xref: /openbmc/linux/mm/memory.c (revision 5bd8e16d)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69 
70 #include "internal.h"
71 
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75 
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80 
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84 
85 /*
86  * A number of key systems in x86 including ioremap() rely on the assumption
87  * that high_memory defines the upper bound on direct map memory, then end
88  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
89  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90  * and ZONE_HIGHMEM.
91  */
92 void * high_memory;
93 
94 EXPORT_SYMBOL(high_memory);
95 
96 /*
97  * Randomize the address space (stacks, mmaps, brk, etc.).
98  *
99  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100  *   as ancient (libc5 based) binaries can segfault. )
101  */
102 int randomize_va_space __read_mostly =
103 #ifdef CONFIG_COMPAT_BRK
104 					1;
105 #else
106 					2;
107 #endif
108 
109 static int __init disable_randmaps(char *s)
110 {
111 	randomize_va_space = 0;
112 	return 1;
113 }
114 __setup("norandmaps", disable_randmaps);
115 
116 unsigned long zero_pfn __read_mostly;
117 unsigned long highest_memmap_pfn __read_mostly;
118 
119 /*
120  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
121  */
122 static int __init init_zero_pfn(void)
123 {
124 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
125 	return 0;
126 }
127 core_initcall(init_zero_pfn);
128 
129 
130 #if defined(SPLIT_RSS_COUNTING)
131 
132 void sync_mm_rss(struct mm_struct *mm)
133 {
134 	int i;
135 
136 	for (i = 0; i < NR_MM_COUNTERS; i++) {
137 		if (current->rss_stat.count[i]) {
138 			add_mm_counter(mm, i, current->rss_stat.count[i]);
139 			current->rss_stat.count[i] = 0;
140 		}
141 	}
142 	current->rss_stat.events = 0;
143 }
144 
145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
146 {
147 	struct task_struct *task = current;
148 
149 	if (likely(task->mm == mm))
150 		task->rss_stat.count[member] += val;
151 	else
152 		add_mm_counter(mm, member, val);
153 }
154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
156 
157 /* sync counter once per 64 page faults */
158 #define TASK_RSS_EVENTS_THRESH	(64)
159 static void check_sync_rss_stat(struct task_struct *task)
160 {
161 	if (unlikely(task != current))
162 		return;
163 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
164 		sync_mm_rss(task->mm);
165 }
166 #else /* SPLIT_RSS_COUNTING */
167 
168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
170 
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 }
174 
175 #endif /* SPLIT_RSS_COUNTING */
176 
177 #ifdef HAVE_GENERIC_MMU_GATHER
178 
179 static int tlb_next_batch(struct mmu_gather *tlb)
180 {
181 	struct mmu_gather_batch *batch;
182 
183 	batch = tlb->active;
184 	if (batch->next) {
185 		tlb->active = batch->next;
186 		return 1;
187 	}
188 
189 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190 		return 0;
191 
192 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193 	if (!batch)
194 		return 0;
195 
196 	tlb->batch_count++;
197 	batch->next = NULL;
198 	batch->nr   = 0;
199 	batch->max  = MAX_GATHER_BATCH;
200 
201 	tlb->active->next = batch;
202 	tlb->active = batch;
203 
204 	return 1;
205 }
206 
207 /* tlb_gather_mmu
208  *	Called to initialize an (on-stack) mmu_gather structure for page-table
209  *	tear-down from @mm. The @fullmm argument is used when @mm is without
210  *	users and we're going to destroy the full address space (exit/execve).
211  */
212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
213 {
214 	tlb->mm = mm;
215 
216 	/* Is it from 0 to ~0? */
217 	tlb->fullmm     = !(start | (end+1));
218 	tlb->need_flush_all = 0;
219 	tlb->start	= start;
220 	tlb->end	= end;
221 	tlb->need_flush = 0;
222 	tlb->local.next = NULL;
223 	tlb->local.nr   = 0;
224 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
225 	tlb->active     = &tlb->local;
226 	tlb->batch_count = 0;
227 
228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
229 	tlb->batch = NULL;
230 #endif
231 }
232 
233 void tlb_flush_mmu(struct mmu_gather *tlb)
234 {
235 	struct mmu_gather_batch *batch;
236 
237 	if (!tlb->need_flush)
238 		return;
239 	tlb->need_flush = 0;
240 	tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 	tlb_table_flush(tlb);
243 #endif
244 
245 	for (batch = &tlb->local; batch; batch = batch->next) {
246 		free_pages_and_swap_cache(batch->pages, batch->nr);
247 		batch->nr = 0;
248 	}
249 	tlb->active = &tlb->local;
250 }
251 
252 /* tlb_finish_mmu
253  *	Called at the end of the shootdown operation to free up any resources
254  *	that were required.
255  */
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257 {
258 	struct mmu_gather_batch *batch, *next;
259 
260 	tlb_flush_mmu(tlb);
261 
262 	/* keep the page table cache within bounds */
263 	check_pgt_cache();
264 
265 	for (batch = tlb->local.next; batch; batch = next) {
266 		next = batch->next;
267 		free_pages((unsigned long)batch, 0);
268 	}
269 	tlb->local.next = NULL;
270 }
271 
272 /* __tlb_remove_page
273  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274  *	handling the additional races in SMP caused by other CPUs caching valid
275  *	mappings in their TLBs. Returns the number of free page slots left.
276  *	When out of page slots we must call tlb_flush_mmu().
277  */
278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
279 {
280 	struct mmu_gather_batch *batch;
281 
282 	VM_BUG_ON(!tlb->need_flush);
283 
284 	batch = tlb->active;
285 	batch->pages[batch->nr++] = page;
286 	if (batch->nr == batch->max) {
287 		if (!tlb_next_batch(tlb))
288 			return 0;
289 		batch = tlb->active;
290 	}
291 	VM_BUG_ON(batch->nr > batch->max);
292 
293 	return batch->max - batch->nr;
294 }
295 
296 #endif /* HAVE_GENERIC_MMU_GATHER */
297 
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299 
300 /*
301  * See the comment near struct mmu_table_batch.
302  */
303 
304 static void tlb_remove_table_smp_sync(void *arg)
305 {
306 	/* Simply deliver the interrupt */
307 }
308 
309 static void tlb_remove_table_one(void *table)
310 {
311 	/*
312 	 * This isn't an RCU grace period and hence the page-tables cannot be
313 	 * assumed to be actually RCU-freed.
314 	 *
315 	 * It is however sufficient for software page-table walkers that rely on
316 	 * IRQ disabling. See the comment near struct mmu_table_batch.
317 	 */
318 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 	__tlb_remove_table(table);
320 }
321 
322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 {
324 	struct mmu_table_batch *batch;
325 	int i;
326 
327 	batch = container_of(head, struct mmu_table_batch, rcu);
328 
329 	for (i = 0; i < batch->nr; i++)
330 		__tlb_remove_table(batch->tables[i]);
331 
332 	free_page((unsigned long)batch);
333 }
334 
335 void tlb_table_flush(struct mmu_gather *tlb)
336 {
337 	struct mmu_table_batch **batch = &tlb->batch;
338 
339 	if (*batch) {
340 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 		*batch = NULL;
342 	}
343 }
344 
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 {
347 	struct mmu_table_batch **batch = &tlb->batch;
348 
349 	tlb->need_flush = 1;
350 
351 	/*
352 	 * When there's less then two users of this mm there cannot be a
353 	 * concurrent page-table walk.
354 	 */
355 	if (atomic_read(&tlb->mm->mm_users) < 2) {
356 		__tlb_remove_table(table);
357 		return;
358 	}
359 
360 	if (*batch == NULL) {
361 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 		if (*batch == NULL) {
363 			tlb_remove_table_one(table);
364 			return;
365 		}
366 		(*batch)->nr = 0;
367 	}
368 	(*batch)->tables[(*batch)->nr++] = table;
369 	if ((*batch)->nr == MAX_TABLE_BATCH)
370 		tlb_table_flush(tlb);
371 }
372 
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374 
375 /*
376  * Note: this doesn't free the actual pages themselves. That
377  * has been handled earlier when unmapping all the memory regions.
378  */
379 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
380 			   unsigned long addr)
381 {
382 	pgtable_t token = pmd_pgtable(*pmd);
383 	pmd_clear(pmd);
384 	pte_free_tlb(tlb, token, addr);
385 	tlb->mm->nr_ptes--;
386 }
387 
388 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
389 				unsigned long addr, unsigned long end,
390 				unsigned long floor, unsigned long ceiling)
391 {
392 	pmd_t *pmd;
393 	unsigned long next;
394 	unsigned long start;
395 
396 	start = addr;
397 	pmd = pmd_offset(pud, addr);
398 	do {
399 		next = pmd_addr_end(addr, end);
400 		if (pmd_none_or_clear_bad(pmd))
401 			continue;
402 		free_pte_range(tlb, pmd, addr);
403 	} while (pmd++, addr = next, addr != end);
404 
405 	start &= PUD_MASK;
406 	if (start < floor)
407 		return;
408 	if (ceiling) {
409 		ceiling &= PUD_MASK;
410 		if (!ceiling)
411 			return;
412 	}
413 	if (end - 1 > ceiling - 1)
414 		return;
415 
416 	pmd = pmd_offset(pud, start);
417 	pud_clear(pud);
418 	pmd_free_tlb(tlb, pmd, start);
419 }
420 
421 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
422 				unsigned long addr, unsigned long end,
423 				unsigned long floor, unsigned long ceiling)
424 {
425 	pud_t *pud;
426 	unsigned long next;
427 	unsigned long start;
428 
429 	start = addr;
430 	pud = pud_offset(pgd, addr);
431 	do {
432 		next = pud_addr_end(addr, end);
433 		if (pud_none_or_clear_bad(pud))
434 			continue;
435 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
436 	} while (pud++, addr = next, addr != end);
437 
438 	start &= PGDIR_MASK;
439 	if (start < floor)
440 		return;
441 	if (ceiling) {
442 		ceiling &= PGDIR_MASK;
443 		if (!ceiling)
444 			return;
445 	}
446 	if (end - 1 > ceiling - 1)
447 		return;
448 
449 	pud = pud_offset(pgd, start);
450 	pgd_clear(pgd);
451 	pud_free_tlb(tlb, pud, start);
452 }
453 
454 /*
455  * This function frees user-level page tables of a process.
456  *
457  * Must be called with pagetable lock held.
458  */
459 void free_pgd_range(struct mmu_gather *tlb,
460 			unsigned long addr, unsigned long end,
461 			unsigned long floor, unsigned long ceiling)
462 {
463 	pgd_t *pgd;
464 	unsigned long next;
465 
466 	/*
467 	 * The next few lines have given us lots of grief...
468 	 *
469 	 * Why are we testing PMD* at this top level?  Because often
470 	 * there will be no work to do at all, and we'd prefer not to
471 	 * go all the way down to the bottom just to discover that.
472 	 *
473 	 * Why all these "- 1"s?  Because 0 represents both the bottom
474 	 * of the address space and the top of it (using -1 for the
475 	 * top wouldn't help much: the masks would do the wrong thing).
476 	 * The rule is that addr 0 and floor 0 refer to the bottom of
477 	 * the address space, but end 0 and ceiling 0 refer to the top
478 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
479 	 * that end 0 case should be mythical).
480 	 *
481 	 * Wherever addr is brought up or ceiling brought down, we must
482 	 * be careful to reject "the opposite 0" before it confuses the
483 	 * subsequent tests.  But what about where end is brought down
484 	 * by PMD_SIZE below? no, end can't go down to 0 there.
485 	 *
486 	 * Whereas we round start (addr) and ceiling down, by different
487 	 * masks at different levels, in order to test whether a table
488 	 * now has no other vmas using it, so can be freed, we don't
489 	 * bother to round floor or end up - the tests don't need that.
490 	 */
491 
492 	addr &= PMD_MASK;
493 	if (addr < floor) {
494 		addr += PMD_SIZE;
495 		if (!addr)
496 			return;
497 	}
498 	if (ceiling) {
499 		ceiling &= PMD_MASK;
500 		if (!ceiling)
501 			return;
502 	}
503 	if (end - 1 > ceiling - 1)
504 		end -= PMD_SIZE;
505 	if (addr > end - 1)
506 		return;
507 
508 	pgd = pgd_offset(tlb->mm, addr);
509 	do {
510 		next = pgd_addr_end(addr, end);
511 		if (pgd_none_or_clear_bad(pgd))
512 			continue;
513 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
514 	} while (pgd++, addr = next, addr != end);
515 }
516 
517 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
518 		unsigned long floor, unsigned long ceiling)
519 {
520 	while (vma) {
521 		struct vm_area_struct *next = vma->vm_next;
522 		unsigned long addr = vma->vm_start;
523 
524 		/*
525 		 * Hide vma from rmap and truncate_pagecache before freeing
526 		 * pgtables
527 		 */
528 		unlink_anon_vmas(vma);
529 		unlink_file_vma(vma);
530 
531 		if (is_vm_hugetlb_page(vma)) {
532 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
533 				floor, next? next->vm_start: ceiling);
534 		} else {
535 			/*
536 			 * Optimization: gather nearby vmas into one call down
537 			 */
538 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
539 			       && !is_vm_hugetlb_page(next)) {
540 				vma = next;
541 				next = vma->vm_next;
542 				unlink_anon_vmas(vma);
543 				unlink_file_vma(vma);
544 			}
545 			free_pgd_range(tlb, addr, vma->vm_end,
546 				floor, next? next->vm_start: ceiling);
547 		}
548 		vma = next;
549 	}
550 }
551 
552 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
553 		pmd_t *pmd, unsigned long address)
554 {
555 	pgtable_t new = pte_alloc_one(mm, address);
556 	int wait_split_huge_page;
557 	if (!new)
558 		return -ENOMEM;
559 
560 	/*
561 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
562 	 * visible before the pte is made visible to other CPUs by being
563 	 * put into page tables.
564 	 *
565 	 * The other side of the story is the pointer chasing in the page
566 	 * table walking code (when walking the page table without locking;
567 	 * ie. most of the time). Fortunately, these data accesses consist
568 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
569 	 * being the notable exception) will already guarantee loads are
570 	 * seen in-order. See the alpha page table accessors for the
571 	 * smp_read_barrier_depends() barriers in page table walking code.
572 	 */
573 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
574 
575 	spin_lock(&mm->page_table_lock);
576 	wait_split_huge_page = 0;
577 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
578 		mm->nr_ptes++;
579 		pmd_populate(mm, pmd, new);
580 		new = NULL;
581 	} else if (unlikely(pmd_trans_splitting(*pmd)))
582 		wait_split_huge_page = 1;
583 	spin_unlock(&mm->page_table_lock);
584 	if (new)
585 		pte_free(mm, new);
586 	if (wait_split_huge_page)
587 		wait_split_huge_page(vma->anon_vma, pmd);
588 	return 0;
589 }
590 
591 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
592 {
593 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
594 	if (!new)
595 		return -ENOMEM;
596 
597 	smp_wmb(); /* See comment in __pte_alloc */
598 
599 	spin_lock(&init_mm.page_table_lock);
600 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
601 		pmd_populate_kernel(&init_mm, pmd, new);
602 		new = NULL;
603 	} else
604 		VM_BUG_ON(pmd_trans_splitting(*pmd));
605 	spin_unlock(&init_mm.page_table_lock);
606 	if (new)
607 		pte_free_kernel(&init_mm, new);
608 	return 0;
609 }
610 
611 static inline void init_rss_vec(int *rss)
612 {
613 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
614 }
615 
616 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
617 {
618 	int i;
619 
620 	if (current->mm == mm)
621 		sync_mm_rss(mm);
622 	for (i = 0; i < NR_MM_COUNTERS; i++)
623 		if (rss[i])
624 			add_mm_counter(mm, i, rss[i]);
625 }
626 
627 /*
628  * This function is called to print an error when a bad pte
629  * is found. For example, we might have a PFN-mapped pte in
630  * a region that doesn't allow it.
631  *
632  * The calling function must still handle the error.
633  */
634 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
635 			  pte_t pte, struct page *page)
636 {
637 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
638 	pud_t *pud = pud_offset(pgd, addr);
639 	pmd_t *pmd = pmd_offset(pud, addr);
640 	struct address_space *mapping;
641 	pgoff_t index;
642 	static unsigned long resume;
643 	static unsigned long nr_shown;
644 	static unsigned long nr_unshown;
645 
646 	/*
647 	 * Allow a burst of 60 reports, then keep quiet for that minute;
648 	 * or allow a steady drip of one report per second.
649 	 */
650 	if (nr_shown == 60) {
651 		if (time_before(jiffies, resume)) {
652 			nr_unshown++;
653 			return;
654 		}
655 		if (nr_unshown) {
656 			printk(KERN_ALERT
657 				"BUG: Bad page map: %lu messages suppressed\n",
658 				nr_unshown);
659 			nr_unshown = 0;
660 		}
661 		nr_shown = 0;
662 	}
663 	if (nr_shown++ == 0)
664 		resume = jiffies + 60 * HZ;
665 
666 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
667 	index = linear_page_index(vma, addr);
668 
669 	printk(KERN_ALERT
670 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
671 		current->comm,
672 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
673 	if (page)
674 		dump_page(page);
675 	printk(KERN_ALERT
676 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
677 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
678 	/*
679 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
680 	 */
681 	if (vma->vm_ops)
682 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
683 		       vma->vm_ops->fault);
684 	if (vma->vm_file && vma->vm_file->f_op)
685 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
686 		       vma->vm_file->f_op->mmap);
687 	dump_stack();
688 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
689 }
690 
691 static inline bool is_cow_mapping(vm_flags_t flags)
692 {
693 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
694 }
695 
696 /*
697  * vm_normal_page -- This function gets the "struct page" associated with a pte.
698  *
699  * "Special" mappings do not wish to be associated with a "struct page" (either
700  * it doesn't exist, or it exists but they don't want to touch it). In this
701  * case, NULL is returned here. "Normal" mappings do have a struct page.
702  *
703  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
704  * pte bit, in which case this function is trivial. Secondly, an architecture
705  * may not have a spare pte bit, which requires a more complicated scheme,
706  * described below.
707  *
708  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
709  * special mapping (even if there are underlying and valid "struct pages").
710  * COWed pages of a VM_PFNMAP are always normal.
711  *
712  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
713  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
714  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
715  * mapping will always honor the rule
716  *
717  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
718  *
719  * And for normal mappings this is false.
720  *
721  * This restricts such mappings to be a linear translation from virtual address
722  * to pfn. To get around this restriction, we allow arbitrary mappings so long
723  * as the vma is not a COW mapping; in that case, we know that all ptes are
724  * special (because none can have been COWed).
725  *
726  *
727  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
728  *
729  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
730  * page" backing, however the difference is that _all_ pages with a struct
731  * page (that is, those where pfn_valid is true) are refcounted and considered
732  * normal pages by the VM. The disadvantage is that pages are refcounted
733  * (which can be slower and simply not an option for some PFNMAP users). The
734  * advantage is that we don't have to follow the strict linearity rule of
735  * PFNMAP mappings in order to support COWable mappings.
736  *
737  */
738 #ifdef __HAVE_ARCH_PTE_SPECIAL
739 # define HAVE_PTE_SPECIAL 1
740 #else
741 # define HAVE_PTE_SPECIAL 0
742 #endif
743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
744 				pte_t pte)
745 {
746 	unsigned long pfn = pte_pfn(pte);
747 
748 	if (HAVE_PTE_SPECIAL) {
749 		if (likely(!pte_special(pte)))
750 			goto check_pfn;
751 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
752 			return NULL;
753 		if (!is_zero_pfn(pfn))
754 			print_bad_pte(vma, addr, pte, NULL);
755 		return NULL;
756 	}
757 
758 	/* !HAVE_PTE_SPECIAL case follows: */
759 
760 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
761 		if (vma->vm_flags & VM_MIXEDMAP) {
762 			if (!pfn_valid(pfn))
763 				return NULL;
764 			goto out;
765 		} else {
766 			unsigned long off;
767 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
768 			if (pfn == vma->vm_pgoff + off)
769 				return NULL;
770 			if (!is_cow_mapping(vma->vm_flags))
771 				return NULL;
772 		}
773 	}
774 
775 	if (is_zero_pfn(pfn))
776 		return NULL;
777 check_pfn:
778 	if (unlikely(pfn > highest_memmap_pfn)) {
779 		print_bad_pte(vma, addr, pte, NULL);
780 		return NULL;
781 	}
782 
783 	/*
784 	 * NOTE! We still have PageReserved() pages in the page tables.
785 	 * eg. VDSO mappings can cause them to exist.
786 	 */
787 out:
788 	return pfn_to_page(pfn);
789 }
790 
791 /*
792  * copy one vm_area from one task to the other. Assumes the page tables
793  * already present in the new task to be cleared in the whole range
794  * covered by this vma.
795  */
796 
797 static inline unsigned long
798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
799 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
800 		unsigned long addr, int *rss)
801 {
802 	unsigned long vm_flags = vma->vm_flags;
803 	pte_t pte = *src_pte;
804 	struct page *page;
805 
806 	/* pte contains position in swap or file, so copy. */
807 	if (unlikely(!pte_present(pte))) {
808 		if (!pte_file(pte)) {
809 			swp_entry_t entry = pte_to_swp_entry(pte);
810 
811 			if (swap_duplicate(entry) < 0)
812 				return entry.val;
813 
814 			/* make sure dst_mm is on swapoff's mmlist. */
815 			if (unlikely(list_empty(&dst_mm->mmlist))) {
816 				spin_lock(&mmlist_lock);
817 				if (list_empty(&dst_mm->mmlist))
818 					list_add(&dst_mm->mmlist,
819 						 &src_mm->mmlist);
820 				spin_unlock(&mmlist_lock);
821 			}
822 			if (likely(!non_swap_entry(entry)))
823 				rss[MM_SWAPENTS]++;
824 			else if (is_migration_entry(entry)) {
825 				page = migration_entry_to_page(entry);
826 
827 				if (PageAnon(page))
828 					rss[MM_ANONPAGES]++;
829 				else
830 					rss[MM_FILEPAGES]++;
831 
832 				if (is_write_migration_entry(entry) &&
833 				    is_cow_mapping(vm_flags)) {
834 					/*
835 					 * COW mappings require pages in both
836 					 * parent and child to be set to read.
837 					 */
838 					make_migration_entry_read(&entry);
839 					pte = swp_entry_to_pte(entry);
840 					set_pte_at(src_mm, addr, src_pte, pte);
841 				}
842 			}
843 		}
844 		goto out_set_pte;
845 	}
846 
847 	/*
848 	 * If it's a COW mapping, write protect it both
849 	 * in the parent and the child
850 	 */
851 	if (is_cow_mapping(vm_flags)) {
852 		ptep_set_wrprotect(src_mm, addr, src_pte);
853 		pte = pte_wrprotect(pte);
854 	}
855 
856 	/*
857 	 * If it's a shared mapping, mark it clean in
858 	 * the child
859 	 */
860 	if (vm_flags & VM_SHARED)
861 		pte = pte_mkclean(pte);
862 	pte = pte_mkold(pte);
863 
864 	page = vm_normal_page(vma, addr, pte);
865 	if (page) {
866 		get_page(page);
867 		page_dup_rmap(page);
868 		if (PageAnon(page))
869 			rss[MM_ANONPAGES]++;
870 		else
871 			rss[MM_FILEPAGES]++;
872 	}
873 
874 out_set_pte:
875 	set_pte_at(dst_mm, addr, dst_pte, pte);
876 	return 0;
877 }
878 
879 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
880 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
881 		   unsigned long addr, unsigned long end)
882 {
883 	pte_t *orig_src_pte, *orig_dst_pte;
884 	pte_t *src_pte, *dst_pte;
885 	spinlock_t *src_ptl, *dst_ptl;
886 	int progress = 0;
887 	int rss[NR_MM_COUNTERS];
888 	swp_entry_t entry = (swp_entry_t){0};
889 
890 again:
891 	init_rss_vec(rss);
892 
893 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
894 	if (!dst_pte)
895 		return -ENOMEM;
896 	src_pte = pte_offset_map(src_pmd, addr);
897 	src_ptl = pte_lockptr(src_mm, src_pmd);
898 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
899 	orig_src_pte = src_pte;
900 	orig_dst_pte = dst_pte;
901 	arch_enter_lazy_mmu_mode();
902 
903 	do {
904 		/*
905 		 * We are holding two locks at this point - either of them
906 		 * could generate latencies in another task on another CPU.
907 		 */
908 		if (progress >= 32) {
909 			progress = 0;
910 			if (need_resched() ||
911 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
912 				break;
913 		}
914 		if (pte_none(*src_pte)) {
915 			progress++;
916 			continue;
917 		}
918 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
919 							vma, addr, rss);
920 		if (entry.val)
921 			break;
922 		progress += 8;
923 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
924 
925 	arch_leave_lazy_mmu_mode();
926 	spin_unlock(src_ptl);
927 	pte_unmap(orig_src_pte);
928 	add_mm_rss_vec(dst_mm, rss);
929 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
930 	cond_resched();
931 
932 	if (entry.val) {
933 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
934 			return -ENOMEM;
935 		progress = 0;
936 	}
937 	if (addr != end)
938 		goto again;
939 	return 0;
940 }
941 
942 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
944 		unsigned long addr, unsigned long end)
945 {
946 	pmd_t *src_pmd, *dst_pmd;
947 	unsigned long next;
948 
949 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
950 	if (!dst_pmd)
951 		return -ENOMEM;
952 	src_pmd = pmd_offset(src_pud, addr);
953 	do {
954 		next = pmd_addr_end(addr, end);
955 		if (pmd_trans_huge(*src_pmd)) {
956 			int err;
957 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
958 			err = copy_huge_pmd(dst_mm, src_mm,
959 					    dst_pmd, src_pmd, addr, vma);
960 			if (err == -ENOMEM)
961 				return -ENOMEM;
962 			if (!err)
963 				continue;
964 			/* fall through */
965 		}
966 		if (pmd_none_or_clear_bad(src_pmd))
967 			continue;
968 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
969 						vma, addr, next))
970 			return -ENOMEM;
971 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
972 	return 0;
973 }
974 
975 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
976 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
977 		unsigned long addr, unsigned long end)
978 {
979 	pud_t *src_pud, *dst_pud;
980 	unsigned long next;
981 
982 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
983 	if (!dst_pud)
984 		return -ENOMEM;
985 	src_pud = pud_offset(src_pgd, addr);
986 	do {
987 		next = pud_addr_end(addr, end);
988 		if (pud_none_or_clear_bad(src_pud))
989 			continue;
990 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
991 						vma, addr, next))
992 			return -ENOMEM;
993 	} while (dst_pud++, src_pud++, addr = next, addr != end);
994 	return 0;
995 }
996 
997 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
998 		struct vm_area_struct *vma)
999 {
1000 	pgd_t *src_pgd, *dst_pgd;
1001 	unsigned long next;
1002 	unsigned long addr = vma->vm_start;
1003 	unsigned long end = vma->vm_end;
1004 	unsigned long mmun_start;	/* For mmu_notifiers */
1005 	unsigned long mmun_end;		/* For mmu_notifiers */
1006 	bool is_cow;
1007 	int ret;
1008 
1009 	/*
1010 	 * Don't copy ptes where a page fault will fill them correctly.
1011 	 * Fork becomes much lighter when there are big shared or private
1012 	 * readonly mappings. The tradeoff is that copy_page_range is more
1013 	 * efficient than faulting.
1014 	 */
1015 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1016 			       VM_PFNMAP | VM_MIXEDMAP))) {
1017 		if (!vma->anon_vma)
1018 			return 0;
1019 	}
1020 
1021 	if (is_vm_hugetlb_page(vma))
1022 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1023 
1024 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1025 		/*
1026 		 * We do not free on error cases below as remove_vma
1027 		 * gets called on error from higher level routine
1028 		 */
1029 		ret = track_pfn_copy(vma);
1030 		if (ret)
1031 			return ret;
1032 	}
1033 
1034 	/*
1035 	 * We need to invalidate the secondary MMU mappings only when
1036 	 * there could be a permission downgrade on the ptes of the
1037 	 * parent mm. And a permission downgrade will only happen if
1038 	 * is_cow_mapping() returns true.
1039 	 */
1040 	is_cow = is_cow_mapping(vma->vm_flags);
1041 	mmun_start = addr;
1042 	mmun_end   = end;
1043 	if (is_cow)
1044 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1045 						    mmun_end);
1046 
1047 	ret = 0;
1048 	dst_pgd = pgd_offset(dst_mm, addr);
1049 	src_pgd = pgd_offset(src_mm, addr);
1050 	do {
1051 		next = pgd_addr_end(addr, end);
1052 		if (pgd_none_or_clear_bad(src_pgd))
1053 			continue;
1054 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1055 					    vma, addr, next))) {
1056 			ret = -ENOMEM;
1057 			break;
1058 		}
1059 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1060 
1061 	if (is_cow)
1062 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1063 	return ret;
1064 }
1065 
1066 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1067 				struct vm_area_struct *vma, pmd_t *pmd,
1068 				unsigned long addr, unsigned long end,
1069 				struct zap_details *details)
1070 {
1071 	struct mm_struct *mm = tlb->mm;
1072 	int force_flush = 0;
1073 	int rss[NR_MM_COUNTERS];
1074 	spinlock_t *ptl;
1075 	pte_t *start_pte;
1076 	pte_t *pte;
1077 
1078 again:
1079 	init_rss_vec(rss);
1080 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1081 	pte = start_pte;
1082 	arch_enter_lazy_mmu_mode();
1083 	do {
1084 		pte_t ptent = *pte;
1085 		if (pte_none(ptent)) {
1086 			continue;
1087 		}
1088 
1089 		if (pte_present(ptent)) {
1090 			struct page *page;
1091 
1092 			page = vm_normal_page(vma, addr, ptent);
1093 			if (unlikely(details) && page) {
1094 				/*
1095 				 * unmap_shared_mapping_pages() wants to
1096 				 * invalidate cache without truncating:
1097 				 * unmap shared but keep private pages.
1098 				 */
1099 				if (details->check_mapping &&
1100 				    details->check_mapping != page->mapping)
1101 					continue;
1102 				/*
1103 				 * Each page->index must be checked when
1104 				 * invalidating or truncating nonlinear.
1105 				 */
1106 				if (details->nonlinear_vma &&
1107 				    (page->index < details->first_index ||
1108 				     page->index > details->last_index))
1109 					continue;
1110 			}
1111 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1112 							tlb->fullmm);
1113 			tlb_remove_tlb_entry(tlb, pte, addr);
1114 			if (unlikely(!page))
1115 				continue;
1116 			if (unlikely(details) && details->nonlinear_vma
1117 			    && linear_page_index(details->nonlinear_vma,
1118 						addr) != page->index) {
1119 				pte_t ptfile = pgoff_to_pte(page->index);
1120 				if (pte_soft_dirty(ptent))
1121 					pte_file_mksoft_dirty(ptfile);
1122 				set_pte_at(mm, addr, pte, ptfile);
1123 			}
1124 			if (PageAnon(page))
1125 				rss[MM_ANONPAGES]--;
1126 			else {
1127 				if (pte_dirty(ptent))
1128 					set_page_dirty(page);
1129 				if (pte_young(ptent) &&
1130 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1131 					mark_page_accessed(page);
1132 				rss[MM_FILEPAGES]--;
1133 			}
1134 			page_remove_rmap(page);
1135 			if (unlikely(page_mapcount(page) < 0))
1136 				print_bad_pte(vma, addr, ptent, page);
1137 			force_flush = !__tlb_remove_page(tlb, page);
1138 			if (force_flush)
1139 				break;
1140 			continue;
1141 		}
1142 		/*
1143 		 * If details->check_mapping, we leave swap entries;
1144 		 * if details->nonlinear_vma, we leave file entries.
1145 		 */
1146 		if (unlikely(details))
1147 			continue;
1148 		if (pte_file(ptent)) {
1149 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1150 				print_bad_pte(vma, addr, ptent, NULL);
1151 		} else {
1152 			swp_entry_t entry = pte_to_swp_entry(ptent);
1153 
1154 			if (!non_swap_entry(entry))
1155 				rss[MM_SWAPENTS]--;
1156 			else if (is_migration_entry(entry)) {
1157 				struct page *page;
1158 
1159 				page = migration_entry_to_page(entry);
1160 
1161 				if (PageAnon(page))
1162 					rss[MM_ANONPAGES]--;
1163 				else
1164 					rss[MM_FILEPAGES]--;
1165 			}
1166 			if (unlikely(!free_swap_and_cache(entry)))
1167 				print_bad_pte(vma, addr, ptent, NULL);
1168 		}
1169 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1170 	} while (pte++, addr += PAGE_SIZE, addr != end);
1171 
1172 	add_mm_rss_vec(mm, rss);
1173 	arch_leave_lazy_mmu_mode();
1174 	pte_unmap_unlock(start_pte, ptl);
1175 
1176 	/*
1177 	 * mmu_gather ran out of room to batch pages, we break out of
1178 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1179 	 * and page-free while holding it.
1180 	 */
1181 	if (force_flush) {
1182 		unsigned long old_end;
1183 
1184 		force_flush = 0;
1185 
1186 		/*
1187 		 * Flush the TLB just for the previous segment,
1188 		 * then update the range to be the remaining
1189 		 * TLB range.
1190 		 */
1191 		old_end = tlb->end;
1192 		tlb->end = addr;
1193 
1194 		tlb_flush_mmu(tlb);
1195 
1196 		tlb->start = addr;
1197 		tlb->end = old_end;
1198 
1199 		if (addr != end)
1200 			goto again;
1201 	}
1202 
1203 	return addr;
1204 }
1205 
1206 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1207 				struct vm_area_struct *vma, pud_t *pud,
1208 				unsigned long addr, unsigned long end,
1209 				struct zap_details *details)
1210 {
1211 	pmd_t *pmd;
1212 	unsigned long next;
1213 
1214 	pmd = pmd_offset(pud, addr);
1215 	do {
1216 		next = pmd_addr_end(addr, end);
1217 		if (pmd_trans_huge(*pmd)) {
1218 			if (next - addr != HPAGE_PMD_SIZE) {
1219 #ifdef CONFIG_DEBUG_VM
1220 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1221 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1222 						__func__, addr, end,
1223 						vma->vm_start,
1224 						vma->vm_end);
1225 					BUG();
1226 				}
1227 #endif
1228 				split_huge_page_pmd(vma, addr, pmd);
1229 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1230 				goto next;
1231 			/* fall through */
1232 		}
1233 		/*
1234 		 * Here there can be other concurrent MADV_DONTNEED or
1235 		 * trans huge page faults running, and if the pmd is
1236 		 * none or trans huge it can change under us. This is
1237 		 * because MADV_DONTNEED holds the mmap_sem in read
1238 		 * mode.
1239 		 */
1240 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1241 			goto next;
1242 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1243 next:
1244 		cond_resched();
1245 	} while (pmd++, addr = next, addr != end);
1246 
1247 	return addr;
1248 }
1249 
1250 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1251 				struct vm_area_struct *vma, pgd_t *pgd,
1252 				unsigned long addr, unsigned long end,
1253 				struct zap_details *details)
1254 {
1255 	pud_t *pud;
1256 	unsigned long next;
1257 
1258 	pud = pud_offset(pgd, addr);
1259 	do {
1260 		next = pud_addr_end(addr, end);
1261 		if (pud_none_or_clear_bad(pud))
1262 			continue;
1263 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1264 	} while (pud++, addr = next, addr != end);
1265 
1266 	return addr;
1267 }
1268 
1269 static void unmap_page_range(struct mmu_gather *tlb,
1270 			     struct vm_area_struct *vma,
1271 			     unsigned long addr, unsigned long end,
1272 			     struct zap_details *details)
1273 {
1274 	pgd_t *pgd;
1275 	unsigned long next;
1276 
1277 	if (details && !details->check_mapping && !details->nonlinear_vma)
1278 		details = NULL;
1279 
1280 	BUG_ON(addr >= end);
1281 	mem_cgroup_uncharge_start();
1282 	tlb_start_vma(tlb, vma);
1283 	pgd = pgd_offset(vma->vm_mm, addr);
1284 	do {
1285 		next = pgd_addr_end(addr, end);
1286 		if (pgd_none_or_clear_bad(pgd))
1287 			continue;
1288 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1289 	} while (pgd++, addr = next, addr != end);
1290 	tlb_end_vma(tlb, vma);
1291 	mem_cgroup_uncharge_end();
1292 }
1293 
1294 
1295 static void unmap_single_vma(struct mmu_gather *tlb,
1296 		struct vm_area_struct *vma, unsigned long start_addr,
1297 		unsigned long end_addr,
1298 		struct zap_details *details)
1299 {
1300 	unsigned long start = max(vma->vm_start, start_addr);
1301 	unsigned long end;
1302 
1303 	if (start >= vma->vm_end)
1304 		return;
1305 	end = min(vma->vm_end, end_addr);
1306 	if (end <= vma->vm_start)
1307 		return;
1308 
1309 	if (vma->vm_file)
1310 		uprobe_munmap(vma, start, end);
1311 
1312 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1313 		untrack_pfn(vma, 0, 0);
1314 
1315 	if (start != end) {
1316 		if (unlikely(is_vm_hugetlb_page(vma))) {
1317 			/*
1318 			 * It is undesirable to test vma->vm_file as it
1319 			 * should be non-null for valid hugetlb area.
1320 			 * However, vm_file will be NULL in the error
1321 			 * cleanup path of do_mmap_pgoff. When
1322 			 * hugetlbfs ->mmap method fails,
1323 			 * do_mmap_pgoff() nullifies vma->vm_file
1324 			 * before calling this function to clean up.
1325 			 * Since no pte has actually been setup, it is
1326 			 * safe to do nothing in this case.
1327 			 */
1328 			if (vma->vm_file) {
1329 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1330 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1331 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1332 			}
1333 		} else
1334 			unmap_page_range(tlb, vma, start, end, details);
1335 	}
1336 }
1337 
1338 /**
1339  * unmap_vmas - unmap a range of memory covered by a list of vma's
1340  * @tlb: address of the caller's struct mmu_gather
1341  * @vma: the starting vma
1342  * @start_addr: virtual address at which to start unmapping
1343  * @end_addr: virtual address at which to end unmapping
1344  *
1345  * Unmap all pages in the vma list.
1346  *
1347  * Only addresses between `start' and `end' will be unmapped.
1348  *
1349  * The VMA list must be sorted in ascending virtual address order.
1350  *
1351  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1352  * range after unmap_vmas() returns.  So the only responsibility here is to
1353  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1354  * drops the lock and schedules.
1355  */
1356 void unmap_vmas(struct mmu_gather *tlb,
1357 		struct vm_area_struct *vma, unsigned long start_addr,
1358 		unsigned long end_addr)
1359 {
1360 	struct mm_struct *mm = vma->vm_mm;
1361 
1362 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1363 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1364 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1365 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1366 }
1367 
1368 /**
1369  * zap_page_range - remove user pages in a given range
1370  * @vma: vm_area_struct holding the applicable pages
1371  * @start: starting address of pages to zap
1372  * @size: number of bytes to zap
1373  * @details: details of nonlinear truncation or shared cache invalidation
1374  *
1375  * Caller must protect the VMA list
1376  */
1377 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1378 		unsigned long size, struct zap_details *details)
1379 {
1380 	struct mm_struct *mm = vma->vm_mm;
1381 	struct mmu_gather tlb;
1382 	unsigned long end = start + size;
1383 
1384 	lru_add_drain();
1385 	tlb_gather_mmu(&tlb, mm, start, end);
1386 	update_hiwater_rss(mm);
1387 	mmu_notifier_invalidate_range_start(mm, start, end);
1388 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1389 		unmap_single_vma(&tlb, vma, start, end, details);
1390 	mmu_notifier_invalidate_range_end(mm, start, end);
1391 	tlb_finish_mmu(&tlb, start, end);
1392 }
1393 
1394 /**
1395  * zap_page_range_single - remove user pages in a given range
1396  * @vma: vm_area_struct holding the applicable pages
1397  * @address: starting address of pages to zap
1398  * @size: number of bytes to zap
1399  * @details: details of nonlinear truncation or shared cache invalidation
1400  *
1401  * The range must fit into one VMA.
1402  */
1403 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1404 		unsigned long size, struct zap_details *details)
1405 {
1406 	struct mm_struct *mm = vma->vm_mm;
1407 	struct mmu_gather tlb;
1408 	unsigned long end = address + size;
1409 
1410 	lru_add_drain();
1411 	tlb_gather_mmu(&tlb, mm, address, end);
1412 	update_hiwater_rss(mm);
1413 	mmu_notifier_invalidate_range_start(mm, address, end);
1414 	unmap_single_vma(&tlb, vma, address, end, details);
1415 	mmu_notifier_invalidate_range_end(mm, address, end);
1416 	tlb_finish_mmu(&tlb, address, end);
1417 }
1418 
1419 /**
1420  * zap_vma_ptes - remove ptes mapping the vma
1421  * @vma: vm_area_struct holding ptes to be zapped
1422  * @address: starting address of pages to zap
1423  * @size: number of bytes to zap
1424  *
1425  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1426  *
1427  * The entire address range must be fully contained within the vma.
1428  *
1429  * Returns 0 if successful.
1430  */
1431 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1432 		unsigned long size)
1433 {
1434 	if (address < vma->vm_start || address + size > vma->vm_end ||
1435 	    		!(vma->vm_flags & VM_PFNMAP))
1436 		return -1;
1437 	zap_page_range_single(vma, address, size, NULL);
1438 	return 0;
1439 }
1440 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1441 
1442 /**
1443  * follow_page_mask - look up a page descriptor from a user-virtual address
1444  * @vma: vm_area_struct mapping @address
1445  * @address: virtual address to look up
1446  * @flags: flags modifying lookup behaviour
1447  * @page_mask: on output, *page_mask is set according to the size of the page
1448  *
1449  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1450  *
1451  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1452  * an error pointer if there is a mapping to something not represented
1453  * by a page descriptor (see also vm_normal_page()).
1454  */
1455 struct page *follow_page_mask(struct vm_area_struct *vma,
1456 			      unsigned long address, unsigned int flags,
1457 			      unsigned int *page_mask)
1458 {
1459 	pgd_t *pgd;
1460 	pud_t *pud;
1461 	pmd_t *pmd;
1462 	pte_t *ptep, pte;
1463 	spinlock_t *ptl;
1464 	struct page *page;
1465 	struct mm_struct *mm = vma->vm_mm;
1466 
1467 	*page_mask = 0;
1468 
1469 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1470 	if (!IS_ERR(page)) {
1471 		BUG_ON(flags & FOLL_GET);
1472 		goto out;
1473 	}
1474 
1475 	page = NULL;
1476 	pgd = pgd_offset(mm, address);
1477 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1478 		goto no_page_table;
1479 
1480 	pud = pud_offset(pgd, address);
1481 	if (pud_none(*pud))
1482 		goto no_page_table;
1483 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1484 		if (flags & FOLL_GET)
1485 			goto out;
1486 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1487 		goto out;
1488 	}
1489 	if (unlikely(pud_bad(*pud)))
1490 		goto no_page_table;
1491 
1492 	pmd = pmd_offset(pud, address);
1493 	if (pmd_none(*pmd))
1494 		goto no_page_table;
1495 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1496 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1497 		if (flags & FOLL_GET) {
1498 			/*
1499 			 * Refcount on tail pages are not well-defined and
1500 			 * shouldn't be taken. The caller should handle a NULL
1501 			 * return when trying to follow tail pages.
1502 			 */
1503 			if (PageHead(page))
1504 				get_page(page);
1505 			else {
1506 				page = NULL;
1507 				goto out;
1508 			}
1509 		}
1510 		goto out;
1511 	}
1512 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1513 		goto no_page_table;
1514 	if (pmd_trans_huge(*pmd)) {
1515 		if (flags & FOLL_SPLIT) {
1516 			split_huge_page_pmd(vma, address, pmd);
1517 			goto split_fallthrough;
1518 		}
1519 		spin_lock(&mm->page_table_lock);
1520 		if (likely(pmd_trans_huge(*pmd))) {
1521 			if (unlikely(pmd_trans_splitting(*pmd))) {
1522 				spin_unlock(&mm->page_table_lock);
1523 				wait_split_huge_page(vma->anon_vma, pmd);
1524 			} else {
1525 				page = follow_trans_huge_pmd(vma, address,
1526 							     pmd, flags);
1527 				spin_unlock(&mm->page_table_lock);
1528 				*page_mask = HPAGE_PMD_NR - 1;
1529 				goto out;
1530 			}
1531 		} else
1532 			spin_unlock(&mm->page_table_lock);
1533 		/* fall through */
1534 	}
1535 split_fallthrough:
1536 	if (unlikely(pmd_bad(*pmd)))
1537 		goto no_page_table;
1538 
1539 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1540 
1541 	pte = *ptep;
1542 	if (!pte_present(pte)) {
1543 		swp_entry_t entry;
1544 		/*
1545 		 * KSM's break_ksm() relies upon recognizing a ksm page
1546 		 * even while it is being migrated, so for that case we
1547 		 * need migration_entry_wait().
1548 		 */
1549 		if (likely(!(flags & FOLL_MIGRATION)))
1550 			goto no_page;
1551 		if (pte_none(pte) || pte_file(pte))
1552 			goto no_page;
1553 		entry = pte_to_swp_entry(pte);
1554 		if (!is_migration_entry(entry))
1555 			goto no_page;
1556 		pte_unmap_unlock(ptep, ptl);
1557 		migration_entry_wait(mm, pmd, address);
1558 		goto split_fallthrough;
1559 	}
1560 	if ((flags & FOLL_NUMA) && pte_numa(pte))
1561 		goto no_page;
1562 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1563 		goto unlock;
1564 
1565 	page = vm_normal_page(vma, address, pte);
1566 	if (unlikely(!page)) {
1567 		if ((flags & FOLL_DUMP) ||
1568 		    !is_zero_pfn(pte_pfn(pte)))
1569 			goto bad_page;
1570 		page = pte_page(pte);
1571 	}
1572 
1573 	if (flags & FOLL_GET)
1574 		get_page_foll(page);
1575 	if (flags & FOLL_TOUCH) {
1576 		if ((flags & FOLL_WRITE) &&
1577 		    !pte_dirty(pte) && !PageDirty(page))
1578 			set_page_dirty(page);
1579 		/*
1580 		 * pte_mkyoung() would be more correct here, but atomic care
1581 		 * is needed to avoid losing the dirty bit: it is easier to use
1582 		 * mark_page_accessed().
1583 		 */
1584 		mark_page_accessed(page);
1585 	}
1586 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1587 		/*
1588 		 * The preliminary mapping check is mainly to avoid the
1589 		 * pointless overhead of lock_page on the ZERO_PAGE
1590 		 * which might bounce very badly if there is contention.
1591 		 *
1592 		 * If the page is already locked, we don't need to
1593 		 * handle it now - vmscan will handle it later if and
1594 		 * when it attempts to reclaim the page.
1595 		 */
1596 		if (page->mapping && trylock_page(page)) {
1597 			lru_add_drain();  /* push cached pages to LRU */
1598 			/*
1599 			 * Because we lock page here, and migration is
1600 			 * blocked by the pte's page reference, and we
1601 			 * know the page is still mapped, we don't even
1602 			 * need to check for file-cache page truncation.
1603 			 */
1604 			mlock_vma_page(page);
1605 			unlock_page(page);
1606 		}
1607 	}
1608 unlock:
1609 	pte_unmap_unlock(ptep, ptl);
1610 out:
1611 	return page;
1612 
1613 bad_page:
1614 	pte_unmap_unlock(ptep, ptl);
1615 	return ERR_PTR(-EFAULT);
1616 
1617 no_page:
1618 	pte_unmap_unlock(ptep, ptl);
1619 	if (!pte_none(pte))
1620 		return page;
1621 
1622 no_page_table:
1623 	/*
1624 	 * When core dumping an enormous anonymous area that nobody
1625 	 * has touched so far, we don't want to allocate unnecessary pages or
1626 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1627 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1628 	 * But we can only make this optimization where a hole would surely
1629 	 * be zero-filled if handle_mm_fault() actually did handle it.
1630 	 */
1631 	if ((flags & FOLL_DUMP) &&
1632 	    (!vma->vm_ops || !vma->vm_ops->fault))
1633 		return ERR_PTR(-EFAULT);
1634 	return page;
1635 }
1636 
1637 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1638 {
1639 	return stack_guard_page_start(vma, addr) ||
1640 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1641 }
1642 
1643 /**
1644  * __get_user_pages() - pin user pages in memory
1645  * @tsk:	task_struct of target task
1646  * @mm:		mm_struct of target mm
1647  * @start:	starting user address
1648  * @nr_pages:	number of pages from start to pin
1649  * @gup_flags:	flags modifying pin behaviour
1650  * @pages:	array that receives pointers to the pages pinned.
1651  *		Should be at least nr_pages long. Or NULL, if caller
1652  *		only intends to ensure the pages are faulted in.
1653  * @vmas:	array of pointers to vmas corresponding to each page.
1654  *		Or NULL if the caller does not require them.
1655  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1656  *
1657  * Returns number of pages pinned. This may be fewer than the number
1658  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1659  * were pinned, returns -errno. Each page returned must be released
1660  * with a put_page() call when it is finished with. vmas will only
1661  * remain valid while mmap_sem is held.
1662  *
1663  * Must be called with mmap_sem held for read or write.
1664  *
1665  * __get_user_pages walks a process's page tables and takes a reference to
1666  * each struct page that each user address corresponds to at a given
1667  * instant. That is, it takes the page that would be accessed if a user
1668  * thread accesses the given user virtual address at that instant.
1669  *
1670  * This does not guarantee that the page exists in the user mappings when
1671  * __get_user_pages returns, and there may even be a completely different
1672  * page there in some cases (eg. if mmapped pagecache has been invalidated
1673  * and subsequently re faulted). However it does guarantee that the page
1674  * won't be freed completely. And mostly callers simply care that the page
1675  * contains data that was valid *at some point in time*. Typically, an IO
1676  * or similar operation cannot guarantee anything stronger anyway because
1677  * locks can't be held over the syscall boundary.
1678  *
1679  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1680  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1681  * appropriate) must be called after the page is finished with, and
1682  * before put_page is called.
1683  *
1684  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1685  * or mmap_sem contention, and if waiting is needed to pin all pages,
1686  * *@nonblocking will be set to 0.
1687  *
1688  * In most cases, get_user_pages or get_user_pages_fast should be used
1689  * instead of __get_user_pages. __get_user_pages should be used only if
1690  * you need some special @gup_flags.
1691  */
1692 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1693 		unsigned long start, unsigned long nr_pages,
1694 		unsigned int gup_flags, struct page **pages,
1695 		struct vm_area_struct **vmas, int *nonblocking)
1696 {
1697 	long i;
1698 	unsigned long vm_flags;
1699 	unsigned int page_mask;
1700 
1701 	if (!nr_pages)
1702 		return 0;
1703 
1704 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1705 
1706 	/*
1707 	 * Require read or write permissions.
1708 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1709 	 */
1710 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1711 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1712 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1713 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1714 
1715 	/*
1716 	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1717 	 * would be called on PROT_NONE ranges. We must never invoke
1718 	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1719 	 * page faults would unprotect the PROT_NONE ranges if
1720 	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1721 	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1722 	 * FOLL_FORCE is set.
1723 	 */
1724 	if (!(gup_flags & FOLL_FORCE))
1725 		gup_flags |= FOLL_NUMA;
1726 
1727 	i = 0;
1728 
1729 	do {
1730 		struct vm_area_struct *vma;
1731 
1732 		vma = find_extend_vma(mm, start);
1733 		if (!vma && in_gate_area(mm, start)) {
1734 			unsigned long pg = start & PAGE_MASK;
1735 			pgd_t *pgd;
1736 			pud_t *pud;
1737 			pmd_t *pmd;
1738 			pte_t *pte;
1739 
1740 			/* user gate pages are read-only */
1741 			if (gup_flags & FOLL_WRITE)
1742 				return i ? : -EFAULT;
1743 			if (pg > TASK_SIZE)
1744 				pgd = pgd_offset_k(pg);
1745 			else
1746 				pgd = pgd_offset_gate(mm, pg);
1747 			BUG_ON(pgd_none(*pgd));
1748 			pud = pud_offset(pgd, pg);
1749 			BUG_ON(pud_none(*pud));
1750 			pmd = pmd_offset(pud, pg);
1751 			if (pmd_none(*pmd))
1752 				return i ? : -EFAULT;
1753 			VM_BUG_ON(pmd_trans_huge(*pmd));
1754 			pte = pte_offset_map(pmd, pg);
1755 			if (pte_none(*pte)) {
1756 				pte_unmap(pte);
1757 				return i ? : -EFAULT;
1758 			}
1759 			vma = get_gate_vma(mm);
1760 			if (pages) {
1761 				struct page *page;
1762 
1763 				page = vm_normal_page(vma, start, *pte);
1764 				if (!page) {
1765 					if (!(gup_flags & FOLL_DUMP) &&
1766 					     is_zero_pfn(pte_pfn(*pte)))
1767 						page = pte_page(*pte);
1768 					else {
1769 						pte_unmap(pte);
1770 						return i ? : -EFAULT;
1771 					}
1772 				}
1773 				pages[i] = page;
1774 				get_page(page);
1775 			}
1776 			pte_unmap(pte);
1777 			page_mask = 0;
1778 			goto next_page;
1779 		}
1780 
1781 		if (!vma ||
1782 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1783 		    !(vm_flags & vma->vm_flags))
1784 			return i ? : -EFAULT;
1785 
1786 		if (is_vm_hugetlb_page(vma)) {
1787 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1788 					&start, &nr_pages, i, gup_flags);
1789 			continue;
1790 		}
1791 
1792 		do {
1793 			struct page *page;
1794 			unsigned int foll_flags = gup_flags;
1795 			unsigned int page_increm;
1796 
1797 			/*
1798 			 * If we have a pending SIGKILL, don't keep faulting
1799 			 * pages and potentially allocating memory.
1800 			 */
1801 			if (unlikely(fatal_signal_pending(current)))
1802 				return i ? i : -ERESTARTSYS;
1803 
1804 			cond_resched();
1805 			while (!(page = follow_page_mask(vma, start,
1806 						foll_flags, &page_mask))) {
1807 				int ret;
1808 				unsigned int fault_flags = 0;
1809 
1810 				/* For mlock, just skip the stack guard page. */
1811 				if (foll_flags & FOLL_MLOCK) {
1812 					if (stack_guard_page(vma, start))
1813 						goto next_page;
1814 				}
1815 				if (foll_flags & FOLL_WRITE)
1816 					fault_flags |= FAULT_FLAG_WRITE;
1817 				if (nonblocking)
1818 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1819 				if (foll_flags & FOLL_NOWAIT)
1820 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1821 
1822 				ret = handle_mm_fault(mm, vma, start,
1823 							fault_flags);
1824 
1825 				if (ret & VM_FAULT_ERROR) {
1826 					if (ret & VM_FAULT_OOM)
1827 						return i ? i : -ENOMEM;
1828 					if (ret & (VM_FAULT_HWPOISON |
1829 						   VM_FAULT_HWPOISON_LARGE)) {
1830 						if (i)
1831 							return i;
1832 						else if (gup_flags & FOLL_HWPOISON)
1833 							return -EHWPOISON;
1834 						else
1835 							return -EFAULT;
1836 					}
1837 					if (ret & VM_FAULT_SIGBUS)
1838 						return i ? i : -EFAULT;
1839 					BUG();
1840 				}
1841 
1842 				if (tsk) {
1843 					if (ret & VM_FAULT_MAJOR)
1844 						tsk->maj_flt++;
1845 					else
1846 						tsk->min_flt++;
1847 				}
1848 
1849 				if (ret & VM_FAULT_RETRY) {
1850 					if (nonblocking)
1851 						*nonblocking = 0;
1852 					return i;
1853 				}
1854 
1855 				/*
1856 				 * The VM_FAULT_WRITE bit tells us that
1857 				 * do_wp_page has broken COW when necessary,
1858 				 * even if maybe_mkwrite decided not to set
1859 				 * pte_write. We can thus safely do subsequent
1860 				 * page lookups as if they were reads. But only
1861 				 * do so when looping for pte_write is futile:
1862 				 * in some cases userspace may also be wanting
1863 				 * to write to the gotten user page, which a
1864 				 * read fault here might prevent (a readonly
1865 				 * page might get reCOWed by userspace write).
1866 				 */
1867 				if ((ret & VM_FAULT_WRITE) &&
1868 				    !(vma->vm_flags & VM_WRITE))
1869 					foll_flags &= ~FOLL_WRITE;
1870 
1871 				cond_resched();
1872 			}
1873 			if (IS_ERR(page))
1874 				return i ? i : PTR_ERR(page);
1875 			if (pages) {
1876 				pages[i] = page;
1877 
1878 				flush_anon_page(vma, page, start);
1879 				flush_dcache_page(page);
1880 				page_mask = 0;
1881 			}
1882 next_page:
1883 			if (vmas) {
1884 				vmas[i] = vma;
1885 				page_mask = 0;
1886 			}
1887 			page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1888 			if (page_increm > nr_pages)
1889 				page_increm = nr_pages;
1890 			i += page_increm;
1891 			start += page_increm * PAGE_SIZE;
1892 			nr_pages -= page_increm;
1893 		} while (nr_pages && start < vma->vm_end);
1894 	} while (nr_pages);
1895 	return i;
1896 }
1897 EXPORT_SYMBOL(__get_user_pages);
1898 
1899 /*
1900  * fixup_user_fault() - manually resolve a user page fault
1901  * @tsk:	the task_struct to use for page fault accounting, or
1902  *		NULL if faults are not to be recorded.
1903  * @mm:		mm_struct of target mm
1904  * @address:	user address
1905  * @fault_flags:flags to pass down to handle_mm_fault()
1906  *
1907  * This is meant to be called in the specific scenario where for locking reasons
1908  * we try to access user memory in atomic context (within a pagefault_disable()
1909  * section), this returns -EFAULT, and we want to resolve the user fault before
1910  * trying again.
1911  *
1912  * Typically this is meant to be used by the futex code.
1913  *
1914  * The main difference with get_user_pages() is that this function will
1915  * unconditionally call handle_mm_fault() which will in turn perform all the
1916  * necessary SW fixup of the dirty and young bits in the PTE, while
1917  * handle_mm_fault() only guarantees to update these in the struct page.
1918  *
1919  * This is important for some architectures where those bits also gate the
1920  * access permission to the page because they are maintained in software.  On
1921  * such architectures, gup() will not be enough to make a subsequent access
1922  * succeed.
1923  *
1924  * This should be called with the mm_sem held for read.
1925  */
1926 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1927 		     unsigned long address, unsigned int fault_flags)
1928 {
1929 	struct vm_area_struct *vma;
1930 	int ret;
1931 
1932 	vma = find_extend_vma(mm, address);
1933 	if (!vma || address < vma->vm_start)
1934 		return -EFAULT;
1935 
1936 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1937 	if (ret & VM_FAULT_ERROR) {
1938 		if (ret & VM_FAULT_OOM)
1939 			return -ENOMEM;
1940 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1941 			return -EHWPOISON;
1942 		if (ret & VM_FAULT_SIGBUS)
1943 			return -EFAULT;
1944 		BUG();
1945 	}
1946 	if (tsk) {
1947 		if (ret & VM_FAULT_MAJOR)
1948 			tsk->maj_flt++;
1949 		else
1950 			tsk->min_flt++;
1951 	}
1952 	return 0;
1953 }
1954 
1955 /*
1956  * get_user_pages() - pin user pages in memory
1957  * @tsk:	the task_struct to use for page fault accounting, or
1958  *		NULL if faults are not to be recorded.
1959  * @mm:		mm_struct of target mm
1960  * @start:	starting user address
1961  * @nr_pages:	number of pages from start to pin
1962  * @write:	whether pages will be written to by the caller
1963  * @force:	whether to force write access even if user mapping is
1964  *		readonly. This will result in the page being COWed even
1965  *		in MAP_SHARED mappings. You do not want this.
1966  * @pages:	array that receives pointers to the pages pinned.
1967  *		Should be at least nr_pages long. Or NULL, if caller
1968  *		only intends to ensure the pages are faulted in.
1969  * @vmas:	array of pointers to vmas corresponding to each page.
1970  *		Or NULL if the caller does not require them.
1971  *
1972  * Returns number of pages pinned. This may be fewer than the number
1973  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1974  * were pinned, returns -errno. Each page returned must be released
1975  * with a put_page() call when it is finished with. vmas will only
1976  * remain valid while mmap_sem is held.
1977  *
1978  * Must be called with mmap_sem held for read or write.
1979  *
1980  * get_user_pages walks a process's page tables and takes a reference to
1981  * each struct page that each user address corresponds to at a given
1982  * instant. That is, it takes the page that would be accessed if a user
1983  * thread accesses the given user virtual address at that instant.
1984  *
1985  * This does not guarantee that the page exists in the user mappings when
1986  * get_user_pages returns, and there may even be a completely different
1987  * page there in some cases (eg. if mmapped pagecache has been invalidated
1988  * and subsequently re faulted). However it does guarantee that the page
1989  * won't be freed completely. And mostly callers simply care that the page
1990  * contains data that was valid *at some point in time*. Typically, an IO
1991  * or similar operation cannot guarantee anything stronger anyway because
1992  * locks can't be held over the syscall boundary.
1993  *
1994  * If write=0, the page must not be written to. If the page is written to,
1995  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1996  * after the page is finished with, and before put_page is called.
1997  *
1998  * get_user_pages is typically used for fewer-copy IO operations, to get a
1999  * handle on the memory by some means other than accesses via the user virtual
2000  * addresses. The pages may be submitted for DMA to devices or accessed via
2001  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2002  * use the correct cache flushing APIs.
2003  *
2004  * See also get_user_pages_fast, for performance critical applications.
2005  */
2006 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2007 		unsigned long start, unsigned long nr_pages, int write,
2008 		int force, struct page **pages, struct vm_area_struct **vmas)
2009 {
2010 	int flags = FOLL_TOUCH;
2011 
2012 	if (pages)
2013 		flags |= FOLL_GET;
2014 	if (write)
2015 		flags |= FOLL_WRITE;
2016 	if (force)
2017 		flags |= FOLL_FORCE;
2018 
2019 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2020 				NULL);
2021 }
2022 EXPORT_SYMBOL(get_user_pages);
2023 
2024 /**
2025  * get_dump_page() - pin user page in memory while writing it to core dump
2026  * @addr: user address
2027  *
2028  * Returns struct page pointer of user page pinned for dump,
2029  * to be freed afterwards by page_cache_release() or put_page().
2030  *
2031  * Returns NULL on any kind of failure - a hole must then be inserted into
2032  * the corefile, to preserve alignment with its headers; and also returns
2033  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2034  * allowing a hole to be left in the corefile to save diskspace.
2035  *
2036  * Called without mmap_sem, but after all other threads have been killed.
2037  */
2038 #ifdef CONFIG_ELF_CORE
2039 struct page *get_dump_page(unsigned long addr)
2040 {
2041 	struct vm_area_struct *vma;
2042 	struct page *page;
2043 
2044 	if (__get_user_pages(current, current->mm, addr, 1,
2045 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2046 			     NULL) < 1)
2047 		return NULL;
2048 	flush_cache_page(vma, addr, page_to_pfn(page));
2049 	return page;
2050 }
2051 #endif /* CONFIG_ELF_CORE */
2052 
2053 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2054 			spinlock_t **ptl)
2055 {
2056 	pgd_t * pgd = pgd_offset(mm, addr);
2057 	pud_t * pud = pud_alloc(mm, pgd, addr);
2058 	if (pud) {
2059 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2060 		if (pmd) {
2061 			VM_BUG_ON(pmd_trans_huge(*pmd));
2062 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2063 		}
2064 	}
2065 	return NULL;
2066 }
2067 
2068 /*
2069  * This is the old fallback for page remapping.
2070  *
2071  * For historical reasons, it only allows reserved pages. Only
2072  * old drivers should use this, and they needed to mark their
2073  * pages reserved for the old functions anyway.
2074  */
2075 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2076 			struct page *page, pgprot_t prot)
2077 {
2078 	struct mm_struct *mm = vma->vm_mm;
2079 	int retval;
2080 	pte_t *pte;
2081 	spinlock_t *ptl;
2082 
2083 	retval = -EINVAL;
2084 	if (PageAnon(page))
2085 		goto out;
2086 	retval = -ENOMEM;
2087 	flush_dcache_page(page);
2088 	pte = get_locked_pte(mm, addr, &ptl);
2089 	if (!pte)
2090 		goto out;
2091 	retval = -EBUSY;
2092 	if (!pte_none(*pte))
2093 		goto out_unlock;
2094 
2095 	/* Ok, finally just insert the thing.. */
2096 	get_page(page);
2097 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2098 	page_add_file_rmap(page);
2099 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2100 
2101 	retval = 0;
2102 	pte_unmap_unlock(pte, ptl);
2103 	return retval;
2104 out_unlock:
2105 	pte_unmap_unlock(pte, ptl);
2106 out:
2107 	return retval;
2108 }
2109 
2110 /**
2111  * vm_insert_page - insert single page into user vma
2112  * @vma: user vma to map to
2113  * @addr: target user address of this page
2114  * @page: source kernel page
2115  *
2116  * This allows drivers to insert individual pages they've allocated
2117  * into a user vma.
2118  *
2119  * The page has to be a nice clean _individual_ kernel allocation.
2120  * If you allocate a compound page, you need to have marked it as
2121  * such (__GFP_COMP), or manually just split the page up yourself
2122  * (see split_page()).
2123  *
2124  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2125  * took an arbitrary page protection parameter. This doesn't allow
2126  * that. Your vma protection will have to be set up correctly, which
2127  * means that if you want a shared writable mapping, you'd better
2128  * ask for a shared writable mapping!
2129  *
2130  * The page does not need to be reserved.
2131  *
2132  * Usually this function is called from f_op->mmap() handler
2133  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2134  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2135  * function from other places, for example from page-fault handler.
2136  */
2137 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2138 			struct page *page)
2139 {
2140 	if (addr < vma->vm_start || addr >= vma->vm_end)
2141 		return -EFAULT;
2142 	if (!page_count(page))
2143 		return -EINVAL;
2144 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2145 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2146 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2147 		vma->vm_flags |= VM_MIXEDMAP;
2148 	}
2149 	return insert_page(vma, addr, page, vma->vm_page_prot);
2150 }
2151 EXPORT_SYMBOL(vm_insert_page);
2152 
2153 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2154 			unsigned long pfn, pgprot_t prot)
2155 {
2156 	struct mm_struct *mm = vma->vm_mm;
2157 	int retval;
2158 	pte_t *pte, entry;
2159 	spinlock_t *ptl;
2160 
2161 	retval = -ENOMEM;
2162 	pte = get_locked_pte(mm, addr, &ptl);
2163 	if (!pte)
2164 		goto out;
2165 	retval = -EBUSY;
2166 	if (!pte_none(*pte))
2167 		goto out_unlock;
2168 
2169 	/* Ok, finally just insert the thing.. */
2170 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2171 	set_pte_at(mm, addr, pte, entry);
2172 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2173 
2174 	retval = 0;
2175 out_unlock:
2176 	pte_unmap_unlock(pte, ptl);
2177 out:
2178 	return retval;
2179 }
2180 
2181 /**
2182  * vm_insert_pfn - insert single pfn into user vma
2183  * @vma: user vma to map to
2184  * @addr: target user address of this page
2185  * @pfn: source kernel pfn
2186  *
2187  * Similar to vm_insert_page, this allows drivers to insert individual pages
2188  * they've allocated into a user vma. Same comments apply.
2189  *
2190  * This function should only be called from a vm_ops->fault handler, and
2191  * in that case the handler should return NULL.
2192  *
2193  * vma cannot be a COW mapping.
2194  *
2195  * As this is called only for pages that do not currently exist, we
2196  * do not need to flush old virtual caches or the TLB.
2197  */
2198 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2199 			unsigned long pfn)
2200 {
2201 	int ret;
2202 	pgprot_t pgprot = vma->vm_page_prot;
2203 	/*
2204 	 * Technically, architectures with pte_special can avoid all these
2205 	 * restrictions (same for remap_pfn_range).  However we would like
2206 	 * consistency in testing and feature parity among all, so we should
2207 	 * try to keep these invariants in place for everybody.
2208 	 */
2209 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2210 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2211 						(VM_PFNMAP|VM_MIXEDMAP));
2212 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2213 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2214 
2215 	if (addr < vma->vm_start || addr >= vma->vm_end)
2216 		return -EFAULT;
2217 	if (track_pfn_insert(vma, &pgprot, pfn))
2218 		return -EINVAL;
2219 
2220 	ret = insert_pfn(vma, addr, pfn, pgprot);
2221 
2222 	return ret;
2223 }
2224 EXPORT_SYMBOL(vm_insert_pfn);
2225 
2226 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2227 			unsigned long pfn)
2228 {
2229 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2230 
2231 	if (addr < vma->vm_start || addr >= vma->vm_end)
2232 		return -EFAULT;
2233 
2234 	/*
2235 	 * If we don't have pte special, then we have to use the pfn_valid()
2236 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2237 	 * refcount the page if pfn_valid is true (hence insert_page rather
2238 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2239 	 * without pte special, it would there be refcounted as a normal page.
2240 	 */
2241 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2242 		struct page *page;
2243 
2244 		page = pfn_to_page(pfn);
2245 		return insert_page(vma, addr, page, vma->vm_page_prot);
2246 	}
2247 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2248 }
2249 EXPORT_SYMBOL(vm_insert_mixed);
2250 
2251 /*
2252  * maps a range of physical memory into the requested pages. the old
2253  * mappings are removed. any references to nonexistent pages results
2254  * in null mappings (currently treated as "copy-on-access")
2255  */
2256 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2257 			unsigned long addr, unsigned long end,
2258 			unsigned long pfn, pgprot_t prot)
2259 {
2260 	pte_t *pte;
2261 	spinlock_t *ptl;
2262 
2263 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2264 	if (!pte)
2265 		return -ENOMEM;
2266 	arch_enter_lazy_mmu_mode();
2267 	do {
2268 		BUG_ON(!pte_none(*pte));
2269 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2270 		pfn++;
2271 	} while (pte++, addr += PAGE_SIZE, addr != end);
2272 	arch_leave_lazy_mmu_mode();
2273 	pte_unmap_unlock(pte - 1, ptl);
2274 	return 0;
2275 }
2276 
2277 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2278 			unsigned long addr, unsigned long end,
2279 			unsigned long pfn, pgprot_t prot)
2280 {
2281 	pmd_t *pmd;
2282 	unsigned long next;
2283 
2284 	pfn -= addr >> PAGE_SHIFT;
2285 	pmd = pmd_alloc(mm, pud, addr);
2286 	if (!pmd)
2287 		return -ENOMEM;
2288 	VM_BUG_ON(pmd_trans_huge(*pmd));
2289 	do {
2290 		next = pmd_addr_end(addr, end);
2291 		if (remap_pte_range(mm, pmd, addr, next,
2292 				pfn + (addr >> PAGE_SHIFT), prot))
2293 			return -ENOMEM;
2294 	} while (pmd++, addr = next, addr != end);
2295 	return 0;
2296 }
2297 
2298 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2299 			unsigned long addr, unsigned long end,
2300 			unsigned long pfn, pgprot_t prot)
2301 {
2302 	pud_t *pud;
2303 	unsigned long next;
2304 
2305 	pfn -= addr >> PAGE_SHIFT;
2306 	pud = pud_alloc(mm, pgd, addr);
2307 	if (!pud)
2308 		return -ENOMEM;
2309 	do {
2310 		next = pud_addr_end(addr, end);
2311 		if (remap_pmd_range(mm, pud, addr, next,
2312 				pfn + (addr >> PAGE_SHIFT), prot))
2313 			return -ENOMEM;
2314 	} while (pud++, addr = next, addr != end);
2315 	return 0;
2316 }
2317 
2318 /**
2319  * remap_pfn_range - remap kernel memory to userspace
2320  * @vma: user vma to map to
2321  * @addr: target user address to start at
2322  * @pfn: physical address of kernel memory
2323  * @size: size of map area
2324  * @prot: page protection flags for this mapping
2325  *
2326  *  Note: this is only safe if the mm semaphore is held when called.
2327  */
2328 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2329 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2330 {
2331 	pgd_t *pgd;
2332 	unsigned long next;
2333 	unsigned long end = addr + PAGE_ALIGN(size);
2334 	struct mm_struct *mm = vma->vm_mm;
2335 	int err;
2336 
2337 	/*
2338 	 * Physically remapped pages are special. Tell the
2339 	 * rest of the world about it:
2340 	 *   VM_IO tells people not to look at these pages
2341 	 *	(accesses can have side effects).
2342 	 *   VM_PFNMAP tells the core MM that the base pages are just
2343 	 *	raw PFN mappings, and do not have a "struct page" associated
2344 	 *	with them.
2345 	 *   VM_DONTEXPAND
2346 	 *      Disable vma merging and expanding with mremap().
2347 	 *   VM_DONTDUMP
2348 	 *      Omit vma from core dump, even when VM_IO turned off.
2349 	 *
2350 	 * There's a horrible special case to handle copy-on-write
2351 	 * behaviour that some programs depend on. We mark the "original"
2352 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2353 	 * See vm_normal_page() for details.
2354 	 */
2355 	if (is_cow_mapping(vma->vm_flags)) {
2356 		if (addr != vma->vm_start || end != vma->vm_end)
2357 			return -EINVAL;
2358 		vma->vm_pgoff = pfn;
2359 	}
2360 
2361 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2362 	if (err)
2363 		return -EINVAL;
2364 
2365 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2366 
2367 	BUG_ON(addr >= end);
2368 	pfn -= addr >> PAGE_SHIFT;
2369 	pgd = pgd_offset(mm, addr);
2370 	flush_cache_range(vma, addr, end);
2371 	do {
2372 		next = pgd_addr_end(addr, end);
2373 		err = remap_pud_range(mm, pgd, addr, next,
2374 				pfn + (addr >> PAGE_SHIFT), prot);
2375 		if (err)
2376 			break;
2377 	} while (pgd++, addr = next, addr != end);
2378 
2379 	if (err)
2380 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2381 
2382 	return err;
2383 }
2384 EXPORT_SYMBOL(remap_pfn_range);
2385 
2386 /**
2387  * vm_iomap_memory - remap memory to userspace
2388  * @vma: user vma to map to
2389  * @start: start of area
2390  * @len: size of area
2391  *
2392  * This is a simplified io_remap_pfn_range() for common driver use. The
2393  * driver just needs to give us the physical memory range to be mapped,
2394  * we'll figure out the rest from the vma information.
2395  *
2396  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2397  * whatever write-combining details or similar.
2398  */
2399 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2400 {
2401 	unsigned long vm_len, pfn, pages;
2402 
2403 	/* Check that the physical memory area passed in looks valid */
2404 	if (start + len < start)
2405 		return -EINVAL;
2406 	/*
2407 	 * You *really* shouldn't map things that aren't page-aligned,
2408 	 * but we've historically allowed it because IO memory might
2409 	 * just have smaller alignment.
2410 	 */
2411 	len += start & ~PAGE_MASK;
2412 	pfn = start >> PAGE_SHIFT;
2413 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2414 	if (pfn + pages < pfn)
2415 		return -EINVAL;
2416 
2417 	/* We start the mapping 'vm_pgoff' pages into the area */
2418 	if (vma->vm_pgoff > pages)
2419 		return -EINVAL;
2420 	pfn += vma->vm_pgoff;
2421 	pages -= vma->vm_pgoff;
2422 
2423 	/* Can we fit all of the mapping? */
2424 	vm_len = vma->vm_end - vma->vm_start;
2425 	if (vm_len >> PAGE_SHIFT > pages)
2426 		return -EINVAL;
2427 
2428 	/* Ok, let it rip */
2429 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2430 }
2431 EXPORT_SYMBOL(vm_iomap_memory);
2432 
2433 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2434 				     unsigned long addr, unsigned long end,
2435 				     pte_fn_t fn, void *data)
2436 {
2437 	pte_t *pte;
2438 	int err;
2439 	pgtable_t token;
2440 	spinlock_t *uninitialized_var(ptl);
2441 
2442 	pte = (mm == &init_mm) ?
2443 		pte_alloc_kernel(pmd, addr) :
2444 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2445 	if (!pte)
2446 		return -ENOMEM;
2447 
2448 	BUG_ON(pmd_huge(*pmd));
2449 
2450 	arch_enter_lazy_mmu_mode();
2451 
2452 	token = pmd_pgtable(*pmd);
2453 
2454 	do {
2455 		err = fn(pte++, token, addr, data);
2456 		if (err)
2457 			break;
2458 	} while (addr += PAGE_SIZE, addr != end);
2459 
2460 	arch_leave_lazy_mmu_mode();
2461 
2462 	if (mm != &init_mm)
2463 		pte_unmap_unlock(pte-1, ptl);
2464 	return err;
2465 }
2466 
2467 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2468 				     unsigned long addr, unsigned long end,
2469 				     pte_fn_t fn, void *data)
2470 {
2471 	pmd_t *pmd;
2472 	unsigned long next;
2473 	int err;
2474 
2475 	BUG_ON(pud_huge(*pud));
2476 
2477 	pmd = pmd_alloc(mm, pud, addr);
2478 	if (!pmd)
2479 		return -ENOMEM;
2480 	do {
2481 		next = pmd_addr_end(addr, end);
2482 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2483 		if (err)
2484 			break;
2485 	} while (pmd++, addr = next, addr != end);
2486 	return err;
2487 }
2488 
2489 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2490 				     unsigned long addr, unsigned long end,
2491 				     pte_fn_t fn, void *data)
2492 {
2493 	pud_t *pud;
2494 	unsigned long next;
2495 	int err;
2496 
2497 	pud = pud_alloc(mm, pgd, addr);
2498 	if (!pud)
2499 		return -ENOMEM;
2500 	do {
2501 		next = pud_addr_end(addr, end);
2502 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2503 		if (err)
2504 			break;
2505 	} while (pud++, addr = next, addr != end);
2506 	return err;
2507 }
2508 
2509 /*
2510  * Scan a region of virtual memory, filling in page tables as necessary
2511  * and calling a provided function on each leaf page table.
2512  */
2513 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2514 			unsigned long size, pte_fn_t fn, void *data)
2515 {
2516 	pgd_t *pgd;
2517 	unsigned long next;
2518 	unsigned long end = addr + size;
2519 	int err;
2520 
2521 	BUG_ON(addr >= end);
2522 	pgd = pgd_offset(mm, addr);
2523 	do {
2524 		next = pgd_addr_end(addr, end);
2525 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2526 		if (err)
2527 			break;
2528 	} while (pgd++, addr = next, addr != end);
2529 
2530 	return err;
2531 }
2532 EXPORT_SYMBOL_GPL(apply_to_page_range);
2533 
2534 /*
2535  * handle_pte_fault chooses page fault handler according to an entry
2536  * which was read non-atomically.  Before making any commitment, on
2537  * those architectures or configurations (e.g. i386 with PAE) which
2538  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2539  * must check under lock before unmapping the pte and proceeding
2540  * (but do_wp_page is only called after already making such a check;
2541  * and do_anonymous_page can safely check later on).
2542  */
2543 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2544 				pte_t *page_table, pte_t orig_pte)
2545 {
2546 	int same = 1;
2547 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2548 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2549 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2550 		spin_lock(ptl);
2551 		same = pte_same(*page_table, orig_pte);
2552 		spin_unlock(ptl);
2553 	}
2554 #endif
2555 	pte_unmap(page_table);
2556 	return same;
2557 }
2558 
2559 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2560 {
2561 	/*
2562 	 * If the source page was a PFN mapping, we don't have
2563 	 * a "struct page" for it. We do a best-effort copy by
2564 	 * just copying from the original user address. If that
2565 	 * fails, we just zero-fill it. Live with it.
2566 	 */
2567 	if (unlikely(!src)) {
2568 		void *kaddr = kmap_atomic(dst);
2569 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2570 
2571 		/*
2572 		 * This really shouldn't fail, because the page is there
2573 		 * in the page tables. But it might just be unreadable,
2574 		 * in which case we just give up and fill the result with
2575 		 * zeroes.
2576 		 */
2577 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2578 			clear_page(kaddr);
2579 		kunmap_atomic(kaddr);
2580 		flush_dcache_page(dst);
2581 	} else
2582 		copy_user_highpage(dst, src, va, vma);
2583 }
2584 
2585 /*
2586  * This routine handles present pages, when users try to write
2587  * to a shared page. It is done by copying the page to a new address
2588  * and decrementing the shared-page counter for the old page.
2589  *
2590  * Note that this routine assumes that the protection checks have been
2591  * done by the caller (the low-level page fault routine in most cases).
2592  * Thus we can safely just mark it writable once we've done any necessary
2593  * COW.
2594  *
2595  * We also mark the page dirty at this point even though the page will
2596  * change only once the write actually happens. This avoids a few races,
2597  * and potentially makes it more efficient.
2598  *
2599  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2600  * but allow concurrent faults), with pte both mapped and locked.
2601  * We return with mmap_sem still held, but pte unmapped and unlocked.
2602  */
2603 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2604 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2605 		spinlock_t *ptl, pte_t orig_pte)
2606 	__releases(ptl)
2607 {
2608 	struct page *old_page, *new_page = NULL;
2609 	pte_t entry;
2610 	int ret = 0;
2611 	int page_mkwrite = 0;
2612 	struct page *dirty_page = NULL;
2613 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2614 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2615 
2616 	old_page = vm_normal_page(vma, address, orig_pte);
2617 	if (!old_page) {
2618 		/*
2619 		 * VM_MIXEDMAP !pfn_valid() case
2620 		 *
2621 		 * We should not cow pages in a shared writeable mapping.
2622 		 * Just mark the pages writable as we can't do any dirty
2623 		 * accounting on raw pfn maps.
2624 		 */
2625 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2626 				     (VM_WRITE|VM_SHARED))
2627 			goto reuse;
2628 		goto gotten;
2629 	}
2630 
2631 	/*
2632 	 * Take out anonymous pages first, anonymous shared vmas are
2633 	 * not dirty accountable.
2634 	 */
2635 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2636 		if (!trylock_page(old_page)) {
2637 			page_cache_get(old_page);
2638 			pte_unmap_unlock(page_table, ptl);
2639 			lock_page(old_page);
2640 			page_table = pte_offset_map_lock(mm, pmd, address,
2641 							 &ptl);
2642 			if (!pte_same(*page_table, orig_pte)) {
2643 				unlock_page(old_page);
2644 				goto unlock;
2645 			}
2646 			page_cache_release(old_page);
2647 		}
2648 		if (reuse_swap_page(old_page)) {
2649 			/*
2650 			 * The page is all ours.  Move it to our anon_vma so
2651 			 * the rmap code will not search our parent or siblings.
2652 			 * Protected against the rmap code by the page lock.
2653 			 */
2654 			page_move_anon_rmap(old_page, vma, address);
2655 			unlock_page(old_page);
2656 			goto reuse;
2657 		}
2658 		unlock_page(old_page);
2659 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2660 					(VM_WRITE|VM_SHARED))) {
2661 		/*
2662 		 * Only catch write-faults on shared writable pages,
2663 		 * read-only shared pages can get COWed by
2664 		 * get_user_pages(.write=1, .force=1).
2665 		 */
2666 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2667 			struct vm_fault vmf;
2668 			int tmp;
2669 
2670 			vmf.virtual_address = (void __user *)(address &
2671 								PAGE_MASK);
2672 			vmf.pgoff = old_page->index;
2673 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2674 			vmf.page = old_page;
2675 
2676 			/*
2677 			 * Notify the address space that the page is about to
2678 			 * become writable so that it can prohibit this or wait
2679 			 * for the page to get into an appropriate state.
2680 			 *
2681 			 * We do this without the lock held, so that it can
2682 			 * sleep if it needs to.
2683 			 */
2684 			page_cache_get(old_page);
2685 			pte_unmap_unlock(page_table, ptl);
2686 
2687 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2688 			if (unlikely(tmp &
2689 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2690 				ret = tmp;
2691 				goto unwritable_page;
2692 			}
2693 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2694 				lock_page(old_page);
2695 				if (!old_page->mapping) {
2696 					ret = 0; /* retry the fault */
2697 					unlock_page(old_page);
2698 					goto unwritable_page;
2699 				}
2700 			} else
2701 				VM_BUG_ON(!PageLocked(old_page));
2702 
2703 			/*
2704 			 * Since we dropped the lock we need to revalidate
2705 			 * the PTE as someone else may have changed it.  If
2706 			 * they did, we just return, as we can count on the
2707 			 * MMU to tell us if they didn't also make it writable.
2708 			 */
2709 			page_table = pte_offset_map_lock(mm, pmd, address,
2710 							 &ptl);
2711 			if (!pte_same(*page_table, orig_pte)) {
2712 				unlock_page(old_page);
2713 				goto unlock;
2714 			}
2715 
2716 			page_mkwrite = 1;
2717 		}
2718 		dirty_page = old_page;
2719 		get_page(dirty_page);
2720 
2721 reuse:
2722 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2723 		entry = pte_mkyoung(orig_pte);
2724 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2725 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2726 			update_mmu_cache(vma, address, page_table);
2727 		pte_unmap_unlock(page_table, ptl);
2728 		ret |= VM_FAULT_WRITE;
2729 
2730 		if (!dirty_page)
2731 			return ret;
2732 
2733 		/*
2734 		 * Yes, Virginia, this is actually required to prevent a race
2735 		 * with clear_page_dirty_for_io() from clearing the page dirty
2736 		 * bit after it clear all dirty ptes, but before a racing
2737 		 * do_wp_page installs a dirty pte.
2738 		 *
2739 		 * __do_fault is protected similarly.
2740 		 */
2741 		if (!page_mkwrite) {
2742 			wait_on_page_locked(dirty_page);
2743 			set_page_dirty_balance(dirty_page, page_mkwrite);
2744 			/* file_update_time outside page_lock */
2745 			if (vma->vm_file)
2746 				file_update_time(vma->vm_file);
2747 		}
2748 		put_page(dirty_page);
2749 		if (page_mkwrite) {
2750 			struct address_space *mapping = dirty_page->mapping;
2751 
2752 			set_page_dirty(dirty_page);
2753 			unlock_page(dirty_page);
2754 			page_cache_release(dirty_page);
2755 			if (mapping)	{
2756 				/*
2757 				 * Some device drivers do not set page.mapping
2758 				 * but still dirty their pages
2759 				 */
2760 				balance_dirty_pages_ratelimited(mapping);
2761 			}
2762 		}
2763 
2764 		return ret;
2765 	}
2766 
2767 	/*
2768 	 * Ok, we need to copy. Oh, well..
2769 	 */
2770 	page_cache_get(old_page);
2771 gotten:
2772 	pte_unmap_unlock(page_table, ptl);
2773 
2774 	if (unlikely(anon_vma_prepare(vma)))
2775 		goto oom;
2776 
2777 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2778 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2779 		if (!new_page)
2780 			goto oom;
2781 	} else {
2782 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2783 		if (!new_page)
2784 			goto oom;
2785 		cow_user_page(new_page, old_page, address, vma);
2786 	}
2787 	__SetPageUptodate(new_page);
2788 
2789 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2790 		goto oom_free_new;
2791 
2792 	mmun_start  = address & PAGE_MASK;
2793 	mmun_end    = mmun_start + PAGE_SIZE;
2794 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2795 
2796 	/*
2797 	 * Re-check the pte - we dropped the lock
2798 	 */
2799 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2800 	if (likely(pte_same(*page_table, orig_pte))) {
2801 		if (old_page) {
2802 			if (!PageAnon(old_page)) {
2803 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2804 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2805 			}
2806 		} else
2807 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2808 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2809 		entry = mk_pte(new_page, vma->vm_page_prot);
2810 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2811 		/*
2812 		 * Clear the pte entry and flush it first, before updating the
2813 		 * pte with the new entry. This will avoid a race condition
2814 		 * seen in the presence of one thread doing SMC and another
2815 		 * thread doing COW.
2816 		 */
2817 		ptep_clear_flush(vma, address, page_table);
2818 		page_add_new_anon_rmap(new_page, vma, address);
2819 		/*
2820 		 * We call the notify macro here because, when using secondary
2821 		 * mmu page tables (such as kvm shadow page tables), we want the
2822 		 * new page to be mapped directly into the secondary page table.
2823 		 */
2824 		set_pte_at_notify(mm, address, page_table, entry);
2825 		update_mmu_cache(vma, address, page_table);
2826 		if (old_page) {
2827 			/*
2828 			 * Only after switching the pte to the new page may
2829 			 * we remove the mapcount here. Otherwise another
2830 			 * process may come and find the rmap count decremented
2831 			 * before the pte is switched to the new page, and
2832 			 * "reuse" the old page writing into it while our pte
2833 			 * here still points into it and can be read by other
2834 			 * threads.
2835 			 *
2836 			 * The critical issue is to order this
2837 			 * page_remove_rmap with the ptp_clear_flush above.
2838 			 * Those stores are ordered by (if nothing else,)
2839 			 * the barrier present in the atomic_add_negative
2840 			 * in page_remove_rmap.
2841 			 *
2842 			 * Then the TLB flush in ptep_clear_flush ensures that
2843 			 * no process can access the old page before the
2844 			 * decremented mapcount is visible. And the old page
2845 			 * cannot be reused until after the decremented
2846 			 * mapcount is visible. So transitively, TLBs to
2847 			 * old page will be flushed before it can be reused.
2848 			 */
2849 			page_remove_rmap(old_page);
2850 		}
2851 
2852 		/* Free the old page.. */
2853 		new_page = old_page;
2854 		ret |= VM_FAULT_WRITE;
2855 	} else
2856 		mem_cgroup_uncharge_page(new_page);
2857 
2858 	if (new_page)
2859 		page_cache_release(new_page);
2860 unlock:
2861 	pte_unmap_unlock(page_table, ptl);
2862 	if (mmun_end > mmun_start)
2863 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2864 	if (old_page) {
2865 		/*
2866 		 * Don't let another task, with possibly unlocked vma,
2867 		 * keep the mlocked page.
2868 		 */
2869 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2870 			lock_page(old_page);	/* LRU manipulation */
2871 			munlock_vma_page(old_page);
2872 			unlock_page(old_page);
2873 		}
2874 		page_cache_release(old_page);
2875 	}
2876 	return ret;
2877 oom_free_new:
2878 	page_cache_release(new_page);
2879 oom:
2880 	if (old_page)
2881 		page_cache_release(old_page);
2882 	return VM_FAULT_OOM;
2883 
2884 unwritable_page:
2885 	page_cache_release(old_page);
2886 	return ret;
2887 }
2888 
2889 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2890 		unsigned long start_addr, unsigned long end_addr,
2891 		struct zap_details *details)
2892 {
2893 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2894 }
2895 
2896 static inline void unmap_mapping_range_tree(struct rb_root *root,
2897 					    struct zap_details *details)
2898 {
2899 	struct vm_area_struct *vma;
2900 	pgoff_t vba, vea, zba, zea;
2901 
2902 	vma_interval_tree_foreach(vma, root,
2903 			details->first_index, details->last_index) {
2904 
2905 		vba = vma->vm_pgoff;
2906 		vea = vba + vma_pages(vma) - 1;
2907 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2908 		zba = details->first_index;
2909 		if (zba < vba)
2910 			zba = vba;
2911 		zea = details->last_index;
2912 		if (zea > vea)
2913 			zea = vea;
2914 
2915 		unmap_mapping_range_vma(vma,
2916 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2917 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2918 				details);
2919 	}
2920 }
2921 
2922 static inline void unmap_mapping_range_list(struct list_head *head,
2923 					    struct zap_details *details)
2924 {
2925 	struct vm_area_struct *vma;
2926 
2927 	/*
2928 	 * In nonlinear VMAs there is no correspondence between virtual address
2929 	 * offset and file offset.  So we must perform an exhaustive search
2930 	 * across *all* the pages in each nonlinear VMA, not just the pages
2931 	 * whose virtual address lies outside the file truncation point.
2932 	 */
2933 	list_for_each_entry(vma, head, shared.nonlinear) {
2934 		details->nonlinear_vma = vma;
2935 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2936 	}
2937 }
2938 
2939 /**
2940  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2941  * @mapping: the address space containing mmaps to be unmapped.
2942  * @holebegin: byte in first page to unmap, relative to the start of
2943  * the underlying file.  This will be rounded down to a PAGE_SIZE
2944  * boundary.  Note that this is different from truncate_pagecache(), which
2945  * must keep the partial page.  In contrast, we must get rid of
2946  * partial pages.
2947  * @holelen: size of prospective hole in bytes.  This will be rounded
2948  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2949  * end of the file.
2950  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2951  * but 0 when invalidating pagecache, don't throw away private data.
2952  */
2953 void unmap_mapping_range(struct address_space *mapping,
2954 		loff_t const holebegin, loff_t const holelen, int even_cows)
2955 {
2956 	struct zap_details details;
2957 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2958 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2959 
2960 	/* Check for overflow. */
2961 	if (sizeof(holelen) > sizeof(hlen)) {
2962 		long long holeend =
2963 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2964 		if (holeend & ~(long long)ULONG_MAX)
2965 			hlen = ULONG_MAX - hba + 1;
2966 	}
2967 
2968 	details.check_mapping = even_cows? NULL: mapping;
2969 	details.nonlinear_vma = NULL;
2970 	details.first_index = hba;
2971 	details.last_index = hba + hlen - 1;
2972 	if (details.last_index < details.first_index)
2973 		details.last_index = ULONG_MAX;
2974 
2975 
2976 	mutex_lock(&mapping->i_mmap_mutex);
2977 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2978 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2979 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2980 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2981 	mutex_unlock(&mapping->i_mmap_mutex);
2982 }
2983 EXPORT_SYMBOL(unmap_mapping_range);
2984 
2985 /*
2986  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2987  * but allow concurrent faults), and pte mapped but not yet locked.
2988  * We return with mmap_sem still held, but pte unmapped and unlocked.
2989  */
2990 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2991 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2992 		unsigned int flags, pte_t orig_pte)
2993 {
2994 	spinlock_t *ptl;
2995 	struct page *page, *swapcache;
2996 	swp_entry_t entry;
2997 	pte_t pte;
2998 	int locked;
2999 	struct mem_cgroup *ptr;
3000 	int exclusive = 0;
3001 	int ret = 0;
3002 
3003 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3004 		goto out;
3005 
3006 	entry = pte_to_swp_entry(orig_pte);
3007 	if (unlikely(non_swap_entry(entry))) {
3008 		if (is_migration_entry(entry)) {
3009 			migration_entry_wait(mm, pmd, address);
3010 		} else if (is_hwpoison_entry(entry)) {
3011 			ret = VM_FAULT_HWPOISON;
3012 		} else {
3013 			print_bad_pte(vma, address, orig_pte, NULL);
3014 			ret = VM_FAULT_SIGBUS;
3015 		}
3016 		goto out;
3017 	}
3018 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3019 	page = lookup_swap_cache(entry);
3020 	if (!page) {
3021 		page = swapin_readahead(entry,
3022 					GFP_HIGHUSER_MOVABLE, vma, address);
3023 		if (!page) {
3024 			/*
3025 			 * Back out if somebody else faulted in this pte
3026 			 * while we released the pte lock.
3027 			 */
3028 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3029 			if (likely(pte_same(*page_table, orig_pte)))
3030 				ret = VM_FAULT_OOM;
3031 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3032 			goto unlock;
3033 		}
3034 
3035 		/* Had to read the page from swap area: Major fault */
3036 		ret = VM_FAULT_MAJOR;
3037 		count_vm_event(PGMAJFAULT);
3038 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3039 	} else if (PageHWPoison(page)) {
3040 		/*
3041 		 * hwpoisoned dirty swapcache pages are kept for killing
3042 		 * owner processes (which may be unknown at hwpoison time)
3043 		 */
3044 		ret = VM_FAULT_HWPOISON;
3045 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3046 		swapcache = page;
3047 		goto out_release;
3048 	}
3049 
3050 	swapcache = page;
3051 	locked = lock_page_or_retry(page, mm, flags);
3052 
3053 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3054 	if (!locked) {
3055 		ret |= VM_FAULT_RETRY;
3056 		goto out_release;
3057 	}
3058 
3059 	/*
3060 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3061 	 * release the swapcache from under us.  The page pin, and pte_same
3062 	 * test below, are not enough to exclude that.  Even if it is still
3063 	 * swapcache, we need to check that the page's swap has not changed.
3064 	 */
3065 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3066 		goto out_page;
3067 
3068 	page = ksm_might_need_to_copy(page, vma, address);
3069 	if (unlikely(!page)) {
3070 		ret = VM_FAULT_OOM;
3071 		page = swapcache;
3072 		goto out_page;
3073 	}
3074 
3075 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3076 		ret = VM_FAULT_OOM;
3077 		goto out_page;
3078 	}
3079 
3080 	/*
3081 	 * Back out if somebody else already faulted in this pte.
3082 	 */
3083 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3084 	if (unlikely(!pte_same(*page_table, orig_pte)))
3085 		goto out_nomap;
3086 
3087 	if (unlikely(!PageUptodate(page))) {
3088 		ret = VM_FAULT_SIGBUS;
3089 		goto out_nomap;
3090 	}
3091 
3092 	/*
3093 	 * The page isn't present yet, go ahead with the fault.
3094 	 *
3095 	 * Be careful about the sequence of operations here.
3096 	 * To get its accounting right, reuse_swap_page() must be called
3097 	 * while the page is counted on swap but not yet in mapcount i.e.
3098 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3099 	 * must be called after the swap_free(), or it will never succeed.
3100 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3101 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3102 	 * in page->private. In this case, a record in swap_cgroup  is silently
3103 	 * discarded at swap_free().
3104 	 */
3105 
3106 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3107 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3108 	pte = mk_pte(page, vma->vm_page_prot);
3109 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3110 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3111 		flags &= ~FAULT_FLAG_WRITE;
3112 		ret |= VM_FAULT_WRITE;
3113 		exclusive = 1;
3114 	}
3115 	flush_icache_page(vma, page);
3116 	if (pte_swp_soft_dirty(orig_pte))
3117 		pte = pte_mksoft_dirty(pte);
3118 	set_pte_at(mm, address, page_table, pte);
3119 	if (page == swapcache)
3120 		do_page_add_anon_rmap(page, vma, address, exclusive);
3121 	else /* ksm created a completely new copy */
3122 		page_add_new_anon_rmap(page, vma, address);
3123 	/* It's better to call commit-charge after rmap is established */
3124 	mem_cgroup_commit_charge_swapin(page, ptr);
3125 
3126 	swap_free(entry);
3127 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3128 		try_to_free_swap(page);
3129 	unlock_page(page);
3130 	if (page != swapcache) {
3131 		/*
3132 		 * Hold the lock to avoid the swap entry to be reused
3133 		 * until we take the PT lock for the pte_same() check
3134 		 * (to avoid false positives from pte_same). For
3135 		 * further safety release the lock after the swap_free
3136 		 * so that the swap count won't change under a
3137 		 * parallel locked swapcache.
3138 		 */
3139 		unlock_page(swapcache);
3140 		page_cache_release(swapcache);
3141 	}
3142 
3143 	if (flags & FAULT_FLAG_WRITE) {
3144 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3145 		if (ret & VM_FAULT_ERROR)
3146 			ret &= VM_FAULT_ERROR;
3147 		goto out;
3148 	}
3149 
3150 	/* No need to invalidate - it was non-present before */
3151 	update_mmu_cache(vma, address, page_table);
3152 unlock:
3153 	pte_unmap_unlock(page_table, ptl);
3154 out:
3155 	return ret;
3156 out_nomap:
3157 	mem_cgroup_cancel_charge_swapin(ptr);
3158 	pte_unmap_unlock(page_table, ptl);
3159 out_page:
3160 	unlock_page(page);
3161 out_release:
3162 	page_cache_release(page);
3163 	if (page != swapcache) {
3164 		unlock_page(swapcache);
3165 		page_cache_release(swapcache);
3166 	}
3167 	return ret;
3168 }
3169 
3170 /*
3171  * This is like a special single-page "expand_{down|up}wards()",
3172  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3173  * doesn't hit another vma.
3174  */
3175 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3176 {
3177 	address &= PAGE_MASK;
3178 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3179 		struct vm_area_struct *prev = vma->vm_prev;
3180 
3181 		/*
3182 		 * Is there a mapping abutting this one below?
3183 		 *
3184 		 * That's only ok if it's the same stack mapping
3185 		 * that has gotten split..
3186 		 */
3187 		if (prev && prev->vm_end == address)
3188 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3189 
3190 		expand_downwards(vma, address - PAGE_SIZE);
3191 	}
3192 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3193 		struct vm_area_struct *next = vma->vm_next;
3194 
3195 		/* As VM_GROWSDOWN but s/below/above/ */
3196 		if (next && next->vm_start == address + PAGE_SIZE)
3197 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3198 
3199 		expand_upwards(vma, address + PAGE_SIZE);
3200 	}
3201 	return 0;
3202 }
3203 
3204 /*
3205  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3206  * but allow concurrent faults), and pte mapped but not yet locked.
3207  * We return with mmap_sem still held, but pte unmapped and unlocked.
3208  */
3209 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3210 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3211 		unsigned int flags)
3212 {
3213 	struct page *page;
3214 	spinlock_t *ptl;
3215 	pte_t entry;
3216 
3217 	pte_unmap(page_table);
3218 
3219 	/* Check if we need to add a guard page to the stack */
3220 	if (check_stack_guard_page(vma, address) < 0)
3221 		return VM_FAULT_SIGBUS;
3222 
3223 	/* Use the zero-page for reads */
3224 	if (!(flags & FAULT_FLAG_WRITE)) {
3225 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3226 						vma->vm_page_prot));
3227 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3228 		if (!pte_none(*page_table))
3229 			goto unlock;
3230 		goto setpte;
3231 	}
3232 
3233 	/* Allocate our own private page. */
3234 	if (unlikely(anon_vma_prepare(vma)))
3235 		goto oom;
3236 	page = alloc_zeroed_user_highpage_movable(vma, address);
3237 	if (!page)
3238 		goto oom;
3239 	/*
3240 	 * The memory barrier inside __SetPageUptodate makes sure that
3241 	 * preceeding stores to the page contents become visible before
3242 	 * the set_pte_at() write.
3243 	 */
3244 	__SetPageUptodate(page);
3245 
3246 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3247 		goto oom_free_page;
3248 
3249 	entry = mk_pte(page, vma->vm_page_prot);
3250 	if (vma->vm_flags & VM_WRITE)
3251 		entry = pte_mkwrite(pte_mkdirty(entry));
3252 
3253 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3254 	if (!pte_none(*page_table))
3255 		goto release;
3256 
3257 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3258 	page_add_new_anon_rmap(page, vma, address);
3259 setpte:
3260 	set_pte_at(mm, address, page_table, entry);
3261 
3262 	/* No need to invalidate - it was non-present before */
3263 	update_mmu_cache(vma, address, page_table);
3264 unlock:
3265 	pte_unmap_unlock(page_table, ptl);
3266 	return 0;
3267 release:
3268 	mem_cgroup_uncharge_page(page);
3269 	page_cache_release(page);
3270 	goto unlock;
3271 oom_free_page:
3272 	page_cache_release(page);
3273 oom:
3274 	return VM_FAULT_OOM;
3275 }
3276 
3277 /*
3278  * __do_fault() tries to create a new page mapping. It aggressively
3279  * tries to share with existing pages, but makes a separate copy if
3280  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3281  * the next page fault.
3282  *
3283  * As this is called only for pages that do not currently exist, we
3284  * do not need to flush old virtual caches or the TLB.
3285  *
3286  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3287  * but allow concurrent faults), and pte neither mapped nor locked.
3288  * We return with mmap_sem still held, but pte unmapped and unlocked.
3289  */
3290 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3291 		unsigned long address, pmd_t *pmd,
3292 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3293 {
3294 	pte_t *page_table;
3295 	spinlock_t *ptl;
3296 	struct page *page;
3297 	struct page *cow_page;
3298 	pte_t entry;
3299 	int anon = 0;
3300 	struct page *dirty_page = NULL;
3301 	struct vm_fault vmf;
3302 	int ret;
3303 	int page_mkwrite = 0;
3304 
3305 	/*
3306 	 * If we do COW later, allocate page befor taking lock_page()
3307 	 * on the file cache page. This will reduce lock holding time.
3308 	 */
3309 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3310 
3311 		if (unlikely(anon_vma_prepare(vma)))
3312 			return VM_FAULT_OOM;
3313 
3314 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3315 		if (!cow_page)
3316 			return VM_FAULT_OOM;
3317 
3318 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3319 			page_cache_release(cow_page);
3320 			return VM_FAULT_OOM;
3321 		}
3322 	} else
3323 		cow_page = NULL;
3324 
3325 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3326 	vmf.pgoff = pgoff;
3327 	vmf.flags = flags;
3328 	vmf.page = NULL;
3329 
3330 	ret = vma->vm_ops->fault(vma, &vmf);
3331 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3332 			    VM_FAULT_RETRY)))
3333 		goto uncharge_out;
3334 
3335 	if (unlikely(PageHWPoison(vmf.page))) {
3336 		if (ret & VM_FAULT_LOCKED)
3337 			unlock_page(vmf.page);
3338 		ret = VM_FAULT_HWPOISON;
3339 		goto uncharge_out;
3340 	}
3341 
3342 	/*
3343 	 * For consistency in subsequent calls, make the faulted page always
3344 	 * locked.
3345 	 */
3346 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3347 		lock_page(vmf.page);
3348 	else
3349 		VM_BUG_ON(!PageLocked(vmf.page));
3350 
3351 	/*
3352 	 * Should we do an early C-O-W break?
3353 	 */
3354 	page = vmf.page;
3355 	if (flags & FAULT_FLAG_WRITE) {
3356 		if (!(vma->vm_flags & VM_SHARED)) {
3357 			page = cow_page;
3358 			anon = 1;
3359 			copy_user_highpage(page, vmf.page, address, vma);
3360 			__SetPageUptodate(page);
3361 		} else {
3362 			/*
3363 			 * If the page will be shareable, see if the backing
3364 			 * address space wants to know that the page is about
3365 			 * to become writable
3366 			 */
3367 			if (vma->vm_ops->page_mkwrite) {
3368 				int tmp;
3369 
3370 				unlock_page(page);
3371 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3372 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3373 				if (unlikely(tmp &
3374 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3375 					ret = tmp;
3376 					goto unwritable_page;
3377 				}
3378 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3379 					lock_page(page);
3380 					if (!page->mapping) {
3381 						ret = 0; /* retry the fault */
3382 						unlock_page(page);
3383 						goto unwritable_page;
3384 					}
3385 				} else
3386 					VM_BUG_ON(!PageLocked(page));
3387 				page_mkwrite = 1;
3388 			}
3389 		}
3390 
3391 	}
3392 
3393 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3394 
3395 	/*
3396 	 * This silly early PAGE_DIRTY setting removes a race
3397 	 * due to the bad i386 page protection. But it's valid
3398 	 * for other architectures too.
3399 	 *
3400 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3401 	 * an exclusive copy of the page, or this is a shared mapping,
3402 	 * so we can make it writable and dirty to avoid having to
3403 	 * handle that later.
3404 	 */
3405 	/* Only go through if we didn't race with anybody else... */
3406 	if (likely(pte_same(*page_table, orig_pte))) {
3407 		flush_icache_page(vma, page);
3408 		entry = mk_pte(page, vma->vm_page_prot);
3409 		if (flags & FAULT_FLAG_WRITE)
3410 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3411 		else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3412 			pte_mksoft_dirty(entry);
3413 		if (anon) {
3414 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3415 			page_add_new_anon_rmap(page, vma, address);
3416 		} else {
3417 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3418 			page_add_file_rmap(page);
3419 			if (flags & FAULT_FLAG_WRITE) {
3420 				dirty_page = page;
3421 				get_page(dirty_page);
3422 			}
3423 		}
3424 		set_pte_at(mm, address, page_table, entry);
3425 
3426 		/* no need to invalidate: a not-present page won't be cached */
3427 		update_mmu_cache(vma, address, page_table);
3428 	} else {
3429 		if (cow_page)
3430 			mem_cgroup_uncharge_page(cow_page);
3431 		if (anon)
3432 			page_cache_release(page);
3433 		else
3434 			anon = 1; /* no anon but release faulted_page */
3435 	}
3436 
3437 	pte_unmap_unlock(page_table, ptl);
3438 
3439 	if (dirty_page) {
3440 		struct address_space *mapping = page->mapping;
3441 		int dirtied = 0;
3442 
3443 		if (set_page_dirty(dirty_page))
3444 			dirtied = 1;
3445 		unlock_page(dirty_page);
3446 		put_page(dirty_page);
3447 		if ((dirtied || page_mkwrite) && mapping) {
3448 			/*
3449 			 * Some device drivers do not set page.mapping but still
3450 			 * dirty their pages
3451 			 */
3452 			balance_dirty_pages_ratelimited(mapping);
3453 		}
3454 
3455 		/* file_update_time outside page_lock */
3456 		if (vma->vm_file && !page_mkwrite)
3457 			file_update_time(vma->vm_file);
3458 	} else {
3459 		unlock_page(vmf.page);
3460 		if (anon)
3461 			page_cache_release(vmf.page);
3462 	}
3463 
3464 	return ret;
3465 
3466 unwritable_page:
3467 	page_cache_release(page);
3468 	return ret;
3469 uncharge_out:
3470 	/* fs's fault handler get error */
3471 	if (cow_page) {
3472 		mem_cgroup_uncharge_page(cow_page);
3473 		page_cache_release(cow_page);
3474 	}
3475 	return ret;
3476 }
3477 
3478 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3479 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3480 		unsigned int flags, pte_t orig_pte)
3481 {
3482 	pgoff_t pgoff = (((address & PAGE_MASK)
3483 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3484 
3485 	pte_unmap(page_table);
3486 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3487 }
3488 
3489 /*
3490  * Fault of a previously existing named mapping. Repopulate the pte
3491  * from the encoded file_pte if possible. This enables swappable
3492  * nonlinear vmas.
3493  *
3494  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3495  * but allow concurrent faults), and pte mapped but not yet locked.
3496  * We return with mmap_sem still held, but pte unmapped and unlocked.
3497  */
3498 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3499 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3500 		unsigned int flags, pte_t orig_pte)
3501 {
3502 	pgoff_t pgoff;
3503 
3504 	flags |= FAULT_FLAG_NONLINEAR;
3505 
3506 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3507 		return 0;
3508 
3509 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3510 		/*
3511 		 * Page table corrupted: show pte and kill process.
3512 		 */
3513 		print_bad_pte(vma, address, orig_pte, NULL);
3514 		return VM_FAULT_SIGBUS;
3515 	}
3516 
3517 	pgoff = pte_to_pgoff(orig_pte);
3518 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3519 }
3520 
3521 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3522 				unsigned long addr, int current_nid)
3523 {
3524 	get_page(page);
3525 
3526 	count_vm_numa_event(NUMA_HINT_FAULTS);
3527 	if (current_nid == numa_node_id())
3528 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3529 
3530 	return mpol_misplaced(page, vma, addr);
3531 }
3532 
3533 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3534 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3535 {
3536 	struct page *page = NULL;
3537 	spinlock_t *ptl;
3538 	int current_nid = -1;
3539 	int target_nid;
3540 	bool migrated = false;
3541 
3542 	/*
3543 	* The "pte" at this point cannot be used safely without
3544 	* validation through pte_unmap_same(). It's of NUMA type but
3545 	* the pfn may be screwed if the read is non atomic.
3546 	*
3547 	* ptep_modify_prot_start is not called as this is clearing
3548 	* the _PAGE_NUMA bit and it is not really expected that there
3549 	* would be concurrent hardware modifications to the PTE.
3550 	*/
3551 	ptl = pte_lockptr(mm, pmd);
3552 	spin_lock(ptl);
3553 	if (unlikely(!pte_same(*ptep, pte))) {
3554 		pte_unmap_unlock(ptep, ptl);
3555 		goto out;
3556 	}
3557 
3558 	pte = pte_mknonnuma(pte);
3559 	set_pte_at(mm, addr, ptep, pte);
3560 	update_mmu_cache(vma, addr, ptep);
3561 
3562 	page = vm_normal_page(vma, addr, pte);
3563 	if (!page) {
3564 		pte_unmap_unlock(ptep, ptl);
3565 		return 0;
3566 	}
3567 
3568 	current_nid = page_to_nid(page);
3569 	target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3570 	pte_unmap_unlock(ptep, ptl);
3571 	if (target_nid == -1) {
3572 		/*
3573 		 * Account for the fault against the current node if it not
3574 		 * being replaced regardless of where the page is located.
3575 		 */
3576 		current_nid = numa_node_id();
3577 		put_page(page);
3578 		goto out;
3579 	}
3580 
3581 	/* Migrate to the requested node */
3582 	migrated = migrate_misplaced_page(page, target_nid);
3583 	if (migrated)
3584 		current_nid = target_nid;
3585 
3586 out:
3587 	if (current_nid != -1)
3588 		task_numa_fault(current_nid, 1, migrated);
3589 	return 0;
3590 }
3591 
3592 /* NUMA hinting page fault entry point for regular pmds */
3593 #ifdef CONFIG_NUMA_BALANCING
3594 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3595 		     unsigned long addr, pmd_t *pmdp)
3596 {
3597 	pmd_t pmd;
3598 	pte_t *pte, *orig_pte;
3599 	unsigned long _addr = addr & PMD_MASK;
3600 	unsigned long offset;
3601 	spinlock_t *ptl;
3602 	bool numa = false;
3603 	int local_nid = numa_node_id();
3604 
3605 	spin_lock(&mm->page_table_lock);
3606 	pmd = *pmdp;
3607 	if (pmd_numa(pmd)) {
3608 		set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3609 		numa = true;
3610 	}
3611 	spin_unlock(&mm->page_table_lock);
3612 
3613 	if (!numa)
3614 		return 0;
3615 
3616 	/* we're in a page fault so some vma must be in the range */
3617 	BUG_ON(!vma);
3618 	BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3619 	offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3620 	VM_BUG_ON(offset >= PMD_SIZE);
3621 	orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3622 	pte += offset >> PAGE_SHIFT;
3623 	for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3624 		pte_t pteval = *pte;
3625 		struct page *page;
3626 		int curr_nid = local_nid;
3627 		int target_nid;
3628 		bool migrated;
3629 		if (!pte_present(pteval))
3630 			continue;
3631 		if (!pte_numa(pteval))
3632 			continue;
3633 		if (addr >= vma->vm_end) {
3634 			vma = find_vma(mm, addr);
3635 			/* there's a pte present so there must be a vma */
3636 			BUG_ON(!vma);
3637 			BUG_ON(addr < vma->vm_start);
3638 		}
3639 		if (pte_numa(pteval)) {
3640 			pteval = pte_mknonnuma(pteval);
3641 			set_pte_at(mm, addr, pte, pteval);
3642 		}
3643 		page = vm_normal_page(vma, addr, pteval);
3644 		if (unlikely(!page))
3645 			continue;
3646 		/* only check non-shared pages */
3647 		if (unlikely(page_mapcount(page) != 1))
3648 			continue;
3649 
3650 		/*
3651 		 * Note that the NUMA fault is later accounted to either
3652 		 * the node that is currently running or where the page is
3653 		 * migrated to.
3654 		 */
3655 		curr_nid = local_nid;
3656 		target_nid = numa_migrate_prep(page, vma, addr,
3657 					       page_to_nid(page));
3658 		if (target_nid == -1) {
3659 			put_page(page);
3660 			continue;
3661 		}
3662 
3663 		/* Migrate to the requested node */
3664 		pte_unmap_unlock(pte, ptl);
3665 		migrated = migrate_misplaced_page(page, target_nid);
3666 		if (migrated)
3667 			curr_nid = target_nid;
3668 		task_numa_fault(curr_nid, 1, migrated);
3669 
3670 		pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3671 	}
3672 	pte_unmap_unlock(orig_pte, ptl);
3673 
3674 	return 0;
3675 }
3676 #else
3677 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3678 		     unsigned long addr, pmd_t *pmdp)
3679 {
3680 	BUG();
3681 	return 0;
3682 }
3683 #endif /* CONFIG_NUMA_BALANCING */
3684 
3685 /*
3686  * These routines also need to handle stuff like marking pages dirty
3687  * and/or accessed for architectures that don't do it in hardware (most
3688  * RISC architectures).  The early dirtying is also good on the i386.
3689  *
3690  * There is also a hook called "update_mmu_cache()" that architectures
3691  * with external mmu caches can use to update those (ie the Sparc or
3692  * PowerPC hashed page tables that act as extended TLBs).
3693  *
3694  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3695  * but allow concurrent faults), and pte mapped but not yet locked.
3696  * We return with mmap_sem still held, but pte unmapped and unlocked.
3697  */
3698 static int handle_pte_fault(struct mm_struct *mm,
3699 		     struct vm_area_struct *vma, unsigned long address,
3700 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3701 {
3702 	pte_t entry;
3703 	spinlock_t *ptl;
3704 
3705 	entry = *pte;
3706 	if (!pte_present(entry)) {
3707 		if (pte_none(entry)) {
3708 			if (vma->vm_ops) {
3709 				if (likely(vma->vm_ops->fault))
3710 					return do_linear_fault(mm, vma, address,
3711 						pte, pmd, flags, entry);
3712 			}
3713 			return do_anonymous_page(mm, vma, address,
3714 						 pte, pmd, flags);
3715 		}
3716 		if (pte_file(entry))
3717 			return do_nonlinear_fault(mm, vma, address,
3718 					pte, pmd, flags, entry);
3719 		return do_swap_page(mm, vma, address,
3720 					pte, pmd, flags, entry);
3721 	}
3722 
3723 	if (pte_numa(entry))
3724 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3725 
3726 	ptl = pte_lockptr(mm, pmd);
3727 	spin_lock(ptl);
3728 	if (unlikely(!pte_same(*pte, entry)))
3729 		goto unlock;
3730 	if (flags & FAULT_FLAG_WRITE) {
3731 		if (!pte_write(entry))
3732 			return do_wp_page(mm, vma, address,
3733 					pte, pmd, ptl, entry);
3734 		entry = pte_mkdirty(entry);
3735 	}
3736 	entry = pte_mkyoung(entry);
3737 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3738 		update_mmu_cache(vma, address, pte);
3739 	} else {
3740 		/*
3741 		 * This is needed only for protection faults but the arch code
3742 		 * is not yet telling us if this is a protection fault or not.
3743 		 * This still avoids useless tlb flushes for .text page faults
3744 		 * with threads.
3745 		 */
3746 		if (flags & FAULT_FLAG_WRITE)
3747 			flush_tlb_fix_spurious_fault(vma, address);
3748 	}
3749 unlock:
3750 	pte_unmap_unlock(pte, ptl);
3751 	return 0;
3752 }
3753 
3754 /*
3755  * By the time we get here, we already hold the mm semaphore
3756  */
3757 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3758 			     unsigned long address, unsigned int flags)
3759 {
3760 	pgd_t *pgd;
3761 	pud_t *pud;
3762 	pmd_t *pmd;
3763 	pte_t *pte;
3764 
3765 	if (unlikely(is_vm_hugetlb_page(vma)))
3766 		return hugetlb_fault(mm, vma, address, flags);
3767 
3768 retry:
3769 	pgd = pgd_offset(mm, address);
3770 	pud = pud_alloc(mm, pgd, address);
3771 	if (!pud)
3772 		return VM_FAULT_OOM;
3773 	pmd = pmd_alloc(mm, pud, address);
3774 	if (!pmd)
3775 		return VM_FAULT_OOM;
3776 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3777 		int ret = VM_FAULT_FALLBACK;
3778 		if (!vma->vm_ops)
3779 			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3780 					pmd, flags);
3781 		if (!(ret & VM_FAULT_FALLBACK))
3782 			return ret;
3783 	} else {
3784 		pmd_t orig_pmd = *pmd;
3785 		int ret;
3786 
3787 		barrier();
3788 		if (pmd_trans_huge(orig_pmd)) {
3789 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3790 
3791 			/*
3792 			 * If the pmd is splitting, return and retry the
3793 			 * the fault.  Alternative: wait until the split
3794 			 * is done, and goto retry.
3795 			 */
3796 			if (pmd_trans_splitting(orig_pmd))
3797 				return 0;
3798 
3799 			if (pmd_numa(orig_pmd))
3800 				return do_huge_pmd_numa_page(mm, vma, address,
3801 							     orig_pmd, pmd);
3802 
3803 			if (dirty && !pmd_write(orig_pmd)) {
3804 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3805 							  orig_pmd);
3806 				/*
3807 				 * If COW results in an oom, the huge pmd will
3808 				 * have been split, so retry the fault on the
3809 				 * pte for a smaller charge.
3810 				 */
3811 				if (unlikely(ret & VM_FAULT_OOM))
3812 					goto retry;
3813 				return ret;
3814 			} else {
3815 				huge_pmd_set_accessed(mm, vma, address, pmd,
3816 						      orig_pmd, dirty);
3817 			}
3818 
3819 			return 0;
3820 		}
3821 	}
3822 
3823 	if (pmd_numa(*pmd))
3824 		return do_pmd_numa_page(mm, vma, address, pmd);
3825 
3826 	/*
3827 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3828 	 * run pte_offset_map on the pmd, if an huge pmd could
3829 	 * materialize from under us from a different thread.
3830 	 */
3831 	if (unlikely(pmd_none(*pmd)) &&
3832 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3833 		return VM_FAULT_OOM;
3834 	/* if an huge pmd materialized from under us just retry later */
3835 	if (unlikely(pmd_trans_huge(*pmd)))
3836 		return 0;
3837 	/*
3838 	 * A regular pmd is established and it can't morph into a huge pmd
3839 	 * from under us anymore at this point because we hold the mmap_sem
3840 	 * read mode and khugepaged takes it in write mode. So now it's
3841 	 * safe to run pte_offset_map().
3842 	 */
3843 	pte = pte_offset_map(pmd, address);
3844 
3845 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3846 }
3847 
3848 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3849 		    unsigned long address, unsigned int flags)
3850 {
3851 	int ret;
3852 
3853 	__set_current_state(TASK_RUNNING);
3854 
3855 	count_vm_event(PGFAULT);
3856 	mem_cgroup_count_vm_event(mm, PGFAULT);
3857 
3858 	/* do counter updates before entering really critical section. */
3859 	check_sync_rss_stat(current);
3860 
3861 	/*
3862 	 * Enable the memcg OOM handling for faults triggered in user
3863 	 * space.  Kernel faults are handled more gracefully.
3864 	 */
3865 	if (flags & FAULT_FLAG_USER)
3866 		mem_cgroup_enable_oom();
3867 
3868 	ret = __handle_mm_fault(mm, vma, address, flags);
3869 
3870 	if (flags & FAULT_FLAG_USER)
3871 		mem_cgroup_disable_oom();
3872 
3873 	if (WARN_ON(task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)))
3874 		mem_cgroup_oom_synchronize();
3875 
3876 	return ret;
3877 }
3878 
3879 #ifndef __PAGETABLE_PUD_FOLDED
3880 /*
3881  * Allocate page upper directory.
3882  * We've already handled the fast-path in-line.
3883  */
3884 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3885 {
3886 	pud_t *new = pud_alloc_one(mm, address);
3887 	if (!new)
3888 		return -ENOMEM;
3889 
3890 	smp_wmb(); /* See comment in __pte_alloc */
3891 
3892 	spin_lock(&mm->page_table_lock);
3893 	if (pgd_present(*pgd))		/* Another has populated it */
3894 		pud_free(mm, new);
3895 	else
3896 		pgd_populate(mm, pgd, new);
3897 	spin_unlock(&mm->page_table_lock);
3898 	return 0;
3899 }
3900 #endif /* __PAGETABLE_PUD_FOLDED */
3901 
3902 #ifndef __PAGETABLE_PMD_FOLDED
3903 /*
3904  * Allocate page middle directory.
3905  * We've already handled the fast-path in-line.
3906  */
3907 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3908 {
3909 	pmd_t *new = pmd_alloc_one(mm, address);
3910 	if (!new)
3911 		return -ENOMEM;
3912 
3913 	smp_wmb(); /* See comment in __pte_alloc */
3914 
3915 	spin_lock(&mm->page_table_lock);
3916 #ifndef __ARCH_HAS_4LEVEL_HACK
3917 	if (pud_present(*pud))		/* Another has populated it */
3918 		pmd_free(mm, new);
3919 	else
3920 		pud_populate(mm, pud, new);
3921 #else
3922 	if (pgd_present(*pud))		/* Another has populated it */
3923 		pmd_free(mm, new);
3924 	else
3925 		pgd_populate(mm, pud, new);
3926 #endif /* __ARCH_HAS_4LEVEL_HACK */
3927 	spin_unlock(&mm->page_table_lock);
3928 	return 0;
3929 }
3930 #endif /* __PAGETABLE_PMD_FOLDED */
3931 
3932 #if !defined(__HAVE_ARCH_GATE_AREA)
3933 
3934 #if defined(AT_SYSINFO_EHDR)
3935 static struct vm_area_struct gate_vma;
3936 
3937 static int __init gate_vma_init(void)
3938 {
3939 	gate_vma.vm_mm = NULL;
3940 	gate_vma.vm_start = FIXADDR_USER_START;
3941 	gate_vma.vm_end = FIXADDR_USER_END;
3942 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3943 	gate_vma.vm_page_prot = __P101;
3944 
3945 	return 0;
3946 }
3947 __initcall(gate_vma_init);
3948 #endif
3949 
3950 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3951 {
3952 #ifdef AT_SYSINFO_EHDR
3953 	return &gate_vma;
3954 #else
3955 	return NULL;
3956 #endif
3957 }
3958 
3959 int in_gate_area_no_mm(unsigned long addr)
3960 {
3961 #ifdef AT_SYSINFO_EHDR
3962 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3963 		return 1;
3964 #endif
3965 	return 0;
3966 }
3967 
3968 #endif	/* __HAVE_ARCH_GATE_AREA */
3969 
3970 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3971 		pte_t **ptepp, spinlock_t **ptlp)
3972 {
3973 	pgd_t *pgd;
3974 	pud_t *pud;
3975 	pmd_t *pmd;
3976 	pte_t *ptep;
3977 
3978 	pgd = pgd_offset(mm, address);
3979 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3980 		goto out;
3981 
3982 	pud = pud_offset(pgd, address);
3983 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3984 		goto out;
3985 
3986 	pmd = pmd_offset(pud, address);
3987 	VM_BUG_ON(pmd_trans_huge(*pmd));
3988 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3989 		goto out;
3990 
3991 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3992 	if (pmd_huge(*pmd))
3993 		goto out;
3994 
3995 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3996 	if (!ptep)
3997 		goto out;
3998 	if (!pte_present(*ptep))
3999 		goto unlock;
4000 	*ptepp = ptep;
4001 	return 0;
4002 unlock:
4003 	pte_unmap_unlock(ptep, *ptlp);
4004 out:
4005 	return -EINVAL;
4006 }
4007 
4008 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4009 			     pte_t **ptepp, spinlock_t **ptlp)
4010 {
4011 	int res;
4012 
4013 	/* (void) is needed to make gcc happy */
4014 	(void) __cond_lock(*ptlp,
4015 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
4016 	return res;
4017 }
4018 
4019 /**
4020  * follow_pfn - look up PFN at a user virtual address
4021  * @vma: memory mapping
4022  * @address: user virtual address
4023  * @pfn: location to store found PFN
4024  *
4025  * Only IO mappings and raw PFN mappings are allowed.
4026  *
4027  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4028  */
4029 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4030 	unsigned long *pfn)
4031 {
4032 	int ret = -EINVAL;
4033 	spinlock_t *ptl;
4034 	pte_t *ptep;
4035 
4036 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4037 		return ret;
4038 
4039 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4040 	if (ret)
4041 		return ret;
4042 	*pfn = pte_pfn(*ptep);
4043 	pte_unmap_unlock(ptep, ptl);
4044 	return 0;
4045 }
4046 EXPORT_SYMBOL(follow_pfn);
4047 
4048 #ifdef CONFIG_HAVE_IOREMAP_PROT
4049 int follow_phys(struct vm_area_struct *vma,
4050 		unsigned long address, unsigned int flags,
4051 		unsigned long *prot, resource_size_t *phys)
4052 {
4053 	int ret = -EINVAL;
4054 	pte_t *ptep, pte;
4055 	spinlock_t *ptl;
4056 
4057 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4058 		goto out;
4059 
4060 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4061 		goto out;
4062 	pte = *ptep;
4063 
4064 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4065 		goto unlock;
4066 
4067 	*prot = pgprot_val(pte_pgprot(pte));
4068 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4069 
4070 	ret = 0;
4071 unlock:
4072 	pte_unmap_unlock(ptep, ptl);
4073 out:
4074 	return ret;
4075 }
4076 
4077 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4078 			void *buf, int len, int write)
4079 {
4080 	resource_size_t phys_addr;
4081 	unsigned long prot = 0;
4082 	void __iomem *maddr;
4083 	int offset = addr & (PAGE_SIZE-1);
4084 
4085 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4086 		return -EINVAL;
4087 
4088 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4089 	if (write)
4090 		memcpy_toio(maddr + offset, buf, len);
4091 	else
4092 		memcpy_fromio(buf, maddr + offset, len);
4093 	iounmap(maddr);
4094 
4095 	return len;
4096 }
4097 EXPORT_SYMBOL_GPL(generic_access_phys);
4098 #endif
4099 
4100 /*
4101  * Access another process' address space as given in mm.  If non-NULL, use the
4102  * given task for page fault accounting.
4103  */
4104 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4105 		unsigned long addr, void *buf, int len, int write)
4106 {
4107 	struct vm_area_struct *vma;
4108 	void *old_buf = buf;
4109 
4110 	down_read(&mm->mmap_sem);
4111 	/* ignore errors, just check how much was successfully transferred */
4112 	while (len) {
4113 		int bytes, ret, offset;
4114 		void *maddr;
4115 		struct page *page = NULL;
4116 
4117 		ret = get_user_pages(tsk, mm, addr, 1,
4118 				write, 1, &page, &vma);
4119 		if (ret <= 0) {
4120 			/*
4121 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4122 			 * we can access using slightly different code.
4123 			 */
4124 #ifdef CONFIG_HAVE_IOREMAP_PROT
4125 			vma = find_vma(mm, addr);
4126 			if (!vma || vma->vm_start > addr)
4127 				break;
4128 			if (vma->vm_ops && vma->vm_ops->access)
4129 				ret = vma->vm_ops->access(vma, addr, buf,
4130 							  len, write);
4131 			if (ret <= 0)
4132 #endif
4133 				break;
4134 			bytes = ret;
4135 		} else {
4136 			bytes = len;
4137 			offset = addr & (PAGE_SIZE-1);
4138 			if (bytes > PAGE_SIZE-offset)
4139 				bytes = PAGE_SIZE-offset;
4140 
4141 			maddr = kmap(page);
4142 			if (write) {
4143 				copy_to_user_page(vma, page, addr,
4144 						  maddr + offset, buf, bytes);
4145 				set_page_dirty_lock(page);
4146 			} else {
4147 				copy_from_user_page(vma, page, addr,
4148 						    buf, maddr + offset, bytes);
4149 			}
4150 			kunmap(page);
4151 			page_cache_release(page);
4152 		}
4153 		len -= bytes;
4154 		buf += bytes;
4155 		addr += bytes;
4156 	}
4157 	up_read(&mm->mmap_sem);
4158 
4159 	return buf - old_buf;
4160 }
4161 
4162 /**
4163  * access_remote_vm - access another process' address space
4164  * @mm:		the mm_struct of the target address space
4165  * @addr:	start address to access
4166  * @buf:	source or destination buffer
4167  * @len:	number of bytes to transfer
4168  * @write:	whether the access is a write
4169  *
4170  * The caller must hold a reference on @mm.
4171  */
4172 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4173 		void *buf, int len, int write)
4174 {
4175 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4176 }
4177 
4178 /*
4179  * Access another process' address space.
4180  * Source/target buffer must be kernel space,
4181  * Do not walk the page table directly, use get_user_pages
4182  */
4183 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4184 		void *buf, int len, int write)
4185 {
4186 	struct mm_struct *mm;
4187 	int ret;
4188 
4189 	mm = get_task_mm(tsk);
4190 	if (!mm)
4191 		return 0;
4192 
4193 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4194 	mmput(mm);
4195 
4196 	return ret;
4197 }
4198 
4199 /*
4200  * Print the name of a VMA.
4201  */
4202 void print_vma_addr(char *prefix, unsigned long ip)
4203 {
4204 	struct mm_struct *mm = current->mm;
4205 	struct vm_area_struct *vma;
4206 
4207 	/*
4208 	 * Do not print if we are in atomic
4209 	 * contexts (in exception stacks, etc.):
4210 	 */
4211 	if (preempt_count())
4212 		return;
4213 
4214 	down_read(&mm->mmap_sem);
4215 	vma = find_vma(mm, ip);
4216 	if (vma && vma->vm_file) {
4217 		struct file *f = vma->vm_file;
4218 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4219 		if (buf) {
4220 			char *p;
4221 
4222 			p = d_path(&f->f_path, buf, PAGE_SIZE);
4223 			if (IS_ERR(p))
4224 				p = "?";
4225 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4226 					vma->vm_start,
4227 					vma->vm_end - vma->vm_start);
4228 			free_page((unsigned long)buf);
4229 		}
4230 	}
4231 	up_read(&mm->mmap_sem);
4232 }
4233 
4234 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4235 void might_fault(void)
4236 {
4237 	/*
4238 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4239 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4240 	 * get paged out, therefore we'll never actually fault, and the
4241 	 * below annotations will generate false positives.
4242 	 */
4243 	if (segment_eq(get_fs(), KERNEL_DS))
4244 		return;
4245 
4246 	/*
4247 	 * it would be nicer only to annotate paths which are not under
4248 	 * pagefault_disable, however that requires a larger audit and
4249 	 * providing helpers like get_user_atomic.
4250 	 */
4251 	if (in_atomic())
4252 		return;
4253 
4254 	__might_sleep(__FILE__, __LINE__, 0);
4255 
4256 	if (current->mm)
4257 		might_lock_read(&current->mm->mmap_sem);
4258 }
4259 EXPORT_SYMBOL(might_fault);
4260 #endif
4261 
4262 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4263 static void clear_gigantic_page(struct page *page,
4264 				unsigned long addr,
4265 				unsigned int pages_per_huge_page)
4266 {
4267 	int i;
4268 	struct page *p = page;
4269 
4270 	might_sleep();
4271 	for (i = 0; i < pages_per_huge_page;
4272 	     i++, p = mem_map_next(p, page, i)) {
4273 		cond_resched();
4274 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4275 	}
4276 }
4277 void clear_huge_page(struct page *page,
4278 		     unsigned long addr, unsigned int pages_per_huge_page)
4279 {
4280 	int i;
4281 
4282 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4283 		clear_gigantic_page(page, addr, pages_per_huge_page);
4284 		return;
4285 	}
4286 
4287 	might_sleep();
4288 	for (i = 0; i < pages_per_huge_page; i++) {
4289 		cond_resched();
4290 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4291 	}
4292 }
4293 
4294 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4295 				    unsigned long addr,
4296 				    struct vm_area_struct *vma,
4297 				    unsigned int pages_per_huge_page)
4298 {
4299 	int i;
4300 	struct page *dst_base = dst;
4301 	struct page *src_base = src;
4302 
4303 	for (i = 0; i < pages_per_huge_page; ) {
4304 		cond_resched();
4305 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4306 
4307 		i++;
4308 		dst = mem_map_next(dst, dst_base, i);
4309 		src = mem_map_next(src, src_base, i);
4310 	}
4311 }
4312 
4313 void copy_user_huge_page(struct page *dst, struct page *src,
4314 			 unsigned long addr, struct vm_area_struct *vma,
4315 			 unsigned int pages_per_huge_page)
4316 {
4317 	int i;
4318 
4319 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4320 		copy_user_gigantic_page(dst, src, addr, vma,
4321 					pages_per_huge_page);
4322 		return;
4323 	}
4324 
4325 	might_sleep();
4326 	for (i = 0; i < pages_per_huge_page; i++) {
4327 		cond_resched();
4328 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4329 	}
4330 }
4331 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4332