xref: /openbmc/linux/mm/memory.c (revision 5d7800d9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109 
110 /*
111  * Return true if the original pte was a uffd-wp pte marker (so the pte was
112  * wr-protected).
113  */
114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117 		return false;
118 
119 	return pte_marker_uffd_wp(vmf->orig_pte);
120 }
121 
122 /*
123  * A number of key systems in x86 including ioremap() rely on the assumption
124  * that high_memory defines the upper bound on direct map memory, then end
125  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
126  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127  * and ZONE_HIGHMEM.
128  */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131 
132 /*
133  * Randomize the address space (stacks, mmaps, brk, etc.).
134  *
135  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136  *   as ancient (libc5 based) binaries can segfault. )
137  */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140 					1;
141 #else
142 					2;
143 #endif
144 
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148 	/*
149 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 	 * some architectures, even if it's performed in hardware. By
151 	 * default, "false" means prefaulted entries will be 'young'.
152 	 */
153 	return false;
154 }
155 #endif
156 
157 static int __init disable_randmaps(char *s)
158 {
159 	randomize_va_space = 0;
160 	return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163 
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166 
167 unsigned long highest_memmap_pfn __read_mostly;
168 
169 /*
170  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171  */
172 static int __init init_zero_pfn(void)
173 {
174 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 	return 0;
176 }
177 early_initcall(init_zero_pfn);
178 
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181 	trace_rss_stat(mm, member);
182 }
183 
184 /*
185  * Note: this doesn't free the actual pages themselves. That
186  * has been handled earlier when unmapping all the memory regions.
187  */
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 			   unsigned long addr)
190 {
191 	pgtable_t token = pmd_pgtable(*pmd);
192 	pmd_clear(pmd);
193 	pte_free_tlb(tlb, token, addr);
194 	mm_dec_nr_ptes(tlb->mm);
195 }
196 
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 				unsigned long addr, unsigned long end,
199 				unsigned long floor, unsigned long ceiling)
200 {
201 	pmd_t *pmd;
202 	unsigned long next;
203 	unsigned long start;
204 
205 	start = addr;
206 	pmd = pmd_offset(pud, addr);
207 	do {
208 		next = pmd_addr_end(addr, end);
209 		if (pmd_none_or_clear_bad(pmd))
210 			continue;
211 		free_pte_range(tlb, pmd, addr);
212 	} while (pmd++, addr = next, addr != end);
213 
214 	start &= PUD_MASK;
215 	if (start < floor)
216 		return;
217 	if (ceiling) {
218 		ceiling &= PUD_MASK;
219 		if (!ceiling)
220 			return;
221 	}
222 	if (end - 1 > ceiling - 1)
223 		return;
224 
225 	pmd = pmd_offset(pud, start);
226 	pud_clear(pud);
227 	pmd_free_tlb(tlb, pmd, start);
228 	mm_dec_nr_pmds(tlb->mm);
229 }
230 
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 				unsigned long addr, unsigned long end,
233 				unsigned long floor, unsigned long ceiling)
234 {
235 	pud_t *pud;
236 	unsigned long next;
237 	unsigned long start;
238 
239 	start = addr;
240 	pud = pud_offset(p4d, addr);
241 	do {
242 		next = pud_addr_end(addr, end);
243 		if (pud_none_or_clear_bad(pud))
244 			continue;
245 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 	} while (pud++, addr = next, addr != end);
247 
248 	start &= P4D_MASK;
249 	if (start < floor)
250 		return;
251 	if (ceiling) {
252 		ceiling &= P4D_MASK;
253 		if (!ceiling)
254 			return;
255 	}
256 	if (end - 1 > ceiling - 1)
257 		return;
258 
259 	pud = pud_offset(p4d, start);
260 	p4d_clear(p4d);
261 	pud_free_tlb(tlb, pud, start);
262 	mm_dec_nr_puds(tlb->mm);
263 }
264 
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 				unsigned long addr, unsigned long end,
267 				unsigned long floor, unsigned long ceiling)
268 {
269 	p4d_t *p4d;
270 	unsigned long next;
271 	unsigned long start;
272 
273 	start = addr;
274 	p4d = p4d_offset(pgd, addr);
275 	do {
276 		next = p4d_addr_end(addr, end);
277 		if (p4d_none_or_clear_bad(p4d))
278 			continue;
279 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 	} while (p4d++, addr = next, addr != end);
281 
282 	start &= PGDIR_MASK;
283 	if (start < floor)
284 		return;
285 	if (ceiling) {
286 		ceiling &= PGDIR_MASK;
287 		if (!ceiling)
288 			return;
289 	}
290 	if (end - 1 > ceiling - 1)
291 		return;
292 
293 	p4d = p4d_offset(pgd, start);
294 	pgd_clear(pgd);
295 	p4d_free_tlb(tlb, p4d, start);
296 }
297 
298 /*
299  * This function frees user-level page tables of a process.
300  */
301 void free_pgd_range(struct mmu_gather *tlb,
302 			unsigned long addr, unsigned long end,
303 			unsigned long floor, unsigned long ceiling)
304 {
305 	pgd_t *pgd;
306 	unsigned long next;
307 
308 	/*
309 	 * The next few lines have given us lots of grief...
310 	 *
311 	 * Why are we testing PMD* at this top level?  Because often
312 	 * there will be no work to do at all, and we'd prefer not to
313 	 * go all the way down to the bottom just to discover that.
314 	 *
315 	 * Why all these "- 1"s?  Because 0 represents both the bottom
316 	 * of the address space and the top of it (using -1 for the
317 	 * top wouldn't help much: the masks would do the wrong thing).
318 	 * The rule is that addr 0 and floor 0 refer to the bottom of
319 	 * the address space, but end 0 and ceiling 0 refer to the top
320 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 	 * that end 0 case should be mythical).
322 	 *
323 	 * Wherever addr is brought up or ceiling brought down, we must
324 	 * be careful to reject "the opposite 0" before it confuses the
325 	 * subsequent tests.  But what about where end is brought down
326 	 * by PMD_SIZE below? no, end can't go down to 0 there.
327 	 *
328 	 * Whereas we round start (addr) and ceiling down, by different
329 	 * masks at different levels, in order to test whether a table
330 	 * now has no other vmas using it, so can be freed, we don't
331 	 * bother to round floor or end up - the tests don't need that.
332 	 */
333 
334 	addr &= PMD_MASK;
335 	if (addr < floor) {
336 		addr += PMD_SIZE;
337 		if (!addr)
338 			return;
339 	}
340 	if (ceiling) {
341 		ceiling &= PMD_MASK;
342 		if (!ceiling)
343 			return;
344 	}
345 	if (end - 1 > ceiling - 1)
346 		end -= PMD_SIZE;
347 	if (addr > end - 1)
348 		return;
349 	/*
350 	 * We add page table cache pages with PAGE_SIZE,
351 	 * (see pte_free_tlb()), flush the tlb if we need
352 	 */
353 	tlb_change_page_size(tlb, PAGE_SIZE);
354 	pgd = pgd_offset(tlb->mm, addr);
355 	do {
356 		next = pgd_addr_end(addr, end);
357 		if (pgd_none_or_clear_bad(pgd))
358 			continue;
359 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 	} while (pgd++, addr = next, addr != end);
361 }
362 
363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas,
364 		   struct vm_area_struct *vma, unsigned long floor,
365 		   unsigned long ceiling, bool mm_wr_locked)
366 {
367 	do {
368 		unsigned long addr = vma->vm_start;
369 		struct vm_area_struct *next;
370 
371 		/*
372 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
373 		 * be 0.  This will underflow and is okay.
374 		 */
375 		next = mas_find(mas, ceiling - 1);
376 
377 		/*
378 		 * Hide vma from rmap and truncate_pagecache before freeing
379 		 * pgtables
380 		 */
381 		if (mm_wr_locked)
382 			vma_start_write(vma);
383 		unlink_anon_vmas(vma);
384 		unlink_file_vma(vma);
385 
386 		if (is_vm_hugetlb_page(vma)) {
387 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
388 				floor, next ? next->vm_start : ceiling);
389 		} else {
390 			/*
391 			 * Optimization: gather nearby vmas into one call down
392 			 */
393 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
394 			       && !is_vm_hugetlb_page(next)) {
395 				vma = next;
396 				next = mas_find(mas, ceiling - 1);
397 				if (mm_wr_locked)
398 					vma_start_write(vma);
399 				unlink_anon_vmas(vma);
400 				unlink_file_vma(vma);
401 			}
402 			free_pgd_range(tlb, addr, vma->vm_end,
403 				floor, next ? next->vm_start : ceiling);
404 		}
405 		vma = next;
406 	} while (vma);
407 }
408 
409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
410 {
411 	spinlock_t *ptl = pmd_lock(mm, pmd);
412 
413 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
414 		mm_inc_nr_ptes(mm);
415 		/*
416 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
417 		 * visible before the pte is made visible to other CPUs by being
418 		 * put into page tables.
419 		 *
420 		 * The other side of the story is the pointer chasing in the page
421 		 * table walking code (when walking the page table without locking;
422 		 * ie. most of the time). Fortunately, these data accesses consist
423 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
424 		 * being the notable exception) will already guarantee loads are
425 		 * seen in-order. See the alpha page table accessors for the
426 		 * smp_rmb() barriers in page table walking code.
427 		 */
428 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
429 		pmd_populate(mm, pmd, *pte);
430 		*pte = NULL;
431 	}
432 	spin_unlock(ptl);
433 }
434 
435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
436 {
437 	pgtable_t new = pte_alloc_one(mm);
438 	if (!new)
439 		return -ENOMEM;
440 
441 	pmd_install(mm, pmd, &new);
442 	if (new)
443 		pte_free(mm, new);
444 	return 0;
445 }
446 
447 int __pte_alloc_kernel(pmd_t *pmd)
448 {
449 	pte_t *new = pte_alloc_one_kernel(&init_mm);
450 	if (!new)
451 		return -ENOMEM;
452 
453 	spin_lock(&init_mm.page_table_lock);
454 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
455 		smp_wmb(); /* See comment in pmd_install() */
456 		pmd_populate_kernel(&init_mm, pmd, new);
457 		new = NULL;
458 	}
459 	spin_unlock(&init_mm.page_table_lock);
460 	if (new)
461 		pte_free_kernel(&init_mm, new);
462 	return 0;
463 }
464 
465 static inline void init_rss_vec(int *rss)
466 {
467 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
468 }
469 
470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
471 {
472 	int i;
473 
474 	if (current->mm == mm)
475 		sync_mm_rss(mm);
476 	for (i = 0; i < NR_MM_COUNTERS; i++)
477 		if (rss[i])
478 			add_mm_counter(mm, i, rss[i]);
479 }
480 
481 /*
482  * This function is called to print an error when a bad pte
483  * is found. For example, we might have a PFN-mapped pte in
484  * a region that doesn't allow it.
485  *
486  * The calling function must still handle the error.
487  */
488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
489 			  pte_t pte, struct page *page)
490 {
491 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
492 	p4d_t *p4d = p4d_offset(pgd, addr);
493 	pud_t *pud = pud_offset(p4d, addr);
494 	pmd_t *pmd = pmd_offset(pud, addr);
495 	struct address_space *mapping;
496 	pgoff_t index;
497 	static unsigned long resume;
498 	static unsigned long nr_shown;
499 	static unsigned long nr_unshown;
500 
501 	/*
502 	 * Allow a burst of 60 reports, then keep quiet for that minute;
503 	 * or allow a steady drip of one report per second.
504 	 */
505 	if (nr_shown == 60) {
506 		if (time_before(jiffies, resume)) {
507 			nr_unshown++;
508 			return;
509 		}
510 		if (nr_unshown) {
511 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
512 				 nr_unshown);
513 			nr_unshown = 0;
514 		}
515 		nr_shown = 0;
516 	}
517 	if (nr_shown++ == 0)
518 		resume = jiffies + 60 * HZ;
519 
520 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
521 	index = linear_page_index(vma, addr);
522 
523 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
524 		 current->comm,
525 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
526 	if (page)
527 		dump_page(page, "bad pte");
528 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
529 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
530 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
531 		 vma->vm_file,
532 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
533 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
534 		 mapping ? mapping->a_ops->read_folio : NULL);
535 	dump_stack();
536 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
537 }
538 
539 /*
540  * vm_normal_page -- This function gets the "struct page" associated with a pte.
541  *
542  * "Special" mappings do not wish to be associated with a "struct page" (either
543  * it doesn't exist, or it exists but they don't want to touch it). In this
544  * case, NULL is returned here. "Normal" mappings do have a struct page.
545  *
546  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
547  * pte bit, in which case this function is trivial. Secondly, an architecture
548  * may not have a spare pte bit, which requires a more complicated scheme,
549  * described below.
550  *
551  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
552  * special mapping (even if there are underlying and valid "struct pages").
553  * COWed pages of a VM_PFNMAP are always normal.
554  *
555  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
556  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
557  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
558  * mapping will always honor the rule
559  *
560  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
561  *
562  * And for normal mappings this is false.
563  *
564  * This restricts such mappings to be a linear translation from virtual address
565  * to pfn. To get around this restriction, we allow arbitrary mappings so long
566  * as the vma is not a COW mapping; in that case, we know that all ptes are
567  * special (because none can have been COWed).
568  *
569  *
570  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
571  *
572  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
573  * page" backing, however the difference is that _all_ pages with a struct
574  * page (that is, those where pfn_valid is true) are refcounted and considered
575  * normal pages by the VM. The disadvantage is that pages are refcounted
576  * (which can be slower and simply not an option for some PFNMAP users). The
577  * advantage is that we don't have to follow the strict linearity rule of
578  * PFNMAP mappings in order to support COWable mappings.
579  *
580  */
581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
582 			    pte_t pte)
583 {
584 	unsigned long pfn = pte_pfn(pte);
585 
586 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
587 		if (likely(!pte_special(pte)))
588 			goto check_pfn;
589 		if (vma->vm_ops && vma->vm_ops->find_special_page)
590 			return vma->vm_ops->find_special_page(vma, addr);
591 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
592 			return NULL;
593 		if (is_zero_pfn(pfn))
594 			return NULL;
595 		if (pte_devmap(pte))
596 		/*
597 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
598 		 * and will have refcounts incremented on their struct pages
599 		 * when they are inserted into PTEs, thus they are safe to
600 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
601 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
602 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
603 		 */
604 			return NULL;
605 
606 		print_bad_pte(vma, addr, pte, NULL);
607 		return NULL;
608 	}
609 
610 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
611 
612 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
613 		if (vma->vm_flags & VM_MIXEDMAP) {
614 			if (!pfn_valid(pfn))
615 				return NULL;
616 			goto out;
617 		} else {
618 			unsigned long off;
619 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
620 			if (pfn == vma->vm_pgoff + off)
621 				return NULL;
622 			if (!is_cow_mapping(vma->vm_flags))
623 				return NULL;
624 		}
625 	}
626 
627 	if (is_zero_pfn(pfn))
628 		return NULL;
629 
630 check_pfn:
631 	if (unlikely(pfn > highest_memmap_pfn)) {
632 		print_bad_pte(vma, addr, pte, NULL);
633 		return NULL;
634 	}
635 
636 	/*
637 	 * NOTE! We still have PageReserved() pages in the page tables.
638 	 * eg. VDSO mappings can cause them to exist.
639 	 */
640 out:
641 	return pfn_to_page(pfn);
642 }
643 
644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
645 			    pte_t pte)
646 {
647 	struct page *page = vm_normal_page(vma, addr, pte);
648 
649 	if (page)
650 		return page_folio(page);
651 	return NULL;
652 }
653 
654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
656 				pmd_t pmd)
657 {
658 	unsigned long pfn = pmd_pfn(pmd);
659 
660 	/*
661 	 * There is no pmd_special() but there may be special pmds, e.g.
662 	 * in a direct-access (dax) mapping, so let's just replicate the
663 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
664 	 */
665 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
666 		if (vma->vm_flags & VM_MIXEDMAP) {
667 			if (!pfn_valid(pfn))
668 				return NULL;
669 			goto out;
670 		} else {
671 			unsigned long off;
672 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
673 			if (pfn == vma->vm_pgoff + off)
674 				return NULL;
675 			if (!is_cow_mapping(vma->vm_flags))
676 				return NULL;
677 		}
678 	}
679 
680 	if (pmd_devmap(pmd))
681 		return NULL;
682 	if (is_huge_zero_pmd(pmd))
683 		return NULL;
684 	if (unlikely(pfn > highest_memmap_pfn))
685 		return NULL;
686 
687 	/*
688 	 * NOTE! We still have PageReserved() pages in the page tables.
689 	 * eg. VDSO mappings can cause them to exist.
690 	 */
691 out:
692 	return pfn_to_page(pfn);
693 }
694 #endif
695 
696 static void restore_exclusive_pte(struct vm_area_struct *vma,
697 				  struct page *page, unsigned long address,
698 				  pte_t *ptep)
699 {
700 	pte_t orig_pte;
701 	pte_t pte;
702 	swp_entry_t entry;
703 
704 	orig_pte = ptep_get(ptep);
705 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706 	if (pte_swp_soft_dirty(orig_pte))
707 		pte = pte_mksoft_dirty(pte);
708 
709 	entry = pte_to_swp_entry(orig_pte);
710 	if (pte_swp_uffd_wp(orig_pte))
711 		pte = pte_mkuffd_wp(pte);
712 	else if (is_writable_device_exclusive_entry(entry))
713 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714 
715 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716 
717 	/*
718 	 * No need to take a page reference as one was already
719 	 * created when the swap entry was made.
720 	 */
721 	if (PageAnon(page))
722 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
723 	else
724 		/*
725 		 * Currently device exclusive access only supports anonymous
726 		 * memory so the entry shouldn't point to a filebacked page.
727 		 */
728 		WARN_ON_ONCE(1);
729 
730 	set_pte_at(vma->vm_mm, address, ptep, pte);
731 
732 	/*
733 	 * No need to invalidate - it was non-present before. However
734 	 * secondary CPUs may have mappings that need invalidating.
735 	 */
736 	update_mmu_cache(vma, address, ptep);
737 }
738 
739 /*
740  * Tries to restore an exclusive pte if the page lock can be acquired without
741  * sleeping.
742  */
743 static int
744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745 			unsigned long addr)
746 {
747 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
748 	struct page *page = pfn_swap_entry_to_page(entry);
749 
750 	if (trylock_page(page)) {
751 		restore_exclusive_pte(vma, page, addr, src_pte);
752 		unlock_page(page);
753 		return 0;
754 	}
755 
756 	return -EBUSY;
757 }
758 
759 /*
760  * copy one vm_area from one task to the other. Assumes the page tables
761  * already present in the new task to be cleared in the whole range
762  * covered by this vma.
763  */
764 
765 static unsigned long
766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
769 {
770 	unsigned long vm_flags = dst_vma->vm_flags;
771 	pte_t orig_pte = ptep_get(src_pte);
772 	pte_t pte = orig_pte;
773 	struct page *page;
774 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
775 
776 	if (likely(!non_swap_entry(entry))) {
777 		if (swap_duplicate(entry) < 0)
778 			return -EIO;
779 
780 		/* make sure dst_mm is on swapoff's mmlist. */
781 		if (unlikely(list_empty(&dst_mm->mmlist))) {
782 			spin_lock(&mmlist_lock);
783 			if (list_empty(&dst_mm->mmlist))
784 				list_add(&dst_mm->mmlist,
785 						&src_mm->mmlist);
786 			spin_unlock(&mmlist_lock);
787 		}
788 		/* Mark the swap entry as shared. */
789 		if (pte_swp_exclusive(orig_pte)) {
790 			pte = pte_swp_clear_exclusive(orig_pte);
791 			set_pte_at(src_mm, addr, src_pte, pte);
792 		}
793 		rss[MM_SWAPENTS]++;
794 	} else if (is_migration_entry(entry)) {
795 		page = pfn_swap_entry_to_page(entry);
796 
797 		rss[mm_counter(page)]++;
798 
799 		if (!is_readable_migration_entry(entry) &&
800 				is_cow_mapping(vm_flags)) {
801 			/*
802 			 * COW mappings require pages in both parent and child
803 			 * to be set to read. A previously exclusive entry is
804 			 * now shared.
805 			 */
806 			entry = make_readable_migration_entry(
807 							swp_offset(entry));
808 			pte = swp_entry_to_pte(entry);
809 			if (pte_swp_soft_dirty(orig_pte))
810 				pte = pte_swp_mksoft_dirty(pte);
811 			if (pte_swp_uffd_wp(orig_pte))
812 				pte = pte_swp_mkuffd_wp(pte);
813 			set_pte_at(src_mm, addr, src_pte, pte);
814 		}
815 	} else if (is_device_private_entry(entry)) {
816 		page = pfn_swap_entry_to_page(entry);
817 
818 		/*
819 		 * Update rss count even for unaddressable pages, as
820 		 * they should treated just like normal pages in this
821 		 * respect.
822 		 *
823 		 * We will likely want to have some new rss counters
824 		 * for unaddressable pages, at some point. But for now
825 		 * keep things as they are.
826 		 */
827 		get_page(page);
828 		rss[mm_counter(page)]++;
829 		/* Cannot fail as these pages cannot get pinned. */
830 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
831 
832 		/*
833 		 * We do not preserve soft-dirty information, because so
834 		 * far, checkpoint/restore is the only feature that
835 		 * requires that. And checkpoint/restore does not work
836 		 * when a device driver is involved (you cannot easily
837 		 * save and restore device driver state).
838 		 */
839 		if (is_writable_device_private_entry(entry) &&
840 		    is_cow_mapping(vm_flags)) {
841 			entry = make_readable_device_private_entry(
842 							swp_offset(entry));
843 			pte = swp_entry_to_pte(entry);
844 			if (pte_swp_uffd_wp(orig_pte))
845 				pte = pte_swp_mkuffd_wp(pte);
846 			set_pte_at(src_mm, addr, src_pte, pte);
847 		}
848 	} else if (is_device_exclusive_entry(entry)) {
849 		/*
850 		 * Make device exclusive entries present by restoring the
851 		 * original entry then copying as for a present pte. Device
852 		 * exclusive entries currently only support private writable
853 		 * (ie. COW) mappings.
854 		 */
855 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
856 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
857 			return -EBUSY;
858 		return -ENOENT;
859 	} else if (is_pte_marker_entry(entry)) {
860 		pte_marker marker = copy_pte_marker(entry, dst_vma);
861 
862 		if (marker)
863 			set_pte_at(dst_mm, addr, dst_pte,
864 				   make_pte_marker(marker));
865 		return 0;
866 	}
867 	if (!userfaultfd_wp(dst_vma))
868 		pte = pte_swp_clear_uffd_wp(pte);
869 	set_pte_at(dst_mm, addr, dst_pte, pte);
870 	return 0;
871 }
872 
873 /*
874  * Copy a present and normal page.
875  *
876  * NOTE! The usual case is that this isn't required;
877  * instead, the caller can just increase the page refcount
878  * and re-use the pte the traditional way.
879  *
880  * And if we need a pre-allocated page but don't yet have
881  * one, return a negative error to let the preallocation
882  * code know so that it can do so outside the page table
883  * lock.
884  */
885 static inline int
886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888 		  struct folio **prealloc, struct page *page)
889 {
890 	struct folio *new_folio;
891 	pte_t pte;
892 
893 	new_folio = *prealloc;
894 	if (!new_folio)
895 		return -EAGAIN;
896 
897 	/*
898 	 * We have a prealloc page, all good!  Take it
899 	 * over and copy the page & arm it.
900 	 */
901 	*prealloc = NULL;
902 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 	__folio_mark_uptodate(new_folio);
904 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 	folio_add_lru_vma(new_folio, dst_vma);
906 	rss[MM_ANONPAGES]++;
907 
908 	/* All done, just insert the new page copy in the child */
909 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912 		/* Uffd-wp needs to be delivered to dest pte as well */
913 		pte = pte_mkuffd_wp(pte);
914 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915 	return 0;
916 }
917 
918 /*
919  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
920  * is required to copy this pte.
921  */
922 static inline int
923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925 		 struct folio **prealloc)
926 {
927 	struct mm_struct *src_mm = src_vma->vm_mm;
928 	unsigned long vm_flags = src_vma->vm_flags;
929 	pte_t pte = ptep_get(src_pte);
930 	struct page *page;
931 	struct folio *folio;
932 
933 	page = vm_normal_page(src_vma, addr, pte);
934 	if (page)
935 		folio = page_folio(page);
936 	if (page && folio_test_anon(folio)) {
937 		/*
938 		 * If this page may have been pinned by the parent process,
939 		 * copy the page immediately for the child so that we'll always
940 		 * guarantee the pinned page won't be randomly replaced in the
941 		 * future.
942 		 */
943 		folio_get(folio);
944 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945 			/* Page may be pinned, we have to copy. */
946 			folio_put(folio);
947 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 						 addr, rss, prealloc, page);
949 		}
950 		rss[MM_ANONPAGES]++;
951 	} else if (page) {
952 		folio_get(folio);
953 		page_dup_file_rmap(page, false);
954 		rss[mm_counter_file(page)]++;
955 	}
956 
957 	/*
958 	 * If it's a COW mapping, write protect it both
959 	 * in the parent and the child
960 	 */
961 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962 		ptep_set_wrprotect(src_mm, addr, src_pte);
963 		pte = pte_wrprotect(pte);
964 	}
965 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966 
967 	/*
968 	 * If it's a shared mapping, mark it clean in
969 	 * the child
970 	 */
971 	if (vm_flags & VM_SHARED)
972 		pte = pte_mkclean(pte);
973 	pte = pte_mkold(pte);
974 
975 	if (!userfaultfd_wp(dst_vma))
976 		pte = pte_clear_uffd_wp(pte);
977 
978 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979 	return 0;
980 }
981 
982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 		struct vm_area_struct *vma, unsigned long addr)
984 {
985 	struct folio *new_folio;
986 
987 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988 	if (!new_folio)
989 		return NULL;
990 
991 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 		folio_put(new_folio);
993 		return NULL;
994 	}
995 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
996 
997 	return new_folio;
998 }
999 
1000 static int
1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003 	       unsigned long end)
1004 {
1005 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 	struct mm_struct *src_mm = src_vma->vm_mm;
1007 	pte_t *orig_src_pte, *orig_dst_pte;
1008 	pte_t *src_pte, *dst_pte;
1009 	pte_t ptent;
1010 	spinlock_t *src_ptl, *dst_ptl;
1011 	int progress, ret = 0;
1012 	int rss[NR_MM_COUNTERS];
1013 	swp_entry_t entry = (swp_entry_t){0};
1014 	struct folio *prealloc = NULL;
1015 
1016 again:
1017 	progress = 0;
1018 	init_rss_vec(rss);
1019 
1020 	/*
1021 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 	 * error handling here, assume that exclusive mmap_lock on dst and src
1023 	 * protects anon from unexpected THP transitions; with shmem and file
1024 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1026 	 * can remove such assumptions later, but this is good enough for now.
1027 	 */
1028 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029 	if (!dst_pte) {
1030 		ret = -ENOMEM;
1031 		goto out;
1032 	}
1033 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034 	if (!src_pte) {
1035 		pte_unmap_unlock(dst_pte, dst_ptl);
1036 		/* ret == 0 */
1037 		goto out;
1038 	}
1039 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 	orig_src_pte = src_pte;
1041 	orig_dst_pte = dst_pte;
1042 	arch_enter_lazy_mmu_mode();
1043 
1044 	do {
1045 		/*
1046 		 * We are holding two locks at this point - either of them
1047 		 * could generate latencies in another task on another CPU.
1048 		 */
1049 		if (progress >= 32) {
1050 			progress = 0;
1051 			if (need_resched() ||
1052 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053 				break;
1054 		}
1055 		ptent = ptep_get(src_pte);
1056 		if (pte_none(ptent)) {
1057 			progress++;
1058 			continue;
1059 		}
1060 		if (unlikely(!pte_present(ptent))) {
1061 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1062 						  dst_pte, src_pte,
1063 						  dst_vma, src_vma,
1064 						  addr, rss);
1065 			if (ret == -EIO) {
1066 				entry = pte_to_swp_entry(ptep_get(src_pte));
1067 				break;
1068 			} else if (ret == -EBUSY) {
1069 				break;
1070 			} else if (!ret) {
1071 				progress += 8;
1072 				continue;
1073 			}
1074 
1075 			/*
1076 			 * Device exclusive entry restored, continue by copying
1077 			 * the now present pte.
1078 			 */
1079 			WARN_ON_ONCE(ret != -ENOENT);
1080 		}
1081 		/* copy_present_pte() will clear `*prealloc' if consumed */
1082 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 				       addr, rss, &prealloc);
1084 		/*
1085 		 * If we need a pre-allocated page for this pte, drop the
1086 		 * locks, allocate, and try again.
1087 		 */
1088 		if (unlikely(ret == -EAGAIN))
1089 			break;
1090 		if (unlikely(prealloc)) {
1091 			/*
1092 			 * pre-alloc page cannot be reused by next time so as
1093 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 			 * will allocate page according to address).  This
1095 			 * could only happen if one pinned pte changed.
1096 			 */
1097 			folio_put(prealloc);
1098 			prealloc = NULL;
1099 		}
1100 		progress += 8;
1101 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102 
1103 	arch_leave_lazy_mmu_mode();
1104 	pte_unmap_unlock(orig_src_pte, src_ptl);
1105 	add_mm_rss_vec(dst_mm, rss);
1106 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107 	cond_resched();
1108 
1109 	if (ret == -EIO) {
1110 		VM_WARN_ON_ONCE(!entry.val);
1111 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112 			ret = -ENOMEM;
1113 			goto out;
1114 		}
1115 		entry.val = 0;
1116 	} else if (ret == -EBUSY) {
1117 		goto out;
1118 	} else if (ret ==  -EAGAIN) {
1119 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120 		if (!prealloc)
1121 			return -ENOMEM;
1122 	} else if (ret) {
1123 		VM_WARN_ON_ONCE(1);
1124 	}
1125 
1126 	/* We've captured and resolved the error. Reset, try again. */
1127 	ret = 0;
1128 
1129 	if (addr != end)
1130 		goto again;
1131 out:
1132 	if (unlikely(prealloc))
1133 		folio_put(prealloc);
1134 	return ret;
1135 }
1136 
1137 static inline int
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140 	       unsigned long end)
1141 {
1142 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 	struct mm_struct *src_mm = src_vma->vm_mm;
1144 	pmd_t *src_pmd, *dst_pmd;
1145 	unsigned long next;
1146 
1147 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148 	if (!dst_pmd)
1149 		return -ENOMEM;
1150 	src_pmd = pmd_offset(src_pud, addr);
1151 	do {
1152 		next = pmd_addr_end(addr, end);
1153 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 			|| pmd_devmap(*src_pmd)) {
1155 			int err;
1156 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 					    addr, dst_vma, src_vma);
1159 			if (err == -ENOMEM)
1160 				return -ENOMEM;
1161 			if (!err)
1162 				continue;
1163 			/* fall through */
1164 		}
1165 		if (pmd_none_or_clear_bad(src_pmd))
1166 			continue;
1167 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168 				   addr, next))
1169 			return -ENOMEM;
1170 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171 	return 0;
1172 }
1173 
1174 static inline int
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177 	       unsigned long end)
1178 {
1179 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 	struct mm_struct *src_mm = src_vma->vm_mm;
1181 	pud_t *src_pud, *dst_pud;
1182 	unsigned long next;
1183 
1184 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185 	if (!dst_pud)
1186 		return -ENOMEM;
1187 	src_pud = pud_offset(src_p4d, addr);
1188 	do {
1189 		next = pud_addr_end(addr, end);
1190 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191 			int err;
1192 
1193 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194 			err = copy_huge_pud(dst_mm, src_mm,
1195 					    dst_pud, src_pud, addr, src_vma);
1196 			if (err == -ENOMEM)
1197 				return -ENOMEM;
1198 			if (!err)
1199 				continue;
1200 			/* fall through */
1201 		}
1202 		if (pud_none_or_clear_bad(src_pud))
1203 			continue;
1204 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205 				   addr, next))
1206 			return -ENOMEM;
1207 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1208 	return 0;
1209 }
1210 
1211 static inline int
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214 	       unsigned long end)
1215 {
1216 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1217 	p4d_t *src_p4d, *dst_p4d;
1218 	unsigned long next;
1219 
1220 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221 	if (!dst_p4d)
1222 		return -ENOMEM;
1223 	src_p4d = p4d_offset(src_pgd, addr);
1224 	do {
1225 		next = p4d_addr_end(addr, end);
1226 		if (p4d_none_or_clear_bad(src_p4d))
1227 			continue;
1228 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229 				   addr, next))
1230 			return -ENOMEM;
1231 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232 	return 0;
1233 }
1234 
1235 /*
1236  * Return true if the vma needs to copy the pgtable during this fork().  Return
1237  * false when we can speed up fork() by allowing lazy page faults later until
1238  * when the child accesses the memory range.
1239  */
1240 static bool
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243 	/*
1244 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 	 * contains uffd-wp protection information, that's something we can't
1247 	 * retrieve from page cache, and skip copying will lose those info.
1248 	 */
1249 	if (userfaultfd_wp(dst_vma))
1250 		return true;
1251 
1252 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253 		return true;
1254 
1255 	if (src_vma->anon_vma)
1256 		return true;
1257 
1258 	/*
1259 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1260 	 * becomes much lighter when there are big shared or private readonly
1261 	 * mappings. The tradeoff is that copy_page_range is more efficient
1262 	 * than faulting.
1263 	 */
1264 	return false;
1265 }
1266 
1267 int
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270 	pgd_t *src_pgd, *dst_pgd;
1271 	unsigned long next;
1272 	unsigned long addr = src_vma->vm_start;
1273 	unsigned long end = src_vma->vm_end;
1274 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 	struct mm_struct *src_mm = src_vma->vm_mm;
1276 	struct mmu_notifier_range range;
1277 	bool is_cow;
1278 	int ret;
1279 
1280 	if (!vma_needs_copy(dst_vma, src_vma))
1281 		return 0;
1282 
1283 	if (is_vm_hugetlb_page(src_vma))
1284 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285 
1286 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287 		/*
1288 		 * We do not free on error cases below as remove_vma
1289 		 * gets called on error from higher level routine
1290 		 */
1291 		ret = track_pfn_copy(src_vma);
1292 		if (ret)
1293 			return ret;
1294 	}
1295 
1296 	/*
1297 	 * We need to invalidate the secondary MMU mappings only when
1298 	 * there could be a permission downgrade on the ptes of the
1299 	 * parent mm. And a permission downgrade will only happen if
1300 	 * is_cow_mapping() returns true.
1301 	 */
1302 	is_cow = is_cow_mapping(src_vma->vm_flags);
1303 
1304 	if (is_cow) {
1305 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306 					0, src_mm, addr, end);
1307 		mmu_notifier_invalidate_range_start(&range);
1308 		/*
1309 		 * Disabling preemption is not needed for the write side, as
1310 		 * the read side doesn't spin, but goes to the mmap_lock.
1311 		 *
1312 		 * Use the raw variant of the seqcount_t write API to avoid
1313 		 * lockdep complaining about preemptibility.
1314 		 */
1315 		mmap_assert_write_locked(src_mm);
1316 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317 	}
1318 
1319 	ret = 0;
1320 	dst_pgd = pgd_offset(dst_mm, addr);
1321 	src_pgd = pgd_offset(src_mm, addr);
1322 	do {
1323 		next = pgd_addr_end(addr, end);
1324 		if (pgd_none_or_clear_bad(src_pgd))
1325 			continue;
1326 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327 					    addr, next))) {
1328 			untrack_pfn_clear(dst_vma);
1329 			ret = -ENOMEM;
1330 			break;
1331 		}
1332 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1333 
1334 	if (is_cow) {
1335 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1336 		mmu_notifier_invalidate_range_end(&range);
1337 	}
1338 	return ret;
1339 }
1340 
1341 /* Whether we should zap all COWed (private) pages too */
1342 static inline bool should_zap_cows(struct zap_details *details)
1343 {
1344 	/* By default, zap all pages */
1345 	if (!details)
1346 		return true;
1347 
1348 	/* Or, we zap COWed pages only if the caller wants to */
1349 	return details->even_cows;
1350 }
1351 
1352 /* Decides whether we should zap this page with the page pointer specified */
1353 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1354 {
1355 	/* If we can make a decision without *page.. */
1356 	if (should_zap_cows(details))
1357 		return true;
1358 
1359 	/* E.g. the caller passes NULL for the case of a zero page */
1360 	if (!page)
1361 		return true;
1362 
1363 	/* Otherwise we should only zap non-anon pages */
1364 	return !PageAnon(page);
1365 }
1366 
1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368 {
1369 	if (!details)
1370 		return false;
1371 
1372 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373 }
1374 
1375 /*
1376  * This function makes sure that we'll replace the none pte with an uffd-wp
1377  * swap special pte marker when necessary. Must be with the pgtable lock held.
1378  */
1379 static inline void
1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381 			      unsigned long addr, pte_t *pte,
1382 			      struct zap_details *details, pte_t pteval)
1383 {
1384 	/* Zap on anonymous always means dropping everything */
1385 	if (vma_is_anonymous(vma))
1386 		return;
1387 
1388 	if (zap_drop_file_uffd_wp(details))
1389 		return;
1390 
1391 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 }
1393 
1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395 				struct vm_area_struct *vma, pmd_t *pmd,
1396 				unsigned long addr, unsigned long end,
1397 				struct zap_details *details)
1398 {
1399 	struct mm_struct *mm = tlb->mm;
1400 	int force_flush = 0;
1401 	int rss[NR_MM_COUNTERS];
1402 	spinlock_t *ptl;
1403 	pte_t *start_pte;
1404 	pte_t *pte;
1405 	swp_entry_t entry;
1406 
1407 	tlb_change_page_size(tlb, PAGE_SIZE);
1408 	init_rss_vec(rss);
1409 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410 	if (!pte)
1411 		return addr;
1412 
1413 	flush_tlb_batched_pending(mm);
1414 	arch_enter_lazy_mmu_mode();
1415 	do {
1416 		pte_t ptent = ptep_get(pte);
1417 		struct page *page;
1418 
1419 		if (pte_none(ptent))
1420 			continue;
1421 
1422 		if (need_resched())
1423 			break;
1424 
1425 		if (pte_present(ptent)) {
1426 			unsigned int delay_rmap;
1427 
1428 			page = vm_normal_page(vma, addr, ptent);
1429 			if (unlikely(!should_zap_page(details, page)))
1430 				continue;
1431 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1432 							tlb->fullmm);
1433 			tlb_remove_tlb_entry(tlb, pte, addr);
1434 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1435 						      ptent);
1436 			if (unlikely(!page)) {
1437 				ksm_might_unmap_zero_page(mm, ptent);
1438 				continue;
1439 			}
1440 
1441 			delay_rmap = 0;
1442 			if (!PageAnon(page)) {
1443 				if (pte_dirty(ptent)) {
1444 					set_page_dirty(page);
1445 					if (tlb_delay_rmap(tlb)) {
1446 						delay_rmap = 1;
1447 						force_flush = 1;
1448 					}
1449 				}
1450 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1451 					mark_page_accessed(page);
1452 			}
1453 			rss[mm_counter(page)]--;
1454 			if (!delay_rmap) {
1455 				page_remove_rmap(page, vma, false);
1456 				if (unlikely(page_mapcount(page) < 0))
1457 					print_bad_pte(vma, addr, ptent, page);
1458 			}
1459 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1460 				force_flush = 1;
1461 				addr += PAGE_SIZE;
1462 				break;
1463 			}
1464 			continue;
1465 		}
1466 
1467 		entry = pte_to_swp_entry(ptent);
1468 		if (is_device_private_entry(entry) ||
1469 		    is_device_exclusive_entry(entry)) {
1470 			page = pfn_swap_entry_to_page(entry);
1471 			if (unlikely(!should_zap_page(details, page)))
1472 				continue;
1473 			/*
1474 			 * Both device private/exclusive mappings should only
1475 			 * work with anonymous page so far, so we don't need to
1476 			 * consider uffd-wp bit when zap. For more information,
1477 			 * see zap_install_uffd_wp_if_needed().
1478 			 */
1479 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1480 			rss[mm_counter(page)]--;
1481 			if (is_device_private_entry(entry))
1482 				page_remove_rmap(page, vma, false);
1483 			put_page(page);
1484 		} else if (!non_swap_entry(entry)) {
1485 			/* Genuine swap entry, hence a private anon page */
1486 			if (!should_zap_cows(details))
1487 				continue;
1488 			rss[MM_SWAPENTS]--;
1489 			if (unlikely(!free_swap_and_cache(entry)))
1490 				print_bad_pte(vma, addr, ptent, NULL);
1491 		} else if (is_migration_entry(entry)) {
1492 			page = pfn_swap_entry_to_page(entry);
1493 			if (!should_zap_page(details, page))
1494 				continue;
1495 			rss[mm_counter(page)]--;
1496 		} else if (pte_marker_entry_uffd_wp(entry)) {
1497 			/*
1498 			 * For anon: always drop the marker; for file: only
1499 			 * drop the marker if explicitly requested.
1500 			 */
1501 			if (!vma_is_anonymous(vma) &&
1502 			    !zap_drop_file_uffd_wp(details))
1503 				continue;
1504 		} else if (is_hwpoison_entry(entry) ||
1505 			   is_poisoned_swp_entry(entry)) {
1506 			if (!should_zap_cows(details))
1507 				continue;
1508 		} else {
1509 			/* We should have covered all the swap entry types */
1510 			WARN_ON_ONCE(1);
1511 		}
1512 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1513 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1514 	} while (pte++, addr += PAGE_SIZE, addr != end);
1515 
1516 	add_mm_rss_vec(mm, rss);
1517 	arch_leave_lazy_mmu_mode();
1518 
1519 	/* Do the actual TLB flush before dropping ptl */
1520 	if (force_flush) {
1521 		tlb_flush_mmu_tlbonly(tlb);
1522 		tlb_flush_rmaps(tlb, vma);
1523 	}
1524 	pte_unmap_unlock(start_pte, ptl);
1525 
1526 	/*
1527 	 * If we forced a TLB flush (either due to running out of
1528 	 * batch buffers or because we needed to flush dirty TLB
1529 	 * entries before releasing the ptl), free the batched
1530 	 * memory too. Come back again if we didn't do everything.
1531 	 */
1532 	if (force_flush)
1533 		tlb_flush_mmu(tlb);
1534 
1535 	return addr;
1536 }
1537 
1538 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1539 				struct vm_area_struct *vma, pud_t *pud,
1540 				unsigned long addr, unsigned long end,
1541 				struct zap_details *details)
1542 {
1543 	pmd_t *pmd;
1544 	unsigned long next;
1545 
1546 	pmd = pmd_offset(pud, addr);
1547 	do {
1548 		next = pmd_addr_end(addr, end);
1549 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1550 			if (next - addr != HPAGE_PMD_SIZE)
1551 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1552 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1553 				addr = next;
1554 				continue;
1555 			}
1556 			/* fall through */
1557 		} else if (details && details->single_folio &&
1558 			   folio_test_pmd_mappable(details->single_folio) &&
1559 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1560 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1561 			/*
1562 			 * Take and drop THP pmd lock so that we cannot return
1563 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1564 			 * but not yet decremented compound_mapcount().
1565 			 */
1566 			spin_unlock(ptl);
1567 		}
1568 		if (pmd_none(*pmd)) {
1569 			addr = next;
1570 			continue;
1571 		}
1572 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1573 		if (addr != next)
1574 			pmd--;
1575 	} while (pmd++, cond_resched(), addr != end);
1576 
1577 	return addr;
1578 }
1579 
1580 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1581 				struct vm_area_struct *vma, p4d_t *p4d,
1582 				unsigned long addr, unsigned long end,
1583 				struct zap_details *details)
1584 {
1585 	pud_t *pud;
1586 	unsigned long next;
1587 
1588 	pud = pud_offset(p4d, addr);
1589 	do {
1590 		next = pud_addr_end(addr, end);
1591 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1592 			if (next - addr != HPAGE_PUD_SIZE) {
1593 				mmap_assert_locked(tlb->mm);
1594 				split_huge_pud(vma, pud, addr);
1595 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1596 				goto next;
1597 			/* fall through */
1598 		}
1599 		if (pud_none_or_clear_bad(pud))
1600 			continue;
1601 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1602 next:
1603 		cond_resched();
1604 	} while (pud++, addr = next, addr != end);
1605 
1606 	return addr;
1607 }
1608 
1609 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1610 				struct vm_area_struct *vma, pgd_t *pgd,
1611 				unsigned long addr, unsigned long end,
1612 				struct zap_details *details)
1613 {
1614 	p4d_t *p4d;
1615 	unsigned long next;
1616 
1617 	p4d = p4d_offset(pgd, addr);
1618 	do {
1619 		next = p4d_addr_end(addr, end);
1620 		if (p4d_none_or_clear_bad(p4d))
1621 			continue;
1622 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1623 	} while (p4d++, addr = next, addr != end);
1624 
1625 	return addr;
1626 }
1627 
1628 void unmap_page_range(struct mmu_gather *tlb,
1629 			     struct vm_area_struct *vma,
1630 			     unsigned long addr, unsigned long end,
1631 			     struct zap_details *details)
1632 {
1633 	pgd_t *pgd;
1634 	unsigned long next;
1635 
1636 	BUG_ON(addr >= end);
1637 	tlb_start_vma(tlb, vma);
1638 	pgd = pgd_offset(vma->vm_mm, addr);
1639 	do {
1640 		next = pgd_addr_end(addr, end);
1641 		if (pgd_none_or_clear_bad(pgd))
1642 			continue;
1643 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1644 	} while (pgd++, addr = next, addr != end);
1645 	tlb_end_vma(tlb, vma);
1646 }
1647 
1648 
1649 static void unmap_single_vma(struct mmu_gather *tlb,
1650 		struct vm_area_struct *vma, unsigned long start_addr,
1651 		unsigned long end_addr,
1652 		struct zap_details *details, bool mm_wr_locked)
1653 {
1654 	unsigned long start = max(vma->vm_start, start_addr);
1655 	unsigned long end;
1656 
1657 	if (start >= vma->vm_end)
1658 		return;
1659 	end = min(vma->vm_end, end_addr);
1660 	if (end <= vma->vm_start)
1661 		return;
1662 
1663 	if (vma->vm_file)
1664 		uprobe_munmap(vma, start, end);
1665 
1666 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1667 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1668 
1669 	if (start != end) {
1670 		if (unlikely(is_vm_hugetlb_page(vma))) {
1671 			/*
1672 			 * It is undesirable to test vma->vm_file as it
1673 			 * should be non-null for valid hugetlb area.
1674 			 * However, vm_file will be NULL in the error
1675 			 * cleanup path of mmap_region. When
1676 			 * hugetlbfs ->mmap method fails,
1677 			 * mmap_region() nullifies vma->vm_file
1678 			 * before calling this function to clean up.
1679 			 * Since no pte has actually been setup, it is
1680 			 * safe to do nothing in this case.
1681 			 */
1682 			if (vma->vm_file) {
1683 				zap_flags_t zap_flags = details ?
1684 				    details->zap_flags : 0;
1685 				__unmap_hugepage_range_final(tlb, vma, start, end,
1686 							     NULL, zap_flags);
1687 			}
1688 		} else
1689 			unmap_page_range(tlb, vma, start, end, details);
1690 	}
1691 }
1692 
1693 /**
1694  * unmap_vmas - unmap a range of memory covered by a list of vma's
1695  * @tlb: address of the caller's struct mmu_gather
1696  * @mas: the maple state
1697  * @vma: the starting vma
1698  * @start_addr: virtual address at which to start unmapping
1699  * @end_addr: virtual address at which to end unmapping
1700  * @tree_end: The maximum index to check
1701  * @mm_wr_locked: lock flag
1702  *
1703  * Unmap all pages in the vma list.
1704  *
1705  * Only addresses between `start' and `end' will be unmapped.
1706  *
1707  * The VMA list must be sorted in ascending virtual address order.
1708  *
1709  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1710  * range after unmap_vmas() returns.  So the only responsibility here is to
1711  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1712  * drops the lock and schedules.
1713  */
1714 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
1715 		struct vm_area_struct *vma, unsigned long start_addr,
1716 		unsigned long end_addr, unsigned long tree_end,
1717 		bool mm_wr_locked)
1718 {
1719 	struct mmu_notifier_range range;
1720 	struct zap_details details = {
1721 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1722 		/* Careful - we need to zap private pages too! */
1723 		.even_cows = true,
1724 	};
1725 
1726 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1727 				start_addr, end_addr);
1728 	mmu_notifier_invalidate_range_start(&range);
1729 	do {
1730 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1731 				 mm_wr_locked);
1732 	} while ((vma = mas_find(mas, tree_end - 1)) != NULL);
1733 	mmu_notifier_invalidate_range_end(&range);
1734 }
1735 
1736 /**
1737  * zap_page_range_single - remove user pages in a given range
1738  * @vma: vm_area_struct holding the applicable pages
1739  * @address: starting address of pages to zap
1740  * @size: number of bytes to zap
1741  * @details: details of shared cache invalidation
1742  *
1743  * The range must fit into one VMA.
1744  */
1745 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1746 		unsigned long size, struct zap_details *details)
1747 {
1748 	const unsigned long end = address + size;
1749 	struct mmu_notifier_range range;
1750 	struct mmu_gather tlb;
1751 
1752 	lru_add_drain();
1753 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1754 				address, end);
1755 	if (is_vm_hugetlb_page(vma))
1756 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1757 						     &range.end);
1758 	tlb_gather_mmu(&tlb, vma->vm_mm);
1759 	update_hiwater_rss(vma->vm_mm);
1760 	mmu_notifier_invalidate_range_start(&range);
1761 	/*
1762 	 * unmap 'address-end' not 'range.start-range.end' as range
1763 	 * could have been expanded for hugetlb pmd sharing.
1764 	 */
1765 	unmap_single_vma(&tlb, vma, address, end, details, false);
1766 	mmu_notifier_invalidate_range_end(&range);
1767 	tlb_finish_mmu(&tlb);
1768 }
1769 
1770 /**
1771  * zap_vma_ptes - remove ptes mapping the vma
1772  * @vma: vm_area_struct holding ptes to be zapped
1773  * @address: starting address of pages to zap
1774  * @size: number of bytes to zap
1775  *
1776  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1777  *
1778  * The entire address range must be fully contained within the vma.
1779  *
1780  */
1781 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1782 		unsigned long size)
1783 {
1784 	if (!range_in_vma(vma, address, address + size) ||
1785 	    		!(vma->vm_flags & VM_PFNMAP))
1786 		return;
1787 
1788 	zap_page_range_single(vma, address, size, NULL);
1789 }
1790 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1791 
1792 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1793 {
1794 	pgd_t *pgd;
1795 	p4d_t *p4d;
1796 	pud_t *pud;
1797 	pmd_t *pmd;
1798 
1799 	pgd = pgd_offset(mm, addr);
1800 	p4d = p4d_alloc(mm, pgd, addr);
1801 	if (!p4d)
1802 		return NULL;
1803 	pud = pud_alloc(mm, p4d, addr);
1804 	if (!pud)
1805 		return NULL;
1806 	pmd = pmd_alloc(mm, pud, addr);
1807 	if (!pmd)
1808 		return NULL;
1809 
1810 	VM_BUG_ON(pmd_trans_huge(*pmd));
1811 	return pmd;
1812 }
1813 
1814 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1815 			spinlock_t **ptl)
1816 {
1817 	pmd_t *pmd = walk_to_pmd(mm, addr);
1818 
1819 	if (!pmd)
1820 		return NULL;
1821 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1822 }
1823 
1824 static int validate_page_before_insert(struct page *page)
1825 {
1826 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1827 		return -EINVAL;
1828 	flush_dcache_page(page);
1829 	return 0;
1830 }
1831 
1832 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1833 			unsigned long addr, struct page *page, pgprot_t prot)
1834 {
1835 	if (!pte_none(ptep_get(pte)))
1836 		return -EBUSY;
1837 	/* Ok, finally just insert the thing.. */
1838 	get_page(page);
1839 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1840 	page_add_file_rmap(page, vma, false);
1841 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1842 	return 0;
1843 }
1844 
1845 /*
1846  * This is the old fallback for page remapping.
1847  *
1848  * For historical reasons, it only allows reserved pages. Only
1849  * old drivers should use this, and they needed to mark their
1850  * pages reserved for the old functions anyway.
1851  */
1852 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1853 			struct page *page, pgprot_t prot)
1854 {
1855 	int retval;
1856 	pte_t *pte;
1857 	spinlock_t *ptl;
1858 
1859 	retval = validate_page_before_insert(page);
1860 	if (retval)
1861 		goto out;
1862 	retval = -ENOMEM;
1863 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1864 	if (!pte)
1865 		goto out;
1866 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1867 	pte_unmap_unlock(pte, ptl);
1868 out:
1869 	return retval;
1870 }
1871 
1872 #ifdef pte_index
1873 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1874 			unsigned long addr, struct page *page, pgprot_t prot)
1875 {
1876 	int err;
1877 
1878 	if (!page_count(page))
1879 		return -EINVAL;
1880 	err = validate_page_before_insert(page);
1881 	if (err)
1882 		return err;
1883 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1884 }
1885 
1886 /* insert_pages() amortizes the cost of spinlock operations
1887  * when inserting pages in a loop. Arch *must* define pte_index.
1888  */
1889 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1890 			struct page **pages, unsigned long *num, pgprot_t prot)
1891 {
1892 	pmd_t *pmd = NULL;
1893 	pte_t *start_pte, *pte;
1894 	spinlock_t *pte_lock;
1895 	struct mm_struct *const mm = vma->vm_mm;
1896 	unsigned long curr_page_idx = 0;
1897 	unsigned long remaining_pages_total = *num;
1898 	unsigned long pages_to_write_in_pmd;
1899 	int ret;
1900 more:
1901 	ret = -EFAULT;
1902 	pmd = walk_to_pmd(mm, addr);
1903 	if (!pmd)
1904 		goto out;
1905 
1906 	pages_to_write_in_pmd = min_t(unsigned long,
1907 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1908 
1909 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1910 	ret = -ENOMEM;
1911 	if (pte_alloc(mm, pmd))
1912 		goto out;
1913 
1914 	while (pages_to_write_in_pmd) {
1915 		int pte_idx = 0;
1916 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1917 
1918 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1919 		if (!start_pte) {
1920 			ret = -EFAULT;
1921 			goto out;
1922 		}
1923 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1924 			int err = insert_page_in_batch_locked(vma, pte,
1925 				addr, pages[curr_page_idx], prot);
1926 			if (unlikely(err)) {
1927 				pte_unmap_unlock(start_pte, pte_lock);
1928 				ret = err;
1929 				remaining_pages_total -= pte_idx;
1930 				goto out;
1931 			}
1932 			addr += PAGE_SIZE;
1933 			++curr_page_idx;
1934 		}
1935 		pte_unmap_unlock(start_pte, pte_lock);
1936 		pages_to_write_in_pmd -= batch_size;
1937 		remaining_pages_total -= batch_size;
1938 	}
1939 	if (remaining_pages_total)
1940 		goto more;
1941 	ret = 0;
1942 out:
1943 	*num = remaining_pages_total;
1944 	return ret;
1945 }
1946 #endif  /* ifdef pte_index */
1947 
1948 /**
1949  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1950  * @vma: user vma to map to
1951  * @addr: target start user address of these pages
1952  * @pages: source kernel pages
1953  * @num: in: number of pages to map. out: number of pages that were *not*
1954  * mapped. (0 means all pages were successfully mapped).
1955  *
1956  * Preferred over vm_insert_page() when inserting multiple pages.
1957  *
1958  * In case of error, we may have mapped a subset of the provided
1959  * pages. It is the caller's responsibility to account for this case.
1960  *
1961  * The same restrictions apply as in vm_insert_page().
1962  */
1963 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1964 			struct page **pages, unsigned long *num)
1965 {
1966 #ifdef pte_index
1967 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1968 
1969 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1970 		return -EFAULT;
1971 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1972 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1973 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1974 		vm_flags_set(vma, VM_MIXEDMAP);
1975 	}
1976 	/* Defer page refcount checking till we're about to map that page. */
1977 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1978 #else
1979 	unsigned long idx = 0, pgcount = *num;
1980 	int err = -EINVAL;
1981 
1982 	for (; idx < pgcount; ++idx) {
1983 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1984 		if (err)
1985 			break;
1986 	}
1987 	*num = pgcount - idx;
1988 	return err;
1989 #endif  /* ifdef pte_index */
1990 }
1991 EXPORT_SYMBOL(vm_insert_pages);
1992 
1993 /**
1994  * vm_insert_page - insert single page into user vma
1995  * @vma: user vma to map to
1996  * @addr: target user address of this page
1997  * @page: source kernel page
1998  *
1999  * This allows drivers to insert individual pages they've allocated
2000  * into a user vma.
2001  *
2002  * The page has to be a nice clean _individual_ kernel allocation.
2003  * If you allocate a compound page, you need to have marked it as
2004  * such (__GFP_COMP), or manually just split the page up yourself
2005  * (see split_page()).
2006  *
2007  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2008  * took an arbitrary page protection parameter. This doesn't allow
2009  * that. Your vma protection will have to be set up correctly, which
2010  * means that if you want a shared writable mapping, you'd better
2011  * ask for a shared writable mapping!
2012  *
2013  * The page does not need to be reserved.
2014  *
2015  * Usually this function is called from f_op->mmap() handler
2016  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2017  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2018  * function from other places, for example from page-fault handler.
2019  *
2020  * Return: %0 on success, negative error code otherwise.
2021  */
2022 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2023 			struct page *page)
2024 {
2025 	if (addr < vma->vm_start || addr >= vma->vm_end)
2026 		return -EFAULT;
2027 	if (!page_count(page))
2028 		return -EINVAL;
2029 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2030 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2031 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2032 		vm_flags_set(vma, VM_MIXEDMAP);
2033 	}
2034 	return insert_page(vma, addr, page, vma->vm_page_prot);
2035 }
2036 EXPORT_SYMBOL(vm_insert_page);
2037 
2038 /*
2039  * __vm_map_pages - maps range of kernel pages into user vma
2040  * @vma: user vma to map to
2041  * @pages: pointer to array of source kernel pages
2042  * @num: number of pages in page array
2043  * @offset: user's requested vm_pgoff
2044  *
2045  * This allows drivers to map range of kernel pages into a user vma.
2046  *
2047  * Return: 0 on success and error code otherwise.
2048  */
2049 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2050 				unsigned long num, unsigned long offset)
2051 {
2052 	unsigned long count = vma_pages(vma);
2053 	unsigned long uaddr = vma->vm_start;
2054 	int ret, i;
2055 
2056 	/* Fail if the user requested offset is beyond the end of the object */
2057 	if (offset >= num)
2058 		return -ENXIO;
2059 
2060 	/* Fail if the user requested size exceeds available object size */
2061 	if (count > num - offset)
2062 		return -ENXIO;
2063 
2064 	for (i = 0; i < count; i++) {
2065 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2066 		if (ret < 0)
2067 			return ret;
2068 		uaddr += PAGE_SIZE;
2069 	}
2070 
2071 	return 0;
2072 }
2073 
2074 /**
2075  * vm_map_pages - maps range of kernel pages starts with non zero offset
2076  * @vma: user vma to map to
2077  * @pages: pointer to array of source kernel pages
2078  * @num: number of pages in page array
2079  *
2080  * Maps an object consisting of @num pages, catering for the user's
2081  * requested vm_pgoff
2082  *
2083  * If we fail to insert any page into the vma, the function will return
2084  * immediately leaving any previously inserted pages present.  Callers
2085  * from the mmap handler may immediately return the error as their caller
2086  * will destroy the vma, removing any successfully inserted pages. Other
2087  * callers should make their own arrangements for calling unmap_region().
2088  *
2089  * Context: Process context. Called by mmap handlers.
2090  * Return: 0 on success and error code otherwise.
2091  */
2092 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2093 				unsigned long num)
2094 {
2095 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2096 }
2097 EXPORT_SYMBOL(vm_map_pages);
2098 
2099 /**
2100  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2101  * @vma: user vma to map to
2102  * @pages: pointer to array of source kernel pages
2103  * @num: number of pages in page array
2104  *
2105  * Similar to vm_map_pages(), except that it explicitly sets the offset
2106  * to 0. This function is intended for the drivers that did not consider
2107  * vm_pgoff.
2108  *
2109  * Context: Process context. Called by mmap handlers.
2110  * Return: 0 on success and error code otherwise.
2111  */
2112 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2113 				unsigned long num)
2114 {
2115 	return __vm_map_pages(vma, pages, num, 0);
2116 }
2117 EXPORT_SYMBOL(vm_map_pages_zero);
2118 
2119 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2120 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2121 {
2122 	struct mm_struct *mm = vma->vm_mm;
2123 	pte_t *pte, entry;
2124 	spinlock_t *ptl;
2125 
2126 	pte = get_locked_pte(mm, addr, &ptl);
2127 	if (!pte)
2128 		return VM_FAULT_OOM;
2129 	entry = ptep_get(pte);
2130 	if (!pte_none(entry)) {
2131 		if (mkwrite) {
2132 			/*
2133 			 * For read faults on private mappings the PFN passed
2134 			 * in may not match the PFN we have mapped if the
2135 			 * mapped PFN is a writeable COW page.  In the mkwrite
2136 			 * case we are creating a writable PTE for a shared
2137 			 * mapping and we expect the PFNs to match. If they
2138 			 * don't match, we are likely racing with block
2139 			 * allocation and mapping invalidation so just skip the
2140 			 * update.
2141 			 */
2142 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2143 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2144 				goto out_unlock;
2145 			}
2146 			entry = pte_mkyoung(entry);
2147 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2148 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2149 				update_mmu_cache(vma, addr, pte);
2150 		}
2151 		goto out_unlock;
2152 	}
2153 
2154 	/* Ok, finally just insert the thing.. */
2155 	if (pfn_t_devmap(pfn))
2156 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2157 	else
2158 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2159 
2160 	if (mkwrite) {
2161 		entry = pte_mkyoung(entry);
2162 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2163 	}
2164 
2165 	set_pte_at(mm, addr, pte, entry);
2166 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2167 
2168 out_unlock:
2169 	pte_unmap_unlock(pte, ptl);
2170 	return VM_FAULT_NOPAGE;
2171 }
2172 
2173 /**
2174  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2175  * @vma: user vma to map to
2176  * @addr: target user address of this page
2177  * @pfn: source kernel pfn
2178  * @pgprot: pgprot flags for the inserted page
2179  *
2180  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2181  * to override pgprot on a per-page basis.
2182  *
2183  * This only makes sense for IO mappings, and it makes no sense for
2184  * COW mappings.  In general, using multiple vmas is preferable;
2185  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2186  * impractical.
2187  *
2188  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2189  * caching- and encryption bits different than those of @vma->vm_page_prot,
2190  * because the caching- or encryption mode may not be known at mmap() time.
2191  *
2192  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2193  * to set caching and encryption bits for those vmas (except for COW pages).
2194  * This is ensured by core vm only modifying these page table entries using
2195  * functions that don't touch caching- or encryption bits, using pte_modify()
2196  * if needed. (See for example mprotect()).
2197  *
2198  * Also when new page-table entries are created, this is only done using the
2199  * fault() callback, and never using the value of vma->vm_page_prot,
2200  * except for page-table entries that point to anonymous pages as the result
2201  * of COW.
2202  *
2203  * Context: Process context.  May allocate using %GFP_KERNEL.
2204  * Return: vm_fault_t value.
2205  */
2206 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2207 			unsigned long pfn, pgprot_t pgprot)
2208 {
2209 	/*
2210 	 * Technically, architectures with pte_special can avoid all these
2211 	 * restrictions (same for remap_pfn_range).  However we would like
2212 	 * consistency in testing and feature parity among all, so we should
2213 	 * try to keep these invariants in place for everybody.
2214 	 */
2215 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2216 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2217 						(VM_PFNMAP|VM_MIXEDMAP));
2218 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2219 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2220 
2221 	if (addr < vma->vm_start || addr >= vma->vm_end)
2222 		return VM_FAULT_SIGBUS;
2223 
2224 	if (!pfn_modify_allowed(pfn, pgprot))
2225 		return VM_FAULT_SIGBUS;
2226 
2227 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2228 
2229 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2230 			false);
2231 }
2232 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2233 
2234 /**
2235  * vmf_insert_pfn - insert single pfn into user vma
2236  * @vma: user vma to map to
2237  * @addr: target user address of this page
2238  * @pfn: source kernel pfn
2239  *
2240  * Similar to vm_insert_page, this allows drivers to insert individual pages
2241  * they've allocated into a user vma. Same comments apply.
2242  *
2243  * This function should only be called from a vm_ops->fault handler, and
2244  * in that case the handler should return the result of this function.
2245  *
2246  * vma cannot be a COW mapping.
2247  *
2248  * As this is called only for pages that do not currently exist, we
2249  * do not need to flush old virtual caches or the TLB.
2250  *
2251  * Context: Process context.  May allocate using %GFP_KERNEL.
2252  * Return: vm_fault_t value.
2253  */
2254 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2255 			unsigned long pfn)
2256 {
2257 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2258 }
2259 EXPORT_SYMBOL(vmf_insert_pfn);
2260 
2261 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2262 {
2263 	/* these checks mirror the abort conditions in vm_normal_page */
2264 	if (vma->vm_flags & VM_MIXEDMAP)
2265 		return true;
2266 	if (pfn_t_devmap(pfn))
2267 		return true;
2268 	if (pfn_t_special(pfn))
2269 		return true;
2270 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2271 		return true;
2272 	return false;
2273 }
2274 
2275 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2276 		unsigned long addr, pfn_t pfn, bool mkwrite)
2277 {
2278 	pgprot_t pgprot = vma->vm_page_prot;
2279 	int err;
2280 
2281 	BUG_ON(!vm_mixed_ok(vma, pfn));
2282 
2283 	if (addr < vma->vm_start || addr >= vma->vm_end)
2284 		return VM_FAULT_SIGBUS;
2285 
2286 	track_pfn_insert(vma, &pgprot, pfn);
2287 
2288 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2289 		return VM_FAULT_SIGBUS;
2290 
2291 	/*
2292 	 * If we don't have pte special, then we have to use the pfn_valid()
2293 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2294 	 * refcount the page if pfn_valid is true (hence insert_page rather
2295 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2296 	 * without pte special, it would there be refcounted as a normal page.
2297 	 */
2298 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2299 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2300 		struct page *page;
2301 
2302 		/*
2303 		 * At this point we are committed to insert_page()
2304 		 * regardless of whether the caller specified flags that
2305 		 * result in pfn_t_has_page() == false.
2306 		 */
2307 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2308 		err = insert_page(vma, addr, page, pgprot);
2309 	} else {
2310 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2311 	}
2312 
2313 	if (err == -ENOMEM)
2314 		return VM_FAULT_OOM;
2315 	if (err < 0 && err != -EBUSY)
2316 		return VM_FAULT_SIGBUS;
2317 
2318 	return VM_FAULT_NOPAGE;
2319 }
2320 
2321 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2322 		pfn_t pfn)
2323 {
2324 	return __vm_insert_mixed(vma, addr, pfn, false);
2325 }
2326 EXPORT_SYMBOL(vmf_insert_mixed);
2327 
2328 /*
2329  *  If the insertion of PTE failed because someone else already added a
2330  *  different entry in the mean time, we treat that as success as we assume
2331  *  the same entry was actually inserted.
2332  */
2333 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2334 		unsigned long addr, pfn_t pfn)
2335 {
2336 	return __vm_insert_mixed(vma, addr, pfn, true);
2337 }
2338 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2339 
2340 /*
2341  * maps a range of physical memory into the requested pages. the old
2342  * mappings are removed. any references to nonexistent pages results
2343  * in null mappings (currently treated as "copy-on-access")
2344  */
2345 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2346 			unsigned long addr, unsigned long end,
2347 			unsigned long pfn, pgprot_t prot)
2348 {
2349 	pte_t *pte, *mapped_pte;
2350 	spinlock_t *ptl;
2351 	int err = 0;
2352 
2353 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2354 	if (!pte)
2355 		return -ENOMEM;
2356 	arch_enter_lazy_mmu_mode();
2357 	do {
2358 		BUG_ON(!pte_none(ptep_get(pte)));
2359 		if (!pfn_modify_allowed(pfn, prot)) {
2360 			err = -EACCES;
2361 			break;
2362 		}
2363 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2364 		pfn++;
2365 	} while (pte++, addr += PAGE_SIZE, addr != end);
2366 	arch_leave_lazy_mmu_mode();
2367 	pte_unmap_unlock(mapped_pte, ptl);
2368 	return err;
2369 }
2370 
2371 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2372 			unsigned long addr, unsigned long end,
2373 			unsigned long pfn, pgprot_t prot)
2374 {
2375 	pmd_t *pmd;
2376 	unsigned long next;
2377 	int err;
2378 
2379 	pfn -= addr >> PAGE_SHIFT;
2380 	pmd = pmd_alloc(mm, pud, addr);
2381 	if (!pmd)
2382 		return -ENOMEM;
2383 	VM_BUG_ON(pmd_trans_huge(*pmd));
2384 	do {
2385 		next = pmd_addr_end(addr, end);
2386 		err = remap_pte_range(mm, pmd, addr, next,
2387 				pfn + (addr >> PAGE_SHIFT), prot);
2388 		if (err)
2389 			return err;
2390 	} while (pmd++, addr = next, addr != end);
2391 	return 0;
2392 }
2393 
2394 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2395 			unsigned long addr, unsigned long end,
2396 			unsigned long pfn, pgprot_t prot)
2397 {
2398 	pud_t *pud;
2399 	unsigned long next;
2400 	int err;
2401 
2402 	pfn -= addr >> PAGE_SHIFT;
2403 	pud = pud_alloc(mm, p4d, addr);
2404 	if (!pud)
2405 		return -ENOMEM;
2406 	do {
2407 		next = pud_addr_end(addr, end);
2408 		err = remap_pmd_range(mm, pud, addr, next,
2409 				pfn + (addr >> PAGE_SHIFT), prot);
2410 		if (err)
2411 			return err;
2412 	} while (pud++, addr = next, addr != end);
2413 	return 0;
2414 }
2415 
2416 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2417 			unsigned long addr, unsigned long end,
2418 			unsigned long pfn, pgprot_t prot)
2419 {
2420 	p4d_t *p4d;
2421 	unsigned long next;
2422 	int err;
2423 
2424 	pfn -= addr >> PAGE_SHIFT;
2425 	p4d = p4d_alloc(mm, pgd, addr);
2426 	if (!p4d)
2427 		return -ENOMEM;
2428 	do {
2429 		next = p4d_addr_end(addr, end);
2430 		err = remap_pud_range(mm, p4d, addr, next,
2431 				pfn + (addr >> PAGE_SHIFT), prot);
2432 		if (err)
2433 			return err;
2434 	} while (p4d++, addr = next, addr != end);
2435 	return 0;
2436 }
2437 
2438 /*
2439  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2440  * must have pre-validated the caching bits of the pgprot_t.
2441  */
2442 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2443 		unsigned long pfn, unsigned long size, pgprot_t prot)
2444 {
2445 	pgd_t *pgd;
2446 	unsigned long next;
2447 	unsigned long end = addr + PAGE_ALIGN(size);
2448 	struct mm_struct *mm = vma->vm_mm;
2449 	int err;
2450 
2451 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2452 		return -EINVAL;
2453 
2454 	/*
2455 	 * Physically remapped pages are special. Tell the
2456 	 * rest of the world about it:
2457 	 *   VM_IO tells people not to look at these pages
2458 	 *	(accesses can have side effects).
2459 	 *   VM_PFNMAP tells the core MM that the base pages are just
2460 	 *	raw PFN mappings, and do not have a "struct page" associated
2461 	 *	with them.
2462 	 *   VM_DONTEXPAND
2463 	 *      Disable vma merging and expanding with mremap().
2464 	 *   VM_DONTDUMP
2465 	 *      Omit vma from core dump, even when VM_IO turned off.
2466 	 *
2467 	 * There's a horrible special case to handle copy-on-write
2468 	 * behaviour that some programs depend on. We mark the "original"
2469 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2470 	 * See vm_normal_page() for details.
2471 	 */
2472 	if (is_cow_mapping(vma->vm_flags)) {
2473 		if (addr != vma->vm_start || end != vma->vm_end)
2474 			return -EINVAL;
2475 		vma->vm_pgoff = pfn;
2476 	}
2477 
2478 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2479 
2480 	BUG_ON(addr >= end);
2481 	pfn -= addr >> PAGE_SHIFT;
2482 	pgd = pgd_offset(mm, addr);
2483 	flush_cache_range(vma, addr, end);
2484 	do {
2485 		next = pgd_addr_end(addr, end);
2486 		err = remap_p4d_range(mm, pgd, addr, next,
2487 				pfn + (addr >> PAGE_SHIFT), prot);
2488 		if (err)
2489 			return err;
2490 	} while (pgd++, addr = next, addr != end);
2491 
2492 	return 0;
2493 }
2494 
2495 /**
2496  * remap_pfn_range - remap kernel memory to userspace
2497  * @vma: user vma to map to
2498  * @addr: target page aligned user address to start at
2499  * @pfn: page frame number of kernel physical memory address
2500  * @size: size of mapping area
2501  * @prot: page protection flags for this mapping
2502  *
2503  * Note: this is only safe if the mm semaphore is held when called.
2504  *
2505  * Return: %0 on success, negative error code otherwise.
2506  */
2507 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2508 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2509 {
2510 	int err;
2511 
2512 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2513 	if (err)
2514 		return -EINVAL;
2515 
2516 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2517 	if (err)
2518 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2519 	return err;
2520 }
2521 EXPORT_SYMBOL(remap_pfn_range);
2522 
2523 /**
2524  * vm_iomap_memory - remap memory to userspace
2525  * @vma: user vma to map to
2526  * @start: start of the physical memory to be mapped
2527  * @len: size of area
2528  *
2529  * This is a simplified io_remap_pfn_range() for common driver use. The
2530  * driver just needs to give us the physical memory range to be mapped,
2531  * we'll figure out the rest from the vma information.
2532  *
2533  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2534  * whatever write-combining details or similar.
2535  *
2536  * Return: %0 on success, negative error code otherwise.
2537  */
2538 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2539 {
2540 	unsigned long vm_len, pfn, pages;
2541 
2542 	/* Check that the physical memory area passed in looks valid */
2543 	if (start + len < start)
2544 		return -EINVAL;
2545 	/*
2546 	 * You *really* shouldn't map things that aren't page-aligned,
2547 	 * but we've historically allowed it because IO memory might
2548 	 * just have smaller alignment.
2549 	 */
2550 	len += start & ~PAGE_MASK;
2551 	pfn = start >> PAGE_SHIFT;
2552 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2553 	if (pfn + pages < pfn)
2554 		return -EINVAL;
2555 
2556 	/* We start the mapping 'vm_pgoff' pages into the area */
2557 	if (vma->vm_pgoff > pages)
2558 		return -EINVAL;
2559 	pfn += vma->vm_pgoff;
2560 	pages -= vma->vm_pgoff;
2561 
2562 	/* Can we fit all of the mapping? */
2563 	vm_len = vma->vm_end - vma->vm_start;
2564 	if (vm_len >> PAGE_SHIFT > pages)
2565 		return -EINVAL;
2566 
2567 	/* Ok, let it rip */
2568 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2569 }
2570 EXPORT_SYMBOL(vm_iomap_memory);
2571 
2572 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2573 				     unsigned long addr, unsigned long end,
2574 				     pte_fn_t fn, void *data, bool create,
2575 				     pgtbl_mod_mask *mask)
2576 {
2577 	pte_t *pte, *mapped_pte;
2578 	int err = 0;
2579 	spinlock_t *ptl;
2580 
2581 	if (create) {
2582 		mapped_pte = pte = (mm == &init_mm) ?
2583 			pte_alloc_kernel_track(pmd, addr, mask) :
2584 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2585 		if (!pte)
2586 			return -ENOMEM;
2587 	} else {
2588 		mapped_pte = pte = (mm == &init_mm) ?
2589 			pte_offset_kernel(pmd, addr) :
2590 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2591 		if (!pte)
2592 			return -EINVAL;
2593 	}
2594 
2595 	arch_enter_lazy_mmu_mode();
2596 
2597 	if (fn) {
2598 		do {
2599 			if (create || !pte_none(ptep_get(pte))) {
2600 				err = fn(pte++, addr, data);
2601 				if (err)
2602 					break;
2603 			}
2604 		} while (addr += PAGE_SIZE, addr != end);
2605 	}
2606 	*mask |= PGTBL_PTE_MODIFIED;
2607 
2608 	arch_leave_lazy_mmu_mode();
2609 
2610 	if (mm != &init_mm)
2611 		pte_unmap_unlock(mapped_pte, ptl);
2612 	return err;
2613 }
2614 
2615 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2616 				     unsigned long addr, unsigned long end,
2617 				     pte_fn_t fn, void *data, bool create,
2618 				     pgtbl_mod_mask *mask)
2619 {
2620 	pmd_t *pmd;
2621 	unsigned long next;
2622 	int err = 0;
2623 
2624 	BUG_ON(pud_huge(*pud));
2625 
2626 	if (create) {
2627 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2628 		if (!pmd)
2629 			return -ENOMEM;
2630 	} else {
2631 		pmd = pmd_offset(pud, addr);
2632 	}
2633 	do {
2634 		next = pmd_addr_end(addr, end);
2635 		if (pmd_none(*pmd) && !create)
2636 			continue;
2637 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2638 			return -EINVAL;
2639 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2640 			if (!create)
2641 				continue;
2642 			pmd_clear_bad(pmd);
2643 		}
2644 		err = apply_to_pte_range(mm, pmd, addr, next,
2645 					 fn, data, create, mask);
2646 		if (err)
2647 			break;
2648 	} while (pmd++, addr = next, addr != end);
2649 
2650 	return err;
2651 }
2652 
2653 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2654 				     unsigned long addr, unsigned long end,
2655 				     pte_fn_t fn, void *data, bool create,
2656 				     pgtbl_mod_mask *mask)
2657 {
2658 	pud_t *pud;
2659 	unsigned long next;
2660 	int err = 0;
2661 
2662 	if (create) {
2663 		pud = pud_alloc_track(mm, p4d, addr, mask);
2664 		if (!pud)
2665 			return -ENOMEM;
2666 	} else {
2667 		pud = pud_offset(p4d, addr);
2668 	}
2669 	do {
2670 		next = pud_addr_end(addr, end);
2671 		if (pud_none(*pud) && !create)
2672 			continue;
2673 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2674 			return -EINVAL;
2675 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2676 			if (!create)
2677 				continue;
2678 			pud_clear_bad(pud);
2679 		}
2680 		err = apply_to_pmd_range(mm, pud, addr, next,
2681 					 fn, data, create, mask);
2682 		if (err)
2683 			break;
2684 	} while (pud++, addr = next, addr != end);
2685 
2686 	return err;
2687 }
2688 
2689 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2690 				     unsigned long addr, unsigned long end,
2691 				     pte_fn_t fn, void *data, bool create,
2692 				     pgtbl_mod_mask *mask)
2693 {
2694 	p4d_t *p4d;
2695 	unsigned long next;
2696 	int err = 0;
2697 
2698 	if (create) {
2699 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2700 		if (!p4d)
2701 			return -ENOMEM;
2702 	} else {
2703 		p4d = p4d_offset(pgd, addr);
2704 	}
2705 	do {
2706 		next = p4d_addr_end(addr, end);
2707 		if (p4d_none(*p4d) && !create)
2708 			continue;
2709 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2710 			return -EINVAL;
2711 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2712 			if (!create)
2713 				continue;
2714 			p4d_clear_bad(p4d);
2715 		}
2716 		err = apply_to_pud_range(mm, p4d, addr, next,
2717 					 fn, data, create, mask);
2718 		if (err)
2719 			break;
2720 	} while (p4d++, addr = next, addr != end);
2721 
2722 	return err;
2723 }
2724 
2725 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2726 				 unsigned long size, pte_fn_t fn,
2727 				 void *data, bool create)
2728 {
2729 	pgd_t *pgd;
2730 	unsigned long start = addr, next;
2731 	unsigned long end = addr + size;
2732 	pgtbl_mod_mask mask = 0;
2733 	int err = 0;
2734 
2735 	if (WARN_ON(addr >= end))
2736 		return -EINVAL;
2737 
2738 	pgd = pgd_offset(mm, addr);
2739 	do {
2740 		next = pgd_addr_end(addr, end);
2741 		if (pgd_none(*pgd) && !create)
2742 			continue;
2743 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2744 			return -EINVAL;
2745 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2746 			if (!create)
2747 				continue;
2748 			pgd_clear_bad(pgd);
2749 		}
2750 		err = apply_to_p4d_range(mm, pgd, addr, next,
2751 					 fn, data, create, &mask);
2752 		if (err)
2753 			break;
2754 	} while (pgd++, addr = next, addr != end);
2755 
2756 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2757 		arch_sync_kernel_mappings(start, start + size);
2758 
2759 	return err;
2760 }
2761 
2762 /*
2763  * Scan a region of virtual memory, filling in page tables as necessary
2764  * and calling a provided function on each leaf page table.
2765  */
2766 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2767 			unsigned long size, pte_fn_t fn, void *data)
2768 {
2769 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2770 }
2771 EXPORT_SYMBOL_GPL(apply_to_page_range);
2772 
2773 /*
2774  * Scan a region of virtual memory, calling a provided function on
2775  * each leaf page table where it exists.
2776  *
2777  * Unlike apply_to_page_range, this does _not_ fill in page tables
2778  * where they are absent.
2779  */
2780 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2781 				 unsigned long size, pte_fn_t fn, void *data)
2782 {
2783 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2784 }
2785 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2786 
2787 /*
2788  * handle_pte_fault chooses page fault handler according to an entry which was
2789  * read non-atomically.  Before making any commitment, on those architectures
2790  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2791  * parts, do_swap_page must check under lock before unmapping the pte and
2792  * proceeding (but do_wp_page is only called after already making such a check;
2793  * and do_anonymous_page can safely check later on).
2794  */
2795 static inline int pte_unmap_same(struct vm_fault *vmf)
2796 {
2797 	int same = 1;
2798 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2799 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2800 		spin_lock(vmf->ptl);
2801 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2802 		spin_unlock(vmf->ptl);
2803 	}
2804 #endif
2805 	pte_unmap(vmf->pte);
2806 	vmf->pte = NULL;
2807 	return same;
2808 }
2809 
2810 /*
2811  * Return:
2812  *	0:		copied succeeded
2813  *	-EHWPOISON:	copy failed due to hwpoison in source page
2814  *	-EAGAIN:	copied failed (some other reason)
2815  */
2816 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2817 				      struct vm_fault *vmf)
2818 {
2819 	int ret;
2820 	void *kaddr;
2821 	void __user *uaddr;
2822 	struct vm_area_struct *vma = vmf->vma;
2823 	struct mm_struct *mm = vma->vm_mm;
2824 	unsigned long addr = vmf->address;
2825 
2826 	if (likely(src)) {
2827 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2828 			memory_failure_queue(page_to_pfn(src), 0);
2829 			return -EHWPOISON;
2830 		}
2831 		return 0;
2832 	}
2833 
2834 	/*
2835 	 * If the source page was a PFN mapping, we don't have
2836 	 * a "struct page" for it. We do a best-effort copy by
2837 	 * just copying from the original user address. If that
2838 	 * fails, we just zero-fill it. Live with it.
2839 	 */
2840 	kaddr = kmap_atomic(dst);
2841 	uaddr = (void __user *)(addr & PAGE_MASK);
2842 
2843 	/*
2844 	 * On architectures with software "accessed" bits, we would
2845 	 * take a double page fault, so mark it accessed here.
2846 	 */
2847 	vmf->pte = NULL;
2848 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2849 		pte_t entry;
2850 
2851 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2852 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2853 			/*
2854 			 * Other thread has already handled the fault
2855 			 * and update local tlb only
2856 			 */
2857 			if (vmf->pte)
2858 				update_mmu_tlb(vma, addr, vmf->pte);
2859 			ret = -EAGAIN;
2860 			goto pte_unlock;
2861 		}
2862 
2863 		entry = pte_mkyoung(vmf->orig_pte);
2864 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2865 			update_mmu_cache(vma, addr, vmf->pte);
2866 	}
2867 
2868 	/*
2869 	 * This really shouldn't fail, because the page is there
2870 	 * in the page tables. But it might just be unreadable,
2871 	 * in which case we just give up and fill the result with
2872 	 * zeroes.
2873 	 */
2874 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2875 		if (vmf->pte)
2876 			goto warn;
2877 
2878 		/* Re-validate under PTL if the page is still mapped */
2879 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2880 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2881 			/* The PTE changed under us, update local tlb */
2882 			if (vmf->pte)
2883 				update_mmu_tlb(vma, addr, vmf->pte);
2884 			ret = -EAGAIN;
2885 			goto pte_unlock;
2886 		}
2887 
2888 		/*
2889 		 * The same page can be mapped back since last copy attempt.
2890 		 * Try to copy again under PTL.
2891 		 */
2892 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2893 			/*
2894 			 * Give a warn in case there can be some obscure
2895 			 * use-case
2896 			 */
2897 warn:
2898 			WARN_ON_ONCE(1);
2899 			clear_page(kaddr);
2900 		}
2901 	}
2902 
2903 	ret = 0;
2904 
2905 pte_unlock:
2906 	if (vmf->pte)
2907 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2908 	kunmap_atomic(kaddr);
2909 	flush_dcache_page(dst);
2910 
2911 	return ret;
2912 }
2913 
2914 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2915 {
2916 	struct file *vm_file = vma->vm_file;
2917 
2918 	if (vm_file)
2919 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2920 
2921 	/*
2922 	 * Special mappings (e.g. VDSO) do not have any file so fake
2923 	 * a default GFP_KERNEL for them.
2924 	 */
2925 	return GFP_KERNEL;
2926 }
2927 
2928 /*
2929  * Notify the address space that the page is about to become writable so that
2930  * it can prohibit this or wait for the page to get into an appropriate state.
2931  *
2932  * We do this without the lock held, so that it can sleep if it needs to.
2933  */
2934 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio)
2935 {
2936 	vm_fault_t ret;
2937 	unsigned int old_flags = vmf->flags;
2938 
2939 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2940 
2941 	if (vmf->vma->vm_file &&
2942 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2943 		return VM_FAULT_SIGBUS;
2944 
2945 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2946 	/* Restore original flags so that caller is not surprised */
2947 	vmf->flags = old_flags;
2948 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2949 		return ret;
2950 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2951 		folio_lock(folio);
2952 		if (!folio->mapping) {
2953 			folio_unlock(folio);
2954 			return 0; /* retry */
2955 		}
2956 		ret |= VM_FAULT_LOCKED;
2957 	} else
2958 		VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2959 	return ret;
2960 }
2961 
2962 /*
2963  * Handle dirtying of a page in shared file mapping on a write fault.
2964  *
2965  * The function expects the page to be locked and unlocks it.
2966  */
2967 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2968 {
2969 	struct vm_area_struct *vma = vmf->vma;
2970 	struct address_space *mapping;
2971 	struct folio *folio = page_folio(vmf->page);
2972 	bool dirtied;
2973 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2974 
2975 	dirtied = folio_mark_dirty(folio);
2976 	VM_BUG_ON_FOLIO(folio_test_anon(folio), folio);
2977 	/*
2978 	 * Take a local copy of the address_space - folio.mapping may be zeroed
2979 	 * by truncate after folio_unlock().   The address_space itself remains
2980 	 * pinned by vma->vm_file's reference.  We rely on folio_unlock()'s
2981 	 * release semantics to prevent the compiler from undoing this copying.
2982 	 */
2983 	mapping = folio_raw_mapping(folio);
2984 	folio_unlock(folio);
2985 
2986 	if (!page_mkwrite)
2987 		file_update_time(vma->vm_file);
2988 
2989 	/*
2990 	 * Throttle page dirtying rate down to writeback speed.
2991 	 *
2992 	 * mapping may be NULL here because some device drivers do not
2993 	 * set page.mapping but still dirty their pages
2994 	 *
2995 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2996 	 * is pinning the mapping, as per above.
2997 	 */
2998 	if ((dirtied || page_mkwrite) && mapping) {
2999 		struct file *fpin;
3000 
3001 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3002 		balance_dirty_pages_ratelimited(mapping);
3003 		if (fpin) {
3004 			fput(fpin);
3005 			return VM_FAULT_COMPLETED;
3006 		}
3007 	}
3008 
3009 	return 0;
3010 }
3011 
3012 /*
3013  * Handle write page faults for pages that can be reused in the current vma
3014  *
3015  * This can happen either due to the mapping being with the VM_SHARED flag,
3016  * or due to us being the last reference standing to the page. In either
3017  * case, all we need to do here is to mark the page as writable and update
3018  * any related book-keeping.
3019  */
3020 static inline void wp_page_reuse(struct vm_fault *vmf)
3021 	__releases(vmf->ptl)
3022 {
3023 	struct vm_area_struct *vma = vmf->vma;
3024 	struct page *page = vmf->page;
3025 	pte_t entry;
3026 
3027 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3028 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3029 
3030 	/*
3031 	 * Clear the pages cpupid information as the existing
3032 	 * information potentially belongs to a now completely
3033 	 * unrelated process.
3034 	 */
3035 	if (page)
3036 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3037 
3038 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3039 	entry = pte_mkyoung(vmf->orig_pte);
3040 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3041 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3042 		update_mmu_cache(vma, vmf->address, vmf->pte);
3043 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3044 	count_vm_event(PGREUSE);
3045 }
3046 
3047 /*
3048  * Handle the case of a page which we actually need to copy to a new page,
3049  * either due to COW or unsharing.
3050  *
3051  * Called with mmap_lock locked and the old page referenced, but
3052  * without the ptl held.
3053  *
3054  * High level logic flow:
3055  *
3056  * - Allocate a page, copy the content of the old page to the new one.
3057  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3058  * - Take the PTL. If the pte changed, bail out and release the allocated page
3059  * - If the pte is still the way we remember it, update the page table and all
3060  *   relevant references. This includes dropping the reference the page-table
3061  *   held to the old page, as well as updating the rmap.
3062  * - In any case, unlock the PTL and drop the reference we took to the old page.
3063  */
3064 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3065 {
3066 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3067 	struct vm_area_struct *vma = vmf->vma;
3068 	struct mm_struct *mm = vma->vm_mm;
3069 	struct folio *old_folio = NULL;
3070 	struct folio *new_folio = NULL;
3071 	pte_t entry;
3072 	int page_copied = 0;
3073 	struct mmu_notifier_range range;
3074 	int ret;
3075 
3076 	delayacct_wpcopy_start();
3077 
3078 	if (vmf->page)
3079 		old_folio = page_folio(vmf->page);
3080 	if (unlikely(anon_vma_prepare(vma)))
3081 		goto oom;
3082 
3083 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3084 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3085 		if (!new_folio)
3086 			goto oom;
3087 	} else {
3088 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3089 				vmf->address, false);
3090 		if (!new_folio)
3091 			goto oom;
3092 
3093 		ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3094 		if (ret) {
3095 			/*
3096 			 * COW failed, if the fault was solved by other,
3097 			 * it's fine. If not, userspace would re-fault on
3098 			 * the same address and we will handle the fault
3099 			 * from the second attempt.
3100 			 * The -EHWPOISON case will not be retried.
3101 			 */
3102 			folio_put(new_folio);
3103 			if (old_folio)
3104 				folio_put(old_folio);
3105 
3106 			delayacct_wpcopy_end();
3107 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3108 		}
3109 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3110 	}
3111 
3112 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3113 		goto oom_free_new;
3114 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3115 
3116 	__folio_mark_uptodate(new_folio);
3117 
3118 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3119 				vmf->address & PAGE_MASK,
3120 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3121 	mmu_notifier_invalidate_range_start(&range);
3122 
3123 	/*
3124 	 * Re-check the pte - we dropped the lock
3125 	 */
3126 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3127 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3128 		if (old_folio) {
3129 			if (!folio_test_anon(old_folio)) {
3130 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3131 				inc_mm_counter(mm, MM_ANONPAGES);
3132 			}
3133 		} else {
3134 			ksm_might_unmap_zero_page(mm, vmf->orig_pte);
3135 			inc_mm_counter(mm, MM_ANONPAGES);
3136 		}
3137 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3138 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3139 		entry = pte_sw_mkyoung(entry);
3140 		if (unlikely(unshare)) {
3141 			if (pte_soft_dirty(vmf->orig_pte))
3142 				entry = pte_mksoft_dirty(entry);
3143 			if (pte_uffd_wp(vmf->orig_pte))
3144 				entry = pte_mkuffd_wp(entry);
3145 		} else {
3146 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3147 		}
3148 
3149 		/*
3150 		 * Clear the pte entry and flush it first, before updating the
3151 		 * pte with the new entry, to keep TLBs on different CPUs in
3152 		 * sync. This code used to set the new PTE then flush TLBs, but
3153 		 * that left a window where the new PTE could be loaded into
3154 		 * some TLBs while the old PTE remains in others.
3155 		 */
3156 		ptep_clear_flush(vma, vmf->address, vmf->pte);
3157 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3158 		folio_add_lru_vma(new_folio, vma);
3159 		/*
3160 		 * We call the notify macro here because, when using secondary
3161 		 * mmu page tables (such as kvm shadow page tables), we want the
3162 		 * new page to be mapped directly into the secondary page table.
3163 		 */
3164 		BUG_ON(unshare && pte_write(entry));
3165 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3166 		update_mmu_cache(vma, vmf->address, vmf->pte);
3167 		if (old_folio) {
3168 			/*
3169 			 * Only after switching the pte to the new page may
3170 			 * we remove the mapcount here. Otherwise another
3171 			 * process may come and find the rmap count decremented
3172 			 * before the pte is switched to the new page, and
3173 			 * "reuse" the old page writing into it while our pte
3174 			 * here still points into it and can be read by other
3175 			 * threads.
3176 			 *
3177 			 * The critical issue is to order this
3178 			 * page_remove_rmap with the ptp_clear_flush above.
3179 			 * Those stores are ordered by (if nothing else,)
3180 			 * the barrier present in the atomic_add_negative
3181 			 * in page_remove_rmap.
3182 			 *
3183 			 * Then the TLB flush in ptep_clear_flush ensures that
3184 			 * no process can access the old page before the
3185 			 * decremented mapcount is visible. And the old page
3186 			 * cannot be reused until after the decremented
3187 			 * mapcount is visible. So transitively, TLBs to
3188 			 * old page will be flushed before it can be reused.
3189 			 */
3190 			page_remove_rmap(vmf->page, vma, false);
3191 		}
3192 
3193 		/* Free the old page.. */
3194 		new_folio = old_folio;
3195 		page_copied = 1;
3196 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3197 	} else if (vmf->pte) {
3198 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3199 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3200 	}
3201 
3202 	mmu_notifier_invalidate_range_end(&range);
3203 
3204 	if (new_folio)
3205 		folio_put(new_folio);
3206 	if (old_folio) {
3207 		if (page_copied)
3208 			free_swap_cache(&old_folio->page);
3209 		folio_put(old_folio);
3210 	}
3211 
3212 	delayacct_wpcopy_end();
3213 	return 0;
3214 oom_free_new:
3215 	folio_put(new_folio);
3216 oom:
3217 	if (old_folio)
3218 		folio_put(old_folio);
3219 
3220 	delayacct_wpcopy_end();
3221 	return VM_FAULT_OOM;
3222 }
3223 
3224 /**
3225  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3226  *			  writeable once the page is prepared
3227  *
3228  * @vmf: structure describing the fault
3229  *
3230  * This function handles all that is needed to finish a write page fault in a
3231  * shared mapping due to PTE being read-only once the mapped page is prepared.
3232  * It handles locking of PTE and modifying it.
3233  *
3234  * The function expects the page to be locked or other protection against
3235  * concurrent faults / writeback (such as DAX radix tree locks).
3236  *
3237  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3238  * we acquired PTE lock.
3239  */
3240 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3241 {
3242 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3243 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3244 				       &vmf->ptl);
3245 	if (!vmf->pte)
3246 		return VM_FAULT_NOPAGE;
3247 	/*
3248 	 * We might have raced with another page fault while we released the
3249 	 * pte_offset_map_lock.
3250 	 */
3251 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3252 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3253 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3254 		return VM_FAULT_NOPAGE;
3255 	}
3256 	wp_page_reuse(vmf);
3257 	return 0;
3258 }
3259 
3260 /*
3261  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3262  * mapping
3263  */
3264 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3265 {
3266 	struct vm_area_struct *vma = vmf->vma;
3267 
3268 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3269 		vm_fault_t ret;
3270 
3271 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3272 		if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3273 			vma_end_read(vmf->vma);
3274 			return VM_FAULT_RETRY;
3275 		}
3276 
3277 		vmf->flags |= FAULT_FLAG_MKWRITE;
3278 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3279 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3280 			return ret;
3281 		return finish_mkwrite_fault(vmf);
3282 	}
3283 	wp_page_reuse(vmf);
3284 	return 0;
3285 }
3286 
3287 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio)
3288 	__releases(vmf->ptl)
3289 {
3290 	struct vm_area_struct *vma = vmf->vma;
3291 	vm_fault_t ret = 0;
3292 
3293 	folio_get(folio);
3294 
3295 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3296 		vm_fault_t tmp;
3297 
3298 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3299 		if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3300 			folio_put(folio);
3301 			vma_end_read(vmf->vma);
3302 			return VM_FAULT_RETRY;
3303 		}
3304 
3305 		tmp = do_page_mkwrite(vmf, folio);
3306 		if (unlikely(!tmp || (tmp &
3307 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3308 			folio_put(folio);
3309 			return tmp;
3310 		}
3311 		tmp = finish_mkwrite_fault(vmf);
3312 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3313 			folio_unlock(folio);
3314 			folio_put(folio);
3315 			return tmp;
3316 		}
3317 	} else {
3318 		wp_page_reuse(vmf);
3319 		folio_lock(folio);
3320 	}
3321 	ret |= fault_dirty_shared_page(vmf);
3322 	folio_put(folio);
3323 
3324 	return ret;
3325 }
3326 
3327 /*
3328  * This routine handles present pages, when
3329  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3330  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3331  *   (FAULT_FLAG_UNSHARE)
3332  *
3333  * It is done by copying the page to a new address and decrementing the
3334  * shared-page counter for the old page.
3335  *
3336  * Note that this routine assumes that the protection checks have been
3337  * done by the caller (the low-level page fault routine in most cases).
3338  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3339  * done any necessary COW.
3340  *
3341  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3342  * though the page will change only once the write actually happens. This
3343  * avoids a few races, and potentially makes it more efficient.
3344  *
3345  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3346  * but allow concurrent faults), with pte both mapped and locked.
3347  * We return with mmap_lock still held, but pte unmapped and unlocked.
3348  */
3349 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3350 	__releases(vmf->ptl)
3351 {
3352 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3353 	struct vm_area_struct *vma = vmf->vma;
3354 	struct folio *folio = NULL;
3355 
3356 	if (likely(!unshare)) {
3357 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3358 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3359 			return handle_userfault(vmf, VM_UFFD_WP);
3360 		}
3361 
3362 		/*
3363 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3364 		 * is flushed in this case before copying.
3365 		 */
3366 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3367 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3368 			flush_tlb_page(vmf->vma, vmf->address);
3369 	}
3370 
3371 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3372 
3373 	if (vmf->page)
3374 		folio = page_folio(vmf->page);
3375 
3376 	/*
3377 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3378 	 * FAULT_FLAG_WRITE set at this point.
3379 	 */
3380 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3381 		/*
3382 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3383 		 * VM_PFNMAP VMA.
3384 		 *
3385 		 * We should not cow pages in a shared writeable mapping.
3386 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3387 		 */
3388 		if (!vmf->page)
3389 			return wp_pfn_shared(vmf);
3390 		return wp_page_shared(vmf, folio);
3391 	}
3392 
3393 	/*
3394 	 * Private mapping: create an exclusive anonymous page copy if reuse
3395 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3396 	 */
3397 	if (folio && folio_test_anon(folio)) {
3398 		/*
3399 		 * If the page is exclusive to this process we must reuse the
3400 		 * page without further checks.
3401 		 */
3402 		if (PageAnonExclusive(vmf->page))
3403 			goto reuse;
3404 
3405 		/*
3406 		 * We have to verify under folio lock: these early checks are
3407 		 * just an optimization to avoid locking the folio and freeing
3408 		 * the swapcache if there is little hope that we can reuse.
3409 		 *
3410 		 * KSM doesn't necessarily raise the folio refcount.
3411 		 */
3412 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3413 			goto copy;
3414 		if (!folio_test_lru(folio))
3415 			/*
3416 			 * We cannot easily detect+handle references from
3417 			 * remote LRU caches or references to LRU folios.
3418 			 */
3419 			lru_add_drain();
3420 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3421 			goto copy;
3422 		if (!folio_trylock(folio))
3423 			goto copy;
3424 		if (folio_test_swapcache(folio))
3425 			folio_free_swap(folio);
3426 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3427 			folio_unlock(folio);
3428 			goto copy;
3429 		}
3430 		/*
3431 		 * Ok, we've got the only folio reference from our mapping
3432 		 * and the folio is locked, it's dark out, and we're wearing
3433 		 * sunglasses. Hit it.
3434 		 */
3435 		page_move_anon_rmap(vmf->page, vma);
3436 		folio_unlock(folio);
3437 reuse:
3438 		if (unlikely(unshare)) {
3439 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3440 			return 0;
3441 		}
3442 		wp_page_reuse(vmf);
3443 		return 0;
3444 	}
3445 copy:
3446 	if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) {
3447 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3448 		vma_end_read(vmf->vma);
3449 		return VM_FAULT_RETRY;
3450 	}
3451 
3452 	/*
3453 	 * Ok, we need to copy. Oh, well..
3454 	 */
3455 	if (folio)
3456 		folio_get(folio);
3457 
3458 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3459 #ifdef CONFIG_KSM
3460 	if (folio && folio_test_ksm(folio))
3461 		count_vm_event(COW_KSM);
3462 #endif
3463 	return wp_page_copy(vmf);
3464 }
3465 
3466 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3467 		unsigned long start_addr, unsigned long end_addr,
3468 		struct zap_details *details)
3469 {
3470 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3471 }
3472 
3473 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3474 					    pgoff_t first_index,
3475 					    pgoff_t last_index,
3476 					    struct zap_details *details)
3477 {
3478 	struct vm_area_struct *vma;
3479 	pgoff_t vba, vea, zba, zea;
3480 
3481 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3482 		vba = vma->vm_pgoff;
3483 		vea = vba + vma_pages(vma) - 1;
3484 		zba = max(first_index, vba);
3485 		zea = min(last_index, vea);
3486 
3487 		unmap_mapping_range_vma(vma,
3488 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3489 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3490 				details);
3491 	}
3492 }
3493 
3494 /**
3495  * unmap_mapping_folio() - Unmap single folio from processes.
3496  * @folio: The locked folio to be unmapped.
3497  *
3498  * Unmap this folio from any userspace process which still has it mmaped.
3499  * Typically, for efficiency, the range of nearby pages has already been
3500  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3501  * truncation or invalidation holds the lock on a folio, it may find that
3502  * the page has been remapped again: and then uses unmap_mapping_folio()
3503  * to unmap it finally.
3504  */
3505 void unmap_mapping_folio(struct folio *folio)
3506 {
3507 	struct address_space *mapping = folio->mapping;
3508 	struct zap_details details = { };
3509 	pgoff_t	first_index;
3510 	pgoff_t	last_index;
3511 
3512 	VM_BUG_ON(!folio_test_locked(folio));
3513 
3514 	first_index = folio->index;
3515 	last_index = folio_next_index(folio) - 1;
3516 
3517 	details.even_cows = false;
3518 	details.single_folio = folio;
3519 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3520 
3521 	i_mmap_lock_read(mapping);
3522 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3523 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3524 					 last_index, &details);
3525 	i_mmap_unlock_read(mapping);
3526 }
3527 
3528 /**
3529  * unmap_mapping_pages() - Unmap pages from processes.
3530  * @mapping: The address space containing pages to be unmapped.
3531  * @start: Index of first page to be unmapped.
3532  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3533  * @even_cows: Whether to unmap even private COWed pages.
3534  *
3535  * Unmap the pages in this address space from any userspace process which
3536  * has them mmaped.  Generally, you want to remove COWed pages as well when
3537  * a file is being truncated, but not when invalidating pages from the page
3538  * cache.
3539  */
3540 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3541 		pgoff_t nr, bool even_cows)
3542 {
3543 	struct zap_details details = { };
3544 	pgoff_t	first_index = start;
3545 	pgoff_t	last_index = start + nr - 1;
3546 
3547 	details.even_cows = even_cows;
3548 	if (last_index < first_index)
3549 		last_index = ULONG_MAX;
3550 
3551 	i_mmap_lock_read(mapping);
3552 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3553 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3554 					 last_index, &details);
3555 	i_mmap_unlock_read(mapping);
3556 }
3557 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3558 
3559 /**
3560  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3561  * address_space corresponding to the specified byte range in the underlying
3562  * file.
3563  *
3564  * @mapping: the address space containing mmaps to be unmapped.
3565  * @holebegin: byte in first page to unmap, relative to the start of
3566  * the underlying file.  This will be rounded down to a PAGE_SIZE
3567  * boundary.  Note that this is different from truncate_pagecache(), which
3568  * must keep the partial page.  In contrast, we must get rid of
3569  * partial pages.
3570  * @holelen: size of prospective hole in bytes.  This will be rounded
3571  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3572  * end of the file.
3573  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3574  * but 0 when invalidating pagecache, don't throw away private data.
3575  */
3576 void unmap_mapping_range(struct address_space *mapping,
3577 		loff_t const holebegin, loff_t const holelen, int even_cows)
3578 {
3579 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3580 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3581 
3582 	/* Check for overflow. */
3583 	if (sizeof(holelen) > sizeof(hlen)) {
3584 		long long holeend =
3585 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3586 		if (holeend & ~(long long)ULONG_MAX)
3587 			hlen = ULONG_MAX - hba + 1;
3588 	}
3589 
3590 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3591 }
3592 EXPORT_SYMBOL(unmap_mapping_range);
3593 
3594 /*
3595  * Restore a potential device exclusive pte to a working pte entry
3596  */
3597 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3598 {
3599 	struct folio *folio = page_folio(vmf->page);
3600 	struct vm_area_struct *vma = vmf->vma;
3601 	struct mmu_notifier_range range;
3602 
3603 	/*
3604 	 * We need a reference to lock the folio because we don't hold
3605 	 * the PTL so a racing thread can remove the device-exclusive
3606 	 * entry and unmap it. If the folio is free the entry must
3607 	 * have been removed already. If it happens to have already
3608 	 * been re-allocated after being freed all we do is lock and
3609 	 * unlock it.
3610 	 */
3611 	if (!folio_try_get(folio))
3612 		return 0;
3613 
3614 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3615 		folio_put(folio);
3616 		return VM_FAULT_RETRY;
3617 	}
3618 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3619 				vma->vm_mm, vmf->address & PAGE_MASK,
3620 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3621 	mmu_notifier_invalidate_range_start(&range);
3622 
3623 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3624 				&vmf->ptl);
3625 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3626 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3627 
3628 	if (vmf->pte)
3629 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3630 	folio_unlock(folio);
3631 	folio_put(folio);
3632 
3633 	mmu_notifier_invalidate_range_end(&range);
3634 	return 0;
3635 }
3636 
3637 static inline bool should_try_to_free_swap(struct folio *folio,
3638 					   struct vm_area_struct *vma,
3639 					   unsigned int fault_flags)
3640 {
3641 	if (!folio_test_swapcache(folio))
3642 		return false;
3643 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3644 	    folio_test_mlocked(folio))
3645 		return true;
3646 	/*
3647 	 * If we want to map a page that's in the swapcache writable, we
3648 	 * have to detect via the refcount if we're really the exclusive
3649 	 * user. Try freeing the swapcache to get rid of the swapcache
3650 	 * reference only in case it's likely that we'll be the exlusive user.
3651 	 */
3652 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3653 		folio_ref_count(folio) == 2;
3654 }
3655 
3656 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3657 {
3658 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3659 				       vmf->address, &vmf->ptl);
3660 	if (!vmf->pte)
3661 		return 0;
3662 	/*
3663 	 * Be careful so that we will only recover a special uffd-wp pte into a
3664 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3665 	 *
3666 	 * This should also cover the case where e.g. the pte changed
3667 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED.
3668 	 * So is_pte_marker() check is not enough to safely drop the pte.
3669 	 */
3670 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3671 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3672 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3673 	return 0;
3674 }
3675 
3676 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3677 {
3678 	if (vma_is_anonymous(vmf->vma))
3679 		return do_anonymous_page(vmf);
3680 	else
3681 		return do_fault(vmf);
3682 }
3683 
3684 /*
3685  * This is actually a page-missing access, but with uffd-wp special pte
3686  * installed.  It means this pte was wr-protected before being unmapped.
3687  */
3688 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3689 {
3690 	/*
3691 	 * Just in case there're leftover special ptes even after the region
3692 	 * got unregistered - we can simply clear them.
3693 	 */
3694 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3695 		return pte_marker_clear(vmf);
3696 
3697 	return do_pte_missing(vmf);
3698 }
3699 
3700 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3701 {
3702 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3703 	unsigned long marker = pte_marker_get(entry);
3704 
3705 	/*
3706 	 * PTE markers should never be empty.  If anything weird happened,
3707 	 * the best thing to do is to kill the process along with its mm.
3708 	 */
3709 	if (WARN_ON_ONCE(!marker))
3710 		return VM_FAULT_SIGBUS;
3711 
3712 	/* Higher priority than uffd-wp when data corrupted */
3713 	if (marker & PTE_MARKER_POISONED)
3714 		return VM_FAULT_HWPOISON;
3715 
3716 	if (pte_marker_entry_uffd_wp(entry))
3717 		return pte_marker_handle_uffd_wp(vmf);
3718 
3719 	/* This is an unknown pte marker */
3720 	return VM_FAULT_SIGBUS;
3721 }
3722 
3723 /*
3724  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3725  * but allow concurrent faults), and pte mapped but not yet locked.
3726  * We return with pte unmapped and unlocked.
3727  *
3728  * We return with the mmap_lock locked or unlocked in the same cases
3729  * as does filemap_fault().
3730  */
3731 vm_fault_t do_swap_page(struct vm_fault *vmf)
3732 {
3733 	struct vm_area_struct *vma = vmf->vma;
3734 	struct folio *swapcache, *folio = NULL;
3735 	struct page *page;
3736 	struct swap_info_struct *si = NULL;
3737 	rmap_t rmap_flags = RMAP_NONE;
3738 	bool exclusive = false;
3739 	swp_entry_t entry;
3740 	pte_t pte;
3741 	int locked;
3742 	vm_fault_t ret = 0;
3743 	void *shadow = NULL;
3744 
3745 	if (!pte_unmap_same(vmf))
3746 		goto out;
3747 
3748 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3749 		ret = VM_FAULT_RETRY;
3750 		goto out;
3751 	}
3752 
3753 	entry = pte_to_swp_entry(vmf->orig_pte);
3754 	if (unlikely(non_swap_entry(entry))) {
3755 		if (is_migration_entry(entry)) {
3756 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3757 					     vmf->address);
3758 		} else if (is_device_exclusive_entry(entry)) {
3759 			vmf->page = pfn_swap_entry_to_page(entry);
3760 			ret = remove_device_exclusive_entry(vmf);
3761 		} else if (is_device_private_entry(entry)) {
3762 			vmf->page = pfn_swap_entry_to_page(entry);
3763 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3764 					vmf->address, &vmf->ptl);
3765 			if (unlikely(!vmf->pte ||
3766 				     !pte_same(ptep_get(vmf->pte),
3767 							vmf->orig_pte)))
3768 				goto unlock;
3769 
3770 			/*
3771 			 * Get a page reference while we know the page can't be
3772 			 * freed.
3773 			 */
3774 			get_page(vmf->page);
3775 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3776 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3777 			put_page(vmf->page);
3778 		} else if (is_hwpoison_entry(entry)) {
3779 			ret = VM_FAULT_HWPOISON;
3780 		} else if (is_pte_marker_entry(entry)) {
3781 			ret = handle_pte_marker(vmf);
3782 		} else {
3783 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3784 			ret = VM_FAULT_SIGBUS;
3785 		}
3786 		goto out;
3787 	}
3788 
3789 	/* Prevent swapoff from happening to us. */
3790 	si = get_swap_device(entry);
3791 	if (unlikely(!si))
3792 		goto out;
3793 
3794 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3795 	if (folio)
3796 		page = folio_file_page(folio, swp_offset(entry));
3797 	swapcache = folio;
3798 
3799 	if (!folio) {
3800 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3801 		    __swap_count(entry) == 1) {
3802 			/* skip swapcache */
3803 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3804 						vma, vmf->address, false);
3805 			page = &folio->page;
3806 			if (folio) {
3807 				__folio_set_locked(folio);
3808 				__folio_set_swapbacked(folio);
3809 
3810 				if (mem_cgroup_swapin_charge_folio(folio,
3811 							vma->vm_mm, GFP_KERNEL,
3812 							entry)) {
3813 					ret = VM_FAULT_OOM;
3814 					goto out_page;
3815 				}
3816 				mem_cgroup_swapin_uncharge_swap(entry);
3817 
3818 				shadow = get_shadow_from_swap_cache(entry);
3819 				if (shadow)
3820 					workingset_refault(folio, shadow);
3821 
3822 				folio_add_lru(folio);
3823 
3824 				/* To provide entry to swap_readpage() */
3825 				folio_set_swap_entry(folio, entry);
3826 				swap_readpage(page, true, NULL);
3827 				folio->private = NULL;
3828 			}
3829 		} else {
3830 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3831 						vmf);
3832 			if (page)
3833 				folio = page_folio(page);
3834 			swapcache = folio;
3835 		}
3836 
3837 		if (!folio) {
3838 			/*
3839 			 * Back out if somebody else faulted in this pte
3840 			 * while we released the pte lock.
3841 			 */
3842 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3843 					vmf->address, &vmf->ptl);
3844 			if (likely(vmf->pte &&
3845 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3846 				ret = VM_FAULT_OOM;
3847 			goto unlock;
3848 		}
3849 
3850 		/* Had to read the page from swap area: Major fault */
3851 		ret = VM_FAULT_MAJOR;
3852 		count_vm_event(PGMAJFAULT);
3853 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3854 	} else if (PageHWPoison(page)) {
3855 		/*
3856 		 * hwpoisoned dirty swapcache pages are kept for killing
3857 		 * owner processes (which may be unknown at hwpoison time)
3858 		 */
3859 		ret = VM_FAULT_HWPOISON;
3860 		goto out_release;
3861 	}
3862 
3863 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3864 
3865 	if (!locked) {
3866 		ret |= VM_FAULT_RETRY;
3867 		goto out_release;
3868 	}
3869 
3870 	if (swapcache) {
3871 		/*
3872 		 * Make sure folio_free_swap() or swapoff did not release the
3873 		 * swapcache from under us.  The page pin, and pte_same test
3874 		 * below, are not enough to exclude that.  Even if it is still
3875 		 * swapcache, we need to check that the page's swap has not
3876 		 * changed.
3877 		 */
3878 		if (unlikely(!folio_test_swapcache(folio) ||
3879 			     page_private(page) != entry.val))
3880 			goto out_page;
3881 
3882 		/*
3883 		 * KSM sometimes has to copy on read faults, for example, if
3884 		 * page->index of !PageKSM() pages would be nonlinear inside the
3885 		 * anon VMA -- PageKSM() is lost on actual swapout.
3886 		 */
3887 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3888 		if (unlikely(!page)) {
3889 			ret = VM_FAULT_OOM;
3890 			goto out_page;
3891 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3892 			ret = VM_FAULT_HWPOISON;
3893 			goto out_page;
3894 		}
3895 		folio = page_folio(page);
3896 
3897 		/*
3898 		 * If we want to map a page that's in the swapcache writable, we
3899 		 * have to detect via the refcount if we're really the exclusive
3900 		 * owner. Try removing the extra reference from the local LRU
3901 		 * caches if required.
3902 		 */
3903 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3904 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3905 			lru_add_drain();
3906 	}
3907 
3908 	folio_throttle_swaprate(folio, GFP_KERNEL);
3909 
3910 	/*
3911 	 * Back out if somebody else already faulted in this pte.
3912 	 */
3913 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3914 			&vmf->ptl);
3915 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3916 		goto out_nomap;
3917 
3918 	if (unlikely(!folio_test_uptodate(folio))) {
3919 		ret = VM_FAULT_SIGBUS;
3920 		goto out_nomap;
3921 	}
3922 
3923 	/*
3924 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3925 	 * must never point at an anonymous page in the swapcache that is
3926 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3927 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3928 	 * check after taking the PT lock and making sure that nobody
3929 	 * concurrently faulted in this page and set PG_anon_exclusive.
3930 	 */
3931 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3932 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3933 
3934 	/*
3935 	 * Check under PT lock (to protect against concurrent fork() sharing
3936 	 * the swap entry concurrently) for certainly exclusive pages.
3937 	 */
3938 	if (!folio_test_ksm(folio)) {
3939 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3940 		if (folio != swapcache) {
3941 			/*
3942 			 * We have a fresh page that is not exposed to the
3943 			 * swapcache -> certainly exclusive.
3944 			 */
3945 			exclusive = true;
3946 		} else if (exclusive && folio_test_writeback(folio) &&
3947 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3948 			/*
3949 			 * This is tricky: not all swap backends support
3950 			 * concurrent page modifications while under writeback.
3951 			 *
3952 			 * So if we stumble over such a page in the swapcache
3953 			 * we must not set the page exclusive, otherwise we can
3954 			 * map it writable without further checks and modify it
3955 			 * while still under writeback.
3956 			 *
3957 			 * For these problematic swap backends, simply drop the
3958 			 * exclusive marker: this is perfectly fine as we start
3959 			 * writeback only if we fully unmapped the page and
3960 			 * there are no unexpected references on the page after
3961 			 * unmapping succeeded. After fully unmapped, no
3962 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3963 			 * appear, so dropping the exclusive marker and mapping
3964 			 * it only R/O is fine.
3965 			 */
3966 			exclusive = false;
3967 		}
3968 	}
3969 
3970 	/*
3971 	 * Some architectures may have to restore extra metadata to the page
3972 	 * when reading from swap. This metadata may be indexed by swap entry
3973 	 * so this must be called before swap_free().
3974 	 */
3975 	arch_swap_restore(entry, folio);
3976 
3977 	/*
3978 	 * Remove the swap entry and conditionally try to free up the swapcache.
3979 	 * We're already holding a reference on the page but haven't mapped it
3980 	 * yet.
3981 	 */
3982 	swap_free(entry);
3983 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3984 		folio_free_swap(folio);
3985 
3986 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3987 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3988 	pte = mk_pte(page, vma->vm_page_prot);
3989 
3990 	/*
3991 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3992 	 * certainly not shared either because we just allocated them without
3993 	 * exposing them to the swapcache or because the swap entry indicates
3994 	 * exclusivity.
3995 	 */
3996 	if (!folio_test_ksm(folio) &&
3997 	    (exclusive || folio_ref_count(folio) == 1)) {
3998 		if (vmf->flags & FAULT_FLAG_WRITE) {
3999 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
4000 			vmf->flags &= ~FAULT_FLAG_WRITE;
4001 		}
4002 		rmap_flags |= RMAP_EXCLUSIVE;
4003 	}
4004 	flush_icache_page(vma, page);
4005 	if (pte_swp_soft_dirty(vmf->orig_pte))
4006 		pte = pte_mksoft_dirty(pte);
4007 	if (pte_swp_uffd_wp(vmf->orig_pte))
4008 		pte = pte_mkuffd_wp(pte);
4009 	vmf->orig_pte = pte;
4010 
4011 	/* ksm created a completely new copy */
4012 	if (unlikely(folio != swapcache && swapcache)) {
4013 		page_add_new_anon_rmap(page, vma, vmf->address);
4014 		folio_add_lru_vma(folio, vma);
4015 	} else {
4016 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4017 	}
4018 
4019 	VM_BUG_ON(!folio_test_anon(folio) ||
4020 			(pte_write(pte) && !PageAnonExclusive(page)));
4021 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4022 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4023 
4024 	folio_unlock(folio);
4025 	if (folio != swapcache && swapcache) {
4026 		/*
4027 		 * Hold the lock to avoid the swap entry to be reused
4028 		 * until we take the PT lock for the pte_same() check
4029 		 * (to avoid false positives from pte_same). For
4030 		 * further safety release the lock after the swap_free
4031 		 * so that the swap count won't change under a
4032 		 * parallel locked swapcache.
4033 		 */
4034 		folio_unlock(swapcache);
4035 		folio_put(swapcache);
4036 	}
4037 
4038 	if (vmf->flags & FAULT_FLAG_WRITE) {
4039 		ret |= do_wp_page(vmf);
4040 		if (ret & VM_FAULT_ERROR)
4041 			ret &= VM_FAULT_ERROR;
4042 		goto out;
4043 	}
4044 
4045 	/* No need to invalidate - it was non-present before */
4046 	update_mmu_cache(vma, vmf->address, vmf->pte);
4047 unlock:
4048 	if (vmf->pte)
4049 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4050 out:
4051 	if (si)
4052 		put_swap_device(si);
4053 	return ret;
4054 out_nomap:
4055 	if (vmf->pte)
4056 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4057 out_page:
4058 	folio_unlock(folio);
4059 out_release:
4060 	folio_put(folio);
4061 	if (folio != swapcache && swapcache) {
4062 		folio_unlock(swapcache);
4063 		folio_put(swapcache);
4064 	}
4065 	if (si)
4066 		put_swap_device(si);
4067 	return ret;
4068 }
4069 
4070 /*
4071  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4072  * but allow concurrent faults), and pte mapped but not yet locked.
4073  * We return with mmap_lock still held, but pte unmapped and unlocked.
4074  */
4075 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4076 {
4077 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4078 	struct vm_area_struct *vma = vmf->vma;
4079 	struct folio *folio;
4080 	vm_fault_t ret = 0;
4081 	pte_t entry;
4082 
4083 	/* File mapping without ->vm_ops ? */
4084 	if (vma->vm_flags & VM_SHARED)
4085 		return VM_FAULT_SIGBUS;
4086 
4087 	/*
4088 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4089 	 * be distinguished from a transient failure of pte_offset_map().
4090 	 */
4091 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4092 		return VM_FAULT_OOM;
4093 
4094 	/* Use the zero-page for reads */
4095 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4096 			!mm_forbids_zeropage(vma->vm_mm)) {
4097 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4098 						vma->vm_page_prot));
4099 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4100 				vmf->address, &vmf->ptl);
4101 		if (!vmf->pte)
4102 			goto unlock;
4103 		if (vmf_pte_changed(vmf)) {
4104 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4105 			goto unlock;
4106 		}
4107 		ret = check_stable_address_space(vma->vm_mm);
4108 		if (ret)
4109 			goto unlock;
4110 		/* Deliver the page fault to userland, check inside PT lock */
4111 		if (userfaultfd_missing(vma)) {
4112 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4113 			return handle_userfault(vmf, VM_UFFD_MISSING);
4114 		}
4115 		goto setpte;
4116 	}
4117 
4118 	/* Allocate our own private page. */
4119 	if (unlikely(anon_vma_prepare(vma)))
4120 		goto oom;
4121 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4122 	if (!folio)
4123 		goto oom;
4124 
4125 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4126 		goto oom_free_page;
4127 	folio_throttle_swaprate(folio, GFP_KERNEL);
4128 
4129 	/*
4130 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4131 	 * preceding stores to the page contents become visible before
4132 	 * the set_pte_at() write.
4133 	 */
4134 	__folio_mark_uptodate(folio);
4135 
4136 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4137 	entry = pte_sw_mkyoung(entry);
4138 	if (vma->vm_flags & VM_WRITE)
4139 		entry = pte_mkwrite(pte_mkdirty(entry));
4140 
4141 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4142 			&vmf->ptl);
4143 	if (!vmf->pte)
4144 		goto release;
4145 	if (vmf_pte_changed(vmf)) {
4146 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4147 		goto release;
4148 	}
4149 
4150 	ret = check_stable_address_space(vma->vm_mm);
4151 	if (ret)
4152 		goto release;
4153 
4154 	/* Deliver the page fault to userland, check inside PT lock */
4155 	if (userfaultfd_missing(vma)) {
4156 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4157 		folio_put(folio);
4158 		return handle_userfault(vmf, VM_UFFD_MISSING);
4159 	}
4160 
4161 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4162 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4163 	folio_add_lru_vma(folio, vma);
4164 setpte:
4165 	if (uffd_wp)
4166 		entry = pte_mkuffd_wp(entry);
4167 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4168 
4169 	/* No need to invalidate - it was non-present before */
4170 	update_mmu_cache(vma, vmf->address, vmf->pte);
4171 unlock:
4172 	if (vmf->pte)
4173 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4174 	return ret;
4175 release:
4176 	folio_put(folio);
4177 	goto unlock;
4178 oom_free_page:
4179 	folio_put(folio);
4180 oom:
4181 	return VM_FAULT_OOM;
4182 }
4183 
4184 /*
4185  * The mmap_lock must have been held on entry, and may have been
4186  * released depending on flags and vma->vm_ops->fault() return value.
4187  * See filemap_fault() and __lock_page_retry().
4188  */
4189 static vm_fault_t __do_fault(struct vm_fault *vmf)
4190 {
4191 	struct vm_area_struct *vma = vmf->vma;
4192 	vm_fault_t ret;
4193 
4194 	/*
4195 	 * Preallocate pte before we take page_lock because this might lead to
4196 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4197 	 *				lock_page(A)
4198 	 *				SetPageWriteback(A)
4199 	 *				unlock_page(A)
4200 	 * lock_page(B)
4201 	 *				lock_page(B)
4202 	 * pte_alloc_one
4203 	 *   shrink_page_list
4204 	 *     wait_on_page_writeback(A)
4205 	 *				SetPageWriteback(B)
4206 	 *				unlock_page(B)
4207 	 *				# flush A, B to clear the writeback
4208 	 */
4209 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4210 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4211 		if (!vmf->prealloc_pte)
4212 			return VM_FAULT_OOM;
4213 	}
4214 
4215 	ret = vma->vm_ops->fault(vmf);
4216 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4217 			    VM_FAULT_DONE_COW)))
4218 		return ret;
4219 
4220 	if (unlikely(PageHWPoison(vmf->page))) {
4221 		struct page *page = vmf->page;
4222 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4223 		if (ret & VM_FAULT_LOCKED) {
4224 			if (page_mapped(page))
4225 				unmap_mapping_pages(page_mapping(page),
4226 						    page->index, 1, false);
4227 			/* Retry if a clean page was removed from the cache. */
4228 			if (invalidate_inode_page(page))
4229 				poisonret = VM_FAULT_NOPAGE;
4230 			unlock_page(page);
4231 		}
4232 		put_page(page);
4233 		vmf->page = NULL;
4234 		return poisonret;
4235 	}
4236 
4237 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4238 		lock_page(vmf->page);
4239 	else
4240 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4241 
4242 	return ret;
4243 }
4244 
4245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4246 static void deposit_prealloc_pte(struct vm_fault *vmf)
4247 {
4248 	struct vm_area_struct *vma = vmf->vma;
4249 
4250 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4251 	/*
4252 	 * We are going to consume the prealloc table,
4253 	 * count that as nr_ptes.
4254 	 */
4255 	mm_inc_nr_ptes(vma->vm_mm);
4256 	vmf->prealloc_pte = NULL;
4257 }
4258 
4259 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4260 {
4261 	struct vm_area_struct *vma = vmf->vma;
4262 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4263 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4264 	pmd_t entry;
4265 	int i;
4266 	vm_fault_t ret = VM_FAULT_FALLBACK;
4267 
4268 	if (!transhuge_vma_suitable(vma, haddr))
4269 		return ret;
4270 
4271 	page = compound_head(page);
4272 	if (compound_order(page) != HPAGE_PMD_ORDER)
4273 		return ret;
4274 
4275 	/*
4276 	 * Just backoff if any subpage of a THP is corrupted otherwise
4277 	 * the corrupted page may mapped by PMD silently to escape the
4278 	 * check.  This kind of THP just can be PTE mapped.  Access to
4279 	 * the corrupted subpage should trigger SIGBUS as expected.
4280 	 */
4281 	if (unlikely(PageHasHWPoisoned(page)))
4282 		return ret;
4283 
4284 	/*
4285 	 * Archs like ppc64 need additional space to store information
4286 	 * related to pte entry. Use the preallocated table for that.
4287 	 */
4288 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4289 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4290 		if (!vmf->prealloc_pte)
4291 			return VM_FAULT_OOM;
4292 	}
4293 
4294 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4295 	if (unlikely(!pmd_none(*vmf->pmd)))
4296 		goto out;
4297 
4298 	for (i = 0; i < HPAGE_PMD_NR; i++)
4299 		flush_icache_page(vma, page + i);
4300 
4301 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4302 	if (write)
4303 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4304 
4305 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4306 	page_add_file_rmap(page, vma, true);
4307 
4308 	/*
4309 	 * deposit and withdraw with pmd lock held
4310 	 */
4311 	if (arch_needs_pgtable_deposit())
4312 		deposit_prealloc_pte(vmf);
4313 
4314 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4315 
4316 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4317 
4318 	/* fault is handled */
4319 	ret = 0;
4320 	count_vm_event(THP_FILE_MAPPED);
4321 out:
4322 	spin_unlock(vmf->ptl);
4323 	return ret;
4324 }
4325 #else
4326 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4327 {
4328 	return VM_FAULT_FALLBACK;
4329 }
4330 #endif
4331 
4332 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4333 {
4334 	struct vm_area_struct *vma = vmf->vma;
4335 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4336 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4337 	bool prefault = vmf->address != addr;
4338 	pte_t entry;
4339 
4340 	flush_icache_page(vma, page);
4341 	entry = mk_pte(page, vma->vm_page_prot);
4342 
4343 	if (prefault && arch_wants_old_prefaulted_pte())
4344 		entry = pte_mkold(entry);
4345 	else
4346 		entry = pte_sw_mkyoung(entry);
4347 
4348 	if (write)
4349 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4350 	if (unlikely(uffd_wp))
4351 		entry = pte_mkuffd_wp(entry);
4352 	/* copy-on-write page */
4353 	if (write && !(vma->vm_flags & VM_SHARED)) {
4354 		inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4355 		page_add_new_anon_rmap(page, vma, addr);
4356 		lru_cache_add_inactive_or_unevictable(page, vma);
4357 	} else {
4358 		inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4359 		page_add_file_rmap(page, vma, false);
4360 	}
4361 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4362 }
4363 
4364 static bool vmf_pte_changed(struct vm_fault *vmf)
4365 {
4366 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4367 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4368 
4369 	return !pte_none(ptep_get(vmf->pte));
4370 }
4371 
4372 /**
4373  * finish_fault - finish page fault once we have prepared the page to fault
4374  *
4375  * @vmf: structure describing the fault
4376  *
4377  * This function handles all that is needed to finish a page fault once the
4378  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4379  * given page, adds reverse page mapping, handles memcg charges and LRU
4380  * addition.
4381  *
4382  * The function expects the page to be locked and on success it consumes a
4383  * reference of a page being mapped (for the PTE which maps it).
4384  *
4385  * Return: %0 on success, %VM_FAULT_ code in case of error.
4386  */
4387 vm_fault_t finish_fault(struct vm_fault *vmf)
4388 {
4389 	struct vm_area_struct *vma = vmf->vma;
4390 	struct page *page;
4391 	vm_fault_t ret;
4392 
4393 	/* Did we COW the page? */
4394 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4395 		page = vmf->cow_page;
4396 	else
4397 		page = vmf->page;
4398 
4399 	/*
4400 	 * check even for read faults because we might have lost our CoWed
4401 	 * page
4402 	 */
4403 	if (!(vma->vm_flags & VM_SHARED)) {
4404 		ret = check_stable_address_space(vma->vm_mm);
4405 		if (ret)
4406 			return ret;
4407 	}
4408 
4409 	if (pmd_none(*vmf->pmd)) {
4410 		if (PageTransCompound(page)) {
4411 			ret = do_set_pmd(vmf, page);
4412 			if (ret != VM_FAULT_FALLBACK)
4413 				return ret;
4414 		}
4415 
4416 		if (vmf->prealloc_pte)
4417 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4418 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4419 			return VM_FAULT_OOM;
4420 	}
4421 
4422 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4423 				      vmf->address, &vmf->ptl);
4424 	if (!vmf->pte)
4425 		return VM_FAULT_NOPAGE;
4426 
4427 	/* Re-check under ptl */
4428 	if (likely(!vmf_pte_changed(vmf))) {
4429 		do_set_pte(vmf, page, vmf->address);
4430 
4431 		/* no need to invalidate: a not-present page won't be cached */
4432 		update_mmu_cache(vma, vmf->address, vmf->pte);
4433 
4434 		ret = 0;
4435 	} else {
4436 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4437 		ret = VM_FAULT_NOPAGE;
4438 	}
4439 
4440 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4441 	return ret;
4442 }
4443 
4444 static unsigned long fault_around_pages __read_mostly =
4445 	65536 >> PAGE_SHIFT;
4446 
4447 #ifdef CONFIG_DEBUG_FS
4448 static int fault_around_bytes_get(void *data, u64 *val)
4449 {
4450 	*val = fault_around_pages << PAGE_SHIFT;
4451 	return 0;
4452 }
4453 
4454 /*
4455  * fault_around_bytes must be rounded down to the nearest page order as it's
4456  * what do_fault_around() expects to see.
4457  */
4458 static int fault_around_bytes_set(void *data, u64 val)
4459 {
4460 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4461 		return -EINVAL;
4462 
4463 	/*
4464 	 * The minimum value is 1 page, however this results in no fault-around
4465 	 * at all. See should_fault_around().
4466 	 */
4467 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4468 
4469 	return 0;
4470 }
4471 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4472 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4473 
4474 static int __init fault_around_debugfs(void)
4475 {
4476 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4477 				   &fault_around_bytes_fops);
4478 	return 0;
4479 }
4480 late_initcall(fault_around_debugfs);
4481 #endif
4482 
4483 /*
4484  * do_fault_around() tries to map few pages around the fault address. The hope
4485  * is that the pages will be needed soon and this will lower the number of
4486  * faults to handle.
4487  *
4488  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4489  * not ready to be mapped: not up-to-date, locked, etc.
4490  *
4491  * This function doesn't cross VMA or page table boundaries, in order to call
4492  * map_pages() and acquire a PTE lock only once.
4493  *
4494  * fault_around_pages defines how many pages we'll try to map.
4495  * do_fault_around() expects it to be set to a power of two less than or equal
4496  * to PTRS_PER_PTE.
4497  *
4498  * The virtual address of the area that we map is naturally aligned to
4499  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4500  * (and therefore to page order).  This way it's easier to guarantee
4501  * that we don't cross page table boundaries.
4502  */
4503 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4504 {
4505 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4506 	pgoff_t pte_off = pte_index(vmf->address);
4507 	/* The page offset of vmf->address within the VMA. */
4508 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4509 	pgoff_t from_pte, to_pte;
4510 	vm_fault_t ret;
4511 
4512 	/* The PTE offset of the start address, clamped to the VMA. */
4513 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4514 		       pte_off - min(pte_off, vma_off));
4515 
4516 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4517 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4518 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4519 
4520 	if (pmd_none(*vmf->pmd)) {
4521 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4522 		if (!vmf->prealloc_pte)
4523 			return VM_FAULT_OOM;
4524 	}
4525 
4526 	rcu_read_lock();
4527 	ret = vmf->vma->vm_ops->map_pages(vmf,
4528 			vmf->pgoff + from_pte - pte_off,
4529 			vmf->pgoff + to_pte - pte_off);
4530 	rcu_read_unlock();
4531 
4532 	return ret;
4533 }
4534 
4535 /* Return true if we should do read fault-around, false otherwise */
4536 static inline bool should_fault_around(struct vm_fault *vmf)
4537 {
4538 	/* No ->map_pages?  No way to fault around... */
4539 	if (!vmf->vma->vm_ops->map_pages)
4540 		return false;
4541 
4542 	if (uffd_disable_fault_around(vmf->vma))
4543 		return false;
4544 
4545 	/* A single page implies no faulting 'around' at all. */
4546 	return fault_around_pages > 1;
4547 }
4548 
4549 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4550 {
4551 	vm_fault_t ret = 0;
4552 	struct folio *folio;
4553 
4554 	/*
4555 	 * Let's call ->map_pages() first and use ->fault() as fallback
4556 	 * if page by the offset is not ready to be mapped (cold cache or
4557 	 * something).
4558 	 */
4559 	if (should_fault_around(vmf)) {
4560 		ret = do_fault_around(vmf);
4561 		if (ret)
4562 			return ret;
4563 	}
4564 
4565 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4566 		vma_end_read(vmf->vma);
4567 		return VM_FAULT_RETRY;
4568 	}
4569 
4570 	ret = __do_fault(vmf);
4571 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4572 		return ret;
4573 
4574 	ret |= finish_fault(vmf);
4575 	folio = page_folio(vmf->page);
4576 	folio_unlock(folio);
4577 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4578 		folio_put(folio);
4579 	return ret;
4580 }
4581 
4582 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4583 {
4584 	struct vm_area_struct *vma = vmf->vma;
4585 	vm_fault_t ret;
4586 
4587 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4588 		vma_end_read(vma);
4589 		return VM_FAULT_RETRY;
4590 	}
4591 
4592 	if (unlikely(anon_vma_prepare(vma)))
4593 		return VM_FAULT_OOM;
4594 
4595 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4596 	if (!vmf->cow_page)
4597 		return VM_FAULT_OOM;
4598 
4599 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4600 				GFP_KERNEL)) {
4601 		put_page(vmf->cow_page);
4602 		return VM_FAULT_OOM;
4603 	}
4604 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4605 
4606 	ret = __do_fault(vmf);
4607 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4608 		goto uncharge_out;
4609 	if (ret & VM_FAULT_DONE_COW)
4610 		return ret;
4611 
4612 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4613 	__SetPageUptodate(vmf->cow_page);
4614 
4615 	ret |= finish_fault(vmf);
4616 	unlock_page(vmf->page);
4617 	put_page(vmf->page);
4618 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4619 		goto uncharge_out;
4620 	return ret;
4621 uncharge_out:
4622 	put_page(vmf->cow_page);
4623 	return ret;
4624 }
4625 
4626 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4627 {
4628 	struct vm_area_struct *vma = vmf->vma;
4629 	vm_fault_t ret, tmp;
4630 	struct folio *folio;
4631 
4632 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4633 		vma_end_read(vma);
4634 		return VM_FAULT_RETRY;
4635 	}
4636 
4637 	ret = __do_fault(vmf);
4638 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4639 		return ret;
4640 
4641 	folio = page_folio(vmf->page);
4642 
4643 	/*
4644 	 * Check if the backing address space wants to know that the page is
4645 	 * about to become writable
4646 	 */
4647 	if (vma->vm_ops->page_mkwrite) {
4648 		folio_unlock(folio);
4649 		tmp = do_page_mkwrite(vmf, folio);
4650 		if (unlikely(!tmp ||
4651 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4652 			folio_put(folio);
4653 			return tmp;
4654 		}
4655 	}
4656 
4657 	ret |= finish_fault(vmf);
4658 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4659 					VM_FAULT_RETRY))) {
4660 		folio_unlock(folio);
4661 		folio_put(folio);
4662 		return ret;
4663 	}
4664 
4665 	ret |= fault_dirty_shared_page(vmf);
4666 	return ret;
4667 }
4668 
4669 /*
4670  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4671  * but allow concurrent faults).
4672  * The mmap_lock may have been released depending on flags and our
4673  * return value.  See filemap_fault() and __folio_lock_or_retry().
4674  * If mmap_lock is released, vma may become invalid (for example
4675  * by other thread calling munmap()).
4676  */
4677 static vm_fault_t do_fault(struct vm_fault *vmf)
4678 {
4679 	struct vm_area_struct *vma = vmf->vma;
4680 	struct mm_struct *vm_mm = vma->vm_mm;
4681 	vm_fault_t ret;
4682 
4683 	/*
4684 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4685 	 */
4686 	if (!vma->vm_ops->fault) {
4687 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4688 					       vmf->address, &vmf->ptl);
4689 		if (unlikely(!vmf->pte))
4690 			ret = VM_FAULT_SIGBUS;
4691 		else {
4692 			/*
4693 			 * Make sure this is not a temporary clearing of pte
4694 			 * by holding ptl and checking again. A R/M/W update
4695 			 * of pte involves: take ptl, clearing the pte so that
4696 			 * we don't have concurrent modification by hardware
4697 			 * followed by an update.
4698 			 */
4699 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4700 				ret = VM_FAULT_SIGBUS;
4701 			else
4702 				ret = VM_FAULT_NOPAGE;
4703 
4704 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4705 		}
4706 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4707 		ret = do_read_fault(vmf);
4708 	else if (!(vma->vm_flags & VM_SHARED))
4709 		ret = do_cow_fault(vmf);
4710 	else
4711 		ret = do_shared_fault(vmf);
4712 
4713 	/* preallocated pagetable is unused: free it */
4714 	if (vmf->prealloc_pte) {
4715 		pte_free(vm_mm, vmf->prealloc_pte);
4716 		vmf->prealloc_pte = NULL;
4717 	}
4718 	return ret;
4719 }
4720 
4721 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4722 		      unsigned long addr, int page_nid, int *flags)
4723 {
4724 	get_page(page);
4725 
4726 	/* Record the current PID acceesing VMA */
4727 	vma_set_access_pid_bit(vma);
4728 
4729 	count_vm_numa_event(NUMA_HINT_FAULTS);
4730 	if (page_nid == numa_node_id()) {
4731 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4732 		*flags |= TNF_FAULT_LOCAL;
4733 	}
4734 
4735 	return mpol_misplaced(page, vma, addr);
4736 }
4737 
4738 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4739 {
4740 	struct vm_area_struct *vma = vmf->vma;
4741 	struct page *page = NULL;
4742 	int page_nid = NUMA_NO_NODE;
4743 	bool writable = false;
4744 	int last_cpupid;
4745 	int target_nid;
4746 	pte_t pte, old_pte;
4747 	int flags = 0;
4748 
4749 	/*
4750 	 * The "pte" at this point cannot be used safely without
4751 	 * validation through pte_unmap_same(). It's of NUMA type but
4752 	 * the pfn may be screwed if the read is non atomic.
4753 	 */
4754 	spin_lock(vmf->ptl);
4755 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4756 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4757 		goto out;
4758 	}
4759 
4760 	/* Get the normal PTE  */
4761 	old_pte = ptep_get(vmf->pte);
4762 	pte = pte_modify(old_pte, vma->vm_page_prot);
4763 
4764 	/*
4765 	 * Detect now whether the PTE could be writable; this information
4766 	 * is only valid while holding the PT lock.
4767 	 */
4768 	writable = pte_write(pte);
4769 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4770 	    can_change_pte_writable(vma, vmf->address, pte))
4771 		writable = true;
4772 
4773 	page = vm_normal_page(vma, vmf->address, pte);
4774 	if (!page || is_zone_device_page(page))
4775 		goto out_map;
4776 
4777 	/* TODO: handle PTE-mapped THP */
4778 	if (PageCompound(page))
4779 		goto out_map;
4780 
4781 	/*
4782 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4783 	 * much anyway since they can be in shared cache state. This misses
4784 	 * the case where a mapping is writable but the process never writes
4785 	 * to it but pte_write gets cleared during protection updates and
4786 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4787 	 * background writeback, dirty balancing and application behaviour.
4788 	 */
4789 	if (!writable)
4790 		flags |= TNF_NO_GROUP;
4791 
4792 	/*
4793 	 * Flag if the page is shared between multiple address spaces. This
4794 	 * is later used when determining whether to group tasks together
4795 	 */
4796 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4797 		flags |= TNF_SHARED;
4798 
4799 	page_nid = page_to_nid(page);
4800 	/*
4801 	 * For memory tiering mode, cpupid of slow memory page is used
4802 	 * to record page access time.  So use default value.
4803 	 */
4804 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4805 	    !node_is_toptier(page_nid))
4806 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4807 	else
4808 		last_cpupid = page_cpupid_last(page);
4809 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4810 			&flags);
4811 	if (target_nid == NUMA_NO_NODE) {
4812 		put_page(page);
4813 		goto out_map;
4814 	}
4815 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4816 	writable = false;
4817 
4818 	/* Migrate to the requested node */
4819 	if (migrate_misplaced_page(page, vma, target_nid)) {
4820 		page_nid = target_nid;
4821 		flags |= TNF_MIGRATED;
4822 	} else {
4823 		flags |= TNF_MIGRATE_FAIL;
4824 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4825 					       vmf->address, &vmf->ptl);
4826 		if (unlikely(!vmf->pte))
4827 			goto out;
4828 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4829 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4830 			goto out;
4831 		}
4832 		goto out_map;
4833 	}
4834 
4835 out:
4836 	if (page_nid != NUMA_NO_NODE)
4837 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4838 	return 0;
4839 out_map:
4840 	/*
4841 	 * Make it present again, depending on how arch implements
4842 	 * non-accessible ptes, some can allow access by kernel mode.
4843 	 */
4844 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4845 	pte = pte_modify(old_pte, vma->vm_page_prot);
4846 	pte = pte_mkyoung(pte);
4847 	if (writable)
4848 		pte = pte_mkwrite(pte);
4849 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4850 	update_mmu_cache(vma, vmf->address, vmf->pte);
4851 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4852 	goto out;
4853 }
4854 
4855 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4856 {
4857 	struct vm_area_struct *vma = vmf->vma;
4858 	if (vma_is_anonymous(vma))
4859 		return do_huge_pmd_anonymous_page(vmf);
4860 	if (vma->vm_ops->huge_fault) {
4861 		if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4862 			vma_end_read(vma);
4863 			return VM_FAULT_RETRY;
4864 		}
4865 		return vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4866 	}
4867 	return VM_FAULT_FALLBACK;
4868 }
4869 
4870 /* `inline' is required to avoid gcc 4.1.2 build error */
4871 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4872 {
4873 	struct vm_area_struct *vma = vmf->vma;
4874 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4875 	vm_fault_t ret;
4876 
4877 	if (vma_is_anonymous(vma)) {
4878 		if (likely(!unshare) &&
4879 		    userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd))
4880 			return handle_userfault(vmf, VM_UFFD_WP);
4881 		return do_huge_pmd_wp_page(vmf);
4882 	}
4883 
4884 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4885 		if (vma->vm_ops->huge_fault) {
4886 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4887 				vma_end_read(vma);
4888 				return VM_FAULT_RETRY;
4889 			}
4890 			ret = vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4891 			if (!(ret & VM_FAULT_FALLBACK))
4892 				return ret;
4893 		}
4894 	}
4895 
4896 	/* COW or write-notify handled on pte level: split pmd. */
4897 	__split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
4898 
4899 	return VM_FAULT_FALLBACK;
4900 }
4901 
4902 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4903 {
4904 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4905 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4906 	struct vm_area_struct *vma = vmf->vma;
4907 	/* No support for anonymous transparent PUD pages yet */
4908 	if (vma_is_anonymous(vma))
4909 		return VM_FAULT_FALLBACK;
4910 	if (vma->vm_ops->huge_fault) {
4911 		if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4912 			vma_end_read(vma);
4913 			return VM_FAULT_RETRY;
4914 		}
4915 		return vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4916 	}
4917 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4918 	return VM_FAULT_FALLBACK;
4919 }
4920 
4921 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4922 {
4923 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4924 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4925 	struct vm_area_struct *vma = vmf->vma;
4926 	vm_fault_t ret;
4927 
4928 	/* No support for anonymous transparent PUD pages yet */
4929 	if (vma_is_anonymous(vma))
4930 		goto split;
4931 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4932 		if (vma->vm_ops->huge_fault) {
4933 			if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
4934 				vma_end_read(vma);
4935 				return VM_FAULT_RETRY;
4936 			}
4937 			ret = vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4938 			if (!(ret & VM_FAULT_FALLBACK))
4939 				return ret;
4940 		}
4941 	}
4942 split:
4943 	/* COW or write-notify not handled on PUD level: split pud.*/
4944 	__split_huge_pud(vma, vmf->pud, vmf->address);
4945 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4946 	return VM_FAULT_FALLBACK;
4947 }
4948 
4949 /*
4950  * These routines also need to handle stuff like marking pages dirty
4951  * and/or accessed for architectures that don't do it in hardware (most
4952  * RISC architectures).  The early dirtying is also good on the i386.
4953  *
4954  * There is also a hook called "update_mmu_cache()" that architectures
4955  * with external mmu caches can use to update those (ie the Sparc or
4956  * PowerPC hashed page tables that act as extended TLBs).
4957  *
4958  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4959  * concurrent faults).
4960  *
4961  * The mmap_lock may have been released depending on flags and our return value.
4962  * See filemap_fault() and __folio_lock_or_retry().
4963  */
4964 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4965 {
4966 	pte_t entry;
4967 
4968 	if (unlikely(pmd_none(*vmf->pmd))) {
4969 		/*
4970 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4971 		 * want to allocate huge page, and if we expose page table
4972 		 * for an instant, it will be difficult to retract from
4973 		 * concurrent faults and from rmap lookups.
4974 		 */
4975 		vmf->pte = NULL;
4976 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4977 	} else {
4978 		/*
4979 		 * A regular pmd is established and it can't morph into a huge
4980 		 * pmd by anon khugepaged, since that takes mmap_lock in write
4981 		 * mode; but shmem or file collapse to THP could still morph
4982 		 * it into a huge pmd: just retry later if so.
4983 		 */
4984 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4985 						 vmf->address, &vmf->ptl);
4986 		if (unlikely(!vmf->pte))
4987 			return 0;
4988 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
4989 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4990 
4991 		if (pte_none(vmf->orig_pte)) {
4992 			pte_unmap(vmf->pte);
4993 			vmf->pte = NULL;
4994 		}
4995 	}
4996 
4997 	if (!vmf->pte)
4998 		return do_pte_missing(vmf);
4999 
5000 	if (!pte_present(vmf->orig_pte))
5001 		return do_swap_page(vmf);
5002 
5003 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
5004 		return do_numa_page(vmf);
5005 
5006 	spin_lock(vmf->ptl);
5007 	entry = vmf->orig_pte;
5008 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
5009 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
5010 		goto unlock;
5011 	}
5012 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5013 		if (!pte_write(entry))
5014 			return do_wp_page(vmf);
5015 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
5016 			entry = pte_mkdirty(entry);
5017 	}
5018 	entry = pte_mkyoung(entry);
5019 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
5020 				vmf->flags & FAULT_FLAG_WRITE)) {
5021 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
5022 	} else {
5023 		/* Skip spurious TLB flush for retried page fault */
5024 		if (vmf->flags & FAULT_FLAG_TRIED)
5025 			goto unlock;
5026 		/*
5027 		 * This is needed only for protection faults but the arch code
5028 		 * is not yet telling us if this is a protection fault or not.
5029 		 * This still avoids useless tlb flushes for .text page faults
5030 		 * with threads.
5031 		 */
5032 		if (vmf->flags & FAULT_FLAG_WRITE)
5033 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
5034 						     vmf->pte);
5035 	}
5036 unlock:
5037 	pte_unmap_unlock(vmf->pte, vmf->ptl);
5038 	return 0;
5039 }
5040 
5041 /*
5042  * On entry, we hold either the VMA lock or the mmap_lock
5043  * (FAULT_FLAG_VMA_LOCK tells you which).  If VM_FAULT_RETRY is set in
5044  * the result, the mmap_lock is not held on exit.  See filemap_fault()
5045  * and __folio_lock_or_retry().
5046  */
5047 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5048 		unsigned long address, unsigned int flags)
5049 {
5050 	struct vm_fault vmf = {
5051 		.vma = vma,
5052 		.address = address & PAGE_MASK,
5053 		.real_address = address,
5054 		.flags = flags,
5055 		.pgoff = linear_page_index(vma, address),
5056 		.gfp_mask = __get_fault_gfp_mask(vma),
5057 	};
5058 	struct mm_struct *mm = vma->vm_mm;
5059 	unsigned long vm_flags = vma->vm_flags;
5060 	pgd_t *pgd;
5061 	p4d_t *p4d;
5062 	vm_fault_t ret;
5063 
5064 	pgd = pgd_offset(mm, address);
5065 	p4d = p4d_alloc(mm, pgd, address);
5066 	if (!p4d)
5067 		return VM_FAULT_OOM;
5068 
5069 	vmf.pud = pud_alloc(mm, p4d, address);
5070 	if (!vmf.pud)
5071 		return VM_FAULT_OOM;
5072 retry_pud:
5073 	if (pud_none(*vmf.pud) &&
5074 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5075 		ret = create_huge_pud(&vmf);
5076 		if (!(ret & VM_FAULT_FALLBACK))
5077 			return ret;
5078 	} else {
5079 		pud_t orig_pud = *vmf.pud;
5080 
5081 		barrier();
5082 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5083 
5084 			/*
5085 			 * TODO once we support anonymous PUDs: NUMA case and
5086 			 * FAULT_FLAG_UNSHARE handling.
5087 			 */
5088 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5089 				ret = wp_huge_pud(&vmf, orig_pud);
5090 				if (!(ret & VM_FAULT_FALLBACK))
5091 					return ret;
5092 			} else {
5093 				huge_pud_set_accessed(&vmf, orig_pud);
5094 				return 0;
5095 			}
5096 		}
5097 	}
5098 
5099 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5100 	if (!vmf.pmd)
5101 		return VM_FAULT_OOM;
5102 
5103 	/* Huge pud page fault raced with pmd_alloc? */
5104 	if (pud_trans_unstable(vmf.pud))
5105 		goto retry_pud;
5106 
5107 	if (pmd_none(*vmf.pmd) &&
5108 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5109 		ret = create_huge_pmd(&vmf);
5110 		if (!(ret & VM_FAULT_FALLBACK))
5111 			return ret;
5112 	} else {
5113 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5114 
5115 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5116 			VM_BUG_ON(thp_migration_supported() &&
5117 					  !is_pmd_migration_entry(vmf.orig_pmd));
5118 			if (is_pmd_migration_entry(vmf.orig_pmd))
5119 				pmd_migration_entry_wait(mm, vmf.pmd);
5120 			return 0;
5121 		}
5122 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5123 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5124 				return do_huge_pmd_numa_page(&vmf);
5125 
5126 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5127 			    !pmd_write(vmf.orig_pmd)) {
5128 				ret = wp_huge_pmd(&vmf);
5129 				if (!(ret & VM_FAULT_FALLBACK))
5130 					return ret;
5131 			} else {
5132 				huge_pmd_set_accessed(&vmf);
5133 				return 0;
5134 			}
5135 		}
5136 	}
5137 
5138 	return handle_pte_fault(&vmf);
5139 }
5140 
5141 /**
5142  * mm_account_fault - Do page fault accounting
5143  * @mm: mm from which memcg should be extracted. It can be NULL.
5144  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5145  *        of perf event counters, but we'll still do the per-task accounting to
5146  *        the task who triggered this page fault.
5147  * @address: the faulted address.
5148  * @flags: the fault flags.
5149  * @ret: the fault retcode.
5150  *
5151  * This will take care of most of the page fault accounting.  Meanwhile, it
5152  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5153  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5154  * still be in per-arch page fault handlers at the entry of page fault.
5155  */
5156 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5157 				    unsigned long address, unsigned int flags,
5158 				    vm_fault_t ret)
5159 {
5160 	bool major;
5161 
5162 	/* Incomplete faults will be accounted upon completion. */
5163 	if (ret & VM_FAULT_RETRY)
5164 		return;
5165 
5166 	/*
5167 	 * To preserve the behavior of older kernels, PGFAULT counters record
5168 	 * both successful and failed faults, as opposed to perf counters,
5169 	 * which ignore failed cases.
5170 	 */
5171 	count_vm_event(PGFAULT);
5172 	count_memcg_event_mm(mm, PGFAULT);
5173 
5174 	/*
5175 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5176 	 * valid).  That includes arch_vma_access_permitted() failing before
5177 	 * reaching here. So this is not a "this many hardware page faults"
5178 	 * counter.  We should use the hw profiling for that.
5179 	 */
5180 	if (ret & VM_FAULT_ERROR)
5181 		return;
5182 
5183 	/*
5184 	 * We define the fault as a major fault when the final successful fault
5185 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5186 	 * handle it immediately previously).
5187 	 */
5188 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5189 
5190 	if (major)
5191 		current->maj_flt++;
5192 	else
5193 		current->min_flt++;
5194 
5195 	/*
5196 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5197 	 * accounting for the per thread fault counters who triggered the
5198 	 * fault, and we skip the perf event updates.
5199 	 */
5200 	if (!regs)
5201 		return;
5202 
5203 	if (major)
5204 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5205 	else
5206 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5207 }
5208 
5209 #ifdef CONFIG_LRU_GEN
5210 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5211 {
5212 	/* the LRU algorithm only applies to accesses with recency */
5213 	current->in_lru_fault = vma_has_recency(vma);
5214 }
5215 
5216 static void lru_gen_exit_fault(void)
5217 {
5218 	current->in_lru_fault = false;
5219 }
5220 #else
5221 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5222 {
5223 }
5224 
5225 static void lru_gen_exit_fault(void)
5226 {
5227 }
5228 #endif /* CONFIG_LRU_GEN */
5229 
5230 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5231 				       unsigned int *flags)
5232 {
5233 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5234 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5235 			return VM_FAULT_SIGSEGV;
5236 		/*
5237 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5238 		 * just treat it like an ordinary read-fault otherwise.
5239 		 */
5240 		if (!is_cow_mapping(vma->vm_flags))
5241 			*flags &= ~FAULT_FLAG_UNSHARE;
5242 	} else if (*flags & FAULT_FLAG_WRITE) {
5243 		/* Write faults on read-only mappings are impossible ... */
5244 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5245 			return VM_FAULT_SIGSEGV;
5246 		/* ... and FOLL_FORCE only applies to COW mappings. */
5247 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5248 				 !is_cow_mapping(vma->vm_flags)))
5249 			return VM_FAULT_SIGSEGV;
5250 	}
5251 	return 0;
5252 }
5253 
5254 /*
5255  * By the time we get here, we already hold the mm semaphore
5256  *
5257  * The mmap_lock may have been released depending on flags and our
5258  * return value.  See filemap_fault() and __folio_lock_or_retry().
5259  */
5260 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5261 			   unsigned int flags, struct pt_regs *regs)
5262 {
5263 	/* If the fault handler drops the mmap_lock, vma may be freed */
5264 	struct mm_struct *mm = vma->vm_mm;
5265 	vm_fault_t ret;
5266 
5267 	__set_current_state(TASK_RUNNING);
5268 
5269 	ret = sanitize_fault_flags(vma, &flags);
5270 	if (ret)
5271 		goto out;
5272 
5273 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5274 					    flags & FAULT_FLAG_INSTRUCTION,
5275 					    flags & FAULT_FLAG_REMOTE)) {
5276 		ret = VM_FAULT_SIGSEGV;
5277 		goto out;
5278 	}
5279 
5280 	/*
5281 	 * Enable the memcg OOM handling for faults triggered in user
5282 	 * space.  Kernel faults are handled more gracefully.
5283 	 */
5284 	if (flags & FAULT_FLAG_USER)
5285 		mem_cgroup_enter_user_fault();
5286 
5287 	lru_gen_enter_fault(vma);
5288 
5289 	if (unlikely(is_vm_hugetlb_page(vma)))
5290 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5291 	else
5292 		ret = __handle_mm_fault(vma, address, flags);
5293 
5294 	lru_gen_exit_fault();
5295 
5296 	if (flags & FAULT_FLAG_USER) {
5297 		mem_cgroup_exit_user_fault();
5298 		/*
5299 		 * The task may have entered a memcg OOM situation but
5300 		 * if the allocation error was handled gracefully (no
5301 		 * VM_FAULT_OOM), there is no need to kill anything.
5302 		 * Just clean up the OOM state peacefully.
5303 		 */
5304 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5305 			mem_cgroup_oom_synchronize(false);
5306 	}
5307 out:
5308 	mm_account_fault(mm, regs, address, flags, ret);
5309 
5310 	return ret;
5311 }
5312 EXPORT_SYMBOL_GPL(handle_mm_fault);
5313 
5314 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5315 #include <linux/extable.h>
5316 
5317 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5318 {
5319 	/* Even if this succeeds, make it clear we *might* have slept */
5320 	if (likely(mmap_read_trylock(mm))) {
5321 		might_sleep();
5322 		return true;
5323 	}
5324 
5325 	if (regs && !user_mode(regs)) {
5326 		unsigned long ip = instruction_pointer(regs);
5327 		if (!search_exception_tables(ip))
5328 			return false;
5329 	}
5330 
5331 	return !mmap_read_lock_killable(mm);
5332 }
5333 
5334 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5335 {
5336 	/*
5337 	 * We don't have this operation yet.
5338 	 *
5339 	 * It should be easy enough to do: it's basically a
5340 	 *    atomic_long_try_cmpxchg_acquire()
5341 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5342 	 * it also needs the proper lockdep magic etc.
5343 	 */
5344 	return false;
5345 }
5346 
5347 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5348 {
5349 	mmap_read_unlock(mm);
5350 	if (regs && !user_mode(regs)) {
5351 		unsigned long ip = instruction_pointer(regs);
5352 		if (!search_exception_tables(ip))
5353 			return false;
5354 	}
5355 	return !mmap_write_lock_killable(mm);
5356 }
5357 
5358 /*
5359  * Helper for page fault handling.
5360  *
5361  * This is kind of equivalend to "mmap_read_lock()" followed
5362  * by "find_extend_vma()", except it's a lot more careful about
5363  * the locking (and will drop the lock on failure).
5364  *
5365  * For example, if we have a kernel bug that causes a page
5366  * fault, we don't want to just use mmap_read_lock() to get
5367  * the mm lock, because that would deadlock if the bug were
5368  * to happen while we're holding the mm lock for writing.
5369  *
5370  * So this checks the exception tables on kernel faults in
5371  * order to only do this all for instructions that are actually
5372  * expected to fault.
5373  *
5374  * We can also actually take the mm lock for writing if we
5375  * need to extend the vma, which helps the VM layer a lot.
5376  */
5377 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5378 			unsigned long addr, struct pt_regs *regs)
5379 {
5380 	struct vm_area_struct *vma;
5381 
5382 	if (!get_mmap_lock_carefully(mm, regs))
5383 		return NULL;
5384 
5385 	vma = find_vma(mm, addr);
5386 	if (likely(vma && (vma->vm_start <= addr)))
5387 		return vma;
5388 
5389 	/*
5390 	 * Well, dang. We might still be successful, but only
5391 	 * if we can extend a vma to do so.
5392 	 */
5393 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5394 		mmap_read_unlock(mm);
5395 		return NULL;
5396 	}
5397 
5398 	/*
5399 	 * We can try to upgrade the mmap lock atomically,
5400 	 * in which case we can continue to use the vma
5401 	 * we already looked up.
5402 	 *
5403 	 * Otherwise we'll have to drop the mmap lock and
5404 	 * re-take it, and also look up the vma again,
5405 	 * re-checking it.
5406 	 */
5407 	if (!mmap_upgrade_trylock(mm)) {
5408 		if (!upgrade_mmap_lock_carefully(mm, regs))
5409 			return NULL;
5410 
5411 		vma = find_vma(mm, addr);
5412 		if (!vma)
5413 			goto fail;
5414 		if (vma->vm_start <= addr)
5415 			goto success;
5416 		if (!(vma->vm_flags & VM_GROWSDOWN))
5417 			goto fail;
5418 	}
5419 
5420 	if (expand_stack_locked(vma, addr))
5421 		goto fail;
5422 
5423 success:
5424 	mmap_write_downgrade(mm);
5425 	return vma;
5426 
5427 fail:
5428 	mmap_write_unlock(mm);
5429 	return NULL;
5430 }
5431 #endif
5432 
5433 #ifdef CONFIG_PER_VMA_LOCK
5434 /*
5435  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5436  * stable and not isolated. If the VMA is not found or is being modified the
5437  * function returns NULL.
5438  */
5439 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5440 					  unsigned long address)
5441 {
5442 	MA_STATE(mas, &mm->mm_mt, address, address);
5443 	struct vm_area_struct *vma;
5444 
5445 	rcu_read_lock();
5446 retry:
5447 	vma = mas_walk(&mas);
5448 	if (!vma)
5449 		goto inval;
5450 
5451 	if (!vma_start_read(vma))
5452 		goto inval;
5453 
5454 	/*
5455 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5456 	 * This check must happen after vma_start_read(); otherwise, a
5457 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5458 	 * from its anon_vma.
5459 	 */
5460 	if (unlikely(!vma->anon_vma && !vma_is_tcp(vma)))
5461 		goto inval_end_read;
5462 
5463 	/*
5464 	 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5465 	 * it for now and fall back to page fault handling under mmap_lock.
5466 	 */
5467 	if (userfaultfd_armed(vma))
5468 		goto inval_end_read;
5469 
5470 	/* Check since vm_start/vm_end might change before we lock the VMA */
5471 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5472 		goto inval_end_read;
5473 
5474 	/* Check if the VMA got isolated after we found it */
5475 	if (vma->detached) {
5476 		vma_end_read(vma);
5477 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5478 		/* The area was replaced with another one */
5479 		goto retry;
5480 	}
5481 
5482 	rcu_read_unlock();
5483 	return vma;
5484 
5485 inval_end_read:
5486 	vma_end_read(vma);
5487 inval:
5488 	rcu_read_unlock();
5489 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5490 	return NULL;
5491 }
5492 #endif /* CONFIG_PER_VMA_LOCK */
5493 
5494 #ifndef __PAGETABLE_P4D_FOLDED
5495 /*
5496  * Allocate p4d page table.
5497  * We've already handled the fast-path in-line.
5498  */
5499 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5500 {
5501 	p4d_t *new = p4d_alloc_one(mm, address);
5502 	if (!new)
5503 		return -ENOMEM;
5504 
5505 	spin_lock(&mm->page_table_lock);
5506 	if (pgd_present(*pgd)) {	/* Another has populated it */
5507 		p4d_free(mm, new);
5508 	} else {
5509 		smp_wmb(); /* See comment in pmd_install() */
5510 		pgd_populate(mm, pgd, new);
5511 	}
5512 	spin_unlock(&mm->page_table_lock);
5513 	return 0;
5514 }
5515 #endif /* __PAGETABLE_P4D_FOLDED */
5516 
5517 #ifndef __PAGETABLE_PUD_FOLDED
5518 /*
5519  * Allocate page upper directory.
5520  * We've already handled the fast-path in-line.
5521  */
5522 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5523 {
5524 	pud_t *new = pud_alloc_one(mm, address);
5525 	if (!new)
5526 		return -ENOMEM;
5527 
5528 	spin_lock(&mm->page_table_lock);
5529 	if (!p4d_present(*p4d)) {
5530 		mm_inc_nr_puds(mm);
5531 		smp_wmb(); /* See comment in pmd_install() */
5532 		p4d_populate(mm, p4d, new);
5533 	} else	/* Another has populated it */
5534 		pud_free(mm, new);
5535 	spin_unlock(&mm->page_table_lock);
5536 	return 0;
5537 }
5538 #endif /* __PAGETABLE_PUD_FOLDED */
5539 
5540 #ifndef __PAGETABLE_PMD_FOLDED
5541 /*
5542  * Allocate page middle directory.
5543  * We've already handled the fast-path in-line.
5544  */
5545 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5546 {
5547 	spinlock_t *ptl;
5548 	pmd_t *new = pmd_alloc_one(mm, address);
5549 	if (!new)
5550 		return -ENOMEM;
5551 
5552 	ptl = pud_lock(mm, pud);
5553 	if (!pud_present(*pud)) {
5554 		mm_inc_nr_pmds(mm);
5555 		smp_wmb(); /* See comment in pmd_install() */
5556 		pud_populate(mm, pud, new);
5557 	} else {	/* Another has populated it */
5558 		pmd_free(mm, new);
5559 	}
5560 	spin_unlock(ptl);
5561 	return 0;
5562 }
5563 #endif /* __PAGETABLE_PMD_FOLDED */
5564 
5565 /**
5566  * follow_pte - look up PTE at a user virtual address
5567  * @mm: the mm_struct of the target address space
5568  * @address: user virtual address
5569  * @ptepp: location to store found PTE
5570  * @ptlp: location to store the lock for the PTE
5571  *
5572  * On a successful return, the pointer to the PTE is stored in @ptepp;
5573  * the corresponding lock is taken and its location is stored in @ptlp.
5574  * The contents of the PTE are only stable until @ptlp is released;
5575  * any further use, if any, must be protected against invalidation
5576  * with MMU notifiers.
5577  *
5578  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5579  * should be taken for read.
5580  *
5581  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5582  * it is not a good general-purpose API.
5583  *
5584  * Return: zero on success, -ve otherwise.
5585  */
5586 int follow_pte(struct mm_struct *mm, unsigned long address,
5587 	       pte_t **ptepp, spinlock_t **ptlp)
5588 {
5589 	pgd_t *pgd;
5590 	p4d_t *p4d;
5591 	pud_t *pud;
5592 	pmd_t *pmd;
5593 	pte_t *ptep;
5594 
5595 	pgd = pgd_offset(mm, address);
5596 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5597 		goto out;
5598 
5599 	p4d = p4d_offset(pgd, address);
5600 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5601 		goto out;
5602 
5603 	pud = pud_offset(p4d, address);
5604 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5605 		goto out;
5606 
5607 	pmd = pmd_offset(pud, address);
5608 	VM_BUG_ON(pmd_trans_huge(*pmd));
5609 
5610 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5611 	if (!ptep)
5612 		goto out;
5613 	if (!pte_present(ptep_get(ptep)))
5614 		goto unlock;
5615 	*ptepp = ptep;
5616 	return 0;
5617 unlock:
5618 	pte_unmap_unlock(ptep, *ptlp);
5619 out:
5620 	return -EINVAL;
5621 }
5622 EXPORT_SYMBOL_GPL(follow_pte);
5623 
5624 /**
5625  * follow_pfn - look up PFN at a user virtual address
5626  * @vma: memory mapping
5627  * @address: user virtual address
5628  * @pfn: location to store found PFN
5629  *
5630  * Only IO mappings and raw PFN mappings are allowed.
5631  *
5632  * This function does not allow the caller to read the permissions
5633  * of the PTE.  Do not use it.
5634  *
5635  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5636  */
5637 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5638 	unsigned long *pfn)
5639 {
5640 	int ret = -EINVAL;
5641 	spinlock_t *ptl;
5642 	pte_t *ptep;
5643 
5644 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5645 		return ret;
5646 
5647 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5648 	if (ret)
5649 		return ret;
5650 	*pfn = pte_pfn(ptep_get(ptep));
5651 	pte_unmap_unlock(ptep, ptl);
5652 	return 0;
5653 }
5654 EXPORT_SYMBOL(follow_pfn);
5655 
5656 #ifdef CONFIG_HAVE_IOREMAP_PROT
5657 int follow_phys(struct vm_area_struct *vma,
5658 		unsigned long address, unsigned int flags,
5659 		unsigned long *prot, resource_size_t *phys)
5660 {
5661 	int ret = -EINVAL;
5662 	pte_t *ptep, pte;
5663 	spinlock_t *ptl;
5664 
5665 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5666 		goto out;
5667 
5668 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5669 		goto out;
5670 	pte = ptep_get(ptep);
5671 
5672 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5673 		goto unlock;
5674 
5675 	*prot = pgprot_val(pte_pgprot(pte));
5676 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5677 
5678 	ret = 0;
5679 unlock:
5680 	pte_unmap_unlock(ptep, ptl);
5681 out:
5682 	return ret;
5683 }
5684 
5685 /**
5686  * generic_access_phys - generic implementation for iomem mmap access
5687  * @vma: the vma to access
5688  * @addr: userspace address, not relative offset within @vma
5689  * @buf: buffer to read/write
5690  * @len: length of transfer
5691  * @write: set to FOLL_WRITE when writing, otherwise reading
5692  *
5693  * This is a generic implementation for &vm_operations_struct.access for an
5694  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5695  * not page based.
5696  */
5697 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5698 			void *buf, int len, int write)
5699 {
5700 	resource_size_t phys_addr;
5701 	unsigned long prot = 0;
5702 	void __iomem *maddr;
5703 	pte_t *ptep, pte;
5704 	spinlock_t *ptl;
5705 	int offset = offset_in_page(addr);
5706 	int ret = -EINVAL;
5707 
5708 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5709 		return -EINVAL;
5710 
5711 retry:
5712 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5713 		return -EINVAL;
5714 	pte = ptep_get(ptep);
5715 	pte_unmap_unlock(ptep, ptl);
5716 
5717 	prot = pgprot_val(pte_pgprot(pte));
5718 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5719 
5720 	if ((write & FOLL_WRITE) && !pte_write(pte))
5721 		return -EINVAL;
5722 
5723 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5724 	if (!maddr)
5725 		return -ENOMEM;
5726 
5727 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5728 		goto out_unmap;
5729 
5730 	if (!pte_same(pte, ptep_get(ptep))) {
5731 		pte_unmap_unlock(ptep, ptl);
5732 		iounmap(maddr);
5733 
5734 		goto retry;
5735 	}
5736 
5737 	if (write)
5738 		memcpy_toio(maddr + offset, buf, len);
5739 	else
5740 		memcpy_fromio(buf, maddr + offset, len);
5741 	ret = len;
5742 	pte_unmap_unlock(ptep, ptl);
5743 out_unmap:
5744 	iounmap(maddr);
5745 
5746 	return ret;
5747 }
5748 EXPORT_SYMBOL_GPL(generic_access_phys);
5749 #endif
5750 
5751 /*
5752  * Access another process' address space as given in mm.
5753  */
5754 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5755 		       int len, unsigned int gup_flags)
5756 {
5757 	void *old_buf = buf;
5758 	int write = gup_flags & FOLL_WRITE;
5759 
5760 	if (mmap_read_lock_killable(mm))
5761 		return 0;
5762 
5763 	/* Avoid triggering the temporary warning in __get_user_pages */
5764 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5765 		return 0;
5766 
5767 	/* ignore errors, just check how much was successfully transferred */
5768 	while (len) {
5769 		int bytes, offset;
5770 		void *maddr;
5771 		struct vm_area_struct *vma = NULL;
5772 		struct page *page = get_user_page_vma_remote(mm, addr,
5773 							     gup_flags, &vma);
5774 
5775 		if (IS_ERR_OR_NULL(page)) {
5776 			/* We might need to expand the stack to access it */
5777 			vma = vma_lookup(mm, addr);
5778 			if (!vma) {
5779 				vma = expand_stack(mm, addr);
5780 
5781 				/* mmap_lock was dropped on failure */
5782 				if (!vma)
5783 					return buf - old_buf;
5784 
5785 				/* Try again if stack expansion worked */
5786 				continue;
5787 			}
5788 
5789 
5790 			/*
5791 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5792 			 * we can access using slightly different code.
5793 			 */
5794 			bytes = 0;
5795 #ifdef CONFIG_HAVE_IOREMAP_PROT
5796 			if (vma->vm_ops && vma->vm_ops->access)
5797 				bytes = vma->vm_ops->access(vma, addr, buf,
5798 							    len, write);
5799 #endif
5800 			if (bytes <= 0)
5801 				break;
5802 		} else {
5803 			bytes = len;
5804 			offset = addr & (PAGE_SIZE-1);
5805 			if (bytes > PAGE_SIZE-offset)
5806 				bytes = PAGE_SIZE-offset;
5807 
5808 			maddr = kmap(page);
5809 			if (write) {
5810 				copy_to_user_page(vma, page, addr,
5811 						  maddr + offset, buf, bytes);
5812 				set_page_dirty_lock(page);
5813 			} else {
5814 				copy_from_user_page(vma, page, addr,
5815 						    buf, maddr + offset, bytes);
5816 			}
5817 			kunmap(page);
5818 			put_page(page);
5819 		}
5820 		len -= bytes;
5821 		buf += bytes;
5822 		addr += bytes;
5823 	}
5824 	mmap_read_unlock(mm);
5825 
5826 	return buf - old_buf;
5827 }
5828 
5829 /**
5830  * access_remote_vm - access another process' address space
5831  * @mm:		the mm_struct of the target address space
5832  * @addr:	start address to access
5833  * @buf:	source or destination buffer
5834  * @len:	number of bytes to transfer
5835  * @gup_flags:	flags modifying lookup behaviour
5836  *
5837  * The caller must hold a reference on @mm.
5838  *
5839  * Return: number of bytes copied from source to destination.
5840  */
5841 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5842 		void *buf, int len, unsigned int gup_flags)
5843 {
5844 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5845 }
5846 
5847 /*
5848  * Access another process' address space.
5849  * Source/target buffer must be kernel space,
5850  * Do not walk the page table directly, use get_user_pages
5851  */
5852 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5853 		void *buf, int len, unsigned int gup_flags)
5854 {
5855 	struct mm_struct *mm;
5856 	int ret;
5857 
5858 	mm = get_task_mm(tsk);
5859 	if (!mm)
5860 		return 0;
5861 
5862 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5863 
5864 	mmput(mm);
5865 
5866 	return ret;
5867 }
5868 EXPORT_SYMBOL_GPL(access_process_vm);
5869 
5870 /*
5871  * Print the name of a VMA.
5872  */
5873 void print_vma_addr(char *prefix, unsigned long ip)
5874 {
5875 	struct mm_struct *mm = current->mm;
5876 	struct vm_area_struct *vma;
5877 
5878 	/*
5879 	 * we might be running from an atomic context so we cannot sleep
5880 	 */
5881 	if (!mmap_read_trylock(mm))
5882 		return;
5883 
5884 	vma = find_vma(mm, ip);
5885 	if (vma && vma->vm_file) {
5886 		struct file *f = vma->vm_file;
5887 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5888 		if (buf) {
5889 			char *p;
5890 
5891 			p = file_path(f, buf, PAGE_SIZE);
5892 			if (IS_ERR(p))
5893 				p = "?";
5894 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5895 					vma->vm_start,
5896 					vma->vm_end - vma->vm_start);
5897 			free_page((unsigned long)buf);
5898 		}
5899 	}
5900 	mmap_read_unlock(mm);
5901 }
5902 
5903 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5904 void __might_fault(const char *file, int line)
5905 {
5906 	if (pagefault_disabled())
5907 		return;
5908 	__might_sleep(file, line);
5909 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5910 	if (current->mm)
5911 		might_lock_read(&current->mm->mmap_lock);
5912 #endif
5913 }
5914 EXPORT_SYMBOL(__might_fault);
5915 #endif
5916 
5917 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5918 /*
5919  * Process all subpages of the specified huge page with the specified
5920  * operation.  The target subpage will be processed last to keep its
5921  * cache lines hot.
5922  */
5923 static inline int process_huge_page(
5924 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5925 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5926 	void *arg)
5927 {
5928 	int i, n, base, l, ret;
5929 	unsigned long addr = addr_hint &
5930 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5931 
5932 	/* Process target subpage last to keep its cache lines hot */
5933 	might_sleep();
5934 	n = (addr_hint - addr) / PAGE_SIZE;
5935 	if (2 * n <= pages_per_huge_page) {
5936 		/* If target subpage in first half of huge page */
5937 		base = 0;
5938 		l = n;
5939 		/* Process subpages at the end of huge page */
5940 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5941 			cond_resched();
5942 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5943 			if (ret)
5944 				return ret;
5945 		}
5946 	} else {
5947 		/* If target subpage in second half of huge page */
5948 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5949 		l = pages_per_huge_page - n;
5950 		/* Process subpages at the begin of huge page */
5951 		for (i = 0; i < base; i++) {
5952 			cond_resched();
5953 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5954 			if (ret)
5955 				return ret;
5956 		}
5957 	}
5958 	/*
5959 	 * Process remaining subpages in left-right-left-right pattern
5960 	 * towards the target subpage
5961 	 */
5962 	for (i = 0; i < l; i++) {
5963 		int left_idx = base + i;
5964 		int right_idx = base + 2 * l - 1 - i;
5965 
5966 		cond_resched();
5967 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5968 		if (ret)
5969 			return ret;
5970 		cond_resched();
5971 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5972 		if (ret)
5973 			return ret;
5974 	}
5975 	return 0;
5976 }
5977 
5978 static void clear_gigantic_page(struct page *page,
5979 				unsigned long addr,
5980 				unsigned int pages_per_huge_page)
5981 {
5982 	int i;
5983 	struct page *p;
5984 
5985 	might_sleep();
5986 	for (i = 0; i < pages_per_huge_page; i++) {
5987 		p = nth_page(page, i);
5988 		cond_resched();
5989 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5990 	}
5991 }
5992 
5993 static int clear_subpage(unsigned long addr, int idx, void *arg)
5994 {
5995 	struct page *page = arg;
5996 
5997 	clear_user_highpage(page + idx, addr);
5998 	return 0;
5999 }
6000 
6001 void clear_huge_page(struct page *page,
6002 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
6003 {
6004 	unsigned long addr = addr_hint &
6005 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6006 
6007 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
6008 		clear_gigantic_page(page, addr, pages_per_huge_page);
6009 		return;
6010 	}
6011 
6012 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
6013 }
6014 
6015 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
6016 				     unsigned long addr,
6017 				     struct vm_area_struct *vma,
6018 				     unsigned int pages_per_huge_page)
6019 {
6020 	int i;
6021 	struct page *dst_page;
6022 	struct page *src_page;
6023 
6024 	for (i = 0; i < pages_per_huge_page; i++) {
6025 		dst_page = folio_page(dst, i);
6026 		src_page = folio_page(src, i);
6027 
6028 		cond_resched();
6029 		if (copy_mc_user_highpage(dst_page, src_page,
6030 					  addr + i*PAGE_SIZE, vma)) {
6031 			memory_failure_queue(page_to_pfn(src_page), 0);
6032 			return -EHWPOISON;
6033 		}
6034 	}
6035 	return 0;
6036 }
6037 
6038 struct copy_subpage_arg {
6039 	struct page *dst;
6040 	struct page *src;
6041 	struct vm_area_struct *vma;
6042 };
6043 
6044 static int copy_subpage(unsigned long addr, int idx, void *arg)
6045 {
6046 	struct copy_subpage_arg *copy_arg = arg;
6047 
6048 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
6049 				  addr, copy_arg->vma)) {
6050 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
6051 		return -EHWPOISON;
6052 	}
6053 	return 0;
6054 }
6055 
6056 int copy_user_large_folio(struct folio *dst, struct folio *src,
6057 			  unsigned long addr_hint, struct vm_area_struct *vma)
6058 {
6059 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6060 	unsigned long addr = addr_hint &
6061 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6062 	struct copy_subpage_arg arg = {
6063 		.dst = &dst->page,
6064 		.src = &src->page,
6065 		.vma = vma,
6066 	};
6067 
6068 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6069 		return copy_user_gigantic_page(dst, src, addr, vma,
6070 					       pages_per_huge_page);
6071 
6072 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6073 }
6074 
6075 long copy_folio_from_user(struct folio *dst_folio,
6076 			   const void __user *usr_src,
6077 			   bool allow_pagefault)
6078 {
6079 	void *kaddr;
6080 	unsigned long i, rc = 0;
6081 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6082 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6083 	struct page *subpage;
6084 
6085 	for (i = 0; i < nr_pages; i++) {
6086 		subpage = folio_page(dst_folio, i);
6087 		kaddr = kmap_local_page(subpage);
6088 		if (!allow_pagefault)
6089 			pagefault_disable();
6090 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6091 		if (!allow_pagefault)
6092 			pagefault_enable();
6093 		kunmap_local(kaddr);
6094 
6095 		ret_val -= (PAGE_SIZE - rc);
6096 		if (rc)
6097 			break;
6098 
6099 		flush_dcache_page(subpage);
6100 
6101 		cond_resched();
6102 	}
6103 	return ret_val;
6104 }
6105 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6106 
6107 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6108 
6109 static struct kmem_cache *page_ptl_cachep;
6110 
6111 void __init ptlock_cache_init(void)
6112 {
6113 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6114 			SLAB_PANIC, NULL);
6115 }
6116 
6117 bool ptlock_alloc(struct page *page)
6118 {
6119 	spinlock_t *ptl;
6120 
6121 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6122 	if (!ptl)
6123 		return false;
6124 	page->ptl = ptl;
6125 	return true;
6126 }
6127 
6128 void ptlock_free(struct page *page)
6129 {
6130 	kmem_cache_free(page_ptl_cachep, page->ptl);
6131 }
6132 #endif
6133