1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 63 #include <asm/io.h> 64 #include <asm/pgalloc.h> 65 #include <asm/uaccess.h> 66 #include <asm/tlb.h> 67 #include <asm/tlbflush.h> 68 #include <asm/pgtable.h> 69 70 #include "internal.h" 71 72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS 73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid. 74 #endif 75 76 #ifndef CONFIG_NEED_MULTIPLE_NODES 77 /* use the per-pgdat data instead for discontigmem - mbligh */ 78 unsigned long max_mapnr; 79 struct page *mem_map; 80 81 EXPORT_SYMBOL(max_mapnr); 82 EXPORT_SYMBOL(mem_map); 83 #endif 84 85 /* 86 * A number of key systems in x86 including ioremap() rely on the assumption 87 * that high_memory defines the upper bound on direct map memory, then end 88 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 89 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 90 * and ZONE_HIGHMEM. 91 */ 92 void * high_memory; 93 94 EXPORT_SYMBOL(high_memory); 95 96 /* 97 * Randomize the address space (stacks, mmaps, brk, etc.). 98 * 99 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 100 * as ancient (libc5 based) binaries can segfault. ) 101 */ 102 int randomize_va_space __read_mostly = 103 #ifdef CONFIG_COMPAT_BRK 104 1; 105 #else 106 2; 107 #endif 108 109 static int __init disable_randmaps(char *s) 110 { 111 randomize_va_space = 0; 112 return 1; 113 } 114 __setup("norandmaps", disable_randmaps); 115 116 unsigned long zero_pfn __read_mostly; 117 unsigned long highest_memmap_pfn __read_mostly; 118 119 /* 120 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 121 */ 122 static int __init init_zero_pfn(void) 123 { 124 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 125 return 0; 126 } 127 core_initcall(init_zero_pfn); 128 129 130 #if defined(SPLIT_RSS_COUNTING) 131 132 void sync_mm_rss(struct mm_struct *mm) 133 { 134 int i; 135 136 for (i = 0; i < NR_MM_COUNTERS; i++) { 137 if (current->rss_stat.count[i]) { 138 add_mm_counter(mm, i, current->rss_stat.count[i]); 139 current->rss_stat.count[i] = 0; 140 } 141 } 142 current->rss_stat.events = 0; 143 } 144 145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 146 { 147 struct task_struct *task = current; 148 149 if (likely(task->mm == mm)) 150 task->rss_stat.count[member] += val; 151 else 152 add_mm_counter(mm, member, val); 153 } 154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 156 157 /* sync counter once per 64 page faults */ 158 #define TASK_RSS_EVENTS_THRESH (64) 159 static void check_sync_rss_stat(struct task_struct *task) 160 { 161 if (unlikely(task != current)) 162 return; 163 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 164 sync_mm_rss(task->mm); 165 } 166 #else /* SPLIT_RSS_COUNTING */ 167 168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 170 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 } 174 175 #endif /* SPLIT_RSS_COUNTING */ 176 177 #ifdef HAVE_GENERIC_MMU_GATHER 178 179 static int tlb_next_batch(struct mmu_gather *tlb) 180 { 181 struct mmu_gather_batch *batch; 182 183 batch = tlb->active; 184 if (batch->next) { 185 tlb->active = batch->next; 186 return 1; 187 } 188 189 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 190 return 0; 191 192 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 193 if (!batch) 194 return 0; 195 196 tlb->batch_count++; 197 batch->next = NULL; 198 batch->nr = 0; 199 batch->max = MAX_GATHER_BATCH; 200 201 tlb->active->next = batch; 202 tlb->active = batch; 203 204 return 1; 205 } 206 207 /* tlb_gather_mmu 208 * Called to initialize an (on-stack) mmu_gather structure for page-table 209 * tear-down from @mm. The @fullmm argument is used when @mm is without 210 * users and we're going to destroy the full address space (exit/execve). 211 */ 212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 213 { 214 tlb->mm = mm; 215 216 /* Is it from 0 to ~0? */ 217 tlb->fullmm = !(start | (end+1)); 218 tlb->need_flush_all = 0; 219 tlb->start = start; 220 tlb->end = end; 221 tlb->need_flush = 0; 222 tlb->local.next = NULL; 223 tlb->local.nr = 0; 224 tlb->local.max = ARRAY_SIZE(tlb->__pages); 225 tlb->active = &tlb->local; 226 tlb->batch_count = 0; 227 228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 229 tlb->batch = NULL; 230 #endif 231 } 232 233 void tlb_flush_mmu(struct mmu_gather *tlb) 234 { 235 struct mmu_gather_batch *batch; 236 237 if (!tlb->need_flush) 238 return; 239 tlb->need_flush = 0; 240 tlb_flush(tlb); 241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 242 tlb_table_flush(tlb); 243 #endif 244 245 for (batch = &tlb->local; batch; batch = batch->next) { 246 free_pages_and_swap_cache(batch->pages, batch->nr); 247 batch->nr = 0; 248 } 249 tlb->active = &tlb->local; 250 } 251 252 /* tlb_finish_mmu 253 * Called at the end of the shootdown operation to free up any resources 254 * that were required. 255 */ 256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 257 { 258 struct mmu_gather_batch *batch, *next; 259 260 tlb_flush_mmu(tlb); 261 262 /* keep the page table cache within bounds */ 263 check_pgt_cache(); 264 265 for (batch = tlb->local.next; batch; batch = next) { 266 next = batch->next; 267 free_pages((unsigned long)batch, 0); 268 } 269 tlb->local.next = NULL; 270 } 271 272 /* __tlb_remove_page 273 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 274 * handling the additional races in SMP caused by other CPUs caching valid 275 * mappings in their TLBs. Returns the number of free page slots left. 276 * When out of page slots we must call tlb_flush_mmu(). 277 */ 278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 279 { 280 struct mmu_gather_batch *batch; 281 282 VM_BUG_ON(!tlb->need_flush); 283 284 batch = tlb->active; 285 batch->pages[batch->nr++] = page; 286 if (batch->nr == batch->max) { 287 if (!tlb_next_batch(tlb)) 288 return 0; 289 batch = tlb->active; 290 } 291 VM_BUG_ON(batch->nr > batch->max); 292 293 return batch->max - batch->nr; 294 } 295 296 #endif /* HAVE_GENERIC_MMU_GATHER */ 297 298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 299 300 /* 301 * See the comment near struct mmu_table_batch. 302 */ 303 304 static void tlb_remove_table_smp_sync(void *arg) 305 { 306 /* Simply deliver the interrupt */ 307 } 308 309 static void tlb_remove_table_one(void *table) 310 { 311 /* 312 * This isn't an RCU grace period and hence the page-tables cannot be 313 * assumed to be actually RCU-freed. 314 * 315 * It is however sufficient for software page-table walkers that rely on 316 * IRQ disabling. See the comment near struct mmu_table_batch. 317 */ 318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 319 __tlb_remove_table(table); 320 } 321 322 static void tlb_remove_table_rcu(struct rcu_head *head) 323 { 324 struct mmu_table_batch *batch; 325 int i; 326 327 batch = container_of(head, struct mmu_table_batch, rcu); 328 329 for (i = 0; i < batch->nr; i++) 330 __tlb_remove_table(batch->tables[i]); 331 332 free_page((unsigned long)batch); 333 } 334 335 void tlb_table_flush(struct mmu_gather *tlb) 336 { 337 struct mmu_table_batch **batch = &tlb->batch; 338 339 if (*batch) { 340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 341 *batch = NULL; 342 } 343 } 344 345 void tlb_remove_table(struct mmu_gather *tlb, void *table) 346 { 347 struct mmu_table_batch **batch = &tlb->batch; 348 349 tlb->need_flush = 1; 350 351 /* 352 * When there's less then two users of this mm there cannot be a 353 * concurrent page-table walk. 354 */ 355 if (atomic_read(&tlb->mm->mm_users) < 2) { 356 __tlb_remove_table(table); 357 return; 358 } 359 360 if (*batch == NULL) { 361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 362 if (*batch == NULL) { 363 tlb_remove_table_one(table); 364 return; 365 } 366 (*batch)->nr = 0; 367 } 368 (*batch)->tables[(*batch)->nr++] = table; 369 if ((*batch)->nr == MAX_TABLE_BATCH) 370 tlb_table_flush(tlb); 371 } 372 373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 374 375 /* 376 * Note: this doesn't free the actual pages themselves. That 377 * has been handled earlier when unmapping all the memory regions. 378 */ 379 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 380 unsigned long addr) 381 { 382 pgtable_t token = pmd_pgtable(*pmd); 383 pmd_clear(pmd); 384 pte_free_tlb(tlb, token, addr); 385 tlb->mm->nr_ptes--; 386 } 387 388 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 389 unsigned long addr, unsigned long end, 390 unsigned long floor, unsigned long ceiling) 391 { 392 pmd_t *pmd; 393 unsigned long next; 394 unsigned long start; 395 396 start = addr; 397 pmd = pmd_offset(pud, addr); 398 do { 399 next = pmd_addr_end(addr, end); 400 if (pmd_none_or_clear_bad(pmd)) 401 continue; 402 free_pte_range(tlb, pmd, addr); 403 } while (pmd++, addr = next, addr != end); 404 405 start &= PUD_MASK; 406 if (start < floor) 407 return; 408 if (ceiling) { 409 ceiling &= PUD_MASK; 410 if (!ceiling) 411 return; 412 } 413 if (end - 1 > ceiling - 1) 414 return; 415 416 pmd = pmd_offset(pud, start); 417 pud_clear(pud); 418 pmd_free_tlb(tlb, pmd, start); 419 } 420 421 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 422 unsigned long addr, unsigned long end, 423 unsigned long floor, unsigned long ceiling) 424 { 425 pud_t *pud; 426 unsigned long next; 427 unsigned long start; 428 429 start = addr; 430 pud = pud_offset(pgd, addr); 431 do { 432 next = pud_addr_end(addr, end); 433 if (pud_none_or_clear_bad(pud)) 434 continue; 435 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 436 } while (pud++, addr = next, addr != end); 437 438 start &= PGDIR_MASK; 439 if (start < floor) 440 return; 441 if (ceiling) { 442 ceiling &= PGDIR_MASK; 443 if (!ceiling) 444 return; 445 } 446 if (end - 1 > ceiling - 1) 447 return; 448 449 pud = pud_offset(pgd, start); 450 pgd_clear(pgd); 451 pud_free_tlb(tlb, pud, start); 452 } 453 454 /* 455 * This function frees user-level page tables of a process. 456 * 457 * Must be called with pagetable lock held. 458 */ 459 void free_pgd_range(struct mmu_gather *tlb, 460 unsigned long addr, unsigned long end, 461 unsigned long floor, unsigned long ceiling) 462 { 463 pgd_t *pgd; 464 unsigned long next; 465 466 /* 467 * The next few lines have given us lots of grief... 468 * 469 * Why are we testing PMD* at this top level? Because often 470 * there will be no work to do at all, and we'd prefer not to 471 * go all the way down to the bottom just to discover that. 472 * 473 * Why all these "- 1"s? Because 0 represents both the bottom 474 * of the address space and the top of it (using -1 for the 475 * top wouldn't help much: the masks would do the wrong thing). 476 * The rule is that addr 0 and floor 0 refer to the bottom of 477 * the address space, but end 0 and ceiling 0 refer to the top 478 * Comparisons need to use "end - 1" and "ceiling - 1" (though 479 * that end 0 case should be mythical). 480 * 481 * Wherever addr is brought up or ceiling brought down, we must 482 * be careful to reject "the opposite 0" before it confuses the 483 * subsequent tests. But what about where end is brought down 484 * by PMD_SIZE below? no, end can't go down to 0 there. 485 * 486 * Whereas we round start (addr) and ceiling down, by different 487 * masks at different levels, in order to test whether a table 488 * now has no other vmas using it, so can be freed, we don't 489 * bother to round floor or end up - the tests don't need that. 490 */ 491 492 addr &= PMD_MASK; 493 if (addr < floor) { 494 addr += PMD_SIZE; 495 if (!addr) 496 return; 497 } 498 if (ceiling) { 499 ceiling &= PMD_MASK; 500 if (!ceiling) 501 return; 502 } 503 if (end - 1 > ceiling - 1) 504 end -= PMD_SIZE; 505 if (addr > end - 1) 506 return; 507 508 pgd = pgd_offset(tlb->mm, addr); 509 do { 510 next = pgd_addr_end(addr, end); 511 if (pgd_none_or_clear_bad(pgd)) 512 continue; 513 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 514 } while (pgd++, addr = next, addr != end); 515 } 516 517 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 518 unsigned long floor, unsigned long ceiling) 519 { 520 while (vma) { 521 struct vm_area_struct *next = vma->vm_next; 522 unsigned long addr = vma->vm_start; 523 524 /* 525 * Hide vma from rmap and truncate_pagecache before freeing 526 * pgtables 527 */ 528 unlink_anon_vmas(vma); 529 unlink_file_vma(vma); 530 531 if (is_vm_hugetlb_page(vma)) { 532 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 533 floor, next? next->vm_start: ceiling); 534 } else { 535 /* 536 * Optimization: gather nearby vmas into one call down 537 */ 538 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 539 && !is_vm_hugetlb_page(next)) { 540 vma = next; 541 next = vma->vm_next; 542 unlink_anon_vmas(vma); 543 unlink_file_vma(vma); 544 } 545 free_pgd_range(tlb, addr, vma->vm_end, 546 floor, next? next->vm_start: ceiling); 547 } 548 vma = next; 549 } 550 } 551 552 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 553 pmd_t *pmd, unsigned long address) 554 { 555 pgtable_t new = pte_alloc_one(mm, address); 556 int wait_split_huge_page; 557 if (!new) 558 return -ENOMEM; 559 560 /* 561 * Ensure all pte setup (eg. pte page lock and page clearing) are 562 * visible before the pte is made visible to other CPUs by being 563 * put into page tables. 564 * 565 * The other side of the story is the pointer chasing in the page 566 * table walking code (when walking the page table without locking; 567 * ie. most of the time). Fortunately, these data accesses consist 568 * of a chain of data-dependent loads, meaning most CPUs (alpha 569 * being the notable exception) will already guarantee loads are 570 * seen in-order. See the alpha page table accessors for the 571 * smp_read_barrier_depends() barriers in page table walking code. 572 */ 573 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 574 575 spin_lock(&mm->page_table_lock); 576 wait_split_huge_page = 0; 577 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 578 mm->nr_ptes++; 579 pmd_populate(mm, pmd, new); 580 new = NULL; 581 } else if (unlikely(pmd_trans_splitting(*pmd))) 582 wait_split_huge_page = 1; 583 spin_unlock(&mm->page_table_lock); 584 if (new) 585 pte_free(mm, new); 586 if (wait_split_huge_page) 587 wait_split_huge_page(vma->anon_vma, pmd); 588 return 0; 589 } 590 591 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 592 { 593 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 594 if (!new) 595 return -ENOMEM; 596 597 smp_wmb(); /* See comment in __pte_alloc */ 598 599 spin_lock(&init_mm.page_table_lock); 600 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 601 pmd_populate_kernel(&init_mm, pmd, new); 602 new = NULL; 603 } else 604 VM_BUG_ON(pmd_trans_splitting(*pmd)); 605 spin_unlock(&init_mm.page_table_lock); 606 if (new) 607 pte_free_kernel(&init_mm, new); 608 return 0; 609 } 610 611 static inline void init_rss_vec(int *rss) 612 { 613 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 614 } 615 616 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 617 { 618 int i; 619 620 if (current->mm == mm) 621 sync_mm_rss(mm); 622 for (i = 0; i < NR_MM_COUNTERS; i++) 623 if (rss[i]) 624 add_mm_counter(mm, i, rss[i]); 625 } 626 627 /* 628 * This function is called to print an error when a bad pte 629 * is found. For example, we might have a PFN-mapped pte in 630 * a region that doesn't allow it. 631 * 632 * The calling function must still handle the error. 633 */ 634 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 635 pte_t pte, struct page *page) 636 { 637 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 638 pud_t *pud = pud_offset(pgd, addr); 639 pmd_t *pmd = pmd_offset(pud, addr); 640 struct address_space *mapping; 641 pgoff_t index; 642 static unsigned long resume; 643 static unsigned long nr_shown; 644 static unsigned long nr_unshown; 645 646 /* 647 * Allow a burst of 60 reports, then keep quiet for that minute; 648 * or allow a steady drip of one report per second. 649 */ 650 if (nr_shown == 60) { 651 if (time_before(jiffies, resume)) { 652 nr_unshown++; 653 return; 654 } 655 if (nr_unshown) { 656 printk(KERN_ALERT 657 "BUG: Bad page map: %lu messages suppressed\n", 658 nr_unshown); 659 nr_unshown = 0; 660 } 661 nr_shown = 0; 662 } 663 if (nr_shown++ == 0) 664 resume = jiffies + 60 * HZ; 665 666 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 667 index = linear_page_index(vma, addr); 668 669 printk(KERN_ALERT 670 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 671 current->comm, 672 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 673 if (page) 674 dump_page(page); 675 printk(KERN_ALERT 676 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 677 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 678 /* 679 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 680 */ 681 if (vma->vm_ops) 682 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 683 vma->vm_ops->fault); 684 if (vma->vm_file && vma->vm_file->f_op) 685 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 686 vma->vm_file->f_op->mmap); 687 dump_stack(); 688 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 689 } 690 691 static inline bool is_cow_mapping(vm_flags_t flags) 692 { 693 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 694 } 695 696 /* 697 * vm_normal_page -- This function gets the "struct page" associated with a pte. 698 * 699 * "Special" mappings do not wish to be associated with a "struct page" (either 700 * it doesn't exist, or it exists but they don't want to touch it). In this 701 * case, NULL is returned here. "Normal" mappings do have a struct page. 702 * 703 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 704 * pte bit, in which case this function is trivial. Secondly, an architecture 705 * may not have a spare pte bit, which requires a more complicated scheme, 706 * described below. 707 * 708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 709 * special mapping (even if there are underlying and valid "struct pages"). 710 * COWed pages of a VM_PFNMAP are always normal. 711 * 712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 715 * mapping will always honor the rule 716 * 717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 718 * 719 * And for normal mappings this is false. 720 * 721 * This restricts such mappings to be a linear translation from virtual address 722 * to pfn. To get around this restriction, we allow arbitrary mappings so long 723 * as the vma is not a COW mapping; in that case, we know that all ptes are 724 * special (because none can have been COWed). 725 * 726 * 727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 728 * 729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 730 * page" backing, however the difference is that _all_ pages with a struct 731 * page (that is, those where pfn_valid is true) are refcounted and considered 732 * normal pages by the VM. The disadvantage is that pages are refcounted 733 * (which can be slower and simply not an option for some PFNMAP users). The 734 * advantage is that we don't have to follow the strict linearity rule of 735 * PFNMAP mappings in order to support COWable mappings. 736 * 737 */ 738 #ifdef __HAVE_ARCH_PTE_SPECIAL 739 # define HAVE_PTE_SPECIAL 1 740 #else 741 # define HAVE_PTE_SPECIAL 0 742 #endif 743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 744 pte_t pte) 745 { 746 unsigned long pfn = pte_pfn(pte); 747 748 if (HAVE_PTE_SPECIAL) { 749 if (likely(!pte_special(pte))) 750 goto check_pfn; 751 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 752 return NULL; 753 if (!is_zero_pfn(pfn)) 754 print_bad_pte(vma, addr, pte, NULL); 755 return NULL; 756 } 757 758 /* !HAVE_PTE_SPECIAL case follows: */ 759 760 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 761 if (vma->vm_flags & VM_MIXEDMAP) { 762 if (!pfn_valid(pfn)) 763 return NULL; 764 goto out; 765 } else { 766 unsigned long off; 767 off = (addr - vma->vm_start) >> PAGE_SHIFT; 768 if (pfn == vma->vm_pgoff + off) 769 return NULL; 770 if (!is_cow_mapping(vma->vm_flags)) 771 return NULL; 772 } 773 } 774 775 if (is_zero_pfn(pfn)) 776 return NULL; 777 check_pfn: 778 if (unlikely(pfn > highest_memmap_pfn)) { 779 print_bad_pte(vma, addr, pte, NULL); 780 return NULL; 781 } 782 783 /* 784 * NOTE! We still have PageReserved() pages in the page tables. 785 * eg. VDSO mappings can cause them to exist. 786 */ 787 out: 788 return pfn_to_page(pfn); 789 } 790 791 /* 792 * copy one vm_area from one task to the other. Assumes the page tables 793 * already present in the new task to be cleared in the whole range 794 * covered by this vma. 795 */ 796 797 static inline unsigned long 798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 799 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 800 unsigned long addr, int *rss) 801 { 802 unsigned long vm_flags = vma->vm_flags; 803 pte_t pte = *src_pte; 804 struct page *page; 805 806 /* pte contains position in swap or file, so copy. */ 807 if (unlikely(!pte_present(pte))) { 808 if (!pte_file(pte)) { 809 swp_entry_t entry = pte_to_swp_entry(pte); 810 811 if (swap_duplicate(entry) < 0) 812 return entry.val; 813 814 /* make sure dst_mm is on swapoff's mmlist. */ 815 if (unlikely(list_empty(&dst_mm->mmlist))) { 816 spin_lock(&mmlist_lock); 817 if (list_empty(&dst_mm->mmlist)) 818 list_add(&dst_mm->mmlist, 819 &src_mm->mmlist); 820 spin_unlock(&mmlist_lock); 821 } 822 if (likely(!non_swap_entry(entry))) 823 rss[MM_SWAPENTS]++; 824 else if (is_migration_entry(entry)) { 825 page = migration_entry_to_page(entry); 826 827 if (PageAnon(page)) 828 rss[MM_ANONPAGES]++; 829 else 830 rss[MM_FILEPAGES]++; 831 832 if (is_write_migration_entry(entry) && 833 is_cow_mapping(vm_flags)) { 834 /* 835 * COW mappings require pages in both 836 * parent and child to be set to read. 837 */ 838 make_migration_entry_read(&entry); 839 pte = swp_entry_to_pte(entry); 840 set_pte_at(src_mm, addr, src_pte, pte); 841 } 842 } 843 } 844 goto out_set_pte; 845 } 846 847 /* 848 * If it's a COW mapping, write protect it both 849 * in the parent and the child 850 */ 851 if (is_cow_mapping(vm_flags)) { 852 ptep_set_wrprotect(src_mm, addr, src_pte); 853 pte = pte_wrprotect(pte); 854 } 855 856 /* 857 * If it's a shared mapping, mark it clean in 858 * the child 859 */ 860 if (vm_flags & VM_SHARED) 861 pte = pte_mkclean(pte); 862 pte = pte_mkold(pte); 863 864 page = vm_normal_page(vma, addr, pte); 865 if (page) { 866 get_page(page); 867 page_dup_rmap(page); 868 if (PageAnon(page)) 869 rss[MM_ANONPAGES]++; 870 else 871 rss[MM_FILEPAGES]++; 872 } 873 874 out_set_pte: 875 set_pte_at(dst_mm, addr, dst_pte, pte); 876 return 0; 877 } 878 879 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 880 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 881 unsigned long addr, unsigned long end) 882 { 883 pte_t *orig_src_pte, *orig_dst_pte; 884 pte_t *src_pte, *dst_pte; 885 spinlock_t *src_ptl, *dst_ptl; 886 int progress = 0; 887 int rss[NR_MM_COUNTERS]; 888 swp_entry_t entry = (swp_entry_t){0}; 889 890 again: 891 init_rss_vec(rss); 892 893 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 894 if (!dst_pte) 895 return -ENOMEM; 896 src_pte = pte_offset_map(src_pmd, addr); 897 src_ptl = pte_lockptr(src_mm, src_pmd); 898 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 899 orig_src_pte = src_pte; 900 orig_dst_pte = dst_pte; 901 arch_enter_lazy_mmu_mode(); 902 903 do { 904 /* 905 * We are holding two locks at this point - either of them 906 * could generate latencies in another task on another CPU. 907 */ 908 if (progress >= 32) { 909 progress = 0; 910 if (need_resched() || 911 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 912 break; 913 } 914 if (pte_none(*src_pte)) { 915 progress++; 916 continue; 917 } 918 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 919 vma, addr, rss); 920 if (entry.val) 921 break; 922 progress += 8; 923 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 924 925 arch_leave_lazy_mmu_mode(); 926 spin_unlock(src_ptl); 927 pte_unmap(orig_src_pte); 928 add_mm_rss_vec(dst_mm, rss); 929 pte_unmap_unlock(orig_dst_pte, dst_ptl); 930 cond_resched(); 931 932 if (entry.val) { 933 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 934 return -ENOMEM; 935 progress = 0; 936 } 937 if (addr != end) 938 goto again; 939 return 0; 940 } 941 942 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 943 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 944 unsigned long addr, unsigned long end) 945 { 946 pmd_t *src_pmd, *dst_pmd; 947 unsigned long next; 948 949 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 950 if (!dst_pmd) 951 return -ENOMEM; 952 src_pmd = pmd_offset(src_pud, addr); 953 do { 954 next = pmd_addr_end(addr, end); 955 if (pmd_trans_huge(*src_pmd)) { 956 int err; 957 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 958 err = copy_huge_pmd(dst_mm, src_mm, 959 dst_pmd, src_pmd, addr, vma); 960 if (err == -ENOMEM) 961 return -ENOMEM; 962 if (!err) 963 continue; 964 /* fall through */ 965 } 966 if (pmd_none_or_clear_bad(src_pmd)) 967 continue; 968 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 969 vma, addr, next)) 970 return -ENOMEM; 971 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 972 return 0; 973 } 974 975 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 976 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 977 unsigned long addr, unsigned long end) 978 { 979 pud_t *src_pud, *dst_pud; 980 unsigned long next; 981 982 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 983 if (!dst_pud) 984 return -ENOMEM; 985 src_pud = pud_offset(src_pgd, addr); 986 do { 987 next = pud_addr_end(addr, end); 988 if (pud_none_or_clear_bad(src_pud)) 989 continue; 990 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 991 vma, addr, next)) 992 return -ENOMEM; 993 } while (dst_pud++, src_pud++, addr = next, addr != end); 994 return 0; 995 } 996 997 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 998 struct vm_area_struct *vma) 999 { 1000 pgd_t *src_pgd, *dst_pgd; 1001 unsigned long next; 1002 unsigned long addr = vma->vm_start; 1003 unsigned long end = vma->vm_end; 1004 unsigned long mmun_start; /* For mmu_notifiers */ 1005 unsigned long mmun_end; /* For mmu_notifiers */ 1006 bool is_cow; 1007 int ret; 1008 1009 /* 1010 * Don't copy ptes where a page fault will fill them correctly. 1011 * Fork becomes much lighter when there are big shared or private 1012 * readonly mappings. The tradeoff is that copy_page_range is more 1013 * efficient than faulting. 1014 */ 1015 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1016 VM_PFNMAP | VM_MIXEDMAP))) { 1017 if (!vma->anon_vma) 1018 return 0; 1019 } 1020 1021 if (is_vm_hugetlb_page(vma)) 1022 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1023 1024 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1025 /* 1026 * We do not free on error cases below as remove_vma 1027 * gets called on error from higher level routine 1028 */ 1029 ret = track_pfn_copy(vma); 1030 if (ret) 1031 return ret; 1032 } 1033 1034 /* 1035 * We need to invalidate the secondary MMU mappings only when 1036 * there could be a permission downgrade on the ptes of the 1037 * parent mm. And a permission downgrade will only happen if 1038 * is_cow_mapping() returns true. 1039 */ 1040 is_cow = is_cow_mapping(vma->vm_flags); 1041 mmun_start = addr; 1042 mmun_end = end; 1043 if (is_cow) 1044 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1045 mmun_end); 1046 1047 ret = 0; 1048 dst_pgd = pgd_offset(dst_mm, addr); 1049 src_pgd = pgd_offset(src_mm, addr); 1050 do { 1051 next = pgd_addr_end(addr, end); 1052 if (pgd_none_or_clear_bad(src_pgd)) 1053 continue; 1054 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1055 vma, addr, next))) { 1056 ret = -ENOMEM; 1057 break; 1058 } 1059 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1060 1061 if (is_cow) 1062 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1063 return ret; 1064 } 1065 1066 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1067 struct vm_area_struct *vma, pmd_t *pmd, 1068 unsigned long addr, unsigned long end, 1069 struct zap_details *details) 1070 { 1071 struct mm_struct *mm = tlb->mm; 1072 int force_flush = 0; 1073 int rss[NR_MM_COUNTERS]; 1074 spinlock_t *ptl; 1075 pte_t *start_pte; 1076 pte_t *pte; 1077 1078 again: 1079 init_rss_vec(rss); 1080 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1081 pte = start_pte; 1082 arch_enter_lazy_mmu_mode(); 1083 do { 1084 pte_t ptent = *pte; 1085 if (pte_none(ptent)) { 1086 continue; 1087 } 1088 1089 if (pte_present(ptent)) { 1090 struct page *page; 1091 1092 page = vm_normal_page(vma, addr, ptent); 1093 if (unlikely(details) && page) { 1094 /* 1095 * unmap_shared_mapping_pages() wants to 1096 * invalidate cache without truncating: 1097 * unmap shared but keep private pages. 1098 */ 1099 if (details->check_mapping && 1100 details->check_mapping != page->mapping) 1101 continue; 1102 /* 1103 * Each page->index must be checked when 1104 * invalidating or truncating nonlinear. 1105 */ 1106 if (details->nonlinear_vma && 1107 (page->index < details->first_index || 1108 page->index > details->last_index)) 1109 continue; 1110 } 1111 ptent = ptep_get_and_clear_full(mm, addr, pte, 1112 tlb->fullmm); 1113 tlb_remove_tlb_entry(tlb, pte, addr); 1114 if (unlikely(!page)) 1115 continue; 1116 if (unlikely(details) && details->nonlinear_vma 1117 && linear_page_index(details->nonlinear_vma, 1118 addr) != page->index) { 1119 pte_t ptfile = pgoff_to_pte(page->index); 1120 if (pte_soft_dirty(ptent)) 1121 pte_file_mksoft_dirty(ptfile); 1122 set_pte_at(mm, addr, pte, ptfile); 1123 } 1124 if (PageAnon(page)) 1125 rss[MM_ANONPAGES]--; 1126 else { 1127 if (pte_dirty(ptent)) 1128 set_page_dirty(page); 1129 if (pte_young(ptent) && 1130 likely(!(vma->vm_flags & VM_SEQ_READ))) 1131 mark_page_accessed(page); 1132 rss[MM_FILEPAGES]--; 1133 } 1134 page_remove_rmap(page); 1135 if (unlikely(page_mapcount(page) < 0)) 1136 print_bad_pte(vma, addr, ptent, page); 1137 force_flush = !__tlb_remove_page(tlb, page); 1138 if (force_flush) 1139 break; 1140 continue; 1141 } 1142 /* 1143 * If details->check_mapping, we leave swap entries; 1144 * if details->nonlinear_vma, we leave file entries. 1145 */ 1146 if (unlikely(details)) 1147 continue; 1148 if (pte_file(ptent)) { 1149 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1150 print_bad_pte(vma, addr, ptent, NULL); 1151 } else { 1152 swp_entry_t entry = pte_to_swp_entry(ptent); 1153 1154 if (!non_swap_entry(entry)) 1155 rss[MM_SWAPENTS]--; 1156 else if (is_migration_entry(entry)) { 1157 struct page *page; 1158 1159 page = migration_entry_to_page(entry); 1160 1161 if (PageAnon(page)) 1162 rss[MM_ANONPAGES]--; 1163 else 1164 rss[MM_FILEPAGES]--; 1165 } 1166 if (unlikely(!free_swap_and_cache(entry))) 1167 print_bad_pte(vma, addr, ptent, NULL); 1168 } 1169 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1170 } while (pte++, addr += PAGE_SIZE, addr != end); 1171 1172 add_mm_rss_vec(mm, rss); 1173 arch_leave_lazy_mmu_mode(); 1174 pte_unmap_unlock(start_pte, ptl); 1175 1176 /* 1177 * mmu_gather ran out of room to batch pages, we break out of 1178 * the PTE lock to avoid doing the potential expensive TLB invalidate 1179 * and page-free while holding it. 1180 */ 1181 if (force_flush) { 1182 unsigned long old_end; 1183 1184 force_flush = 0; 1185 1186 /* 1187 * Flush the TLB just for the previous segment, 1188 * then update the range to be the remaining 1189 * TLB range. 1190 */ 1191 old_end = tlb->end; 1192 tlb->end = addr; 1193 1194 tlb_flush_mmu(tlb); 1195 1196 tlb->start = addr; 1197 tlb->end = old_end; 1198 1199 if (addr != end) 1200 goto again; 1201 } 1202 1203 return addr; 1204 } 1205 1206 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1207 struct vm_area_struct *vma, pud_t *pud, 1208 unsigned long addr, unsigned long end, 1209 struct zap_details *details) 1210 { 1211 pmd_t *pmd; 1212 unsigned long next; 1213 1214 pmd = pmd_offset(pud, addr); 1215 do { 1216 next = pmd_addr_end(addr, end); 1217 if (pmd_trans_huge(*pmd)) { 1218 if (next - addr != HPAGE_PMD_SIZE) { 1219 #ifdef CONFIG_DEBUG_VM 1220 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1221 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1222 __func__, addr, end, 1223 vma->vm_start, 1224 vma->vm_end); 1225 BUG(); 1226 } 1227 #endif 1228 split_huge_page_pmd(vma, addr, pmd); 1229 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1230 goto next; 1231 /* fall through */ 1232 } 1233 /* 1234 * Here there can be other concurrent MADV_DONTNEED or 1235 * trans huge page faults running, and if the pmd is 1236 * none or trans huge it can change under us. This is 1237 * because MADV_DONTNEED holds the mmap_sem in read 1238 * mode. 1239 */ 1240 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1241 goto next; 1242 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1243 next: 1244 cond_resched(); 1245 } while (pmd++, addr = next, addr != end); 1246 1247 return addr; 1248 } 1249 1250 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1251 struct vm_area_struct *vma, pgd_t *pgd, 1252 unsigned long addr, unsigned long end, 1253 struct zap_details *details) 1254 { 1255 pud_t *pud; 1256 unsigned long next; 1257 1258 pud = pud_offset(pgd, addr); 1259 do { 1260 next = pud_addr_end(addr, end); 1261 if (pud_none_or_clear_bad(pud)) 1262 continue; 1263 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1264 } while (pud++, addr = next, addr != end); 1265 1266 return addr; 1267 } 1268 1269 static void unmap_page_range(struct mmu_gather *tlb, 1270 struct vm_area_struct *vma, 1271 unsigned long addr, unsigned long end, 1272 struct zap_details *details) 1273 { 1274 pgd_t *pgd; 1275 unsigned long next; 1276 1277 if (details && !details->check_mapping && !details->nonlinear_vma) 1278 details = NULL; 1279 1280 BUG_ON(addr >= end); 1281 mem_cgroup_uncharge_start(); 1282 tlb_start_vma(tlb, vma); 1283 pgd = pgd_offset(vma->vm_mm, addr); 1284 do { 1285 next = pgd_addr_end(addr, end); 1286 if (pgd_none_or_clear_bad(pgd)) 1287 continue; 1288 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1289 } while (pgd++, addr = next, addr != end); 1290 tlb_end_vma(tlb, vma); 1291 mem_cgroup_uncharge_end(); 1292 } 1293 1294 1295 static void unmap_single_vma(struct mmu_gather *tlb, 1296 struct vm_area_struct *vma, unsigned long start_addr, 1297 unsigned long end_addr, 1298 struct zap_details *details) 1299 { 1300 unsigned long start = max(vma->vm_start, start_addr); 1301 unsigned long end; 1302 1303 if (start >= vma->vm_end) 1304 return; 1305 end = min(vma->vm_end, end_addr); 1306 if (end <= vma->vm_start) 1307 return; 1308 1309 if (vma->vm_file) 1310 uprobe_munmap(vma, start, end); 1311 1312 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1313 untrack_pfn(vma, 0, 0); 1314 1315 if (start != end) { 1316 if (unlikely(is_vm_hugetlb_page(vma))) { 1317 /* 1318 * It is undesirable to test vma->vm_file as it 1319 * should be non-null for valid hugetlb area. 1320 * However, vm_file will be NULL in the error 1321 * cleanup path of do_mmap_pgoff. When 1322 * hugetlbfs ->mmap method fails, 1323 * do_mmap_pgoff() nullifies vma->vm_file 1324 * before calling this function to clean up. 1325 * Since no pte has actually been setup, it is 1326 * safe to do nothing in this case. 1327 */ 1328 if (vma->vm_file) { 1329 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1330 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1331 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1332 } 1333 } else 1334 unmap_page_range(tlb, vma, start, end, details); 1335 } 1336 } 1337 1338 /** 1339 * unmap_vmas - unmap a range of memory covered by a list of vma's 1340 * @tlb: address of the caller's struct mmu_gather 1341 * @vma: the starting vma 1342 * @start_addr: virtual address at which to start unmapping 1343 * @end_addr: virtual address at which to end unmapping 1344 * 1345 * Unmap all pages in the vma list. 1346 * 1347 * Only addresses between `start' and `end' will be unmapped. 1348 * 1349 * The VMA list must be sorted in ascending virtual address order. 1350 * 1351 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1352 * range after unmap_vmas() returns. So the only responsibility here is to 1353 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1354 * drops the lock and schedules. 1355 */ 1356 void unmap_vmas(struct mmu_gather *tlb, 1357 struct vm_area_struct *vma, unsigned long start_addr, 1358 unsigned long end_addr) 1359 { 1360 struct mm_struct *mm = vma->vm_mm; 1361 1362 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1363 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1364 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1365 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1366 } 1367 1368 /** 1369 * zap_page_range - remove user pages in a given range 1370 * @vma: vm_area_struct holding the applicable pages 1371 * @start: starting address of pages to zap 1372 * @size: number of bytes to zap 1373 * @details: details of nonlinear truncation or shared cache invalidation 1374 * 1375 * Caller must protect the VMA list 1376 */ 1377 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1378 unsigned long size, struct zap_details *details) 1379 { 1380 struct mm_struct *mm = vma->vm_mm; 1381 struct mmu_gather tlb; 1382 unsigned long end = start + size; 1383 1384 lru_add_drain(); 1385 tlb_gather_mmu(&tlb, mm, start, end); 1386 update_hiwater_rss(mm); 1387 mmu_notifier_invalidate_range_start(mm, start, end); 1388 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1389 unmap_single_vma(&tlb, vma, start, end, details); 1390 mmu_notifier_invalidate_range_end(mm, start, end); 1391 tlb_finish_mmu(&tlb, start, end); 1392 } 1393 1394 /** 1395 * zap_page_range_single - remove user pages in a given range 1396 * @vma: vm_area_struct holding the applicable pages 1397 * @address: starting address of pages to zap 1398 * @size: number of bytes to zap 1399 * @details: details of nonlinear truncation or shared cache invalidation 1400 * 1401 * The range must fit into one VMA. 1402 */ 1403 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1404 unsigned long size, struct zap_details *details) 1405 { 1406 struct mm_struct *mm = vma->vm_mm; 1407 struct mmu_gather tlb; 1408 unsigned long end = address + size; 1409 1410 lru_add_drain(); 1411 tlb_gather_mmu(&tlb, mm, address, end); 1412 update_hiwater_rss(mm); 1413 mmu_notifier_invalidate_range_start(mm, address, end); 1414 unmap_single_vma(&tlb, vma, address, end, details); 1415 mmu_notifier_invalidate_range_end(mm, address, end); 1416 tlb_finish_mmu(&tlb, address, end); 1417 } 1418 1419 /** 1420 * zap_vma_ptes - remove ptes mapping the vma 1421 * @vma: vm_area_struct holding ptes to be zapped 1422 * @address: starting address of pages to zap 1423 * @size: number of bytes to zap 1424 * 1425 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1426 * 1427 * The entire address range must be fully contained within the vma. 1428 * 1429 * Returns 0 if successful. 1430 */ 1431 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1432 unsigned long size) 1433 { 1434 if (address < vma->vm_start || address + size > vma->vm_end || 1435 !(vma->vm_flags & VM_PFNMAP)) 1436 return -1; 1437 zap_page_range_single(vma, address, size, NULL); 1438 return 0; 1439 } 1440 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1441 1442 /** 1443 * follow_page_mask - look up a page descriptor from a user-virtual address 1444 * @vma: vm_area_struct mapping @address 1445 * @address: virtual address to look up 1446 * @flags: flags modifying lookup behaviour 1447 * @page_mask: on output, *page_mask is set according to the size of the page 1448 * 1449 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1450 * 1451 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1452 * an error pointer if there is a mapping to something not represented 1453 * by a page descriptor (see also vm_normal_page()). 1454 */ 1455 struct page *follow_page_mask(struct vm_area_struct *vma, 1456 unsigned long address, unsigned int flags, 1457 unsigned int *page_mask) 1458 { 1459 pgd_t *pgd; 1460 pud_t *pud; 1461 pmd_t *pmd; 1462 pte_t *ptep, pte; 1463 spinlock_t *ptl; 1464 struct page *page; 1465 struct mm_struct *mm = vma->vm_mm; 1466 1467 *page_mask = 0; 1468 1469 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1470 if (!IS_ERR(page)) { 1471 BUG_ON(flags & FOLL_GET); 1472 goto out; 1473 } 1474 1475 page = NULL; 1476 pgd = pgd_offset(mm, address); 1477 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1478 goto no_page_table; 1479 1480 pud = pud_offset(pgd, address); 1481 if (pud_none(*pud)) 1482 goto no_page_table; 1483 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1484 if (flags & FOLL_GET) 1485 goto out; 1486 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1487 goto out; 1488 } 1489 if (unlikely(pud_bad(*pud))) 1490 goto no_page_table; 1491 1492 pmd = pmd_offset(pud, address); 1493 if (pmd_none(*pmd)) 1494 goto no_page_table; 1495 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1496 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1497 if (flags & FOLL_GET) { 1498 /* 1499 * Refcount on tail pages are not well-defined and 1500 * shouldn't be taken. The caller should handle a NULL 1501 * return when trying to follow tail pages. 1502 */ 1503 if (PageHead(page)) 1504 get_page(page); 1505 else { 1506 page = NULL; 1507 goto out; 1508 } 1509 } 1510 goto out; 1511 } 1512 if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) 1513 goto no_page_table; 1514 if (pmd_trans_huge(*pmd)) { 1515 if (flags & FOLL_SPLIT) { 1516 split_huge_page_pmd(vma, address, pmd); 1517 goto split_fallthrough; 1518 } 1519 spin_lock(&mm->page_table_lock); 1520 if (likely(pmd_trans_huge(*pmd))) { 1521 if (unlikely(pmd_trans_splitting(*pmd))) { 1522 spin_unlock(&mm->page_table_lock); 1523 wait_split_huge_page(vma->anon_vma, pmd); 1524 } else { 1525 page = follow_trans_huge_pmd(vma, address, 1526 pmd, flags); 1527 spin_unlock(&mm->page_table_lock); 1528 *page_mask = HPAGE_PMD_NR - 1; 1529 goto out; 1530 } 1531 } else 1532 spin_unlock(&mm->page_table_lock); 1533 /* fall through */ 1534 } 1535 split_fallthrough: 1536 if (unlikely(pmd_bad(*pmd))) 1537 goto no_page_table; 1538 1539 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1540 1541 pte = *ptep; 1542 if (!pte_present(pte)) { 1543 swp_entry_t entry; 1544 /* 1545 * KSM's break_ksm() relies upon recognizing a ksm page 1546 * even while it is being migrated, so for that case we 1547 * need migration_entry_wait(). 1548 */ 1549 if (likely(!(flags & FOLL_MIGRATION))) 1550 goto no_page; 1551 if (pte_none(pte) || pte_file(pte)) 1552 goto no_page; 1553 entry = pte_to_swp_entry(pte); 1554 if (!is_migration_entry(entry)) 1555 goto no_page; 1556 pte_unmap_unlock(ptep, ptl); 1557 migration_entry_wait(mm, pmd, address); 1558 goto split_fallthrough; 1559 } 1560 if ((flags & FOLL_NUMA) && pte_numa(pte)) 1561 goto no_page; 1562 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1563 goto unlock; 1564 1565 page = vm_normal_page(vma, address, pte); 1566 if (unlikely(!page)) { 1567 if ((flags & FOLL_DUMP) || 1568 !is_zero_pfn(pte_pfn(pte))) 1569 goto bad_page; 1570 page = pte_page(pte); 1571 } 1572 1573 if (flags & FOLL_GET) 1574 get_page_foll(page); 1575 if (flags & FOLL_TOUCH) { 1576 if ((flags & FOLL_WRITE) && 1577 !pte_dirty(pte) && !PageDirty(page)) 1578 set_page_dirty(page); 1579 /* 1580 * pte_mkyoung() would be more correct here, but atomic care 1581 * is needed to avoid losing the dirty bit: it is easier to use 1582 * mark_page_accessed(). 1583 */ 1584 mark_page_accessed(page); 1585 } 1586 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1587 /* 1588 * The preliminary mapping check is mainly to avoid the 1589 * pointless overhead of lock_page on the ZERO_PAGE 1590 * which might bounce very badly if there is contention. 1591 * 1592 * If the page is already locked, we don't need to 1593 * handle it now - vmscan will handle it later if and 1594 * when it attempts to reclaim the page. 1595 */ 1596 if (page->mapping && trylock_page(page)) { 1597 lru_add_drain(); /* push cached pages to LRU */ 1598 /* 1599 * Because we lock page here, and migration is 1600 * blocked by the pte's page reference, and we 1601 * know the page is still mapped, we don't even 1602 * need to check for file-cache page truncation. 1603 */ 1604 mlock_vma_page(page); 1605 unlock_page(page); 1606 } 1607 } 1608 unlock: 1609 pte_unmap_unlock(ptep, ptl); 1610 out: 1611 return page; 1612 1613 bad_page: 1614 pte_unmap_unlock(ptep, ptl); 1615 return ERR_PTR(-EFAULT); 1616 1617 no_page: 1618 pte_unmap_unlock(ptep, ptl); 1619 if (!pte_none(pte)) 1620 return page; 1621 1622 no_page_table: 1623 /* 1624 * When core dumping an enormous anonymous area that nobody 1625 * has touched so far, we don't want to allocate unnecessary pages or 1626 * page tables. Return error instead of NULL to skip handle_mm_fault, 1627 * then get_dump_page() will return NULL to leave a hole in the dump. 1628 * But we can only make this optimization where a hole would surely 1629 * be zero-filled if handle_mm_fault() actually did handle it. 1630 */ 1631 if ((flags & FOLL_DUMP) && 1632 (!vma->vm_ops || !vma->vm_ops->fault)) 1633 return ERR_PTR(-EFAULT); 1634 return page; 1635 } 1636 1637 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1638 { 1639 return stack_guard_page_start(vma, addr) || 1640 stack_guard_page_end(vma, addr+PAGE_SIZE); 1641 } 1642 1643 /** 1644 * __get_user_pages() - pin user pages in memory 1645 * @tsk: task_struct of target task 1646 * @mm: mm_struct of target mm 1647 * @start: starting user address 1648 * @nr_pages: number of pages from start to pin 1649 * @gup_flags: flags modifying pin behaviour 1650 * @pages: array that receives pointers to the pages pinned. 1651 * Should be at least nr_pages long. Or NULL, if caller 1652 * only intends to ensure the pages are faulted in. 1653 * @vmas: array of pointers to vmas corresponding to each page. 1654 * Or NULL if the caller does not require them. 1655 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1656 * 1657 * Returns number of pages pinned. This may be fewer than the number 1658 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1659 * were pinned, returns -errno. Each page returned must be released 1660 * with a put_page() call when it is finished with. vmas will only 1661 * remain valid while mmap_sem is held. 1662 * 1663 * Must be called with mmap_sem held for read or write. 1664 * 1665 * __get_user_pages walks a process's page tables and takes a reference to 1666 * each struct page that each user address corresponds to at a given 1667 * instant. That is, it takes the page that would be accessed if a user 1668 * thread accesses the given user virtual address at that instant. 1669 * 1670 * This does not guarantee that the page exists in the user mappings when 1671 * __get_user_pages returns, and there may even be a completely different 1672 * page there in some cases (eg. if mmapped pagecache has been invalidated 1673 * and subsequently re faulted). However it does guarantee that the page 1674 * won't be freed completely. And mostly callers simply care that the page 1675 * contains data that was valid *at some point in time*. Typically, an IO 1676 * or similar operation cannot guarantee anything stronger anyway because 1677 * locks can't be held over the syscall boundary. 1678 * 1679 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1680 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1681 * appropriate) must be called after the page is finished with, and 1682 * before put_page is called. 1683 * 1684 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1685 * or mmap_sem contention, and if waiting is needed to pin all pages, 1686 * *@nonblocking will be set to 0. 1687 * 1688 * In most cases, get_user_pages or get_user_pages_fast should be used 1689 * instead of __get_user_pages. __get_user_pages should be used only if 1690 * you need some special @gup_flags. 1691 */ 1692 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1693 unsigned long start, unsigned long nr_pages, 1694 unsigned int gup_flags, struct page **pages, 1695 struct vm_area_struct **vmas, int *nonblocking) 1696 { 1697 long i; 1698 unsigned long vm_flags; 1699 unsigned int page_mask; 1700 1701 if (!nr_pages) 1702 return 0; 1703 1704 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1705 1706 /* 1707 * Require read or write permissions. 1708 * If FOLL_FORCE is set, we only require the "MAY" flags. 1709 */ 1710 vm_flags = (gup_flags & FOLL_WRITE) ? 1711 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1712 vm_flags &= (gup_flags & FOLL_FORCE) ? 1713 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1714 1715 /* 1716 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault 1717 * would be called on PROT_NONE ranges. We must never invoke 1718 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting 1719 * page faults would unprotect the PROT_NONE ranges if 1720 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd 1721 * bitflag. So to avoid that, don't set FOLL_NUMA if 1722 * FOLL_FORCE is set. 1723 */ 1724 if (!(gup_flags & FOLL_FORCE)) 1725 gup_flags |= FOLL_NUMA; 1726 1727 i = 0; 1728 1729 do { 1730 struct vm_area_struct *vma; 1731 1732 vma = find_extend_vma(mm, start); 1733 if (!vma && in_gate_area(mm, start)) { 1734 unsigned long pg = start & PAGE_MASK; 1735 pgd_t *pgd; 1736 pud_t *pud; 1737 pmd_t *pmd; 1738 pte_t *pte; 1739 1740 /* user gate pages are read-only */ 1741 if (gup_flags & FOLL_WRITE) 1742 return i ? : -EFAULT; 1743 if (pg > TASK_SIZE) 1744 pgd = pgd_offset_k(pg); 1745 else 1746 pgd = pgd_offset_gate(mm, pg); 1747 BUG_ON(pgd_none(*pgd)); 1748 pud = pud_offset(pgd, pg); 1749 BUG_ON(pud_none(*pud)); 1750 pmd = pmd_offset(pud, pg); 1751 if (pmd_none(*pmd)) 1752 return i ? : -EFAULT; 1753 VM_BUG_ON(pmd_trans_huge(*pmd)); 1754 pte = pte_offset_map(pmd, pg); 1755 if (pte_none(*pte)) { 1756 pte_unmap(pte); 1757 return i ? : -EFAULT; 1758 } 1759 vma = get_gate_vma(mm); 1760 if (pages) { 1761 struct page *page; 1762 1763 page = vm_normal_page(vma, start, *pte); 1764 if (!page) { 1765 if (!(gup_flags & FOLL_DUMP) && 1766 is_zero_pfn(pte_pfn(*pte))) 1767 page = pte_page(*pte); 1768 else { 1769 pte_unmap(pte); 1770 return i ? : -EFAULT; 1771 } 1772 } 1773 pages[i] = page; 1774 get_page(page); 1775 } 1776 pte_unmap(pte); 1777 page_mask = 0; 1778 goto next_page; 1779 } 1780 1781 if (!vma || 1782 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1783 !(vm_flags & vma->vm_flags)) 1784 return i ? : -EFAULT; 1785 1786 if (is_vm_hugetlb_page(vma)) { 1787 i = follow_hugetlb_page(mm, vma, pages, vmas, 1788 &start, &nr_pages, i, gup_flags); 1789 continue; 1790 } 1791 1792 do { 1793 struct page *page; 1794 unsigned int foll_flags = gup_flags; 1795 unsigned int page_increm; 1796 1797 /* 1798 * If we have a pending SIGKILL, don't keep faulting 1799 * pages and potentially allocating memory. 1800 */ 1801 if (unlikely(fatal_signal_pending(current))) 1802 return i ? i : -ERESTARTSYS; 1803 1804 cond_resched(); 1805 while (!(page = follow_page_mask(vma, start, 1806 foll_flags, &page_mask))) { 1807 int ret; 1808 unsigned int fault_flags = 0; 1809 1810 /* For mlock, just skip the stack guard page. */ 1811 if (foll_flags & FOLL_MLOCK) { 1812 if (stack_guard_page(vma, start)) 1813 goto next_page; 1814 } 1815 if (foll_flags & FOLL_WRITE) 1816 fault_flags |= FAULT_FLAG_WRITE; 1817 if (nonblocking) 1818 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1819 if (foll_flags & FOLL_NOWAIT) 1820 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1821 1822 ret = handle_mm_fault(mm, vma, start, 1823 fault_flags); 1824 1825 if (ret & VM_FAULT_ERROR) { 1826 if (ret & VM_FAULT_OOM) 1827 return i ? i : -ENOMEM; 1828 if (ret & (VM_FAULT_HWPOISON | 1829 VM_FAULT_HWPOISON_LARGE)) { 1830 if (i) 1831 return i; 1832 else if (gup_flags & FOLL_HWPOISON) 1833 return -EHWPOISON; 1834 else 1835 return -EFAULT; 1836 } 1837 if (ret & VM_FAULT_SIGBUS) 1838 return i ? i : -EFAULT; 1839 BUG(); 1840 } 1841 1842 if (tsk) { 1843 if (ret & VM_FAULT_MAJOR) 1844 tsk->maj_flt++; 1845 else 1846 tsk->min_flt++; 1847 } 1848 1849 if (ret & VM_FAULT_RETRY) { 1850 if (nonblocking) 1851 *nonblocking = 0; 1852 return i; 1853 } 1854 1855 /* 1856 * The VM_FAULT_WRITE bit tells us that 1857 * do_wp_page has broken COW when necessary, 1858 * even if maybe_mkwrite decided not to set 1859 * pte_write. We can thus safely do subsequent 1860 * page lookups as if they were reads. But only 1861 * do so when looping for pte_write is futile: 1862 * in some cases userspace may also be wanting 1863 * to write to the gotten user page, which a 1864 * read fault here might prevent (a readonly 1865 * page might get reCOWed by userspace write). 1866 */ 1867 if ((ret & VM_FAULT_WRITE) && 1868 !(vma->vm_flags & VM_WRITE)) 1869 foll_flags &= ~FOLL_WRITE; 1870 1871 cond_resched(); 1872 } 1873 if (IS_ERR(page)) 1874 return i ? i : PTR_ERR(page); 1875 if (pages) { 1876 pages[i] = page; 1877 1878 flush_anon_page(vma, page, start); 1879 flush_dcache_page(page); 1880 page_mask = 0; 1881 } 1882 next_page: 1883 if (vmas) { 1884 vmas[i] = vma; 1885 page_mask = 0; 1886 } 1887 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 1888 if (page_increm > nr_pages) 1889 page_increm = nr_pages; 1890 i += page_increm; 1891 start += page_increm * PAGE_SIZE; 1892 nr_pages -= page_increm; 1893 } while (nr_pages && start < vma->vm_end); 1894 } while (nr_pages); 1895 return i; 1896 } 1897 EXPORT_SYMBOL(__get_user_pages); 1898 1899 /* 1900 * fixup_user_fault() - manually resolve a user page fault 1901 * @tsk: the task_struct to use for page fault accounting, or 1902 * NULL if faults are not to be recorded. 1903 * @mm: mm_struct of target mm 1904 * @address: user address 1905 * @fault_flags:flags to pass down to handle_mm_fault() 1906 * 1907 * This is meant to be called in the specific scenario where for locking reasons 1908 * we try to access user memory in atomic context (within a pagefault_disable() 1909 * section), this returns -EFAULT, and we want to resolve the user fault before 1910 * trying again. 1911 * 1912 * Typically this is meant to be used by the futex code. 1913 * 1914 * The main difference with get_user_pages() is that this function will 1915 * unconditionally call handle_mm_fault() which will in turn perform all the 1916 * necessary SW fixup of the dirty and young bits in the PTE, while 1917 * handle_mm_fault() only guarantees to update these in the struct page. 1918 * 1919 * This is important for some architectures where those bits also gate the 1920 * access permission to the page because they are maintained in software. On 1921 * such architectures, gup() will not be enough to make a subsequent access 1922 * succeed. 1923 * 1924 * This should be called with the mm_sem held for read. 1925 */ 1926 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1927 unsigned long address, unsigned int fault_flags) 1928 { 1929 struct vm_area_struct *vma; 1930 int ret; 1931 1932 vma = find_extend_vma(mm, address); 1933 if (!vma || address < vma->vm_start) 1934 return -EFAULT; 1935 1936 ret = handle_mm_fault(mm, vma, address, fault_flags); 1937 if (ret & VM_FAULT_ERROR) { 1938 if (ret & VM_FAULT_OOM) 1939 return -ENOMEM; 1940 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1941 return -EHWPOISON; 1942 if (ret & VM_FAULT_SIGBUS) 1943 return -EFAULT; 1944 BUG(); 1945 } 1946 if (tsk) { 1947 if (ret & VM_FAULT_MAJOR) 1948 tsk->maj_flt++; 1949 else 1950 tsk->min_flt++; 1951 } 1952 return 0; 1953 } 1954 1955 /* 1956 * get_user_pages() - pin user pages in memory 1957 * @tsk: the task_struct to use for page fault accounting, or 1958 * NULL if faults are not to be recorded. 1959 * @mm: mm_struct of target mm 1960 * @start: starting user address 1961 * @nr_pages: number of pages from start to pin 1962 * @write: whether pages will be written to by the caller 1963 * @force: whether to force write access even if user mapping is 1964 * readonly. This will result in the page being COWed even 1965 * in MAP_SHARED mappings. You do not want this. 1966 * @pages: array that receives pointers to the pages pinned. 1967 * Should be at least nr_pages long. Or NULL, if caller 1968 * only intends to ensure the pages are faulted in. 1969 * @vmas: array of pointers to vmas corresponding to each page. 1970 * Or NULL if the caller does not require them. 1971 * 1972 * Returns number of pages pinned. This may be fewer than the number 1973 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1974 * were pinned, returns -errno. Each page returned must be released 1975 * with a put_page() call when it is finished with. vmas will only 1976 * remain valid while mmap_sem is held. 1977 * 1978 * Must be called with mmap_sem held for read or write. 1979 * 1980 * get_user_pages walks a process's page tables and takes a reference to 1981 * each struct page that each user address corresponds to at a given 1982 * instant. That is, it takes the page that would be accessed if a user 1983 * thread accesses the given user virtual address at that instant. 1984 * 1985 * This does not guarantee that the page exists in the user mappings when 1986 * get_user_pages returns, and there may even be a completely different 1987 * page there in some cases (eg. if mmapped pagecache has been invalidated 1988 * and subsequently re faulted). However it does guarantee that the page 1989 * won't be freed completely. And mostly callers simply care that the page 1990 * contains data that was valid *at some point in time*. Typically, an IO 1991 * or similar operation cannot guarantee anything stronger anyway because 1992 * locks can't be held over the syscall boundary. 1993 * 1994 * If write=0, the page must not be written to. If the page is written to, 1995 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1996 * after the page is finished with, and before put_page is called. 1997 * 1998 * get_user_pages is typically used for fewer-copy IO operations, to get a 1999 * handle on the memory by some means other than accesses via the user virtual 2000 * addresses. The pages may be submitted for DMA to devices or accessed via 2001 * their kernel linear mapping (via the kmap APIs). Care should be taken to 2002 * use the correct cache flushing APIs. 2003 * 2004 * See also get_user_pages_fast, for performance critical applications. 2005 */ 2006 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 2007 unsigned long start, unsigned long nr_pages, int write, 2008 int force, struct page **pages, struct vm_area_struct **vmas) 2009 { 2010 int flags = FOLL_TOUCH; 2011 2012 if (pages) 2013 flags |= FOLL_GET; 2014 if (write) 2015 flags |= FOLL_WRITE; 2016 if (force) 2017 flags |= FOLL_FORCE; 2018 2019 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 2020 NULL); 2021 } 2022 EXPORT_SYMBOL(get_user_pages); 2023 2024 /** 2025 * get_dump_page() - pin user page in memory while writing it to core dump 2026 * @addr: user address 2027 * 2028 * Returns struct page pointer of user page pinned for dump, 2029 * to be freed afterwards by page_cache_release() or put_page(). 2030 * 2031 * Returns NULL on any kind of failure - a hole must then be inserted into 2032 * the corefile, to preserve alignment with its headers; and also returns 2033 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2034 * allowing a hole to be left in the corefile to save diskspace. 2035 * 2036 * Called without mmap_sem, but after all other threads have been killed. 2037 */ 2038 #ifdef CONFIG_ELF_CORE 2039 struct page *get_dump_page(unsigned long addr) 2040 { 2041 struct vm_area_struct *vma; 2042 struct page *page; 2043 2044 if (__get_user_pages(current, current->mm, addr, 1, 2045 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 2046 NULL) < 1) 2047 return NULL; 2048 flush_cache_page(vma, addr, page_to_pfn(page)); 2049 return page; 2050 } 2051 #endif /* CONFIG_ELF_CORE */ 2052 2053 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2054 spinlock_t **ptl) 2055 { 2056 pgd_t * pgd = pgd_offset(mm, addr); 2057 pud_t * pud = pud_alloc(mm, pgd, addr); 2058 if (pud) { 2059 pmd_t * pmd = pmd_alloc(mm, pud, addr); 2060 if (pmd) { 2061 VM_BUG_ON(pmd_trans_huge(*pmd)); 2062 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2063 } 2064 } 2065 return NULL; 2066 } 2067 2068 /* 2069 * This is the old fallback for page remapping. 2070 * 2071 * For historical reasons, it only allows reserved pages. Only 2072 * old drivers should use this, and they needed to mark their 2073 * pages reserved for the old functions anyway. 2074 */ 2075 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2076 struct page *page, pgprot_t prot) 2077 { 2078 struct mm_struct *mm = vma->vm_mm; 2079 int retval; 2080 pte_t *pte; 2081 spinlock_t *ptl; 2082 2083 retval = -EINVAL; 2084 if (PageAnon(page)) 2085 goto out; 2086 retval = -ENOMEM; 2087 flush_dcache_page(page); 2088 pte = get_locked_pte(mm, addr, &ptl); 2089 if (!pte) 2090 goto out; 2091 retval = -EBUSY; 2092 if (!pte_none(*pte)) 2093 goto out_unlock; 2094 2095 /* Ok, finally just insert the thing.. */ 2096 get_page(page); 2097 inc_mm_counter_fast(mm, MM_FILEPAGES); 2098 page_add_file_rmap(page); 2099 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2100 2101 retval = 0; 2102 pte_unmap_unlock(pte, ptl); 2103 return retval; 2104 out_unlock: 2105 pte_unmap_unlock(pte, ptl); 2106 out: 2107 return retval; 2108 } 2109 2110 /** 2111 * vm_insert_page - insert single page into user vma 2112 * @vma: user vma to map to 2113 * @addr: target user address of this page 2114 * @page: source kernel page 2115 * 2116 * This allows drivers to insert individual pages they've allocated 2117 * into a user vma. 2118 * 2119 * The page has to be a nice clean _individual_ kernel allocation. 2120 * If you allocate a compound page, you need to have marked it as 2121 * such (__GFP_COMP), or manually just split the page up yourself 2122 * (see split_page()). 2123 * 2124 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2125 * took an arbitrary page protection parameter. This doesn't allow 2126 * that. Your vma protection will have to be set up correctly, which 2127 * means that if you want a shared writable mapping, you'd better 2128 * ask for a shared writable mapping! 2129 * 2130 * The page does not need to be reserved. 2131 * 2132 * Usually this function is called from f_op->mmap() handler 2133 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 2134 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2135 * function from other places, for example from page-fault handler. 2136 */ 2137 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2138 struct page *page) 2139 { 2140 if (addr < vma->vm_start || addr >= vma->vm_end) 2141 return -EFAULT; 2142 if (!page_count(page)) 2143 return -EINVAL; 2144 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2145 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 2146 BUG_ON(vma->vm_flags & VM_PFNMAP); 2147 vma->vm_flags |= VM_MIXEDMAP; 2148 } 2149 return insert_page(vma, addr, page, vma->vm_page_prot); 2150 } 2151 EXPORT_SYMBOL(vm_insert_page); 2152 2153 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2154 unsigned long pfn, pgprot_t prot) 2155 { 2156 struct mm_struct *mm = vma->vm_mm; 2157 int retval; 2158 pte_t *pte, entry; 2159 spinlock_t *ptl; 2160 2161 retval = -ENOMEM; 2162 pte = get_locked_pte(mm, addr, &ptl); 2163 if (!pte) 2164 goto out; 2165 retval = -EBUSY; 2166 if (!pte_none(*pte)) 2167 goto out_unlock; 2168 2169 /* Ok, finally just insert the thing.. */ 2170 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2171 set_pte_at(mm, addr, pte, entry); 2172 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2173 2174 retval = 0; 2175 out_unlock: 2176 pte_unmap_unlock(pte, ptl); 2177 out: 2178 return retval; 2179 } 2180 2181 /** 2182 * vm_insert_pfn - insert single pfn into user vma 2183 * @vma: user vma to map to 2184 * @addr: target user address of this page 2185 * @pfn: source kernel pfn 2186 * 2187 * Similar to vm_insert_page, this allows drivers to insert individual pages 2188 * they've allocated into a user vma. Same comments apply. 2189 * 2190 * This function should only be called from a vm_ops->fault handler, and 2191 * in that case the handler should return NULL. 2192 * 2193 * vma cannot be a COW mapping. 2194 * 2195 * As this is called only for pages that do not currently exist, we 2196 * do not need to flush old virtual caches or the TLB. 2197 */ 2198 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2199 unsigned long pfn) 2200 { 2201 int ret; 2202 pgprot_t pgprot = vma->vm_page_prot; 2203 /* 2204 * Technically, architectures with pte_special can avoid all these 2205 * restrictions (same for remap_pfn_range). However we would like 2206 * consistency in testing and feature parity among all, so we should 2207 * try to keep these invariants in place for everybody. 2208 */ 2209 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2210 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2211 (VM_PFNMAP|VM_MIXEDMAP)); 2212 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2213 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2214 2215 if (addr < vma->vm_start || addr >= vma->vm_end) 2216 return -EFAULT; 2217 if (track_pfn_insert(vma, &pgprot, pfn)) 2218 return -EINVAL; 2219 2220 ret = insert_pfn(vma, addr, pfn, pgprot); 2221 2222 return ret; 2223 } 2224 EXPORT_SYMBOL(vm_insert_pfn); 2225 2226 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2227 unsigned long pfn) 2228 { 2229 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2230 2231 if (addr < vma->vm_start || addr >= vma->vm_end) 2232 return -EFAULT; 2233 2234 /* 2235 * If we don't have pte special, then we have to use the pfn_valid() 2236 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2237 * refcount the page if pfn_valid is true (hence insert_page rather 2238 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2239 * without pte special, it would there be refcounted as a normal page. 2240 */ 2241 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2242 struct page *page; 2243 2244 page = pfn_to_page(pfn); 2245 return insert_page(vma, addr, page, vma->vm_page_prot); 2246 } 2247 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2248 } 2249 EXPORT_SYMBOL(vm_insert_mixed); 2250 2251 /* 2252 * maps a range of physical memory into the requested pages. the old 2253 * mappings are removed. any references to nonexistent pages results 2254 * in null mappings (currently treated as "copy-on-access") 2255 */ 2256 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2257 unsigned long addr, unsigned long end, 2258 unsigned long pfn, pgprot_t prot) 2259 { 2260 pte_t *pte; 2261 spinlock_t *ptl; 2262 2263 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2264 if (!pte) 2265 return -ENOMEM; 2266 arch_enter_lazy_mmu_mode(); 2267 do { 2268 BUG_ON(!pte_none(*pte)); 2269 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2270 pfn++; 2271 } while (pte++, addr += PAGE_SIZE, addr != end); 2272 arch_leave_lazy_mmu_mode(); 2273 pte_unmap_unlock(pte - 1, ptl); 2274 return 0; 2275 } 2276 2277 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2278 unsigned long addr, unsigned long end, 2279 unsigned long pfn, pgprot_t prot) 2280 { 2281 pmd_t *pmd; 2282 unsigned long next; 2283 2284 pfn -= addr >> PAGE_SHIFT; 2285 pmd = pmd_alloc(mm, pud, addr); 2286 if (!pmd) 2287 return -ENOMEM; 2288 VM_BUG_ON(pmd_trans_huge(*pmd)); 2289 do { 2290 next = pmd_addr_end(addr, end); 2291 if (remap_pte_range(mm, pmd, addr, next, 2292 pfn + (addr >> PAGE_SHIFT), prot)) 2293 return -ENOMEM; 2294 } while (pmd++, addr = next, addr != end); 2295 return 0; 2296 } 2297 2298 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2299 unsigned long addr, unsigned long end, 2300 unsigned long pfn, pgprot_t prot) 2301 { 2302 pud_t *pud; 2303 unsigned long next; 2304 2305 pfn -= addr >> PAGE_SHIFT; 2306 pud = pud_alloc(mm, pgd, addr); 2307 if (!pud) 2308 return -ENOMEM; 2309 do { 2310 next = pud_addr_end(addr, end); 2311 if (remap_pmd_range(mm, pud, addr, next, 2312 pfn + (addr >> PAGE_SHIFT), prot)) 2313 return -ENOMEM; 2314 } while (pud++, addr = next, addr != end); 2315 return 0; 2316 } 2317 2318 /** 2319 * remap_pfn_range - remap kernel memory to userspace 2320 * @vma: user vma to map to 2321 * @addr: target user address to start at 2322 * @pfn: physical address of kernel memory 2323 * @size: size of map area 2324 * @prot: page protection flags for this mapping 2325 * 2326 * Note: this is only safe if the mm semaphore is held when called. 2327 */ 2328 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2329 unsigned long pfn, unsigned long size, pgprot_t prot) 2330 { 2331 pgd_t *pgd; 2332 unsigned long next; 2333 unsigned long end = addr + PAGE_ALIGN(size); 2334 struct mm_struct *mm = vma->vm_mm; 2335 int err; 2336 2337 /* 2338 * Physically remapped pages are special. Tell the 2339 * rest of the world about it: 2340 * VM_IO tells people not to look at these pages 2341 * (accesses can have side effects). 2342 * VM_PFNMAP tells the core MM that the base pages are just 2343 * raw PFN mappings, and do not have a "struct page" associated 2344 * with them. 2345 * VM_DONTEXPAND 2346 * Disable vma merging and expanding with mremap(). 2347 * VM_DONTDUMP 2348 * Omit vma from core dump, even when VM_IO turned off. 2349 * 2350 * There's a horrible special case to handle copy-on-write 2351 * behaviour that some programs depend on. We mark the "original" 2352 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2353 * See vm_normal_page() for details. 2354 */ 2355 if (is_cow_mapping(vma->vm_flags)) { 2356 if (addr != vma->vm_start || end != vma->vm_end) 2357 return -EINVAL; 2358 vma->vm_pgoff = pfn; 2359 } 2360 2361 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2362 if (err) 2363 return -EINVAL; 2364 2365 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2366 2367 BUG_ON(addr >= end); 2368 pfn -= addr >> PAGE_SHIFT; 2369 pgd = pgd_offset(mm, addr); 2370 flush_cache_range(vma, addr, end); 2371 do { 2372 next = pgd_addr_end(addr, end); 2373 err = remap_pud_range(mm, pgd, addr, next, 2374 pfn + (addr >> PAGE_SHIFT), prot); 2375 if (err) 2376 break; 2377 } while (pgd++, addr = next, addr != end); 2378 2379 if (err) 2380 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2381 2382 return err; 2383 } 2384 EXPORT_SYMBOL(remap_pfn_range); 2385 2386 /** 2387 * vm_iomap_memory - remap memory to userspace 2388 * @vma: user vma to map to 2389 * @start: start of area 2390 * @len: size of area 2391 * 2392 * This is a simplified io_remap_pfn_range() for common driver use. The 2393 * driver just needs to give us the physical memory range to be mapped, 2394 * we'll figure out the rest from the vma information. 2395 * 2396 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2397 * whatever write-combining details or similar. 2398 */ 2399 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2400 { 2401 unsigned long vm_len, pfn, pages; 2402 2403 /* Check that the physical memory area passed in looks valid */ 2404 if (start + len < start) 2405 return -EINVAL; 2406 /* 2407 * You *really* shouldn't map things that aren't page-aligned, 2408 * but we've historically allowed it because IO memory might 2409 * just have smaller alignment. 2410 */ 2411 len += start & ~PAGE_MASK; 2412 pfn = start >> PAGE_SHIFT; 2413 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2414 if (pfn + pages < pfn) 2415 return -EINVAL; 2416 2417 /* We start the mapping 'vm_pgoff' pages into the area */ 2418 if (vma->vm_pgoff > pages) 2419 return -EINVAL; 2420 pfn += vma->vm_pgoff; 2421 pages -= vma->vm_pgoff; 2422 2423 /* Can we fit all of the mapping? */ 2424 vm_len = vma->vm_end - vma->vm_start; 2425 if (vm_len >> PAGE_SHIFT > pages) 2426 return -EINVAL; 2427 2428 /* Ok, let it rip */ 2429 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2430 } 2431 EXPORT_SYMBOL(vm_iomap_memory); 2432 2433 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2434 unsigned long addr, unsigned long end, 2435 pte_fn_t fn, void *data) 2436 { 2437 pte_t *pte; 2438 int err; 2439 pgtable_t token; 2440 spinlock_t *uninitialized_var(ptl); 2441 2442 pte = (mm == &init_mm) ? 2443 pte_alloc_kernel(pmd, addr) : 2444 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2445 if (!pte) 2446 return -ENOMEM; 2447 2448 BUG_ON(pmd_huge(*pmd)); 2449 2450 arch_enter_lazy_mmu_mode(); 2451 2452 token = pmd_pgtable(*pmd); 2453 2454 do { 2455 err = fn(pte++, token, addr, data); 2456 if (err) 2457 break; 2458 } while (addr += PAGE_SIZE, addr != end); 2459 2460 arch_leave_lazy_mmu_mode(); 2461 2462 if (mm != &init_mm) 2463 pte_unmap_unlock(pte-1, ptl); 2464 return err; 2465 } 2466 2467 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2468 unsigned long addr, unsigned long end, 2469 pte_fn_t fn, void *data) 2470 { 2471 pmd_t *pmd; 2472 unsigned long next; 2473 int err; 2474 2475 BUG_ON(pud_huge(*pud)); 2476 2477 pmd = pmd_alloc(mm, pud, addr); 2478 if (!pmd) 2479 return -ENOMEM; 2480 do { 2481 next = pmd_addr_end(addr, end); 2482 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2483 if (err) 2484 break; 2485 } while (pmd++, addr = next, addr != end); 2486 return err; 2487 } 2488 2489 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2490 unsigned long addr, unsigned long end, 2491 pte_fn_t fn, void *data) 2492 { 2493 pud_t *pud; 2494 unsigned long next; 2495 int err; 2496 2497 pud = pud_alloc(mm, pgd, addr); 2498 if (!pud) 2499 return -ENOMEM; 2500 do { 2501 next = pud_addr_end(addr, end); 2502 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2503 if (err) 2504 break; 2505 } while (pud++, addr = next, addr != end); 2506 return err; 2507 } 2508 2509 /* 2510 * Scan a region of virtual memory, filling in page tables as necessary 2511 * and calling a provided function on each leaf page table. 2512 */ 2513 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2514 unsigned long size, pte_fn_t fn, void *data) 2515 { 2516 pgd_t *pgd; 2517 unsigned long next; 2518 unsigned long end = addr + size; 2519 int err; 2520 2521 BUG_ON(addr >= end); 2522 pgd = pgd_offset(mm, addr); 2523 do { 2524 next = pgd_addr_end(addr, end); 2525 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2526 if (err) 2527 break; 2528 } while (pgd++, addr = next, addr != end); 2529 2530 return err; 2531 } 2532 EXPORT_SYMBOL_GPL(apply_to_page_range); 2533 2534 /* 2535 * handle_pte_fault chooses page fault handler according to an entry 2536 * which was read non-atomically. Before making any commitment, on 2537 * those architectures or configurations (e.g. i386 with PAE) which 2538 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2539 * must check under lock before unmapping the pte and proceeding 2540 * (but do_wp_page is only called after already making such a check; 2541 * and do_anonymous_page can safely check later on). 2542 */ 2543 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2544 pte_t *page_table, pte_t orig_pte) 2545 { 2546 int same = 1; 2547 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2548 if (sizeof(pte_t) > sizeof(unsigned long)) { 2549 spinlock_t *ptl = pte_lockptr(mm, pmd); 2550 spin_lock(ptl); 2551 same = pte_same(*page_table, orig_pte); 2552 spin_unlock(ptl); 2553 } 2554 #endif 2555 pte_unmap(page_table); 2556 return same; 2557 } 2558 2559 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2560 { 2561 /* 2562 * If the source page was a PFN mapping, we don't have 2563 * a "struct page" for it. We do a best-effort copy by 2564 * just copying from the original user address. If that 2565 * fails, we just zero-fill it. Live with it. 2566 */ 2567 if (unlikely(!src)) { 2568 void *kaddr = kmap_atomic(dst); 2569 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2570 2571 /* 2572 * This really shouldn't fail, because the page is there 2573 * in the page tables. But it might just be unreadable, 2574 * in which case we just give up and fill the result with 2575 * zeroes. 2576 */ 2577 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2578 clear_page(kaddr); 2579 kunmap_atomic(kaddr); 2580 flush_dcache_page(dst); 2581 } else 2582 copy_user_highpage(dst, src, va, vma); 2583 } 2584 2585 /* 2586 * This routine handles present pages, when users try to write 2587 * to a shared page. It is done by copying the page to a new address 2588 * and decrementing the shared-page counter for the old page. 2589 * 2590 * Note that this routine assumes that the protection checks have been 2591 * done by the caller (the low-level page fault routine in most cases). 2592 * Thus we can safely just mark it writable once we've done any necessary 2593 * COW. 2594 * 2595 * We also mark the page dirty at this point even though the page will 2596 * change only once the write actually happens. This avoids a few races, 2597 * and potentially makes it more efficient. 2598 * 2599 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2600 * but allow concurrent faults), with pte both mapped and locked. 2601 * We return with mmap_sem still held, but pte unmapped and unlocked. 2602 */ 2603 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2604 unsigned long address, pte_t *page_table, pmd_t *pmd, 2605 spinlock_t *ptl, pte_t orig_pte) 2606 __releases(ptl) 2607 { 2608 struct page *old_page, *new_page = NULL; 2609 pte_t entry; 2610 int ret = 0; 2611 int page_mkwrite = 0; 2612 struct page *dirty_page = NULL; 2613 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2614 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2615 2616 old_page = vm_normal_page(vma, address, orig_pte); 2617 if (!old_page) { 2618 /* 2619 * VM_MIXEDMAP !pfn_valid() case 2620 * 2621 * We should not cow pages in a shared writeable mapping. 2622 * Just mark the pages writable as we can't do any dirty 2623 * accounting on raw pfn maps. 2624 */ 2625 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2626 (VM_WRITE|VM_SHARED)) 2627 goto reuse; 2628 goto gotten; 2629 } 2630 2631 /* 2632 * Take out anonymous pages first, anonymous shared vmas are 2633 * not dirty accountable. 2634 */ 2635 if (PageAnon(old_page) && !PageKsm(old_page)) { 2636 if (!trylock_page(old_page)) { 2637 page_cache_get(old_page); 2638 pte_unmap_unlock(page_table, ptl); 2639 lock_page(old_page); 2640 page_table = pte_offset_map_lock(mm, pmd, address, 2641 &ptl); 2642 if (!pte_same(*page_table, orig_pte)) { 2643 unlock_page(old_page); 2644 goto unlock; 2645 } 2646 page_cache_release(old_page); 2647 } 2648 if (reuse_swap_page(old_page)) { 2649 /* 2650 * The page is all ours. Move it to our anon_vma so 2651 * the rmap code will not search our parent or siblings. 2652 * Protected against the rmap code by the page lock. 2653 */ 2654 page_move_anon_rmap(old_page, vma, address); 2655 unlock_page(old_page); 2656 goto reuse; 2657 } 2658 unlock_page(old_page); 2659 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2660 (VM_WRITE|VM_SHARED))) { 2661 /* 2662 * Only catch write-faults on shared writable pages, 2663 * read-only shared pages can get COWed by 2664 * get_user_pages(.write=1, .force=1). 2665 */ 2666 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2667 struct vm_fault vmf; 2668 int tmp; 2669 2670 vmf.virtual_address = (void __user *)(address & 2671 PAGE_MASK); 2672 vmf.pgoff = old_page->index; 2673 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2674 vmf.page = old_page; 2675 2676 /* 2677 * Notify the address space that the page is about to 2678 * become writable so that it can prohibit this or wait 2679 * for the page to get into an appropriate state. 2680 * 2681 * We do this without the lock held, so that it can 2682 * sleep if it needs to. 2683 */ 2684 page_cache_get(old_page); 2685 pte_unmap_unlock(page_table, ptl); 2686 2687 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2688 if (unlikely(tmp & 2689 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2690 ret = tmp; 2691 goto unwritable_page; 2692 } 2693 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2694 lock_page(old_page); 2695 if (!old_page->mapping) { 2696 ret = 0; /* retry the fault */ 2697 unlock_page(old_page); 2698 goto unwritable_page; 2699 } 2700 } else 2701 VM_BUG_ON(!PageLocked(old_page)); 2702 2703 /* 2704 * Since we dropped the lock we need to revalidate 2705 * the PTE as someone else may have changed it. If 2706 * they did, we just return, as we can count on the 2707 * MMU to tell us if they didn't also make it writable. 2708 */ 2709 page_table = pte_offset_map_lock(mm, pmd, address, 2710 &ptl); 2711 if (!pte_same(*page_table, orig_pte)) { 2712 unlock_page(old_page); 2713 goto unlock; 2714 } 2715 2716 page_mkwrite = 1; 2717 } 2718 dirty_page = old_page; 2719 get_page(dirty_page); 2720 2721 reuse: 2722 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2723 entry = pte_mkyoung(orig_pte); 2724 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2725 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2726 update_mmu_cache(vma, address, page_table); 2727 pte_unmap_unlock(page_table, ptl); 2728 ret |= VM_FAULT_WRITE; 2729 2730 if (!dirty_page) 2731 return ret; 2732 2733 /* 2734 * Yes, Virginia, this is actually required to prevent a race 2735 * with clear_page_dirty_for_io() from clearing the page dirty 2736 * bit after it clear all dirty ptes, but before a racing 2737 * do_wp_page installs a dirty pte. 2738 * 2739 * __do_fault is protected similarly. 2740 */ 2741 if (!page_mkwrite) { 2742 wait_on_page_locked(dirty_page); 2743 set_page_dirty_balance(dirty_page, page_mkwrite); 2744 /* file_update_time outside page_lock */ 2745 if (vma->vm_file) 2746 file_update_time(vma->vm_file); 2747 } 2748 put_page(dirty_page); 2749 if (page_mkwrite) { 2750 struct address_space *mapping = dirty_page->mapping; 2751 2752 set_page_dirty(dirty_page); 2753 unlock_page(dirty_page); 2754 page_cache_release(dirty_page); 2755 if (mapping) { 2756 /* 2757 * Some device drivers do not set page.mapping 2758 * but still dirty their pages 2759 */ 2760 balance_dirty_pages_ratelimited(mapping); 2761 } 2762 } 2763 2764 return ret; 2765 } 2766 2767 /* 2768 * Ok, we need to copy. Oh, well.. 2769 */ 2770 page_cache_get(old_page); 2771 gotten: 2772 pte_unmap_unlock(page_table, ptl); 2773 2774 if (unlikely(anon_vma_prepare(vma))) 2775 goto oom; 2776 2777 if (is_zero_pfn(pte_pfn(orig_pte))) { 2778 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2779 if (!new_page) 2780 goto oom; 2781 } else { 2782 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2783 if (!new_page) 2784 goto oom; 2785 cow_user_page(new_page, old_page, address, vma); 2786 } 2787 __SetPageUptodate(new_page); 2788 2789 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2790 goto oom_free_new; 2791 2792 mmun_start = address & PAGE_MASK; 2793 mmun_end = mmun_start + PAGE_SIZE; 2794 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2795 2796 /* 2797 * Re-check the pte - we dropped the lock 2798 */ 2799 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2800 if (likely(pte_same(*page_table, orig_pte))) { 2801 if (old_page) { 2802 if (!PageAnon(old_page)) { 2803 dec_mm_counter_fast(mm, MM_FILEPAGES); 2804 inc_mm_counter_fast(mm, MM_ANONPAGES); 2805 } 2806 } else 2807 inc_mm_counter_fast(mm, MM_ANONPAGES); 2808 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2809 entry = mk_pte(new_page, vma->vm_page_prot); 2810 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2811 /* 2812 * Clear the pte entry and flush it first, before updating the 2813 * pte with the new entry. This will avoid a race condition 2814 * seen in the presence of one thread doing SMC and another 2815 * thread doing COW. 2816 */ 2817 ptep_clear_flush(vma, address, page_table); 2818 page_add_new_anon_rmap(new_page, vma, address); 2819 /* 2820 * We call the notify macro here because, when using secondary 2821 * mmu page tables (such as kvm shadow page tables), we want the 2822 * new page to be mapped directly into the secondary page table. 2823 */ 2824 set_pte_at_notify(mm, address, page_table, entry); 2825 update_mmu_cache(vma, address, page_table); 2826 if (old_page) { 2827 /* 2828 * Only after switching the pte to the new page may 2829 * we remove the mapcount here. Otherwise another 2830 * process may come and find the rmap count decremented 2831 * before the pte is switched to the new page, and 2832 * "reuse" the old page writing into it while our pte 2833 * here still points into it and can be read by other 2834 * threads. 2835 * 2836 * The critical issue is to order this 2837 * page_remove_rmap with the ptp_clear_flush above. 2838 * Those stores are ordered by (if nothing else,) 2839 * the barrier present in the atomic_add_negative 2840 * in page_remove_rmap. 2841 * 2842 * Then the TLB flush in ptep_clear_flush ensures that 2843 * no process can access the old page before the 2844 * decremented mapcount is visible. And the old page 2845 * cannot be reused until after the decremented 2846 * mapcount is visible. So transitively, TLBs to 2847 * old page will be flushed before it can be reused. 2848 */ 2849 page_remove_rmap(old_page); 2850 } 2851 2852 /* Free the old page.. */ 2853 new_page = old_page; 2854 ret |= VM_FAULT_WRITE; 2855 } else 2856 mem_cgroup_uncharge_page(new_page); 2857 2858 if (new_page) 2859 page_cache_release(new_page); 2860 unlock: 2861 pte_unmap_unlock(page_table, ptl); 2862 if (mmun_end > mmun_start) 2863 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2864 if (old_page) { 2865 /* 2866 * Don't let another task, with possibly unlocked vma, 2867 * keep the mlocked page. 2868 */ 2869 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2870 lock_page(old_page); /* LRU manipulation */ 2871 munlock_vma_page(old_page); 2872 unlock_page(old_page); 2873 } 2874 page_cache_release(old_page); 2875 } 2876 return ret; 2877 oom_free_new: 2878 page_cache_release(new_page); 2879 oom: 2880 if (old_page) 2881 page_cache_release(old_page); 2882 return VM_FAULT_OOM; 2883 2884 unwritable_page: 2885 page_cache_release(old_page); 2886 return ret; 2887 } 2888 2889 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2890 unsigned long start_addr, unsigned long end_addr, 2891 struct zap_details *details) 2892 { 2893 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2894 } 2895 2896 static inline void unmap_mapping_range_tree(struct rb_root *root, 2897 struct zap_details *details) 2898 { 2899 struct vm_area_struct *vma; 2900 pgoff_t vba, vea, zba, zea; 2901 2902 vma_interval_tree_foreach(vma, root, 2903 details->first_index, details->last_index) { 2904 2905 vba = vma->vm_pgoff; 2906 vea = vba + vma_pages(vma) - 1; 2907 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2908 zba = details->first_index; 2909 if (zba < vba) 2910 zba = vba; 2911 zea = details->last_index; 2912 if (zea > vea) 2913 zea = vea; 2914 2915 unmap_mapping_range_vma(vma, 2916 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2917 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2918 details); 2919 } 2920 } 2921 2922 static inline void unmap_mapping_range_list(struct list_head *head, 2923 struct zap_details *details) 2924 { 2925 struct vm_area_struct *vma; 2926 2927 /* 2928 * In nonlinear VMAs there is no correspondence between virtual address 2929 * offset and file offset. So we must perform an exhaustive search 2930 * across *all* the pages in each nonlinear VMA, not just the pages 2931 * whose virtual address lies outside the file truncation point. 2932 */ 2933 list_for_each_entry(vma, head, shared.nonlinear) { 2934 details->nonlinear_vma = vma; 2935 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2936 } 2937 } 2938 2939 /** 2940 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2941 * @mapping: the address space containing mmaps to be unmapped. 2942 * @holebegin: byte in first page to unmap, relative to the start of 2943 * the underlying file. This will be rounded down to a PAGE_SIZE 2944 * boundary. Note that this is different from truncate_pagecache(), which 2945 * must keep the partial page. In contrast, we must get rid of 2946 * partial pages. 2947 * @holelen: size of prospective hole in bytes. This will be rounded 2948 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2949 * end of the file. 2950 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2951 * but 0 when invalidating pagecache, don't throw away private data. 2952 */ 2953 void unmap_mapping_range(struct address_space *mapping, 2954 loff_t const holebegin, loff_t const holelen, int even_cows) 2955 { 2956 struct zap_details details; 2957 pgoff_t hba = holebegin >> PAGE_SHIFT; 2958 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2959 2960 /* Check for overflow. */ 2961 if (sizeof(holelen) > sizeof(hlen)) { 2962 long long holeend = 2963 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2964 if (holeend & ~(long long)ULONG_MAX) 2965 hlen = ULONG_MAX - hba + 1; 2966 } 2967 2968 details.check_mapping = even_cows? NULL: mapping; 2969 details.nonlinear_vma = NULL; 2970 details.first_index = hba; 2971 details.last_index = hba + hlen - 1; 2972 if (details.last_index < details.first_index) 2973 details.last_index = ULONG_MAX; 2974 2975 2976 mutex_lock(&mapping->i_mmap_mutex); 2977 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2978 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2979 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2980 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2981 mutex_unlock(&mapping->i_mmap_mutex); 2982 } 2983 EXPORT_SYMBOL(unmap_mapping_range); 2984 2985 /* 2986 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2987 * but allow concurrent faults), and pte mapped but not yet locked. 2988 * We return with mmap_sem still held, but pte unmapped and unlocked. 2989 */ 2990 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2991 unsigned long address, pte_t *page_table, pmd_t *pmd, 2992 unsigned int flags, pte_t orig_pte) 2993 { 2994 spinlock_t *ptl; 2995 struct page *page, *swapcache; 2996 swp_entry_t entry; 2997 pte_t pte; 2998 int locked; 2999 struct mem_cgroup *ptr; 3000 int exclusive = 0; 3001 int ret = 0; 3002 3003 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3004 goto out; 3005 3006 entry = pte_to_swp_entry(orig_pte); 3007 if (unlikely(non_swap_entry(entry))) { 3008 if (is_migration_entry(entry)) { 3009 migration_entry_wait(mm, pmd, address); 3010 } else if (is_hwpoison_entry(entry)) { 3011 ret = VM_FAULT_HWPOISON; 3012 } else { 3013 print_bad_pte(vma, address, orig_pte, NULL); 3014 ret = VM_FAULT_SIGBUS; 3015 } 3016 goto out; 3017 } 3018 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3019 page = lookup_swap_cache(entry); 3020 if (!page) { 3021 page = swapin_readahead(entry, 3022 GFP_HIGHUSER_MOVABLE, vma, address); 3023 if (!page) { 3024 /* 3025 * Back out if somebody else faulted in this pte 3026 * while we released the pte lock. 3027 */ 3028 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3029 if (likely(pte_same(*page_table, orig_pte))) 3030 ret = VM_FAULT_OOM; 3031 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3032 goto unlock; 3033 } 3034 3035 /* Had to read the page from swap area: Major fault */ 3036 ret = VM_FAULT_MAJOR; 3037 count_vm_event(PGMAJFAULT); 3038 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 3039 } else if (PageHWPoison(page)) { 3040 /* 3041 * hwpoisoned dirty swapcache pages are kept for killing 3042 * owner processes (which may be unknown at hwpoison time) 3043 */ 3044 ret = VM_FAULT_HWPOISON; 3045 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3046 swapcache = page; 3047 goto out_release; 3048 } 3049 3050 swapcache = page; 3051 locked = lock_page_or_retry(page, mm, flags); 3052 3053 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3054 if (!locked) { 3055 ret |= VM_FAULT_RETRY; 3056 goto out_release; 3057 } 3058 3059 /* 3060 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3061 * release the swapcache from under us. The page pin, and pte_same 3062 * test below, are not enough to exclude that. Even if it is still 3063 * swapcache, we need to check that the page's swap has not changed. 3064 */ 3065 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 3066 goto out_page; 3067 3068 page = ksm_might_need_to_copy(page, vma, address); 3069 if (unlikely(!page)) { 3070 ret = VM_FAULT_OOM; 3071 page = swapcache; 3072 goto out_page; 3073 } 3074 3075 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 3076 ret = VM_FAULT_OOM; 3077 goto out_page; 3078 } 3079 3080 /* 3081 * Back out if somebody else already faulted in this pte. 3082 */ 3083 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3084 if (unlikely(!pte_same(*page_table, orig_pte))) 3085 goto out_nomap; 3086 3087 if (unlikely(!PageUptodate(page))) { 3088 ret = VM_FAULT_SIGBUS; 3089 goto out_nomap; 3090 } 3091 3092 /* 3093 * The page isn't present yet, go ahead with the fault. 3094 * 3095 * Be careful about the sequence of operations here. 3096 * To get its accounting right, reuse_swap_page() must be called 3097 * while the page is counted on swap but not yet in mapcount i.e. 3098 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3099 * must be called after the swap_free(), or it will never succeed. 3100 * Because delete_from_swap_page() may be called by reuse_swap_page(), 3101 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 3102 * in page->private. In this case, a record in swap_cgroup is silently 3103 * discarded at swap_free(). 3104 */ 3105 3106 inc_mm_counter_fast(mm, MM_ANONPAGES); 3107 dec_mm_counter_fast(mm, MM_SWAPENTS); 3108 pte = mk_pte(page, vma->vm_page_prot); 3109 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 3110 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3111 flags &= ~FAULT_FLAG_WRITE; 3112 ret |= VM_FAULT_WRITE; 3113 exclusive = 1; 3114 } 3115 flush_icache_page(vma, page); 3116 if (pte_swp_soft_dirty(orig_pte)) 3117 pte = pte_mksoft_dirty(pte); 3118 set_pte_at(mm, address, page_table, pte); 3119 if (page == swapcache) 3120 do_page_add_anon_rmap(page, vma, address, exclusive); 3121 else /* ksm created a completely new copy */ 3122 page_add_new_anon_rmap(page, vma, address); 3123 /* It's better to call commit-charge after rmap is established */ 3124 mem_cgroup_commit_charge_swapin(page, ptr); 3125 3126 swap_free(entry); 3127 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3128 try_to_free_swap(page); 3129 unlock_page(page); 3130 if (page != swapcache) { 3131 /* 3132 * Hold the lock to avoid the swap entry to be reused 3133 * until we take the PT lock for the pte_same() check 3134 * (to avoid false positives from pte_same). For 3135 * further safety release the lock after the swap_free 3136 * so that the swap count won't change under a 3137 * parallel locked swapcache. 3138 */ 3139 unlock_page(swapcache); 3140 page_cache_release(swapcache); 3141 } 3142 3143 if (flags & FAULT_FLAG_WRITE) { 3144 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3145 if (ret & VM_FAULT_ERROR) 3146 ret &= VM_FAULT_ERROR; 3147 goto out; 3148 } 3149 3150 /* No need to invalidate - it was non-present before */ 3151 update_mmu_cache(vma, address, page_table); 3152 unlock: 3153 pte_unmap_unlock(page_table, ptl); 3154 out: 3155 return ret; 3156 out_nomap: 3157 mem_cgroup_cancel_charge_swapin(ptr); 3158 pte_unmap_unlock(page_table, ptl); 3159 out_page: 3160 unlock_page(page); 3161 out_release: 3162 page_cache_release(page); 3163 if (page != swapcache) { 3164 unlock_page(swapcache); 3165 page_cache_release(swapcache); 3166 } 3167 return ret; 3168 } 3169 3170 /* 3171 * This is like a special single-page "expand_{down|up}wards()", 3172 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3173 * doesn't hit another vma. 3174 */ 3175 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3176 { 3177 address &= PAGE_MASK; 3178 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3179 struct vm_area_struct *prev = vma->vm_prev; 3180 3181 /* 3182 * Is there a mapping abutting this one below? 3183 * 3184 * That's only ok if it's the same stack mapping 3185 * that has gotten split.. 3186 */ 3187 if (prev && prev->vm_end == address) 3188 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3189 3190 expand_downwards(vma, address - PAGE_SIZE); 3191 } 3192 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3193 struct vm_area_struct *next = vma->vm_next; 3194 3195 /* As VM_GROWSDOWN but s/below/above/ */ 3196 if (next && next->vm_start == address + PAGE_SIZE) 3197 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3198 3199 expand_upwards(vma, address + PAGE_SIZE); 3200 } 3201 return 0; 3202 } 3203 3204 /* 3205 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3206 * but allow concurrent faults), and pte mapped but not yet locked. 3207 * We return with mmap_sem still held, but pte unmapped and unlocked. 3208 */ 3209 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3210 unsigned long address, pte_t *page_table, pmd_t *pmd, 3211 unsigned int flags) 3212 { 3213 struct page *page; 3214 spinlock_t *ptl; 3215 pte_t entry; 3216 3217 pte_unmap(page_table); 3218 3219 /* Check if we need to add a guard page to the stack */ 3220 if (check_stack_guard_page(vma, address) < 0) 3221 return VM_FAULT_SIGBUS; 3222 3223 /* Use the zero-page for reads */ 3224 if (!(flags & FAULT_FLAG_WRITE)) { 3225 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3226 vma->vm_page_prot)); 3227 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3228 if (!pte_none(*page_table)) 3229 goto unlock; 3230 goto setpte; 3231 } 3232 3233 /* Allocate our own private page. */ 3234 if (unlikely(anon_vma_prepare(vma))) 3235 goto oom; 3236 page = alloc_zeroed_user_highpage_movable(vma, address); 3237 if (!page) 3238 goto oom; 3239 /* 3240 * The memory barrier inside __SetPageUptodate makes sure that 3241 * preceeding stores to the page contents become visible before 3242 * the set_pte_at() write. 3243 */ 3244 __SetPageUptodate(page); 3245 3246 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3247 goto oom_free_page; 3248 3249 entry = mk_pte(page, vma->vm_page_prot); 3250 if (vma->vm_flags & VM_WRITE) 3251 entry = pte_mkwrite(pte_mkdirty(entry)); 3252 3253 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3254 if (!pte_none(*page_table)) 3255 goto release; 3256 3257 inc_mm_counter_fast(mm, MM_ANONPAGES); 3258 page_add_new_anon_rmap(page, vma, address); 3259 setpte: 3260 set_pte_at(mm, address, page_table, entry); 3261 3262 /* No need to invalidate - it was non-present before */ 3263 update_mmu_cache(vma, address, page_table); 3264 unlock: 3265 pte_unmap_unlock(page_table, ptl); 3266 return 0; 3267 release: 3268 mem_cgroup_uncharge_page(page); 3269 page_cache_release(page); 3270 goto unlock; 3271 oom_free_page: 3272 page_cache_release(page); 3273 oom: 3274 return VM_FAULT_OOM; 3275 } 3276 3277 /* 3278 * __do_fault() tries to create a new page mapping. It aggressively 3279 * tries to share with existing pages, but makes a separate copy if 3280 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3281 * the next page fault. 3282 * 3283 * As this is called only for pages that do not currently exist, we 3284 * do not need to flush old virtual caches or the TLB. 3285 * 3286 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3287 * but allow concurrent faults), and pte neither mapped nor locked. 3288 * We return with mmap_sem still held, but pte unmapped and unlocked. 3289 */ 3290 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3291 unsigned long address, pmd_t *pmd, 3292 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3293 { 3294 pte_t *page_table; 3295 spinlock_t *ptl; 3296 struct page *page; 3297 struct page *cow_page; 3298 pte_t entry; 3299 int anon = 0; 3300 struct page *dirty_page = NULL; 3301 struct vm_fault vmf; 3302 int ret; 3303 int page_mkwrite = 0; 3304 3305 /* 3306 * If we do COW later, allocate page befor taking lock_page() 3307 * on the file cache page. This will reduce lock holding time. 3308 */ 3309 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3310 3311 if (unlikely(anon_vma_prepare(vma))) 3312 return VM_FAULT_OOM; 3313 3314 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3315 if (!cow_page) 3316 return VM_FAULT_OOM; 3317 3318 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { 3319 page_cache_release(cow_page); 3320 return VM_FAULT_OOM; 3321 } 3322 } else 3323 cow_page = NULL; 3324 3325 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3326 vmf.pgoff = pgoff; 3327 vmf.flags = flags; 3328 vmf.page = NULL; 3329 3330 ret = vma->vm_ops->fault(vma, &vmf); 3331 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3332 VM_FAULT_RETRY))) 3333 goto uncharge_out; 3334 3335 if (unlikely(PageHWPoison(vmf.page))) { 3336 if (ret & VM_FAULT_LOCKED) 3337 unlock_page(vmf.page); 3338 ret = VM_FAULT_HWPOISON; 3339 goto uncharge_out; 3340 } 3341 3342 /* 3343 * For consistency in subsequent calls, make the faulted page always 3344 * locked. 3345 */ 3346 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3347 lock_page(vmf.page); 3348 else 3349 VM_BUG_ON(!PageLocked(vmf.page)); 3350 3351 /* 3352 * Should we do an early C-O-W break? 3353 */ 3354 page = vmf.page; 3355 if (flags & FAULT_FLAG_WRITE) { 3356 if (!(vma->vm_flags & VM_SHARED)) { 3357 page = cow_page; 3358 anon = 1; 3359 copy_user_highpage(page, vmf.page, address, vma); 3360 __SetPageUptodate(page); 3361 } else { 3362 /* 3363 * If the page will be shareable, see if the backing 3364 * address space wants to know that the page is about 3365 * to become writable 3366 */ 3367 if (vma->vm_ops->page_mkwrite) { 3368 int tmp; 3369 3370 unlock_page(page); 3371 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3372 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3373 if (unlikely(tmp & 3374 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3375 ret = tmp; 3376 goto unwritable_page; 3377 } 3378 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3379 lock_page(page); 3380 if (!page->mapping) { 3381 ret = 0; /* retry the fault */ 3382 unlock_page(page); 3383 goto unwritable_page; 3384 } 3385 } else 3386 VM_BUG_ON(!PageLocked(page)); 3387 page_mkwrite = 1; 3388 } 3389 } 3390 3391 } 3392 3393 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3394 3395 /* 3396 * This silly early PAGE_DIRTY setting removes a race 3397 * due to the bad i386 page protection. But it's valid 3398 * for other architectures too. 3399 * 3400 * Note that if FAULT_FLAG_WRITE is set, we either now have 3401 * an exclusive copy of the page, or this is a shared mapping, 3402 * so we can make it writable and dirty to avoid having to 3403 * handle that later. 3404 */ 3405 /* Only go through if we didn't race with anybody else... */ 3406 if (likely(pte_same(*page_table, orig_pte))) { 3407 flush_icache_page(vma, page); 3408 entry = mk_pte(page, vma->vm_page_prot); 3409 if (flags & FAULT_FLAG_WRITE) 3410 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3411 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte)) 3412 pte_mksoft_dirty(entry); 3413 if (anon) { 3414 inc_mm_counter_fast(mm, MM_ANONPAGES); 3415 page_add_new_anon_rmap(page, vma, address); 3416 } else { 3417 inc_mm_counter_fast(mm, MM_FILEPAGES); 3418 page_add_file_rmap(page); 3419 if (flags & FAULT_FLAG_WRITE) { 3420 dirty_page = page; 3421 get_page(dirty_page); 3422 } 3423 } 3424 set_pte_at(mm, address, page_table, entry); 3425 3426 /* no need to invalidate: a not-present page won't be cached */ 3427 update_mmu_cache(vma, address, page_table); 3428 } else { 3429 if (cow_page) 3430 mem_cgroup_uncharge_page(cow_page); 3431 if (anon) 3432 page_cache_release(page); 3433 else 3434 anon = 1; /* no anon but release faulted_page */ 3435 } 3436 3437 pte_unmap_unlock(page_table, ptl); 3438 3439 if (dirty_page) { 3440 struct address_space *mapping = page->mapping; 3441 int dirtied = 0; 3442 3443 if (set_page_dirty(dirty_page)) 3444 dirtied = 1; 3445 unlock_page(dirty_page); 3446 put_page(dirty_page); 3447 if ((dirtied || page_mkwrite) && mapping) { 3448 /* 3449 * Some device drivers do not set page.mapping but still 3450 * dirty their pages 3451 */ 3452 balance_dirty_pages_ratelimited(mapping); 3453 } 3454 3455 /* file_update_time outside page_lock */ 3456 if (vma->vm_file && !page_mkwrite) 3457 file_update_time(vma->vm_file); 3458 } else { 3459 unlock_page(vmf.page); 3460 if (anon) 3461 page_cache_release(vmf.page); 3462 } 3463 3464 return ret; 3465 3466 unwritable_page: 3467 page_cache_release(page); 3468 return ret; 3469 uncharge_out: 3470 /* fs's fault handler get error */ 3471 if (cow_page) { 3472 mem_cgroup_uncharge_page(cow_page); 3473 page_cache_release(cow_page); 3474 } 3475 return ret; 3476 } 3477 3478 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3479 unsigned long address, pte_t *page_table, pmd_t *pmd, 3480 unsigned int flags, pte_t orig_pte) 3481 { 3482 pgoff_t pgoff = (((address & PAGE_MASK) 3483 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3484 3485 pte_unmap(page_table); 3486 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3487 } 3488 3489 /* 3490 * Fault of a previously existing named mapping. Repopulate the pte 3491 * from the encoded file_pte if possible. This enables swappable 3492 * nonlinear vmas. 3493 * 3494 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3495 * but allow concurrent faults), and pte mapped but not yet locked. 3496 * We return with mmap_sem still held, but pte unmapped and unlocked. 3497 */ 3498 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3499 unsigned long address, pte_t *page_table, pmd_t *pmd, 3500 unsigned int flags, pte_t orig_pte) 3501 { 3502 pgoff_t pgoff; 3503 3504 flags |= FAULT_FLAG_NONLINEAR; 3505 3506 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3507 return 0; 3508 3509 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3510 /* 3511 * Page table corrupted: show pte and kill process. 3512 */ 3513 print_bad_pte(vma, address, orig_pte, NULL); 3514 return VM_FAULT_SIGBUS; 3515 } 3516 3517 pgoff = pte_to_pgoff(orig_pte); 3518 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3519 } 3520 3521 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3522 unsigned long addr, int current_nid) 3523 { 3524 get_page(page); 3525 3526 count_vm_numa_event(NUMA_HINT_FAULTS); 3527 if (current_nid == numa_node_id()) 3528 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3529 3530 return mpol_misplaced(page, vma, addr); 3531 } 3532 3533 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3534 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3535 { 3536 struct page *page = NULL; 3537 spinlock_t *ptl; 3538 int current_nid = -1; 3539 int target_nid; 3540 bool migrated = false; 3541 3542 /* 3543 * The "pte" at this point cannot be used safely without 3544 * validation through pte_unmap_same(). It's of NUMA type but 3545 * the pfn may be screwed if the read is non atomic. 3546 * 3547 * ptep_modify_prot_start is not called as this is clearing 3548 * the _PAGE_NUMA bit and it is not really expected that there 3549 * would be concurrent hardware modifications to the PTE. 3550 */ 3551 ptl = pte_lockptr(mm, pmd); 3552 spin_lock(ptl); 3553 if (unlikely(!pte_same(*ptep, pte))) { 3554 pte_unmap_unlock(ptep, ptl); 3555 goto out; 3556 } 3557 3558 pte = pte_mknonnuma(pte); 3559 set_pte_at(mm, addr, ptep, pte); 3560 update_mmu_cache(vma, addr, ptep); 3561 3562 page = vm_normal_page(vma, addr, pte); 3563 if (!page) { 3564 pte_unmap_unlock(ptep, ptl); 3565 return 0; 3566 } 3567 3568 current_nid = page_to_nid(page); 3569 target_nid = numa_migrate_prep(page, vma, addr, current_nid); 3570 pte_unmap_unlock(ptep, ptl); 3571 if (target_nid == -1) { 3572 /* 3573 * Account for the fault against the current node if it not 3574 * being replaced regardless of where the page is located. 3575 */ 3576 current_nid = numa_node_id(); 3577 put_page(page); 3578 goto out; 3579 } 3580 3581 /* Migrate to the requested node */ 3582 migrated = migrate_misplaced_page(page, target_nid); 3583 if (migrated) 3584 current_nid = target_nid; 3585 3586 out: 3587 if (current_nid != -1) 3588 task_numa_fault(current_nid, 1, migrated); 3589 return 0; 3590 } 3591 3592 /* NUMA hinting page fault entry point for regular pmds */ 3593 #ifdef CONFIG_NUMA_BALANCING 3594 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3595 unsigned long addr, pmd_t *pmdp) 3596 { 3597 pmd_t pmd; 3598 pte_t *pte, *orig_pte; 3599 unsigned long _addr = addr & PMD_MASK; 3600 unsigned long offset; 3601 spinlock_t *ptl; 3602 bool numa = false; 3603 int local_nid = numa_node_id(); 3604 3605 spin_lock(&mm->page_table_lock); 3606 pmd = *pmdp; 3607 if (pmd_numa(pmd)) { 3608 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd)); 3609 numa = true; 3610 } 3611 spin_unlock(&mm->page_table_lock); 3612 3613 if (!numa) 3614 return 0; 3615 3616 /* we're in a page fault so some vma must be in the range */ 3617 BUG_ON(!vma); 3618 BUG_ON(vma->vm_start >= _addr + PMD_SIZE); 3619 offset = max(_addr, vma->vm_start) & ~PMD_MASK; 3620 VM_BUG_ON(offset >= PMD_SIZE); 3621 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl); 3622 pte += offset >> PAGE_SHIFT; 3623 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) { 3624 pte_t pteval = *pte; 3625 struct page *page; 3626 int curr_nid = local_nid; 3627 int target_nid; 3628 bool migrated; 3629 if (!pte_present(pteval)) 3630 continue; 3631 if (!pte_numa(pteval)) 3632 continue; 3633 if (addr >= vma->vm_end) { 3634 vma = find_vma(mm, addr); 3635 /* there's a pte present so there must be a vma */ 3636 BUG_ON(!vma); 3637 BUG_ON(addr < vma->vm_start); 3638 } 3639 if (pte_numa(pteval)) { 3640 pteval = pte_mknonnuma(pteval); 3641 set_pte_at(mm, addr, pte, pteval); 3642 } 3643 page = vm_normal_page(vma, addr, pteval); 3644 if (unlikely(!page)) 3645 continue; 3646 /* only check non-shared pages */ 3647 if (unlikely(page_mapcount(page) != 1)) 3648 continue; 3649 3650 /* 3651 * Note that the NUMA fault is later accounted to either 3652 * the node that is currently running or where the page is 3653 * migrated to. 3654 */ 3655 curr_nid = local_nid; 3656 target_nid = numa_migrate_prep(page, vma, addr, 3657 page_to_nid(page)); 3658 if (target_nid == -1) { 3659 put_page(page); 3660 continue; 3661 } 3662 3663 /* Migrate to the requested node */ 3664 pte_unmap_unlock(pte, ptl); 3665 migrated = migrate_misplaced_page(page, target_nid); 3666 if (migrated) 3667 curr_nid = target_nid; 3668 task_numa_fault(curr_nid, 1, migrated); 3669 3670 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl); 3671 } 3672 pte_unmap_unlock(orig_pte, ptl); 3673 3674 return 0; 3675 } 3676 #else 3677 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3678 unsigned long addr, pmd_t *pmdp) 3679 { 3680 BUG(); 3681 return 0; 3682 } 3683 #endif /* CONFIG_NUMA_BALANCING */ 3684 3685 /* 3686 * These routines also need to handle stuff like marking pages dirty 3687 * and/or accessed for architectures that don't do it in hardware (most 3688 * RISC architectures). The early dirtying is also good on the i386. 3689 * 3690 * There is also a hook called "update_mmu_cache()" that architectures 3691 * with external mmu caches can use to update those (ie the Sparc or 3692 * PowerPC hashed page tables that act as extended TLBs). 3693 * 3694 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3695 * but allow concurrent faults), and pte mapped but not yet locked. 3696 * We return with mmap_sem still held, but pte unmapped and unlocked. 3697 */ 3698 static int handle_pte_fault(struct mm_struct *mm, 3699 struct vm_area_struct *vma, unsigned long address, 3700 pte_t *pte, pmd_t *pmd, unsigned int flags) 3701 { 3702 pte_t entry; 3703 spinlock_t *ptl; 3704 3705 entry = *pte; 3706 if (!pte_present(entry)) { 3707 if (pte_none(entry)) { 3708 if (vma->vm_ops) { 3709 if (likely(vma->vm_ops->fault)) 3710 return do_linear_fault(mm, vma, address, 3711 pte, pmd, flags, entry); 3712 } 3713 return do_anonymous_page(mm, vma, address, 3714 pte, pmd, flags); 3715 } 3716 if (pte_file(entry)) 3717 return do_nonlinear_fault(mm, vma, address, 3718 pte, pmd, flags, entry); 3719 return do_swap_page(mm, vma, address, 3720 pte, pmd, flags, entry); 3721 } 3722 3723 if (pte_numa(entry)) 3724 return do_numa_page(mm, vma, address, entry, pte, pmd); 3725 3726 ptl = pte_lockptr(mm, pmd); 3727 spin_lock(ptl); 3728 if (unlikely(!pte_same(*pte, entry))) 3729 goto unlock; 3730 if (flags & FAULT_FLAG_WRITE) { 3731 if (!pte_write(entry)) 3732 return do_wp_page(mm, vma, address, 3733 pte, pmd, ptl, entry); 3734 entry = pte_mkdirty(entry); 3735 } 3736 entry = pte_mkyoung(entry); 3737 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3738 update_mmu_cache(vma, address, pte); 3739 } else { 3740 /* 3741 * This is needed only for protection faults but the arch code 3742 * is not yet telling us if this is a protection fault or not. 3743 * This still avoids useless tlb flushes for .text page faults 3744 * with threads. 3745 */ 3746 if (flags & FAULT_FLAG_WRITE) 3747 flush_tlb_fix_spurious_fault(vma, address); 3748 } 3749 unlock: 3750 pte_unmap_unlock(pte, ptl); 3751 return 0; 3752 } 3753 3754 /* 3755 * By the time we get here, we already hold the mm semaphore 3756 */ 3757 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3758 unsigned long address, unsigned int flags) 3759 { 3760 pgd_t *pgd; 3761 pud_t *pud; 3762 pmd_t *pmd; 3763 pte_t *pte; 3764 3765 if (unlikely(is_vm_hugetlb_page(vma))) 3766 return hugetlb_fault(mm, vma, address, flags); 3767 3768 retry: 3769 pgd = pgd_offset(mm, address); 3770 pud = pud_alloc(mm, pgd, address); 3771 if (!pud) 3772 return VM_FAULT_OOM; 3773 pmd = pmd_alloc(mm, pud, address); 3774 if (!pmd) 3775 return VM_FAULT_OOM; 3776 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3777 int ret = VM_FAULT_FALLBACK; 3778 if (!vma->vm_ops) 3779 ret = do_huge_pmd_anonymous_page(mm, vma, address, 3780 pmd, flags); 3781 if (!(ret & VM_FAULT_FALLBACK)) 3782 return ret; 3783 } else { 3784 pmd_t orig_pmd = *pmd; 3785 int ret; 3786 3787 barrier(); 3788 if (pmd_trans_huge(orig_pmd)) { 3789 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3790 3791 /* 3792 * If the pmd is splitting, return and retry the 3793 * the fault. Alternative: wait until the split 3794 * is done, and goto retry. 3795 */ 3796 if (pmd_trans_splitting(orig_pmd)) 3797 return 0; 3798 3799 if (pmd_numa(orig_pmd)) 3800 return do_huge_pmd_numa_page(mm, vma, address, 3801 orig_pmd, pmd); 3802 3803 if (dirty && !pmd_write(orig_pmd)) { 3804 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3805 orig_pmd); 3806 /* 3807 * If COW results in an oom, the huge pmd will 3808 * have been split, so retry the fault on the 3809 * pte for a smaller charge. 3810 */ 3811 if (unlikely(ret & VM_FAULT_OOM)) 3812 goto retry; 3813 return ret; 3814 } else { 3815 huge_pmd_set_accessed(mm, vma, address, pmd, 3816 orig_pmd, dirty); 3817 } 3818 3819 return 0; 3820 } 3821 } 3822 3823 if (pmd_numa(*pmd)) 3824 return do_pmd_numa_page(mm, vma, address, pmd); 3825 3826 /* 3827 * Use __pte_alloc instead of pte_alloc_map, because we can't 3828 * run pte_offset_map on the pmd, if an huge pmd could 3829 * materialize from under us from a different thread. 3830 */ 3831 if (unlikely(pmd_none(*pmd)) && 3832 unlikely(__pte_alloc(mm, vma, pmd, address))) 3833 return VM_FAULT_OOM; 3834 /* if an huge pmd materialized from under us just retry later */ 3835 if (unlikely(pmd_trans_huge(*pmd))) 3836 return 0; 3837 /* 3838 * A regular pmd is established and it can't morph into a huge pmd 3839 * from under us anymore at this point because we hold the mmap_sem 3840 * read mode and khugepaged takes it in write mode. So now it's 3841 * safe to run pte_offset_map(). 3842 */ 3843 pte = pte_offset_map(pmd, address); 3844 3845 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3846 } 3847 3848 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3849 unsigned long address, unsigned int flags) 3850 { 3851 int ret; 3852 3853 __set_current_state(TASK_RUNNING); 3854 3855 count_vm_event(PGFAULT); 3856 mem_cgroup_count_vm_event(mm, PGFAULT); 3857 3858 /* do counter updates before entering really critical section. */ 3859 check_sync_rss_stat(current); 3860 3861 /* 3862 * Enable the memcg OOM handling for faults triggered in user 3863 * space. Kernel faults are handled more gracefully. 3864 */ 3865 if (flags & FAULT_FLAG_USER) 3866 mem_cgroup_enable_oom(); 3867 3868 ret = __handle_mm_fault(mm, vma, address, flags); 3869 3870 if (flags & FAULT_FLAG_USER) 3871 mem_cgroup_disable_oom(); 3872 3873 if (WARN_ON(task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))) 3874 mem_cgroup_oom_synchronize(); 3875 3876 return ret; 3877 } 3878 3879 #ifndef __PAGETABLE_PUD_FOLDED 3880 /* 3881 * Allocate page upper directory. 3882 * We've already handled the fast-path in-line. 3883 */ 3884 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3885 { 3886 pud_t *new = pud_alloc_one(mm, address); 3887 if (!new) 3888 return -ENOMEM; 3889 3890 smp_wmb(); /* See comment in __pte_alloc */ 3891 3892 spin_lock(&mm->page_table_lock); 3893 if (pgd_present(*pgd)) /* Another has populated it */ 3894 pud_free(mm, new); 3895 else 3896 pgd_populate(mm, pgd, new); 3897 spin_unlock(&mm->page_table_lock); 3898 return 0; 3899 } 3900 #endif /* __PAGETABLE_PUD_FOLDED */ 3901 3902 #ifndef __PAGETABLE_PMD_FOLDED 3903 /* 3904 * Allocate page middle directory. 3905 * We've already handled the fast-path in-line. 3906 */ 3907 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3908 { 3909 pmd_t *new = pmd_alloc_one(mm, address); 3910 if (!new) 3911 return -ENOMEM; 3912 3913 smp_wmb(); /* See comment in __pte_alloc */ 3914 3915 spin_lock(&mm->page_table_lock); 3916 #ifndef __ARCH_HAS_4LEVEL_HACK 3917 if (pud_present(*pud)) /* Another has populated it */ 3918 pmd_free(mm, new); 3919 else 3920 pud_populate(mm, pud, new); 3921 #else 3922 if (pgd_present(*pud)) /* Another has populated it */ 3923 pmd_free(mm, new); 3924 else 3925 pgd_populate(mm, pud, new); 3926 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3927 spin_unlock(&mm->page_table_lock); 3928 return 0; 3929 } 3930 #endif /* __PAGETABLE_PMD_FOLDED */ 3931 3932 #if !defined(__HAVE_ARCH_GATE_AREA) 3933 3934 #if defined(AT_SYSINFO_EHDR) 3935 static struct vm_area_struct gate_vma; 3936 3937 static int __init gate_vma_init(void) 3938 { 3939 gate_vma.vm_mm = NULL; 3940 gate_vma.vm_start = FIXADDR_USER_START; 3941 gate_vma.vm_end = FIXADDR_USER_END; 3942 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3943 gate_vma.vm_page_prot = __P101; 3944 3945 return 0; 3946 } 3947 __initcall(gate_vma_init); 3948 #endif 3949 3950 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3951 { 3952 #ifdef AT_SYSINFO_EHDR 3953 return &gate_vma; 3954 #else 3955 return NULL; 3956 #endif 3957 } 3958 3959 int in_gate_area_no_mm(unsigned long addr) 3960 { 3961 #ifdef AT_SYSINFO_EHDR 3962 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3963 return 1; 3964 #endif 3965 return 0; 3966 } 3967 3968 #endif /* __HAVE_ARCH_GATE_AREA */ 3969 3970 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3971 pte_t **ptepp, spinlock_t **ptlp) 3972 { 3973 pgd_t *pgd; 3974 pud_t *pud; 3975 pmd_t *pmd; 3976 pte_t *ptep; 3977 3978 pgd = pgd_offset(mm, address); 3979 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3980 goto out; 3981 3982 pud = pud_offset(pgd, address); 3983 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3984 goto out; 3985 3986 pmd = pmd_offset(pud, address); 3987 VM_BUG_ON(pmd_trans_huge(*pmd)); 3988 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3989 goto out; 3990 3991 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3992 if (pmd_huge(*pmd)) 3993 goto out; 3994 3995 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3996 if (!ptep) 3997 goto out; 3998 if (!pte_present(*ptep)) 3999 goto unlock; 4000 *ptepp = ptep; 4001 return 0; 4002 unlock: 4003 pte_unmap_unlock(ptep, *ptlp); 4004 out: 4005 return -EINVAL; 4006 } 4007 4008 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4009 pte_t **ptepp, spinlock_t **ptlp) 4010 { 4011 int res; 4012 4013 /* (void) is needed to make gcc happy */ 4014 (void) __cond_lock(*ptlp, 4015 !(res = __follow_pte(mm, address, ptepp, ptlp))); 4016 return res; 4017 } 4018 4019 /** 4020 * follow_pfn - look up PFN at a user virtual address 4021 * @vma: memory mapping 4022 * @address: user virtual address 4023 * @pfn: location to store found PFN 4024 * 4025 * Only IO mappings and raw PFN mappings are allowed. 4026 * 4027 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4028 */ 4029 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4030 unsigned long *pfn) 4031 { 4032 int ret = -EINVAL; 4033 spinlock_t *ptl; 4034 pte_t *ptep; 4035 4036 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4037 return ret; 4038 4039 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4040 if (ret) 4041 return ret; 4042 *pfn = pte_pfn(*ptep); 4043 pte_unmap_unlock(ptep, ptl); 4044 return 0; 4045 } 4046 EXPORT_SYMBOL(follow_pfn); 4047 4048 #ifdef CONFIG_HAVE_IOREMAP_PROT 4049 int follow_phys(struct vm_area_struct *vma, 4050 unsigned long address, unsigned int flags, 4051 unsigned long *prot, resource_size_t *phys) 4052 { 4053 int ret = -EINVAL; 4054 pte_t *ptep, pte; 4055 spinlock_t *ptl; 4056 4057 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4058 goto out; 4059 4060 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4061 goto out; 4062 pte = *ptep; 4063 4064 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4065 goto unlock; 4066 4067 *prot = pgprot_val(pte_pgprot(pte)); 4068 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4069 4070 ret = 0; 4071 unlock: 4072 pte_unmap_unlock(ptep, ptl); 4073 out: 4074 return ret; 4075 } 4076 4077 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4078 void *buf, int len, int write) 4079 { 4080 resource_size_t phys_addr; 4081 unsigned long prot = 0; 4082 void __iomem *maddr; 4083 int offset = addr & (PAGE_SIZE-1); 4084 4085 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4086 return -EINVAL; 4087 4088 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 4089 if (write) 4090 memcpy_toio(maddr + offset, buf, len); 4091 else 4092 memcpy_fromio(buf, maddr + offset, len); 4093 iounmap(maddr); 4094 4095 return len; 4096 } 4097 EXPORT_SYMBOL_GPL(generic_access_phys); 4098 #endif 4099 4100 /* 4101 * Access another process' address space as given in mm. If non-NULL, use the 4102 * given task for page fault accounting. 4103 */ 4104 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4105 unsigned long addr, void *buf, int len, int write) 4106 { 4107 struct vm_area_struct *vma; 4108 void *old_buf = buf; 4109 4110 down_read(&mm->mmap_sem); 4111 /* ignore errors, just check how much was successfully transferred */ 4112 while (len) { 4113 int bytes, ret, offset; 4114 void *maddr; 4115 struct page *page = NULL; 4116 4117 ret = get_user_pages(tsk, mm, addr, 1, 4118 write, 1, &page, &vma); 4119 if (ret <= 0) { 4120 /* 4121 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4122 * we can access using slightly different code. 4123 */ 4124 #ifdef CONFIG_HAVE_IOREMAP_PROT 4125 vma = find_vma(mm, addr); 4126 if (!vma || vma->vm_start > addr) 4127 break; 4128 if (vma->vm_ops && vma->vm_ops->access) 4129 ret = vma->vm_ops->access(vma, addr, buf, 4130 len, write); 4131 if (ret <= 0) 4132 #endif 4133 break; 4134 bytes = ret; 4135 } else { 4136 bytes = len; 4137 offset = addr & (PAGE_SIZE-1); 4138 if (bytes > PAGE_SIZE-offset) 4139 bytes = PAGE_SIZE-offset; 4140 4141 maddr = kmap(page); 4142 if (write) { 4143 copy_to_user_page(vma, page, addr, 4144 maddr + offset, buf, bytes); 4145 set_page_dirty_lock(page); 4146 } else { 4147 copy_from_user_page(vma, page, addr, 4148 buf, maddr + offset, bytes); 4149 } 4150 kunmap(page); 4151 page_cache_release(page); 4152 } 4153 len -= bytes; 4154 buf += bytes; 4155 addr += bytes; 4156 } 4157 up_read(&mm->mmap_sem); 4158 4159 return buf - old_buf; 4160 } 4161 4162 /** 4163 * access_remote_vm - access another process' address space 4164 * @mm: the mm_struct of the target address space 4165 * @addr: start address to access 4166 * @buf: source or destination buffer 4167 * @len: number of bytes to transfer 4168 * @write: whether the access is a write 4169 * 4170 * The caller must hold a reference on @mm. 4171 */ 4172 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4173 void *buf, int len, int write) 4174 { 4175 return __access_remote_vm(NULL, mm, addr, buf, len, write); 4176 } 4177 4178 /* 4179 * Access another process' address space. 4180 * Source/target buffer must be kernel space, 4181 * Do not walk the page table directly, use get_user_pages 4182 */ 4183 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4184 void *buf, int len, int write) 4185 { 4186 struct mm_struct *mm; 4187 int ret; 4188 4189 mm = get_task_mm(tsk); 4190 if (!mm) 4191 return 0; 4192 4193 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 4194 mmput(mm); 4195 4196 return ret; 4197 } 4198 4199 /* 4200 * Print the name of a VMA. 4201 */ 4202 void print_vma_addr(char *prefix, unsigned long ip) 4203 { 4204 struct mm_struct *mm = current->mm; 4205 struct vm_area_struct *vma; 4206 4207 /* 4208 * Do not print if we are in atomic 4209 * contexts (in exception stacks, etc.): 4210 */ 4211 if (preempt_count()) 4212 return; 4213 4214 down_read(&mm->mmap_sem); 4215 vma = find_vma(mm, ip); 4216 if (vma && vma->vm_file) { 4217 struct file *f = vma->vm_file; 4218 char *buf = (char *)__get_free_page(GFP_KERNEL); 4219 if (buf) { 4220 char *p; 4221 4222 p = d_path(&f->f_path, buf, PAGE_SIZE); 4223 if (IS_ERR(p)) 4224 p = "?"; 4225 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4226 vma->vm_start, 4227 vma->vm_end - vma->vm_start); 4228 free_page((unsigned long)buf); 4229 } 4230 } 4231 up_read(&mm->mmap_sem); 4232 } 4233 4234 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4235 void might_fault(void) 4236 { 4237 /* 4238 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4239 * holding the mmap_sem, this is safe because kernel memory doesn't 4240 * get paged out, therefore we'll never actually fault, and the 4241 * below annotations will generate false positives. 4242 */ 4243 if (segment_eq(get_fs(), KERNEL_DS)) 4244 return; 4245 4246 /* 4247 * it would be nicer only to annotate paths which are not under 4248 * pagefault_disable, however that requires a larger audit and 4249 * providing helpers like get_user_atomic. 4250 */ 4251 if (in_atomic()) 4252 return; 4253 4254 __might_sleep(__FILE__, __LINE__, 0); 4255 4256 if (current->mm) 4257 might_lock_read(¤t->mm->mmap_sem); 4258 } 4259 EXPORT_SYMBOL(might_fault); 4260 #endif 4261 4262 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4263 static void clear_gigantic_page(struct page *page, 4264 unsigned long addr, 4265 unsigned int pages_per_huge_page) 4266 { 4267 int i; 4268 struct page *p = page; 4269 4270 might_sleep(); 4271 for (i = 0; i < pages_per_huge_page; 4272 i++, p = mem_map_next(p, page, i)) { 4273 cond_resched(); 4274 clear_user_highpage(p, addr + i * PAGE_SIZE); 4275 } 4276 } 4277 void clear_huge_page(struct page *page, 4278 unsigned long addr, unsigned int pages_per_huge_page) 4279 { 4280 int i; 4281 4282 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4283 clear_gigantic_page(page, addr, pages_per_huge_page); 4284 return; 4285 } 4286 4287 might_sleep(); 4288 for (i = 0; i < pages_per_huge_page; i++) { 4289 cond_resched(); 4290 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4291 } 4292 } 4293 4294 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4295 unsigned long addr, 4296 struct vm_area_struct *vma, 4297 unsigned int pages_per_huge_page) 4298 { 4299 int i; 4300 struct page *dst_base = dst; 4301 struct page *src_base = src; 4302 4303 for (i = 0; i < pages_per_huge_page; ) { 4304 cond_resched(); 4305 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4306 4307 i++; 4308 dst = mem_map_next(dst, dst_base, i); 4309 src = mem_map_next(src, src_base, i); 4310 } 4311 } 4312 4313 void copy_user_huge_page(struct page *dst, struct page *src, 4314 unsigned long addr, struct vm_area_struct *vma, 4315 unsigned int pages_per_huge_page) 4316 { 4317 int i; 4318 4319 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4320 copy_user_gigantic_page(dst, src, addr, vma, 4321 pages_per_huge_page); 4322 return; 4323 } 4324 4325 might_sleep(); 4326 for (i = 0; i < pages_per_huge_page; i++) { 4327 cond_resched(); 4328 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4329 } 4330 } 4331 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4332