soft_dirty(ptent))
1123 					pte_file_mksoft_dirty(ptfile);
1124 				set_pte_at(mm, addr, pte, ptfile);
1125 			}
1126 			if (PageAnon(page))
1127 				rss[MM_ANONPAGES]--;
1128 			else {
1129 				if (pte_dirty(ptent))
1130 					set_page_dirty(page);
1131 				if (pte_young(ptent) &&
1132 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1133 					mark_page_accessed(page);
1134 				rss[MM_FILEPAGES]--;
1135 			}
1136 			page_remove_rmap(page);
1137 			if (unlikely(page_mapcount(page) < 0))
1138 				print_bad_pte(vma, addr, ptent, page);
1139 			force_flush = !__tlb_remove_page(tlb, page);
1140 			if (force_flush)
1141 				break;
1142 			continue;
1143 		}
1144 		/*
1145 		 * If details->check_mapping, we leave swap entries;
1146 		 * if details->nonlinear_vma, we leave file entries.
1147 		 */
1148 		if (unlikely(details))
1149 			continue;
1150 		if (pte_file(ptent)) {
1151 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1152 				print_bad_pte(vma, addr, ptent, NULL);
1153 		} else {
1154 			swp_entry_t entry = pte_to_swp_entry(ptent);
1155 
1156 			if (!non_swap_entry(entry))
1157 				rss[MM_SWAPENTS]--;
1158 			else if (is_migration_entry(entry)) {
1159 				struct page *page;
1160 
1161 				page = migration_entry_to_page(entry);
1162 
1163 				if (PageAnon(page))
1164 					rss[MM_ANONPAGES]--;
1165 				else
1166 					rss[MM_FILEPAGES]--;
1167 			}
1168 			if (unlikely(!free_swap_and_cache(entry)))
1169 				print_bad_pte(vma, addr, ptent, NULL);
1170 		}
1171 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1172 	} while (pte++, addr += PAGE_SIZE, addr != end);
1173 
1174 	add_mm_rss_vec(mm, rss);
1175 	arch_leave_lazy_mmu_mode();
1176 	pte_unmap_unlock(start_pte, ptl);
1177 
1178 	/*
1179 	 * mmu_gather ran out of room to batch pages, we break out of
1180 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1181 	 * and page-free while holding it.
1182 	 */
1183 	if (force_flush) {
1184 		unsigned long old_end;
1185 
1186 		force_flush = 0;
1187 
1188 		/*
1189 		 * Flush the TLB just for the previous segment,
1190 		 * then update the range to be the remaining
1191 		 * TLB range.
1192 		 */
1193 		old_end = tlb->end;
1194 		tlb->end = addr;
1195 
1196 		tlb_flush_mmu(tlb);
1197 
1198 		tlb->start = addr;
1199 		tlb->end = old_end;
1200 
1201 		if (addr != end)
1202 			goto again;
1203 	}
1204 
1205 	return addr;
1206 }
1207 
1208 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1209 				struct vm_area_struct *vma, pud_t *pud,
1210 				unsigned long addr, unsigned long end,
1211 				struct zap_details *details)
1212 {
1213 	pmd_t *pmd;
1214 	unsigned long next;
1215 
1216 	pmd = pmd_offset(pud, addr);
1217 	do {
1218 		next = pmd_addr_end(addr, end);
1219 		if (pmd_trans_huge(*pmd)) {
1220 			if (next - addr != HPAGE_PMD_SIZE) {
1221 #ifdef CONFIG_DEBUG_VM
1222 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1223 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1224 						__func__, addr, end,
1225 						vma->vm_start,
1226 						vma->vm_end);
1227 					BUG();
1228 				}
1229 #endif
1230 				split_huge_page_pmd(vma, addr, pmd);
1231 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1232 				goto next;
1233 			/* fall through */
1234 		}
1235 		/*
1236 		 * Here there can be other concurrent MADV_DONTNEED or
1237 		 * trans huge page faults running, and if the pmd is
1238 		 * none or trans huge it can change under us. This is
1239 		 * because MADV_DONTNEED holds the mmap_sem in read
1240 		 * mode.
1241 		 */
1242 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1243 			goto next;
1244 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1245 next:
1246 		cond_resched();
1247 	} while (pmd++, addr = next, addr != end);
1248 
1249 	return addr;
1250 }
1251 
1252 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1253 				struct vm_area_struct *vma, pgd_t *pgd,
1254 				unsigned long addr, unsigned long end,
1255 				struct zap_details *details)
1256 {
1257 	pud_t *pud;
1258 	unsigned long next;
1259 
1260 	pud = pud_offset(pgd, addr);
1261 	do {
1262 		next = pud_addr_end(addr, end);
1263 		if (pud_none_or_clear_bad(pud))
1264 			continue;
1265 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1266 	} while (pud++, addr = next, addr != end);
1267 
1268 	return addr;
1269 }
1270 
1271 static void unmap_page_range(struct mmu_gather *tlb,
1272 			     struct vm_area_struct *vma,
1273 			     unsigned long addr, unsigned long end,
1274 			     struct zap_details *details)
1275 {
1276 	pgd_t *pgd;
1277 	unsigned long next;
1278 
1279 	if (details && !details->check_mapping && !details->nonlinear_vma)
1280 		details = NULL;
1281 
1282 	BUG_ON(addr >= end);
1283 	mem_cgroup_uncharge_start();
1284 	tlb_start_vma(tlb, vma);
1285 	pgd = pgd_offset(vma->vm_mm, addr);
1286 	do {
1287 		next = pgd_addr_end(addr, end);
1288 		if (pgd_none_or_clear_bad(pgd))
1289 			continue;
1290 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1291 	} while (pgd++, addr = next, addr != end);
1292 	tlb_end_vma(tlb, vma);
1293 	mem_cgroup_uncharge_end();
1294 }
1295 
1296 
1297 static void unmap_single_vma(struct mmu_gather *tlb,
1298 		struct vm_area_struct *vma, unsigned long start_addr,
1299 		unsigned long end_addr,
1300 		struct zap_details *details)
1301 {
1302 	unsigned long start = max(vma->vm_start, start_addr);
1303 	unsigned long end;
1304 
1305 	if (start >= vma->vm_end)
1306 		return;
1307 	end = min(vma->vm_end, end_addr);
1308 	if (end <= vma->vm_start)
1309 		return;
1310 
1311 	if (vma->vm_file)
1312 		uprobe_munmap(vma, start, end);
1313 
1314 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1315 		untrack_pfn(vma, 0, 0);
1316 
1317 	if (start != end) {
1318 		if (unlikely(is_vm_hugetlb_page(vma))) {
1319 			/*
1320 			 * It is undesirable to test vma->vm_file as it
1321 			 * should be non-null for valid hugetlb area.
1322 			 * However, vm_file will be NULL in the error
1323 			 * cleanup path of do_mmap_pgoff. When
1324 			 * hugetlbfs ->mmap method fails,
1325 			 * do_mmap_pgoff() nullifies vma->vm_file
1326 			 * before calling this function to clean up.
1327 			 * Since no pte has actually been setup, it is
1328 			 * safe to do nothing in this case.
1329 			 */
1330 			if (vma->vm_file) {
1331 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1332 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1333 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1334 			}
1335 		} else
1336 			unmap_page_range(tlb, vma, start, end, details);
1337 	}
1338 }
1339 
1340 /**
1341  * unmap_vmas - unmap a range of memory covered by a list of vma's
1342  * @tlb: address of the caller's struct mmu_gather
1343  * @vma: the starting vma
1344  * @start_addr: virtual address at which to start unmapping
1345  * @end_addr: virtual address at which to end unmapping
1346  *
1347  * Unmap all pages in the vma list.
1348  *
1349  * Only addresses between `start' and `end' will be unmapped.
1350  *
1351  * The VMA list must be sorted in ascending virtual address order.
1352  *
1353  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1354  * range after unmap_vmas() returns.  So the only responsibility here is to
1355  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1356  * drops the lock and schedules.
1357  */
1358 void unmap_vmas(struct mmu_gather *tlb,
1359 		struct vm_area_struct *vma, unsigned long start_addr,
1360 		unsigned long end_addr)
1361 {
1362 	struct mm_struct *mm = vma->vm_mm;
1363 
1364 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1365 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1366 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1367 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1368 }
1369 
1370 /**
1371  * zap_page_range - remove user pages in a given range
1372  * @vma: vm_area_struct holding the applicable pages
1373  * @start: starting address of pages to zap
1374  * @size: number of bytes to zap
1375  * @details: details of nonlinear truncation or shared cache invalidation
1376  *
1377  * Caller must protect the VMA list
1378  */
1379 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1380 		unsigned long size, struct zap_details *details)
1381 {
1382 	struct mm_struct *mm = vma->vm_mm;
1383 	struct mmu_gather tlb;
1384 	unsigned long end = start + size;
1385 
1386 	lru_add_drain();
1387 	tlb_gather_mmu(&tlb, mm, start, end);
1388 	update_hiwater_rss(mm);
1389 	mmu_notifier_invalidate_range_start(mm, start, end);
1390 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1391 		unmap_single_vma(&tlb, vma, start, end, details);
1392 	mmu_notifier_invalidate_range_end(mm, start, end);
1393 	tlb_finish_mmu(&tlb, start, end);
1394 }
1395 
1396 /**
1397  * zap_page_range_single - remove user pages in a given range
1398  * @vma: vm_area_struct holding the applicable pages
1399  * @address: starting address of pages to zap
1400  * @size: number of bytes to zap
1401  * @details: details of nonlinear truncation or shared cache invalidation
1402  *
1403  * The range must fit into one VMA.
1404  */
1405 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1406 		unsigned long size, struct zap_details *details)
1407 {
1408 	struct mm_struct *mm = vma->vm_mm;
1409 	struct mmu_gather tlb;
1410 	unsigned long end = address + size;
1411 
1412 	lru_add_drain();
1413 	tlb_gather_mmu(&tlb, mm, address, end);
1414 	update_hiwater_rss(mm);
1415 	mmu_notifier_invalidate_range_start(mm, address, end);
1416 	unmap_single_vma(&tlb, vma, address, end, details);
1417 	mmu_notifier_invalidate_range_end(mm, address, end);
1418 	tlb_finish_mmu(&tlb, address, end);
1419 }
1420 
1421 /**
1422  * zap_vma_ptes - remove ptes mapping the vma
1423  * @vma: vm_area_struct holding ptes to be zapped
1424  * @address: starting address of pages to zap
1425  * @size: number of bytes to zap
1426  *
1427  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1428  *
1429  * The entire address range must be fully contained within the vma.
1430  *
1431  * Returns 0 if successful.
1432  */
1433 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1434 		unsigned long size)
1435 {
1436 	if (address < vma->vm_start || address + size > vma->vm_end ||
1437 	    		!(vma->vm_flags & VM_PFNMAP))
1438 		return -1;
1439 	zap_page_range_single(vma, address, size, NULL);
1440 	return 0;
1441 }
1442 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1443 
1444 /**
1445  * follow_page_mask - look up a page descriptor from a user-virtual address
1446  * @vma: vm_area_struct mapping @address
1447  * @address: virtual address to look up
1448  * @flags: flags modifying lookup behaviour
1449  * @page_mask: on output, *page_mask is set according to the size of the page
1450  *
1451  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1452  *
1453  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1454  * an error pointer if there is a mapping to something not represented
1455  * by a page descriptor (see also vm_normal_page()).
1456  */
1457 struct page *follow_page_mask(struct vm_area_struct *vma,
1458 			      unsigned long address, unsigned int flags,
1459 			      unsigned int *page_mask)
1460 {
1461 	pgd_t *pgd;
1462 	pud_t *pud;
1463 	pmd_t *pmd;
1464 	pte_t *ptep, pte;
1465 	spinlock_t *ptl;
1466 	struct page *page;
1467 	struct mm_struct *mm = vma->vm_mm;
1468 
1469 	*page_mask = 0;
1470 
1471 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1472 	if (!IS_ERR(page)) {
1473 		BUG_ON(flags & FOLL_GET);
1474 		goto out;
1475 	}
1476 
1477 	page = NULL;
1478 	pgd = pgd_offset(mm, address);
1479 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1480 		goto no_page_table;
1481 
1482 	pud = pud_offset(pgd, address);
1483 	if (pud_none(*pud))
1484 		goto no_page_table;
1485 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1486 		if (flags & FOLL_GET)
1487 			goto out;
1488 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1489 		goto out;
1490 	}
1491 	if (unlikely(pud_bad(*pud)))
1492 		goto no_page_table;
1493 
1494 	pmd = pmd_offset(pud, address);
1495 	if (pmd_none(*pmd))
1496 		goto no_page_table;
1497 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1498 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1499 		if (flags & FOLL_GET) {
1500 			/*
1501 			 * Refcount on tail pages are not well-defined and
1502 			 * shouldn't be taken. The caller should handle a NULL
1503 			 * return when trying to follow tail pages.
1504 			 */
1505 			if (PageHead(page))
1506 				get_page(page);
1507 			else {
1508 				page = NULL;
1509 				goto out;
1510 			}
1511 		}
1512 		goto out;
1513 	}
1514 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1515 		goto no_page_table;
1516 	if (pmd_trans_huge(*pmd)) {
1517 		if (flags & FOLL_SPLIT) {
1518 			split_huge_page_pmd(vma, address, pmd);
1519 			goto split_fallthrough;
1520 		}
1521 		ptl = pmd_lock(mm, pmd);
1522 		if (likely(pmd_trans_huge(*pmd))) {
1523 			if (unlikely(pmd_trans_splitting(*pmd))) {
1524 				spin_unlock(ptl);
1525 				wait_split_huge_page(vma->anon_vma, pmd);
1526 			} else {
1527 				page = follow_trans_huge_pmd(vma, address,
1528 							     pmd, flags);
1529 				spin_unlock(ptl);
1530 				*page_mask = HPAGE_PMD_NR - 1;
1531 				goto out;
1532 			}
1533 		} else
1534 			spin_unlock(ptl);
1535 		/* fall through */
1536 	}
1537 split_fallthrough:
1538 	if (unlikely(pmd_bad(*pmd)))
1539 		goto no_page_table;
1540 
1541 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1542 
1543 	pte = *ptep;
1544 	if (!pte_present(pte)) {
1545 		swp_entry_t entry;
1546 		/*
1547 		 * KSM's break_ksm() relies upon recognizing a ksm page
1548 		 * even while it is being migrated, so for that case we
1549 		 * need migration_entry_wait().
1550 		 */
1551 		if (likely(!(flags & FOLL_MIGRATION)))
1552 			goto no_page;
1553 		if (pte_none(pte) || pte_file(pte))
1554 			goto no_page;
1555 		entry = pte_to_swp_entry(pte);
1556 		if (!is_migration_entry(entry))
1557 			goto no_page;
1558 		pte_unmap_unlock(ptep, ptl);
1559 		migration_entry_wait(mm, pmd, address);
1560 		goto split_fallthrough;
1561 	}
1562 	if ((flags & FOLL_NUMA) && pte_numa(pte))
1563 		goto no_page;
1564 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1565 		goto unlock;
1566 
1567 	page = vm_normal_page(vma, address, pte);
1568 	if (unlikely(!page)) {
1569 		if ((flags & FOLL_DUMP) ||
1570 		    !is_zero_pfn(pte_pfn(pte)))
1571 			goto bad_page;
1572 		page = pte_page(pte);
1573 	}
1574 
1575 	if (flags & FOLL_GET)
1576 		get_page_foll(page);
1577 	if (flags & FOLL_TOUCH) {
1578 		if ((flags & FOLL_WRITE) &&
1579 		    !pte_dirty(pte) && !PageDirty(page))
1580 			set_page_dirty(page);
1581 		/*
1582 		 * pte_mkyoung() would be more correct here, but atomic care
1583 		 * is needed to avoid losing the dirty bit: it is easier to use
1584 		 * mark_page_accessed().
1585 		 */
1586 		mark_page_accessed(page);
1587 	}
1588 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1589 		/*
1590 		 * The preliminary mapping check is mainly to avoid the
1591 		 * pointless overhead of lock_page on the ZERO_PAGE
1592 		 * which might bounce very badly if there is contention.
1593 		 *
1594 		 * If the page is already locked, we don't need to
1595 		 * handle it now - vmscan will handle it later if and
1596 		 * when it attempts to reclaim the page.
1597 		 */
1598 		if (page->mapping && trylock_page(page)) {
1599 			lru_add_drain();  /* push cached pages to LRU */
1600 			/*
1601 			 * Because we lock page here, and migration is
1602 			 * blocked by the pte's page reference, and we
1603 			 * know the page is still mapped, we don't even
1604 			 * need to check for file-cache page truncation.
1605 			 */
1606 			mlock_vma_page(page);
1607 			unlock_page(page);
1608 		}
1609 	}
1610 unlock:
1611 	pte_unmap_unlock(ptep, ptl);
1612 out:
1613 	return page;
1614 
1615 bad_page:
1616 	pte_unmap_unlock(ptep, ptl);
1617 	return ERR_PTR(-EFAULT);
1618 
1619 no_page:
1620 	pte_unmap_unlock(ptep, ptl);
1621 	if (!pte_none(pte))
1622 		return page;
1623 
1624 no_page_table:
1625 	/*
1626 	 * When core dumping an enormous anonymous area that nobody
1627 	 * has touched so far, we don't want to allocate unnecessary pages or
1628 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1629 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1630 	 * But we can only make this optimization where a hole would surely
1631 	 * be zero-filled if handle_mm_fault() actually did handle it.
1632 	 */
1633 	if ((flags & FOLL_DUMP) &&
1634 	    (!vma->vm_ops || !vma->vm_ops->fault))
1635 		return ERR_PTR(-EFAULT);
1636 	return page;
1637 }
1638 
1639 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1640 {
1641 	return stack_guard_page_start(vma, addr) ||
1642 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1643 }
1644 
1645 /**
1646  * __get_user_pages() - pin user pages in memory
1647  * @tsk:	task_struct of target task
1648  * @mm:		mm_struct of target mm
1649  * @start:	starting user address
1650  * @nr_pages:	number of pages from start to pin
1651  * @gup_flags:	flags modifying pin behaviour
1652  * @pages:	array that receives pointers to the pages pinned.
1653  *		Should be at least nr_pages long. Or NULL, if caller
1654  *		only intends to ensure the pages are faulted in.
1655  * @vmas:	array of pointers to vmas corresponding to each page.
1656  *		Or NULL if the caller does not require them.
1657  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1658  *
1659  * Returns number of pages pinned. This may be fewer than the number
1660  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1661  * were pinned, returns -errno. Each page returned must be released
1662  * with a put_page() call when it is finished with. vmas will only
1663  * remain valid while mmap_sem is held.
1664  *
1665  * Must be called with mmap_sem held for read or write.
1666  *
1667  * __get_user_pages walks a process's page tables and takes a reference to
1668  * each struct page that each user address corresponds to at a given
1669  * instant. That is, it takes the page that would be accessed if a user
1670  * thread accesses the given user virtual address at that instant.
1671  *
1672  * This does not guarantee that the page exists in the user mappings when
1673  * __get_user_pages returns, and there may even be a completely different
1674  * page there in some cases (eg. if mmapped pagecache has been invalidated
1675  * and subsequently re faulted). However it does guarantee that the page
1676  * won't be freed completely. And mostly callers simply care that the page
1677  * contains data that was valid *at some point in time*. Typically, an IO
1678  * or similar operation cannot guarantee anything stronger anyway because
1679  * locks can't be held over the syscall boundary.
1680  *
1681  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1682  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1683  * appropriate) must be called after the page is finished with, and
1684  * before put_page is called.
1685  *
1686  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1687  * or mmap_sem contention, and if waiting is needed to pin all pages,
1688  * *@nonblocking will be set to 0.
1689  *
1690  * In most cases, get_user_pages or get_user_pages_fast should be used
1691  * instead of __get_user_pages. __get_user_pages should be used only if
1692  * you need some special @gup_flags.
1693  */
1694 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1695 		unsigned long start, unsigned long nr_pages,
1696 		unsigned int gup_flags, struct page **pages,
1697 		struct vm_area_struct **vmas, int *nonblocking)
1698 {
1699 	long i;
1700 	unsigned long vm_flags;
1701 	unsigned int page_mask;
1702 
1703 	if (!nr_pages)
1704 		return 0;
1705 
1706 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1707 
1708 	/*
1709 	 * Require read or write permissions.
1710 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1711 	 */
1712 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1713 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1714 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1715 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1716 
1717 	/*
1718 	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1719 	 * would be called on PROT_NONE ranges. We must never invoke
1720 	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1721 	 * page faults would unprotect the PROT_NONE ranges if
1722 	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1723 	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1724 	 * FOLL_FORCE is set.
1725 	 */
1726 	if (!(gup_flags & FOLL_FORCE))
1727 		gup_flags |= FOLL_NUMA;
1728 
1729 	i = 0;
1730 
1731 	do {
1732 		struct vm_area_struct *vma;
1733 
1734 		vma = find_extend_vma(mm, start);
1735 		if (!vma && in_gate_area(mm, start)) {
1736 			unsigned long pg = start & PAGE_MASK;
1737 			pgd_t *pgd;
1738 			pud_t *pud;
1739 			pmd_t *pmd;
1740 			pte_t *pte;
1741 
1742 			/* user gate pages are read-only */
1743 			if (gup_flags & FOLL_WRITE)
1744 				return i ? : -EFAULT;
1745 			if (pg > TASK_SIZE)
1746 				pgd = pgd_offset_k(pg);
1747 			else
1748 				pgd = pgd_offset_gate(mm, pg);
1749 			BUG_ON(pgd_none(*pgd));
1750 			pud = pud_offset(pgd, pg);
1751 			BUG_ON(pud_none(*pud));
1752 			pmd = pmd_offset(pud, pg);
1753 			if (pmd_none(*pmd))
1754 				return i ? : -EFAULT;
1755 			VM_BUG_ON(pmd_trans_huge(*pmd));
1756 			pte = pte_offset_map(pmd, pg);
1757 			if (pte_none(*pte)) {
1758 				pte_unmap(pte);
1759 				return i ? : -EFAULT;
1760 			}
1761 			vma = get_gate_vma(mm);
1762 			if (pages) {
1763 				struct page *page;
1764 
1765 				page = vm_normal_page(vma, start, *pte);
1766 				if (!page) {
1767 					if (!(gup_flags & FOLL_DUMP) &&
1768 					     is_zero_pfn(pte_pfn(*pte)))
1769 						page = pte_page(*pte);
1770 					else {
1771 						pte_unmap(pte);
1772 						return i ? : -EFAULT;
1773 					}
1774 				}
1775 				pages[i] = page;
1776 				get_page(page);
1777 			}
1778 			pte_unmap(pte);
1779 			page_mask = 0;
1780 			goto next_page;
1781 		}
1782 
1783 		if (!vma ||
1784 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1785 		    !(vm_flags & vma->vm_flags))
1786 			return i ? : -EFAULT;
1787 
1788 		if (is_vm_hugetlb_page(vma)) {
1789 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1790 					&start, &nr_pages, i, gup_flags);
1791 			continue;
1792 		}
1793 
1794 		do {
1795 			struct page *page;
1796 			unsigned int foll_flags = gup_flags;
1797 			unsigned int page_increm;
1798 
1799 			/*
1800 			 * If we have a pending SIGKILL, don't keep faulting
1801 			 * pages and potentially allocating memory.
1802 			 */
1803 			if (unlikely(fatal_signal_pending(current)))
1804 				return i ? i : -ERESTARTSYS;
1805 
1806 			cond_resched();
1807 			while (!(page = follow_page_mask(vma, start,
1808 						foll_flags, &page_mask))) {
1809 				int ret;
1810 				unsigned int fault_flags = 0;
1811 
1812 				/* For mlock, just skip the stack guard page. */
1813 				if (foll_flags & FOLL_MLOCK) {
1814 					if (stack_guard_page(vma, start))
1815 						goto next_page;
1816 				}
1817 				if (foll_flags & FOLL_WRITE)
1818 					fault_flags |= FAULT_FLAG_WRITE;
1819 				if (nonblocking)
1820 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1821 				if (foll_flags & FOLL_NOWAIT)
1822 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1823 
1824 				ret = handle_mm_fault(mm, vma, start,
1825 							fault_flags);
1826 
1827 				if (ret & VM_FAULT_ERROR) {
1828 					if (ret & VM_FAULT_OOM)
1829 						return i ? i : -ENOMEM;
1830 					if (ret & (VM_FAULT_HWPOISON |
1831 						   VM_FAULT_HWPOISON_LARGE)) {
1832 						if (i)
1833 							return i;
1834 						else if (gup_flags & FOLL_HWPOISON)
1835 							return -EHWPOISON;
1836 						else
1837 							return -EFAULT;
1838 					}
1839 					if (ret & VM_FAULT_SIGBUS)
1840 						return i ? i : -EFAULT;
1841 					BUG();
1842 				}
1843 
1844 				if (tsk) {
1845 					if (ret & VM_FAULT_MAJOR)
1846 						tsk->maj_flt++;
1847 					else
1848 						tsk->min_flt++;
1849 				}
1850 
1851 				if (ret & VM_FAULT_RETRY) {
1852 					if (nonblocking)
1853 						*nonblocking = 0;
1854 					return i;
1855 				}
1856 
1857 				/*
1858 				 * The VM_FAULT_WRITE bit tells us that
1859 				 * do_wp_page has broken COW when necessary,
1860 				 * even if maybe_mkwrite decided not to set
1861 				 * pte_write. We can thus safely do subsequent
1862 				 * page lookups as if they were reads. But only
1863 				 * do so when looping for pte_write is futile:
1864 				 * in some cases userspace may also be wanting
1865 				 * to write to the gotten user page, which a
1866 				 * read fault here might prevent (a readonly
1867 				 * page might get reCOWed by userspace write).
1868 				 */
1869 				if ((ret & VM_FAULT_WRITE) &&
1870 				    !(vma->vm_flags & VM_WRITE))
1871 					foll_flags &= ~FOLL_WRITE;
1872 
1873 				cond_resched();
1874 			}
1875 			if (IS_ERR(page))
1876 				return i ? i : PTR_ERR(page);
1877 			if (pages) {
1878 				pages[i] = page;
1879 
1880 				flush_anon_page(vma, page, start);
1881 				flush_dcache_page(page);
1882 				page_mask = 0;
1883 			}
1884 next_page:
1885 			if (vmas) {
1886 				vmas[i] = vma;
1887 				page_mask = 0;
1888 			}
1889 			page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1890 			if (page_increm > nr_pages)
1891 				page_increm = nr_pages;
1892 			i += page_increm;
1893 			start += page_increm * PAGE_SIZE;
1894 			nr_pages -= page_increm;
1895 		} while (nr_pages && start < vma->vm_end);
1896 	} while (nr_pages);
1897 	return i;
1898 }
1899 EXPORT_SYMBOL(__get_user_pages);
1900 
1901 /*
1902  * fixup_user_fault() - manually resolve a user page fault
1903  * @tsk:	the task_struct to use for page fault accounting, or
1904  *		NULL if faults are not to be recorded.
1905  * @mm:		mm_struct of target mm
1906  * @address:	user address
1907  * @fault_flags:flags to pass down to handle_mm_fault()
1908  *
1909  * This is meant to be called in the specific scenario where for locking reasons
1910  * we try to access user memory in atomic context (within a pagefault_disable()
1911  * section), this returns -EFAULT, and we want to resolve the user fault before
1912  * trying again.
1913  *
1914  * Typically this is meant to be used by the futex code.
1915  *
1916  * The main difference with get_user_pages() is that this function will
1917  * unconditionally call handle_mm_fault() which will in turn perform all the
1918  * necessary SW fixup of the dirty and young bits in the PTE, while
1919  * handle_mm_fault() only guarantees to update these in the struct page.
1920  *
1921  * This is important for some architectures where those bits also gate the
1922  * access permission to the page because they are maintained in software.  On
1923  * such architectures, gup() will not be enough to make a subsequent access
1924  * succeed.
1925  *
1926  * This should be called with the mm_sem held for read.
1927  */
1928 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1929 		     unsigned long address, unsigned int fault_flags)
1930 {
1931 	struct vm_area_struct *vma;
1932 	int ret;
1933 
1934 	vma = find_extend_vma(mm, address);
1935 	if (!vma || address < vma->vm_start)
1936 		return -EFAULT;
1937 
1938 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1939 	if (ret & VM_FAULT_ERROR) {
1940 		if (ret & VM_FAULT_OOM)
1941 			return -ENOMEM;
1942 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1943 			return -EHWPOISON;
1944 		if (ret & VM_FAULT_SIGBUS)
1945 			return -EFAULT;
1946 		BUG();
1947 	}
1948 	if (tsk) {
1949 		if (ret & VM_FAULT_MAJOR)
1950 			tsk->maj_flt++;
1951 		else
1952 			tsk->min_flt++;
1953 	}
1954 	return 0;
1955 }
1956 
1957 /*
1958  * get_user_pages() - pin user pages in memory
1959  * @tsk:	the task_struct to use for page fault accounting, or
1960  *		NULL if faults are not to be recorded.
1961  * @mm:		mm_struct of target mm
1962  * @start:	starting user address
1963  * @nr_pages:	number of pages from start to pin
1964  * @write:	whether pages will be written to by the caller
1965  * @force:	whether to force write access even if user mapping is
1966  *		readonly. This will result in the page being COWed even
1967  *		in MAP_SHARED mappings. You do not want this.
1968  * @pages:	array that receives pointers to the pages pinned.
1969  *		Should be at least nr_pages long. Or NULL, if caller
1970  *		only intends to ensure the pages are faulted in.
1971  * @vmas:	array of pointers to vmas corresponding to each page.
1972  *		Or NULL if the caller does not require them.
1973  *
1974  * Returns number of pages pinned. This may be fewer than the number
1975  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1976  * were pinned, returns -errno. Each page returned must be released
1977  * with a put_page() call when it is finished with. vmas will only
1978  * remain valid while mmap_sem is held.
1979  *
1980  * Must be called with mmap_sem held for read or write.
1981  *
1982  * get_user_pages walks a process's page tables and takes a reference to
1983  * each struct page that each user address corresponds to at a given
1984  * instant. That is, it takes the page that would be accessed if a user
1985  * thread accesses the given user virtual address at that instant.
1986  *
1987  * This does not guarantee that the page exists in the user mappings when
1988  * get_user_pages returns, and there may even be a completely different
1989  * page there in some cases (eg. if mmapped pagecache has been invalidated
1990  * and subsequently re faulted). However it does guarantee that the page
1991  * won't be freed completely. And mostly callers simply care that the page
1992  * contains data that was valid *at some point in time*. Typically, an IO
1993  * or similar operation cannot guarantee anything stronger anyway because
1994  * locks can't be held over the syscall boundary.
1995  *
1996  * If write=0, the page must not be written to. If the page is written to,
1997  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1998  * after the page is finished with, and before put_page is called.
1999  *
2000  * get_user_pages is typically used for fewer-copy IO operations, to get a
2001  * handle on the memory by some means other than accesses via the user virtual
2002  * addresses. The pages may be submitted for DMA to devices or accessed via
2003  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2004  * use the correct cache flushing APIs.
2005  *
2006  * See also get_user_pages_fast, for performance critical applications.
2007  */
2008 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2009 		unsigned long start, unsigned long nr_pages, int write,
2010 		int force, struct page **pages, struct vm_area_struct **vmas)
2011 {
2012 	int flags = FOLL_TOUCH;
2013 
2014 	if (pages)
2015 		flags |= FOLL_GET;
2016 	if (write)
2017 		flags |= FOLL_WRITE;
2018 	if (force)
2019 		flags |= FOLL_FORCE;
2020 
2021 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2022 				NULL);
2023 }
2024 EXPORT_SYMBOL(get_user_pages);
2025 
2026 /**
2027  * get_dump_page() - pin user page in memory while writing it to core dump
2028  * @addr: user address
2029  *
2030  * Returns struct page pointer of user page pinned for dump,
2031  * to be freed afterwards by page_cache_release() or put_page().
2032  *
2033  * Returns NULL on any kind of failure - a hole must then be inserted into
2034  * the corefile, to preserve alignment with its headers; and also returns
2035  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2036  * allowing a hole to be left in the corefile to save diskspace.
2037  *
2038  * Called without mmap_sem, but after all other threads have been killed.
2039  */
2040 #ifdef CONFIG_ELF_CORE
2041 struct page *get_dump_page(unsigned long addr)
2042 {
2043 	struct vm_area_struct *vma;
2044 	struct page *page;
2045 
2046 	if (__get_user_pages(current, current->mm, addr, 1,
2047 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2048 			     NULL) < 1)
2049 		return NULL;
2050 	flush_cache_page(vma, addr, page_to_pfn(page));
2051 	return page;
2052 }
2053 #endif /* CONFIG_ELF_CORE */
2054 
2055 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2056 			spinlock_t **ptl)
2057 {
2058 	pgd_t * pgd = pgd_offset(mm, addr);
2059 	pud_t * pud = pud_alloc(mm, pgd, addr);
2060 	if (pud) {
2061 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2062 		if (pmd) {
2063 			VM_BUG_ON(pmd_trans_huge(*pmd));
2064 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2065 		}
2066 	}
2067 	return NULL;
2068 }
2069 
2070 /*
2071  * This is the old fallback for page remapping.
2072  *
2073  * For historical reasons, it only allows reserved pages. Only
2074  * old drivers should use this, and they needed to mark their
2075  * pages reserved for the old functions anyway.
2076  */
2077 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2078 			struct page *page, pgprot_t prot)
2079 {
2080 	struct mm_struct *mm = vma->vm_mm;
2081 	int retval;
2082 	pte_t *pte;
2083 	spinlock_t *ptl;
2084 
2085 	retval = -EINVAL;
2086 	if (PageAnon(page))
2087 		goto out;
2088 	retval = -ENOMEM;
2089 	flush_dcache_page(page);
2090 	pte = get_locked_pte(mm, addr, &ptl);
2091 	if (!pte)
2092 		goto out;
2093 	retval = -EBUSY;
2094 	if (!pte_none(*pte))
2095 		goto out_unlock;
2096 
2097 	/* Ok, finally just insert the thing.. */
2098 	get_page(page);
2099 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2100 	page_add_file_rmap(page);
2101 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2102 
2103 	retval = 0;
2104 	pte_unmap_unlock(pte, ptl);
2105 	return retval;
2106 out_unlock:
2107 	pte_unmap_unlock(pte, ptl);
2108 out:
2109 	return retval;
2110 }
2111 
2112 /**
2113  * vm_insert_page - insert single page into user vma
2114  * @vma: user vma to map to
2115  * @addr: target user address of this page
2116  * @page: source kernel page
2117  *
2118  * This allows drivers to insert individual pages they've allocated
2119  * into a user vma.
2120  *
2121  * The page has to be a nice clean _individual_ kernel allocation.
2122  * If you allocate a compound page, you need to have marked it as
2123  * such (__GFP_COMP), or manually just split the page up yourself
2124  * (see split_page()).
2125  *
2126  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2127  * took an arbitrary page protection parameter. This doesn't allow
2128  * that. Your vma protection will have to be set up correctly, which
2129  * means that if you want a shared writable mapping, you'd better
2130  * ask for a shared writable mapping!
2131  *
2132  * The page does not need to be reserved.
2133  *
2134  * Usually this function is called from f_op->mmap() handler
2135  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2136  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2137  * function from other places, for example from page-fault handler.
2138  */
2139 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2140 			struct page *page)
2141 {
2142 	if (addr < vma->vm_start || addr >= vma->vm_end)
2143 		return -EFAULT;
2144 	if (!page_count(page))
2145 		return -EINVAL;
2146 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2147 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2148 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2149 		vma->vm_flags |= VM_MIXEDMAP;
2150 	}
2151 	return insert_page(vma, addr, page, vma->vm_page_prot);
2152 }
2153 EXPORT_SYMBOL(vm_insert_page);
2154 
2155 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2156 			unsigned long pfn, pgprot_t prot)
2157 {
2158 	struct mm_struct *mm = vma->vm_mm;
2159 	int retval;
2160 	pte_t *pte, entry;
2161 	spinlock_t *ptl;
2162 
2163 	retval = -ENOMEM;
2164 	pte = get_locked_pte(mm, addr, &ptl);
2165 	if (!pte)
2166 		goto out;
2167 	retval = -EBUSY;
2168 	if (!pte_none(*pte))
2169 		goto out_unlock;
2170 
2171 	/* Ok, finally just insert the thing.. */
2172 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2173 	set_pte_at(mm, addr, pte, entry);
2174 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2175 
2176 	retval = 0;
2177 out_unlock:
2178 	pte_unmap_unlock(pte, ptl);
2179 out:
2180 	return retval;
2181 }
2182 
2183 /**
2184  * vm_insert_pfn - insert single pfn into user vma
2185  * @vma: user vma to map to
2186  * @addr: target user address of this page
2187  * @pfn: source kernel pfn
2188  *
2189  * Similar to vm_insert_page, this allows drivers to insert individual pages
2190  * they've allocated into a user vma. Same comments apply.
2191  *
2192  * This function should only be called from a vm_ops->fault handler, and
2193  * in that case the handler should return NULL.
2194  *
2195  * vma cannot be a COW mapping.
2196  *
2197  * As this is called only for pages that do not currently exist, we
2198  * do not need to flush old virtual caches or the TLB.
2199  */
2200 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2201 			unsigned long pfn)
2202 {
2203 	int ret;
2204 	pgprot_t pgprot = vma->vm_page_prot;
2205 	/*
2206 	 * Technically, architectures with pte_special can avoid all these
2207 	 * restrictions (same for remap_pfn_range).  However we would like
2208 	 * consistency in testing and feature parity among all, so we should
2209 	 * try to keep these invariants in place for everybody.
2210 	 */
2211 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2212 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2213 						(VM_PFNMAP|VM_MIXEDMAP));
2214 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2215 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2216 
2217 	if (addr < vma->vm_start || addr >= vma->vm_end)
2218 		return -EFAULT;
2219 	if (track_pfn_insert(vma, &pgprot, pfn))
2220 		return -EINVAL;
2221 
2222 	ret = insert_pfn(vma, addr, pfn, pgprot);
2223 
2224 	return ret;
2225 }
2226 EXPORT_SYMBOL(vm_insert_pfn);
2227 
2228 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2229 			unsigned long pfn)
2230 {
2231 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2232 
2233 	if (addr < vma->vm_start || addr >= vma->vm_end)
2234 		return -EFAULT;
2235 
2236 	/*
2237 	 * If we don't have pte special, then we have to use the pfn_valid()
2238 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2239 	 * refcount the page if pfn_valid is true (hence insert_page rather
2240 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2241 	 * without pte special, it would there be refcounted as a normal page.
2242 	 */
2243 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2244 		struct page *page;
2245 
2246 		page = pfn_to_page(pfn);
2247 		return insert_page(vma, addr, page, vma->vm_page_prot);
2248 	}
2249 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2250 }
2251 EXPORT_SYMBOL(vm_insert_mixed);
2252 
2253 /*
2254  * maps a range of physical memory into the requested pages. the old
2255  * mappings are removed. any references to nonexistent pages results
2256  * in null mappings (currently treated as "copy-on-access")
2257  */
2258 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2259 			unsigned long addr, unsigned long end,
2260 			unsigned long pfn, pgprot_t prot)
2261 {
2262 	pte_t *pte;
2263 	spinlock_t *ptl;
2264 
2265 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2266 	if (!pte)
2267 		return -ENOMEM;
2268 	arch_enter_lazy_mmu_mode();
2269 	do {
2270 		BUG_ON(!pte_none(*pte));
2271 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2272 		pfn++;
2273 	} while (pte++, addr += PAGE_SIZE, addr != end);
2274 	arch_leave_lazy_mmu_mode();
2275 	pte_unmap_unlock(pte - 1, ptl);
2276 	return 0;
2277 }
2278 
2279 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2280 			unsigned long addr, unsigned long end,
2281 			unsigned long pfn, pgprot_t prot)
2282 {
2283 	pmd_t *pmd;
2284 	unsigned long next;
2285 
2286 	pfn -= addr >> PAGE_SHIFT;
2287 	pmd = pmd_alloc(mm, pud, addr);
2288 	if (!pmd)
2289 		return -ENOMEM;
2290 	VM_BUG_ON(pmd_trans_huge(*pmd));
2291 	do {
2292 		next = pmd_addr_end(addr, end);
2293 		if (remap_pte_range(mm, pmd, addr, next,
2294 				pfn + (addr >> PAGE_SHIFT), prot))
2295 			return -ENOMEM;
2296 	} while (pmd++, addr = next, addr != end);
2297 	return 0;
2298 }
2299 
2300 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2301 			unsigned long addr, unsigned long end,
2302 			unsigned long pfn, pgprot_t prot)
2303 {
2304 	pud_t *pud;
2305 	unsigned long next;
2306 
2307 	pfn -= addr >> PAGE_SHIFT;
2308 	pud = pud_alloc(mm, pgd, addr);
2309 	if (!pud)
2310 		return -ENOMEM;
2311 	do {
2312 		next = pud_addr_end(addr, end);
2313 		if (remap_pmd_range(mm, pud, addr, next,
2314 				pfn + (addr >> PAGE_SHIFT), prot))
2315 			return -ENOMEM;
2316 	} while (pud++, addr = next, addr != end);
2317 	return 0;
2318 }
2319 
2320 /**
2321  * remap_pfn_range - remap kernel memory to userspace
2322  * @vma: user vma to map to
2323  * @addr: target user address to start at
2324  * @pfn: physical address of kernel memory
2325  * @size: size of map area
2326  * @prot: page protection flags for this mapping
2327  *
2328  *  Note: this is only safe if the mm semaphore is held when called.
2329  */
2330 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2331 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2332 {
2333 	pgd_t *pgd;
2334 	unsigned long next;
2335 	unsigned long end = addr + PAGE_ALIGN(size);
2336 	struct mm_struct *mm = vma->vm_mm;
2337 	int err;
2338 
2339 	/*
2340 	 * Physically remapped pages are special. Tell the
2341 	 * rest of the world about it:
2342 	 *   VM_IO tells people not to look at these pages
2343 	 *	(accesses can have side effects).
2344 	 *   VM_PFNMAP tells the core MM that the base pages are just
2345 	 *	raw PFN mappings, and do not have a "struct page" associated
2346 	 *	with them.
2347 	 *   VM_DONTEXPAND
2348 	 *      Disable vma merging and expanding with mremap().
2349 	 *   VM_DONTDUMP
2350 	 *      Omit vma from core dump, even when VM_IO turned off.
2351 	 *
2352 	 * There's a horrible special case to handle copy-on-write
2353 	 * behaviour that some programs depend on. We mark the "original"
2354 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2355 	 * See vm_normal_page() for details.
2356 	 */
2357 	if (is_cow_mapping(vma->vm_flags)) {
2358 		if (addr != vma->vm_start || end != vma->vm_end)
2359 			return -EINVAL;
2360 		vma->vm_pgoff = pfn;
2361 	}
2362 
2363 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2364 	if (err)
2365 		return -EINVAL;
2366 
2367 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2368 
2369 	BUG_ON(addr >= end);
2370 	pfn -= addr >> PAGE_SHIFT;
2371 	pgd = pgd_offset(mm, addr);
2372 	flush_cache_range(vma, addr, end);
2373 	do {
2374 		next = pgd_addr_end(addr, end);
2375 		err = remap_pud_range(mm, pgd, addr, next,
2376 				pfn + (addr >> PAGE_SHIFT), prot);
2377 		if (err)
2378 			break;
2379 	} while (pgd++, addr = next, addr != end);
2380 
2381 	if (err)
2382 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2383 
2384 	return err;
2385 }
2386 EXPORT_SYMBOL(remap_pfn_range);
2387 
2388 /**
2389  * vm_iomap_memory - remap memory to userspace
2390  * @vma: user vma to map to
2391  * @start: start of area
2392  * @len: size of area
2393  *
2394  * This is a simplified io_remap_pfn_range() for common driver use. The
2395  * driver just needs to give us the physical memory range to be mapped,
2396  * we'll figure out the rest from the vma information.
2397  *
2398  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2399  * whatever write-combining details or similar.
2400  */
2401 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2402 {
2403 	unsigned long vm_len, pfn, pages;
2404 
2405 	/* Check that the physical memory area passed in looks valid */
2406 	if (start + len < start)
2407 		return -EINVAL;
2408 	/*
2409 	 * You *really* shouldn't map things that aren't page-aligned,
2410 	 * but we've historically allowed it because IO memory might
2411 	 * just have smaller alignment.
2412 	 */
2413 	len += start & ~PAGE_MASK;
2414 	pfn = start >> PAGE_SHIFT;
2415 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2416 	if (pfn + pages < pfn)
2417 		return -EINVAL;
2418 
2419 	/* We start the mapping 'vm_pgoff' pages into the area */
2420 	if (vma->vm_pgoff > pages)
2421 		return -EINVAL;
2422 	pfn += vma->vm_pgoff;
2423 	pages -= vma->vm_pgoff;
2424 
2425 	/* Can we fit all of the mapping? */
2426 	vm_len = vma->vm_end - vma->vm_start;
2427 	if (vm_len >> PAGE_SHIFT > pages)
2428 		return -EINVAL;
2429 
2430 	/* Ok, let it rip */
2431 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2432 }
2433 EXPORT_SYMBOL(vm_iomap_memory);
2434 
2435 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2436 				     unsigned long addr, unsigned long end,
2437 				     pte_fn_t fn, void *data)
2438 {
2439 	pte_t *pte;
2440 	int err;
2441 	pgtable_t token;
2442 	spinlock_t *uninitialized_var(ptl);
2443 
2444 	pte = (mm == &init_mm) ?
2445 		pte_alloc_kernel(pmd, addr) :
2446 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2447 	if (!pte)
2448 		return -ENOMEM;
2449 
2450 	BUG_ON(pmd_huge(*pmd));
2451 
2452 	arch_enter_lazy_mmu_mode();
2453 
2454 	token = pmd_pgtable(*pmd);
2455 
2456 	do {
2457 		err = fn(pte++, token, addr, data);
2458 		if (err)
2459 			break;
2460 	} while (addr += PAGE_SIZE, addr != end);
2461 
2462 	arch_leave_lazy_mmu_mode();
2463 
2464 	if (mm != &init_mm)
2465 		pte_unmap_unlock(pte-1, ptl);
2466 	return err;
2467 }
2468 
2469 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2470 				     unsigned long addr, unsigned long end,
2471 				     pte_fn_t fn, void *data)
2472 {
2473 	pmd_t *pmd;
2474 	unsigned long next;
2475 	int err;
2476 
2477 	BUG_ON(pud_huge(*pud));
2478 
2479 	pmd = pmd_alloc(mm, pud, addr);
2480 	if (!pmd)
2481 		return -ENOMEM;
2482 	do {
2483 		next = pmd_addr_end(addr, end);
2484 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2485 		if (err)
2486 			break;
2487 	} while (pmd++, addr = next, addr != end);
2488 	return err;
2489 }
2490 
2491 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2492 				     unsigned long addr, unsigned long end,
2493 				     pte_fn_t fn, void *data)
2494 {
2495 	pud_t *pud;
2496 	unsigned long next;
2497 	int err;
2498 
2499 	pud = pud_alloc(mm, pgd, addr);
2500 	if (!pud)
2501 		return -ENOMEM;
2502 	do {
2503 		next = pud_addr_end(addr, end);
2504 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2505 		if (err)
2506 			break;
2507 	} while (pud++, addr = next, addr != end);
2508 	return err;
2509 }
2510 
2511 /*
2512  * Scan a region of virtual memory, filling in page tables as necessary
2513  * and calling a provided function on each leaf page table.
2514  */
2515 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2516 			unsigned long size, pte_fn_t fn, void *data)
2517 {
2518 	pgd_t *pgd;
2519 	unsigned long next;
2520 	unsigned long end = addr + size;
2521 	int err;
2522 
2523 	BUG_ON(addr >= end);
2524 	pgd = pgd_offset(mm, addr);
2525 	do {
2526 		next = pgd_addr_end(addr, end);
2527 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2528 		if (err)
2529 			break;
2530 	} while (pgd++, addr = next, addr != end);
2531 
2532 	return err;
2533 }
2534 EXPORT_SYMBOL_GPL(apply_to_page_range);
2535 
2536 /*
2537  * handle_pte_fault chooses page fault handler according to an entry
2538  * which was read non-atomically.  Before making any commitment, on
2539  * those architectures or configurations (e.g. i386 with PAE) which
2540  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2541  * must check under lock before unmapping the pte and proceeding
2542  * (but do_wp_page is only called after already making such a check;
2543  * and do_anonymous_page can safely check later on).
2544  */
2545 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2546 				pte_t *page_table, pte_t orig_pte)
2547 {
2548 	int same = 1;
2549 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2550 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2551 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2552 		spin_lock(ptl);
2553 		same = pte_same(*page_table, orig_pte);
2554 		spin_unlock(ptl);
2555 	}
2556 #endif
2557 	pte_unmap(page_table);
2558 	return same;
2559 }
2560 
2561 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2562 {
2563 	debug_dma_assert_idle(src);
2564 
2565 	/*
2566 	 * If the source page was a PFN mapping, we don't have
2567 	 * a "struct page" for it. We do a best-effort copy by
2568 	 * just copying from the original user address. If that
2569 	 * fails, we just zero-fill it. Live with it.
2570 	 */
2571 	if (unlikely(!src)) {
2572 		void *kaddr = kmap_atomic(dst);
2573 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2574 
2575 		/*
2576 		 * This really shouldn't fail, because the page is there
2577 		 * in the page tables. But it might just be unreadable,
2578 		 * in which case we just give up and fill the result with
2579 		 * zeroes.
2580 		 */
2581 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2582 			clear_page(kaddr);
2583 		kunmap_atomic(kaddr);
2584 		flush_dcache_page(dst);
2585 	} else
2586 		copy_user_highpage(dst, src, va, vma);
2587 }
2588 
2589 /*
2590  * This routine handles present pages, when users try to write
2591  * to a shared page. It is done by copying the page to a new address
2592  * and decrementing the shared-page counter for the old page.
2593  *
2594  * Note that this routine assumes that the protection checks have been
2595  * done by the caller (the low-level page fault routine in most cases).
2596  * Thus we can safely just mark it writable once we've done any necessary
2597  * COW.
2598  *
2599  * We also mark the page dirty at this point even though the page will
2600  * change only once the write actually happens. This avoids a few races,
2601  * and potentially makes it more efficient.
2602  *
2603  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2604  * but allow concurrent faults), with pte both mapped and locked.
2605  * We return with mmap_sem still held, but pte unmapped and unlocked.
2606  */
2607 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2608 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2609 		spinlock_t *ptl, pte_t orig_pte)
2610 	__releases(ptl)
2611 {
2612 	struct page *old_page, *new_page = NULL;
2613 	pte_t entry;
2614 	int ret = 0;
2615 	int page_mkwrite = 0;
2616 	struct page *dirty_page = NULL;
2617 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2618 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2619 
2620 	old_page = vm_normal_page(vma, address, orig_pte);
2621 	if (!old_page) {
2622 		/*
2623 		 * VM_MIXEDMAP !pfn_valid() case
2624 		 *
2625 		 * We should not cow pages in a shared writeable mapping.
2626 		 * Just mark the pages writable as we can't do any dirty
2627 		 * accounting on raw pfn maps.
2628 		 */
2629 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2630 				     (VM_WRITE|VM_SHARED))
2631 			goto reuse;
2632 		goto gotten;
2633 	}
2634 
2635 	/*
2636 	 * Take out anonymous pages first, anonymous shared vmas are
2637 	 * not dirty accountable.
2638 	 */
2639 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2640 		if (!trylock_page(old_page)) {
2641 			page_cache_get(old_page);
2642 			pte_unmap_unlock(page_table, ptl);
2643 			lock_page(old_page);
2644 			page_table = pte_offset_map_lock(mm, pmd, address,
2645 							 &ptl);
2646 			if (!pte_same(*page_table, orig_pte)) {
2647 				unlock_page(old_page);
2648 				goto unlock;
2649 			}
2650 			page_cache_release(old_page);
2651 		}
2652 		if (reuse_swap_page(old_page)) {
2653 			/*
2654 			 * The page is all ours.  Move it to our anon_vma so
2655 			 * the rmap code will not search our parent or siblings.
2656 			 * Protected against the rmap code by the page lock.
2657 			 */
2658 			page_move_anon_rmap(old_page, vma, address);
2659 			unlock_page(old_page);
2660 			goto reuse;
2661 		}
2662 		unlock_page(old_page);
2663 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2664 					(VM_WRITE|VM_SHARED))) {
2665 		/*
2666 		 * Only catch write-faults on shared writable pages,
2667 		 * read-only shared pages can get COWed by
2668 		 * get_user_pages(.write=1, .force=1).
2669 		 */
2670 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2671 			struct vm_fault vmf;
2672 			int tmp;
2673 
2674 			vmf.virtual_address = (void __user *)(address &
2675 								PAGE_MASK);
2676 			vmf.pgoff = old_page->index;
2677 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2678 			vmf.page = old_page;
2679 
2680 			/*
2681 			 * Notify the address space that the page is about to
2682 			 * become writable so that it can prohibit this or wait
2683 			 * for the page to get into an appropriate state.
2684 			 *
2685 			 * We do this without the lock held, so that it can
2686 			 * sleep if it needs to.
2687 			 */
2688 			page_cache_get(old_page);
2689 			pte_unmap_unlock(page_table, ptl);
2690 
2691 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2692 			if (unlikely(tmp &
2693 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2694 				ret = tmp;
2695 				goto unwritable_page;
2696 			}
2697 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2698 				lock_page(old_page);
2699 				if (!old_page->mapping) {
2700 					ret = 0; /* retry the fault */
2701 					unlock_page(old_page);
2702 					goto unwritable_page;
2703 				}
2704 			} else
2705 				VM_BUG_ON_PAGE(!PageLocked(old_page), old_page);
2706 
2707 			/*
2708 			 * Since we dropped the lock we need to revalidate
2709 			 * the PTE as someone else may have changed it.  If
2710 			 * they did, we just return, as we can count on the
2711 			 * MMU to tell us if they didn't also make it writable.
2712 			 */
2713 			page_table = pte_offset_map_lock(mm, pmd, address,
2714 							 &ptl);
2715 			if (!pte_same(*page_table, orig_pte)) {
2716 				unlock_page(old_page);
2717 				goto unlock;
2718 			}
2719 
2720 			page_mkwrite = 1;
2721 		}
2722 		dirty_page = old_page;
2723 		get_page(dirty_page);
2724 
2725 reuse:
2726 		/*
2727 		 * Clear the pages cpupid information as the existing
2728 		 * information potentially belongs to a now completely
2729 		 * unrelated process.
2730 		 */
2731 		if (old_page)
2732 			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2733 
2734 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2735 		entry = pte_mkyoung(orig_pte);
2736 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2737 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2738 			update_mmu_cache(vma, address, page_table);
2739 		pte_unmap_unlock(page_table, ptl);
2740 		ret |= VM_FAULT_WRITE;
2741 
2742 		if (!dirty_page)
2743 			return ret;
2744 
2745 		/*
2746 		 * Yes, Virginia, this is actually required to prevent a race
2747 		 * with clear_page_dirty_for_io() from clearing the page dirty
2748 		 * bit after it clear all dirty ptes, but before a racing
2749 		 * do_wp_page installs a dirty pte.
2750 		 *
2751 		 * __do_fault is protected similarly.
2752 		 */
2753 		if (!page_mkwrite) {
2754 			wait_on_page_locked(dirty_page);
2755 			set_page_dirty_balance(dirty_page, page_mkwrite);
2756 			/* file_update_time outside page_lock */
2757 			if (vma->vm_file)
2758 				file_update_time(vma->vm_file);
2759 		}
2760 		put_page(dirty_page);
2761 		if (page_mkwrite) {
2762 			struct address_space *mapping = dirty_page->mapping;
2763 
2764 			set_page_dirty(dirty_page);
2765 			unlock_page(dirty_page);
2766 			page_cache_release(dirty_page);
2767 			if (mapping)	{
2768 				/*
2769 				 * Some device drivers do not set page.mapping
2770 				 * but still dirty their pages
2771 				 */
2772 				balance_dirty_pages_ratelimited(mapping);
2773 			}
2774 		}
2775 
2776 		return ret;
2777 	}
2778 
2779 	/*
2780 	 * Ok, we need to copy. Oh, well..
2781 	 */
2782 	page_cache_get(old_page);
2783 gotten:
2784 	pte_unmap_unlock(page_table, ptl);
2785 
2786 	if (unlikely(anon_vma_prepare(vma)))
2787 		goto oom;
2788 
2789 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2790 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2791 		if (!new_page)
2792 			goto oom;
2793 	} else {
2794 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2795 		if (!new_page)
2796 			goto oom;
2797 		cow_user_page(new_page, old_page, address, vma);
2798 	}
2799 	__SetPageUptodate(new_page);
2800 
2801 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2802 		goto oom_free_new;
2803 
2804 	mmun_start  = address & PAGE_MASK;
2805 	mmun_end    = mmun_start + PAGE_SIZE;
2806 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2807 
2808 	/*
2809 	 * Re-check the pte - we dropped the lock
2810 	 */
2811 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2812 	if (likely(pte_same(*page_table, orig_pte))) {
2813 		if (old_page) {
2814 			if (!PageAnon(old_page)) {
2815 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2816 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2817 			}
2818 		} else
2819 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2820 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2821 		entry = mk_pte(new_page, vma->vm_page_prot);
2822 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2823 		/*
2824 		 * Clear the pte entry and flush it first, before updating the
2825 		 * pte with the new entry. This will avoid a race condition
2826 		 * seen in the presence of one thread doing SMC and another
2827 		 * thread doing COW.
2828 		 */
2829 		ptep_clear_flush(vma, address, page_table);
2830 		page_add_new_anon_rmap(new_page, vma, address);
2831 		/*
2832 		 * We call the notify macro here because, when using secondary
2833 		 * mmu page tables (such as kvm shadow page tables), we want the
2834 		 * new page to be mapped directly into the secondary page table.
2835 		 */
2836 		set_pte_at_notify(mm, address, page_table, entry);
2837 		update_mmu_cache(vma, address, page_table);
2838 		if (old_page) {
2839 			/*
2840 			 * Only after switching the pte to the new page may
2841 			 * we remove the mapcount here. Otherwise another
2842 			 * process may come and find the rmap count decremented
2843 			 * before the pte is switched to the new page, and
2844 			 * "reuse" the old page writing into it while our pte
2845 			 * here still points into it and can be read by other
2846 			 * threads.
2847 			 *
2848 			 * The critical issue is to order this
2849 			 * page_remove_rmap with the ptp_clear_flush above.
2850 			 * Those stores are ordered by (if nothing else,)
2851 			 * the barrier present in the atomic_add_negative
2852 			 * in page_remove_rmap.
2853 			 *
2854 			 * Then the TLB flush in ptep_clear_flush ensures that
2855 			 * no process can access the old page before the
2856 			 * decremented mapcount is visible. And the old page
2857 			 * cannot be reused until after the decremented
2858 			 * mapcount is visible. So transitively, TLBs to
2859 			 * old page will be flushed before it can be reused.
2860 			 */
2861 			page_remove_rmap(old_page);
2862 		}
2863 
2864 		/* Free the old page.. */
2865 		new_page = old_page;
2866 		ret |= VM_FAULT_WRITE;
2867 	} else
2868 		mem_cgroup_uncharge_page(new_page);
2869 
2870 	if (new_page)
2871 		page_cache_release(new_page);
2872 unlock:
2873 	pte_unmap_unlock(page_table, ptl);
2874 	if (mmun_end > mmun_start)
2875 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2876 	if (old_page) {
2877 		/*
2878 		 * Don't let another task, with possibly unlocked vma,
2879 		 * keep the mlocked page.
2880 		 */
2881 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2882 			lock_page(old_page);	/* LRU manipulation */
2883 			munlock_vma_page(old_page);
2884 			unlock_page(old_page);
2885 		}
2886 		page_cache_release(old_page);
2887 	}
2888 	return ret;
2889 oom_free_new:
2890 	page_cache_release(new_page);
2891 oom:
2892 	if (old_page)
2893 		page_cache_release(old_page);
2894 	return VM_FAULT_OOM;
2895 
2896 unwritable_page:
2897 	page_cache_release(old_page);
2898 	return ret;
2899 }
2900 
2901 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2902 		unsigned long start_addr, unsigned long end_addr,
2903 		struct zap_details *details)
2904 {
2905 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2906 }
2907 
2908 static inline void unmap_mapping_range_tree(struct rb_root *root,
2909 					    struct zap_details *details)
2910 {
2911 	struct vm_area_struct *vma;
2912 	pgoff_t vba, vea, zba, zea;
2913 
2914 	vma_interval_tree_foreach(vma, root,
2915 			details->first_index, details->last_index) {
2916 
2917 		vba = vma->vm_pgoff;
2918 		vea = vba + vma_pages(vma) - 1;
2919 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2920 		zba = details->first_index;
2921 		if (zba < vba)
2922 			zba = vba;
2923 		zea = details->last_index;
2924 		if (zea > vea)
2925 			zea = vea;
2926 
2927 		unmap_mapping_range_vma(vma,
2928 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2929 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2930 				details);
2931 	}
2932 }
2933 
2934 static inline void unmap_mapping_range_list(struct list_head *head,
2935 					    struct zap_details *details)
2936 {
2937 	struct vm_area_struct *vma;
2938 
2939 	/*
2940 	 * In nonlinear VMAs there is no correspondence between virtual address
2941 	 * offset and file offset.  So we must perform an exhaustive search
2942 	 * across *all* the pages in each nonlinear VMA, not just the pages
2943 	 * whose virtual address lies outside the file truncation point.
2944 	 */
2945 	list_for_each_entry(vma, head, shared.nonlinear) {
2946 		details->nonlinear_vma = vma;
2947 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2948 	}
2949 }
2950 
2951 /**
2952  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2953  * @mapping: the address space containing mmaps to be unmapped.
2954  * @holebegin: byte in first page to unmap, relative to the start of
2955  * the underlying file.  This will be rounded down to a PAGE_SIZE
2956  * boundary.  Note that this is different from truncate_pagecache(), which
2957  * must keep the partial page.  In contrast, we must get rid of
2958  * partial pages.
2959  * @holelen: size of prospective hole in bytes.  This will be rounded
2960  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2961  * end of the file.
2962  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2963  * but 0 when invalidating pagecache, don't throw away private data.
2964  */
2965 void unmap_mapping_range(struct address_space *mapping,
2966 		loff_t const holebegin, loff_t const holelen, int even_cows)
2967 {
2968 	struct zap_details details;
2969 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2970 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2971 
2972 	/* Check for overflow. */
2973 	if (sizeof(holelen) > sizeof(hlen)) {
2974 		long long holeend =
2975 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2976 		if (holeend & ~(long long)ULONG_MAX)
2977 			hlen = ULONG_MAX - hba + 1;
2978 	}
2979 
2980 	details.check_mapping = even_cows? NULL: mapping;
2981 	details.nonlinear_vma = NULL;
2982 	details.first_index = hba;
2983 	details.last_index = hba + hlen - 1;
2984 	if (details.last_index < details.first_index)
2985 		details.last_index = ULONG_MAX;
2986 
2987 
2988 	mutex_lock(&mapping->i_mmap_mutex);
2989 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2990 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2991 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2992 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2993 	mutex_unlock(&mapping->i_mmap_mutex);
2994 }
2995 EXPORT_SYMBOL(unmap_mapping_range);
2996 
2997 /*
2998  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2999  * but allow concurrent faults), and pte mapped but not yet locked.
3000  * We return with mmap_sem still held, but pte unmapped and unlocked.
3001  */
3002 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3003 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3004 		unsigned int flags, pte_t orig_pte)
3005 {
3006 	spinlock_t *ptl;
3007 	struct page *page, *swapcache;
3008 	swp_entry_t entry;
3009 	pte_t pte;
3010 	int locked;
3011 	struct mem_cgroup *ptr;
3012 	int exclusive = 0;
3013 	int ret = 0;
3014 
3015 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3016 		goto out;
3017 
3018 	entry = pte_to_swp_entry(orig_pte);
3019 	if (unlikely(non_swap_entry(entry))) {
3020 		if (is_migration_entry(entry)) {
3021 			migration_entry_wait(mm, pmd, address);
3022 		} else if (is_hwpoison_entry(entry)) {
3023 			ret = VM_FAULT_HWPOISON;
3024 		} else {
3025 			print_bad_pte(vma, address, orig_pte, NULL);
3026 			ret = VM_FAULT_SIGBUS;
3027 		}
3028 		goto out;
3029 	}
3030 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3031 	page = lookup_swap_cache(entry);
3032 	if (!page) {
3033 		page = swapin_readahead(entry,
3034 					GFP_HIGHUSER_MOVABLE, vma, address);
3035 		if (!page) {
3036 			/*
3037 			 * Back out if somebody else faulted in this pte
3038 			 * while we released the pte lock.
3039 			 */
3040 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3041 			if (likely(pte_same(*page_table, orig_pte)))
3042 				ret = VM_FAULT_OOM;
3043 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3044 			goto unlock;
3045 		}
3046 
3047 		/* Had to read the page from swap area: Major fault */
3048 		ret = VM_FAULT_MAJOR;
3049 		count_vm_event(PGMAJFAULT);
3050 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3051 	} else if (PageHWPoison(page)) {
3052 		/*
3053 		 * hwpoisoned dirty swapcache pages are kept for killing
3054 		 * owner processes (which may be unknown at hwpoison time)
3055 		 */
3056 		ret = VM_FAULT_HWPOISON;
3057 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3058 		swapcache = page;
3059 		goto out_release;
3060 	}
3061 
3062 	swapcache = page;
3063 	locked = lock_page_or_retry(page, mm, flags);
3064 
3065 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3066 	if (!locked) {
3067 		ret |= VM_FAULT_RETRY;
3068 		goto out_release;
3069 	}
3070 
3071 	/*
3072 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3073 	 * release the swapcache from under us.  The page pin, and pte_same
3074 	 * test below, are not enough to exclude that.  Even if it is still
3075 	 * swapcache, we need to check that the page's swap has not changed.
3076 	 */
3077 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3078 		goto out_page;
3079 
3080 	page = ksm_might_need_to_copy(page, vma, address);
3081 	if (unlikely(!page)) {
3082 		ret = VM_FAULT_OOM;
3083 		page = swapcache;
3084 		goto out_page;
3085 	}
3086 
3087 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3088 		ret = VM_FAULT_OOM;
3089 		goto out_page;
3090 	}
3091 
3092 	/*
3093 	 * Back out if somebody else already faulted in this pte.
3094 	 */
3095 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3096 	if (unlikely(!pte_same(*page_table, orig_pte)))
3097 		goto out_nomap;
3098 
3099 	if (unlikely(!PageUptodate(page))) {
3100 		ret = VM_FAULT_SIGBUS;
3101 		goto out_nomap;
3102 	}
3103 
3104 	/*
3105 	 * The page isn't present yet, go ahead with the fault.
3106 	 *
3107 	 * Be careful about the sequence of operations here.
3108 	 * To get its accounting right, reuse_swap_page() must be called
3109 	 * while the page is counted on swap but not yet in mapcount i.e.
3110 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3111 	 * must be called after the swap_free(), or it will never succeed.
3112 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3113 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3114 	 * in page->private. In this case, a record in swap_cgroup  is silently
3115 	 * discarded at swap_free().
3116 	 */
3117 
3118 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3119 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3120 	pte = mk_pte(page, vma->vm_page_prot);
3121 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3122 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3123 		flags &= ~FAULT_FLAG_WRITE;
3124 		ret |= VM_FAULT_WRITE;
3125 		exclusive = 1;
3126 	}
3127 	flush_icache_page(vma, page);
3128 	if (pte_swp_soft_dirty(orig_pte))
3129 		pte = pte_mksoft_dirty(pte);
3130 	set_pte_at(mm, address, page_table, pte);
3131 	if (page == swapcache)
3132 		do_page_add_anon_rmap(page, vma, address, exclusive);
3133 	else /* ksm created a completely new copy */
3134 		page_add_new_anon_rmap(page, vma, address);
3135 	/* It's better to call commit-charge after rmap is established */
3136 	mem_cgroup_commit_charge_swapin(page, ptr);
3137 
3138 	swap_free(entry);
3139 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3140 		try_to_free_swap(page);
3141 	unlock_page(page);
3142 	if (page != swapcache) {
3143 		/*
3144 		 * Hold the lock to avoid the swap entry to be reused
3145 		 * until we take the PT lock for the pte_same() check
3146 		 * (to avoid false positives from pte_same). For
3147 		 * further safety release the lock after the swap_free
3148 		 * so that the swap count won't change under a
3149 		 * parallel locked swapcache.
3150 		 */
3151 		unlock_page(swapcache);
3152 		page_cache_release(swapcache);
3153 	}
3154 
3155 	if (flags & FAULT_FLAG_WRITE) {
3156 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3157 		if (ret & VM_FAULT_ERROR)
3158 			ret &= VM_FAULT_ERROR;
3159 		goto out;
3160 	}
3161 
3162 	/* No need to invalidate - it was non-present before */
3163 	update_mmu_cache(vma, address, page_table);
3164 unlock:
3165 	pte_unmap_unlock(page_table, ptl);
3166 out:
3167 	return ret;
3168 out_nomap:
3169 	mem_cgroup_cancel_charge_swapin(ptr);
3170 	pte_unmap_unlock(page_table, ptl);
3171 out_page:
3172 	unlock_page(page);
3173 out_release:
3174 	page_cache_release(page);
3175 	if (page != swapcache) {
3176 		unlock_page(swapcache);
3177 		page_cache_release(swapcache);
3178 	}
3179 	return ret;
3180 }
3181 
3182 /*
3183  * This is like a special single-page "expand_{down|up}wards()",
3184  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3185  * doesn't hit another vma.
3186  */
3187 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3188 {
3189 	address &= PAGE_MASK;
3190 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3191 		struct vm_area_struct *prev = vma->vm_prev;
3192 
3193 		/*
3194 		 * Is there a mapping abutting this one below?
3195 		 *
3196 		 * That's only ok if it's the same stack mapping
3197 		 * that has gotten split..
3198 		 */
3199 		if (prev && prev->vm_end == address)
3200 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3201 
3202 		expand_downwards(vma, address - PAGE_SIZE);
3203 	}
3204 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3205 		struct vm_area_struct *next = vma->vm_next;
3206 
3207 		/* As VM_GROWSDOWN but s/below/above/ */
3208 		if (next && next->vm_start == address + PAGE_SIZE)
3209 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3210 
3211 		expand_upwards(vma, address + PAGE_SIZE);
3212 	}
3213 	return 0;
3214 }
3215 
3216 /*
3217  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3218  * but allow concurrent faults), and pte mapped but not yet locked.
3219  * We return with mmap_sem still held, but pte unmapped and unlocked.
3220  */
3221 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3222 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3223 		unsigned int flags)
3224 {
3225 	struct page *page;
3226 	spinlock_t *ptl;
3227 	pte_t entry;
3228 
3229 	pte_unmap(page_table);
3230 
3231 	/* Check if we need to add a guard page to the stack */
3232 	if (check_stack_guard_page(vma, address) < 0)
3233 		return VM_FAULT_SIGBUS;
3234 
3235 	/* Use the zero-page for reads */
3236 	if (!(flags & FAULT_FLAG_WRITE)) {
3237 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3238 						vma->vm_page_prot));
3239 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3240 		if (!pte_none(*page_table))
3241 			goto unlock;
3242 		goto setpte;
3243 	}
3244 
3245 	/* Allocate our own private page. */
3246 	if (unlikely(anon_vma_prepare(vma)))
3247 		goto oom;
3248 	page = alloc_zeroed_user_highpage_movable(vma, address);
3249 	if (!page)
3250 		goto oom;
3251 	/*
3252 	 * The memory barrier inside __SetPageUptodate makes sure that
3253 	 * preceeding stores to the page contents become visible before
3254 	 * the set_pte_at() write.
3255 	 */
3256 	__SetPageUptodate(page);
3257 
3258 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3259 		goto oom_free_page;
3260 
3261 	entry = mk_pte(page, vma->vm_page_prot);
3262 	if (vma->vm_flags & VM_WRITE)
3263 		entry = pte_mkwrite(pte_mkdirty(entry));
3264 
3265 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3266 	if (!pte_none(*page_table))
3267 		goto release;
3268 
3269 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3270 	page_add_new_anon_rmap(page, vma, address);
3271 setpte:
3272 	set_pte_at(mm, address, page_table, entry);
3273 
3274 	/* No need to invalidate - it was non-present before */
3275 	update_mmu_cache(vma, address, page_table);
3276 unlock:
3277 	pte_unmap_unlock(page_table, ptl);
3278 	return 0;
3279 release:
3280 	mem_cgroup_uncharge_page(page);
3281 	page_cache_release(page);
3282 	goto unlock;
3283 oom_free_page:
3284 	page_cache_release(page);
3285 oom:
3286 	return VM_FAULT_OOM;
3287 }
3288 
3289 /*
3290  * __do_fault() tries to create a new page mapping. It aggressively
3291  * tries to share with existing pages, but makes a separate copy if
3292  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3293  * the next page fault.
3294  *
3295  * As this is called only for pages that do not currently exist, we
3296  * do not need to flush old virtual caches or the TLB.
3297  *
3298  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3299  * but allow concurrent faults), and pte neither mapped nor locked.
3300  * We return with mmap_sem still held, but pte unmapped and unlocked.
3301  */
3302 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3303 		unsigned long address, pmd_t *pmd,
3304 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3305 {
3306 	pte_t *page_table;
3307 	spinlock_t *ptl;
3308 	struct page *page;
3309 	struct page *cow_page;
3310 	pte_t entry;
3311 	int anon = 0;
3312 	struct page *dirty_page = NULL;
3313 	struct vm_fault vmf;
3314 	int ret;
3315 	int page_mkwrite = 0;
3316 
3317 	/*
3318 	 * If we do COW later, allocate page befor taking lock_page()
3319 	 * on the file cache page. This will reduce lock holding time.
3320 	 */
3321 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3322 
3323 		if (unlikely(anon_vma_prepare(vma)))
3324 			return VM_FAULT_OOM;
3325 
3326 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3327 		if (!cow_page)
3328 			return VM_FAULT_OOM;
3329 
3330 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3331 			page_cache_release(cow_page);
3332 			return VM_FAULT_OOM;
3333 		}
3334 	} else
3335 		cow_page = NULL;
3336 
3337 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3338 	vmf.pgoff = pgoff;
3339 	vmf.flags = flags;
3340 	vmf.page = NULL;
3341 
3342 	ret = vma->vm_ops->fault(vma, &vmf);
3343 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3344 			    VM_FAULT_RETRY)))
3345 		goto uncharge_out;
3346 
3347 	if (unlikely(PageHWPoison(vmf.page))) {
3348 		if (ret & VM_FAULT_LOCKED)
3349 			unlock_page(vmf.page);
3350 		ret = VM_FAULT_HWPOISON;
3351 		goto uncharge_out;
3352 	}
3353 
3354 	/*
3355 	 * For consistency in subsequent calls, make the faulted page always
3356 	 * locked.
3357 	 */
3358 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3359 		lock_page(vmf.page);
3360 	else
3361 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3362 
3363 	/*
3364 	 * Should we do an early C-O-W break?
3365 	 */
3366 	page = vmf.page;
3367 	if (flags & FAULT_FLAG_WRITE) {
3368 		if (!(vma->vm_flags & VM_SHARED)) {
3369 			page = cow_page;
3370 			anon = 1;
3371 			copy_user_highpage(page, vmf.page, address, vma);
3372 			__SetPageUptodate(page);
3373 		} else {
3374 			/*
3375 			 * If the page will be shareable, see if the backing
3376 			 * address space wants to know that the page is about
3377 			 * to become writable
3378 			 */
3379 			if (vma->vm_ops->page_mkwrite) {
3380 				int tmp;
3381 
3382 				unlock_page(page);
3383 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3384 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3385 				if (unlikely(tmp &
3386 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3387 					ret = tmp;
3388 					goto unwritable_page;
3389 				}
3390 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3391 					lock_page(page);
3392 					if (!page->mapping) {
3393 						ret = 0; /* retry the fault */
3394 						unlock_page(page);
3395 						goto unwritable_page;
3396 					}
3397 				} else
3398 					VM_BUG_ON_PAGE(!PageLocked(page), page);
3399 				page_mkwrite = 1;
3400 			}
3401 		}
3402 
3403 	}
3404 
3405 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3406 
3407 	/*
3408 	 * This silly early PAGE_DIRTY setting removes a race
3409 	 * due to the bad i386 page protection. But it's valid
3410 	 * for other architectures too.
3411 	 *
3412 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3413 	 * an exclusive copy of the page, or this is a shared mapping,
3414 	 * so we can make it writable and dirty to avoid having to
3415 	 * handle that later.
3416 	 */
3417 	/* Only go through if we didn't race with anybody else... */
3418 	if (likely(pte_same(*page_table, orig_pte))) {
3419 		flush_icache_page(vma, page);
3420 		entry = mk_pte(page, vma->vm_page_prot);
3421 		if (flags & FAULT_FLAG_WRITE)
3422 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3423 		else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3424 			pte_mksoft_dirty(entry);
3425 		if (anon) {
3426 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3427 			page_add_new_anon_rmap(page, vma, address);
3428 		} else {
3429 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3430 			page_add_file_rmap(page);
3431 			if (flags & FAULT_FLAG_WRITE) {
3432 				dirty_page = page;
3433 				get_page(dirty_page);
3434 			}
3435 		}
3436 		set_pte_at(mm, address, page_table, entry);
3437 
3438 		/* no need to invalidate: a not-present page won't be cached */
3439 		update_mmu_cache(vma, address, page_table);
3440 	} else {
3441 		if (cow_page)
3442 			mem_cgroup_uncharge_page(cow_page);
3443 		if (anon)
3444 			page_cache_release(page);
3445 		else
3446 			anon = 1; /* no anon but release faulted_page */
3447 	}
3448 
3449 	pte_unmap_unlock(page_table, ptl);
3450 
3451 	if (dirty_page) {
3452 		struct address_space *mapping = page->mapping;
3453 		int dirtied = 0;
3454 
3455 		if (set_page_dirty(dirty_page))
3456 			dirtied = 1;
3457 		unlock_page(dirty_page);
3458 		put_page(dirty_page);
3459 		if ((dirtied || page_mkwrite) && mapping) {
3460 			/*
3461 			 * Some device drivers do not set page.mapping but still
3462 			 * dirty their pages
3463 			 */
3464 			balance_dirty_pages_ratelimited(mapping);
3465 		}
3466 
3467 		/* file_update_time outside page_lock */
3468 		if (vma->vm_file && !page_mkwrite)
3469 			file_update_time(vma->vm_file);
3470 	} else {
3471 		unlock_page(vmf.page);
3472 		if (anon)
3473 			page_cache_release(vmf.page);
3474 	}
3475 
3476 	return ret;
3477 
3478 unwritable_page:
3479 	page_cache_release(page);
3480 	return ret;
3481 uncharge_out:
3482 	/* fs's fault handler get error */
3483 	if (cow_page) {
3484 		mem_cgroup_uncharge_page(cow_page);
3485 		page_cache_release(cow_page);
3486 	}
3487 	return ret;
3488 }
3489 
3490 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3491 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3492 		unsigned int flags, pte_t orig_pte)
3493 {
3494 	pgoff_t pgoff = (((address & PAGE_MASK)
3495 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3496 
3497 	pte_unmap(page_table);
3498 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3499 }
3500 
3501 /*
3502  * Fault of a previously existing named mapping. Repopulate the pte
3503  * from the encoded file_pte if possible. This enables swappable
3504  * nonlinear vmas.
3505  *
3506  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3507  * but allow concurrent faults), and pte mapped but not yet locked.
3508  * We return with mmap_sem still held, but pte unmapped and unlocked.
3509  */
3510 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3511 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3512 		unsigned int flags, pte_t orig_pte)
3513 {
3514 	pgoff_t pgoff;
3515 
3516 	flags |= FAULT_FLAG_NONLINEAR;
3517 
3518 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3519 		return 0;
3520 
3521 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3522 		/*
3523 		 * Page table corrupted: show pte and kill process.
3524 		 */
3525 		print_bad_pte(vma, address, orig_pte, NULL);
3526 		return VM_FAULT_SIGBUS;
3527 	}
3528 
3529 	pgoff = pte_to_pgoff(orig_pte);
3530 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3531 }
3532 
3533 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3534 				unsigned long addr, int page_nid,
3535 				int *flags)
3536 {
3537 	get_page(page);
3538 
3539 	count_vm_numa_event(NUMA_HINT_FAULTS);
3540 	if (page_nid == numa_node_id()) {
3541 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3542 		*flags |= TNF_FAULT_LOCAL;
3543 	}
3544 
3545 	return mpol_misplaced(page, vma, addr);
3546 }
3547 
3548 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3549 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3550 {
3551 	struct page *page = NULL;
3552 	spinlock_t *ptl;
3553 	int page_nid = -1;
3554 	int last_cpupid;
3555 	int target_nid;
3556 	bool migrated = false;
3557 	int flags = 0;
3558 
3559 	/*
3560 	* The "pte" at this point cannot be used safely without
3561 	* validation through pte_unmap_same(). It's of NUMA type but
3562 	* the pfn may be screwed if the read is non atomic.
3563 	*
3564 	* ptep_modify_prot_start is not called as this is clearing
3565 	* the _PAGE_NUMA bit and it is not really expected that there
3566 	* would be concurrent hardware modifications to the PTE.
3567 	*/
3568 	ptl = pte_lockptr(mm, pmd);
3569 	spin_lock(ptl);
3570 	if (unlikely(!pte_same(*ptep, pte))) {
3571 		pte_unmap_unlock(ptep, ptl);
3572 		goto out;
3573 	}
3574 
3575 	pte = pte_mknonnuma(pte);
3576 	set_pte_at(mm, addr, ptep, pte);
3577 	update_mmu_cache(vma, addr, ptep);
3578 
3579 	page = vm_normal_page(vma, addr, pte);
3580 	if (!page) {
3581 		pte_unmap_unlock(ptep, ptl);
3582 		return 0;
3583 	}
3584 	BUG_ON(is_zero_pfn(page_to_pfn(page)));
3585 
3586 	/*
3587 	 * Avoid grouping on DSO/COW pages in specific and RO pages
3588 	 * in general, RO pages shouldn't hurt as much anyway since
3589 	 * they can be in shared cache state.
3590 	 */
3591 	if (!pte_write(pte))
3592 		flags |= TNF_NO_GROUP;
3593 
3594 	/*
3595 	 * Flag if the page is shared between multiple address spaces. This
3596 	 * is later used when determining whether to group tasks together
3597 	 */
3598 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3599 		flags |= TNF_SHARED;
3600 
3601 	last_cpupid = page_cpupid_last(page);
3602 	page_nid = page_to_nid(page);
3603 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3604 	pte_unmap_unlock(ptep, ptl);
3605 	if (target_nid == -1) {
3606 		put_page(page);
3607 		goto out;
3608 	}
3609 
3610 	/* Migrate to the requested node */
3611 	migrated = migrate_misplaced_page(page, vma, target_nid);
3612 	if (migrated) {
3613 		page_nid = target_nid;
3614 		flags |= TNF_MIGRATED;
3615 	}
3616 
3617 out:
3618 	if (page_nid != -1)
3619 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3620 	return 0;
3621 }
3622 
3623 /*
3624  * These routines also need to handle stuff like marking pages dirty
3625  * and/or accessed for architectures that don't do it in hardware (most
3626  * RISC architectures).  The early dirtying is also good on the i386.
3627  *
3628  * There is also a hook called "update_mmu_cache()" that architectures
3629  * with external mmu caches can use to update those (ie the Sparc or
3630  * PowerPC hashed page tables that act as extended TLBs).
3631  *
3632  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3633  * but allow concurrent faults), and pte mapped but not yet locked.
3634  * We return with mmap_sem still held, but pte unmapped and unlocked.
3635  */
3636 static int handle_pte_fault(struct mm_struct *mm,
3637 		     struct vm_area_struct *vma, unsigned long address,
3638 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3639 {
3640 	pte_t entry;
3641 	spinlock_t *ptl;
3642 
3643 	entry = *pte;
3644 	if (!pte_present(entry)) {
3645 		if (pte_none(entry)) {
3646 			if (vma->vm_ops) {
3647 				if (likely(vma->vm_ops->fault))
3648 					return do_linear_fault(mm, vma, address,
3649 						pte, pmd, flags, entry);
3650 			}
3651 			return do_anonymous_page(mm, vma, address,
3652 						 pte, pmd, flags);
3653 		}
3654 		if (pte_file(entry))
3655 			return do_nonlinear_fault(mm, vma, address,
3656 					pte, pmd, flags, entry);
3657 		return do_swap_page(mm, vma, address,
3658 					pte, pmd, flags, entry);
3659 	}
3660 
3661 	if (pte_numa(entry))
3662 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3663 
3664 	ptl = pte_lockptr(mm, pmd);
3665 	spin_lock(ptl);
3666 	if (unlikely(!pte_same(*pte, entry)))
3667 		goto unlock;
3668 	if (flags & FAULT_FLAG_WRITE) {
3669 		if (!pte_write(entry))
3670 			return do_wp_page(mm, vma, address,
3671 					pte, pmd, ptl, entry);
3672 		entry = pte_mkdirty(entry);
3673 	}
3674 	entry = pte_mkyoung(entry);
3675 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3676 		update_mmu_cache(vma, address, pte);
3677 	} else {
3678 		/*
3679 		 * This is needed only for protection faults but the arch code
3680 		 * is not yet telling us if this is a protection fault or not.
3681 		 * This still avoids useless tlb flushes for .text page faults
3682 		 * with threads.
3683 		 */
3684 		if (flags & FAULT_FLAG_WRITE)
3685 			flush_tlb_fix_spurious_fault(vma, address);
3686 	}
3687 unlock:
3688 	pte_unmap_unlock(pte, ptl);
3689 	return 0;
3690 }
3691 
3692 /*
3693  * By the time we get here, we already hold the mm semaphore
3694  */
3695 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3696 			     unsigned long address, unsigned int flags)
3697 {
3698 	pgd_t *pgd;
3699 	pud_t *pud;
3700 	pmd_t *pmd;
3701 	pte_t *pte;
3702 
3703 	if (unlikely(is_vm_hugetlb_page(vma)))
3704 		return hugetlb_fault(mm, vma, address, flags);
3705 
3706 retry:
3707 	pgd = pgd_offset(mm, address);
3708 	pud = pud_alloc(mm, pgd, address);
3709 	if (!pud)
3710 		return VM_FAULT_OOM;
3711 	pmd = pmd_alloc(mm, pud, address);
3712 	if (!pmd)
3713 		return VM_FAULT_OOM;
3714 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3715 		int ret = VM_FAULT_FALLBACK;
3716 		if (!vma->vm_ops)
3717 			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3718 					pmd, flags);
3719 		if (!(ret & VM_FAULT_FALLBACK))
3720 			return ret;
3721 	} else {
3722 		pmd_t orig_pmd = *pmd;
3723 		int ret;
3724 
3725 		barrier();
3726 		if (pmd_trans_huge(orig_pmd)) {
3727 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3728 
3729 			/*
3730 			 * If the pmd is splitting, return and retry the
3731 			 * the fault.  Alternative: wait until the split
3732 			 * is done, and goto retry.
3733 			 */
3734 			if (pmd_trans_splitting(orig_pmd))
3735 				return 0;
3736 
3737 			if (pmd_numa(orig_pmd))
3738 				return do_huge_pmd_numa_page(mm, vma, address,
3739 							     orig_pmd, pmd);
3740 
3741 			if (dirty && !pmd_write(orig_pmd)) {
3742 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3743 							  orig_pmd);
3744 				/*
3745 				 * If COW results in an oom, the huge pmd will
3746 				 * have been split, so retry the fault on the
3747 				 * pte for a smaller charge.
3748 				 */
3749 				if (unlikely(ret & VM_FAULT_OOM))
3750 					goto retry;
3751 				return ret;
3752 			} else {
3753 				huge_pmd_set_accessed(mm, vma, address, pmd,
3754 						      orig_pmd, dirty);
3755 			}
3756 
3757 			return 0;
3758 		}
3759 	}
3760 
3761 	/* THP should already have been handled */
3762 	BUG_ON(pmd_numa(*pmd));
3763 
3764 	/*
3765 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3766 	 * run pte_offset_map on the pmd, if an huge pmd could
3767 	 * materialize from under us from a different thread.
3768 	 */
3769 	if (unlikely(pmd_none(*pmd)) &&
3770 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3771 		return VM_FAULT_OOM;
3772 	/* if an huge pmd materialized from under us just retry later */
3773 	if (unlikely(pmd_trans_huge(*pmd)))
3774 		return 0;
3775 	/*
3776 	 * A regular pmd is established and it can't morph into a huge pmd
3777 	 * from under us anymore at this point because we hold the mmap_sem
3778 	 * read mode and khugepaged takes it in write mode. So now it's
3779 	 * safe to run pte_offset_map().
3780 	 */
3781 	pte = pte_offset_map(pmd, address);
3782 
3783 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3784 }
3785 
3786 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3787 		    unsigned long address, unsigned int flags)
3788 {
3789 	int ret;
3790 
3791 	__set_current_state(TASK_RUNNING);
3792 
3793 	count_vm_event(PGFAULT);
3794 	mem_cgroup_count_vm_event(mm, PGFAULT);
3795 
3796 	/* do counter updates before entering really critical section. */
3797 	check_sync_rss_stat(current);
3798 
3799 	/*
3800 	 * Enable the memcg OOM handling for faults triggered in user
3801 	 * space.  Kernel faults are handled more gracefully.
3802 	 */
3803 	if (flags & FAULT_FLAG_USER)
3804 		mem_cgroup_oom_enable();
3805 
3806 	ret = __handle_mm_fault(mm, vma, address, flags);
3807 
3808 	if (flags & FAULT_FLAG_USER) {
3809 		mem_cgroup_oom_disable();
3810                 /*
3811                  * The task may have entered a memcg OOM situation but
3812                  * if the allocation error was handled gracefully (no
3813                  * VM_FAULT_OOM), there is no need to kill anything.
3814                  * Just clean up the OOM state peacefully.
3815                  */
3816                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3817                         mem_cgroup_oom_synchronize(false);
3818 	}
3819 
3820 	return ret;
3821 }
3822 
3823 #ifndef __PAGETABLE_PUD_FOLDED
3824 /*
3825  * Allocate page upper directory.
3826  * We've already handled the fast-path in-line.
3827  */
3828 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3829 {
3830 	pud_t *new = pud_alloc_one(mm, address);
3831 	if (!new)
3832 		return -ENOMEM;
3833 
3834 	smp_wmb(); /* See comment in __pte_alloc */
3835 
3836 	spin_lock(&mm->page_table_lock);
3837 	if (pgd_present(*pgd))		/* Another has populated it */
3838 		pud_free(mm, new);
3839 	else
3840 		pgd_populate(mm, pgd, new);
3841 	spin_unlock(&mm->page_table_lock);
3842 	return 0;
3843 }
3844 #endif /* __PAGETABLE_PUD_FOLDED */
3845 
3846 #ifndef __PAGETABLE_PMD_FOLDED
3847 /*
3848  * Allocate page middle directory.
3849  * We've already handled the fast-path in-line.
3850  */
3851 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3852 {
3853 	pmd_t *new = pmd_alloc_one(mm, address);
3854 	if (!new)
3855 		return -ENOMEM;
3856 
3857 	smp_wmb(); /* See comment in __pte_alloc */
3858 
3859 	spin_lock(&mm->page_table_lock);
3860 #ifndef __ARCH_HAS_4LEVEL_HACK
3861 	if (pud_present(*pud))		/* Another has populated it */
3862 		pmd_free(mm, new);
3863 	else
3864 		pud_populate(mm, pud, new);
3865 #else
3866 	if (pgd_present(*pud))		/* Another has populated it */
3867 		pmd_free(mm, new);
3868 	else
3869 		pgd_populate(mm, pud, new);
3870 #endif /* __ARCH_HAS_4LEVEL_HACK */
3871 	spin_unlock(&mm->page_table_lock);
3872 	return 0;
3873 }
3874 #endif /* __PAGETABLE_PMD_FOLDED */
3875 
3876 #if !defined(__HAVE_ARCH_GATE_AREA)
3877 
3878 #if defined(AT_SYSINFO_EHDR)
3879 static struct vm_area_struct gate_vma;
3880 
3881 static int __init gate_vma_init(void)
3882 {
3883 	gate_vma.vm_mm = NULL;
3884 	gate_vma.vm_start = FIXADDR_USER_START;
3885 	gate_vma.vm_end = FIXADDR_USER_END;
3886 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3887 	gate_vma.vm_page_prot = __P101;
3888 
3889 	return 0;
3890 }
3891 __initcall(gate_vma_init);
3892 #endif
3893 
3894 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3895 {
3896 #ifdef AT_SYSINFO_EHDR
3897 	return &gate_vma;
3898 #else
3899 	return NULL;
3900 #endif
3901 }
3902 
3903 int in_gate_area_no_mm(unsigned long addr)
3904 {
3905 #ifdef AT_SYSINFO_EHDR
3906 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3907 		return 1;
3908 #endif
3909 	return 0;
3910 }
3911 
3912 #endif	/* __HAVE_ARCH_GATE_AREA */
3913 
3914 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3915 		pte_t **ptepp, spinlock_t **ptlp)
3916 {
3917 	pgd_t *pgd;
3918 	pud_t *pud;
3919 	pmd_t *pmd;
3920 	pte_t *ptep;
3921 
3922 	pgd = pgd_offset(mm, address);
3923 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3924 		goto out;
3925 
3926 	pud = pud_offset(pgd, address);
3927 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3928 		goto out;
3929 
3930 	pmd = pmd_offset(pud, address);
3931 	VM_BUG_ON(pmd_trans_huge(*pmd));
3932 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3933 		goto out;
3934 
3935 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3936 	if (pmd_huge(*pmd))
3937 		goto out;
3938 
3939 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3940 	if (!ptep)
3941 		goto out;
3942 	if (!pte_present(*ptep))
3943 		goto unlock;
3944 	*ptepp = ptep;
3945 	return 0;
3946 unlock:
3947 	pte_unmap_unlock(ptep, *ptlp);
3948 out:
3949 	return -EINVAL;
3950 }
3951 
3952 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3953 			     pte_t **ptepp, spinlock_t **ptlp)
3954 {
3955 	int res;
3956 
3957 	/* (void) is needed to make gcc happy */
3958 	(void) __cond_lock(*ptlp,
3959 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3960 	return res;
3961 }
3962 
3963 /**
3964  * follow_pfn - look up PFN at a user virtual address
3965  * @vma: memory mapping
3966  * @address: user virtual address
3967  * @pfn: location to store found PFN
3968  *
3969  * Only IO mappings and raw PFN mappings are allowed.
3970  *
3971  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3972  */
3973 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3974 	unsigned long *pfn)
3975 {
3976 	int ret = -EINVAL;
3977 	spinlock_t *ptl;
3978 	pte_t *ptep;
3979 
3980 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3981 		return ret;
3982 
3983 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3984 	if (ret)
3985 		return ret;
3986 	*pfn = pte_pfn(*ptep);
3987 	pte_unmap_unlock(ptep, ptl);
3988 	return 0;
3989 }
3990 EXPORT_SYMBOL(follow_pfn);
3991 
3992 #ifdef CONFIG_HAVE_IOREMAP_PROT
3993 int follow_phys(struct vm_area_struct *vma,
3994 		unsigned long address, unsigned int flags,
3995 		unsigned long *prot, resource_size_t *phys)
3996 {
3997 	int ret = -EINVAL;
3998 	pte_t *ptep, pte;
3999 	spinlock_t *ptl;
4000 
4001 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4002 		goto out;
4003 
4004 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4005 		goto out;
4006 	pte = *ptep;
4007 
4008 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4009 		goto unlock;
4010 
4011 	*prot = pgprot_val(pte_pgprot(pte));
4012 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4013 
4014 	ret = 0;
4015 unlock:
4016 	pte_unmap_unlock(ptep, ptl);
4017 out:
4018 	return ret;
4019 }
4020 
4021 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4022 			void *buf, int len, int write)
4023 {
4024 	resource_size_t phys_addr;
4025 	unsigned long prot = 0;
4026 	void __iomem *maddr;
4027 	int offset = addr & (PAGE_SIZE-1);
4028 
4029 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4030 		return -EINVAL;
4031 
4032 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4033 	if (write)
4034 		memcpy_toio(maddr + offset, buf, len);
4035 	else
4036 		memcpy_fromio(buf, maddr + offset, len);
4037 	iounmap(maddr);
4038 
4039 	return len;
4040 }
4041 EXPORT_SYMBOL_GPL(generic_access_phys);
4042 #endif
4043 
4044 /*
4045  * Access another process' address space as given in mm.  If non-NULL, use the
4046  * given task for page fault accounting.
4047  */
4048 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4049 		unsigned long addr, void *buf, int len, int write)
4050 {
4051 	struct vm_area_struct *vma;
4052 	void *old_buf = buf;
4053 
4054 	down_read(&mm->mmap_sem);
4055 	/* ignore errors, just check how much was successfully transferred */
4056 	while (len) {
4057 		int bytes, ret, offset;
4058 		void *maddr;
4059 		struct page *page = NULL;
4060 
4061 		ret = get_user_pages(tsk, mm, addr, 1,
4062 				write, 1, &page, &vma);
4063 		if (ret <= 0) {
4064 			/*
4065 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4066 			 * we can access using slightly different code.
4067 			 */
4068 #ifdef CONFIG_HAVE_IOREMAP_PROT
4069 			vma = find_vma(mm, addr);
4070 			if (!vma || vma->vm_start > addr)
4071 				break;
4072 			if (vma->vm_ops && vma->vm_ops->access)
4073 				ret = vma->vm_ops->access(vma, addr, buf,
4074 							  len, write);
4075 			if (ret <= 0)
4076 #endif
4077 				break;
4078 			bytes = ret;
4079 		} else {
4080 			bytes = len;
4081 			offset = addr & (PAGE_SIZE-1);
4082 			if (bytes > PAGE_SIZE-offset)
4083 				bytes = PAGE_SIZE-offset;
4084 
4085 			maddr = kmap(page);
4086 			if (write) {
4087 				copy_to_user_page(vma, page, addr,
4088 						  maddr + offset, buf, bytes);
4089 				set_page_dirty_lock(page);
4090 			} else {
4091 				copy_from_user_page(vma, page, addr,
4092 						    buf, maddr + offset, bytes);
4093 			}
4094 			kunmap(page);
4095 			page_cache_release(page);
4096 		}
4097 		len -= bytes;
4098 		buf += bytes;
4099 		addr += bytes;
4100 	}
4101 	up_read(&mm->mmap_sem);
4102 
4103 	return buf - old_buf;
4104 }
4105 
4106 /**
4107  * access_remote_vm - access another process' address space
4108  * @mm:		the mm_struct of the target address space
4109  * @addr:	start address to access
4110  * @buf:	source or destination buffer
4111  * @len:	number of bytes to transfer
4112  * @write:	whether the access is a write
4113  *
4114  * The caller must hold a reference on @mm.
4115  */
4116 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4117 		void *buf, int len, int write)
4118 {
4119 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4120 }
4121 
4122 /*
4123  * Access another process' address space.
4124  * Source/target buffer must be kernel space,
4125  * Do not walk the page table directly, use get_user_pages
4126  */
4127 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4128 		void *buf, int len, int write)
4129 {
4130 	struct mm_struct *mm;
4131 	int ret;
4132 
4133 	mm = get_task_mm(tsk);
4134 	if (!mm)
4135 		return 0;
4136 
4137 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4138 	mmput(mm);
4139 
4140 	return ret;
4141 }
4142 
4143 /*
4144  * Print the name of a VMA.
4145  */
4146 void print_vma_addr(char *prefix, unsigned long ip)
4147 {
4148 	struct mm_struct *mm = current->mm;
4149 	struct vm_area_struct *vma;
4150 
4151 	/*
4152 	 * Do not print if we are in atomic
4153 	 * contexts (in exception stacks, etc.):
4154 	 */
4155 	if (preempt_count())
4156 		return;
4157 
4158 	down_read(&mm->mmap_sem);
4159 	vma = find_vma(mm, ip);
4160 	if (vma && vma->vm_file) {
4161 		struct file *f = vma->vm_file;
4162 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4163 		if (buf) {
4164 			char *p;
4165 
4166 			p = d_path(&f->f_path, buf, PAGE_SIZE);
4167 			if (IS_ERR(p))
4168 				p = "?";
4169 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4170 					vma->vm_start,
4171 					vma->vm_end - vma->vm_start);
4172 			free_page((unsigned long)buf);
4173 		}
4174 	}
4175 	up_read(&mm->mmap_sem);
4176 }
4177 
4178 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4179 void might_fault(void)
4180 {
4181 	/*
4182 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4183 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4184 	 * get paged out, therefore we'll never actually fault, and the
4185 	 * below annotations will generate false positives.
4186 	 */
4187 	if (segment_eq(get_fs(), KERNEL_DS))
4188 		return;
4189 
4190 	/*
4191 	 * it would be nicer only to annotate paths which are not under
4192 	 * pagefault_disable, however that requires a larger audit and
4193 	 * providing helpers like get_user_atomic.
4194 	 */
4195 	if (in_atomic())
4196 		return;
4197 
4198 	__might_sleep(__FILE__, __LINE__, 0);
4199 
4200 	if (current->mm)
4201 		might_lock_read(&current->mm->mmap_sem);
4202 }
4203 EXPORT_SYMBOL(might_fault);
4204 #endif
4205 
4206 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4207 static void clear_gigantic_page(struct page *page,
4208 				unsigned long addr,
4209 				unsigned int pages_per_huge_page)
4210 {
4211 	int i;
4212 	struct page *p = page;
4213 
4214 	might_sleep();
4215 	for (i = 0; i < pages_per_huge_page;
4216 	     i++, p = mem_map_next(p, page, i)) {
4217 		cond_resched();
4218 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4219 	}
4220 }
4221 void clear_huge_page(struct page *page,
4222 		     unsigned long addr, unsigned int pages_per_huge_page)
4223 {
4224 	int i;
4225 
4226 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4227 		clear_gigantic_page(page, addr, pages_per_huge_page);
4228 		return;
4229 	}
4230 
4231 	might_sleep();
4232 	for (i = 0; i < pages_per_huge_page; i++) {
4233 		cond_resched();
4234 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4235 	}
4236 }
4237 
4238 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4239 				    unsigned long addr,
4240 				    struct vm_area_struct *vma,
4241 				    unsigned int pages_per_huge_page)
4242 {
4243 	int i;
4244 	struct page *dst_base = dst;
4245 	struct page *src_base = src;
4246 
4247 	for (i = 0; i < pages_per_huge_page; ) {
4248 		cond_resched();
4249 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4250 
4251 		i++;
4252 		dst = mem_map_next(dst, dst_base, i);
4253 		src = mem_map_next(src, src_base, i);
4254 	}
4255 }
4256 
4257 void copy_user_huge_page(struct page *dst, struct page *src,
4258 			 unsigned long addr, struct vm_area_struct *vma,
4259 			 unsigned int pages_per_huge_page)
4260 {
4261 	int i;
4262 
4263 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4264 		copy_user_gigantic_page(dst, src, addr, vma,
4265 					pages_per_huge_page);
4266 		return;
4267 	}
4268 
4269 	might_sleep();
4270 	for (i = 0; i < pages_per_huge_page; i++) {
4271 		cond_resched();
4272 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4273 	}
4274 }
4275 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4276 
4277 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4278 
4279 static struct kmem_cache *page_ptl_cachep;
4280 
4281 void __init ptlock_cache_init(void)
4282 {
4283 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4284 			SLAB_PANIC, NULL);
4285 }
4286 
4287 bool ptlock_alloc(struct page *page)
4288 {
4289 	spinlock_t *ptl;
4290 
4291 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4292 	if (!ptl)
4293 		return false;
4294 	page->ptl = ptl;
4295 	return true;
4296 }
4297 
4298 void ptlock_free(struct page *page)
4299 {
4300 	kmem_cache_free(page_ptl_cachep, page->ptl);
4301 }
4302 #endif
4303