1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 #include <linux/numa.h> 73 #include <linux/perf_event.h> 74 #include <linux/ptrace.h> 75 #include <linux/vmalloc.h> 76 77 #include <trace/events/kmem.h> 78 79 #include <asm/io.h> 80 #include <asm/mmu_context.h> 81 #include <asm/pgalloc.h> 82 #include <linux/uaccess.h> 83 #include <asm/tlb.h> 84 #include <asm/tlbflush.h> 85 86 #include "pgalloc-track.h" 87 #include "internal.h" 88 89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 91 #endif 92 93 #ifndef CONFIG_NEED_MULTIPLE_NODES 94 /* use the per-pgdat data instead for discontigmem - mbligh */ 95 unsigned long max_mapnr; 96 EXPORT_SYMBOL(max_mapnr); 97 98 struct page *mem_map; 99 EXPORT_SYMBOL(mem_map); 100 #endif 101 102 /* 103 * A number of key systems in x86 including ioremap() rely on the assumption 104 * that high_memory defines the upper bound on direct map memory, then end 105 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 106 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 107 * and ZONE_HIGHMEM. 108 */ 109 void *high_memory; 110 EXPORT_SYMBOL(high_memory); 111 112 /* 113 * Randomize the address space (stacks, mmaps, brk, etc.). 114 * 115 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 116 * as ancient (libc5 based) binaries can segfault. ) 117 */ 118 int randomize_va_space __read_mostly = 119 #ifdef CONFIG_COMPAT_BRK 120 1; 121 #else 122 2; 123 #endif 124 125 #ifndef arch_faults_on_old_pte 126 static inline bool arch_faults_on_old_pte(void) 127 { 128 /* 129 * Those arches which don't have hw access flag feature need to 130 * implement their own helper. By default, "true" means pagefault 131 * will be hit on old pte. 132 */ 133 return true; 134 } 135 #endif 136 137 static int __init disable_randmaps(char *s) 138 { 139 randomize_va_space = 0; 140 return 1; 141 } 142 __setup("norandmaps", disable_randmaps); 143 144 unsigned long zero_pfn __read_mostly; 145 EXPORT_SYMBOL(zero_pfn); 146 147 unsigned long highest_memmap_pfn __read_mostly; 148 149 /* 150 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 151 */ 152 static int __init init_zero_pfn(void) 153 { 154 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 155 return 0; 156 } 157 core_initcall(init_zero_pfn); 158 159 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 160 { 161 trace_rss_stat(mm, member, count); 162 } 163 164 #if defined(SPLIT_RSS_COUNTING) 165 166 void sync_mm_rss(struct mm_struct *mm) 167 { 168 int i; 169 170 for (i = 0; i < NR_MM_COUNTERS; i++) { 171 if (current->rss_stat.count[i]) { 172 add_mm_counter(mm, i, current->rss_stat.count[i]); 173 current->rss_stat.count[i] = 0; 174 } 175 } 176 current->rss_stat.events = 0; 177 } 178 179 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 180 { 181 struct task_struct *task = current; 182 183 if (likely(task->mm == mm)) 184 task->rss_stat.count[member] += val; 185 else 186 add_mm_counter(mm, member, val); 187 } 188 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 189 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 190 191 /* sync counter once per 64 page faults */ 192 #define TASK_RSS_EVENTS_THRESH (64) 193 static void check_sync_rss_stat(struct task_struct *task) 194 { 195 if (unlikely(task != current)) 196 return; 197 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 198 sync_mm_rss(task->mm); 199 } 200 #else /* SPLIT_RSS_COUNTING */ 201 202 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 203 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 204 205 static void check_sync_rss_stat(struct task_struct *task) 206 { 207 } 208 209 #endif /* SPLIT_RSS_COUNTING */ 210 211 /* 212 * Note: this doesn't free the actual pages themselves. That 213 * has been handled earlier when unmapping all the memory regions. 214 */ 215 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 216 unsigned long addr) 217 { 218 pgtable_t token = pmd_pgtable(*pmd); 219 pmd_clear(pmd); 220 pte_free_tlb(tlb, token, addr); 221 mm_dec_nr_ptes(tlb->mm); 222 } 223 224 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 225 unsigned long addr, unsigned long end, 226 unsigned long floor, unsigned long ceiling) 227 { 228 pmd_t *pmd; 229 unsigned long next; 230 unsigned long start; 231 232 start = addr; 233 pmd = pmd_offset(pud, addr); 234 do { 235 next = pmd_addr_end(addr, end); 236 if (pmd_none_or_clear_bad(pmd)) 237 continue; 238 free_pte_range(tlb, pmd, addr); 239 } while (pmd++, addr = next, addr != end); 240 241 start &= PUD_MASK; 242 if (start < floor) 243 return; 244 if (ceiling) { 245 ceiling &= PUD_MASK; 246 if (!ceiling) 247 return; 248 } 249 if (end - 1 > ceiling - 1) 250 return; 251 252 pmd = pmd_offset(pud, start); 253 pud_clear(pud); 254 pmd_free_tlb(tlb, pmd, start); 255 mm_dec_nr_pmds(tlb->mm); 256 } 257 258 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 259 unsigned long addr, unsigned long end, 260 unsigned long floor, unsigned long ceiling) 261 { 262 pud_t *pud; 263 unsigned long next; 264 unsigned long start; 265 266 start = addr; 267 pud = pud_offset(p4d, addr); 268 do { 269 next = pud_addr_end(addr, end); 270 if (pud_none_or_clear_bad(pud)) 271 continue; 272 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 273 } while (pud++, addr = next, addr != end); 274 275 start &= P4D_MASK; 276 if (start < floor) 277 return; 278 if (ceiling) { 279 ceiling &= P4D_MASK; 280 if (!ceiling) 281 return; 282 } 283 if (end - 1 > ceiling - 1) 284 return; 285 286 pud = pud_offset(p4d, start); 287 p4d_clear(p4d); 288 pud_free_tlb(tlb, pud, start); 289 mm_dec_nr_puds(tlb->mm); 290 } 291 292 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 293 unsigned long addr, unsigned long end, 294 unsigned long floor, unsigned long ceiling) 295 { 296 p4d_t *p4d; 297 unsigned long next; 298 unsigned long start; 299 300 start = addr; 301 p4d = p4d_offset(pgd, addr); 302 do { 303 next = p4d_addr_end(addr, end); 304 if (p4d_none_or_clear_bad(p4d)) 305 continue; 306 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 307 } while (p4d++, addr = next, addr != end); 308 309 start &= PGDIR_MASK; 310 if (start < floor) 311 return; 312 if (ceiling) { 313 ceiling &= PGDIR_MASK; 314 if (!ceiling) 315 return; 316 } 317 if (end - 1 > ceiling - 1) 318 return; 319 320 p4d = p4d_offset(pgd, start); 321 pgd_clear(pgd); 322 p4d_free_tlb(tlb, p4d, start); 323 } 324 325 /* 326 * This function frees user-level page tables of a process. 327 */ 328 void free_pgd_range(struct mmu_gather *tlb, 329 unsigned long addr, unsigned long end, 330 unsigned long floor, unsigned long ceiling) 331 { 332 pgd_t *pgd; 333 unsigned long next; 334 335 /* 336 * The next few lines have given us lots of grief... 337 * 338 * Why are we testing PMD* at this top level? Because often 339 * there will be no work to do at all, and we'd prefer not to 340 * go all the way down to the bottom just to discover that. 341 * 342 * Why all these "- 1"s? Because 0 represents both the bottom 343 * of the address space and the top of it (using -1 for the 344 * top wouldn't help much: the masks would do the wrong thing). 345 * The rule is that addr 0 and floor 0 refer to the bottom of 346 * the address space, but end 0 and ceiling 0 refer to the top 347 * Comparisons need to use "end - 1" and "ceiling - 1" (though 348 * that end 0 case should be mythical). 349 * 350 * Wherever addr is brought up or ceiling brought down, we must 351 * be careful to reject "the opposite 0" before it confuses the 352 * subsequent tests. But what about where end is brought down 353 * by PMD_SIZE below? no, end can't go down to 0 there. 354 * 355 * Whereas we round start (addr) and ceiling down, by different 356 * masks at different levels, in order to test whether a table 357 * now has no other vmas using it, so can be freed, we don't 358 * bother to round floor or end up - the tests don't need that. 359 */ 360 361 addr &= PMD_MASK; 362 if (addr < floor) { 363 addr += PMD_SIZE; 364 if (!addr) 365 return; 366 } 367 if (ceiling) { 368 ceiling &= PMD_MASK; 369 if (!ceiling) 370 return; 371 } 372 if (end - 1 > ceiling - 1) 373 end -= PMD_SIZE; 374 if (addr > end - 1) 375 return; 376 /* 377 * We add page table cache pages with PAGE_SIZE, 378 * (see pte_free_tlb()), flush the tlb if we need 379 */ 380 tlb_change_page_size(tlb, PAGE_SIZE); 381 pgd = pgd_offset(tlb->mm, addr); 382 do { 383 next = pgd_addr_end(addr, end); 384 if (pgd_none_or_clear_bad(pgd)) 385 continue; 386 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 387 } while (pgd++, addr = next, addr != end); 388 } 389 390 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 391 unsigned long floor, unsigned long ceiling) 392 { 393 while (vma) { 394 struct vm_area_struct *next = vma->vm_next; 395 unsigned long addr = vma->vm_start; 396 397 /* 398 * Hide vma from rmap and truncate_pagecache before freeing 399 * pgtables 400 */ 401 unlink_anon_vmas(vma); 402 unlink_file_vma(vma); 403 404 if (is_vm_hugetlb_page(vma)) { 405 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 406 floor, next ? next->vm_start : ceiling); 407 } else { 408 /* 409 * Optimization: gather nearby vmas into one call down 410 */ 411 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 412 && !is_vm_hugetlb_page(next)) { 413 vma = next; 414 next = vma->vm_next; 415 unlink_anon_vmas(vma); 416 unlink_file_vma(vma); 417 } 418 free_pgd_range(tlb, addr, vma->vm_end, 419 floor, next ? next->vm_start : ceiling); 420 } 421 vma = next; 422 } 423 } 424 425 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 426 { 427 spinlock_t *ptl; 428 pgtable_t new = pte_alloc_one(mm); 429 if (!new) 430 return -ENOMEM; 431 432 /* 433 * Ensure all pte setup (eg. pte page lock and page clearing) are 434 * visible before the pte is made visible to other CPUs by being 435 * put into page tables. 436 * 437 * The other side of the story is the pointer chasing in the page 438 * table walking code (when walking the page table without locking; 439 * ie. most of the time). Fortunately, these data accesses consist 440 * of a chain of data-dependent loads, meaning most CPUs (alpha 441 * being the notable exception) will already guarantee loads are 442 * seen in-order. See the alpha page table accessors for the 443 * smp_rmb() barriers in page table walking code. 444 */ 445 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 446 447 ptl = pmd_lock(mm, pmd); 448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 449 mm_inc_nr_ptes(mm); 450 pmd_populate(mm, pmd, new); 451 new = NULL; 452 } 453 spin_unlock(ptl); 454 if (new) 455 pte_free(mm, new); 456 return 0; 457 } 458 459 int __pte_alloc_kernel(pmd_t *pmd) 460 { 461 pte_t *new = pte_alloc_one_kernel(&init_mm); 462 if (!new) 463 return -ENOMEM; 464 465 smp_wmb(); /* See comment in __pte_alloc */ 466 467 spin_lock(&init_mm.page_table_lock); 468 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 469 pmd_populate_kernel(&init_mm, pmd, new); 470 new = NULL; 471 } 472 spin_unlock(&init_mm.page_table_lock); 473 if (new) 474 pte_free_kernel(&init_mm, new); 475 return 0; 476 } 477 478 static inline void init_rss_vec(int *rss) 479 { 480 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 481 } 482 483 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 484 { 485 int i; 486 487 if (current->mm == mm) 488 sync_mm_rss(mm); 489 for (i = 0; i < NR_MM_COUNTERS; i++) 490 if (rss[i]) 491 add_mm_counter(mm, i, rss[i]); 492 } 493 494 /* 495 * This function is called to print an error when a bad pte 496 * is found. For example, we might have a PFN-mapped pte in 497 * a region that doesn't allow it. 498 * 499 * The calling function must still handle the error. 500 */ 501 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 502 pte_t pte, struct page *page) 503 { 504 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 505 p4d_t *p4d = p4d_offset(pgd, addr); 506 pud_t *pud = pud_offset(p4d, addr); 507 pmd_t *pmd = pmd_offset(pud, addr); 508 struct address_space *mapping; 509 pgoff_t index; 510 static unsigned long resume; 511 static unsigned long nr_shown; 512 static unsigned long nr_unshown; 513 514 /* 515 * Allow a burst of 60 reports, then keep quiet for that minute; 516 * or allow a steady drip of one report per second. 517 */ 518 if (nr_shown == 60) { 519 if (time_before(jiffies, resume)) { 520 nr_unshown++; 521 return; 522 } 523 if (nr_unshown) { 524 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 525 nr_unshown); 526 nr_unshown = 0; 527 } 528 nr_shown = 0; 529 } 530 if (nr_shown++ == 0) 531 resume = jiffies + 60 * HZ; 532 533 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 534 index = linear_page_index(vma, addr); 535 536 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 537 current->comm, 538 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 539 if (page) 540 dump_page(page, "bad pte"); 541 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 542 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 543 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 544 vma->vm_file, 545 vma->vm_ops ? vma->vm_ops->fault : NULL, 546 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 547 mapping ? mapping->a_ops->readpage : NULL); 548 dump_stack(); 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 550 } 551 552 /* 553 * vm_normal_page -- This function gets the "struct page" associated with a pte. 554 * 555 * "Special" mappings do not wish to be associated with a "struct page" (either 556 * it doesn't exist, or it exists but they don't want to touch it). In this 557 * case, NULL is returned here. "Normal" mappings do have a struct page. 558 * 559 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 560 * pte bit, in which case this function is trivial. Secondly, an architecture 561 * may not have a spare pte bit, which requires a more complicated scheme, 562 * described below. 563 * 564 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 565 * special mapping (even if there are underlying and valid "struct pages"). 566 * COWed pages of a VM_PFNMAP are always normal. 567 * 568 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 569 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 570 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 571 * mapping will always honor the rule 572 * 573 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 574 * 575 * And for normal mappings this is false. 576 * 577 * This restricts such mappings to be a linear translation from virtual address 578 * to pfn. To get around this restriction, we allow arbitrary mappings so long 579 * as the vma is not a COW mapping; in that case, we know that all ptes are 580 * special (because none can have been COWed). 581 * 582 * 583 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 584 * 585 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 586 * page" backing, however the difference is that _all_ pages with a struct 587 * page (that is, those where pfn_valid is true) are refcounted and considered 588 * normal pages by the VM. The disadvantage is that pages are refcounted 589 * (which can be slower and simply not an option for some PFNMAP users). The 590 * advantage is that we don't have to follow the strict linearity rule of 591 * PFNMAP mappings in order to support COWable mappings. 592 * 593 */ 594 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 595 pte_t pte) 596 { 597 unsigned long pfn = pte_pfn(pte); 598 599 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 600 if (likely(!pte_special(pte))) 601 goto check_pfn; 602 if (vma->vm_ops && vma->vm_ops->find_special_page) 603 return vma->vm_ops->find_special_page(vma, addr); 604 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 605 return NULL; 606 if (is_zero_pfn(pfn)) 607 return NULL; 608 if (pte_devmap(pte)) 609 return NULL; 610 611 print_bad_pte(vma, addr, pte, NULL); 612 return NULL; 613 } 614 615 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 616 617 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 618 if (vma->vm_flags & VM_MIXEDMAP) { 619 if (!pfn_valid(pfn)) 620 return NULL; 621 goto out; 622 } else { 623 unsigned long off; 624 off = (addr - vma->vm_start) >> PAGE_SHIFT; 625 if (pfn == vma->vm_pgoff + off) 626 return NULL; 627 if (!is_cow_mapping(vma->vm_flags)) 628 return NULL; 629 } 630 } 631 632 if (is_zero_pfn(pfn)) 633 return NULL; 634 635 check_pfn: 636 if (unlikely(pfn > highest_memmap_pfn)) { 637 print_bad_pte(vma, addr, pte, NULL); 638 return NULL; 639 } 640 641 /* 642 * NOTE! We still have PageReserved() pages in the page tables. 643 * eg. VDSO mappings can cause them to exist. 644 */ 645 out: 646 return pfn_to_page(pfn); 647 } 648 649 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 650 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 651 pmd_t pmd) 652 { 653 unsigned long pfn = pmd_pfn(pmd); 654 655 /* 656 * There is no pmd_special() but there may be special pmds, e.g. 657 * in a direct-access (dax) mapping, so let's just replicate the 658 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 659 */ 660 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 661 if (vma->vm_flags & VM_MIXEDMAP) { 662 if (!pfn_valid(pfn)) 663 return NULL; 664 goto out; 665 } else { 666 unsigned long off; 667 off = (addr - vma->vm_start) >> PAGE_SHIFT; 668 if (pfn == vma->vm_pgoff + off) 669 return NULL; 670 if (!is_cow_mapping(vma->vm_flags)) 671 return NULL; 672 } 673 } 674 675 if (pmd_devmap(pmd)) 676 return NULL; 677 if (is_huge_zero_pmd(pmd)) 678 return NULL; 679 if (unlikely(pfn > highest_memmap_pfn)) 680 return NULL; 681 682 /* 683 * NOTE! We still have PageReserved() pages in the page tables. 684 * eg. VDSO mappings can cause them to exist. 685 */ 686 out: 687 return pfn_to_page(pfn); 688 } 689 #endif 690 691 /* 692 * copy one vm_area from one task to the other. Assumes the page tables 693 * already present in the new task to be cleared in the whole range 694 * covered by this vma. 695 */ 696 697 static unsigned long 698 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 699 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 700 unsigned long addr, int *rss) 701 { 702 unsigned long vm_flags = vma->vm_flags; 703 pte_t pte = *src_pte; 704 struct page *page; 705 swp_entry_t entry = pte_to_swp_entry(pte); 706 707 if (likely(!non_swap_entry(entry))) { 708 if (swap_duplicate(entry) < 0) 709 return entry.val; 710 711 /* make sure dst_mm is on swapoff's mmlist. */ 712 if (unlikely(list_empty(&dst_mm->mmlist))) { 713 spin_lock(&mmlist_lock); 714 if (list_empty(&dst_mm->mmlist)) 715 list_add(&dst_mm->mmlist, 716 &src_mm->mmlist); 717 spin_unlock(&mmlist_lock); 718 } 719 rss[MM_SWAPENTS]++; 720 } else if (is_migration_entry(entry)) { 721 page = migration_entry_to_page(entry); 722 723 rss[mm_counter(page)]++; 724 725 if (is_write_migration_entry(entry) && 726 is_cow_mapping(vm_flags)) { 727 /* 728 * COW mappings require pages in both 729 * parent and child to be set to read. 730 */ 731 make_migration_entry_read(&entry); 732 pte = swp_entry_to_pte(entry); 733 if (pte_swp_soft_dirty(*src_pte)) 734 pte = pte_swp_mksoft_dirty(pte); 735 if (pte_swp_uffd_wp(*src_pte)) 736 pte = pte_swp_mkuffd_wp(pte); 737 set_pte_at(src_mm, addr, src_pte, pte); 738 } 739 } else if (is_device_private_entry(entry)) { 740 page = device_private_entry_to_page(entry); 741 742 /* 743 * Update rss count even for unaddressable pages, as 744 * they should treated just like normal pages in this 745 * respect. 746 * 747 * We will likely want to have some new rss counters 748 * for unaddressable pages, at some point. But for now 749 * keep things as they are. 750 */ 751 get_page(page); 752 rss[mm_counter(page)]++; 753 page_dup_rmap(page, false); 754 755 /* 756 * We do not preserve soft-dirty information, because so 757 * far, checkpoint/restore is the only feature that 758 * requires that. And checkpoint/restore does not work 759 * when a device driver is involved (you cannot easily 760 * save and restore device driver state). 761 */ 762 if (is_write_device_private_entry(entry) && 763 is_cow_mapping(vm_flags)) { 764 make_device_private_entry_read(&entry); 765 pte = swp_entry_to_pte(entry); 766 if (pte_swp_uffd_wp(*src_pte)) 767 pte = pte_swp_mkuffd_wp(pte); 768 set_pte_at(src_mm, addr, src_pte, pte); 769 } 770 } 771 set_pte_at(dst_mm, addr, dst_pte, pte); 772 return 0; 773 } 774 775 /* 776 * Copy a present and normal page if necessary. 777 * 778 * NOTE! The usual case is that this doesn't need to do 779 * anything, and can just return a positive value. That 780 * will let the caller know that it can just increase 781 * the page refcount and re-use the pte the traditional 782 * way. 783 * 784 * But _if_ we need to copy it because it needs to be 785 * pinned in the parent (and the child should get its own 786 * copy rather than just a reference to the same page), 787 * we'll do that here and return zero to let the caller 788 * know we're done. 789 * 790 * And if we need a pre-allocated page but don't yet have 791 * one, return a negative error to let the preallocation 792 * code know so that it can do so outside the page table 793 * lock. 794 */ 795 static inline int 796 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 797 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 798 struct page **prealloc, pte_t pte, struct page *page) 799 { 800 struct mm_struct *src_mm = src_vma->vm_mm; 801 struct page *new_page; 802 803 if (!is_cow_mapping(src_vma->vm_flags)) 804 return 1; 805 806 /* 807 * What we want to do is to check whether this page may 808 * have been pinned by the parent process. If so, 809 * instead of wrprotect the pte on both sides, we copy 810 * the page immediately so that we'll always guarantee 811 * the pinned page won't be randomly replaced in the 812 * future. 813 * 814 * The page pinning checks are just "has this mm ever 815 * seen pinning", along with the (inexact) check of 816 * the page count. That might give false positives for 817 * for pinning, but it will work correctly. 818 */ 819 if (likely(!atomic_read(&src_mm->has_pinned))) 820 return 1; 821 if (likely(!page_maybe_dma_pinned(page))) 822 return 1; 823 824 new_page = *prealloc; 825 if (!new_page) 826 return -EAGAIN; 827 828 /* 829 * We have a prealloc page, all good! Take it 830 * over and copy the page & arm it. 831 */ 832 *prealloc = NULL; 833 copy_user_highpage(new_page, page, addr, src_vma); 834 __SetPageUptodate(new_page); 835 page_add_new_anon_rmap(new_page, dst_vma, addr, false); 836 lru_cache_add_inactive_or_unevictable(new_page, dst_vma); 837 rss[mm_counter(new_page)]++; 838 839 /* All done, just insert the new page copy in the child */ 840 pte = mk_pte(new_page, dst_vma->vm_page_prot); 841 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 842 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 843 return 0; 844 } 845 846 /* 847 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 848 * is required to copy this pte. 849 */ 850 static inline int 851 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 852 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 853 struct page **prealloc) 854 { 855 struct mm_struct *src_mm = src_vma->vm_mm; 856 unsigned long vm_flags = src_vma->vm_flags; 857 pte_t pte = *src_pte; 858 struct page *page; 859 860 page = vm_normal_page(src_vma, addr, pte); 861 if (page) { 862 int retval; 863 864 retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 865 addr, rss, prealloc, pte, page); 866 if (retval <= 0) 867 return retval; 868 869 get_page(page); 870 page_dup_rmap(page, false); 871 rss[mm_counter(page)]++; 872 } 873 874 /* 875 * If it's a COW mapping, write protect it both 876 * in the parent and the child 877 */ 878 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 879 ptep_set_wrprotect(src_mm, addr, src_pte); 880 pte = pte_wrprotect(pte); 881 } 882 883 /* 884 * If it's a shared mapping, mark it clean in 885 * the child 886 */ 887 if (vm_flags & VM_SHARED) 888 pte = pte_mkclean(pte); 889 pte = pte_mkold(pte); 890 891 /* 892 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 893 * does not have the VM_UFFD_WP, which means that the uffd 894 * fork event is not enabled. 895 */ 896 if (!(vm_flags & VM_UFFD_WP)) 897 pte = pte_clear_uffd_wp(pte); 898 899 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 900 return 0; 901 } 902 903 static inline struct page * 904 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma, 905 unsigned long addr) 906 { 907 struct page *new_page; 908 909 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr); 910 if (!new_page) 911 return NULL; 912 913 if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) { 914 put_page(new_page); 915 return NULL; 916 } 917 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 918 919 return new_page; 920 } 921 922 static int 923 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 924 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 925 unsigned long end) 926 { 927 struct mm_struct *dst_mm = dst_vma->vm_mm; 928 struct mm_struct *src_mm = src_vma->vm_mm; 929 pte_t *orig_src_pte, *orig_dst_pte; 930 pte_t *src_pte, *dst_pte; 931 spinlock_t *src_ptl, *dst_ptl; 932 int progress, ret = 0; 933 int rss[NR_MM_COUNTERS]; 934 swp_entry_t entry = (swp_entry_t){0}; 935 struct page *prealloc = NULL; 936 937 again: 938 progress = 0; 939 init_rss_vec(rss); 940 941 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 942 if (!dst_pte) { 943 ret = -ENOMEM; 944 goto out; 945 } 946 src_pte = pte_offset_map(src_pmd, addr); 947 src_ptl = pte_lockptr(src_mm, src_pmd); 948 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 949 orig_src_pte = src_pte; 950 orig_dst_pte = dst_pte; 951 arch_enter_lazy_mmu_mode(); 952 953 do { 954 /* 955 * We are holding two locks at this point - either of them 956 * could generate latencies in another task on another CPU. 957 */ 958 if (progress >= 32) { 959 progress = 0; 960 if (need_resched() || 961 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 962 break; 963 } 964 if (pte_none(*src_pte)) { 965 progress++; 966 continue; 967 } 968 if (unlikely(!pte_present(*src_pte))) { 969 entry.val = copy_nonpresent_pte(dst_mm, src_mm, 970 dst_pte, src_pte, 971 src_vma, addr, rss); 972 if (entry.val) 973 break; 974 progress += 8; 975 continue; 976 } 977 /* copy_present_pte() will clear `*prealloc' if consumed */ 978 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 979 addr, rss, &prealloc); 980 /* 981 * If we need a pre-allocated page for this pte, drop the 982 * locks, allocate, and try again. 983 */ 984 if (unlikely(ret == -EAGAIN)) 985 break; 986 if (unlikely(prealloc)) { 987 /* 988 * pre-alloc page cannot be reused by next time so as 989 * to strictly follow mempolicy (e.g., alloc_page_vma() 990 * will allocate page according to address). This 991 * could only happen if one pinned pte changed. 992 */ 993 put_page(prealloc); 994 prealloc = NULL; 995 } 996 progress += 8; 997 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 998 999 arch_leave_lazy_mmu_mode(); 1000 spin_unlock(src_ptl); 1001 pte_unmap(orig_src_pte); 1002 add_mm_rss_vec(dst_mm, rss); 1003 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1004 cond_resched(); 1005 1006 if (entry.val) { 1007 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1008 ret = -ENOMEM; 1009 goto out; 1010 } 1011 entry.val = 0; 1012 } else if (ret) { 1013 WARN_ON_ONCE(ret != -EAGAIN); 1014 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1015 if (!prealloc) 1016 return -ENOMEM; 1017 /* We've captured and resolved the error. Reset, try again. */ 1018 ret = 0; 1019 } 1020 if (addr != end) 1021 goto again; 1022 out: 1023 if (unlikely(prealloc)) 1024 put_page(prealloc); 1025 return ret; 1026 } 1027 1028 static inline int 1029 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1030 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1031 unsigned long end) 1032 { 1033 struct mm_struct *dst_mm = dst_vma->vm_mm; 1034 struct mm_struct *src_mm = src_vma->vm_mm; 1035 pmd_t *src_pmd, *dst_pmd; 1036 unsigned long next; 1037 1038 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1039 if (!dst_pmd) 1040 return -ENOMEM; 1041 src_pmd = pmd_offset(src_pud, addr); 1042 do { 1043 next = pmd_addr_end(addr, end); 1044 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1045 || pmd_devmap(*src_pmd)) { 1046 int err; 1047 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1048 err = copy_huge_pmd(dst_mm, src_mm, 1049 dst_pmd, src_pmd, addr, src_vma); 1050 if (err == -ENOMEM) 1051 return -ENOMEM; 1052 if (!err) 1053 continue; 1054 /* fall through */ 1055 } 1056 if (pmd_none_or_clear_bad(src_pmd)) 1057 continue; 1058 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1059 addr, next)) 1060 return -ENOMEM; 1061 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1062 return 0; 1063 } 1064 1065 static inline int 1066 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1067 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1068 unsigned long end) 1069 { 1070 struct mm_struct *dst_mm = dst_vma->vm_mm; 1071 struct mm_struct *src_mm = src_vma->vm_mm; 1072 pud_t *src_pud, *dst_pud; 1073 unsigned long next; 1074 1075 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1076 if (!dst_pud) 1077 return -ENOMEM; 1078 src_pud = pud_offset(src_p4d, addr); 1079 do { 1080 next = pud_addr_end(addr, end); 1081 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1082 int err; 1083 1084 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1085 err = copy_huge_pud(dst_mm, src_mm, 1086 dst_pud, src_pud, addr, src_vma); 1087 if (err == -ENOMEM) 1088 return -ENOMEM; 1089 if (!err) 1090 continue; 1091 /* fall through */ 1092 } 1093 if (pud_none_or_clear_bad(src_pud)) 1094 continue; 1095 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1096 addr, next)) 1097 return -ENOMEM; 1098 } while (dst_pud++, src_pud++, addr = next, addr != end); 1099 return 0; 1100 } 1101 1102 static inline int 1103 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1104 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1105 unsigned long end) 1106 { 1107 struct mm_struct *dst_mm = dst_vma->vm_mm; 1108 p4d_t *src_p4d, *dst_p4d; 1109 unsigned long next; 1110 1111 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1112 if (!dst_p4d) 1113 return -ENOMEM; 1114 src_p4d = p4d_offset(src_pgd, addr); 1115 do { 1116 next = p4d_addr_end(addr, end); 1117 if (p4d_none_or_clear_bad(src_p4d)) 1118 continue; 1119 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1120 addr, next)) 1121 return -ENOMEM; 1122 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1123 return 0; 1124 } 1125 1126 int 1127 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1128 { 1129 pgd_t *src_pgd, *dst_pgd; 1130 unsigned long next; 1131 unsigned long addr = src_vma->vm_start; 1132 unsigned long end = src_vma->vm_end; 1133 struct mm_struct *dst_mm = dst_vma->vm_mm; 1134 struct mm_struct *src_mm = src_vma->vm_mm; 1135 struct mmu_notifier_range range; 1136 bool is_cow; 1137 int ret; 1138 1139 /* 1140 * Don't copy ptes where a page fault will fill them correctly. 1141 * Fork becomes much lighter when there are big shared or private 1142 * readonly mappings. The tradeoff is that copy_page_range is more 1143 * efficient than faulting. 1144 */ 1145 if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1146 !src_vma->anon_vma) 1147 return 0; 1148 1149 if (is_vm_hugetlb_page(src_vma)) 1150 return copy_hugetlb_page_range(dst_mm, src_mm, src_vma); 1151 1152 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1153 /* 1154 * We do not free on error cases below as remove_vma 1155 * gets called on error from higher level routine 1156 */ 1157 ret = track_pfn_copy(src_vma); 1158 if (ret) 1159 return ret; 1160 } 1161 1162 /* 1163 * We need to invalidate the secondary MMU mappings only when 1164 * there could be a permission downgrade on the ptes of the 1165 * parent mm. And a permission downgrade will only happen if 1166 * is_cow_mapping() returns true. 1167 */ 1168 is_cow = is_cow_mapping(src_vma->vm_flags); 1169 1170 if (is_cow) { 1171 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1172 0, src_vma, src_mm, addr, end); 1173 mmu_notifier_invalidate_range_start(&range); 1174 } 1175 1176 ret = 0; 1177 dst_pgd = pgd_offset(dst_mm, addr); 1178 src_pgd = pgd_offset(src_mm, addr); 1179 do { 1180 next = pgd_addr_end(addr, end); 1181 if (pgd_none_or_clear_bad(src_pgd)) 1182 continue; 1183 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1184 addr, next))) { 1185 ret = -ENOMEM; 1186 break; 1187 } 1188 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1189 1190 if (is_cow) 1191 mmu_notifier_invalidate_range_end(&range); 1192 return ret; 1193 } 1194 1195 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1196 struct vm_area_struct *vma, pmd_t *pmd, 1197 unsigned long addr, unsigned long end, 1198 struct zap_details *details) 1199 { 1200 struct mm_struct *mm = tlb->mm; 1201 int force_flush = 0; 1202 int rss[NR_MM_COUNTERS]; 1203 spinlock_t *ptl; 1204 pte_t *start_pte; 1205 pte_t *pte; 1206 swp_entry_t entry; 1207 1208 tlb_change_page_size(tlb, PAGE_SIZE); 1209 again: 1210 init_rss_vec(rss); 1211 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1212 pte = start_pte; 1213 flush_tlb_batched_pending(mm); 1214 arch_enter_lazy_mmu_mode(); 1215 do { 1216 pte_t ptent = *pte; 1217 if (pte_none(ptent)) 1218 continue; 1219 1220 if (need_resched()) 1221 break; 1222 1223 if (pte_present(ptent)) { 1224 struct page *page; 1225 1226 page = vm_normal_page(vma, addr, ptent); 1227 if (unlikely(details) && page) { 1228 /* 1229 * unmap_shared_mapping_pages() wants to 1230 * invalidate cache without truncating: 1231 * unmap shared but keep private pages. 1232 */ 1233 if (details->check_mapping && 1234 details->check_mapping != page_rmapping(page)) 1235 continue; 1236 } 1237 ptent = ptep_get_and_clear_full(mm, addr, pte, 1238 tlb->fullmm); 1239 tlb_remove_tlb_entry(tlb, pte, addr); 1240 if (unlikely(!page)) 1241 continue; 1242 1243 if (!PageAnon(page)) { 1244 if (pte_dirty(ptent)) { 1245 force_flush = 1; 1246 set_page_dirty(page); 1247 } 1248 if (pte_young(ptent) && 1249 likely(!(vma->vm_flags & VM_SEQ_READ))) 1250 mark_page_accessed(page); 1251 } 1252 rss[mm_counter(page)]--; 1253 page_remove_rmap(page, false); 1254 if (unlikely(page_mapcount(page) < 0)) 1255 print_bad_pte(vma, addr, ptent, page); 1256 if (unlikely(__tlb_remove_page(tlb, page))) { 1257 force_flush = 1; 1258 addr += PAGE_SIZE; 1259 break; 1260 } 1261 continue; 1262 } 1263 1264 entry = pte_to_swp_entry(ptent); 1265 if (is_device_private_entry(entry)) { 1266 struct page *page = device_private_entry_to_page(entry); 1267 1268 if (unlikely(details && details->check_mapping)) { 1269 /* 1270 * unmap_shared_mapping_pages() wants to 1271 * invalidate cache without truncating: 1272 * unmap shared but keep private pages. 1273 */ 1274 if (details->check_mapping != 1275 page_rmapping(page)) 1276 continue; 1277 } 1278 1279 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1280 rss[mm_counter(page)]--; 1281 page_remove_rmap(page, false); 1282 put_page(page); 1283 continue; 1284 } 1285 1286 /* If details->check_mapping, we leave swap entries. */ 1287 if (unlikely(details)) 1288 continue; 1289 1290 if (!non_swap_entry(entry)) 1291 rss[MM_SWAPENTS]--; 1292 else if (is_migration_entry(entry)) { 1293 struct page *page; 1294 1295 page = migration_entry_to_page(entry); 1296 rss[mm_counter(page)]--; 1297 } 1298 if (unlikely(!free_swap_and_cache(entry))) 1299 print_bad_pte(vma, addr, ptent, NULL); 1300 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1301 } while (pte++, addr += PAGE_SIZE, addr != end); 1302 1303 add_mm_rss_vec(mm, rss); 1304 arch_leave_lazy_mmu_mode(); 1305 1306 /* Do the actual TLB flush before dropping ptl */ 1307 if (force_flush) 1308 tlb_flush_mmu_tlbonly(tlb); 1309 pte_unmap_unlock(start_pte, ptl); 1310 1311 /* 1312 * If we forced a TLB flush (either due to running out of 1313 * batch buffers or because we needed to flush dirty TLB 1314 * entries before releasing the ptl), free the batched 1315 * memory too. Restart if we didn't do everything. 1316 */ 1317 if (force_flush) { 1318 force_flush = 0; 1319 tlb_flush_mmu(tlb); 1320 } 1321 1322 if (addr != end) { 1323 cond_resched(); 1324 goto again; 1325 } 1326 1327 return addr; 1328 } 1329 1330 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1331 struct vm_area_struct *vma, pud_t *pud, 1332 unsigned long addr, unsigned long end, 1333 struct zap_details *details) 1334 { 1335 pmd_t *pmd; 1336 unsigned long next; 1337 1338 pmd = pmd_offset(pud, addr); 1339 do { 1340 next = pmd_addr_end(addr, end); 1341 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1342 if (next - addr != HPAGE_PMD_SIZE) 1343 __split_huge_pmd(vma, pmd, addr, false, NULL); 1344 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1345 goto next; 1346 /* fall through */ 1347 } 1348 /* 1349 * Here there can be other concurrent MADV_DONTNEED or 1350 * trans huge page faults running, and if the pmd is 1351 * none or trans huge it can change under us. This is 1352 * because MADV_DONTNEED holds the mmap_lock in read 1353 * mode. 1354 */ 1355 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1356 goto next; 1357 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1358 next: 1359 cond_resched(); 1360 } while (pmd++, addr = next, addr != end); 1361 1362 return addr; 1363 } 1364 1365 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1366 struct vm_area_struct *vma, p4d_t *p4d, 1367 unsigned long addr, unsigned long end, 1368 struct zap_details *details) 1369 { 1370 pud_t *pud; 1371 unsigned long next; 1372 1373 pud = pud_offset(p4d, addr); 1374 do { 1375 next = pud_addr_end(addr, end); 1376 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1377 if (next - addr != HPAGE_PUD_SIZE) { 1378 mmap_assert_locked(tlb->mm); 1379 split_huge_pud(vma, pud, addr); 1380 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1381 goto next; 1382 /* fall through */ 1383 } 1384 if (pud_none_or_clear_bad(pud)) 1385 continue; 1386 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1387 next: 1388 cond_resched(); 1389 } while (pud++, addr = next, addr != end); 1390 1391 return addr; 1392 } 1393 1394 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1395 struct vm_area_struct *vma, pgd_t *pgd, 1396 unsigned long addr, unsigned long end, 1397 struct zap_details *details) 1398 { 1399 p4d_t *p4d; 1400 unsigned long next; 1401 1402 p4d = p4d_offset(pgd, addr); 1403 do { 1404 next = p4d_addr_end(addr, end); 1405 if (p4d_none_or_clear_bad(p4d)) 1406 continue; 1407 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1408 } while (p4d++, addr = next, addr != end); 1409 1410 return addr; 1411 } 1412 1413 void unmap_page_range(struct mmu_gather *tlb, 1414 struct vm_area_struct *vma, 1415 unsigned long addr, unsigned long end, 1416 struct zap_details *details) 1417 { 1418 pgd_t *pgd; 1419 unsigned long next; 1420 1421 BUG_ON(addr >= end); 1422 tlb_start_vma(tlb, vma); 1423 pgd = pgd_offset(vma->vm_mm, addr); 1424 do { 1425 next = pgd_addr_end(addr, end); 1426 if (pgd_none_or_clear_bad(pgd)) 1427 continue; 1428 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1429 } while (pgd++, addr = next, addr != end); 1430 tlb_end_vma(tlb, vma); 1431 } 1432 1433 1434 static void unmap_single_vma(struct mmu_gather *tlb, 1435 struct vm_area_struct *vma, unsigned long start_addr, 1436 unsigned long end_addr, 1437 struct zap_details *details) 1438 { 1439 unsigned long start = max(vma->vm_start, start_addr); 1440 unsigned long end; 1441 1442 if (start >= vma->vm_end) 1443 return; 1444 end = min(vma->vm_end, end_addr); 1445 if (end <= vma->vm_start) 1446 return; 1447 1448 if (vma->vm_file) 1449 uprobe_munmap(vma, start, end); 1450 1451 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1452 untrack_pfn(vma, 0, 0); 1453 1454 if (start != end) { 1455 if (unlikely(is_vm_hugetlb_page(vma))) { 1456 /* 1457 * It is undesirable to test vma->vm_file as it 1458 * should be non-null for valid hugetlb area. 1459 * However, vm_file will be NULL in the error 1460 * cleanup path of mmap_region. When 1461 * hugetlbfs ->mmap method fails, 1462 * mmap_region() nullifies vma->vm_file 1463 * before calling this function to clean up. 1464 * Since no pte has actually been setup, it is 1465 * safe to do nothing in this case. 1466 */ 1467 if (vma->vm_file) { 1468 i_mmap_lock_write(vma->vm_file->f_mapping); 1469 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1470 i_mmap_unlock_write(vma->vm_file->f_mapping); 1471 } 1472 } else 1473 unmap_page_range(tlb, vma, start, end, details); 1474 } 1475 } 1476 1477 /** 1478 * unmap_vmas - unmap a range of memory covered by a list of vma's 1479 * @tlb: address of the caller's struct mmu_gather 1480 * @vma: the starting vma 1481 * @start_addr: virtual address at which to start unmapping 1482 * @end_addr: virtual address at which to end unmapping 1483 * 1484 * Unmap all pages in the vma list. 1485 * 1486 * Only addresses between `start' and `end' will be unmapped. 1487 * 1488 * The VMA list must be sorted in ascending virtual address order. 1489 * 1490 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1491 * range after unmap_vmas() returns. So the only responsibility here is to 1492 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1493 * drops the lock and schedules. 1494 */ 1495 void unmap_vmas(struct mmu_gather *tlb, 1496 struct vm_area_struct *vma, unsigned long start_addr, 1497 unsigned long end_addr) 1498 { 1499 struct mmu_notifier_range range; 1500 1501 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1502 start_addr, end_addr); 1503 mmu_notifier_invalidate_range_start(&range); 1504 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1505 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1506 mmu_notifier_invalidate_range_end(&range); 1507 } 1508 1509 /** 1510 * zap_page_range - remove user pages in a given range 1511 * @vma: vm_area_struct holding the applicable pages 1512 * @start: starting address of pages to zap 1513 * @size: number of bytes to zap 1514 * 1515 * Caller must protect the VMA list 1516 */ 1517 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1518 unsigned long size) 1519 { 1520 struct mmu_notifier_range range; 1521 struct mmu_gather tlb; 1522 1523 lru_add_drain(); 1524 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1525 start, start + size); 1526 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1527 update_hiwater_rss(vma->vm_mm); 1528 mmu_notifier_invalidate_range_start(&range); 1529 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1530 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1531 mmu_notifier_invalidate_range_end(&range); 1532 tlb_finish_mmu(&tlb, start, range.end); 1533 } 1534 1535 /** 1536 * zap_page_range_single - remove user pages in a given range 1537 * @vma: vm_area_struct holding the applicable pages 1538 * @address: starting address of pages to zap 1539 * @size: number of bytes to zap 1540 * @details: details of shared cache invalidation 1541 * 1542 * The range must fit into one VMA. 1543 */ 1544 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1545 unsigned long size, struct zap_details *details) 1546 { 1547 struct mmu_notifier_range range; 1548 struct mmu_gather tlb; 1549 1550 lru_add_drain(); 1551 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1552 address, address + size); 1553 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1554 update_hiwater_rss(vma->vm_mm); 1555 mmu_notifier_invalidate_range_start(&range); 1556 unmap_single_vma(&tlb, vma, address, range.end, details); 1557 mmu_notifier_invalidate_range_end(&range); 1558 tlb_finish_mmu(&tlb, address, range.end); 1559 } 1560 1561 /** 1562 * zap_vma_ptes - remove ptes mapping the vma 1563 * @vma: vm_area_struct holding ptes to be zapped 1564 * @address: starting address of pages to zap 1565 * @size: number of bytes to zap 1566 * 1567 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1568 * 1569 * The entire address range must be fully contained within the vma. 1570 * 1571 */ 1572 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1573 unsigned long size) 1574 { 1575 if (address < vma->vm_start || address + size > vma->vm_end || 1576 !(vma->vm_flags & VM_PFNMAP)) 1577 return; 1578 1579 zap_page_range_single(vma, address, size, NULL); 1580 } 1581 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1582 1583 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1584 { 1585 pgd_t *pgd; 1586 p4d_t *p4d; 1587 pud_t *pud; 1588 pmd_t *pmd; 1589 1590 pgd = pgd_offset(mm, addr); 1591 p4d = p4d_alloc(mm, pgd, addr); 1592 if (!p4d) 1593 return NULL; 1594 pud = pud_alloc(mm, p4d, addr); 1595 if (!pud) 1596 return NULL; 1597 pmd = pmd_alloc(mm, pud, addr); 1598 if (!pmd) 1599 return NULL; 1600 1601 VM_BUG_ON(pmd_trans_huge(*pmd)); 1602 return pmd; 1603 } 1604 1605 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1606 spinlock_t **ptl) 1607 { 1608 pmd_t *pmd = walk_to_pmd(mm, addr); 1609 1610 if (!pmd) 1611 return NULL; 1612 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1613 } 1614 1615 static int validate_page_before_insert(struct page *page) 1616 { 1617 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1618 return -EINVAL; 1619 flush_dcache_page(page); 1620 return 0; 1621 } 1622 1623 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1624 unsigned long addr, struct page *page, pgprot_t prot) 1625 { 1626 if (!pte_none(*pte)) 1627 return -EBUSY; 1628 /* Ok, finally just insert the thing.. */ 1629 get_page(page); 1630 inc_mm_counter_fast(mm, mm_counter_file(page)); 1631 page_add_file_rmap(page, false); 1632 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1633 return 0; 1634 } 1635 1636 /* 1637 * This is the old fallback for page remapping. 1638 * 1639 * For historical reasons, it only allows reserved pages. Only 1640 * old drivers should use this, and they needed to mark their 1641 * pages reserved for the old functions anyway. 1642 */ 1643 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1644 struct page *page, pgprot_t prot) 1645 { 1646 struct mm_struct *mm = vma->vm_mm; 1647 int retval; 1648 pte_t *pte; 1649 spinlock_t *ptl; 1650 1651 retval = validate_page_before_insert(page); 1652 if (retval) 1653 goto out; 1654 retval = -ENOMEM; 1655 pte = get_locked_pte(mm, addr, &ptl); 1656 if (!pte) 1657 goto out; 1658 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1659 pte_unmap_unlock(pte, ptl); 1660 out: 1661 return retval; 1662 } 1663 1664 #ifdef pte_index 1665 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1666 unsigned long addr, struct page *page, pgprot_t prot) 1667 { 1668 int err; 1669 1670 if (!page_count(page)) 1671 return -EINVAL; 1672 err = validate_page_before_insert(page); 1673 if (err) 1674 return err; 1675 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1676 } 1677 1678 /* insert_pages() amortizes the cost of spinlock operations 1679 * when inserting pages in a loop. Arch *must* define pte_index. 1680 */ 1681 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1682 struct page **pages, unsigned long *num, pgprot_t prot) 1683 { 1684 pmd_t *pmd = NULL; 1685 pte_t *start_pte, *pte; 1686 spinlock_t *pte_lock; 1687 struct mm_struct *const mm = vma->vm_mm; 1688 unsigned long curr_page_idx = 0; 1689 unsigned long remaining_pages_total = *num; 1690 unsigned long pages_to_write_in_pmd; 1691 int ret; 1692 more: 1693 ret = -EFAULT; 1694 pmd = walk_to_pmd(mm, addr); 1695 if (!pmd) 1696 goto out; 1697 1698 pages_to_write_in_pmd = min_t(unsigned long, 1699 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1700 1701 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1702 ret = -ENOMEM; 1703 if (pte_alloc(mm, pmd)) 1704 goto out; 1705 1706 while (pages_to_write_in_pmd) { 1707 int pte_idx = 0; 1708 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1709 1710 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1711 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1712 int err = insert_page_in_batch_locked(mm, pte, 1713 addr, pages[curr_page_idx], prot); 1714 if (unlikely(err)) { 1715 pte_unmap_unlock(start_pte, pte_lock); 1716 ret = err; 1717 remaining_pages_total -= pte_idx; 1718 goto out; 1719 } 1720 addr += PAGE_SIZE; 1721 ++curr_page_idx; 1722 } 1723 pte_unmap_unlock(start_pte, pte_lock); 1724 pages_to_write_in_pmd -= batch_size; 1725 remaining_pages_total -= batch_size; 1726 } 1727 if (remaining_pages_total) 1728 goto more; 1729 ret = 0; 1730 out: 1731 *num = remaining_pages_total; 1732 return ret; 1733 } 1734 #endif /* ifdef pte_index */ 1735 1736 /** 1737 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1738 * @vma: user vma to map to 1739 * @addr: target start user address of these pages 1740 * @pages: source kernel pages 1741 * @num: in: number of pages to map. out: number of pages that were *not* 1742 * mapped. (0 means all pages were successfully mapped). 1743 * 1744 * Preferred over vm_insert_page() when inserting multiple pages. 1745 * 1746 * In case of error, we may have mapped a subset of the provided 1747 * pages. It is the caller's responsibility to account for this case. 1748 * 1749 * The same restrictions apply as in vm_insert_page(). 1750 */ 1751 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1752 struct page **pages, unsigned long *num) 1753 { 1754 #ifdef pte_index 1755 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1756 1757 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1758 return -EFAULT; 1759 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1760 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1761 BUG_ON(vma->vm_flags & VM_PFNMAP); 1762 vma->vm_flags |= VM_MIXEDMAP; 1763 } 1764 /* Defer page refcount checking till we're about to map that page. */ 1765 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1766 #else 1767 unsigned long idx = 0, pgcount = *num; 1768 int err = -EINVAL; 1769 1770 for (; idx < pgcount; ++idx) { 1771 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1772 if (err) 1773 break; 1774 } 1775 *num = pgcount - idx; 1776 return err; 1777 #endif /* ifdef pte_index */ 1778 } 1779 EXPORT_SYMBOL(vm_insert_pages); 1780 1781 /** 1782 * vm_insert_page - insert single page into user vma 1783 * @vma: user vma to map to 1784 * @addr: target user address of this page 1785 * @page: source kernel page 1786 * 1787 * This allows drivers to insert individual pages they've allocated 1788 * into a user vma. 1789 * 1790 * The page has to be a nice clean _individual_ kernel allocation. 1791 * If you allocate a compound page, you need to have marked it as 1792 * such (__GFP_COMP), or manually just split the page up yourself 1793 * (see split_page()). 1794 * 1795 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1796 * took an arbitrary page protection parameter. This doesn't allow 1797 * that. Your vma protection will have to be set up correctly, which 1798 * means that if you want a shared writable mapping, you'd better 1799 * ask for a shared writable mapping! 1800 * 1801 * The page does not need to be reserved. 1802 * 1803 * Usually this function is called from f_op->mmap() handler 1804 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1805 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1806 * function from other places, for example from page-fault handler. 1807 * 1808 * Return: %0 on success, negative error code otherwise. 1809 */ 1810 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1811 struct page *page) 1812 { 1813 if (addr < vma->vm_start || addr >= vma->vm_end) 1814 return -EFAULT; 1815 if (!page_count(page)) 1816 return -EINVAL; 1817 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1818 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1819 BUG_ON(vma->vm_flags & VM_PFNMAP); 1820 vma->vm_flags |= VM_MIXEDMAP; 1821 } 1822 return insert_page(vma, addr, page, vma->vm_page_prot); 1823 } 1824 EXPORT_SYMBOL(vm_insert_page); 1825 1826 /* 1827 * __vm_map_pages - maps range of kernel pages into user vma 1828 * @vma: user vma to map to 1829 * @pages: pointer to array of source kernel pages 1830 * @num: number of pages in page array 1831 * @offset: user's requested vm_pgoff 1832 * 1833 * This allows drivers to map range of kernel pages into a user vma. 1834 * 1835 * Return: 0 on success and error code otherwise. 1836 */ 1837 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1838 unsigned long num, unsigned long offset) 1839 { 1840 unsigned long count = vma_pages(vma); 1841 unsigned long uaddr = vma->vm_start; 1842 int ret, i; 1843 1844 /* Fail if the user requested offset is beyond the end of the object */ 1845 if (offset >= num) 1846 return -ENXIO; 1847 1848 /* Fail if the user requested size exceeds available object size */ 1849 if (count > num - offset) 1850 return -ENXIO; 1851 1852 for (i = 0; i < count; i++) { 1853 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1854 if (ret < 0) 1855 return ret; 1856 uaddr += PAGE_SIZE; 1857 } 1858 1859 return 0; 1860 } 1861 1862 /** 1863 * vm_map_pages - maps range of kernel pages starts with non zero offset 1864 * @vma: user vma to map to 1865 * @pages: pointer to array of source kernel pages 1866 * @num: number of pages in page array 1867 * 1868 * Maps an object consisting of @num pages, catering for the user's 1869 * requested vm_pgoff 1870 * 1871 * If we fail to insert any page into the vma, the function will return 1872 * immediately leaving any previously inserted pages present. Callers 1873 * from the mmap handler may immediately return the error as their caller 1874 * will destroy the vma, removing any successfully inserted pages. Other 1875 * callers should make their own arrangements for calling unmap_region(). 1876 * 1877 * Context: Process context. Called by mmap handlers. 1878 * Return: 0 on success and error code otherwise. 1879 */ 1880 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1881 unsigned long num) 1882 { 1883 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1884 } 1885 EXPORT_SYMBOL(vm_map_pages); 1886 1887 /** 1888 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1889 * @vma: user vma to map to 1890 * @pages: pointer to array of source kernel pages 1891 * @num: number of pages in page array 1892 * 1893 * Similar to vm_map_pages(), except that it explicitly sets the offset 1894 * to 0. This function is intended for the drivers that did not consider 1895 * vm_pgoff. 1896 * 1897 * Context: Process context. Called by mmap handlers. 1898 * Return: 0 on success and error code otherwise. 1899 */ 1900 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1901 unsigned long num) 1902 { 1903 return __vm_map_pages(vma, pages, num, 0); 1904 } 1905 EXPORT_SYMBOL(vm_map_pages_zero); 1906 1907 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1908 pfn_t pfn, pgprot_t prot, bool mkwrite) 1909 { 1910 struct mm_struct *mm = vma->vm_mm; 1911 pte_t *pte, entry; 1912 spinlock_t *ptl; 1913 1914 pte = get_locked_pte(mm, addr, &ptl); 1915 if (!pte) 1916 return VM_FAULT_OOM; 1917 if (!pte_none(*pte)) { 1918 if (mkwrite) { 1919 /* 1920 * For read faults on private mappings the PFN passed 1921 * in may not match the PFN we have mapped if the 1922 * mapped PFN is a writeable COW page. In the mkwrite 1923 * case we are creating a writable PTE for a shared 1924 * mapping and we expect the PFNs to match. If they 1925 * don't match, we are likely racing with block 1926 * allocation and mapping invalidation so just skip the 1927 * update. 1928 */ 1929 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1930 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1931 goto out_unlock; 1932 } 1933 entry = pte_mkyoung(*pte); 1934 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1935 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1936 update_mmu_cache(vma, addr, pte); 1937 } 1938 goto out_unlock; 1939 } 1940 1941 /* Ok, finally just insert the thing.. */ 1942 if (pfn_t_devmap(pfn)) 1943 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1944 else 1945 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1946 1947 if (mkwrite) { 1948 entry = pte_mkyoung(entry); 1949 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1950 } 1951 1952 set_pte_at(mm, addr, pte, entry); 1953 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1954 1955 out_unlock: 1956 pte_unmap_unlock(pte, ptl); 1957 return VM_FAULT_NOPAGE; 1958 } 1959 1960 /** 1961 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1962 * @vma: user vma to map to 1963 * @addr: target user address of this page 1964 * @pfn: source kernel pfn 1965 * @pgprot: pgprot flags for the inserted page 1966 * 1967 * This is exactly like vmf_insert_pfn(), except that it allows drivers 1968 * to override pgprot on a per-page basis. 1969 * 1970 * This only makes sense for IO mappings, and it makes no sense for 1971 * COW mappings. In general, using multiple vmas is preferable; 1972 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1973 * impractical. 1974 * 1975 * See vmf_insert_mixed_prot() for a discussion of the implication of using 1976 * a value of @pgprot different from that of @vma->vm_page_prot. 1977 * 1978 * Context: Process context. May allocate using %GFP_KERNEL. 1979 * Return: vm_fault_t value. 1980 */ 1981 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1982 unsigned long pfn, pgprot_t pgprot) 1983 { 1984 /* 1985 * Technically, architectures with pte_special can avoid all these 1986 * restrictions (same for remap_pfn_range). However we would like 1987 * consistency in testing and feature parity among all, so we should 1988 * try to keep these invariants in place for everybody. 1989 */ 1990 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1991 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1992 (VM_PFNMAP|VM_MIXEDMAP)); 1993 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1994 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1995 1996 if (addr < vma->vm_start || addr >= vma->vm_end) 1997 return VM_FAULT_SIGBUS; 1998 1999 if (!pfn_modify_allowed(pfn, pgprot)) 2000 return VM_FAULT_SIGBUS; 2001 2002 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2003 2004 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2005 false); 2006 } 2007 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2008 2009 /** 2010 * vmf_insert_pfn - insert single pfn into user vma 2011 * @vma: user vma to map to 2012 * @addr: target user address of this page 2013 * @pfn: source kernel pfn 2014 * 2015 * Similar to vm_insert_page, this allows drivers to insert individual pages 2016 * they've allocated into a user vma. Same comments apply. 2017 * 2018 * This function should only be called from a vm_ops->fault handler, and 2019 * in that case the handler should return the result of this function. 2020 * 2021 * vma cannot be a COW mapping. 2022 * 2023 * As this is called only for pages that do not currently exist, we 2024 * do not need to flush old virtual caches or the TLB. 2025 * 2026 * Context: Process context. May allocate using %GFP_KERNEL. 2027 * Return: vm_fault_t value. 2028 */ 2029 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2030 unsigned long pfn) 2031 { 2032 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2033 } 2034 EXPORT_SYMBOL(vmf_insert_pfn); 2035 2036 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2037 { 2038 /* these checks mirror the abort conditions in vm_normal_page */ 2039 if (vma->vm_flags & VM_MIXEDMAP) 2040 return true; 2041 if (pfn_t_devmap(pfn)) 2042 return true; 2043 if (pfn_t_special(pfn)) 2044 return true; 2045 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2046 return true; 2047 return false; 2048 } 2049 2050 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2051 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2052 bool mkwrite) 2053 { 2054 int err; 2055 2056 BUG_ON(!vm_mixed_ok(vma, pfn)); 2057 2058 if (addr < vma->vm_start || addr >= vma->vm_end) 2059 return VM_FAULT_SIGBUS; 2060 2061 track_pfn_insert(vma, &pgprot, pfn); 2062 2063 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2064 return VM_FAULT_SIGBUS; 2065 2066 /* 2067 * If we don't have pte special, then we have to use the pfn_valid() 2068 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2069 * refcount the page if pfn_valid is true (hence insert_page rather 2070 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2071 * without pte special, it would there be refcounted as a normal page. 2072 */ 2073 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2074 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2075 struct page *page; 2076 2077 /* 2078 * At this point we are committed to insert_page() 2079 * regardless of whether the caller specified flags that 2080 * result in pfn_t_has_page() == false. 2081 */ 2082 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2083 err = insert_page(vma, addr, page, pgprot); 2084 } else { 2085 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2086 } 2087 2088 if (err == -ENOMEM) 2089 return VM_FAULT_OOM; 2090 if (err < 0 && err != -EBUSY) 2091 return VM_FAULT_SIGBUS; 2092 2093 return VM_FAULT_NOPAGE; 2094 } 2095 2096 /** 2097 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2098 * @vma: user vma to map to 2099 * @addr: target user address of this page 2100 * @pfn: source kernel pfn 2101 * @pgprot: pgprot flags for the inserted page 2102 * 2103 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2104 * to override pgprot on a per-page basis. 2105 * 2106 * Typically this function should be used by drivers to set caching- and 2107 * encryption bits different than those of @vma->vm_page_prot, because 2108 * the caching- or encryption mode may not be known at mmap() time. 2109 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2110 * to set caching and encryption bits for those vmas (except for COW pages). 2111 * This is ensured by core vm only modifying these page table entries using 2112 * functions that don't touch caching- or encryption bits, using pte_modify() 2113 * if needed. (See for example mprotect()). 2114 * Also when new page-table entries are created, this is only done using the 2115 * fault() callback, and never using the value of vma->vm_page_prot, 2116 * except for page-table entries that point to anonymous pages as the result 2117 * of COW. 2118 * 2119 * Context: Process context. May allocate using %GFP_KERNEL. 2120 * Return: vm_fault_t value. 2121 */ 2122 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2123 pfn_t pfn, pgprot_t pgprot) 2124 { 2125 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2126 } 2127 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2128 2129 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2130 pfn_t pfn) 2131 { 2132 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2133 } 2134 EXPORT_SYMBOL(vmf_insert_mixed); 2135 2136 /* 2137 * If the insertion of PTE failed because someone else already added a 2138 * different entry in the mean time, we treat that as success as we assume 2139 * the same entry was actually inserted. 2140 */ 2141 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2142 unsigned long addr, pfn_t pfn) 2143 { 2144 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2145 } 2146 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2147 2148 /* 2149 * maps a range of physical memory into the requested pages. the old 2150 * mappings are removed. any references to nonexistent pages results 2151 * in null mappings (currently treated as "copy-on-access") 2152 */ 2153 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2154 unsigned long addr, unsigned long end, 2155 unsigned long pfn, pgprot_t prot) 2156 { 2157 pte_t *pte; 2158 spinlock_t *ptl; 2159 int err = 0; 2160 2161 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2162 if (!pte) 2163 return -ENOMEM; 2164 arch_enter_lazy_mmu_mode(); 2165 do { 2166 BUG_ON(!pte_none(*pte)); 2167 if (!pfn_modify_allowed(pfn, prot)) { 2168 err = -EACCES; 2169 break; 2170 } 2171 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2172 pfn++; 2173 } while (pte++, addr += PAGE_SIZE, addr != end); 2174 arch_leave_lazy_mmu_mode(); 2175 pte_unmap_unlock(pte - 1, ptl); 2176 return err; 2177 } 2178 2179 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2180 unsigned long addr, unsigned long end, 2181 unsigned long pfn, pgprot_t prot) 2182 { 2183 pmd_t *pmd; 2184 unsigned long next; 2185 int err; 2186 2187 pfn -= addr >> PAGE_SHIFT; 2188 pmd = pmd_alloc(mm, pud, addr); 2189 if (!pmd) 2190 return -ENOMEM; 2191 VM_BUG_ON(pmd_trans_huge(*pmd)); 2192 do { 2193 next = pmd_addr_end(addr, end); 2194 err = remap_pte_range(mm, pmd, addr, next, 2195 pfn + (addr >> PAGE_SHIFT), prot); 2196 if (err) 2197 return err; 2198 } while (pmd++, addr = next, addr != end); 2199 return 0; 2200 } 2201 2202 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2203 unsigned long addr, unsigned long end, 2204 unsigned long pfn, pgprot_t prot) 2205 { 2206 pud_t *pud; 2207 unsigned long next; 2208 int err; 2209 2210 pfn -= addr >> PAGE_SHIFT; 2211 pud = pud_alloc(mm, p4d, addr); 2212 if (!pud) 2213 return -ENOMEM; 2214 do { 2215 next = pud_addr_end(addr, end); 2216 err = remap_pmd_range(mm, pud, addr, next, 2217 pfn + (addr >> PAGE_SHIFT), prot); 2218 if (err) 2219 return err; 2220 } while (pud++, addr = next, addr != end); 2221 return 0; 2222 } 2223 2224 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2225 unsigned long addr, unsigned long end, 2226 unsigned long pfn, pgprot_t prot) 2227 { 2228 p4d_t *p4d; 2229 unsigned long next; 2230 int err; 2231 2232 pfn -= addr >> PAGE_SHIFT; 2233 p4d = p4d_alloc(mm, pgd, addr); 2234 if (!p4d) 2235 return -ENOMEM; 2236 do { 2237 next = p4d_addr_end(addr, end); 2238 err = remap_pud_range(mm, p4d, addr, next, 2239 pfn + (addr >> PAGE_SHIFT), prot); 2240 if (err) 2241 return err; 2242 } while (p4d++, addr = next, addr != end); 2243 return 0; 2244 } 2245 2246 /** 2247 * remap_pfn_range - remap kernel memory to userspace 2248 * @vma: user vma to map to 2249 * @addr: target page aligned user address to start at 2250 * @pfn: page frame number of kernel physical memory address 2251 * @size: size of mapping area 2252 * @prot: page protection flags for this mapping 2253 * 2254 * Note: this is only safe if the mm semaphore is held when called. 2255 * 2256 * Return: %0 on success, negative error code otherwise. 2257 */ 2258 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2259 unsigned long pfn, unsigned long size, pgprot_t prot) 2260 { 2261 pgd_t *pgd; 2262 unsigned long next; 2263 unsigned long end = addr + PAGE_ALIGN(size); 2264 struct mm_struct *mm = vma->vm_mm; 2265 unsigned long remap_pfn = pfn; 2266 int err; 2267 2268 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2269 return -EINVAL; 2270 2271 /* 2272 * Physically remapped pages are special. Tell the 2273 * rest of the world about it: 2274 * VM_IO tells people not to look at these pages 2275 * (accesses can have side effects). 2276 * VM_PFNMAP tells the core MM that the base pages are just 2277 * raw PFN mappings, and do not have a "struct page" associated 2278 * with them. 2279 * VM_DONTEXPAND 2280 * Disable vma merging and expanding with mremap(). 2281 * VM_DONTDUMP 2282 * Omit vma from core dump, even when VM_IO turned off. 2283 * 2284 * There's a horrible special case to handle copy-on-write 2285 * behaviour that some programs depend on. We mark the "original" 2286 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2287 * See vm_normal_page() for details. 2288 */ 2289 if (is_cow_mapping(vma->vm_flags)) { 2290 if (addr != vma->vm_start || end != vma->vm_end) 2291 return -EINVAL; 2292 vma->vm_pgoff = pfn; 2293 } 2294 2295 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2296 if (err) 2297 return -EINVAL; 2298 2299 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2300 2301 BUG_ON(addr >= end); 2302 pfn -= addr >> PAGE_SHIFT; 2303 pgd = pgd_offset(mm, addr); 2304 flush_cache_range(vma, addr, end); 2305 do { 2306 next = pgd_addr_end(addr, end); 2307 err = remap_p4d_range(mm, pgd, addr, next, 2308 pfn + (addr >> PAGE_SHIFT), prot); 2309 if (err) 2310 break; 2311 } while (pgd++, addr = next, addr != end); 2312 2313 if (err) 2314 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2315 2316 return err; 2317 } 2318 EXPORT_SYMBOL(remap_pfn_range); 2319 2320 /** 2321 * vm_iomap_memory - remap memory to userspace 2322 * @vma: user vma to map to 2323 * @start: start of the physical memory to be mapped 2324 * @len: size of area 2325 * 2326 * This is a simplified io_remap_pfn_range() for common driver use. The 2327 * driver just needs to give us the physical memory range to be mapped, 2328 * we'll figure out the rest from the vma information. 2329 * 2330 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2331 * whatever write-combining details or similar. 2332 * 2333 * Return: %0 on success, negative error code otherwise. 2334 */ 2335 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2336 { 2337 unsigned long vm_len, pfn, pages; 2338 2339 /* Check that the physical memory area passed in looks valid */ 2340 if (start + len < start) 2341 return -EINVAL; 2342 /* 2343 * You *really* shouldn't map things that aren't page-aligned, 2344 * but we've historically allowed it because IO memory might 2345 * just have smaller alignment. 2346 */ 2347 len += start & ~PAGE_MASK; 2348 pfn = start >> PAGE_SHIFT; 2349 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2350 if (pfn + pages < pfn) 2351 return -EINVAL; 2352 2353 /* We start the mapping 'vm_pgoff' pages into the area */ 2354 if (vma->vm_pgoff > pages) 2355 return -EINVAL; 2356 pfn += vma->vm_pgoff; 2357 pages -= vma->vm_pgoff; 2358 2359 /* Can we fit all of the mapping? */ 2360 vm_len = vma->vm_end - vma->vm_start; 2361 if (vm_len >> PAGE_SHIFT > pages) 2362 return -EINVAL; 2363 2364 /* Ok, let it rip */ 2365 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2366 } 2367 EXPORT_SYMBOL(vm_iomap_memory); 2368 2369 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2370 unsigned long addr, unsigned long end, 2371 pte_fn_t fn, void *data, bool create, 2372 pgtbl_mod_mask *mask) 2373 { 2374 pte_t *pte; 2375 int err = 0; 2376 spinlock_t *ptl; 2377 2378 if (create) { 2379 pte = (mm == &init_mm) ? 2380 pte_alloc_kernel_track(pmd, addr, mask) : 2381 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2382 if (!pte) 2383 return -ENOMEM; 2384 } else { 2385 pte = (mm == &init_mm) ? 2386 pte_offset_kernel(pmd, addr) : 2387 pte_offset_map_lock(mm, pmd, addr, &ptl); 2388 } 2389 2390 BUG_ON(pmd_huge(*pmd)); 2391 2392 arch_enter_lazy_mmu_mode(); 2393 2394 do { 2395 if (create || !pte_none(*pte)) { 2396 err = fn(pte++, addr, data); 2397 if (err) 2398 break; 2399 } 2400 } while (addr += PAGE_SIZE, addr != end); 2401 *mask |= PGTBL_PTE_MODIFIED; 2402 2403 arch_leave_lazy_mmu_mode(); 2404 2405 if (mm != &init_mm) 2406 pte_unmap_unlock(pte-1, ptl); 2407 return err; 2408 } 2409 2410 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2411 unsigned long addr, unsigned long end, 2412 pte_fn_t fn, void *data, bool create, 2413 pgtbl_mod_mask *mask) 2414 { 2415 pmd_t *pmd; 2416 unsigned long next; 2417 int err = 0; 2418 2419 BUG_ON(pud_huge(*pud)); 2420 2421 if (create) { 2422 pmd = pmd_alloc_track(mm, pud, addr, mask); 2423 if (!pmd) 2424 return -ENOMEM; 2425 } else { 2426 pmd = pmd_offset(pud, addr); 2427 } 2428 do { 2429 next = pmd_addr_end(addr, end); 2430 if (create || !pmd_none_or_clear_bad(pmd)) { 2431 err = apply_to_pte_range(mm, pmd, addr, next, fn, data, 2432 create, mask); 2433 if (err) 2434 break; 2435 } 2436 } while (pmd++, addr = next, addr != end); 2437 return err; 2438 } 2439 2440 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2441 unsigned long addr, unsigned long end, 2442 pte_fn_t fn, void *data, bool create, 2443 pgtbl_mod_mask *mask) 2444 { 2445 pud_t *pud; 2446 unsigned long next; 2447 int err = 0; 2448 2449 if (create) { 2450 pud = pud_alloc_track(mm, p4d, addr, mask); 2451 if (!pud) 2452 return -ENOMEM; 2453 } else { 2454 pud = pud_offset(p4d, addr); 2455 } 2456 do { 2457 next = pud_addr_end(addr, end); 2458 if (create || !pud_none_or_clear_bad(pud)) { 2459 err = apply_to_pmd_range(mm, pud, addr, next, fn, data, 2460 create, mask); 2461 if (err) 2462 break; 2463 } 2464 } while (pud++, addr = next, addr != end); 2465 return err; 2466 } 2467 2468 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2469 unsigned long addr, unsigned long end, 2470 pte_fn_t fn, void *data, bool create, 2471 pgtbl_mod_mask *mask) 2472 { 2473 p4d_t *p4d; 2474 unsigned long next; 2475 int err = 0; 2476 2477 if (create) { 2478 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2479 if (!p4d) 2480 return -ENOMEM; 2481 } else { 2482 p4d = p4d_offset(pgd, addr); 2483 } 2484 do { 2485 next = p4d_addr_end(addr, end); 2486 if (create || !p4d_none_or_clear_bad(p4d)) { 2487 err = apply_to_pud_range(mm, p4d, addr, next, fn, data, 2488 create, mask); 2489 if (err) 2490 break; 2491 } 2492 } while (p4d++, addr = next, addr != end); 2493 return err; 2494 } 2495 2496 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2497 unsigned long size, pte_fn_t fn, 2498 void *data, bool create) 2499 { 2500 pgd_t *pgd; 2501 unsigned long start = addr, next; 2502 unsigned long end = addr + size; 2503 pgtbl_mod_mask mask = 0; 2504 int err = 0; 2505 2506 if (WARN_ON(addr >= end)) 2507 return -EINVAL; 2508 2509 pgd = pgd_offset(mm, addr); 2510 do { 2511 next = pgd_addr_end(addr, end); 2512 if (!create && pgd_none_or_clear_bad(pgd)) 2513 continue; 2514 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask); 2515 if (err) 2516 break; 2517 } while (pgd++, addr = next, addr != end); 2518 2519 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2520 arch_sync_kernel_mappings(start, start + size); 2521 2522 return err; 2523 } 2524 2525 /* 2526 * Scan a region of virtual memory, filling in page tables as necessary 2527 * and calling a provided function on each leaf page table. 2528 */ 2529 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2530 unsigned long size, pte_fn_t fn, void *data) 2531 { 2532 return __apply_to_page_range(mm, addr, size, fn, data, true); 2533 } 2534 EXPORT_SYMBOL_GPL(apply_to_page_range); 2535 2536 /* 2537 * Scan a region of virtual memory, calling a provided function on 2538 * each leaf page table where it exists. 2539 * 2540 * Unlike apply_to_page_range, this does _not_ fill in page tables 2541 * where they are absent. 2542 */ 2543 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2544 unsigned long size, pte_fn_t fn, void *data) 2545 { 2546 return __apply_to_page_range(mm, addr, size, fn, data, false); 2547 } 2548 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2549 2550 /* 2551 * handle_pte_fault chooses page fault handler according to an entry which was 2552 * read non-atomically. Before making any commitment, on those architectures 2553 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2554 * parts, do_swap_page must check under lock before unmapping the pte and 2555 * proceeding (but do_wp_page is only called after already making such a check; 2556 * and do_anonymous_page can safely check later on). 2557 */ 2558 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2559 pte_t *page_table, pte_t orig_pte) 2560 { 2561 int same = 1; 2562 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2563 if (sizeof(pte_t) > sizeof(unsigned long)) { 2564 spinlock_t *ptl = pte_lockptr(mm, pmd); 2565 spin_lock(ptl); 2566 same = pte_same(*page_table, orig_pte); 2567 spin_unlock(ptl); 2568 } 2569 #endif 2570 pte_unmap(page_table); 2571 return same; 2572 } 2573 2574 static inline bool cow_user_page(struct page *dst, struct page *src, 2575 struct vm_fault *vmf) 2576 { 2577 bool ret; 2578 void *kaddr; 2579 void __user *uaddr; 2580 bool locked = false; 2581 struct vm_area_struct *vma = vmf->vma; 2582 struct mm_struct *mm = vma->vm_mm; 2583 unsigned long addr = vmf->address; 2584 2585 if (likely(src)) { 2586 copy_user_highpage(dst, src, addr, vma); 2587 return true; 2588 } 2589 2590 /* 2591 * If the source page was a PFN mapping, we don't have 2592 * a "struct page" for it. We do a best-effort copy by 2593 * just copying from the original user address. If that 2594 * fails, we just zero-fill it. Live with it. 2595 */ 2596 kaddr = kmap_atomic(dst); 2597 uaddr = (void __user *)(addr & PAGE_MASK); 2598 2599 /* 2600 * On architectures with software "accessed" bits, we would 2601 * take a double page fault, so mark it accessed here. 2602 */ 2603 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2604 pte_t entry; 2605 2606 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2607 locked = true; 2608 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2609 /* 2610 * Other thread has already handled the fault 2611 * and update local tlb only 2612 */ 2613 update_mmu_tlb(vma, addr, vmf->pte); 2614 ret = false; 2615 goto pte_unlock; 2616 } 2617 2618 entry = pte_mkyoung(vmf->orig_pte); 2619 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2620 update_mmu_cache(vma, addr, vmf->pte); 2621 } 2622 2623 /* 2624 * This really shouldn't fail, because the page is there 2625 * in the page tables. But it might just be unreadable, 2626 * in which case we just give up and fill the result with 2627 * zeroes. 2628 */ 2629 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2630 if (locked) 2631 goto warn; 2632 2633 /* Re-validate under PTL if the page is still mapped */ 2634 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2635 locked = true; 2636 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2637 /* The PTE changed under us, update local tlb */ 2638 update_mmu_tlb(vma, addr, vmf->pte); 2639 ret = false; 2640 goto pte_unlock; 2641 } 2642 2643 /* 2644 * The same page can be mapped back since last copy attempt. 2645 * Try to copy again under PTL. 2646 */ 2647 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2648 /* 2649 * Give a warn in case there can be some obscure 2650 * use-case 2651 */ 2652 warn: 2653 WARN_ON_ONCE(1); 2654 clear_page(kaddr); 2655 } 2656 } 2657 2658 ret = true; 2659 2660 pte_unlock: 2661 if (locked) 2662 pte_unmap_unlock(vmf->pte, vmf->ptl); 2663 kunmap_atomic(kaddr); 2664 flush_dcache_page(dst); 2665 2666 return ret; 2667 } 2668 2669 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2670 { 2671 struct file *vm_file = vma->vm_file; 2672 2673 if (vm_file) 2674 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2675 2676 /* 2677 * Special mappings (e.g. VDSO) do not have any file so fake 2678 * a default GFP_KERNEL for them. 2679 */ 2680 return GFP_KERNEL; 2681 } 2682 2683 /* 2684 * Notify the address space that the page is about to become writable so that 2685 * it can prohibit this or wait for the page to get into an appropriate state. 2686 * 2687 * We do this without the lock held, so that it can sleep if it needs to. 2688 */ 2689 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2690 { 2691 vm_fault_t ret; 2692 struct page *page = vmf->page; 2693 unsigned int old_flags = vmf->flags; 2694 2695 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2696 2697 if (vmf->vma->vm_file && 2698 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2699 return VM_FAULT_SIGBUS; 2700 2701 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2702 /* Restore original flags so that caller is not surprised */ 2703 vmf->flags = old_flags; 2704 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2705 return ret; 2706 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2707 lock_page(page); 2708 if (!page->mapping) { 2709 unlock_page(page); 2710 return 0; /* retry */ 2711 } 2712 ret |= VM_FAULT_LOCKED; 2713 } else 2714 VM_BUG_ON_PAGE(!PageLocked(page), page); 2715 return ret; 2716 } 2717 2718 /* 2719 * Handle dirtying of a page in shared file mapping on a write fault. 2720 * 2721 * The function expects the page to be locked and unlocks it. 2722 */ 2723 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2724 { 2725 struct vm_area_struct *vma = vmf->vma; 2726 struct address_space *mapping; 2727 struct page *page = vmf->page; 2728 bool dirtied; 2729 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2730 2731 dirtied = set_page_dirty(page); 2732 VM_BUG_ON_PAGE(PageAnon(page), page); 2733 /* 2734 * Take a local copy of the address_space - page.mapping may be zeroed 2735 * by truncate after unlock_page(). The address_space itself remains 2736 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2737 * release semantics to prevent the compiler from undoing this copying. 2738 */ 2739 mapping = page_rmapping(page); 2740 unlock_page(page); 2741 2742 if (!page_mkwrite) 2743 file_update_time(vma->vm_file); 2744 2745 /* 2746 * Throttle page dirtying rate down to writeback speed. 2747 * 2748 * mapping may be NULL here because some device drivers do not 2749 * set page.mapping but still dirty their pages 2750 * 2751 * Drop the mmap_lock before waiting on IO, if we can. The file 2752 * is pinning the mapping, as per above. 2753 */ 2754 if ((dirtied || page_mkwrite) && mapping) { 2755 struct file *fpin; 2756 2757 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2758 balance_dirty_pages_ratelimited(mapping); 2759 if (fpin) { 2760 fput(fpin); 2761 return VM_FAULT_RETRY; 2762 } 2763 } 2764 2765 return 0; 2766 } 2767 2768 /* 2769 * Handle write page faults for pages that can be reused in the current vma 2770 * 2771 * This can happen either due to the mapping being with the VM_SHARED flag, 2772 * or due to us being the last reference standing to the page. In either 2773 * case, all we need to do here is to mark the page as writable and update 2774 * any related book-keeping. 2775 */ 2776 static inline void wp_page_reuse(struct vm_fault *vmf) 2777 __releases(vmf->ptl) 2778 { 2779 struct vm_area_struct *vma = vmf->vma; 2780 struct page *page = vmf->page; 2781 pte_t entry; 2782 /* 2783 * Clear the pages cpupid information as the existing 2784 * information potentially belongs to a now completely 2785 * unrelated process. 2786 */ 2787 if (page) 2788 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2789 2790 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2791 entry = pte_mkyoung(vmf->orig_pte); 2792 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2793 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2794 update_mmu_cache(vma, vmf->address, vmf->pte); 2795 pte_unmap_unlock(vmf->pte, vmf->ptl); 2796 count_vm_event(PGREUSE); 2797 } 2798 2799 /* 2800 * Handle the case of a page which we actually need to copy to a new page. 2801 * 2802 * Called with mmap_lock locked and the old page referenced, but 2803 * without the ptl held. 2804 * 2805 * High level logic flow: 2806 * 2807 * - Allocate a page, copy the content of the old page to the new one. 2808 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2809 * - Take the PTL. If the pte changed, bail out and release the allocated page 2810 * - If the pte is still the way we remember it, update the page table and all 2811 * relevant references. This includes dropping the reference the page-table 2812 * held to the old page, as well as updating the rmap. 2813 * - In any case, unlock the PTL and drop the reference we took to the old page. 2814 */ 2815 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2816 { 2817 struct vm_area_struct *vma = vmf->vma; 2818 struct mm_struct *mm = vma->vm_mm; 2819 struct page *old_page = vmf->page; 2820 struct page *new_page = NULL; 2821 pte_t entry; 2822 int page_copied = 0; 2823 struct mmu_notifier_range range; 2824 2825 if (unlikely(anon_vma_prepare(vma))) 2826 goto oom; 2827 2828 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2829 new_page = alloc_zeroed_user_highpage_movable(vma, 2830 vmf->address); 2831 if (!new_page) 2832 goto oom; 2833 } else { 2834 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2835 vmf->address); 2836 if (!new_page) 2837 goto oom; 2838 2839 if (!cow_user_page(new_page, old_page, vmf)) { 2840 /* 2841 * COW failed, if the fault was solved by other, 2842 * it's fine. If not, userspace would re-fault on 2843 * the same address and we will handle the fault 2844 * from the second attempt. 2845 */ 2846 put_page(new_page); 2847 if (old_page) 2848 put_page(old_page); 2849 return 0; 2850 } 2851 } 2852 2853 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 2854 goto oom_free_new; 2855 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 2856 2857 __SetPageUptodate(new_page); 2858 2859 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2860 vmf->address & PAGE_MASK, 2861 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2862 mmu_notifier_invalidate_range_start(&range); 2863 2864 /* 2865 * Re-check the pte - we dropped the lock 2866 */ 2867 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2868 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2869 if (old_page) { 2870 if (!PageAnon(old_page)) { 2871 dec_mm_counter_fast(mm, 2872 mm_counter_file(old_page)); 2873 inc_mm_counter_fast(mm, MM_ANONPAGES); 2874 } 2875 } else { 2876 inc_mm_counter_fast(mm, MM_ANONPAGES); 2877 } 2878 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2879 entry = mk_pte(new_page, vma->vm_page_prot); 2880 entry = pte_sw_mkyoung(entry); 2881 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2882 /* 2883 * Clear the pte entry and flush it first, before updating the 2884 * pte with the new entry. This will avoid a race condition 2885 * seen in the presence of one thread doing SMC and another 2886 * thread doing COW. 2887 */ 2888 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2889 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2890 lru_cache_add_inactive_or_unevictable(new_page, vma); 2891 /* 2892 * We call the notify macro here because, when using secondary 2893 * mmu page tables (such as kvm shadow page tables), we want the 2894 * new page to be mapped directly into the secondary page table. 2895 */ 2896 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2897 update_mmu_cache(vma, vmf->address, vmf->pte); 2898 if (old_page) { 2899 /* 2900 * Only after switching the pte to the new page may 2901 * we remove the mapcount here. Otherwise another 2902 * process may come and find the rmap count decremented 2903 * before the pte is switched to the new page, and 2904 * "reuse" the old page writing into it while our pte 2905 * here still points into it and can be read by other 2906 * threads. 2907 * 2908 * The critical issue is to order this 2909 * page_remove_rmap with the ptp_clear_flush above. 2910 * Those stores are ordered by (if nothing else,) 2911 * the barrier present in the atomic_add_negative 2912 * in page_remove_rmap. 2913 * 2914 * Then the TLB flush in ptep_clear_flush ensures that 2915 * no process can access the old page before the 2916 * decremented mapcount is visible. And the old page 2917 * cannot be reused until after the decremented 2918 * mapcount is visible. So transitively, TLBs to 2919 * old page will be flushed before it can be reused. 2920 */ 2921 page_remove_rmap(old_page, false); 2922 } 2923 2924 /* Free the old page.. */ 2925 new_page = old_page; 2926 page_copied = 1; 2927 } else { 2928 update_mmu_tlb(vma, vmf->address, vmf->pte); 2929 } 2930 2931 if (new_page) 2932 put_page(new_page); 2933 2934 pte_unmap_unlock(vmf->pte, vmf->ptl); 2935 /* 2936 * No need to double call mmu_notifier->invalidate_range() callback as 2937 * the above ptep_clear_flush_notify() did already call it. 2938 */ 2939 mmu_notifier_invalidate_range_only_end(&range); 2940 if (old_page) { 2941 /* 2942 * Don't let another task, with possibly unlocked vma, 2943 * keep the mlocked page. 2944 */ 2945 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2946 lock_page(old_page); /* LRU manipulation */ 2947 if (PageMlocked(old_page)) 2948 munlock_vma_page(old_page); 2949 unlock_page(old_page); 2950 } 2951 put_page(old_page); 2952 } 2953 return page_copied ? VM_FAULT_WRITE : 0; 2954 oom_free_new: 2955 put_page(new_page); 2956 oom: 2957 if (old_page) 2958 put_page(old_page); 2959 return VM_FAULT_OOM; 2960 } 2961 2962 /** 2963 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2964 * writeable once the page is prepared 2965 * 2966 * @vmf: structure describing the fault 2967 * 2968 * This function handles all that is needed to finish a write page fault in a 2969 * shared mapping due to PTE being read-only once the mapped page is prepared. 2970 * It handles locking of PTE and modifying it. 2971 * 2972 * The function expects the page to be locked or other protection against 2973 * concurrent faults / writeback (such as DAX radix tree locks). 2974 * 2975 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2976 * we acquired PTE lock. 2977 */ 2978 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2979 { 2980 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2981 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2982 &vmf->ptl); 2983 /* 2984 * We might have raced with another page fault while we released the 2985 * pte_offset_map_lock. 2986 */ 2987 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2988 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 2989 pte_unmap_unlock(vmf->pte, vmf->ptl); 2990 return VM_FAULT_NOPAGE; 2991 } 2992 wp_page_reuse(vmf); 2993 return 0; 2994 } 2995 2996 /* 2997 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2998 * mapping 2999 */ 3000 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3001 { 3002 struct vm_area_struct *vma = vmf->vma; 3003 3004 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3005 vm_fault_t ret; 3006 3007 pte_unmap_unlock(vmf->pte, vmf->ptl); 3008 vmf->flags |= FAULT_FLAG_MKWRITE; 3009 ret = vma->vm_ops->pfn_mkwrite(vmf); 3010 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3011 return ret; 3012 return finish_mkwrite_fault(vmf); 3013 } 3014 wp_page_reuse(vmf); 3015 return VM_FAULT_WRITE; 3016 } 3017 3018 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3019 __releases(vmf->ptl) 3020 { 3021 struct vm_area_struct *vma = vmf->vma; 3022 vm_fault_t ret = VM_FAULT_WRITE; 3023 3024 get_page(vmf->page); 3025 3026 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3027 vm_fault_t tmp; 3028 3029 pte_unmap_unlock(vmf->pte, vmf->ptl); 3030 tmp = do_page_mkwrite(vmf); 3031 if (unlikely(!tmp || (tmp & 3032 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3033 put_page(vmf->page); 3034 return tmp; 3035 } 3036 tmp = finish_mkwrite_fault(vmf); 3037 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3038 unlock_page(vmf->page); 3039 put_page(vmf->page); 3040 return tmp; 3041 } 3042 } else { 3043 wp_page_reuse(vmf); 3044 lock_page(vmf->page); 3045 } 3046 ret |= fault_dirty_shared_page(vmf); 3047 put_page(vmf->page); 3048 3049 return ret; 3050 } 3051 3052 /* 3053 * This routine handles present pages, when users try to write 3054 * to a shared page. It is done by copying the page to a new address 3055 * and decrementing the shared-page counter for the old page. 3056 * 3057 * Note that this routine assumes that the protection checks have been 3058 * done by the caller (the low-level page fault routine in most cases). 3059 * Thus we can safely just mark it writable once we've done any necessary 3060 * COW. 3061 * 3062 * We also mark the page dirty at this point even though the page will 3063 * change only once the write actually happens. This avoids a few races, 3064 * and potentially makes it more efficient. 3065 * 3066 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3067 * but allow concurrent faults), with pte both mapped and locked. 3068 * We return with mmap_lock still held, but pte unmapped and unlocked. 3069 */ 3070 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3071 __releases(vmf->ptl) 3072 { 3073 struct vm_area_struct *vma = vmf->vma; 3074 3075 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3076 pte_unmap_unlock(vmf->pte, vmf->ptl); 3077 return handle_userfault(vmf, VM_UFFD_WP); 3078 } 3079 3080 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3081 if (!vmf->page) { 3082 /* 3083 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3084 * VM_PFNMAP VMA. 3085 * 3086 * We should not cow pages in a shared writeable mapping. 3087 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3088 */ 3089 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3090 (VM_WRITE|VM_SHARED)) 3091 return wp_pfn_shared(vmf); 3092 3093 pte_unmap_unlock(vmf->pte, vmf->ptl); 3094 return wp_page_copy(vmf); 3095 } 3096 3097 /* 3098 * Take out anonymous pages first, anonymous shared vmas are 3099 * not dirty accountable. 3100 */ 3101 if (PageAnon(vmf->page)) { 3102 struct page *page = vmf->page; 3103 3104 /* PageKsm() doesn't necessarily raise the page refcount */ 3105 if (PageKsm(page) || page_count(page) != 1) 3106 goto copy; 3107 if (!trylock_page(page)) 3108 goto copy; 3109 if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) { 3110 unlock_page(page); 3111 goto copy; 3112 } 3113 /* 3114 * Ok, we've got the only map reference, and the only 3115 * page count reference, and the page is locked, 3116 * it's dark out, and we're wearing sunglasses. Hit it. 3117 */ 3118 unlock_page(page); 3119 wp_page_reuse(vmf); 3120 return VM_FAULT_WRITE; 3121 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 3122 (VM_WRITE|VM_SHARED))) { 3123 return wp_page_shared(vmf); 3124 } 3125 copy: 3126 /* 3127 * Ok, we need to copy. Oh, well.. 3128 */ 3129 get_page(vmf->page); 3130 3131 pte_unmap_unlock(vmf->pte, vmf->ptl); 3132 return wp_page_copy(vmf); 3133 } 3134 3135 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3136 unsigned long start_addr, unsigned long end_addr, 3137 struct zap_details *details) 3138 { 3139 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3140 } 3141 3142 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3143 struct zap_details *details) 3144 { 3145 struct vm_area_struct *vma; 3146 pgoff_t vba, vea, zba, zea; 3147 3148 vma_interval_tree_foreach(vma, root, 3149 details->first_index, details->last_index) { 3150 3151 vba = vma->vm_pgoff; 3152 vea = vba + vma_pages(vma) - 1; 3153 zba = details->first_index; 3154 if (zba < vba) 3155 zba = vba; 3156 zea = details->last_index; 3157 if (zea > vea) 3158 zea = vea; 3159 3160 unmap_mapping_range_vma(vma, 3161 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3162 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3163 details); 3164 } 3165 } 3166 3167 /** 3168 * unmap_mapping_pages() - Unmap pages from processes. 3169 * @mapping: The address space containing pages to be unmapped. 3170 * @start: Index of first page to be unmapped. 3171 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3172 * @even_cows: Whether to unmap even private COWed pages. 3173 * 3174 * Unmap the pages in this address space from any userspace process which 3175 * has them mmaped. Generally, you want to remove COWed pages as well when 3176 * a file is being truncated, but not when invalidating pages from the page 3177 * cache. 3178 */ 3179 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3180 pgoff_t nr, bool even_cows) 3181 { 3182 struct zap_details details = { }; 3183 3184 details.check_mapping = even_cows ? NULL : mapping; 3185 details.first_index = start; 3186 details.last_index = start + nr - 1; 3187 if (details.last_index < details.first_index) 3188 details.last_index = ULONG_MAX; 3189 3190 i_mmap_lock_write(mapping); 3191 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3192 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3193 i_mmap_unlock_write(mapping); 3194 } 3195 3196 /** 3197 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3198 * address_space corresponding to the specified byte range in the underlying 3199 * file. 3200 * 3201 * @mapping: the address space containing mmaps to be unmapped. 3202 * @holebegin: byte in first page to unmap, relative to the start of 3203 * the underlying file. This will be rounded down to a PAGE_SIZE 3204 * boundary. Note that this is different from truncate_pagecache(), which 3205 * must keep the partial page. In contrast, we must get rid of 3206 * partial pages. 3207 * @holelen: size of prospective hole in bytes. This will be rounded 3208 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3209 * end of the file. 3210 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3211 * but 0 when invalidating pagecache, don't throw away private data. 3212 */ 3213 void unmap_mapping_range(struct address_space *mapping, 3214 loff_t const holebegin, loff_t const holelen, int even_cows) 3215 { 3216 pgoff_t hba = holebegin >> PAGE_SHIFT; 3217 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3218 3219 /* Check for overflow. */ 3220 if (sizeof(holelen) > sizeof(hlen)) { 3221 long long holeend = 3222 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3223 if (holeend & ~(long long)ULONG_MAX) 3224 hlen = ULONG_MAX - hba + 1; 3225 } 3226 3227 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3228 } 3229 EXPORT_SYMBOL(unmap_mapping_range); 3230 3231 /* 3232 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3233 * but allow concurrent faults), and pte mapped but not yet locked. 3234 * We return with pte unmapped and unlocked. 3235 * 3236 * We return with the mmap_lock locked or unlocked in the same cases 3237 * as does filemap_fault(). 3238 */ 3239 vm_fault_t do_swap_page(struct vm_fault *vmf) 3240 { 3241 struct vm_area_struct *vma = vmf->vma; 3242 struct page *page = NULL, *swapcache; 3243 swp_entry_t entry; 3244 pte_t pte; 3245 int locked; 3246 int exclusive = 0; 3247 vm_fault_t ret = 0; 3248 void *shadow = NULL; 3249 3250 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3251 goto out; 3252 3253 entry = pte_to_swp_entry(vmf->orig_pte); 3254 if (unlikely(non_swap_entry(entry))) { 3255 if (is_migration_entry(entry)) { 3256 migration_entry_wait(vma->vm_mm, vmf->pmd, 3257 vmf->address); 3258 } else if (is_device_private_entry(entry)) { 3259 vmf->page = device_private_entry_to_page(entry); 3260 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3261 } else if (is_hwpoison_entry(entry)) { 3262 ret = VM_FAULT_HWPOISON; 3263 } else { 3264 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3265 ret = VM_FAULT_SIGBUS; 3266 } 3267 goto out; 3268 } 3269 3270 3271 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3272 page = lookup_swap_cache(entry, vma, vmf->address); 3273 swapcache = page; 3274 3275 if (!page) { 3276 struct swap_info_struct *si = swp_swap_info(entry); 3277 3278 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3279 __swap_count(entry) == 1) { 3280 /* skip swapcache */ 3281 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3282 vmf->address); 3283 if (page) { 3284 int err; 3285 3286 __SetPageLocked(page); 3287 __SetPageSwapBacked(page); 3288 set_page_private(page, entry.val); 3289 3290 /* Tell memcg to use swap ownership records */ 3291 SetPageSwapCache(page); 3292 err = mem_cgroup_charge(page, vma->vm_mm, 3293 GFP_KERNEL); 3294 ClearPageSwapCache(page); 3295 if (err) { 3296 ret = VM_FAULT_OOM; 3297 goto out_page; 3298 } 3299 3300 shadow = get_shadow_from_swap_cache(entry); 3301 if (shadow) 3302 workingset_refault(page, shadow); 3303 3304 lru_cache_add(page); 3305 swap_readpage(page, true); 3306 } 3307 } else { 3308 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3309 vmf); 3310 swapcache = page; 3311 } 3312 3313 if (!page) { 3314 /* 3315 * Back out if somebody else faulted in this pte 3316 * while we released the pte lock. 3317 */ 3318 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3319 vmf->address, &vmf->ptl); 3320 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3321 ret = VM_FAULT_OOM; 3322 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3323 goto unlock; 3324 } 3325 3326 /* Had to read the page from swap area: Major fault */ 3327 ret = VM_FAULT_MAJOR; 3328 count_vm_event(PGMAJFAULT); 3329 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3330 } else if (PageHWPoison(page)) { 3331 /* 3332 * hwpoisoned dirty swapcache pages are kept for killing 3333 * owner processes (which may be unknown at hwpoison time) 3334 */ 3335 ret = VM_FAULT_HWPOISON; 3336 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3337 goto out_release; 3338 } 3339 3340 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3341 3342 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3343 if (!locked) { 3344 ret |= VM_FAULT_RETRY; 3345 goto out_release; 3346 } 3347 3348 /* 3349 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3350 * release the swapcache from under us. The page pin, and pte_same 3351 * test below, are not enough to exclude that. Even if it is still 3352 * swapcache, we need to check that the page's swap has not changed. 3353 */ 3354 if (unlikely((!PageSwapCache(page) || 3355 page_private(page) != entry.val)) && swapcache) 3356 goto out_page; 3357 3358 page = ksm_might_need_to_copy(page, vma, vmf->address); 3359 if (unlikely(!page)) { 3360 ret = VM_FAULT_OOM; 3361 page = swapcache; 3362 goto out_page; 3363 } 3364 3365 cgroup_throttle_swaprate(page, GFP_KERNEL); 3366 3367 /* 3368 * Back out if somebody else already faulted in this pte. 3369 */ 3370 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3371 &vmf->ptl); 3372 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3373 goto out_nomap; 3374 3375 if (unlikely(!PageUptodate(page))) { 3376 ret = VM_FAULT_SIGBUS; 3377 goto out_nomap; 3378 } 3379 3380 /* 3381 * The page isn't present yet, go ahead with the fault. 3382 * 3383 * Be careful about the sequence of operations here. 3384 * To get its accounting right, reuse_swap_page() must be called 3385 * while the page is counted on swap but not yet in mapcount i.e. 3386 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3387 * must be called after the swap_free(), or it will never succeed. 3388 */ 3389 3390 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3391 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3392 pte = mk_pte(page, vma->vm_page_prot); 3393 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3394 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3395 vmf->flags &= ~FAULT_FLAG_WRITE; 3396 ret |= VM_FAULT_WRITE; 3397 exclusive = RMAP_EXCLUSIVE; 3398 } 3399 flush_icache_page(vma, page); 3400 if (pte_swp_soft_dirty(vmf->orig_pte)) 3401 pte = pte_mksoft_dirty(pte); 3402 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3403 pte = pte_mkuffd_wp(pte); 3404 pte = pte_wrprotect(pte); 3405 } 3406 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3407 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3408 vmf->orig_pte = pte; 3409 3410 /* ksm created a completely new copy */ 3411 if (unlikely(page != swapcache && swapcache)) { 3412 page_add_new_anon_rmap(page, vma, vmf->address, false); 3413 lru_cache_add_inactive_or_unevictable(page, vma); 3414 } else { 3415 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3416 } 3417 3418 swap_free(entry); 3419 if (mem_cgroup_swap_full(page) || 3420 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3421 try_to_free_swap(page); 3422 unlock_page(page); 3423 if (page != swapcache && swapcache) { 3424 /* 3425 * Hold the lock to avoid the swap entry to be reused 3426 * until we take the PT lock for the pte_same() check 3427 * (to avoid false positives from pte_same). For 3428 * further safety release the lock after the swap_free 3429 * so that the swap count won't change under a 3430 * parallel locked swapcache. 3431 */ 3432 unlock_page(swapcache); 3433 put_page(swapcache); 3434 } 3435 3436 if (vmf->flags & FAULT_FLAG_WRITE) { 3437 ret |= do_wp_page(vmf); 3438 if (ret & VM_FAULT_ERROR) 3439 ret &= VM_FAULT_ERROR; 3440 goto out; 3441 } 3442 3443 /* No need to invalidate - it was non-present before */ 3444 update_mmu_cache(vma, vmf->address, vmf->pte); 3445 unlock: 3446 pte_unmap_unlock(vmf->pte, vmf->ptl); 3447 out: 3448 return ret; 3449 out_nomap: 3450 pte_unmap_unlock(vmf->pte, vmf->ptl); 3451 out_page: 3452 unlock_page(page); 3453 out_release: 3454 put_page(page); 3455 if (page != swapcache && swapcache) { 3456 unlock_page(swapcache); 3457 put_page(swapcache); 3458 } 3459 return ret; 3460 } 3461 3462 /* 3463 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3464 * but allow concurrent faults), and pte mapped but not yet locked. 3465 * We return with mmap_lock still held, but pte unmapped and unlocked. 3466 */ 3467 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3468 { 3469 struct vm_area_struct *vma = vmf->vma; 3470 struct page *page; 3471 vm_fault_t ret = 0; 3472 pte_t entry; 3473 3474 /* File mapping without ->vm_ops ? */ 3475 if (vma->vm_flags & VM_SHARED) 3476 return VM_FAULT_SIGBUS; 3477 3478 /* 3479 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3480 * pte_offset_map() on pmds where a huge pmd might be created 3481 * from a different thread. 3482 * 3483 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3484 * parallel threads are excluded by other means. 3485 * 3486 * Here we only have mmap_read_lock(mm). 3487 */ 3488 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3489 return VM_FAULT_OOM; 3490 3491 /* See the comment in pte_alloc_one_map() */ 3492 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3493 return 0; 3494 3495 /* Use the zero-page for reads */ 3496 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3497 !mm_forbids_zeropage(vma->vm_mm)) { 3498 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3499 vma->vm_page_prot)); 3500 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3501 vmf->address, &vmf->ptl); 3502 if (!pte_none(*vmf->pte)) { 3503 update_mmu_tlb(vma, vmf->address, vmf->pte); 3504 goto unlock; 3505 } 3506 ret = check_stable_address_space(vma->vm_mm); 3507 if (ret) 3508 goto unlock; 3509 /* Deliver the page fault to userland, check inside PT lock */ 3510 if (userfaultfd_missing(vma)) { 3511 pte_unmap_unlock(vmf->pte, vmf->ptl); 3512 return handle_userfault(vmf, VM_UFFD_MISSING); 3513 } 3514 goto setpte; 3515 } 3516 3517 /* Allocate our own private page. */ 3518 if (unlikely(anon_vma_prepare(vma))) 3519 goto oom; 3520 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3521 if (!page) 3522 goto oom; 3523 3524 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 3525 goto oom_free_page; 3526 cgroup_throttle_swaprate(page, GFP_KERNEL); 3527 3528 /* 3529 * The memory barrier inside __SetPageUptodate makes sure that 3530 * preceding stores to the page contents become visible before 3531 * the set_pte_at() write. 3532 */ 3533 __SetPageUptodate(page); 3534 3535 entry = mk_pte(page, vma->vm_page_prot); 3536 entry = pte_sw_mkyoung(entry); 3537 if (vma->vm_flags & VM_WRITE) 3538 entry = pte_mkwrite(pte_mkdirty(entry)); 3539 3540 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3541 &vmf->ptl); 3542 if (!pte_none(*vmf->pte)) { 3543 update_mmu_cache(vma, vmf->address, vmf->pte); 3544 goto release; 3545 } 3546 3547 ret = check_stable_address_space(vma->vm_mm); 3548 if (ret) 3549 goto release; 3550 3551 /* Deliver the page fault to userland, check inside PT lock */ 3552 if (userfaultfd_missing(vma)) { 3553 pte_unmap_unlock(vmf->pte, vmf->ptl); 3554 put_page(page); 3555 return handle_userfault(vmf, VM_UFFD_MISSING); 3556 } 3557 3558 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3559 page_add_new_anon_rmap(page, vma, vmf->address, false); 3560 lru_cache_add_inactive_or_unevictable(page, vma); 3561 setpte: 3562 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3563 3564 /* No need to invalidate - it was non-present before */ 3565 update_mmu_cache(vma, vmf->address, vmf->pte); 3566 unlock: 3567 pte_unmap_unlock(vmf->pte, vmf->ptl); 3568 return ret; 3569 release: 3570 put_page(page); 3571 goto unlock; 3572 oom_free_page: 3573 put_page(page); 3574 oom: 3575 return VM_FAULT_OOM; 3576 } 3577 3578 /* 3579 * The mmap_lock must have been held on entry, and may have been 3580 * released depending on flags and vma->vm_ops->fault() return value. 3581 * See filemap_fault() and __lock_page_retry(). 3582 */ 3583 static vm_fault_t __do_fault(struct vm_fault *vmf) 3584 { 3585 struct vm_area_struct *vma = vmf->vma; 3586 vm_fault_t ret; 3587 3588 /* 3589 * Preallocate pte before we take page_lock because this might lead to 3590 * deadlocks for memcg reclaim which waits for pages under writeback: 3591 * lock_page(A) 3592 * SetPageWriteback(A) 3593 * unlock_page(A) 3594 * lock_page(B) 3595 * lock_page(B) 3596 * pte_alloc_one 3597 * shrink_page_list 3598 * wait_on_page_writeback(A) 3599 * SetPageWriteback(B) 3600 * unlock_page(B) 3601 * # flush A, B to clear the writeback 3602 */ 3603 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3604 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3605 if (!vmf->prealloc_pte) 3606 return VM_FAULT_OOM; 3607 smp_wmb(); /* See comment in __pte_alloc() */ 3608 } 3609 3610 ret = vma->vm_ops->fault(vmf); 3611 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3612 VM_FAULT_DONE_COW))) 3613 return ret; 3614 3615 if (unlikely(PageHWPoison(vmf->page))) { 3616 if (ret & VM_FAULT_LOCKED) 3617 unlock_page(vmf->page); 3618 put_page(vmf->page); 3619 vmf->page = NULL; 3620 return VM_FAULT_HWPOISON; 3621 } 3622 3623 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3624 lock_page(vmf->page); 3625 else 3626 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3627 3628 return ret; 3629 } 3630 3631 /* 3632 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3633 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3634 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3635 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3636 */ 3637 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3638 { 3639 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3640 } 3641 3642 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3643 { 3644 struct vm_area_struct *vma = vmf->vma; 3645 3646 if (!pmd_none(*vmf->pmd)) 3647 goto map_pte; 3648 if (vmf->prealloc_pte) { 3649 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3650 if (unlikely(!pmd_none(*vmf->pmd))) { 3651 spin_unlock(vmf->ptl); 3652 goto map_pte; 3653 } 3654 3655 mm_inc_nr_ptes(vma->vm_mm); 3656 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3657 spin_unlock(vmf->ptl); 3658 vmf->prealloc_pte = NULL; 3659 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3660 return VM_FAULT_OOM; 3661 } 3662 map_pte: 3663 /* 3664 * If a huge pmd materialized under us just retry later. Use 3665 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3666 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3667 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3668 * running immediately after a huge pmd fault in a different thread of 3669 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3670 * All we have to ensure is that it is a regular pmd that we can walk 3671 * with pte_offset_map() and we can do that through an atomic read in 3672 * C, which is what pmd_trans_unstable() provides. 3673 */ 3674 if (pmd_devmap_trans_unstable(vmf->pmd)) 3675 return VM_FAULT_NOPAGE; 3676 3677 /* 3678 * At this point we know that our vmf->pmd points to a page of ptes 3679 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3680 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3681 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3682 * be valid and we will re-check to make sure the vmf->pte isn't 3683 * pte_none() under vmf->ptl protection when we return to 3684 * alloc_set_pte(). 3685 */ 3686 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3687 &vmf->ptl); 3688 return 0; 3689 } 3690 3691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3692 static void deposit_prealloc_pte(struct vm_fault *vmf) 3693 { 3694 struct vm_area_struct *vma = vmf->vma; 3695 3696 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3697 /* 3698 * We are going to consume the prealloc table, 3699 * count that as nr_ptes. 3700 */ 3701 mm_inc_nr_ptes(vma->vm_mm); 3702 vmf->prealloc_pte = NULL; 3703 } 3704 3705 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3706 { 3707 struct vm_area_struct *vma = vmf->vma; 3708 bool write = vmf->flags & FAULT_FLAG_WRITE; 3709 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3710 pmd_t entry; 3711 int i; 3712 vm_fault_t ret; 3713 3714 if (!transhuge_vma_suitable(vma, haddr)) 3715 return VM_FAULT_FALLBACK; 3716 3717 ret = VM_FAULT_FALLBACK; 3718 page = compound_head(page); 3719 3720 /* 3721 * Archs like ppc64 need additonal space to store information 3722 * related to pte entry. Use the preallocated table for that. 3723 */ 3724 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3725 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3726 if (!vmf->prealloc_pte) 3727 return VM_FAULT_OOM; 3728 smp_wmb(); /* See comment in __pte_alloc() */ 3729 } 3730 3731 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3732 if (unlikely(!pmd_none(*vmf->pmd))) 3733 goto out; 3734 3735 for (i = 0; i < HPAGE_PMD_NR; i++) 3736 flush_icache_page(vma, page + i); 3737 3738 entry = mk_huge_pmd(page, vma->vm_page_prot); 3739 if (write) 3740 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3741 3742 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3743 page_add_file_rmap(page, true); 3744 /* 3745 * deposit and withdraw with pmd lock held 3746 */ 3747 if (arch_needs_pgtable_deposit()) 3748 deposit_prealloc_pte(vmf); 3749 3750 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3751 3752 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3753 3754 /* fault is handled */ 3755 ret = 0; 3756 count_vm_event(THP_FILE_MAPPED); 3757 out: 3758 spin_unlock(vmf->ptl); 3759 return ret; 3760 } 3761 #else 3762 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3763 { 3764 BUILD_BUG(); 3765 return 0; 3766 } 3767 #endif 3768 3769 /** 3770 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3771 * mapping. If needed, the function allocates page table or use pre-allocated. 3772 * 3773 * @vmf: fault environment 3774 * @page: page to map 3775 * 3776 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3777 * return. 3778 * 3779 * Target users are page handler itself and implementations of 3780 * vm_ops->map_pages. 3781 * 3782 * Return: %0 on success, %VM_FAULT_ code in case of error. 3783 */ 3784 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) 3785 { 3786 struct vm_area_struct *vma = vmf->vma; 3787 bool write = vmf->flags & FAULT_FLAG_WRITE; 3788 pte_t entry; 3789 vm_fault_t ret; 3790 3791 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { 3792 ret = do_set_pmd(vmf, page); 3793 if (ret != VM_FAULT_FALLBACK) 3794 return ret; 3795 } 3796 3797 if (!vmf->pte) { 3798 ret = pte_alloc_one_map(vmf); 3799 if (ret) 3800 return ret; 3801 } 3802 3803 /* Re-check under ptl */ 3804 if (unlikely(!pte_none(*vmf->pte))) { 3805 update_mmu_tlb(vma, vmf->address, vmf->pte); 3806 return VM_FAULT_NOPAGE; 3807 } 3808 3809 flush_icache_page(vma, page); 3810 entry = mk_pte(page, vma->vm_page_prot); 3811 entry = pte_sw_mkyoung(entry); 3812 if (write) 3813 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3814 /* copy-on-write page */ 3815 if (write && !(vma->vm_flags & VM_SHARED)) { 3816 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3817 page_add_new_anon_rmap(page, vma, vmf->address, false); 3818 lru_cache_add_inactive_or_unevictable(page, vma); 3819 } else { 3820 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3821 page_add_file_rmap(page, false); 3822 } 3823 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3824 3825 /* no need to invalidate: a not-present page won't be cached */ 3826 update_mmu_cache(vma, vmf->address, vmf->pte); 3827 3828 return 0; 3829 } 3830 3831 3832 /** 3833 * finish_fault - finish page fault once we have prepared the page to fault 3834 * 3835 * @vmf: structure describing the fault 3836 * 3837 * This function handles all that is needed to finish a page fault once the 3838 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3839 * given page, adds reverse page mapping, handles memcg charges and LRU 3840 * addition. 3841 * 3842 * The function expects the page to be locked and on success it consumes a 3843 * reference of a page being mapped (for the PTE which maps it). 3844 * 3845 * Return: %0 on success, %VM_FAULT_ code in case of error. 3846 */ 3847 vm_fault_t finish_fault(struct vm_fault *vmf) 3848 { 3849 struct page *page; 3850 vm_fault_t ret = 0; 3851 3852 /* Did we COW the page? */ 3853 if ((vmf->flags & FAULT_FLAG_WRITE) && 3854 !(vmf->vma->vm_flags & VM_SHARED)) 3855 page = vmf->cow_page; 3856 else 3857 page = vmf->page; 3858 3859 /* 3860 * check even for read faults because we might have lost our CoWed 3861 * page 3862 */ 3863 if (!(vmf->vma->vm_flags & VM_SHARED)) 3864 ret = check_stable_address_space(vmf->vma->vm_mm); 3865 if (!ret) 3866 ret = alloc_set_pte(vmf, page); 3867 if (vmf->pte) 3868 pte_unmap_unlock(vmf->pte, vmf->ptl); 3869 return ret; 3870 } 3871 3872 static unsigned long fault_around_bytes __read_mostly = 3873 rounddown_pow_of_two(65536); 3874 3875 #ifdef CONFIG_DEBUG_FS 3876 static int fault_around_bytes_get(void *data, u64 *val) 3877 { 3878 *val = fault_around_bytes; 3879 return 0; 3880 } 3881 3882 /* 3883 * fault_around_bytes must be rounded down to the nearest page order as it's 3884 * what do_fault_around() expects to see. 3885 */ 3886 static int fault_around_bytes_set(void *data, u64 val) 3887 { 3888 if (val / PAGE_SIZE > PTRS_PER_PTE) 3889 return -EINVAL; 3890 if (val > PAGE_SIZE) 3891 fault_around_bytes = rounddown_pow_of_two(val); 3892 else 3893 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3894 return 0; 3895 } 3896 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3897 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3898 3899 static int __init fault_around_debugfs(void) 3900 { 3901 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3902 &fault_around_bytes_fops); 3903 return 0; 3904 } 3905 late_initcall(fault_around_debugfs); 3906 #endif 3907 3908 /* 3909 * do_fault_around() tries to map few pages around the fault address. The hope 3910 * is that the pages will be needed soon and this will lower the number of 3911 * faults to handle. 3912 * 3913 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3914 * not ready to be mapped: not up-to-date, locked, etc. 3915 * 3916 * This function is called with the page table lock taken. In the split ptlock 3917 * case the page table lock only protects only those entries which belong to 3918 * the page table corresponding to the fault address. 3919 * 3920 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3921 * only once. 3922 * 3923 * fault_around_bytes defines how many bytes we'll try to map. 3924 * do_fault_around() expects it to be set to a power of two less than or equal 3925 * to PTRS_PER_PTE. 3926 * 3927 * The virtual address of the area that we map is naturally aligned to 3928 * fault_around_bytes rounded down to the machine page size 3929 * (and therefore to page order). This way it's easier to guarantee 3930 * that we don't cross page table boundaries. 3931 */ 3932 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3933 { 3934 unsigned long address = vmf->address, nr_pages, mask; 3935 pgoff_t start_pgoff = vmf->pgoff; 3936 pgoff_t end_pgoff; 3937 int off; 3938 vm_fault_t ret = 0; 3939 3940 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3941 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3942 3943 vmf->address = max(address & mask, vmf->vma->vm_start); 3944 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3945 start_pgoff -= off; 3946 3947 /* 3948 * end_pgoff is either the end of the page table, the end of 3949 * the vma or nr_pages from start_pgoff, depending what is nearest. 3950 */ 3951 end_pgoff = start_pgoff - 3952 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3953 PTRS_PER_PTE - 1; 3954 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3955 start_pgoff + nr_pages - 1); 3956 3957 if (pmd_none(*vmf->pmd)) { 3958 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3959 if (!vmf->prealloc_pte) 3960 goto out; 3961 smp_wmb(); /* See comment in __pte_alloc() */ 3962 } 3963 3964 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3965 3966 /* Huge page is mapped? Page fault is solved */ 3967 if (pmd_trans_huge(*vmf->pmd)) { 3968 ret = VM_FAULT_NOPAGE; 3969 goto out; 3970 } 3971 3972 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3973 if (!vmf->pte) 3974 goto out; 3975 3976 /* check if the page fault is solved */ 3977 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3978 if (!pte_none(*vmf->pte)) 3979 ret = VM_FAULT_NOPAGE; 3980 pte_unmap_unlock(vmf->pte, vmf->ptl); 3981 out: 3982 vmf->address = address; 3983 vmf->pte = NULL; 3984 return ret; 3985 } 3986 3987 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3988 { 3989 struct vm_area_struct *vma = vmf->vma; 3990 vm_fault_t ret = 0; 3991 3992 /* 3993 * Let's call ->map_pages() first and use ->fault() as fallback 3994 * if page by the offset is not ready to be mapped (cold cache or 3995 * something). 3996 */ 3997 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3998 ret = do_fault_around(vmf); 3999 if (ret) 4000 return ret; 4001 } 4002 4003 ret = __do_fault(vmf); 4004 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4005 return ret; 4006 4007 ret |= finish_fault(vmf); 4008 unlock_page(vmf->page); 4009 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4010 put_page(vmf->page); 4011 return ret; 4012 } 4013 4014 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4015 { 4016 struct vm_area_struct *vma = vmf->vma; 4017 vm_fault_t ret; 4018 4019 if (unlikely(anon_vma_prepare(vma))) 4020 return VM_FAULT_OOM; 4021 4022 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4023 if (!vmf->cow_page) 4024 return VM_FAULT_OOM; 4025 4026 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { 4027 put_page(vmf->cow_page); 4028 return VM_FAULT_OOM; 4029 } 4030 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4031 4032 ret = __do_fault(vmf); 4033 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4034 goto uncharge_out; 4035 if (ret & VM_FAULT_DONE_COW) 4036 return ret; 4037 4038 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4039 __SetPageUptodate(vmf->cow_page); 4040 4041 ret |= finish_fault(vmf); 4042 unlock_page(vmf->page); 4043 put_page(vmf->page); 4044 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4045 goto uncharge_out; 4046 return ret; 4047 uncharge_out: 4048 put_page(vmf->cow_page); 4049 return ret; 4050 } 4051 4052 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4053 { 4054 struct vm_area_struct *vma = vmf->vma; 4055 vm_fault_t ret, tmp; 4056 4057 ret = __do_fault(vmf); 4058 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4059 return ret; 4060 4061 /* 4062 * Check if the backing address space wants to know that the page is 4063 * about to become writable 4064 */ 4065 if (vma->vm_ops->page_mkwrite) { 4066 unlock_page(vmf->page); 4067 tmp = do_page_mkwrite(vmf); 4068 if (unlikely(!tmp || 4069 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4070 put_page(vmf->page); 4071 return tmp; 4072 } 4073 } 4074 4075 ret |= finish_fault(vmf); 4076 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4077 VM_FAULT_RETRY))) { 4078 unlock_page(vmf->page); 4079 put_page(vmf->page); 4080 return ret; 4081 } 4082 4083 ret |= fault_dirty_shared_page(vmf); 4084 return ret; 4085 } 4086 4087 /* 4088 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4089 * but allow concurrent faults). 4090 * The mmap_lock may have been released depending on flags and our 4091 * return value. See filemap_fault() and __lock_page_or_retry(). 4092 * If mmap_lock is released, vma may become invalid (for example 4093 * by other thread calling munmap()). 4094 */ 4095 static vm_fault_t do_fault(struct vm_fault *vmf) 4096 { 4097 struct vm_area_struct *vma = vmf->vma; 4098 struct mm_struct *vm_mm = vma->vm_mm; 4099 vm_fault_t ret; 4100 4101 /* 4102 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4103 */ 4104 if (!vma->vm_ops->fault) { 4105 /* 4106 * If we find a migration pmd entry or a none pmd entry, which 4107 * should never happen, return SIGBUS 4108 */ 4109 if (unlikely(!pmd_present(*vmf->pmd))) 4110 ret = VM_FAULT_SIGBUS; 4111 else { 4112 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4113 vmf->pmd, 4114 vmf->address, 4115 &vmf->ptl); 4116 /* 4117 * Make sure this is not a temporary clearing of pte 4118 * by holding ptl and checking again. A R/M/W update 4119 * of pte involves: take ptl, clearing the pte so that 4120 * we don't have concurrent modification by hardware 4121 * followed by an update. 4122 */ 4123 if (unlikely(pte_none(*vmf->pte))) 4124 ret = VM_FAULT_SIGBUS; 4125 else 4126 ret = VM_FAULT_NOPAGE; 4127 4128 pte_unmap_unlock(vmf->pte, vmf->ptl); 4129 } 4130 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4131 ret = do_read_fault(vmf); 4132 else if (!(vma->vm_flags & VM_SHARED)) 4133 ret = do_cow_fault(vmf); 4134 else 4135 ret = do_shared_fault(vmf); 4136 4137 /* preallocated pagetable is unused: free it */ 4138 if (vmf->prealloc_pte) { 4139 pte_free(vm_mm, vmf->prealloc_pte); 4140 vmf->prealloc_pte = NULL; 4141 } 4142 return ret; 4143 } 4144 4145 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4146 unsigned long addr, int page_nid, 4147 int *flags) 4148 { 4149 get_page(page); 4150 4151 count_vm_numa_event(NUMA_HINT_FAULTS); 4152 if (page_nid == numa_node_id()) { 4153 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4154 *flags |= TNF_FAULT_LOCAL; 4155 } 4156 4157 return mpol_misplaced(page, vma, addr); 4158 } 4159 4160 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4161 { 4162 struct vm_area_struct *vma = vmf->vma; 4163 struct page *page = NULL; 4164 int page_nid = NUMA_NO_NODE; 4165 int last_cpupid; 4166 int target_nid; 4167 bool migrated = false; 4168 pte_t pte, old_pte; 4169 bool was_writable = pte_savedwrite(vmf->orig_pte); 4170 int flags = 0; 4171 4172 /* 4173 * The "pte" at this point cannot be used safely without 4174 * validation through pte_unmap_same(). It's of NUMA type but 4175 * the pfn may be screwed if the read is non atomic. 4176 */ 4177 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4178 spin_lock(vmf->ptl); 4179 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4180 pte_unmap_unlock(vmf->pte, vmf->ptl); 4181 goto out; 4182 } 4183 4184 /* 4185 * Make it present again, Depending on how arch implementes non 4186 * accessible ptes, some can allow access by kernel mode. 4187 */ 4188 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4189 pte = pte_modify(old_pte, vma->vm_page_prot); 4190 pte = pte_mkyoung(pte); 4191 if (was_writable) 4192 pte = pte_mkwrite(pte); 4193 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4194 update_mmu_cache(vma, vmf->address, vmf->pte); 4195 4196 page = vm_normal_page(vma, vmf->address, pte); 4197 if (!page) { 4198 pte_unmap_unlock(vmf->pte, vmf->ptl); 4199 return 0; 4200 } 4201 4202 /* TODO: handle PTE-mapped THP */ 4203 if (PageCompound(page)) { 4204 pte_unmap_unlock(vmf->pte, vmf->ptl); 4205 return 0; 4206 } 4207 4208 /* 4209 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4210 * much anyway since they can be in shared cache state. This misses 4211 * the case where a mapping is writable but the process never writes 4212 * to it but pte_write gets cleared during protection updates and 4213 * pte_dirty has unpredictable behaviour between PTE scan updates, 4214 * background writeback, dirty balancing and application behaviour. 4215 */ 4216 if (!pte_write(pte)) 4217 flags |= TNF_NO_GROUP; 4218 4219 /* 4220 * Flag if the page is shared between multiple address spaces. This 4221 * is later used when determining whether to group tasks together 4222 */ 4223 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4224 flags |= TNF_SHARED; 4225 4226 last_cpupid = page_cpupid_last(page); 4227 page_nid = page_to_nid(page); 4228 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4229 &flags); 4230 pte_unmap_unlock(vmf->pte, vmf->ptl); 4231 if (target_nid == NUMA_NO_NODE) { 4232 put_page(page); 4233 goto out; 4234 } 4235 4236 /* Migrate to the requested node */ 4237 migrated = migrate_misplaced_page(page, vma, target_nid); 4238 if (migrated) { 4239 page_nid = target_nid; 4240 flags |= TNF_MIGRATED; 4241 } else 4242 flags |= TNF_MIGRATE_FAIL; 4243 4244 out: 4245 if (page_nid != NUMA_NO_NODE) 4246 task_numa_fault(last_cpupid, page_nid, 1, flags); 4247 return 0; 4248 } 4249 4250 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4251 { 4252 if (vma_is_anonymous(vmf->vma)) 4253 return do_huge_pmd_anonymous_page(vmf); 4254 if (vmf->vma->vm_ops->huge_fault) 4255 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4256 return VM_FAULT_FALLBACK; 4257 } 4258 4259 /* `inline' is required to avoid gcc 4.1.2 build error */ 4260 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4261 { 4262 if (vma_is_anonymous(vmf->vma)) { 4263 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4264 return handle_userfault(vmf, VM_UFFD_WP); 4265 return do_huge_pmd_wp_page(vmf, orig_pmd); 4266 } 4267 if (vmf->vma->vm_ops->huge_fault) { 4268 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4269 4270 if (!(ret & VM_FAULT_FALLBACK)) 4271 return ret; 4272 } 4273 4274 /* COW or write-notify handled on pte level: split pmd. */ 4275 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4276 4277 return VM_FAULT_FALLBACK; 4278 } 4279 4280 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4281 { 4282 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4283 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4284 /* No support for anonymous transparent PUD pages yet */ 4285 if (vma_is_anonymous(vmf->vma)) 4286 goto split; 4287 if (vmf->vma->vm_ops->huge_fault) { 4288 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4289 4290 if (!(ret & VM_FAULT_FALLBACK)) 4291 return ret; 4292 } 4293 split: 4294 /* COW or write-notify not handled on PUD level: split pud.*/ 4295 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4296 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4297 return VM_FAULT_FALLBACK; 4298 } 4299 4300 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4301 { 4302 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4303 /* No support for anonymous transparent PUD pages yet */ 4304 if (vma_is_anonymous(vmf->vma)) 4305 return VM_FAULT_FALLBACK; 4306 if (vmf->vma->vm_ops->huge_fault) 4307 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4308 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4309 return VM_FAULT_FALLBACK; 4310 } 4311 4312 /* 4313 * These routines also need to handle stuff like marking pages dirty 4314 * and/or accessed for architectures that don't do it in hardware (most 4315 * RISC architectures). The early dirtying is also good on the i386. 4316 * 4317 * There is also a hook called "update_mmu_cache()" that architectures 4318 * with external mmu caches can use to update those (ie the Sparc or 4319 * PowerPC hashed page tables that act as extended TLBs). 4320 * 4321 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4322 * concurrent faults). 4323 * 4324 * The mmap_lock may have been released depending on flags and our return value. 4325 * See filemap_fault() and __lock_page_or_retry(). 4326 */ 4327 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4328 { 4329 pte_t entry; 4330 4331 if (unlikely(pmd_none(*vmf->pmd))) { 4332 /* 4333 * Leave __pte_alloc() until later: because vm_ops->fault may 4334 * want to allocate huge page, and if we expose page table 4335 * for an instant, it will be difficult to retract from 4336 * concurrent faults and from rmap lookups. 4337 */ 4338 vmf->pte = NULL; 4339 } else { 4340 /* See comment in pte_alloc_one_map() */ 4341 if (pmd_devmap_trans_unstable(vmf->pmd)) 4342 return 0; 4343 /* 4344 * A regular pmd is established and it can't morph into a huge 4345 * pmd from under us anymore at this point because we hold the 4346 * mmap_lock read mode and khugepaged takes it in write mode. 4347 * So now it's safe to run pte_offset_map(). 4348 */ 4349 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4350 vmf->orig_pte = *vmf->pte; 4351 4352 /* 4353 * some architectures can have larger ptes than wordsize, 4354 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4355 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4356 * accesses. The code below just needs a consistent view 4357 * for the ifs and we later double check anyway with the 4358 * ptl lock held. So here a barrier will do. 4359 */ 4360 barrier(); 4361 if (pte_none(vmf->orig_pte)) { 4362 pte_unmap(vmf->pte); 4363 vmf->pte = NULL; 4364 } 4365 } 4366 4367 if (!vmf->pte) { 4368 if (vma_is_anonymous(vmf->vma)) 4369 return do_anonymous_page(vmf); 4370 else 4371 return do_fault(vmf); 4372 } 4373 4374 if (!pte_present(vmf->orig_pte)) 4375 return do_swap_page(vmf); 4376 4377 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4378 return do_numa_page(vmf); 4379 4380 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4381 spin_lock(vmf->ptl); 4382 entry = vmf->orig_pte; 4383 if (unlikely(!pte_same(*vmf->pte, entry))) { 4384 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4385 goto unlock; 4386 } 4387 if (vmf->flags & FAULT_FLAG_WRITE) { 4388 if (!pte_write(entry)) 4389 return do_wp_page(vmf); 4390 entry = pte_mkdirty(entry); 4391 } 4392 entry = pte_mkyoung(entry); 4393 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4394 vmf->flags & FAULT_FLAG_WRITE)) { 4395 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4396 } else { 4397 /* Skip spurious TLB flush for retried page fault */ 4398 if (vmf->flags & FAULT_FLAG_TRIED) 4399 goto unlock; 4400 /* 4401 * This is needed only for protection faults but the arch code 4402 * is not yet telling us if this is a protection fault or not. 4403 * This still avoids useless tlb flushes for .text page faults 4404 * with threads. 4405 */ 4406 if (vmf->flags & FAULT_FLAG_WRITE) 4407 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4408 } 4409 unlock: 4410 pte_unmap_unlock(vmf->pte, vmf->ptl); 4411 return 0; 4412 } 4413 4414 /* 4415 * By the time we get here, we already hold the mm semaphore 4416 * 4417 * The mmap_lock may have been released depending on flags and our 4418 * return value. See filemap_fault() and __lock_page_or_retry(). 4419 */ 4420 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4421 unsigned long address, unsigned int flags) 4422 { 4423 struct vm_fault vmf = { 4424 .vma = vma, 4425 .address = address & PAGE_MASK, 4426 .flags = flags, 4427 .pgoff = linear_page_index(vma, address), 4428 .gfp_mask = __get_fault_gfp_mask(vma), 4429 }; 4430 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4431 struct mm_struct *mm = vma->vm_mm; 4432 pgd_t *pgd; 4433 p4d_t *p4d; 4434 vm_fault_t ret; 4435 4436 pgd = pgd_offset(mm, address); 4437 p4d = p4d_alloc(mm, pgd, address); 4438 if (!p4d) 4439 return VM_FAULT_OOM; 4440 4441 vmf.pud = pud_alloc(mm, p4d, address); 4442 if (!vmf.pud) 4443 return VM_FAULT_OOM; 4444 retry_pud: 4445 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4446 ret = create_huge_pud(&vmf); 4447 if (!(ret & VM_FAULT_FALLBACK)) 4448 return ret; 4449 } else { 4450 pud_t orig_pud = *vmf.pud; 4451 4452 barrier(); 4453 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4454 4455 /* NUMA case for anonymous PUDs would go here */ 4456 4457 if (dirty && !pud_write(orig_pud)) { 4458 ret = wp_huge_pud(&vmf, orig_pud); 4459 if (!(ret & VM_FAULT_FALLBACK)) 4460 return ret; 4461 } else { 4462 huge_pud_set_accessed(&vmf, orig_pud); 4463 return 0; 4464 } 4465 } 4466 } 4467 4468 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4469 if (!vmf.pmd) 4470 return VM_FAULT_OOM; 4471 4472 /* Huge pud page fault raced with pmd_alloc? */ 4473 if (pud_trans_unstable(vmf.pud)) 4474 goto retry_pud; 4475 4476 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4477 ret = create_huge_pmd(&vmf); 4478 if (!(ret & VM_FAULT_FALLBACK)) 4479 return ret; 4480 } else { 4481 pmd_t orig_pmd = *vmf.pmd; 4482 4483 barrier(); 4484 if (unlikely(is_swap_pmd(orig_pmd))) { 4485 VM_BUG_ON(thp_migration_supported() && 4486 !is_pmd_migration_entry(orig_pmd)); 4487 if (is_pmd_migration_entry(orig_pmd)) 4488 pmd_migration_entry_wait(mm, vmf.pmd); 4489 return 0; 4490 } 4491 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4492 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4493 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4494 4495 if (dirty && !pmd_write(orig_pmd)) { 4496 ret = wp_huge_pmd(&vmf, orig_pmd); 4497 if (!(ret & VM_FAULT_FALLBACK)) 4498 return ret; 4499 } else { 4500 huge_pmd_set_accessed(&vmf, orig_pmd); 4501 return 0; 4502 } 4503 } 4504 } 4505 4506 return handle_pte_fault(&vmf); 4507 } 4508 4509 /** 4510 * mm_account_fault - Do page fault accountings 4511 * 4512 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4513 * of perf event counters, but we'll still do the per-task accounting to 4514 * the task who triggered this page fault. 4515 * @address: the faulted address. 4516 * @flags: the fault flags. 4517 * @ret: the fault retcode. 4518 * 4519 * This will take care of most of the page fault accountings. Meanwhile, it 4520 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4521 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4522 * still be in per-arch page fault handlers at the entry of page fault. 4523 */ 4524 static inline void mm_account_fault(struct pt_regs *regs, 4525 unsigned long address, unsigned int flags, 4526 vm_fault_t ret) 4527 { 4528 bool major; 4529 4530 /* 4531 * We don't do accounting for some specific faults: 4532 * 4533 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4534 * includes arch_vma_access_permitted() failing before reaching here. 4535 * So this is not a "this many hardware page faults" counter. We 4536 * should use the hw profiling for that. 4537 * 4538 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4539 * once they're completed. 4540 */ 4541 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4542 return; 4543 4544 /* 4545 * We define the fault as a major fault when the final successful fault 4546 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4547 * handle it immediately previously). 4548 */ 4549 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4550 4551 if (major) 4552 current->maj_flt++; 4553 else 4554 current->min_flt++; 4555 4556 /* 4557 * If the fault is done for GUP, regs will be NULL. We only do the 4558 * accounting for the per thread fault counters who triggered the 4559 * fault, and we skip the perf event updates. 4560 */ 4561 if (!regs) 4562 return; 4563 4564 if (major) 4565 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4566 else 4567 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4568 } 4569 4570 /* 4571 * By the time we get here, we already hold the mm semaphore 4572 * 4573 * The mmap_lock may have been released depending on flags and our 4574 * return value. See filemap_fault() and __lock_page_or_retry(). 4575 */ 4576 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4577 unsigned int flags, struct pt_regs *regs) 4578 { 4579 vm_fault_t ret; 4580 4581 __set_current_state(TASK_RUNNING); 4582 4583 count_vm_event(PGFAULT); 4584 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4585 4586 /* do counter updates before entering really critical section. */ 4587 check_sync_rss_stat(current); 4588 4589 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4590 flags & FAULT_FLAG_INSTRUCTION, 4591 flags & FAULT_FLAG_REMOTE)) 4592 return VM_FAULT_SIGSEGV; 4593 4594 /* 4595 * Enable the memcg OOM handling for faults triggered in user 4596 * space. Kernel faults are handled more gracefully. 4597 */ 4598 if (flags & FAULT_FLAG_USER) 4599 mem_cgroup_enter_user_fault(); 4600 4601 if (unlikely(is_vm_hugetlb_page(vma))) 4602 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4603 else 4604 ret = __handle_mm_fault(vma, address, flags); 4605 4606 if (flags & FAULT_FLAG_USER) { 4607 mem_cgroup_exit_user_fault(); 4608 /* 4609 * The task may have entered a memcg OOM situation but 4610 * if the allocation error was handled gracefully (no 4611 * VM_FAULT_OOM), there is no need to kill anything. 4612 * Just clean up the OOM state peacefully. 4613 */ 4614 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4615 mem_cgroup_oom_synchronize(false); 4616 } 4617 4618 mm_account_fault(regs, address, flags, ret); 4619 4620 return ret; 4621 } 4622 EXPORT_SYMBOL_GPL(handle_mm_fault); 4623 4624 #ifndef __PAGETABLE_P4D_FOLDED 4625 /* 4626 * Allocate p4d page table. 4627 * We've already handled the fast-path in-line. 4628 */ 4629 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4630 { 4631 p4d_t *new = p4d_alloc_one(mm, address); 4632 if (!new) 4633 return -ENOMEM; 4634 4635 smp_wmb(); /* See comment in __pte_alloc */ 4636 4637 spin_lock(&mm->page_table_lock); 4638 if (pgd_present(*pgd)) /* Another has populated it */ 4639 p4d_free(mm, new); 4640 else 4641 pgd_populate(mm, pgd, new); 4642 spin_unlock(&mm->page_table_lock); 4643 return 0; 4644 } 4645 #endif /* __PAGETABLE_P4D_FOLDED */ 4646 4647 #ifndef __PAGETABLE_PUD_FOLDED 4648 /* 4649 * Allocate page upper directory. 4650 * We've already handled the fast-path in-line. 4651 */ 4652 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4653 { 4654 pud_t *new = pud_alloc_one(mm, address); 4655 if (!new) 4656 return -ENOMEM; 4657 4658 smp_wmb(); /* See comment in __pte_alloc */ 4659 4660 spin_lock(&mm->page_table_lock); 4661 if (!p4d_present(*p4d)) { 4662 mm_inc_nr_puds(mm); 4663 p4d_populate(mm, p4d, new); 4664 } else /* Another has populated it */ 4665 pud_free(mm, new); 4666 spin_unlock(&mm->page_table_lock); 4667 return 0; 4668 } 4669 #endif /* __PAGETABLE_PUD_FOLDED */ 4670 4671 #ifndef __PAGETABLE_PMD_FOLDED 4672 /* 4673 * Allocate page middle directory. 4674 * We've already handled the fast-path in-line. 4675 */ 4676 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4677 { 4678 spinlock_t *ptl; 4679 pmd_t *new = pmd_alloc_one(mm, address); 4680 if (!new) 4681 return -ENOMEM; 4682 4683 smp_wmb(); /* See comment in __pte_alloc */ 4684 4685 ptl = pud_lock(mm, pud); 4686 if (!pud_present(*pud)) { 4687 mm_inc_nr_pmds(mm); 4688 pud_populate(mm, pud, new); 4689 } else /* Another has populated it */ 4690 pmd_free(mm, new); 4691 spin_unlock(ptl); 4692 return 0; 4693 } 4694 #endif /* __PAGETABLE_PMD_FOLDED */ 4695 4696 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4697 struct mmu_notifier_range *range, 4698 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4699 { 4700 pgd_t *pgd; 4701 p4d_t *p4d; 4702 pud_t *pud; 4703 pmd_t *pmd; 4704 pte_t *ptep; 4705 4706 pgd = pgd_offset(mm, address); 4707 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4708 goto out; 4709 4710 p4d = p4d_offset(pgd, address); 4711 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4712 goto out; 4713 4714 pud = pud_offset(p4d, address); 4715 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4716 goto out; 4717 4718 pmd = pmd_offset(pud, address); 4719 VM_BUG_ON(pmd_trans_huge(*pmd)); 4720 4721 if (pmd_huge(*pmd)) { 4722 if (!pmdpp) 4723 goto out; 4724 4725 if (range) { 4726 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4727 NULL, mm, address & PMD_MASK, 4728 (address & PMD_MASK) + PMD_SIZE); 4729 mmu_notifier_invalidate_range_start(range); 4730 } 4731 *ptlp = pmd_lock(mm, pmd); 4732 if (pmd_huge(*pmd)) { 4733 *pmdpp = pmd; 4734 return 0; 4735 } 4736 spin_unlock(*ptlp); 4737 if (range) 4738 mmu_notifier_invalidate_range_end(range); 4739 } 4740 4741 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4742 goto out; 4743 4744 if (range) { 4745 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4746 address & PAGE_MASK, 4747 (address & PAGE_MASK) + PAGE_SIZE); 4748 mmu_notifier_invalidate_range_start(range); 4749 } 4750 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4751 if (!pte_present(*ptep)) 4752 goto unlock; 4753 *ptepp = ptep; 4754 return 0; 4755 unlock: 4756 pte_unmap_unlock(ptep, *ptlp); 4757 if (range) 4758 mmu_notifier_invalidate_range_end(range); 4759 out: 4760 return -EINVAL; 4761 } 4762 4763 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4764 pte_t **ptepp, spinlock_t **ptlp) 4765 { 4766 int res; 4767 4768 /* (void) is needed to make gcc happy */ 4769 (void) __cond_lock(*ptlp, 4770 !(res = __follow_pte_pmd(mm, address, NULL, 4771 ptepp, NULL, ptlp))); 4772 return res; 4773 } 4774 4775 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4776 struct mmu_notifier_range *range, 4777 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4778 { 4779 int res; 4780 4781 /* (void) is needed to make gcc happy */ 4782 (void) __cond_lock(*ptlp, 4783 !(res = __follow_pte_pmd(mm, address, range, 4784 ptepp, pmdpp, ptlp))); 4785 return res; 4786 } 4787 EXPORT_SYMBOL(follow_pte_pmd); 4788 4789 /** 4790 * follow_pfn - look up PFN at a user virtual address 4791 * @vma: memory mapping 4792 * @address: user virtual address 4793 * @pfn: location to store found PFN 4794 * 4795 * Only IO mappings and raw PFN mappings are allowed. 4796 * 4797 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4798 */ 4799 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4800 unsigned long *pfn) 4801 { 4802 int ret = -EINVAL; 4803 spinlock_t *ptl; 4804 pte_t *ptep; 4805 4806 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4807 return ret; 4808 4809 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4810 if (ret) 4811 return ret; 4812 *pfn = pte_pfn(*ptep); 4813 pte_unmap_unlock(ptep, ptl); 4814 return 0; 4815 } 4816 EXPORT_SYMBOL(follow_pfn); 4817 4818 #ifdef CONFIG_HAVE_IOREMAP_PROT 4819 int follow_phys(struct vm_area_struct *vma, 4820 unsigned long address, unsigned int flags, 4821 unsigned long *prot, resource_size_t *phys) 4822 { 4823 int ret = -EINVAL; 4824 pte_t *ptep, pte; 4825 spinlock_t *ptl; 4826 4827 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4828 goto out; 4829 4830 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4831 goto out; 4832 pte = *ptep; 4833 4834 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4835 goto unlock; 4836 4837 *prot = pgprot_val(pte_pgprot(pte)); 4838 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4839 4840 ret = 0; 4841 unlock: 4842 pte_unmap_unlock(ptep, ptl); 4843 out: 4844 return ret; 4845 } 4846 4847 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4848 void *buf, int len, int write) 4849 { 4850 resource_size_t phys_addr; 4851 unsigned long prot = 0; 4852 void __iomem *maddr; 4853 int offset = addr & (PAGE_SIZE-1); 4854 4855 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4856 return -EINVAL; 4857 4858 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4859 if (!maddr) 4860 return -ENOMEM; 4861 4862 if (write) 4863 memcpy_toio(maddr + offset, buf, len); 4864 else 4865 memcpy_fromio(buf, maddr + offset, len); 4866 iounmap(maddr); 4867 4868 return len; 4869 } 4870 EXPORT_SYMBOL_GPL(generic_access_phys); 4871 #endif 4872 4873 /* 4874 * Access another process' address space as given in mm. If non-NULL, use the 4875 * given task for page fault accounting. 4876 */ 4877 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4878 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4879 { 4880 struct vm_area_struct *vma; 4881 void *old_buf = buf; 4882 int write = gup_flags & FOLL_WRITE; 4883 4884 if (mmap_read_lock_killable(mm)) 4885 return 0; 4886 4887 /* ignore errors, just check how much was successfully transferred */ 4888 while (len) { 4889 int bytes, ret, offset; 4890 void *maddr; 4891 struct page *page = NULL; 4892 4893 ret = get_user_pages_remote(mm, addr, 1, 4894 gup_flags, &page, &vma, NULL); 4895 if (ret <= 0) { 4896 #ifndef CONFIG_HAVE_IOREMAP_PROT 4897 break; 4898 #else 4899 /* 4900 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4901 * we can access using slightly different code. 4902 */ 4903 vma = find_vma(mm, addr); 4904 if (!vma || vma->vm_start > addr) 4905 break; 4906 if (vma->vm_ops && vma->vm_ops->access) 4907 ret = vma->vm_ops->access(vma, addr, buf, 4908 len, write); 4909 if (ret <= 0) 4910 break; 4911 bytes = ret; 4912 #endif 4913 } else { 4914 bytes = len; 4915 offset = addr & (PAGE_SIZE-1); 4916 if (bytes > PAGE_SIZE-offset) 4917 bytes = PAGE_SIZE-offset; 4918 4919 maddr = kmap(page); 4920 if (write) { 4921 copy_to_user_page(vma, page, addr, 4922 maddr + offset, buf, bytes); 4923 set_page_dirty_lock(page); 4924 } else { 4925 copy_from_user_page(vma, page, addr, 4926 buf, maddr + offset, bytes); 4927 } 4928 kunmap(page); 4929 put_page(page); 4930 } 4931 len -= bytes; 4932 buf += bytes; 4933 addr += bytes; 4934 } 4935 mmap_read_unlock(mm); 4936 4937 return buf - old_buf; 4938 } 4939 4940 /** 4941 * access_remote_vm - access another process' address space 4942 * @mm: the mm_struct of the target address space 4943 * @addr: start address to access 4944 * @buf: source or destination buffer 4945 * @len: number of bytes to transfer 4946 * @gup_flags: flags modifying lookup behaviour 4947 * 4948 * The caller must hold a reference on @mm. 4949 * 4950 * Return: number of bytes copied from source to destination. 4951 */ 4952 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4953 void *buf, int len, unsigned int gup_flags) 4954 { 4955 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4956 } 4957 4958 /* 4959 * Access another process' address space. 4960 * Source/target buffer must be kernel space, 4961 * Do not walk the page table directly, use get_user_pages 4962 */ 4963 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4964 void *buf, int len, unsigned int gup_flags) 4965 { 4966 struct mm_struct *mm; 4967 int ret; 4968 4969 mm = get_task_mm(tsk); 4970 if (!mm) 4971 return 0; 4972 4973 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4974 4975 mmput(mm); 4976 4977 return ret; 4978 } 4979 EXPORT_SYMBOL_GPL(access_process_vm); 4980 4981 /* 4982 * Print the name of a VMA. 4983 */ 4984 void print_vma_addr(char *prefix, unsigned long ip) 4985 { 4986 struct mm_struct *mm = current->mm; 4987 struct vm_area_struct *vma; 4988 4989 /* 4990 * we might be running from an atomic context so we cannot sleep 4991 */ 4992 if (!mmap_read_trylock(mm)) 4993 return; 4994 4995 vma = find_vma(mm, ip); 4996 if (vma && vma->vm_file) { 4997 struct file *f = vma->vm_file; 4998 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4999 if (buf) { 5000 char *p; 5001 5002 p = file_path(f, buf, PAGE_SIZE); 5003 if (IS_ERR(p)) 5004 p = "?"; 5005 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5006 vma->vm_start, 5007 vma->vm_end - vma->vm_start); 5008 free_page((unsigned long)buf); 5009 } 5010 } 5011 mmap_read_unlock(mm); 5012 } 5013 5014 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5015 void __might_fault(const char *file, int line) 5016 { 5017 /* 5018 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 5019 * holding the mmap_lock, this is safe because kernel memory doesn't 5020 * get paged out, therefore we'll never actually fault, and the 5021 * below annotations will generate false positives. 5022 */ 5023 if (uaccess_kernel()) 5024 return; 5025 if (pagefault_disabled()) 5026 return; 5027 __might_sleep(file, line, 0); 5028 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5029 if (current->mm) 5030 might_lock_read(¤t->mm->mmap_lock); 5031 #endif 5032 } 5033 EXPORT_SYMBOL(__might_fault); 5034 #endif 5035 5036 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5037 /* 5038 * Process all subpages of the specified huge page with the specified 5039 * operation. The target subpage will be processed last to keep its 5040 * cache lines hot. 5041 */ 5042 static inline void process_huge_page( 5043 unsigned long addr_hint, unsigned int pages_per_huge_page, 5044 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5045 void *arg) 5046 { 5047 int i, n, base, l; 5048 unsigned long addr = addr_hint & 5049 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5050 5051 /* Process target subpage last to keep its cache lines hot */ 5052 might_sleep(); 5053 n = (addr_hint - addr) / PAGE_SIZE; 5054 if (2 * n <= pages_per_huge_page) { 5055 /* If target subpage in first half of huge page */ 5056 base = 0; 5057 l = n; 5058 /* Process subpages at the end of huge page */ 5059 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5060 cond_resched(); 5061 process_subpage(addr + i * PAGE_SIZE, i, arg); 5062 } 5063 } else { 5064 /* If target subpage in second half of huge page */ 5065 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5066 l = pages_per_huge_page - n; 5067 /* Process subpages at the begin of huge page */ 5068 for (i = 0; i < base; i++) { 5069 cond_resched(); 5070 process_subpage(addr + i * PAGE_SIZE, i, arg); 5071 } 5072 } 5073 /* 5074 * Process remaining subpages in left-right-left-right pattern 5075 * towards the target subpage 5076 */ 5077 for (i = 0; i < l; i++) { 5078 int left_idx = base + i; 5079 int right_idx = base + 2 * l - 1 - i; 5080 5081 cond_resched(); 5082 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5083 cond_resched(); 5084 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5085 } 5086 } 5087 5088 static void clear_gigantic_page(struct page *page, 5089 unsigned long addr, 5090 unsigned int pages_per_huge_page) 5091 { 5092 int i; 5093 struct page *p = page; 5094 5095 might_sleep(); 5096 for (i = 0; i < pages_per_huge_page; 5097 i++, p = mem_map_next(p, page, i)) { 5098 cond_resched(); 5099 clear_user_highpage(p, addr + i * PAGE_SIZE); 5100 } 5101 } 5102 5103 static void clear_subpage(unsigned long addr, int idx, void *arg) 5104 { 5105 struct page *page = arg; 5106 5107 clear_user_highpage(page + idx, addr); 5108 } 5109 5110 void clear_huge_page(struct page *page, 5111 unsigned long addr_hint, unsigned int pages_per_huge_page) 5112 { 5113 unsigned long addr = addr_hint & 5114 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5115 5116 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5117 clear_gigantic_page(page, addr, pages_per_huge_page); 5118 return; 5119 } 5120 5121 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5122 } 5123 5124 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5125 unsigned long addr, 5126 struct vm_area_struct *vma, 5127 unsigned int pages_per_huge_page) 5128 { 5129 int i; 5130 struct page *dst_base = dst; 5131 struct page *src_base = src; 5132 5133 for (i = 0; i < pages_per_huge_page; ) { 5134 cond_resched(); 5135 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5136 5137 i++; 5138 dst = mem_map_next(dst, dst_base, i); 5139 src = mem_map_next(src, src_base, i); 5140 } 5141 } 5142 5143 struct copy_subpage_arg { 5144 struct page *dst; 5145 struct page *src; 5146 struct vm_area_struct *vma; 5147 }; 5148 5149 static void copy_subpage(unsigned long addr, int idx, void *arg) 5150 { 5151 struct copy_subpage_arg *copy_arg = arg; 5152 5153 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5154 addr, copy_arg->vma); 5155 } 5156 5157 void copy_user_huge_page(struct page *dst, struct page *src, 5158 unsigned long addr_hint, struct vm_area_struct *vma, 5159 unsigned int pages_per_huge_page) 5160 { 5161 unsigned long addr = addr_hint & 5162 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5163 struct copy_subpage_arg arg = { 5164 .dst = dst, 5165 .src = src, 5166 .vma = vma, 5167 }; 5168 5169 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5170 copy_user_gigantic_page(dst, src, addr, vma, 5171 pages_per_huge_page); 5172 return; 5173 } 5174 5175 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5176 } 5177 5178 long copy_huge_page_from_user(struct page *dst_page, 5179 const void __user *usr_src, 5180 unsigned int pages_per_huge_page, 5181 bool allow_pagefault) 5182 { 5183 void *src = (void *)usr_src; 5184 void *page_kaddr; 5185 unsigned long i, rc = 0; 5186 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5187 5188 for (i = 0; i < pages_per_huge_page; i++) { 5189 if (allow_pagefault) 5190 page_kaddr = kmap(dst_page + i); 5191 else 5192 page_kaddr = kmap_atomic(dst_page + i); 5193 rc = copy_from_user(page_kaddr, 5194 (const void __user *)(src + i * PAGE_SIZE), 5195 PAGE_SIZE); 5196 if (allow_pagefault) 5197 kunmap(dst_page + i); 5198 else 5199 kunmap_atomic(page_kaddr); 5200 5201 ret_val -= (PAGE_SIZE - rc); 5202 if (rc) 5203 break; 5204 5205 cond_resched(); 5206 } 5207 return ret_val; 5208 } 5209 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5210 5211 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5212 5213 static struct kmem_cache *page_ptl_cachep; 5214 5215 void __init ptlock_cache_init(void) 5216 { 5217 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5218 SLAB_PANIC, NULL); 5219 } 5220 5221 bool ptlock_alloc(struct page *page) 5222 { 5223 spinlock_t *ptl; 5224 5225 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5226 if (!ptl) 5227 return false; 5228 page->ptl = ptl; 5229 return true; 5230 } 5231 5232 void ptlock_free(struct page *page) 5233 { 5234 kmem_cache_free(page_ptl_cachep, page->ptl); 5235 } 5236 #endif 5237