xref: /openbmc/linux/mm/memory.c (revision 56a0eccd)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/pfn_t.h>
54 #include <linux/writeback.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/kallsyms.h>
58 #include <linux/swapops.h>
59 #include <linux/elf.h>
60 #include <linux/gfp.h>
61 #include <linux/migrate.h>
62 #include <linux/string.h>
63 #include <linux/dma-debug.h>
64 #include <linux/debugfs.h>
65 #include <linux/userfaultfd_k.h>
66 
67 #include <asm/io.h>
68 #include <asm/mmu_context.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/tlb.h>
72 #include <asm/tlbflush.h>
73 #include <asm/pgtable.h>
74 
75 #include "internal.h"
76 
77 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
78 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
79 #endif
80 
81 #ifndef CONFIG_NEED_MULTIPLE_NODES
82 /* use the per-pgdat data instead for discontigmem - mbligh */
83 unsigned long max_mapnr;
84 struct page *mem_map;
85 
86 EXPORT_SYMBOL(max_mapnr);
87 EXPORT_SYMBOL(mem_map);
88 #endif
89 
90 /*
91  * A number of key systems in x86 including ioremap() rely on the assumption
92  * that high_memory defines the upper bound on direct map memory, then end
93  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
94  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
95  * and ZONE_HIGHMEM.
96  */
97 void * high_memory;
98 
99 EXPORT_SYMBOL(high_memory);
100 
101 /*
102  * Randomize the address space (stacks, mmaps, brk, etc.).
103  *
104  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
105  *   as ancient (libc5 based) binaries can segfault. )
106  */
107 int randomize_va_space __read_mostly =
108 #ifdef CONFIG_COMPAT_BRK
109 					1;
110 #else
111 					2;
112 #endif
113 
114 static int __init disable_randmaps(char *s)
115 {
116 	randomize_va_space = 0;
117 	return 1;
118 }
119 __setup("norandmaps", disable_randmaps);
120 
121 unsigned long zero_pfn __read_mostly;
122 unsigned long highest_memmap_pfn __read_mostly;
123 
124 EXPORT_SYMBOL(zero_pfn);
125 
126 /*
127  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
128  */
129 static int __init init_zero_pfn(void)
130 {
131 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
132 	return 0;
133 }
134 core_initcall(init_zero_pfn);
135 
136 
137 #if defined(SPLIT_RSS_COUNTING)
138 
139 void sync_mm_rss(struct mm_struct *mm)
140 {
141 	int i;
142 
143 	for (i = 0; i < NR_MM_COUNTERS; i++) {
144 		if (current->rss_stat.count[i]) {
145 			add_mm_counter(mm, i, current->rss_stat.count[i]);
146 			current->rss_stat.count[i] = 0;
147 		}
148 	}
149 	current->rss_stat.events = 0;
150 }
151 
152 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
153 {
154 	struct task_struct *task = current;
155 
156 	if (likely(task->mm == mm))
157 		task->rss_stat.count[member] += val;
158 	else
159 		add_mm_counter(mm, member, val);
160 }
161 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
162 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
163 
164 /* sync counter once per 64 page faults */
165 #define TASK_RSS_EVENTS_THRESH	(64)
166 static void check_sync_rss_stat(struct task_struct *task)
167 {
168 	if (unlikely(task != current))
169 		return;
170 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
171 		sync_mm_rss(task->mm);
172 }
173 #else /* SPLIT_RSS_COUNTING */
174 
175 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
176 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
177 
178 static void check_sync_rss_stat(struct task_struct *task)
179 {
180 }
181 
182 #endif /* SPLIT_RSS_COUNTING */
183 
184 #ifdef HAVE_GENERIC_MMU_GATHER
185 
186 static bool tlb_next_batch(struct mmu_gather *tlb)
187 {
188 	struct mmu_gather_batch *batch;
189 
190 	batch = tlb->active;
191 	if (batch->next) {
192 		tlb->active = batch->next;
193 		return true;
194 	}
195 
196 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
197 		return false;
198 
199 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
200 	if (!batch)
201 		return false;
202 
203 	tlb->batch_count++;
204 	batch->next = NULL;
205 	batch->nr   = 0;
206 	batch->max  = MAX_GATHER_BATCH;
207 
208 	tlb->active->next = batch;
209 	tlb->active = batch;
210 
211 	return true;
212 }
213 
214 /* tlb_gather_mmu
215  *	Called to initialize an (on-stack) mmu_gather structure for page-table
216  *	tear-down from @mm. The @fullmm argument is used when @mm is without
217  *	users and we're going to destroy the full address space (exit/execve).
218  */
219 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
220 {
221 	tlb->mm = mm;
222 
223 	/* Is it from 0 to ~0? */
224 	tlb->fullmm     = !(start | (end+1));
225 	tlb->need_flush_all = 0;
226 	tlb->local.next = NULL;
227 	tlb->local.nr   = 0;
228 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
229 	tlb->active     = &tlb->local;
230 	tlb->batch_count = 0;
231 
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 	tlb->batch = NULL;
234 #endif
235 
236 	__tlb_reset_range(tlb);
237 }
238 
239 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
240 {
241 	if (!tlb->end)
242 		return;
243 
244 	tlb_flush(tlb);
245 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
246 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
247 	tlb_table_flush(tlb);
248 #endif
249 	__tlb_reset_range(tlb);
250 }
251 
252 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
253 {
254 	struct mmu_gather_batch *batch;
255 
256 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
257 		free_pages_and_swap_cache(batch->pages, batch->nr);
258 		batch->nr = 0;
259 	}
260 	tlb->active = &tlb->local;
261 }
262 
263 void tlb_flush_mmu(struct mmu_gather *tlb)
264 {
265 	tlb_flush_mmu_tlbonly(tlb);
266 	tlb_flush_mmu_free(tlb);
267 }
268 
269 /* tlb_finish_mmu
270  *	Called at the end of the shootdown operation to free up any resources
271  *	that were required.
272  */
273 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
274 {
275 	struct mmu_gather_batch *batch, *next;
276 
277 	tlb_flush_mmu(tlb);
278 
279 	/* keep the page table cache within bounds */
280 	check_pgt_cache();
281 
282 	for (batch = tlb->local.next; batch; batch = next) {
283 		next = batch->next;
284 		free_pages((unsigned long)batch, 0);
285 	}
286 	tlb->local.next = NULL;
287 }
288 
289 /* __tlb_remove_page
290  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
291  *	handling the additional races in SMP caused by other CPUs caching valid
292  *	mappings in their TLBs. Returns the number of free page slots left.
293  *	When out of page slots we must call tlb_flush_mmu().
294  */
295 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
296 {
297 	struct mmu_gather_batch *batch;
298 
299 	VM_BUG_ON(!tlb->end);
300 
301 	batch = tlb->active;
302 	batch->pages[batch->nr++] = page;
303 	if (batch->nr == batch->max) {
304 		if (!tlb_next_batch(tlb))
305 			return 0;
306 		batch = tlb->active;
307 	}
308 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
309 
310 	return batch->max - batch->nr;
311 }
312 
313 #endif /* HAVE_GENERIC_MMU_GATHER */
314 
315 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
316 
317 /*
318  * See the comment near struct mmu_table_batch.
319  */
320 
321 static void tlb_remove_table_smp_sync(void *arg)
322 {
323 	/* Simply deliver the interrupt */
324 }
325 
326 static void tlb_remove_table_one(void *table)
327 {
328 	/*
329 	 * This isn't an RCU grace period and hence the page-tables cannot be
330 	 * assumed to be actually RCU-freed.
331 	 *
332 	 * It is however sufficient for software page-table walkers that rely on
333 	 * IRQ disabling. See the comment near struct mmu_table_batch.
334 	 */
335 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
336 	__tlb_remove_table(table);
337 }
338 
339 static void tlb_remove_table_rcu(struct rcu_head *head)
340 {
341 	struct mmu_table_batch *batch;
342 	int i;
343 
344 	batch = container_of(head, struct mmu_table_batch, rcu);
345 
346 	for (i = 0; i < batch->nr; i++)
347 		__tlb_remove_table(batch->tables[i]);
348 
349 	free_page((unsigned long)batch);
350 }
351 
352 void tlb_table_flush(struct mmu_gather *tlb)
353 {
354 	struct mmu_table_batch **batch = &tlb->batch;
355 
356 	if (*batch) {
357 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
358 		*batch = NULL;
359 	}
360 }
361 
362 void tlb_remove_table(struct mmu_gather *tlb, void *table)
363 {
364 	struct mmu_table_batch **batch = &tlb->batch;
365 
366 	/*
367 	 * When there's less then two users of this mm there cannot be a
368 	 * concurrent page-table walk.
369 	 */
370 	if (atomic_read(&tlb->mm->mm_users) < 2) {
371 		__tlb_remove_table(table);
372 		return;
373 	}
374 
375 	if (*batch == NULL) {
376 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
377 		if (*batch == NULL) {
378 			tlb_remove_table_one(table);
379 			return;
380 		}
381 		(*batch)->nr = 0;
382 	}
383 	(*batch)->tables[(*batch)->nr++] = table;
384 	if ((*batch)->nr == MAX_TABLE_BATCH)
385 		tlb_table_flush(tlb);
386 }
387 
388 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
389 
390 /*
391  * Note: this doesn't free the actual pages themselves. That
392  * has been handled earlier when unmapping all the memory regions.
393  */
394 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
395 			   unsigned long addr)
396 {
397 	pgtable_t token = pmd_pgtable(*pmd);
398 	pmd_clear(pmd);
399 	pte_free_tlb(tlb, token, addr);
400 	atomic_long_dec(&tlb->mm->nr_ptes);
401 }
402 
403 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
404 				unsigned long addr, unsigned long end,
405 				unsigned long floor, unsigned long ceiling)
406 {
407 	pmd_t *pmd;
408 	unsigned long next;
409 	unsigned long start;
410 
411 	start = addr;
412 	pmd = pmd_offset(pud, addr);
413 	do {
414 		next = pmd_addr_end(addr, end);
415 		if (pmd_none_or_clear_bad(pmd))
416 			continue;
417 		free_pte_range(tlb, pmd, addr);
418 	} while (pmd++, addr = next, addr != end);
419 
420 	start &= PUD_MASK;
421 	if (start < floor)
422 		return;
423 	if (ceiling) {
424 		ceiling &= PUD_MASK;
425 		if (!ceiling)
426 			return;
427 	}
428 	if (end - 1 > ceiling - 1)
429 		return;
430 
431 	pmd = pmd_offset(pud, start);
432 	pud_clear(pud);
433 	pmd_free_tlb(tlb, pmd, start);
434 	mm_dec_nr_pmds(tlb->mm);
435 }
436 
437 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
438 				unsigned long addr, unsigned long end,
439 				unsigned long floor, unsigned long ceiling)
440 {
441 	pud_t *pud;
442 	unsigned long next;
443 	unsigned long start;
444 
445 	start = addr;
446 	pud = pud_offset(pgd, addr);
447 	do {
448 		next = pud_addr_end(addr, end);
449 		if (pud_none_or_clear_bad(pud))
450 			continue;
451 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
452 	} while (pud++, addr = next, addr != end);
453 
454 	start &= PGDIR_MASK;
455 	if (start < floor)
456 		return;
457 	if (ceiling) {
458 		ceiling &= PGDIR_MASK;
459 		if (!ceiling)
460 			return;
461 	}
462 	if (end - 1 > ceiling - 1)
463 		return;
464 
465 	pud = pud_offset(pgd, start);
466 	pgd_clear(pgd);
467 	pud_free_tlb(tlb, pud, start);
468 }
469 
470 /*
471  * This function frees user-level page tables of a process.
472  */
473 void free_pgd_range(struct mmu_gather *tlb,
474 			unsigned long addr, unsigned long end,
475 			unsigned long floor, unsigned long ceiling)
476 {
477 	pgd_t *pgd;
478 	unsigned long next;
479 
480 	/*
481 	 * The next few lines have given us lots of grief...
482 	 *
483 	 * Why are we testing PMD* at this top level?  Because often
484 	 * there will be no work to do at all, and we'd prefer not to
485 	 * go all the way down to the bottom just to discover that.
486 	 *
487 	 * Why all these "- 1"s?  Because 0 represents both the bottom
488 	 * of the address space and the top of it (using -1 for the
489 	 * top wouldn't help much: the masks would do the wrong thing).
490 	 * The rule is that addr 0 and floor 0 refer to the bottom of
491 	 * the address space, but end 0 and ceiling 0 refer to the top
492 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
493 	 * that end 0 case should be mythical).
494 	 *
495 	 * Wherever addr is brought up or ceiling brought down, we must
496 	 * be careful to reject "the opposite 0" before it confuses the
497 	 * subsequent tests.  But what about where end is brought down
498 	 * by PMD_SIZE below? no, end can't go down to 0 there.
499 	 *
500 	 * Whereas we round start (addr) and ceiling down, by different
501 	 * masks at different levels, in order to test whether a table
502 	 * now has no other vmas using it, so can be freed, we don't
503 	 * bother to round floor or end up - the tests don't need that.
504 	 */
505 
506 	addr &= PMD_MASK;
507 	if (addr < floor) {
508 		addr += PMD_SIZE;
509 		if (!addr)
510 			return;
511 	}
512 	if (ceiling) {
513 		ceiling &= PMD_MASK;
514 		if (!ceiling)
515 			return;
516 	}
517 	if (end - 1 > ceiling - 1)
518 		end -= PMD_SIZE;
519 	if (addr > end - 1)
520 		return;
521 
522 	pgd = pgd_offset(tlb->mm, addr);
523 	do {
524 		next = pgd_addr_end(addr, end);
525 		if (pgd_none_or_clear_bad(pgd))
526 			continue;
527 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
528 	} while (pgd++, addr = next, addr != end);
529 }
530 
531 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
532 		unsigned long floor, unsigned long ceiling)
533 {
534 	while (vma) {
535 		struct vm_area_struct *next = vma->vm_next;
536 		unsigned long addr = vma->vm_start;
537 
538 		/*
539 		 * Hide vma from rmap and truncate_pagecache before freeing
540 		 * pgtables
541 		 */
542 		unlink_anon_vmas(vma);
543 		unlink_file_vma(vma);
544 
545 		if (is_vm_hugetlb_page(vma)) {
546 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
547 				floor, next? next->vm_start: ceiling);
548 		} else {
549 			/*
550 			 * Optimization: gather nearby vmas into one call down
551 			 */
552 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
553 			       && !is_vm_hugetlb_page(next)) {
554 				vma = next;
555 				next = vma->vm_next;
556 				unlink_anon_vmas(vma);
557 				unlink_file_vma(vma);
558 			}
559 			free_pgd_range(tlb, addr, vma->vm_end,
560 				floor, next? next->vm_start: ceiling);
561 		}
562 		vma = next;
563 	}
564 }
565 
566 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
567 {
568 	spinlock_t *ptl;
569 	pgtable_t new = pte_alloc_one(mm, address);
570 	if (!new)
571 		return -ENOMEM;
572 
573 	/*
574 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
575 	 * visible before the pte is made visible to other CPUs by being
576 	 * put into page tables.
577 	 *
578 	 * The other side of the story is the pointer chasing in the page
579 	 * table walking code (when walking the page table without locking;
580 	 * ie. most of the time). Fortunately, these data accesses consist
581 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
582 	 * being the notable exception) will already guarantee loads are
583 	 * seen in-order. See the alpha page table accessors for the
584 	 * smp_read_barrier_depends() barriers in page table walking code.
585 	 */
586 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
587 
588 	ptl = pmd_lock(mm, pmd);
589 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
590 		atomic_long_inc(&mm->nr_ptes);
591 		pmd_populate(mm, pmd, new);
592 		new = NULL;
593 	}
594 	spin_unlock(ptl);
595 	if (new)
596 		pte_free(mm, new);
597 	return 0;
598 }
599 
600 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
601 {
602 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
603 	if (!new)
604 		return -ENOMEM;
605 
606 	smp_wmb(); /* See comment in __pte_alloc */
607 
608 	spin_lock(&init_mm.page_table_lock);
609 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
610 		pmd_populate_kernel(&init_mm, pmd, new);
611 		new = NULL;
612 	}
613 	spin_unlock(&init_mm.page_table_lock);
614 	if (new)
615 		pte_free_kernel(&init_mm, new);
616 	return 0;
617 }
618 
619 static inline void init_rss_vec(int *rss)
620 {
621 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
622 }
623 
624 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
625 {
626 	int i;
627 
628 	if (current->mm == mm)
629 		sync_mm_rss(mm);
630 	for (i = 0; i < NR_MM_COUNTERS; i++)
631 		if (rss[i])
632 			add_mm_counter(mm, i, rss[i]);
633 }
634 
635 /*
636  * This function is called to print an error when a bad pte
637  * is found. For example, we might have a PFN-mapped pte in
638  * a region that doesn't allow it.
639  *
640  * The calling function must still handle the error.
641  */
642 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
643 			  pte_t pte, struct page *page)
644 {
645 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
646 	pud_t *pud = pud_offset(pgd, addr);
647 	pmd_t *pmd = pmd_offset(pud, addr);
648 	struct address_space *mapping;
649 	pgoff_t index;
650 	static unsigned long resume;
651 	static unsigned long nr_shown;
652 	static unsigned long nr_unshown;
653 
654 	/*
655 	 * Allow a burst of 60 reports, then keep quiet for that minute;
656 	 * or allow a steady drip of one report per second.
657 	 */
658 	if (nr_shown == 60) {
659 		if (time_before(jiffies, resume)) {
660 			nr_unshown++;
661 			return;
662 		}
663 		if (nr_unshown) {
664 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
665 				 nr_unshown);
666 			nr_unshown = 0;
667 		}
668 		nr_shown = 0;
669 	}
670 	if (nr_shown++ == 0)
671 		resume = jiffies + 60 * HZ;
672 
673 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
674 	index = linear_page_index(vma, addr);
675 
676 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
677 		 current->comm,
678 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
679 	if (page)
680 		dump_page(page, "bad pte");
681 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
682 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
683 	/*
684 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
685 	 */
686 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
687 		 vma->vm_file,
688 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
689 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
690 		 mapping ? mapping->a_ops->readpage : NULL);
691 	dump_stack();
692 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
693 }
694 
695 /*
696  * vm_normal_page -- This function gets the "struct page" associated with a pte.
697  *
698  * "Special" mappings do not wish to be associated with a "struct page" (either
699  * it doesn't exist, or it exists but they don't want to touch it). In this
700  * case, NULL is returned here. "Normal" mappings do have a struct page.
701  *
702  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
703  * pte bit, in which case this function is trivial. Secondly, an architecture
704  * may not have a spare pte bit, which requires a more complicated scheme,
705  * described below.
706  *
707  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
708  * special mapping (even if there are underlying and valid "struct pages").
709  * COWed pages of a VM_PFNMAP are always normal.
710  *
711  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
712  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
713  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
714  * mapping will always honor the rule
715  *
716  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
717  *
718  * And for normal mappings this is false.
719  *
720  * This restricts such mappings to be a linear translation from virtual address
721  * to pfn. To get around this restriction, we allow arbitrary mappings so long
722  * as the vma is not a COW mapping; in that case, we know that all ptes are
723  * special (because none can have been COWed).
724  *
725  *
726  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
727  *
728  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
729  * page" backing, however the difference is that _all_ pages with a struct
730  * page (that is, those where pfn_valid is true) are refcounted and considered
731  * normal pages by the VM. The disadvantage is that pages are refcounted
732  * (which can be slower and simply not an option for some PFNMAP users). The
733  * advantage is that we don't have to follow the strict linearity rule of
734  * PFNMAP mappings in order to support COWable mappings.
735  *
736  */
737 #ifdef __HAVE_ARCH_PTE_SPECIAL
738 # define HAVE_PTE_SPECIAL 1
739 #else
740 # define HAVE_PTE_SPECIAL 0
741 #endif
742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
743 				pte_t pte)
744 {
745 	unsigned long pfn = pte_pfn(pte);
746 
747 	if (HAVE_PTE_SPECIAL) {
748 		if (likely(!pte_special(pte)))
749 			goto check_pfn;
750 		if (vma->vm_ops && vma->vm_ops->find_special_page)
751 			return vma->vm_ops->find_special_page(vma, addr);
752 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
753 			return NULL;
754 		if (!is_zero_pfn(pfn))
755 			print_bad_pte(vma, addr, pte, NULL);
756 		return NULL;
757 	}
758 
759 	/* !HAVE_PTE_SPECIAL case follows: */
760 
761 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
762 		if (vma->vm_flags & VM_MIXEDMAP) {
763 			if (!pfn_valid(pfn))
764 				return NULL;
765 			goto out;
766 		} else {
767 			unsigned long off;
768 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
769 			if (pfn == vma->vm_pgoff + off)
770 				return NULL;
771 			if (!is_cow_mapping(vma->vm_flags))
772 				return NULL;
773 		}
774 	}
775 
776 	if (is_zero_pfn(pfn))
777 		return NULL;
778 check_pfn:
779 	if (unlikely(pfn > highest_memmap_pfn)) {
780 		print_bad_pte(vma, addr, pte, NULL);
781 		return NULL;
782 	}
783 
784 	/*
785 	 * NOTE! We still have PageReserved() pages in the page tables.
786 	 * eg. VDSO mappings can cause them to exist.
787 	 */
788 out:
789 	return pfn_to_page(pfn);
790 }
791 
792 /*
793  * copy one vm_area from one task to the other. Assumes the page tables
794  * already present in the new task to be cleared in the whole range
795  * covered by this vma.
796  */
797 
798 static inline unsigned long
799 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
800 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
801 		unsigned long addr, int *rss)
802 {
803 	unsigned long vm_flags = vma->vm_flags;
804 	pte_t pte = *src_pte;
805 	struct page *page;
806 
807 	/* pte contains position in swap or file, so copy. */
808 	if (unlikely(!pte_present(pte))) {
809 		swp_entry_t entry = pte_to_swp_entry(pte);
810 
811 		if (likely(!non_swap_entry(entry))) {
812 			if (swap_duplicate(entry) < 0)
813 				return entry.val;
814 
815 			/* make sure dst_mm is on swapoff's mmlist. */
816 			if (unlikely(list_empty(&dst_mm->mmlist))) {
817 				spin_lock(&mmlist_lock);
818 				if (list_empty(&dst_mm->mmlist))
819 					list_add(&dst_mm->mmlist,
820 							&src_mm->mmlist);
821 				spin_unlock(&mmlist_lock);
822 			}
823 			rss[MM_SWAPENTS]++;
824 		} else if (is_migration_entry(entry)) {
825 			page = migration_entry_to_page(entry);
826 
827 			rss[mm_counter(page)]++;
828 
829 			if (is_write_migration_entry(entry) &&
830 					is_cow_mapping(vm_flags)) {
831 				/*
832 				 * COW mappings require pages in both
833 				 * parent and child to be set to read.
834 				 */
835 				make_migration_entry_read(&entry);
836 				pte = swp_entry_to_pte(entry);
837 				if (pte_swp_soft_dirty(*src_pte))
838 					pte = pte_swp_mksoft_dirty(pte);
839 				set_pte_at(src_mm, addr, src_pte, pte);
840 			}
841 		}
842 		goto out_set_pte;
843 	}
844 
845 	/*
846 	 * If it's a COW mapping, write protect it both
847 	 * in the parent and the child
848 	 */
849 	if (is_cow_mapping(vm_flags)) {
850 		ptep_set_wrprotect(src_mm, addr, src_pte);
851 		pte = pte_wrprotect(pte);
852 	}
853 
854 	/*
855 	 * If it's a shared mapping, mark it clean in
856 	 * the child
857 	 */
858 	if (vm_flags & VM_SHARED)
859 		pte = pte_mkclean(pte);
860 	pte = pte_mkold(pte);
861 
862 	page = vm_normal_page(vma, addr, pte);
863 	if (page) {
864 		get_page(page);
865 		page_dup_rmap(page, false);
866 		rss[mm_counter(page)]++;
867 	}
868 
869 out_set_pte:
870 	set_pte_at(dst_mm, addr, dst_pte, pte);
871 	return 0;
872 }
873 
874 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
876 		   unsigned long addr, unsigned long end)
877 {
878 	pte_t *orig_src_pte, *orig_dst_pte;
879 	pte_t *src_pte, *dst_pte;
880 	spinlock_t *src_ptl, *dst_ptl;
881 	int progress = 0;
882 	int rss[NR_MM_COUNTERS];
883 	swp_entry_t entry = (swp_entry_t){0};
884 
885 again:
886 	init_rss_vec(rss);
887 
888 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
889 	if (!dst_pte)
890 		return -ENOMEM;
891 	src_pte = pte_offset_map(src_pmd, addr);
892 	src_ptl = pte_lockptr(src_mm, src_pmd);
893 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
894 	orig_src_pte = src_pte;
895 	orig_dst_pte = dst_pte;
896 	arch_enter_lazy_mmu_mode();
897 
898 	do {
899 		/*
900 		 * We are holding two locks at this point - either of them
901 		 * could generate latencies in another task on another CPU.
902 		 */
903 		if (progress >= 32) {
904 			progress = 0;
905 			if (need_resched() ||
906 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
907 				break;
908 		}
909 		if (pte_none(*src_pte)) {
910 			progress++;
911 			continue;
912 		}
913 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
914 							vma, addr, rss);
915 		if (entry.val)
916 			break;
917 		progress += 8;
918 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
919 
920 	arch_leave_lazy_mmu_mode();
921 	spin_unlock(src_ptl);
922 	pte_unmap(orig_src_pte);
923 	add_mm_rss_vec(dst_mm, rss);
924 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
925 	cond_resched();
926 
927 	if (entry.val) {
928 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
929 			return -ENOMEM;
930 		progress = 0;
931 	}
932 	if (addr != end)
933 		goto again;
934 	return 0;
935 }
936 
937 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
938 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
939 		unsigned long addr, unsigned long end)
940 {
941 	pmd_t *src_pmd, *dst_pmd;
942 	unsigned long next;
943 
944 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
945 	if (!dst_pmd)
946 		return -ENOMEM;
947 	src_pmd = pmd_offset(src_pud, addr);
948 	do {
949 		next = pmd_addr_end(addr, end);
950 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
951 			int err;
952 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
953 			err = copy_huge_pmd(dst_mm, src_mm,
954 					    dst_pmd, src_pmd, addr, vma);
955 			if (err == -ENOMEM)
956 				return -ENOMEM;
957 			if (!err)
958 				continue;
959 			/* fall through */
960 		}
961 		if (pmd_none_or_clear_bad(src_pmd))
962 			continue;
963 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
964 						vma, addr, next))
965 			return -ENOMEM;
966 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
967 	return 0;
968 }
969 
970 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
971 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
972 		unsigned long addr, unsigned long end)
973 {
974 	pud_t *src_pud, *dst_pud;
975 	unsigned long next;
976 
977 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
978 	if (!dst_pud)
979 		return -ENOMEM;
980 	src_pud = pud_offset(src_pgd, addr);
981 	do {
982 		next = pud_addr_end(addr, end);
983 		if (pud_none_or_clear_bad(src_pud))
984 			continue;
985 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
986 						vma, addr, next))
987 			return -ENOMEM;
988 	} while (dst_pud++, src_pud++, addr = next, addr != end);
989 	return 0;
990 }
991 
992 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
993 		struct vm_area_struct *vma)
994 {
995 	pgd_t *src_pgd, *dst_pgd;
996 	unsigned long next;
997 	unsigned long addr = vma->vm_start;
998 	unsigned long end = vma->vm_end;
999 	unsigned long mmun_start;	/* For mmu_notifiers */
1000 	unsigned long mmun_end;		/* For mmu_notifiers */
1001 	bool is_cow;
1002 	int ret;
1003 
1004 	/*
1005 	 * Don't copy ptes where a page fault will fill them correctly.
1006 	 * Fork becomes much lighter when there are big shared or private
1007 	 * readonly mappings. The tradeoff is that copy_page_range is more
1008 	 * efficient than faulting.
1009 	 */
1010 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1011 			!vma->anon_vma)
1012 		return 0;
1013 
1014 	if (is_vm_hugetlb_page(vma))
1015 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1016 
1017 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1018 		/*
1019 		 * We do not free on error cases below as remove_vma
1020 		 * gets called on error from higher level routine
1021 		 */
1022 		ret = track_pfn_copy(vma);
1023 		if (ret)
1024 			return ret;
1025 	}
1026 
1027 	/*
1028 	 * We need to invalidate the secondary MMU mappings only when
1029 	 * there could be a permission downgrade on the ptes of the
1030 	 * parent mm. And a permission downgrade will only happen if
1031 	 * is_cow_mapping() returns true.
1032 	 */
1033 	is_cow = is_cow_mapping(vma->vm_flags);
1034 	mmun_start = addr;
1035 	mmun_end   = end;
1036 	if (is_cow)
1037 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1038 						    mmun_end);
1039 
1040 	ret = 0;
1041 	dst_pgd = pgd_offset(dst_mm, addr);
1042 	src_pgd = pgd_offset(src_mm, addr);
1043 	do {
1044 		next = pgd_addr_end(addr, end);
1045 		if (pgd_none_or_clear_bad(src_pgd))
1046 			continue;
1047 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1048 					    vma, addr, next))) {
1049 			ret = -ENOMEM;
1050 			break;
1051 		}
1052 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1053 
1054 	if (is_cow)
1055 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1056 	return ret;
1057 }
1058 
1059 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1060 				struct vm_area_struct *vma, pmd_t *pmd,
1061 				unsigned long addr, unsigned long end,
1062 				struct zap_details *details)
1063 {
1064 	struct mm_struct *mm = tlb->mm;
1065 	int force_flush = 0;
1066 	int rss[NR_MM_COUNTERS];
1067 	spinlock_t *ptl;
1068 	pte_t *start_pte;
1069 	pte_t *pte;
1070 	swp_entry_t entry;
1071 
1072 again:
1073 	init_rss_vec(rss);
1074 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1075 	pte = start_pte;
1076 	arch_enter_lazy_mmu_mode();
1077 	do {
1078 		pte_t ptent = *pte;
1079 		if (pte_none(ptent)) {
1080 			continue;
1081 		}
1082 
1083 		if (pte_present(ptent)) {
1084 			struct page *page;
1085 
1086 			page = vm_normal_page(vma, addr, ptent);
1087 			if (unlikely(details) && page) {
1088 				/*
1089 				 * unmap_shared_mapping_pages() wants to
1090 				 * invalidate cache without truncating:
1091 				 * unmap shared but keep private pages.
1092 				 */
1093 				if (details->check_mapping &&
1094 				    details->check_mapping != page->mapping)
1095 					continue;
1096 			}
1097 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1098 							tlb->fullmm);
1099 			tlb_remove_tlb_entry(tlb, pte, addr);
1100 			if (unlikely(!page))
1101 				continue;
1102 
1103 			if (!PageAnon(page)) {
1104 				if (pte_dirty(ptent)) {
1105 					/*
1106 					 * oom_reaper cannot tear down dirty
1107 					 * pages
1108 					 */
1109 					if (unlikely(details && details->ignore_dirty))
1110 						continue;
1111 					force_flush = 1;
1112 					set_page_dirty(page);
1113 				}
1114 				if (pte_young(ptent) &&
1115 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1116 					mark_page_accessed(page);
1117 			}
1118 			rss[mm_counter(page)]--;
1119 			page_remove_rmap(page, false);
1120 			if (unlikely(page_mapcount(page) < 0))
1121 				print_bad_pte(vma, addr, ptent, page);
1122 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1123 				force_flush = 1;
1124 				addr += PAGE_SIZE;
1125 				break;
1126 			}
1127 			continue;
1128 		}
1129 		/* only check swap_entries if explicitly asked for in details */
1130 		if (unlikely(details && !details->check_swap_entries))
1131 			continue;
1132 
1133 		entry = pte_to_swp_entry(ptent);
1134 		if (!non_swap_entry(entry))
1135 			rss[MM_SWAPENTS]--;
1136 		else if (is_migration_entry(entry)) {
1137 			struct page *page;
1138 
1139 			page = migration_entry_to_page(entry);
1140 			rss[mm_counter(page)]--;
1141 		}
1142 		if (unlikely(!free_swap_and_cache(entry)))
1143 			print_bad_pte(vma, addr, ptent, NULL);
1144 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1145 	} while (pte++, addr += PAGE_SIZE, addr != end);
1146 
1147 	add_mm_rss_vec(mm, rss);
1148 	arch_leave_lazy_mmu_mode();
1149 
1150 	/* Do the actual TLB flush before dropping ptl */
1151 	if (force_flush)
1152 		tlb_flush_mmu_tlbonly(tlb);
1153 	pte_unmap_unlock(start_pte, ptl);
1154 
1155 	/*
1156 	 * If we forced a TLB flush (either due to running out of
1157 	 * batch buffers or because we needed to flush dirty TLB
1158 	 * entries before releasing the ptl), free the batched
1159 	 * memory too. Restart if we didn't do everything.
1160 	 */
1161 	if (force_flush) {
1162 		force_flush = 0;
1163 		tlb_flush_mmu_free(tlb);
1164 
1165 		if (addr != end)
1166 			goto again;
1167 	}
1168 
1169 	return addr;
1170 }
1171 
1172 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1173 				struct vm_area_struct *vma, pud_t *pud,
1174 				unsigned long addr, unsigned long end,
1175 				struct zap_details *details)
1176 {
1177 	pmd_t *pmd;
1178 	unsigned long next;
1179 
1180 	pmd = pmd_offset(pud, addr);
1181 	do {
1182 		next = pmd_addr_end(addr, end);
1183 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1184 			if (next - addr != HPAGE_PMD_SIZE) {
1185 #ifdef CONFIG_DEBUG_VM
1186 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1187 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1188 						__func__, addr, end,
1189 						vma->vm_start,
1190 						vma->vm_end);
1191 					BUG();
1192 				}
1193 #endif
1194 				split_huge_pmd(vma, pmd, addr);
1195 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1196 				goto next;
1197 			/* fall through */
1198 		}
1199 		/*
1200 		 * Here there can be other concurrent MADV_DONTNEED or
1201 		 * trans huge page faults running, and if the pmd is
1202 		 * none or trans huge it can change under us. This is
1203 		 * because MADV_DONTNEED holds the mmap_sem in read
1204 		 * mode.
1205 		 */
1206 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1207 			goto next;
1208 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1209 next:
1210 		cond_resched();
1211 	} while (pmd++, addr = next, addr != end);
1212 
1213 	return addr;
1214 }
1215 
1216 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1217 				struct vm_area_struct *vma, pgd_t *pgd,
1218 				unsigned long addr, unsigned long end,
1219 				struct zap_details *details)
1220 {
1221 	pud_t *pud;
1222 	unsigned long next;
1223 
1224 	pud = pud_offset(pgd, addr);
1225 	do {
1226 		next = pud_addr_end(addr, end);
1227 		if (pud_none_or_clear_bad(pud))
1228 			continue;
1229 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1230 	} while (pud++, addr = next, addr != end);
1231 
1232 	return addr;
1233 }
1234 
1235 void unmap_page_range(struct mmu_gather *tlb,
1236 			     struct vm_area_struct *vma,
1237 			     unsigned long addr, unsigned long end,
1238 			     struct zap_details *details)
1239 {
1240 	pgd_t *pgd;
1241 	unsigned long next;
1242 
1243 	BUG_ON(addr >= end);
1244 	tlb_start_vma(tlb, vma);
1245 	pgd = pgd_offset(vma->vm_mm, addr);
1246 	do {
1247 		next = pgd_addr_end(addr, end);
1248 		if (pgd_none_or_clear_bad(pgd))
1249 			continue;
1250 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1251 	} while (pgd++, addr = next, addr != end);
1252 	tlb_end_vma(tlb, vma);
1253 }
1254 
1255 
1256 static void unmap_single_vma(struct mmu_gather *tlb,
1257 		struct vm_area_struct *vma, unsigned long start_addr,
1258 		unsigned long end_addr,
1259 		struct zap_details *details)
1260 {
1261 	unsigned long start = max(vma->vm_start, start_addr);
1262 	unsigned long end;
1263 
1264 	if (start >= vma->vm_end)
1265 		return;
1266 	end = min(vma->vm_end, end_addr);
1267 	if (end <= vma->vm_start)
1268 		return;
1269 
1270 	if (vma->vm_file)
1271 		uprobe_munmap(vma, start, end);
1272 
1273 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1274 		untrack_pfn(vma, 0, 0);
1275 
1276 	if (start != end) {
1277 		if (unlikely(is_vm_hugetlb_page(vma))) {
1278 			/*
1279 			 * It is undesirable to test vma->vm_file as it
1280 			 * should be non-null for valid hugetlb area.
1281 			 * However, vm_file will be NULL in the error
1282 			 * cleanup path of mmap_region. When
1283 			 * hugetlbfs ->mmap method fails,
1284 			 * mmap_region() nullifies vma->vm_file
1285 			 * before calling this function to clean up.
1286 			 * Since no pte has actually been setup, it is
1287 			 * safe to do nothing in this case.
1288 			 */
1289 			if (vma->vm_file) {
1290 				i_mmap_lock_write(vma->vm_file->f_mapping);
1291 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1292 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1293 			}
1294 		} else
1295 			unmap_page_range(tlb, vma, start, end, details);
1296 	}
1297 }
1298 
1299 /**
1300  * unmap_vmas - unmap a range of memory covered by a list of vma's
1301  * @tlb: address of the caller's struct mmu_gather
1302  * @vma: the starting vma
1303  * @start_addr: virtual address at which to start unmapping
1304  * @end_addr: virtual address at which to end unmapping
1305  *
1306  * Unmap all pages in the vma list.
1307  *
1308  * Only addresses between `start' and `end' will be unmapped.
1309  *
1310  * The VMA list must be sorted in ascending virtual address order.
1311  *
1312  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1313  * range after unmap_vmas() returns.  So the only responsibility here is to
1314  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1315  * drops the lock and schedules.
1316  */
1317 void unmap_vmas(struct mmu_gather *tlb,
1318 		struct vm_area_struct *vma, unsigned long start_addr,
1319 		unsigned long end_addr)
1320 {
1321 	struct mm_struct *mm = vma->vm_mm;
1322 
1323 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1324 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1325 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1326 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1327 }
1328 
1329 /**
1330  * zap_page_range - remove user pages in a given range
1331  * @vma: vm_area_struct holding the applicable pages
1332  * @start: starting address of pages to zap
1333  * @size: number of bytes to zap
1334  * @details: details of shared cache invalidation
1335  *
1336  * Caller must protect the VMA list
1337  */
1338 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1339 		unsigned long size, struct zap_details *details)
1340 {
1341 	struct mm_struct *mm = vma->vm_mm;
1342 	struct mmu_gather tlb;
1343 	unsigned long end = start + size;
1344 
1345 	lru_add_drain();
1346 	tlb_gather_mmu(&tlb, mm, start, end);
1347 	update_hiwater_rss(mm);
1348 	mmu_notifier_invalidate_range_start(mm, start, end);
1349 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1350 		unmap_single_vma(&tlb, vma, start, end, details);
1351 	mmu_notifier_invalidate_range_end(mm, start, end);
1352 	tlb_finish_mmu(&tlb, start, end);
1353 }
1354 
1355 /**
1356  * zap_page_range_single - remove user pages in a given range
1357  * @vma: vm_area_struct holding the applicable pages
1358  * @address: starting address of pages to zap
1359  * @size: number of bytes to zap
1360  * @details: details of shared cache invalidation
1361  *
1362  * The range must fit into one VMA.
1363  */
1364 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1365 		unsigned long size, struct zap_details *details)
1366 {
1367 	struct mm_struct *mm = vma->vm_mm;
1368 	struct mmu_gather tlb;
1369 	unsigned long end = address + size;
1370 
1371 	lru_add_drain();
1372 	tlb_gather_mmu(&tlb, mm, address, end);
1373 	update_hiwater_rss(mm);
1374 	mmu_notifier_invalidate_range_start(mm, address, end);
1375 	unmap_single_vma(&tlb, vma, address, end, details);
1376 	mmu_notifier_invalidate_range_end(mm, address, end);
1377 	tlb_finish_mmu(&tlb, address, end);
1378 }
1379 
1380 /**
1381  * zap_vma_ptes - remove ptes mapping the vma
1382  * @vma: vm_area_struct holding ptes to be zapped
1383  * @address: starting address of pages to zap
1384  * @size: number of bytes to zap
1385  *
1386  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1387  *
1388  * The entire address range must be fully contained within the vma.
1389  *
1390  * Returns 0 if successful.
1391  */
1392 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1393 		unsigned long size)
1394 {
1395 	if (address < vma->vm_start || address + size > vma->vm_end ||
1396 	    		!(vma->vm_flags & VM_PFNMAP))
1397 		return -1;
1398 	zap_page_range_single(vma, address, size, NULL);
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1402 
1403 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1404 			spinlock_t **ptl)
1405 {
1406 	pgd_t * pgd = pgd_offset(mm, addr);
1407 	pud_t * pud = pud_alloc(mm, pgd, addr);
1408 	if (pud) {
1409 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1410 		if (pmd) {
1411 			VM_BUG_ON(pmd_trans_huge(*pmd));
1412 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1413 		}
1414 	}
1415 	return NULL;
1416 }
1417 
1418 /*
1419  * This is the old fallback for page remapping.
1420  *
1421  * For historical reasons, it only allows reserved pages. Only
1422  * old drivers should use this, and they needed to mark their
1423  * pages reserved for the old functions anyway.
1424  */
1425 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1426 			struct page *page, pgprot_t prot)
1427 {
1428 	struct mm_struct *mm = vma->vm_mm;
1429 	int retval;
1430 	pte_t *pte;
1431 	spinlock_t *ptl;
1432 
1433 	retval = -EINVAL;
1434 	if (PageAnon(page))
1435 		goto out;
1436 	retval = -ENOMEM;
1437 	flush_dcache_page(page);
1438 	pte = get_locked_pte(mm, addr, &ptl);
1439 	if (!pte)
1440 		goto out;
1441 	retval = -EBUSY;
1442 	if (!pte_none(*pte))
1443 		goto out_unlock;
1444 
1445 	/* Ok, finally just insert the thing.. */
1446 	get_page(page);
1447 	inc_mm_counter_fast(mm, mm_counter_file(page));
1448 	page_add_file_rmap(page);
1449 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1450 
1451 	retval = 0;
1452 	pte_unmap_unlock(pte, ptl);
1453 	return retval;
1454 out_unlock:
1455 	pte_unmap_unlock(pte, ptl);
1456 out:
1457 	return retval;
1458 }
1459 
1460 /**
1461  * vm_insert_page - insert single page into user vma
1462  * @vma: user vma to map to
1463  * @addr: target user address of this page
1464  * @page: source kernel page
1465  *
1466  * This allows drivers to insert individual pages they've allocated
1467  * into a user vma.
1468  *
1469  * The page has to be a nice clean _individual_ kernel allocation.
1470  * If you allocate a compound page, you need to have marked it as
1471  * such (__GFP_COMP), or manually just split the page up yourself
1472  * (see split_page()).
1473  *
1474  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1475  * took an arbitrary page protection parameter. This doesn't allow
1476  * that. Your vma protection will have to be set up correctly, which
1477  * means that if you want a shared writable mapping, you'd better
1478  * ask for a shared writable mapping!
1479  *
1480  * The page does not need to be reserved.
1481  *
1482  * Usually this function is called from f_op->mmap() handler
1483  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1484  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1485  * function from other places, for example from page-fault handler.
1486  */
1487 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1488 			struct page *page)
1489 {
1490 	if (addr < vma->vm_start || addr >= vma->vm_end)
1491 		return -EFAULT;
1492 	if (!page_count(page))
1493 		return -EINVAL;
1494 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1495 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1496 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1497 		vma->vm_flags |= VM_MIXEDMAP;
1498 	}
1499 	return insert_page(vma, addr, page, vma->vm_page_prot);
1500 }
1501 EXPORT_SYMBOL(vm_insert_page);
1502 
1503 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1504 			pfn_t pfn, pgprot_t prot)
1505 {
1506 	struct mm_struct *mm = vma->vm_mm;
1507 	int retval;
1508 	pte_t *pte, entry;
1509 	spinlock_t *ptl;
1510 
1511 	retval = -ENOMEM;
1512 	pte = get_locked_pte(mm, addr, &ptl);
1513 	if (!pte)
1514 		goto out;
1515 	retval = -EBUSY;
1516 	if (!pte_none(*pte))
1517 		goto out_unlock;
1518 
1519 	/* Ok, finally just insert the thing.. */
1520 	if (pfn_t_devmap(pfn))
1521 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1522 	else
1523 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1524 	set_pte_at(mm, addr, pte, entry);
1525 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1526 
1527 	retval = 0;
1528 out_unlock:
1529 	pte_unmap_unlock(pte, ptl);
1530 out:
1531 	return retval;
1532 }
1533 
1534 /**
1535  * vm_insert_pfn - insert single pfn into user vma
1536  * @vma: user vma to map to
1537  * @addr: target user address of this page
1538  * @pfn: source kernel pfn
1539  *
1540  * Similar to vm_insert_page, this allows drivers to insert individual pages
1541  * they've allocated into a user vma. Same comments apply.
1542  *
1543  * This function should only be called from a vm_ops->fault handler, and
1544  * in that case the handler should return NULL.
1545  *
1546  * vma cannot be a COW mapping.
1547  *
1548  * As this is called only for pages that do not currently exist, we
1549  * do not need to flush old virtual caches or the TLB.
1550  */
1551 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1552 			unsigned long pfn)
1553 {
1554 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1555 }
1556 EXPORT_SYMBOL(vm_insert_pfn);
1557 
1558 /**
1559  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1560  * @vma: user vma to map to
1561  * @addr: target user address of this page
1562  * @pfn: source kernel pfn
1563  * @pgprot: pgprot flags for the inserted page
1564  *
1565  * This is exactly like vm_insert_pfn, except that it allows drivers to
1566  * to override pgprot on a per-page basis.
1567  *
1568  * This only makes sense for IO mappings, and it makes no sense for
1569  * cow mappings.  In general, using multiple vmas is preferable;
1570  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1571  * impractical.
1572  */
1573 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1574 			unsigned long pfn, pgprot_t pgprot)
1575 {
1576 	int ret;
1577 	/*
1578 	 * Technically, architectures with pte_special can avoid all these
1579 	 * restrictions (same for remap_pfn_range).  However we would like
1580 	 * consistency in testing and feature parity among all, so we should
1581 	 * try to keep these invariants in place for everybody.
1582 	 */
1583 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1584 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1585 						(VM_PFNMAP|VM_MIXEDMAP));
1586 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1587 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1588 
1589 	if (addr < vma->vm_start || addr >= vma->vm_end)
1590 		return -EFAULT;
1591 	if (track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)))
1592 		return -EINVAL;
1593 
1594 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1595 
1596 	return ret;
1597 }
1598 EXPORT_SYMBOL(vm_insert_pfn_prot);
1599 
1600 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1601 			pfn_t pfn)
1602 {
1603 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1604 
1605 	if (addr < vma->vm_start || addr >= vma->vm_end)
1606 		return -EFAULT;
1607 
1608 	/*
1609 	 * If we don't have pte special, then we have to use the pfn_valid()
1610 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1611 	 * refcount the page if pfn_valid is true (hence insert_page rather
1612 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1613 	 * without pte special, it would there be refcounted as a normal page.
1614 	 */
1615 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1616 		struct page *page;
1617 
1618 		/*
1619 		 * At this point we are committed to insert_page()
1620 		 * regardless of whether the caller specified flags that
1621 		 * result in pfn_t_has_page() == false.
1622 		 */
1623 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1624 		return insert_page(vma, addr, page, vma->vm_page_prot);
1625 	}
1626 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1627 }
1628 EXPORT_SYMBOL(vm_insert_mixed);
1629 
1630 /*
1631  * maps a range of physical memory into the requested pages. the old
1632  * mappings are removed. any references to nonexistent pages results
1633  * in null mappings (currently treated as "copy-on-access")
1634  */
1635 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1636 			unsigned long addr, unsigned long end,
1637 			unsigned long pfn, pgprot_t prot)
1638 {
1639 	pte_t *pte;
1640 	spinlock_t *ptl;
1641 
1642 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1643 	if (!pte)
1644 		return -ENOMEM;
1645 	arch_enter_lazy_mmu_mode();
1646 	do {
1647 		BUG_ON(!pte_none(*pte));
1648 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1649 		pfn++;
1650 	} while (pte++, addr += PAGE_SIZE, addr != end);
1651 	arch_leave_lazy_mmu_mode();
1652 	pte_unmap_unlock(pte - 1, ptl);
1653 	return 0;
1654 }
1655 
1656 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1657 			unsigned long addr, unsigned long end,
1658 			unsigned long pfn, pgprot_t prot)
1659 {
1660 	pmd_t *pmd;
1661 	unsigned long next;
1662 
1663 	pfn -= addr >> PAGE_SHIFT;
1664 	pmd = pmd_alloc(mm, pud, addr);
1665 	if (!pmd)
1666 		return -ENOMEM;
1667 	VM_BUG_ON(pmd_trans_huge(*pmd));
1668 	do {
1669 		next = pmd_addr_end(addr, end);
1670 		if (remap_pte_range(mm, pmd, addr, next,
1671 				pfn + (addr >> PAGE_SHIFT), prot))
1672 			return -ENOMEM;
1673 	} while (pmd++, addr = next, addr != end);
1674 	return 0;
1675 }
1676 
1677 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1678 			unsigned long addr, unsigned long end,
1679 			unsigned long pfn, pgprot_t prot)
1680 {
1681 	pud_t *pud;
1682 	unsigned long next;
1683 
1684 	pfn -= addr >> PAGE_SHIFT;
1685 	pud = pud_alloc(mm, pgd, addr);
1686 	if (!pud)
1687 		return -ENOMEM;
1688 	do {
1689 		next = pud_addr_end(addr, end);
1690 		if (remap_pmd_range(mm, pud, addr, next,
1691 				pfn + (addr >> PAGE_SHIFT), prot))
1692 			return -ENOMEM;
1693 	} while (pud++, addr = next, addr != end);
1694 	return 0;
1695 }
1696 
1697 /**
1698  * remap_pfn_range - remap kernel memory to userspace
1699  * @vma: user vma to map to
1700  * @addr: target user address to start at
1701  * @pfn: physical address of kernel memory
1702  * @size: size of map area
1703  * @prot: page protection flags for this mapping
1704  *
1705  *  Note: this is only safe if the mm semaphore is held when called.
1706  */
1707 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1708 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1709 {
1710 	pgd_t *pgd;
1711 	unsigned long next;
1712 	unsigned long end = addr + PAGE_ALIGN(size);
1713 	struct mm_struct *mm = vma->vm_mm;
1714 	int err;
1715 
1716 	/*
1717 	 * Physically remapped pages are special. Tell the
1718 	 * rest of the world about it:
1719 	 *   VM_IO tells people not to look at these pages
1720 	 *	(accesses can have side effects).
1721 	 *   VM_PFNMAP tells the core MM that the base pages are just
1722 	 *	raw PFN mappings, and do not have a "struct page" associated
1723 	 *	with them.
1724 	 *   VM_DONTEXPAND
1725 	 *      Disable vma merging and expanding with mremap().
1726 	 *   VM_DONTDUMP
1727 	 *      Omit vma from core dump, even when VM_IO turned off.
1728 	 *
1729 	 * There's a horrible special case to handle copy-on-write
1730 	 * behaviour that some programs depend on. We mark the "original"
1731 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1732 	 * See vm_normal_page() for details.
1733 	 */
1734 	if (is_cow_mapping(vma->vm_flags)) {
1735 		if (addr != vma->vm_start || end != vma->vm_end)
1736 			return -EINVAL;
1737 		vma->vm_pgoff = pfn;
1738 	}
1739 
1740 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1741 	if (err)
1742 		return -EINVAL;
1743 
1744 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1745 
1746 	BUG_ON(addr >= end);
1747 	pfn -= addr >> PAGE_SHIFT;
1748 	pgd = pgd_offset(mm, addr);
1749 	flush_cache_range(vma, addr, end);
1750 	do {
1751 		next = pgd_addr_end(addr, end);
1752 		err = remap_pud_range(mm, pgd, addr, next,
1753 				pfn + (addr >> PAGE_SHIFT), prot);
1754 		if (err)
1755 			break;
1756 	} while (pgd++, addr = next, addr != end);
1757 
1758 	if (err)
1759 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1760 
1761 	return err;
1762 }
1763 EXPORT_SYMBOL(remap_pfn_range);
1764 
1765 /**
1766  * vm_iomap_memory - remap memory to userspace
1767  * @vma: user vma to map to
1768  * @start: start of area
1769  * @len: size of area
1770  *
1771  * This is a simplified io_remap_pfn_range() for common driver use. The
1772  * driver just needs to give us the physical memory range to be mapped,
1773  * we'll figure out the rest from the vma information.
1774  *
1775  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1776  * whatever write-combining details or similar.
1777  */
1778 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1779 {
1780 	unsigned long vm_len, pfn, pages;
1781 
1782 	/* Check that the physical memory area passed in looks valid */
1783 	if (start + len < start)
1784 		return -EINVAL;
1785 	/*
1786 	 * You *really* shouldn't map things that aren't page-aligned,
1787 	 * but we've historically allowed it because IO memory might
1788 	 * just have smaller alignment.
1789 	 */
1790 	len += start & ~PAGE_MASK;
1791 	pfn = start >> PAGE_SHIFT;
1792 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1793 	if (pfn + pages < pfn)
1794 		return -EINVAL;
1795 
1796 	/* We start the mapping 'vm_pgoff' pages into the area */
1797 	if (vma->vm_pgoff > pages)
1798 		return -EINVAL;
1799 	pfn += vma->vm_pgoff;
1800 	pages -= vma->vm_pgoff;
1801 
1802 	/* Can we fit all of the mapping? */
1803 	vm_len = vma->vm_end - vma->vm_start;
1804 	if (vm_len >> PAGE_SHIFT > pages)
1805 		return -EINVAL;
1806 
1807 	/* Ok, let it rip */
1808 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1809 }
1810 EXPORT_SYMBOL(vm_iomap_memory);
1811 
1812 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1813 				     unsigned long addr, unsigned long end,
1814 				     pte_fn_t fn, void *data)
1815 {
1816 	pte_t *pte;
1817 	int err;
1818 	pgtable_t token;
1819 	spinlock_t *uninitialized_var(ptl);
1820 
1821 	pte = (mm == &init_mm) ?
1822 		pte_alloc_kernel(pmd, addr) :
1823 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1824 	if (!pte)
1825 		return -ENOMEM;
1826 
1827 	BUG_ON(pmd_huge(*pmd));
1828 
1829 	arch_enter_lazy_mmu_mode();
1830 
1831 	token = pmd_pgtable(*pmd);
1832 
1833 	do {
1834 		err = fn(pte++, token, addr, data);
1835 		if (err)
1836 			break;
1837 	} while (addr += PAGE_SIZE, addr != end);
1838 
1839 	arch_leave_lazy_mmu_mode();
1840 
1841 	if (mm != &init_mm)
1842 		pte_unmap_unlock(pte-1, ptl);
1843 	return err;
1844 }
1845 
1846 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1847 				     unsigned long addr, unsigned long end,
1848 				     pte_fn_t fn, void *data)
1849 {
1850 	pmd_t *pmd;
1851 	unsigned long next;
1852 	int err;
1853 
1854 	BUG_ON(pud_huge(*pud));
1855 
1856 	pmd = pmd_alloc(mm, pud, addr);
1857 	if (!pmd)
1858 		return -ENOMEM;
1859 	do {
1860 		next = pmd_addr_end(addr, end);
1861 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1862 		if (err)
1863 			break;
1864 	} while (pmd++, addr = next, addr != end);
1865 	return err;
1866 }
1867 
1868 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1869 				     unsigned long addr, unsigned long end,
1870 				     pte_fn_t fn, void *data)
1871 {
1872 	pud_t *pud;
1873 	unsigned long next;
1874 	int err;
1875 
1876 	pud = pud_alloc(mm, pgd, addr);
1877 	if (!pud)
1878 		return -ENOMEM;
1879 	do {
1880 		next = pud_addr_end(addr, end);
1881 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1882 		if (err)
1883 			break;
1884 	} while (pud++, addr = next, addr != end);
1885 	return err;
1886 }
1887 
1888 /*
1889  * Scan a region of virtual memory, filling in page tables as necessary
1890  * and calling a provided function on each leaf page table.
1891  */
1892 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1893 			unsigned long size, pte_fn_t fn, void *data)
1894 {
1895 	pgd_t *pgd;
1896 	unsigned long next;
1897 	unsigned long end = addr + size;
1898 	int err;
1899 
1900 	if (WARN_ON(addr >= end))
1901 		return -EINVAL;
1902 
1903 	pgd = pgd_offset(mm, addr);
1904 	do {
1905 		next = pgd_addr_end(addr, end);
1906 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1907 		if (err)
1908 			break;
1909 	} while (pgd++, addr = next, addr != end);
1910 
1911 	return err;
1912 }
1913 EXPORT_SYMBOL_GPL(apply_to_page_range);
1914 
1915 /*
1916  * handle_pte_fault chooses page fault handler according to an entry which was
1917  * read non-atomically.  Before making any commitment, on those architectures
1918  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1919  * parts, do_swap_page must check under lock before unmapping the pte and
1920  * proceeding (but do_wp_page is only called after already making such a check;
1921  * and do_anonymous_page can safely check later on).
1922  */
1923 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1924 				pte_t *page_table, pte_t orig_pte)
1925 {
1926 	int same = 1;
1927 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1928 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1929 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1930 		spin_lock(ptl);
1931 		same = pte_same(*page_table, orig_pte);
1932 		spin_unlock(ptl);
1933 	}
1934 #endif
1935 	pte_unmap(page_table);
1936 	return same;
1937 }
1938 
1939 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1940 {
1941 	debug_dma_assert_idle(src);
1942 
1943 	/*
1944 	 * If the source page was a PFN mapping, we don't have
1945 	 * a "struct page" for it. We do a best-effort copy by
1946 	 * just copying from the original user address. If that
1947 	 * fails, we just zero-fill it. Live with it.
1948 	 */
1949 	if (unlikely(!src)) {
1950 		void *kaddr = kmap_atomic(dst);
1951 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1952 
1953 		/*
1954 		 * This really shouldn't fail, because the page is there
1955 		 * in the page tables. But it might just be unreadable,
1956 		 * in which case we just give up and fill the result with
1957 		 * zeroes.
1958 		 */
1959 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1960 			clear_page(kaddr);
1961 		kunmap_atomic(kaddr);
1962 		flush_dcache_page(dst);
1963 	} else
1964 		copy_user_highpage(dst, src, va, vma);
1965 }
1966 
1967 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
1968 {
1969 	struct file *vm_file = vma->vm_file;
1970 
1971 	if (vm_file)
1972 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
1973 
1974 	/*
1975 	 * Special mappings (e.g. VDSO) do not have any file so fake
1976 	 * a default GFP_KERNEL for them.
1977 	 */
1978 	return GFP_KERNEL;
1979 }
1980 
1981 /*
1982  * Notify the address space that the page is about to become writable so that
1983  * it can prohibit this or wait for the page to get into an appropriate state.
1984  *
1985  * We do this without the lock held, so that it can sleep if it needs to.
1986  */
1987 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1988 	       unsigned long address)
1989 {
1990 	struct vm_fault vmf;
1991 	int ret;
1992 
1993 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
1994 	vmf.pgoff = page->index;
1995 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
1996 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
1997 	vmf.page = page;
1998 	vmf.cow_page = NULL;
1999 
2000 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2001 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2002 		return ret;
2003 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2004 		lock_page(page);
2005 		if (!page->mapping) {
2006 			unlock_page(page);
2007 			return 0; /* retry */
2008 		}
2009 		ret |= VM_FAULT_LOCKED;
2010 	} else
2011 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2012 	return ret;
2013 }
2014 
2015 /*
2016  * Handle write page faults for pages that can be reused in the current vma
2017  *
2018  * This can happen either due to the mapping being with the VM_SHARED flag,
2019  * or due to us being the last reference standing to the page. In either
2020  * case, all we need to do here is to mark the page as writable and update
2021  * any related book-keeping.
2022  */
2023 static inline int wp_page_reuse(struct mm_struct *mm,
2024 			struct vm_area_struct *vma, unsigned long address,
2025 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2026 			struct page *page, int page_mkwrite,
2027 			int dirty_shared)
2028 	__releases(ptl)
2029 {
2030 	pte_t entry;
2031 	/*
2032 	 * Clear the pages cpupid information as the existing
2033 	 * information potentially belongs to a now completely
2034 	 * unrelated process.
2035 	 */
2036 	if (page)
2037 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2038 
2039 	flush_cache_page(vma, address, pte_pfn(orig_pte));
2040 	entry = pte_mkyoung(orig_pte);
2041 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2042 	if (ptep_set_access_flags(vma, address, page_table, entry, 1))
2043 		update_mmu_cache(vma, address, page_table);
2044 	pte_unmap_unlock(page_table, ptl);
2045 
2046 	if (dirty_shared) {
2047 		struct address_space *mapping;
2048 		int dirtied;
2049 
2050 		if (!page_mkwrite)
2051 			lock_page(page);
2052 
2053 		dirtied = set_page_dirty(page);
2054 		VM_BUG_ON_PAGE(PageAnon(page), page);
2055 		mapping = page->mapping;
2056 		unlock_page(page);
2057 		put_page(page);
2058 
2059 		if ((dirtied || page_mkwrite) && mapping) {
2060 			/*
2061 			 * Some device drivers do not set page.mapping
2062 			 * but still dirty their pages
2063 			 */
2064 			balance_dirty_pages_ratelimited(mapping);
2065 		}
2066 
2067 		if (!page_mkwrite)
2068 			file_update_time(vma->vm_file);
2069 	}
2070 
2071 	return VM_FAULT_WRITE;
2072 }
2073 
2074 /*
2075  * Handle the case of a page which we actually need to copy to a new page.
2076  *
2077  * Called with mmap_sem locked and the old page referenced, but
2078  * without the ptl held.
2079  *
2080  * High level logic flow:
2081  *
2082  * - Allocate a page, copy the content of the old page to the new one.
2083  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2084  * - Take the PTL. If the pte changed, bail out and release the allocated page
2085  * - If the pte is still the way we remember it, update the page table and all
2086  *   relevant references. This includes dropping the reference the page-table
2087  *   held to the old page, as well as updating the rmap.
2088  * - In any case, unlock the PTL and drop the reference we took to the old page.
2089  */
2090 static int wp_page_copy(struct mm_struct *mm, struct vm_area_struct *vma,
2091 			unsigned long address, pte_t *page_table, pmd_t *pmd,
2092 			pte_t orig_pte, struct page *old_page)
2093 {
2094 	struct page *new_page = NULL;
2095 	spinlock_t *ptl = NULL;
2096 	pte_t entry;
2097 	int page_copied = 0;
2098 	const unsigned long mmun_start = address & PAGE_MASK;	/* For mmu_notifiers */
2099 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;	/* For mmu_notifiers */
2100 	struct mem_cgroup *memcg;
2101 
2102 	if (unlikely(anon_vma_prepare(vma)))
2103 		goto oom;
2104 
2105 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2106 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2107 		if (!new_page)
2108 			goto oom;
2109 	} else {
2110 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2111 		if (!new_page)
2112 			goto oom;
2113 		cow_user_page(new_page, old_page, address, vma);
2114 	}
2115 
2116 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2117 		goto oom_free_new;
2118 
2119 	__SetPageUptodate(new_page);
2120 
2121 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2122 
2123 	/*
2124 	 * Re-check the pte - we dropped the lock
2125 	 */
2126 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2127 	if (likely(pte_same(*page_table, orig_pte))) {
2128 		if (old_page) {
2129 			if (!PageAnon(old_page)) {
2130 				dec_mm_counter_fast(mm,
2131 						mm_counter_file(old_page));
2132 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2133 			}
2134 		} else {
2135 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2136 		}
2137 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2138 		entry = mk_pte(new_page, vma->vm_page_prot);
2139 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2140 		/*
2141 		 * Clear the pte entry and flush it first, before updating the
2142 		 * pte with the new entry. This will avoid a race condition
2143 		 * seen in the presence of one thread doing SMC and another
2144 		 * thread doing COW.
2145 		 */
2146 		ptep_clear_flush_notify(vma, address, page_table);
2147 		page_add_new_anon_rmap(new_page, vma, address, false);
2148 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2149 		lru_cache_add_active_or_unevictable(new_page, vma);
2150 		/*
2151 		 * We call the notify macro here because, when using secondary
2152 		 * mmu page tables (such as kvm shadow page tables), we want the
2153 		 * new page to be mapped directly into the secondary page table.
2154 		 */
2155 		set_pte_at_notify(mm, address, page_table, entry);
2156 		update_mmu_cache(vma, address, page_table);
2157 		if (old_page) {
2158 			/*
2159 			 * Only after switching the pte to the new page may
2160 			 * we remove the mapcount here. Otherwise another
2161 			 * process may come and find the rmap count decremented
2162 			 * before the pte is switched to the new page, and
2163 			 * "reuse" the old page writing into it while our pte
2164 			 * here still points into it and can be read by other
2165 			 * threads.
2166 			 *
2167 			 * The critical issue is to order this
2168 			 * page_remove_rmap with the ptp_clear_flush above.
2169 			 * Those stores are ordered by (if nothing else,)
2170 			 * the barrier present in the atomic_add_negative
2171 			 * in page_remove_rmap.
2172 			 *
2173 			 * Then the TLB flush in ptep_clear_flush ensures that
2174 			 * no process can access the old page before the
2175 			 * decremented mapcount is visible. And the old page
2176 			 * cannot be reused until after the decremented
2177 			 * mapcount is visible. So transitively, TLBs to
2178 			 * old page will be flushed before it can be reused.
2179 			 */
2180 			page_remove_rmap(old_page, false);
2181 		}
2182 
2183 		/* Free the old page.. */
2184 		new_page = old_page;
2185 		page_copied = 1;
2186 	} else {
2187 		mem_cgroup_cancel_charge(new_page, memcg, false);
2188 	}
2189 
2190 	if (new_page)
2191 		put_page(new_page);
2192 
2193 	pte_unmap_unlock(page_table, ptl);
2194 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2195 	if (old_page) {
2196 		/*
2197 		 * Don't let another task, with possibly unlocked vma,
2198 		 * keep the mlocked page.
2199 		 */
2200 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2201 			lock_page(old_page);	/* LRU manipulation */
2202 			if (PageMlocked(old_page))
2203 				munlock_vma_page(old_page);
2204 			unlock_page(old_page);
2205 		}
2206 		put_page(old_page);
2207 	}
2208 	return page_copied ? VM_FAULT_WRITE : 0;
2209 oom_free_new:
2210 	put_page(new_page);
2211 oom:
2212 	if (old_page)
2213 		put_page(old_page);
2214 	return VM_FAULT_OOM;
2215 }
2216 
2217 /*
2218  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2219  * mapping
2220  */
2221 static int wp_pfn_shared(struct mm_struct *mm,
2222 			struct vm_area_struct *vma, unsigned long address,
2223 			pte_t *page_table, spinlock_t *ptl, pte_t orig_pte,
2224 			pmd_t *pmd)
2225 {
2226 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2227 		struct vm_fault vmf = {
2228 			.page = NULL,
2229 			.pgoff = linear_page_index(vma, address),
2230 			.virtual_address = (void __user *)(address & PAGE_MASK),
2231 			.flags = FAULT_FLAG_WRITE | FAULT_FLAG_MKWRITE,
2232 		};
2233 		int ret;
2234 
2235 		pte_unmap_unlock(page_table, ptl);
2236 		ret = vma->vm_ops->pfn_mkwrite(vma, &vmf);
2237 		if (ret & VM_FAULT_ERROR)
2238 			return ret;
2239 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2240 		/*
2241 		 * We might have raced with another page fault while we
2242 		 * released the pte_offset_map_lock.
2243 		 */
2244 		if (!pte_same(*page_table, orig_pte)) {
2245 			pte_unmap_unlock(page_table, ptl);
2246 			return 0;
2247 		}
2248 	}
2249 	return wp_page_reuse(mm, vma, address, page_table, ptl, orig_pte,
2250 			     NULL, 0, 0);
2251 }
2252 
2253 static int wp_page_shared(struct mm_struct *mm, struct vm_area_struct *vma,
2254 			  unsigned long address, pte_t *page_table,
2255 			  pmd_t *pmd, spinlock_t *ptl, pte_t orig_pte,
2256 			  struct page *old_page)
2257 	__releases(ptl)
2258 {
2259 	int page_mkwrite = 0;
2260 
2261 	get_page(old_page);
2262 
2263 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2264 		int tmp;
2265 
2266 		pte_unmap_unlock(page_table, ptl);
2267 		tmp = do_page_mkwrite(vma, old_page, address);
2268 		if (unlikely(!tmp || (tmp &
2269 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2270 			put_page(old_page);
2271 			return tmp;
2272 		}
2273 		/*
2274 		 * Since we dropped the lock we need to revalidate
2275 		 * the PTE as someone else may have changed it.  If
2276 		 * they did, we just return, as we can count on the
2277 		 * MMU to tell us if they didn't also make it writable.
2278 		 */
2279 		page_table = pte_offset_map_lock(mm, pmd, address,
2280 						 &ptl);
2281 		if (!pte_same(*page_table, orig_pte)) {
2282 			unlock_page(old_page);
2283 			pte_unmap_unlock(page_table, ptl);
2284 			put_page(old_page);
2285 			return 0;
2286 		}
2287 		page_mkwrite = 1;
2288 	}
2289 
2290 	return wp_page_reuse(mm, vma, address, page_table, ptl,
2291 			     orig_pte, old_page, page_mkwrite, 1);
2292 }
2293 
2294 /*
2295  * This routine handles present pages, when users try to write
2296  * to a shared page. It is done by copying the page to a new address
2297  * and decrementing the shared-page counter for the old page.
2298  *
2299  * Note that this routine assumes that the protection checks have been
2300  * done by the caller (the low-level page fault routine in most cases).
2301  * Thus we can safely just mark it writable once we've done any necessary
2302  * COW.
2303  *
2304  * We also mark the page dirty at this point even though the page will
2305  * change only once the write actually happens. This avoids a few races,
2306  * and potentially makes it more efficient.
2307  *
2308  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2309  * but allow concurrent faults), with pte both mapped and locked.
2310  * We return with mmap_sem still held, but pte unmapped and unlocked.
2311  */
2312 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2313 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2314 		spinlock_t *ptl, pte_t orig_pte)
2315 	__releases(ptl)
2316 {
2317 	struct page *old_page;
2318 
2319 	old_page = vm_normal_page(vma, address, orig_pte);
2320 	if (!old_page) {
2321 		/*
2322 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2323 		 * VM_PFNMAP VMA.
2324 		 *
2325 		 * We should not cow pages in a shared writeable mapping.
2326 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2327 		 */
2328 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2329 				     (VM_WRITE|VM_SHARED))
2330 			return wp_pfn_shared(mm, vma, address, page_table, ptl,
2331 					     orig_pte, pmd);
2332 
2333 		pte_unmap_unlock(page_table, ptl);
2334 		return wp_page_copy(mm, vma, address, page_table, pmd,
2335 				    orig_pte, old_page);
2336 	}
2337 
2338 	/*
2339 	 * Take out anonymous pages first, anonymous shared vmas are
2340 	 * not dirty accountable.
2341 	 */
2342 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2343 		if (!trylock_page(old_page)) {
2344 			get_page(old_page);
2345 			pte_unmap_unlock(page_table, ptl);
2346 			lock_page(old_page);
2347 			page_table = pte_offset_map_lock(mm, pmd, address,
2348 							 &ptl);
2349 			if (!pte_same(*page_table, orig_pte)) {
2350 				unlock_page(old_page);
2351 				pte_unmap_unlock(page_table, ptl);
2352 				put_page(old_page);
2353 				return 0;
2354 			}
2355 			put_page(old_page);
2356 		}
2357 		if (reuse_swap_page(old_page)) {
2358 			/*
2359 			 * The page is all ours.  Move it to our anon_vma so
2360 			 * the rmap code will not search our parent or siblings.
2361 			 * Protected against the rmap code by the page lock.
2362 			 */
2363 			page_move_anon_rmap(old_page, vma, address);
2364 			unlock_page(old_page);
2365 			return wp_page_reuse(mm, vma, address, page_table, ptl,
2366 					     orig_pte, old_page, 0, 0);
2367 		}
2368 		unlock_page(old_page);
2369 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2370 					(VM_WRITE|VM_SHARED))) {
2371 		return wp_page_shared(mm, vma, address, page_table, pmd,
2372 				      ptl, orig_pte, old_page);
2373 	}
2374 
2375 	/*
2376 	 * Ok, we need to copy. Oh, well..
2377 	 */
2378 	get_page(old_page);
2379 
2380 	pte_unmap_unlock(page_table, ptl);
2381 	return wp_page_copy(mm, vma, address, page_table, pmd,
2382 			    orig_pte, old_page);
2383 }
2384 
2385 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2386 		unsigned long start_addr, unsigned long end_addr,
2387 		struct zap_details *details)
2388 {
2389 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2390 }
2391 
2392 static inline void unmap_mapping_range_tree(struct rb_root *root,
2393 					    struct zap_details *details)
2394 {
2395 	struct vm_area_struct *vma;
2396 	pgoff_t vba, vea, zba, zea;
2397 
2398 	vma_interval_tree_foreach(vma, root,
2399 			details->first_index, details->last_index) {
2400 
2401 		vba = vma->vm_pgoff;
2402 		vea = vba + vma_pages(vma) - 1;
2403 		zba = details->first_index;
2404 		if (zba < vba)
2405 			zba = vba;
2406 		zea = details->last_index;
2407 		if (zea > vea)
2408 			zea = vea;
2409 
2410 		unmap_mapping_range_vma(vma,
2411 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2412 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2413 				details);
2414 	}
2415 }
2416 
2417 /**
2418  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2419  * address_space corresponding to the specified page range in the underlying
2420  * file.
2421  *
2422  * @mapping: the address space containing mmaps to be unmapped.
2423  * @holebegin: byte in first page to unmap, relative to the start of
2424  * the underlying file.  This will be rounded down to a PAGE_SIZE
2425  * boundary.  Note that this is different from truncate_pagecache(), which
2426  * must keep the partial page.  In contrast, we must get rid of
2427  * partial pages.
2428  * @holelen: size of prospective hole in bytes.  This will be rounded
2429  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2430  * end of the file.
2431  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2432  * but 0 when invalidating pagecache, don't throw away private data.
2433  */
2434 void unmap_mapping_range(struct address_space *mapping,
2435 		loff_t const holebegin, loff_t const holelen, int even_cows)
2436 {
2437 	struct zap_details details = { };
2438 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2439 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2440 
2441 	/* Check for overflow. */
2442 	if (sizeof(holelen) > sizeof(hlen)) {
2443 		long long holeend =
2444 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2445 		if (holeend & ~(long long)ULONG_MAX)
2446 			hlen = ULONG_MAX - hba + 1;
2447 	}
2448 
2449 	details.check_mapping = even_cows? NULL: mapping;
2450 	details.first_index = hba;
2451 	details.last_index = hba + hlen - 1;
2452 	if (details.last_index < details.first_index)
2453 		details.last_index = ULONG_MAX;
2454 
2455 
2456 	/* DAX uses i_mmap_lock to serialise file truncate vs page fault */
2457 	i_mmap_lock_write(mapping);
2458 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2459 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2460 	i_mmap_unlock_write(mapping);
2461 }
2462 EXPORT_SYMBOL(unmap_mapping_range);
2463 
2464 /*
2465  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2466  * but allow concurrent faults), and pte mapped but not yet locked.
2467  * We return with pte unmapped and unlocked.
2468  *
2469  * We return with the mmap_sem locked or unlocked in the same cases
2470  * as does filemap_fault().
2471  */
2472 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2473 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2474 		unsigned int flags, pte_t orig_pte)
2475 {
2476 	spinlock_t *ptl;
2477 	struct page *page, *swapcache;
2478 	struct mem_cgroup *memcg;
2479 	swp_entry_t entry;
2480 	pte_t pte;
2481 	int locked;
2482 	int exclusive = 0;
2483 	int ret = 0;
2484 
2485 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2486 		goto out;
2487 
2488 	entry = pte_to_swp_entry(orig_pte);
2489 	if (unlikely(non_swap_entry(entry))) {
2490 		if (is_migration_entry(entry)) {
2491 			migration_entry_wait(mm, pmd, address);
2492 		} else if (is_hwpoison_entry(entry)) {
2493 			ret = VM_FAULT_HWPOISON;
2494 		} else {
2495 			print_bad_pte(vma, address, orig_pte, NULL);
2496 			ret = VM_FAULT_SIGBUS;
2497 		}
2498 		goto out;
2499 	}
2500 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2501 	page = lookup_swap_cache(entry);
2502 	if (!page) {
2503 		page = swapin_readahead(entry,
2504 					GFP_HIGHUSER_MOVABLE, vma, address);
2505 		if (!page) {
2506 			/*
2507 			 * Back out if somebody else faulted in this pte
2508 			 * while we released the pte lock.
2509 			 */
2510 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2511 			if (likely(pte_same(*page_table, orig_pte)))
2512 				ret = VM_FAULT_OOM;
2513 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2514 			goto unlock;
2515 		}
2516 
2517 		/* Had to read the page from swap area: Major fault */
2518 		ret = VM_FAULT_MAJOR;
2519 		count_vm_event(PGMAJFAULT);
2520 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2521 	} else if (PageHWPoison(page)) {
2522 		/*
2523 		 * hwpoisoned dirty swapcache pages are kept for killing
2524 		 * owner processes (which may be unknown at hwpoison time)
2525 		 */
2526 		ret = VM_FAULT_HWPOISON;
2527 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2528 		swapcache = page;
2529 		goto out_release;
2530 	}
2531 
2532 	swapcache = page;
2533 	locked = lock_page_or_retry(page, mm, flags);
2534 
2535 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2536 	if (!locked) {
2537 		ret |= VM_FAULT_RETRY;
2538 		goto out_release;
2539 	}
2540 
2541 	/*
2542 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2543 	 * release the swapcache from under us.  The page pin, and pte_same
2544 	 * test below, are not enough to exclude that.  Even if it is still
2545 	 * swapcache, we need to check that the page's swap has not changed.
2546 	 */
2547 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2548 		goto out_page;
2549 
2550 	page = ksm_might_need_to_copy(page, vma, address);
2551 	if (unlikely(!page)) {
2552 		ret = VM_FAULT_OOM;
2553 		page = swapcache;
2554 		goto out_page;
2555 	}
2556 
2557 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false)) {
2558 		ret = VM_FAULT_OOM;
2559 		goto out_page;
2560 	}
2561 
2562 	/*
2563 	 * Back out if somebody else already faulted in this pte.
2564 	 */
2565 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2566 	if (unlikely(!pte_same(*page_table, orig_pte)))
2567 		goto out_nomap;
2568 
2569 	if (unlikely(!PageUptodate(page))) {
2570 		ret = VM_FAULT_SIGBUS;
2571 		goto out_nomap;
2572 	}
2573 
2574 	/*
2575 	 * The page isn't present yet, go ahead with the fault.
2576 	 *
2577 	 * Be careful about the sequence of operations here.
2578 	 * To get its accounting right, reuse_swap_page() must be called
2579 	 * while the page is counted on swap but not yet in mapcount i.e.
2580 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2581 	 * must be called after the swap_free(), or it will never succeed.
2582 	 */
2583 
2584 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2585 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2586 	pte = mk_pte(page, vma->vm_page_prot);
2587 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2588 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2589 		flags &= ~FAULT_FLAG_WRITE;
2590 		ret |= VM_FAULT_WRITE;
2591 		exclusive = RMAP_EXCLUSIVE;
2592 	}
2593 	flush_icache_page(vma, page);
2594 	if (pte_swp_soft_dirty(orig_pte))
2595 		pte = pte_mksoft_dirty(pte);
2596 	set_pte_at(mm, address, page_table, pte);
2597 	if (page == swapcache) {
2598 		do_page_add_anon_rmap(page, vma, address, exclusive);
2599 		mem_cgroup_commit_charge(page, memcg, true, false);
2600 	} else { /* ksm created a completely new copy */
2601 		page_add_new_anon_rmap(page, vma, address, false);
2602 		mem_cgroup_commit_charge(page, memcg, false, false);
2603 		lru_cache_add_active_or_unevictable(page, vma);
2604 	}
2605 
2606 	swap_free(entry);
2607 	if (mem_cgroup_swap_full(page) ||
2608 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2609 		try_to_free_swap(page);
2610 	unlock_page(page);
2611 	if (page != swapcache) {
2612 		/*
2613 		 * Hold the lock to avoid the swap entry to be reused
2614 		 * until we take the PT lock for the pte_same() check
2615 		 * (to avoid false positives from pte_same). For
2616 		 * further safety release the lock after the swap_free
2617 		 * so that the swap count won't change under a
2618 		 * parallel locked swapcache.
2619 		 */
2620 		unlock_page(swapcache);
2621 		put_page(swapcache);
2622 	}
2623 
2624 	if (flags & FAULT_FLAG_WRITE) {
2625 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2626 		if (ret & VM_FAULT_ERROR)
2627 			ret &= VM_FAULT_ERROR;
2628 		goto out;
2629 	}
2630 
2631 	/* No need to invalidate - it was non-present before */
2632 	update_mmu_cache(vma, address, page_table);
2633 unlock:
2634 	pte_unmap_unlock(page_table, ptl);
2635 out:
2636 	return ret;
2637 out_nomap:
2638 	mem_cgroup_cancel_charge(page, memcg, false);
2639 	pte_unmap_unlock(page_table, ptl);
2640 out_page:
2641 	unlock_page(page);
2642 out_release:
2643 	put_page(page);
2644 	if (page != swapcache) {
2645 		unlock_page(swapcache);
2646 		put_page(swapcache);
2647 	}
2648 	return ret;
2649 }
2650 
2651 /*
2652  * This is like a special single-page "expand_{down|up}wards()",
2653  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2654  * doesn't hit another vma.
2655  */
2656 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2657 {
2658 	address &= PAGE_MASK;
2659 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2660 		struct vm_area_struct *prev = vma->vm_prev;
2661 
2662 		/*
2663 		 * Is there a mapping abutting this one below?
2664 		 *
2665 		 * That's only ok if it's the same stack mapping
2666 		 * that has gotten split..
2667 		 */
2668 		if (prev && prev->vm_end == address)
2669 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2670 
2671 		return expand_downwards(vma, address - PAGE_SIZE);
2672 	}
2673 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2674 		struct vm_area_struct *next = vma->vm_next;
2675 
2676 		/* As VM_GROWSDOWN but s/below/above/ */
2677 		if (next && next->vm_start == address + PAGE_SIZE)
2678 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2679 
2680 		return expand_upwards(vma, address + PAGE_SIZE);
2681 	}
2682 	return 0;
2683 }
2684 
2685 /*
2686  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2687  * but allow concurrent faults), and pte mapped but not yet locked.
2688  * We return with mmap_sem still held, but pte unmapped and unlocked.
2689  */
2690 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2691 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2692 		unsigned int flags)
2693 {
2694 	struct mem_cgroup *memcg;
2695 	struct page *page;
2696 	spinlock_t *ptl;
2697 	pte_t entry;
2698 
2699 	pte_unmap(page_table);
2700 
2701 	/* File mapping without ->vm_ops ? */
2702 	if (vma->vm_flags & VM_SHARED)
2703 		return VM_FAULT_SIGBUS;
2704 
2705 	/* Check if we need to add a guard page to the stack */
2706 	if (check_stack_guard_page(vma, address) < 0)
2707 		return VM_FAULT_SIGSEGV;
2708 
2709 	/* Use the zero-page for reads */
2710 	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm)) {
2711 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2712 						vma->vm_page_prot));
2713 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2714 		if (!pte_none(*page_table))
2715 			goto unlock;
2716 		/* Deliver the page fault to userland, check inside PT lock */
2717 		if (userfaultfd_missing(vma)) {
2718 			pte_unmap_unlock(page_table, ptl);
2719 			return handle_userfault(vma, address, flags,
2720 						VM_UFFD_MISSING);
2721 		}
2722 		goto setpte;
2723 	}
2724 
2725 	/* Allocate our own private page. */
2726 	if (unlikely(anon_vma_prepare(vma)))
2727 		goto oom;
2728 	page = alloc_zeroed_user_highpage_movable(vma, address);
2729 	if (!page)
2730 		goto oom;
2731 
2732 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg, false))
2733 		goto oom_free_page;
2734 
2735 	/*
2736 	 * The memory barrier inside __SetPageUptodate makes sure that
2737 	 * preceeding stores to the page contents become visible before
2738 	 * the set_pte_at() write.
2739 	 */
2740 	__SetPageUptodate(page);
2741 
2742 	entry = mk_pte(page, vma->vm_page_prot);
2743 	if (vma->vm_flags & VM_WRITE)
2744 		entry = pte_mkwrite(pte_mkdirty(entry));
2745 
2746 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2747 	if (!pte_none(*page_table))
2748 		goto release;
2749 
2750 	/* Deliver the page fault to userland, check inside PT lock */
2751 	if (userfaultfd_missing(vma)) {
2752 		pte_unmap_unlock(page_table, ptl);
2753 		mem_cgroup_cancel_charge(page, memcg, false);
2754 		put_page(page);
2755 		return handle_userfault(vma, address, flags,
2756 					VM_UFFD_MISSING);
2757 	}
2758 
2759 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2760 	page_add_new_anon_rmap(page, vma, address, false);
2761 	mem_cgroup_commit_charge(page, memcg, false, false);
2762 	lru_cache_add_active_or_unevictable(page, vma);
2763 setpte:
2764 	set_pte_at(mm, address, page_table, entry);
2765 
2766 	/* No need to invalidate - it was non-present before */
2767 	update_mmu_cache(vma, address, page_table);
2768 unlock:
2769 	pte_unmap_unlock(page_table, ptl);
2770 	return 0;
2771 release:
2772 	mem_cgroup_cancel_charge(page, memcg, false);
2773 	put_page(page);
2774 	goto unlock;
2775 oom_free_page:
2776 	put_page(page);
2777 oom:
2778 	return VM_FAULT_OOM;
2779 }
2780 
2781 /*
2782  * The mmap_sem must have been held on entry, and may have been
2783  * released depending on flags and vma->vm_ops->fault() return value.
2784  * See filemap_fault() and __lock_page_retry().
2785  */
2786 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2787 			pgoff_t pgoff, unsigned int flags,
2788 			struct page *cow_page, struct page **page)
2789 {
2790 	struct vm_fault vmf;
2791 	int ret;
2792 
2793 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2794 	vmf.pgoff = pgoff;
2795 	vmf.flags = flags;
2796 	vmf.page = NULL;
2797 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2798 	vmf.cow_page = cow_page;
2799 
2800 	ret = vma->vm_ops->fault(vma, &vmf);
2801 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2802 		return ret;
2803 	if (!vmf.page)
2804 		goto out;
2805 
2806 	if (unlikely(PageHWPoison(vmf.page))) {
2807 		if (ret & VM_FAULT_LOCKED)
2808 			unlock_page(vmf.page);
2809 		put_page(vmf.page);
2810 		return VM_FAULT_HWPOISON;
2811 	}
2812 
2813 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2814 		lock_page(vmf.page);
2815 	else
2816 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2817 
2818  out:
2819 	*page = vmf.page;
2820 	return ret;
2821 }
2822 
2823 /**
2824  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2825  *
2826  * @vma: virtual memory area
2827  * @address: user virtual address
2828  * @page: page to map
2829  * @pte: pointer to target page table entry
2830  * @write: true, if new entry is writable
2831  * @anon: true, if it's anonymous page
2832  *
2833  * Caller must hold page table lock relevant for @pte.
2834  *
2835  * Target users are page handler itself and implementations of
2836  * vm_ops->map_pages.
2837  */
2838 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2839 		struct page *page, pte_t *pte, bool write, bool anon)
2840 {
2841 	pte_t entry;
2842 
2843 	flush_icache_page(vma, page);
2844 	entry = mk_pte(page, vma->vm_page_prot);
2845 	if (write)
2846 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2847 	if (anon) {
2848 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2849 		page_add_new_anon_rmap(page, vma, address, false);
2850 	} else {
2851 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
2852 		page_add_file_rmap(page);
2853 	}
2854 	set_pte_at(vma->vm_mm, address, pte, entry);
2855 
2856 	/* no need to invalidate: a not-present page won't be cached */
2857 	update_mmu_cache(vma, address, pte);
2858 }
2859 
2860 static unsigned long fault_around_bytes __read_mostly =
2861 	rounddown_pow_of_two(65536);
2862 
2863 #ifdef CONFIG_DEBUG_FS
2864 static int fault_around_bytes_get(void *data, u64 *val)
2865 {
2866 	*val = fault_around_bytes;
2867 	return 0;
2868 }
2869 
2870 /*
2871  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2872  * rounded down to nearest page order. It's what do_fault_around() expects to
2873  * see.
2874  */
2875 static int fault_around_bytes_set(void *data, u64 val)
2876 {
2877 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2878 		return -EINVAL;
2879 	if (val > PAGE_SIZE)
2880 		fault_around_bytes = rounddown_pow_of_two(val);
2881 	else
2882 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2883 	return 0;
2884 }
2885 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2886 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2887 
2888 static int __init fault_around_debugfs(void)
2889 {
2890 	void *ret;
2891 
2892 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2893 			&fault_around_bytes_fops);
2894 	if (!ret)
2895 		pr_warn("Failed to create fault_around_bytes in debugfs");
2896 	return 0;
2897 }
2898 late_initcall(fault_around_debugfs);
2899 #endif
2900 
2901 /*
2902  * do_fault_around() tries to map few pages around the fault address. The hope
2903  * is that the pages will be needed soon and this will lower the number of
2904  * faults to handle.
2905  *
2906  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2907  * not ready to be mapped: not up-to-date, locked, etc.
2908  *
2909  * This function is called with the page table lock taken. In the split ptlock
2910  * case the page table lock only protects only those entries which belong to
2911  * the page table corresponding to the fault address.
2912  *
2913  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2914  * only once.
2915  *
2916  * fault_around_pages() defines how many pages we'll try to map.
2917  * do_fault_around() expects it to return a power of two less than or equal to
2918  * PTRS_PER_PTE.
2919  *
2920  * The virtual address of the area that we map is naturally aligned to the
2921  * fault_around_pages() value (and therefore to page order).  This way it's
2922  * easier to guarantee that we don't cross page table boundaries.
2923  */
2924 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2925 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2926 {
2927 	unsigned long start_addr, nr_pages, mask;
2928 	pgoff_t max_pgoff;
2929 	struct vm_fault vmf;
2930 	int off;
2931 
2932 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2933 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2934 
2935 	start_addr = max(address & mask, vma->vm_start);
2936 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2937 	pte -= off;
2938 	pgoff -= off;
2939 
2940 	/*
2941 	 *  max_pgoff is either end of page table or end of vma
2942 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2943 	 */
2944 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2945 		PTRS_PER_PTE - 1;
2946 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2947 			pgoff + nr_pages - 1);
2948 
2949 	/* Check if it makes any sense to call ->map_pages */
2950 	while (!pte_none(*pte)) {
2951 		if (++pgoff > max_pgoff)
2952 			return;
2953 		start_addr += PAGE_SIZE;
2954 		if (start_addr >= vma->vm_end)
2955 			return;
2956 		pte++;
2957 	}
2958 
2959 	vmf.virtual_address = (void __user *) start_addr;
2960 	vmf.pte = pte;
2961 	vmf.pgoff = pgoff;
2962 	vmf.max_pgoff = max_pgoff;
2963 	vmf.flags = flags;
2964 	vmf.gfp_mask = __get_fault_gfp_mask(vma);
2965 	vma->vm_ops->map_pages(vma, &vmf);
2966 }
2967 
2968 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2969 		unsigned long address, pmd_t *pmd,
2970 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2971 {
2972 	struct page *fault_page;
2973 	spinlock_t *ptl;
2974 	pte_t *pte;
2975 	int ret = 0;
2976 
2977 	/*
2978 	 * Let's call ->map_pages() first and use ->fault() as fallback
2979 	 * if page by the offset is not ready to be mapped (cold cache or
2980 	 * something).
2981 	 */
2982 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
2983 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2984 		do_fault_around(vma, address, pte, pgoff, flags);
2985 		if (!pte_same(*pte, orig_pte))
2986 			goto unlock_out;
2987 		pte_unmap_unlock(pte, ptl);
2988 	}
2989 
2990 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
2991 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2992 		return ret;
2993 
2994 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2995 	if (unlikely(!pte_same(*pte, orig_pte))) {
2996 		pte_unmap_unlock(pte, ptl);
2997 		unlock_page(fault_page);
2998 		put_page(fault_page);
2999 		return ret;
3000 	}
3001 	do_set_pte(vma, address, fault_page, pte, false, false);
3002 	unlock_page(fault_page);
3003 unlock_out:
3004 	pte_unmap_unlock(pte, ptl);
3005 	return ret;
3006 }
3007 
3008 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3009 		unsigned long address, pmd_t *pmd,
3010 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3011 {
3012 	struct page *fault_page, *new_page;
3013 	struct mem_cgroup *memcg;
3014 	spinlock_t *ptl;
3015 	pte_t *pte;
3016 	int ret;
3017 
3018 	if (unlikely(anon_vma_prepare(vma)))
3019 		return VM_FAULT_OOM;
3020 
3021 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3022 	if (!new_page)
3023 		return VM_FAULT_OOM;
3024 
3025 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) {
3026 		put_page(new_page);
3027 		return VM_FAULT_OOM;
3028 	}
3029 
3030 	ret = __do_fault(vma, address, pgoff, flags, new_page, &fault_page);
3031 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3032 		goto uncharge_out;
3033 
3034 	if (fault_page)
3035 		copy_user_highpage(new_page, fault_page, address, vma);
3036 	__SetPageUptodate(new_page);
3037 
3038 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3039 	if (unlikely(!pte_same(*pte, orig_pte))) {
3040 		pte_unmap_unlock(pte, ptl);
3041 		if (fault_page) {
3042 			unlock_page(fault_page);
3043 			put_page(fault_page);
3044 		} else {
3045 			/*
3046 			 * The fault handler has no page to lock, so it holds
3047 			 * i_mmap_lock for read to protect against truncate.
3048 			 */
3049 			i_mmap_unlock_read(vma->vm_file->f_mapping);
3050 		}
3051 		goto uncharge_out;
3052 	}
3053 	do_set_pte(vma, address, new_page, pte, true, true);
3054 	mem_cgroup_commit_charge(new_page, memcg, false, false);
3055 	lru_cache_add_active_or_unevictable(new_page, vma);
3056 	pte_unmap_unlock(pte, ptl);
3057 	if (fault_page) {
3058 		unlock_page(fault_page);
3059 		put_page(fault_page);
3060 	} else {
3061 		/*
3062 		 * The fault handler has no page to lock, so it holds
3063 		 * i_mmap_lock for read to protect against truncate.
3064 		 */
3065 		i_mmap_unlock_read(vma->vm_file->f_mapping);
3066 	}
3067 	return ret;
3068 uncharge_out:
3069 	mem_cgroup_cancel_charge(new_page, memcg, false);
3070 	put_page(new_page);
3071 	return ret;
3072 }
3073 
3074 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3075 		unsigned long address, pmd_t *pmd,
3076 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3077 {
3078 	struct page *fault_page;
3079 	struct address_space *mapping;
3080 	spinlock_t *ptl;
3081 	pte_t *pte;
3082 	int dirtied = 0;
3083 	int ret, tmp;
3084 
3085 	ret = __do_fault(vma, address, pgoff, flags, NULL, &fault_page);
3086 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3087 		return ret;
3088 
3089 	/*
3090 	 * Check if the backing address space wants to know that the page is
3091 	 * about to become writable
3092 	 */
3093 	if (vma->vm_ops->page_mkwrite) {
3094 		unlock_page(fault_page);
3095 		tmp = do_page_mkwrite(vma, fault_page, address);
3096 		if (unlikely(!tmp ||
3097 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3098 			put_page(fault_page);
3099 			return tmp;
3100 		}
3101 	}
3102 
3103 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3104 	if (unlikely(!pte_same(*pte, orig_pte))) {
3105 		pte_unmap_unlock(pte, ptl);
3106 		unlock_page(fault_page);
3107 		put_page(fault_page);
3108 		return ret;
3109 	}
3110 	do_set_pte(vma, address, fault_page, pte, true, false);
3111 	pte_unmap_unlock(pte, ptl);
3112 
3113 	if (set_page_dirty(fault_page))
3114 		dirtied = 1;
3115 	/*
3116 	 * Take a local copy of the address_space - page.mapping may be zeroed
3117 	 * by truncate after unlock_page().   The address_space itself remains
3118 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3119 	 * release semantics to prevent the compiler from undoing this copying.
3120 	 */
3121 	mapping = page_rmapping(fault_page);
3122 	unlock_page(fault_page);
3123 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3124 		/*
3125 		 * Some device drivers do not set page.mapping but still
3126 		 * dirty their pages
3127 		 */
3128 		balance_dirty_pages_ratelimited(mapping);
3129 	}
3130 
3131 	if (!vma->vm_ops->page_mkwrite)
3132 		file_update_time(vma->vm_file);
3133 
3134 	return ret;
3135 }
3136 
3137 /*
3138  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3139  * but allow concurrent faults).
3140  * The mmap_sem may have been released depending on flags and our
3141  * return value.  See filemap_fault() and __lock_page_or_retry().
3142  */
3143 static int do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3144 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3145 		unsigned int flags, pte_t orig_pte)
3146 {
3147 	pgoff_t pgoff = linear_page_index(vma, address);
3148 
3149 	pte_unmap(page_table);
3150 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3151 	if (!vma->vm_ops->fault)
3152 		return VM_FAULT_SIGBUS;
3153 	if (!(flags & FAULT_FLAG_WRITE))
3154 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3155 				orig_pte);
3156 	if (!(vma->vm_flags & VM_SHARED))
3157 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3158 				orig_pte);
3159 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3160 }
3161 
3162 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3163 				unsigned long addr, int page_nid,
3164 				int *flags)
3165 {
3166 	get_page(page);
3167 
3168 	count_vm_numa_event(NUMA_HINT_FAULTS);
3169 	if (page_nid == numa_node_id()) {
3170 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3171 		*flags |= TNF_FAULT_LOCAL;
3172 	}
3173 
3174 	return mpol_misplaced(page, vma, addr);
3175 }
3176 
3177 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3178 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3179 {
3180 	struct page *page = NULL;
3181 	spinlock_t *ptl;
3182 	int page_nid = -1;
3183 	int last_cpupid;
3184 	int target_nid;
3185 	bool migrated = false;
3186 	bool was_writable = pte_write(pte);
3187 	int flags = 0;
3188 
3189 	/* A PROT_NONE fault should not end up here */
3190 	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
3191 
3192 	/*
3193 	* The "pte" at this point cannot be used safely without
3194 	* validation through pte_unmap_same(). It's of NUMA type but
3195 	* the pfn may be screwed if the read is non atomic.
3196 	*
3197 	* We can safely just do a "set_pte_at()", because the old
3198 	* page table entry is not accessible, so there would be no
3199 	* concurrent hardware modifications to the PTE.
3200 	*/
3201 	ptl = pte_lockptr(mm, pmd);
3202 	spin_lock(ptl);
3203 	if (unlikely(!pte_same(*ptep, pte))) {
3204 		pte_unmap_unlock(ptep, ptl);
3205 		goto out;
3206 	}
3207 
3208 	/* Make it present again */
3209 	pte = pte_modify(pte, vma->vm_page_prot);
3210 	pte = pte_mkyoung(pte);
3211 	if (was_writable)
3212 		pte = pte_mkwrite(pte);
3213 	set_pte_at(mm, addr, ptep, pte);
3214 	update_mmu_cache(vma, addr, ptep);
3215 
3216 	page = vm_normal_page(vma, addr, pte);
3217 	if (!page) {
3218 		pte_unmap_unlock(ptep, ptl);
3219 		return 0;
3220 	}
3221 
3222 	/* TODO: handle PTE-mapped THP */
3223 	if (PageCompound(page)) {
3224 		pte_unmap_unlock(ptep, ptl);
3225 		return 0;
3226 	}
3227 
3228 	/*
3229 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3230 	 * much anyway since they can be in shared cache state. This misses
3231 	 * the case where a mapping is writable but the process never writes
3232 	 * to it but pte_write gets cleared during protection updates and
3233 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3234 	 * background writeback, dirty balancing and application behaviour.
3235 	 */
3236 	if (!(vma->vm_flags & VM_WRITE))
3237 		flags |= TNF_NO_GROUP;
3238 
3239 	/*
3240 	 * Flag if the page is shared between multiple address spaces. This
3241 	 * is later used when determining whether to group tasks together
3242 	 */
3243 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3244 		flags |= TNF_SHARED;
3245 
3246 	last_cpupid = page_cpupid_last(page);
3247 	page_nid = page_to_nid(page);
3248 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3249 	pte_unmap_unlock(ptep, ptl);
3250 	if (target_nid == -1) {
3251 		put_page(page);
3252 		goto out;
3253 	}
3254 
3255 	/* Migrate to the requested node */
3256 	migrated = migrate_misplaced_page(page, vma, target_nid);
3257 	if (migrated) {
3258 		page_nid = target_nid;
3259 		flags |= TNF_MIGRATED;
3260 	} else
3261 		flags |= TNF_MIGRATE_FAIL;
3262 
3263 out:
3264 	if (page_nid != -1)
3265 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3266 	return 0;
3267 }
3268 
3269 static int create_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3270 			unsigned long address, pmd_t *pmd, unsigned int flags)
3271 {
3272 	if (vma_is_anonymous(vma))
3273 		return do_huge_pmd_anonymous_page(mm, vma, address, pmd, flags);
3274 	if (vma->vm_ops->pmd_fault)
3275 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3276 	return VM_FAULT_FALLBACK;
3277 }
3278 
3279 static int wp_huge_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
3280 			unsigned long address, pmd_t *pmd, pmd_t orig_pmd,
3281 			unsigned int flags)
3282 {
3283 	if (vma_is_anonymous(vma))
3284 		return do_huge_pmd_wp_page(mm, vma, address, pmd, orig_pmd);
3285 	if (vma->vm_ops->pmd_fault)
3286 		return vma->vm_ops->pmd_fault(vma, address, pmd, flags);
3287 	return VM_FAULT_FALLBACK;
3288 }
3289 
3290 /*
3291  * These routines also need to handle stuff like marking pages dirty
3292  * and/or accessed for architectures that don't do it in hardware (most
3293  * RISC architectures).  The early dirtying is also good on the i386.
3294  *
3295  * There is also a hook called "update_mmu_cache()" that architectures
3296  * with external mmu caches can use to update those (ie the Sparc or
3297  * PowerPC hashed page tables that act as extended TLBs).
3298  *
3299  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3300  * but allow concurrent faults), and pte mapped but not yet locked.
3301  * We return with pte unmapped and unlocked.
3302  *
3303  * The mmap_sem may have been released depending on flags and our
3304  * return value.  See filemap_fault() and __lock_page_or_retry().
3305  */
3306 static int handle_pte_fault(struct mm_struct *mm,
3307 		     struct vm_area_struct *vma, unsigned long address,
3308 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3309 {
3310 	pte_t entry;
3311 	spinlock_t *ptl;
3312 
3313 	/*
3314 	 * some architectures can have larger ptes than wordsize,
3315 	 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and CONFIG_32BIT=y,
3316 	 * so READ_ONCE or ACCESS_ONCE cannot guarantee atomic accesses.
3317 	 * The code below just needs a consistent view for the ifs and
3318 	 * we later double check anyway with the ptl lock held. So here
3319 	 * a barrier will do.
3320 	 */
3321 	entry = *pte;
3322 	barrier();
3323 	if (!pte_present(entry)) {
3324 		if (pte_none(entry)) {
3325 			if (vma_is_anonymous(vma))
3326 				return do_anonymous_page(mm, vma, address,
3327 							 pte, pmd, flags);
3328 			else
3329 				return do_fault(mm, vma, address, pte, pmd,
3330 						flags, entry);
3331 		}
3332 		return do_swap_page(mm, vma, address,
3333 					pte, pmd, flags, entry);
3334 	}
3335 
3336 	if (pte_protnone(entry))
3337 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3338 
3339 	ptl = pte_lockptr(mm, pmd);
3340 	spin_lock(ptl);
3341 	if (unlikely(!pte_same(*pte, entry)))
3342 		goto unlock;
3343 	if (flags & FAULT_FLAG_WRITE) {
3344 		if (!pte_write(entry))
3345 			return do_wp_page(mm, vma, address,
3346 					pte, pmd, ptl, entry);
3347 		entry = pte_mkdirty(entry);
3348 	}
3349 	entry = pte_mkyoung(entry);
3350 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3351 		update_mmu_cache(vma, address, pte);
3352 	} else {
3353 		/*
3354 		 * This is needed only for protection faults but the arch code
3355 		 * is not yet telling us if this is a protection fault or not.
3356 		 * This still avoids useless tlb flushes for .text page faults
3357 		 * with threads.
3358 		 */
3359 		if (flags & FAULT_FLAG_WRITE)
3360 			flush_tlb_fix_spurious_fault(vma, address);
3361 	}
3362 unlock:
3363 	pte_unmap_unlock(pte, ptl);
3364 	return 0;
3365 }
3366 
3367 /*
3368  * By the time we get here, we already hold the mm semaphore
3369  *
3370  * The mmap_sem may have been released depending on flags and our
3371  * return value.  See filemap_fault() and __lock_page_or_retry().
3372  */
3373 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3374 			     unsigned long address, unsigned int flags)
3375 {
3376 	pgd_t *pgd;
3377 	pud_t *pud;
3378 	pmd_t *pmd;
3379 	pte_t *pte;
3380 
3381 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3382 					    flags & FAULT_FLAG_INSTRUCTION,
3383 					    flags & FAULT_FLAG_REMOTE))
3384 		return VM_FAULT_SIGSEGV;
3385 
3386 	if (unlikely(is_vm_hugetlb_page(vma)))
3387 		return hugetlb_fault(mm, vma, address, flags);
3388 
3389 	pgd = pgd_offset(mm, address);
3390 	pud = pud_alloc(mm, pgd, address);
3391 	if (!pud)
3392 		return VM_FAULT_OOM;
3393 	pmd = pmd_alloc(mm, pud, address);
3394 	if (!pmd)
3395 		return VM_FAULT_OOM;
3396 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3397 		int ret = create_huge_pmd(mm, vma, address, pmd, flags);
3398 		if (!(ret & VM_FAULT_FALLBACK))
3399 			return ret;
3400 	} else {
3401 		pmd_t orig_pmd = *pmd;
3402 		int ret;
3403 
3404 		barrier();
3405 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3406 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3407 
3408 			if (pmd_protnone(orig_pmd))
3409 				return do_huge_pmd_numa_page(mm, vma, address,
3410 							     orig_pmd, pmd);
3411 
3412 			if (dirty && !pmd_write(orig_pmd)) {
3413 				ret = wp_huge_pmd(mm, vma, address, pmd,
3414 							orig_pmd, flags);
3415 				if (!(ret & VM_FAULT_FALLBACK))
3416 					return ret;
3417 			} else {
3418 				huge_pmd_set_accessed(mm, vma, address, pmd,
3419 						      orig_pmd, dirty);
3420 				return 0;
3421 			}
3422 		}
3423 	}
3424 
3425 	/*
3426 	 * Use pte_alloc() instead of pte_alloc_map, because we can't
3427 	 * run pte_offset_map on the pmd, if an huge pmd could
3428 	 * materialize from under us from a different thread.
3429 	 */
3430 	if (unlikely(pte_alloc(mm, pmd, address)))
3431 		return VM_FAULT_OOM;
3432 	/*
3433 	 * If a huge pmd materialized under us just retry later.  Use
3434 	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
3435 	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
3436 	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
3437 	 * in a different thread of this mm, in turn leading to a misleading
3438 	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
3439 	 * regular pmd that we can walk with pte_offset_map() and we can do that
3440 	 * through an atomic read in C, which is what pmd_trans_unstable()
3441 	 * provides.
3442 	 */
3443 	if (unlikely(pmd_trans_unstable(pmd) || pmd_devmap(*pmd)))
3444 		return 0;
3445 	/*
3446 	 * A regular pmd is established and it can't morph into a huge pmd
3447 	 * from under us anymore at this point because we hold the mmap_sem
3448 	 * read mode and khugepaged takes it in write mode. So now it's
3449 	 * safe to run pte_offset_map().
3450 	 */
3451 	pte = pte_offset_map(pmd, address);
3452 
3453 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3454 }
3455 
3456 /*
3457  * By the time we get here, we already hold the mm semaphore
3458  *
3459  * The mmap_sem may have been released depending on flags and our
3460  * return value.  See filemap_fault() and __lock_page_or_retry().
3461  */
3462 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3463 		    unsigned long address, unsigned int flags)
3464 {
3465 	int ret;
3466 
3467 	__set_current_state(TASK_RUNNING);
3468 
3469 	count_vm_event(PGFAULT);
3470 	mem_cgroup_count_vm_event(mm, PGFAULT);
3471 
3472 	/* do counter updates before entering really critical section. */
3473 	check_sync_rss_stat(current);
3474 
3475 	/*
3476 	 * Enable the memcg OOM handling for faults triggered in user
3477 	 * space.  Kernel faults are handled more gracefully.
3478 	 */
3479 	if (flags & FAULT_FLAG_USER)
3480 		mem_cgroup_oom_enable();
3481 
3482 	ret = __handle_mm_fault(mm, vma, address, flags);
3483 
3484 	if (flags & FAULT_FLAG_USER) {
3485 		mem_cgroup_oom_disable();
3486                 /*
3487                  * The task may have entered a memcg OOM situation but
3488                  * if the allocation error was handled gracefully (no
3489                  * VM_FAULT_OOM), there is no need to kill anything.
3490                  * Just clean up the OOM state peacefully.
3491                  */
3492                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3493                         mem_cgroup_oom_synchronize(false);
3494 	}
3495 
3496 	return ret;
3497 }
3498 EXPORT_SYMBOL_GPL(handle_mm_fault);
3499 
3500 #ifndef __PAGETABLE_PUD_FOLDED
3501 /*
3502  * Allocate page upper directory.
3503  * We've already handled the fast-path in-line.
3504  */
3505 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3506 {
3507 	pud_t *new = pud_alloc_one(mm, address);
3508 	if (!new)
3509 		return -ENOMEM;
3510 
3511 	smp_wmb(); /* See comment in __pte_alloc */
3512 
3513 	spin_lock(&mm->page_table_lock);
3514 	if (pgd_present(*pgd))		/* Another has populated it */
3515 		pud_free(mm, new);
3516 	else
3517 		pgd_populate(mm, pgd, new);
3518 	spin_unlock(&mm->page_table_lock);
3519 	return 0;
3520 }
3521 #endif /* __PAGETABLE_PUD_FOLDED */
3522 
3523 #ifndef __PAGETABLE_PMD_FOLDED
3524 /*
3525  * Allocate page middle directory.
3526  * We've already handled the fast-path in-line.
3527  */
3528 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3529 {
3530 	pmd_t *new = pmd_alloc_one(mm, address);
3531 	if (!new)
3532 		return -ENOMEM;
3533 
3534 	smp_wmb(); /* See comment in __pte_alloc */
3535 
3536 	spin_lock(&mm->page_table_lock);
3537 #ifndef __ARCH_HAS_4LEVEL_HACK
3538 	if (!pud_present(*pud)) {
3539 		mm_inc_nr_pmds(mm);
3540 		pud_populate(mm, pud, new);
3541 	} else	/* Another has populated it */
3542 		pmd_free(mm, new);
3543 #else
3544 	if (!pgd_present(*pud)) {
3545 		mm_inc_nr_pmds(mm);
3546 		pgd_populate(mm, pud, new);
3547 	} else /* Another has populated it */
3548 		pmd_free(mm, new);
3549 #endif /* __ARCH_HAS_4LEVEL_HACK */
3550 	spin_unlock(&mm->page_table_lock);
3551 	return 0;
3552 }
3553 #endif /* __PAGETABLE_PMD_FOLDED */
3554 
3555 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3556 		pte_t **ptepp, spinlock_t **ptlp)
3557 {
3558 	pgd_t *pgd;
3559 	pud_t *pud;
3560 	pmd_t *pmd;
3561 	pte_t *ptep;
3562 
3563 	pgd = pgd_offset(mm, address);
3564 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3565 		goto out;
3566 
3567 	pud = pud_offset(pgd, address);
3568 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3569 		goto out;
3570 
3571 	pmd = pmd_offset(pud, address);
3572 	VM_BUG_ON(pmd_trans_huge(*pmd));
3573 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3574 		goto out;
3575 
3576 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3577 	if (pmd_huge(*pmd))
3578 		goto out;
3579 
3580 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3581 	if (!ptep)
3582 		goto out;
3583 	if (!pte_present(*ptep))
3584 		goto unlock;
3585 	*ptepp = ptep;
3586 	return 0;
3587 unlock:
3588 	pte_unmap_unlock(ptep, *ptlp);
3589 out:
3590 	return -EINVAL;
3591 }
3592 
3593 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3594 			     pte_t **ptepp, spinlock_t **ptlp)
3595 {
3596 	int res;
3597 
3598 	/* (void) is needed to make gcc happy */
3599 	(void) __cond_lock(*ptlp,
3600 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3601 	return res;
3602 }
3603 
3604 /**
3605  * follow_pfn - look up PFN at a user virtual address
3606  * @vma: memory mapping
3607  * @address: user virtual address
3608  * @pfn: location to store found PFN
3609  *
3610  * Only IO mappings and raw PFN mappings are allowed.
3611  *
3612  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3613  */
3614 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3615 	unsigned long *pfn)
3616 {
3617 	int ret = -EINVAL;
3618 	spinlock_t *ptl;
3619 	pte_t *ptep;
3620 
3621 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3622 		return ret;
3623 
3624 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3625 	if (ret)
3626 		return ret;
3627 	*pfn = pte_pfn(*ptep);
3628 	pte_unmap_unlock(ptep, ptl);
3629 	return 0;
3630 }
3631 EXPORT_SYMBOL(follow_pfn);
3632 
3633 #ifdef CONFIG_HAVE_IOREMAP_PROT
3634 int follow_phys(struct vm_area_struct *vma,
3635 		unsigned long address, unsigned int flags,
3636 		unsigned long *prot, resource_size_t *phys)
3637 {
3638 	int ret = -EINVAL;
3639 	pte_t *ptep, pte;
3640 	spinlock_t *ptl;
3641 
3642 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3643 		goto out;
3644 
3645 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3646 		goto out;
3647 	pte = *ptep;
3648 
3649 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3650 		goto unlock;
3651 
3652 	*prot = pgprot_val(pte_pgprot(pte));
3653 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3654 
3655 	ret = 0;
3656 unlock:
3657 	pte_unmap_unlock(ptep, ptl);
3658 out:
3659 	return ret;
3660 }
3661 
3662 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3663 			void *buf, int len, int write)
3664 {
3665 	resource_size_t phys_addr;
3666 	unsigned long prot = 0;
3667 	void __iomem *maddr;
3668 	int offset = addr & (PAGE_SIZE-1);
3669 
3670 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3671 		return -EINVAL;
3672 
3673 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3674 	if (write)
3675 		memcpy_toio(maddr + offset, buf, len);
3676 	else
3677 		memcpy_fromio(buf, maddr + offset, len);
3678 	iounmap(maddr);
3679 
3680 	return len;
3681 }
3682 EXPORT_SYMBOL_GPL(generic_access_phys);
3683 #endif
3684 
3685 /*
3686  * Access another process' address space as given in mm.  If non-NULL, use the
3687  * given task for page fault accounting.
3688  */
3689 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3690 		unsigned long addr, void *buf, int len, int write)
3691 {
3692 	struct vm_area_struct *vma;
3693 	void *old_buf = buf;
3694 
3695 	down_read(&mm->mmap_sem);
3696 	/* ignore errors, just check how much was successfully transferred */
3697 	while (len) {
3698 		int bytes, ret, offset;
3699 		void *maddr;
3700 		struct page *page = NULL;
3701 
3702 		ret = get_user_pages_remote(tsk, mm, addr, 1,
3703 				write, 1, &page, &vma);
3704 		if (ret <= 0) {
3705 #ifndef CONFIG_HAVE_IOREMAP_PROT
3706 			break;
3707 #else
3708 			/*
3709 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3710 			 * we can access using slightly different code.
3711 			 */
3712 			vma = find_vma(mm, addr);
3713 			if (!vma || vma->vm_start > addr)
3714 				break;
3715 			if (vma->vm_ops && vma->vm_ops->access)
3716 				ret = vma->vm_ops->access(vma, addr, buf,
3717 							  len, write);
3718 			if (ret <= 0)
3719 				break;
3720 			bytes = ret;
3721 #endif
3722 		} else {
3723 			bytes = len;
3724 			offset = addr & (PAGE_SIZE-1);
3725 			if (bytes > PAGE_SIZE-offset)
3726 				bytes = PAGE_SIZE-offset;
3727 
3728 			maddr = kmap(page);
3729 			if (write) {
3730 				copy_to_user_page(vma, page, addr,
3731 						  maddr + offset, buf, bytes);
3732 				set_page_dirty_lock(page);
3733 			} else {
3734 				copy_from_user_page(vma, page, addr,
3735 						    buf, maddr + offset, bytes);
3736 			}
3737 			kunmap(page);
3738 			put_page(page);
3739 		}
3740 		len -= bytes;
3741 		buf += bytes;
3742 		addr += bytes;
3743 	}
3744 	up_read(&mm->mmap_sem);
3745 
3746 	return buf - old_buf;
3747 }
3748 
3749 /**
3750  * access_remote_vm - access another process' address space
3751  * @mm:		the mm_struct of the target address space
3752  * @addr:	start address to access
3753  * @buf:	source or destination buffer
3754  * @len:	number of bytes to transfer
3755  * @write:	whether the access is a write
3756  *
3757  * The caller must hold a reference on @mm.
3758  */
3759 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3760 		void *buf, int len, int write)
3761 {
3762 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3763 }
3764 
3765 /*
3766  * Access another process' address space.
3767  * Source/target buffer must be kernel space,
3768  * Do not walk the page table directly, use get_user_pages
3769  */
3770 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3771 		void *buf, int len, int write)
3772 {
3773 	struct mm_struct *mm;
3774 	int ret;
3775 
3776 	mm = get_task_mm(tsk);
3777 	if (!mm)
3778 		return 0;
3779 
3780 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3781 	mmput(mm);
3782 
3783 	return ret;
3784 }
3785 
3786 /*
3787  * Print the name of a VMA.
3788  */
3789 void print_vma_addr(char *prefix, unsigned long ip)
3790 {
3791 	struct mm_struct *mm = current->mm;
3792 	struct vm_area_struct *vma;
3793 
3794 	/*
3795 	 * Do not print if we are in atomic
3796 	 * contexts (in exception stacks, etc.):
3797 	 */
3798 	if (preempt_count())
3799 		return;
3800 
3801 	down_read(&mm->mmap_sem);
3802 	vma = find_vma(mm, ip);
3803 	if (vma && vma->vm_file) {
3804 		struct file *f = vma->vm_file;
3805 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3806 		if (buf) {
3807 			char *p;
3808 
3809 			p = file_path(f, buf, PAGE_SIZE);
3810 			if (IS_ERR(p))
3811 				p = "?";
3812 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3813 					vma->vm_start,
3814 					vma->vm_end - vma->vm_start);
3815 			free_page((unsigned long)buf);
3816 		}
3817 	}
3818 	up_read(&mm->mmap_sem);
3819 }
3820 
3821 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3822 void __might_fault(const char *file, int line)
3823 {
3824 	/*
3825 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3826 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3827 	 * get paged out, therefore we'll never actually fault, and the
3828 	 * below annotations will generate false positives.
3829 	 */
3830 	if (segment_eq(get_fs(), KERNEL_DS))
3831 		return;
3832 	if (pagefault_disabled())
3833 		return;
3834 	__might_sleep(file, line, 0);
3835 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3836 	if (current->mm)
3837 		might_lock_read(&current->mm->mmap_sem);
3838 #endif
3839 }
3840 EXPORT_SYMBOL(__might_fault);
3841 #endif
3842 
3843 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3844 static void clear_gigantic_page(struct page *page,
3845 				unsigned long addr,
3846 				unsigned int pages_per_huge_page)
3847 {
3848 	int i;
3849 	struct page *p = page;
3850 
3851 	might_sleep();
3852 	for (i = 0; i < pages_per_huge_page;
3853 	     i++, p = mem_map_next(p, page, i)) {
3854 		cond_resched();
3855 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3856 	}
3857 }
3858 void clear_huge_page(struct page *page,
3859 		     unsigned long addr, unsigned int pages_per_huge_page)
3860 {
3861 	int i;
3862 
3863 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3864 		clear_gigantic_page(page, addr, pages_per_huge_page);
3865 		return;
3866 	}
3867 
3868 	might_sleep();
3869 	for (i = 0; i < pages_per_huge_page; i++) {
3870 		cond_resched();
3871 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3872 	}
3873 }
3874 
3875 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3876 				    unsigned long addr,
3877 				    struct vm_area_struct *vma,
3878 				    unsigned int pages_per_huge_page)
3879 {
3880 	int i;
3881 	struct page *dst_base = dst;
3882 	struct page *src_base = src;
3883 
3884 	for (i = 0; i < pages_per_huge_page; ) {
3885 		cond_resched();
3886 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3887 
3888 		i++;
3889 		dst = mem_map_next(dst, dst_base, i);
3890 		src = mem_map_next(src, src_base, i);
3891 	}
3892 }
3893 
3894 void copy_user_huge_page(struct page *dst, struct page *src,
3895 			 unsigned long addr, struct vm_area_struct *vma,
3896 			 unsigned int pages_per_huge_page)
3897 {
3898 	int i;
3899 
3900 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3901 		copy_user_gigantic_page(dst, src, addr, vma,
3902 					pages_per_huge_page);
3903 		return;
3904 	}
3905 
3906 	might_sleep();
3907 	for (i = 0; i < pages_per_huge_page; i++) {
3908 		cond_resched();
3909 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3910 	}
3911 }
3912 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3913 
3914 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3915 
3916 static struct kmem_cache *page_ptl_cachep;
3917 
3918 void __init ptlock_cache_init(void)
3919 {
3920 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3921 			SLAB_PANIC, NULL);
3922 }
3923 
3924 bool ptlock_alloc(struct page *page)
3925 {
3926 	spinlock_t *ptl;
3927 
3928 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3929 	if (!ptl)
3930 		return false;
3931 	page->ptl = ptl;
3932 	return true;
3933 }
3934 
3935 void ptlock_free(struct page *page)
3936 {
3937 	kmem_cache_free(page_ptl_cachep, page->ptl);
3938 }
3939 #endif
3940