1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/pfn_t.h> 54 #include <linux/writeback.h> 55 #include <linux/memcontrol.h> 56 #include <linux/mmu_notifier.h> 57 #include <linux/kallsyms.h> 58 #include <linux/swapops.h> 59 #include <linux/elf.h> 60 #include <linux/gfp.h> 61 #include <linux/migrate.h> 62 #include <linux/string.h> 63 #include <linux/dma-debug.h> 64 #include <linux/debugfs.h> 65 #include <linux/userfaultfd_k.h> 66 #include <linux/dax.h> 67 68 #include <asm/io.h> 69 #include <asm/mmu_context.h> 70 #include <asm/pgalloc.h> 71 #include <linux/uaccess.h> 72 #include <asm/tlb.h> 73 #include <asm/tlbflush.h> 74 #include <asm/pgtable.h> 75 76 #include "internal.h" 77 78 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 79 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 80 #endif 81 82 #ifndef CONFIG_NEED_MULTIPLE_NODES 83 /* use the per-pgdat data instead for discontigmem - mbligh */ 84 unsigned long max_mapnr; 85 struct page *mem_map; 86 87 EXPORT_SYMBOL(max_mapnr); 88 EXPORT_SYMBOL(mem_map); 89 #endif 90 91 /* 92 * A number of key systems in x86 including ioremap() rely on the assumption 93 * that high_memory defines the upper bound on direct map memory, then end 94 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 95 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 96 * and ZONE_HIGHMEM. 97 */ 98 void * high_memory; 99 100 EXPORT_SYMBOL(high_memory); 101 102 /* 103 * Randomize the address space (stacks, mmaps, brk, etc.). 104 * 105 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 106 * as ancient (libc5 based) binaries can segfault. ) 107 */ 108 int randomize_va_space __read_mostly = 109 #ifdef CONFIG_COMPAT_BRK 110 1; 111 #else 112 2; 113 #endif 114 115 static int __init disable_randmaps(char *s) 116 { 117 randomize_va_space = 0; 118 return 1; 119 } 120 __setup("norandmaps", disable_randmaps); 121 122 unsigned long zero_pfn __read_mostly; 123 unsigned long highest_memmap_pfn __read_mostly; 124 125 EXPORT_SYMBOL(zero_pfn); 126 127 /* 128 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 129 */ 130 static int __init init_zero_pfn(void) 131 { 132 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 133 return 0; 134 } 135 core_initcall(init_zero_pfn); 136 137 138 #if defined(SPLIT_RSS_COUNTING) 139 140 void sync_mm_rss(struct mm_struct *mm) 141 { 142 int i; 143 144 for (i = 0; i < NR_MM_COUNTERS; i++) { 145 if (current->rss_stat.count[i]) { 146 add_mm_counter(mm, i, current->rss_stat.count[i]); 147 current->rss_stat.count[i] = 0; 148 } 149 } 150 current->rss_stat.events = 0; 151 } 152 153 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 154 { 155 struct task_struct *task = current; 156 157 if (likely(task->mm == mm)) 158 task->rss_stat.count[member] += val; 159 else 160 add_mm_counter(mm, member, val); 161 } 162 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 163 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 164 165 /* sync counter once per 64 page faults */ 166 #define TASK_RSS_EVENTS_THRESH (64) 167 static void check_sync_rss_stat(struct task_struct *task) 168 { 169 if (unlikely(task != current)) 170 return; 171 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 172 sync_mm_rss(task->mm); 173 } 174 #else /* SPLIT_RSS_COUNTING */ 175 176 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 177 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 178 179 static void check_sync_rss_stat(struct task_struct *task) 180 { 181 } 182 183 #endif /* SPLIT_RSS_COUNTING */ 184 185 #ifdef HAVE_GENERIC_MMU_GATHER 186 187 static bool tlb_next_batch(struct mmu_gather *tlb) 188 { 189 struct mmu_gather_batch *batch; 190 191 batch = tlb->active; 192 if (batch->next) { 193 tlb->active = batch->next; 194 return true; 195 } 196 197 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 198 return false; 199 200 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 201 if (!batch) 202 return false; 203 204 tlb->batch_count++; 205 batch->next = NULL; 206 batch->nr = 0; 207 batch->max = MAX_GATHER_BATCH; 208 209 tlb->active->next = batch; 210 tlb->active = batch; 211 212 return true; 213 } 214 215 /* tlb_gather_mmu 216 * Called to initialize an (on-stack) mmu_gather structure for page-table 217 * tear-down from @mm. The @fullmm argument is used when @mm is without 218 * users and we're going to destroy the full address space (exit/execve). 219 */ 220 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 221 { 222 tlb->mm = mm; 223 224 /* Is it from 0 to ~0? */ 225 tlb->fullmm = !(start | (end+1)); 226 tlb->need_flush_all = 0; 227 tlb->local.next = NULL; 228 tlb->local.nr = 0; 229 tlb->local.max = ARRAY_SIZE(tlb->__pages); 230 tlb->active = &tlb->local; 231 tlb->batch_count = 0; 232 233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 234 tlb->batch = NULL; 235 #endif 236 tlb->page_size = 0; 237 238 __tlb_reset_range(tlb); 239 } 240 241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 242 { 243 if (!tlb->end) 244 return; 245 246 tlb_flush(tlb); 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 249 tlb_table_flush(tlb); 250 #endif 251 __tlb_reset_range(tlb); 252 } 253 254 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 255 { 256 struct mmu_gather_batch *batch; 257 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 259 free_pages_and_swap_cache(batch->pages, batch->nr); 260 batch->nr = 0; 261 } 262 tlb->active = &tlb->local; 263 } 264 265 void tlb_flush_mmu(struct mmu_gather *tlb) 266 { 267 tlb_flush_mmu_tlbonly(tlb); 268 tlb_flush_mmu_free(tlb); 269 } 270 271 /* tlb_finish_mmu 272 * Called at the end of the shootdown operation to free up any resources 273 * that were required. 274 */ 275 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 276 { 277 struct mmu_gather_batch *batch, *next; 278 279 tlb_flush_mmu(tlb); 280 281 /* keep the page table cache within bounds */ 282 check_pgt_cache(); 283 284 for (batch = tlb->local.next; batch; batch = next) { 285 next = batch->next; 286 free_pages((unsigned long)batch, 0); 287 } 288 tlb->local.next = NULL; 289 } 290 291 /* __tlb_remove_page 292 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 293 * handling the additional races in SMP caused by other CPUs caching valid 294 * mappings in their TLBs. Returns the number of free page slots left. 295 * When out of page slots we must call tlb_flush_mmu(). 296 *returns true if the caller should flush. 297 */ 298 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 299 { 300 struct mmu_gather_batch *batch; 301 302 VM_BUG_ON(!tlb->end); 303 VM_WARN_ON(tlb->page_size != page_size); 304 305 batch = tlb->active; 306 /* 307 * Add the page and check if we are full. If so 308 * force a flush. 309 */ 310 batch->pages[batch->nr++] = page; 311 if (batch->nr == batch->max) { 312 if (!tlb_next_batch(tlb)) 313 return true; 314 batch = tlb->active; 315 } 316 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 317 318 return false; 319 } 320 321 #endif /* HAVE_GENERIC_MMU_GATHER */ 322 323 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 324 325 /* 326 * See the comment near struct mmu_table_batch. 327 */ 328 329 static void tlb_remove_table_smp_sync(void *arg) 330 { 331 /* Simply deliver the interrupt */ 332 } 333 334 static void tlb_remove_table_one(void *table) 335 { 336 /* 337 * This isn't an RCU grace period and hence the page-tables cannot be 338 * assumed to be actually RCU-freed. 339 * 340 * It is however sufficient for software page-table walkers that rely on 341 * IRQ disabling. See the comment near struct mmu_table_batch. 342 */ 343 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 344 __tlb_remove_table(table); 345 } 346 347 static void tlb_remove_table_rcu(struct rcu_head *head) 348 { 349 struct mmu_table_batch *batch; 350 int i; 351 352 batch = container_of(head, struct mmu_table_batch, rcu); 353 354 for (i = 0; i < batch->nr; i++) 355 __tlb_remove_table(batch->tables[i]); 356 357 free_page((unsigned long)batch); 358 } 359 360 void tlb_table_flush(struct mmu_gather *tlb) 361 { 362 struct mmu_table_batch **batch = &tlb->batch; 363 364 if (*batch) { 365 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 366 *batch = NULL; 367 } 368 } 369 370 void tlb_remove_table(struct mmu_gather *tlb, void *table) 371 { 372 struct mmu_table_batch **batch = &tlb->batch; 373 374 /* 375 * When there's less then two users of this mm there cannot be a 376 * concurrent page-table walk. 377 */ 378 if (atomic_read(&tlb->mm->mm_users) < 2) { 379 __tlb_remove_table(table); 380 return; 381 } 382 383 if (*batch == NULL) { 384 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 385 if (*batch == NULL) { 386 tlb_remove_table_one(table); 387 return; 388 } 389 (*batch)->nr = 0; 390 } 391 (*batch)->tables[(*batch)->nr++] = table; 392 if ((*batch)->nr == MAX_TABLE_BATCH) 393 tlb_table_flush(tlb); 394 } 395 396 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 397 398 /* 399 * Note: this doesn't free the actual pages themselves. That 400 * has been handled earlier when unmapping all the memory regions. 401 */ 402 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 403 unsigned long addr) 404 { 405 pgtable_t token = pmd_pgtable(*pmd); 406 pmd_clear(pmd); 407 pte_free_tlb(tlb, token, addr); 408 atomic_long_dec(&tlb->mm->nr_ptes); 409 } 410 411 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 412 unsigned long addr, unsigned long end, 413 unsigned long floor, unsigned long ceiling) 414 { 415 pmd_t *pmd; 416 unsigned long next; 417 unsigned long start; 418 419 start = addr; 420 pmd = pmd_offset(pud, addr); 421 do { 422 next = pmd_addr_end(addr, end); 423 if (pmd_none_or_clear_bad(pmd)) 424 continue; 425 free_pte_range(tlb, pmd, addr); 426 } while (pmd++, addr = next, addr != end); 427 428 start &= PUD_MASK; 429 if (start < floor) 430 return; 431 if (ceiling) { 432 ceiling &= PUD_MASK; 433 if (!ceiling) 434 return; 435 } 436 if (end - 1 > ceiling - 1) 437 return; 438 439 pmd = pmd_offset(pud, start); 440 pud_clear(pud); 441 pmd_free_tlb(tlb, pmd, start); 442 mm_dec_nr_pmds(tlb->mm); 443 } 444 445 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 446 unsigned long addr, unsigned long end, 447 unsigned long floor, unsigned long ceiling) 448 { 449 pud_t *pud; 450 unsigned long next; 451 unsigned long start; 452 453 start = addr; 454 pud = pud_offset(pgd, addr); 455 do { 456 next = pud_addr_end(addr, end); 457 if (pud_none_or_clear_bad(pud)) 458 continue; 459 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 460 } while (pud++, addr = next, addr != end); 461 462 start &= PGDIR_MASK; 463 if (start < floor) 464 return; 465 if (ceiling) { 466 ceiling &= PGDIR_MASK; 467 if (!ceiling) 468 return; 469 } 470 if (end - 1 > ceiling - 1) 471 return; 472 473 pud = pud_offset(pgd, start); 474 pgd_clear(pgd); 475 pud_free_tlb(tlb, pud, start); 476 } 477 478 /* 479 * This function frees user-level page tables of a process. 480 */ 481 void free_pgd_range(struct mmu_gather *tlb, 482 unsigned long addr, unsigned long end, 483 unsigned long floor, unsigned long ceiling) 484 { 485 pgd_t *pgd; 486 unsigned long next; 487 488 /* 489 * The next few lines have given us lots of grief... 490 * 491 * Why are we testing PMD* at this top level? Because often 492 * there will be no work to do at all, and we'd prefer not to 493 * go all the way down to the bottom just to discover that. 494 * 495 * Why all these "- 1"s? Because 0 represents both the bottom 496 * of the address space and the top of it (using -1 for the 497 * top wouldn't help much: the masks would do the wrong thing). 498 * The rule is that addr 0 and floor 0 refer to the bottom of 499 * the address space, but end 0 and ceiling 0 refer to the top 500 * Comparisons need to use "end - 1" and "ceiling - 1" (though 501 * that end 0 case should be mythical). 502 * 503 * Wherever addr is brought up or ceiling brought down, we must 504 * be careful to reject "the opposite 0" before it confuses the 505 * subsequent tests. But what about where end is brought down 506 * by PMD_SIZE below? no, end can't go down to 0 there. 507 * 508 * Whereas we round start (addr) and ceiling down, by different 509 * masks at different levels, in order to test whether a table 510 * now has no other vmas using it, so can be freed, we don't 511 * bother to round floor or end up - the tests don't need that. 512 */ 513 514 addr &= PMD_MASK; 515 if (addr < floor) { 516 addr += PMD_SIZE; 517 if (!addr) 518 return; 519 } 520 if (ceiling) { 521 ceiling &= PMD_MASK; 522 if (!ceiling) 523 return; 524 } 525 if (end - 1 > ceiling - 1) 526 end -= PMD_SIZE; 527 if (addr > end - 1) 528 return; 529 /* 530 * We add page table cache pages with PAGE_SIZE, 531 * (see pte_free_tlb()), flush the tlb if we need 532 */ 533 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 534 pgd = pgd_offset(tlb->mm, addr); 535 do { 536 next = pgd_addr_end(addr, end); 537 if (pgd_none_or_clear_bad(pgd)) 538 continue; 539 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 540 } while (pgd++, addr = next, addr != end); 541 } 542 543 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 544 unsigned long floor, unsigned long ceiling) 545 { 546 while (vma) { 547 struct vm_area_struct *next = vma->vm_next; 548 unsigned long addr = vma->vm_start; 549 550 /* 551 * Hide vma from rmap and truncate_pagecache before freeing 552 * pgtables 553 */ 554 unlink_anon_vmas(vma); 555 unlink_file_vma(vma); 556 557 if (is_vm_hugetlb_page(vma)) { 558 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 559 floor, next? next->vm_start: ceiling); 560 } else { 561 /* 562 * Optimization: gather nearby vmas into one call down 563 */ 564 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 565 && !is_vm_hugetlb_page(next)) { 566 vma = next; 567 next = vma->vm_next; 568 unlink_anon_vmas(vma); 569 unlink_file_vma(vma); 570 } 571 free_pgd_range(tlb, addr, vma->vm_end, 572 floor, next? next->vm_start: ceiling); 573 } 574 vma = next; 575 } 576 } 577 578 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 579 { 580 spinlock_t *ptl; 581 pgtable_t new = pte_alloc_one(mm, address); 582 if (!new) 583 return -ENOMEM; 584 585 /* 586 * Ensure all pte setup (eg. pte page lock and page clearing) are 587 * visible before the pte is made visible to other CPUs by being 588 * put into page tables. 589 * 590 * The other side of the story is the pointer chasing in the page 591 * table walking code (when walking the page table without locking; 592 * ie. most of the time). Fortunately, these data accesses consist 593 * of a chain of data-dependent loads, meaning most CPUs (alpha 594 * being the notable exception) will already guarantee loads are 595 * seen in-order. See the alpha page table accessors for the 596 * smp_read_barrier_depends() barriers in page table walking code. 597 */ 598 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 599 600 ptl = pmd_lock(mm, pmd); 601 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 602 atomic_long_inc(&mm->nr_ptes); 603 pmd_populate(mm, pmd, new); 604 new = NULL; 605 } 606 spin_unlock(ptl); 607 if (new) 608 pte_free(mm, new); 609 return 0; 610 } 611 612 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 613 { 614 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 615 if (!new) 616 return -ENOMEM; 617 618 smp_wmb(); /* See comment in __pte_alloc */ 619 620 spin_lock(&init_mm.page_table_lock); 621 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 622 pmd_populate_kernel(&init_mm, pmd, new); 623 new = NULL; 624 } 625 spin_unlock(&init_mm.page_table_lock); 626 if (new) 627 pte_free_kernel(&init_mm, new); 628 return 0; 629 } 630 631 static inline void init_rss_vec(int *rss) 632 { 633 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 634 } 635 636 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 637 { 638 int i; 639 640 if (current->mm == mm) 641 sync_mm_rss(mm); 642 for (i = 0; i < NR_MM_COUNTERS; i++) 643 if (rss[i]) 644 add_mm_counter(mm, i, rss[i]); 645 } 646 647 /* 648 * This function is called to print an error when a bad pte 649 * is found. For example, we might have a PFN-mapped pte in 650 * a region that doesn't allow it. 651 * 652 * The calling function must still handle the error. 653 */ 654 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 655 pte_t pte, struct page *page) 656 { 657 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 658 pud_t *pud = pud_offset(pgd, addr); 659 pmd_t *pmd = pmd_offset(pud, addr); 660 struct address_space *mapping; 661 pgoff_t index; 662 static unsigned long resume; 663 static unsigned long nr_shown; 664 static unsigned long nr_unshown; 665 666 /* 667 * Allow a burst of 60 reports, then keep quiet for that minute; 668 * or allow a steady drip of one report per second. 669 */ 670 if (nr_shown == 60) { 671 if (time_before(jiffies, resume)) { 672 nr_unshown++; 673 return; 674 } 675 if (nr_unshown) { 676 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 677 nr_unshown); 678 nr_unshown = 0; 679 } 680 nr_shown = 0; 681 } 682 if (nr_shown++ == 0) 683 resume = jiffies + 60 * HZ; 684 685 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 686 index = linear_page_index(vma, addr); 687 688 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 689 current->comm, 690 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 691 if (page) 692 dump_page(page, "bad pte"); 693 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 694 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 695 /* 696 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 697 */ 698 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 699 vma->vm_file, 700 vma->vm_ops ? vma->vm_ops->fault : NULL, 701 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 702 mapping ? mapping->a_ops->readpage : NULL); 703 dump_stack(); 704 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 705 } 706 707 /* 708 * vm_normal_page -- This function gets the "struct page" associated with a pte. 709 * 710 * "Special" mappings do not wish to be associated with a "struct page" (either 711 * it doesn't exist, or it exists but they don't want to touch it). In this 712 * case, NULL is returned here. "Normal" mappings do have a struct page. 713 * 714 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 715 * pte bit, in which case this function is trivial. Secondly, an architecture 716 * may not have a spare pte bit, which requires a more complicated scheme, 717 * described below. 718 * 719 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 720 * special mapping (even if there are underlying and valid "struct pages"). 721 * COWed pages of a VM_PFNMAP are always normal. 722 * 723 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 724 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 725 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 726 * mapping will always honor the rule 727 * 728 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 729 * 730 * And for normal mappings this is false. 731 * 732 * This restricts such mappings to be a linear translation from virtual address 733 * to pfn. To get around this restriction, we allow arbitrary mappings so long 734 * as the vma is not a COW mapping; in that case, we know that all ptes are 735 * special (because none can have been COWed). 736 * 737 * 738 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 739 * 740 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 741 * page" backing, however the difference is that _all_ pages with a struct 742 * page (that is, those where pfn_valid is true) are refcounted and considered 743 * normal pages by the VM. The disadvantage is that pages are refcounted 744 * (which can be slower and simply not an option for some PFNMAP users). The 745 * advantage is that we don't have to follow the strict linearity rule of 746 * PFNMAP mappings in order to support COWable mappings. 747 * 748 */ 749 #ifdef __HAVE_ARCH_PTE_SPECIAL 750 # define HAVE_PTE_SPECIAL 1 751 #else 752 # define HAVE_PTE_SPECIAL 0 753 #endif 754 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 755 pte_t pte) 756 { 757 unsigned long pfn = pte_pfn(pte); 758 759 if (HAVE_PTE_SPECIAL) { 760 if (likely(!pte_special(pte))) 761 goto check_pfn; 762 if (vma->vm_ops && vma->vm_ops->find_special_page) 763 return vma->vm_ops->find_special_page(vma, addr); 764 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 765 return NULL; 766 if (!is_zero_pfn(pfn)) 767 print_bad_pte(vma, addr, pte, NULL); 768 return NULL; 769 } 770 771 /* !HAVE_PTE_SPECIAL case follows: */ 772 773 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 774 if (vma->vm_flags & VM_MIXEDMAP) { 775 if (!pfn_valid(pfn)) 776 return NULL; 777 goto out; 778 } else { 779 unsigned long off; 780 off = (addr - vma->vm_start) >> PAGE_SHIFT; 781 if (pfn == vma->vm_pgoff + off) 782 return NULL; 783 if (!is_cow_mapping(vma->vm_flags)) 784 return NULL; 785 } 786 } 787 788 if (is_zero_pfn(pfn)) 789 return NULL; 790 check_pfn: 791 if (unlikely(pfn > highest_memmap_pfn)) { 792 print_bad_pte(vma, addr, pte, NULL); 793 return NULL; 794 } 795 796 /* 797 * NOTE! We still have PageReserved() pages in the page tables. 798 * eg. VDSO mappings can cause them to exist. 799 */ 800 out: 801 return pfn_to_page(pfn); 802 } 803 804 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 805 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 806 pmd_t pmd) 807 { 808 unsigned long pfn = pmd_pfn(pmd); 809 810 /* 811 * There is no pmd_special() but there may be special pmds, e.g. 812 * in a direct-access (dax) mapping, so let's just replicate the 813 * !HAVE_PTE_SPECIAL case from vm_normal_page() here. 814 */ 815 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 816 if (vma->vm_flags & VM_MIXEDMAP) { 817 if (!pfn_valid(pfn)) 818 return NULL; 819 goto out; 820 } else { 821 unsigned long off; 822 off = (addr - vma->vm_start) >> PAGE_SHIFT; 823 if (pfn == vma->vm_pgoff + off) 824 return NULL; 825 if (!is_cow_mapping(vma->vm_flags)) 826 return NULL; 827 } 828 } 829 830 if (is_zero_pfn(pfn)) 831 return NULL; 832 if (unlikely(pfn > highest_memmap_pfn)) 833 return NULL; 834 835 /* 836 * NOTE! We still have PageReserved() pages in the page tables. 837 * eg. VDSO mappings can cause them to exist. 838 */ 839 out: 840 return pfn_to_page(pfn); 841 } 842 #endif 843 844 /* 845 * copy one vm_area from one task to the other. Assumes the page tables 846 * already present in the new task to be cleared in the whole range 847 * covered by this vma. 848 */ 849 850 static inline unsigned long 851 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 852 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 853 unsigned long addr, int *rss) 854 { 855 unsigned long vm_flags = vma->vm_flags; 856 pte_t pte = *src_pte; 857 struct page *page; 858 859 /* pte contains position in swap or file, so copy. */ 860 if (unlikely(!pte_present(pte))) { 861 swp_entry_t entry = pte_to_swp_entry(pte); 862 863 if (likely(!non_swap_entry(entry))) { 864 if (swap_duplicate(entry) < 0) 865 return entry.val; 866 867 /* make sure dst_mm is on swapoff's mmlist. */ 868 if (unlikely(list_empty(&dst_mm->mmlist))) { 869 spin_lock(&mmlist_lock); 870 if (list_empty(&dst_mm->mmlist)) 871 list_add(&dst_mm->mmlist, 872 &src_mm->mmlist); 873 spin_unlock(&mmlist_lock); 874 } 875 rss[MM_SWAPENTS]++; 876 } else if (is_migration_entry(entry)) { 877 page = migration_entry_to_page(entry); 878 879 rss[mm_counter(page)]++; 880 881 if (is_write_migration_entry(entry) && 882 is_cow_mapping(vm_flags)) { 883 /* 884 * COW mappings require pages in both 885 * parent and child to be set to read. 886 */ 887 make_migration_entry_read(&entry); 888 pte = swp_entry_to_pte(entry); 889 if (pte_swp_soft_dirty(*src_pte)) 890 pte = pte_swp_mksoft_dirty(pte); 891 set_pte_at(src_mm, addr, src_pte, pte); 892 } 893 } 894 goto out_set_pte; 895 } 896 897 /* 898 * If it's a COW mapping, write protect it both 899 * in the parent and the child 900 */ 901 if (is_cow_mapping(vm_flags)) { 902 ptep_set_wrprotect(src_mm, addr, src_pte); 903 pte = pte_wrprotect(pte); 904 } 905 906 /* 907 * If it's a shared mapping, mark it clean in 908 * the child 909 */ 910 if (vm_flags & VM_SHARED) 911 pte = pte_mkclean(pte); 912 pte = pte_mkold(pte); 913 914 page = vm_normal_page(vma, addr, pte); 915 if (page) { 916 get_page(page); 917 page_dup_rmap(page, false); 918 rss[mm_counter(page)]++; 919 } 920 921 out_set_pte: 922 set_pte_at(dst_mm, addr, dst_pte, pte); 923 return 0; 924 } 925 926 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 927 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 928 unsigned long addr, unsigned long end) 929 { 930 pte_t *orig_src_pte, *orig_dst_pte; 931 pte_t *src_pte, *dst_pte; 932 spinlock_t *src_ptl, *dst_ptl; 933 int progress = 0; 934 int rss[NR_MM_COUNTERS]; 935 swp_entry_t entry = (swp_entry_t){0}; 936 937 again: 938 init_rss_vec(rss); 939 940 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 941 if (!dst_pte) 942 return -ENOMEM; 943 src_pte = pte_offset_map(src_pmd, addr); 944 src_ptl = pte_lockptr(src_mm, src_pmd); 945 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 946 orig_src_pte = src_pte; 947 orig_dst_pte = dst_pte; 948 arch_enter_lazy_mmu_mode(); 949 950 do { 951 /* 952 * We are holding two locks at this point - either of them 953 * could generate latencies in another task on another CPU. 954 */ 955 if (progress >= 32) { 956 progress = 0; 957 if (need_resched() || 958 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 959 break; 960 } 961 if (pte_none(*src_pte)) { 962 progress++; 963 continue; 964 } 965 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 966 vma, addr, rss); 967 if (entry.val) 968 break; 969 progress += 8; 970 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 971 972 arch_leave_lazy_mmu_mode(); 973 spin_unlock(src_ptl); 974 pte_unmap(orig_src_pte); 975 add_mm_rss_vec(dst_mm, rss); 976 pte_unmap_unlock(orig_dst_pte, dst_ptl); 977 cond_resched(); 978 979 if (entry.val) { 980 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 981 return -ENOMEM; 982 progress = 0; 983 } 984 if (addr != end) 985 goto again; 986 return 0; 987 } 988 989 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 990 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 991 unsigned long addr, unsigned long end) 992 { 993 pmd_t *src_pmd, *dst_pmd; 994 unsigned long next; 995 996 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 997 if (!dst_pmd) 998 return -ENOMEM; 999 src_pmd = pmd_offset(src_pud, addr); 1000 do { 1001 next = pmd_addr_end(addr, end); 1002 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) { 1003 int err; 1004 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 1005 err = copy_huge_pmd(dst_mm, src_mm, 1006 dst_pmd, src_pmd, addr, vma); 1007 if (err == -ENOMEM) 1008 return -ENOMEM; 1009 if (!err) 1010 continue; 1011 /* fall through */ 1012 } 1013 if (pmd_none_or_clear_bad(src_pmd)) 1014 continue; 1015 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1016 vma, addr, next)) 1017 return -ENOMEM; 1018 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1019 return 0; 1020 } 1021 1022 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1023 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1024 unsigned long addr, unsigned long end) 1025 { 1026 pud_t *src_pud, *dst_pud; 1027 unsigned long next; 1028 1029 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1030 if (!dst_pud) 1031 return -ENOMEM; 1032 src_pud = pud_offset(src_pgd, addr); 1033 do { 1034 next = pud_addr_end(addr, end); 1035 if (pud_none_or_clear_bad(src_pud)) 1036 continue; 1037 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1038 vma, addr, next)) 1039 return -ENOMEM; 1040 } while (dst_pud++, src_pud++, addr = next, addr != end); 1041 return 0; 1042 } 1043 1044 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1045 struct vm_area_struct *vma) 1046 { 1047 pgd_t *src_pgd, *dst_pgd; 1048 unsigned long next; 1049 unsigned long addr = vma->vm_start; 1050 unsigned long end = vma->vm_end; 1051 unsigned long mmun_start; /* For mmu_notifiers */ 1052 unsigned long mmun_end; /* For mmu_notifiers */ 1053 bool is_cow; 1054 int ret; 1055 1056 /* 1057 * Don't copy ptes where a page fault will fill them correctly. 1058 * Fork becomes much lighter when there are big shared or private 1059 * readonly mappings. The tradeoff is that copy_page_range is more 1060 * efficient than faulting. 1061 */ 1062 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1063 !vma->anon_vma) 1064 return 0; 1065 1066 if (is_vm_hugetlb_page(vma)) 1067 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1068 1069 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1070 /* 1071 * We do not free on error cases below as remove_vma 1072 * gets called on error from higher level routine 1073 */ 1074 ret = track_pfn_copy(vma); 1075 if (ret) 1076 return ret; 1077 } 1078 1079 /* 1080 * We need to invalidate the secondary MMU mappings only when 1081 * there could be a permission downgrade on the ptes of the 1082 * parent mm. And a permission downgrade will only happen if 1083 * is_cow_mapping() returns true. 1084 */ 1085 is_cow = is_cow_mapping(vma->vm_flags); 1086 mmun_start = addr; 1087 mmun_end = end; 1088 if (is_cow) 1089 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1090 mmun_end); 1091 1092 ret = 0; 1093 dst_pgd = pgd_offset(dst_mm, addr); 1094 src_pgd = pgd_offset(src_mm, addr); 1095 do { 1096 next = pgd_addr_end(addr, end); 1097 if (pgd_none_or_clear_bad(src_pgd)) 1098 continue; 1099 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1100 vma, addr, next))) { 1101 ret = -ENOMEM; 1102 break; 1103 } 1104 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1105 1106 if (is_cow) 1107 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1108 return ret; 1109 } 1110 1111 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1112 struct vm_area_struct *vma, pmd_t *pmd, 1113 unsigned long addr, unsigned long end, 1114 struct zap_details *details) 1115 { 1116 struct mm_struct *mm = tlb->mm; 1117 int force_flush = 0; 1118 int rss[NR_MM_COUNTERS]; 1119 spinlock_t *ptl; 1120 pte_t *start_pte; 1121 pte_t *pte; 1122 swp_entry_t entry; 1123 1124 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1125 again: 1126 init_rss_vec(rss); 1127 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1128 pte = start_pte; 1129 arch_enter_lazy_mmu_mode(); 1130 do { 1131 pte_t ptent = *pte; 1132 if (pte_none(ptent)) { 1133 continue; 1134 } 1135 1136 if (pte_present(ptent)) { 1137 struct page *page; 1138 1139 page = vm_normal_page(vma, addr, ptent); 1140 if (unlikely(details) && page) { 1141 /* 1142 * unmap_shared_mapping_pages() wants to 1143 * invalidate cache without truncating: 1144 * unmap shared but keep private pages. 1145 */ 1146 if (details->check_mapping && 1147 details->check_mapping != page_rmapping(page)) 1148 continue; 1149 } 1150 ptent = ptep_get_and_clear_full(mm, addr, pte, 1151 tlb->fullmm); 1152 tlb_remove_tlb_entry(tlb, pte, addr); 1153 if (unlikely(!page)) 1154 continue; 1155 1156 if (!PageAnon(page)) { 1157 if (pte_dirty(ptent)) { 1158 /* 1159 * oom_reaper cannot tear down dirty 1160 * pages 1161 */ 1162 if (unlikely(details && details->ignore_dirty)) 1163 continue; 1164 force_flush = 1; 1165 set_page_dirty(page); 1166 } 1167 if (pte_young(ptent) && 1168 likely(!(vma->vm_flags & VM_SEQ_READ))) 1169 mark_page_accessed(page); 1170 } 1171 rss[mm_counter(page)]--; 1172 page_remove_rmap(page, false); 1173 if (unlikely(page_mapcount(page) < 0)) 1174 print_bad_pte(vma, addr, ptent, page); 1175 if (unlikely(__tlb_remove_page(tlb, page))) { 1176 force_flush = 1; 1177 addr += PAGE_SIZE; 1178 break; 1179 } 1180 continue; 1181 } 1182 /* only check swap_entries if explicitly asked for in details */ 1183 if (unlikely(details && !details->check_swap_entries)) 1184 continue; 1185 1186 entry = pte_to_swp_entry(ptent); 1187 if (!non_swap_entry(entry)) 1188 rss[MM_SWAPENTS]--; 1189 else if (is_migration_entry(entry)) { 1190 struct page *page; 1191 1192 page = migration_entry_to_page(entry); 1193 rss[mm_counter(page)]--; 1194 } 1195 if (unlikely(!free_swap_and_cache(entry))) 1196 print_bad_pte(vma, addr, ptent, NULL); 1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1198 } while (pte++, addr += PAGE_SIZE, addr != end); 1199 1200 add_mm_rss_vec(mm, rss); 1201 arch_leave_lazy_mmu_mode(); 1202 1203 /* Do the actual TLB flush before dropping ptl */ 1204 if (force_flush) 1205 tlb_flush_mmu_tlbonly(tlb); 1206 pte_unmap_unlock(start_pte, ptl); 1207 1208 /* 1209 * If we forced a TLB flush (either due to running out of 1210 * batch buffers or because we needed to flush dirty TLB 1211 * entries before releasing the ptl), free the batched 1212 * memory too. Restart if we didn't do everything. 1213 */ 1214 if (force_flush) { 1215 force_flush = 0; 1216 tlb_flush_mmu_free(tlb); 1217 if (addr != end) 1218 goto again; 1219 } 1220 1221 return addr; 1222 } 1223 1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1225 struct vm_area_struct *vma, pud_t *pud, 1226 unsigned long addr, unsigned long end, 1227 struct zap_details *details) 1228 { 1229 pmd_t *pmd; 1230 unsigned long next; 1231 1232 pmd = pmd_offset(pud, addr); 1233 do { 1234 next = pmd_addr_end(addr, end); 1235 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1236 if (next - addr != HPAGE_PMD_SIZE) { 1237 VM_BUG_ON_VMA(vma_is_anonymous(vma) && 1238 !rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1239 __split_huge_pmd(vma, pmd, addr, false, NULL); 1240 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1241 goto next; 1242 /* fall through */ 1243 } 1244 /* 1245 * Here there can be other concurrent MADV_DONTNEED or 1246 * trans huge page faults running, and if the pmd is 1247 * none or trans huge it can change under us. This is 1248 * because MADV_DONTNEED holds the mmap_sem in read 1249 * mode. 1250 */ 1251 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1252 goto next; 1253 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1254 next: 1255 cond_resched(); 1256 } while (pmd++, addr = next, addr != end); 1257 1258 return addr; 1259 } 1260 1261 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1262 struct vm_area_struct *vma, pgd_t *pgd, 1263 unsigned long addr, unsigned long end, 1264 struct zap_details *details) 1265 { 1266 pud_t *pud; 1267 unsigned long next; 1268 1269 pud = pud_offset(pgd, addr); 1270 do { 1271 next = pud_addr_end(addr, end); 1272 if (pud_none_or_clear_bad(pud)) 1273 continue; 1274 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1275 } while (pud++, addr = next, addr != end); 1276 1277 return addr; 1278 } 1279 1280 void unmap_page_range(struct mmu_gather *tlb, 1281 struct vm_area_struct *vma, 1282 unsigned long addr, unsigned long end, 1283 struct zap_details *details) 1284 { 1285 pgd_t *pgd; 1286 unsigned long next; 1287 1288 BUG_ON(addr >= end); 1289 tlb_start_vma(tlb, vma); 1290 pgd = pgd_offset(vma->vm_mm, addr); 1291 do { 1292 next = pgd_addr_end(addr, end); 1293 if (pgd_none_or_clear_bad(pgd)) 1294 continue; 1295 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1296 } while (pgd++, addr = next, addr != end); 1297 tlb_end_vma(tlb, vma); 1298 } 1299 1300 1301 static void unmap_single_vma(struct mmu_gather *tlb, 1302 struct vm_area_struct *vma, unsigned long start_addr, 1303 unsigned long end_addr, 1304 struct zap_details *details) 1305 { 1306 unsigned long start = max(vma->vm_start, start_addr); 1307 unsigned long end; 1308 1309 if (start >= vma->vm_end) 1310 return; 1311 end = min(vma->vm_end, end_addr); 1312 if (end <= vma->vm_start) 1313 return; 1314 1315 if (vma->vm_file) 1316 uprobe_munmap(vma, start, end); 1317 1318 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1319 untrack_pfn(vma, 0, 0); 1320 1321 if (start != end) { 1322 if (unlikely(is_vm_hugetlb_page(vma))) { 1323 /* 1324 * It is undesirable to test vma->vm_file as it 1325 * should be non-null for valid hugetlb area. 1326 * However, vm_file will be NULL in the error 1327 * cleanup path of mmap_region. When 1328 * hugetlbfs ->mmap method fails, 1329 * mmap_region() nullifies vma->vm_file 1330 * before calling this function to clean up. 1331 * Since no pte has actually been setup, it is 1332 * safe to do nothing in this case. 1333 */ 1334 if (vma->vm_file) { 1335 i_mmap_lock_write(vma->vm_file->f_mapping); 1336 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1337 i_mmap_unlock_write(vma->vm_file->f_mapping); 1338 } 1339 } else 1340 unmap_page_range(tlb, vma, start, end, details); 1341 } 1342 } 1343 1344 /** 1345 * unmap_vmas - unmap a range of memory covered by a list of vma's 1346 * @tlb: address of the caller's struct mmu_gather 1347 * @vma: the starting vma 1348 * @start_addr: virtual address at which to start unmapping 1349 * @end_addr: virtual address at which to end unmapping 1350 * 1351 * Unmap all pages in the vma list. 1352 * 1353 * Only addresses between `start' and `end' will be unmapped. 1354 * 1355 * The VMA list must be sorted in ascending virtual address order. 1356 * 1357 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1358 * range after unmap_vmas() returns. So the only responsibility here is to 1359 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1360 * drops the lock and schedules. 1361 */ 1362 void unmap_vmas(struct mmu_gather *tlb, 1363 struct vm_area_struct *vma, unsigned long start_addr, 1364 unsigned long end_addr) 1365 { 1366 struct mm_struct *mm = vma->vm_mm; 1367 1368 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1369 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1370 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1371 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1372 } 1373 1374 /** 1375 * zap_page_range - remove user pages in a given range 1376 * @vma: vm_area_struct holding the applicable pages 1377 * @start: starting address of pages to zap 1378 * @size: number of bytes to zap 1379 * @details: details of shared cache invalidation 1380 * 1381 * Caller must protect the VMA list 1382 */ 1383 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1384 unsigned long size, struct zap_details *details) 1385 { 1386 struct mm_struct *mm = vma->vm_mm; 1387 struct mmu_gather tlb; 1388 unsigned long end = start + size; 1389 1390 lru_add_drain(); 1391 tlb_gather_mmu(&tlb, mm, start, end); 1392 update_hiwater_rss(mm); 1393 mmu_notifier_invalidate_range_start(mm, start, end); 1394 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1395 unmap_single_vma(&tlb, vma, start, end, details); 1396 mmu_notifier_invalidate_range_end(mm, start, end); 1397 tlb_finish_mmu(&tlb, start, end); 1398 } 1399 1400 /** 1401 * zap_page_range_single - remove user pages in a given range 1402 * @vma: vm_area_struct holding the applicable pages 1403 * @address: starting address of pages to zap 1404 * @size: number of bytes to zap 1405 * @details: details of shared cache invalidation 1406 * 1407 * The range must fit into one VMA. 1408 */ 1409 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1410 unsigned long size, struct zap_details *details) 1411 { 1412 struct mm_struct *mm = vma->vm_mm; 1413 struct mmu_gather tlb; 1414 unsigned long end = address + size; 1415 1416 lru_add_drain(); 1417 tlb_gather_mmu(&tlb, mm, address, end); 1418 update_hiwater_rss(mm); 1419 mmu_notifier_invalidate_range_start(mm, address, end); 1420 unmap_single_vma(&tlb, vma, address, end, details); 1421 mmu_notifier_invalidate_range_end(mm, address, end); 1422 tlb_finish_mmu(&tlb, address, end); 1423 } 1424 1425 /** 1426 * zap_vma_ptes - remove ptes mapping the vma 1427 * @vma: vm_area_struct holding ptes to be zapped 1428 * @address: starting address of pages to zap 1429 * @size: number of bytes to zap 1430 * 1431 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1432 * 1433 * The entire address range must be fully contained within the vma. 1434 * 1435 * Returns 0 if successful. 1436 */ 1437 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1438 unsigned long size) 1439 { 1440 if (address < vma->vm_start || address + size > vma->vm_end || 1441 !(vma->vm_flags & VM_PFNMAP)) 1442 return -1; 1443 zap_page_range_single(vma, address, size, NULL); 1444 return 0; 1445 } 1446 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1447 1448 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1449 spinlock_t **ptl) 1450 { 1451 pgd_t * pgd = pgd_offset(mm, addr); 1452 pud_t * pud = pud_alloc(mm, pgd, addr); 1453 if (pud) { 1454 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1455 if (pmd) { 1456 VM_BUG_ON(pmd_trans_huge(*pmd)); 1457 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1458 } 1459 } 1460 return NULL; 1461 } 1462 1463 /* 1464 * This is the old fallback for page remapping. 1465 * 1466 * For historical reasons, it only allows reserved pages. Only 1467 * old drivers should use this, and they needed to mark their 1468 * pages reserved for the old functions anyway. 1469 */ 1470 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1471 struct page *page, pgprot_t prot) 1472 { 1473 struct mm_struct *mm = vma->vm_mm; 1474 int retval; 1475 pte_t *pte; 1476 spinlock_t *ptl; 1477 1478 retval = -EINVAL; 1479 if (PageAnon(page)) 1480 goto out; 1481 retval = -ENOMEM; 1482 flush_dcache_page(page); 1483 pte = get_locked_pte(mm, addr, &ptl); 1484 if (!pte) 1485 goto out; 1486 retval = -EBUSY; 1487 if (!pte_none(*pte)) 1488 goto out_unlock; 1489 1490 /* Ok, finally just insert the thing.. */ 1491 get_page(page); 1492 inc_mm_counter_fast(mm, mm_counter_file(page)); 1493 page_add_file_rmap(page, false); 1494 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1495 1496 retval = 0; 1497 pte_unmap_unlock(pte, ptl); 1498 return retval; 1499 out_unlock: 1500 pte_unmap_unlock(pte, ptl); 1501 out: 1502 return retval; 1503 } 1504 1505 /** 1506 * vm_insert_page - insert single page into user vma 1507 * @vma: user vma to map to 1508 * @addr: target user address of this page 1509 * @page: source kernel page 1510 * 1511 * This allows drivers to insert individual pages they've allocated 1512 * into a user vma. 1513 * 1514 * The page has to be a nice clean _individual_ kernel allocation. 1515 * If you allocate a compound page, you need to have marked it as 1516 * such (__GFP_COMP), or manually just split the page up yourself 1517 * (see split_page()). 1518 * 1519 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1520 * took an arbitrary page protection parameter. This doesn't allow 1521 * that. Your vma protection will have to be set up correctly, which 1522 * means that if you want a shared writable mapping, you'd better 1523 * ask for a shared writable mapping! 1524 * 1525 * The page does not need to be reserved. 1526 * 1527 * Usually this function is called from f_op->mmap() handler 1528 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1529 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1530 * function from other places, for example from page-fault handler. 1531 */ 1532 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1533 struct page *page) 1534 { 1535 if (addr < vma->vm_start || addr >= vma->vm_end) 1536 return -EFAULT; 1537 if (!page_count(page)) 1538 return -EINVAL; 1539 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1540 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1541 BUG_ON(vma->vm_flags & VM_PFNMAP); 1542 vma->vm_flags |= VM_MIXEDMAP; 1543 } 1544 return insert_page(vma, addr, page, vma->vm_page_prot); 1545 } 1546 EXPORT_SYMBOL(vm_insert_page); 1547 1548 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1549 pfn_t pfn, pgprot_t prot) 1550 { 1551 struct mm_struct *mm = vma->vm_mm; 1552 int retval; 1553 pte_t *pte, entry; 1554 spinlock_t *ptl; 1555 1556 retval = -ENOMEM; 1557 pte = get_locked_pte(mm, addr, &ptl); 1558 if (!pte) 1559 goto out; 1560 retval = -EBUSY; 1561 if (!pte_none(*pte)) 1562 goto out_unlock; 1563 1564 /* Ok, finally just insert the thing.. */ 1565 if (pfn_t_devmap(pfn)) 1566 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1567 else 1568 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1569 set_pte_at(mm, addr, pte, entry); 1570 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1571 1572 retval = 0; 1573 out_unlock: 1574 pte_unmap_unlock(pte, ptl); 1575 out: 1576 return retval; 1577 } 1578 1579 /** 1580 * vm_insert_pfn - insert single pfn into user vma 1581 * @vma: user vma to map to 1582 * @addr: target user address of this page 1583 * @pfn: source kernel pfn 1584 * 1585 * Similar to vm_insert_page, this allows drivers to insert individual pages 1586 * they've allocated into a user vma. Same comments apply. 1587 * 1588 * This function should only be called from a vm_ops->fault handler, and 1589 * in that case the handler should return NULL. 1590 * 1591 * vma cannot be a COW mapping. 1592 * 1593 * As this is called only for pages that do not currently exist, we 1594 * do not need to flush old virtual caches or the TLB. 1595 */ 1596 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1597 unsigned long pfn) 1598 { 1599 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1600 } 1601 EXPORT_SYMBOL(vm_insert_pfn); 1602 1603 /** 1604 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1605 * @vma: user vma to map to 1606 * @addr: target user address of this page 1607 * @pfn: source kernel pfn 1608 * @pgprot: pgprot flags for the inserted page 1609 * 1610 * This is exactly like vm_insert_pfn, except that it allows drivers to 1611 * to override pgprot on a per-page basis. 1612 * 1613 * This only makes sense for IO mappings, and it makes no sense for 1614 * cow mappings. In general, using multiple vmas is preferable; 1615 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1616 * impractical. 1617 */ 1618 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1619 unsigned long pfn, pgprot_t pgprot) 1620 { 1621 int ret; 1622 /* 1623 * Technically, architectures with pte_special can avoid all these 1624 * restrictions (same for remap_pfn_range). However we would like 1625 * consistency in testing and feature parity among all, so we should 1626 * try to keep these invariants in place for everybody. 1627 */ 1628 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1629 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1630 (VM_PFNMAP|VM_MIXEDMAP)); 1631 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1632 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1633 1634 if (addr < vma->vm_start || addr >= vma->vm_end) 1635 return -EFAULT; 1636 1637 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1638 1639 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot); 1640 1641 return ret; 1642 } 1643 EXPORT_SYMBOL(vm_insert_pfn_prot); 1644 1645 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1646 pfn_t pfn) 1647 { 1648 pgprot_t pgprot = vma->vm_page_prot; 1649 1650 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1651 1652 if (addr < vma->vm_start || addr >= vma->vm_end) 1653 return -EFAULT; 1654 1655 track_pfn_insert(vma, &pgprot, pfn); 1656 1657 /* 1658 * If we don't have pte special, then we have to use the pfn_valid() 1659 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1660 * refcount the page if pfn_valid is true (hence insert_page rather 1661 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1662 * without pte special, it would there be refcounted as a normal page. 1663 */ 1664 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1665 struct page *page; 1666 1667 /* 1668 * At this point we are committed to insert_page() 1669 * regardless of whether the caller specified flags that 1670 * result in pfn_t_has_page() == false. 1671 */ 1672 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1673 return insert_page(vma, addr, page, pgprot); 1674 } 1675 return insert_pfn(vma, addr, pfn, pgprot); 1676 } 1677 EXPORT_SYMBOL(vm_insert_mixed); 1678 1679 /* 1680 * maps a range of physical memory into the requested pages. the old 1681 * mappings are removed. any references to nonexistent pages results 1682 * in null mappings (currently treated as "copy-on-access") 1683 */ 1684 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1685 unsigned long addr, unsigned long end, 1686 unsigned long pfn, pgprot_t prot) 1687 { 1688 pte_t *pte; 1689 spinlock_t *ptl; 1690 1691 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1692 if (!pte) 1693 return -ENOMEM; 1694 arch_enter_lazy_mmu_mode(); 1695 do { 1696 BUG_ON(!pte_none(*pte)); 1697 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1698 pfn++; 1699 } while (pte++, addr += PAGE_SIZE, addr != end); 1700 arch_leave_lazy_mmu_mode(); 1701 pte_unmap_unlock(pte - 1, ptl); 1702 return 0; 1703 } 1704 1705 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1706 unsigned long addr, unsigned long end, 1707 unsigned long pfn, pgprot_t prot) 1708 { 1709 pmd_t *pmd; 1710 unsigned long next; 1711 1712 pfn -= addr >> PAGE_SHIFT; 1713 pmd = pmd_alloc(mm, pud, addr); 1714 if (!pmd) 1715 return -ENOMEM; 1716 VM_BUG_ON(pmd_trans_huge(*pmd)); 1717 do { 1718 next = pmd_addr_end(addr, end); 1719 if (remap_pte_range(mm, pmd, addr, next, 1720 pfn + (addr >> PAGE_SHIFT), prot)) 1721 return -ENOMEM; 1722 } while (pmd++, addr = next, addr != end); 1723 return 0; 1724 } 1725 1726 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1727 unsigned long addr, unsigned long end, 1728 unsigned long pfn, pgprot_t prot) 1729 { 1730 pud_t *pud; 1731 unsigned long next; 1732 1733 pfn -= addr >> PAGE_SHIFT; 1734 pud = pud_alloc(mm, pgd, addr); 1735 if (!pud) 1736 return -ENOMEM; 1737 do { 1738 next = pud_addr_end(addr, end); 1739 if (remap_pmd_range(mm, pud, addr, next, 1740 pfn + (addr >> PAGE_SHIFT), prot)) 1741 return -ENOMEM; 1742 } while (pud++, addr = next, addr != end); 1743 return 0; 1744 } 1745 1746 /** 1747 * remap_pfn_range - remap kernel memory to userspace 1748 * @vma: user vma to map to 1749 * @addr: target user address to start at 1750 * @pfn: physical address of kernel memory 1751 * @size: size of map area 1752 * @prot: page protection flags for this mapping 1753 * 1754 * Note: this is only safe if the mm semaphore is held when called. 1755 */ 1756 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1757 unsigned long pfn, unsigned long size, pgprot_t prot) 1758 { 1759 pgd_t *pgd; 1760 unsigned long next; 1761 unsigned long end = addr + PAGE_ALIGN(size); 1762 struct mm_struct *mm = vma->vm_mm; 1763 unsigned long remap_pfn = pfn; 1764 int err; 1765 1766 /* 1767 * Physically remapped pages are special. Tell the 1768 * rest of the world about it: 1769 * VM_IO tells people not to look at these pages 1770 * (accesses can have side effects). 1771 * VM_PFNMAP tells the core MM that the base pages are just 1772 * raw PFN mappings, and do not have a "struct page" associated 1773 * with them. 1774 * VM_DONTEXPAND 1775 * Disable vma merging and expanding with mremap(). 1776 * VM_DONTDUMP 1777 * Omit vma from core dump, even when VM_IO turned off. 1778 * 1779 * There's a horrible special case to handle copy-on-write 1780 * behaviour that some programs depend on. We mark the "original" 1781 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1782 * See vm_normal_page() for details. 1783 */ 1784 if (is_cow_mapping(vma->vm_flags)) { 1785 if (addr != vma->vm_start || end != vma->vm_end) 1786 return -EINVAL; 1787 vma->vm_pgoff = pfn; 1788 } 1789 1790 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1791 if (err) 1792 return -EINVAL; 1793 1794 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1795 1796 BUG_ON(addr >= end); 1797 pfn -= addr >> PAGE_SHIFT; 1798 pgd = pgd_offset(mm, addr); 1799 flush_cache_range(vma, addr, end); 1800 do { 1801 next = pgd_addr_end(addr, end); 1802 err = remap_pud_range(mm, pgd, addr, next, 1803 pfn + (addr >> PAGE_SHIFT), prot); 1804 if (err) 1805 break; 1806 } while (pgd++, addr = next, addr != end); 1807 1808 if (err) 1809 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1810 1811 return err; 1812 } 1813 EXPORT_SYMBOL(remap_pfn_range); 1814 1815 /** 1816 * vm_iomap_memory - remap memory to userspace 1817 * @vma: user vma to map to 1818 * @start: start of area 1819 * @len: size of area 1820 * 1821 * This is a simplified io_remap_pfn_range() for common driver use. The 1822 * driver just needs to give us the physical memory range to be mapped, 1823 * we'll figure out the rest from the vma information. 1824 * 1825 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1826 * whatever write-combining details or similar. 1827 */ 1828 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1829 { 1830 unsigned long vm_len, pfn, pages; 1831 1832 /* Check that the physical memory area passed in looks valid */ 1833 if (start + len < start) 1834 return -EINVAL; 1835 /* 1836 * You *really* shouldn't map things that aren't page-aligned, 1837 * but we've historically allowed it because IO memory might 1838 * just have smaller alignment. 1839 */ 1840 len += start & ~PAGE_MASK; 1841 pfn = start >> PAGE_SHIFT; 1842 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1843 if (pfn + pages < pfn) 1844 return -EINVAL; 1845 1846 /* We start the mapping 'vm_pgoff' pages into the area */ 1847 if (vma->vm_pgoff > pages) 1848 return -EINVAL; 1849 pfn += vma->vm_pgoff; 1850 pages -= vma->vm_pgoff; 1851 1852 /* Can we fit all of the mapping? */ 1853 vm_len = vma->vm_end - vma->vm_start; 1854 if (vm_len >> PAGE_SHIFT > pages) 1855 return -EINVAL; 1856 1857 /* Ok, let it rip */ 1858 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1859 } 1860 EXPORT_SYMBOL(vm_iomap_memory); 1861 1862 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1863 unsigned long addr, unsigned long end, 1864 pte_fn_t fn, void *data) 1865 { 1866 pte_t *pte; 1867 int err; 1868 pgtable_t token; 1869 spinlock_t *uninitialized_var(ptl); 1870 1871 pte = (mm == &init_mm) ? 1872 pte_alloc_kernel(pmd, addr) : 1873 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1874 if (!pte) 1875 return -ENOMEM; 1876 1877 BUG_ON(pmd_huge(*pmd)); 1878 1879 arch_enter_lazy_mmu_mode(); 1880 1881 token = pmd_pgtable(*pmd); 1882 1883 do { 1884 err = fn(pte++, token, addr, data); 1885 if (err) 1886 break; 1887 } while (addr += PAGE_SIZE, addr != end); 1888 1889 arch_leave_lazy_mmu_mode(); 1890 1891 if (mm != &init_mm) 1892 pte_unmap_unlock(pte-1, ptl); 1893 return err; 1894 } 1895 1896 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1897 unsigned long addr, unsigned long end, 1898 pte_fn_t fn, void *data) 1899 { 1900 pmd_t *pmd; 1901 unsigned long next; 1902 int err; 1903 1904 BUG_ON(pud_huge(*pud)); 1905 1906 pmd = pmd_alloc(mm, pud, addr); 1907 if (!pmd) 1908 return -ENOMEM; 1909 do { 1910 next = pmd_addr_end(addr, end); 1911 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1912 if (err) 1913 break; 1914 } while (pmd++, addr = next, addr != end); 1915 return err; 1916 } 1917 1918 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1919 unsigned long addr, unsigned long end, 1920 pte_fn_t fn, void *data) 1921 { 1922 pud_t *pud; 1923 unsigned long next; 1924 int err; 1925 1926 pud = pud_alloc(mm, pgd, addr); 1927 if (!pud) 1928 return -ENOMEM; 1929 do { 1930 next = pud_addr_end(addr, end); 1931 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1932 if (err) 1933 break; 1934 } while (pud++, addr = next, addr != end); 1935 return err; 1936 } 1937 1938 /* 1939 * Scan a region of virtual memory, filling in page tables as necessary 1940 * and calling a provided function on each leaf page table. 1941 */ 1942 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1943 unsigned long size, pte_fn_t fn, void *data) 1944 { 1945 pgd_t *pgd; 1946 unsigned long next; 1947 unsigned long end = addr + size; 1948 int err; 1949 1950 if (WARN_ON(addr >= end)) 1951 return -EINVAL; 1952 1953 pgd = pgd_offset(mm, addr); 1954 do { 1955 next = pgd_addr_end(addr, end); 1956 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1957 if (err) 1958 break; 1959 } while (pgd++, addr = next, addr != end); 1960 1961 return err; 1962 } 1963 EXPORT_SYMBOL_GPL(apply_to_page_range); 1964 1965 /* 1966 * handle_pte_fault chooses page fault handler according to an entry which was 1967 * read non-atomically. Before making any commitment, on those architectures 1968 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 1969 * parts, do_swap_page must check under lock before unmapping the pte and 1970 * proceeding (but do_wp_page is only called after already making such a check; 1971 * and do_anonymous_page can safely check later on). 1972 */ 1973 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1974 pte_t *page_table, pte_t orig_pte) 1975 { 1976 int same = 1; 1977 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1978 if (sizeof(pte_t) > sizeof(unsigned long)) { 1979 spinlock_t *ptl = pte_lockptr(mm, pmd); 1980 spin_lock(ptl); 1981 same = pte_same(*page_table, orig_pte); 1982 spin_unlock(ptl); 1983 } 1984 #endif 1985 pte_unmap(page_table); 1986 return same; 1987 } 1988 1989 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1990 { 1991 debug_dma_assert_idle(src); 1992 1993 /* 1994 * If the source page was a PFN mapping, we don't have 1995 * a "struct page" for it. We do a best-effort copy by 1996 * just copying from the original user address. If that 1997 * fails, we just zero-fill it. Live with it. 1998 */ 1999 if (unlikely(!src)) { 2000 void *kaddr = kmap_atomic(dst); 2001 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2002 2003 /* 2004 * This really shouldn't fail, because the page is there 2005 * in the page tables. But it might just be unreadable, 2006 * in which case we just give up and fill the result with 2007 * zeroes. 2008 */ 2009 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2010 clear_page(kaddr); 2011 kunmap_atomic(kaddr); 2012 flush_dcache_page(dst); 2013 } else 2014 copy_user_highpage(dst, src, va, vma); 2015 } 2016 2017 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2018 { 2019 struct file *vm_file = vma->vm_file; 2020 2021 if (vm_file) 2022 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2023 2024 /* 2025 * Special mappings (e.g. VDSO) do not have any file so fake 2026 * a default GFP_KERNEL for them. 2027 */ 2028 return GFP_KERNEL; 2029 } 2030 2031 /* 2032 * Notify the address space that the page is about to become writable so that 2033 * it can prohibit this or wait for the page to get into an appropriate state. 2034 * 2035 * We do this without the lock held, so that it can sleep if it needs to. 2036 */ 2037 static int do_page_mkwrite(struct vm_fault *vmf) 2038 { 2039 int ret; 2040 struct page *page = vmf->page; 2041 unsigned int old_flags = vmf->flags; 2042 2043 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2044 2045 ret = vmf->vma->vm_ops->page_mkwrite(vmf->vma, vmf); 2046 /* Restore original flags so that caller is not surprised */ 2047 vmf->flags = old_flags; 2048 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2049 return ret; 2050 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2051 lock_page(page); 2052 if (!page->mapping) { 2053 unlock_page(page); 2054 return 0; /* retry */ 2055 } 2056 ret |= VM_FAULT_LOCKED; 2057 } else 2058 VM_BUG_ON_PAGE(!PageLocked(page), page); 2059 return ret; 2060 } 2061 2062 /* 2063 * Handle dirtying of a page in shared file mapping on a write fault. 2064 * 2065 * The function expects the page to be locked and unlocks it. 2066 */ 2067 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2068 struct page *page) 2069 { 2070 struct address_space *mapping; 2071 bool dirtied; 2072 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2073 2074 dirtied = set_page_dirty(page); 2075 VM_BUG_ON_PAGE(PageAnon(page), page); 2076 /* 2077 * Take a local copy of the address_space - page.mapping may be zeroed 2078 * by truncate after unlock_page(). The address_space itself remains 2079 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2080 * release semantics to prevent the compiler from undoing this copying. 2081 */ 2082 mapping = page_rmapping(page); 2083 unlock_page(page); 2084 2085 if ((dirtied || page_mkwrite) && mapping) { 2086 /* 2087 * Some device drivers do not set page.mapping 2088 * but still dirty their pages 2089 */ 2090 balance_dirty_pages_ratelimited(mapping); 2091 } 2092 2093 if (!page_mkwrite) 2094 file_update_time(vma->vm_file); 2095 } 2096 2097 /* 2098 * Handle write page faults for pages that can be reused in the current vma 2099 * 2100 * This can happen either due to the mapping being with the VM_SHARED flag, 2101 * or due to us being the last reference standing to the page. In either 2102 * case, all we need to do here is to mark the page as writable and update 2103 * any related book-keeping. 2104 */ 2105 static inline void wp_page_reuse(struct vm_fault *vmf) 2106 __releases(vmf->ptl) 2107 { 2108 struct vm_area_struct *vma = vmf->vma; 2109 struct page *page = vmf->page; 2110 pte_t entry; 2111 /* 2112 * Clear the pages cpupid information as the existing 2113 * information potentially belongs to a now completely 2114 * unrelated process. 2115 */ 2116 if (page) 2117 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2118 2119 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2120 entry = pte_mkyoung(vmf->orig_pte); 2121 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2122 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2123 update_mmu_cache(vma, vmf->address, vmf->pte); 2124 pte_unmap_unlock(vmf->pte, vmf->ptl); 2125 } 2126 2127 /* 2128 * Handle the case of a page which we actually need to copy to a new page. 2129 * 2130 * Called with mmap_sem locked and the old page referenced, but 2131 * without the ptl held. 2132 * 2133 * High level logic flow: 2134 * 2135 * - Allocate a page, copy the content of the old page to the new one. 2136 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2137 * - Take the PTL. If the pte changed, bail out and release the allocated page 2138 * - If the pte is still the way we remember it, update the page table and all 2139 * relevant references. This includes dropping the reference the page-table 2140 * held to the old page, as well as updating the rmap. 2141 * - In any case, unlock the PTL and drop the reference we took to the old page. 2142 */ 2143 static int wp_page_copy(struct vm_fault *vmf) 2144 { 2145 struct vm_area_struct *vma = vmf->vma; 2146 struct mm_struct *mm = vma->vm_mm; 2147 struct page *old_page = vmf->page; 2148 struct page *new_page = NULL; 2149 pte_t entry; 2150 int page_copied = 0; 2151 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2152 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2153 struct mem_cgroup *memcg; 2154 2155 if (unlikely(anon_vma_prepare(vma))) 2156 goto oom; 2157 2158 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2159 new_page = alloc_zeroed_user_highpage_movable(vma, 2160 vmf->address); 2161 if (!new_page) 2162 goto oom; 2163 } else { 2164 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2165 vmf->address); 2166 if (!new_page) 2167 goto oom; 2168 cow_user_page(new_page, old_page, vmf->address, vma); 2169 } 2170 2171 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2172 goto oom_free_new; 2173 2174 __SetPageUptodate(new_page); 2175 2176 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2177 2178 /* 2179 * Re-check the pte - we dropped the lock 2180 */ 2181 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2182 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2183 if (old_page) { 2184 if (!PageAnon(old_page)) { 2185 dec_mm_counter_fast(mm, 2186 mm_counter_file(old_page)); 2187 inc_mm_counter_fast(mm, MM_ANONPAGES); 2188 } 2189 } else { 2190 inc_mm_counter_fast(mm, MM_ANONPAGES); 2191 } 2192 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2193 entry = mk_pte(new_page, vma->vm_page_prot); 2194 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2195 /* 2196 * Clear the pte entry and flush it first, before updating the 2197 * pte with the new entry. This will avoid a race condition 2198 * seen in the presence of one thread doing SMC and another 2199 * thread doing COW. 2200 */ 2201 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2202 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2203 mem_cgroup_commit_charge(new_page, memcg, false, false); 2204 lru_cache_add_active_or_unevictable(new_page, vma); 2205 /* 2206 * We call the notify macro here because, when using secondary 2207 * mmu page tables (such as kvm shadow page tables), we want the 2208 * new page to be mapped directly into the secondary page table. 2209 */ 2210 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2211 update_mmu_cache(vma, vmf->address, vmf->pte); 2212 if (old_page) { 2213 /* 2214 * Only after switching the pte to the new page may 2215 * we remove the mapcount here. Otherwise another 2216 * process may come and find the rmap count decremented 2217 * before the pte is switched to the new page, and 2218 * "reuse" the old page writing into it while our pte 2219 * here still points into it and can be read by other 2220 * threads. 2221 * 2222 * The critical issue is to order this 2223 * page_remove_rmap with the ptp_clear_flush above. 2224 * Those stores are ordered by (if nothing else,) 2225 * the barrier present in the atomic_add_negative 2226 * in page_remove_rmap. 2227 * 2228 * Then the TLB flush in ptep_clear_flush ensures that 2229 * no process can access the old page before the 2230 * decremented mapcount is visible. And the old page 2231 * cannot be reused until after the decremented 2232 * mapcount is visible. So transitively, TLBs to 2233 * old page will be flushed before it can be reused. 2234 */ 2235 page_remove_rmap(old_page, false); 2236 } 2237 2238 /* Free the old page.. */ 2239 new_page = old_page; 2240 page_copied = 1; 2241 } else { 2242 mem_cgroup_cancel_charge(new_page, memcg, false); 2243 } 2244 2245 if (new_page) 2246 put_page(new_page); 2247 2248 pte_unmap_unlock(vmf->pte, vmf->ptl); 2249 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2250 if (old_page) { 2251 /* 2252 * Don't let another task, with possibly unlocked vma, 2253 * keep the mlocked page. 2254 */ 2255 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2256 lock_page(old_page); /* LRU manipulation */ 2257 if (PageMlocked(old_page)) 2258 munlock_vma_page(old_page); 2259 unlock_page(old_page); 2260 } 2261 put_page(old_page); 2262 } 2263 return page_copied ? VM_FAULT_WRITE : 0; 2264 oom_free_new: 2265 put_page(new_page); 2266 oom: 2267 if (old_page) 2268 put_page(old_page); 2269 return VM_FAULT_OOM; 2270 } 2271 2272 /** 2273 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2274 * writeable once the page is prepared 2275 * 2276 * @vmf: structure describing the fault 2277 * 2278 * This function handles all that is needed to finish a write page fault in a 2279 * shared mapping due to PTE being read-only once the mapped page is prepared. 2280 * It handles locking of PTE and modifying it. The function returns 2281 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2282 * lock. 2283 * 2284 * The function expects the page to be locked or other protection against 2285 * concurrent faults / writeback (such as DAX radix tree locks). 2286 */ 2287 int finish_mkwrite_fault(struct vm_fault *vmf) 2288 { 2289 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2290 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2291 &vmf->ptl); 2292 /* 2293 * We might have raced with another page fault while we released the 2294 * pte_offset_map_lock. 2295 */ 2296 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2297 pte_unmap_unlock(vmf->pte, vmf->ptl); 2298 return VM_FAULT_NOPAGE; 2299 } 2300 wp_page_reuse(vmf); 2301 return 0; 2302 } 2303 2304 /* 2305 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2306 * mapping 2307 */ 2308 static int wp_pfn_shared(struct vm_fault *vmf) 2309 { 2310 struct vm_area_struct *vma = vmf->vma; 2311 2312 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2313 int ret; 2314 2315 pte_unmap_unlock(vmf->pte, vmf->ptl); 2316 vmf->flags |= FAULT_FLAG_MKWRITE; 2317 ret = vma->vm_ops->pfn_mkwrite(vma, vmf); 2318 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2319 return ret; 2320 return finish_mkwrite_fault(vmf); 2321 } 2322 wp_page_reuse(vmf); 2323 return VM_FAULT_WRITE; 2324 } 2325 2326 static int wp_page_shared(struct vm_fault *vmf) 2327 __releases(vmf->ptl) 2328 { 2329 struct vm_area_struct *vma = vmf->vma; 2330 2331 get_page(vmf->page); 2332 2333 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2334 int tmp; 2335 2336 pte_unmap_unlock(vmf->pte, vmf->ptl); 2337 tmp = do_page_mkwrite(vmf); 2338 if (unlikely(!tmp || (tmp & 2339 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2340 put_page(vmf->page); 2341 return tmp; 2342 } 2343 tmp = finish_mkwrite_fault(vmf); 2344 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2345 unlock_page(vmf->page); 2346 put_page(vmf->page); 2347 return tmp; 2348 } 2349 } else { 2350 wp_page_reuse(vmf); 2351 lock_page(vmf->page); 2352 } 2353 fault_dirty_shared_page(vma, vmf->page); 2354 put_page(vmf->page); 2355 2356 return VM_FAULT_WRITE; 2357 } 2358 2359 /* 2360 * This routine handles present pages, when users try to write 2361 * to a shared page. It is done by copying the page to a new address 2362 * and decrementing the shared-page counter for the old page. 2363 * 2364 * Note that this routine assumes that the protection checks have been 2365 * done by the caller (the low-level page fault routine in most cases). 2366 * Thus we can safely just mark it writable once we've done any necessary 2367 * COW. 2368 * 2369 * We also mark the page dirty at this point even though the page will 2370 * change only once the write actually happens. This avoids a few races, 2371 * and potentially makes it more efficient. 2372 * 2373 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2374 * but allow concurrent faults), with pte both mapped and locked. 2375 * We return with mmap_sem still held, but pte unmapped and unlocked. 2376 */ 2377 static int do_wp_page(struct vm_fault *vmf) 2378 __releases(vmf->ptl) 2379 { 2380 struct vm_area_struct *vma = vmf->vma; 2381 2382 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2383 if (!vmf->page) { 2384 /* 2385 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2386 * VM_PFNMAP VMA. 2387 * 2388 * We should not cow pages in a shared writeable mapping. 2389 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2390 */ 2391 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2392 (VM_WRITE|VM_SHARED)) 2393 return wp_pfn_shared(vmf); 2394 2395 pte_unmap_unlock(vmf->pte, vmf->ptl); 2396 return wp_page_copy(vmf); 2397 } 2398 2399 /* 2400 * Take out anonymous pages first, anonymous shared vmas are 2401 * not dirty accountable. 2402 */ 2403 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2404 int total_mapcount; 2405 if (!trylock_page(vmf->page)) { 2406 get_page(vmf->page); 2407 pte_unmap_unlock(vmf->pte, vmf->ptl); 2408 lock_page(vmf->page); 2409 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2410 vmf->address, &vmf->ptl); 2411 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2412 unlock_page(vmf->page); 2413 pte_unmap_unlock(vmf->pte, vmf->ptl); 2414 put_page(vmf->page); 2415 return 0; 2416 } 2417 put_page(vmf->page); 2418 } 2419 if (reuse_swap_page(vmf->page, &total_mapcount)) { 2420 if (total_mapcount == 1) { 2421 /* 2422 * The page is all ours. Move it to 2423 * our anon_vma so the rmap code will 2424 * not search our parent or siblings. 2425 * Protected against the rmap code by 2426 * the page lock. 2427 */ 2428 page_move_anon_rmap(vmf->page, vma); 2429 } 2430 unlock_page(vmf->page); 2431 wp_page_reuse(vmf); 2432 return VM_FAULT_WRITE; 2433 } 2434 unlock_page(vmf->page); 2435 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2436 (VM_WRITE|VM_SHARED))) { 2437 return wp_page_shared(vmf); 2438 } 2439 2440 /* 2441 * Ok, we need to copy. Oh, well.. 2442 */ 2443 get_page(vmf->page); 2444 2445 pte_unmap_unlock(vmf->pte, vmf->ptl); 2446 return wp_page_copy(vmf); 2447 } 2448 2449 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2450 unsigned long start_addr, unsigned long end_addr, 2451 struct zap_details *details) 2452 { 2453 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2454 } 2455 2456 static inline void unmap_mapping_range_tree(struct rb_root *root, 2457 struct zap_details *details) 2458 { 2459 struct vm_area_struct *vma; 2460 pgoff_t vba, vea, zba, zea; 2461 2462 vma_interval_tree_foreach(vma, root, 2463 details->first_index, details->last_index) { 2464 2465 vba = vma->vm_pgoff; 2466 vea = vba + vma_pages(vma) - 1; 2467 zba = details->first_index; 2468 if (zba < vba) 2469 zba = vba; 2470 zea = details->last_index; 2471 if (zea > vea) 2472 zea = vea; 2473 2474 unmap_mapping_range_vma(vma, 2475 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2476 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2477 details); 2478 } 2479 } 2480 2481 /** 2482 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2483 * address_space corresponding to the specified page range in the underlying 2484 * file. 2485 * 2486 * @mapping: the address space containing mmaps to be unmapped. 2487 * @holebegin: byte in first page to unmap, relative to the start of 2488 * the underlying file. This will be rounded down to a PAGE_SIZE 2489 * boundary. Note that this is different from truncate_pagecache(), which 2490 * must keep the partial page. In contrast, we must get rid of 2491 * partial pages. 2492 * @holelen: size of prospective hole in bytes. This will be rounded 2493 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2494 * end of the file. 2495 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2496 * but 0 when invalidating pagecache, don't throw away private data. 2497 */ 2498 void unmap_mapping_range(struct address_space *mapping, 2499 loff_t const holebegin, loff_t const holelen, int even_cows) 2500 { 2501 struct zap_details details = { }; 2502 pgoff_t hba = holebegin >> PAGE_SHIFT; 2503 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2504 2505 /* Check for overflow. */ 2506 if (sizeof(holelen) > sizeof(hlen)) { 2507 long long holeend = 2508 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2509 if (holeend & ~(long long)ULONG_MAX) 2510 hlen = ULONG_MAX - hba + 1; 2511 } 2512 2513 details.check_mapping = even_cows? NULL: mapping; 2514 details.first_index = hba; 2515 details.last_index = hba + hlen - 1; 2516 if (details.last_index < details.first_index) 2517 details.last_index = ULONG_MAX; 2518 2519 i_mmap_lock_write(mapping); 2520 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2521 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2522 i_mmap_unlock_write(mapping); 2523 } 2524 EXPORT_SYMBOL(unmap_mapping_range); 2525 2526 /* 2527 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2528 * but allow concurrent faults), and pte mapped but not yet locked. 2529 * We return with pte unmapped and unlocked. 2530 * 2531 * We return with the mmap_sem locked or unlocked in the same cases 2532 * as does filemap_fault(). 2533 */ 2534 int do_swap_page(struct vm_fault *vmf) 2535 { 2536 struct vm_area_struct *vma = vmf->vma; 2537 struct page *page, *swapcache; 2538 struct mem_cgroup *memcg; 2539 swp_entry_t entry; 2540 pte_t pte; 2541 int locked; 2542 int exclusive = 0; 2543 int ret = 0; 2544 2545 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2546 goto out; 2547 2548 entry = pte_to_swp_entry(vmf->orig_pte); 2549 if (unlikely(non_swap_entry(entry))) { 2550 if (is_migration_entry(entry)) { 2551 migration_entry_wait(vma->vm_mm, vmf->pmd, 2552 vmf->address); 2553 } else if (is_hwpoison_entry(entry)) { 2554 ret = VM_FAULT_HWPOISON; 2555 } else { 2556 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2557 ret = VM_FAULT_SIGBUS; 2558 } 2559 goto out; 2560 } 2561 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2562 page = lookup_swap_cache(entry); 2563 if (!page) { 2564 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma, 2565 vmf->address); 2566 if (!page) { 2567 /* 2568 * Back out if somebody else faulted in this pte 2569 * while we released the pte lock. 2570 */ 2571 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2572 vmf->address, &vmf->ptl); 2573 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2574 ret = VM_FAULT_OOM; 2575 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2576 goto unlock; 2577 } 2578 2579 /* Had to read the page from swap area: Major fault */ 2580 ret = VM_FAULT_MAJOR; 2581 count_vm_event(PGMAJFAULT); 2582 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 2583 } else if (PageHWPoison(page)) { 2584 /* 2585 * hwpoisoned dirty swapcache pages are kept for killing 2586 * owner processes (which may be unknown at hwpoison time) 2587 */ 2588 ret = VM_FAULT_HWPOISON; 2589 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2590 swapcache = page; 2591 goto out_release; 2592 } 2593 2594 swapcache = page; 2595 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2596 2597 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2598 if (!locked) { 2599 ret |= VM_FAULT_RETRY; 2600 goto out_release; 2601 } 2602 2603 /* 2604 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2605 * release the swapcache from under us. The page pin, and pte_same 2606 * test below, are not enough to exclude that. Even if it is still 2607 * swapcache, we need to check that the page's swap has not changed. 2608 */ 2609 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2610 goto out_page; 2611 2612 page = ksm_might_need_to_copy(page, vma, vmf->address); 2613 if (unlikely(!page)) { 2614 ret = VM_FAULT_OOM; 2615 page = swapcache; 2616 goto out_page; 2617 } 2618 2619 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 2620 &memcg, false)) { 2621 ret = VM_FAULT_OOM; 2622 goto out_page; 2623 } 2624 2625 /* 2626 * Back out if somebody else already faulted in this pte. 2627 */ 2628 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2629 &vmf->ptl); 2630 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2631 goto out_nomap; 2632 2633 if (unlikely(!PageUptodate(page))) { 2634 ret = VM_FAULT_SIGBUS; 2635 goto out_nomap; 2636 } 2637 2638 /* 2639 * The page isn't present yet, go ahead with the fault. 2640 * 2641 * Be careful about the sequence of operations here. 2642 * To get its accounting right, reuse_swap_page() must be called 2643 * while the page is counted on swap but not yet in mapcount i.e. 2644 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2645 * must be called after the swap_free(), or it will never succeed. 2646 */ 2647 2648 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2649 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2650 pte = mk_pte(page, vma->vm_page_prot); 2651 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2652 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2653 vmf->flags &= ~FAULT_FLAG_WRITE; 2654 ret |= VM_FAULT_WRITE; 2655 exclusive = RMAP_EXCLUSIVE; 2656 } 2657 flush_icache_page(vma, page); 2658 if (pte_swp_soft_dirty(vmf->orig_pte)) 2659 pte = pte_mksoft_dirty(pte); 2660 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2661 vmf->orig_pte = pte; 2662 if (page == swapcache) { 2663 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2664 mem_cgroup_commit_charge(page, memcg, true, false); 2665 activate_page(page); 2666 } else { /* ksm created a completely new copy */ 2667 page_add_new_anon_rmap(page, vma, vmf->address, false); 2668 mem_cgroup_commit_charge(page, memcg, false, false); 2669 lru_cache_add_active_or_unevictable(page, vma); 2670 } 2671 2672 swap_free(entry); 2673 if (mem_cgroup_swap_full(page) || 2674 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2675 try_to_free_swap(page); 2676 unlock_page(page); 2677 if (page != swapcache) { 2678 /* 2679 * Hold the lock to avoid the swap entry to be reused 2680 * until we take the PT lock for the pte_same() check 2681 * (to avoid false positives from pte_same). For 2682 * further safety release the lock after the swap_free 2683 * so that the swap count won't change under a 2684 * parallel locked swapcache. 2685 */ 2686 unlock_page(swapcache); 2687 put_page(swapcache); 2688 } 2689 2690 if (vmf->flags & FAULT_FLAG_WRITE) { 2691 ret |= do_wp_page(vmf); 2692 if (ret & VM_FAULT_ERROR) 2693 ret &= VM_FAULT_ERROR; 2694 goto out; 2695 } 2696 2697 /* No need to invalidate - it was non-present before */ 2698 update_mmu_cache(vma, vmf->address, vmf->pte); 2699 unlock: 2700 pte_unmap_unlock(vmf->pte, vmf->ptl); 2701 out: 2702 return ret; 2703 out_nomap: 2704 mem_cgroup_cancel_charge(page, memcg, false); 2705 pte_unmap_unlock(vmf->pte, vmf->ptl); 2706 out_page: 2707 unlock_page(page); 2708 out_release: 2709 put_page(page); 2710 if (page != swapcache) { 2711 unlock_page(swapcache); 2712 put_page(swapcache); 2713 } 2714 return ret; 2715 } 2716 2717 /* 2718 * This is like a special single-page "expand_{down|up}wards()", 2719 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2720 * doesn't hit another vma. 2721 */ 2722 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2723 { 2724 address &= PAGE_MASK; 2725 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2726 struct vm_area_struct *prev = vma->vm_prev; 2727 2728 /* 2729 * Is there a mapping abutting this one below? 2730 * 2731 * That's only ok if it's the same stack mapping 2732 * that has gotten split.. 2733 */ 2734 if (prev && prev->vm_end == address) 2735 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2736 2737 return expand_downwards(vma, address - PAGE_SIZE); 2738 } 2739 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2740 struct vm_area_struct *next = vma->vm_next; 2741 2742 /* As VM_GROWSDOWN but s/below/above/ */ 2743 if (next && next->vm_start == address + PAGE_SIZE) 2744 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2745 2746 return expand_upwards(vma, address + PAGE_SIZE); 2747 } 2748 return 0; 2749 } 2750 2751 /* 2752 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2753 * but allow concurrent faults), and pte mapped but not yet locked. 2754 * We return with mmap_sem still held, but pte unmapped and unlocked. 2755 */ 2756 static int do_anonymous_page(struct vm_fault *vmf) 2757 { 2758 struct vm_area_struct *vma = vmf->vma; 2759 struct mem_cgroup *memcg; 2760 struct page *page; 2761 pte_t entry; 2762 2763 /* File mapping without ->vm_ops ? */ 2764 if (vma->vm_flags & VM_SHARED) 2765 return VM_FAULT_SIGBUS; 2766 2767 /* Check if we need to add a guard page to the stack */ 2768 if (check_stack_guard_page(vma, vmf->address) < 0) 2769 return VM_FAULT_SIGSEGV; 2770 2771 /* 2772 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2773 * pte_offset_map() on pmds where a huge pmd might be created 2774 * from a different thread. 2775 * 2776 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2777 * parallel threads are excluded by other means. 2778 * 2779 * Here we only have down_read(mmap_sem). 2780 */ 2781 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 2782 return VM_FAULT_OOM; 2783 2784 /* See the comment in pte_alloc_one_map() */ 2785 if (unlikely(pmd_trans_unstable(vmf->pmd))) 2786 return 0; 2787 2788 /* Use the zero-page for reads */ 2789 if (!(vmf->flags & FAULT_FLAG_WRITE) && 2790 !mm_forbids_zeropage(vma->vm_mm)) { 2791 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 2792 vma->vm_page_prot)); 2793 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2794 vmf->address, &vmf->ptl); 2795 if (!pte_none(*vmf->pte)) 2796 goto unlock; 2797 /* Deliver the page fault to userland, check inside PT lock */ 2798 if (userfaultfd_missing(vma)) { 2799 pte_unmap_unlock(vmf->pte, vmf->ptl); 2800 return handle_userfault(vmf, VM_UFFD_MISSING); 2801 } 2802 goto setpte; 2803 } 2804 2805 /* Allocate our own private page. */ 2806 if (unlikely(anon_vma_prepare(vma))) 2807 goto oom; 2808 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 2809 if (!page) 2810 goto oom; 2811 2812 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 2813 goto oom_free_page; 2814 2815 /* 2816 * The memory barrier inside __SetPageUptodate makes sure that 2817 * preceeding stores to the page contents become visible before 2818 * the set_pte_at() write. 2819 */ 2820 __SetPageUptodate(page); 2821 2822 entry = mk_pte(page, vma->vm_page_prot); 2823 if (vma->vm_flags & VM_WRITE) 2824 entry = pte_mkwrite(pte_mkdirty(entry)); 2825 2826 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2827 &vmf->ptl); 2828 if (!pte_none(*vmf->pte)) 2829 goto release; 2830 2831 /* Deliver the page fault to userland, check inside PT lock */ 2832 if (userfaultfd_missing(vma)) { 2833 pte_unmap_unlock(vmf->pte, vmf->ptl); 2834 mem_cgroup_cancel_charge(page, memcg, false); 2835 put_page(page); 2836 return handle_userfault(vmf, VM_UFFD_MISSING); 2837 } 2838 2839 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2840 page_add_new_anon_rmap(page, vma, vmf->address, false); 2841 mem_cgroup_commit_charge(page, memcg, false, false); 2842 lru_cache_add_active_or_unevictable(page, vma); 2843 setpte: 2844 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 2845 2846 /* No need to invalidate - it was non-present before */ 2847 update_mmu_cache(vma, vmf->address, vmf->pte); 2848 unlock: 2849 pte_unmap_unlock(vmf->pte, vmf->ptl); 2850 return 0; 2851 release: 2852 mem_cgroup_cancel_charge(page, memcg, false); 2853 put_page(page); 2854 goto unlock; 2855 oom_free_page: 2856 put_page(page); 2857 oom: 2858 return VM_FAULT_OOM; 2859 } 2860 2861 /* 2862 * The mmap_sem must have been held on entry, and may have been 2863 * released depending on flags and vma->vm_ops->fault() return value. 2864 * See filemap_fault() and __lock_page_retry(). 2865 */ 2866 static int __do_fault(struct vm_fault *vmf) 2867 { 2868 struct vm_area_struct *vma = vmf->vma; 2869 int ret; 2870 2871 ret = vma->vm_ops->fault(vma, vmf); 2872 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 2873 VM_FAULT_DONE_COW))) 2874 return ret; 2875 2876 if (unlikely(PageHWPoison(vmf->page))) { 2877 if (ret & VM_FAULT_LOCKED) 2878 unlock_page(vmf->page); 2879 put_page(vmf->page); 2880 vmf->page = NULL; 2881 return VM_FAULT_HWPOISON; 2882 } 2883 2884 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2885 lock_page(vmf->page); 2886 else 2887 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 2888 2889 return ret; 2890 } 2891 2892 static int pte_alloc_one_map(struct vm_fault *vmf) 2893 { 2894 struct vm_area_struct *vma = vmf->vma; 2895 2896 if (!pmd_none(*vmf->pmd)) 2897 goto map_pte; 2898 if (vmf->prealloc_pte) { 2899 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 2900 if (unlikely(!pmd_none(*vmf->pmd))) { 2901 spin_unlock(vmf->ptl); 2902 goto map_pte; 2903 } 2904 2905 atomic_long_inc(&vma->vm_mm->nr_ptes); 2906 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 2907 spin_unlock(vmf->ptl); 2908 vmf->prealloc_pte = 0; 2909 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 2910 return VM_FAULT_OOM; 2911 } 2912 map_pte: 2913 /* 2914 * If a huge pmd materialized under us just retry later. Use 2915 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd 2916 * didn't become pmd_trans_huge under us and then back to pmd_none, as 2917 * a result of MADV_DONTNEED running immediately after a huge pmd fault 2918 * in a different thread of this mm, in turn leading to a misleading 2919 * pmd_trans_huge() retval. All we have to ensure is that it is a 2920 * regular pmd that we can walk with pte_offset_map() and we can do that 2921 * through an atomic read in C, which is what pmd_trans_unstable() 2922 * provides. 2923 */ 2924 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd)) 2925 return VM_FAULT_NOPAGE; 2926 2927 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2928 &vmf->ptl); 2929 return 0; 2930 } 2931 2932 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 2933 2934 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 2935 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 2936 unsigned long haddr) 2937 { 2938 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 2939 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 2940 return false; 2941 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 2942 return false; 2943 return true; 2944 } 2945 2946 static void deposit_prealloc_pte(struct vm_fault *vmf) 2947 { 2948 struct vm_area_struct *vma = vmf->vma; 2949 2950 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 2951 /* 2952 * We are going to consume the prealloc table, 2953 * count that as nr_ptes. 2954 */ 2955 atomic_long_inc(&vma->vm_mm->nr_ptes); 2956 vmf->prealloc_pte = 0; 2957 } 2958 2959 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 2960 { 2961 struct vm_area_struct *vma = vmf->vma; 2962 bool write = vmf->flags & FAULT_FLAG_WRITE; 2963 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 2964 pmd_t entry; 2965 int i, ret; 2966 2967 if (!transhuge_vma_suitable(vma, haddr)) 2968 return VM_FAULT_FALLBACK; 2969 2970 ret = VM_FAULT_FALLBACK; 2971 page = compound_head(page); 2972 2973 /* 2974 * Archs like ppc64 need additonal space to store information 2975 * related to pte entry. Use the preallocated table for that. 2976 */ 2977 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 2978 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 2979 if (!vmf->prealloc_pte) 2980 return VM_FAULT_OOM; 2981 smp_wmb(); /* See comment in __pte_alloc() */ 2982 } 2983 2984 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 2985 if (unlikely(!pmd_none(*vmf->pmd))) 2986 goto out; 2987 2988 for (i = 0; i < HPAGE_PMD_NR; i++) 2989 flush_icache_page(vma, page + i); 2990 2991 entry = mk_huge_pmd(page, vma->vm_page_prot); 2992 if (write) 2993 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 2994 2995 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); 2996 page_add_file_rmap(page, true); 2997 /* 2998 * deposit and withdraw with pmd lock held 2999 */ 3000 if (arch_needs_pgtable_deposit()) 3001 deposit_prealloc_pte(vmf); 3002 3003 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3004 3005 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3006 3007 /* fault is handled */ 3008 ret = 0; 3009 count_vm_event(THP_FILE_MAPPED); 3010 out: 3011 /* 3012 * If we are going to fallback to pte mapping, do a 3013 * withdraw with pmd lock held. 3014 */ 3015 if (arch_needs_pgtable_deposit() && ret == VM_FAULT_FALLBACK) 3016 vmf->prealloc_pte = pgtable_trans_huge_withdraw(vma->vm_mm, 3017 vmf->pmd); 3018 spin_unlock(vmf->ptl); 3019 return ret; 3020 } 3021 #else 3022 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3023 { 3024 BUILD_BUG(); 3025 return 0; 3026 } 3027 #endif 3028 3029 /** 3030 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3031 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3032 * 3033 * @vmf: fault environment 3034 * @memcg: memcg to charge page (only for private mappings) 3035 * @page: page to map 3036 * 3037 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3038 * return. 3039 * 3040 * Target users are page handler itself and implementations of 3041 * vm_ops->map_pages. 3042 */ 3043 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3044 struct page *page) 3045 { 3046 struct vm_area_struct *vma = vmf->vma; 3047 bool write = vmf->flags & FAULT_FLAG_WRITE; 3048 pte_t entry; 3049 int ret; 3050 3051 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3052 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3053 /* THP on COW? */ 3054 VM_BUG_ON_PAGE(memcg, page); 3055 3056 ret = do_set_pmd(vmf, page); 3057 if (ret != VM_FAULT_FALLBACK) 3058 goto fault_handled; 3059 } 3060 3061 if (!vmf->pte) { 3062 ret = pte_alloc_one_map(vmf); 3063 if (ret) 3064 goto fault_handled; 3065 } 3066 3067 /* Re-check under ptl */ 3068 if (unlikely(!pte_none(*vmf->pte))) { 3069 ret = VM_FAULT_NOPAGE; 3070 goto fault_handled; 3071 } 3072 3073 flush_icache_page(vma, page); 3074 entry = mk_pte(page, vma->vm_page_prot); 3075 if (write) 3076 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3077 /* copy-on-write page */ 3078 if (write && !(vma->vm_flags & VM_SHARED)) { 3079 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3080 page_add_new_anon_rmap(page, vma, vmf->address, false); 3081 mem_cgroup_commit_charge(page, memcg, false, false); 3082 lru_cache_add_active_or_unevictable(page, vma); 3083 } else { 3084 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3085 page_add_file_rmap(page, false); 3086 } 3087 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3088 3089 /* no need to invalidate: a not-present page won't be cached */ 3090 update_mmu_cache(vma, vmf->address, vmf->pte); 3091 ret = 0; 3092 3093 fault_handled: 3094 /* preallocated pagetable is unused: free it */ 3095 if (vmf->prealloc_pte) { 3096 pte_free(vmf->vma->vm_mm, vmf->prealloc_pte); 3097 vmf->prealloc_pte = 0; 3098 } 3099 return ret; 3100 } 3101 3102 3103 /** 3104 * finish_fault - finish page fault once we have prepared the page to fault 3105 * 3106 * @vmf: structure describing the fault 3107 * 3108 * This function handles all that is needed to finish a page fault once the 3109 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3110 * given page, adds reverse page mapping, handles memcg charges and LRU 3111 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3112 * error. 3113 * 3114 * The function expects the page to be locked and on success it consumes a 3115 * reference of a page being mapped (for the PTE which maps it). 3116 */ 3117 int finish_fault(struct vm_fault *vmf) 3118 { 3119 struct page *page; 3120 int ret; 3121 3122 /* Did we COW the page? */ 3123 if ((vmf->flags & FAULT_FLAG_WRITE) && 3124 !(vmf->vma->vm_flags & VM_SHARED)) 3125 page = vmf->cow_page; 3126 else 3127 page = vmf->page; 3128 ret = alloc_set_pte(vmf, vmf->memcg, page); 3129 if (vmf->pte) 3130 pte_unmap_unlock(vmf->pte, vmf->ptl); 3131 return ret; 3132 } 3133 3134 static unsigned long fault_around_bytes __read_mostly = 3135 rounddown_pow_of_two(65536); 3136 3137 #ifdef CONFIG_DEBUG_FS 3138 static int fault_around_bytes_get(void *data, u64 *val) 3139 { 3140 *val = fault_around_bytes; 3141 return 0; 3142 } 3143 3144 /* 3145 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 3146 * rounded down to nearest page order. It's what do_fault_around() expects to 3147 * see. 3148 */ 3149 static int fault_around_bytes_set(void *data, u64 val) 3150 { 3151 if (val / PAGE_SIZE > PTRS_PER_PTE) 3152 return -EINVAL; 3153 if (val > PAGE_SIZE) 3154 fault_around_bytes = rounddown_pow_of_two(val); 3155 else 3156 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3157 return 0; 3158 } 3159 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 3160 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3161 3162 static int __init fault_around_debugfs(void) 3163 { 3164 void *ret; 3165 3166 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 3167 &fault_around_bytes_fops); 3168 if (!ret) 3169 pr_warn("Failed to create fault_around_bytes in debugfs"); 3170 return 0; 3171 } 3172 late_initcall(fault_around_debugfs); 3173 #endif 3174 3175 /* 3176 * do_fault_around() tries to map few pages around the fault address. The hope 3177 * is that the pages will be needed soon and this will lower the number of 3178 * faults to handle. 3179 * 3180 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3181 * not ready to be mapped: not up-to-date, locked, etc. 3182 * 3183 * This function is called with the page table lock taken. In the split ptlock 3184 * case the page table lock only protects only those entries which belong to 3185 * the page table corresponding to the fault address. 3186 * 3187 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3188 * only once. 3189 * 3190 * fault_around_pages() defines how many pages we'll try to map. 3191 * do_fault_around() expects it to return a power of two less than or equal to 3192 * PTRS_PER_PTE. 3193 * 3194 * The virtual address of the area that we map is naturally aligned to the 3195 * fault_around_pages() value (and therefore to page order). This way it's 3196 * easier to guarantee that we don't cross page table boundaries. 3197 */ 3198 static int do_fault_around(struct vm_fault *vmf) 3199 { 3200 unsigned long address = vmf->address, nr_pages, mask; 3201 pgoff_t start_pgoff = vmf->pgoff; 3202 pgoff_t end_pgoff; 3203 int off, ret = 0; 3204 3205 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3206 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3207 3208 vmf->address = max(address & mask, vmf->vma->vm_start); 3209 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3210 start_pgoff -= off; 3211 3212 /* 3213 * end_pgoff is either end of page table or end of vma 3214 * or fault_around_pages() from start_pgoff, depending what is nearest. 3215 */ 3216 end_pgoff = start_pgoff - 3217 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3218 PTRS_PER_PTE - 1; 3219 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3220 start_pgoff + nr_pages - 1); 3221 3222 if (pmd_none(*vmf->pmd)) { 3223 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3224 vmf->address); 3225 if (!vmf->prealloc_pte) 3226 goto out; 3227 smp_wmb(); /* See comment in __pte_alloc() */ 3228 } 3229 3230 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3231 3232 /* Huge page is mapped? Page fault is solved */ 3233 if (pmd_trans_huge(*vmf->pmd)) { 3234 ret = VM_FAULT_NOPAGE; 3235 goto out; 3236 } 3237 3238 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3239 if (!vmf->pte) 3240 goto out; 3241 3242 /* check if the page fault is solved */ 3243 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3244 if (!pte_none(*vmf->pte)) 3245 ret = VM_FAULT_NOPAGE; 3246 pte_unmap_unlock(vmf->pte, vmf->ptl); 3247 out: 3248 vmf->address = address; 3249 vmf->pte = NULL; 3250 return ret; 3251 } 3252 3253 static int do_read_fault(struct vm_fault *vmf) 3254 { 3255 struct vm_area_struct *vma = vmf->vma; 3256 int ret = 0; 3257 3258 /* 3259 * Let's call ->map_pages() first and use ->fault() as fallback 3260 * if page by the offset is not ready to be mapped (cold cache or 3261 * something). 3262 */ 3263 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3264 ret = do_fault_around(vmf); 3265 if (ret) 3266 return ret; 3267 } 3268 3269 ret = __do_fault(vmf); 3270 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3271 return ret; 3272 3273 ret |= finish_fault(vmf); 3274 unlock_page(vmf->page); 3275 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3276 put_page(vmf->page); 3277 return ret; 3278 } 3279 3280 static int do_cow_fault(struct vm_fault *vmf) 3281 { 3282 struct vm_area_struct *vma = vmf->vma; 3283 int ret; 3284 3285 if (unlikely(anon_vma_prepare(vma))) 3286 return VM_FAULT_OOM; 3287 3288 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3289 if (!vmf->cow_page) 3290 return VM_FAULT_OOM; 3291 3292 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3293 &vmf->memcg, false)) { 3294 put_page(vmf->cow_page); 3295 return VM_FAULT_OOM; 3296 } 3297 3298 ret = __do_fault(vmf); 3299 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3300 goto uncharge_out; 3301 if (ret & VM_FAULT_DONE_COW) 3302 return ret; 3303 3304 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3305 __SetPageUptodate(vmf->cow_page); 3306 3307 ret |= finish_fault(vmf); 3308 unlock_page(vmf->page); 3309 put_page(vmf->page); 3310 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3311 goto uncharge_out; 3312 return ret; 3313 uncharge_out: 3314 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3315 put_page(vmf->cow_page); 3316 return ret; 3317 } 3318 3319 static int do_shared_fault(struct vm_fault *vmf) 3320 { 3321 struct vm_area_struct *vma = vmf->vma; 3322 int ret, tmp; 3323 3324 ret = __do_fault(vmf); 3325 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3326 return ret; 3327 3328 /* 3329 * Check if the backing address space wants to know that the page is 3330 * about to become writable 3331 */ 3332 if (vma->vm_ops->page_mkwrite) { 3333 unlock_page(vmf->page); 3334 tmp = do_page_mkwrite(vmf); 3335 if (unlikely(!tmp || 3336 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3337 put_page(vmf->page); 3338 return tmp; 3339 } 3340 } 3341 3342 ret |= finish_fault(vmf); 3343 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3344 VM_FAULT_RETRY))) { 3345 unlock_page(vmf->page); 3346 put_page(vmf->page); 3347 return ret; 3348 } 3349 3350 fault_dirty_shared_page(vma, vmf->page); 3351 return ret; 3352 } 3353 3354 /* 3355 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3356 * but allow concurrent faults). 3357 * The mmap_sem may have been released depending on flags and our 3358 * return value. See filemap_fault() and __lock_page_or_retry(). 3359 */ 3360 static int do_fault(struct vm_fault *vmf) 3361 { 3362 struct vm_area_struct *vma = vmf->vma; 3363 3364 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3365 if (!vma->vm_ops->fault) 3366 return VM_FAULT_SIGBUS; 3367 if (!(vmf->flags & FAULT_FLAG_WRITE)) 3368 return do_read_fault(vmf); 3369 if (!(vma->vm_flags & VM_SHARED)) 3370 return do_cow_fault(vmf); 3371 return do_shared_fault(vmf); 3372 } 3373 3374 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3375 unsigned long addr, int page_nid, 3376 int *flags) 3377 { 3378 get_page(page); 3379 3380 count_vm_numa_event(NUMA_HINT_FAULTS); 3381 if (page_nid == numa_node_id()) { 3382 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3383 *flags |= TNF_FAULT_LOCAL; 3384 } 3385 3386 return mpol_misplaced(page, vma, addr); 3387 } 3388 3389 static int do_numa_page(struct vm_fault *vmf) 3390 { 3391 struct vm_area_struct *vma = vmf->vma; 3392 struct page *page = NULL; 3393 int page_nid = -1; 3394 int last_cpupid; 3395 int target_nid; 3396 bool migrated = false; 3397 pte_t pte = vmf->orig_pte; 3398 bool was_writable = pte_write(pte); 3399 int flags = 0; 3400 3401 /* 3402 * The "pte" at this point cannot be used safely without 3403 * validation through pte_unmap_same(). It's of NUMA type but 3404 * the pfn may be screwed if the read is non atomic. 3405 * 3406 * We can safely just do a "set_pte_at()", because the old 3407 * page table entry is not accessible, so there would be no 3408 * concurrent hardware modifications to the PTE. 3409 */ 3410 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3411 spin_lock(vmf->ptl); 3412 if (unlikely(!pte_same(*vmf->pte, pte))) { 3413 pte_unmap_unlock(vmf->pte, vmf->ptl); 3414 goto out; 3415 } 3416 3417 /* Make it present again */ 3418 pte = pte_modify(pte, vma->vm_page_prot); 3419 pte = pte_mkyoung(pte); 3420 if (was_writable) 3421 pte = pte_mkwrite(pte); 3422 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3423 update_mmu_cache(vma, vmf->address, vmf->pte); 3424 3425 page = vm_normal_page(vma, vmf->address, pte); 3426 if (!page) { 3427 pte_unmap_unlock(vmf->pte, vmf->ptl); 3428 return 0; 3429 } 3430 3431 /* TODO: handle PTE-mapped THP */ 3432 if (PageCompound(page)) { 3433 pte_unmap_unlock(vmf->pte, vmf->ptl); 3434 return 0; 3435 } 3436 3437 /* 3438 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3439 * much anyway since they can be in shared cache state. This misses 3440 * the case where a mapping is writable but the process never writes 3441 * to it but pte_write gets cleared during protection updates and 3442 * pte_dirty has unpredictable behaviour between PTE scan updates, 3443 * background writeback, dirty balancing and application behaviour. 3444 */ 3445 if (!pte_write(pte)) 3446 flags |= TNF_NO_GROUP; 3447 3448 /* 3449 * Flag if the page is shared between multiple address spaces. This 3450 * is later used when determining whether to group tasks together 3451 */ 3452 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3453 flags |= TNF_SHARED; 3454 3455 last_cpupid = page_cpupid_last(page); 3456 page_nid = page_to_nid(page); 3457 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3458 &flags); 3459 pte_unmap_unlock(vmf->pte, vmf->ptl); 3460 if (target_nid == -1) { 3461 put_page(page); 3462 goto out; 3463 } 3464 3465 /* Migrate to the requested node */ 3466 migrated = migrate_misplaced_page(page, vma, target_nid); 3467 if (migrated) { 3468 page_nid = target_nid; 3469 flags |= TNF_MIGRATED; 3470 } else 3471 flags |= TNF_MIGRATE_FAIL; 3472 3473 out: 3474 if (page_nid != -1) 3475 task_numa_fault(last_cpupid, page_nid, 1, flags); 3476 return 0; 3477 } 3478 3479 static int create_huge_pmd(struct vm_fault *vmf) 3480 { 3481 struct vm_area_struct *vma = vmf->vma; 3482 if (vma_is_anonymous(vma)) 3483 return do_huge_pmd_anonymous_page(vmf); 3484 if (vma->vm_ops->pmd_fault) 3485 return vma->vm_ops->pmd_fault(vma, vmf->address, vmf->pmd, 3486 vmf->flags); 3487 return VM_FAULT_FALLBACK; 3488 } 3489 3490 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3491 { 3492 if (vma_is_anonymous(vmf->vma)) 3493 return do_huge_pmd_wp_page(vmf, orig_pmd); 3494 if (vmf->vma->vm_ops->pmd_fault) 3495 return vmf->vma->vm_ops->pmd_fault(vmf->vma, vmf->address, 3496 vmf->pmd, vmf->flags); 3497 3498 /* COW handled on pte level: split pmd */ 3499 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3500 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3501 3502 return VM_FAULT_FALLBACK; 3503 } 3504 3505 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3506 { 3507 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3508 } 3509 3510 /* 3511 * These routines also need to handle stuff like marking pages dirty 3512 * and/or accessed for architectures that don't do it in hardware (most 3513 * RISC architectures). The early dirtying is also good on the i386. 3514 * 3515 * There is also a hook called "update_mmu_cache()" that architectures 3516 * with external mmu caches can use to update those (ie the Sparc or 3517 * PowerPC hashed page tables that act as extended TLBs). 3518 * 3519 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3520 * concurrent faults). 3521 * 3522 * The mmap_sem may have been released depending on flags and our return value. 3523 * See filemap_fault() and __lock_page_or_retry(). 3524 */ 3525 static int handle_pte_fault(struct vm_fault *vmf) 3526 { 3527 pte_t entry; 3528 3529 if (unlikely(pmd_none(*vmf->pmd))) { 3530 /* 3531 * Leave __pte_alloc() until later: because vm_ops->fault may 3532 * want to allocate huge page, and if we expose page table 3533 * for an instant, it will be difficult to retract from 3534 * concurrent faults and from rmap lookups. 3535 */ 3536 vmf->pte = NULL; 3537 } else { 3538 /* See comment in pte_alloc_one_map() */ 3539 if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd)) 3540 return 0; 3541 /* 3542 * A regular pmd is established and it can't morph into a huge 3543 * pmd from under us anymore at this point because we hold the 3544 * mmap_sem read mode and khugepaged takes it in write mode. 3545 * So now it's safe to run pte_offset_map(). 3546 */ 3547 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3548 vmf->orig_pte = *vmf->pte; 3549 3550 /* 3551 * some architectures can have larger ptes than wordsize, 3552 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3553 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee 3554 * atomic accesses. The code below just needs a consistent 3555 * view for the ifs and we later double check anyway with the 3556 * ptl lock held. So here a barrier will do. 3557 */ 3558 barrier(); 3559 if (pte_none(vmf->orig_pte)) { 3560 pte_unmap(vmf->pte); 3561 vmf->pte = NULL; 3562 } 3563 } 3564 3565 if (!vmf->pte) { 3566 if (vma_is_anonymous(vmf->vma)) 3567 return do_anonymous_page(vmf); 3568 else 3569 return do_fault(vmf); 3570 } 3571 3572 if (!pte_present(vmf->orig_pte)) 3573 return do_swap_page(vmf); 3574 3575 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3576 return do_numa_page(vmf); 3577 3578 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3579 spin_lock(vmf->ptl); 3580 entry = vmf->orig_pte; 3581 if (unlikely(!pte_same(*vmf->pte, entry))) 3582 goto unlock; 3583 if (vmf->flags & FAULT_FLAG_WRITE) { 3584 if (!pte_write(entry)) 3585 return do_wp_page(vmf); 3586 entry = pte_mkdirty(entry); 3587 } 3588 entry = pte_mkyoung(entry); 3589 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3590 vmf->flags & FAULT_FLAG_WRITE)) { 3591 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3592 } else { 3593 /* 3594 * This is needed only for protection faults but the arch code 3595 * is not yet telling us if this is a protection fault or not. 3596 * This still avoids useless tlb flushes for .text page faults 3597 * with threads. 3598 */ 3599 if (vmf->flags & FAULT_FLAG_WRITE) 3600 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3601 } 3602 unlock: 3603 pte_unmap_unlock(vmf->pte, vmf->ptl); 3604 return 0; 3605 } 3606 3607 /* 3608 * By the time we get here, we already hold the mm semaphore 3609 * 3610 * The mmap_sem may have been released depending on flags and our 3611 * return value. See filemap_fault() and __lock_page_or_retry(). 3612 */ 3613 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3614 unsigned int flags) 3615 { 3616 struct vm_fault vmf = { 3617 .vma = vma, 3618 .address = address & PAGE_MASK, 3619 .flags = flags, 3620 .pgoff = linear_page_index(vma, address), 3621 .gfp_mask = __get_fault_gfp_mask(vma), 3622 }; 3623 struct mm_struct *mm = vma->vm_mm; 3624 pgd_t *pgd; 3625 pud_t *pud; 3626 3627 pgd = pgd_offset(mm, address); 3628 pud = pud_alloc(mm, pgd, address); 3629 if (!pud) 3630 return VM_FAULT_OOM; 3631 vmf.pmd = pmd_alloc(mm, pud, address); 3632 if (!vmf.pmd) 3633 return VM_FAULT_OOM; 3634 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 3635 int ret = create_huge_pmd(&vmf); 3636 if (!(ret & VM_FAULT_FALLBACK)) 3637 return ret; 3638 } else { 3639 pmd_t orig_pmd = *vmf.pmd; 3640 int ret; 3641 3642 barrier(); 3643 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3644 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3645 return do_huge_pmd_numa_page(&vmf, orig_pmd); 3646 3647 if ((vmf.flags & FAULT_FLAG_WRITE) && 3648 !pmd_write(orig_pmd)) { 3649 ret = wp_huge_pmd(&vmf, orig_pmd); 3650 if (!(ret & VM_FAULT_FALLBACK)) 3651 return ret; 3652 } else { 3653 huge_pmd_set_accessed(&vmf, orig_pmd); 3654 return 0; 3655 } 3656 } 3657 } 3658 3659 return handle_pte_fault(&vmf); 3660 } 3661 3662 /* 3663 * By the time we get here, we already hold the mm semaphore 3664 * 3665 * The mmap_sem may have been released depending on flags and our 3666 * return value. See filemap_fault() and __lock_page_or_retry(). 3667 */ 3668 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3669 unsigned int flags) 3670 { 3671 int ret; 3672 3673 __set_current_state(TASK_RUNNING); 3674 3675 count_vm_event(PGFAULT); 3676 mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT); 3677 3678 /* do counter updates before entering really critical section. */ 3679 check_sync_rss_stat(current); 3680 3681 /* 3682 * Enable the memcg OOM handling for faults triggered in user 3683 * space. Kernel faults are handled more gracefully. 3684 */ 3685 if (flags & FAULT_FLAG_USER) 3686 mem_cgroup_oom_enable(); 3687 3688 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3689 flags & FAULT_FLAG_INSTRUCTION, 3690 flags & FAULT_FLAG_REMOTE)) 3691 return VM_FAULT_SIGSEGV; 3692 3693 if (unlikely(is_vm_hugetlb_page(vma))) 3694 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 3695 else 3696 ret = __handle_mm_fault(vma, address, flags); 3697 3698 if (flags & FAULT_FLAG_USER) { 3699 mem_cgroup_oom_disable(); 3700 /* 3701 * The task may have entered a memcg OOM situation but 3702 * if the allocation error was handled gracefully (no 3703 * VM_FAULT_OOM), there is no need to kill anything. 3704 * Just clean up the OOM state peacefully. 3705 */ 3706 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3707 mem_cgroup_oom_synchronize(false); 3708 } 3709 3710 /* 3711 * This mm has been already reaped by the oom reaper and so the 3712 * refault cannot be trusted in general. Anonymous refaults would 3713 * lose data and give a zero page instead e.g. This is especially 3714 * problem for use_mm() because regular tasks will just die and 3715 * the corrupted data will not be visible anywhere while kthread 3716 * will outlive the oom victim and potentially propagate the date 3717 * further. 3718 */ 3719 if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR) 3720 && test_bit(MMF_UNSTABLE, &vma->vm_mm->flags))) 3721 ret = VM_FAULT_SIGBUS; 3722 3723 return ret; 3724 } 3725 EXPORT_SYMBOL_GPL(handle_mm_fault); 3726 3727 #ifndef __PAGETABLE_PUD_FOLDED 3728 /* 3729 * Allocate page upper directory. 3730 * We've already handled the fast-path in-line. 3731 */ 3732 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3733 { 3734 pud_t *new = pud_alloc_one(mm, address); 3735 if (!new) 3736 return -ENOMEM; 3737 3738 smp_wmb(); /* See comment in __pte_alloc */ 3739 3740 spin_lock(&mm->page_table_lock); 3741 if (pgd_present(*pgd)) /* Another has populated it */ 3742 pud_free(mm, new); 3743 else 3744 pgd_populate(mm, pgd, new); 3745 spin_unlock(&mm->page_table_lock); 3746 return 0; 3747 } 3748 #endif /* __PAGETABLE_PUD_FOLDED */ 3749 3750 #ifndef __PAGETABLE_PMD_FOLDED 3751 /* 3752 * Allocate page middle directory. 3753 * We've already handled the fast-path in-line. 3754 */ 3755 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3756 { 3757 pmd_t *new = pmd_alloc_one(mm, address); 3758 if (!new) 3759 return -ENOMEM; 3760 3761 smp_wmb(); /* See comment in __pte_alloc */ 3762 3763 spin_lock(&mm->page_table_lock); 3764 #ifndef __ARCH_HAS_4LEVEL_HACK 3765 if (!pud_present(*pud)) { 3766 mm_inc_nr_pmds(mm); 3767 pud_populate(mm, pud, new); 3768 } else /* Another has populated it */ 3769 pmd_free(mm, new); 3770 #else 3771 if (!pgd_present(*pud)) { 3772 mm_inc_nr_pmds(mm); 3773 pgd_populate(mm, pud, new); 3774 } else /* Another has populated it */ 3775 pmd_free(mm, new); 3776 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3777 spin_unlock(&mm->page_table_lock); 3778 return 0; 3779 } 3780 #endif /* __PAGETABLE_PMD_FOLDED */ 3781 3782 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3783 pte_t **ptepp, spinlock_t **ptlp) 3784 { 3785 pgd_t *pgd; 3786 pud_t *pud; 3787 pmd_t *pmd; 3788 pte_t *ptep; 3789 3790 pgd = pgd_offset(mm, address); 3791 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3792 goto out; 3793 3794 pud = pud_offset(pgd, address); 3795 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3796 goto out; 3797 3798 pmd = pmd_offset(pud, address); 3799 VM_BUG_ON(pmd_trans_huge(*pmd)); 3800 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3801 goto out; 3802 3803 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3804 if (pmd_huge(*pmd)) 3805 goto out; 3806 3807 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3808 if (!ptep) 3809 goto out; 3810 if (!pte_present(*ptep)) 3811 goto unlock; 3812 *ptepp = ptep; 3813 return 0; 3814 unlock: 3815 pte_unmap_unlock(ptep, *ptlp); 3816 out: 3817 return -EINVAL; 3818 } 3819 3820 int follow_pte(struct mm_struct *mm, unsigned long address, pte_t **ptepp, 3821 spinlock_t **ptlp) 3822 { 3823 int res; 3824 3825 /* (void) is needed to make gcc happy */ 3826 (void) __cond_lock(*ptlp, 3827 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3828 return res; 3829 } 3830 3831 /** 3832 * follow_pfn - look up PFN at a user virtual address 3833 * @vma: memory mapping 3834 * @address: user virtual address 3835 * @pfn: location to store found PFN 3836 * 3837 * Only IO mappings and raw PFN mappings are allowed. 3838 * 3839 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3840 */ 3841 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3842 unsigned long *pfn) 3843 { 3844 int ret = -EINVAL; 3845 spinlock_t *ptl; 3846 pte_t *ptep; 3847 3848 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3849 return ret; 3850 3851 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3852 if (ret) 3853 return ret; 3854 *pfn = pte_pfn(*ptep); 3855 pte_unmap_unlock(ptep, ptl); 3856 return 0; 3857 } 3858 EXPORT_SYMBOL(follow_pfn); 3859 3860 #ifdef CONFIG_HAVE_IOREMAP_PROT 3861 int follow_phys(struct vm_area_struct *vma, 3862 unsigned long address, unsigned int flags, 3863 unsigned long *prot, resource_size_t *phys) 3864 { 3865 int ret = -EINVAL; 3866 pte_t *ptep, pte; 3867 spinlock_t *ptl; 3868 3869 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3870 goto out; 3871 3872 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3873 goto out; 3874 pte = *ptep; 3875 3876 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3877 goto unlock; 3878 3879 *prot = pgprot_val(pte_pgprot(pte)); 3880 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3881 3882 ret = 0; 3883 unlock: 3884 pte_unmap_unlock(ptep, ptl); 3885 out: 3886 return ret; 3887 } 3888 3889 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3890 void *buf, int len, int write) 3891 { 3892 resource_size_t phys_addr; 3893 unsigned long prot = 0; 3894 void __iomem *maddr; 3895 int offset = addr & (PAGE_SIZE-1); 3896 3897 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3898 return -EINVAL; 3899 3900 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 3901 if (write) 3902 memcpy_toio(maddr + offset, buf, len); 3903 else 3904 memcpy_fromio(buf, maddr + offset, len); 3905 iounmap(maddr); 3906 3907 return len; 3908 } 3909 EXPORT_SYMBOL_GPL(generic_access_phys); 3910 #endif 3911 3912 /* 3913 * Access another process' address space as given in mm. If non-NULL, use the 3914 * given task for page fault accounting. 3915 */ 3916 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3917 unsigned long addr, void *buf, int len, unsigned int gup_flags) 3918 { 3919 struct vm_area_struct *vma; 3920 void *old_buf = buf; 3921 int write = gup_flags & FOLL_WRITE; 3922 3923 down_read(&mm->mmap_sem); 3924 /* ignore errors, just check how much was successfully transferred */ 3925 while (len) { 3926 int bytes, ret, offset; 3927 void *maddr; 3928 struct page *page = NULL; 3929 3930 ret = get_user_pages_remote(tsk, mm, addr, 1, 3931 gup_flags, &page, &vma, NULL); 3932 if (ret <= 0) { 3933 #ifndef CONFIG_HAVE_IOREMAP_PROT 3934 break; 3935 #else 3936 /* 3937 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3938 * we can access using slightly different code. 3939 */ 3940 vma = find_vma(mm, addr); 3941 if (!vma || vma->vm_start > addr) 3942 break; 3943 if (vma->vm_ops && vma->vm_ops->access) 3944 ret = vma->vm_ops->access(vma, addr, buf, 3945 len, write); 3946 if (ret <= 0) 3947 break; 3948 bytes = ret; 3949 #endif 3950 } else { 3951 bytes = len; 3952 offset = addr & (PAGE_SIZE-1); 3953 if (bytes > PAGE_SIZE-offset) 3954 bytes = PAGE_SIZE-offset; 3955 3956 maddr = kmap(page); 3957 if (write) { 3958 copy_to_user_page(vma, page, addr, 3959 maddr + offset, buf, bytes); 3960 set_page_dirty_lock(page); 3961 } else { 3962 copy_from_user_page(vma, page, addr, 3963 buf, maddr + offset, bytes); 3964 } 3965 kunmap(page); 3966 put_page(page); 3967 } 3968 len -= bytes; 3969 buf += bytes; 3970 addr += bytes; 3971 } 3972 up_read(&mm->mmap_sem); 3973 3974 return buf - old_buf; 3975 } 3976 3977 /** 3978 * access_remote_vm - access another process' address space 3979 * @mm: the mm_struct of the target address space 3980 * @addr: start address to access 3981 * @buf: source or destination buffer 3982 * @len: number of bytes to transfer 3983 * @gup_flags: flags modifying lookup behaviour 3984 * 3985 * The caller must hold a reference on @mm. 3986 */ 3987 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3988 void *buf, int len, unsigned int gup_flags) 3989 { 3990 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 3991 } 3992 3993 /* 3994 * Access another process' address space. 3995 * Source/target buffer must be kernel space, 3996 * Do not walk the page table directly, use get_user_pages 3997 */ 3998 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3999 void *buf, int len, unsigned int gup_flags) 4000 { 4001 struct mm_struct *mm; 4002 int ret; 4003 4004 mm = get_task_mm(tsk); 4005 if (!mm) 4006 return 0; 4007 4008 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4009 4010 mmput(mm); 4011 4012 return ret; 4013 } 4014 EXPORT_SYMBOL_GPL(access_process_vm); 4015 4016 /* 4017 * Print the name of a VMA. 4018 */ 4019 void print_vma_addr(char *prefix, unsigned long ip) 4020 { 4021 struct mm_struct *mm = current->mm; 4022 struct vm_area_struct *vma; 4023 4024 /* 4025 * Do not print if we are in atomic 4026 * contexts (in exception stacks, etc.): 4027 */ 4028 if (preempt_count()) 4029 return; 4030 4031 down_read(&mm->mmap_sem); 4032 vma = find_vma(mm, ip); 4033 if (vma && vma->vm_file) { 4034 struct file *f = vma->vm_file; 4035 char *buf = (char *)__get_free_page(GFP_KERNEL); 4036 if (buf) { 4037 char *p; 4038 4039 p = file_path(f, buf, PAGE_SIZE); 4040 if (IS_ERR(p)) 4041 p = "?"; 4042 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4043 vma->vm_start, 4044 vma->vm_end - vma->vm_start); 4045 free_page((unsigned long)buf); 4046 } 4047 } 4048 up_read(&mm->mmap_sem); 4049 } 4050 4051 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4052 void __might_fault(const char *file, int line) 4053 { 4054 /* 4055 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4056 * holding the mmap_sem, this is safe because kernel memory doesn't 4057 * get paged out, therefore we'll never actually fault, and the 4058 * below annotations will generate false positives. 4059 */ 4060 if (segment_eq(get_fs(), KERNEL_DS)) 4061 return; 4062 if (pagefault_disabled()) 4063 return; 4064 __might_sleep(file, line, 0); 4065 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4066 if (current->mm) 4067 might_lock_read(¤t->mm->mmap_sem); 4068 #endif 4069 } 4070 EXPORT_SYMBOL(__might_fault); 4071 #endif 4072 4073 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4074 static void clear_gigantic_page(struct page *page, 4075 unsigned long addr, 4076 unsigned int pages_per_huge_page) 4077 { 4078 int i; 4079 struct page *p = page; 4080 4081 might_sleep(); 4082 for (i = 0; i < pages_per_huge_page; 4083 i++, p = mem_map_next(p, page, i)) { 4084 cond_resched(); 4085 clear_user_highpage(p, addr + i * PAGE_SIZE); 4086 } 4087 } 4088 void clear_huge_page(struct page *page, 4089 unsigned long addr, unsigned int pages_per_huge_page) 4090 { 4091 int i; 4092 4093 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4094 clear_gigantic_page(page, addr, pages_per_huge_page); 4095 return; 4096 } 4097 4098 might_sleep(); 4099 for (i = 0; i < pages_per_huge_page; i++) { 4100 cond_resched(); 4101 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4102 } 4103 } 4104 4105 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4106 unsigned long addr, 4107 struct vm_area_struct *vma, 4108 unsigned int pages_per_huge_page) 4109 { 4110 int i; 4111 struct page *dst_base = dst; 4112 struct page *src_base = src; 4113 4114 for (i = 0; i < pages_per_huge_page; ) { 4115 cond_resched(); 4116 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4117 4118 i++; 4119 dst = mem_map_next(dst, dst_base, i); 4120 src = mem_map_next(src, src_base, i); 4121 } 4122 } 4123 4124 void copy_user_huge_page(struct page *dst, struct page *src, 4125 unsigned long addr, struct vm_area_struct *vma, 4126 unsigned int pages_per_huge_page) 4127 { 4128 int i; 4129 4130 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4131 copy_user_gigantic_page(dst, src, addr, vma, 4132 pages_per_huge_page); 4133 return; 4134 } 4135 4136 might_sleep(); 4137 for (i = 0; i < pages_per_huge_page; i++) { 4138 cond_resched(); 4139 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4140 } 4141 } 4142 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4143 4144 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4145 4146 static struct kmem_cache *page_ptl_cachep; 4147 4148 void __init ptlock_cache_init(void) 4149 { 4150 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4151 SLAB_PANIC, NULL); 4152 } 4153 4154 bool ptlock_alloc(struct page *page) 4155 { 4156 spinlock_t *ptl; 4157 4158 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4159 if (!ptl) 4160 return false; 4161 page->ptl = ptl; 4162 return true; 4163 } 4164 4165 void ptlock_free(struct page *page) 4166 { 4167 kmem_cache_free(page_ptl_cachep, page->ptl); 4168 } 4169 #endif 4170