1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 108 static bool vmf_pte_changed(struct vm_fault *vmf); 109 110 /* 111 * Return true if the original pte was a uffd-wp pte marker (so the pte was 112 * wr-protected). 113 */ 114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 115 { 116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 117 return false; 118 119 return pte_marker_uffd_wp(vmf->orig_pte); 120 } 121 122 /* 123 * A number of key systems in x86 including ioremap() rely on the assumption 124 * that high_memory defines the upper bound on direct map memory, then end 125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 127 * and ZONE_HIGHMEM. 128 */ 129 void *high_memory; 130 EXPORT_SYMBOL(high_memory); 131 132 /* 133 * Randomize the address space (stacks, mmaps, brk, etc.). 134 * 135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 136 * as ancient (libc5 based) binaries can segfault. ) 137 */ 138 int randomize_va_space __read_mostly = 139 #ifdef CONFIG_COMPAT_BRK 140 1; 141 #else 142 2; 143 #endif 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /* 299 * This function frees user-level page tables of a process. 300 */ 301 void free_pgd_range(struct mmu_gather *tlb, 302 unsigned long addr, unsigned long end, 303 unsigned long floor, unsigned long ceiling) 304 { 305 pgd_t *pgd; 306 unsigned long next; 307 308 /* 309 * The next few lines have given us lots of grief... 310 * 311 * Why are we testing PMD* at this top level? Because often 312 * there will be no work to do at all, and we'd prefer not to 313 * go all the way down to the bottom just to discover that. 314 * 315 * Why all these "- 1"s? Because 0 represents both the bottom 316 * of the address space and the top of it (using -1 for the 317 * top wouldn't help much: the masks would do the wrong thing). 318 * The rule is that addr 0 and floor 0 refer to the bottom of 319 * the address space, but end 0 and ceiling 0 refer to the top 320 * Comparisons need to use "end - 1" and "ceiling - 1" (though 321 * that end 0 case should be mythical). 322 * 323 * Wherever addr is brought up or ceiling brought down, we must 324 * be careful to reject "the opposite 0" before it confuses the 325 * subsequent tests. But what about where end is brought down 326 * by PMD_SIZE below? no, end can't go down to 0 there. 327 * 328 * Whereas we round start (addr) and ceiling down, by different 329 * masks at different levels, in order to test whether a table 330 * now has no other vmas using it, so can be freed, we don't 331 * bother to round floor or end up - the tests don't need that. 332 */ 333 334 addr &= PMD_MASK; 335 if (addr < floor) { 336 addr += PMD_SIZE; 337 if (!addr) 338 return; 339 } 340 if (ceiling) { 341 ceiling &= PMD_MASK; 342 if (!ceiling) 343 return; 344 } 345 if (end - 1 > ceiling - 1) 346 end -= PMD_SIZE; 347 if (addr > end - 1) 348 return; 349 /* 350 * We add page table cache pages with PAGE_SIZE, 351 * (see pte_free_tlb()), flush the tlb if we need 352 */ 353 tlb_change_page_size(tlb, PAGE_SIZE); 354 pgd = pgd_offset(tlb->mm, addr); 355 do { 356 next = pgd_addr_end(addr, end); 357 if (pgd_none_or_clear_bad(pgd)) 358 continue; 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 360 } while (pgd++, addr = next, addr != end); 361 } 362 363 void free_pgtables(struct mmu_gather *tlb, struct ma_state *mas, 364 struct vm_area_struct *vma, unsigned long floor, 365 unsigned long ceiling, bool mm_wr_locked) 366 { 367 do { 368 unsigned long addr = vma->vm_start; 369 struct vm_area_struct *next; 370 371 /* 372 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 373 * be 0. This will underflow and is okay. 374 */ 375 next = mas_find(mas, ceiling - 1); 376 377 /* 378 * Hide vma from rmap and truncate_pagecache before freeing 379 * pgtables 380 */ 381 if (mm_wr_locked) 382 vma_start_write(vma); 383 unlink_anon_vmas(vma); 384 unlink_file_vma(vma); 385 386 if (is_vm_hugetlb_page(vma)) { 387 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 388 floor, next ? next->vm_start : ceiling); 389 } else { 390 /* 391 * Optimization: gather nearby vmas into one call down 392 */ 393 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 394 && !is_vm_hugetlb_page(next)) { 395 vma = next; 396 next = mas_find(mas, ceiling - 1); 397 if (mm_wr_locked) 398 vma_start_write(vma); 399 unlink_anon_vmas(vma); 400 unlink_file_vma(vma); 401 } 402 free_pgd_range(tlb, addr, vma->vm_end, 403 floor, next ? next->vm_start : ceiling); 404 } 405 vma = next; 406 } while (vma); 407 } 408 409 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 410 { 411 spinlock_t *ptl = pmd_lock(mm, pmd); 412 413 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 414 mm_inc_nr_ptes(mm); 415 /* 416 * Ensure all pte setup (eg. pte page lock and page clearing) are 417 * visible before the pte is made visible to other CPUs by being 418 * put into page tables. 419 * 420 * The other side of the story is the pointer chasing in the page 421 * table walking code (when walking the page table without locking; 422 * ie. most of the time). Fortunately, these data accesses consist 423 * of a chain of data-dependent loads, meaning most CPUs (alpha 424 * being the notable exception) will already guarantee loads are 425 * seen in-order. See the alpha page table accessors for the 426 * smp_rmb() barriers in page table walking code. 427 */ 428 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 429 pmd_populate(mm, pmd, *pte); 430 *pte = NULL; 431 } 432 spin_unlock(ptl); 433 } 434 435 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 436 { 437 pgtable_t new = pte_alloc_one(mm); 438 if (!new) 439 return -ENOMEM; 440 441 pmd_install(mm, pmd, &new); 442 if (new) 443 pte_free(mm, new); 444 return 0; 445 } 446 447 int __pte_alloc_kernel(pmd_t *pmd) 448 { 449 pte_t *new = pte_alloc_one_kernel(&init_mm); 450 if (!new) 451 return -ENOMEM; 452 453 spin_lock(&init_mm.page_table_lock); 454 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 455 smp_wmb(); /* See comment in pmd_install() */ 456 pmd_populate_kernel(&init_mm, pmd, new); 457 new = NULL; 458 } 459 spin_unlock(&init_mm.page_table_lock); 460 if (new) 461 pte_free_kernel(&init_mm, new); 462 return 0; 463 } 464 465 static inline void init_rss_vec(int *rss) 466 { 467 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 468 } 469 470 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 471 { 472 int i; 473 474 if (current->mm == mm) 475 sync_mm_rss(mm); 476 for (i = 0; i < NR_MM_COUNTERS; i++) 477 if (rss[i]) 478 add_mm_counter(mm, i, rss[i]); 479 } 480 481 /* 482 * This function is called to print an error when a bad pte 483 * is found. For example, we might have a PFN-mapped pte in 484 * a region that doesn't allow it. 485 * 486 * The calling function must still handle the error. 487 */ 488 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 489 pte_t pte, struct page *page) 490 { 491 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 492 p4d_t *p4d = p4d_offset(pgd, addr); 493 pud_t *pud = pud_offset(p4d, addr); 494 pmd_t *pmd = pmd_offset(pud, addr); 495 struct address_space *mapping; 496 pgoff_t index; 497 static unsigned long resume; 498 static unsigned long nr_shown; 499 static unsigned long nr_unshown; 500 501 /* 502 * Allow a burst of 60 reports, then keep quiet for that minute; 503 * or allow a steady drip of one report per second. 504 */ 505 if (nr_shown == 60) { 506 if (time_before(jiffies, resume)) { 507 nr_unshown++; 508 return; 509 } 510 if (nr_unshown) { 511 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 512 nr_unshown); 513 nr_unshown = 0; 514 } 515 nr_shown = 0; 516 } 517 if (nr_shown++ == 0) 518 resume = jiffies + 60 * HZ; 519 520 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 521 index = linear_page_index(vma, addr); 522 523 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 524 current->comm, 525 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 526 if (page) 527 dump_page(page, "bad pte"); 528 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 529 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 530 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 531 vma->vm_file, 532 vma->vm_ops ? vma->vm_ops->fault : NULL, 533 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 534 mapping ? mapping->a_ops->read_folio : NULL); 535 dump_stack(); 536 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 537 } 538 539 /* 540 * vm_normal_page -- This function gets the "struct page" associated with a pte. 541 * 542 * "Special" mappings do not wish to be associated with a "struct page" (either 543 * it doesn't exist, or it exists but they don't want to touch it). In this 544 * case, NULL is returned here. "Normal" mappings do have a struct page. 545 * 546 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 547 * pte bit, in which case this function is trivial. Secondly, an architecture 548 * may not have a spare pte bit, which requires a more complicated scheme, 549 * described below. 550 * 551 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 552 * special mapping (even if there are underlying and valid "struct pages"). 553 * COWed pages of a VM_PFNMAP are always normal. 554 * 555 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 556 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 557 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 558 * mapping will always honor the rule 559 * 560 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 561 * 562 * And for normal mappings this is false. 563 * 564 * This restricts such mappings to be a linear translation from virtual address 565 * to pfn. To get around this restriction, we allow arbitrary mappings so long 566 * as the vma is not a COW mapping; in that case, we know that all ptes are 567 * special (because none can have been COWed). 568 * 569 * 570 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 571 * 572 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 573 * page" backing, however the difference is that _all_ pages with a struct 574 * page (that is, those where pfn_valid is true) are refcounted and considered 575 * normal pages by the VM. The disadvantage is that pages are refcounted 576 * (which can be slower and simply not an option for some PFNMAP users). The 577 * advantage is that we don't have to follow the strict linearity rule of 578 * PFNMAP mappings in order to support COWable mappings. 579 * 580 */ 581 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 582 pte_t pte) 583 { 584 unsigned long pfn = pte_pfn(pte); 585 586 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 587 if (likely(!pte_special(pte))) 588 goto check_pfn; 589 if (vma->vm_ops && vma->vm_ops->find_special_page) 590 return vma->vm_ops->find_special_page(vma, addr); 591 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 592 return NULL; 593 if (is_zero_pfn(pfn)) 594 return NULL; 595 if (pte_devmap(pte)) 596 /* 597 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 598 * and will have refcounts incremented on their struct pages 599 * when they are inserted into PTEs, thus they are safe to 600 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 601 * do not have refcounts. Example of legacy ZONE_DEVICE is 602 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 603 */ 604 return NULL; 605 606 print_bad_pte(vma, addr, pte, NULL); 607 return NULL; 608 } 609 610 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 611 612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 613 if (vma->vm_flags & VM_MIXEDMAP) { 614 if (!pfn_valid(pfn)) 615 return NULL; 616 goto out; 617 } else { 618 unsigned long off; 619 off = (addr - vma->vm_start) >> PAGE_SHIFT; 620 if (pfn == vma->vm_pgoff + off) 621 return NULL; 622 if (!is_cow_mapping(vma->vm_flags)) 623 return NULL; 624 } 625 } 626 627 if (is_zero_pfn(pfn)) 628 return NULL; 629 630 check_pfn: 631 if (unlikely(pfn > highest_memmap_pfn)) { 632 print_bad_pte(vma, addr, pte, NULL); 633 return NULL; 634 } 635 636 /* 637 * NOTE! We still have PageReserved() pages in the page tables. 638 * eg. VDSO mappings can cause them to exist. 639 */ 640 out: 641 return pfn_to_page(pfn); 642 } 643 644 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 645 pte_t pte) 646 { 647 struct page *page = vm_normal_page(vma, addr, pte); 648 649 if (page) 650 return page_folio(page); 651 return NULL; 652 } 653 654 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 655 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 656 pmd_t pmd) 657 { 658 unsigned long pfn = pmd_pfn(pmd); 659 660 /* 661 * There is no pmd_special() but there may be special pmds, e.g. 662 * in a direct-access (dax) mapping, so let's just replicate the 663 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 664 */ 665 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 666 if (vma->vm_flags & VM_MIXEDMAP) { 667 if (!pfn_valid(pfn)) 668 return NULL; 669 goto out; 670 } else { 671 unsigned long off; 672 off = (addr - vma->vm_start) >> PAGE_SHIFT; 673 if (pfn == vma->vm_pgoff + off) 674 return NULL; 675 if (!is_cow_mapping(vma->vm_flags)) 676 return NULL; 677 } 678 } 679 680 if (pmd_devmap(pmd)) 681 return NULL; 682 if (is_huge_zero_pmd(pmd)) 683 return NULL; 684 if (unlikely(pfn > highest_memmap_pfn)) 685 return NULL; 686 687 /* 688 * NOTE! We still have PageReserved() pages in the page tables. 689 * eg. VDSO mappings can cause them to exist. 690 */ 691 out: 692 return pfn_to_page(pfn); 693 } 694 #endif 695 696 static void restore_exclusive_pte(struct vm_area_struct *vma, 697 struct page *page, unsigned long address, 698 pte_t *ptep) 699 { 700 pte_t orig_pte; 701 pte_t pte; 702 swp_entry_t entry; 703 704 orig_pte = ptep_get(ptep); 705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 706 if (pte_swp_soft_dirty(orig_pte)) 707 pte = pte_mksoft_dirty(pte); 708 709 entry = pte_to_swp_entry(orig_pte); 710 if (pte_swp_uffd_wp(orig_pte)) 711 pte = pte_mkuffd_wp(pte); 712 else if (is_writable_device_exclusive_entry(entry)) 713 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 714 715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 716 717 /* 718 * No need to take a page reference as one was already 719 * created when the swap entry was made. 720 */ 721 if (PageAnon(page)) 722 page_add_anon_rmap(page, vma, address, RMAP_NONE); 723 else 724 /* 725 * Currently device exclusive access only supports anonymous 726 * memory so the entry shouldn't point to a filebacked page. 727 */ 728 WARN_ON_ONCE(1); 729 730 set_pte_at(vma->vm_mm, address, ptep, pte); 731 732 /* 733 * No need to invalidate - it was non-present before. However 734 * secondary CPUs may have mappings that need invalidating. 735 */ 736 update_mmu_cache(vma, address, ptep); 737 } 738 739 /* 740 * Tries to restore an exclusive pte if the page lock can be acquired without 741 * sleeping. 742 */ 743 static int 744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 745 unsigned long addr) 746 { 747 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte)); 748 struct page *page = pfn_swap_entry_to_page(entry); 749 750 if (trylock_page(page)) { 751 restore_exclusive_pte(vma, page, addr, src_pte); 752 unlock_page(page); 753 return 0; 754 } 755 756 return -EBUSY; 757 } 758 759 /* 760 * copy one vm_area from one task to the other. Assumes the page tables 761 * already present in the new task to be cleared in the whole range 762 * covered by this vma. 763 */ 764 765 static unsigned long 766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 768 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 769 { 770 unsigned long vm_flags = dst_vma->vm_flags; 771 pte_t orig_pte = ptep_get(src_pte); 772 pte_t pte = orig_pte; 773 struct page *page; 774 swp_entry_t entry = pte_to_swp_entry(orig_pte); 775 776 if (likely(!non_swap_entry(entry))) { 777 if (swap_duplicate(entry) < 0) 778 return -EIO; 779 780 /* make sure dst_mm is on swapoff's mmlist. */ 781 if (unlikely(list_empty(&dst_mm->mmlist))) { 782 spin_lock(&mmlist_lock); 783 if (list_empty(&dst_mm->mmlist)) 784 list_add(&dst_mm->mmlist, 785 &src_mm->mmlist); 786 spin_unlock(&mmlist_lock); 787 } 788 /* Mark the swap entry as shared. */ 789 if (pte_swp_exclusive(orig_pte)) { 790 pte = pte_swp_clear_exclusive(orig_pte); 791 set_pte_at(src_mm, addr, src_pte, pte); 792 } 793 rss[MM_SWAPENTS]++; 794 } else if (is_migration_entry(entry)) { 795 page = pfn_swap_entry_to_page(entry); 796 797 rss[mm_counter(page)]++; 798 799 if (!is_readable_migration_entry(entry) && 800 is_cow_mapping(vm_flags)) { 801 /* 802 * COW mappings require pages in both parent and child 803 * to be set to read. A previously exclusive entry is 804 * now shared. 805 */ 806 entry = make_readable_migration_entry( 807 swp_offset(entry)); 808 pte = swp_entry_to_pte(entry); 809 if (pte_swp_soft_dirty(orig_pte)) 810 pte = pte_swp_mksoft_dirty(pte); 811 if (pte_swp_uffd_wp(orig_pte)) 812 pte = pte_swp_mkuffd_wp(pte); 813 set_pte_at(src_mm, addr, src_pte, pte); 814 } 815 } else if (is_device_private_entry(entry)) { 816 page = pfn_swap_entry_to_page(entry); 817 818 /* 819 * Update rss count even for unaddressable pages, as 820 * they should treated just like normal pages in this 821 * respect. 822 * 823 * We will likely want to have some new rss counters 824 * for unaddressable pages, at some point. But for now 825 * keep things as they are. 826 */ 827 get_page(page); 828 rss[mm_counter(page)]++; 829 /* Cannot fail as these pages cannot get pinned. */ 830 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 831 832 /* 833 * We do not preserve soft-dirty information, because so 834 * far, checkpoint/restore is the only feature that 835 * requires that. And checkpoint/restore does not work 836 * when a device driver is involved (you cannot easily 837 * save and restore device driver state). 838 */ 839 if (is_writable_device_private_entry(entry) && 840 is_cow_mapping(vm_flags)) { 841 entry = make_readable_device_private_entry( 842 swp_offset(entry)); 843 pte = swp_entry_to_pte(entry); 844 if (pte_swp_uffd_wp(orig_pte)) 845 pte = pte_swp_mkuffd_wp(pte); 846 set_pte_at(src_mm, addr, src_pte, pte); 847 } 848 } else if (is_device_exclusive_entry(entry)) { 849 /* 850 * Make device exclusive entries present by restoring the 851 * original entry then copying as for a present pte. Device 852 * exclusive entries currently only support private writable 853 * (ie. COW) mappings. 854 */ 855 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 856 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 857 return -EBUSY; 858 return -ENOENT; 859 } else if (is_pte_marker_entry(entry)) { 860 pte_marker marker = copy_pte_marker(entry, dst_vma); 861 862 if (marker) 863 set_pte_at(dst_mm, addr, dst_pte, 864 make_pte_marker(marker)); 865 return 0; 866 } 867 if (!userfaultfd_wp(dst_vma)) 868 pte = pte_swp_clear_uffd_wp(pte); 869 set_pte_at(dst_mm, addr, dst_pte, pte); 870 return 0; 871 } 872 873 /* 874 * Copy a present and normal page. 875 * 876 * NOTE! The usual case is that this isn't required; 877 * instead, the caller can just increase the page refcount 878 * and re-use the pte the traditional way. 879 * 880 * And if we need a pre-allocated page but don't yet have 881 * one, return a negative error to let the preallocation 882 * code know so that it can do so outside the page table 883 * lock. 884 */ 885 static inline int 886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 888 struct folio **prealloc, struct page *page) 889 { 890 struct folio *new_folio; 891 pte_t pte; 892 893 new_folio = *prealloc; 894 if (!new_folio) 895 return -EAGAIN; 896 897 /* 898 * We have a prealloc page, all good! Take it 899 * over and copy the page & arm it. 900 */ 901 *prealloc = NULL; 902 copy_user_highpage(&new_folio->page, page, addr, src_vma); 903 __folio_mark_uptodate(new_folio); 904 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 905 folio_add_lru_vma(new_folio, dst_vma); 906 rss[MM_ANONPAGES]++; 907 908 /* All done, just insert the new page copy in the child */ 909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte))) 912 /* Uffd-wp needs to be delivered to dest pte as well */ 913 pte = pte_mkuffd_wp(pte); 914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 915 return 0; 916 } 917 918 /* 919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 920 * is required to copy this pte. 921 */ 922 static inline int 923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 925 struct folio **prealloc) 926 { 927 struct mm_struct *src_mm = src_vma->vm_mm; 928 unsigned long vm_flags = src_vma->vm_flags; 929 pte_t pte = ptep_get(src_pte); 930 struct page *page; 931 struct folio *folio; 932 933 page = vm_normal_page(src_vma, addr, pte); 934 if (page) 935 folio = page_folio(page); 936 if (page && folio_test_anon(folio)) { 937 /* 938 * If this page may have been pinned by the parent process, 939 * copy the page immediately for the child so that we'll always 940 * guarantee the pinned page won't be randomly replaced in the 941 * future. 942 */ 943 folio_get(folio); 944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 945 /* Page may be pinned, we have to copy. */ 946 folio_put(folio); 947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 948 addr, rss, prealloc, page); 949 } 950 rss[MM_ANONPAGES]++; 951 } else if (page) { 952 folio_get(folio); 953 page_dup_file_rmap(page, false); 954 rss[mm_counter_file(page)]++; 955 } 956 957 /* 958 * If it's a COW mapping, write protect it both 959 * in the parent and the child 960 */ 961 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 962 ptep_set_wrprotect(src_mm, addr, src_pte); 963 pte = pte_wrprotect(pte); 964 } 965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 966 967 /* 968 * If it's a shared mapping, mark it clean in 969 * the child 970 */ 971 if (vm_flags & VM_SHARED) 972 pte = pte_mkclean(pte); 973 pte = pte_mkold(pte); 974 975 if (!userfaultfd_wp(dst_vma)) 976 pte = pte_clear_uffd_wp(pte); 977 978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 979 return 0; 980 } 981 982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 983 struct vm_area_struct *vma, unsigned long addr) 984 { 985 struct folio *new_folio; 986 987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 988 if (!new_folio) 989 return NULL; 990 991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 992 folio_put(new_folio); 993 return NULL; 994 } 995 folio_throttle_swaprate(new_folio, GFP_KERNEL); 996 997 return new_folio; 998 } 999 1000 static int 1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 1003 unsigned long end) 1004 { 1005 struct mm_struct *dst_mm = dst_vma->vm_mm; 1006 struct mm_struct *src_mm = src_vma->vm_mm; 1007 pte_t *orig_src_pte, *orig_dst_pte; 1008 pte_t *src_pte, *dst_pte; 1009 pte_t ptent; 1010 spinlock_t *src_ptl, *dst_ptl; 1011 int progress, ret = 0; 1012 int rss[NR_MM_COUNTERS]; 1013 swp_entry_t entry = (swp_entry_t){0}; 1014 struct folio *prealloc = NULL; 1015 1016 again: 1017 progress = 0; 1018 init_rss_vec(rss); 1019 1020 /* 1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the 1022 * error handling here, assume that exclusive mmap_lock on dst and src 1023 * protects anon from unexpected THP transitions; with shmem and file 1024 * protected by mmap_lock-less collapse skipping areas with anon_vma 1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework 1026 * can remove such assumptions later, but this is good enough for now. 1027 */ 1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1029 if (!dst_pte) { 1030 ret = -ENOMEM; 1031 goto out; 1032 } 1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl); 1034 if (!src_pte) { 1035 pte_unmap_unlock(dst_pte, dst_ptl); 1036 /* ret == 0 */ 1037 goto out; 1038 } 1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1040 orig_src_pte = src_pte; 1041 orig_dst_pte = dst_pte; 1042 arch_enter_lazy_mmu_mode(); 1043 1044 do { 1045 /* 1046 * We are holding two locks at this point - either of them 1047 * could generate latencies in another task on another CPU. 1048 */ 1049 if (progress >= 32) { 1050 progress = 0; 1051 if (need_resched() || 1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1053 break; 1054 } 1055 ptent = ptep_get(src_pte); 1056 if (pte_none(ptent)) { 1057 progress++; 1058 continue; 1059 } 1060 if (unlikely(!pte_present(ptent))) { 1061 ret = copy_nonpresent_pte(dst_mm, src_mm, 1062 dst_pte, src_pte, 1063 dst_vma, src_vma, 1064 addr, rss); 1065 if (ret == -EIO) { 1066 entry = pte_to_swp_entry(ptep_get(src_pte)); 1067 break; 1068 } else if (ret == -EBUSY) { 1069 break; 1070 } else if (!ret) { 1071 progress += 8; 1072 continue; 1073 } 1074 1075 /* 1076 * Device exclusive entry restored, continue by copying 1077 * the now present pte. 1078 */ 1079 WARN_ON_ONCE(ret != -ENOENT); 1080 } 1081 /* copy_present_pte() will clear `*prealloc' if consumed */ 1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1083 addr, rss, &prealloc); 1084 /* 1085 * If we need a pre-allocated page for this pte, drop the 1086 * locks, allocate, and try again. 1087 */ 1088 if (unlikely(ret == -EAGAIN)) 1089 break; 1090 if (unlikely(prealloc)) { 1091 /* 1092 * pre-alloc page cannot be reused by next time so as 1093 * to strictly follow mempolicy (e.g., alloc_page_vma() 1094 * will allocate page according to address). This 1095 * could only happen if one pinned pte changed. 1096 */ 1097 folio_put(prealloc); 1098 prealloc = NULL; 1099 } 1100 progress += 8; 1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1102 1103 arch_leave_lazy_mmu_mode(); 1104 pte_unmap_unlock(orig_src_pte, src_ptl); 1105 add_mm_rss_vec(dst_mm, rss); 1106 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1107 cond_resched(); 1108 1109 if (ret == -EIO) { 1110 VM_WARN_ON_ONCE(!entry.val); 1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1112 ret = -ENOMEM; 1113 goto out; 1114 } 1115 entry.val = 0; 1116 } else if (ret == -EBUSY) { 1117 goto out; 1118 } else if (ret == -EAGAIN) { 1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1120 if (!prealloc) 1121 return -ENOMEM; 1122 } else if (ret) { 1123 VM_WARN_ON_ONCE(1); 1124 } 1125 1126 /* We've captured and resolved the error. Reset, try again. */ 1127 ret = 0; 1128 1129 if (addr != end) 1130 goto again; 1131 out: 1132 if (unlikely(prealloc)) 1133 folio_put(prealloc); 1134 return ret; 1135 } 1136 1137 static inline int 1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1140 unsigned long end) 1141 { 1142 struct mm_struct *dst_mm = dst_vma->vm_mm; 1143 struct mm_struct *src_mm = src_vma->vm_mm; 1144 pmd_t *src_pmd, *dst_pmd; 1145 unsigned long next; 1146 1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1148 if (!dst_pmd) 1149 return -ENOMEM; 1150 src_pmd = pmd_offset(src_pud, addr); 1151 do { 1152 next = pmd_addr_end(addr, end); 1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1154 || pmd_devmap(*src_pmd)) { 1155 int err; 1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1158 addr, dst_vma, src_vma); 1159 if (err == -ENOMEM) 1160 return -ENOMEM; 1161 if (!err) 1162 continue; 1163 /* fall through */ 1164 } 1165 if (pmd_none_or_clear_bad(src_pmd)) 1166 continue; 1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1168 addr, next)) 1169 return -ENOMEM; 1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1171 return 0; 1172 } 1173 1174 static inline int 1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1177 unsigned long end) 1178 { 1179 struct mm_struct *dst_mm = dst_vma->vm_mm; 1180 struct mm_struct *src_mm = src_vma->vm_mm; 1181 pud_t *src_pud, *dst_pud; 1182 unsigned long next; 1183 1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1185 if (!dst_pud) 1186 return -ENOMEM; 1187 src_pud = pud_offset(src_p4d, addr); 1188 do { 1189 next = pud_addr_end(addr, end); 1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1191 int err; 1192 1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1194 err = copy_huge_pud(dst_mm, src_mm, 1195 dst_pud, src_pud, addr, src_vma); 1196 if (err == -ENOMEM) 1197 return -ENOMEM; 1198 if (!err) 1199 continue; 1200 /* fall through */ 1201 } 1202 if (pud_none_or_clear_bad(src_pud)) 1203 continue; 1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1205 addr, next)) 1206 return -ENOMEM; 1207 } while (dst_pud++, src_pud++, addr = next, addr != end); 1208 return 0; 1209 } 1210 1211 static inline int 1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1214 unsigned long end) 1215 { 1216 struct mm_struct *dst_mm = dst_vma->vm_mm; 1217 p4d_t *src_p4d, *dst_p4d; 1218 unsigned long next; 1219 1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1221 if (!dst_p4d) 1222 return -ENOMEM; 1223 src_p4d = p4d_offset(src_pgd, addr); 1224 do { 1225 next = p4d_addr_end(addr, end); 1226 if (p4d_none_or_clear_bad(src_p4d)) 1227 continue; 1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1229 addr, next)) 1230 return -ENOMEM; 1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1232 return 0; 1233 } 1234 1235 /* 1236 * Return true if the vma needs to copy the pgtable during this fork(). Return 1237 * false when we can speed up fork() by allowing lazy page faults later until 1238 * when the child accesses the memory range. 1239 */ 1240 static bool 1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1242 { 1243 /* 1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1246 * contains uffd-wp protection information, that's something we can't 1247 * retrieve from page cache, and skip copying will lose those info. 1248 */ 1249 if (userfaultfd_wp(dst_vma)) 1250 return true; 1251 1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1253 return true; 1254 1255 if (src_vma->anon_vma) 1256 return true; 1257 1258 /* 1259 * Don't copy ptes where a page fault will fill them correctly. Fork 1260 * becomes much lighter when there are big shared or private readonly 1261 * mappings. The tradeoff is that copy_page_range is more efficient 1262 * than faulting. 1263 */ 1264 return false; 1265 } 1266 1267 int 1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1269 { 1270 pgd_t *src_pgd, *dst_pgd; 1271 unsigned long next; 1272 unsigned long addr = src_vma->vm_start; 1273 unsigned long end = src_vma->vm_end; 1274 struct mm_struct *dst_mm = dst_vma->vm_mm; 1275 struct mm_struct *src_mm = src_vma->vm_mm; 1276 struct mmu_notifier_range range; 1277 bool is_cow; 1278 int ret; 1279 1280 if (!vma_needs_copy(dst_vma, src_vma)) 1281 return 0; 1282 1283 if (is_vm_hugetlb_page(src_vma)) 1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1285 1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1287 /* 1288 * We do not free on error cases below as remove_vma 1289 * gets called on error from higher level routine 1290 */ 1291 ret = track_pfn_copy(src_vma); 1292 if (ret) 1293 return ret; 1294 } 1295 1296 /* 1297 * We need to invalidate the secondary MMU mappings only when 1298 * there could be a permission downgrade on the ptes of the 1299 * parent mm. And a permission downgrade will only happen if 1300 * is_cow_mapping() returns true. 1301 */ 1302 is_cow = is_cow_mapping(src_vma->vm_flags); 1303 1304 if (is_cow) { 1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1306 0, src_mm, addr, end); 1307 mmu_notifier_invalidate_range_start(&range); 1308 /* 1309 * Disabling preemption is not needed for the write side, as 1310 * the read side doesn't spin, but goes to the mmap_lock. 1311 * 1312 * Use the raw variant of the seqcount_t write API to avoid 1313 * lockdep complaining about preemptibility. 1314 */ 1315 mmap_assert_write_locked(src_mm); 1316 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1317 } 1318 1319 ret = 0; 1320 dst_pgd = pgd_offset(dst_mm, addr); 1321 src_pgd = pgd_offset(src_mm, addr); 1322 do { 1323 next = pgd_addr_end(addr, end); 1324 if (pgd_none_or_clear_bad(src_pgd)) 1325 continue; 1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1327 addr, next))) { 1328 untrack_pfn_clear(dst_vma); 1329 ret = -ENOMEM; 1330 break; 1331 } 1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1333 1334 if (is_cow) { 1335 raw_write_seqcount_end(&src_mm->write_protect_seq); 1336 mmu_notifier_invalidate_range_end(&range); 1337 } 1338 return ret; 1339 } 1340 1341 /* Whether we should zap all COWed (private) pages too */ 1342 static inline bool should_zap_cows(struct zap_details *details) 1343 { 1344 /* By default, zap all pages */ 1345 if (!details) 1346 return true; 1347 1348 /* Or, we zap COWed pages only if the caller wants to */ 1349 return details->even_cows; 1350 } 1351 1352 /* Decides whether we should zap this page with the page pointer specified */ 1353 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1354 { 1355 /* If we can make a decision without *page.. */ 1356 if (should_zap_cows(details)) 1357 return true; 1358 1359 /* E.g. the caller passes NULL for the case of a zero page */ 1360 if (!page) 1361 return true; 1362 1363 /* Otherwise we should only zap non-anon pages */ 1364 return !PageAnon(page); 1365 } 1366 1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1368 { 1369 if (!details) 1370 return false; 1371 1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1373 } 1374 1375 /* 1376 * This function makes sure that we'll replace the none pte with an uffd-wp 1377 * swap special pte marker when necessary. Must be with the pgtable lock held. 1378 */ 1379 static inline void 1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1381 unsigned long addr, pte_t *pte, 1382 struct zap_details *details, pte_t pteval) 1383 { 1384 /* Zap on anonymous always means dropping everything */ 1385 if (vma_is_anonymous(vma)) 1386 return; 1387 1388 if (zap_drop_file_uffd_wp(details)) 1389 return; 1390 1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1392 } 1393 1394 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1395 struct vm_area_struct *vma, pmd_t *pmd, 1396 unsigned long addr, unsigned long end, 1397 struct zap_details *details) 1398 { 1399 struct mm_struct *mm = tlb->mm; 1400 int force_flush = 0; 1401 int rss[NR_MM_COUNTERS]; 1402 spinlock_t *ptl; 1403 pte_t *start_pte; 1404 pte_t *pte; 1405 swp_entry_t entry; 1406 1407 tlb_change_page_size(tlb, PAGE_SIZE); 1408 init_rss_vec(rss); 1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1410 if (!pte) 1411 return addr; 1412 1413 flush_tlb_batched_pending(mm); 1414 arch_enter_lazy_mmu_mode(); 1415 do { 1416 pte_t ptent = ptep_get(pte); 1417 struct page *page; 1418 1419 if (pte_none(ptent)) 1420 continue; 1421 1422 if (need_resched()) 1423 break; 1424 1425 if (pte_present(ptent)) { 1426 unsigned int delay_rmap; 1427 1428 page = vm_normal_page(vma, addr, ptent); 1429 if (unlikely(!should_zap_page(details, page))) 1430 continue; 1431 ptent = ptep_get_and_clear_full(mm, addr, pte, 1432 tlb->fullmm); 1433 tlb_remove_tlb_entry(tlb, pte, addr); 1434 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1435 ptent); 1436 if (unlikely(!page)) { 1437 ksm_might_unmap_zero_page(mm, ptent); 1438 continue; 1439 } 1440 1441 delay_rmap = 0; 1442 if (!PageAnon(page)) { 1443 if (pte_dirty(ptent)) { 1444 set_page_dirty(page); 1445 if (tlb_delay_rmap(tlb)) { 1446 delay_rmap = 1; 1447 force_flush = 1; 1448 } 1449 } 1450 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1451 mark_page_accessed(page); 1452 } 1453 rss[mm_counter(page)]--; 1454 if (!delay_rmap) { 1455 page_remove_rmap(page, vma, false); 1456 if (unlikely(page_mapcount(page) < 0)) 1457 print_bad_pte(vma, addr, ptent, page); 1458 } 1459 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1460 force_flush = 1; 1461 addr += PAGE_SIZE; 1462 break; 1463 } 1464 continue; 1465 } 1466 1467 entry = pte_to_swp_entry(ptent); 1468 if (is_device_private_entry(entry) || 1469 is_device_exclusive_entry(entry)) { 1470 page = pfn_swap_entry_to_page(entry); 1471 if (unlikely(!should_zap_page(details, page))) 1472 continue; 1473 /* 1474 * Both device private/exclusive mappings should only 1475 * work with anonymous page so far, so we don't need to 1476 * consider uffd-wp bit when zap. For more information, 1477 * see zap_install_uffd_wp_if_needed(). 1478 */ 1479 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1480 rss[mm_counter(page)]--; 1481 if (is_device_private_entry(entry)) 1482 page_remove_rmap(page, vma, false); 1483 put_page(page); 1484 } else if (!non_swap_entry(entry)) { 1485 /* Genuine swap entry, hence a private anon page */ 1486 if (!should_zap_cows(details)) 1487 continue; 1488 rss[MM_SWAPENTS]--; 1489 if (unlikely(!free_swap_and_cache(entry))) 1490 print_bad_pte(vma, addr, ptent, NULL); 1491 } else if (is_migration_entry(entry)) { 1492 page = pfn_swap_entry_to_page(entry); 1493 if (!should_zap_page(details, page)) 1494 continue; 1495 rss[mm_counter(page)]--; 1496 } else if (pte_marker_entry_uffd_wp(entry)) { 1497 /* 1498 * For anon: always drop the marker; for file: only 1499 * drop the marker if explicitly requested. 1500 */ 1501 if (!vma_is_anonymous(vma) && 1502 !zap_drop_file_uffd_wp(details)) 1503 continue; 1504 } else if (is_hwpoison_entry(entry) || 1505 is_poisoned_swp_entry(entry)) { 1506 if (!should_zap_cows(details)) 1507 continue; 1508 } else { 1509 /* We should have covered all the swap entry types */ 1510 WARN_ON_ONCE(1); 1511 } 1512 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1513 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1514 } while (pte++, addr += PAGE_SIZE, addr != end); 1515 1516 add_mm_rss_vec(mm, rss); 1517 arch_leave_lazy_mmu_mode(); 1518 1519 /* Do the actual TLB flush before dropping ptl */ 1520 if (force_flush) { 1521 tlb_flush_mmu_tlbonly(tlb); 1522 tlb_flush_rmaps(tlb, vma); 1523 } 1524 pte_unmap_unlock(start_pte, ptl); 1525 1526 /* 1527 * If we forced a TLB flush (either due to running out of 1528 * batch buffers or because we needed to flush dirty TLB 1529 * entries before releasing the ptl), free the batched 1530 * memory too. Come back again if we didn't do everything. 1531 */ 1532 if (force_flush) 1533 tlb_flush_mmu(tlb); 1534 1535 return addr; 1536 } 1537 1538 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1539 struct vm_area_struct *vma, pud_t *pud, 1540 unsigned long addr, unsigned long end, 1541 struct zap_details *details) 1542 { 1543 pmd_t *pmd; 1544 unsigned long next; 1545 1546 pmd = pmd_offset(pud, addr); 1547 do { 1548 next = pmd_addr_end(addr, end); 1549 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1550 if (next - addr != HPAGE_PMD_SIZE) 1551 __split_huge_pmd(vma, pmd, addr, false, NULL); 1552 else if (zap_huge_pmd(tlb, vma, pmd, addr)) { 1553 addr = next; 1554 continue; 1555 } 1556 /* fall through */ 1557 } else if (details && details->single_folio && 1558 folio_test_pmd_mappable(details->single_folio) && 1559 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1560 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1561 /* 1562 * Take and drop THP pmd lock so that we cannot return 1563 * prematurely, while zap_huge_pmd() has cleared *pmd, 1564 * but not yet decremented compound_mapcount(). 1565 */ 1566 spin_unlock(ptl); 1567 } 1568 if (pmd_none(*pmd)) { 1569 addr = next; 1570 continue; 1571 } 1572 addr = zap_pte_range(tlb, vma, pmd, addr, next, details); 1573 if (addr != next) 1574 pmd--; 1575 } while (pmd++, cond_resched(), addr != end); 1576 1577 return addr; 1578 } 1579 1580 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1581 struct vm_area_struct *vma, p4d_t *p4d, 1582 unsigned long addr, unsigned long end, 1583 struct zap_details *details) 1584 { 1585 pud_t *pud; 1586 unsigned long next; 1587 1588 pud = pud_offset(p4d, addr); 1589 do { 1590 next = pud_addr_end(addr, end); 1591 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1592 if (next - addr != HPAGE_PUD_SIZE) { 1593 mmap_assert_locked(tlb->mm); 1594 split_huge_pud(vma, pud, addr); 1595 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1596 goto next; 1597 /* fall through */ 1598 } 1599 if (pud_none_or_clear_bad(pud)) 1600 continue; 1601 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1602 next: 1603 cond_resched(); 1604 } while (pud++, addr = next, addr != end); 1605 1606 return addr; 1607 } 1608 1609 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1610 struct vm_area_struct *vma, pgd_t *pgd, 1611 unsigned long addr, unsigned long end, 1612 struct zap_details *details) 1613 { 1614 p4d_t *p4d; 1615 unsigned long next; 1616 1617 p4d = p4d_offset(pgd, addr); 1618 do { 1619 next = p4d_addr_end(addr, end); 1620 if (p4d_none_or_clear_bad(p4d)) 1621 continue; 1622 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1623 } while (p4d++, addr = next, addr != end); 1624 1625 return addr; 1626 } 1627 1628 void unmap_page_range(struct mmu_gather *tlb, 1629 struct vm_area_struct *vma, 1630 unsigned long addr, unsigned long end, 1631 struct zap_details *details) 1632 { 1633 pgd_t *pgd; 1634 unsigned long next; 1635 1636 BUG_ON(addr >= end); 1637 tlb_start_vma(tlb, vma); 1638 pgd = pgd_offset(vma->vm_mm, addr); 1639 do { 1640 next = pgd_addr_end(addr, end); 1641 if (pgd_none_or_clear_bad(pgd)) 1642 continue; 1643 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1644 } while (pgd++, addr = next, addr != end); 1645 tlb_end_vma(tlb, vma); 1646 } 1647 1648 1649 static void unmap_single_vma(struct mmu_gather *tlb, 1650 struct vm_area_struct *vma, unsigned long start_addr, 1651 unsigned long end_addr, 1652 struct zap_details *details, bool mm_wr_locked) 1653 { 1654 unsigned long start = max(vma->vm_start, start_addr); 1655 unsigned long end; 1656 1657 if (start >= vma->vm_end) 1658 return; 1659 end = min(vma->vm_end, end_addr); 1660 if (end <= vma->vm_start) 1661 return; 1662 1663 if (vma->vm_file) 1664 uprobe_munmap(vma, start, end); 1665 1666 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1667 untrack_pfn(vma, 0, 0, mm_wr_locked); 1668 1669 if (start != end) { 1670 if (unlikely(is_vm_hugetlb_page(vma))) { 1671 /* 1672 * It is undesirable to test vma->vm_file as it 1673 * should be non-null for valid hugetlb area. 1674 * However, vm_file will be NULL in the error 1675 * cleanup path of mmap_region. When 1676 * hugetlbfs ->mmap method fails, 1677 * mmap_region() nullifies vma->vm_file 1678 * before calling this function to clean up. 1679 * Since no pte has actually been setup, it is 1680 * safe to do nothing in this case. 1681 */ 1682 if (vma->vm_file) { 1683 zap_flags_t zap_flags = details ? 1684 details->zap_flags : 0; 1685 __unmap_hugepage_range_final(tlb, vma, start, end, 1686 NULL, zap_flags); 1687 } 1688 } else 1689 unmap_page_range(tlb, vma, start, end, details); 1690 } 1691 } 1692 1693 /** 1694 * unmap_vmas - unmap a range of memory covered by a list of vma's 1695 * @tlb: address of the caller's struct mmu_gather 1696 * @mas: the maple state 1697 * @vma: the starting vma 1698 * @start_addr: virtual address at which to start unmapping 1699 * @end_addr: virtual address at which to end unmapping 1700 * @tree_end: The maximum index to check 1701 * @mm_wr_locked: lock flag 1702 * 1703 * Unmap all pages in the vma list. 1704 * 1705 * Only addresses between `start' and `end' will be unmapped. 1706 * 1707 * The VMA list must be sorted in ascending virtual address order. 1708 * 1709 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1710 * range after unmap_vmas() returns. So the only responsibility here is to 1711 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1712 * drops the lock and schedules. 1713 */ 1714 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 1715 struct vm_area_struct *vma, unsigned long start_addr, 1716 unsigned long end_addr, unsigned long tree_end, 1717 bool mm_wr_locked) 1718 { 1719 struct mmu_notifier_range range; 1720 struct zap_details details = { 1721 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1722 /* Careful - we need to zap private pages too! */ 1723 .even_cows = true, 1724 }; 1725 1726 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1727 start_addr, end_addr); 1728 mmu_notifier_invalidate_range_start(&range); 1729 do { 1730 unmap_single_vma(tlb, vma, start_addr, end_addr, &details, 1731 mm_wr_locked); 1732 } while ((vma = mas_find(mas, tree_end - 1)) != NULL); 1733 mmu_notifier_invalidate_range_end(&range); 1734 } 1735 1736 /** 1737 * zap_page_range_single - remove user pages in a given range 1738 * @vma: vm_area_struct holding the applicable pages 1739 * @address: starting address of pages to zap 1740 * @size: number of bytes to zap 1741 * @details: details of shared cache invalidation 1742 * 1743 * The range must fit into one VMA. 1744 */ 1745 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1746 unsigned long size, struct zap_details *details) 1747 { 1748 const unsigned long end = address + size; 1749 struct mmu_notifier_range range; 1750 struct mmu_gather tlb; 1751 1752 lru_add_drain(); 1753 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1754 address, end); 1755 if (is_vm_hugetlb_page(vma)) 1756 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1757 &range.end); 1758 tlb_gather_mmu(&tlb, vma->vm_mm); 1759 update_hiwater_rss(vma->vm_mm); 1760 mmu_notifier_invalidate_range_start(&range); 1761 /* 1762 * unmap 'address-end' not 'range.start-range.end' as range 1763 * could have been expanded for hugetlb pmd sharing. 1764 */ 1765 unmap_single_vma(&tlb, vma, address, end, details, false); 1766 mmu_notifier_invalidate_range_end(&range); 1767 tlb_finish_mmu(&tlb); 1768 } 1769 1770 /** 1771 * zap_vma_ptes - remove ptes mapping the vma 1772 * @vma: vm_area_struct holding ptes to be zapped 1773 * @address: starting address of pages to zap 1774 * @size: number of bytes to zap 1775 * 1776 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1777 * 1778 * The entire address range must be fully contained within the vma. 1779 * 1780 */ 1781 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1782 unsigned long size) 1783 { 1784 if (!range_in_vma(vma, address, address + size) || 1785 !(vma->vm_flags & VM_PFNMAP)) 1786 return; 1787 1788 zap_page_range_single(vma, address, size, NULL); 1789 } 1790 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1791 1792 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1793 { 1794 pgd_t *pgd; 1795 p4d_t *p4d; 1796 pud_t *pud; 1797 pmd_t *pmd; 1798 1799 pgd = pgd_offset(mm, addr); 1800 p4d = p4d_alloc(mm, pgd, addr); 1801 if (!p4d) 1802 return NULL; 1803 pud = pud_alloc(mm, p4d, addr); 1804 if (!pud) 1805 return NULL; 1806 pmd = pmd_alloc(mm, pud, addr); 1807 if (!pmd) 1808 return NULL; 1809 1810 VM_BUG_ON(pmd_trans_huge(*pmd)); 1811 return pmd; 1812 } 1813 1814 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1815 spinlock_t **ptl) 1816 { 1817 pmd_t *pmd = walk_to_pmd(mm, addr); 1818 1819 if (!pmd) 1820 return NULL; 1821 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1822 } 1823 1824 static int validate_page_before_insert(struct page *page) 1825 { 1826 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1827 return -EINVAL; 1828 flush_dcache_page(page); 1829 return 0; 1830 } 1831 1832 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1833 unsigned long addr, struct page *page, pgprot_t prot) 1834 { 1835 if (!pte_none(ptep_get(pte))) 1836 return -EBUSY; 1837 /* Ok, finally just insert the thing.. */ 1838 get_page(page); 1839 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1840 page_add_file_rmap(page, vma, false); 1841 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1842 return 0; 1843 } 1844 1845 /* 1846 * This is the old fallback for page remapping. 1847 * 1848 * For historical reasons, it only allows reserved pages. Only 1849 * old drivers should use this, and they needed to mark their 1850 * pages reserved for the old functions anyway. 1851 */ 1852 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1853 struct page *page, pgprot_t prot) 1854 { 1855 int retval; 1856 pte_t *pte; 1857 spinlock_t *ptl; 1858 1859 retval = validate_page_before_insert(page); 1860 if (retval) 1861 goto out; 1862 retval = -ENOMEM; 1863 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1864 if (!pte) 1865 goto out; 1866 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1867 pte_unmap_unlock(pte, ptl); 1868 out: 1869 return retval; 1870 } 1871 1872 #ifdef pte_index 1873 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1874 unsigned long addr, struct page *page, pgprot_t prot) 1875 { 1876 int err; 1877 1878 if (!page_count(page)) 1879 return -EINVAL; 1880 err = validate_page_before_insert(page); 1881 if (err) 1882 return err; 1883 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1884 } 1885 1886 /* insert_pages() amortizes the cost of spinlock operations 1887 * when inserting pages in a loop. Arch *must* define pte_index. 1888 */ 1889 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1890 struct page **pages, unsigned long *num, pgprot_t prot) 1891 { 1892 pmd_t *pmd = NULL; 1893 pte_t *start_pte, *pte; 1894 spinlock_t *pte_lock; 1895 struct mm_struct *const mm = vma->vm_mm; 1896 unsigned long curr_page_idx = 0; 1897 unsigned long remaining_pages_total = *num; 1898 unsigned long pages_to_write_in_pmd; 1899 int ret; 1900 more: 1901 ret = -EFAULT; 1902 pmd = walk_to_pmd(mm, addr); 1903 if (!pmd) 1904 goto out; 1905 1906 pages_to_write_in_pmd = min_t(unsigned long, 1907 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1908 1909 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1910 ret = -ENOMEM; 1911 if (pte_alloc(mm, pmd)) 1912 goto out; 1913 1914 while (pages_to_write_in_pmd) { 1915 int pte_idx = 0; 1916 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1917 1918 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1919 if (!start_pte) { 1920 ret = -EFAULT; 1921 goto out; 1922 } 1923 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1924 int err = insert_page_in_batch_locked(vma, pte, 1925 addr, pages[curr_page_idx], prot); 1926 if (unlikely(err)) { 1927 pte_unmap_unlock(start_pte, pte_lock); 1928 ret = err; 1929 remaining_pages_total -= pte_idx; 1930 goto out; 1931 } 1932 addr += PAGE_SIZE; 1933 ++curr_page_idx; 1934 } 1935 pte_unmap_unlock(start_pte, pte_lock); 1936 pages_to_write_in_pmd -= batch_size; 1937 remaining_pages_total -= batch_size; 1938 } 1939 if (remaining_pages_total) 1940 goto more; 1941 ret = 0; 1942 out: 1943 *num = remaining_pages_total; 1944 return ret; 1945 } 1946 #endif /* ifdef pte_index */ 1947 1948 /** 1949 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1950 * @vma: user vma to map to 1951 * @addr: target start user address of these pages 1952 * @pages: source kernel pages 1953 * @num: in: number of pages to map. out: number of pages that were *not* 1954 * mapped. (0 means all pages were successfully mapped). 1955 * 1956 * Preferred over vm_insert_page() when inserting multiple pages. 1957 * 1958 * In case of error, we may have mapped a subset of the provided 1959 * pages. It is the caller's responsibility to account for this case. 1960 * 1961 * The same restrictions apply as in vm_insert_page(). 1962 */ 1963 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1964 struct page **pages, unsigned long *num) 1965 { 1966 #ifdef pte_index 1967 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1968 1969 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1970 return -EFAULT; 1971 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1972 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1973 BUG_ON(vma->vm_flags & VM_PFNMAP); 1974 vm_flags_set(vma, VM_MIXEDMAP); 1975 } 1976 /* Defer page refcount checking till we're about to map that page. */ 1977 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1978 #else 1979 unsigned long idx = 0, pgcount = *num; 1980 int err = -EINVAL; 1981 1982 for (; idx < pgcount; ++idx) { 1983 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1984 if (err) 1985 break; 1986 } 1987 *num = pgcount - idx; 1988 return err; 1989 #endif /* ifdef pte_index */ 1990 } 1991 EXPORT_SYMBOL(vm_insert_pages); 1992 1993 /** 1994 * vm_insert_page - insert single page into user vma 1995 * @vma: user vma to map to 1996 * @addr: target user address of this page 1997 * @page: source kernel page 1998 * 1999 * This allows drivers to insert individual pages they've allocated 2000 * into a user vma. 2001 * 2002 * The page has to be a nice clean _individual_ kernel allocation. 2003 * If you allocate a compound page, you need to have marked it as 2004 * such (__GFP_COMP), or manually just split the page up yourself 2005 * (see split_page()). 2006 * 2007 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2008 * took an arbitrary page protection parameter. This doesn't allow 2009 * that. Your vma protection will have to be set up correctly, which 2010 * means that if you want a shared writable mapping, you'd better 2011 * ask for a shared writable mapping! 2012 * 2013 * The page does not need to be reserved. 2014 * 2015 * Usually this function is called from f_op->mmap() handler 2016 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2017 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2018 * function from other places, for example from page-fault handler. 2019 * 2020 * Return: %0 on success, negative error code otherwise. 2021 */ 2022 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2023 struct page *page) 2024 { 2025 if (addr < vma->vm_start || addr >= vma->vm_end) 2026 return -EFAULT; 2027 if (!page_count(page)) 2028 return -EINVAL; 2029 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2030 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2031 BUG_ON(vma->vm_flags & VM_PFNMAP); 2032 vm_flags_set(vma, VM_MIXEDMAP); 2033 } 2034 return insert_page(vma, addr, page, vma->vm_page_prot); 2035 } 2036 EXPORT_SYMBOL(vm_insert_page); 2037 2038 /* 2039 * __vm_map_pages - maps range of kernel pages into user vma 2040 * @vma: user vma to map to 2041 * @pages: pointer to array of source kernel pages 2042 * @num: number of pages in page array 2043 * @offset: user's requested vm_pgoff 2044 * 2045 * This allows drivers to map range of kernel pages into a user vma. 2046 * 2047 * Return: 0 on success and error code otherwise. 2048 */ 2049 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2050 unsigned long num, unsigned long offset) 2051 { 2052 unsigned long count = vma_pages(vma); 2053 unsigned long uaddr = vma->vm_start; 2054 int ret, i; 2055 2056 /* Fail if the user requested offset is beyond the end of the object */ 2057 if (offset >= num) 2058 return -ENXIO; 2059 2060 /* Fail if the user requested size exceeds available object size */ 2061 if (count > num - offset) 2062 return -ENXIO; 2063 2064 for (i = 0; i < count; i++) { 2065 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2066 if (ret < 0) 2067 return ret; 2068 uaddr += PAGE_SIZE; 2069 } 2070 2071 return 0; 2072 } 2073 2074 /** 2075 * vm_map_pages - maps range of kernel pages starts with non zero offset 2076 * @vma: user vma to map to 2077 * @pages: pointer to array of source kernel pages 2078 * @num: number of pages in page array 2079 * 2080 * Maps an object consisting of @num pages, catering for the user's 2081 * requested vm_pgoff 2082 * 2083 * If we fail to insert any page into the vma, the function will return 2084 * immediately leaving any previously inserted pages present. Callers 2085 * from the mmap handler may immediately return the error as their caller 2086 * will destroy the vma, removing any successfully inserted pages. Other 2087 * callers should make their own arrangements for calling unmap_region(). 2088 * 2089 * Context: Process context. Called by mmap handlers. 2090 * Return: 0 on success and error code otherwise. 2091 */ 2092 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2093 unsigned long num) 2094 { 2095 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2096 } 2097 EXPORT_SYMBOL(vm_map_pages); 2098 2099 /** 2100 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2101 * @vma: user vma to map to 2102 * @pages: pointer to array of source kernel pages 2103 * @num: number of pages in page array 2104 * 2105 * Similar to vm_map_pages(), except that it explicitly sets the offset 2106 * to 0. This function is intended for the drivers that did not consider 2107 * vm_pgoff. 2108 * 2109 * Context: Process context. Called by mmap handlers. 2110 * Return: 0 on success and error code otherwise. 2111 */ 2112 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2113 unsigned long num) 2114 { 2115 return __vm_map_pages(vma, pages, num, 0); 2116 } 2117 EXPORT_SYMBOL(vm_map_pages_zero); 2118 2119 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2120 pfn_t pfn, pgprot_t prot, bool mkwrite) 2121 { 2122 struct mm_struct *mm = vma->vm_mm; 2123 pte_t *pte, entry; 2124 spinlock_t *ptl; 2125 2126 pte = get_locked_pte(mm, addr, &ptl); 2127 if (!pte) 2128 return VM_FAULT_OOM; 2129 entry = ptep_get(pte); 2130 if (!pte_none(entry)) { 2131 if (mkwrite) { 2132 /* 2133 * For read faults on private mappings the PFN passed 2134 * in may not match the PFN we have mapped if the 2135 * mapped PFN is a writeable COW page. In the mkwrite 2136 * case we are creating a writable PTE for a shared 2137 * mapping and we expect the PFNs to match. If they 2138 * don't match, we are likely racing with block 2139 * allocation and mapping invalidation so just skip the 2140 * update. 2141 */ 2142 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) { 2143 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry))); 2144 goto out_unlock; 2145 } 2146 entry = pte_mkyoung(entry); 2147 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2148 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2149 update_mmu_cache(vma, addr, pte); 2150 } 2151 goto out_unlock; 2152 } 2153 2154 /* Ok, finally just insert the thing.. */ 2155 if (pfn_t_devmap(pfn)) 2156 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2157 else 2158 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2159 2160 if (mkwrite) { 2161 entry = pte_mkyoung(entry); 2162 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2163 } 2164 2165 set_pte_at(mm, addr, pte, entry); 2166 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2167 2168 out_unlock: 2169 pte_unmap_unlock(pte, ptl); 2170 return VM_FAULT_NOPAGE; 2171 } 2172 2173 /** 2174 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2175 * @vma: user vma to map to 2176 * @addr: target user address of this page 2177 * @pfn: source kernel pfn 2178 * @pgprot: pgprot flags for the inserted page 2179 * 2180 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2181 * to override pgprot on a per-page basis. 2182 * 2183 * This only makes sense for IO mappings, and it makes no sense for 2184 * COW mappings. In general, using multiple vmas is preferable; 2185 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2186 * impractical. 2187 * 2188 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2189 * caching- and encryption bits different than those of @vma->vm_page_prot, 2190 * because the caching- or encryption mode may not be known at mmap() time. 2191 * 2192 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2193 * to set caching and encryption bits for those vmas (except for COW pages). 2194 * This is ensured by core vm only modifying these page table entries using 2195 * functions that don't touch caching- or encryption bits, using pte_modify() 2196 * if needed. (See for example mprotect()). 2197 * 2198 * Also when new page-table entries are created, this is only done using the 2199 * fault() callback, and never using the value of vma->vm_page_prot, 2200 * except for page-table entries that point to anonymous pages as the result 2201 * of COW. 2202 * 2203 * Context: Process context. May allocate using %GFP_KERNEL. 2204 * Return: vm_fault_t value. 2205 */ 2206 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2207 unsigned long pfn, pgprot_t pgprot) 2208 { 2209 /* 2210 * Technically, architectures with pte_special can avoid all these 2211 * restrictions (same for remap_pfn_range). However we would like 2212 * consistency in testing and feature parity among all, so we should 2213 * try to keep these invariants in place for everybody. 2214 */ 2215 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2216 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2217 (VM_PFNMAP|VM_MIXEDMAP)); 2218 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2219 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2220 2221 if (addr < vma->vm_start || addr >= vma->vm_end) 2222 return VM_FAULT_SIGBUS; 2223 2224 if (!pfn_modify_allowed(pfn, pgprot)) 2225 return VM_FAULT_SIGBUS; 2226 2227 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2228 2229 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2230 false); 2231 } 2232 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2233 2234 /** 2235 * vmf_insert_pfn - insert single pfn into user vma 2236 * @vma: user vma to map to 2237 * @addr: target user address of this page 2238 * @pfn: source kernel pfn 2239 * 2240 * Similar to vm_insert_page, this allows drivers to insert individual pages 2241 * they've allocated into a user vma. Same comments apply. 2242 * 2243 * This function should only be called from a vm_ops->fault handler, and 2244 * in that case the handler should return the result of this function. 2245 * 2246 * vma cannot be a COW mapping. 2247 * 2248 * As this is called only for pages that do not currently exist, we 2249 * do not need to flush old virtual caches or the TLB. 2250 * 2251 * Context: Process context. May allocate using %GFP_KERNEL. 2252 * Return: vm_fault_t value. 2253 */ 2254 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2255 unsigned long pfn) 2256 { 2257 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2258 } 2259 EXPORT_SYMBOL(vmf_insert_pfn); 2260 2261 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2262 { 2263 /* these checks mirror the abort conditions in vm_normal_page */ 2264 if (vma->vm_flags & VM_MIXEDMAP) 2265 return true; 2266 if (pfn_t_devmap(pfn)) 2267 return true; 2268 if (pfn_t_special(pfn)) 2269 return true; 2270 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2271 return true; 2272 return false; 2273 } 2274 2275 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2276 unsigned long addr, pfn_t pfn, bool mkwrite) 2277 { 2278 pgprot_t pgprot = vma->vm_page_prot; 2279 int err; 2280 2281 BUG_ON(!vm_mixed_ok(vma, pfn)); 2282 2283 if (addr < vma->vm_start || addr >= vma->vm_end) 2284 return VM_FAULT_SIGBUS; 2285 2286 track_pfn_insert(vma, &pgprot, pfn); 2287 2288 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2289 return VM_FAULT_SIGBUS; 2290 2291 /* 2292 * If we don't have pte special, then we have to use the pfn_valid() 2293 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2294 * refcount the page if pfn_valid is true (hence insert_page rather 2295 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2296 * without pte special, it would there be refcounted as a normal page. 2297 */ 2298 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2299 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2300 struct page *page; 2301 2302 /* 2303 * At this point we are committed to insert_page() 2304 * regardless of whether the caller specified flags that 2305 * result in pfn_t_has_page() == false. 2306 */ 2307 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2308 err = insert_page(vma, addr, page, pgprot); 2309 } else { 2310 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2311 } 2312 2313 if (err == -ENOMEM) 2314 return VM_FAULT_OOM; 2315 if (err < 0 && err != -EBUSY) 2316 return VM_FAULT_SIGBUS; 2317 2318 return VM_FAULT_NOPAGE; 2319 } 2320 2321 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2322 pfn_t pfn) 2323 { 2324 return __vm_insert_mixed(vma, addr, pfn, false); 2325 } 2326 EXPORT_SYMBOL(vmf_insert_mixed); 2327 2328 /* 2329 * If the insertion of PTE failed because someone else already added a 2330 * different entry in the mean time, we treat that as success as we assume 2331 * the same entry was actually inserted. 2332 */ 2333 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2334 unsigned long addr, pfn_t pfn) 2335 { 2336 return __vm_insert_mixed(vma, addr, pfn, true); 2337 } 2338 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2339 2340 /* 2341 * maps a range of physical memory into the requested pages. the old 2342 * mappings are removed. any references to nonexistent pages results 2343 * in null mappings (currently treated as "copy-on-access") 2344 */ 2345 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2346 unsigned long addr, unsigned long end, 2347 unsigned long pfn, pgprot_t prot) 2348 { 2349 pte_t *pte, *mapped_pte; 2350 spinlock_t *ptl; 2351 int err = 0; 2352 2353 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2354 if (!pte) 2355 return -ENOMEM; 2356 arch_enter_lazy_mmu_mode(); 2357 do { 2358 BUG_ON(!pte_none(ptep_get(pte))); 2359 if (!pfn_modify_allowed(pfn, prot)) { 2360 err = -EACCES; 2361 break; 2362 } 2363 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2364 pfn++; 2365 } while (pte++, addr += PAGE_SIZE, addr != end); 2366 arch_leave_lazy_mmu_mode(); 2367 pte_unmap_unlock(mapped_pte, ptl); 2368 return err; 2369 } 2370 2371 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2372 unsigned long addr, unsigned long end, 2373 unsigned long pfn, pgprot_t prot) 2374 { 2375 pmd_t *pmd; 2376 unsigned long next; 2377 int err; 2378 2379 pfn -= addr >> PAGE_SHIFT; 2380 pmd = pmd_alloc(mm, pud, addr); 2381 if (!pmd) 2382 return -ENOMEM; 2383 VM_BUG_ON(pmd_trans_huge(*pmd)); 2384 do { 2385 next = pmd_addr_end(addr, end); 2386 err = remap_pte_range(mm, pmd, addr, next, 2387 pfn + (addr >> PAGE_SHIFT), prot); 2388 if (err) 2389 return err; 2390 } while (pmd++, addr = next, addr != end); 2391 return 0; 2392 } 2393 2394 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2395 unsigned long addr, unsigned long end, 2396 unsigned long pfn, pgprot_t prot) 2397 { 2398 pud_t *pud; 2399 unsigned long next; 2400 int err; 2401 2402 pfn -= addr >> PAGE_SHIFT; 2403 pud = pud_alloc(mm, p4d, addr); 2404 if (!pud) 2405 return -ENOMEM; 2406 do { 2407 next = pud_addr_end(addr, end); 2408 err = remap_pmd_range(mm, pud, addr, next, 2409 pfn + (addr >> PAGE_SHIFT), prot); 2410 if (err) 2411 return err; 2412 } while (pud++, addr = next, addr != end); 2413 return 0; 2414 } 2415 2416 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2417 unsigned long addr, unsigned long end, 2418 unsigned long pfn, pgprot_t prot) 2419 { 2420 p4d_t *p4d; 2421 unsigned long next; 2422 int err; 2423 2424 pfn -= addr >> PAGE_SHIFT; 2425 p4d = p4d_alloc(mm, pgd, addr); 2426 if (!p4d) 2427 return -ENOMEM; 2428 do { 2429 next = p4d_addr_end(addr, end); 2430 err = remap_pud_range(mm, p4d, addr, next, 2431 pfn + (addr >> PAGE_SHIFT), prot); 2432 if (err) 2433 return err; 2434 } while (p4d++, addr = next, addr != end); 2435 return 0; 2436 } 2437 2438 /* 2439 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2440 * must have pre-validated the caching bits of the pgprot_t. 2441 */ 2442 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2443 unsigned long pfn, unsigned long size, pgprot_t prot) 2444 { 2445 pgd_t *pgd; 2446 unsigned long next; 2447 unsigned long end = addr + PAGE_ALIGN(size); 2448 struct mm_struct *mm = vma->vm_mm; 2449 int err; 2450 2451 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2452 return -EINVAL; 2453 2454 /* 2455 * Physically remapped pages are special. Tell the 2456 * rest of the world about it: 2457 * VM_IO tells people not to look at these pages 2458 * (accesses can have side effects). 2459 * VM_PFNMAP tells the core MM that the base pages are just 2460 * raw PFN mappings, and do not have a "struct page" associated 2461 * with them. 2462 * VM_DONTEXPAND 2463 * Disable vma merging and expanding with mremap(). 2464 * VM_DONTDUMP 2465 * Omit vma from core dump, even when VM_IO turned off. 2466 * 2467 * There's a horrible special case to handle copy-on-write 2468 * behaviour that some programs depend on. We mark the "original" 2469 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2470 * See vm_normal_page() for details. 2471 */ 2472 if (is_cow_mapping(vma->vm_flags)) { 2473 if (addr != vma->vm_start || end != vma->vm_end) 2474 return -EINVAL; 2475 vma->vm_pgoff = pfn; 2476 } 2477 2478 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2479 2480 BUG_ON(addr >= end); 2481 pfn -= addr >> PAGE_SHIFT; 2482 pgd = pgd_offset(mm, addr); 2483 flush_cache_range(vma, addr, end); 2484 do { 2485 next = pgd_addr_end(addr, end); 2486 err = remap_p4d_range(mm, pgd, addr, next, 2487 pfn + (addr >> PAGE_SHIFT), prot); 2488 if (err) 2489 return err; 2490 } while (pgd++, addr = next, addr != end); 2491 2492 return 0; 2493 } 2494 2495 /** 2496 * remap_pfn_range - remap kernel memory to userspace 2497 * @vma: user vma to map to 2498 * @addr: target page aligned user address to start at 2499 * @pfn: page frame number of kernel physical memory address 2500 * @size: size of mapping area 2501 * @prot: page protection flags for this mapping 2502 * 2503 * Note: this is only safe if the mm semaphore is held when called. 2504 * 2505 * Return: %0 on success, negative error code otherwise. 2506 */ 2507 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2508 unsigned long pfn, unsigned long size, pgprot_t prot) 2509 { 2510 int err; 2511 2512 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2513 if (err) 2514 return -EINVAL; 2515 2516 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2517 if (err) 2518 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2519 return err; 2520 } 2521 EXPORT_SYMBOL(remap_pfn_range); 2522 2523 /** 2524 * vm_iomap_memory - remap memory to userspace 2525 * @vma: user vma to map to 2526 * @start: start of the physical memory to be mapped 2527 * @len: size of area 2528 * 2529 * This is a simplified io_remap_pfn_range() for common driver use. The 2530 * driver just needs to give us the physical memory range to be mapped, 2531 * we'll figure out the rest from the vma information. 2532 * 2533 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2534 * whatever write-combining details or similar. 2535 * 2536 * Return: %0 on success, negative error code otherwise. 2537 */ 2538 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2539 { 2540 unsigned long vm_len, pfn, pages; 2541 2542 /* Check that the physical memory area passed in looks valid */ 2543 if (start + len < start) 2544 return -EINVAL; 2545 /* 2546 * You *really* shouldn't map things that aren't page-aligned, 2547 * but we've historically allowed it because IO memory might 2548 * just have smaller alignment. 2549 */ 2550 len += start & ~PAGE_MASK; 2551 pfn = start >> PAGE_SHIFT; 2552 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2553 if (pfn + pages < pfn) 2554 return -EINVAL; 2555 2556 /* We start the mapping 'vm_pgoff' pages into the area */ 2557 if (vma->vm_pgoff > pages) 2558 return -EINVAL; 2559 pfn += vma->vm_pgoff; 2560 pages -= vma->vm_pgoff; 2561 2562 /* Can we fit all of the mapping? */ 2563 vm_len = vma->vm_end - vma->vm_start; 2564 if (vm_len >> PAGE_SHIFT > pages) 2565 return -EINVAL; 2566 2567 /* Ok, let it rip */ 2568 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2569 } 2570 EXPORT_SYMBOL(vm_iomap_memory); 2571 2572 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2573 unsigned long addr, unsigned long end, 2574 pte_fn_t fn, void *data, bool create, 2575 pgtbl_mod_mask *mask) 2576 { 2577 pte_t *pte, *mapped_pte; 2578 int err = 0; 2579 spinlock_t *ptl; 2580 2581 if (create) { 2582 mapped_pte = pte = (mm == &init_mm) ? 2583 pte_alloc_kernel_track(pmd, addr, mask) : 2584 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2585 if (!pte) 2586 return -ENOMEM; 2587 } else { 2588 mapped_pte = pte = (mm == &init_mm) ? 2589 pte_offset_kernel(pmd, addr) : 2590 pte_offset_map_lock(mm, pmd, addr, &ptl); 2591 if (!pte) 2592 return -EINVAL; 2593 } 2594 2595 arch_enter_lazy_mmu_mode(); 2596 2597 if (fn) { 2598 do { 2599 if (create || !pte_none(ptep_get(pte))) { 2600 err = fn(pte++, addr, data); 2601 if (err) 2602 break; 2603 } 2604 } while (addr += PAGE_SIZE, addr != end); 2605 } 2606 *mask |= PGTBL_PTE_MODIFIED; 2607 2608 arch_leave_lazy_mmu_mode(); 2609 2610 if (mm != &init_mm) 2611 pte_unmap_unlock(mapped_pte, ptl); 2612 return err; 2613 } 2614 2615 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2616 unsigned long addr, unsigned long end, 2617 pte_fn_t fn, void *data, bool create, 2618 pgtbl_mod_mask *mask) 2619 { 2620 pmd_t *pmd; 2621 unsigned long next; 2622 int err = 0; 2623 2624 BUG_ON(pud_huge(*pud)); 2625 2626 if (create) { 2627 pmd = pmd_alloc_track(mm, pud, addr, mask); 2628 if (!pmd) 2629 return -ENOMEM; 2630 } else { 2631 pmd = pmd_offset(pud, addr); 2632 } 2633 do { 2634 next = pmd_addr_end(addr, end); 2635 if (pmd_none(*pmd) && !create) 2636 continue; 2637 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2638 return -EINVAL; 2639 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2640 if (!create) 2641 continue; 2642 pmd_clear_bad(pmd); 2643 } 2644 err = apply_to_pte_range(mm, pmd, addr, next, 2645 fn, data, create, mask); 2646 if (err) 2647 break; 2648 } while (pmd++, addr = next, addr != end); 2649 2650 return err; 2651 } 2652 2653 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2654 unsigned long addr, unsigned long end, 2655 pte_fn_t fn, void *data, bool create, 2656 pgtbl_mod_mask *mask) 2657 { 2658 pud_t *pud; 2659 unsigned long next; 2660 int err = 0; 2661 2662 if (create) { 2663 pud = pud_alloc_track(mm, p4d, addr, mask); 2664 if (!pud) 2665 return -ENOMEM; 2666 } else { 2667 pud = pud_offset(p4d, addr); 2668 } 2669 do { 2670 next = pud_addr_end(addr, end); 2671 if (pud_none(*pud) && !create) 2672 continue; 2673 if (WARN_ON_ONCE(pud_leaf(*pud))) 2674 return -EINVAL; 2675 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2676 if (!create) 2677 continue; 2678 pud_clear_bad(pud); 2679 } 2680 err = apply_to_pmd_range(mm, pud, addr, next, 2681 fn, data, create, mask); 2682 if (err) 2683 break; 2684 } while (pud++, addr = next, addr != end); 2685 2686 return err; 2687 } 2688 2689 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2690 unsigned long addr, unsigned long end, 2691 pte_fn_t fn, void *data, bool create, 2692 pgtbl_mod_mask *mask) 2693 { 2694 p4d_t *p4d; 2695 unsigned long next; 2696 int err = 0; 2697 2698 if (create) { 2699 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2700 if (!p4d) 2701 return -ENOMEM; 2702 } else { 2703 p4d = p4d_offset(pgd, addr); 2704 } 2705 do { 2706 next = p4d_addr_end(addr, end); 2707 if (p4d_none(*p4d) && !create) 2708 continue; 2709 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2710 return -EINVAL; 2711 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2712 if (!create) 2713 continue; 2714 p4d_clear_bad(p4d); 2715 } 2716 err = apply_to_pud_range(mm, p4d, addr, next, 2717 fn, data, create, mask); 2718 if (err) 2719 break; 2720 } while (p4d++, addr = next, addr != end); 2721 2722 return err; 2723 } 2724 2725 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2726 unsigned long size, pte_fn_t fn, 2727 void *data, bool create) 2728 { 2729 pgd_t *pgd; 2730 unsigned long start = addr, next; 2731 unsigned long end = addr + size; 2732 pgtbl_mod_mask mask = 0; 2733 int err = 0; 2734 2735 if (WARN_ON(addr >= end)) 2736 return -EINVAL; 2737 2738 pgd = pgd_offset(mm, addr); 2739 do { 2740 next = pgd_addr_end(addr, end); 2741 if (pgd_none(*pgd) && !create) 2742 continue; 2743 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2744 return -EINVAL; 2745 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2746 if (!create) 2747 continue; 2748 pgd_clear_bad(pgd); 2749 } 2750 err = apply_to_p4d_range(mm, pgd, addr, next, 2751 fn, data, create, &mask); 2752 if (err) 2753 break; 2754 } while (pgd++, addr = next, addr != end); 2755 2756 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2757 arch_sync_kernel_mappings(start, start + size); 2758 2759 return err; 2760 } 2761 2762 /* 2763 * Scan a region of virtual memory, filling in page tables as necessary 2764 * and calling a provided function on each leaf page table. 2765 */ 2766 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2767 unsigned long size, pte_fn_t fn, void *data) 2768 { 2769 return __apply_to_page_range(mm, addr, size, fn, data, true); 2770 } 2771 EXPORT_SYMBOL_GPL(apply_to_page_range); 2772 2773 /* 2774 * Scan a region of virtual memory, calling a provided function on 2775 * each leaf page table where it exists. 2776 * 2777 * Unlike apply_to_page_range, this does _not_ fill in page tables 2778 * where they are absent. 2779 */ 2780 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2781 unsigned long size, pte_fn_t fn, void *data) 2782 { 2783 return __apply_to_page_range(mm, addr, size, fn, data, false); 2784 } 2785 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2786 2787 /* 2788 * handle_pte_fault chooses page fault handler according to an entry which was 2789 * read non-atomically. Before making any commitment, on those architectures 2790 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2791 * parts, do_swap_page must check under lock before unmapping the pte and 2792 * proceeding (but do_wp_page is only called after already making such a check; 2793 * and do_anonymous_page can safely check later on). 2794 */ 2795 static inline int pte_unmap_same(struct vm_fault *vmf) 2796 { 2797 int same = 1; 2798 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2799 if (sizeof(pte_t) > sizeof(unsigned long)) { 2800 spin_lock(vmf->ptl); 2801 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte); 2802 spin_unlock(vmf->ptl); 2803 } 2804 #endif 2805 pte_unmap(vmf->pte); 2806 vmf->pte = NULL; 2807 return same; 2808 } 2809 2810 /* 2811 * Return: 2812 * 0: copied succeeded 2813 * -EHWPOISON: copy failed due to hwpoison in source page 2814 * -EAGAIN: copied failed (some other reason) 2815 */ 2816 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2817 struct vm_fault *vmf) 2818 { 2819 int ret; 2820 void *kaddr; 2821 void __user *uaddr; 2822 struct vm_area_struct *vma = vmf->vma; 2823 struct mm_struct *mm = vma->vm_mm; 2824 unsigned long addr = vmf->address; 2825 2826 if (likely(src)) { 2827 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2828 memory_failure_queue(page_to_pfn(src), 0); 2829 return -EHWPOISON; 2830 } 2831 return 0; 2832 } 2833 2834 /* 2835 * If the source page was a PFN mapping, we don't have 2836 * a "struct page" for it. We do a best-effort copy by 2837 * just copying from the original user address. If that 2838 * fails, we just zero-fill it. Live with it. 2839 */ 2840 kaddr = kmap_atomic(dst); 2841 uaddr = (void __user *)(addr & PAGE_MASK); 2842 2843 /* 2844 * On architectures with software "accessed" bits, we would 2845 * take a double page fault, so mark it accessed here. 2846 */ 2847 vmf->pte = NULL; 2848 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2849 pte_t entry; 2850 2851 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2852 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2853 /* 2854 * Other thread has already handled the fault 2855 * and update local tlb only 2856 */ 2857 if (vmf->pte) 2858 update_mmu_tlb(vma, addr, vmf->pte); 2859 ret = -EAGAIN; 2860 goto pte_unlock; 2861 } 2862 2863 entry = pte_mkyoung(vmf->orig_pte); 2864 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2865 update_mmu_cache(vma, addr, vmf->pte); 2866 } 2867 2868 /* 2869 * This really shouldn't fail, because the page is there 2870 * in the page tables. But it might just be unreadable, 2871 * in which case we just give up and fill the result with 2872 * zeroes. 2873 */ 2874 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2875 if (vmf->pte) 2876 goto warn; 2877 2878 /* Re-validate under PTL if the page is still mapped */ 2879 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2880 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 2881 /* The PTE changed under us, update local tlb */ 2882 if (vmf->pte) 2883 update_mmu_tlb(vma, addr, vmf->pte); 2884 ret = -EAGAIN; 2885 goto pte_unlock; 2886 } 2887 2888 /* 2889 * The same page can be mapped back since last copy attempt. 2890 * Try to copy again under PTL. 2891 */ 2892 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2893 /* 2894 * Give a warn in case there can be some obscure 2895 * use-case 2896 */ 2897 warn: 2898 WARN_ON_ONCE(1); 2899 clear_page(kaddr); 2900 } 2901 } 2902 2903 ret = 0; 2904 2905 pte_unlock: 2906 if (vmf->pte) 2907 pte_unmap_unlock(vmf->pte, vmf->ptl); 2908 kunmap_atomic(kaddr); 2909 flush_dcache_page(dst); 2910 2911 return ret; 2912 } 2913 2914 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2915 { 2916 struct file *vm_file = vma->vm_file; 2917 2918 if (vm_file) 2919 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2920 2921 /* 2922 * Special mappings (e.g. VDSO) do not have any file so fake 2923 * a default GFP_KERNEL for them. 2924 */ 2925 return GFP_KERNEL; 2926 } 2927 2928 /* 2929 * Notify the address space that the page is about to become writable so that 2930 * it can prohibit this or wait for the page to get into an appropriate state. 2931 * 2932 * We do this without the lock held, so that it can sleep if it needs to. 2933 */ 2934 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf, struct folio *folio) 2935 { 2936 vm_fault_t ret; 2937 unsigned int old_flags = vmf->flags; 2938 2939 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2940 2941 if (vmf->vma->vm_file && 2942 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2943 return VM_FAULT_SIGBUS; 2944 2945 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2946 /* Restore original flags so that caller is not surprised */ 2947 vmf->flags = old_flags; 2948 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2949 return ret; 2950 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2951 folio_lock(folio); 2952 if (!folio->mapping) { 2953 folio_unlock(folio); 2954 return 0; /* retry */ 2955 } 2956 ret |= VM_FAULT_LOCKED; 2957 } else 2958 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2959 return ret; 2960 } 2961 2962 /* 2963 * Handle dirtying of a page in shared file mapping on a write fault. 2964 * 2965 * The function expects the page to be locked and unlocks it. 2966 */ 2967 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2968 { 2969 struct vm_area_struct *vma = vmf->vma; 2970 struct address_space *mapping; 2971 struct folio *folio = page_folio(vmf->page); 2972 bool dirtied; 2973 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2974 2975 dirtied = folio_mark_dirty(folio); 2976 VM_BUG_ON_FOLIO(folio_test_anon(folio), folio); 2977 /* 2978 * Take a local copy of the address_space - folio.mapping may be zeroed 2979 * by truncate after folio_unlock(). The address_space itself remains 2980 * pinned by vma->vm_file's reference. We rely on folio_unlock()'s 2981 * release semantics to prevent the compiler from undoing this copying. 2982 */ 2983 mapping = folio_raw_mapping(folio); 2984 folio_unlock(folio); 2985 2986 if (!page_mkwrite) 2987 file_update_time(vma->vm_file); 2988 2989 /* 2990 * Throttle page dirtying rate down to writeback speed. 2991 * 2992 * mapping may be NULL here because some device drivers do not 2993 * set page.mapping but still dirty their pages 2994 * 2995 * Drop the mmap_lock before waiting on IO, if we can. The file 2996 * is pinning the mapping, as per above. 2997 */ 2998 if ((dirtied || page_mkwrite) && mapping) { 2999 struct file *fpin; 3000 3001 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 3002 balance_dirty_pages_ratelimited(mapping); 3003 if (fpin) { 3004 fput(fpin); 3005 return VM_FAULT_COMPLETED; 3006 } 3007 } 3008 3009 return 0; 3010 } 3011 3012 /* 3013 * Handle write page faults for pages that can be reused in the current vma 3014 * 3015 * This can happen either due to the mapping being with the VM_SHARED flag, 3016 * or due to us being the last reference standing to the page. In either 3017 * case, all we need to do here is to mark the page as writable and update 3018 * any related book-keeping. 3019 */ 3020 static inline void wp_page_reuse(struct vm_fault *vmf) 3021 __releases(vmf->ptl) 3022 { 3023 struct vm_area_struct *vma = vmf->vma; 3024 struct page *page = vmf->page; 3025 pte_t entry; 3026 3027 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3028 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3029 3030 /* 3031 * Clear the pages cpupid information as the existing 3032 * information potentially belongs to a now completely 3033 * unrelated process. 3034 */ 3035 if (page) 3036 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3037 3038 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3039 entry = pte_mkyoung(vmf->orig_pte); 3040 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3041 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3042 update_mmu_cache(vma, vmf->address, vmf->pte); 3043 pte_unmap_unlock(vmf->pte, vmf->ptl); 3044 count_vm_event(PGREUSE); 3045 } 3046 3047 /* 3048 * Handle the case of a page which we actually need to copy to a new page, 3049 * either due to COW or unsharing. 3050 * 3051 * Called with mmap_lock locked and the old page referenced, but 3052 * without the ptl held. 3053 * 3054 * High level logic flow: 3055 * 3056 * - Allocate a page, copy the content of the old page to the new one. 3057 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3058 * - Take the PTL. If the pte changed, bail out and release the allocated page 3059 * - If the pte is still the way we remember it, update the page table and all 3060 * relevant references. This includes dropping the reference the page-table 3061 * held to the old page, as well as updating the rmap. 3062 * - In any case, unlock the PTL and drop the reference we took to the old page. 3063 */ 3064 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3065 { 3066 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3067 struct vm_area_struct *vma = vmf->vma; 3068 struct mm_struct *mm = vma->vm_mm; 3069 struct folio *old_folio = NULL; 3070 struct folio *new_folio = NULL; 3071 pte_t entry; 3072 int page_copied = 0; 3073 struct mmu_notifier_range range; 3074 int ret; 3075 3076 delayacct_wpcopy_start(); 3077 3078 if (vmf->page) 3079 old_folio = page_folio(vmf->page); 3080 if (unlikely(anon_vma_prepare(vma))) 3081 goto oom; 3082 3083 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3084 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3085 if (!new_folio) 3086 goto oom; 3087 } else { 3088 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3089 vmf->address, false); 3090 if (!new_folio) 3091 goto oom; 3092 3093 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3094 if (ret) { 3095 /* 3096 * COW failed, if the fault was solved by other, 3097 * it's fine. If not, userspace would re-fault on 3098 * the same address and we will handle the fault 3099 * from the second attempt. 3100 * The -EHWPOISON case will not be retried. 3101 */ 3102 folio_put(new_folio); 3103 if (old_folio) 3104 folio_put(old_folio); 3105 3106 delayacct_wpcopy_end(); 3107 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3108 } 3109 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3110 } 3111 3112 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3113 goto oom_free_new; 3114 folio_throttle_swaprate(new_folio, GFP_KERNEL); 3115 3116 __folio_mark_uptodate(new_folio); 3117 3118 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3119 vmf->address & PAGE_MASK, 3120 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3121 mmu_notifier_invalidate_range_start(&range); 3122 3123 /* 3124 * Re-check the pte - we dropped the lock 3125 */ 3126 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3127 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 3128 if (old_folio) { 3129 if (!folio_test_anon(old_folio)) { 3130 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3131 inc_mm_counter(mm, MM_ANONPAGES); 3132 } 3133 } else { 3134 ksm_might_unmap_zero_page(mm, vmf->orig_pte); 3135 inc_mm_counter(mm, MM_ANONPAGES); 3136 } 3137 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3138 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3139 entry = pte_sw_mkyoung(entry); 3140 if (unlikely(unshare)) { 3141 if (pte_soft_dirty(vmf->orig_pte)) 3142 entry = pte_mksoft_dirty(entry); 3143 if (pte_uffd_wp(vmf->orig_pte)) 3144 entry = pte_mkuffd_wp(entry); 3145 } else { 3146 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3147 } 3148 3149 /* 3150 * Clear the pte entry and flush it first, before updating the 3151 * pte with the new entry, to keep TLBs on different CPUs in 3152 * sync. This code used to set the new PTE then flush TLBs, but 3153 * that left a window where the new PTE could be loaded into 3154 * some TLBs while the old PTE remains in others. 3155 */ 3156 ptep_clear_flush(vma, vmf->address, vmf->pte); 3157 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3158 folio_add_lru_vma(new_folio, vma); 3159 /* 3160 * We call the notify macro here because, when using secondary 3161 * mmu page tables (such as kvm shadow page tables), we want the 3162 * new page to be mapped directly into the secondary page table. 3163 */ 3164 BUG_ON(unshare && pte_write(entry)); 3165 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3166 update_mmu_cache(vma, vmf->address, vmf->pte); 3167 if (old_folio) { 3168 /* 3169 * Only after switching the pte to the new page may 3170 * we remove the mapcount here. Otherwise another 3171 * process may come and find the rmap count decremented 3172 * before the pte is switched to the new page, and 3173 * "reuse" the old page writing into it while our pte 3174 * here still points into it and can be read by other 3175 * threads. 3176 * 3177 * The critical issue is to order this 3178 * page_remove_rmap with the ptp_clear_flush above. 3179 * Those stores are ordered by (if nothing else,) 3180 * the barrier present in the atomic_add_negative 3181 * in page_remove_rmap. 3182 * 3183 * Then the TLB flush in ptep_clear_flush ensures that 3184 * no process can access the old page before the 3185 * decremented mapcount is visible. And the old page 3186 * cannot be reused until after the decremented 3187 * mapcount is visible. So transitively, TLBs to 3188 * old page will be flushed before it can be reused. 3189 */ 3190 page_remove_rmap(vmf->page, vma, false); 3191 } 3192 3193 /* Free the old page.. */ 3194 new_folio = old_folio; 3195 page_copied = 1; 3196 pte_unmap_unlock(vmf->pte, vmf->ptl); 3197 } else if (vmf->pte) { 3198 update_mmu_tlb(vma, vmf->address, vmf->pte); 3199 pte_unmap_unlock(vmf->pte, vmf->ptl); 3200 } 3201 3202 mmu_notifier_invalidate_range_end(&range); 3203 3204 if (new_folio) 3205 folio_put(new_folio); 3206 if (old_folio) { 3207 if (page_copied) 3208 free_swap_cache(&old_folio->page); 3209 folio_put(old_folio); 3210 } 3211 3212 delayacct_wpcopy_end(); 3213 return 0; 3214 oom_free_new: 3215 folio_put(new_folio); 3216 oom: 3217 if (old_folio) 3218 folio_put(old_folio); 3219 3220 delayacct_wpcopy_end(); 3221 return VM_FAULT_OOM; 3222 } 3223 3224 /** 3225 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3226 * writeable once the page is prepared 3227 * 3228 * @vmf: structure describing the fault 3229 * 3230 * This function handles all that is needed to finish a write page fault in a 3231 * shared mapping due to PTE being read-only once the mapped page is prepared. 3232 * It handles locking of PTE and modifying it. 3233 * 3234 * The function expects the page to be locked or other protection against 3235 * concurrent faults / writeback (such as DAX radix tree locks). 3236 * 3237 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3238 * we acquired PTE lock. 3239 */ 3240 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3241 { 3242 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3243 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3244 &vmf->ptl); 3245 if (!vmf->pte) 3246 return VM_FAULT_NOPAGE; 3247 /* 3248 * We might have raced with another page fault while we released the 3249 * pte_offset_map_lock. 3250 */ 3251 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) { 3252 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3253 pte_unmap_unlock(vmf->pte, vmf->ptl); 3254 return VM_FAULT_NOPAGE; 3255 } 3256 wp_page_reuse(vmf); 3257 return 0; 3258 } 3259 3260 /* 3261 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3262 * mapping 3263 */ 3264 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3265 { 3266 struct vm_area_struct *vma = vmf->vma; 3267 3268 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3269 vm_fault_t ret; 3270 3271 pte_unmap_unlock(vmf->pte, vmf->ptl); 3272 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3273 vma_end_read(vmf->vma); 3274 return VM_FAULT_RETRY; 3275 } 3276 3277 vmf->flags |= FAULT_FLAG_MKWRITE; 3278 ret = vma->vm_ops->pfn_mkwrite(vmf); 3279 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3280 return ret; 3281 return finish_mkwrite_fault(vmf); 3282 } 3283 wp_page_reuse(vmf); 3284 return 0; 3285 } 3286 3287 static vm_fault_t wp_page_shared(struct vm_fault *vmf, struct folio *folio) 3288 __releases(vmf->ptl) 3289 { 3290 struct vm_area_struct *vma = vmf->vma; 3291 vm_fault_t ret = 0; 3292 3293 folio_get(folio); 3294 3295 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3296 vm_fault_t tmp; 3297 3298 pte_unmap_unlock(vmf->pte, vmf->ptl); 3299 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3300 folio_put(folio); 3301 vma_end_read(vmf->vma); 3302 return VM_FAULT_RETRY; 3303 } 3304 3305 tmp = do_page_mkwrite(vmf, folio); 3306 if (unlikely(!tmp || (tmp & 3307 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3308 folio_put(folio); 3309 return tmp; 3310 } 3311 tmp = finish_mkwrite_fault(vmf); 3312 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3313 folio_unlock(folio); 3314 folio_put(folio); 3315 return tmp; 3316 } 3317 } else { 3318 wp_page_reuse(vmf); 3319 folio_lock(folio); 3320 } 3321 ret |= fault_dirty_shared_page(vmf); 3322 folio_put(folio); 3323 3324 return ret; 3325 } 3326 3327 /* 3328 * This routine handles present pages, when 3329 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3330 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3331 * (FAULT_FLAG_UNSHARE) 3332 * 3333 * It is done by copying the page to a new address and decrementing the 3334 * shared-page counter for the old page. 3335 * 3336 * Note that this routine assumes that the protection checks have been 3337 * done by the caller (the low-level page fault routine in most cases). 3338 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3339 * done any necessary COW. 3340 * 3341 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3342 * though the page will change only once the write actually happens. This 3343 * avoids a few races, and potentially makes it more efficient. 3344 * 3345 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3346 * but allow concurrent faults), with pte both mapped and locked. 3347 * We return with mmap_lock still held, but pte unmapped and unlocked. 3348 */ 3349 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3350 __releases(vmf->ptl) 3351 { 3352 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3353 struct vm_area_struct *vma = vmf->vma; 3354 struct folio *folio = NULL; 3355 3356 if (likely(!unshare)) { 3357 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) { 3358 pte_unmap_unlock(vmf->pte, vmf->ptl); 3359 return handle_userfault(vmf, VM_UFFD_WP); 3360 } 3361 3362 /* 3363 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3364 * is flushed in this case before copying. 3365 */ 3366 if (unlikely(userfaultfd_wp(vmf->vma) && 3367 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3368 flush_tlb_page(vmf->vma, vmf->address); 3369 } 3370 3371 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3372 3373 if (vmf->page) 3374 folio = page_folio(vmf->page); 3375 3376 /* 3377 * Shared mapping: we are guaranteed to have VM_WRITE and 3378 * FAULT_FLAG_WRITE set at this point. 3379 */ 3380 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3381 /* 3382 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3383 * VM_PFNMAP VMA. 3384 * 3385 * We should not cow pages in a shared writeable mapping. 3386 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3387 */ 3388 if (!vmf->page) 3389 return wp_pfn_shared(vmf); 3390 return wp_page_shared(vmf, folio); 3391 } 3392 3393 /* 3394 * Private mapping: create an exclusive anonymous page copy if reuse 3395 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3396 */ 3397 if (folio && folio_test_anon(folio)) { 3398 /* 3399 * If the page is exclusive to this process we must reuse the 3400 * page without further checks. 3401 */ 3402 if (PageAnonExclusive(vmf->page)) 3403 goto reuse; 3404 3405 /* 3406 * We have to verify under folio lock: these early checks are 3407 * just an optimization to avoid locking the folio and freeing 3408 * the swapcache if there is little hope that we can reuse. 3409 * 3410 * KSM doesn't necessarily raise the folio refcount. 3411 */ 3412 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3413 goto copy; 3414 if (!folio_test_lru(folio)) 3415 /* 3416 * We cannot easily detect+handle references from 3417 * remote LRU caches or references to LRU folios. 3418 */ 3419 lru_add_drain(); 3420 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3421 goto copy; 3422 if (!folio_trylock(folio)) 3423 goto copy; 3424 if (folio_test_swapcache(folio)) 3425 folio_free_swap(folio); 3426 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3427 folio_unlock(folio); 3428 goto copy; 3429 } 3430 /* 3431 * Ok, we've got the only folio reference from our mapping 3432 * and the folio is locked, it's dark out, and we're wearing 3433 * sunglasses. Hit it. 3434 */ 3435 page_move_anon_rmap(vmf->page, vma); 3436 folio_unlock(folio); 3437 reuse: 3438 if (unlikely(unshare)) { 3439 pte_unmap_unlock(vmf->pte, vmf->ptl); 3440 return 0; 3441 } 3442 wp_page_reuse(vmf); 3443 return 0; 3444 } 3445 copy: 3446 if ((vmf->flags & FAULT_FLAG_VMA_LOCK) && !vma->anon_vma) { 3447 pte_unmap_unlock(vmf->pte, vmf->ptl); 3448 vma_end_read(vmf->vma); 3449 return VM_FAULT_RETRY; 3450 } 3451 3452 /* 3453 * Ok, we need to copy. Oh, well.. 3454 */ 3455 if (folio) 3456 folio_get(folio); 3457 3458 pte_unmap_unlock(vmf->pte, vmf->ptl); 3459 #ifdef CONFIG_KSM 3460 if (folio && folio_test_ksm(folio)) 3461 count_vm_event(COW_KSM); 3462 #endif 3463 return wp_page_copy(vmf); 3464 } 3465 3466 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3467 unsigned long start_addr, unsigned long end_addr, 3468 struct zap_details *details) 3469 { 3470 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3471 } 3472 3473 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3474 pgoff_t first_index, 3475 pgoff_t last_index, 3476 struct zap_details *details) 3477 { 3478 struct vm_area_struct *vma; 3479 pgoff_t vba, vea, zba, zea; 3480 3481 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3482 vba = vma->vm_pgoff; 3483 vea = vba + vma_pages(vma) - 1; 3484 zba = max(first_index, vba); 3485 zea = min(last_index, vea); 3486 3487 unmap_mapping_range_vma(vma, 3488 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3489 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3490 details); 3491 } 3492 } 3493 3494 /** 3495 * unmap_mapping_folio() - Unmap single folio from processes. 3496 * @folio: The locked folio to be unmapped. 3497 * 3498 * Unmap this folio from any userspace process which still has it mmaped. 3499 * Typically, for efficiency, the range of nearby pages has already been 3500 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3501 * truncation or invalidation holds the lock on a folio, it may find that 3502 * the page has been remapped again: and then uses unmap_mapping_folio() 3503 * to unmap it finally. 3504 */ 3505 void unmap_mapping_folio(struct folio *folio) 3506 { 3507 struct address_space *mapping = folio->mapping; 3508 struct zap_details details = { }; 3509 pgoff_t first_index; 3510 pgoff_t last_index; 3511 3512 VM_BUG_ON(!folio_test_locked(folio)); 3513 3514 first_index = folio->index; 3515 last_index = folio_next_index(folio) - 1; 3516 3517 details.even_cows = false; 3518 details.single_folio = folio; 3519 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3520 3521 i_mmap_lock_read(mapping); 3522 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3523 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3524 last_index, &details); 3525 i_mmap_unlock_read(mapping); 3526 } 3527 3528 /** 3529 * unmap_mapping_pages() - Unmap pages from processes. 3530 * @mapping: The address space containing pages to be unmapped. 3531 * @start: Index of first page to be unmapped. 3532 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3533 * @even_cows: Whether to unmap even private COWed pages. 3534 * 3535 * Unmap the pages in this address space from any userspace process which 3536 * has them mmaped. Generally, you want to remove COWed pages as well when 3537 * a file is being truncated, but not when invalidating pages from the page 3538 * cache. 3539 */ 3540 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3541 pgoff_t nr, bool even_cows) 3542 { 3543 struct zap_details details = { }; 3544 pgoff_t first_index = start; 3545 pgoff_t last_index = start + nr - 1; 3546 3547 details.even_cows = even_cows; 3548 if (last_index < first_index) 3549 last_index = ULONG_MAX; 3550 3551 i_mmap_lock_read(mapping); 3552 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3553 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3554 last_index, &details); 3555 i_mmap_unlock_read(mapping); 3556 } 3557 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3558 3559 /** 3560 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3561 * address_space corresponding to the specified byte range in the underlying 3562 * file. 3563 * 3564 * @mapping: the address space containing mmaps to be unmapped. 3565 * @holebegin: byte in first page to unmap, relative to the start of 3566 * the underlying file. This will be rounded down to a PAGE_SIZE 3567 * boundary. Note that this is different from truncate_pagecache(), which 3568 * must keep the partial page. In contrast, we must get rid of 3569 * partial pages. 3570 * @holelen: size of prospective hole in bytes. This will be rounded 3571 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3572 * end of the file. 3573 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3574 * but 0 when invalidating pagecache, don't throw away private data. 3575 */ 3576 void unmap_mapping_range(struct address_space *mapping, 3577 loff_t const holebegin, loff_t const holelen, int even_cows) 3578 { 3579 pgoff_t hba = holebegin >> PAGE_SHIFT; 3580 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3581 3582 /* Check for overflow. */ 3583 if (sizeof(holelen) > sizeof(hlen)) { 3584 long long holeend = 3585 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3586 if (holeend & ~(long long)ULONG_MAX) 3587 hlen = ULONG_MAX - hba + 1; 3588 } 3589 3590 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3591 } 3592 EXPORT_SYMBOL(unmap_mapping_range); 3593 3594 /* 3595 * Restore a potential device exclusive pte to a working pte entry 3596 */ 3597 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3598 { 3599 struct folio *folio = page_folio(vmf->page); 3600 struct vm_area_struct *vma = vmf->vma; 3601 struct mmu_notifier_range range; 3602 3603 /* 3604 * We need a reference to lock the folio because we don't hold 3605 * the PTL so a racing thread can remove the device-exclusive 3606 * entry and unmap it. If the folio is free the entry must 3607 * have been removed already. If it happens to have already 3608 * been re-allocated after being freed all we do is lock and 3609 * unlock it. 3610 */ 3611 if (!folio_try_get(folio)) 3612 return 0; 3613 3614 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) { 3615 folio_put(folio); 3616 return VM_FAULT_RETRY; 3617 } 3618 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3619 vma->vm_mm, vmf->address & PAGE_MASK, 3620 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3621 mmu_notifier_invalidate_range_start(&range); 3622 3623 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3624 &vmf->ptl); 3625 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3626 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3627 3628 if (vmf->pte) 3629 pte_unmap_unlock(vmf->pte, vmf->ptl); 3630 folio_unlock(folio); 3631 folio_put(folio); 3632 3633 mmu_notifier_invalidate_range_end(&range); 3634 return 0; 3635 } 3636 3637 static inline bool should_try_to_free_swap(struct folio *folio, 3638 struct vm_area_struct *vma, 3639 unsigned int fault_flags) 3640 { 3641 if (!folio_test_swapcache(folio)) 3642 return false; 3643 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3644 folio_test_mlocked(folio)) 3645 return true; 3646 /* 3647 * If we want to map a page that's in the swapcache writable, we 3648 * have to detect via the refcount if we're really the exclusive 3649 * user. Try freeing the swapcache to get rid of the swapcache 3650 * reference only in case it's likely that we'll be the exlusive user. 3651 */ 3652 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3653 folio_ref_count(folio) == 2; 3654 } 3655 3656 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3657 { 3658 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3659 vmf->address, &vmf->ptl); 3660 if (!vmf->pte) 3661 return 0; 3662 /* 3663 * Be careful so that we will only recover a special uffd-wp pte into a 3664 * none pte. Otherwise it means the pte could have changed, so retry. 3665 * 3666 * This should also cover the case where e.g. the pte changed 3667 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_POISONED. 3668 * So is_pte_marker() check is not enough to safely drop the pte. 3669 */ 3670 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte))) 3671 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3672 pte_unmap_unlock(vmf->pte, vmf->ptl); 3673 return 0; 3674 } 3675 3676 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3677 { 3678 if (vma_is_anonymous(vmf->vma)) 3679 return do_anonymous_page(vmf); 3680 else 3681 return do_fault(vmf); 3682 } 3683 3684 /* 3685 * This is actually a page-missing access, but with uffd-wp special pte 3686 * installed. It means this pte was wr-protected before being unmapped. 3687 */ 3688 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3689 { 3690 /* 3691 * Just in case there're leftover special ptes even after the region 3692 * got unregistered - we can simply clear them. 3693 */ 3694 if (unlikely(!userfaultfd_wp(vmf->vma))) 3695 return pte_marker_clear(vmf); 3696 3697 return do_pte_missing(vmf); 3698 } 3699 3700 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3701 { 3702 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3703 unsigned long marker = pte_marker_get(entry); 3704 3705 /* 3706 * PTE markers should never be empty. If anything weird happened, 3707 * the best thing to do is to kill the process along with its mm. 3708 */ 3709 if (WARN_ON_ONCE(!marker)) 3710 return VM_FAULT_SIGBUS; 3711 3712 /* Higher priority than uffd-wp when data corrupted */ 3713 if (marker & PTE_MARKER_POISONED) 3714 return VM_FAULT_HWPOISON; 3715 3716 if (pte_marker_entry_uffd_wp(entry)) 3717 return pte_marker_handle_uffd_wp(vmf); 3718 3719 /* This is an unknown pte marker */ 3720 return VM_FAULT_SIGBUS; 3721 } 3722 3723 /* 3724 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3725 * but allow concurrent faults), and pte mapped but not yet locked. 3726 * We return with pte unmapped and unlocked. 3727 * 3728 * We return with the mmap_lock locked or unlocked in the same cases 3729 * as does filemap_fault(). 3730 */ 3731 vm_fault_t do_swap_page(struct vm_fault *vmf) 3732 { 3733 struct vm_area_struct *vma = vmf->vma; 3734 struct folio *swapcache, *folio = NULL; 3735 struct page *page; 3736 struct swap_info_struct *si = NULL; 3737 rmap_t rmap_flags = RMAP_NONE; 3738 bool exclusive = false; 3739 swp_entry_t entry; 3740 pte_t pte; 3741 int locked; 3742 vm_fault_t ret = 0; 3743 void *shadow = NULL; 3744 3745 if (!pte_unmap_same(vmf)) 3746 goto out; 3747 3748 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3749 ret = VM_FAULT_RETRY; 3750 goto out; 3751 } 3752 3753 entry = pte_to_swp_entry(vmf->orig_pte); 3754 if (unlikely(non_swap_entry(entry))) { 3755 if (is_migration_entry(entry)) { 3756 migration_entry_wait(vma->vm_mm, vmf->pmd, 3757 vmf->address); 3758 } else if (is_device_exclusive_entry(entry)) { 3759 vmf->page = pfn_swap_entry_to_page(entry); 3760 ret = remove_device_exclusive_entry(vmf); 3761 } else if (is_device_private_entry(entry)) { 3762 vmf->page = pfn_swap_entry_to_page(entry); 3763 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3764 vmf->address, &vmf->ptl); 3765 if (unlikely(!vmf->pte || 3766 !pte_same(ptep_get(vmf->pte), 3767 vmf->orig_pte))) 3768 goto unlock; 3769 3770 /* 3771 * Get a page reference while we know the page can't be 3772 * freed. 3773 */ 3774 get_page(vmf->page); 3775 pte_unmap_unlock(vmf->pte, vmf->ptl); 3776 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3777 put_page(vmf->page); 3778 } else if (is_hwpoison_entry(entry)) { 3779 ret = VM_FAULT_HWPOISON; 3780 } else if (is_pte_marker_entry(entry)) { 3781 ret = handle_pte_marker(vmf); 3782 } else { 3783 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3784 ret = VM_FAULT_SIGBUS; 3785 } 3786 goto out; 3787 } 3788 3789 /* Prevent swapoff from happening to us. */ 3790 si = get_swap_device(entry); 3791 if (unlikely(!si)) 3792 goto out; 3793 3794 folio = swap_cache_get_folio(entry, vma, vmf->address); 3795 if (folio) 3796 page = folio_file_page(folio, swp_offset(entry)); 3797 swapcache = folio; 3798 3799 if (!folio) { 3800 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3801 __swap_count(entry) == 1) { 3802 /* skip swapcache */ 3803 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3804 vma, vmf->address, false); 3805 page = &folio->page; 3806 if (folio) { 3807 __folio_set_locked(folio); 3808 __folio_set_swapbacked(folio); 3809 3810 if (mem_cgroup_swapin_charge_folio(folio, 3811 vma->vm_mm, GFP_KERNEL, 3812 entry)) { 3813 ret = VM_FAULT_OOM; 3814 goto out_page; 3815 } 3816 mem_cgroup_swapin_uncharge_swap(entry); 3817 3818 shadow = get_shadow_from_swap_cache(entry); 3819 if (shadow) 3820 workingset_refault(folio, shadow); 3821 3822 folio_add_lru(folio); 3823 3824 /* To provide entry to swap_readpage() */ 3825 folio_set_swap_entry(folio, entry); 3826 swap_readpage(page, true, NULL); 3827 folio->private = NULL; 3828 } 3829 } else { 3830 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3831 vmf); 3832 if (page) 3833 folio = page_folio(page); 3834 swapcache = folio; 3835 } 3836 3837 if (!folio) { 3838 /* 3839 * Back out if somebody else faulted in this pte 3840 * while we released the pte lock. 3841 */ 3842 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3843 vmf->address, &vmf->ptl); 3844 if (likely(vmf->pte && 3845 pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3846 ret = VM_FAULT_OOM; 3847 goto unlock; 3848 } 3849 3850 /* Had to read the page from swap area: Major fault */ 3851 ret = VM_FAULT_MAJOR; 3852 count_vm_event(PGMAJFAULT); 3853 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3854 } else if (PageHWPoison(page)) { 3855 /* 3856 * hwpoisoned dirty swapcache pages are kept for killing 3857 * owner processes (which may be unknown at hwpoison time) 3858 */ 3859 ret = VM_FAULT_HWPOISON; 3860 goto out_release; 3861 } 3862 3863 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); 3864 3865 if (!locked) { 3866 ret |= VM_FAULT_RETRY; 3867 goto out_release; 3868 } 3869 3870 if (swapcache) { 3871 /* 3872 * Make sure folio_free_swap() or swapoff did not release the 3873 * swapcache from under us. The page pin, and pte_same test 3874 * below, are not enough to exclude that. Even if it is still 3875 * swapcache, we need to check that the page's swap has not 3876 * changed. 3877 */ 3878 if (unlikely(!folio_test_swapcache(folio) || 3879 page_private(page) != entry.val)) 3880 goto out_page; 3881 3882 /* 3883 * KSM sometimes has to copy on read faults, for example, if 3884 * page->index of !PageKSM() pages would be nonlinear inside the 3885 * anon VMA -- PageKSM() is lost on actual swapout. 3886 */ 3887 page = ksm_might_need_to_copy(page, vma, vmf->address); 3888 if (unlikely(!page)) { 3889 ret = VM_FAULT_OOM; 3890 goto out_page; 3891 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3892 ret = VM_FAULT_HWPOISON; 3893 goto out_page; 3894 } 3895 folio = page_folio(page); 3896 3897 /* 3898 * If we want to map a page that's in the swapcache writable, we 3899 * have to detect via the refcount if we're really the exclusive 3900 * owner. Try removing the extra reference from the local LRU 3901 * caches if required. 3902 */ 3903 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3904 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3905 lru_add_drain(); 3906 } 3907 3908 folio_throttle_swaprate(folio, GFP_KERNEL); 3909 3910 /* 3911 * Back out if somebody else already faulted in this pte. 3912 */ 3913 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3914 &vmf->ptl); 3915 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) 3916 goto out_nomap; 3917 3918 if (unlikely(!folio_test_uptodate(folio))) { 3919 ret = VM_FAULT_SIGBUS; 3920 goto out_nomap; 3921 } 3922 3923 /* 3924 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3925 * must never point at an anonymous page in the swapcache that is 3926 * PG_anon_exclusive. Sanity check that this holds and especially, that 3927 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3928 * check after taking the PT lock and making sure that nobody 3929 * concurrently faulted in this page and set PG_anon_exclusive. 3930 */ 3931 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3932 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3933 3934 /* 3935 * Check under PT lock (to protect against concurrent fork() sharing 3936 * the swap entry concurrently) for certainly exclusive pages. 3937 */ 3938 if (!folio_test_ksm(folio)) { 3939 exclusive = pte_swp_exclusive(vmf->orig_pte); 3940 if (folio != swapcache) { 3941 /* 3942 * We have a fresh page that is not exposed to the 3943 * swapcache -> certainly exclusive. 3944 */ 3945 exclusive = true; 3946 } else if (exclusive && folio_test_writeback(folio) && 3947 data_race(si->flags & SWP_STABLE_WRITES)) { 3948 /* 3949 * This is tricky: not all swap backends support 3950 * concurrent page modifications while under writeback. 3951 * 3952 * So if we stumble over such a page in the swapcache 3953 * we must not set the page exclusive, otherwise we can 3954 * map it writable without further checks and modify it 3955 * while still under writeback. 3956 * 3957 * For these problematic swap backends, simply drop the 3958 * exclusive marker: this is perfectly fine as we start 3959 * writeback only if we fully unmapped the page and 3960 * there are no unexpected references on the page after 3961 * unmapping succeeded. After fully unmapped, no 3962 * further GUP references (FOLL_GET and FOLL_PIN) can 3963 * appear, so dropping the exclusive marker and mapping 3964 * it only R/O is fine. 3965 */ 3966 exclusive = false; 3967 } 3968 } 3969 3970 /* 3971 * Some architectures may have to restore extra metadata to the page 3972 * when reading from swap. This metadata may be indexed by swap entry 3973 * so this must be called before swap_free(). 3974 */ 3975 arch_swap_restore(entry, folio); 3976 3977 /* 3978 * Remove the swap entry and conditionally try to free up the swapcache. 3979 * We're already holding a reference on the page but haven't mapped it 3980 * yet. 3981 */ 3982 swap_free(entry); 3983 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3984 folio_free_swap(folio); 3985 3986 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3987 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3988 pte = mk_pte(page, vma->vm_page_prot); 3989 3990 /* 3991 * Same logic as in do_wp_page(); however, optimize for pages that are 3992 * certainly not shared either because we just allocated them without 3993 * exposing them to the swapcache or because the swap entry indicates 3994 * exclusivity. 3995 */ 3996 if (!folio_test_ksm(folio) && 3997 (exclusive || folio_ref_count(folio) == 1)) { 3998 if (vmf->flags & FAULT_FLAG_WRITE) { 3999 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 4000 vmf->flags &= ~FAULT_FLAG_WRITE; 4001 } 4002 rmap_flags |= RMAP_EXCLUSIVE; 4003 } 4004 flush_icache_page(vma, page); 4005 if (pte_swp_soft_dirty(vmf->orig_pte)) 4006 pte = pte_mksoft_dirty(pte); 4007 if (pte_swp_uffd_wp(vmf->orig_pte)) 4008 pte = pte_mkuffd_wp(pte); 4009 vmf->orig_pte = pte; 4010 4011 /* ksm created a completely new copy */ 4012 if (unlikely(folio != swapcache && swapcache)) { 4013 page_add_new_anon_rmap(page, vma, vmf->address); 4014 folio_add_lru_vma(folio, vma); 4015 } else { 4016 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 4017 } 4018 4019 VM_BUG_ON(!folio_test_anon(folio) || 4020 (pte_write(pte) && !PageAnonExclusive(page))); 4021 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 4022 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 4023 4024 folio_unlock(folio); 4025 if (folio != swapcache && swapcache) { 4026 /* 4027 * Hold the lock to avoid the swap entry to be reused 4028 * until we take the PT lock for the pte_same() check 4029 * (to avoid false positives from pte_same). For 4030 * further safety release the lock after the swap_free 4031 * so that the swap count won't change under a 4032 * parallel locked swapcache. 4033 */ 4034 folio_unlock(swapcache); 4035 folio_put(swapcache); 4036 } 4037 4038 if (vmf->flags & FAULT_FLAG_WRITE) { 4039 ret |= do_wp_page(vmf); 4040 if (ret & VM_FAULT_ERROR) 4041 ret &= VM_FAULT_ERROR; 4042 goto out; 4043 } 4044 4045 /* No need to invalidate - it was non-present before */ 4046 update_mmu_cache(vma, vmf->address, vmf->pte); 4047 unlock: 4048 if (vmf->pte) 4049 pte_unmap_unlock(vmf->pte, vmf->ptl); 4050 out: 4051 if (si) 4052 put_swap_device(si); 4053 return ret; 4054 out_nomap: 4055 if (vmf->pte) 4056 pte_unmap_unlock(vmf->pte, vmf->ptl); 4057 out_page: 4058 folio_unlock(folio); 4059 out_release: 4060 folio_put(folio); 4061 if (folio != swapcache && swapcache) { 4062 folio_unlock(swapcache); 4063 folio_put(swapcache); 4064 } 4065 if (si) 4066 put_swap_device(si); 4067 return ret; 4068 } 4069 4070 /* 4071 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4072 * but allow concurrent faults), and pte mapped but not yet locked. 4073 * We return with mmap_lock still held, but pte unmapped and unlocked. 4074 */ 4075 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4076 { 4077 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4078 struct vm_area_struct *vma = vmf->vma; 4079 struct folio *folio; 4080 vm_fault_t ret = 0; 4081 pte_t entry; 4082 4083 /* File mapping without ->vm_ops ? */ 4084 if (vma->vm_flags & VM_SHARED) 4085 return VM_FAULT_SIGBUS; 4086 4087 /* 4088 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can 4089 * be distinguished from a transient failure of pte_offset_map(). 4090 */ 4091 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4092 return VM_FAULT_OOM; 4093 4094 /* Use the zero-page for reads */ 4095 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4096 !mm_forbids_zeropage(vma->vm_mm)) { 4097 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4098 vma->vm_page_prot)); 4099 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4100 vmf->address, &vmf->ptl); 4101 if (!vmf->pte) 4102 goto unlock; 4103 if (vmf_pte_changed(vmf)) { 4104 update_mmu_tlb(vma, vmf->address, vmf->pte); 4105 goto unlock; 4106 } 4107 ret = check_stable_address_space(vma->vm_mm); 4108 if (ret) 4109 goto unlock; 4110 /* Deliver the page fault to userland, check inside PT lock */ 4111 if (userfaultfd_missing(vma)) { 4112 pte_unmap_unlock(vmf->pte, vmf->ptl); 4113 return handle_userfault(vmf, VM_UFFD_MISSING); 4114 } 4115 goto setpte; 4116 } 4117 4118 /* Allocate our own private page. */ 4119 if (unlikely(anon_vma_prepare(vma))) 4120 goto oom; 4121 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4122 if (!folio) 4123 goto oom; 4124 4125 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4126 goto oom_free_page; 4127 folio_throttle_swaprate(folio, GFP_KERNEL); 4128 4129 /* 4130 * The memory barrier inside __folio_mark_uptodate makes sure that 4131 * preceding stores to the page contents become visible before 4132 * the set_pte_at() write. 4133 */ 4134 __folio_mark_uptodate(folio); 4135 4136 entry = mk_pte(&folio->page, vma->vm_page_prot); 4137 entry = pte_sw_mkyoung(entry); 4138 if (vma->vm_flags & VM_WRITE) 4139 entry = pte_mkwrite(pte_mkdirty(entry)); 4140 4141 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4142 &vmf->ptl); 4143 if (!vmf->pte) 4144 goto release; 4145 if (vmf_pte_changed(vmf)) { 4146 update_mmu_tlb(vma, vmf->address, vmf->pte); 4147 goto release; 4148 } 4149 4150 ret = check_stable_address_space(vma->vm_mm); 4151 if (ret) 4152 goto release; 4153 4154 /* Deliver the page fault to userland, check inside PT lock */ 4155 if (userfaultfd_missing(vma)) { 4156 pte_unmap_unlock(vmf->pte, vmf->ptl); 4157 folio_put(folio); 4158 return handle_userfault(vmf, VM_UFFD_MISSING); 4159 } 4160 4161 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4162 folio_add_new_anon_rmap(folio, vma, vmf->address); 4163 folio_add_lru_vma(folio, vma); 4164 setpte: 4165 if (uffd_wp) 4166 entry = pte_mkuffd_wp(entry); 4167 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4168 4169 /* No need to invalidate - it was non-present before */ 4170 update_mmu_cache(vma, vmf->address, vmf->pte); 4171 unlock: 4172 if (vmf->pte) 4173 pte_unmap_unlock(vmf->pte, vmf->ptl); 4174 return ret; 4175 release: 4176 folio_put(folio); 4177 goto unlock; 4178 oom_free_page: 4179 folio_put(folio); 4180 oom: 4181 return VM_FAULT_OOM; 4182 } 4183 4184 /* 4185 * The mmap_lock must have been held on entry, and may have been 4186 * released depending on flags and vma->vm_ops->fault() return value. 4187 * See filemap_fault() and __lock_page_retry(). 4188 */ 4189 static vm_fault_t __do_fault(struct vm_fault *vmf) 4190 { 4191 struct vm_area_struct *vma = vmf->vma; 4192 vm_fault_t ret; 4193 4194 /* 4195 * Preallocate pte before we take page_lock because this might lead to 4196 * deadlocks for memcg reclaim which waits for pages under writeback: 4197 * lock_page(A) 4198 * SetPageWriteback(A) 4199 * unlock_page(A) 4200 * lock_page(B) 4201 * lock_page(B) 4202 * pte_alloc_one 4203 * shrink_page_list 4204 * wait_on_page_writeback(A) 4205 * SetPageWriteback(B) 4206 * unlock_page(B) 4207 * # flush A, B to clear the writeback 4208 */ 4209 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4210 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4211 if (!vmf->prealloc_pte) 4212 return VM_FAULT_OOM; 4213 } 4214 4215 ret = vma->vm_ops->fault(vmf); 4216 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4217 VM_FAULT_DONE_COW))) 4218 return ret; 4219 4220 if (unlikely(PageHWPoison(vmf->page))) { 4221 struct page *page = vmf->page; 4222 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4223 if (ret & VM_FAULT_LOCKED) { 4224 if (page_mapped(page)) 4225 unmap_mapping_pages(page_mapping(page), 4226 page->index, 1, false); 4227 /* Retry if a clean page was removed from the cache. */ 4228 if (invalidate_inode_page(page)) 4229 poisonret = VM_FAULT_NOPAGE; 4230 unlock_page(page); 4231 } 4232 put_page(page); 4233 vmf->page = NULL; 4234 return poisonret; 4235 } 4236 4237 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4238 lock_page(vmf->page); 4239 else 4240 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4241 4242 return ret; 4243 } 4244 4245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4246 static void deposit_prealloc_pte(struct vm_fault *vmf) 4247 { 4248 struct vm_area_struct *vma = vmf->vma; 4249 4250 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4251 /* 4252 * We are going to consume the prealloc table, 4253 * count that as nr_ptes. 4254 */ 4255 mm_inc_nr_ptes(vma->vm_mm); 4256 vmf->prealloc_pte = NULL; 4257 } 4258 4259 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4260 { 4261 struct vm_area_struct *vma = vmf->vma; 4262 bool write = vmf->flags & FAULT_FLAG_WRITE; 4263 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4264 pmd_t entry; 4265 int i; 4266 vm_fault_t ret = VM_FAULT_FALLBACK; 4267 4268 if (!transhuge_vma_suitable(vma, haddr)) 4269 return ret; 4270 4271 page = compound_head(page); 4272 if (compound_order(page) != HPAGE_PMD_ORDER) 4273 return ret; 4274 4275 /* 4276 * Just backoff if any subpage of a THP is corrupted otherwise 4277 * the corrupted page may mapped by PMD silently to escape the 4278 * check. This kind of THP just can be PTE mapped. Access to 4279 * the corrupted subpage should trigger SIGBUS as expected. 4280 */ 4281 if (unlikely(PageHasHWPoisoned(page))) 4282 return ret; 4283 4284 /* 4285 * Archs like ppc64 need additional space to store information 4286 * related to pte entry. Use the preallocated table for that. 4287 */ 4288 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4289 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4290 if (!vmf->prealloc_pte) 4291 return VM_FAULT_OOM; 4292 } 4293 4294 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4295 if (unlikely(!pmd_none(*vmf->pmd))) 4296 goto out; 4297 4298 for (i = 0; i < HPAGE_PMD_NR; i++) 4299 flush_icache_page(vma, page + i); 4300 4301 entry = mk_huge_pmd(page, vma->vm_page_prot); 4302 if (write) 4303 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4304 4305 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4306 page_add_file_rmap(page, vma, true); 4307 4308 /* 4309 * deposit and withdraw with pmd lock held 4310 */ 4311 if (arch_needs_pgtable_deposit()) 4312 deposit_prealloc_pte(vmf); 4313 4314 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4315 4316 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4317 4318 /* fault is handled */ 4319 ret = 0; 4320 count_vm_event(THP_FILE_MAPPED); 4321 out: 4322 spin_unlock(vmf->ptl); 4323 return ret; 4324 } 4325 #else 4326 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4327 { 4328 return VM_FAULT_FALLBACK; 4329 } 4330 #endif 4331 4332 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4333 { 4334 struct vm_area_struct *vma = vmf->vma; 4335 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4336 bool write = vmf->flags & FAULT_FLAG_WRITE; 4337 bool prefault = vmf->address != addr; 4338 pte_t entry; 4339 4340 flush_icache_page(vma, page); 4341 entry = mk_pte(page, vma->vm_page_prot); 4342 4343 if (prefault && arch_wants_old_prefaulted_pte()) 4344 entry = pte_mkold(entry); 4345 else 4346 entry = pte_sw_mkyoung(entry); 4347 4348 if (write) 4349 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4350 if (unlikely(uffd_wp)) 4351 entry = pte_mkuffd_wp(entry); 4352 /* copy-on-write page */ 4353 if (write && !(vma->vm_flags & VM_SHARED)) { 4354 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4355 page_add_new_anon_rmap(page, vma, addr); 4356 lru_cache_add_inactive_or_unevictable(page, vma); 4357 } else { 4358 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 4359 page_add_file_rmap(page, vma, false); 4360 } 4361 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4362 } 4363 4364 static bool vmf_pte_changed(struct vm_fault *vmf) 4365 { 4366 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4367 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte); 4368 4369 return !pte_none(ptep_get(vmf->pte)); 4370 } 4371 4372 /** 4373 * finish_fault - finish page fault once we have prepared the page to fault 4374 * 4375 * @vmf: structure describing the fault 4376 * 4377 * This function handles all that is needed to finish a page fault once the 4378 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4379 * given page, adds reverse page mapping, handles memcg charges and LRU 4380 * addition. 4381 * 4382 * The function expects the page to be locked and on success it consumes a 4383 * reference of a page being mapped (for the PTE which maps it). 4384 * 4385 * Return: %0 on success, %VM_FAULT_ code in case of error. 4386 */ 4387 vm_fault_t finish_fault(struct vm_fault *vmf) 4388 { 4389 struct vm_area_struct *vma = vmf->vma; 4390 struct page *page; 4391 vm_fault_t ret; 4392 4393 /* Did we COW the page? */ 4394 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4395 page = vmf->cow_page; 4396 else 4397 page = vmf->page; 4398 4399 /* 4400 * check even for read faults because we might have lost our CoWed 4401 * page 4402 */ 4403 if (!(vma->vm_flags & VM_SHARED)) { 4404 ret = check_stable_address_space(vma->vm_mm); 4405 if (ret) 4406 return ret; 4407 } 4408 4409 if (pmd_none(*vmf->pmd)) { 4410 if (PageTransCompound(page)) { 4411 ret = do_set_pmd(vmf, page); 4412 if (ret != VM_FAULT_FALLBACK) 4413 return ret; 4414 } 4415 4416 if (vmf->prealloc_pte) 4417 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4418 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4419 return VM_FAULT_OOM; 4420 } 4421 4422 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4423 vmf->address, &vmf->ptl); 4424 if (!vmf->pte) 4425 return VM_FAULT_NOPAGE; 4426 4427 /* Re-check under ptl */ 4428 if (likely(!vmf_pte_changed(vmf))) { 4429 do_set_pte(vmf, page, vmf->address); 4430 4431 /* no need to invalidate: a not-present page won't be cached */ 4432 update_mmu_cache(vma, vmf->address, vmf->pte); 4433 4434 ret = 0; 4435 } else { 4436 update_mmu_tlb(vma, vmf->address, vmf->pte); 4437 ret = VM_FAULT_NOPAGE; 4438 } 4439 4440 pte_unmap_unlock(vmf->pte, vmf->ptl); 4441 return ret; 4442 } 4443 4444 static unsigned long fault_around_pages __read_mostly = 4445 65536 >> PAGE_SHIFT; 4446 4447 #ifdef CONFIG_DEBUG_FS 4448 static int fault_around_bytes_get(void *data, u64 *val) 4449 { 4450 *val = fault_around_pages << PAGE_SHIFT; 4451 return 0; 4452 } 4453 4454 /* 4455 * fault_around_bytes must be rounded down to the nearest page order as it's 4456 * what do_fault_around() expects to see. 4457 */ 4458 static int fault_around_bytes_set(void *data, u64 val) 4459 { 4460 if (val / PAGE_SIZE > PTRS_PER_PTE) 4461 return -EINVAL; 4462 4463 /* 4464 * The minimum value is 1 page, however this results in no fault-around 4465 * at all. See should_fault_around(). 4466 */ 4467 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4468 4469 return 0; 4470 } 4471 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4472 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4473 4474 static int __init fault_around_debugfs(void) 4475 { 4476 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4477 &fault_around_bytes_fops); 4478 return 0; 4479 } 4480 late_initcall(fault_around_debugfs); 4481 #endif 4482 4483 /* 4484 * do_fault_around() tries to map few pages around the fault address. The hope 4485 * is that the pages will be needed soon and this will lower the number of 4486 * faults to handle. 4487 * 4488 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4489 * not ready to be mapped: not up-to-date, locked, etc. 4490 * 4491 * This function doesn't cross VMA or page table boundaries, in order to call 4492 * map_pages() and acquire a PTE lock only once. 4493 * 4494 * fault_around_pages defines how many pages we'll try to map. 4495 * do_fault_around() expects it to be set to a power of two less than or equal 4496 * to PTRS_PER_PTE. 4497 * 4498 * The virtual address of the area that we map is naturally aligned to 4499 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4500 * (and therefore to page order). This way it's easier to guarantee 4501 * that we don't cross page table boundaries. 4502 */ 4503 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4504 { 4505 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4506 pgoff_t pte_off = pte_index(vmf->address); 4507 /* The page offset of vmf->address within the VMA. */ 4508 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4509 pgoff_t from_pte, to_pte; 4510 vm_fault_t ret; 4511 4512 /* The PTE offset of the start address, clamped to the VMA. */ 4513 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4514 pte_off - min(pte_off, vma_off)); 4515 4516 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4517 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4518 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4519 4520 if (pmd_none(*vmf->pmd)) { 4521 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4522 if (!vmf->prealloc_pte) 4523 return VM_FAULT_OOM; 4524 } 4525 4526 rcu_read_lock(); 4527 ret = vmf->vma->vm_ops->map_pages(vmf, 4528 vmf->pgoff + from_pte - pte_off, 4529 vmf->pgoff + to_pte - pte_off); 4530 rcu_read_unlock(); 4531 4532 return ret; 4533 } 4534 4535 /* Return true if we should do read fault-around, false otherwise */ 4536 static inline bool should_fault_around(struct vm_fault *vmf) 4537 { 4538 /* No ->map_pages? No way to fault around... */ 4539 if (!vmf->vma->vm_ops->map_pages) 4540 return false; 4541 4542 if (uffd_disable_fault_around(vmf->vma)) 4543 return false; 4544 4545 /* A single page implies no faulting 'around' at all. */ 4546 return fault_around_pages > 1; 4547 } 4548 4549 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4550 { 4551 vm_fault_t ret = 0; 4552 struct folio *folio; 4553 4554 /* 4555 * Let's call ->map_pages() first and use ->fault() as fallback 4556 * if page by the offset is not ready to be mapped (cold cache or 4557 * something). 4558 */ 4559 if (should_fault_around(vmf)) { 4560 ret = do_fault_around(vmf); 4561 if (ret) 4562 return ret; 4563 } 4564 4565 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4566 vma_end_read(vmf->vma); 4567 return VM_FAULT_RETRY; 4568 } 4569 4570 ret = __do_fault(vmf); 4571 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4572 return ret; 4573 4574 ret |= finish_fault(vmf); 4575 folio = page_folio(vmf->page); 4576 folio_unlock(folio); 4577 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4578 folio_put(folio); 4579 return ret; 4580 } 4581 4582 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4583 { 4584 struct vm_area_struct *vma = vmf->vma; 4585 vm_fault_t ret; 4586 4587 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4588 vma_end_read(vma); 4589 return VM_FAULT_RETRY; 4590 } 4591 4592 if (unlikely(anon_vma_prepare(vma))) 4593 return VM_FAULT_OOM; 4594 4595 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4596 if (!vmf->cow_page) 4597 return VM_FAULT_OOM; 4598 4599 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4600 GFP_KERNEL)) { 4601 put_page(vmf->cow_page); 4602 return VM_FAULT_OOM; 4603 } 4604 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); 4605 4606 ret = __do_fault(vmf); 4607 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4608 goto uncharge_out; 4609 if (ret & VM_FAULT_DONE_COW) 4610 return ret; 4611 4612 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4613 __SetPageUptodate(vmf->cow_page); 4614 4615 ret |= finish_fault(vmf); 4616 unlock_page(vmf->page); 4617 put_page(vmf->page); 4618 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4619 goto uncharge_out; 4620 return ret; 4621 uncharge_out: 4622 put_page(vmf->cow_page); 4623 return ret; 4624 } 4625 4626 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4627 { 4628 struct vm_area_struct *vma = vmf->vma; 4629 vm_fault_t ret, tmp; 4630 struct folio *folio; 4631 4632 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4633 vma_end_read(vma); 4634 return VM_FAULT_RETRY; 4635 } 4636 4637 ret = __do_fault(vmf); 4638 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4639 return ret; 4640 4641 folio = page_folio(vmf->page); 4642 4643 /* 4644 * Check if the backing address space wants to know that the page is 4645 * about to become writable 4646 */ 4647 if (vma->vm_ops->page_mkwrite) { 4648 folio_unlock(folio); 4649 tmp = do_page_mkwrite(vmf, folio); 4650 if (unlikely(!tmp || 4651 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4652 folio_put(folio); 4653 return tmp; 4654 } 4655 } 4656 4657 ret |= finish_fault(vmf); 4658 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4659 VM_FAULT_RETRY))) { 4660 folio_unlock(folio); 4661 folio_put(folio); 4662 return ret; 4663 } 4664 4665 ret |= fault_dirty_shared_page(vmf); 4666 return ret; 4667 } 4668 4669 /* 4670 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4671 * but allow concurrent faults). 4672 * The mmap_lock may have been released depending on flags and our 4673 * return value. See filemap_fault() and __folio_lock_or_retry(). 4674 * If mmap_lock is released, vma may become invalid (for example 4675 * by other thread calling munmap()). 4676 */ 4677 static vm_fault_t do_fault(struct vm_fault *vmf) 4678 { 4679 struct vm_area_struct *vma = vmf->vma; 4680 struct mm_struct *vm_mm = vma->vm_mm; 4681 vm_fault_t ret; 4682 4683 /* 4684 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4685 */ 4686 if (!vma->vm_ops->fault) { 4687 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 4688 vmf->address, &vmf->ptl); 4689 if (unlikely(!vmf->pte)) 4690 ret = VM_FAULT_SIGBUS; 4691 else { 4692 /* 4693 * Make sure this is not a temporary clearing of pte 4694 * by holding ptl and checking again. A R/M/W update 4695 * of pte involves: take ptl, clearing the pte so that 4696 * we don't have concurrent modification by hardware 4697 * followed by an update. 4698 */ 4699 if (unlikely(pte_none(ptep_get(vmf->pte)))) 4700 ret = VM_FAULT_SIGBUS; 4701 else 4702 ret = VM_FAULT_NOPAGE; 4703 4704 pte_unmap_unlock(vmf->pte, vmf->ptl); 4705 } 4706 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4707 ret = do_read_fault(vmf); 4708 else if (!(vma->vm_flags & VM_SHARED)) 4709 ret = do_cow_fault(vmf); 4710 else 4711 ret = do_shared_fault(vmf); 4712 4713 /* preallocated pagetable is unused: free it */ 4714 if (vmf->prealloc_pte) { 4715 pte_free(vm_mm, vmf->prealloc_pte); 4716 vmf->prealloc_pte = NULL; 4717 } 4718 return ret; 4719 } 4720 4721 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4722 unsigned long addr, int page_nid, int *flags) 4723 { 4724 get_page(page); 4725 4726 /* Record the current PID acceesing VMA */ 4727 vma_set_access_pid_bit(vma); 4728 4729 count_vm_numa_event(NUMA_HINT_FAULTS); 4730 if (page_nid == numa_node_id()) { 4731 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4732 *flags |= TNF_FAULT_LOCAL; 4733 } 4734 4735 return mpol_misplaced(page, vma, addr); 4736 } 4737 4738 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4739 { 4740 struct vm_area_struct *vma = vmf->vma; 4741 struct page *page = NULL; 4742 int page_nid = NUMA_NO_NODE; 4743 bool writable = false; 4744 int last_cpupid; 4745 int target_nid; 4746 pte_t pte, old_pte; 4747 int flags = 0; 4748 4749 /* 4750 * The "pte" at this point cannot be used safely without 4751 * validation through pte_unmap_same(). It's of NUMA type but 4752 * the pfn may be screwed if the read is non atomic. 4753 */ 4754 spin_lock(vmf->ptl); 4755 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4756 pte_unmap_unlock(vmf->pte, vmf->ptl); 4757 goto out; 4758 } 4759 4760 /* Get the normal PTE */ 4761 old_pte = ptep_get(vmf->pte); 4762 pte = pte_modify(old_pte, vma->vm_page_prot); 4763 4764 /* 4765 * Detect now whether the PTE could be writable; this information 4766 * is only valid while holding the PT lock. 4767 */ 4768 writable = pte_write(pte); 4769 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4770 can_change_pte_writable(vma, vmf->address, pte)) 4771 writable = true; 4772 4773 page = vm_normal_page(vma, vmf->address, pte); 4774 if (!page || is_zone_device_page(page)) 4775 goto out_map; 4776 4777 /* TODO: handle PTE-mapped THP */ 4778 if (PageCompound(page)) 4779 goto out_map; 4780 4781 /* 4782 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4783 * much anyway since they can be in shared cache state. This misses 4784 * the case where a mapping is writable but the process never writes 4785 * to it but pte_write gets cleared during protection updates and 4786 * pte_dirty has unpredictable behaviour between PTE scan updates, 4787 * background writeback, dirty balancing and application behaviour. 4788 */ 4789 if (!writable) 4790 flags |= TNF_NO_GROUP; 4791 4792 /* 4793 * Flag if the page is shared between multiple address spaces. This 4794 * is later used when determining whether to group tasks together 4795 */ 4796 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4797 flags |= TNF_SHARED; 4798 4799 page_nid = page_to_nid(page); 4800 /* 4801 * For memory tiering mode, cpupid of slow memory page is used 4802 * to record page access time. So use default value. 4803 */ 4804 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4805 !node_is_toptier(page_nid)) 4806 last_cpupid = (-1 & LAST_CPUPID_MASK); 4807 else 4808 last_cpupid = page_cpupid_last(page); 4809 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4810 &flags); 4811 if (target_nid == NUMA_NO_NODE) { 4812 put_page(page); 4813 goto out_map; 4814 } 4815 pte_unmap_unlock(vmf->pte, vmf->ptl); 4816 writable = false; 4817 4818 /* Migrate to the requested node */ 4819 if (migrate_misplaced_page(page, vma, target_nid)) { 4820 page_nid = target_nid; 4821 flags |= TNF_MIGRATED; 4822 } else { 4823 flags |= TNF_MIGRATE_FAIL; 4824 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4825 vmf->address, &vmf->ptl); 4826 if (unlikely(!vmf->pte)) 4827 goto out; 4828 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) { 4829 pte_unmap_unlock(vmf->pte, vmf->ptl); 4830 goto out; 4831 } 4832 goto out_map; 4833 } 4834 4835 out: 4836 if (page_nid != NUMA_NO_NODE) 4837 task_numa_fault(last_cpupid, page_nid, 1, flags); 4838 return 0; 4839 out_map: 4840 /* 4841 * Make it present again, depending on how arch implements 4842 * non-accessible ptes, some can allow access by kernel mode. 4843 */ 4844 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4845 pte = pte_modify(old_pte, vma->vm_page_prot); 4846 pte = pte_mkyoung(pte); 4847 if (writable) 4848 pte = pte_mkwrite(pte); 4849 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4850 update_mmu_cache(vma, vmf->address, vmf->pte); 4851 pte_unmap_unlock(vmf->pte, vmf->ptl); 4852 goto out; 4853 } 4854 4855 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4856 { 4857 struct vm_area_struct *vma = vmf->vma; 4858 if (vma_is_anonymous(vma)) 4859 return do_huge_pmd_anonymous_page(vmf); 4860 if (vma->vm_ops->huge_fault) { 4861 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4862 vma_end_read(vma); 4863 return VM_FAULT_RETRY; 4864 } 4865 return vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4866 } 4867 return VM_FAULT_FALLBACK; 4868 } 4869 4870 /* `inline' is required to avoid gcc 4.1.2 build error */ 4871 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4872 { 4873 struct vm_area_struct *vma = vmf->vma; 4874 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4875 vm_fault_t ret; 4876 4877 if (vma_is_anonymous(vma)) { 4878 if (likely(!unshare) && 4879 userfaultfd_huge_pmd_wp(vma, vmf->orig_pmd)) 4880 return handle_userfault(vmf, VM_UFFD_WP); 4881 return do_huge_pmd_wp_page(vmf); 4882 } 4883 4884 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4885 if (vma->vm_ops->huge_fault) { 4886 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4887 vma_end_read(vma); 4888 return VM_FAULT_RETRY; 4889 } 4890 ret = vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4891 if (!(ret & VM_FAULT_FALLBACK)) 4892 return ret; 4893 } 4894 } 4895 4896 /* COW or write-notify handled on pte level: split pmd. */ 4897 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL); 4898 4899 return VM_FAULT_FALLBACK; 4900 } 4901 4902 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4903 { 4904 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4905 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4906 struct vm_area_struct *vma = vmf->vma; 4907 /* No support for anonymous transparent PUD pages yet */ 4908 if (vma_is_anonymous(vma)) 4909 return VM_FAULT_FALLBACK; 4910 if (vma->vm_ops->huge_fault) { 4911 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4912 vma_end_read(vma); 4913 return VM_FAULT_RETRY; 4914 } 4915 return vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4916 } 4917 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4918 return VM_FAULT_FALLBACK; 4919 } 4920 4921 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4922 { 4923 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4924 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4925 struct vm_area_struct *vma = vmf->vma; 4926 vm_fault_t ret; 4927 4928 /* No support for anonymous transparent PUD pages yet */ 4929 if (vma_is_anonymous(vma)) 4930 goto split; 4931 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4932 if (vma->vm_ops->huge_fault) { 4933 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 4934 vma_end_read(vma); 4935 return VM_FAULT_RETRY; 4936 } 4937 ret = vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4938 if (!(ret & VM_FAULT_FALLBACK)) 4939 return ret; 4940 } 4941 } 4942 split: 4943 /* COW or write-notify not handled on PUD level: split pud.*/ 4944 __split_huge_pud(vma, vmf->pud, vmf->address); 4945 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4946 return VM_FAULT_FALLBACK; 4947 } 4948 4949 /* 4950 * These routines also need to handle stuff like marking pages dirty 4951 * and/or accessed for architectures that don't do it in hardware (most 4952 * RISC architectures). The early dirtying is also good on the i386. 4953 * 4954 * There is also a hook called "update_mmu_cache()" that architectures 4955 * with external mmu caches can use to update those (ie the Sparc or 4956 * PowerPC hashed page tables that act as extended TLBs). 4957 * 4958 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4959 * concurrent faults). 4960 * 4961 * The mmap_lock may have been released depending on flags and our return value. 4962 * See filemap_fault() and __folio_lock_or_retry(). 4963 */ 4964 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4965 { 4966 pte_t entry; 4967 4968 if (unlikely(pmd_none(*vmf->pmd))) { 4969 /* 4970 * Leave __pte_alloc() until later: because vm_ops->fault may 4971 * want to allocate huge page, and if we expose page table 4972 * for an instant, it will be difficult to retract from 4973 * concurrent faults and from rmap lookups. 4974 */ 4975 vmf->pte = NULL; 4976 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4977 } else { 4978 /* 4979 * A regular pmd is established and it can't morph into a huge 4980 * pmd by anon khugepaged, since that takes mmap_lock in write 4981 * mode; but shmem or file collapse to THP could still morph 4982 * it into a huge pmd: just retry later if so. 4983 */ 4984 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd, 4985 vmf->address, &vmf->ptl); 4986 if (unlikely(!vmf->pte)) 4987 return 0; 4988 vmf->orig_pte = ptep_get_lockless(vmf->pte); 4989 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4990 4991 if (pte_none(vmf->orig_pte)) { 4992 pte_unmap(vmf->pte); 4993 vmf->pte = NULL; 4994 } 4995 } 4996 4997 if (!vmf->pte) 4998 return do_pte_missing(vmf); 4999 5000 if (!pte_present(vmf->orig_pte)) 5001 return do_swap_page(vmf); 5002 5003 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 5004 return do_numa_page(vmf); 5005 5006 spin_lock(vmf->ptl); 5007 entry = vmf->orig_pte; 5008 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) { 5009 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 5010 goto unlock; 5011 } 5012 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 5013 if (!pte_write(entry)) 5014 return do_wp_page(vmf); 5015 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 5016 entry = pte_mkdirty(entry); 5017 } 5018 entry = pte_mkyoung(entry); 5019 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 5020 vmf->flags & FAULT_FLAG_WRITE)) { 5021 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 5022 } else { 5023 /* Skip spurious TLB flush for retried page fault */ 5024 if (vmf->flags & FAULT_FLAG_TRIED) 5025 goto unlock; 5026 /* 5027 * This is needed only for protection faults but the arch code 5028 * is not yet telling us if this is a protection fault or not. 5029 * This still avoids useless tlb flushes for .text page faults 5030 * with threads. 5031 */ 5032 if (vmf->flags & FAULT_FLAG_WRITE) 5033 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 5034 vmf->pte); 5035 } 5036 unlock: 5037 pte_unmap_unlock(vmf->pte, vmf->ptl); 5038 return 0; 5039 } 5040 5041 /* 5042 * On entry, we hold either the VMA lock or the mmap_lock 5043 * (FAULT_FLAG_VMA_LOCK tells you which). If VM_FAULT_RETRY is set in 5044 * the result, the mmap_lock is not held on exit. See filemap_fault() 5045 * and __folio_lock_or_retry(). 5046 */ 5047 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 5048 unsigned long address, unsigned int flags) 5049 { 5050 struct vm_fault vmf = { 5051 .vma = vma, 5052 .address = address & PAGE_MASK, 5053 .real_address = address, 5054 .flags = flags, 5055 .pgoff = linear_page_index(vma, address), 5056 .gfp_mask = __get_fault_gfp_mask(vma), 5057 }; 5058 struct mm_struct *mm = vma->vm_mm; 5059 unsigned long vm_flags = vma->vm_flags; 5060 pgd_t *pgd; 5061 p4d_t *p4d; 5062 vm_fault_t ret; 5063 5064 pgd = pgd_offset(mm, address); 5065 p4d = p4d_alloc(mm, pgd, address); 5066 if (!p4d) 5067 return VM_FAULT_OOM; 5068 5069 vmf.pud = pud_alloc(mm, p4d, address); 5070 if (!vmf.pud) 5071 return VM_FAULT_OOM; 5072 retry_pud: 5073 if (pud_none(*vmf.pud) && 5074 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5075 ret = create_huge_pud(&vmf); 5076 if (!(ret & VM_FAULT_FALLBACK)) 5077 return ret; 5078 } else { 5079 pud_t orig_pud = *vmf.pud; 5080 5081 barrier(); 5082 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5083 5084 /* 5085 * TODO once we support anonymous PUDs: NUMA case and 5086 * FAULT_FLAG_UNSHARE handling. 5087 */ 5088 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5089 ret = wp_huge_pud(&vmf, orig_pud); 5090 if (!(ret & VM_FAULT_FALLBACK)) 5091 return ret; 5092 } else { 5093 huge_pud_set_accessed(&vmf, orig_pud); 5094 return 0; 5095 } 5096 } 5097 } 5098 5099 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5100 if (!vmf.pmd) 5101 return VM_FAULT_OOM; 5102 5103 /* Huge pud page fault raced with pmd_alloc? */ 5104 if (pud_trans_unstable(vmf.pud)) 5105 goto retry_pud; 5106 5107 if (pmd_none(*vmf.pmd) && 5108 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5109 ret = create_huge_pmd(&vmf); 5110 if (!(ret & VM_FAULT_FALLBACK)) 5111 return ret; 5112 } else { 5113 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd); 5114 5115 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5116 VM_BUG_ON(thp_migration_supported() && 5117 !is_pmd_migration_entry(vmf.orig_pmd)); 5118 if (is_pmd_migration_entry(vmf.orig_pmd)) 5119 pmd_migration_entry_wait(mm, vmf.pmd); 5120 return 0; 5121 } 5122 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5123 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5124 return do_huge_pmd_numa_page(&vmf); 5125 5126 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5127 !pmd_write(vmf.orig_pmd)) { 5128 ret = wp_huge_pmd(&vmf); 5129 if (!(ret & VM_FAULT_FALLBACK)) 5130 return ret; 5131 } else { 5132 huge_pmd_set_accessed(&vmf); 5133 return 0; 5134 } 5135 } 5136 } 5137 5138 return handle_pte_fault(&vmf); 5139 } 5140 5141 /** 5142 * mm_account_fault - Do page fault accounting 5143 * @mm: mm from which memcg should be extracted. It can be NULL. 5144 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5145 * of perf event counters, but we'll still do the per-task accounting to 5146 * the task who triggered this page fault. 5147 * @address: the faulted address. 5148 * @flags: the fault flags. 5149 * @ret: the fault retcode. 5150 * 5151 * This will take care of most of the page fault accounting. Meanwhile, it 5152 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5153 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5154 * still be in per-arch page fault handlers at the entry of page fault. 5155 */ 5156 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5157 unsigned long address, unsigned int flags, 5158 vm_fault_t ret) 5159 { 5160 bool major; 5161 5162 /* Incomplete faults will be accounted upon completion. */ 5163 if (ret & VM_FAULT_RETRY) 5164 return; 5165 5166 /* 5167 * To preserve the behavior of older kernels, PGFAULT counters record 5168 * both successful and failed faults, as opposed to perf counters, 5169 * which ignore failed cases. 5170 */ 5171 count_vm_event(PGFAULT); 5172 count_memcg_event_mm(mm, PGFAULT); 5173 5174 /* 5175 * Do not account for unsuccessful faults (e.g. when the address wasn't 5176 * valid). That includes arch_vma_access_permitted() failing before 5177 * reaching here. So this is not a "this many hardware page faults" 5178 * counter. We should use the hw profiling for that. 5179 */ 5180 if (ret & VM_FAULT_ERROR) 5181 return; 5182 5183 /* 5184 * We define the fault as a major fault when the final successful fault 5185 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5186 * handle it immediately previously). 5187 */ 5188 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5189 5190 if (major) 5191 current->maj_flt++; 5192 else 5193 current->min_flt++; 5194 5195 /* 5196 * If the fault is done for GUP, regs will be NULL. We only do the 5197 * accounting for the per thread fault counters who triggered the 5198 * fault, and we skip the perf event updates. 5199 */ 5200 if (!regs) 5201 return; 5202 5203 if (major) 5204 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5205 else 5206 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5207 } 5208 5209 #ifdef CONFIG_LRU_GEN 5210 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5211 { 5212 /* the LRU algorithm only applies to accesses with recency */ 5213 current->in_lru_fault = vma_has_recency(vma); 5214 } 5215 5216 static void lru_gen_exit_fault(void) 5217 { 5218 current->in_lru_fault = false; 5219 } 5220 #else 5221 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5222 { 5223 } 5224 5225 static void lru_gen_exit_fault(void) 5226 { 5227 } 5228 #endif /* CONFIG_LRU_GEN */ 5229 5230 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5231 unsigned int *flags) 5232 { 5233 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5234 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5235 return VM_FAULT_SIGSEGV; 5236 /* 5237 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5238 * just treat it like an ordinary read-fault otherwise. 5239 */ 5240 if (!is_cow_mapping(vma->vm_flags)) 5241 *flags &= ~FAULT_FLAG_UNSHARE; 5242 } else if (*flags & FAULT_FLAG_WRITE) { 5243 /* Write faults on read-only mappings are impossible ... */ 5244 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5245 return VM_FAULT_SIGSEGV; 5246 /* ... and FOLL_FORCE only applies to COW mappings. */ 5247 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5248 !is_cow_mapping(vma->vm_flags))) 5249 return VM_FAULT_SIGSEGV; 5250 } 5251 return 0; 5252 } 5253 5254 /* 5255 * By the time we get here, we already hold the mm semaphore 5256 * 5257 * The mmap_lock may have been released depending on flags and our 5258 * return value. See filemap_fault() and __folio_lock_or_retry(). 5259 */ 5260 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5261 unsigned int flags, struct pt_regs *regs) 5262 { 5263 /* If the fault handler drops the mmap_lock, vma may be freed */ 5264 struct mm_struct *mm = vma->vm_mm; 5265 vm_fault_t ret; 5266 5267 __set_current_state(TASK_RUNNING); 5268 5269 ret = sanitize_fault_flags(vma, &flags); 5270 if (ret) 5271 goto out; 5272 5273 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5274 flags & FAULT_FLAG_INSTRUCTION, 5275 flags & FAULT_FLAG_REMOTE)) { 5276 ret = VM_FAULT_SIGSEGV; 5277 goto out; 5278 } 5279 5280 /* 5281 * Enable the memcg OOM handling for faults triggered in user 5282 * space. Kernel faults are handled more gracefully. 5283 */ 5284 if (flags & FAULT_FLAG_USER) 5285 mem_cgroup_enter_user_fault(); 5286 5287 lru_gen_enter_fault(vma); 5288 5289 if (unlikely(is_vm_hugetlb_page(vma))) 5290 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5291 else 5292 ret = __handle_mm_fault(vma, address, flags); 5293 5294 lru_gen_exit_fault(); 5295 5296 if (flags & FAULT_FLAG_USER) { 5297 mem_cgroup_exit_user_fault(); 5298 /* 5299 * The task may have entered a memcg OOM situation but 5300 * if the allocation error was handled gracefully (no 5301 * VM_FAULT_OOM), there is no need to kill anything. 5302 * Just clean up the OOM state peacefully. 5303 */ 5304 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5305 mem_cgroup_oom_synchronize(false); 5306 } 5307 out: 5308 mm_account_fault(mm, regs, address, flags, ret); 5309 5310 return ret; 5311 } 5312 EXPORT_SYMBOL_GPL(handle_mm_fault); 5313 5314 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA 5315 #include <linux/extable.h> 5316 5317 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5318 { 5319 /* Even if this succeeds, make it clear we *might* have slept */ 5320 if (likely(mmap_read_trylock(mm))) { 5321 might_sleep(); 5322 return true; 5323 } 5324 5325 if (regs && !user_mode(regs)) { 5326 unsigned long ip = instruction_pointer(regs); 5327 if (!search_exception_tables(ip)) 5328 return false; 5329 } 5330 5331 return !mmap_read_lock_killable(mm); 5332 } 5333 5334 static inline bool mmap_upgrade_trylock(struct mm_struct *mm) 5335 { 5336 /* 5337 * We don't have this operation yet. 5338 * 5339 * It should be easy enough to do: it's basically a 5340 * atomic_long_try_cmpxchg_acquire() 5341 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but 5342 * it also needs the proper lockdep magic etc. 5343 */ 5344 return false; 5345 } 5346 5347 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs) 5348 { 5349 mmap_read_unlock(mm); 5350 if (regs && !user_mode(regs)) { 5351 unsigned long ip = instruction_pointer(regs); 5352 if (!search_exception_tables(ip)) 5353 return false; 5354 } 5355 return !mmap_write_lock_killable(mm); 5356 } 5357 5358 /* 5359 * Helper for page fault handling. 5360 * 5361 * This is kind of equivalend to "mmap_read_lock()" followed 5362 * by "find_extend_vma()", except it's a lot more careful about 5363 * the locking (and will drop the lock on failure). 5364 * 5365 * For example, if we have a kernel bug that causes a page 5366 * fault, we don't want to just use mmap_read_lock() to get 5367 * the mm lock, because that would deadlock if the bug were 5368 * to happen while we're holding the mm lock for writing. 5369 * 5370 * So this checks the exception tables on kernel faults in 5371 * order to only do this all for instructions that are actually 5372 * expected to fault. 5373 * 5374 * We can also actually take the mm lock for writing if we 5375 * need to extend the vma, which helps the VM layer a lot. 5376 */ 5377 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 5378 unsigned long addr, struct pt_regs *regs) 5379 { 5380 struct vm_area_struct *vma; 5381 5382 if (!get_mmap_lock_carefully(mm, regs)) 5383 return NULL; 5384 5385 vma = find_vma(mm, addr); 5386 if (likely(vma && (vma->vm_start <= addr))) 5387 return vma; 5388 5389 /* 5390 * Well, dang. We might still be successful, but only 5391 * if we can extend a vma to do so. 5392 */ 5393 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) { 5394 mmap_read_unlock(mm); 5395 return NULL; 5396 } 5397 5398 /* 5399 * We can try to upgrade the mmap lock atomically, 5400 * in which case we can continue to use the vma 5401 * we already looked up. 5402 * 5403 * Otherwise we'll have to drop the mmap lock and 5404 * re-take it, and also look up the vma again, 5405 * re-checking it. 5406 */ 5407 if (!mmap_upgrade_trylock(mm)) { 5408 if (!upgrade_mmap_lock_carefully(mm, regs)) 5409 return NULL; 5410 5411 vma = find_vma(mm, addr); 5412 if (!vma) 5413 goto fail; 5414 if (vma->vm_start <= addr) 5415 goto success; 5416 if (!(vma->vm_flags & VM_GROWSDOWN)) 5417 goto fail; 5418 } 5419 5420 if (expand_stack_locked(vma, addr)) 5421 goto fail; 5422 5423 success: 5424 mmap_write_downgrade(mm); 5425 return vma; 5426 5427 fail: 5428 mmap_write_unlock(mm); 5429 return NULL; 5430 } 5431 #endif 5432 5433 #ifdef CONFIG_PER_VMA_LOCK 5434 /* 5435 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5436 * stable and not isolated. If the VMA is not found or is being modified the 5437 * function returns NULL. 5438 */ 5439 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5440 unsigned long address) 5441 { 5442 MA_STATE(mas, &mm->mm_mt, address, address); 5443 struct vm_area_struct *vma; 5444 5445 rcu_read_lock(); 5446 retry: 5447 vma = mas_walk(&mas); 5448 if (!vma) 5449 goto inval; 5450 5451 if (!vma_start_read(vma)) 5452 goto inval; 5453 5454 /* 5455 * find_mergeable_anon_vma uses adjacent vmas which are not locked. 5456 * This check must happen after vma_start_read(); otherwise, a 5457 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA 5458 * from its anon_vma. 5459 */ 5460 if (unlikely(!vma->anon_vma && !vma_is_tcp(vma))) 5461 goto inval_end_read; 5462 5463 /* 5464 * Due to the possibility of userfault handler dropping mmap_lock, avoid 5465 * it for now and fall back to page fault handling under mmap_lock. 5466 */ 5467 if (userfaultfd_armed(vma)) 5468 goto inval_end_read; 5469 5470 /* Check since vm_start/vm_end might change before we lock the VMA */ 5471 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) 5472 goto inval_end_read; 5473 5474 /* Check if the VMA got isolated after we found it */ 5475 if (vma->detached) { 5476 vma_end_read(vma); 5477 count_vm_vma_lock_event(VMA_LOCK_MISS); 5478 /* The area was replaced with another one */ 5479 goto retry; 5480 } 5481 5482 rcu_read_unlock(); 5483 return vma; 5484 5485 inval_end_read: 5486 vma_end_read(vma); 5487 inval: 5488 rcu_read_unlock(); 5489 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5490 return NULL; 5491 } 5492 #endif /* CONFIG_PER_VMA_LOCK */ 5493 5494 #ifndef __PAGETABLE_P4D_FOLDED 5495 /* 5496 * Allocate p4d page table. 5497 * We've already handled the fast-path in-line. 5498 */ 5499 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5500 { 5501 p4d_t *new = p4d_alloc_one(mm, address); 5502 if (!new) 5503 return -ENOMEM; 5504 5505 spin_lock(&mm->page_table_lock); 5506 if (pgd_present(*pgd)) { /* Another has populated it */ 5507 p4d_free(mm, new); 5508 } else { 5509 smp_wmb(); /* See comment in pmd_install() */ 5510 pgd_populate(mm, pgd, new); 5511 } 5512 spin_unlock(&mm->page_table_lock); 5513 return 0; 5514 } 5515 #endif /* __PAGETABLE_P4D_FOLDED */ 5516 5517 #ifndef __PAGETABLE_PUD_FOLDED 5518 /* 5519 * Allocate page upper directory. 5520 * We've already handled the fast-path in-line. 5521 */ 5522 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5523 { 5524 pud_t *new = pud_alloc_one(mm, address); 5525 if (!new) 5526 return -ENOMEM; 5527 5528 spin_lock(&mm->page_table_lock); 5529 if (!p4d_present(*p4d)) { 5530 mm_inc_nr_puds(mm); 5531 smp_wmb(); /* See comment in pmd_install() */ 5532 p4d_populate(mm, p4d, new); 5533 } else /* Another has populated it */ 5534 pud_free(mm, new); 5535 spin_unlock(&mm->page_table_lock); 5536 return 0; 5537 } 5538 #endif /* __PAGETABLE_PUD_FOLDED */ 5539 5540 #ifndef __PAGETABLE_PMD_FOLDED 5541 /* 5542 * Allocate page middle directory. 5543 * We've already handled the fast-path in-line. 5544 */ 5545 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5546 { 5547 spinlock_t *ptl; 5548 pmd_t *new = pmd_alloc_one(mm, address); 5549 if (!new) 5550 return -ENOMEM; 5551 5552 ptl = pud_lock(mm, pud); 5553 if (!pud_present(*pud)) { 5554 mm_inc_nr_pmds(mm); 5555 smp_wmb(); /* See comment in pmd_install() */ 5556 pud_populate(mm, pud, new); 5557 } else { /* Another has populated it */ 5558 pmd_free(mm, new); 5559 } 5560 spin_unlock(ptl); 5561 return 0; 5562 } 5563 #endif /* __PAGETABLE_PMD_FOLDED */ 5564 5565 /** 5566 * follow_pte - look up PTE at a user virtual address 5567 * @mm: the mm_struct of the target address space 5568 * @address: user virtual address 5569 * @ptepp: location to store found PTE 5570 * @ptlp: location to store the lock for the PTE 5571 * 5572 * On a successful return, the pointer to the PTE is stored in @ptepp; 5573 * the corresponding lock is taken and its location is stored in @ptlp. 5574 * The contents of the PTE are only stable until @ptlp is released; 5575 * any further use, if any, must be protected against invalidation 5576 * with MMU notifiers. 5577 * 5578 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5579 * should be taken for read. 5580 * 5581 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5582 * it is not a good general-purpose API. 5583 * 5584 * Return: zero on success, -ve otherwise. 5585 */ 5586 int follow_pte(struct mm_struct *mm, unsigned long address, 5587 pte_t **ptepp, spinlock_t **ptlp) 5588 { 5589 pgd_t *pgd; 5590 p4d_t *p4d; 5591 pud_t *pud; 5592 pmd_t *pmd; 5593 pte_t *ptep; 5594 5595 pgd = pgd_offset(mm, address); 5596 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5597 goto out; 5598 5599 p4d = p4d_offset(pgd, address); 5600 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5601 goto out; 5602 5603 pud = pud_offset(p4d, address); 5604 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5605 goto out; 5606 5607 pmd = pmd_offset(pud, address); 5608 VM_BUG_ON(pmd_trans_huge(*pmd)); 5609 5610 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5611 if (!ptep) 5612 goto out; 5613 if (!pte_present(ptep_get(ptep))) 5614 goto unlock; 5615 *ptepp = ptep; 5616 return 0; 5617 unlock: 5618 pte_unmap_unlock(ptep, *ptlp); 5619 out: 5620 return -EINVAL; 5621 } 5622 EXPORT_SYMBOL_GPL(follow_pte); 5623 5624 /** 5625 * follow_pfn - look up PFN at a user virtual address 5626 * @vma: memory mapping 5627 * @address: user virtual address 5628 * @pfn: location to store found PFN 5629 * 5630 * Only IO mappings and raw PFN mappings are allowed. 5631 * 5632 * This function does not allow the caller to read the permissions 5633 * of the PTE. Do not use it. 5634 * 5635 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5636 */ 5637 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5638 unsigned long *pfn) 5639 { 5640 int ret = -EINVAL; 5641 spinlock_t *ptl; 5642 pte_t *ptep; 5643 5644 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5645 return ret; 5646 5647 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5648 if (ret) 5649 return ret; 5650 *pfn = pte_pfn(ptep_get(ptep)); 5651 pte_unmap_unlock(ptep, ptl); 5652 return 0; 5653 } 5654 EXPORT_SYMBOL(follow_pfn); 5655 5656 #ifdef CONFIG_HAVE_IOREMAP_PROT 5657 int follow_phys(struct vm_area_struct *vma, 5658 unsigned long address, unsigned int flags, 5659 unsigned long *prot, resource_size_t *phys) 5660 { 5661 int ret = -EINVAL; 5662 pte_t *ptep, pte; 5663 spinlock_t *ptl; 5664 5665 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5666 goto out; 5667 5668 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5669 goto out; 5670 pte = ptep_get(ptep); 5671 5672 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5673 goto unlock; 5674 5675 *prot = pgprot_val(pte_pgprot(pte)); 5676 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5677 5678 ret = 0; 5679 unlock: 5680 pte_unmap_unlock(ptep, ptl); 5681 out: 5682 return ret; 5683 } 5684 5685 /** 5686 * generic_access_phys - generic implementation for iomem mmap access 5687 * @vma: the vma to access 5688 * @addr: userspace address, not relative offset within @vma 5689 * @buf: buffer to read/write 5690 * @len: length of transfer 5691 * @write: set to FOLL_WRITE when writing, otherwise reading 5692 * 5693 * This is a generic implementation for &vm_operations_struct.access for an 5694 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5695 * not page based. 5696 */ 5697 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5698 void *buf, int len, int write) 5699 { 5700 resource_size_t phys_addr; 5701 unsigned long prot = 0; 5702 void __iomem *maddr; 5703 pte_t *ptep, pte; 5704 spinlock_t *ptl; 5705 int offset = offset_in_page(addr); 5706 int ret = -EINVAL; 5707 5708 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5709 return -EINVAL; 5710 5711 retry: 5712 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5713 return -EINVAL; 5714 pte = ptep_get(ptep); 5715 pte_unmap_unlock(ptep, ptl); 5716 5717 prot = pgprot_val(pte_pgprot(pte)); 5718 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5719 5720 if ((write & FOLL_WRITE) && !pte_write(pte)) 5721 return -EINVAL; 5722 5723 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5724 if (!maddr) 5725 return -ENOMEM; 5726 5727 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5728 goto out_unmap; 5729 5730 if (!pte_same(pte, ptep_get(ptep))) { 5731 pte_unmap_unlock(ptep, ptl); 5732 iounmap(maddr); 5733 5734 goto retry; 5735 } 5736 5737 if (write) 5738 memcpy_toio(maddr + offset, buf, len); 5739 else 5740 memcpy_fromio(buf, maddr + offset, len); 5741 ret = len; 5742 pte_unmap_unlock(ptep, ptl); 5743 out_unmap: 5744 iounmap(maddr); 5745 5746 return ret; 5747 } 5748 EXPORT_SYMBOL_GPL(generic_access_phys); 5749 #endif 5750 5751 /* 5752 * Access another process' address space as given in mm. 5753 */ 5754 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5755 int len, unsigned int gup_flags) 5756 { 5757 void *old_buf = buf; 5758 int write = gup_flags & FOLL_WRITE; 5759 5760 if (mmap_read_lock_killable(mm)) 5761 return 0; 5762 5763 /* Avoid triggering the temporary warning in __get_user_pages */ 5764 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr)) 5765 return 0; 5766 5767 /* ignore errors, just check how much was successfully transferred */ 5768 while (len) { 5769 int bytes, offset; 5770 void *maddr; 5771 struct vm_area_struct *vma = NULL; 5772 struct page *page = get_user_page_vma_remote(mm, addr, 5773 gup_flags, &vma); 5774 5775 if (IS_ERR_OR_NULL(page)) { 5776 /* We might need to expand the stack to access it */ 5777 vma = vma_lookup(mm, addr); 5778 if (!vma) { 5779 vma = expand_stack(mm, addr); 5780 5781 /* mmap_lock was dropped on failure */ 5782 if (!vma) 5783 return buf - old_buf; 5784 5785 /* Try again if stack expansion worked */ 5786 continue; 5787 } 5788 5789 5790 /* 5791 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5792 * we can access using slightly different code. 5793 */ 5794 bytes = 0; 5795 #ifdef CONFIG_HAVE_IOREMAP_PROT 5796 if (vma->vm_ops && vma->vm_ops->access) 5797 bytes = vma->vm_ops->access(vma, addr, buf, 5798 len, write); 5799 #endif 5800 if (bytes <= 0) 5801 break; 5802 } else { 5803 bytes = len; 5804 offset = addr & (PAGE_SIZE-1); 5805 if (bytes > PAGE_SIZE-offset) 5806 bytes = PAGE_SIZE-offset; 5807 5808 maddr = kmap(page); 5809 if (write) { 5810 copy_to_user_page(vma, page, addr, 5811 maddr + offset, buf, bytes); 5812 set_page_dirty_lock(page); 5813 } else { 5814 copy_from_user_page(vma, page, addr, 5815 buf, maddr + offset, bytes); 5816 } 5817 kunmap(page); 5818 put_page(page); 5819 } 5820 len -= bytes; 5821 buf += bytes; 5822 addr += bytes; 5823 } 5824 mmap_read_unlock(mm); 5825 5826 return buf - old_buf; 5827 } 5828 5829 /** 5830 * access_remote_vm - access another process' address space 5831 * @mm: the mm_struct of the target address space 5832 * @addr: start address to access 5833 * @buf: source or destination buffer 5834 * @len: number of bytes to transfer 5835 * @gup_flags: flags modifying lookup behaviour 5836 * 5837 * The caller must hold a reference on @mm. 5838 * 5839 * Return: number of bytes copied from source to destination. 5840 */ 5841 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5842 void *buf, int len, unsigned int gup_flags) 5843 { 5844 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5845 } 5846 5847 /* 5848 * Access another process' address space. 5849 * Source/target buffer must be kernel space, 5850 * Do not walk the page table directly, use get_user_pages 5851 */ 5852 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5853 void *buf, int len, unsigned int gup_flags) 5854 { 5855 struct mm_struct *mm; 5856 int ret; 5857 5858 mm = get_task_mm(tsk); 5859 if (!mm) 5860 return 0; 5861 5862 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5863 5864 mmput(mm); 5865 5866 return ret; 5867 } 5868 EXPORT_SYMBOL_GPL(access_process_vm); 5869 5870 /* 5871 * Print the name of a VMA. 5872 */ 5873 void print_vma_addr(char *prefix, unsigned long ip) 5874 { 5875 struct mm_struct *mm = current->mm; 5876 struct vm_area_struct *vma; 5877 5878 /* 5879 * we might be running from an atomic context so we cannot sleep 5880 */ 5881 if (!mmap_read_trylock(mm)) 5882 return; 5883 5884 vma = find_vma(mm, ip); 5885 if (vma && vma->vm_file) { 5886 struct file *f = vma->vm_file; 5887 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5888 if (buf) { 5889 char *p; 5890 5891 p = file_path(f, buf, PAGE_SIZE); 5892 if (IS_ERR(p)) 5893 p = "?"; 5894 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5895 vma->vm_start, 5896 vma->vm_end - vma->vm_start); 5897 free_page((unsigned long)buf); 5898 } 5899 } 5900 mmap_read_unlock(mm); 5901 } 5902 5903 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5904 void __might_fault(const char *file, int line) 5905 { 5906 if (pagefault_disabled()) 5907 return; 5908 __might_sleep(file, line); 5909 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5910 if (current->mm) 5911 might_lock_read(¤t->mm->mmap_lock); 5912 #endif 5913 } 5914 EXPORT_SYMBOL(__might_fault); 5915 #endif 5916 5917 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5918 /* 5919 * Process all subpages of the specified huge page with the specified 5920 * operation. The target subpage will be processed last to keep its 5921 * cache lines hot. 5922 */ 5923 static inline int process_huge_page( 5924 unsigned long addr_hint, unsigned int pages_per_huge_page, 5925 int (*process_subpage)(unsigned long addr, int idx, void *arg), 5926 void *arg) 5927 { 5928 int i, n, base, l, ret; 5929 unsigned long addr = addr_hint & 5930 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5931 5932 /* Process target subpage last to keep its cache lines hot */ 5933 might_sleep(); 5934 n = (addr_hint - addr) / PAGE_SIZE; 5935 if (2 * n <= pages_per_huge_page) { 5936 /* If target subpage in first half of huge page */ 5937 base = 0; 5938 l = n; 5939 /* Process subpages at the end of huge page */ 5940 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5941 cond_resched(); 5942 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5943 if (ret) 5944 return ret; 5945 } 5946 } else { 5947 /* If target subpage in second half of huge page */ 5948 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5949 l = pages_per_huge_page - n; 5950 /* Process subpages at the begin of huge page */ 5951 for (i = 0; i < base; i++) { 5952 cond_resched(); 5953 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5954 if (ret) 5955 return ret; 5956 } 5957 } 5958 /* 5959 * Process remaining subpages in left-right-left-right pattern 5960 * towards the target subpage 5961 */ 5962 for (i = 0; i < l; i++) { 5963 int left_idx = base + i; 5964 int right_idx = base + 2 * l - 1 - i; 5965 5966 cond_resched(); 5967 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5968 if (ret) 5969 return ret; 5970 cond_resched(); 5971 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5972 if (ret) 5973 return ret; 5974 } 5975 return 0; 5976 } 5977 5978 static void clear_gigantic_page(struct page *page, 5979 unsigned long addr, 5980 unsigned int pages_per_huge_page) 5981 { 5982 int i; 5983 struct page *p; 5984 5985 might_sleep(); 5986 for (i = 0; i < pages_per_huge_page; i++) { 5987 p = nth_page(page, i); 5988 cond_resched(); 5989 clear_user_highpage(p, addr + i * PAGE_SIZE); 5990 } 5991 } 5992 5993 static int clear_subpage(unsigned long addr, int idx, void *arg) 5994 { 5995 struct page *page = arg; 5996 5997 clear_user_highpage(page + idx, addr); 5998 return 0; 5999 } 6000 6001 void clear_huge_page(struct page *page, 6002 unsigned long addr_hint, unsigned int pages_per_huge_page) 6003 { 6004 unsigned long addr = addr_hint & 6005 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6006 6007 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 6008 clear_gigantic_page(page, addr, pages_per_huge_page); 6009 return; 6010 } 6011 6012 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 6013 } 6014 6015 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 6016 unsigned long addr, 6017 struct vm_area_struct *vma, 6018 unsigned int pages_per_huge_page) 6019 { 6020 int i; 6021 struct page *dst_page; 6022 struct page *src_page; 6023 6024 for (i = 0; i < pages_per_huge_page; i++) { 6025 dst_page = folio_page(dst, i); 6026 src_page = folio_page(src, i); 6027 6028 cond_resched(); 6029 if (copy_mc_user_highpage(dst_page, src_page, 6030 addr + i*PAGE_SIZE, vma)) { 6031 memory_failure_queue(page_to_pfn(src_page), 0); 6032 return -EHWPOISON; 6033 } 6034 } 6035 return 0; 6036 } 6037 6038 struct copy_subpage_arg { 6039 struct page *dst; 6040 struct page *src; 6041 struct vm_area_struct *vma; 6042 }; 6043 6044 static int copy_subpage(unsigned long addr, int idx, void *arg) 6045 { 6046 struct copy_subpage_arg *copy_arg = arg; 6047 6048 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 6049 addr, copy_arg->vma)) { 6050 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 6051 return -EHWPOISON; 6052 } 6053 return 0; 6054 } 6055 6056 int copy_user_large_folio(struct folio *dst, struct folio *src, 6057 unsigned long addr_hint, struct vm_area_struct *vma) 6058 { 6059 unsigned int pages_per_huge_page = folio_nr_pages(dst); 6060 unsigned long addr = addr_hint & 6061 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 6062 struct copy_subpage_arg arg = { 6063 .dst = &dst->page, 6064 .src = &src->page, 6065 .vma = vma, 6066 }; 6067 6068 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 6069 return copy_user_gigantic_page(dst, src, addr, vma, 6070 pages_per_huge_page); 6071 6072 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 6073 } 6074 6075 long copy_folio_from_user(struct folio *dst_folio, 6076 const void __user *usr_src, 6077 bool allow_pagefault) 6078 { 6079 void *kaddr; 6080 unsigned long i, rc = 0; 6081 unsigned int nr_pages = folio_nr_pages(dst_folio); 6082 unsigned long ret_val = nr_pages * PAGE_SIZE; 6083 struct page *subpage; 6084 6085 for (i = 0; i < nr_pages; i++) { 6086 subpage = folio_page(dst_folio, i); 6087 kaddr = kmap_local_page(subpage); 6088 if (!allow_pagefault) 6089 pagefault_disable(); 6090 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 6091 if (!allow_pagefault) 6092 pagefault_enable(); 6093 kunmap_local(kaddr); 6094 6095 ret_val -= (PAGE_SIZE - rc); 6096 if (rc) 6097 break; 6098 6099 flush_dcache_page(subpage); 6100 6101 cond_resched(); 6102 } 6103 return ret_val; 6104 } 6105 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 6106 6107 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 6108 6109 static struct kmem_cache *page_ptl_cachep; 6110 6111 void __init ptlock_cache_init(void) 6112 { 6113 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 6114 SLAB_PANIC, NULL); 6115 } 6116 6117 bool ptlock_alloc(struct page *page) 6118 { 6119 spinlock_t *ptl; 6120 6121 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 6122 if (!ptl) 6123 return false; 6124 page->ptl = ptl; 6125 return true; 6126 } 6127 6128 void ptlock_free(struct page *page) 6129 { 6130 kmem_cache_free(page_ptl_cachep, page->ptl); 6131 } 6132 #endif 6133