xref: /openbmc/linux/mm/memory.c (revision 5a32c3413d3340f90c82c84b375ad4b335a59f28)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 
77 #include <trace/events/kmem.h>
78 
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 
86 #include "pgalloc-track.h"
87 #include "internal.h"
88 
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92 
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97 
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101 
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111 
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 					1;
121 #else
122 					2;
123 #endif
124 
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 	/*
129 	 * Those arches which don't have hw access flag feature need to
130 	 * implement their own helper. By default, "true" means pagefault
131 	 * will be hit on old pte.
132 	 */
133 	return true;
134 }
135 #endif
136 
137 static int __init disable_randmaps(char *s)
138 {
139 	randomize_va_space = 0;
140 	return 1;
141 }
142 __setup("norandmaps", disable_randmaps);
143 
144 unsigned long zero_pfn __read_mostly;
145 EXPORT_SYMBOL(zero_pfn);
146 
147 unsigned long highest_memmap_pfn __read_mostly;
148 
149 /*
150  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
151  */
152 static int __init init_zero_pfn(void)
153 {
154 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
155 	return 0;
156 }
157 core_initcall(init_zero_pfn);
158 
159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
160 {
161 	trace_rss_stat(mm, member, count);
162 }
163 
164 #if defined(SPLIT_RSS_COUNTING)
165 
166 void sync_mm_rss(struct mm_struct *mm)
167 {
168 	int i;
169 
170 	for (i = 0; i < NR_MM_COUNTERS; i++) {
171 		if (current->rss_stat.count[i]) {
172 			add_mm_counter(mm, i, current->rss_stat.count[i]);
173 			current->rss_stat.count[i] = 0;
174 		}
175 	}
176 	current->rss_stat.events = 0;
177 }
178 
179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
180 {
181 	struct task_struct *task = current;
182 
183 	if (likely(task->mm == mm))
184 		task->rss_stat.count[member] += val;
185 	else
186 		add_mm_counter(mm, member, val);
187 }
188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
190 
191 /* sync counter once per 64 page faults */
192 #define TASK_RSS_EVENTS_THRESH	(64)
193 static void check_sync_rss_stat(struct task_struct *task)
194 {
195 	if (unlikely(task != current))
196 		return;
197 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
198 		sync_mm_rss(task->mm);
199 }
200 #else /* SPLIT_RSS_COUNTING */
201 
202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
204 
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 }
208 
209 #endif /* SPLIT_RSS_COUNTING */
210 
211 /*
212  * Note: this doesn't free the actual pages themselves. That
213  * has been handled earlier when unmapping all the memory regions.
214  */
215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
216 			   unsigned long addr)
217 {
218 	pgtable_t token = pmd_pgtable(*pmd);
219 	pmd_clear(pmd);
220 	pte_free_tlb(tlb, token, addr);
221 	mm_dec_nr_ptes(tlb->mm);
222 }
223 
224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
225 				unsigned long addr, unsigned long end,
226 				unsigned long floor, unsigned long ceiling)
227 {
228 	pmd_t *pmd;
229 	unsigned long next;
230 	unsigned long start;
231 
232 	start = addr;
233 	pmd = pmd_offset(pud, addr);
234 	do {
235 		next = pmd_addr_end(addr, end);
236 		if (pmd_none_or_clear_bad(pmd))
237 			continue;
238 		free_pte_range(tlb, pmd, addr);
239 	} while (pmd++, addr = next, addr != end);
240 
241 	start &= PUD_MASK;
242 	if (start < floor)
243 		return;
244 	if (ceiling) {
245 		ceiling &= PUD_MASK;
246 		if (!ceiling)
247 			return;
248 	}
249 	if (end - 1 > ceiling - 1)
250 		return;
251 
252 	pmd = pmd_offset(pud, start);
253 	pud_clear(pud);
254 	pmd_free_tlb(tlb, pmd, start);
255 	mm_dec_nr_pmds(tlb->mm);
256 }
257 
258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
259 				unsigned long addr, unsigned long end,
260 				unsigned long floor, unsigned long ceiling)
261 {
262 	pud_t *pud;
263 	unsigned long next;
264 	unsigned long start;
265 
266 	start = addr;
267 	pud = pud_offset(p4d, addr);
268 	do {
269 		next = pud_addr_end(addr, end);
270 		if (pud_none_or_clear_bad(pud))
271 			continue;
272 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
273 	} while (pud++, addr = next, addr != end);
274 
275 	start &= P4D_MASK;
276 	if (start < floor)
277 		return;
278 	if (ceiling) {
279 		ceiling &= P4D_MASK;
280 		if (!ceiling)
281 			return;
282 	}
283 	if (end - 1 > ceiling - 1)
284 		return;
285 
286 	pud = pud_offset(p4d, start);
287 	p4d_clear(p4d);
288 	pud_free_tlb(tlb, pud, start);
289 	mm_dec_nr_puds(tlb->mm);
290 }
291 
292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
293 				unsigned long addr, unsigned long end,
294 				unsigned long floor, unsigned long ceiling)
295 {
296 	p4d_t *p4d;
297 	unsigned long next;
298 	unsigned long start;
299 
300 	start = addr;
301 	p4d = p4d_offset(pgd, addr);
302 	do {
303 		next = p4d_addr_end(addr, end);
304 		if (p4d_none_or_clear_bad(p4d))
305 			continue;
306 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
307 	} while (p4d++, addr = next, addr != end);
308 
309 	start &= PGDIR_MASK;
310 	if (start < floor)
311 		return;
312 	if (ceiling) {
313 		ceiling &= PGDIR_MASK;
314 		if (!ceiling)
315 			return;
316 	}
317 	if (end - 1 > ceiling - 1)
318 		return;
319 
320 	p4d = p4d_offset(pgd, start);
321 	pgd_clear(pgd);
322 	p4d_free_tlb(tlb, p4d, start);
323 }
324 
325 /*
326  * This function frees user-level page tables of a process.
327  */
328 void free_pgd_range(struct mmu_gather *tlb,
329 			unsigned long addr, unsigned long end,
330 			unsigned long floor, unsigned long ceiling)
331 {
332 	pgd_t *pgd;
333 	unsigned long next;
334 
335 	/*
336 	 * The next few lines have given us lots of grief...
337 	 *
338 	 * Why are we testing PMD* at this top level?  Because often
339 	 * there will be no work to do at all, and we'd prefer not to
340 	 * go all the way down to the bottom just to discover that.
341 	 *
342 	 * Why all these "- 1"s?  Because 0 represents both the bottom
343 	 * of the address space and the top of it (using -1 for the
344 	 * top wouldn't help much: the masks would do the wrong thing).
345 	 * The rule is that addr 0 and floor 0 refer to the bottom of
346 	 * the address space, but end 0 and ceiling 0 refer to the top
347 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
348 	 * that end 0 case should be mythical).
349 	 *
350 	 * Wherever addr is brought up or ceiling brought down, we must
351 	 * be careful to reject "the opposite 0" before it confuses the
352 	 * subsequent tests.  But what about where end is brought down
353 	 * by PMD_SIZE below? no, end can't go down to 0 there.
354 	 *
355 	 * Whereas we round start (addr) and ceiling down, by different
356 	 * masks at different levels, in order to test whether a table
357 	 * now has no other vmas using it, so can be freed, we don't
358 	 * bother to round floor or end up - the tests don't need that.
359 	 */
360 
361 	addr &= PMD_MASK;
362 	if (addr < floor) {
363 		addr += PMD_SIZE;
364 		if (!addr)
365 			return;
366 	}
367 	if (ceiling) {
368 		ceiling &= PMD_MASK;
369 		if (!ceiling)
370 			return;
371 	}
372 	if (end - 1 > ceiling - 1)
373 		end -= PMD_SIZE;
374 	if (addr > end - 1)
375 		return;
376 	/*
377 	 * We add page table cache pages with PAGE_SIZE,
378 	 * (see pte_free_tlb()), flush the tlb if we need
379 	 */
380 	tlb_change_page_size(tlb, PAGE_SIZE);
381 	pgd = pgd_offset(tlb->mm, addr);
382 	do {
383 		next = pgd_addr_end(addr, end);
384 		if (pgd_none_or_clear_bad(pgd))
385 			continue;
386 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
387 	} while (pgd++, addr = next, addr != end);
388 }
389 
390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
391 		unsigned long floor, unsigned long ceiling)
392 {
393 	while (vma) {
394 		struct vm_area_struct *next = vma->vm_next;
395 		unsigned long addr = vma->vm_start;
396 
397 		/*
398 		 * Hide vma from rmap and truncate_pagecache before freeing
399 		 * pgtables
400 		 */
401 		unlink_anon_vmas(vma);
402 		unlink_file_vma(vma);
403 
404 		if (is_vm_hugetlb_page(vma)) {
405 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		} else {
408 			/*
409 			 * Optimization: gather nearby vmas into one call down
410 			 */
411 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
412 			       && !is_vm_hugetlb_page(next)) {
413 				vma = next;
414 				next = vma->vm_next;
415 				unlink_anon_vmas(vma);
416 				unlink_file_vma(vma);
417 			}
418 			free_pgd_range(tlb, addr, vma->vm_end,
419 				floor, next ? next->vm_start : ceiling);
420 		}
421 		vma = next;
422 	}
423 }
424 
425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
426 {
427 	spinlock_t *ptl;
428 	pgtable_t new = pte_alloc_one(mm);
429 	if (!new)
430 		return -ENOMEM;
431 
432 	/*
433 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
434 	 * visible before the pte is made visible to other CPUs by being
435 	 * put into page tables.
436 	 *
437 	 * The other side of the story is the pointer chasing in the page
438 	 * table walking code (when walking the page table without locking;
439 	 * ie. most of the time). Fortunately, these data accesses consist
440 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
441 	 * being the notable exception) will already guarantee loads are
442 	 * seen in-order. See the alpha page table accessors for the
443 	 * smp_rmb() barriers in page table walking code.
444 	 */
445 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
446 
447 	ptl = pmd_lock(mm, pmd);
448 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
449 		mm_inc_nr_ptes(mm);
450 		pmd_populate(mm, pmd, new);
451 		new = NULL;
452 	}
453 	spin_unlock(ptl);
454 	if (new)
455 		pte_free(mm, new);
456 	return 0;
457 }
458 
459 int __pte_alloc_kernel(pmd_t *pmd)
460 {
461 	pte_t *new = pte_alloc_one_kernel(&init_mm);
462 	if (!new)
463 		return -ENOMEM;
464 
465 	smp_wmb(); /* See comment in __pte_alloc */
466 
467 	spin_lock(&init_mm.page_table_lock);
468 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
469 		pmd_populate_kernel(&init_mm, pmd, new);
470 		new = NULL;
471 	}
472 	spin_unlock(&init_mm.page_table_lock);
473 	if (new)
474 		pte_free_kernel(&init_mm, new);
475 	return 0;
476 }
477 
478 static inline void init_rss_vec(int *rss)
479 {
480 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
481 }
482 
483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
484 {
485 	int i;
486 
487 	if (current->mm == mm)
488 		sync_mm_rss(mm);
489 	for (i = 0; i < NR_MM_COUNTERS; i++)
490 		if (rss[i])
491 			add_mm_counter(mm, i, rss[i]);
492 }
493 
494 /*
495  * This function is called to print an error when a bad pte
496  * is found. For example, we might have a PFN-mapped pte in
497  * a region that doesn't allow it.
498  *
499  * The calling function must still handle the error.
500  */
501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
502 			  pte_t pte, struct page *page)
503 {
504 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
505 	p4d_t *p4d = p4d_offset(pgd, addr);
506 	pud_t *pud = pud_offset(p4d, addr);
507 	pmd_t *pmd = pmd_offset(pud, addr);
508 	struct address_space *mapping;
509 	pgoff_t index;
510 	static unsigned long resume;
511 	static unsigned long nr_shown;
512 	static unsigned long nr_unshown;
513 
514 	/*
515 	 * Allow a burst of 60 reports, then keep quiet for that minute;
516 	 * or allow a steady drip of one report per second.
517 	 */
518 	if (nr_shown == 60) {
519 		if (time_before(jiffies, resume)) {
520 			nr_unshown++;
521 			return;
522 		}
523 		if (nr_unshown) {
524 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
525 				 nr_unshown);
526 			nr_unshown = 0;
527 		}
528 		nr_shown = 0;
529 	}
530 	if (nr_shown++ == 0)
531 		resume = jiffies + 60 * HZ;
532 
533 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
534 	index = linear_page_index(vma, addr);
535 
536 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
537 		 current->comm,
538 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
539 	if (page)
540 		dump_page(page, "bad pte");
541 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
542 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
543 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
544 		 vma->vm_file,
545 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
546 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
547 		 mapping ? mapping->a_ops->readpage : NULL);
548 	dump_stack();
549 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551 
552 /*
553  * vm_normal_page -- This function gets the "struct page" associated with a pte.
554  *
555  * "Special" mappings do not wish to be associated with a "struct page" (either
556  * it doesn't exist, or it exists but they don't want to touch it). In this
557  * case, NULL is returned here. "Normal" mappings do have a struct page.
558  *
559  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
560  * pte bit, in which case this function is trivial. Secondly, an architecture
561  * may not have a spare pte bit, which requires a more complicated scheme,
562  * described below.
563  *
564  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
565  * special mapping (even if there are underlying and valid "struct pages").
566  * COWed pages of a VM_PFNMAP are always normal.
567  *
568  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
569  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
570  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
571  * mapping will always honor the rule
572  *
573  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
574  *
575  * And for normal mappings this is false.
576  *
577  * This restricts such mappings to be a linear translation from virtual address
578  * to pfn. To get around this restriction, we allow arbitrary mappings so long
579  * as the vma is not a COW mapping; in that case, we know that all ptes are
580  * special (because none can have been COWed).
581  *
582  *
583  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
584  *
585  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
586  * page" backing, however the difference is that _all_ pages with a struct
587  * page (that is, those where pfn_valid is true) are refcounted and considered
588  * normal pages by the VM. The disadvantage is that pages are refcounted
589  * (which can be slower and simply not an option for some PFNMAP users). The
590  * advantage is that we don't have to follow the strict linearity rule of
591  * PFNMAP mappings in order to support COWable mappings.
592  *
593  */
594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
595 			    pte_t pte)
596 {
597 	unsigned long pfn = pte_pfn(pte);
598 
599 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
600 		if (likely(!pte_special(pte)))
601 			goto check_pfn;
602 		if (vma->vm_ops && vma->vm_ops->find_special_page)
603 			return vma->vm_ops->find_special_page(vma, addr);
604 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
605 			return NULL;
606 		if (is_zero_pfn(pfn))
607 			return NULL;
608 		if (pte_devmap(pte))
609 			return NULL;
610 
611 		print_bad_pte(vma, addr, pte, NULL);
612 		return NULL;
613 	}
614 
615 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
616 
617 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
618 		if (vma->vm_flags & VM_MIXEDMAP) {
619 			if (!pfn_valid(pfn))
620 				return NULL;
621 			goto out;
622 		} else {
623 			unsigned long off;
624 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
625 			if (pfn == vma->vm_pgoff + off)
626 				return NULL;
627 			if (!is_cow_mapping(vma->vm_flags))
628 				return NULL;
629 		}
630 	}
631 
632 	if (is_zero_pfn(pfn))
633 		return NULL;
634 
635 check_pfn:
636 	if (unlikely(pfn > highest_memmap_pfn)) {
637 		print_bad_pte(vma, addr, pte, NULL);
638 		return NULL;
639 	}
640 
641 	/*
642 	 * NOTE! We still have PageReserved() pages in the page tables.
643 	 * eg. VDSO mappings can cause them to exist.
644 	 */
645 out:
646 	return pfn_to_page(pfn);
647 }
648 
649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
651 				pmd_t pmd)
652 {
653 	unsigned long pfn = pmd_pfn(pmd);
654 
655 	/*
656 	 * There is no pmd_special() but there may be special pmds, e.g.
657 	 * in a direct-access (dax) mapping, so let's just replicate the
658 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
659 	 */
660 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
661 		if (vma->vm_flags & VM_MIXEDMAP) {
662 			if (!pfn_valid(pfn))
663 				return NULL;
664 			goto out;
665 		} else {
666 			unsigned long off;
667 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
668 			if (pfn == vma->vm_pgoff + off)
669 				return NULL;
670 			if (!is_cow_mapping(vma->vm_flags))
671 				return NULL;
672 		}
673 	}
674 
675 	if (pmd_devmap(pmd))
676 		return NULL;
677 	if (is_huge_zero_pmd(pmd))
678 		return NULL;
679 	if (unlikely(pfn > highest_memmap_pfn))
680 		return NULL;
681 
682 	/*
683 	 * NOTE! We still have PageReserved() pages in the page tables.
684 	 * eg. VDSO mappings can cause them to exist.
685 	 */
686 out:
687 	return pfn_to_page(pfn);
688 }
689 #endif
690 
691 /*
692  * copy one vm_area from one task to the other. Assumes the page tables
693  * already present in the new task to be cleared in the whole range
694  * covered by this vma.
695  */
696 
697 static unsigned long
698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
699 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
700 		unsigned long addr, int *rss)
701 {
702 	unsigned long vm_flags = vma->vm_flags;
703 	pte_t pte = *src_pte;
704 	struct page *page;
705 	swp_entry_t entry = pte_to_swp_entry(pte);
706 
707 	if (likely(!non_swap_entry(entry))) {
708 		if (swap_duplicate(entry) < 0)
709 			return entry.val;
710 
711 		/* make sure dst_mm is on swapoff's mmlist. */
712 		if (unlikely(list_empty(&dst_mm->mmlist))) {
713 			spin_lock(&mmlist_lock);
714 			if (list_empty(&dst_mm->mmlist))
715 				list_add(&dst_mm->mmlist,
716 						&src_mm->mmlist);
717 			spin_unlock(&mmlist_lock);
718 		}
719 		rss[MM_SWAPENTS]++;
720 	} else if (is_migration_entry(entry)) {
721 		page = migration_entry_to_page(entry);
722 
723 		rss[mm_counter(page)]++;
724 
725 		if (is_write_migration_entry(entry) &&
726 				is_cow_mapping(vm_flags)) {
727 			/*
728 			 * COW mappings require pages in both
729 			 * parent and child to be set to read.
730 			 */
731 			make_migration_entry_read(&entry);
732 			pte = swp_entry_to_pte(entry);
733 			if (pte_swp_soft_dirty(*src_pte))
734 				pte = pte_swp_mksoft_dirty(pte);
735 			if (pte_swp_uffd_wp(*src_pte))
736 				pte = pte_swp_mkuffd_wp(pte);
737 			set_pte_at(src_mm, addr, src_pte, pte);
738 		}
739 	} else if (is_device_private_entry(entry)) {
740 		page = device_private_entry_to_page(entry);
741 
742 		/*
743 		 * Update rss count even for unaddressable pages, as
744 		 * they should treated just like normal pages in this
745 		 * respect.
746 		 *
747 		 * We will likely want to have some new rss counters
748 		 * for unaddressable pages, at some point. But for now
749 		 * keep things as they are.
750 		 */
751 		get_page(page);
752 		rss[mm_counter(page)]++;
753 		page_dup_rmap(page, false);
754 
755 		/*
756 		 * We do not preserve soft-dirty information, because so
757 		 * far, checkpoint/restore is the only feature that
758 		 * requires that. And checkpoint/restore does not work
759 		 * when a device driver is involved (you cannot easily
760 		 * save and restore device driver state).
761 		 */
762 		if (is_write_device_private_entry(entry) &&
763 		    is_cow_mapping(vm_flags)) {
764 			make_device_private_entry_read(&entry);
765 			pte = swp_entry_to_pte(entry);
766 			if (pte_swp_uffd_wp(*src_pte))
767 				pte = pte_swp_mkuffd_wp(pte);
768 			set_pte_at(src_mm, addr, src_pte, pte);
769 		}
770 	}
771 	set_pte_at(dst_mm, addr, dst_pte, pte);
772 	return 0;
773 }
774 
775 /*
776  * Copy a present and normal page if necessary.
777  *
778  * NOTE! The usual case is that this doesn't need to do
779  * anything, and can just return a positive value. That
780  * will let the caller know that it can just increase
781  * the page refcount and re-use the pte the traditional
782  * way.
783  *
784  * But _if_ we need to copy it because it needs to be
785  * pinned in the parent (and the child should get its own
786  * copy rather than just a reference to the same page),
787  * we'll do that here and return zero to let the caller
788  * know we're done.
789  *
790  * And if we need a pre-allocated page but don't yet have
791  * one, return a negative error to let the preallocation
792  * code know so that it can do so outside the page table
793  * lock.
794  */
795 static inline int
796 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
797 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
798 		  struct page **prealloc, pte_t pte, struct page *page)
799 {
800 	struct mm_struct *src_mm = src_vma->vm_mm;
801 	struct page *new_page;
802 
803 	if (!is_cow_mapping(src_vma->vm_flags))
804 		return 1;
805 
806 	/*
807 	 * What we want to do is to check whether this page may
808 	 * have been pinned by the parent process.  If so,
809 	 * instead of wrprotect the pte on both sides, we copy
810 	 * the page immediately so that we'll always guarantee
811 	 * the pinned page won't be randomly replaced in the
812 	 * future.
813 	 *
814 	 * The page pinning checks are just "has this mm ever
815 	 * seen pinning", along with the (inexact) check of
816 	 * the page count. That might give false positives for
817 	 * for pinning, but it will work correctly.
818 	 */
819 	if (likely(!atomic_read(&src_mm->has_pinned)))
820 		return 1;
821 	if (likely(!page_maybe_dma_pinned(page)))
822 		return 1;
823 
824 	new_page = *prealloc;
825 	if (!new_page)
826 		return -EAGAIN;
827 
828 	/*
829 	 * We have a prealloc page, all good!  Take it
830 	 * over and copy the page & arm it.
831 	 */
832 	*prealloc = NULL;
833 	copy_user_highpage(new_page, page, addr, src_vma);
834 	__SetPageUptodate(new_page);
835 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
836 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
837 	rss[mm_counter(new_page)]++;
838 
839 	/* All done, just insert the new page copy in the child */
840 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
841 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
842 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
843 	return 0;
844 }
845 
846 /*
847  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
848  * is required to copy this pte.
849  */
850 static inline int
851 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
852 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
853 		 struct page **prealloc)
854 {
855 	struct mm_struct *src_mm = src_vma->vm_mm;
856 	unsigned long vm_flags = src_vma->vm_flags;
857 	pte_t pte = *src_pte;
858 	struct page *page;
859 
860 	page = vm_normal_page(src_vma, addr, pte);
861 	if (page) {
862 		int retval;
863 
864 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
865 					   addr, rss, prealloc, pte, page);
866 		if (retval <= 0)
867 			return retval;
868 
869 		get_page(page);
870 		page_dup_rmap(page, false);
871 		rss[mm_counter(page)]++;
872 	}
873 
874 	/*
875 	 * If it's a COW mapping, write protect it both
876 	 * in the parent and the child
877 	 */
878 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
879 		ptep_set_wrprotect(src_mm, addr, src_pte);
880 		pte = pte_wrprotect(pte);
881 	}
882 
883 	/*
884 	 * If it's a shared mapping, mark it clean in
885 	 * the child
886 	 */
887 	if (vm_flags & VM_SHARED)
888 		pte = pte_mkclean(pte);
889 	pte = pte_mkold(pte);
890 
891 	/*
892 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
893 	 * does not have the VM_UFFD_WP, which means that the uffd
894 	 * fork event is not enabled.
895 	 */
896 	if (!(vm_flags & VM_UFFD_WP))
897 		pte = pte_clear_uffd_wp(pte);
898 
899 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
900 	return 0;
901 }
902 
903 static inline struct page *
904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
905 		   unsigned long addr)
906 {
907 	struct page *new_page;
908 
909 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
910 	if (!new_page)
911 		return NULL;
912 
913 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
914 		put_page(new_page);
915 		return NULL;
916 	}
917 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
918 
919 	return new_page;
920 }
921 
922 static int
923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
925 	       unsigned long end)
926 {
927 	struct mm_struct *dst_mm = dst_vma->vm_mm;
928 	struct mm_struct *src_mm = src_vma->vm_mm;
929 	pte_t *orig_src_pte, *orig_dst_pte;
930 	pte_t *src_pte, *dst_pte;
931 	spinlock_t *src_ptl, *dst_ptl;
932 	int progress, ret = 0;
933 	int rss[NR_MM_COUNTERS];
934 	swp_entry_t entry = (swp_entry_t){0};
935 	struct page *prealloc = NULL;
936 
937 again:
938 	progress = 0;
939 	init_rss_vec(rss);
940 
941 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
942 	if (!dst_pte) {
943 		ret = -ENOMEM;
944 		goto out;
945 	}
946 	src_pte = pte_offset_map(src_pmd, addr);
947 	src_ptl = pte_lockptr(src_mm, src_pmd);
948 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
949 	orig_src_pte = src_pte;
950 	orig_dst_pte = dst_pte;
951 	arch_enter_lazy_mmu_mode();
952 
953 	do {
954 		/*
955 		 * We are holding two locks at this point - either of them
956 		 * could generate latencies in another task on another CPU.
957 		 */
958 		if (progress >= 32) {
959 			progress = 0;
960 			if (need_resched() ||
961 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
962 				break;
963 		}
964 		if (pte_none(*src_pte)) {
965 			progress++;
966 			continue;
967 		}
968 		if (unlikely(!pte_present(*src_pte))) {
969 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
970 							dst_pte, src_pte,
971 							src_vma, addr, rss);
972 			if (entry.val)
973 				break;
974 			progress += 8;
975 			continue;
976 		}
977 		/* copy_present_pte() will clear `*prealloc' if consumed */
978 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
979 				       addr, rss, &prealloc);
980 		/*
981 		 * If we need a pre-allocated page for this pte, drop the
982 		 * locks, allocate, and try again.
983 		 */
984 		if (unlikely(ret == -EAGAIN))
985 			break;
986 		if (unlikely(prealloc)) {
987 			/*
988 			 * pre-alloc page cannot be reused by next time so as
989 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
990 			 * will allocate page according to address).  This
991 			 * could only happen if one pinned pte changed.
992 			 */
993 			put_page(prealloc);
994 			prealloc = NULL;
995 		}
996 		progress += 8;
997 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
998 
999 	arch_leave_lazy_mmu_mode();
1000 	spin_unlock(src_ptl);
1001 	pte_unmap(orig_src_pte);
1002 	add_mm_rss_vec(dst_mm, rss);
1003 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1004 	cond_resched();
1005 
1006 	if (entry.val) {
1007 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1008 			ret = -ENOMEM;
1009 			goto out;
1010 		}
1011 		entry.val = 0;
1012 	} else if (ret) {
1013 		WARN_ON_ONCE(ret != -EAGAIN);
1014 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1015 		if (!prealloc)
1016 			return -ENOMEM;
1017 		/* We've captured and resolved the error. Reset, try again. */
1018 		ret = 0;
1019 	}
1020 	if (addr != end)
1021 		goto again;
1022 out:
1023 	if (unlikely(prealloc))
1024 		put_page(prealloc);
1025 	return ret;
1026 }
1027 
1028 static inline int
1029 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1030 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1031 	       unsigned long end)
1032 {
1033 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1034 	struct mm_struct *src_mm = src_vma->vm_mm;
1035 	pmd_t *src_pmd, *dst_pmd;
1036 	unsigned long next;
1037 
1038 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1039 	if (!dst_pmd)
1040 		return -ENOMEM;
1041 	src_pmd = pmd_offset(src_pud, addr);
1042 	do {
1043 		next = pmd_addr_end(addr, end);
1044 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1045 			|| pmd_devmap(*src_pmd)) {
1046 			int err;
1047 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1048 			err = copy_huge_pmd(dst_mm, src_mm,
1049 					    dst_pmd, src_pmd, addr, src_vma);
1050 			if (err == -ENOMEM)
1051 				return -ENOMEM;
1052 			if (!err)
1053 				continue;
1054 			/* fall through */
1055 		}
1056 		if (pmd_none_or_clear_bad(src_pmd))
1057 			continue;
1058 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1059 				   addr, next))
1060 			return -ENOMEM;
1061 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1062 	return 0;
1063 }
1064 
1065 static inline int
1066 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1067 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1068 	       unsigned long end)
1069 {
1070 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1071 	struct mm_struct *src_mm = src_vma->vm_mm;
1072 	pud_t *src_pud, *dst_pud;
1073 	unsigned long next;
1074 
1075 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1076 	if (!dst_pud)
1077 		return -ENOMEM;
1078 	src_pud = pud_offset(src_p4d, addr);
1079 	do {
1080 		next = pud_addr_end(addr, end);
1081 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1082 			int err;
1083 
1084 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1085 			err = copy_huge_pud(dst_mm, src_mm,
1086 					    dst_pud, src_pud, addr, src_vma);
1087 			if (err == -ENOMEM)
1088 				return -ENOMEM;
1089 			if (!err)
1090 				continue;
1091 			/* fall through */
1092 		}
1093 		if (pud_none_or_clear_bad(src_pud))
1094 			continue;
1095 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1096 				   addr, next))
1097 			return -ENOMEM;
1098 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1099 	return 0;
1100 }
1101 
1102 static inline int
1103 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1105 	       unsigned long end)
1106 {
1107 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1108 	p4d_t *src_p4d, *dst_p4d;
1109 	unsigned long next;
1110 
1111 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1112 	if (!dst_p4d)
1113 		return -ENOMEM;
1114 	src_p4d = p4d_offset(src_pgd, addr);
1115 	do {
1116 		next = p4d_addr_end(addr, end);
1117 		if (p4d_none_or_clear_bad(src_p4d))
1118 			continue;
1119 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1120 				   addr, next))
1121 			return -ENOMEM;
1122 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1123 	return 0;
1124 }
1125 
1126 int
1127 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1128 {
1129 	pgd_t *src_pgd, *dst_pgd;
1130 	unsigned long next;
1131 	unsigned long addr = src_vma->vm_start;
1132 	unsigned long end = src_vma->vm_end;
1133 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1134 	struct mm_struct *src_mm = src_vma->vm_mm;
1135 	struct mmu_notifier_range range;
1136 	bool is_cow;
1137 	int ret;
1138 
1139 	/*
1140 	 * Don't copy ptes where a page fault will fill them correctly.
1141 	 * Fork becomes much lighter when there are big shared or private
1142 	 * readonly mappings. The tradeoff is that copy_page_range is more
1143 	 * efficient than faulting.
1144 	 */
1145 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1146 	    !src_vma->anon_vma)
1147 		return 0;
1148 
1149 	if (is_vm_hugetlb_page(src_vma))
1150 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1151 
1152 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1153 		/*
1154 		 * We do not free on error cases below as remove_vma
1155 		 * gets called on error from higher level routine
1156 		 */
1157 		ret = track_pfn_copy(src_vma);
1158 		if (ret)
1159 			return ret;
1160 	}
1161 
1162 	/*
1163 	 * We need to invalidate the secondary MMU mappings only when
1164 	 * there could be a permission downgrade on the ptes of the
1165 	 * parent mm. And a permission downgrade will only happen if
1166 	 * is_cow_mapping() returns true.
1167 	 */
1168 	is_cow = is_cow_mapping(src_vma->vm_flags);
1169 
1170 	if (is_cow) {
1171 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1172 					0, src_vma, src_mm, addr, end);
1173 		mmu_notifier_invalidate_range_start(&range);
1174 	}
1175 
1176 	ret = 0;
1177 	dst_pgd = pgd_offset(dst_mm, addr);
1178 	src_pgd = pgd_offset(src_mm, addr);
1179 	do {
1180 		next = pgd_addr_end(addr, end);
1181 		if (pgd_none_or_clear_bad(src_pgd))
1182 			continue;
1183 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1184 					    addr, next))) {
1185 			ret = -ENOMEM;
1186 			break;
1187 		}
1188 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1189 
1190 	if (is_cow)
1191 		mmu_notifier_invalidate_range_end(&range);
1192 	return ret;
1193 }
1194 
1195 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1196 				struct vm_area_struct *vma, pmd_t *pmd,
1197 				unsigned long addr, unsigned long end,
1198 				struct zap_details *details)
1199 {
1200 	struct mm_struct *mm = tlb->mm;
1201 	int force_flush = 0;
1202 	int rss[NR_MM_COUNTERS];
1203 	spinlock_t *ptl;
1204 	pte_t *start_pte;
1205 	pte_t *pte;
1206 	swp_entry_t entry;
1207 
1208 	tlb_change_page_size(tlb, PAGE_SIZE);
1209 again:
1210 	init_rss_vec(rss);
1211 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1212 	pte = start_pte;
1213 	flush_tlb_batched_pending(mm);
1214 	arch_enter_lazy_mmu_mode();
1215 	do {
1216 		pte_t ptent = *pte;
1217 		if (pte_none(ptent))
1218 			continue;
1219 
1220 		if (need_resched())
1221 			break;
1222 
1223 		if (pte_present(ptent)) {
1224 			struct page *page;
1225 
1226 			page = vm_normal_page(vma, addr, ptent);
1227 			if (unlikely(details) && page) {
1228 				/*
1229 				 * unmap_shared_mapping_pages() wants to
1230 				 * invalidate cache without truncating:
1231 				 * unmap shared but keep private pages.
1232 				 */
1233 				if (details->check_mapping &&
1234 				    details->check_mapping != page_rmapping(page))
1235 					continue;
1236 			}
1237 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1238 							tlb->fullmm);
1239 			tlb_remove_tlb_entry(tlb, pte, addr);
1240 			if (unlikely(!page))
1241 				continue;
1242 
1243 			if (!PageAnon(page)) {
1244 				if (pte_dirty(ptent)) {
1245 					force_flush = 1;
1246 					set_page_dirty(page);
1247 				}
1248 				if (pte_young(ptent) &&
1249 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1250 					mark_page_accessed(page);
1251 			}
1252 			rss[mm_counter(page)]--;
1253 			page_remove_rmap(page, false);
1254 			if (unlikely(page_mapcount(page) < 0))
1255 				print_bad_pte(vma, addr, ptent, page);
1256 			if (unlikely(__tlb_remove_page(tlb, page))) {
1257 				force_flush = 1;
1258 				addr += PAGE_SIZE;
1259 				break;
1260 			}
1261 			continue;
1262 		}
1263 
1264 		entry = pte_to_swp_entry(ptent);
1265 		if (is_device_private_entry(entry)) {
1266 			struct page *page = device_private_entry_to_page(entry);
1267 
1268 			if (unlikely(details && details->check_mapping)) {
1269 				/*
1270 				 * unmap_shared_mapping_pages() wants to
1271 				 * invalidate cache without truncating:
1272 				 * unmap shared but keep private pages.
1273 				 */
1274 				if (details->check_mapping !=
1275 				    page_rmapping(page))
1276 					continue;
1277 			}
1278 
1279 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1280 			rss[mm_counter(page)]--;
1281 			page_remove_rmap(page, false);
1282 			put_page(page);
1283 			continue;
1284 		}
1285 
1286 		/* If details->check_mapping, we leave swap entries. */
1287 		if (unlikely(details))
1288 			continue;
1289 
1290 		if (!non_swap_entry(entry))
1291 			rss[MM_SWAPENTS]--;
1292 		else if (is_migration_entry(entry)) {
1293 			struct page *page;
1294 
1295 			page = migration_entry_to_page(entry);
1296 			rss[mm_counter(page)]--;
1297 		}
1298 		if (unlikely(!free_swap_and_cache(entry)))
1299 			print_bad_pte(vma, addr, ptent, NULL);
1300 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1301 	} while (pte++, addr += PAGE_SIZE, addr != end);
1302 
1303 	add_mm_rss_vec(mm, rss);
1304 	arch_leave_lazy_mmu_mode();
1305 
1306 	/* Do the actual TLB flush before dropping ptl */
1307 	if (force_flush)
1308 		tlb_flush_mmu_tlbonly(tlb);
1309 	pte_unmap_unlock(start_pte, ptl);
1310 
1311 	/*
1312 	 * If we forced a TLB flush (either due to running out of
1313 	 * batch buffers or because we needed to flush dirty TLB
1314 	 * entries before releasing the ptl), free the batched
1315 	 * memory too. Restart if we didn't do everything.
1316 	 */
1317 	if (force_flush) {
1318 		force_flush = 0;
1319 		tlb_flush_mmu(tlb);
1320 	}
1321 
1322 	if (addr != end) {
1323 		cond_resched();
1324 		goto again;
1325 	}
1326 
1327 	return addr;
1328 }
1329 
1330 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1331 				struct vm_area_struct *vma, pud_t *pud,
1332 				unsigned long addr, unsigned long end,
1333 				struct zap_details *details)
1334 {
1335 	pmd_t *pmd;
1336 	unsigned long next;
1337 
1338 	pmd = pmd_offset(pud, addr);
1339 	do {
1340 		next = pmd_addr_end(addr, end);
1341 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1342 			if (next - addr != HPAGE_PMD_SIZE)
1343 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1344 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1345 				goto next;
1346 			/* fall through */
1347 		}
1348 		/*
1349 		 * Here there can be other concurrent MADV_DONTNEED or
1350 		 * trans huge page faults running, and if the pmd is
1351 		 * none or trans huge it can change under us. This is
1352 		 * because MADV_DONTNEED holds the mmap_lock in read
1353 		 * mode.
1354 		 */
1355 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1356 			goto next;
1357 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1358 next:
1359 		cond_resched();
1360 	} while (pmd++, addr = next, addr != end);
1361 
1362 	return addr;
1363 }
1364 
1365 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1366 				struct vm_area_struct *vma, p4d_t *p4d,
1367 				unsigned long addr, unsigned long end,
1368 				struct zap_details *details)
1369 {
1370 	pud_t *pud;
1371 	unsigned long next;
1372 
1373 	pud = pud_offset(p4d, addr);
1374 	do {
1375 		next = pud_addr_end(addr, end);
1376 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1377 			if (next - addr != HPAGE_PUD_SIZE) {
1378 				mmap_assert_locked(tlb->mm);
1379 				split_huge_pud(vma, pud, addr);
1380 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1381 				goto next;
1382 			/* fall through */
1383 		}
1384 		if (pud_none_or_clear_bad(pud))
1385 			continue;
1386 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1387 next:
1388 		cond_resched();
1389 	} while (pud++, addr = next, addr != end);
1390 
1391 	return addr;
1392 }
1393 
1394 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1395 				struct vm_area_struct *vma, pgd_t *pgd,
1396 				unsigned long addr, unsigned long end,
1397 				struct zap_details *details)
1398 {
1399 	p4d_t *p4d;
1400 	unsigned long next;
1401 
1402 	p4d = p4d_offset(pgd, addr);
1403 	do {
1404 		next = p4d_addr_end(addr, end);
1405 		if (p4d_none_or_clear_bad(p4d))
1406 			continue;
1407 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1408 	} while (p4d++, addr = next, addr != end);
1409 
1410 	return addr;
1411 }
1412 
1413 void unmap_page_range(struct mmu_gather *tlb,
1414 			     struct vm_area_struct *vma,
1415 			     unsigned long addr, unsigned long end,
1416 			     struct zap_details *details)
1417 {
1418 	pgd_t *pgd;
1419 	unsigned long next;
1420 
1421 	BUG_ON(addr >= end);
1422 	tlb_start_vma(tlb, vma);
1423 	pgd = pgd_offset(vma->vm_mm, addr);
1424 	do {
1425 		next = pgd_addr_end(addr, end);
1426 		if (pgd_none_or_clear_bad(pgd))
1427 			continue;
1428 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1429 	} while (pgd++, addr = next, addr != end);
1430 	tlb_end_vma(tlb, vma);
1431 }
1432 
1433 
1434 static void unmap_single_vma(struct mmu_gather *tlb,
1435 		struct vm_area_struct *vma, unsigned long start_addr,
1436 		unsigned long end_addr,
1437 		struct zap_details *details)
1438 {
1439 	unsigned long start = max(vma->vm_start, start_addr);
1440 	unsigned long end;
1441 
1442 	if (start >= vma->vm_end)
1443 		return;
1444 	end = min(vma->vm_end, end_addr);
1445 	if (end <= vma->vm_start)
1446 		return;
1447 
1448 	if (vma->vm_file)
1449 		uprobe_munmap(vma, start, end);
1450 
1451 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1452 		untrack_pfn(vma, 0, 0);
1453 
1454 	if (start != end) {
1455 		if (unlikely(is_vm_hugetlb_page(vma))) {
1456 			/*
1457 			 * It is undesirable to test vma->vm_file as it
1458 			 * should be non-null for valid hugetlb area.
1459 			 * However, vm_file will be NULL in the error
1460 			 * cleanup path of mmap_region. When
1461 			 * hugetlbfs ->mmap method fails,
1462 			 * mmap_region() nullifies vma->vm_file
1463 			 * before calling this function to clean up.
1464 			 * Since no pte has actually been setup, it is
1465 			 * safe to do nothing in this case.
1466 			 */
1467 			if (vma->vm_file) {
1468 				i_mmap_lock_write(vma->vm_file->f_mapping);
1469 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1470 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1471 			}
1472 		} else
1473 			unmap_page_range(tlb, vma, start, end, details);
1474 	}
1475 }
1476 
1477 /**
1478  * unmap_vmas - unmap a range of memory covered by a list of vma's
1479  * @tlb: address of the caller's struct mmu_gather
1480  * @vma: the starting vma
1481  * @start_addr: virtual address at which to start unmapping
1482  * @end_addr: virtual address at which to end unmapping
1483  *
1484  * Unmap all pages in the vma list.
1485  *
1486  * Only addresses between `start' and `end' will be unmapped.
1487  *
1488  * The VMA list must be sorted in ascending virtual address order.
1489  *
1490  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1491  * range after unmap_vmas() returns.  So the only responsibility here is to
1492  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1493  * drops the lock and schedules.
1494  */
1495 void unmap_vmas(struct mmu_gather *tlb,
1496 		struct vm_area_struct *vma, unsigned long start_addr,
1497 		unsigned long end_addr)
1498 {
1499 	struct mmu_notifier_range range;
1500 
1501 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1502 				start_addr, end_addr);
1503 	mmu_notifier_invalidate_range_start(&range);
1504 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1505 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1506 	mmu_notifier_invalidate_range_end(&range);
1507 }
1508 
1509 /**
1510  * zap_page_range - remove user pages in a given range
1511  * @vma: vm_area_struct holding the applicable pages
1512  * @start: starting address of pages to zap
1513  * @size: number of bytes to zap
1514  *
1515  * Caller must protect the VMA list
1516  */
1517 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1518 		unsigned long size)
1519 {
1520 	struct mmu_notifier_range range;
1521 	struct mmu_gather tlb;
1522 
1523 	lru_add_drain();
1524 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1525 				start, start + size);
1526 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1527 	update_hiwater_rss(vma->vm_mm);
1528 	mmu_notifier_invalidate_range_start(&range);
1529 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1530 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1531 	mmu_notifier_invalidate_range_end(&range);
1532 	tlb_finish_mmu(&tlb, start, range.end);
1533 }
1534 
1535 /**
1536  * zap_page_range_single - remove user pages in a given range
1537  * @vma: vm_area_struct holding the applicable pages
1538  * @address: starting address of pages to zap
1539  * @size: number of bytes to zap
1540  * @details: details of shared cache invalidation
1541  *
1542  * The range must fit into one VMA.
1543  */
1544 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1545 		unsigned long size, struct zap_details *details)
1546 {
1547 	struct mmu_notifier_range range;
1548 	struct mmu_gather tlb;
1549 
1550 	lru_add_drain();
1551 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1552 				address, address + size);
1553 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1554 	update_hiwater_rss(vma->vm_mm);
1555 	mmu_notifier_invalidate_range_start(&range);
1556 	unmap_single_vma(&tlb, vma, address, range.end, details);
1557 	mmu_notifier_invalidate_range_end(&range);
1558 	tlb_finish_mmu(&tlb, address, range.end);
1559 }
1560 
1561 /**
1562  * zap_vma_ptes - remove ptes mapping the vma
1563  * @vma: vm_area_struct holding ptes to be zapped
1564  * @address: starting address of pages to zap
1565  * @size: number of bytes to zap
1566  *
1567  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1568  *
1569  * The entire address range must be fully contained within the vma.
1570  *
1571  */
1572 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1573 		unsigned long size)
1574 {
1575 	if (address < vma->vm_start || address + size > vma->vm_end ||
1576 	    		!(vma->vm_flags & VM_PFNMAP))
1577 		return;
1578 
1579 	zap_page_range_single(vma, address, size, NULL);
1580 }
1581 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1582 
1583 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1584 {
1585 	pgd_t *pgd;
1586 	p4d_t *p4d;
1587 	pud_t *pud;
1588 	pmd_t *pmd;
1589 
1590 	pgd = pgd_offset(mm, addr);
1591 	p4d = p4d_alloc(mm, pgd, addr);
1592 	if (!p4d)
1593 		return NULL;
1594 	pud = pud_alloc(mm, p4d, addr);
1595 	if (!pud)
1596 		return NULL;
1597 	pmd = pmd_alloc(mm, pud, addr);
1598 	if (!pmd)
1599 		return NULL;
1600 
1601 	VM_BUG_ON(pmd_trans_huge(*pmd));
1602 	return pmd;
1603 }
1604 
1605 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1606 			spinlock_t **ptl)
1607 {
1608 	pmd_t *pmd = walk_to_pmd(mm, addr);
1609 
1610 	if (!pmd)
1611 		return NULL;
1612 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1613 }
1614 
1615 static int validate_page_before_insert(struct page *page)
1616 {
1617 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1618 		return -EINVAL;
1619 	flush_dcache_page(page);
1620 	return 0;
1621 }
1622 
1623 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1624 			unsigned long addr, struct page *page, pgprot_t prot)
1625 {
1626 	if (!pte_none(*pte))
1627 		return -EBUSY;
1628 	/* Ok, finally just insert the thing.. */
1629 	get_page(page);
1630 	inc_mm_counter_fast(mm, mm_counter_file(page));
1631 	page_add_file_rmap(page, false);
1632 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1633 	return 0;
1634 }
1635 
1636 /*
1637  * This is the old fallback for page remapping.
1638  *
1639  * For historical reasons, it only allows reserved pages. Only
1640  * old drivers should use this, and they needed to mark their
1641  * pages reserved for the old functions anyway.
1642  */
1643 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1644 			struct page *page, pgprot_t prot)
1645 {
1646 	struct mm_struct *mm = vma->vm_mm;
1647 	int retval;
1648 	pte_t *pte;
1649 	spinlock_t *ptl;
1650 
1651 	retval = validate_page_before_insert(page);
1652 	if (retval)
1653 		goto out;
1654 	retval = -ENOMEM;
1655 	pte = get_locked_pte(mm, addr, &ptl);
1656 	if (!pte)
1657 		goto out;
1658 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1659 	pte_unmap_unlock(pte, ptl);
1660 out:
1661 	return retval;
1662 }
1663 
1664 #ifdef pte_index
1665 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1666 			unsigned long addr, struct page *page, pgprot_t prot)
1667 {
1668 	int err;
1669 
1670 	if (!page_count(page))
1671 		return -EINVAL;
1672 	err = validate_page_before_insert(page);
1673 	if (err)
1674 		return err;
1675 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1676 }
1677 
1678 /* insert_pages() amortizes the cost of spinlock operations
1679  * when inserting pages in a loop. Arch *must* define pte_index.
1680  */
1681 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1682 			struct page **pages, unsigned long *num, pgprot_t prot)
1683 {
1684 	pmd_t *pmd = NULL;
1685 	pte_t *start_pte, *pte;
1686 	spinlock_t *pte_lock;
1687 	struct mm_struct *const mm = vma->vm_mm;
1688 	unsigned long curr_page_idx = 0;
1689 	unsigned long remaining_pages_total = *num;
1690 	unsigned long pages_to_write_in_pmd;
1691 	int ret;
1692 more:
1693 	ret = -EFAULT;
1694 	pmd = walk_to_pmd(mm, addr);
1695 	if (!pmd)
1696 		goto out;
1697 
1698 	pages_to_write_in_pmd = min_t(unsigned long,
1699 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1700 
1701 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1702 	ret = -ENOMEM;
1703 	if (pte_alloc(mm, pmd))
1704 		goto out;
1705 
1706 	while (pages_to_write_in_pmd) {
1707 		int pte_idx = 0;
1708 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1709 
1710 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1711 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1712 			int err = insert_page_in_batch_locked(mm, pte,
1713 				addr, pages[curr_page_idx], prot);
1714 			if (unlikely(err)) {
1715 				pte_unmap_unlock(start_pte, pte_lock);
1716 				ret = err;
1717 				remaining_pages_total -= pte_idx;
1718 				goto out;
1719 			}
1720 			addr += PAGE_SIZE;
1721 			++curr_page_idx;
1722 		}
1723 		pte_unmap_unlock(start_pte, pte_lock);
1724 		pages_to_write_in_pmd -= batch_size;
1725 		remaining_pages_total -= batch_size;
1726 	}
1727 	if (remaining_pages_total)
1728 		goto more;
1729 	ret = 0;
1730 out:
1731 	*num = remaining_pages_total;
1732 	return ret;
1733 }
1734 #endif  /* ifdef pte_index */
1735 
1736 /**
1737  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1738  * @vma: user vma to map to
1739  * @addr: target start user address of these pages
1740  * @pages: source kernel pages
1741  * @num: in: number of pages to map. out: number of pages that were *not*
1742  * mapped. (0 means all pages were successfully mapped).
1743  *
1744  * Preferred over vm_insert_page() when inserting multiple pages.
1745  *
1746  * In case of error, we may have mapped a subset of the provided
1747  * pages. It is the caller's responsibility to account for this case.
1748  *
1749  * The same restrictions apply as in vm_insert_page().
1750  */
1751 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1752 			struct page **pages, unsigned long *num)
1753 {
1754 #ifdef pte_index
1755 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1756 
1757 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1758 		return -EFAULT;
1759 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1760 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1761 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1762 		vma->vm_flags |= VM_MIXEDMAP;
1763 	}
1764 	/* Defer page refcount checking till we're about to map that page. */
1765 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1766 #else
1767 	unsigned long idx = 0, pgcount = *num;
1768 	int err = -EINVAL;
1769 
1770 	for (; idx < pgcount; ++idx) {
1771 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1772 		if (err)
1773 			break;
1774 	}
1775 	*num = pgcount - idx;
1776 	return err;
1777 #endif  /* ifdef pte_index */
1778 }
1779 EXPORT_SYMBOL(vm_insert_pages);
1780 
1781 /**
1782  * vm_insert_page - insert single page into user vma
1783  * @vma: user vma to map to
1784  * @addr: target user address of this page
1785  * @page: source kernel page
1786  *
1787  * This allows drivers to insert individual pages they've allocated
1788  * into a user vma.
1789  *
1790  * The page has to be a nice clean _individual_ kernel allocation.
1791  * If you allocate a compound page, you need to have marked it as
1792  * such (__GFP_COMP), or manually just split the page up yourself
1793  * (see split_page()).
1794  *
1795  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1796  * took an arbitrary page protection parameter. This doesn't allow
1797  * that. Your vma protection will have to be set up correctly, which
1798  * means that if you want a shared writable mapping, you'd better
1799  * ask for a shared writable mapping!
1800  *
1801  * The page does not need to be reserved.
1802  *
1803  * Usually this function is called from f_op->mmap() handler
1804  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1805  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1806  * function from other places, for example from page-fault handler.
1807  *
1808  * Return: %0 on success, negative error code otherwise.
1809  */
1810 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1811 			struct page *page)
1812 {
1813 	if (addr < vma->vm_start || addr >= vma->vm_end)
1814 		return -EFAULT;
1815 	if (!page_count(page))
1816 		return -EINVAL;
1817 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1818 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1819 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1820 		vma->vm_flags |= VM_MIXEDMAP;
1821 	}
1822 	return insert_page(vma, addr, page, vma->vm_page_prot);
1823 }
1824 EXPORT_SYMBOL(vm_insert_page);
1825 
1826 /*
1827  * __vm_map_pages - maps range of kernel pages into user vma
1828  * @vma: user vma to map to
1829  * @pages: pointer to array of source kernel pages
1830  * @num: number of pages in page array
1831  * @offset: user's requested vm_pgoff
1832  *
1833  * This allows drivers to map range of kernel pages into a user vma.
1834  *
1835  * Return: 0 on success and error code otherwise.
1836  */
1837 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1838 				unsigned long num, unsigned long offset)
1839 {
1840 	unsigned long count = vma_pages(vma);
1841 	unsigned long uaddr = vma->vm_start;
1842 	int ret, i;
1843 
1844 	/* Fail if the user requested offset is beyond the end of the object */
1845 	if (offset >= num)
1846 		return -ENXIO;
1847 
1848 	/* Fail if the user requested size exceeds available object size */
1849 	if (count > num - offset)
1850 		return -ENXIO;
1851 
1852 	for (i = 0; i < count; i++) {
1853 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1854 		if (ret < 0)
1855 			return ret;
1856 		uaddr += PAGE_SIZE;
1857 	}
1858 
1859 	return 0;
1860 }
1861 
1862 /**
1863  * vm_map_pages - maps range of kernel pages starts with non zero offset
1864  * @vma: user vma to map to
1865  * @pages: pointer to array of source kernel pages
1866  * @num: number of pages in page array
1867  *
1868  * Maps an object consisting of @num pages, catering for the user's
1869  * requested vm_pgoff
1870  *
1871  * If we fail to insert any page into the vma, the function will return
1872  * immediately leaving any previously inserted pages present.  Callers
1873  * from the mmap handler may immediately return the error as their caller
1874  * will destroy the vma, removing any successfully inserted pages. Other
1875  * callers should make their own arrangements for calling unmap_region().
1876  *
1877  * Context: Process context. Called by mmap handlers.
1878  * Return: 0 on success and error code otherwise.
1879  */
1880 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1881 				unsigned long num)
1882 {
1883 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1884 }
1885 EXPORT_SYMBOL(vm_map_pages);
1886 
1887 /**
1888  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1889  * @vma: user vma to map to
1890  * @pages: pointer to array of source kernel pages
1891  * @num: number of pages in page array
1892  *
1893  * Similar to vm_map_pages(), except that it explicitly sets the offset
1894  * to 0. This function is intended for the drivers that did not consider
1895  * vm_pgoff.
1896  *
1897  * Context: Process context. Called by mmap handlers.
1898  * Return: 0 on success and error code otherwise.
1899  */
1900 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1901 				unsigned long num)
1902 {
1903 	return __vm_map_pages(vma, pages, num, 0);
1904 }
1905 EXPORT_SYMBOL(vm_map_pages_zero);
1906 
1907 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1908 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1909 {
1910 	struct mm_struct *mm = vma->vm_mm;
1911 	pte_t *pte, entry;
1912 	spinlock_t *ptl;
1913 
1914 	pte = get_locked_pte(mm, addr, &ptl);
1915 	if (!pte)
1916 		return VM_FAULT_OOM;
1917 	if (!pte_none(*pte)) {
1918 		if (mkwrite) {
1919 			/*
1920 			 * For read faults on private mappings the PFN passed
1921 			 * in may not match the PFN we have mapped if the
1922 			 * mapped PFN is a writeable COW page.  In the mkwrite
1923 			 * case we are creating a writable PTE for a shared
1924 			 * mapping and we expect the PFNs to match. If they
1925 			 * don't match, we are likely racing with block
1926 			 * allocation and mapping invalidation so just skip the
1927 			 * update.
1928 			 */
1929 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1930 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1931 				goto out_unlock;
1932 			}
1933 			entry = pte_mkyoung(*pte);
1934 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1935 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1936 				update_mmu_cache(vma, addr, pte);
1937 		}
1938 		goto out_unlock;
1939 	}
1940 
1941 	/* Ok, finally just insert the thing.. */
1942 	if (pfn_t_devmap(pfn))
1943 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1944 	else
1945 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1946 
1947 	if (mkwrite) {
1948 		entry = pte_mkyoung(entry);
1949 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1950 	}
1951 
1952 	set_pte_at(mm, addr, pte, entry);
1953 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1954 
1955 out_unlock:
1956 	pte_unmap_unlock(pte, ptl);
1957 	return VM_FAULT_NOPAGE;
1958 }
1959 
1960 /**
1961  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1962  * @vma: user vma to map to
1963  * @addr: target user address of this page
1964  * @pfn: source kernel pfn
1965  * @pgprot: pgprot flags for the inserted page
1966  *
1967  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1968  * to override pgprot on a per-page basis.
1969  *
1970  * This only makes sense for IO mappings, and it makes no sense for
1971  * COW mappings.  In general, using multiple vmas is preferable;
1972  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1973  * impractical.
1974  *
1975  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1976  * a value of @pgprot different from that of @vma->vm_page_prot.
1977  *
1978  * Context: Process context.  May allocate using %GFP_KERNEL.
1979  * Return: vm_fault_t value.
1980  */
1981 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1982 			unsigned long pfn, pgprot_t pgprot)
1983 {
1984 	/*
1985 	 * Technically, architectures with pte_special can avoid all these
1986 	 * restrictions (same for remap_pfn_range).  However we would like
1987 	 * consistency in testing and feature parity among all, so we should
1988 	 * try to keep these invariants in place for everybody.
1989 	 */
1990 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1991 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1992 						(VM_PFNMAP|VM_MIXEDMAP));
1993 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1994 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1995 
1996 	if (addr < vma->vm_start || addr >= vma->vm_end)
1997 		return VM_FAULT_SIGBUS;
1998 
1999 	if (!pfn_modify_allowed(pfn, pgprot))
2000 		return VM_FAULT_SIGBUS;
2001 
2002 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2003 
2004 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2005 			false);
2006 }
2007 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2008 
2009 /**
2010  * vmf_insert_pfn - insert single pfn into user vma
2011  * @vma: user vma to map to
2012  * @addr: target user address of this page
2013  * @pfn: source kernel pfn
2014  *
2015  * Similar to vm_insert_page, this allows drivers to insert individual pages
2016  * they've allocated into a user vma. Same comments apply.
2017  *
2018  * This function should only be called from a vm_ops->fault handler, and
2019  * in that case the handler should return the result of this function.
2020  *
2021  * vma cannot be a COW mapping.
2022  *
2023  * As this is called only for pages that do not currently exist, we
2024  * do not need to flush old virtual caches or the TLB.
2025  *
2026  * Context: Process context.  May allocate using %GFP_KERNEL.
2027  * Return: vm_fault_t value.
2028  */
2029 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2030 			unsigned long pfn)
2031 {
2032 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2033 }
2034 EXPORT_SYMBOL(vmf_insert_pfn);
2035 
2036 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2037 {
2038 	/* these checks mirror the abort conditions in vm_normal_page */
2039 	if (vma->vm_flags & VM_MIXEDMAP)
2040 		return true;
2041 	if (pfn_t_devmap(pfn))
2042 		return true;
2043 	if (pfn_t_special(pfn))
2044 		return true;
2045 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2046 		return true;
2047 	return false;
2048 }
2049 
2050 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2051 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2052 		bool mkwrite)
2053 {
2054 	int err;
2055 
2056 	BUG_ON(!vm_mixed_ok(vma, pfn));
2057 
2058 	if (addr < vma->vm_start || addr >= vma->vm_end)
2059 		return VM_FAULT_SIGBUS;
2060 
2061 	track_pfn_insert(vma, &pgprot, pfn);
2062 
2063 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2064 		return VM_FAULT_SIGBUS;
2065 
2066 	/*
2067 	 * If we don't have pte special, then we have to use the pfn_valid()
2068 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2069 	 * refcount the page if pfn_valid is true (hence insert_page rather
2070 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2071 	 * without pte special, it would there be refcounted as a normal page.
2072 	 */
2073 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2074 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2075 		struct page *page;
2076 
2077 		/*
2078 		 * At this point we are committed to insert_page()
2079 		 * regardless of whether the caller specified flags that
2080 		 * result in pfn_t_has_page() == false.
2081 		 */
2082 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2083 		err = insert_page(vma, addr, page, pgprot);
2084 	} else {
2085 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2086 	}
2087 
2088 	if (err == -ENOMEM)
2089 		return VM_FAULT_OOM;
2090 	if (err < 0 && err != -EBUSY)
2091 		return VM_FAULT_SIGBUS;
2092 
2093 	return VM_FAULT_NOPAGE;
2094 }
2095 
2096 /**
2097  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2098  * @vma: user vma to map to
2099  * @addr: target user address of this page
2100  * @pfn: source kernel pfn
2101  * @pgprot: pgprot flags for the inserted page
2102  *
2103  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2104  * to override pgprot on a per-page basis.
2105  *
2106  * Typically this function should be used by drivers to set caching- and
2107  * encryption bits different than those of @vma->vm_page_prot, because
2108  * the caching- or encryption mode may not be known at mmap() time.
2109  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2110  * to set caching and encryption bits for those vmas (except for COW pages).
2111  * This is ensured by core vm only modifying these page table entries using
2112  * functions that don't touch caching- or encryption bits, using pte_modify()
2113  * if needed. (See for example mprotect()).
2114  * Also when new page-table entries are created, this is only done using the
2115  * fault() callback, and never using the value of vma->vm_page_prot,
2116  * except for page-table entries that point to anonymous pages as the result
2117  * of COW.
2118  *
2119  * Context: Process context.  May allocate using %GFP_KERNEL.
2120  * Return: vm_fault_t value.
2121  */
2122 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2123 				 pfn_t pfn, pgprot_t pgprot)
2124 {
2125 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2126 }
2127 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2128 
2129 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2130 		pfn_t pfn)
2131 {
2132 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2133 }
2134 EXPORT_SYMBOL(vmf_insert_mixed);
2135 
2136 /*
2137  *  If the insertion of PTE failed because someone else already added a
2138  *  different entry in the mean time, we treat that as success as we assume
2139  *  the same entry was actually inserted.
2140  */
2141 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2142 		unsigned long addr, pfn_t pfn)
2143 {
2144 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2145 }
2146 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2147 
2148 /*
2149  * maps a range of physical memory into the requested pages. the old
2150  * mappings are removed. any references to nonexistent pages results
2151  * in null mappings (currently treated as "copy-on-access")
2152  */
2153 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2154 			unsigned long addr, unsigned long end,
2155 			unsigned long pfn, pgprot_t prot)
2156 {
2157 	pte_t *pte;
2158 	spinlock_t *ptl;
2159 	int err = 0;
2160 
2161 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2162 	if (!pte)
2163 		return -ENOMEM;
2164 	arch_enter_lazy_mmu_mode();
2165 	do {
2166 		BUG_ON(!pte_none(*pte));
2167 		if (!pfn_modify_allowed(pfn, prot)) {
2168 			err = -EACCES;
2169 			break;
2170 		}
2171 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2172 		pfn++;
2173 	} while (pte++, addr += PAGE_SIZE, addr != end);
2174 	arch_leave_lazy_mmu_mode();
2175 	pte_unmap_unlock(pte - 1, ptl);
2176 	return err;
2177 }
2178 
2179 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2180 			unsigned long addr, unsigned long end,
2181 			unsigned long pfn, pgprot_t prot)
2182 {
2183 	pmd_t *pmd;
2184 	unsigned long next;
2185 	int err;
2186 
2187 	pfn -= addr >> PAGE_SHIFT;
2188 	pmd = pmd_alloc(mm, pud, addr);
2189 	if (!pmd)
2190 		return -ENOMEM;
2191 	VM_BUG_ON(pmd_trans_huge(*pmd));
2192 	do {
2193 		next = pmd_addr_end(addr, end);
2194 		err = remap_pte_range(mm, pmd, addr, next,
2195 				pfn + (addr >> PAGE_SHIFT), prot);
2196 		if (err)
2197 			return err;
2198 	} while (pmd++, addr = next, addr != end);
2199 	return 0;
2200 }
2201 
2202 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2203 			unsigned long addr, unsigned long end,
2204 			unsigned long pfn, pgprot_t prot)
2205 {
2206 	pud_t *pud;
2207 	unsigned long next;
2208 	int err;
2209 
2210 	pfn -= addr >> PAGE_SHIFT;
2211 	pud = pud_alloc(mm, p4d, addr);
2212 	if (!pud)
2213 		return -ENOMEM;
2214 	do {
2215 		next = pud_addr_end(addr, end);
2216 		err = remap_pmd_range(mm, pud, addr, next,
2217 				pfn + (addr >> PAGE_SHIFT), prot);
2218 		if (err)
2219 			return err;
2220 	} while (pud++, addr = next, addr != end);
2221 	return 0;
2222 }
2223 
2224 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2225 			unsigned long addr, unsigned long end,
2226 			unsigned long pfn, pgprot_t prot)
2227 {
2228 	p4d_t *p4d;
2229 	unsigned long next;
2230 	int err;
2231 
2232 	pfn -= addr >> PAGE_SHIFT;
2233 	p4d = p4d_alloc(mm, pgd, addr);
2234 	if (!p4d)
2235 		return -ENOMEM;
2236 	do {
2237 		next = p4d_addr_end(addr, end);
2238 		err = remap_pud_range(mm, p4d, addr, next,
2239 				pfn + (addr >> PAGE_SHIFT), prot);
2240 		if (err)
2241 			return err;
2242 	} while (p4d++, addr = next, addr != end);
2243 	return 0;
2244 }
2245 
2246 /**
2247  * remap_pfn_range - remap kernel memory to userspace
2248  * @vma: user vma to map to
2249  * @addr: target page aligned user address to start at
2250  * @pfn: page frame number of kernel physical memory address
2251  * @size: size of mapping area
2252  * @prot: page protection flags for this mapping
2253  *
2254  * Note: this is only safe if the mm semaphore is held when called.
2255  *
2256  * Return: %0 on success, negative error code otherwise.
2257  */
2258 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2259 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2260 {
2261 	pgd_t *pgd;
2262 	unsigned long next;
2263 	unsigned long end = addr + PAGE_ALIGN(size);
2264 	struct mm_struct *mm = vma->vm_mm;
2265 	unsigned long remap_pfn = pfn;
2266 	int err;
2267 
2268 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2269 		return -EINVAL;
2270 
2271 	/*
2272 	 * Physically remapped pages are special. Tell the
2273 	 * rest of the world about it:
2274 	 *   VM_IO tells people not to look at these pages
2275 	 *	(accesses can have side effects).
2276 	 *   VM_PFNMAP tells the core MM that the base pages are just
2277 	 *	raw PFN mappings, and do not have a "struct page" associated
2278 	 *	with them.
2279 	 *   VM_DONTEXPAND
2280 	 *      Disable vma merging and expanding with mremap().
2281 	 *   VM_DONTDUMP
2282 	 *      Omit vma from core dump, even when VM_IO turned off.
2283 	 *
2284 	 * There's a horrible special case to handle copy-on-write
2285 	 * behaviour that some programs depend on. We mark the "original"
2286 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2287 	 * See vm_normal_page() for details.
2288 	 */
2289 	if (is_cow_mapping(vma->vm_flags)) {
2290 		if (addr != vma->vm_start || end != vma->vm_end)
2291 			return -EINVAL;
2292 		vma->vm_pgoff = pfn;
2293 	}
2294 
2295 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2296 	if (err)
2297 		return -EINVAL;
2298 
2299 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2300 
2301 	BUG_ON(addr >= end);
2302 	pfn -= addr >> PAGE_SHIFT;
2303 	pgd = pgd_offset(mm, addr);
2304 	flush_cache_range(vma, addr, end);
2305 	do {
2306 		next = pgd_addr_end(addr, end);
2307 		err = remap_p4d_range(mm, pgd, addr, next,
2308 				pfn + (addr >> PAGE_SHIFT), prot);
2309 		if (err)
2310 			break;
2311 	} while (pgd++, addr = next, addr != end);
2312 
2313 	if (err)
2314 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2315 
2316 	return err;
2317 }
2318 EXPORT_SYMBOL(remap_pfn_range);
2319 
2320 /**
2321  * vm_iomap_memory - remap memory to userspace
2322  * @vma: user vma to map to
2323  * @start: start of the physical memory to be mapped
2324  * @len: size of area
2325  *
2326  * This is a simplified io_remap_pfn_range() for common driver use. The
2327  * driver just needs to give us the physical memory range to be mapped,
2328  * we'll figure out the rest from the vma information.
2329  *
2330  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2331  * whatever write-combining details or similar.
2332  *
2333  * Return: %0 on success, negative error code otherwise.
2334  */
2335 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2336 {
2337 	unsigned long vm_len, pfn, pages;
2338 
2339 	/* Check that the physical memory area passed in looks valid */
2340 	if (start + len < start)
2341 		return -EINVAL;
2342 	/*
2343 	 * You *really* shouldn't map things that aren't page-aligned,
2344 	 * but we've historically allowed it because IO memory might
2345 	 * just have smaller alignment.
2346 	 */
2347 	len += start & ~PAGE_MASK;
2348 	pfn = start >> PAGE_SHIFT;
2349 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2350 	if (pfn + pages < pfn)
2351 		return -EINVAL;
2352 
2353 	/* We start the mapping 'vm_pgoff' pages into the area */
2354 	if (vma->vm_pgoff > pages)
2355 		return -EINVAL;
2356 	pfn += vma->vm_pgoff;
2357 	pages -= vma->vm_pgoff;
2358 
2359 	/* Can we fit all of the mapping? */
2360 	vm_len = vma->vm_end - vma->vm_start;
2361 	if (vm_len >> PAGE_SHIFT > pages)
2362 		return -EINVAL;
2363 
2364 	/* Ok, let it rip */
2365 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2366 }
2367 EXPORT_SYMBOL(vm_iomap_memory);
2368 
2369 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2370 				     unsigned long addr, unsigned long end,
2371 				     pte_fn_t fn, void *data, bool create,
2372 				     pgtbl_mod_mask *mask)
2373 {
2374 	pte_t *pte;
2375 	int err = 0;
2376 	spinlock_t *ptl;
2377 
2378 	if (create) {
2379 		pte = (mm == &init_mm) ?
2380 			pte_alloc_kernel_track(pmd, addr, mask) :
2381 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2382 		if (!pte)
2383 			return -ENOMEM;
2384 	} else {
2385 		pte = (mm == &init_mm) ?
2386 			pte_offset_kernel(pmd, addr) :
2387 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2388 	}
2389 
2390 	BUG_ON(pmd_huge(*pmd));
2391 
2392 	arch_enter_lazy_mmu_mode();
2393 
2394 	do {
2395 		if (create || !pte_none(*pte)) {
2396 			err = fn(pte++, addr, data);
2397 			if (err)
2398 				break;
2399 		}
2400 	} while (addr += PAGE_SIZE, addr != end);
2401 	*mask |= PGTBL_PTE_MODIFIED;
2402 
2403 	arch_leave_lazy_mmu_mode();
2404 
2405 	if (mm != &init_mm)
2406 		pte_unmap_unlock(pte-1, ptl);
2407 	return err;
2408 }
2409 
2410 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2411 				     unsigned long addr, unsigned long end,
2412 				     pte_fn_t fn, void *data, bool create,
2413 				     pgtbl_mod_mask *mask)
2414 {
2415 	pmd_t *pmd;
2416 	unsigned long next;
2417 	int err = 0;
2418 
2419 	BUG_ON(pud_huge(*pud));
2420 
2421 	if (create) {
2422 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2423 		if (!pmd)
2424 			return -ENOMEM;
2425 	} else {
2426 		pmd = pmd_offset(pud, addr);
2427 	}
2428 	do {
2429 		next = pmd_addr_end(addr, end);
2430 		if (create || !pmd_none_or_clear_bad(pmd)) {
2431 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2432 						 create, mask);
2433 			if (err)
2434 				break;
2435 		}
2436 	} while (pmd++, addr = next, addr != end);
2437 	return err;
2438 }
2439 
2440 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2441 				     unsigned long addr, unsigned long end,
2442 				     pte_fn_t fn, void *data, bool create,
2443 				     pgtbl_mod_mask *mask)
2444 {
2445 	pud_t *pud;
2446 	unsigned long next;
2447 	int err = 0;
2448 
2449 	if (create) {
2450 		pud = pud_alloc_track(mm, p4d, addr, mask);
2451 		if (!pud)
2452 			return -ENOMEM;
2453 	} else {
2454 		pud = pud_offset(p4d, addr);
2455 	}
2456 	do {
2457 		next = pud_addr_end(addr, end);
2458 		if (create || !pud_none_or_clear_bad(pud)) {
2459 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2460 						 create, mask);
2461 			if (err)
2462 				break;
2463 		}
2464 	} while (pud++, addr = next, addr != end);
2465 	return err;
2466 }
2467 
2468 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2469 				     unsigned long addr, unsigned long end,
2470 				     pte_fn_t fn, void *data, bool create,
2471 				     pgtbl_mod_mask *mask)
2472 {
2473 	p4d_t *p4d;
2474 	unsigned long next;
2475 	int err = 0;
2476 
2477 	if (create) {
2478 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2479 		if (!p4d)
2480 			return -ENOMEM;
2481 	} else {
2482 		p4d = p4d_offset(pgd, addr);
2483 	}
2484 	do {
2485 		next = p4d_addr_end(addr, end);
2486 		if (create || !p4d_none_or_clear_bad(p4d)) {
2487 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2488 						 create, mask);
2489 			if (err)
2490 				break;
2491 		}
2492 	} while (p4d++, addr = next, addr != end);
2493 	return err;
2494 }
2495 
2496 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2497 				 unsigned long size, pte_fn_t fn,
2498 				 void *data, bool create)
2499 {
2500 	pgd_t *pgd;
2501 	unsigned long start = addr, next;
2502 	unsigned long end = addr + size;
2503 	pgtbl_mod_mask mask = 0;
2504 	int err = 0;
2505 
2506 	if (WARN_ON(addr >= end))
2507 		return -EINVAL;
2508 
2509 	pgd = pgd_offset(mm, addr);
2510 	do {
2511 		next = pgd_addr_end(addr, end);
2512 		if (!create && pgd_none_or_clear_bad(pgd))
2513 			continue;
2514 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2515 		if (err)
2516 			break;
2517 	} while (pgd++, addr = next, addr != end);
2518 
2519 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2520 		arch_sync_kernel_mappings(start, start + size);
2521 
2522 	return err;
2523 }
2524 
2525 /*
2526  * Scan a region of virtual memory, filling in page tables as necessary
2527  * and calling a provided function on each leaf page table.
2528  */
2529 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2530 			unsigned long size, pte_fn_t fn, void *data)
2531 {
2532 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2533 }
2534 EXPORT_SYMBOL_GPL(apply_to_page_range);
2535 
2536 /*
2537  * Scan a region of virtual memory, calling a provided function on
2538  * each leaf page table where it exists.
2539  *
2540  * Unlike apply_to_page_range, this does _not_ fill in page tables
2541  * where they are absent.
2542  */
2543 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2544 				 unsigned long size, pte_fn_t fn, void *data)
2545 {
2546 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2547 }
2548 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2549 
2550 /*
2551  * handle_pte_fault chooses page fault handler according to an entry which was
2552  * read non-atomically.  Before making any commitment, on those architectures
2553  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2554  * parts, do_swap_page must check under lock before unmapping the pte and
2555  * proceeding (but do_wp_page is only called after already making such a check;
2556  * and do_anonymous_page can safely check later on).
2557  */
2558 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2559 				pte_t *page_table, pte_t orig_pte)
2560 {
2561 	int same = 1;
2562 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2563 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2564 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2565 		spin_lock(ptl);
2566 		same = pte_same(*page_table, orig_pte);
2567 		spin_unlock(ptl);
2568 	}
2569 #endif
2570 	pte_unmap(page_table);
2571 	return same;
2572 }
2573 
2574 static inline bool cow_user_page(struct page *dst, struct page *src,
2575 				 struct vm_fault *vmf)
2576 {
2577 	bool ret;
2578 	void *kaddr;
2579 	void __user *uaddr;
2580 	bool locked = false;
2581 	struct vm_area_struct *vma = vmf->vma;
2582 	struct mm_struct *mm = vma->vm_mm;
2583 	unsigned long addr = vmf->address;
2584 
2585 	if (likely(src)) {
2586 		copy_user_highpage(dst, src, addr, vma);
2587 		return true;
2588 	}
2589 
2590 	/*
2591 	 * If the source page was a PFN mapping, we don't have
2592 	 * a "struct page" for it. We do a best-effort copy by
2593 	 * just copying from the original user address. If that
2594 	 * fails, we just zero-fill it. Live with it.
2595 	 */
2596 	kaddr = kmap_atomic(dst);
2597 	uaddr = (void __user *)(addr & PAGE_MASK);
2598 
2599 	/*
2600 	 * On architectures with software "accessed" bits, we would
2601 	 * take a double page fault, so mark it accessed here.
2602 	 */
2603 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2604 		pte_t entry;
2605 
2606 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2607 		locked = true;
2608 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2609 			/*
2610 			 * Other thread has already handled the fault
2611 			 * and update local tlb only
2612 			 */
2613 			update_mmu_tlb(vma, addr, vmf->pte);
2614 			ret = false;
2615 			goto pte_unlock;
2616 		}
2617 
2618 		entry = pte_mkyoung(vmf->orig_pte);
2619 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2620 			update_mmu_cache(vma, addr, vmf->pte);
2621 	}
2622 
2623 	/*
2624 	 * This really shouldn't fail, because the page is there
2625 	 * in the page tables. But it might just be unreadable,
2626 	 * in which case we just give up and fill the result with
2627 	 * zeroes.
2628 	 */
2629 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2630 		if (locked)
2631 			goto warn;
2632 
2633 		/* Re-validate under PTL if the page is still mapped */
2634 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2635 		locked = true;
2636 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2637 			/* The PTE changed under us, update local tlb */
2638 			update_mmu_tlb(vma, addr, vmf->pte);
2639 			ret = false;
2640 			goto pte_unlock;
2641 		}
2642 
2643 		/*
2644 		 * The same page can be mapped back since last copy attempt.
2645 		 * Try to copy again under PTL.
2646 		 */
2647 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2648 			/*
2649 			 * Give a warn in case there can be some obscure
2650 			 * use-case
2651 			 */
2652 warn:
2653 			WARN_ON_ONCE(1);
2654 			clear_page(kaddr);
2655 		}
2656 	}
2657 
2658 	ret = true;
2659 
2660 pte_unlock:
2661 	if (locked)
2662 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2663 	kunmap_atomic(kaddr);
2664 	flush_dcache_page(dst);
2665 
2666 	return ret;
2667 }
2668 
2669 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2670 {
2671 	struct file *vm_file = vma->vm_file;
2672 
2673 	if (vm_file)
2674 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2675 
2676 	/*
2677 	 * Special mappings (e.g. VDSO) do not have any file so fake
2678 	 * a default GFP_KERNEL for them.
2679 	 */
2680 	return GFP_KERNEL;
2681 }
2682 
2683 /*
2684  * Notify the address space that the page is about to become writable so that
2685  * it can prohibit this or wait for the page to get into an appropriate state.
2686  *
2687  * We do this without the lock held, so that it can sleep if it needs to.
2688  */
2689 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2690 {
2691 	vm_fault_t ret;
2692 	struct page *page = vmf->page;
2693 	unsigned int old_flags = vmf->flags;
2694 
2695 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2696 
2697 	if (vmf->vma->vm_file &&
2698 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2699 		return VM_FAULT_SIGBUS;
2700 
2701 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2702 	/* Restore original flags so that caller is not surprised */
2703 	vmf->flags = old_flags;
2704 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2705 		return ret;
2706 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2707 		lock_page(page);
2708 		if (!page->mapping) {
2709 			unlock_page(page);
2710 			return 0; /* retry */
2711 		}
2712 		ret |= VM_FAULT_LOCKED;
2713 	} else
2714 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2715 	return ret;
2716 }
2717 
2718 /*
2719  * Handle dirtying of a page in shared file mapping on a write fault.
2720  *
2721  * The function expects the page to be locked and unlocks it.
2722  */
2723 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2724 {
2725 	struct vm_area_struct *vma = vmf->vma;
2726 	struct address_space *mapping;
2727 	struct page *page = vmf->page;
2728 	bool dirtied;
2729 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2730 
2731 	dirtied = set_page_dirty(page);
2732 	VM_BUG_ON_PAGE(PageAnon(page), page);
2733 	/*
2734 	 * Take a local copy of the address_space - page.mapping may be zeroed
2735 	 * by truncate after unlock_page().   The address_space itself remains
2736 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2737 	 * release semantics to prevent the compiler from undoing this copying.
2738 	 */
2739 	mapping = page_rmapping(page);
2740 	unlock_page(page);
2741 
2742 	if (!page_mkwrite)
2743 		file_update_time(vma->vm_file);
2744 
2745 	/*
2746 	 * Throttle page dirtying rate down to writeback speed.
2747 	 *
2748 	 * mapping may be NULL here because some device drivers do not
2749 	 * set page.mapping but still dirty their pages
2750 	 *
2751 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2752 	 * is pinning the mapping, as per above.
2753 	 */
2754 	if ((dirtied || page_mkwrite) && mapping) {
2755 		struct file *fpin;
2756 
2757 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2758 		balance_dirty_pages_ratelimited(mapping);
2759 		if (fpin) {
2760 			fput(fpin);
2761 			return VM_FAULT_RETRY;
2762 		}
2763 	}
2764 
2765 	return 0;
2766 }
2767 
2768 /*
2769  * Handle write page faults for pages that can be reused in the current vma
2770  *
2771  * This can happen either due to the mapping being with the VM_SHARED flag,
2772  * or due to us being the last reference standing to the page. In either
2773  * case, all we need to do here is to mark the page as writable and update
2774  * any related book-keeping.
2775  */
2776 static inline void wp_page_reuse(struct vm_fault *vmf)
2777 	__releases(vmf->ptl)
2778 {
2779 	struct vm_area_struct *vma = vmf->vma;
2780 	struct page *page = vmf->page;
2781 	pte_t entry;
2782 	/*
2783 	 * Clear the pages cpupid information as the existing
2784 	 * information potentially belongs to a now completely
2785 	 * unrelated process.
2786 	 */
2787 	if (page)
2788 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2789 
2790 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2791 	entry = pte_mkyoung(vmf->orig_pte);
2792 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2793 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2794 		update_mmu_cache(vma, vmf->address, vmf->pte);
2795 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2796 	count_vm_event(PGREUSE);
2797 }
2798 
2799 /*
2800  * Handle the case of a page which we actually need to copy to a new page.
2801  *
2802  * Called with mmap_lock locked and the old page referenced, but
2803  * without the ptl held.
2804  *
2805  * High level logic flow:
2806  *
2807  * - Allocate a page, copy the content of the old page to the new one.
2808  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2809  * - Take the PTL. If the pte changed, bail out and release the allocated page
2810  * - If the pte is still the way we remember it, update the page table and all
2811  *   relevant references. This includes dropping the reference the page-table
2812  *   held to the old page, as well as updating the rmap.
2813  * - In any case, unlock the PTL and drop the reference we took to the old page.
2814  */
2815 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2816 {
2817 	struct vm_area_struct *vma = vmf->vma;
2818 	struct mm_struct *mm = vma->vm_mm;
2819 	struct page *old_page = vmf->page;
2820 	struct page *new_page = NULL;
2821 	pte_t entry;
2822 	int page_copied = 0;
2823 	struct mmu_notifier_range range;
2824 
2825 	if (unlikely(anon_vma_prepare(vma)))
2826 		goto oom;
2827 
2828 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2829 		new_page = alloc_zeroed_user_highpage_movable(vma,
2830 							      vmf->address);
2831 		if (!new_page)
2832 			goto oom;
2833 	} else {
2834 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2835 				vmf->address);
2836 		if (!new_page)
2837 			goto oom;
2838 
2839 		if (!cow_user_page(new_page, old_page, vmf)) {
2840 			/*
2841 			 * COW failed, if the fault was solved by other,
2842 			 * it's fine. If not, userspace would re-fault on
2843 			 * the same address and we will handle the fault
2844 			 * from the second attempt.
2845 			 */
2846 			put_page(new_page);
2847 			if (old_page)
2848 				put_page(old_page);
2849 			return 0;
2850 		}
2851 	}
2852 
2853 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2854 		goto oom_free_new;
2855 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2856 
2857 	__SetPageUptodate(new_page);
2858 
2859 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2860 				vmf->address & PAGE_MASK,
2861 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2862 	mmu_notifier_invalidate_range_start(&range);
2863 
2864 	/*
2865 	 * Re-check the pte - we dropped the lock
2866 	 */
2867 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2868 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2869 		if (old_page) {
2870 			if (!PageAnon(old_page)) {
2871 				dec_mm_counter_fast(mm,
2872 						mm_counter_file(old_page));
2873 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2874 			}
2875 		} else {
2876 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2877 		}
2878 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2879 		entry = mk_pte(new_page, vma->vm_page_prot);
2880 		entry = pte_sw_mkyoung(entry);
2881 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2882 		/*
2883 		 * Clear the pte entry and flush it first, before updating the
2884 		 * pte with the new entry. This will avoid a race condition
2885 		 * seen in the presence of one thread doing SMC and another
2886 		 * thread doing COW.
2887 		 */
2888 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2889 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2890 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2891 		/*
2892 		 * We call the notify macro here because, when using secondary
2893 		 * mmu page tables (such as kvm shadow page tables), we want the
2894 		 * new page to be mapped directly into the secondary page table.
2895 		 */
2896 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2897 		update_mmu_cache(vma, vmf->address, vmf->pte);
2898 		if (old_page) {
2899 			/*
2900 			 * Only after switching the pte to the new page may
2901 			 * we remove the mapcount here. Otherwise another
2902 			 * process may come and find the rmap count decremented
2903 			 * before the pte is switched to the new page, and
2904 			 * "reuse" the old page writing into it while our pte
2905 			 * here still points into it and can be read by other
2906 			 * threads.
2907 			 *
2908 			 * The critical issue is to order this
2909 			 * page_remove_rmap with the ptp_clear_flush above.
2910 			 * Those stores are ordered by (if nothing else,)
2911 			 * the barrier present in the atomic_add_negative
2912 			 * in page_remove_rmap.
2913 			 *
2914 			 * Then the TLB flush in ptep_clear_flush ensures that
2915 			 * no process can access the old page before the
2916 			 * decremented mapcount is visible. And the old page
2917 			 * cannot be reused until after the decremented
2918 			 * mapcount is visible. So transitively, TLBs to
2919 			 * old page will be flushed before it can be reused.
2920 			 */
2921 			page_remove_rmap(old_page, false);
2922 		}
2923 
2924 		/* Free the old page.. */
2925 		new_page = old_page;
2926 		page_copied = 1;
2927 	} else {
2928 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2929 	}
2930 
2931 	if (new_page)
2932 		put_page(new_page);
2933 
2934 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2935 	/*
2936 	 * No need to double call mmu_notifier->invalidate_range() callback as
2937 	 * the above ptep_clear_flush_notify() did already call it.
2938 	 */
2939 	mmu_notifier_invalidate_range_only_end(&range);
2940 	if (old_page) {
2941 		/*
2942 		 * Don't let another task, with possibly unlocked vma,
2943 		 * keep the mlocked page.
2944 		 */
2945 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2946 			lock_page(old_page);	/* LRU manipulation */
2947 			if (PageMlocked(old_page))
2948 				munlock_vma_page(old_page);
2949 			unlock_page(old_page);
2950 		}
2951 		put_page(old_page);
2952 	}
2953 	return page_copied ? VM_FAULT_WRITE : 0;
2954 oom_free_new:
2955 	put_page(new_page);
2956 oom:
2957 	if (old_page)
2958 		put_page(old_page);
2959 	return VM_FAULT_OOM;
2960 }
2961 
2962 /**
2963  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2964  *			  writeable once the page is prepared
2965  *
2966  * @vmf: structure describing the fault
2967  *
2968  * This function handles all that is needed to finish a write page fault in a
2969  * shared mapping due to PTE being read-only once the mapped page is prepared.
2970  * It handles locking of PTE and modifying it.
2971  *
2972  * The function expects the page to be locked or other protection against
2973  * concurrent faults / writeback (such as DAX radix tree locks).
2974  *
2975  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2976  * we acquired PTE lock.
2977  */
2978 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2979 {
2980 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2981 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2982 				       &vmf->ptl);
2983 	/*
2984 	 * We might have raced with another page fault while we released the
2985 	 * pte_offset_map_lock.
2986 	 */
2987 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2988 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2989 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2990 		return VM_FAULT_NOPAGE;
2991 	}
2992 	wp_page_reuse(vmf);
2993 	return 0;
2994 }
2995 
2996 /*
2997  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2998  * mapping
2999  */
3000 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3001 {
3002 	struct vm_area_struct *vma = vmf->vma;
3003 
3004 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3005 		vm_fault_t ret;
3006 
3007 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3008 		vmf->flags |= FAULT_FLAG_MKWRITE;
3009 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3010 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3011 			return ret;
3012 		return finish_mkwrite_fault(vmf);
3013 	}
3014 	wp_page_reuse(vmf);
3015 	return VM_FAULT_WRITE;
3016 }
3017 
3018 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3019 	__releases(vmf->ptl)
3020 {
3021 	struct vm_area_struct *vma = vmf->vma;
3022 	vm_fault_t ret = VM_FAULT_WRITE;
3023 
3024 	get_page(vmf->page);
3025 
3026 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3027 		vm_fault_t tmp;
3028 
3029 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3030 		tmp = do_page_mkwrite(vmf);
3031 		if (unlikely(!tmp || (tmp &
3032 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3033 			put_page(vmf->page);
3034 			return tmp;
3035 		}
3036 		tmp = finish_mkwrite_fault(vmf);
3037 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3038 			unlock_page(vmf->page);
3039 			put_page(vmf->page);
3040 			return tmp;
3041 		}
3042 	} else {
3043 		wp_page_reuse(vmf);
3044 		lock_page(vmf->page);
3045 	}
3046 	ret |= fault_dirty_shared_page(vmf);
3047 	put_page(vmf->page);
3048 
3049 	return ret;
3050 }
3051 
3052 /*
3053  * This routine handles present pages, when users try to write
3054  * to a shared page. It is done by copying the page to a new address
3055  * and decrementing the shared-page counter for the old page.
3056  *
3057  * Note that this routine assumes that the protection checks have been
3058  * done by the caller (the low-level page fault routine in most cases).
3059  * Thus we can safely just mark it writable once we've done any necessary
3060  * COW.
3061  *
3062  * We also mark the page dirty at this point even though the page will
3063  * change only once the write actually happens. This avoids a few races,
3064  * and potentially makes it more efficient.
3065  *
3066  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3067  * but allow concurrent faults), with pte both mapped and locked.
3068  * We return with mmap_lock still held, but pte unmapped and unlocked.
3069  */
3070 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3071 	__releases(vmf->ptl)
3072 {
3073 	struct vm_area_struct *vma = vmf->vma;
3074 
3075 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3076 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3077 		return handle_userfault(vmf, VM_UFFD_WP);
3078 	}
3079 
3080 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3081 	if (!vmf->page) {
3082 		/*
3083 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3084 		 * VM_PFNMAP VMA.
3085 		 *
3086 		 * We should not cow pages in a shared writeable mapping.
3087 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3088 		 */
3089 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3090 				     (VM_WRITE|VM_SHARED))
3091 			return wp_pfn_shared(vmf);
3092 
3093 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3094 		return wp_page_copy(vmf);
3095 	}
3096 
3097 	/*
3098 	 * Take out anonymous pages first, anonymous shared vmas are
3099 	 * not dirty accountable.
3100 	 */
3101 	if (PageAnon(vmf->page)) {
3102 		struct page *page = vmf->page;
3103 
3104 		/* PageKsm() doesn't necessarily raise the page refcount */
3105 		if (PageKsm(page) || page_count(page) != 1)
3106 			goto copy;
3107 		if (!trylock_page(page))
3108 			goto copy;
3109 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3110 			unlock_page(page);
3111 			goto copy;
3112 		}
3113 		/*
3114 		 * Ok, we've got the only map reference, and the only
3115 		 * page count reference, and the page is locked,
3116 		 * it's dark out, and we're wearing sunglasses. Hit it.
3117 		 */
3118 		unlock_page(page);
3119 		wp_page_reuse(vmf);
3120 		return VM_FAULT_WRITE;
3121 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3122 					(VM_WRITE|VM_SHARED))) {
3123 		return wp_page_shared(vmf);
3124 	}
3125 copy:
3126 	/*
3127 	 * Ok, we need to copy. Oh, well..
3128 	 */
3129 	get_page(vmf->page);
3130 
3131 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3132 	return wp_page_copy(vmf);
3133 }
3134 
3135 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3136 		unsigned long start_addr, unsigned long end_addr,
3137 		struct zap_details *details)
3138 {
3139 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3140 }
3141 
3142 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3143 					    struct zap_details *details)
3144 {
3145 	struct vm_area_struct *vma;
3146 	pgoff_t vba, vea, zba, zea;
3147 
3148 	vma_interval_tree_foreach(vma, root,
3149 			details->first_index, details->last_index) {
3150 
3151 		vba = vma->vm_pgoff;
3152 		vea = vba + vma_pages(vma) - 1;
3153 		zba = details->first_index;
3154 		if (zba < vba)
3155 			zba = vba;
3156 		zea = details->last_index;
3157 		if (zea > vea)
3158 			zea = vea;
3159 
3160 		unmap_mapping_range_vma(vma,
3161 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3162 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3163 				details);
3164 	}
3165 }
3166 
3167 /**
3168  * unmap_mapping_pages() - Unmap pages from processes.
3169  * @mapping: The address space containing pages to be unmapped.
3170  * @start: Index of first page to be unmapped.
3171  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3172  * @even_cows: Whether to unmap even private COWed pages.
3173  *
3174  * Unmap the pages in this address space from any userspace process which
3175  * has them mmaped.  Generally, you want to remove COWed pages as well when
3176  * a file is being truncated, but not when invalidating pages from the page
3177  * cache.
3178  */
3179 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3180 		pgoff_t nr, bool even_cows)
3181 {
3182 	struct zap_details details = { };
3183 
3184 	details.check_mapping = even_cows ? NULL : mapping;
3185 	details.first_index = start;
3186 	details.last_index = start + nr - 1;
3187 	if (details.last_index < details.first_index)
3188 		details.last_index = ULONG_MAX;
3189 
3190 	i_mmap_lock_write(mapping);
3191 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3192 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3193 	i_mmap_unlock_write(mapping);
3194 }
3195 
3196 /**
3197  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3198  * address_space corresponding to the specified byte range in the underlying
3199  * file.
3200  *
3201  * @mapping: the address space containing mmaps to be unmapped.
3202  * @holebegin: byte in first page to unmap, relative to the start of
3203  * the underlying file.  This will be rounded down to a PAGE_SIZE
3204  * boundary.  Note that this is different from truncate_pagecache(), which
3205  * must keep the partial page.  In contrast, we must get rid of
3206  * partial pages.
3207  * @holelen: size of prospective hole in bytes.  This will be rounded
3208  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3209  * end of the file.
3210  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3211  * but 0 when invalidating pagecache, don't throw away private data.
3212  */
3213 void unmap_mapping_range(struct address_space *mapping,
3214 		loff_t const holebegin, loff_t const holelen, int even_cows)
3215 {
3216 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3217 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3218 
3219 	/* Check for overflow. */
3220 	if (sizeof(holelen) > sizeof(hlen)) {
3221 		long long holeend =
3222 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3223 		if (holeend & ~(long long)ULONG_MAX)
3224 			hlen = ULONG_MAX - hba + 1;
3225 	}
3226 
3227 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3228 }
3229 EXPORT_SYMBOL(unmap_mapping_range);
3230 
3231 /*
3232  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3233  * but allow concurrent faults), and pte mapped but not yet locked.
3234  * We return with pte unmapped and unlocked.
3235  *
3236  * We return with the mmap_lock locked or unlocked in the same cases
3237  * as does filemap_fault().
3238  */
3239 vm_fault_t do_swap_page(struct vm_fault *vmf)
3240 {
3241 	struct vm_area_struct *vma = vmf->vma;
3242 	struct page *page = NULL, *swapcache;
3243 	swp_entry_t entry;
3244 	pte_t pte;
3245 	int locked;
3246 	int exclusive = 0;
3247 	vm_fault_t ret = 0;
3248 	void *shadow = NULL;
3249 
3250 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3251 		goto out;
3252 
3253 	entry = pte_to_swp_entry(vmf->orig_pte);
3254 	if (unlikely(non_swap_entry(entry))) {
3255 		if (is_migration_entry(entry)) {
3256 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3257 					     vmf->address);
3258 		} else if (is_device_private_entry(entry)) {
3259 			vmf->page = device_private_entry_to_page(entry);
3260 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3261 		} else if (is_hwpoison_entry(entry)) {
3262 			ret = VM_FAULT_HWPOISON;
3263 		} else {
3264 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3265 			ret = VM_FAULT_SIGBUS;
3266 		}
3267 		goto out;
3268 	}
3269 
3270 
3271 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3272 	page = lookup_swap_cache(entry, vma, vmf->address);
3273 	swapcache = page;
3274 
3275 	if (!page) {
3276 		struct swap_info_struct *si = swp_swap_info(entry);
3277 
3278 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3279 		    __swap_count(entry) == 1) {
3280 			/* skip swapcache */
3281 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3282 							vmf->address);
3283 			if (page) {
3284 				int err;
3285 
3286 				__SetPageLocked(page);
3287 				__SetPageSwapBacked(page);
3288 				set_page_private(page, entry.val);
3289 
3290 				/* Tell memcg to use swap ownership records */
3291 				SetPageSwapCache(page);
3292 				err = mem_cgroup_charge(page, vma->vm_mm,
3293 							GFP_KERNEL);
3294 				ClearPageSwapCache(page);
3295 				if (err) {
3296 					ret = VM_FAULT_OOM;
3297 					goto out_page;
3298 				}
3299 
3300 				shadow = get_shadow_from_swap_cache(entry);
3301 				if (shadow)
3302 					workingset_refault(page, shadow);
3303 
3304 				lru_cache_add(page);
3305 				swap_readpage(page, true);
3306 			}
3307 		} else {
3308 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3309 						vmf);
3310 			swapcache = page;
3311 		}
3312 
3313 		if (!page) {
3314 			/*
3315 			 * Back out if somebody else faulted in this pte
3316 			 * while we released the pte lock.
3317 			 */
3318 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3319 					vmf->address, &vmf->ptl);
3320 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3321 				ret = VM_FAULT_OOM;
3322 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3323 			goto unlock;
3324 		}
3325 
3326 		/* Had to read the page from swap area: Major fault */
3327 		ret = VM_FAULT_MAJOR;
3328 		count_vm_event(PGMAJFAULT);
3329 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3330 	} else if (PageHWPoison(page)) {
3331 		/*
3332 		 * hwpoisoned dirty swapcache pages are kept for killing
3333 		 * owner processes (which may be unknown at hwpoison time)
3334 		 */
3335 		ret = VM_FAULT_HWPOISON;
3336 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3337 		goto out_release;
3338 	}
3339 
3340 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3341 
3342 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3343 	if (!locked) {
3344 		ret |= VM_FAULT_RETRY;
3345 		goto out_release;
3346 	}
3347 
3348 	/*
3349 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3350 	 * release the swapcache from under us.  The page pin, and pte_same
3351 	 * test below, are not enough to exclude that.  Even if it is still
3352 	 * swapcache, we need to check that the page's swap has not changed.
3353 	 */
3354 	if (unlikely((!PageSwapCache(page) ||
3355 			page_private(page) != entry.val)) && swapcache)
3356 		goto out_page;
3357 
3358 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3359 	if (unlikely(!page)) {
3360 		ret = VM_FAULT_OOM;
3361 		page = swapcache;
3362 		goto out_page;
3363 	}
3364 
3365 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3366 
3367 	/*
3368 	 * Back out if somebody else already faulted in this pte.
3369 	 */
3370 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3371 			&vmf->ptl);
3372 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3373 		goto out_nomap;
3374 
3375 	if (unlikely(!PageUptodate(page))) {
3376 		ret = VM_FAULT_SIGBUS;
3377 		goto out_nomap;
3378 	}
3379 
3380 	/*
3381 	 * The page isn't present yet, go ahead with the fault.
3382 	 *
3383 	 * Be careful about the sequence of operations here.
3384 	 * To get its accounting right, reuse_swap_page() must be called
3385 	 * while the page is counted on swap but not yet in mapcount i.e.
3386 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3387 	 * must be called after the swap_free(), or it will never succeed.
3388 	 */
3389 
3390 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3391 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3392 	pte = mk_pte(page, vma->vm_page_prot);
3393 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3394 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3395 		vmf->flags &= ~FAULT_FLAG_WRITE;
3396 		ret |= VM_FAULT_WRITE;
3397 		exclusive = RMAP_EXCLUSIVE;
3398 	}
3399 	flush_icache_page(vma, page);
3400 	if (pte_swp_soft_dirty(vmf->orig_pte))
3401 		pte = pte_mksoft_dirty(pte);
3402 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3403 		pte = pte_mkuffd_wp(pte);
3404 		pte = pte_wrprotect(pte);
3405 	}
3406 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3407 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3408 	vmf->orig_pte = pte;
3409 
3410 	/* ksm created a completely new copy */
3411 	if (unlikely(page != swapcache && swapcache)) {
3412 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3413 		lru_cache_add_inactive_or_unevictable(page, vma);
3414 	} else {
3415 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3416 	}
3417 
3418 	swap_free(entry);
3419 	if (mem_cgroup_swap_full(page) ||
3420 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3421 		try_to_free_swap(page);
3422 	unlock_page(page);
3423 	if (page != swapcache && swapcache) {
3424 		/*
3425 		 * Hold the lock to avoid the swap entry to be reused
3426 		 * until we take the PT lock for the pte_same() check
3427 		 * (to avoid false positives from pte_same). For
3428 		 * further safety release the lock after the swap_free
3429 		 * so that the swap count won't change under a
3430 		 * parallel locked swapcache.
3431 		 */
3432 		unlock_page(swapcache);
3433 		put_page(swapcache);
3434 	}
3435 
3436 	if (vmf->flags & FAULT_FLAG_WRITE) {
3437 		ret |= do_wp_page(vmf);
3438 		if (ret & VM_FAULT_ERROR)
3439 			ret &= VM_FAULT_ERROR;
3440 		goto out;
3441 	}
3442 
3443 	/* No need to invalidate - it was non-present before */
3444 	update_mmu_cache(vma, vmf->address, vmf->pte);
3445 unlock:
3446 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3447 out:
3448 	return ret;
3449 out_nomap:
3450 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3451 out_page:
3452 	unlock_page(page);
3453 out_release:
3454 	put_page(page);
3455 	if (page != swapcache && swapcache) {
3456 		unlock_page(swapcache);
3457 		put_page(swapcache);
3458 	}
3459 	return ret;
3460 }
3461 
3462 /*
3463  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3464  * but allow concurrent faults), and pte mapped but not yet locked.
3465  * We return with mmap_lock still held, but pte unmapped and unlocked.
3466  */
3467 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3468 {
3469 	struct vm_area_struct *vma = vmf->vma;
3470 	struct page *page;
3471 	vm_fault_t ret = 0;
3472 	pte_t entry;
3473 
3474 	/* File mapping without ->vm_ops ? */
3475 	if (vma->vm_flags & VM_SHARED)
3476 		return VM_FAULT_SIGBUS;
3477 
3478 	/*
3479 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3480 	 * pte_offset_map() on pmds where a huge pmd might be created
3481 	 * from a different thread.
3482 	 *
3483 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3484 	 * parallel threads are excluded by other means.
3485 	 *
3486 	 * Here we only have mmap_read_lock(mm).
3487 	 */
3488 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3489 		return VM_FAULT_OOM;
3490 
3491 	/* See the comment in pte_alloc_one_map() */
3492 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3493 		return 0;
3494 
3495 	/* Use the zero-page for reads */
3496 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3497 			!mm_forbids_zeropage(vma->vm_mm)) {
3498 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3499 						vma->vm_page_prot));
3500 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3501 				vmf->address, &vmf->ptl);
3502 		if (!pte_none(*vmf->pte)) {
3503 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3504 			goto unlock;
3505 		}
3506 		ret = check_stable_address_space(vma->vm_mm);
3507 		if (ret)
3508 			goto unlock;
3509 		/* Deliver the page fault to userland, check inside PT lock */
3510 		if (userfaultfd_missing(vma)) {
3511 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3512 			return handle_userfault(vmf, VM_UFFD_MISSING);
3513 		}
3514 		goto setpte;
3515 	}
3516 
3517 	/* Allocate our own private page. */
3518 	if (unlikely(anon_vma_prepare(vma)))
3519 		goto oom;
3520 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3521 	if (!page)
3522 		goto oom;
3523 
3524 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3525 		goto oom_free_page;
3526 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3527 
3528 	/*
3529 	 * The memory barrier inside __SetPageUptodate makes sure that
3530 	 * preceding stores to the page contents become visible before
3531 	 * the set_pte_at() write.
3532 	 */
3533 	__SetPageUptodate(page);
3534 
3535 	entry = mk_pte(page, vma->vm_page_prot);
3536 	entry = pte_sw_mkyoung(entry);
3537 	if (vma->vm_flags & VM_WRITE)
3538 		entry = pte_mkwrite(pte_mkdirty(entry));
3539 
3540 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3541 			&vmf->ptl);
3542 	if (!pte_none(*vmf->pte)) {
3543 		update_mmu_cache(vma, vmf->address, vmf->pte);
3544 		goto release;
3545 	}
3546 
3547 	ret = check_stable_address_space(vma->vm_mm);
3548 	if (ret)
3549 		goto release;
3550 
3551 	/* Deliver the page fault to userland, check inside PT lock */
3552 	if (userfaultfd_missing(vma)) {
3553 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3554 		put_page(page);
3555 		return handle_userfault(vmf, VM_UFFD_MISSING);
3556 	}
3557 
3558 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3559 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3560 	lru_cache_add_inactive_or_unevictable(page, vma);
3561 setpte:
3562 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3563 
3564 	/* No need to invalidate - it was non-present before */
3565 	update_mmu_cache(vma, vmf->address, vmf->pte);
3566 unlock:
3567 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3568 	return ret;
3569 release:
3570 	put_page(page);
3571 	goto unlock;
3572 oom_free_page:
3573 	put_page(page);
3574 oom:
3575 	return VM_FAULT_OOM;
3576 }
3577 
3578 /*
3579  * The mmap_lock must have been held on entry, and may have been
3580  * released depending on flags and vma->vm_ops->fault() return value.
3581  * See filemap_fault() and __lock_page_retry().
3582  */
3583 static vm_fault_t __do_fault(struct vm_fault *vmf)
3584 {
3585 	struct vm_area_struct *vma = vmf->vma;
3586 	vm_fault_t ret;
3587 
3588 	/*
3589 	 * Preallocate pte before we take page_lock because this might lead to
3590 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3591 	 *				lock_page(A)
3592 	 *				SetPageWriteback(A)
3593 	 *				unlock_page(A)
3594 	 * lock_page(B)
3595 	 *				lock_page(B)
3596 	 * pte_alloc_one
3597 	 *   shrink_page_list
3598 	 *     wait_on_page_writeback(A)
3599 	 *				SetPageWriteback(B)
3600 	 *				unlock_page(B)
3601 	 *				# flush A, B to clear the writeback
3602 	 */
3603 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3604 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3605 		if (!vmf->prealloc_pte)
3606 			return VM_FAULT_OOM;
3607 		smp_wmb(); /* See comment in __pte_alloc() */
3608 	}
3609 
3610 	ret = vma->vm_ops->fault(vmf);
3611 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3612 			    VM_FAULT_DONE_COW)))
3613 		return ret;
3614 
3615 	if (unlikely(PageHWPoison(vmf->page))) {
3616 		if (ret & VM_FAULT_LOCKED)
3617 			unlock_page(vmf->page);
3618 		put_page(vmf->page);
3619 		vmf->page = NULL;
3620 		return VM_FAULT_HWPOISON;
3621 	}
3622 
3623 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3624 		lock_page(vmf->page);
3625 	else
3626 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3627 
3628 	return ret;
3629 }
3630 
3631 /*
3632  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3633  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3634  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3635  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3636  */
3637 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3638 {
3639 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3640 }
3641 
3642 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3643 {
3644 	struct vm_area_struct *vma = vmf->vma;
3645 
3646 	if (!pmd_none(*vmf->pmd))
3647 		goto map_pte;
3648 	if (vmf->prealloc_pte) {
3649 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3650 		if (unlikely(!pmd_none(*vmf->pmd))) {
3651 			spin_unlock(vmf->ptl);
3652 			goto map_pte;
3653 		}
3654 
3655 		mm_inc_nr_ptes(vma->vm_mm);
3656 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3657 		spin_unlock(vmf->ptl);
3658 		vmf->prealloc_pte = NULL;
3659 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3660 		return VM_FAULT_OOM;
3661 	}
3662 map_pte:
3663 	/*
3664 	 * If a huge pmd materialized under us just retry later.  Use
3665 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3666 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3667 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3668 	 * running immediately after a huge pmd fault in a different thread of
3669 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3670 	 * All we have to ensure is that it is a regular pmd that we can walk
3671 	 * with pte_offset_map() and we can do that through an atomic read in
3672 	 * C, which is what pmd_trans_unstable() provides.
3673 	 */
3674 	if (pmd_devmap_trans_unstable(vmf->pmd))
3675 		return VM_FAULT_NOPAGE;
3676 
3677 	/*
3678 	 * At this point we know that our vmf->pmd points to a page of ptes
3679 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3680 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3681 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3682 	 * be valid and we will re-check to make sure the vmf->pte isn't
3683 	 * pte_none() under vmf->ptl protection when we return to
3684 	 * alloc_set_pte().
3685 	 */
3686 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3687 			&vmf->ptl);
3688 	return 0;
3689 }
3690 
3691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3692 static void deposit_prealloc_pte(struct vm_fault *vmf)
3693 {
3694 	struct vm_area_struct *vma = vmf->vma;
3695 
3696 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3697 	/*
3698 	 * We are going to consume the prealloc table,
3699 	 * count that as nr_ptes.
3700 	 */
3701 	mm_inc_nr_ptes(vma->vm_mm);
3702 	vmf->prealloc_pte = NULL;
3703 }
3704 
3705 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3706 {
3707 	struct vm_area_struct *vma = vmf->vma;
3708 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3709 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3710 	pmd_t entry;
3711 	int i;
3712 	vm_fault_t ret;
3713 
3714 	if (!transhuge_vma_suitable(vma, haddr))
3715 		return VM_FAULT_FALLBACK;
3716 
3717 	ret = VM_FAULT_FALLBACK;
3718 	page = compound_head(page);
3719 
3720 	/*
3721 	 * Archs like ppc64 need additonal space to store information
3722 	 * related to pte entry. Use the preallocated table for that.
3723 	 */
3724 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3725 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3726 		if (!vmf->prealloc_pte)
3727 			return VM_FAULT_OOM;
3728 		smp_wmb(); /* See comment in __pte_alloc() */
3729 	}
3730 
3731 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3732 	if (unlikely(!pmd_none(*vmf->pmd)))
3733 		goto out;
3734 
3735 	for (i = 0; i < HPAGE_PMD_NR; i++)
3736 		flush_icache_page(vma, page + i);
3737 
3738 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3739 	if (write)
3740 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3741 
3742 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3743 	page_add_file_rmap(page, true);
3744 	/*
3745 	 * deposit and withdraw with pmd lock held
3746 	 */
3747 	if (arch_needs_pgtable_deposit())
3748 		deposit_prealloc_pte(vmf);
3749 
3750 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3751 
3752 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3753 
3754 	/* fault is handled */
3755 	ret = 0;
3756 	count_vm_event(THP_FILE_MAPPED);
3757 out:
3758 	spin_unlock(vmf->ptl);
3759 	return ret;
3760 }
3761 #else
3762 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3763 {
3764 	BUILD_BUG();
3765 	return 0;
3766 }
3767 #endif
3768 
3769 /**
3770  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3771  * mapping. If needed, the function allocates page table or use pre-allocated.
3772  *
3773  * @vmf: fault environment
3774  * @page: page to map
3775  *
3776  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3777  * return.
3778  *
3779  * Target users are page handler itself and implementations of
3780  * vm_ops->map_pages.
3781  *
3782  * Return: %0 on success, %VM_FAULT_ code in case of error.
3783  */
3784 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3785 {
3786 	struct vm_area_struct *vma = vmf->vma;
3787 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3788 	pte_t entry;
3789 	vm_fault_t ret;
3790 
3791 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3792 		ret = do_set_pmd(vmf, page);
3793 		if (ret != VM_FAULT_FALLBACK)
3794 			return ret;
3795 	}
3796 
3797 	if (!vmf->pte) {
3798 		ret = pte_alloc_one_map(vmf);
3799 		if (ret)
3800 			return ret;
3801 	}
3802 
3803 	/* Re-check under ptl */
3804 	if (unlikely(!pte_none(*vmf->pte))) {
3805 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3806 		return VM_FAULT_NOPAGE;
3807 	}
3808 
3809 	flush_icache_page(vma, page);
3810 	entry = mk_pte(page, vma->vm_page_prot);
3811 	entry = pte_sw_mkyoung(entry);
3812 	if (write)
3813 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3814 	/* copy-on-write page */
3815 	if (write && !(vma->vm_flags & VM_SHARED)) {
3816 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3817 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3818 		lru_cache_add_inactive_or_unevictable(page, vma);
3819 	} else {
3820 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3821 		page_add_file_rmap(page, false);
3822 	}
3823 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3824 
3825 	/* no need to invalidate: a not-present page won't be cached */
3826 	update_mmu_cache(vma, vmf->address, vmf->pte);
3827 
3828 	return 0;
3829 }
3830 
3831 
3832 /**
3833  * finish_fault - finish page fault once we have prepared the page to fault
3834  *
3835  * @vmf: structure describing the fault
3836  *
3837  * This function handles all that is needed to finish a page fault once the
3838  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3839  * given page, adds reverse page mapping, handles memcg charges and LRU
3840  * addition.
3841  *
3842  * The function expects the page to be locked and on success it consumes a
3843  * reference of a page being mapped (for the PTE which maps it).
3844  *
3845  * Return: %0 on success, %VM_FAULT_ code in case of error.
3846  */
3847 vm_fault_t finish_fault(struct vm_fault *vmf)
3848 {
3849 	struct page *page;
3850 	vm_fault_t ret = 0;
3851 
3852 	/* Did we COW the page? */
3853 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3854 	    !(vmf->vma->vm_flags & VM_SHARED))
3855 		page = vmf->cow_page;
3856 	else
3857 		page = vmf->page;
3858 
3859 	/*
3860 	 * check even for read faults because we might have lost our CoWed
3861 	 * page
3862 	 */
3863 	if (!(vmf->vma->vm_flags & VM_SHARED))
3864 		ret = check_stable_address_space(vmf->vma->vm_mm);
3865 	if (!ret)
3866 		ret = alloc_set_pte(vmf, page);
3867 	if (vmf->pte)
3868 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3869 	return ret;
3870 }
3871 
3872 static unsigned long fault_around_bytes __read_mostly =
3873 	rounddown_pow_of_two(65536);
3874 
3875 #ifdef CONFIG_DEBUG_FS
3876 static int fault_around_bytes_get(void *data, u64 *val)
3877 {
3878 	*val = fault_around_bytes;
3879 	return 0;
3880 }
3881 
3882 /*
3883  * fault_around_bytes must be rounded down to the nearest page order as it's
3884  * what do_fault_around() expects to see.
3885  */
3886 static int fault_around_bytes_set(void *data, u64 val)
3887 {
3888 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3889 		return -EINVAL;
3890 	if (val > PAGE_SIZE)
3891 		fault_around_bytes = rounddown_pow_of_two(val);
3892 	else
3893 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3894 	return 0;
3895 }
3896 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3897 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3898 
3899 static int __init fault_around_debugfs(void)
3900 {
3901 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3902 				   &fault_around_bytes_fops);
3903 	return 0;
3904 }
3905 late_initcall(fault_around_debugfs);
3906 #endif
3907 
3908 /*
3909  * do_fault_around() tries to map few pages around the fault address. The hope
3910  * is that the pages will be needed soon and this will lower the number of
3911  * faults to handle.
3912  *
3913  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3914  * not ready to be mapped: not up-to-date, locked, etc.
3915  *
3916  * This function is called with the page table lock taken. In the split ptlock
3917  * case the page table lock only protects only those entries which belong to
3918  * the page table corresponding to the fault address.
3919  *
3920  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3921  * only once.
3922  *
3923  * fault_around_bytes defines how many bytes we'll try to map.
3924  * do_fault_around() expects it to be set to a power of two less than or equal
3925  * to PTRS_PER_PTE.
3926  *
3927  * The virtual address of the area that we map is naturally aligned to
3928  * fault_around_bytes rounded down to the machine page size
3929  * (and therefore to page order).  This way it's easier to guarantee
3930  * that we don't cross page table boundaries.
3931  */
3932 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3933 {
3934 	unsigned long address = vmf->address, nr_pages, mask;
3935 	pgoff_t start_pgoff = vmf->pgoff;
3936 	pgoff_t end_pgoff;
3937 	int off;
3938 	vm_fault_t ret = 0;
3939 
3940 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3941 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3942 
3943 	vmf->address = max(address & mask, vmf->vma->vm_start);
3944 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3945 	start_pgoff -= off;
3946 
3947 	/*
3948 	 *  end_pgoff is either the end of the page table, the end of
3949 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3950 	 */
3951 	end_pgoff = start_pgoff -
3952 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3953 		PTRS_PER_PTE - 1;
3954 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3955 			start_pgoff + nr_pages - 1);
3956 
3957 	if (pmd_none(*vmf->pmd)) {
3958 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3959 		if (!vmf->prealloc_pte)
3960 			goto out;
3961 		smp_wmb(); /* See comment in __pte_alloc() */
3962 	}
3963 
3964 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3965 
3966 	/* Huge page is mapped? Page fault is solved */
3967 	if (pmd_trans_huge(*vmf->pmd)) {
3968 		ret = VM_FAULT_NOPAGE;
3969 		goto out;
3970 	}
3971 
3972 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3973 	if (!vmf->pte)
3974 		goto out;
3975 
3976 	/* check if the page fault is solved */
3977 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3978 	if (!pte_none(*vmf->pte))
3979 		ret = VM_FAULT_NOPAGE;
3980 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3981 out:
3982 	vmf->address = address;
3983 	vmf->pte = NULL;
3984 	return ret;
3985 }
3986 
3987 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3988 {
3989 	struct vm_area_struct *vma = vmf->vma;
3990 	vm_fault_t ret = 0;
3991 
3992 	/*
3993 	 * Let's call ->map_pages() first and use ->fault() as fallback
3994 	 * if page by the offset is not ready to be mapped (cold cache or
3995 	 * something).
3996 	 */
3997 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3998 		ret = do_fault_around(vmf);
3999 		if (ret)
4000 			return ret;
4001 	}
4002 
4003 	ret = __do_fault(vmf);
4004 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4005 		return ret;
4006 
4007 	ret |= finish_fault(vmf);
4008 	unlock_page(vmf->page);
4009 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4010 		put_page(vmf->page);
4011 	return ret;
4012 }
4013 
4014 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4015 {
4016 	struct vm_area_struct *vma = vmf->vma;
4017 	vm_fault_t ret;
4018 
4019 	if (unlikely(anon_vma_prepare(vma)))
4020 		return VM_FAULT_OOM;
4021 
4022 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4023 	if (!vmf->cow_page)
4024 		return VM_FAULT_OOM;
4025 
4026 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
4027 		put_page(vmf->cow_page);
4028 		return VM_FAULT_OOM;
4029 	}
4030 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4031 
4032 	ret = __do_fault(vmf);
4033 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4034 		goto uncharge_out;
4035 	if (ret & VM_FAULT_DONE_COW)
4036 		return ret;
4037 
4038 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4039 	__SetPageUptodate(vmf->cow_page);
4040 
4041 	ret |= finish_fault(vmf);
4042 	unlock_page(vmf->page);
4043 	put_page(vmf->page);
4044 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4045 		goto uncharge_out;
4046 	return ret;
4047 uncharge_out:
4048 	put_page(vmf->cow_page);
4049 	return ret;
4050 }
4051 
4052 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4053 {
4054 	struct vm_area_struct *vma = vmf->vma;
4055 	vm_fault_t ret, tmp;
4056 
4057 	ret = __do_fault(vmf);
4058 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4059 		return ret;
4060 
4061 	/*
4062 	 * Check if the backing address space wants to know that the page is
4063 	 * about to become writable
4064 	 */
4065 	if (vma->vm_ops->page_mkwrite) {
4066 		unlock_page(vmf->page);
4067 		tmp = do_page_mkwrite(vmf);
4068 		if (unlikely(!tmp ||
4069 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4070 			put_page(vmf->page);
4071 			return tmp;
4072 		}
4073 	}
4074 
4075 	ret |= finish_fault(vmf);
4076 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4077 					VM_FAULT_RETRY))) {
4078 		unlock_page(vmf->page);
4079 		put_page(vmf->page);
4080 		return ret;
4081 	}
4082 
4083 	ret |= fault_dirty_shared_page(vmf);
4084 	return ret;
4085 }
4086 
4087 /*
4088  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4089  * but allow concurrent faults).
4090  * The mmap_lock may have been released depending on flags and our
4091  * return value.  See filemap_fault() and __lock_page_or_retry().
4092  * If mmap_lock is released, vma may become invalid (for example
4093  * by other thread calling munmap()).
4094  */
4095 static vm_fault_t do_fault(struct vm_fault *vmf)
4096 {
4097 	struct vm_area_struct *vma = vmf->vma;
4098 	struct mm_struct *vm_mm = vma->vm_mm;
4099 	vm_fault_t ret;
4100 
4101 	/*
4102 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4103 	 */
4104 	if (!vma->vm_ops->fault) {
4105 		/*
4106 		 * If we find a migration pmd entry or a none pmd entry, which
4107 		 * should never happen, return SIGBUS
4108 		 */
4109 		if (unlikely(!pmd_present(*vmf->pmd)))
4110 			ret = VM_FAULT_SIGBUS;
4111 		else {
4112 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4113 						       vmf->pmd,
4114 						       vmf->address,
4115 						       &vmf->ptl);
4116 			/*
4117 			 * Make sure this is not a temporary clearing of pte
4118 			 * by holding ptl and checking again. A R/M/W update
4119 			 * of pte involves: take ptl, clearing the pte so that
4120 			 * we don't have concurrent modification by hardware
4121 			 * followed by an update.
4122 			 */
4123 			if (unlikely(pte_none(*vmf->pte)))
4124 				ret = VM_FAULT_SIGBUS;
4125 			else
4126 				ret = VM_FAULT_NOPAGE;
4127 
4128 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4129 		}
4130 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4131 		ret = do_read_fault(vmf);
4132 	else if (!(vma->vm_flags & VM_SHARED))
4133 		ret = do_cow_fault(vmf);
4134 	else
4135 		ret = do_shared_fault(vmf);
4136 
4137 	/* preallocated pagetable is unused: free it */
4138 	if (vmf->prealloc_pte) {
4139 		pte_free(vm_mm, vmf->prealloc_pte);
4140 		vmf->prealloc_pte = NULL;
4141 	}
4142 	return ret;
4143 }
4144 
4145 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4146 				unsigned long addr, int page_nid,
4147 				int *flags)
4148 {
4149 	get_page(page);
4150 
4151 	count_vm_numa_event(NUMA_HINT_FAULTS);
4152 	if (page_nid == numa_node_id()) {
4153 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4154 		*flags |= TNF_FAULT_LOCAL;
4155 	}
4156 
4157 	return mpol_misplaced(page, vma, addr);
4158 }
4159 
4160 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4161 {
4162 	struct vm_area_struct *vma = vmf->vma;
4163 	struct page *page = NULL;
4164 	int page_nid = NUMA_NO_NODE;
4165 	int last_cpupid;
4166 	int target_nid;
4167 	bool migrated = false;
4168 	pte_t pte, old_pte;
4169 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4170 	int flags = 0;
4171 
4172 	/*
4173 	 * The "pte" at this point cannot be used safely without
4174 	 * validation through pte_unmap_same(). It's of NUMA type but
4175 	 * the pfn may be screwed if the read is non atomic.
4176 	 */
4177 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4178 	spin_lock(vmf->ptl);
4179 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4180 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4181 		goto out;
4182 	}
4183 
4184 	/*
4185 	 * Make it present again, Depending on how arch implementes non
4186 	 * accessible ptes, some can allow access by kernel mode.
4187 	 */
4188 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4189 	pte = pte_modify(old_pte, vma->vm_page_prot);
4190 	pte = pte_mkyoung(pte);
4191 	if (was_writable)
4192 		pte = pte_mkwrite(pte);
4193 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4194 	update_mmu_cache(vma, vmf->address, vmf->pte);
4195 
4196 	page = vm_normal_page(vma, vmf->address, pte);
4197 	if (!page) {
4198 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4199 		return 0;
4200 	}
4201 
4202 	/* TODO: handle PTE-mapped THP */
4203 	if (PageCompound(page)) {
4204 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4205 		return 0;
4206 	}
4207 
4208 	/*
4209 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4210 	 * much anyway since they can be in shared cache state. This misses
4211 	 * the case where a mapping is writable but the process never writes
4212 	 * to it but pte_write gets cleared during protection updates and
4213 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4214 	 * background writeback, dirty balancing and application behaviour.
4215 	 */
4216 	if (!pte_write(pte))
4217 		flags |= TNF_NO_GROUP;
4218 
4219 	/*
4220 	 * Flag if the page is shared between multiple address spaces. This
4221 	 * is later used when determining whether to group tasks together
4222 	 */
4223 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4224 		flags |= TNF_SHARED;
4225 
4226 	last_cpupid = page_cpupid_last(page);
4227 	page_nid = page_to_nid(page);
4228 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4229 			&flags);
4230 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4231 	if (target_nid == NUMA_NO_NODE) {
4232 		put_page(page);
4233 		goto out;
4234 	}
4235 
4236 	/* Migrate to the requested node */
4237 	migrated = migrate_misplaced_page(page, vma, target_nid);
4238 	if (migrated) {
4239 		page_nid = target_nid;
4240 		flags |= TNF_MIGRATED;
4241 	} else
4242 		flags |= TNF_MIGRATE_FAIL;
4243 
4244 out:
4245 	if (page_nid != NUMA_NO_NODE)
4246 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4247 	return 0;
4248 }
4249 
4250 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4251 {
4252 	if (vma_is_anonymous(vmf->vma))
4253 		return do_huge_pmd_anonymous_page(vmf);
4254 	if (vmf->vma->vm_ops->huge_fault)
4255 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4256 	return VM_FAULT_FALLBACK;
4257 }
4258 
4259 /* `inline' is required to avoid gcc 4.1.2 build error */
4260 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4261 {
4262 	if (vma_is_anonymous(vmf->vma)) {
4263 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4264 			return handle_userfault(vmf, VM_UFFD_WP);
4265 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4266 	}
4267 	if (vmf->vma->vm_ops->huge_fault) {
4268 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4269 
4270 		if (!(ret & VM_FAULT_FALLBACK))
4271 			return ret;
4272 	}
4273 
4274 	/* COW or write-notify handled on pte level: split pmd. */
4275 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4276 
4277 	return VM_FAULT_FALLBACK;
4278 }
4279 
4280 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4281 {
4282 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4283 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4284 	/* No support for anonymous transparent PUD pages yet */
4285 	if (vma_is_anonymous(vmf->vma))
4286 		goto split;
4287 	if (vmf->vma->vm_ops->huge_fault) {
4288 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4289 
4290 		if (!(ret & VM_FAULT_FALLBACK))
4291 			return ret;
4292 	}
4293 split:
4294 	/* COW or write-notify not handled on PUD level: split pud.*/
4295 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4296 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4297 	return VM_FAULT_FALLBACK;
4298 }
4299 
4300 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4301 {
4302 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4303 	/* No support for anonymous transparent PUD pages yet */
4304 	if (vma_is_anonymous(vmf->vma))
4305 		return VM_FAULT_FALLBACK;
4306 	if (vmf->vma->vm_ops->huge_fault)
4307 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4308 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4309 	return VM_FAULT_FALLBACK;
4310 }
4311 
4312 /*
4313  * These routines also need to handle stuff like marking pages dirty
4314  * and/or accessed for architectures that don't do it in hardware (most
4315  * RISC architectures).  The early dirtying is also good on the i386.
4316  *
4317  * There is also a hook called "update_mmu_cache()" that architectures
4318  * with external mmu caches can use to update those (ie the Sparc or
4319  * PowerPC hashed page tables that act as extended TLBs).
4320  *
4321  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4322  * concurrent faults).
4323  *
4324  * The mmap_lock may have been released depending on flags and our return value.
4325  * See filemap_fault() and __lock_page_or_retry().
4326  */
4327 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4328 {
4329 	pte_t entry;
4330 
4331 	if (unlikely(pmd_none(*vmf->pmd))) {
4332 		/*
4333 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4334 		 * want to allocate huge page, and if we expose page table
4335 		 * for an instant, it will be difficult to retract from
4336 		 * concurrent faults and from rmap lookups.
4337 		 */
4338 		vmf->pte = NULL;
4339 	} else {
4340 		/* See comment in pte_alloc_one_map() */
4341 		if (pmd_devmap_trans_unstable(vmf->pmd))
4342 			return 0;
4343 		/*
4344 		 * A regular pmd is established and it can't morph into a huge
4345 		 * pmd from under us anymore at this point because we hold the
4346 		 * mmap_lock read mode and khugepaged takes it in write mode.
4347 		 * So now it's safe to run pte_offset_map().
4348 		 */
4349 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4350 		vmf->orig_pte = *vmf->pte;
4351 
4352 		/*
4353 		 * some architectures can have larger ptes than wordsize,
4354 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4355 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4356 		 * accesses.  The code below just needs a consistent view
4357 		 * for the ifs and we later double check anyway with the
4358 		 * ptl lock held. So here a barrier will do.
4359 		 */
4360 		barrier();
4361 		if (pte_none(vmf->orig_pte)) {
4362 			pte_unmap(vmf->pte);
4363 			vmf->pte = NULL;
4364 		}
4365 	}
4366 
4367 	if (!vmf->pte) {
4368 		if (vma_is_anonymous(vmf->vma))
4369 			return do_anonymous_page(vmf);
4370 		else
4371 			return do_fault(vmf);
4372 	}
4373 
4374 	if (!pte_present(vmf->orig_pte))
4375 		return do_swap_page(vmf);
4376 
4377 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4378 		return do_numa_page(vmf);
4379 
4380 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4381 	spin_lock(vmf->ptl);
4382 	entry = vmf->orig_pte;
4383 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4384 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4385 		goto unlock;
4386 	}
4387 	if (vmf->flags & FAULT_FLAG_WRITE) {
4388 		if (!pte_write(entry))
4389 			return do_wp_page(vmf);
4390 		entry = pte_mkdirty(entry);
4391 	}
4392 	entry = pte_mkyoung(entry);
4393 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4394 				vmf->flags & FAULT_FLAG_WRITE)) {
4395 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4396 	} else {
4397 		/* Skip spurious TLB flush for retried page fault */
4398 		if (vmf->flags & FAULT_FLAG_TRIED)
4399 			goto unlock;
4400 		/*
4401 		 * This is needed only for protection faults but the arch code
4402 		 * is not yet telling us if this is a protection fault or not.
4403 		 * This still avoids useless tlb flushes for .text page faults
4404 		 * with threads.
4405 		 */
4406 		if (vmf->flags & FAULT_FLAG_WRITE)
4407 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4408 	}
4409 unlock:
4410 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4411 	return 0;
4412 }
4413 
4414 /*
4415  * By the time we get here, we already hold the mm semaphore
4416  *
4417  * The mmap_lock may have been released depending on flags and our
4418  * return value.  See filemap_fault() and __lock_page_or_retry().
4419  */
4420 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4421 		unsigned long address, unsigned int flags)
4422 {
4423 	struct vm_fault vmf = {
4424 		.vma = vma,
4425 		.address = address & PAGE_MASK,
4426 		.flags = flags,
4427 		.pgoff = linear_page_index(vma, address),
4428 		.gfp_mask = __get_fault_gfp_mask(vma),
4429 	};
4430 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4431 	struct mm_struct *mm = vma->vm_mm;
4432 	pgd_t *pgd;
4433 	p4d_t *p4d;
4434 	vm_fault_t ret;
4435 
4436 	pgd = pgd_offset(mm, address);
4437 	p4d = p4d_alloc(mm, pgd, address);
4438 	if (!p4d)
4439 		return VM_FAULT_OOM;
4440 
4441 	vmf.pud = pud_alloc(mm, p4d, address);
4442 	if (!vmf.pud)
4443 		return VM_FAULT_OOM;
4444 retry_pud:
4445 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4446 		ret = create_huge_pud(&vmf);
4447 		if (!(ret & VM_FAULT_FALLBACK))
4448 			return ret;
4449 	} else {
4450 		pud_t orig_pud = *vmf.pud;
4451 
4452 		barrier();
4453 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4454 
4455 			/* NUMA case for anonymous PUDs would go here */
4456 
4457 			if (dirty && !pud_write(orig_pud)) {
4458 				ret = wp_huge_pud(&vmf, orig_pud);
4459 				if (!(ret & VM_FAULT_FALLBACK))
4460 					return ret;
4461 			} else {
4462 				huge_pud_set_accessed(&vmf, orig_pud);
4463 				return 0;
4464 			}
4465 		}
4466 	}
4467 
4468 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4469 	if (!vmf.pmd)
4470 		return VM_FAULT_OOM;
4471 
4472 	/* Huge pud page fault raced with pmd_alloc? */
4473 	if (pud_trans_unstable(vmf.pud))
4474 		goto retry_pud;
4475 
4476 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4477 		ret = create_huge_pmd(&vmf);
4478 		if (!(ret & VM_FAULT_FALLBACK))
4479 			return ret;
4480 	} else {
4481 		pmd_t orig_pmd = *vmf.pmd;
4482 
4483 		barrier();
4484 		if (unlikely(is_swap_pmd(orig_pmd))) {
4485 			VM_BUG_ON(thp_migration_supported() &&
4486 					  !is_pmd_migration_entry(orig_pmd));
4487 			if (is_pmd_migration_entry(orig_pmd))
4488 				pmd_migration_entry_wait(mm, vmf.pmd);
4489 			return 0;
4490 		}
4491 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4492 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4493 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4494 
4495 			if (dirty && !pmd_write(orig_pmd)) {
4496 				ret = wp_huge_pmd(&vmf, orig_pmd);
4497 				if (!(ret & VM_FAULT_FALLBACK))
4498 					return ret;
4499 			} else {
4500 				huge_pmd_set_accessed(&vmf, orig_pmd);
4501 				return 0;
4502 			}
4503 		}
4504 	}
4505 
4506 	return handle_pte_fault(&vmf);
4507 }
4508 
4509 /**
4510  * mm_account_fault - Do page fault accountings
4511  *
4512  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4513  *        of perf event counters, but we'll still do the per-task accounting to
4514  *        the task who triggered this page fault.
4515  * @address: the faulted address.
4516  * @flags: the fault flags.
4517  * @ret: the fault retcode.
4518  *
4519  * This will take care of most of the page fault accountings.  Meanwhile, it
4520  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4521  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4522  * still be in per-arch page fault handlers at the entry of page fault.
4523  */
4524 static inline void mm_account_fault(struct pt_regs *regs,
4525 				    unsigned long address, unsigned int flags,
4526 				    vm_fault_t ret)
4527 {
4528 	bool major;
4529 
4530 	/*
4531 	 * We don't do accounting for some specific faults:
4532 	 *
4533 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4534 	 *   includes arch_vma_access_permitted() failing before reaching here.
4535 	 *   So this is not a "this many hardware page faults" counter.  We
4536 	 *   should use the hw profiling for that.
4537 	 *
4538 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4539 	 *   once they're completed.
4540 	 */
4541 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4542 		return;
4543 
4544 	/*
4545 	 * We define the fault as a major fault when the final successful fault
4546 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4547 	 * handle it immediately previously).
4548 	 */
4549 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4550 
4551 	if (major)
4552 		current->maj_flt++;
4553 	else
4554 		current->min_flt++;
4555 
4556 	/*
4557 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4558 	 * accounting for the per thread fault counters who triggered the
4559 	 * fault, and we skip the perf event updates.
4560 	 */
4561 	if (!regs)
4562 		return;
4563 
4564 	if (major)
4565 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4566 	else
4567 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4568 }
4569 
4570 /*
4571  * By the time we get here, we already hold the mm semaphore
4572  *
4573  * The mmap_lock may have been released depending on flags and our
4574  * return value.  See filemap_fault() and __lock_page_or_retry().
4575  */
4576 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4577 			   unsigned int flags, struct pt_regs *regs)
4578 {
4579 	vm_fault_t ret;
4580 
4581 	__set_current_state(TASK_RUNNING);
4582 
4583 	count_vm_event(PGFAULT);
4584 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4585 
4586 	/* do counter updates before entering really critical section. */
4587 	check_sync_rss_stat(current);
4588 
4589 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4590 					    flags & FAULT_FLAG_INSTRUCTION,
4591 					    flags & FAULT_FLAG_REMOTE))
4592 		return VM_FAULT_SIGSEGV;
4593 
4594 	/*
4595 	 * Enable the memcg OOM handling for faults triggered in user
4596 	 * space.  Kernel faults are handled more gracefully.
4597 	 */
4598 	if (flags & FAULT_FLAG_USER)
4599 		mem_cgroup_enter_user_fault();
4600 
4601 	if (unlikely(is_vm_hugetlb_page(vma)))
4602 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4603 	else
4604 		ret = __handle_mm_fault(vma, address, flags);
4605 
4606 	if (flags & FAULT_FLAG_USER) {
4607 		mem_cgroup_exit_user_fault();
4608 		/*
4609 		 * The task may have entered a memcg OOM situation but
4610 		 * if the allocation error was handled gracefully (no
4611 		 * VM_FAULT_OOM), there is no need to kill anything.
4612 		 * Just clean up the OOM state peacefully.
4613 		 */
4614 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4615 			mem_cgroup_oom_synchronize(false);
4616 	}
4617 
4618 	mm_account_fault(regs, address, flags, ret);
4619 
4620 	return ret;
4621 }
4622 EXPORT_SYMBOL_GPL(handle_mm_fault);
4623 
4624 #ifndef __PAGETABLE_P4D_FOLDED
4625 /*
4626  * Allocate p4d page table.
4627  * We've already handled the fast-path in-line.
4628  */
4629 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4630 {
4631 	p4d_t *new = p4d_alloc_one(mm, address);
4632 	if (!new)
4633 		return -ENOMEM;
4634 
4635 	smp_wmb(); /* See comment in __pte_alloc */
4636 
4637 	spin_lock(&mm->page_table_lock);
4638 	if (pgd_present(*pgd))		/* Another has populated it */
4639 		p4d_free(mm, new);
4640 	else
4641 		pgd_populate(mm, pgd, new);
4642 	spin_unlock(&mm->page_table_lock);
4643 	return 0;
4644 }
4645 #endif /* __PAGETABLE_P4D_FOLDED */
4646 
4647 #ifndef __PAGETABLE_PUD_FOLDED
4648 /*
4649  * Allocate page upper directory.
4650  * We've already handled the fast-path in-line.
4651  */
4652 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4653 {
4654 	pud_t *new = pud_alloc_one(mm, address);
4655 	if (!new)
4656 		return -ENOMEM;
4657 
4658 	smp_wmb(); /* See comment in __pte_alloc */
4659 
4660 	spin_lock(&mm->page_table_lock);
4661 	if (!p4d_present(*p4d)) {
4662 		mm_inc_nr_puds(mm);
4663 		p4d_populate(mm, p4d, new);
4664 	} else	/* Another has populated it */
4665 		pud_free(mm, new);
4666 	spin_unlock(&mm->page_table_lock);
4667 	return 0;
4668 }
4669 #endif /* __PAGETABLE_PUD_FOLDED */
4670 
4671 #ifndef __PAGETABLE_PMD_FOLDED
4672 /*
4673  * Allocate page middle directory.
4674  * We've already handled the fast-path in-line.
4675  */
4676 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4677 {
4678 	spinlock_t *ptl;
4679 	pmd_t *new = pmd_alloc_one(mm, address);
4680 	if (!new)
4681 		return -ENOMEM;
4682 
4683 	smp_wmb(); /* See comment in __pte_alloc */
4684 
4685 	ptl = pud_lock(mm, pud);
4686 	if (!pud_present(*pud)) {
4687 		mm_inc_nr_pmds(mm);
4688 		pud_populate(mm, pud, new);
4689 	} else	/* Another has populated it */
4690 		pmd_free(mm, new);
4691 	spin_unlock(ptl);
4692 	return 0;
4693 }
4694 #endif /* __PAGETABLE_PMD_FOLDED */
4695 
4696 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4697 			    struct mmu_notifier_range *range,
4698 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4699 {
4700 	pgd_t *pgd;
4701 	p4d_t *p4d;
4702 	pud_t *pud;
4703 	pmd_t *pmd;
4704 	pte_t *ptep;
4705 
4706 	pgd = pgd_offset(mm, address);
4707 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4708 		goto out;
4709 
4710 	p4d = p4d_offset(pgd, address);
4711 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4712 		goto out;
4713 
4714 	pud = pud_offset(p4d, address);
4715 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4716 		goto out;
4717 
4718 	pmd = pmd_offset(pud, address);
4719 	VM_BUG_ON(pmd_trans_huge(*pmd));
4720 
4721 	if (pmd_huge(*pmd)) {
4722 		if (!pmdpp)
4723 			goto out;
4724 
4725 		if (range) {
4726 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4727 						NULL, mm, address & PMD_MASK,
4728 						(address & PMD_MASK) + PMD_SIZE);
4729 			mmu_notifier_invalidate_range_start(range);
4730 		}
4731 		*ptlp = pmd_lock(mm, pmd);
4732 		if (pmd_huge(*pmd)) {
4733 			*pmdpp = pmd;
4734 			return 0;
4735 		}
4736 		spin_unlock(*ptlp);
4737 		if (range)
4738 			mmu_notifier_invalidate_range_end(range);
4739 	}
4740 
4741 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4742 		goto out;
4743 
4744 	if (range) {
4745 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4746 					address & PAGE_MASK,
4747 					(address & PAGE_MASK) + PAGE_SIZE);
4748 		mmu_notifier_invalidate_range_start(range);
4749 	}
4750 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4751 	if (!pte_present(*ptep))
4752 		goto unlock;
4753 	*ptepp = ptep;
4754 	return 0;
4755 unlock:
4756 	pte_unmap_unlock(ptep, *ptlp);
4757 	if (range)
4758 		mmu_notifier_invalidate_range_end(range);
4759 out:
4760 	return -EINVAL;
4761 }
4762 
4763 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4764 			     pte_t **ptepp, spinlock_t **ptlp)
4765 {
4766 	int res;
4767 
4768 	/* (void) is needed to make gcc happy */
4769 	(void) __cond_lock(*ptlp,
4770 			   !(res = __follow_pte_pmd(mm, address, NULL,
4771 						    ptepp, NULL, ptlp)));
4772 	return res;
4773 }
4774 
4775 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4776 		   struct mmu_notifier_range *range,
4777 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4778 {
4779 	int res;
4780 
4781 	/* (void) is needed to make gcc happy */
4782 	(void) __cond_lock(*ptlp,
4783 			   !(res = __follow_pte_pmd(mm, address, range,
4784 						    ptepp, pmdpp, ptlp)));
4785 	return res;
4786 }
4787 EXPORT_SYMBOL(follow_pte_pmd);
4788 
4789 /**
4790  * follow_pfn - look up PFN at a user virtual address
4791  * @vma: memory mapping
4792  * @address: user virtual address
4793  * @pfn: location to store found PFN
4794  *
4795  * Only IO mappings and raw PFN mappings are allowed.
4796  *
4797  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4798  */
4799 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4800 	unsigned long *pfn)
4801 {
4802 	int ret = -EINVAL;
4803 	spinlock_t *ptl;
4804 	pte_t *ptep;
4805 
4806 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4807 		return ret;
4808 
4809 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4810 	if (ret)
4811 		return ret;
4812 	*pfn = pte_pfn(*ptep);
4813 	pte_unmap_unlock(ptep, ptl);
4814 	return 0;
4815 }
4816 EXPORT_SYMBOL(follow_pfn);
4817 
4818 #ifdef CONFIG_HAVE_IOREMAP_PROT
4819 int follow_phys(struct vm_area_struct *vma,
4820 		unsigned long address, unsigned int flags,
4821 		unsigned long *prot, resource_size_t *phys)
4822 {
4823 	int ret = -EINVAL;
4824 	pte_t *ptep, pte;
4825 	spinlock_t *ptl;
4826 
4827 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4828 		goto out;
4829 
4830 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4831 		goto out;
4832 	pte = *ptep;
4833 
4834 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4835 		goto unlock;
4836 
4837 	*prot = pgprot_val(pte_pgprot(pte));
4838 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4839 
4840 	ret = 0;
4841 unlock:
4842 	pte_unmap_unlock(ptep, ptl);
4843 out:
4844 	return ret;
4845 }
4846 
4847 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4848 			void *buf, int len, int write)
4849 {
4850 	resource_size_t phys_addr;
4851 	unsigned long prot = 0;
4852 	void __iomem *maddr;
4853 	int offset = addr & (PAGE_SIZE-1);
4854 
4855 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4856 		return -EINVAL;
4857 
4858 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4859 	if (!maddr)
4860 		return -ENOMEM;
4861 
4862 	if (write)
4863 		memcpy_toio(maddr + offset, buf, len);
4864 	else
4865 		memcpy_fromio(buf, maddr + offset, len);
4866 	iounmap(maddr);
4867 
4868 	return len;
4869 }
4870 EXPORT_SYMBOL_GPL(generic_access_phys);
4871 #endif
4872 
4873 /*
4874  * Access another process' address space as given in mm.  If non-NULL, use the
4875  * given task for page fault accounting.
4876  */
4877 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4878 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4879 {
4880 	struct vm_area_struct *vma;
4881 	void *old_buf = buf;
4882 	int write = gup_flags & FOLL_WRITE;
4883 
4884 	if (mmap_read_lock_killable(mm))
4885 		return 0;
4886 
4887 	/* ignore errors, just check how much was successfully transferred */
4888 	while (len) {
4889 		int bytes, ret, offset;
4890 		void *maddr;
4891 		struct page *page = NULL;
4892 
4893 		ret = get_user_pages_remote(mm, addr, 1,
4894 				gup_flags, &page, &vma, NULL);
4895 		if (ret <= 0) {
4896 #ifndef CONFIG_HAVE_IOREMAP_PROT
4897 			break;
4898 #else
4899 			/*
4900 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4901 			 * we can access using slightly different code.
4902 			 */
4903 			vma = find_vma(mm, addr);
4904 			if (!vma || vma->vm_start > addr)
4905 				break;
4906 			if (vma->vm_ops && vma->vm_ops->access)
4907 				ret = vma->vm_ops->access(vma, addr, buf,
4908 							  len, write);
4909 			if (ret <= 0)
4910 				break;
4911 			bytes = ret;
4912 #endif
4913 		} else {
4914 			bytes = len;
4915 			offset = addr & (PAGE_SIZE-1);
4916 			if (bytes > PAGE_SIZE-offset)
4917 				bytes = PAGE_SIZE-offset;
4918 
4919 			maddr = kmap(page);
4920 			if (write) {
4921 				copy_to_user_page(vma, page, addr,
4922 						  maddr + offset, buf, bytes);
4923 				set_page_dirty_lock(page);
4924 			} else {
4925 				copy_from_user_page(vma, page, addr,
4926 						    buf, maddr + offset, bytes);
4927 			}
4928 			kunmap(page);
4929 			put_page(page);
4930 		}
4931 		len -= bytes;
4932 		buf += bytes;
4933 		addr += bytes;
4934 	}
4935 	mmap_read_unlock(mm);
4936 
4937 	return buf - old_buf;
4938 }
4939 
4940 /**
4941  * access_remote_vm - access another process' address space
4942  * @mm:		the mm_struct of the target address space
4943  * @addr:	start address to access
4944  * @buf:	source or destination buffer
4945  * @len:	number of bytes to transfer
4946  * @gup_flags:	flags modifying lookup behaviour
4947  *
4948  * The caller must hold a reference on @mm.
4949  *
4950  * Return: number of bytes copied from source to destination.
4951  */
4952 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4953 		void *buf, int len, unsigned int gup_flags)
4954 {
4955 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4956 }
4957 
4958 /*
4959  * Access another process' address space.
4960  * Source/target buffer must be kernel space,
4961  * Do not walk the page table directly, use get_user_pages
4962  */
4963 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4964 		void *buf, int len, unsigned int gup_flags)
4965 {
4966 	struct mm_struct *mm;
4967 	int ret;
4968 
4969 	mm = get_task_mm(tsk);
4970 	if (!mm)
4971 		return 0;
4972 
4973 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4974 
4975 	mmput(mm);
4976 
4977 	return ret;
4978 }
4979 EXPORT_SYMBOL_GPL(access_process_vm);
4980 
4981 /*
4982  * Print the name of a VMA.
4983  */
4984 void print_vma_addr(char *prefix, unsigned long ip)
4985 {
4986 	struct mm_struct *mm = current->mm;
4987 	struct vm_area_struct *vma;
4988 
4989 	/*
4990 	 * we might be running from an atomic context so we cannot sleep
4991 	 */
4992 	if (!mmap_read_trylock(mm))
4993 		return;
4994 
4995 	vma = find_vma(mm, ip);
4996 	if (vma && vma->vm_file) {
4997 		struct file *f = vma->vm_file;
4998 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4999 		if (buf) {
5000 			char *p;
5001 
5002 			p = file_path(f, buf, PAGE_SIZE);
5003 			if (IS_ERR(p))
5004 				p = "?";
5005 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5006 					vma->vm_start,
5007 					vma->vm_end - vma->vm_start);
5008 			free_page((unsigned long)buf);
5009 		}
5010 	}
5011 	mmap_read_unlock(mm);
5012 }
5013 
5014 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5015 void __might_fault(const char *file, int line)
5016 {
5017 	/*
5018 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5019 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5020 	 * get paged out, therefore we'll never actually fault, and the
5021 	 * below annotations will generate false positives.
5022 	 */
5023 	if (uaccess_kernel())
5024 		return;
5025 	if (pagefault_disabled())
5026 		return;
5027 	__might_sleep(file, line, 0);
5028 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5029 	if (current->mm)
5030 		might_lock_read(&current->mm->mmap_lock);
5031 #endif
5032 }
5033 EXPORT_SYMBOL(__might_fault);
5034 #endif
5035 
5036 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5037 /*
5038  * Process all subpages of the specified huge page with the specified
5039  * operation.  The target subpage will be processed last to keep its
5040  * cache lines hot.
5041  */
5042 static inline void process_huge_page(
5043 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5044 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5045 	void *arg)
5046 {
5047 	int i, n, base, l;
5048 	unsigned long addr = addr_hint &
5049 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5050 
5051 	/* Process target subpage last to keep its cache lines hot */
5052 	might_sleep();
5053 	n = (addr_hint - addr) / PAGE_SIZE;
5054 	if (2 * n <= pages_per_huge_page) {
5055 		/* If target subpage in first half of huge page */
5056 		base = 0;
5057 		l = n;
5058 		/* Process subpages at the end of huge page */
5059 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5060 			cond_resched();
5061 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5062 		}
5063 	} else {
5064 		/* If target subpage in second half of huge page */
5065 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5066 		l = pages_per_huge_page - n;
5067 		/* Process subpages at the begin of huge page */
5068 		for (i = 0; i < base; i++) {
5069 			cond_resched();
5070 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5071 		}
5072 	}
5073 	/*
5074 	 * Process remaining subpages in left-right-left-right pattern
5075 	 * towards the target subpage
5076 	 */
5077 	for (i = 0; i < l; i++) {
5078 		int left_idx = base + i;
5079 		int right_idx = base + 2 * l - 1 - i;
5080 
5081 		cond_resched();
5082 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5083 		cond_resched();
5084 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5085 	}
5086 }
5087 
5088 static void clear_gigantic_page(struct page *page,
5089 				unsigned long addr,
5090 				unsigned int pages_per_huge_page)
5091 {
5092 	int i;
5093 	struct page *p = page;
5094 
5095 	might_sleep();
5096 	for (i = 0; i < pages_per_huge_page;
5097 	     i++, p = mem_map_next(p, page, i)) {
5098 		cond_resched();
5099 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5100 	}
5101 }
5102 
5103 static void clear_subpage(unsigned long addr, int idx, void *arg)
5104 {
5105 	struct page *page = arg;
5106 
5107 	clear_user_highpage(page + idx, addr);
5108 }
5109 
5110 void clear_huge_page(struct page *page,
5111 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5112 {
5113 	unsigned long addr = addr_hint &
5114 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5115 
5116 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5117 		clear_gigantic_page(page, addr, pages_per_huge_page);
5118 		return;
5119 	}
5120 
5121 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5122 }
5123 
5124 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5125 				    unsigned long addr,
5126 				    struct vm_area_struct *vma,
5127 				    unsigned int pages_per_huge_page)
5128 {
5129 	int i;
5130 	struct page *dst_base = dst;
5131 	struct page *src_base = src;
5132 
5133 	for (i = 0; i < pages_per_huge_page; ) {
5134 		cond_resched();
5135 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5136 
5137 		i++;
5138 		dst = mem_map_next(dst, dst_base, i);
5139 		src = mem_map_next(src, src_base, i);
5140 	}
5141 }
5142 
5143 struct copy_subpage_arg {
5144 	struct page *dst;
5145 	struct page *src;
5146 	struct vm_area_struct *vma;
5147 };
5148 
5149 static void copy_subpage(unsigned long addr, int idx, void *arg)
5150 {
5151 	struct copy_subpage_arg *copy_arg = arg;
5152 
5153 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5154 			   addr, copy_arg->vma);
5155 }
5156 
5157 void copy_user_huge_page(struct page *dst, struct page *src,
5158 			 unsigned long addr_hint, struct vm_area_struct *vma,
5159 			 unsigned int pages_per_huge_page)
5160 {
5161 	unsigned long addr = addr_hint &
5162 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5163 	struct copy_subpage_arg arg = {
5164 		.dst = dst,
5165 		.src = src,
5166 		.vma = vma,
5167 	};
5168 
5169 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5170 		copy_user_gigantic_page(dst, src, addr, vma,
5171 					pages_per_huge_page);
5172 		return;
5173 	}
5174 
5175 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5176 }
5177 
5178 long copy_huge_page_from_user(struct page *dst_page,
5179 				const void __user *usr_src,
5180 				unsigned int pages_per_huge_page,
5181 				bool allow_pagefault)
5182 {
5183 	void *src = (void *)usr_src;
5184 	void *page_kaddr;
5185 	unsigned long i, rc = 0;
5186 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5187 
5188 	for (i = 0; i < pages_per_huge_page; i++) {
5189 		if (allow_pagefault)
5190 			page_kaddr = kmap(dst_page + i);
5191 		else
5192 			page_kaddr = kmap_atomic(dst_page + i);
5193 		rc = copy_from_user(page_kaddr,
5194 				(const void __user *)(src + i * PAGE_SIZE),
5195 				PAGE_SIZE);
5196 		if (allow_pagefault)
5197 			kunmap(dst_page + i);
5198 		else
5199 			kunmap_atomic(page_kaddr);
5200 
5201 		ret_val -= (PAGE_SIZE - rc);
5202 		if (rc)
5203 			break;
5204 
5205 		cond_resched();
5206 	}
5207 	return ret_val;
5208 }
5209 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5210 
5211 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5212 
5213 static struct kmem_cache *page_ptl_cachep;
5214 
5215 void __init ptlock_cache_init(void)
5216 {
5217 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5218 			SLAB_PANIC, NULL);
5219 }
5220 
5221 bool ptlock_alloc(struct page *page)
5222 {
5223 	spinlock_t *ptl;
5224 
5225 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5226 	if (!ptl)
5227 		return false;
5228 	page->ptl = ptl;
5229 	return true;
5230 }
5231 
5232 void ptlock_free(struct page *page)
5233 {
5234 	kmem_cache_free(page_ptl_cachep, page->ptl);
5235 }
5236 #endif
5237