xref: /openbmc/linux/mm/memory.c (revision 5edb7691)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <trace/events/kmem.h>
76 
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84 
85 #include "internal.h"
86 
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90 
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95 
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99 
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109 
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118 					1;
119 #else
120 					2;
121 #endif
122 
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126 	/*
127 	 * Those arches which don't have hw access flag feature need to
128 	 * implement their own helper. By default, "true" means pagefault
129 	 * will be hit on old pte.
130 	 */
131 	return true;
132 }
133 #endif
134 
135 static int __init disable_randmaps(char *s)
136 {
137 	randomize_va_space = 0;
138 	return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141 
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144 
145 unsigned long highest_memmap_pfn __read_mostly;
146 
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
150 static int __init init_zero_pfn(void)
151 {
152 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 	return 0;
154 }
155 core_initcall(init_zero_pfn);
156 
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159 	trace_rss_stat(mm, member, count);
160 }
161 
162 #if defined(SPLIT_RSS_COUNTING)
163 
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166 	int i;
167 
168 	for (i = 0; i < NR_MM_COUNTERS; i++) {
169 		if (current->rss_stat.count[i]) {
170 			add_mm_counter(mm, i, current->rss_stat.count[i]);
171 			current->rss_stat.count[i] = 0;
172 		}
173 	}
174 	current->rss_stat.events = 0;
175 }
176 
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179 	struct task_struct *task = current;
180 
181 	if (likely(task->mm == mm))
182 		task->rss_stat.count[member] += val;
183 	else
184 		add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188 
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH	(64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193 	if (unlikely(task != current))
194 		return;
195 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196 		sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199 
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202 
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206 
207 #endif /* SPLIT_RSS_COUNTING */
208 
209 /*
210  * Note: this doesn't free the actual pages themselves. That
211  * has been handled earlier when unmapping all the memory regions.
212  */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 			   unsigned long addr)
215 {
216 	pgtable_t token = pmd_pgtable(*pmd);
217 	pmd_clear(pmd);
218 	pte_free_tlb(tlb, token, addr);
219 	mm_dec_nr_ptes(tlb->mm);
220 }
221 
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 				unsigned long addr, unsigned long end,
224 				unsigned long floor, unsigned long ceiling)
225 {
226 	pmd_t *pmd;
227 	unsigned long next;
228 	unsigned long start;
229 
230 	start = addr;
231 	pmd = pmd_offset(pud, addr);
232 	do {
233 		next = pmd_addr_end(addr, end);
234 		if (pmd_none_or_clear_bad(pmd))
235 			continue;
236 		free_pte_range(tlb, pmd, addr);
237 	} while (pmd++, addr = next, addr != end);
238 
239 	start &= PUD_MASK;
240 	if (start < floor)
241 		return;
242 	if (ceiling) {
243 		ceiling &= PUD_MASK;
244 		if (!ceiling)
245 			return;
246 	}
247 	if (end - 1 > ceiling - 1)
248 		return;
249 
250 	pmd = pmd_offset(pud, start);
251 	pud_clear(pud);
252 	pmd_free_tlb(tlb, pmd, start);
253 	mm_dec_nr_pmds(tlb->mm);
254 }
255 
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257 				unsigned long addr, unsigned long end,
258 				unsigned long floor, unsigned long ceiling)
259 {
260 	pud_t *pud;
261 	unsigned long next;
262 	unsigned long start;
263 
264 	start = addr;
265 	pud = pud_offset(p4d, addr);
266 	do {
267 		next = pud_addr_end(addr, end);
268 		if (pud_none_or_clear_bad(pud))
269 			continue;
270 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271 	} while (pud++, addr = next, addr != end);
272 
273 	start &= P4D_MASK;
274 	if (start < floor)
275 		return;
276 	if (ceiling) {
277 		ceiling &= P4D_MASK;
278 		if (!ceiling)
279 			return;
280 	}
281 	if (end - 1 > ceiling - 1)
282 		return;
283 
284 	pud = pud_offset(p4d, start);
285 	p4d_clear(p4d);
286 	pud_free_tlb(tlb, pud, start);
287 	mm_dec_nr_puds(tlb->mm);
288 }
289 
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 				unsigned long addr, unsigned long end,
292 				unsigned long floor, unsigned long ceiling)
293 {
294 	p4d_t *p4d;
295 	unsigned long next;
296 	unsigned long start;
297 
298 	start = addr;
299 	p4d = p4d_offset(pgd, addr);
300 	do {
301 		next = p4d_addr_end(addr, end);
302 		if (p4d_none_or_clear_bad(p4d))
303 			continue;
304 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 	} while (p4d++, addr = next, addr != end);
306 
307 	start &= PGDIR_MASK;
308 	if (start < floor)
309 		return;
310 	if (ceiling) {
311 		ceiling &= PGDIR_MASK;
312 		if (!ceiling)
313 			return;
314 	}
315 	if (end - 1 > ceiling - 1)
316 		return;
317 
318 	p4d = p4d_offset(pgd, start);
319 	pgd_clear(pgd);
320 	p4d_free_tlb(tlb, p4d, start);
321 }
322 
323 /*
324  * This function frees user-level page tables of a process.
325  */
326 void free_pgd_range(struct mmu_gather *tlb,
327 			unsigned long addr, unsigned long end,
328 			unsigned long floor, unsigned long ceiling)
329 {
330 	pgd_t *pgd;
331 	unsigned long next;
332 
333 	/*
334 	 * The next few lines have given us lots of grief...
335 	 *
336 	 * Why are we testing PMD* at this top level?  Because often
337 	 * there will be no work to do at all, and we'd prefer not to
338 	 * go all the way down to the bottom just to discover that.
339 	 *
340 	 * Why all these "- 1"s?  Because 0 represents both the bottom
341 	 * of the address space and the top of it (using -1 for the
342 	 * top wouldn't help much: the masks would do the wrong thing).
343 	 * The rule is that addr 0 and floor 0 refer to the bottom of
344 	 * the address space, but end 0 and ceiling 0 refer to the top
345 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 	 * that end 0 case should be mythical).
347 	 *
348 	 * Wherever addr is brought up or ceiling brought down, we must
349 	 * be careful to reject "the opposite 0" before it confuses the
350 	 * subsequent tests.  But what about where end is brought down
351 	 * by PMD_SIZE below? no, end can't go down to 0 there.
352 	 *
353 	 * Whereas we round start (addr) and ceiling down, by different
354 	 * masks at different levels, in order to test whether a table
355 	 * now has no other vmas using it, so can be freed, we don't
356 	 * bother to round floor or end up - the tests don't need that.
357 	 */
358 
359 	addr &= PMD_MASK;
360 	if (addr < floor) {
361 		addr += PMD_SIZE;
362 		if (!addr)
363 			return;
364 	}
365 	if (ceiling) {
366 		ceiling &= PMD_MASK;
367 		if (!ceiling)
368 			return;
369 	}
370 	if (end - 1 > ceiling - 1)
371 		end -= PMD_SIZE;
372 	if (addr > end - 1)
373 		return;
374 	/*
375 	 * We add page table cache pages with PAGE_SIZE,
376 	 * (see pte_free_tlb()), flush the tlb if we need
377 	 */
378 	tlb_change_page_size(tlb, PAGE_SIZE);
379 	pgd = pgd_offset(tlb->mm, addr);
380 	do {
381 		next = pgd_addr_end(addr, end);
382 		if (pgd_none_or_clear_bad(pgd))
383 			continue;
384 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385 	} while (pgd++, addr = next, addr != end);
386 }
387 
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389 		unsigned long floor, unsigned long ceiling)
390 {
391 	while (vma) {
392 		struct vm_area_struct *next = vma->vm_next;
393 		unsigned long addr = vma->vm_start;
394 
395 		/*
396 		 * Hide vma from rmap and truncate_pagecache before freeing
397 		 * pgtables
398 		 */
399 		unlink_anon_vmas(vma);
400 		unlink_file_vma(vma);
401 
402 		if (is_vm_hugetlb_page(vma)) {
403 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404 				floor, next ? next->vm_start : ceiling);
405 		} else {
406 			/*
407 			 * Optimization: gather nearby vmas into one call down
408 			 */
409 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410 			       && !is_vm_hugetlb_page(next)) {
411 				vma = next;
412 				next = vma->vm_next;
413 				unlink_anon_vmas(vma);
414 				unlink_file_vma(vma);
415 			}
416 			free_pgd_range(tlb, addr, vma->vm_end,
417 				floor, next ? next->vm_start : ceiling);
418 		}
419 		vma = next;
420 	}
421 }
422 
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425 	spinlock_t *ptl;
426 	pgtable_t new = pte_alloc_one(mm);
427 	if (!new)
428 		return -ENOMEM;
429 
430 	/*
431 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 	 * visible before the pte is made visible to other CPUs by being
433 	 * put into page tables.
434 	 *
435 	 * The other side of the story is the pointer chasing in the page
436 	 * table walking code (when walking the page table without locking;
437 	 * ie. most of the time). Fortunately, these data accesses consist
438 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 	 * being the notable exception) will already guarantee loads are
440 	 * seen in-order. See the alpha page table accessors for the
441 	 * smp_read_barrier_depends() barriers in page table walking code.
442 	 */
443 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444 
445 	ptl = pmd_lock(mm, pmd);
446 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
447 		mm_inc_nr_ptes(mm);
448 		pmd_populate(mm, pmd, new);
449 		new = NULL;
450 	}
451 	spin_unlock(ptl);
452 	if (new)
453 		pte_free(mm, new);
454 	return 0;
455 }
456 
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459 	pte_t *new = pte_alloc_one_kernel(&init_mm);
460 	if (!new)
461 		return -ENOMEM;
462 
463 	smp_wmb(); /* See comment in __pte_alloc */
464 
465 	spin_lock(&init_mm.page_table_lock);
466 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
467 		pmd_populate_kernel(&init_mm, pmd, new);
468 		new = NULL;
469 	}
470 	spin_unlock(&init_mm.page_table_lock);
471 	if (new)
472 		pte_free_kernel(&init_mm, new);
473 	return 0;
474 }
475 
476 static inline void init_rss_vec(int *rss)
477 {
478 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480 
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483 	int i;
484 
485 	if (current->mm == mm)
486 		sync_mm_rss(mm);
487 	for (i = 0; i < NR_MM_COUNTERS; i++)
488 		if (rss[i])
489 			add_mm_counter(mm, i, rss[i]);
490 }
491 
492 /*
493  * This function is called to print an error when a bad pte
494  * is found. For example, we might have a PFN-mapped pte in
495  * a region that doesn't allow it.
496  *
497  * The calling function must still handle the error.
498  */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 			  pte_t pte, struct page *page)
501 {
502 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503 	p4d_t *p4d = p4d_offset(pgd, addr);
504 	pud_t *pud = pud_offset(p4d, addr);
505 	pmd_t *pmd = pmd_offset(pud, addr);
506 	struct address_space *mapping;
507 	pgoff_t index;
508 	static unsigned long resume;
509 	static unsigned long nr_shown;
510 	static unsigned long nr_unshown;
511 
512 	/*
513 	 * Allow a burst of 60 reports, then keep quiet for that minute;
514 	 * or allow a steady drip of one report per second.
515 	 */
516 	if (nr_shown == 60) {
517 		if (time_before(jiffies, resume)) {
518 			nr_unshown++;
519 			return;
520 		}
521 		if (nr_unshown) {
522 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 				 nr_unshown);
524 			nr_unshown = 0;
525 		}
526 		nr_shown = 0;
527 	}
528 	if (nr_shown++ == 0)
529 		resume = jiffies + 60 * HZ;
530 
531 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 	index = linear_page_index(vma, addr);
533 
534 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
535 		 current->comm,
536 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
537 	if (page)
538 		dump_page(page, "bad pte");
539 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542 		 vma->vm_file,
543 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 		 mapping ? mapping->a_ops->readpage : NULL);
546 	dump_stack();
547 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549 
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 			    pte_t pte)
594 {
595 	unsigned long pfn = pte_pfn(pte);
596 
597 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 		if (likely(!pte_special(pte)))
599 			goto check_pfn;
600 		if (vma->vm_ops && vma->vm_ops->find_special_page)
601 			return vma->vm_ops->find_special_page(vma, addr);
602 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 			return NULL;
604 		if (is_zero_pfn(pfn))
605 			return NULL;
606 		if (pte_devmap(pte))
607 			return NULL;
608 
609 		print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 
633 check_pfn:
634 	if (unlikely(pfn > highest_memmap_pfn)) {
635 		print_bad_pte(vma, addr, pte, NULL);
636 		return NULL;
637 	}
638 
639 	/*
640 	 * NOTE! We still have PageReserved() pages in the page tables.
641 	 * eg. VDSO mappings can cause them to exist.
642 	 */
643 out:
644 	return pfn_to_page(pfn);
645 }
646 
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 				pmd_t pmd)
650 {
651 	unsigned long pfn = pmd_pfn(pmd);
652 
653 	/*
654 	 * There is no pmd_special() but there may be special pmds, e.g.
655 	 * in a direct-access (dax) mapping, so let's just replicate the
656 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657 	 */
658 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 		if (vma->vm_flags & VM_MIXEDMAP) {
660 			if (!pfn_valid(pfn))
661 				return NULL;
662 			goto out;
663 		} else {
664 			unsigned long off;
665 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 			if (pfn == vma->vm_pgoff + off)
667 				return NULL;
668 			if (!is_cow_mapping(vma->vm_flags))
669 				return NULL;
670 		}
671 	}
672 
673 	if (pmd_devmap(pmd))
674 		return NULL;
675 	if (is_huge_zero_pmd(pmd))
676 		return NULL;
677 	if (unlikely(pfn > highest_memmap_pfn))
678 		return NULL;
679 
680 	/*
681 	 * NOTE! We still have PageReserved() pages in the page tables.
682 	 * eg. VDSO mappings can cause them to exist.
683 	 */
684 out:
685 	return pfn_to_page(pfn);
686 }
687 #endif
688 
689 /*
690  * copy one vm_area from one task to the other. Assumes the page tables
691  * already present in the new task to be cleared in the whole range
692  * covered by this vma.
693  */
694 
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698 		unsigned long addr, int *rss)
699 {
700 	unsigned long vm_flags = vma->vm_flags;
701 	pte_t pte = *src_pte;
702 	struct page *page;
703 
704 	/* pte contains position in swap or file, so copy. */
705 	if (unlikely(!pte_present(pte))) {
706 		swp_entry_t entry = pte_to_swp_entry(pte);
707 
708 		if (likely(!non_swap_entry(entry))) {
709 			if (swap_duplicate(entry) < 0)
710 				return entry.val;
711 
712 			/* make sure dst_mm is on swapoff's mmlist. */
713 			if (unlikely(list_empty(&dst_mm->mmlist))) {
714 				spin_lock(&mmlist_lock);
715 				if (list_empty(&dst_mm->mmlist))
716 					list_add(&dst_mm->mmlist,
717 							&src_mm->mmlist);
718 				spin_unlock(&mmlist_lock);
719 			}
720 			rss[MM_SWAPENTS]++;
721 		} else if (is_migration_entry(entry)) {
722 			page = migration_entry_to_page(entry);
723 
724 			rss[mm_counter(page)]++;
725 
726 			if (is_write_migration_entry(entry) &&
727 					is_cow_mapping(vm_flags)) {
728 				/*
729 				 * COW mappings require pages in both
730 				 * parent and child to be set to read.
731 				 */
732 				make_migration_entry_read(&entry);
733 				pte = swp_entry_to_pte(entry);
734 				if (pte_swp_soft_dirty(*src_pte))
735 					pte = pte_swp_mksoft_dirty(pte);
736 				set_pte_at(src_mm, addr, src_pte, pte);
737 			}
738 		} else if (is_device_private_entry(entry)) {
739 			page = device_private_entry_to_page(entry);
740 
741 			/*
742 			 * Update rss count even for unaddressable pages, as
743 			 * they should treated just like normal pages in this
744 			 * respect.
745 			 *
746 			 * We will likely want to have some new rss counters
747 			 * for unaddressable pages, at some point. But for now
748 			 * keep things as they are.
749 			 */
750 			get_page(page);
751 			rss[mm_counter(page)]++;
752 			page_dup_rmap(page, false);
753 
754 			/*
755 			 * We do not preserve soft-dirty information, because so
756 			 * far, checkpoint/restore is the only feature that
757 			 * requires that. And checkpoint/restore does not work
758 			 * when a device driver is involved (you cannot easily
759 			 * save and restore device driver state).
760 			 */
761 			if (is_write_device_private_entry(entry) &&
762 			    is_cow_mapping(vm_flags)) {
763 				make_device_private_entry_read(&entry);
764 				pte = swp_entry_to_pte(entry);
765 				set_pte_at(src_mm, addr, src_pte, pte);
766 			}
767 		}
768 		goto out_set_pte;
769 	}
770 
771 	/*
772 	 * If it's a COW mapping, write protect it both
773 	 * in the parent and the child
774 	 */
775 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
776 		ptep_set_wrprotect(src_mm, addr, src_pte);
777 		pte = pte_wrprotect(pte);
778 	}
779 
780 	/*
781 	 * If it's a shared mapping, mark it clean in
782 	 * the child
783 	 */
784 	if (vm_flags & VM_SHARED)
785 		pte = pte_mkclean(pte);
786 	pte = pte_mkold(pte);
787 
788 	page = vm_normal_page(vma, addr, pte);
789 	if (page) {
790 		get_page(page);
791 		page_dup_rmap(page, false);
792 		rss[mm_counter(page)]++;
793 	} else if (pte_devmap(pte)) {
794 		page = pte_page(pte);
795 	}
796 
797 out_set_pte:
798 	set_pte_at(dst_mm, addr, dst_pte, pte);
799 	return 0;
800 }
801 
802 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
803 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
804 		   unsigned long addr, unsigned long end)
805 {
806 	pte_t *orig_src_pte, *orig_dst_pte;
807 	pte_t *src_pte, *dst_pte;
808 	spinlock_t *src_ptl, *dst_ptl;
809 	int progress = 0;
810 	int rss[NR_MM_COUNTERS];
811 	swp_entry_t entry = (swp_entry_t){0};
812 
813 again:
814 	init_rss_vec(rss);
815 
816 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
817 	if (!dst_pte)
818 		return -ENOMEM;
819 	src_pte = pte_offset_map(src_pmd, addr);
820 	src_ptl = pte_lockptr(src_mm, src_pmd);
821 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
822 	orig_src_pte = src_pte;
823 	orig_dst_pte = dst_pte;
824 	arch_enter_lazy_mmu_mode();
825 
826 	do {
827 		/*
828 		 * We are holding two locks at this point - either of them
829 		 * could generate latencies in another task on another CPU.
830 		 */
831 		if (progress >= 32) {
832 			progress = 0;
833 			if (need_resched() ||
834 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
835 				break;
836 		}
837 		if (pte_none(*src_pte)) {
838 			progress++;
839 			continue;
840 		}
841 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
842 							vma, addr, rss);
843 		if (entry.val)
844 			break;
845 		progress += 8;
846 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
847 
848 	arch_leave_lazy_mmu_mode();
849 	spin_unlock(src_ptl);
850 	pte_unmap(orig_src_pte);
851 	add_mm_rss_vec(dst_mm, rss);
852 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
853 	cond_resched();
854 
855 	if (entry.val) {
856 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
857 			return -ENOMEM;
858 		progress = 0;
859 	}
860 	if (addr != end)
861 		goto again;
862 	return 0;
863 }
864 
865 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
866 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
867 		unsigned long addr, unsigned long end)
868 {
869 	pmd_t *src_pmd, *dst_pmd;
870 	unsigned long next;
871 
872 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
873 	if (!dst_pmd)
874 		return -ENOMEM;
875 	src_pmd = pmd_offset(src_pud, addr);
876 	do {
877 		next = pmd_addr_end(addr, end);
878 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
879 			|| pmd_devmap(*src_pmd)) {
880 			int err;
881 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
882 			err = copy_huge_pmd(dst_mm, src_mm,
883 					    dst_pmd, src_pmd, addr, vma);
884 			if (err == -ENOMEM)
885 				return -ENOMEM;
886 			if (!err)
887 				continue;
888 			/* fall through */
889 		}
890 		if (pmd_none_or_clear_bad(src_pmd))
891 			continue;
892 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
893 						vma, addr, next))
894 			return -ENOMEM;
895 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
896 	return 0;
897 }
898 
899 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
900 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
901 		unsigned long addr, unsigned long end)
902 {
903 	pud_t *src_pud, *dst_pud;
904 	unsigned long next;
905 
906 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
907 	if (!dst_pud)
908 		return -ENOMEM;
909 	src_pud = pud_offset(src_p4d, addr);
910 	do {
911 		next = pud_addr_end(addr, end);
912 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
913 			int err;
914 
915 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
916 			err = copy_huge_pud(dst_mm, src_mm,
917 					    dst_pud, src_pud, addr, vma);
918 			if (err == -ENOMEM)
919 				return -ENOMEM;
920 			if (!err)
921 				continue;
922 			/* fall through */
923 		}
924 		if (pud_none_or_clear_bad(src_pud))
925 			continue;
926 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
927 						vma, addr, next))
928 			return -ENOMEM;
929 	} while (dst_pud++, src_pud++, addr = next, addr != end);
930 	return 0;
931 }
932 
933 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
934 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
935 		unsigned long addr, unsigned long end)
936 {
937 	p4d_t *src_p4d, *dst_p4d;
938 	unsigned long next;
939 
940 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
941 	if (!dst_p4d)
942 		return -ENOMEM;
943 	src_p4d = p4d_offset(src_pgd, addr);
944 	do {
945 		next = p4d_addr_end(addr, end);
946 		if (p4d_none_or_clear_bad(src_p4d))
947 			continue;
948 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
949 						vma, addr, next))
950 			return -ENOMEM;
951 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
952 	return 0;
953 }
954 
955 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
956 		struct vm_area_struct *vma)
957 {
958 	pgd_t *src_pgd, *dst_pgd;
959 	unsigned long next;
960 	unsigned long addr = vma->vm_start;
961 	unsigned long end = vma->vm_end;
962 	struct mmu_notifier_range range;
963 	bool is_cow;
964 	int ret;
965 
966 	/*
967 	 * Don't copy ptes where a page fault will fill them correctly.
968 	 * Fork becomes much lighter when there are big shared or private
969 	 * readonly mappings. The tradeoff is that copy_page_range is more
970 	 * efficient than faulting.
971 	 */
972 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
973 			!vma->anon_vma)
974 		return 0;
975 
976 	if (is_vm_hugetlb_page(vma))
977 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
978 
979 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
980 		/*
981 		 * We do not free on error cases below as remove_vma
982 		 * gets called on error from higher level routine
983 		 */
984 		ret = track_pfn_copy(vma);
985 		if (ret)
986 			return ret;
987 	}
988 
989 	/*
990 	 * We need to invalidate the secondary MMU mappings only when
991 	 * there could be a permission downgrade on the ptes of the
992 	 * parent mm. And a permission downgrade will only happen if
993 	 * is_cow_mapping() returns true.
994 	 */
995 	is_cow = is_cow_mapping(vma->vm_flags);
996 
997 	if (is_cow) {
998 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
999 					0, vma, src_mm, addr, end);
1000 		mmu_notifier_invalidate_range_start(&range);
1001 	}
1002 
1003 	ret = 0;
1004 	dst_pgd = pgd_offset(dst_mm, addr);
1005 	src_pgd = pgd_offset(src_mm, addr);
1006 	do {
1007 		next = pgd_addr_end(addr, end);
1008 		if (pgd_none_or_clear_bad(src_pgd))
1009 			continue;
1010 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1011 					    vma, addr, next))) {
1012 			ret = -ENOMEM;
1013 			break;
1014 		}
1015 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1016 
1017 	if (is_cow)
1018 		mmu_notifier_invalidate_range_end(&range);
1019 	return ret;
1020 }
1021 
1022 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1023 				struct vm_area_struct *vma, pmd_t *pmd,
1024 				unsigned long addr, unsigned long end,
1025 				struct zap_details *details)
1026 {
1027 	struct mm_struct *mm = tlb->mm;
1028 	int force_flush = 0;
1029 	int rss[NR_MM_COUNTERS];
1030 	spinlock_t *ptl;
1031 	pte_t *start_pte;
1032 	pte_t *pte;
1033 	swp_entry_t entry;
1034 
1035 	tlb_change_page_size(tlb, PAGE_SIZE);
1036 again:
1037 	init_rss_vec(rss);
1038 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1039 	pte = start_pte;
1040 	flush_tlb_batched_pending(mm);
1041 	arch_enter_lazy_mmu_mode();
1042 	do {
1043 		pte_t ptent = *pte;
1044 		if (pte_none(ptent))
1045 			continue;
1046 
1047 		if (need_resched())
1048 			break;
1049 
1050 		if (pte_present(ptent)) {
1051 			struct page *page;
1052 
1053 			page = vm_normal_page(vma, addr, ptent);
1054 			if (unlikely(details) && page) {
1055 				/*
1056 				 * unmap_shared_mapping_pages() wants to
1057 				 * invalidate cache without truncating:
1058 				 * unmap shared but keep private pages.
1059 				 */
1060 				if (details->check_mapping &&
1061 				    details->check_mapping != page_rmapping(page))
1062 					continue;
1063 			}
1064 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1065 							tlb->fullmm);
1066 			tlb_remove_tlb_entry(tlb, pte, addr);
1067 			if (unlikely(!page))
1068 				continue;
1069 
1070 			if (!PageAnon(page)) {
1071 				if (pte_dirty(ptent)) {
1072 					force_flush = 1;
1073 					set_page_dirty(page);
1074 				}
1075 				if (pte_young(ptent) &&
1076 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1077 					mark_page_accessed(page);
1078 			}
1079 			rss[mm_counter(page)]--;
1080 			page_remove_rmap(page, false);
1081 			if (unlikely(page_mapcount(page) < 0))
1082 				print_bad_pte(vma, addr, ptent, page);
1083 			if (unlikely(__tlb_remove_page(tlb, page))) {
1084 				force_flush = 1;
1085 				addr += PAGE_SIZE;
1086 				break;
1087 			}
1088 			continue;
1089 		}
1090 
1091 		entry = pte_to_swp_entry(ptent);
1092 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1093 			struct page *page = device_private_entry_to_page(entry);
1094 
1095 			if (unlikely(details && details->check_mapping)) {
1096 				/*
1097 				 * unmap_shared_mapping_pages() wants to
1098 				 * invalidate cache without truncating:
1099 				 * unmap shared but keep private pages.
1100 				 */
1101 				if (details->check_mapping !=
1102 				    page_rmapping(page))
1103 					continue;
1104 			}
1105 
1106 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1107 			rss[mm_counter(page)]--;
1108 			page_remove_rmap(page, false);
1109 			put_page(page);
1110 			continue;
1111 		}
1112 
1113 		/* If details->check_mapping, we leave swap entries. */
1114 		if (unlikely(details))
1115 			continue;
1116 
1117 		if (!non_swap_entry(entry))
1118 			rss[MM_SWAPENTS]--;
1119 		else if (is_migration_entry(entry)) {
1120 			struct page *page;
1121 
1122 			page = migration_entry_to_page(entry);
1123 			rss[mm_counter(page)]--;
1124 		}
1125 		if (unlikely(!free_swap_and_cache(entry)))
1126 			print_bad_pte(vma, addr, ptent, NULL);
1127 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1128 	} while (pte++, addr += PAGE_SIZE, addr != end);
1129 
1130 	add_mm_rss_vec(mm, rss);
1131 	arch_leave_lazy_mmu_mode();
1132 
1133 	/* Do the actual TLB flush before dropping ptl */
1134 	if (force_flush)
1135 		tlb_flush_mmu_tlbonly(tlb);
1136 	pte_unmap_unlock(start_pte, ptl);
1137 
1138 	/*
1139 	 * If we forced a TLB flush (either due to running out of
1140 	 * batch buffers or because we needed to flush dirty TLB
1141 	 * entries before releasing the ptl), free the batched
1142 	 * memory too. Restart if we didn't do everything.
1143 	 */
1144 	if (force_flush) {
1145 		force_flush = 0;
1146 		tlb_flush_mmu(tlb);
1147 	}
1148 
1149 	if (addr != end) {
1150 		cond_resched();
1151 		goto again;
1152 	}
1153 
1154 	return addr;
1155 }
1156 
1157 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1158 				struct vm_area_struct *vma, pud_t *pud,
1159 				unsigned long addr, unsigned long end,
1160 				struct zap_details *details)
1161 {
1162 	pmd_t *pmd;
1163 	unsigned long next;
1164 
1165 	pmd = pmd_offset(pud, addr);
1166 	do {
1167 		next = pmd_addr_end(addr, end);
1168 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1169 			if (next - addr != HPAGE_PMD_SIZE)
1170 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1171 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1172 				goto next;
1173 			/* fall through */
1174 		}
1175 		/*
1176 		 * Here there can be other concurrent MADV_DONTNEED or
1177 		 * trans huge page faults running, and if the pmd is
1178 		 * none or trans huge it can change under us. This is
1179 		 * because MADV_DONTNEED holds the mmap_sem in read
1180 		 * mode.
1181 		 */
1182 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1183 			goto next;
1184 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1185 next:
1186 		cond_resched();
1187 	} while (pmd++, addr = next, addr != end);
1188 
1189 	return addr;
1190 }
1191 
1192 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1193 				struct vm_area_struct *vma, p4d_t *p4d,
1194 				unsigned long addr, unsigned long end,
1195 				struct zap_details *details)
1196 {
1197 	pud_t *pud;
1198 	unsigned long next;
1199 
1200 	pud = pud_offset(p4d, addr);
1201 	do {
1202 		next = pud_addr_end(addr, end);
1203 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1204 			if (next - addr != HPAGE_PUD_SIZE) {
1205 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1206 				split_huge_pud(vma, pud, addr);
1207 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1208 				goto next;
1209 			/* fall through */
1210 		}
1211 		if (pud_none_or_clear_bad(pud))
1212 			continue;
1213 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1214 next:
1215 		cond_resched();
1216 	} while (pud++, addr = next, addr != end);
1217 
1218 	return addr;
1219 }
1220 
1221 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1222 				struct vm_area_struct *vma, pgd_t *pgd,
1223 				unsigned long addr, unsigned long end,
1224 				struct zap_details *details)
1225 {
1226 	p4d_t *p4d;
1227 	unsigned long next;
1228 
1229 	p4d = p4d_offset(pgd, addr);
1230 	do {
1231 		next = p4d_addr_end(addr, end);
1232 		if (p4d_none_or_clear_bad(p4d))
1233 			continue;
1234 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1235 	} while (p4d++, addr = next, addr != end);
1236 
1237 	return addr;
1238 }
1239 
1240 void unmap_page_range(struct mmu_gather *tlb,
1241 			     struct vm_area_struct *vma,
1242 			     unsigned long addr, unsigned long end,
1243 			     struct zap_details *details)
1244 {
1245 	pgd_t *pgd;
1246 	unsigned long next;
1247 
1248 	BUG_ON(addr >= end);
1249 	tlb_start_vma(tlb, vma);
1250 	pgd = pgd_offset(vma->vm_mm, addr);
1251 	do {
1252 		next = pgd_addr_end(addr, end);
1253 		if (pgd_none_or_clear_bad(pgd))
1254 			continue;
1255 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1256 	} while (pgd++, addr = next, addr != end);
1257 	tlb_end_vma(tlb, vma);
1258 }
1259 
1260 
1261 static void unmap_single_vma(struct mmu_gather *tlb,
1262 		struct vm_area_struct *vma, unsigned long start_addr,
1263 		unsigned long end_addr,
1264 		struct zap_details *details)
1265 {
1266 	unsigned long start = max(vma->vm_start, start_addr);
1267 	unsigned long end;
1268 
1269 	if (start >= vma->vm_end)
1270 		return;
1271 	end = min(vma->vm_end, end_addr);
1272 	if (end <= vma->vm_start)
1273 		return;
1274 
1275 	if (vma->vm_file)
1276 		uprobe_munmap(vma, start, end);
1277 
1278 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1279 		untrack_pfn(vma, 0, 0);
1280 
1281 	if (start != end) {
1282 		if (unlikely(is_vm_hugetlb_page(vma))) {
1283 			/*
1284 			 * It is undesirable to test vma->vm_file as it
1285 			 * should be non-null for valid hugetlb area.
1286 			 * However, vm_file will be NULL in the error
1287 			 * cleanup path of mmap_region. When
1288 			 * hugetlbfs ->mmap method fails,
1289 			 * mmap_region() nullifies vma->vm_file
1290 			 * before calling this function to clean up.
1291 			 * Since no pte has actually been setup, it is
1292 			 * safe to do nothing in this case.
1293 			 */
1294 			if (vma->vm_file) {
1295 				i_mmap_lock_write(vma->vm_file->f_mapping);
1296 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1297 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1298 			}
1299 		} else
1300 			unmap_page_range(tlb, vma, start, end, details);
1301 	}
1302 }
1303 
1304 /**
1305  * unmap_vmas - unmap a range of memory covered by a list of vma's
1306  * @tlb: address of the caller's struct mmu_gather
1307  * @vma: the starting vma
1308  * @start_addr: virtual address at which to start unmapping
1309  * @end_addr: virtual address at which to end unmapping
1310  *
1311  * Unmap all pages in the vma list.
1312  *
1313  * Only addresses between `start' and `end' will be unmapped.
1314  *
1315  * The VMA list must be sorted in ascending virtual address order.
1316  *
1317  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1318  * range after unmap_vmas() returns.  So the only responsibility here is to
1319  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1320  * drops the lock and schedules.
1321  */
1322 void unmap_vmas(struct mmu_gather *tlb,
1323 		struct vm_area_struct *vma, unsigned long start_addr,
1324 		unsigned long end_addr)
1325 {
1326 	struct mmu_notifier_range range;
1327 
1328 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1329 				start_addr, end_addr);
1330 	mmu_notifier_invalidate_range_start(&range);
1331 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1332 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1333 	mmu_notifier_invalidate_range_end(&range);
1334 }
1335 
1336 /**
1337  * zap_page_range - remove user pages in a given range
1338  * @vma: vm_area_struct holding the applicable pages
1339  * @start: starting address of pages to zap
1340  * @size: number of bytes to zap
1341  *
1342  * Caller must protect the VMA list
1343  */
1344 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1345 		unsigned long size)
1346 {
1347 	struct mmu_notifier_range range;
1348 	struct mmu_gather tlb;
1349 
1350 	lru_add_drain();
1351 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1352 				start, start + size);
1353 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1354 	update_hiwater_rss(vma->vm_mm);
1355 	mmu_notifier_invalidate_range_start(&range);
1356 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1357 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1358 	mmu_notifier_invalidate_range_end(&range);
1359 	tlb_finish_mmu(&tlb, start, range.end);
1360 }
1361 
1362 /**
1363  * zap_page_range_single - remove user pages in a given range
1364  * @vma: vm_area_struct holding the applicable pages
1365  * @address: starting address of pages to zap
1366  * @size: number of bytes to zap
1367  * @details: details of shared cache invalidation
1368  *
1369  * The range must fit into one VMA.
1370  */
1371 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1372 		unsigned long size, struct zap_details *details)
1373 {
1374 	struct mmu_notifier_range range;
1375 	struct mmu_gather tlb;
1376 
1377 	lru_add_drain();
1378 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1379 				address, address + size);
1380 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1381 	update_hiwater_rss(vma->vm_mm);
1382 	mmu_notifier_invalidate_range_start(&range);
1383 	unmap_single_vma(&tlb, vma, address, range.end, details);
1384 	mmu_notifier_invalidate_range_end(&range);
1385 	tlb_finish_mmu(&tlb, address, range.end);
1386 }
1387 
1388 /**
1389  * zap_vma_ptes - remove ptes mapping the vma
1390  * @vma: vm_area_struct holding ptes to be zapped
1391  * @address: starting address of pages to zap
1392  * @size: number of bytes to zap
1393  *
1394  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1395  *
1396  * The entire address range must be fully contained within the vma.
1397  *
1398  */
1399 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1400 		unsigned long size)
1401 {
1402 	if (address < vma->vm_start || address + size > vma->vm_end ||
1403 	    		!(vma->vm_flags & VM_PFNMAP))
1404 		return;
1405 
1406 	zap_page_range_single(vma, address, size, NULL);
1407 }
1408 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1409 
1410 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1411 			spinlock_t **ptl)
1412 {
1413 	pgd_t *pgd;
1414 	p4d_t *p4d;
1415 	pud_t *pud;
1416 	pmd_t *pmd;
1417 
1418 	pgd = pgd_offset(mm, addr);
1419 	p4d = p4d_alloc(mm, pgd, addr);
1420 	if (!p4d)
1421 		return NULL;
1422 	pud = pud_alloc(mm, p4d, addr);
1423 	if (!pud)
1424 		return NULL;
1425 	pmd = pmd_alloc(mm, pud, addr);
1426 	if (!pmd)
1427 		return NULL;
1428 
1429 	VM_BUG_ON(pmd_trans_huge(*pmd));
1430 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1431 }
1432 
1433 /*
1434  * This is the old fallback for page remapping.
1435  *
1436  * For historical reasons, it only allows reserved pages. Only
1437  * old drivers should use this, and they needed to mark their
1438  * pages reserved for the old functions anyway.
1439  */
1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1441 			struct page *page, pgprot_t prot)
1442 {
1443 	struct mm_struct *mm = vma->vm_mm;
1444 	int retval;
1445 	pte_t *pte;
1446 	spinlock_t *ptl;
1447 
1448 	retval = -EINVAL;
1449 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1450 		goto out;
1451 	retval = -ENOMEM;
1452 	flush_dcache_page(page);
1453 	pte = get_locked_pte(mm, addr, &ptl);
1454 	if (!pte)
1455 		goto out;
1456 	retval = -EBUSY;
1457 	if (!pte_none(*pte))
1458 		goto out_unlock;
1459 
1460 	/* Ok, finally just insert the thing.. */
1461 	get_page(page);
1462 	inc_mm_counter_fast(mm, mm_counter_file(page));
1463 	page_add_file_rmap(page, false);
1464 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1465 
1466 	retval = 0;
1467 out_unlock:
1468 	pte_unmap_unlock(pte, ptl);
1469 out:
1470 	return retval;
1471 }
1472 
1473 /**
1474  * vm_insert_page - insert single page into user vma
1475  * @vma: user vma to map to
1476  * @addr: target user address of this page
1477  * @page: source kernel page
1478  *
1479  * This allows drivers to insert individual pages they've allocated
1480  * into a user vma.
1481  *
1482  * The page has to be a nice clean _individual_ kernel allocation.
1483  * If you allocate a compound page, you need to have marked it as
1484  * such (__GFP_COMP), or manually just split the page up yourself
1485  * (see split_page()).
1486  *
1487  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1488  * took an arbitrary page protection parameter. This doesn't allow
1489  * that. Your vma protection will have to be set up correctly, which
1490  * means that if you want a shared writable mapping, you'd better
1491  * ask for a shared writable mapping!
1492  *
1493  * The page does not need to be reserved.
1494  *
1495  * Usually this function is called from f_op->mmap() handler
1496  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1497  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1498  * function from other places, for example from page-fault handler.
1499  *
1500  * Return: %0 on success, negative error code otherwise.
1501  */
1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1503 			struct page *page)
1504 {
1505 	if (addr < vma->vm_start || addr >= vma->vm_end)
1506 		return -EFAULT;
1507 	if (!page_count(page))
1508 		return -EINVAL;
1509 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1510 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1511 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1512 		vma->vm_flags |= VM_MIXEDMAP;
1513 	}
1514 	return insert_page(vma, addr, page, vma->vm_page_prot);
1515 }
1516 EXPORT_SYMBOL(vm_insert_page);
1517 
1518 /*
1519  * __vm_map_pages - maps range of kernel pages into user vma
1520  * @vma: user vma to map to
1521  * @pages: pointer to array of source kernel pages
1522  * @num: number of pages in page array
1523  * @offset: user's requested vm_pgoff
1524  *
1525  * This allows drivers to map range of kernel pages into a user vma.
1526  *
1527  * Return: 0 on success and error code otherwise.
1528  */
1529 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1530 				unsigned long num, unsigned long offset)
1531 {
1532 	unsigned long count = vma_pages(vma);
1533 	unsigned long uaddr = vma->vm_start;
1534 	int ret, i;
1535 
1536 	/* Fail if the user requested offset is beyond the end of the object */
1537 	if (offset >= num)
1538 		return -ENXIO;
1539 
1540 	/* Fail if the user requested size exceeds available object size */
1541 	if (count > num - offset)
1542 		return -ENXIO;
1543 
1544 	for (i = 0; i < count; i++) {
1545 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1546 		if (ret < 0)
1547 			return ret;
1548 		uaddr += PAGE_SIZE;
1549 	}
1550 
1551 	return 0;
1552 }
1553 
1554 /**
1555  * vm_map_pages - maps range of kernel pages starts with non zero offset
1556  * @vma: user vma to map to
1557  * @pages: pointer to array of source kernel pages
1558  * @num: number of pages in page array
1559  *
1560  * Maps an object consisting of @num pages, catering for the user's
1561  * requested vm_pgoff
1562  *
1563  * If we fail to insert any page into the vma, the function will return
1564  * immediately leaving any previously inserted pages present.  Callers
1565  * from the mmap handler may immediately return the error as their caller
1566  * will destroy the vma, removing any successfully inserted pages. Other
1567  * callers should make their own arrangements for calling unmap_region().
1568  *
1569  * Context: Process context. Called by mmap handlers.
1570  * Return: 0 on success and error code otherwise.
1571  */
1572 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1573 				unsigned long num)
1574 {
1575 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1576 }
1577 EXPORT_SYMBOL(vm_map_pages);
1578 
1579 /**
1580  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1581  * @vma: user vma to map to
1582  * @pages: pointer to array of source kernel pages
1583  * @num: number of pages in page array
1584  *
1585  * Similar to vm_map_pages(), except that it explicitly sets the offset
1586  * to 0. This function is intended for the drivers that did not consider
1587  * vm_pgoff.
1588  *
1589  * Context: Process context. Called by mmap handlers.
1590  * Return: 0 on success and error code otherwise.
1591  */
1592 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1593 				unsigned long num)
1594 {
1595 	return __vm_map_pages(vma, pages, num, 0);
1596 }
1597 EXPORT_SYMBOL(vm_map_pages_zero);
1598 
1599 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1600 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1601 {
1602 	struct mm_struct *mm = vma->vm_mm;
1603 	pte_t *pte, entry;
1604 	spinlock_t *ptl;
1605 
1606 	pte = get_locked_pte(mm, addr, &ptl);
1607 	if (!pte)
1608 		return VM_FAULT_OOM;
1609 	if (!pte_none(*pte)) {
1610 		if (mkwrite) {
1611 			/*
1612 			 * For read faults on private mappings the PFN passed
1613 			 * in may not match the PFN we have mapped if the
1614 			 * mapped PFN is a writeable COW page.  In the mkwrite
1615 			 * case we are creating a writable PTE for a shared
1616 			 * mapping and we expect the PFNs to match. If they
1617 			 * don't match, we are likely racing with block
1618 			 * allocation and mapping invalidation so just skip the
1619 			 * update.
1620 			 */
1621 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1622 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1623 				goto out_unlock;
1624 			}
1625 			entry = pte_mkyoung(*pte);
1626 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1627 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1628 				update_mmu_cache(vma, addr, pte);
1629 		}
1630 		goto out_unlock;
1631 	}
1632 
1633 	/* Ok, finally just insert the thing.. */
1634 	if (pfn_t_devmap(pfn))
1635 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1636 	else
1637 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1638 
1639 	if (mkwrite) {
1640 		entry = pte_mkyoung(entry);
1641 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1642 	}
1643 
1644 	set_pte_at(mm, addr, pte, entry);
1645 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1646 
1647 out_unlock:
1648 	pte_unmap_unlock(pte, ptl);
1649 	return VM_FAULT_NOPAGE;
1650 }
1651 
1652 /**
1653  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1654  * @vma: user vma to map to
1655  * @addr: target user address of this page
1656  * @pfn: source kernel pfn
1657  * @pgprot: pgprot flags for the inserted page
1658  *
1659  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1660  * to override pgprot on a per-page basis.
1661  *
1662  * This only makes sense for IO mappings, and it makes no sense for
1663  * COW mappings.  In general, using multiple vmas is preferable;
1664  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1665  * impractical.
1666  *
1667  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1668  * a value of @pgprot different from that of @vma->vm_page_prot.
1669  *
1670  * Context: Process context.  May allocate using %GFP_KERNEL.
1671  * Return: vm_fault_t value.
1672  */
1673 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1674 			unsigned long pfn, pgprot_t pgprot)
1675 {
1676 	/*
1677 	 * Technically, architectures with pte_special can avoid all these
1678 	 * restrictions (same for remap_pfn_range).  However we would like
1679 	 * consistency in testing and feature parity among all, so we should
1680 	 * try to keep these invariants in place for everybody.
1681 	 */
1682 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1683 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1684 						(VM_PFNMAP|VM_MIXEDMAP));
1685 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1686 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1687 
1688 	if (addr < vma->vm_start || addr >= vma->vm_end)
1689 		return VM_FAULT_SIGBUS;
1690 
1691 	if (!pfn_modify_allowed(pfn, pgprot))
1692 		return VM_FAULT_SIGBUS;
1693 
1694 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1695 
1696 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1697 			false);
1698 }
1699 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1700 
1701 /**
1702  * vmf_insert_pfn - insert single pfn into user vma
1703  * @vma: user vma to map to
1704  * @addr: target user address of this page
1705  * @pfn: source kernel pfn
1706  *
1707  * Similar to vm_insert_page, this allows drivers to insert individual pages
1708  * they've allocated into a user vma. Same comments apply.
1709  *
1710  * This function should only be called from a vm_ops->fault handler, and
1711  * in that case the handler should return the result of this function.
1712  *
1713  * vma cannot be a COW mapping.
1714  *
1715  * As this is called only for pages that do not currently exist, we
1716  * do not need to flush old virtual caches or the TLB.
1717  *
1718  * Context: Process context.  May allocate using %GFP_KERNEL.
1719  * Return: vm_fault_t value.
1720  */
1721 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1722 			unsigned long pfn)
1723 {
1724 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1725 }
1726 EXPORT_SYMBOL(vmf_insert_pfn);
1727 
1728 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1729 {
1730 	/* these checks mirror the abort conditions in vm_normal_page */
1731 	if (vma->vm_flags & VM_MIXEDMAP)
1732 		return true;
1733 	if (pfn_t_devmap(pfn))
1734 		return true;
1735 	if (pfn_t_special(pfn))
1736 		return true;
1737 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1738 		return true;
1739 	return false;
1740 }
1741 
1742 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1743 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1744 		bool mkwrite)
1745 {
1746 	int err;
1747 
1748 	BUG_ON(!vm_mixed_ok(vma, pfn));
1749 
1750 	if (addr < vma->vm_start || addr >= vma->vm_end)
1751 		return VM_FAULT_SIGBUS;
1752 
1753 	track_pfn_insert(vma, &pgprot, pfn);
1754 
1755 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1756 		return VM_FAULT_SIGBUS;
1757 
1758 	/*
1759 	 * If we don't have pte special, then we have to use the pfn_valid()
1760 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1761 	 * refcount the page if pfn_valid is true (hence insert_page rather
1762 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1763 	 * without pte special, it would there be refcounted as a normal page.
1764 	 */
1765 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1766 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1767 		struct page *page;
1768 
1769 		/*
1770 		 * At this point we are committed to insert_page()
1771 		 * regardless of whether the caller specified flags that
1772 		 * result in pfn_t_has_page() == false.
1773 		 */
1774 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1775 		err = insert_page(vma, addr, page, pgprot);
1776 	} else {
1777 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1778 	}
1779 
1780 	if (err == -ENOMEM)
1781 		return VM_FAULT_OOM;
1782 	if (err < 0 && err != -EBUSY)
1783 		return VM_FAULT_SIGBUS;
1784 
1785 	return VM_FAULT_NOPAGE;
1786 }
1787 
1788 /**
1789  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1790  * @vma: user vma to map to
1791  * @addr: target user address of this page
1792  * @pfn: source kernel pfn
1793  * @pgprot: pgprot flags for the inserted page
1794  *
1795  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1796  * to override pgprot on a per-page basis.
1797  *
1798  * Typically this function should be used by drivers to set caching- and
1799  * encryption bits different than those of @vma->vm_page_prot, because
1800  * the caching- or encryption mode may not be known at mmap() time.
1801  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1802  * to set caching and encryption bits for those vmas (except for COW pages).
1803  * This is ensured by core vm only modifying these page table entries using
1804  * functions that don't touch caching- or encryption bits, using pte_modify()
1805  * if needed. (See for example mprotect()).
1806  * Also when new page-table entries are created, this is only done using the
1807  * fault() callback, and never using the value of vma->vm_page_prot,
1808  * except for page-table entries that point to anonymous pages as the result
1809  * of COW.
1810  *
1811  * Context: Process context.  May allocate using %GFP_KERNEL.
1812  * Return: vm_fault_t value.
1813  */
1814 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1815 				 pfn_t pfn, pgprot_t pgprot)
1816 {
1817 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1818 }
1819 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1820 
1821 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1822 		pfn_t pfn)
1823 {
1824 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1825 }
1826 EXPORT_SYMBOL(vmf_insert_mixed);
1827 
1828 /*
1829  *  If the insertion of PTE failed because someone else already added a
1830  *  different entry in the mean time, we treat that as success as we assume
1831  *  the same entry was actually inserted.
1832  */
1833 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1834 		unsigned long addr, pfn_t pfn)
1835 {
1836 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1837 }
1838 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1839 
1840 /*
1841  * maps a range of physical memory into the requested pages. the old
1842  * mappings are removed. any references to nonexistent pages results
1843  * in null mappings (currently treated as "copy-on-access")
1844  */
1845 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1846 			unsigned long addr, unsigned long end,
1847 			unsigned long pfn, pgprot_t prot)
1848 {
1849 	pte_t *pte;
1850 	spinlock_t *ptl;
1851 	int err = 0;
1852 
1853 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1854 	if (!pte)
1855 		return -ENOMEM;
1856 	arch_enter_lazy_mmu_mode();
1857 	do {
1858 		BUG_ON(!pte_none(*pte));
1859 		if (!pfn_modify_allowed(pfn, prot)) {
1860 			err = -EACCES;
1861 			break;
1862 		}
1863 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1864 		pfn++;
1865 	} while (pte++, addr += PAGE_SIZE, addr != end);
1866 	arch_leave_lazy_mmu_mode();
1867 	pte_unmap_unlock(pte - 1, ptl);
1868 	return err;
1869 }
1870 
1871 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1872 			unsigned long addr, unsigned long end,
1873 			unsigned long pfn, pgprot_t prot)
1874 {
1875 	pmd_t *pmd;
1876 	unsigned long next;
1877 	int err;
1878 
1879 	pfn -= addr >> PAGE_SHIFT;
1880 	pmd = pmd_alloc(mm, pud, addr);
1881 	if (!pmd)
1882 		return -ENOMEM;
1883 	VM_BUG_ON(pmd_trans_huge(*pmd));
1884 	do {
1885 		next = pmd_addr_end(addr, end);
1886 		err = remap_pte_range(mm, pmd, addr, next,
1887 				pfn + (addr >> PAGE_SHIFT), prot);
1888 		if (err)
1889 			return err;
1890 	} while (pmd++, addr = next, addr != end);
1891 	return 0;
1892 }
1893 
1894 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1895 			unsigned long addr, unsigned long end,
1896 			unsigned long pfn, pgprot_t prot)
1897 {
1898 	pud_t *pud;
1899 	unsigned long next;
1900 	int err;
1901 
1902 	pfn -= addr >> PAGE_SHIFT;
1903 	pud = pud_alloc(mm, p4d, addr);
1904 	if (!pud)
1905 		return -ENOMEM;
1906 	do {
1907 		next = pud_addr_end(addr, end);
1908 		err = remap_pmd_range(mm, pud, addr, next,
1909 				pfn + (addr >> PAGE_SHIFT), prot);
1910 		if (err)
1911 			return err;
1912 	} while (pud++, addr = next, addr != end);
1913 	return 0;
1914 }
1915 
1916 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1917 			unsigned long addr, unsigned long end,
1918 			unsigned long pfn, pgprot_t prot)
1919 {
1920 	p4d_t *p4d;
1921 	unsigned long next;
1922 	int err;
1923 
1924 	pfn -= addr >> PAGE_SHIFT;
1925 	p4d = p4d_alloc(mm, pgd, addr);
1926 	if (!p4d)
1927 		return -ENOMEM;
1928 	do {
1929 		next = p4d_addr_end(addr, end);
1930 		err = remap_pud_range(mm, p4d, addr, next,
1931 				pfn + (addr >> PAGE_SHIFT), prot);
1932 		if (err)
1933 			return err;
1934 	} while (p4d++, addr = next, addr != end);
1935 	return 0;
1936 }
1937 
1938 /**
1939  * remap_pfn_range - remap kernel memory to userspace
1940  * @vma: user vma to map to
1941  * @addr: target user address to start at
1942  * @pfn: physical address of kernel memory
1943  * @size: size of map area
1944  * @prot: page protection flags for this mapping
1945  *
1946  * Note: this is only safe if the mm semaphore is held when called.
1947  *
1948  * Return: %0 on success, negative error code otherwise.
1949  */
1950 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1951 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1952 {
1953 	pgd_t *pgd;
1954 	unsigned long next;
1955 	unsigned long end = addr + PAGE_ALIGN(size);
1956 	struct mm_struct *mm = vma->vm_mm;
1957 	unsigned long remap_pfn = pfn;
1958 	int err;
1959 
1960 	/*
1961 	 * Physically remapped pages are special. Tell the
1962 	 * rest of the world about it:
1963 	 *   VM_IO tells people not to look at these pages
1964 	 *	(accesses can have side effects).
1965 	 *   VM_PFNMAP tells the core MM that the base pages are just
1966 	 *	raw PFN mappings, and do not have a "struct page" associated
1967 	 *	with them.
1968 	 *   VM_DONTEXPAND
1969 	 *      Disable vma merging and expanding with mremap().
1970 	 *   VM_DONTDUMP
1971 	 *      Omit vma from core dump, even when VM_IO turned off.
1972 	 *
1973 	 * There's a horrible special case to handle copy-on-write
1974 	 * behaviour that some programs depend on. We mark the "original"
1975 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1976 	 * See vm_normal_page() for details.
1977 	 */
1978 	if (is_cow_mapping(vma->vm_flags)) {
1979 		if (addr != vma->vm_start || end != vma->vm_end)
1980 			return -EINVAL;
1981 		vma->vm_pgoff = pfn;
1982 	}
1983 
1984 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1985 	if (err)
1986 		return -EINVAL;
1987 
1988 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1989 
1990 	BUG_ON(addr >= end);
1991 	pfn -= addr >> PAGE_SHIFT;
1992 	pgd = pgd_offset(mm, addr);
1993 	flush_cache_range(vma, addr, end);
1994 	do {
1995 		next = pgd_addr_end(addr, end);
1996 		err = remap_p4d_range(mm, pgd, addr, next,
1997 				pfn + (addr >> PAGE_SHIFT), prot);
1998 		if (err)
1999 			break;
2000 	} while (pgd++, addr = next, addr != end);
2001 
2002 	if (err)
2003 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2004 
2005 	return err;
2006 }
2007 EXPORT_SYMBOL(remap_pfn_range);
2008 
2009 /**
2010  * vm_iomap_memory - remap memory to userspace
2011  * @vma: user vma to map to
2012  * @start: start of area
2013  * @len: size of area
2014  *
2015  * This is a simplified io_remap_pfn_range() for common driver use. The
2016  * driver just needs to give us the physical memory range to be mapped,
2017  * we'll figure out the rest from the vma information.
2018  *
2019  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2020  * whatever write-combining details or similar.
2021  *
2022  * Return: %0 on success, negative error code otherwise.
2023  */
2024 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2025 {
2026 	unsigned long vm_len, pfn, pages;
2027 
2028 	/* Check that the physical memory area passed in looks valid */
2029 	if (start + len < start)
2030 		return -EINVAL;
2031 	/*
2032 	 * You *really* shouldn't map things that aren't page-aligned,
2033 	 * but we've historically allowed it because IO memory might
2034 	 * just have smaller alignment.
2035 	 */
2036 	len += start & ~PAGE_MASK;
2037 	pfn = start >> PAGE_SHIFT;
2038 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2039 	if (pfn + pages < pfn)
2040 		return -EINVAL;
2041 
2042 	/* We start the mapping 'vm_pgoff' pages into the area */
2043 	if (vma->vm_pgoff > pages)
2044 		return -EINVAL;
2045 	pfn += vma->vm_pgoff;
2046 	pages -= vma->vm_pgoff;
2047 
2048 	/* Can we fit all of the mapping? */
2049 	vm_len = vma->vm_end - vma->vm_start;
2050 	if (vm_len >> PAGE_SHIFT > pages)
2051 		return -EINVAL;
2052 
2053 	/* Ok, let it rip */
2054 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2055 }
2056 EXPORT_SYMBOL(vm_iomap_memory);
2057 
2058 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2059 				     unsigned long addr, unsigned long end,
2060 				     pte_fn_t fn, void *data, bool create)
2061 {
2062 	pte_t *pte;
2063 	int err = 0;
2064 	spinlock_t *uninitialized_var(ptl);
2065 
2066 	if (create) {
2067 		pte = (mm == &init_mm) ?
2068 			pte_alloc_kernel(pmd, addr) :
2069 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2070 		if (!pte)
2071 			return -ENOMEM;
2072 	} else {
2073 		pte = (mm == &init_mm) ?
2074 			pte_offset_kernel(pmd, addr) :
2075 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2076 	}
2077 
2078 	BUG_ON(pmd_huge(*pmd));
2079 
2080 	arch_enter_lazy_mmu_mode();
2081 
2082 	do {
2083 		if (create || !pte_none(*pte)) {
2084 			err = fn(pte++, addr, data);
2085 			if (err)
2086 				break;
2087 		}
2088 	} while (addr += PAGE_SIZE, addr != end);
2089 
2090 	arch_leave_lazy_mmu_mode();
2091 
2092 	if (mm != &init_mm)
2093 		pte_unmap_unlock(pte-1, ptl);
2094 	return err;
2095 }
2096 
2097 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2098 				     unsigned long addr, unsigned long end,
2099 				     pte_fn_t fn, void *data, bool create)
2100 {
2101 	pmd_t *pmd;
2102 	unsigned long next;
2103 	int err = 0;
2104 
2105 	BUG_ON(pud_huge(*pud));
2106 
2107 	if (create) {
2108 		pmd = pmd_alloc(mm, pud, addr);
2109 		if (!pmd)
2110 			return -ENOMEM;
2111 	} else {
2112 		pmd = pmd_offset(pud, addr);
2113 	}
2114 	do {
2115 		next = pmd_addr_end(addr, end);
2116 		if (create || !pmd_none_or_clear_bad(pmd)) {
2117 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2118 						 create);
2119 			if (err)
2120 				break;
2121 		}
2122 	} while (pmd++, addr = next, addr != end);
2123 	return err;
2124 }
2125 
2126 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2127 				     unsigned long addr, unsigned long end,
2128 				     pte_fn_t fn, void *data, bool create)
2129 {
2130 	pud_t *pud;
2131 	unsigned long next;
2132 	int err = 0;
2133 
2134 	if (create) {
2135 		pud = pud_alloc(mm, p4d, addr);
2136 		if (!pud)
2137 			return -ENOMEM;
2138 	} else {
2139 		pud = pud_offset(p4d, addr);
2140 	}
2141 	do {
2142 		next = pud_addr_end(addr, end);
2143 		if (create || !pud_none_or_clear_bad(pud)) {
2144 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2145 						 create);
2146 			if (err)
2147 				break;
2148 		}
2149 	} while (pud++, addr = next, addr != end);
2150 	return err;
2151 }
2152 
2153 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2154 				     unsigned long addr, unsigned long end,
2155 				     pte_fn_t fn, void *data, bool create)
2156 {
2157 	p4d_t *p4d;
2158 	unsigned long next;
2159 	int err = 0;
2160 
2161 	if (create) {
2162 		p4d = p4d_alloc(mm, pgd, addr);
2163 		if (!p4d)
2164 			return -ENOMEM;
2165 	} else {
2166 		p4d = p4d_offset(pgd, addr);
2167 	}
2168 	do {
2169 		next = p4d_addr_end(addr, end);
2170 		if (create || !p4d_none_or_clear_bad(p4d)) {
2171 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2172 						 create);
2173 			if (err)
2174 				break;
2175 		}
2176 	} while (p4d++, addr = next, addr != end);
2177 	return err;
2178 }
2179 
2180 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2181 				 unsigned long size, pte_fn_t fn,
2182 				 void *data, bool create)
2183 {
2184 	pgd_t *pgd;
2185 	unsigned long next;
2186 	unsigned long end = addr + size;
2187 	int err = 0;
2188 
2189 	if (WARN_ON(addr >= end))
2190 		return -EINVAL;
2191 
2192 	pgd = pgd_offset(mm, addr);
2193 	do {
2194 		next = pgd_addr_end(addr, end);
2195 		if (!create && pgd_none_or_clear_bad(pgd))
2196 			continue;
2197 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2198 		if (err)
2199 			break;
2200 	} while (pgd++, addr = next, addr != end);
2201 
2202 	return err;
2203 }
2204 
2205 /*
2206  * Scan a region of virtual memory, filling in page tables as necessary
2207  * and calling a provided function on each leaf page table.
2208  */
2209 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2210 			unsigned long size, pte_fn_t fn, void *data)
2211 {
2212 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2213 }
2214 EXPORT_SYMBOL_GPL(apply_to_page_range);
2215 
2216 /*
2217  * Scan a region of virtual memory, calling a provided function on
2218  * each leaf page table where it exists.
2219  *
2220  * Unlike apply_to_page_range, this does _not_ fill in page tables
2221  * where they are absent.
2222  */
2223 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2224 				 unsigned long size, pte_fn_t fn, void *data)
2225 {
2226 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2227 }
2228 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2229 
2230 /*
2231  * handle_pte_fault chooses page fault handler according to an entry which was
2232  * read non-atomically.  Before making any commitment, on those architectures
2233  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2234  * parts, do_swap_page must check under lock before unmapping the pte and
2235  * proceeding (but do_wp_page is only called after already making such a check;
2236  * and do_anonymous_page can safely check later on).
2237  */
2238 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2239 				pte_t *page_table, pte_t orig_pte)
2240 {
2241 	int same = 1;
2242 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2243 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2244 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2245 		spin_lock(ptl);
2246 		same = pte_same(*page_table, orig_pte);
2247 		spin_unlock(ptl);
2248 	}
2249 #endif
2250 	pte_unmap(page_table);
2251 	return same;
2252 }
2253 
2254 static inline bool cow_user_page(struct page *dst, struct page *src,
2255 				 struct vm_fault *vmf)
2256 {
2257 	bool ret;
2258 	void *kaddr;
2259 	void __user *uaddr;
2260 	bool locked = false;
2261 	struct vm_area_struct *vma = vmf->vma;
2262 	struct mm_struct *mm = vma->vm_mm;
2263 	unsigned long addr = vmf->address;
2264 
2265 	debug_dma_assert_idle(src);
2266 
2267 	if (likely(src)) {
2268 		copy_user_highpage(dst, src, addr, vma);
2269 		return true;
2270 	}
2271 
2272 	/*
2273 	 * If the source page was a PFN mapping, we don't have
2274 	 * a "struct page" for it. We do a best-effort copy by
2275 	 * just copying from the original user address. If that
2276 	 * fails, we just zero-fill it. Live with it.
2277 	 */
2278 	kaddr = kmap_atomic(dst);
2279 	uaddr = (void __user *)(addr & PAGE_MASK);
2280 
2281 	/*
2282 	 * On architectures with software "accessed" bits, we would
2283 	 * take a double page fault, so mark it accessed here.
2284 	 */
2285 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2286 		pte_t entry;
2287 
2288 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2289 		locked = true;
2290 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2291 			/*
2292 			 * Other thread has already handled the fault
2293 			 * and we don't need to do anything. If it's
2294 			 * not the case, the fault will be triggered
2295 			 * again on the same address.
2296 			 */
2297 			ret = false;
2298 			goto pte_unlock;
2299 		}
2300 
2301 		entry = pte_mkyoung(vmf->orig_pte);
2302 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2303 			update_mmu_cache(vma, addr, vmf->pte);
2304 	}
2305 
2306 	/*
2307 	 * This really shouldn't fail, because the page is there
2308 	 * in the page tables. But it might just be unreadable,
2309 	 * in which case we just give up and fill the result with
2310 	 * zeroes.
2311 	 */
2312 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2313 		if (locked)
2314 			goto warn;
2315 
2316 		/* Re-validate under PTL if the page is still mapped */
2317 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2318 		locked = true;
2319 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2320 			/* The PTE changed under us. Retry page fault. */
2321 			ret = false;
2322 			goto pte_unlock;
2323 		}
2324 
2325 		/*
2326 		 * The same page can be mapped back since last copy attampt.
2327 		 * Try to copy again under PTL.
2328 		 */
2329 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2330 			/*
2331 			 * Give a warn in case there can be some obscure
2332 			 * use-case
2333 			 */
2334 warn:
2335 			WARN_ON_ONCE(1);
2336 			clear_page(kaddr);
2337 		}
2338 	}
2339 
2340 	ret = true;
2341 
2342 pte_unlock:
2343 	if (locked)
2344 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2345 	kunmap_atomic(kaddr);
2346 	flush_dcache_page(dst);
2347 
2348 	return ret;
2349 }
2350 
2351 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2352 {
2353 	struct file *vm_file = vma->vm_file;
2354 
2355 	if (vm_file)
2356 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2357 
2358 	/*
2359 	 * Special mappings (e.g. VDSO) do not have any file so fake
2360 	 * a default GFP_KERNEL for them.
2361 	 */
2362 	return GFP_KERNEL;
2363 }
2364 
2365 /*
2366  * Notify the address space that the page is about to become writable so that
2367  * it can prohibit this or wait for the page to get into an appropriate state.
2368  *
2369  * We do this without the lock held, so that it can sleep if it needs to.
2370  */
2371 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2372 {
2373 	vm_fault_t ret;
2374 	struct page *page = vmf->page;
2375 	unsigned int old_flags = vmf->flags;
2376 
2377 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2378 
2379 	if (vmf->vma->vm_file &&
2380 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2381 		return VM_FAULT_SIGBUS;
2382 
2383 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2384 	/* Restore original flags so that caller is not surprised */
2385 	vmf->flags = old_flags;
2386 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2387 		return ret;
2388 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2389 		lock_page(page);
2390 		if (!page->mapping) {
2391 			unlock_page(page);
2392 			return 0; /* retry */
2393 		}
2394 		ret |= VM_FAULT_LOCKED;
2395 	} else
2396 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2397 	return ret;
2398 }
2399 
2400 /*
2401  * Handle dirtying of a page in shared file mapping on a write fault.
2402  *
2403  * The function expects the page to be locked and unlocks it.
2404  */
2405 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2406 {
2407 	struct vm_area_struct *vma = vmf->vma;
2408 	struct address_space *mapping;
2409 	struct page *page = vmf->page;
2410 	bool dirtied;
2411 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2412 
2413 	dirtied = set_page_dirty(page);
2414 	VM_BUG_ON_PAGE(PageAnon(page), page);
2415 	/*
2416 	 * Take a local copy of the address_space - page.mapping may be zeroed
2417 	 * by truncate after unlock_page().   The address_space itself remains
2418 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2419 	 * release semantics to prevent the compiler from undoing this copying.
2420 	 */
2421 	mapping = page_rmapping(page);
2422 	unlock_page(page);
2423 
2424 	if (!page_mkwrite)
2425 		file_update_time(vma->vm_file);
2426 
2427 	/*
2428 	 * Throttle page dirtying rate down to writeback speed.
2429 	 *
2430 	 * mapping may be NULL here because some device drivers do not
2431 	 * set page.mapping but still dirty their pages
2432 	 *
2433 	 * Drop the mmap_sem before waiting on IO, if we can. The file
2434 	 * is pinning the mapping, as per above.
2435 	 */
2436 	if ((dirtied || page_mkwrite) && mapping) {
2437 		struct file *fpin;
2438 
2439 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2440 		balance_dirty_pages_ratelimited(mapping);
2441 		if (fpin) {
2442 			fput(fpin);
2443 			return VM_FAULT_RETRY;
2444 		}
2445 	}
2446 
2447 	return 0;
2448 }
2449 
2450 /*
2451  * Handle write page faults for pages that can be reused in the current vma
2452  *
2453  * This can happen either due to the mapping being with the VM_SHARED flag,
2454  * or due to us being the last reference standing to the page. In either
2455  * case, all we need to do here is to mark the page as writable and update
2456  * any related book-keeping.
2457  */
2458 static inline void wp_page_reuse(struct vm_fault *vmf)
2459 	__releases(vmf->ptl)
2460 {
2461 	struct vm_area_struct *vma = vmf->vma;
2462 	struct page *page = vmf->page;
2463 	pte_t entry;
2464 	/*
2465 	 * Clear the pages cpupid information as the existing
2466 	 * information potentially belongs to a now completely
2467 	 * unrelated process.
2468 	 */
2469 	if (page)
2470 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2471 
2472 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2473 	entry = pte_mkyoung(vmf->orig_pte);
2474 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2475 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2476 		update_mmu_cache(vma, vmf->address, vmf->pte);
2477 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2478 }
2479 
2480 /*
2481  * Handle the case of a page which we actually need to copy to a new page.
2482  *
2483  * Called with mmap_sem locked and the old page referenced, but
2484  * without the ptl held.
2485  *
2486  * High level logic flow:
2487  *
2488  * - Allocate a page, copy the content of the old page to the new one.
2489  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2490  * - Take the PTL. If the pte changed, bail out and release the allocated page
2491  * - If the pte is still the way we remember it, update the page table and all
2492  *   relevant references. This includes dropping the reference the page-table
2493  *   held to the old page, as well as updating the rmap.
2494  * - In any case, unlock the PTL and drop the reference we took to the old page.
2495  */
2496 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2497 {
2498 	struct vm_area_struct *vma = vmf->vma;
2499 	struct mm_struct *mm = vma->vm_mm;
2500 	struct page *old_page = vmf->page;
2501 	struct page *new_page = NULL;
2502 	pte_t entry;
2503 	int page_copied = 0;
2504 	struct mem_cgroup *memcg;
2505 	struct mmu_notifier_range range;
2506 
2507 	if (unlikely(anon_vma_prepare(vma)))
2508 		goto oom;
2509 
2510 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2511 		new_page = alloc_zeroed_user_highpage_movable(vma,
2512 							      vmf->address);
2513 		if (!new_page)
2514 			goto oom;
2515 	} else {
2516 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2517 				vmf->address);
2518 		if (!new_page)
2519 			goto oom;
2520 
2521 		if (!cow_user_page(new_page, old_page, vmf)) {
2522 			/*
2523 			 * COW failed, if the fault was solved by other,
2524 			 * it's fine. If not, userspace would re-fault on
2525 			 * the same address and we will handle the fault
2526 			 * from the second attempt.
2527 			 */
2528 			put_page(new_page);
2529 			if (old_page)
2530 				put_page(old_page);
2531 			return 0;
2532 		}
2533 	}
2534 
2535 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2536 		goto oom_free_new;
2537 
2538 	__SetPageUptodate(new_page);
2539 
2540 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2541 				vmf->address & PAGE_MASK,
2542 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2543 	mmu_notifier_invalidate_range_start(&range);
2544 
2545 	/*
2546 	 * Re-check the pte - we dropped the lock
2547 	 */
2548 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2549 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2550 		if (old_page) {
2551 			if (!PageAnon(old_page)) {
2552 				dec_mm_counter_fast(mm,
2553 						mm_counter_file(old_page));
2554 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2555 			}
2556 		} else {
2557 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2558 		}
2559 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2560 		entry = mk_pte(new_page, vma->vm_page_prot);
2561 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2562 		/*
2563 		 * Clear the pte entry and flush it first, before updating the
2564 		 * pte with the new entry. This will avoid a race condition
2565 		 * seen in the presence of one thread doing SMC and another
2566 		 * thread doing COW.
2567 		 */
2568 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2569 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2570 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2571 		lru_cache_add_active_or_unevictable(new_page, vma);
2572 		/*
2573 		 * We call the notify macro here because, when using secondary
2574 		 * mmu page tables (such as kvm shadow page tables), we want the
2575 		 * new page to be mapped directly into the secondary page table.
2576 		 */
2577 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2578 		update_mmu_cache(vma, vmf->address, vmf->pte);
2579 		if (old_page) {
2580 			/*
2581 			 * Only after switching the pte to the new page may
2582 			 * we remove the mapcount here. Otherwise another
2583 			 * process may come and find the rmap count decremented
2584 			 * before the pte is switched to the new page, and
2585 			 * "reuse" the old page writing into it while our pte
2586 			 * here still points into it and can be read by other
2587 			 * threads.
2588 			 *
2589 			 * The critical issue is to order this
2590 			 * page_remove_rmap with the ptp_clear_flush above.
2591 			 * Those stores are ordered by (if nothing else,)
2592 			 * the barrier present in the atomic_add_negative
2593 			 * in page_remove_rmap.
2594 			 *
2595 			 * Then the TLB flush in ptep_clear_flush ensures that
2596 			 * no process can access the old page before the
2597 			 * decremented mapcount is visible. And the old page
2598 			 * cannot be reused until after the decremented
2599 			 * mapcount is visible. So transitively, TLBs to
2600 			 * old page will be flushed before it can be reused.
2601 			 */
2602 			page_remove_rmap(old_page, false);
2603 		}
2604 
2605 		/* Free the old page.. */
2606 		new_page = old_page;
2607 		page_copied = 1;
2608 	} else {
2609 		mem_cgroup_cancel_charge(new_page, memcg, false);
2610 	}
2611 
2612 	if (new_page)
2613 		put_page(new_page);
2614 
2615 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2616 	/*
2617 	 * No need to double call mmu_notifier->invalidate_range() callback as
2618 	 * the above ptep_clear_flush_notify() did already call it.
2619 	 */
2620 	mmu_notifier_invalidate_range_only_end(&range);
2621 	if (old_page) {
2622 		/*
2623 		 * Don't let another task, with possibly unlocked vma,
2624 		 * keep the mlocked page.
2625 		 */
2626 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2627 			lock_page(old_page);	/* LRU manipulation */
2628 			if (PageMlocked(old_page))
2629 				munlock_vma_page(old_page);
2630 			unlock_page(old_page);
2631 		}
2632 		put_page(old_page);
2633 	}
2634 	return page_copied ? VM_FAULT_WRITE : 0;
2635 oom_free_new:
2636 	put_page(new_page);
2637 oom:
2638 	if (old_page)
2639 		put_page(old_page);
2640 	return VM_FAULT_OOM;
2641 }
2642 
2643 /**
2644  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2645  *			  writeable once the page is prepared
2646  *
2647  * @vmf: structure describing the fault
2648  *
2649  * This function handles all that is needed to finish a write page fault in a
2650  * shared mapping due to PTE being read-only once the mapped page is prepared.
2651  * It handles locking of PTE and modifying it.
2652  *
2653  * The function expects the page to be locked or other protection against
2654  * concurrent faults / writeback (such as DAX radix tree locks).
2655  *
2656  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2657  * we acquired PTE lock.
2658  */
2659 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2660 {
2661 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2662 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2663 				       &vmf->ptl);
2664 	/*
2665 	 * We might have raced with another page fault while we released the
2666 	 * pte_offset_map_lock.
2667 	 */
2668 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2669 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2670 		return VM_FAULT_NOPAGE;
2671 	}
2672 	wp_page_reuse(vmf);
2673 	return 0;
2674 }
2675 
2676 /*
2677  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2678  * mapping
2679  */
2680 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2681 {
2682 	struct vm_area_struct *vma = vmf->vma;
2683 
2684 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2685 		vm_fault_t ret;
2686 
2687 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2688 		vmf->flags |= FAULT_FLAG_MKWRITE;
2689 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2690 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2691 			return ret;
2692 		return finish_mkwrite_fault(vmf);
2693 	}
2694 	wp_page_reuse(vmf);
2695 	return VM_FAULT_WRITE;
2696 }
2697 
2698 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2699 	__releases(vmf->ptl)
2700 {
2701 	struct vm_area_struct *vma = vmf->vma;
2702 	vm_fault_t ret = VM_FAULT_WRITE;
2703 
2704 	get_page(vmf->page);
2705 
2706 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2707 		vm_fault_t tmp;
2708 
2709 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2710 		tmp = do_page_mkwrite(vmf);
2711 		if (unlikely(!tmp || (tmp &
2712 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2713 			put_page(vmf->page);
2714 			return tmp;
2715 		}
2716 		tmp = finish_mkwrite_fault(vmf);
2717 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2718 			unlock_page(vmf->page);
2719 			put_page(vmf->page);
2720 			return tmp;
2721 		}
2722 	} else {
2723 		wp_page_reuse(vmf);
2724 		lock_page(vmf->page);
2725 	}
2726 	ret |= fault_dirty_shared_page(vmf);
2727 	put_page(vmf->page);
2728 
2729 	return ret;
2730 }
2731 
2732 /*
2733  * This routine handles present pages, when users try to write
2734  * to a shared page. It is done by copying the page to a new address
2735  * and decrementing the shared-page counter for the old page.
2736  *
2737  * Note that this routine assumes that the protection checks have been
2738  * done by the caller (the low-level page fault routine in most cases).
2739  * Thus we can safely just mark it writable once we've done any necessary
2740  * COW.
2741  *
2742  * We also mark the page dirty at this point even though the page will
2743  * change only once the write actually happens. This avoids a few races,
2744  * and potentially makes it more efficient.
2745  *
2746  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2747  * but allow concurrent faults), with pte both mapped and locked.
2748  * We return with mmap_sem still held, but pte unmapped and unlocked.
2749  */
2750 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2751 	__releases(vmf->ptl)
2752 {
2753 	struct vm_area_struct *vma = vmf->vma;
2754 
2755 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2756 	if (!vmf->page) {
2757 		/*
2758 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2759 		 * VM_PFNMAP VMA.
2760 		 *
2761 		 * We should not cow pages in a shared writeable mapping.
2762 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2763 		 */
2764 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2765 				     (VM_WRITE|VM_SHARED))
2766 			return wp_pfn_shared(vmf);
2767 
2768 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2769 		return wp_page_copy(vmf);
2770 	}
2771 
2772 	/*
2773 	 * Take out anonymous pages first, anonymous shared vmas are
2774 	 * not dirty accountable.
2775 	 */
2776 	if (PageAnon(vmf->page)) {
2777 		int total_map_swapcount;
2778 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2779 					   page_count(vmf->page) != 1))
2780 			goto copy;
2781 		if (!trylock_page(vmf->page)) {
2782 			get_page(vmf->page);
2783 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2784 			lock_page(vmf->page);
2785 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2786 					vmf->address, &vmf->ptl);
2787 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2788 				unlock_page(vmf->page);
2789 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2790 				put_page(vmf->page);
2791 				return 0;
2792 			}
2793 			put_page(vmf->page);
2794 		}
2795 		if (PageKsm(vmf->page)) {
2796 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2797 						     vmf->address);
2798 			unlock_page(vmf->page);
2799 			if (!reused)
2800 				goto copy;
2801 			wp_page_reuse(vmf);
2802 			return VM_FAULT_WRITE;
2803 		}
2804 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2805 			if (total_map_swapcount == 1) {
2806 				/*
2807 				 * The page is all ours. Move it to
2808 				 * our anon_vma so the rmap code will
2809 				 * not search our parent or siblings.
2810 				 * Protected against the rmap code by
2811 				 * the page lock.
2812 				 */
2813 				page_move_anon_rmap(vmf->page, vma);
2814 			}
2815 			unlock_page(vmf->page);
2816 			wp_page_reuse(vmf);
2817 			return VM_FAULT_WRITE;
2818 		}
2819 		unlock_page(vmf->page);
2820 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2821 					(VM_WRITE|VM_SHARED))) {
2822 		return wp_page_shared(vmf);
2823 	}
2824 copy:
2825 	/*
2826 	 * Ok, we need to copy. Oh, well..
2827 	 */
2828 	get_page(vmf->page);
2829 
2830 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2831 	return wp_page_copy(vmf);
2832 }
2833 
2834 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2835 		unsigned long start_addr, unsigned long end_addr,
2836 		struct zap_details *details)
2837 {
2838 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2839 }
2840 
2841 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2842 					    struct zap_details *details)
2843 {
2844 	struct vm_area_struct *vma;
2845 	pgoff_t vba, vea, zba, zea;
2846 
2847 	vma_interval_tree_foreach(vma, root,
2848 			details->first_index, details->last_index) {
2849 
2850 		vba = vma->vm_pgoff;
2851 		vea = vba + vma_pages(vma) - 1;
2852 		zba = details->first_index;
2853 		if (zba < vba)
2854 			zba = vba;
2855 		zea = details->last_index;
2856 		if (zea > vea)
2857 			zea = vea;
2858 
2859 		unmap_mapping_range_vma(vma,
2860 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2861 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2862 				details);
2863 	}
2864 }
2865 
2866 /**
2867  * unmap_mapping_pages() - Unmap pages from processes.
2868  * @mapping: The address space containing pages to be unmapped.
2869  * @start: Index of first page to be unmapped.
2870  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2871  * @even_cows: Whether to unmap even private COWed pages.
2872  *
2873  * Unmap the pages in this address space from any userspace process which
2874  * has them mmaped.  Generally, you want to remove COWed pages as well when
2875  * a file is being truncated, but not when invalidating pages from the page
2876  * cache.
2877  */
2878 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2879 		pgoff_t nr, bool even_cows)
2880 {
2881 	struct zap_details details = { };
2882 
2883 	details.check_mapping = even_cows ? NULL : mapping;
2884 	details.first_index = start;
2885 	details.last_index = start + nr - 1;
2886 	if (details.last_index < details.first_index)
2887 		details.last_index = ULONG_MAX;
2888 
2889 	i_mmap_lock_write(mapping);
2890 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2891 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2892 	i_mmap_unlock_write(mapping);
2893 }
2894 
2895 /**
2896  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2897  * address_space corresponding to the specified byte range in the underlying
2898  * file.
2899  *
2900  * @mapping: the address space containing mmaps to be unmapped.
2901  * @holebegin: byte in first page to unmap, relative to the start of
2902  * the underlying file.  This will be rounded down to a PAGE_SIZE
2903  * boundary.  Note that this is different from truncate_pagecache(), which
2904  * must keep the partial page.  In contrast, we must get rid of
2905  * partial pages.
2906  * @holelen: size of prospective hole in bytes.  This will be rounded
2907  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2908  * end of the file.
2909  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2910  * but 0 when invalidating pagecache, don't throw away private data.
2911  */
2912 void unmap_mapping_range(struct address_space *mapping,
2913 		loff_t const holebegin, loff_t const holelen, int even_cows)
2914 {
2915 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2916 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2917 
2918 	/* Check for overflow. */
2919 	if (sizeof(holelen) > sizeof(hlen)) {
2920 		long long holeend =
2921 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2922 		if (holeend & ~(long long)ULONG_MAX)
2923 			hlen = ULONG_MAX - hba + 1;
2924 	}
2925 
2926 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2927 }
2928 EXPORT_SYMBOL(unmap_mapping_range);
2929 
2930 /*
2931  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2932  * but allow concurrent faults), and pte mapped but not yet locked.
2933  * We return with pte unmapped and unlocked.
2934  *
2935  * We return with the mmap_sem locked or unlocked in the same cases
2936  * as does filemap_fault().
2937  */
2938 vm_fault_t do_swap_page(struct vm_fault *vmf)
2939 {
2940 	struct vm_area_struct *vma = vmf->vma;
2941 	struct page *page = NULL, *swapcache;
2942 	struct mem_cgroup *memcg;
2943 	swp_entry_t entry;
2944 	pte_t pte;
2945 	int locked;
2946 	int exclusive = 0;
2947 	vm_fault_t ret = 0;
2948 
2949 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2950 		goto out;
2951 
2952 	entry = pte_to_swp_entry(vmf->orig_pte);
2953 	if (unlikely(non_swap_entry(entry))) {
2954 		if (is_migration_entry(entry)) {
2955 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2956 					     vmf->address);
2957 		} else if (is_device_private_entry(entry)) {
2958 			vmf->page = device_private_entry_to_page(entry);
2959 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2960 		} else if (is_hwpoison_entry(entry)) {
2961 			ret = VM_FAULT_HWPOISON;
2962 		} else {
2963 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2964 			ret = VM_FAULT_SIGBUS;
2965 		}
2966 		goto out;
2967 	}
2968 
2969 
2970 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2971 	page = lookup_swap_cache(entry, vma, vmf->address);
2972 	swapcache = page;
2973 
2974 	if (!page) {
2975 		struct swap_info_struct *si = swp_swap_info(entry);
2976 
2977 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2978 				__swap_count(entry) == 1) {
2979 			/* skip swapcache */
2980 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2981 							vmf->address);
2982 			if (page) {
2983 				__SetPageLocked(page);
2984 				__SetPageSwapBacked(page);
2985 				set_page_private(page, entry.val);
2986 				lru_cache_add_anon(page);
2987 				swap_readpage(page, true);
2988 			}
2989 		} else {
2990 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2991 						vmf);
2992 			swapcache = page;
2993 		}
2994 
2995 		if (!page) {
2996 			/*
2997 			 * Back out if somebody else faulted in this pte
2998 			 * while we released the pte lock.
2999 			 */
3000 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3001 					vmf->address, &vmf->ptl);
3002 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3003 				ret = VM_FAULT_OOM;
3004 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3005 			goto unlock;
3006 		}
3007 
3008 		/* Had to read the page from swap area: Major fault */
3009 		ret = VM_FAULT_MAJOR;
3010 		count_vm_event(PGMAJFAULT);
3011 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3012 	} else if (PageHWPoison(page)) {
3013 		/*
3014 		 * hwpoisoned dirty swapcache pages are kept for killing
3015 		 * owner processes (which may be unknown at hwpoison time)
3016 		 */
3017 		ret = VM_FAULT_HWPOISON;
3018 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3019 		goto out_release;
3020 	}
3021 
3022 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3023 
3024 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3025 	if (!locked) {
3026 		ret |= VM_FAULT_RETRY;
3027 		goto out_release;
3028 	}
3029 
3030 	/*
3031 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3032 	 * release the swapcache from under us.  The page pin, and pte_same
3033 	 * test below, are not enough to exclude that.  Even if it is still
3034 	 * swapcache, we need to check that the page's swap has not changed.
3035 	 */
3036 	if (unlikely((!PageSwapCache(page) ||
3037 			page_private(page) != entry.val)) && swapcache)
3038 		goto out_page;
3039 
3040 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3041 	if (unlikely(!page)) {
3042 		ret = VM_FAULT_OOM;
3043 		page = swapcache;
3044 		goto out_page;
3045 	}
3046 
3047 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3048 					&memcg, false)) {
3049 		ret = VM_FAULT_OOM;
3050 		goto out_page;
3051 	}
3052 
3053 	/*
3054 	 * Back out if somebody else already faulted in this pte.
3055 	 */
3056 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3057 			&vmf->ptl);
3058 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3059 		goto out_nomap;
3060 
3061 	if (unlikely(!PageUptodate(page))) {
3062 		ret = VM_FAULT_SIGBUS;
3063 		goto out_nomap;
3064 	}
3065 
3066 	/*
3067 	 * The page isn't present yet, go ahead with the fault.
3068 	 *
3069 	 * Be careful about the sequence of operations here.
3070 	 * To get its accounting right, reuse_swap_page() must be called
3071 	 * while the page is counted on swap but not yet in mapcount i.e.
3072 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3073 	 * must be called after the swap_free(), or it will never succeed.
3074 	 */
3075 
3076 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3077 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3078 	pte = mk_pte(page, vma->vm_page_prot);
3079 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3080 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3081 		vmf->flags &= ~FAULT_FLAG_WRITE;
3082 		ret |= VM_FAULT_WRITE;
3083 		exclusive = RMAP_EXCLUSIVE;
3084 	}
3085 	flush_icache_page(vma, page);
3086 	if (pte_swp_soft_dirty(vmf->orig_pte))
3087 		pte = pte_mksoft_dirty(pte);
3088 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3089 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3090 	vmf->orig_pte = pte;
3091 
3092 	/* ksm created a completely new copy */
3093 	if (unlikely(page != swapcache && swapcache)) {
3094 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3095 		mem_cgroup_commit_charge(page, memcg, false, false);
3096 		lru_cache_add_active_or_unevictable(page, vma);
3097 	} else {
3098 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3099 		mem_cgroup_commit_charge(page, memcg, true, false);
3100 		activate_page(page);
3101 	}
3102 
3103 	swap_free(entry);
3104 	if (mem_cgroup_swap_full(page) ||
3105 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3106 		try_to_free_swap(page);
3107 	unlock_page(page);
3108 	if (page != swapcache && swapcache) {
3109 		/*
3110 		 * Hold the lock to avoid the swap entry to be reused
3111 		 * until we take the PT lock for the pte_same() check
3112 		 * (to avoid false positives from pte_same). For
3113 		 * further safety release the lock after the swap_free
3114 		 * so that the swap count won't change under a
3115 		 * parallel locked swapcache.
3116 		 */
3117 		unlock_page(swapcache);
3118 		put_page(swapcache);
3119 	}
3120 
3121 	if (vmf->flags & FAULT_FLAG_WRITE) {
3122 		ret |= do_wp_page(vmf);
3123 		if (ret & VM_FAULT_ERROR)
3124 			ret &= VM_FAULT_ERROR;
3125 		goto out;
3126 	}
3127 
3128 	/* No need to invalidate - it was non-present before */
3129 	update_mmu_cache(vma, vmf->address, vmf->pte);
3130 unlock:
3131 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3132 out:
3133 	return ret;
3134 out_nomap:
3135 	mem_cgroup_cancel_charge(page, memcg, false);
3136 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3137 out_page:
3138 	unlock_page(page);
3139 out_release:
3140 	put_page(page);
3141 	if (page != swapcache && swapcache) {
3142 		unlock_page(swapcache);
3143 		put_page(swapcache);
3144 	}
3145 	return ret;
3146 }
3147 
3148 /*
3149  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3150  * but allow concurrent faults), and pte mapped but not yet locked.
3151  * We return with mmap_sem still held, but pte unmapped and unlocked.
3152  */
3153 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3154 {
3155 	struct vm_area_struct *vma = vmf->vma;
3156 	struct mem_cgroup *memcg;
3157 	struct page *page;
3158 	vm_fault_t ret = 0;
3159 	pte_t entry;
3160 
3161 	/* File mapping without ->vm_ops ? */
3162 	if (vma->vm_flags & VM_SHARED)
3163 		return VM_FAULT_SIGBUS;
3164 
3165 	/*
3166 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3167 	 * pte_offset_map() on pmds where a huge pmd might be created
3168 	 * from a different thread.
3169 	 *
3170 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3171 	 * parallel threads are excluded by other means.
3172 	 *
3173 	 * Here we only have down_read(mmap_sem).
3174 	 */
3175 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3176 		return VM_FAULT_OOM;
3177 
3178 	/* See the comment in pte_alloc_one_map() */
3179 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3180 		return 0;
3181 
3182 	/* Use the zero-page for reads */
3183 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3184 			!mm_forbids_zeropage(vma->vm_mm)) {
3185 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3186 						vma->vm_page_prot));
3187 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3188 				vmf->address, &vmf->ptl);
3189 		if (!pte_none(*vmf->pte))
3190 			goto unlock;
3191 		ret = check_stable_address_space(vma->vm_mm);
3192 		if (ret)
3193 			goto unlock;
3194 		/* Deliver the page fault to userland, check inside PT lock */
3195 		if (userfaultfd_missing(vma)) {
3196 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3197 			return handle_userfault(vmf, VM_UFFD_MISSING);
3198 		}
3199 		goto setpte;
3200 	}
3201 
3202 	/* Allocate our own private page. */
3203 	if (unlikely(anon_vma_prepare(vma)))
3204 		goto oom;
3205 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3206 	if (!page)
3207 		goto oom;
3208 
3209 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3210 					false))
3211 		goto oom_free_page;
3212 
3213 	/*
3214 	 * The memory barrier inside __SetPageUptodate makes sure that
3215 	 * preceding stores to the page contents become visible before
3216 	 * the set_pte_at() write.
3217 	 */
3218 	__SetPageUptodate(page);
3219 
3220 	entry = mk_pte(page, vma->vm_page_prot);
3221 	if (vma->vm_flags & VM_WRITE)
3222 		entry = pte_mkwrite(pte_mkdirty(entry));
3223 
3224 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3225 			&vmf->ptl);
3226 	if (!pte_none(*vmf->pte))
3227 		goto release;
3228 
3229 	ret = check_stable_address_space(vma->vm_mm);
3230 	if (ret)
3231 		goto release;
3232 
3233 	/* Deliver the page fault to userland, check inside PT lock */
3234 	if (userfaultfd_missing(vma)) {
3235 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3236 		mem_cgroup_cancel_charge(page, memcg, false);
3237 		put_page(page);
3238 		return handle_userfault(vmf, VM_UFFD_MISSING);
3239 	}
3240 
3241 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3242 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3243 	mem_cgroup_commit_charge(page, memcg, false, false);
3244 	lru_cache_add_active_or_unevictable(page, vma);
3245 setpte:
3246 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3247 
3248 	/* No need to invalidate - it was non-present before */
3249 	update_mmu_cache(vma, vmf->address, vmf->pte);
3250 unlock:
3251 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3252 	return ret;
3253 release:
3254 	mem_cgroup_cancel_charge(page, memcg, false);
3255 	put_page(page);
3256 	goto unlock;
3257 oom_free_page:
3258 	put_page(page);
3259 oom:
3260 	return VM_FAULT_OOM;
3261 }
3262 
3263 /*
3264  * The mmap_sem must have been held on entry, and may have been
3265  * released depending on flags and vma->vm_ops->fault() return value.
3266  * See filemap_fault() and __lock_page_retry().
3267  */
3268 static vm_fault_t __do_fault(struct vm_fault *vmf)
3269 {
3270 	struct vm_area_struct *vma = vmf->vma;
3271 	vm_fault_t ret;
3272 
3273 	/*
3274 	 * Preallocate pte before we take page_lock because this might lead to
3275 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3276 	 *				lock_page(A)
3277 	 *				SetPageWriteback(A)
3278 	 *				unlock_page(A)
3279 	 * lock_page(B)
3280 	 *				lock_page(B)
3281 	 * pte_alloc_pne
3282 	 *   shrink_page_list
3283 	 *     wait_on_page_writeback(A)
3284 	 *				SetPageWriteback(B)
3285 	 *				unlock_page(B)
3286 	 *				# flush A, B to clear the writeback
3287 	 */
3288 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3289 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3290 		if (!vmf->prealloc_pte)
3291 			return VM_FAULT_OOM;
3292 		smp_wmb(); /* See comment in __pte_alloc() */
3293 	}
3294 
3295 	ret = vma->vm_ops->fault(vmf);
3296 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3297 			    VM_FAULT_DONE_COW)))
3298 		return ret;
3299 
3300 	if (unlikely(PageHWPoison(vmf->page))) {
3301 		if (ret & VM_FAULT_LOCKED)
3302 			unlock_page(vmf->page);
3303 		put_page(vmf->page);
3304 		vmf->page = NULL;
3305 		return VM_FAULT_HWPOISON;
3306 	}
3307 
3308 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3309 		lock_page(vmf->page);
3310 	else
3311 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3312 
3313 	return ret;
3314 }
3315 
3316 /*
3317  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3318  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3319  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3320  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3321  */
3322 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3323 {
3324 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3325 }
3326 
3327 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3328 {
3329 	struct vm_area_struct *vma = vmf->vma;
3330 
3331 	if (!pmd_none(*vmf->pmd))
3332 		goto map_pte;
3333 	if (vmf->prealloc_pte) {
3334 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3335 		if (unlikely(!pmd_none(*vmf->pmd))) {
3336 			spin_unlock(vmf->ptl);
3337 			goto map_pte;
3338 		}
3339 
3340 		mm_inc_nr_ptes(vma->vm_mm);
3341 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3342 		spin_unlock(vmf->ptl);
3343 		vmf->prealloc_pte = NULL;
3344 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3345 		return VM_FAULT_OOM;
3346 	}
3347 map_pte:
3348 	/*
3349 	 * If a huge pmd materialized under us just retry later.  Use
3350 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3351 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3352 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3353 	 * running immediately after a huge pmd fault in a different thread of
3354 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3355 	 * All we have to ensure is that it is a regular pmd that we can walk
3356 	 * with pte_offset_map() and we can do that through an atomic read in
3357 	 * C, which is what pmd_trans_unstable() provides.
3358 	 */
3359 	if (pmd_devmap_trans_unstable(vmf->pmd))
3360 		return VM_FAULT_NOPAGE;
3361 
3362 	/*
3363 	 * At this point we know that our vmf->pmd points to a page of ptes
3364 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3365 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3366 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3367 	 * be valid and we will re-check to make sure the vmf->pte isn't
3368 	 * pte_none() under vmf->ptl protection when we return to
3369 	 * alloc_set_pte().
3370 	 */
3371 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3372 			&vmf->ptl);
3373 	return 0;
3374 }
3375 
3376 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3377 static void deposit_prealloc_pte(struct vm_fault *vmf)
3378 {
3379 	struct vm_area_struct *vma = vmf->vma;
3380 
3381 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3382 	/*
3383 	 * We are going to consume the prealloc table,
3384 	 * count that as nr_ptes.
3385 	 */
3386 	mm_inc_nr_ptes(vma->vm_mm);
3387 	vmf->prealloc_pte = NULL;
3388 }
3389 
3390 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3391 {
3392 	struct vm_area_struct *vma = vmf->vma;
3393 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3394 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3395 	pmd_t entry;
3396 	int i;
3397 	vm_fault_t ret;
3398 
3399 	if (!transhuge_vma_suitable(vma, haddr))
3400 		return VM_FAULT_FALLBACK;
3401 
3402 	ret = VM_FAULT_FALLBACK;
3403 	page = compound_head(page);
3404 
3405 	/*
3406 	 * Archs like ppc64 need additonal space to store information
3407 	 * related to pte entry. Use the preallocated table for that.
3408 	 */
3409 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3410 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3411 		if (!vmf->prealloc_pte)
3412 			return VM_FAULT_OOM;
3413 		smp_wmb(); /* See comment in __pte_alloc() */
3414 	}
3415 
3416 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3417 	if (unlikely(!pmd_none(*vmf->pmd)))
3418 		goto out;
3419 
3420 	for (i = 0; i < HPAGE_PMD_NR; i++)
3421 		flush_icache_page(vma, page + i);
3422 
3423 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3424 	if (write)
3425 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3426 
3427 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3428 	page_add_file_rmap(page, true);
3429 	/*
3430 	 * deposit and withdraw with pmd lock held
3431 	 */
3432 	if (arch_needs_pgtable_deposit())
3433 		deposit_prealloc_pte(vmf);
3434 
3435 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3436 
3437 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3438 
3439 	/* fault is handled */
3440 	ret = 0;
3441 	count_vm_event(THP_FILE_MAPPED);
3442 out:
3443 	spin_unlock(vmf->ptl);
3444 	return ret;
3445 }
3446 #else
3447 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3448 {
3449 	BUILD_BUG();
3450 	return 0;
3451 }
3452 #endif
3453 
3454 /**
3455  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3456  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3457  *
3458  * @vmf: fault environment
3459  * @memcg: memcg to charge page (only for private mappings)
3460  * @page: page to map
3461  *
3462  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3463  * return.
3464  *
3465  * Target users are page handler itself and implementations of
3466  * vm_ops->map_pages.
3467  *
3468  * Return: %0 on success, %VM_FAULT_ code in case of error.
3469  */
3470 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3471 		struct page *page)
3472 {
3473 	struct vm_area_struct *vma = vmf->vma;
3474 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3475 	pte_t entry;
3476 	vm_fault_t ret;
3477 
3478 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3479 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3480 		/* THP on COW? */
3481 		VM_BUG_ON_PAGE(memcg, page);
3482 
3483 		ret = do_set_pmd(vmf, page);
3484 		if (ret != VM_FAULT_FALLBACK)
3485 			return ret;
3486 	}
3487 
3488 	if (!vmf->pte) {
3489 		ret = pte_alloc_one_map(vmf);
3490 		if (ret)
3491 			return ret;
3492 	}
3493 
3494 	/* Re-check under ptl */
3495 	if (unlikely(!pte_none(*vmf->pte)))
3496 		return VM_FAULT_NOPAGE;
3497 
3498 	flush_icache_page(vma, page);
3499 	entry = mk_pte(page, vma->vm_page_prot);
3500 	if (write)
3501 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3502 	/* copy-on-write page */
3503 	if (write && !(vma->vm_flags & VM_SHARED)) {
3504 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3505 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3506 		mem_cgroup_commit_charge(page, memcg, false, false);
3507 		lru_cache_add_active_or_unevictable(page, vma);
3508 	} else {
3509 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3510 		page_add_file_rmap(page, false);
3511 	}
3512 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3513 
3514 	/* no need to invalidate: a not-present page won't be cached */
3515 	update_mmu_cache(vma, vmf->address, vmf->pte);
3516 
3517 	return 0;
3518 }
3519 
3520 
3521 /**
3522  * finish_fault - finish page fault once we have prepared the page to fault
3523  *
3524  * @vmf: structure describing the fault
3525  *
3526  * This function handles all that is needed to finish a page fault once the
3527  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3528  * given page, adds reverse page mapping, handles memcg charges and LRU
3529  * addition.
3530  *
3531  * The function expects the page to be locked and on success it consumes a
3532  * reference of a page being mapped (for the PTE which maps it).
3533  *
3534  * Return: %0 on success, %VM_FAULT_ code in case of error.
3535  */
3536 vm_fault_t finish_fault(struct vm_fault *vmf)
3537 {
3538 	struct page *page;
3539 	vm_fault_t ret = 0;
3540 
3541 	/* Did we COW the page? */
3542 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3543 	    !(vmf->vma->vm_flags & VM_SHARED))
3544 		page = vmf->cow_page;
3545 	else
3546 		page = vmf->page;
3547 
3548 	/*
3549 	 * check even for read faults because we might have lost our CoWed
3550 	 * page
3551 	 */
3552 	if (!(vmf->vma->vm_flags & VM_SHARED))
3553 		ret = check_stable_address_space(vmf->vma->vm_mm);
3554 	if (!ret)
3555 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3556 	if (vmf->pte)
3557 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3558 	return ret;
3559 }
3560 
3561 static unsigned long fault_around_bytes __read_mostly =
3562 	rounddown_pow_of_two(65536);
3563 
3564 #ifdef CONFIG_DEBUG_FS
3565 static int fault_around_bytes_get(void *data, u64 *val)
3566 {
3567 	*val = fault_around_bytes;
3568 	return 0;
3569 }
3570 
3571 /*
3572  * fault_around_bytes must be rounded down to the nearest page order as it's
3573  * what do_fault_around() expects to see.
3574  */
3575 static int fault_around_bytes_set(void *data, u64 val)
3576 {
3577 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3578 		return -EINVAL;
3579 	if (val > PAGE_SIZE)
3580 		fault_around_bytes = rounddown_pow_of_two(val);
3581 	else
3582 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3583 	return 0;
3584 }
3585 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3586 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3587 
3588 static int __init fault_around_debugfs(void)
3589 {
3590 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3591 				   &fault_around_bytes_fops);
3592 	return 0;
3593 }
3594 late_initcall(fault_around_debugfs);
3595 #endif
3596 
3597 /*
3598  * do_fault_around() tries to map few pages around the fault address. The hope
3599  * is that the pages will be needed soon and this will lower the number of
3600  * faults to handle.
3601  *
3602  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3603  * not ready to be mapped: not up-to-date, locked, etc.
3604  *
3605  * This function is called with the page table lock taken. In the split ptlock
3606  * case the page table lock only protects only those entries which belong to
3607  * the page table corresponding to the fault address.
3608  *
3609  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3610  * only once.
3611  *
3612  * fault_around_bytes defines how many bytes we'll try to map.
3613  * do_fault_around() expects it to be set to a power of two less than or equal
3614  * to PTRS_PER_PTE.
3615  *
3616  * The virtual address of the area that we map is naturally aligned to
3617  * fault_around_bytes rounded down to the machine page size
3618  * (and therefore to page order).  This way it's easier to guarantee
3619  * that we don't cross page table boundaries.
3620  */
3621 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3622 {
3623 	unsigned long address = vmf->address, nr_pages, mask;
3624 	pgoff_t start_pgoff = vmf->pgoff;
3625 	pgoff_t end_pgoff;
3626 	int off;
3627 	vm_fault_t ret = 0;
3628 
3629 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3630 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3631 
3632 	vmf->address = max(address & mask, vmf->vma->vm_start);
3633 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3634 	start_pgoff -= off;
3635 
3636 	/*
3637 	 *  end_pgoff is either the end of the page table, the end of
3638 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3639 	 */
3640 	end_pgoff = start_pgoff -
3641 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3642 		PTRS_PER_PTE - 1;
3643 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3644 			start_pgoff + nr_pages - 1);
3645 
3646 	if (pmd_none(*vmf->pmd)) {
3647 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3648 		if (!vmf->prealloc_pte)
3649 			goto out;
3650 		smp_wmb(); /* See comment in __pte_alloc() */
3651 	}
3652 
3653 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3654 
3655 	/* Huge page is mapped? Page fault is solved */
3656 	if (pmd_trans_huge(*vmf->pmd)) {
3657 		ret = VM_FAULT_NOPAGE;
3658 		goto out;
3659 	}
3660 
3661 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3662 	if (!vmf->pte)
3663 		goto out;
3664 
3665 	/* check if the page fault is solved */
3666 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3667 	if (!pte_none(*vmf->pte))
3668 		ret = VM_FAULT_NOPAGE;
3669 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3670 out:
3671 	vmf->address = address;
3672 	vmf->pte = NULL;
3673 	return ret;
3674 }
3675 
3676 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3677 {
3678 	struct vm_area_struct *vma = vmf->vma;
3679 	vm_fault_t ret = 0;
3680 
3681 	/*
3682 	 * Let's call ->map_pages() first and use ->fault() as fallback
3683 	 * if page by the offset is not ready to be mapped (cold cache or
3684 	 * something).
3685 	 */
3686 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3687 		ret = do_fault_around(vmf);
3688 		if (ret)
3689 			return ret;
3690 	}
3691 
3692 	ret = __do_fault(vmf);
3693 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3694 		return ret;
3695 
3696 	ret |= finish_fault(vmf);
3697 	unlock_page(vmf->page);
3698 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3699 		put_page(vmf->page);
3700 	return ret;
3701 }
3702 
3703 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3704 {
3705 	struct vm_area_struct *vma = vmf->vma;
3706 	vm_fault_t ret;
3707 
3708 	if (unlikely(anon_vma_prepare(vma)))
3709 		return VM_FAULT_OOM;
3710 
3711 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3712 	if (!vmf->cow_page)
3713 		return VM_FAULT_OOM;
3714 
3715 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3716 				&vmf->memcg, false)) {
3717 		put_page(vmf->cow_page);
3718 		return VM_FAULT_OOM;
3719 	}
3720 
3721 	ret = __do_fault(vmf);
3722 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3723 		goto uncharge_out;
3724 	if (ret & VM_FAULT_DONE_COW)
3725 		return ret;
3726 
3727 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3728 	__SetPageUptodate(vmf->cow_page);
3729 
3730 	ret |= finish_fault(vmf);
3731 	unlock_page(vmf->page);
3732 	put_page(vmf->page);
3733 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3734 		goto uncharge_out;
3735 	return ret;
3736 uncharge_out:
3737 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3738 	put_page(vmf->cow_page);
3739 	return ret;
3740 }
3741 
3742 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3743 {
3744 	struct vm_area_struct *vma = vmf->vma;
3745 	vm_fault_t ret, tmp;
3746 
3747 	ret = __do_fault(vmf);
3748 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3749 		return ret;
3750 
3751 	/*
3752 	 * Check if the backing address space wants to know that the page is
3753 	 * about to become writable
3754 	 */
3755 	if (vma->vm_ops->page_mkwrite) {
3756 		unlock_page(vmf->page);
3757 		tmp = do_page_mkwrite(vmf);
3758 		if (unlikely(!tmp ||
3759 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3760 			put_page(vmf->page);
3761 			return tmp;
3762 		}
3763 	}
3764 
3765 	ret |= finish_fault(vmf);
3766 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3767 					VM_FAULT_RETRY))) {
3768 		unlock_page(vmf->page);
3769 		put_page(vmf->page);
3770 		return ret;
3771 	}
3772 
3773 	ret |= fault_dirty_shared_page(vmf);
3774 	return ret;
3775 }
3776 
3777 /*
3778  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3779  * but allow concurrent faults).
3780  * The mmap_sem may have been released depending on flags and our
3781  * return value.  See filemap_fault() and __lock_page_or_retry().
3782  * If mmap_sem is released, vma may become invalid (for example
3783  * by other thread calling munmap()).
3784  */
3785 static vm_fault_t do_fault(struct vm_fault *vmf)
3786 {
3787 	struct vm_area_struct *vma = vmf->vma;
3788 	struct mm_struct *vm_mm = vma->vm_mm;
3789 	vm_fault_t ret;
3790 
3791 	/*
3792 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3793 	 */
3794 	if (!vma->vm_ops->fault) {
3795 		/*
3796 		 * If we find a migration pmd entry or a none pmd entry, which
3797 		 * should never happen, return SIGBUS
3798 		 */
3799 		if (unlikely(!pmd_present(*vmf->pmd)))
3800 			ret = VM_FAULT_SIGBUS;
3801 		else {
3802 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3803 						       vmf->pmd,
3804 						       vmf->address,
3805 						       &vmf->ptl);
3806 			/*
3807 			 * Make sure this is not a temporary clearing of pte
3808 			 * by holding ptl and checking again. A R/M/W update
3809 			 * of pte involves: take ptl, clearing the pte so that
3810 			 * we don't have concurrent modification by hardware
3811 			 * followed by an update.
3812 			 */
3813 			if (unlikely(pte_none(*vmf->pte)))
3814 				ret = VM_FAULT_SIGBUS;
3815 			else
3816 				ret = VM_FAULT_NOPAGE;
3817 
3818 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3819 		}
3820 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3821 		ret = do_read_fault(vmf);
3822 	else if (!(vma->vm_flags & VM_SHARED))
3823 		ret = do_cow_fault(vmf);
3824 	else
3825 		ret = do_shared_fault(vmf);
3826 
3827 	/* preallocated pagetable is unused: free it */
3828 	if (vmf->prealloc_pte) {
3829 		pte_free(vm_mm, vmf->prealloc_pte);
3830 		vmf->prealloc_pte = NULL;
3831 	}
3832 	return ret;
3833 }
3834 
3835 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3836 				unsigned long addr, int page_nid,
3837 				int *flags)
3838 {
3839 	get_page(page);
3840 
3841 	count_vm_numa_event(NUMA_HINT_FAULTS);
3842 	if (page_nid == numa_node_id()) {
3843 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3844 		*flags |= TNF_FAULT_LOCAL;
3845 	}
3846 
3847 	return mpol_misplaced(page, vma, addr);
3848 }
3849 
3850 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3851 {
3852 	struct vm_area_struct *vma = vmf->vma;
3853 	struct page *page = NULL;
3854 	int page_nid = NUMA_NO_NODE;
3855 	int last_cpupid;
3856 	int target_nid;
3857 	bool migrated = false;
3858 	pte_t pte, old_pte;
3859 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3860 	int flags = 0;
3861 
3862 	/*
3863 	 * The "pte" at this point cannot be used safely without
3864 	 * validation through pte_unmap_same(). It's of NUMA type but
3865 	 * the pfn may be screwed if the read is non atomic.
3866 	 */
3867 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3868 	spin_lock(vmf->ptl);
3869 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3870 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3871 		goto out;
3872 	}
3873 
3874 	/*
3875 	 * Make it present again, Depending on how arch implementes non
3876 	 * accessible ptes, some can allow access by kernel mode.
3877 	 */
3878 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3879 	pte = pte_modify(old_pte, vma->vm_page_prot);
3880 	pte = pte_mkyoung(pte);
3881 	if (was_writable)
3882 		pte = pte_mkwrite(pte);
3883 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3884 	update_mmu_cache(vma, vmf->address, vmf->pte);
3885 
3886 	page = vm_normal_page(vma, vmf->address, pte);
3887 	if (!page) {
3888 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3889 		return 0;
3890 	}
3891 
3892 	/* TODO: handle PTE-mapped THP */
3893 	if (PageCompound(page)) {
3894 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3895 		return 0;
3896 	}
3897 
3898 	/*
3899 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3900 	 * much anyway since they can be in shared cache state. This misses
3901 	 * the case where a mapping is writable but the process never writes
3902 	 * to it but pte_write gets cleared during protection updates and
3903 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3904 	 * background writeback, dirty balancing and application behaviour.
3905 	 */
3906 	if (!pte_write(pte))
3907 		flags |= TNF_NO_GROUP;
3908 
3909 	/*
3910 	 * Flag if the page is shared between multiple address spaces. This
3911 	 * is later used when determining whether to group tasks together
3912 	 */
3913 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3914 		flags |= TNF_SHARED;
3915 
3916 	last_cpupid = page_cpupid_last(page);
3917 	page_nid = page_to_nid(page);
3918 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3919 			&flags);
3920 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3921 	if (target_nid == NUMA_NO_NODE) {
3922 		put_page(page);
3923 		goto out;
3924 	}
3925 
3926 	/* Migrate to the requested node */
3927 	migrated = migrate_misplaced_page(page, vma, target_nid);
3928 	if (migrated) {
3929 		page_nid = target_nid;
3930 		flags |= TNF_MIGRATED;
3931 	} else
3932 		flags |= TNF_MIGRATE_FAIL;
3933 
3934 out:
3935 	if (page_nid != NUMA_NO_NODE)
3936 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3937 	return 0;
3938 }
3939 
3940 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3941 {
3942 	if (vma_is_anonymous(vmf->vma))
3943 		return do_huge_pmd_anonymous_page(vmf);
3944 	if (vmf->vma->vm_ops->huge_fault)
3945 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3946 	return VM_FAULT_FALLBACK;
3947 }
3948 
3949 /* `inline' is required to avoid gcc 4.1.2 build error */
3950 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3951 {
3952 	if (vma_is_anonymous(vmf->vma))
3953 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3954 	if (vmf->vma->vm_ops->huge_fault)
3955 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3956 
3957 	/* COW handled on pte level: split pmd */
3958 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3959 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3960 
3961 	return VM_FAULT_FALLBACK;
3962 }
3963 
3964 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3965 {
3966 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3967 }
3968 
3969 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3970 {
3971 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3972 	/* No support for anonymous transparent PUD pages yet */
3973 	if (vma_is_anonymous(vmf->vma))
3974 		return VM_FAULT_FALLBACK;
3975 	if (vmf->vma->vm_ops->huge_fault)
3976 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3977 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3978 	return VM_FAULT_FALLBACK;
3979 }
3980 
3981 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3982 {
3983 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3984 	/* No support for anonymous transparent PUD pages yet */
3985 	if (vma_is_anonymous(vmf->vma))
3986 		return VM_FAULT_FALLBACK;
3987 	if (vmf->vma->vm_ops->huge_fault)
3988 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3989 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3990 	return VM_FAULT_FALLBACK;
3991 }
3992 
3993 /*
3994  * These routines also need to handle stuff like marking pages dirty
3995  * and/or accessed for architectures that don't do it in hardware (most
3996  * RISC architectures).  The early dirtying is also good on the i386.
3997  *
3998  * There is also a hook called "update_mmu_cache()" that architectures
3999  * with external mmu caches can use to update those (ie the Sparc or
4000  * PowerPC hashed page tables that act as extended TLBs).
4001  *
4002  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4003  * concurrent faults).
4004  *
4005  * The mmap_sem may have been released depending on flags and our return value.
4006  * See filemap_fault() and __lock_page_or_retry().
4007  */
4008 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4009 {
4010 	pte_t entry;
4011 
4012 	if (unlikely(pmd_none(*vmf->pmd))) {
4013 		/*
4014 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4015 		 * want to allocate huge page, and if we expose page table
4016 		 * for an instant, it will be difficult to retract from
4017 		 * concurrent faults and from rmap lookups.
4018 		 */
4019 		vmf->pte = NULL;
4020 	} else {
4021 		/* See comment in pte_alloc_one_map() */
4022 		if (pmd_devmap_trans_unstable(vmf->pmd))
4023 			return 0;
4024 		/*
4025 		 * A regular pmd is established and it can't morph into a huge
4026 		 * pmd from under us anymore at this point because we hold the
4027 		 * mmap_sem read mode and khugepaged takes it in write mode.
4028 		 * So now it's safe to run pte_offset_map().
4029 		 */
4030 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4031 		vmf->orig_pte = *vmf->pte;
4032 
4033 		/*
4034 		 * some architectures can have larger ptes than wordsize,
4035 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4036 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4037 		 * accesses.  The code below just needs a consistent view
4038 		 * for the ifs and we later double check anyway with the
4039 		 * ptl lock held. So here a barrier will do.
4040 		 */
4041 		barrier();
4042 		if (pte_none(vmf->orig_pte)) {
4043 			pte_unmap(vmf->pte);
4044 			vmf->pte = NULL;
4045 		}
4046 	}
4047 
4048 	if (!vmf->pte) {
4049 		if (vma_is_anonymous(vmf->vma))
4050 			return do_anonymous_page(vmf);
4051 		else
4052 			return do_fault(vmf);
4053 	}
4054 
4055 	if (!pte_present(vmf->orig_pte))
4056 		return do_swap_page(vmf);
4057 
4058 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4059 		return do_numa_page(vmf);
4060 
4061 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4062 	spin_lock(vmf->ptl);
4063 	entry = vmf->orig_pte;
4064 	if (unlikely(!pte_same(*vmf->pte, entry)))
4065 		goto unlock;
4066 	if (vmf->flags & FAULT_FLAG_WRITE) {
4067 		if (!pte_write(entry))
4068 			return do_wp_page(vmf);
4069 		entry = pte_mkdirty(entry);
4070 	}
4071 	entry = pte_mkyoung(entry);
4072 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4073 				vmf->flags & FAULT_FLAG_WRITE)) {
4074 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4075 	} else {
4076 		/*
4077 		 * This is needed only for protection faults but the arch code
4078 		 * is not yet telling us if this is a protection fault or not.
4079 		 * This still avoids useless tlb flushes for .text page faults
4080 		 * with threads.
4081 		 */
4082 		if (vmf->flags & FAULT_FLAG_WRITE)
4083 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4084 	}
4085 unlock:
4086 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4087 	return 0;
4088 }
4089 
4090 /*
4091  * By the time we get here, we already hold the mm semaphore
4092  *
4093  * The mmap_sem may have been released depending on flags and our
4094  * return value.  See filemap_fault() and __lock_page_or_retry().
4095  */
4096 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4097 		unsigned long address, unsigned int flags)
4098 {
4099 	struct vm_fault vmf = {
4100 		.vma = vma,
4101 		.address = address & PAGE_MASK,
4102 		.flags = flags,
4103 		.pgoff = linear_page_index(vma, address),
4104 		.gfp_mask = __get_fault_gfp_mask(vma),
4105 	};
4106 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4107 	struct mm_struct *mm = vma->vm_mm;
4108 	pgd_t *pgd;
4109 	p4d_t *p4d;
4110 	vm_fault_t ret;
4111 
4112 	pgd = pgd_offset(mm, address);
4113 	p4d = p4d_alloc(mm, pgd, address);
4114 	if (!p4d)
4115 		return VM_FAULT_OOM;
4116 
4117 	vmf.pud = pud_alloc(mm, p4d, address);
4118 	if (!vmf.pud)
4119 		return VM_FAULT_OOM;
4120 retry_pud:
4121 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4122 		ret = create_huge_pud(&vmf);
4123 		if (!(ret & VM_FAULT_FALLBACK))
4124 			return ret;
4125 	} else {
4126 		pud_t orig_pud = *vmf.pud;
4127 
4128 		barrier();
4129 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4130 
4131 			/* NUMA case for anonymous PUDs would go here */
4132 
4133 			if (dirty && !pud_write(orig_pud)) {
4134 				ret = wp_huge_pud(&vmf, orig_pud);
4135 				if (!(ret & VM_FAULT_FALLBACK))
4136 					return ret;
4137 			} else {
4138 				huge_pud_set_accessed(&vmf, orig_pud);
4139 				return 0;
4140 			}
4141 		}
4142 	}
4143 
4144 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4145 	if (!vmf.pmd)
4146 		return VM_FAULT_OOM;
4147 
4148 	/* Huge pud page fault raced with pmd_alloc? */
4149 	if (pud_trans_unstable(vmf.pud))
4150 		goto retry_pud;
4151 
4152 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4153 		ret = create_huge_pmd(&vmf);
4154 		if (!(ret & VM_FAULT_FALLBACK))
4155 			return ret;
4156 	} else {
4157 		pmd_t orig_pmd = *vmf.pmd;
4158 
4159 		barrier();
4160 		if (unlikely(is_swap_pmd(orig_pmd))) {
4161 			VM_BUG_ON(thp_migration_supported() &&
4162 					  !is_pmd_migration_entry(orig_pmd));
4163 			if (is_pmd_migration_entry(orig_pmd))
4164 				pmd_migration_entry_wait(mm, vmf.pmd);
4165 			return 0;
4166 		}
4167 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4168 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4169 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4170 
4171 			if (dirty && !pmd_write(orig_pmd)) {
4172 				ret = wp_huge_pmd(&vmf, orig_pmd);
4173 				if (!(ret & VM_FAULT_FALLBACK))
4174 					return ret;
4175 			} else {
4176 				huge_pmd_set_accessed(&vmf, orig_pmd);
4177 				return 0;
4178 			}
4179 		}
4180 	}
4181 
4182 	return handle_pte_fault(&vmf);
4183 }
4184 
4185 /*
4186  * By the time we get here, we already hold the mm semaphore
4187  *
4188  * The mmap_sem may have been released depending on flags and our
4189  * return value.  See filemap_fault() and __lock_page_or_retry().
4190  */
4191 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4192 		unsigned int flags)
4193 {
4194 	vm_fault_t ret;
4195 
4196 	__set_current_state(TASK_RUNNING);
4197 
4198 	count_vm_event(PGFAULT);
4199 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4200 
4201 	/* do counter updates before entering really critical section. */
4202 	check_sync_rss_stat(current);
4203 
4204 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4205 					    flags & FAULT_FLAG_INSTRUCTION,
4206 					    flags & FAULT_FLAG_REMOTE))
4207 		return VM_FAULT_SIGSEGV;
4208 
4209 	/*
4210 	 * Enable the memcg OOM handling for faults triggered in user
4211 	 * space.  Kernel faults are handled more gracefully.
4212 	 */
4213 	if (flags & FAULT_FLAG_USER)
4214 		mem_cgroup_enter_user_fault();
4215 
4216 	if (unlikely(is_vm_hugetlb_page(vma)))
4217 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4218 	else
4219 		ret = __handle_mm_fault(vma, address, flags);
4220 
4221 	if (flags & FAULT_FLAG_USER) {
4222 		mem_cgroup_exit_user_fault();
4223 		/*
4224 		 * The task may have entered a memcg OOM situation but
4225 		 * if the allocation error was handled gracefully (no
4226 		 * VM_FAULT_OOM), there is no need to kill anything.
4227 		 * Just clean up the OOM state peacefully.
4228 		 */
4229 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4230 			mem_cgroup_oom_synchronize(false);
4231 	}
4232 
4233 	return ret;
4234 }
4235 EXPORT_SYMBOL_GPL(handle_mm_fault);
4236 
4237 #ifndef __PAGETABLE_P4D_FOLDED
4238 /*
4239  * Allocate p4d page table.
4240  * We've already handled the fast-path in-line.
4241  */
4242 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4243 {
4244 	p4d_t *new = p4d_alloc_one(mm, address);
4245 	if (!new)
4246 		return -ENOMEM;
4247 
4248 	smp_wmb(); /* See comment in __pte_alloc */
4249 
4250 	spin_lock(&mm->page_table_lock);
4251 	if (pgd_present(*pgd))		/* Another has populated it */
4252 		p4d_free(mm, new);
4253 	else
4254 		pgd_populate(mm, pgd, new);
4255 	spin_unlock(&mm->page_table_lock);
4256 	return 0;
4257 }
4258 #endif /* __PAGETABLE_P4D_FOLDED */
4259 
4260 #ifndef __PAGETABLE_PUD_FOLDED
4261 /*
4262  * Allocate page upper directory.
4263  * We've already handled the fast-path in-line.
4264  */
4265 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4266 {
4267 	pud_t *new = pud_alloc_one(mm, address);
4268 	if (!new)
4269 		return -ENOMEM;
4270 
4271 	smp_wmb(); /* See comment in __pte_alloc */
4272 
4273 	spin_lock(&mm->page_table_lock);
4274 #ifndef __ARCH_HAS_5LEVEL_HACK
4275 	if (!p4d_present(*p4d)) {
4276 		mm_inc_nr_puds(mm);
4277 		p4d_populate(mm, p4d, new);
4278 	} else	/* Another has populated it */
4279 		pud_free(mm, new);
4280 #else
4281 	if (!pgd_present(*p4d)) {
4282 		mm_inc_nr_puds(mm);
4283 		pgd_populate(mm, p4d, new);
4284 	} else	/* Another has populated it */
4285 		pud_free(mm, new);
4286 #endif /* __ARCH_HAS_5LEVEL_HACK */
4287 	spin_unlock(&mm->page_table_lock);
4288 	return 0;
4289 }
4290 #endif /* __PAGETABLE_PUD_FOLDED */
4291 
4292 #ifndef __PAGETABLE_PMD_FOLDED
4293 /*
4294  * Allocate page middle directory.
4295  * We've already handled the fast-path in-line.
4296  */
4297 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4298 {
4299 	spinlock_t *ptl;
4300 	pmd_t *new = pmd_alloc_one(mm, address);
4301 	if (!new)
4302 		return -ENOMEM;
4303 
4304 	smp_wmb(); /* See comment in __pte_alloc */
4305 
4306 	ptl = pud_lock(mm, pud);
4307 	if (!pud_present(*pud)) {
4308 		mm_inc_nr_pmds(mm);
4309 		pud_populate(mm, pud, new);
4310 	} else	/* Another has populated it */
4311 		pmd_free(mm, new);
4312 	spin_unlock(ptl);
4313 	return 0;
4314 }
4315 #endif /* __PAGETABLE_PMD_FOLDED */
4316 
4317 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4318 			    struct mmu_notifier_range *range,
4319 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4320 {
4321 	pgd_t *pgd;
4322 	p4d_t *p4d;
4323 	pud_t *pud;
4324 	pmd_t *pmd;
4325 	pte_t *ptep;
4326 
4327 	pgd = pgd_offset(mm, address);
4328 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4329 		goto out;
4330 
4331 	p4d = p4d_offset(pgd, address);
4332 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4333 		goto out;
4334 
4335 	pud = pud_offset(p4d, address);
4336 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4337 		goto out;
4338 
4339 	pmd = pmd_offset(pud, address);
4340 	VM_BUG_ON(pmd_trans_huge(*pmd));
4341 
4342 	if (pmd_huge(*pmd)) {
4343 		if (!pmdpp)
4344 			goto out;
4345 
4346 		if (range) {
4347 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4348 						NULL, mm, address & PMD_MASK,
4349 						(address & PMD_MASK) + PMD_SIZE);
4350 			mmu_notifier_invalidate_range_start(range);
4351 		}
4352 		*ptlp = pmd_lock(mm, pmd);
4353 		if (pmd_huge(*pmd)) {
4354 			*pmdpp = pmd;
4355 			return 0;
4356 		}
4357 		spin_unlock(*ptlp);
4358 		if (range)
4359 			mmu_notifier_invalidate_range_end(range);
4360 	}
4361 
4362 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4363 		goto out;
4364 
4365 	if (range) {
4366 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4367 					address & PAGE_MASK,
4368 					(address & PAGE_MASK) + PAGE_SIZE);
4369 		mmu_notifier_invalidate_range_start(range);
4370 	}
4371 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4372 	if (!pte_present(*ptep))
4373 		goto unlock;
4374 	*ptepp = ptep;
4375 	return 0;
4376 unlock:
4377 	pte_unmap_unlock(ptep, *ptlp);
4378 	if (range)
4379 		mmu_notifier_invalidate_range_end(range);
4380 out:
4381 	return -EINVAL;
4382 }
4383 
4384 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4385 			     pte_t **ptepp, spinlock_t **ptlp)
4386 {
4387 	int res;
4388 
4389 	/* (void) is needed to make gcc happy */
4390 	(void) __cond_lock(*ptlp,
4391 			   !(res = __follow_pte_pmd(mm, address, NULL,
4392 						    ptepp, NULL, ptlp)));
4393 	return res;
4394 }
4395 
4396 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4397 		   struct mmu_notifier_range *range,
4398 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4399 {
4400 	int res;
4401 
4402 	/* (void) is needed to make gcc happy */
4403 	(void) __cond_lock(*ptlp,
4404 			   !(res = __follow_pte_pmd(mm, address, range,
4405 						    ptepp, pmdpp, ptlp)));
4406 	return res;
4407 }
4408 EXPORT_SYMBOL(follow_pte_pmd);
4409 
4410 /**
4411  * follow_pfn - look up PFN at a user virtual address
4412  * @vma: memory mapping
4413  * @address: user virtual address
4414  * @pfn: location to store found PFN
4415  *
4416  * Only IO mappings and raw PFN mappings are allowed.
4417  *
4418  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4419  */
4420 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4421 	unsigned long *pfn)
4422 {
4423 	int ret = -EINVAL;
4424 	spinlock_t *ptl;
4425 	pte_t *ptep;
4426 
4427 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4428 		return ret;
4429 
4430 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4431 	if (ret)
4432 		return ret;
4433 	*pfn = pte_pfn(*ptep);
4434 	pte_unmap_unlock(ptep, ptl);
4435 	return 0;
4436 }
4437 EXPORT_SYMBOL(follow_pfn);
4438 
4439 #ifdef CONFIG_HAVE_IOREMAP_PROT
4440 int follow_phys(struct vm_area_struct *vma,
4441 		unsigned long address, unsigned int flags,
4442 		unsigned long *prot, resource_size_t *phys)
4443 {
4444 	int ret = -EINVAL;
4445 	pte_t *ptep, pte;
4446 	spinlock_t *ptl;
4447 
4448 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4449 		goto out;
4450 
4451 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4452 		goto out;
4453 	pte = *ptep;
4454 
4455 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4456 		goto unlock;
4457 
4458 	*prot = pgprot_val(pte_pgprot(pte));
4459 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4460 
4461 	ret = 0;
4462 unlock:
4463 	pte_unmap_unlock(ptep, ptl);
4464 out:
4465 	return ret;
4466 }
4467 
4468 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4469 			void *buf, int len, int write)
4470 {
4471 	resource_size_t phys_addr;
4472 	unsigned long prot = 0;
4473 	void __iomem *maddr;
4474 	int offset = addr & (PAGE_SIZE-1);
4475 
4476 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4477 		return -EINVAL;
4478 
4479 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4480 	if (!maddr)
4481 		return -ENOMEM;
4482 
4483 	if (write)
4484 		memcpy_toio(maddr + offset, buf, len);
4485 	else
4486 		memcpy_fromio(buf, maddr + offset, len);
4487 	iounmap(maddr);
4488 
4489 	return len;
4490 }
4491 EXPORT_SYMBOL_GPL(generic_access_phys);
4492 #endif
4493 
4494 /*
4495  * Access another process' address space as given in mm.  If non-NULL, use the
4496  * given task for page fault accounting.
4497  */
4498 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4499 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4500 {
4501 	struct vm_area_struct *vma;
4502 	void *old_buf = buf;
4503 	int write = gup_flags & FOLL_WRITE;
4504 
4505 	if (down_read_killable(&mm->mmap_sem))
4506 		return 0;
4507 
4508 	/* ignore errors, just check how much was successfully transferred */
4509 	while (len) {
4510 		int bytes, ret, offset;
4511 		void *maddr;
4512 		struct page *page = NULL;
4513 
4514 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4515 				gup_flags, &page, &vma, NULL);
4516 		if (ret <= 0) {
4517 #ifndef CONFIG_HAVE_IOREMAP_PROT
4518 			break;
4519 #else
4520 			/*
4521 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4522 			 * we can access using slightly different code.
4523 			 */
4524 			vma = find_vma(mm, addr);
4525 			if (!vma || vma->vm_start > addr)
4526 				break;
4527 			if (vma->vm_ops && vma->vm_ops->access)
4528 				ret = vma->vm_ops->access(vma, addr, buf,
4529 							  len, write);
4530 			if (ret <= 0)
4531 				break;
4532 			bytes = ret;
4533 #endif
4534 		} else {
4535 			bytes = len;
4536 			offset = addr & (PAGE_SIZE-1);
4537 			if (bytes > PAGE_SIZE-offset)
4538 				bytes = PAGE_SIZE-offset;
4539 
4540 			maddr = kmap(page);
4541 			if (write) {
4542 				copy_to_user_page(vma, page, addr,
4543 						  maddr + offset, buf, bytes);
4544 				set_page_dirty_lock(page);
4545 			} else {
4546 				copy_from_user_page(vma, page, addr,
4547 						    buf, maddr + offset, bytes);
4548 			}
4549 			kunmap(page);
4550 			put_page(page);
4551 		}
4552 		len -= bytes;
4553 		buf += bytes;
4554 		addr += bytes;
4555 	}
4556 	up_read(&mm->mmap_sem);
4557 
4558 	return buf - old_buf;
4559 }
4560 
4561 /**
4562  * access_remote_vm - access another process' address space
4563  * @mm:		the mm_struct of the target address space
4564  * @addr:	start address to access
4565  * @buf:	source or destination buffer
4566  * @len:	number of bytes to transfer
4567  * @gup_flags:	flags modifying lookup behaviour
4568  *
4569  * The caller must hold a reference on @mm.
4570  *
4571  * Return: number of bytes copied from source to destination.
4572  */
4573 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4574 		void *buf, int len, unsigned int gup_flags)
4575 {
4576 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4577 }
4578 
4579 /*
4580  * Access another process' address space.
4581  * Source/target buffer must be kernel space,
4582  * Do not walk the page table directly, use get_user_pages
4583  */
4584 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4585 		void *buf, int len, unsigned int gup_flags)
4586 {
4587 	struct mm_struct *mm;
4588 	int ret;
4589 
4590 	mm = get_task_mm(tsk);
4591 	if (!mm)
4592 		return 0;
4593 
4594 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4595 
4596 	mmput(mm);
4597 
4598 	return ret;
4599 }
4600 EXPORT_SYMBOL_GPL(access_process_vm);
4601 
4602 /*
4603  * Print the name of a VMA.
4604  */
4605 void print_vma_addr(char *prefix, unsigned long ip)
4606 {
4607 	struct mm_struct *mm = current->mm;
4608 	struct vm_area_struct *vma;
4609 
4610 	/*
4611 	 * we might be running from an atomic context so we cannot sleep
4612 	 */
4613 	if (!down_read_trylock(&mm->mmap_sem))
4614 		return;
4615 
4616 	vma = find_vma(mm, ip);
4617 	if (vma && vma->vm_file) {
4618 		struct file *f = vma->vm_file;
4619 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4620 		if (buf) {
4621 			char *p;
4622 
4623 			p = file_path(f, buf, PAGE_SIZE);
4624 			if (IS_ERR(p))
4625 				p = "?";
4626 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4627 					vma->vm_start,
4628 					vma->vm_end - vma->vm_start);
4629 			free_page((unsigned long)buf);
4630 		}
4631 	}
4632 	up_read(&mm->mmap_sem);
4633 }
4634 
4635 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4636 void __might_fault(const char *file, int line)
4637 {
4638 	/*
4639 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4640 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4641 	 * get paged out, therefore we'll never actually fault, and the
4642 	 * below annotations will generate false positives.
4643 	 */
4644 	if (uaccess_kernel())
4645 		return;
4646 	if (pagefault_disabled())
4647 		return;
4648 	__might_sleep(file, line, 0);
4649 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4650 	if (current->mm)
4651 		might_lock_read(&current->mm->mmap_sem);
4652 #endif
4653 }
4654 EXPORT_SYMBOL(__might_fault);
4655 #endif
4656 
4657 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4658 /*
4659  * Process all subpages of the specified huge page with the specified
4660  * operation.  The target subpage will be processed last to keep its
4661  * cache lines hot.
4662  */
4663 static inline void process_huge_page(
4664 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4665 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4666 	void *arg)
4667 {
4668 	int i, n, base, l;
4669 	unsigned long addr = addr_hint &
4670 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4671 
4672 	/* Process target subpage last to keep its cache lines hot */
4673 	might_sleep();
4674 	n = (addr_hint - addr) / PAGE_SIZE;
4675 	if (2 * n <= pages_per_huge_page) {
4676 		/* If target subpage in first half of huge page */
4677 		base = 0;
4678 		l = n;
4679 		/* Process subpages at the end of huge page */
4680 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4681 			cond_resched();
4682 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4683 		}
4684 	} else {
4685 		/* If target subpage in second half of huge page */
4686 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4687 		l = pages_per_huge_page - n;
4688 		/* Process subpages at the begin of huge page */
4689 		for (i = 0; i < base; i++) {
4690 			cond_resched();
4691 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4692 		}
4693 	}
4694 	/*
4695 	 * Process remaining subpages in left-right-left-right pattern
4696 	 * towards the target subpage
4697 	 */
4698 	for (i = 0; i < l; i++) {
4699 		int left_idx = base + i;
4700 		int right_idx = base + 2 * l - 1 - i;
4701 
4702 		cond_resched();
4703 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4704 		cond_resched();
4705 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4706 	}
4707 }
4708 
4709 static void clear_gigantic_page(struct page *page,
4710 				unsigned long addr,
4711 				unsigned int pages_per_huge_page)
4712 {
4713 	int i;
4714 	struct page *p = page;
4715 
4716 	might_sleep();
4717 	for (i = 0; i < pages_per_huge_page;
4718 	     i++, p = mem_map_next(p, page, i)) {
4719 		cond_resched();
4720 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4721 	}
4722 }
4723 
4724 static void clear_subpage(unsigned long addr, int idx, void *arg)
4725 {
4726 	struct page *page = arg;
4727 
4728 	clear_user_highpage(page + idx, addr);
4729 }
4730 
4731 void clear_huge_page(struct page *page,
4732 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4733 {
4734 	unsigned long addr = addr_hint &
4735 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4736 
4737 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4738 		clear_gigantic_page(page, addr, pages_per_huge_page);
4739 		return;
4740 	}
4741 
4742 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4743 }
4744 
4745 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4746 				    unsigned long addr,
4747 				    struct vm_area_struct *vma,
4748 				    unsigned int pages_per_huge_page)
4749 {
4750 	int i;
4751 	struct page *dst_base = dst;
4752 	struct page *src_base = src;
4753 
4754 	for (i = 0; i < pages_per_huge_page; ) {
4755 		cond_resched();
4756 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4757 
4758 		i++;
4759 		dst = mem_map_next(dst, dst_base, i);
4760 		src = mem_map_next(src, src_base, i);
4761 	}
4762 }
4763 
4764 struct copy_subpage_arg {
4765 	struct page *dst;
4766 	struct page *src;
4767 	struct vm_area_struct *vma;
4768 };
4769 
4770 static void copy_subpage(unsigned long addr, int idx, void *arg)
4771 {
4772 	struct copy_subpage_arg *copy_arg = arg;
4773 
4774 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4775 			   addr, copy_arg->vma);
4776 }
4777 
4778 void copy_user_huge_page(struct page *dst, struct page *src,
4779 			 unsigned long addr_hint, struct vm_area_struct *vma,
4780 			 unsigned int pages_per_huge_page)
4781 {
4782 	unsigned long addr = addr_hint &
4783 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4784 	struct copy_subpage_arg arg = {
4785 		.dst = dst,
4786 		.src = src,
4787 		.vma = vma,
4788 	};
4789 
4790 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4791 		copy_user_gigantic_page(dst, src, addr, vma,
4792 					pages_per_huge_page);
4793 		return;
4794 	}
4795 
4796 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4797 }
4798 
4799 long copy_huge_page_from_user(struct page *dst_page,
4800 				const void __user *usr_src,
4801 				unsigned int pages_per_huge_page,
4802 				bool allow_pagefault)
4803 {
4804 	void *src = (void *)usr_src;
4805 	void *page_kaddr;
4806 	unsigned long i, rc = 0;
4807 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4808 
4809 	for (i = 0; i < pages_per_huge_page; i++) {
4810 		if (allow_pagefault)
4811 			page_kaddr = kmap(dst_page + i);
4812 		else
4813 			page_kaddr = kmap_atomic(dst_page + i);
4814 		rc = copy_from_user(page_kaddr,
4815 				(const void __user *)(src + i * PAGE_SIZE),
4816 				PAGE_SIZE);
4817 		if (allow_pagefault)
4818 			kunmap(dst_page + i);
4819 		else
4820 			kunmap_atomic(page_kaddr);
4821 
4822 		ret_val -= (PAGE_SIZE - rc);
4823 		if (rc)
4824 			break;
4825 
4826 		cond_resched();
4827 	}
4828 	return ret_val;
4829 }
4830 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4831 
4832 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4833 
4834 static struct kmem_cache *page_ptl_cachep;
4835 
4836 void __init ptlock_cache_init(void)
4837 {
4838 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4839 			SLAB_PANIC, NULL);
4840 }
4841 
4842 bool ptlock_alloc(struct page *page)
4843 {
4844 	spinlock_t *ptl;
4845 
4846 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4847 	if (!ptl)
4848 		return false;
4849 	page->ptl = ptl;
4850 	return true;
4851 }
4852 
4853 void ptlock_free(struct page *page)
4854 {
4855 	kmem_cache_free(page_ptl_cachep, page->ptl);
4856 }
4857 #endif
4858