1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 63 #include <asm/io.h> 64 #include <asm/pgalloc.h> 65 #include <asm/uaccess.h> 66 #include <asm/tlb.h> 67 #include <asm/tlbflush.h> 68 #include <asm/pgtable.h> 69 70 #include "internal.h" 71 72 #ifndef CONFIG_NEED_MULTIPLE_NODES 73 /* use the per-pgdat data instead for discontigmem - mbligh */ 74 unsigned long max_mapnr; 75 struct page *mem_map; 76 77 EXPORT_SYMBOL(max_mapnr); 78 EXPORT_SYMBOL(mem_map); 79 #endif 80 81 unsigned long num_physpages; 82 /* 83 * A number of key systems in x86 including ioremap() rely on the assumption 84 * that high_memory defines the upper bound on direct map memory, then end 85 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 86 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 87 * and ZONE_HIGHMEM. 88 */ 89 void * high_memory; 90 91 EXPORT_SYMBOL(num_physpages); 92 EXPORT_SYMBOL(high_memory); 93 94 /* 95 * Randomize the address space (stacks, mmaps, brk, etc.). 96 * 97 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 98 * as ancient (libc5 based) binaries can segfault. ) 99 */ 100 int randomize_va_space __read_mostly = 101 #ifdef CONFIG_COMPAT_BRK 102 1; 103 #else 104 2; 105 #endif 106 107 static int __init disable_randmaps(char *s) 108 { 109 randomize_va_space = 0; 110 return 1; 111 } 112 __setup("norandmaps", disable_randmaps); 113 114 unsigned long zero_pfn __read_mostly; 115 unsigned long highest_memmap_pfn __read_mostly; 116 117 /* 118 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 119 */ 120 static int __init init_zero_pfn(void) 121 { 122 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 123 return 0; 124 } 125 core_initcall(init_zero_pfn); 126 127 128 #if defined(SPLIT_RSS_COUNTING) 129 130 void sync_mm_rss(struct mm_struct *mm) 131 { 132 int i; 133 134 for (i = 0; i < NR_MM_COUNTERS; i++) { 135 if (current->rss_stat.count[i]) { 136 add_mm_counter(mm, i, current->rss_stat.count[i]); 137 current->rss_stat.count[i] = 0; 138 } 139 } 140 current->rss_stat.events = 0; 141 } 142 143 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 144 { 145 struct task_struct *task = current; 146 147 if (likely(task->mm == mm)) 148 task->rss_stat.count[member] += val; 149 else 150 add_mm_counter(mm, member, val); 151 } 152 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 153 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 154 155 /* sync counter once per 64 page faults */ 156 #define TASK_RSS_EVENTS_THRESH (64) 157 static void check_sync_rss_stat(struct task_struct *task) 158 { 159 if (unlikely(task != current)) 160 return; 161 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 162 sync_mm_rss(task->mm); 163 } 164 #else /* SPLIT_RSS_COUNTING */ 165 166 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 167 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 168 169 static void check_sync_rss_stat(struct task_struct *task) 170 { 171 } 172 173 #endif /* SPLIT_RSS_COUNTING */ 174 175 #ifdef HAVE_GENERIC_MMU_GATHER 176 177 static int tlb_next_batch(struct mmu_gather *tlb) 178 { 179 struct mmu_gather_batch *batch; 180 181 batch = tlb->active; 182 if (batch->next) { 183 tlb->active = batch->next; 184 return 1; 185 } 186 187 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 188 return 0; 189 190 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 191 if (!batch) 192 return 0; 193 194 tlb->batch_count++; 195 batch->next = NULL; 196 batch->nr = 0; 197 batch->max = MAX_GATHER_BATCH; 198 199 tlb->active->next = batch; 200 tlb->active = batch; 201 202 return 1; 203 } 204 205 /* tlb_gather_mmu 206 * Called to initialize an (on-stack) mmu_gather structure for page-table 207 * tear-down from @mm. The @fullmm argument is used when @mm is without 208 * users and we're going to destroy the full address space (exit/execve). 209 */ 210 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) 211 { 212 tlb->mm = mm; 213 214 tlb->fullmm = fullmm; 215 tlb->start = -1UL; 216 tlb->end = 0; 217 tlb->need_flush = 0; 218 tlb->fast_mode = (num_possible_cpus() == 1); 219 tlb->local.next = NULL; 220 tlb->local.nr = 0; 221 tlb->local.max = ARRAY_SIZE(tlb->__pages); 222 tlb->active = &tlb->local; 223 tlb->batch_count = 0; 224 225 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 226 tlb->batch = NULL; 227 #endif 228 } 229 230 void tlb_flush_mmu(struct mmu_gather *tlb) 231 { 232 struct mmu_gather_batch *batch; 233 234 if (!tlb->need_flush) 235 return; 236 tlb->need_flush = 0; 237 tlb_flush(tlb); 238 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 239 tlb_table_flush(tlb); 240 #endif 241 242 if (tlb_fast_mode(tlb)) 243 return; 244 245 for (batch = &tlb->local; batch; batch = batch->next) { 246 free_pages_and_swap_cache(batch->pages, batch->nr); 247 batch->nr = 0; 248 } 249 tlb->active = &tlb->local; 250 } 251 252 /* tlb_finish_mmu 253 * Called at the end of the shootdown operation to free up any resources 254 * that were required. 255 */ 256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 257 { 258 struct mmu_gather_batch *batch, *next; 259 260 tlb->start = start; 261 tlb->end = end; 262 tlb_flush_mmu(tlb); 263 264 /* keep the page table cache within bounds */ 265 check_pgt_cache(); 266 267 for (batch = tlb->local.next; batch; batch = next) { 268 next = batch->next; 269 free_pages((unsigned long)batch, 0); 270 } 271 tlb->local.next = NULL; 272 } 273 274 /* __tlb_remove_page 275 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 276 * handling the additional races in SMP caused by other CPUs caching valid 277 * mappings in their TLBs. Returns the number of free page slots left. 278 * When out of page slots we must call tlb_flush_mmu(). 279 */ 280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 281 { 282 struct mmu_gather_batch *batch; 283 284 VM_BUG_ON(!tlb->need_flush); 285 286 if (tlb_fast_mode(tlb)) { 287 free_page_and_swap_cache(page); 288 return 1; /* avoid calling tlb_flush_mmu() */ 289 } 290 291 batch = tlb->active; 292 batch->pages[batch->nr++] = page; 293 if (batch->nr == batch->max) { 294 if (!tlb_next_batch(tlb)) 295 return 0; 296 batch = tlb->active; 297 } 298 VM_BUG_ON(batch->nr > batch->max); 299 300 return batch->max - batch->nr; 301 } 302 303 #endif /* HAVE_GENERIC_MMU_GATHER */ 304 305 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 306 307 /* 308 * See the comment near struct mmu_table_batch. 309 */ 310 311 static void tlb_remove_table_smp_sync(void *arg) 312 { 313 /* Simply deliver the interrupt */ 314 } 315 316 static void tlb_remove_table_one(void *table) 317 { 318 /* 319 * This isn't an RCU grace period and hence the page-tables cannot be 320 * assumed to be actually RCU-freed. 321 * 322 * It is however sufficient for software page-table walkers that rely on 323 * IRQ disabling. See the comment near struct mmu_table_batch. 324 */ 325 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 326 __tlb_remove_table(table); 327 } 328 329 static void tlb_remove_table_rcu(struct rcu_head *head) 330 { 331 struct mmu_table_batch *batch; 332 int i; 333 334 batch = container_of(head, struct mmu_table_batch, rcu); 335 336 for (i = 0; i < batch->nr; i++) 337 __tlb_remove_table(batch->tables[i]); 338 339 free_page((unsigned long)batch); 340 } 341 342 void tlb_table_flush(struct mmu_gather *tlb) 343 { 344 struct mmu_table_batch **batch = &tlb->batch; 345 346 if (*batch) { 347 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 348 *batch = NULL; 349 } 350 } 351 352 void tlb_remove_table(struct mmu_gather *tlb, void *table) 353 { 354 struct mmu_table_batch **batch = &tlb->batch; 355 356 tlb->need_flush = 1; 357 358 /* 359 * When there's less then two users of this mm there cannot be a 360 * concurrent page-table walk. 361 */ 362 if (atomic_read(&tlb->mm->mm_users) < 2) { 363 __tlb_remove_table(table); 364 return; 365 } 366 367 if (*batch == NULL) { 368 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 369 if (*batch == NULL) { 370 tlb_remove_table_one(table); 371 return; 372 } 373 (*batch)->nr = 0; 374 } 375 (*batch)->tables[(*batch)->nr++] = table; 376 if ((*batch)->nr == MAX_TABLE_BATCH) 377 tlb_table_flush(tlb); 378 } 379 380 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 381 382 /* 383 * If a p?d_bad entry is found while walking page tables, report 384 * the error, before resetting entry to p?d_none. Usually (but 385 * very seldom) called out from the p?d_none_or_clear_bad macros. 386 */ 387 388 void pgd_clear_bad(pgd_t *pgd) 389 { 390 pgd_ERROR(*pgd); 391 pgd_clear(pgd); 392 } 393 394 void pud_clear_bad(pud_t *pud) 395 { 396 pud_ERROR(*pud); 397 pud_clear(pud); 398 } 399 400 void pmd_clear_bad(pmd_t *pmd) 401 { 402 pmd_ERROR(*pmd); 403 pmd_clear(pmd); 404 } 405 406 /* 407 * Note: this doesn't free the actual pages themselves. That 408 * has been handled earlier when unmapping all the memory regions. 409 */ 410 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 411 unsigned long addr) 412 { 413 pgtable_t token = pmd_pgtable(*pmd); 414 pmd_clear(pmd); 415 pte_free_tlb(tlb, token, addr); 416 tlb->mm->nr_ptes--; 417 } 418 419 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 420 unsigned long addr, unsigned long end, 421 unsigned long floor, unsigned long ceiling) 422 { 423 pmd_t *pmd; 424 unsigned long next; 425 unsigned long start; 426 427 start = addr; 428 pmd = pmd_offset(pud, addr); 429 do { 430 next = pmd_addr_end(addr, end); 431 if (pmd_none_or_clear_bad(pmd)) 432 continue; 433 free_pte_range(tlb, pmd, addr); 434 } while (pmd++, addr = next, addr != end); 435 436 start &= PUD_MASK; 437 if (start < floor) 438 return; 439 if (ceiling) { 440 ceiling &= PUD_MASK; 441 if (!ceiling) 442 return; 443 } 444 if (end - 1 > ceiling - 1) 445 return; 446 447 pmd = pmd_offset(pud, start); 448 pud_clear(pud); 449 pmd_free_tlb(tlb, pmd, start); 450 } 451 452 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 453 unsigned long addr, unsigned long end, 454 unsigned long floor, unsigned long ceiling) 455 { 456 pud_t *pud; 457 unsigned long next; 458 unsigned long start; 459 460 start = addr; 461 pud = pud_offset(pgd, addr); 462 do { 463 next = pud_addr_end(addr, end); 464 if (pud_none_or_clear_bad(pud)) 465 continue; 466 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 467 } while (pud++, addr = next, addr != end); 468 469 start &= PGDIR_MASK; 470 if (start < floor) 471 return; 472 if (ceiling) { 473 ceiling &= PGDIR_MASK; 474 if (!ceiling) 475 return; 476 } 477 if (end - 1 > ceiling - 1) 478 return; 479 480 pud = pud_offset(pgd, start); 481 pgd_clear(pgd); 482 pud_free_tlb(tlb, pud, start); 483 } 484 485 /* 486 * This function frees user-level page tables of a process. 487 * 488 * Must be called with pagetable lock held. 489 */ 490 void free_pgd_range(struct mmu_gather *tlb, 491 unsigned long addr, unsigned long end, 492 unsigned long floor, unsigned long ceiling) 493 { 494 pgd_t *pgd; 495 unsigned long next; 496 497 /* 498 * The next few lines have given us lots of grief... 499 * 500 * Why are we testing PMD* at this top level? Because often 501 * there will be no work to do at all, and we'd prefer not to 502 * go all the way down to the bottom just to discover that. 503 * 504 * Why all these "- 1"s? Because 0 represents both the bottom 505 * of the address space and the top of it (using -1 for the 506 * top wouldn't help much: the masks would do the wrong thing). 507 * The rule is that addr 0 and floor 0 refer to the bottom of 508 * the address space, but end 0 and ceiling 0 refer to the top 509 * Comparisons need to use "end - 1" and "ceiling - 1" (though 510 * that end 0 case should be mythical). 511 * 512 * Wherever addr is brought up or ceiling brought down, we must 513 * be careful to reject "the opposite 0" before it confuses the 514 * subsequent tests. But what about where end is brought down 515 * by PMD_SIZE below? no, end can't go down to 0 there. 516 * 517 * Whereas we round start (addr) and ceiling down, by different 518 * masks at different levels, in order to test whether a table 519 * now has no other vmas using it, so can be freed, we don't 520 * bother to round floor or end up - the tests don't need that. 521 */ 522 523 addr &= PMD_MASK; 524 if (addr < floor) { 525 addr += PMD_SIZE; 526 if (!addr) 527 return; 528 } 529 if (ceiling) { 530 ceiling &= PMD_MASK; 531 if (!ceiling) 532 return; 533 } 534 if (end - 1 > ceiling - 1) 535 end -= PMD_SIZE; 536 if (addr > end - 1) 537 return; 538 539 pgd = pgd_offset(tlb->mm, addr); 540 do { 541 next = pgd_addr_end(addr, end); 542 if (pgd_none_or_clear_bad(pgd)) 543 continue; 544 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 545 } while (pgd++, addr = next, addr != end); 546 } 547 548 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 549 unsigned long floor, unsigned long ceiling) 550 { 551 while (vma) { 552 struct vm_area_struct *next = vma->vm_next; 553 unsigned long addr = vma->vm_start; 554 555 /* 556 * Hide vma from rmap and truncate_pagecache before freeing 557 * pgtables 558 */ 559 unlink_anon_vmas(vma); 560 unlink_file_vma(vma); 561 562 if (is_vm_hugetlb_page(vma)) { 563 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 564 floor, next? next->vm_start: ceiling); 565 } else { 566 /* 567 * Optimization: gather nearby vmas into one call down 568 */ 569 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 570 && !is_vm_hugetlb_page(next)) { 571 vma = next; 572 next = vma->vm_next; 573 unlink_anon_vmas(vma); 574 unlink_file_vma(vma); 575 } 576 free_pgd_range(tlb, addr, vma->vm_end, 577 floor, next? next->vm_start: ceiling); 578 } 579 vma = next; 580 } 581 } 582 583 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 584 pmd_t *pmd, unsigned long address) 585 { 586 pgtable_t new = pte_alloc_one(mm, address); 587 int wait_split_huge_page; 588 if (!new) 589 return -ENOMEM; 590 591 /* 592 * Ensure all pte setup (eg. pte page lock and page clearing) are 593 * visible before the pte is made visible to other CPUs by being 594 * put into page tables. 595 * 596 * The other side of the story is the pointer chasing in the page 597 * table walking code (when walking the page table without locking; 598 * ie. most of the time). Fortunately, these data accesses consist 599 * of a chain of data-dependent loads, meaning most CPUs (alpha 600 * being the notable exception) will already guarantee loads are 601 * seen in-order. See the alpha page table accessors for the 602 * smp_read_barrier_depends() barriers in page table walking code. 603 */ 604 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 605 606 spin_lock(&mm->page_table_lock); 607 wait_split_huge_page = 0; 608 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 609 mm->nr_ptes++; 610 pmd_populate(mm, pmd, new); 611 new = NULL; 612 } else if (unlikely(pmd_trans_splitting(*pmd))) 613 wait_split_huge_page = 1; 614 spin_unlock(&mm->page_table_lock); 615 if (new) 616 pte_free(mm, new); 617 if (wait_split_huge_page) 618 wait_split_huge_page(vma->anon_vma, pmd); 619 return 0; 620 } 621 622 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 623 { 624 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 625 if (!new) 626 return -ENOMEM; 627 628 smp_wmb(); /* See comment in __pte_alloc */ 629 630 spin_lock(&init_mm.page_table_lock); 631 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 632 pmd_populate_kernel(&init_mm, pmd, new); 633 new = NULL; 634 } else 635 VM_BUG_ON(pmd_trans_splitting(*pmd)); 636 spin_unlock(&init_mm.page_table_lock); 637 if (new) 638 pte_free_kernel(&init_mm, new); 639 return 0; 640 } 641 642 static inline void init_rss_vec(int *rss) 643 { 644 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 645 } 646 647 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 648 { 649 int i; 650 651 if (current->mm == mm) 652 sync_mm_rss(mm); 653 for (i = 0; i < NR_MM_COUNTERS; i++) 654 if (rss[i]) 655 add_mm_counter(mm, i, rss[i]); 656 } 657 658 /* 659 * This function is called to print an error when a bad pte 660 * is found. For example, we might have a PFN-mapped pte in 661 * a region that doesn't allow it. 662 * 663 * The calling function must still handle the error. 664 */ 665 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 666 pte_t pte, struct page *page) 667 { 668 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 669 pud_t *pud = pud_offset(pgd, addr); 670 pmd_t *pmd = pmd_offset(pud, addr); 671 struct address_space *mapping; 672 pgoff_t index; 673 static unsigned long resume; 674 static unsigned long nr_shown; 675 static unsigned long nr_unshown; 676 677 /* 678 * Allow a burst of 60 reports, then keep quiet for that minute; 679 * or allow a steady drip of one report per second. 680 */ 681 if (nr_shown == 60) { 682 if (time_before(jiffies, resume)) { 683 nr_unshown++; 684 return; 685 } 686 if (nr_unshown) { 687 printk(KERN_ALERT 688 "BUG: Bad page map: %lu messages suppressed\n", 689 nr_unshown); 690 nr_unshown = 0; 691 } 692 nr_shown = 0; 693 } 694 if (nr_shown++ == 0) 695 resume = jiffies + 60 * HZ; 696 697 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 698 index = linear_page_index(vma, addr); 699 700 printk(KERN_ALERT 701 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 702 current->comm, 703 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 704 if (page) 705 dump_page(page); 706 printk(KERN_ALERT 707 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 708 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 709 /* 710 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 711 */ 712 if (vma->vm_ops) 713 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 714 (unsigned long)vma->vm_ops->fault); 715 if (vma->vm_file && vma->vm_file->f_op) 716 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 717 (unsigned long)vma->vm_file->f_op->mmap); 718 dump_stack(); 719 add_taint(TAINT_BAD_PAGE); 720 } 721 722 static inline bool is_cow_mapping(vm_flags_t flags) 723 { 724 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 725 } 726 727 /* 728 * vm_normal_page -- This function gets the "struct page" associated with a pte. 729 * 730 * "Special" mappings do not wish to be associated with a "struct page" (either 731 * it doesn't exist, or it exists but they don't want to touch it). In this 732 * case, NULL is returned here. "Normal" mappings do have a struct page. 733 * 734 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 735 * pte bit, in which case this function is trivial. Secondly, an architecture 736 * may not have a spare pte bit, which requires a more complicated scheme, 737 * described below. 738 * 739 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 740 * special mapping (even if there are underlying and valid "struct pages"). 741 * COWed pages of a VM_PFNMAP are always normal. 742 * 743 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 744 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 745 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 746 * mapping will always honor the rule 747 * 748 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 749 * 750 * And for normal mappings this is false. 751 * 752 * This restricts such mappings to be a linear translation from virtual address 753 * to pfn. To get around this restriction, we allow arbitrary mappings so long 754 * as the vma is not a COW mapping; in that case, we know that all ptes are 755 * special (because none can have been COWed). 756 * 757 * 758 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 759 * 760 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 761 * page" backing, however the difference is that _all_ pages with a struct 762 * page (that is, those where pfn_valid is true) are refcounted and considered 763 * normal pages by the VM. The disadvantage is that pages are refcounted 764 * (which can be slower and simply not an option for some PFNMAP users). The 765 * advantage is that we don't have to follow the strict linearity rule of 766 * PFNMAP mappings in order to support COWable mappings. 767 * 768 */ 769 #ifdef __HAVE_ARCH_PTE_SPECIAL 770 # define HAVE_PTE_SPECIAL 1 771 #else 772 # define HAVE_PTE_SPECIAL 0 773 #endif 774 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 775 pte_t pte) 776 { 777 unsigned long pfn = pte_pfn(pte); 778 779 if (HAVE_PTE_SPECIAL) { 780 if (likely(!pte_special(pte))) 781 goto check_pfn; 782 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 783 return NULL; 784 if (!is_zero_pfn(pfn)) 785 print_bad_pte(vma, addr, pte, NULL); 786 return NULL; 787 } 788 789 /* !HAVE_PTE_SPECIAL case follows: */ 790 791 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 792 if (vma->vm_flags & VM_MIXEDMAP) { 793 if (!pfn_valid(pfn)) 794 return NULL; 795 goto out; 796 } else { 797 unsigned long off; 798 off = (addr - vma->vm_start) >> PAGE_SHIFT; 799 if (pfn == vma->vm_pgoff + off) 800 return NULL; 801 if (!is_cow_mapping(vma->vm_flags)) 802 return NULL; 803 } 804 } 805 806 if (is_zero_pfn(pfn)) 807 return NULL; 808 check_pfn: 809 if (unlikely(pfn > highest_memmap_pfn)) { 810 print_bad_pte(vma, addr, pte, NULL); 811 return NULL; 812 } 813 814 /* 815 * NOTE! We still have PageReserved() pages in the page tables. 816 * eg. VDSO mappings can cause them to exist. 817 */ 818 out: 819 return pfn_to_page(pfn); 820 } 821 822 /* 823 * copy one vm_area from one task to the other. Assumes the page tables 824 * already present in the new task to be cleared in the whole range 825 * covered by this vma. 826 */ 827 828 static inline unsigned long 829 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 830 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 831 unsigned long addr, int *rss) 832 { 833 unsigned long vm_flags = vma->vm_flags; 834 pte_t pte = *src_pte; 835 struct page *page; 836 837 /* pte contains position in swap or file, so copy. */ 838 if (unlikely(!pte_present(pte))) { 839 if (!pte_file(pte)) { 840 swp_entry_t entry = pte_to_swp_entry(pte); 841 842 if (swap_duplicate(entry) < 0) 843 return entry.val; 844 845 /* make sure dst_mm is on swapoff's mmlist. */ 846 if (unlikely(list_empty(&dst_mm->mmlist))) { 847 spin_lock(&mmlist_lock); 848 if (list_empty(&dst_mm->mmlist)) 849 list_add(&dst_mm->mmlist, 850 &src_mm->mmlist); 851 spin_unlock(&mmlist_lock); 852 } 853 if (likely(!non_swap_entry(entry))) 854 rss[MM_SWAPENTS]++; 855 else if (is_migration_entry(entry)) { 856 page = migration_entry_to_page(entry); 857 858 if (PageAnon(page)) 859 rss[MM_ANONPAGES]++; 860 else 861 rss[MM_FILEPAGES]++; 862 863 if (is_write_migration_entry(entry) && 864 is_cow_mapping(vm_flags)) { 865 /* 866 * COW mappings require pages in both 867 * parent and child to be set to read. 868 */ 869 make_migration_entry_read(&entry); 870 pte = swp_entry_to_pte(entry); 871 set_pte_at(src_mm, addr, src_pte, pte); 872 } 873 } 874 } 875 goto out_set_pte; 876 } 877 878 /* 879 * If it's a COW mapping, write protect it both 880 * in the parent and the child 881 */ 882 if (is_cow_mapping(vm_flags)) { 883 ptep_set_wrprotect(src_mm, addr, src_pte); 884 pte = pte_wrprotect(pte); 885 } 886 887 /* 888 * If it's a shared mapping, mark it clean in 889 * the child 890 */ 891 if (vm_flags & VM_SHARED) 892 pte = pte_mkclean(pte); 893 pte = pte_mkold(pte); 894 895 page = vm_normal_page(vma, addr, pte); 896 if (page) { 897 get_page(page); 898 page_dup_rmap(page); 899 if (PageAnon(page)) 900 rss[MM_ANONPAGES]++; 901 else 902 rss[MM_FILEPAGES]++; 903 } 904 905 out_set_pte: 906 set_pte_at(dst_mm, addr, dst_pte, pte); 907 return 0; 908 } 909 910 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 911 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 912 unsigned long addr, unsigned long end) 913 { 914 pte_t *orig_src_pte, *orig_dst_pte; 915 pte_t *src_pte, *dst_pte; 916 spinlock_t *src_ptl, *dst_ptl; 917 int progress = 0; 918 int rss[NR_MM_COUNTERS]; 919 swp_entry_t entry = (swp_entry_t){0}; 920 921 again: 922 init_rss_vec(rss); 923 924 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 925 if (!dst_pte) 926 return -ENOMEM; 927 src_pte = pte_offset_map(src_pmd, addr); 928 src_ptl = pte_lockptr(src_mm, src_pmd); 929 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 930 orig_src_pte = src_pte; 931 orig_dst_pte = dst_pte; 932 arch_enter_lazy_mmu_mode(); 933 934 do { 935 /* 936 * We are holding two locks at this point - either of them 937 * could generate latencies in another task on another CPU. 938 */ 939 if (progress >= 32) { 940 progress = 0; 941 if (need_resched() || 942 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 943 break; 944 } 945 if (pte_none(*src_pte)) { 946 progress++; 947 continue; 948 } 949 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 950 vma, addr, rss); 951 if (entry.val) 952 break; 953 progress += 8; 954 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 955 956 arch_leave_lazy_mmu_mode(); 957 spin_unlock(src_ptl); 958 pte_unmap(orig_src_pte); 959 add_mm_rss_vec(dst_mm, rss); 960 pte_unmap_unlock(orig_dst_pte, dst_ptl); 961 cond_resched(); 962 963 if (entry.val) { 964 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 965 return -ENOMEM; 966 progress = 0; 967 } 968 if (addr != end) 969 goto again; 970 return 0; 971 } 972 973 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 974 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 975 unsigned long addr, unsigned long end) 976 { 977 pmd_t *src_pmd, *dst_pmd; 978 unsigned long next; 979 980 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 981 if (!dst_pmd) 982 return -ENOMEM; 983 src_pmd = pmd_offset(src_pud, addr); 984 do { 985 next = pmd_addr_end(addr, end); 986 if (pmd_trans_huge(*src_pmd)) { 987 int err; 988 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 989 err = copy_huge_pmd(dst_mm, src_mm, 990 dst_pmd, src_pmd, addr, vma); 991 if (err == -ENOMEM) 992 return -ENOMEM; 993 if (!err) 994 continue; 995 /* fall through */ 996 } 997 if (pmd_none_or_clear_bad(src_pmd)) 998 continue; 999 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1000 vma, addr, next)) 1001 return -ENOMEM; 1002 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1003 return 0; 1004 } 1005 1006 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1007 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1008 unsigned long addr, unsigned long end) 1009 { 1010 pud_t *src_pud, *dst_pud; 1011 unsigned long next; 1012 1013 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1014 if (!dst_pud) 1015 return -ENOMEM; 1016 src_pud = pud_offset(src_pgd, addr); 1017 do { 1018 next = pud_addr_end(addr, end); 1019 if (pud_none_or_clear_bad(src_pud)) 1020 continue; 1021 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1022 vma, addr, next)) 1023 return -ENOMEM; 1024 } while (dst_pud++, src_pud++, addr = next, addr != end); 1025 return 0; 1026 } 1027 1028 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1029 struct vm_area_struct *vma) 1030 { 1031 pgd_t *src_pgd, *dst_pgd; 1032 unsigned long next; 1033 unsigned long addr = vma->vm_start; 1034 unsigned long end = vma->vm_end; 1035 unsigned long mmun_start; /* For mmu_notifiers */ 1036 unsigned long mmun_end; /* For mmu_notifiers */ 1037 bool is_cow; 1038 int ret; 1039 1040 /* 1041 * Don't copy ptes where a page fault will fill them correctly. 1042 * Fork becomes much lighter when there are big shared or private 1043 * readonly mappings. The tradeoff is that copy_page_range is more 1044 * efficient than faulting. 1045 */ 1046 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1047 VM_PFNMAP | VM_MIXEDMAP))) { 1048 if (!vma->anon_vma) 1049 return 0; 1050 } 1051 1052 if (is_vm_hugetlb_page(vma)) 1053 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1054 1055 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1056 /* 1057 * We do not free on error cases below as remove_vma 1058 * gets called on error from higher level routine 1059 */ 1060 ret = track_pfn_copy(vma); 1061 if (ret) 1062 return ret; 1063 } 1064 1065 /* 1066 * We need to invalidate the secondary MMU mappings only when 1067 * there could be a permission downgrade on the ptes of the 1068 * parent mm. And a permission downgrade will only happen if 1069 * is_cow_mapping() returns true. 1070 */ 1071 is_cow = is_cow_mapping(vma->vm_flags); 1072 mmun_start = addr; 1073 mmun_end = end; 1074 if (is_cow) 1075 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1076 mmun_end); 1077 1078 ret = 0; 1079 dst_pgd = pgd_offset(dst_mm, addr); 1080 src_pgd = pgd_offset(src_mm, addr); 1081 do { 1082 next = pgd_addr_end(addr, end); 1083 if (pgd_none_or_clear_bad(src_pgd)) 1084 continue; 1085 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1086 vma, addr, next))) { 1087 ret = -ENOMEM; 1088 break; 1089 } 1090 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1091 1092 if (is_cow) 1093 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1094 return ret; 1095 } 1096 1097 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1098 struct vm_area_struct *vma, pmd_t *pmd, 1099 unsigned long addr, unsigned long end, 1100 struct zap_details *details) 1101 { 1102 struct mm_struct *mm = tlb->mm; 1103 int force_flush = 0; 1104 int rss[NR_MM_COUNTERS]; 1105 spinlock_t *ptl; 1106 pte_t *start_pte; 1107 pte_t *pte; 1108 1109 again: 1110 init_rss_vec(rss); 1111 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1112 pte = start_pte; 1113 arch_enter_lazy_mmu_mode(); 1114 do { 1115 pte_t ptent = *pte; 1116 if (pte_none(ptent)) { 1117 continue; 1118 } 1119 1120 if (pte_present(ptent)) { 1121 struct page *page; 1122 1123 page = vm_normal_page(vma, addr, ptent); 1124 if (unlikely(details) && page) { 1125 /* 1126 * unmap_shared_mapping_pages() wants to 1127 * invalidate cache without truncating: 1128 * unmap shared but keep private pages. 1129 */ 1130 if (details->check_mapping && 1131 details->check_mapping != page->mapping) 1132 continue; 1133 /* 1134 * Each page->index must be checked when 1135 * invalidating or truncating nonlinear. 1136 */ 1137 if (details->nonlinear_vma && 1138 (page->index < details->first_index || 1139 page->index > details->last_index)) 1140 continue; 1141 } 1142 ptent = ptep_get_and_clear_full(mm, addr, pte, 1143 tlb->fullmm); 1144 tlb_remove_tlb_entry(tlb, pte, addr); 1145 if (unlikely(!page)) 1146 continue; 1147 if (unlikely(details) && details->nonlinear_vma 1148 && linear_page_index(details->nonlinear_vma, 1149 addr) != page->index) 1150 set_pte_at(mm, addr, pte, 1151 pgoff_to_pte(page->index)); 1152 if (PageAnon(page)) 1153 rss[MM_ANONPAGES]--; 1154 else { 1155 if (pte_dirty(ptent)) 1156 set_page_dirty(page); 1157 if (pte_young(ptent) && 1158 likely(!VM_SequentialReadHint(vma))) 1159 mark_page_accessed(page); 1160 rss[MM_FILEPAGES]--; 1161 } 1162 page_remove_rmap(page); 1163 if (unlikely(page_mapcount(page) < 0)) 1164 print_bad_pte(vma, addr, ptent, page); 1165 force_flush = !__tlb_remove_page(tlb, page); 1166 if (force_flush) 1167 break; 1168 continue; 1169 } 1170 /* 1171 * If details->check_mapping, we leave swap entries; 1172 * if details->nonlinear_vma, we leave file entries. 1173 */ 1174 if (unlikely(details)) 1175 continue; 1176 if (pte_file(ptent)) { 1177 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1178 print_bad_pte(vma, addr, ptent, NULL); 1179 } else { 1180 swp_entry_t entry = pte_to_swp_entry(ptent); 1181 1182 if (!non_swap_entry(entry)) 1183 rss[MM_SWAPENTS]--; 1184 else if (is_migration_entry(entry)) { 1185 struct page *page; 1186 1187 page = migration_entry_to_page(entry); 1188 1189 if (PageAnon(page)) 1190 rss[MM_ANONPAGES]--; 1191 else 1192 rss[MM_FILEPAGES]--; 1193 } 1194 if (unlikely(!free_swap_and_cache(entry))) 1195 print_bad_pte(vma, addr, ptent, NULL); 1196 } 1197 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1198 } while (pte++, addr += PAGE_SIZE, addr != end); 1199 1200 add_mm_rss_vec(mm, rss); 1201 arch_leave_lazy_mmu_mode(); 1202 pte_unmap_unlock(start_pte, ptl); 1203 1204 /* 1205 * mmu_gather ran out of room to batch pages, we break out of 1206 * the PTE lock to avoid doing the potential expensive TLB invalidate 1207 * and page-free while holding it. 1208 */ 1209 if (force_flush) { 1210 force_flush = 0; 1211 1212 #ifdef HAVE_GENERIC_MMU_GATHER 1213 tlb->start = addr; 1214 tlb->end = end; 1215 #endif 1216 tlb_flush_mmu(tlb); 1217 if (addr != end) 1218 goto again; 1219 } 1220 1221 return addr; 1222 } 1223 1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1225 struct vm_area_struct *vma, pud_t *pud, 1226 unsigned long addr, unsigned long end, 1227 struct zap_details *details) 1228 { 1229 pmd_t *pmd; 1230 unsigned long next; 1231 1232 pmd = pmd_offset(pud, addr); 1233 do { 1234 next = pmd_addr_end(addr, end); 1235 if (pmd_trans_huge(*pmd)) { 1236 if (next - addr != HPAGE_PMD_SIZE) { 1237 #ifdef CONFIG_DEBUG_VM 1238 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1239 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1240 __func__, addr, end, 1241 vma->vm_start, 1242 vma->vm_end); 1243 BUG(); 1244 } 1245 #endif 1246 split_huge_page_pmd(vma, addr, pmd); 1247 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1248 goto next; 1249 /* fall through */ 1250 } 1251 /* 1252 * Here there can be other concurrent MADV_DONTNEED or 1253 * trans huge page faults running, and if the pmd is 1254 * none or trans huge it can change under us. This is 1255 * because MADV_DONTNEED holds the mmap_sem in read 1256 * mode. 1257 */ 1258 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1259 goto next; 1260 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1261 next: 1262 cond_resched(); 1263 } while (pmd++, addr = next, addr != end); 1264 1265 return addr; 1266 } 1267 1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1269 struct vm_area_struct *vma, pgd_t *pgd, 1270 unsigned long addr, unsigned long end, 1271 struct zap_details *details) 1272 { 1273 pud_t *pud; 1274 unsigned long next; 1275 1276 pud = pud_offset(pgd, addr); 1277 do { 1278 next = pud_addr_end(addr, end); 1279 if (pud_none_or_clear_bad(pud)) 1280 continue; 1281 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1282 } while (pud++, addr = next, addr != end); 1283 1284 return addr; 1285 } 1286 1287 static void unmap_page_range(struct mmu_gather *tlb, 1288 struct vm_area_struct *vma, 1289 unsigned long addr, unsigned long end, 1290 struct zap_details *details) 1291 { 1292 pgd_t *pgd; 1293 unsigned long next; 1294 1295 if (details && !details->check_mapping && !details->nonlinear_vma) 1296 details = NULL; 1297 1298 BUG_ON(addr >= end); 1299 mem_cgroup_uncharge_start(); 1300 tlb_start_vma(tlb, vma); 1301 pgd = pgd_offset(vma->vm_mm, addr); 1302 do { 1303 next = pgd_addr_end(addr, end); 1304 if (pgd_none_or_clear_bad(pgd)) 1305 continue; 1306 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1307 } while (pgd++, addr = next, addr != end); 1308 tlb_end_vma(tlb, vma); 1309 mem_cgroup_uncharge_end(); 1310 } 1311 1312 1313 static void unmap_single_vma(struct mmu_gather *tlb, 1314 struct vm_area_struct *vma, unsigned long start_addr, 1315 unsigned long end_addr, 1316 struct zap_details *details) 1317 { 1318 unsigned long start = max(vma->vm_start, start_addr); 1319 unsigned long end; 1320 1321 if (start >= vma->vm_end) 1322 return; 1323 end = min(vma->vm_end, end_addr); 1324 if (end <= vma->vm_start) 1325 return; 1326 1327 if (vma->vm_file) 1328 uprobe_munmap(vma, start, end); 1329 1330 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1331 untrack_pfn(vma, 0, 0); 1332 1333 if (start != end) { 1334 if (unlikely(is_vm_hugetlb_page(vma))) { 1335 /* 1336 * It is undesirable to test vma->vm_file as it 1337 * should be non-null for valid hugetlb area. 1338 * However, vm_file will be NULL in the error 1339 * cleanup path of do_mmap_pgoff. When 1340 * hugetlbfs ->mmap method fails, 1341 * do_mmap_pgoff() nullifies vma->vm_file 1342 * before calling this function to clean up. 1343 * Since no pte has actually been setup, it is 1344 * safe to do nothing in this case. 1345 */ 1346 if (vma->vm_file) { 1347 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1348 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1349 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1350 } 1351 } else 1352 unmap_page_range(tlb, vma, start, end, details); 1353 } 1354 } 1355 1356 /** 1357 * unmap_vmas - unmap a range of memory covered by a list of vma's 1358 * @tlb: address of the caller's struct mmu_gather 1359 * @vma: the starting vma 1360 * @start_addr: virtual address at which to start unmapping 1361 * @end_addr: virtual address at which to end unmapping 1362 * 1363 * Unmap all pages in the vma list. 1364 * 1365 * Only addresses between `start' and `end' will be unmapped. 1366 * 1367 * The VMA list must be sorted in ascending virtual address order. 1368 * 1369 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1370 * range after unmap_vmas() returns. So the only responsibility here is to 1371 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1372 * drops the lock and schedules. 1373 */ 1374 void unmap_vmas(struct mmu_gather *tlb, 1375 struct vm_area_struct *vma, unsigned long start_addr, 1376 unsigned long end_addr) 1377 { 1378 struct mm_struct *mm = vma->vm_mm; 1379 1380 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1381 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1382 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1383 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1384 } 1385 1386 /** 1387 * zap_page_range - remove user pages in a given range 1388 * @vma: vm_area_struct holding the applicable pages 1389 * @start: starting address of pages to zap 1390 * @size: number of bytes to zap 1391 * @details: details of nonlinear truncation or shared cache invalidation 1392 * 1393 * Caller must protect the VMA list 1394 */ 1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1396 unsigned long size, struct zap_details *details) 1397 { 1398 struct mm_struct *mm = vma->vm_mm; 1399 struct mmu_gather tlb; 1400 unsigned long end = start + size; 1401 1402 lru_add_drain(); 1403 tlb_gather_mmu(&tlb, mm, 0); 1404 update_hiwater_rss(mm); 1405 mmu_notifier_invalidate_range_start(mm, start, end); 1406 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1407 unmap_single_vma(&tlb, vma, start, end, details); 1408 mmu_notifier_invalidate_range_end(mm, start, end); 1409 tlb_finish_mmu(&tlb, start, end); 1410 } 1411 1412 /** 1413 * zap_page_range_single - remove user pages in a given range 1414 * @vma: vm_area_struct holding the applicable pages 1415 * @address: starting address of pages to zap 1416 * @size: number of bytes to zap 1417 * @details: details of nonlinear truncation or shared cache invalidation 1418 * 1419 * The range must fit into one VMA. 1420 */ 1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1422 unsigned long size, struct zap_details *details) 1423 { 1424 struct mm_struct *mm = vma->vm_mm; 1425 struct mmu_gather tlb; 1426 unsigned long end = address + size; 1427 1428 lru_add_drain(); 1429 tlb_gather_mmu(&tlb, mm, 0); 1430 update_hiwater_rss(mm); 1431 mmu_notifier_invalidate_range_start(mm, address, end); 1432 unmap_single_vma(&tlb, vma, address, end, details); 1433 mmu_notifier_invalidate_range_end(mm, address, end); 1434 tlb_finish_mmu(&tlb, address, end); 1435 } 1436 1437 /** 1438 * zap_vma_ptes - remove ptes mapping the vma 1439 * @vma: vm_area_struct holding ptes to be zapped 1440 * @address: starting address of pages to zap 1441 * @size: number of bytes to zap 1442 * 1443 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1444 * 1445 * The entire address range must be fully contained within the vma. 1446 * 1447 * Returns 0 if successful. 1448 */ 1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1450 unsigned long size) 1451 { 1452 if (address < vma->vm_start || address + size > vma->vm_end || 1453 !(vma->vm_flags & VM_PFNMAP)) 1454 return -1; 1455 zap_page_range_single(vma, address, size, NULL); 1456 return 0; 1457 } 1458 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1459 1460 /** 1461 * follow_page - look up a page descriptor from a user-virtual address 1462 * @vma: vm_area_struct mapping @address 1463 * @address: virtual address to look up 1464 * @flags: flags modifying lookup behaviour 1465 * 1466 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1467 * 1468 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1469 * an error pointer if there is a mapping to something not represented 1470 * by a page descriptor (see also vm_normal_page()). 1471 */ 1472 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1473 unsigned int flags) 1474 { 1475 pgd_t *pgd; 1476 pud_t *pud; 1477 pmd_t *pmd; 1478 pte_t *ptep, pte; 1479 spinlock_t *ptl; 1480 struct page *page; 1481 struct mm_struct *mm = vma->vm_mm; 1482 1483 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1484 if (!IS_ERR(page)) { 1485 BUG_ON(flags & FOLL_GET); 1486 goto out; 1487 } 1488 1489 page = NULL; 1490 pgd = pgd_offset(mm, address); 1491 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1492 goto no_page_table; 1493 1494 pud = pud_offset(pgd, address); 1495 if (pud_none(*pud)) 1496 goto no_page_table; 1497 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1498 BUG_ON(flags & FOLL_GET); 1499 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1500 goto out; 1501 } 1502 if (unlikely(pud_bad(*pud))) 1503 goto no_page_table; 1504 1505 pmd = pmd_offset(pud, address); 1506 if (pmd_none(*pmd)) 1507 goto no_page_table; 1508 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1509 BUG_ON(flags & FOLL_GET); 1510 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1511 goto out; 1512 } 1513 if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) 1514 goto no_page_table; 1515 if (pmd_trans_huge(*pmd)) { 1516 if (flags & FOLL_SPLIT) { 1517 split_huge_page_pmd(vma, address, pmd); 1518 goto split_fallthrough; 1519 } 1520 spin_lock(&mm->page_table_lock); 1521 if (likely(pmd_trans_huge(*pmd))) { 1522 if (unlikely(pmd_trans_splitting(*pmd))) { 1523 spin_unlock(&mm->page_table_lock); 1524 wait_split_huge_page(vma->anon_vma, pmd); 1525 } else { 1526 page = follow_trans_huge_pmd(vma, address, 1527 pmd, flags); 1528 spin_unlock(&mm->page_table_lock); 1529 goto out; 1530 } 1531 } else 1532 spin_unlock(&mm->page_table_lock); 1533 /* fall through */ 1534 } 1535 split_fallthrough: 1536 if (unlikely(pmd_bad(*pmd))) 1537 goto no_page_table; 1538 1539 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1540 1541 pte = *ptep; 1542 if (!pte_present(pte)) 1543 goto no_page; 1544 if ((flags & FOLL_NUMA) && pte_numa(pte)) 1545 goto no_page; 1546 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1547 goto unlock; 1548 1549 page = vm_normal_page(vma, address, pte); 1550 if (unlikely(!page)) { 1551 if ((flags & FOLL_DUMP) || 1552 !is_zero_pfn(pte_pfn(pte))) 1553 goto bad_page; 1554 page = pte_page(pte); 1555 } 1556 1557 if (flags & FOLL_GET) 1558 get_page_foll(page); 1559 if (flags & FOLL_TOUCH) { 1560 if ((flags & FOLL_WRITE) && 1561 !pte_dirty(pte) && !PageDirty(page)) 1562 set_page_dirty(page); 1563 /* 1564 * pte_mkyoung() would be more correct here, but atomic care 1565 * is needed to avoid losing the dirty bit: it is easier to use 1566 * mark_page_accessed(). 1567 */ 1568 mark_page_accessed(page); 1569 } 1570 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1571 /* 1572 * The preliminary mapping check is mainly to avoid the 1573 * pointless overhead of lock_page on the ZERO_PAGE 1574 * which might bounce very badly if there is contention. 1575 * 1576 * If the page is already locked, we don't need to 1577 * handle it now - vmscan will handle it later if and 1578 * when it attempts to reclaim the page. 1579 */ 1580 if (page->mapping && trylock_page(page)) { 1581 lru_add_drain(); /* push cached pages to LRU */ 1582 /* 1583 * Because we lock page here, and migration is 1584 * blocked by the pte's page reference, and we 1585 * know the page is still mapped, we don't even 1586 * need to check for file-cache page truncation. 1587 */ 1588 mlock_vma_page(page); 1589 unlock_page(page); 1590 } 1591 } 1592 unlock: 1593 pte_unmap_unlock(ptep, ptl); 1594 out: 1595 return page; 1596 1597 bad_page: 1598 pte_unmap_unlock(ptep, ptl); 1599 return ERR_PTR(-EFAULT); 1600 1601 no_page: 1602 pte_unmap_unlock(ptep, ptl); 1603 if (!pte_none(pte)) 1604 return page; 1605 1606 no_page_table: 1607 /* 1608 * When core dumping an enormous anonymous area that nobody 1609 * has touched so far, we don't want to allocate unnecessary pages or 1610 * page tables. Return error instead of NULL to skip handle_mm_fault, 1611 * then get_dump_page() will return NULL to leave a hole in the dump. 1612 * But we can only make this optimization where a hole would surely 1613 * be zero-filled if handle_mm_fault() actually did handle it. 1614 */ 1615 if ((flags & FOLL_DUMP) && 1616 (!vma->vm_ops || !vma->vm_ops->fault)) 1617 return ERR_PTR(-EFAULT); 1618 return page; 1619 } 1620 1621 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1622 { 1623 return stack_guard_page_start(vma, addr) || 1624 stack_guard_page_end(vma, addr+PAGE_SIZE); 1625 } 1626 1627 /** 1628 * __get_user_pages() - pin user pages in memory 1629 * @tsk: task_struct of target task 1630 * @mm: mm_struct of target mm 1631 * @start: starting user address 1632 * @nr_pages: number of pages from start to pin 1633 * @gup_flags: flags modifying pin behaviour 1634 * @pages: array that receives pointers to the pages pinned. 1635 * Should be at least nr_pages long. Or NULL, if caller 1636 * only intends to ensure the pages are faulted in. 1637 * @vmas: array of pointers to vmas corresponding to each page. 1638 * Or NULL if the caller does not require them. 1639 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1640 * 1641 * Returns number of pages pinned. This may be fewer than the number 1642 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1643 * were pinned, returns -errno. Each page returned must be released 1644 * with a put_page() call when it is finished with. vmas will only 1645 * remain valid while mmap_sem is held. 1646 * 1647 * Must be called with mmap_sem held for read or write. 1648 * 1649 * __get_user_pages walks a process's page tables and takes a reference to 1650 * each struct page that each user address corresponds to at a given 1651 * instant. That is, it takes the page that would be accessed if a user 1652 * thread accesses the given user virtual address at that instant. 1653 * 1654 * This does not guarantee that the page exists in the user mappings when 1655 * __get_user_pages returns, and there may even be a completely different 1656 * page there in some cases (eg. if mmapped pagecache has been invalidated 1657 * and subsequently re faulted). However it does guarantee that the page 1658 * won't be freed completely. And mostly callers simply care that the page 1659 * contains data that was valid *at some point in time*. Typically, an IO 1660 * or similar operation cannot guarantee anything stronger anyway because 1661 * locks can't be held over the syscall boundary. 1662 * 1663 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1664 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1665 * appropriate) must be called after the page is finished with, and 1666 * before put_page is called. 1667 * 1668 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1669 * or mmap_sem contention, and if waiting is needed to pin all pages, 1670 * *@nonblocking will be set to 0. 1671 * 1672 * In most cases, get_user_pages or get_user_pages_fast should be used 1673 * instead of __get_user_pages. __get_user_pages should be used only if 1674 * you need some special @gup_flags. 1675 */ 1676 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1677 unsigned long start, int nr_pages, unsigned int gup_flags, 1678 struct page **pages, struct vm_area_struct **vmas, 1679 int *nonblocking) 1680 { 1681 int i; 1682 unsigned long vm_flags; 1683 1684 if (nr_pages <= 0) 1685 return 0; 1686 1687 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1688 1689 /* 1690 * Require read or write permissions. 1691 * If FOLL_FORCE is set, we only require the "MAY" flags. 1692 */ 1693 vm_flags = (gup_flags & FOLL_WRITE) ? 1694 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1695 vm_flags &= (gup_flags & FOLL_FORCE) ? 1696 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1697 1698 /* 1699 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault 1700 * would be called on PROT_NONE ranges. We must never invoke 1701 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting 1702 * page faults would unprotect the PROT_NONE ranges if 1703 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd 1704 * bitflag. So to avoid that, don't set FOLL_NUMA if 1705 * FOLL_FORCE is set. 1706 */ 1707 if (!(gup_flags & FOLL_FORCE)) 1708 gup_flags |= FOLL_NUMA; 1709 1710 i = 0; 1711 1712 do { 1713 struct vm_area_struct *vma; 1714 1715 vma = find_extend_vma(mm, start); 1716 if (!vma && in_gate_area(mm, start)) { 1717 unsigned long pg = start & PAGE_MASK; 1718 pgd_t *pgd; 1719 pud_t *pud; 1720 pmd_t *pmd; 1721 pte_t *pte; 1722 1723 /* user gate pages are read-only */ 1724 if (gup_flags & FOLL_WRITE) 1725 return i ? : -EFAULT; 1726 if (pg > TASK_SIZE) 1727 pgd = pgd_offset_k(pg); 1728 else 1729 pgd = pgd_offset_gate(mm, pg); 1730 BUG_ON(pgd_none(*pgd)); 1731 pud = pud_offset(pgd, pg); 1732 BUG_ON(pud_none(*pud)); 1733 pmd = pmd_offset(pud, pg); 1734 if (pmd_none(*pmd)) 1735 return i ? : -EFAULT; 1736 VM_BUG_ON(pmd_trans_huge(*pmd)); 1737 pte = pte_offset_map(pmd, pg); 1738 if (pte_none(*pte)) { 1739 pte_unmap(pte); 1740 return i ? : -EFAULT; 1741 } 1742 vma = get_gate_vma(mm); 1743 if (pages) { 1744 struct page *page; 1745 1746 page = vm_normal_page(vma, start, *pte); 1747 if (!page) { 1748 if (!(gup_flags & FOLL_DUMP) && 1749 is_zero_pfn(pte_pfn(*pte))) 1750 page = pte_page(*pte); 1751 else { 1752 pte_unmap(pte); 1753 return i ? : -EFAULT; 1754 } 1755 } 1756 pages[i] = page; 1757 get_page(page); 1758 } 1759 pte_unmap(pte); 1760 goto next_page; 1761 } 1762 1763 if (!vma || 1764 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1765 !(vm_flags & vma->vm_flags)) 1766 return i ? : -EFAULT; 1767 1768 if (is_vm_hugetlb_page(vma)) { 1769 i = follow_hugetlb_page(mm, vma, pages, vmas, 1770 &start, &nr_pages, i, gup_flags); 1771 continue; 1772 } 1773 1774 do { 1775 struct page *page; 1776 unsigned int foll_flags = gup_flags; 1777 1778 /* 1779 * If we have a pending SIGKILL, don't keep faulting 1780 * pages and potentially allocating memory. 1781 */ 1782 if (unlikely(fatal_signal_pending(current))) 1783 return i ? i : -ERESTARTSYS; 1784 1785 cond_resched(); 1786 while (!(page = follow_page(vma, start, foll_flags))) { 1787 int ret; 1788 unsigned int fault_flags = 0; 1789 1790 /* For mlock, just skip the stack guard page. */ 1791 if (foll_flags & FOLL_MLOCK) { 1792 if (stack_guard_page(vma, start)) 1793 goto next_page; 1794 } 1795 if (foll_flags & FOLL_WRITE) 1796 fault_flags |= FAULT_FLAG_WRITE; 1797 if (nonblocking) 1798 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1799 if (foll_flags & FOLL_NOWAIT) 1800 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1801 1802 ret = handle_mm_fault(mm, vma, start, 1803 fault_flags); 1804 1805 if (ret & VM_FAULT_ERROR) { 1806 if (ret & VM_FAULT_OOM) 1807 return i ? i : -ENOMEM; 1808 if (ret & (VM_FAULT_HWPOISON | 1809 VM_FAULT_HWPOISON_LARGE)) { 1810 if (i) 1811 return i; 1812 else if (gup_flags & FOLL_HWPOISON) 1813 return -EHWPOISON; 1814 else 1815 return -EFAULT; 1816 } 1817 if (ret & VM_FAULT_SIGBUS) 1818 return i ? i : -EFAULT; 1819 BUG(); 1820 } 1821 1822 if (tsk) { 1823 if (ret & VM_FAULT_MAJOR) 1824 tsk->maj_flt++; 1825 else 1826 tsk->min_flt++; 1827 } 1828 1829 if (ret & VM_FAULT_RETRY) { 1830 if (nonblocking) 1831 *nonblocking = 0; 1832 return i; 1833 } 1834 1835 /* 1836 * The VM_FAULT_WRITE bit tells us that 1837 * do_wp_page has broken COW when necessary, 1838 * even if maybe_mkwrite decided not to set 1839 * pte_write. We can thus safely do subsequent 1840 * page lookups as if they were reads. But only 1841 * do so when looping for pte_write is futile: 1842 * in some cases userspace may also be wanting 1843 * to write to the gotten user page, which a 1844 * read fault here might prevent (a readonly 1845 * page might get reCOWed by userspace write). 1846 */ 1847 if ((ret & VM_FAULT_WRITE) && 1848 !(vma->vm_flags & VM_WRITE)) 1849 foll_flags &= ~FOLL_WRITE; 1850 1851 cond_resched(); 1852 } 1853 if (IS_ERR(page)) 1854 return i ? i : PTR_ERR(page); 1855 if (pages) { 1856 pages[i] = page; 1857 1858 flush_anon_page(vma, page, start); 1859 flush_dcache_page(page); 1860 } 1861 next_page: 1862 if (vmas) 1863 vmas[i] = vma; 1864 i++; 1865 start += PAGE_SIZE; 1866 nr_pages--; 1867 } while (nr_pages && start < vma->vm_end); 1868 } while (nr_pages); 1869 return i; 1870 } 1871 EXPORT_SYMBOL(__get_user_pages); 1872 1873 /* 1874 * fixup_user_fault() - manually resolve a user page fault 1875 * @tsk: the task_struct to use for page fault accounting, or 1876 * NULL if faults are not to be recorded. 1877 * @mm: mm_struct of target mm 1878 * @address: user address 1879 * @fault_flags:flags to pass down to handle_mm_fault() 1880 * 1881 * This is meant to be called in the specific scenario where for locking reasons 1882 * we try to access user memory in atomic context (within a pagefault_disable() 1883 * section), this returns -EFAULT, and we want to resolve the user fault before 1884 * trying again. 1885 * 1886 * Typically this is meant to be used by the futex code. 1887 * 1888 * The main difference with get_user_pages() is that this function will 1889 * unconditionally call handle_mm_fault() which will in turn perform all the 1890 * necessary SW fixup of the dirty and young bits in the PTE, while 1891 * handle_mm_fault() only guarantees to update these in the struct page. 1892 * 1893 * This is important for some architectures where those bits also gate the 1894 * access permission to the page because they are maintained in software. On 1895 * such architectures, gup() will not be enough to make a subsequent access 1896 * succeed. 1897 * 1898 * This should be called with the mm_sem held for read. 1899 */ 1900 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1901 unsigned long address, unsigned int fault_flags) 1902 { 1903 struct vm_area_struct *vma; 1904 int ret; 1905 1906 vma = find_extend_vma(mm, address); 1907 if (!vma || address < vma->vm_start) 1908 return -EFAULT; 1909 1910 ret = handle_mm_fault(mm, vma, address, fault_flags); 1911 if (ret & VM_FAULT_ERROR) { 1912 if (ret & VM_FAULT_OOM) 1913 return -ENOMEM; 1914 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1915 return -EHWPOISON; 1916 if (ret & VM_FAULT_SIGBUS) 1917 return -EFAULT; 1918 BUG(); 1919 } 1920 if (tsk) { 1921 if (ret & VM_FAULT_MAJOR) 1922 tsk->maj_flt++; 1923 else 1924 tsk->min_flt++; 1925 } 1926 return 0; 1927 } 1928 1929 /* 1930 * get_user_pages() - pin user pages in memory 1931 * @tsk: the task_struct to use for page fault accounting, or 1932 * NULL if faults are not to be recorded. 1933 * @mm: mm_struct of target mm 1934 * @start: starting user address 1935 * @nr_pages: number of pages from start to pin 1936 * @write: whether pages will be written to by the caller 1937 * @force: whether to force write access even if user mapping is 1938 * readonly. This will result in the page being COWed even 1939 * in MAP_SHARED mappings. You do not want this. 1940 * @pages: array that receives pointers to the pages pinned. 1941 * Should be at least nr_pages long. Or NULL, if caller 1942 * only intends to ensure the pages are faulted in. 1943 * @vmas: array of pointers to vmas corresponding to each page. 1944 * Or NULL if the caller does not require them. 1945 * 1946 * Returns number of pages pinned. This may be fewer than the number 1947 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1948 * were pinned, returns -errno. Each page returned must be released 1949 * with a put_page() call when it is finished with. vmas will only 1950 * remain valid while mmap_sem is held. 1951 * 1952 * Must be called with mmap_sem held for read or write. 1953 * 1954 * get_user_pages walks a process's page tables and takes a reference to 1955 * each struct page that each user address corresponds to at a given 1956 * instant. That is, it takes the page that would be accessed if a user 1957 * thread accesses the given user virtual address at that instant. 1958 * 1959 * This does not guarantee that the page exists in the user mappings when 1960 * get_user_pages returns, and there may even be a completely different 1961 * page there in some cases (eg. if mmapped pagecache has been invalidated 1962 * and subsequently re faulted). However it does guarantee that the page 1963 * won't be freed completely. And mostly callers simply care that the page 1964 * contains data that was valid *at some point in time*. Typically, an IO 1965 * or similar operation cannot guarantee anything stronger anyway because 1966 * locks can't be held over the syscall boundary. 1967 * 1968 * If write=0, the page must not be written to. If the page is written to, 1969 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1970 * after the page is finished with, and before put_page is called. 1971 * 1972 * get_user_pages is typically used for fewer-copy IO operations, to get a 1973 * handle on the memory by some means other than accesses via the user virtual 1974 * addresses. The pages may be submitted for DMA to devices or accessed via 1975 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1976 * use the correct cache flushing APIs. 1977 * 1978 * See also get_user_pages_fast, for performance critical applications. 1979 */ 1980 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1981 unsigned long start, int nr_pages, int write, int force, 1982 struct page **pages, struct vm_area_struct **vmas) 1983 { 1984 int flags = FOLL_TOUCH; 1985 1986 if (pages) 1987 flags |= FOLL_GET; 1988 if (write) 1989 flags |= FOLL_WRITE; 1990 if (force) 1991 flags |= FOLL_FORCE; 1992 1993 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 1994 NULL); 1995 } 1996 EXPORT_SYMBOL(get_user_pages); 1997 1998 /** 1999 * get_dump_page() - pin user page in memory while writing it to core dump 2000 * @addr: user address 2001 * 2002 * Returns struct page pointer of user page pinned for dump, 2003 * to be freed afterwards by page_cache_release() or put_page(). 2004 * 2005 * Returns NULL on any kind of failure - a hole must then be inserted into 2006 * the corefile, to preserve alignment with its headers; and also returns 2007 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2008 * allowing a hole to be left in the corefile to save diskspace. 2009 * 2010 * Called without mmap_sem, but after all other threads have been killed. 2011 */ 2012 #ifdef CONFIG_ELF_CORE 2013 struct page *get_dump_page(unsigned long addr) 2014 { 2015 struct vm_area_struct *vma; 2016 struct page *page; 2017 2018 if (__get_user_pages(current, current->mm, addr, 1, 2019 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 2020 NULL) < 1) 2021 return NULL; 2022 flush_cache_page(vma, addr, page_to_pfn(page)); 2023 return page; 2024 } 2025 #endif /* CONFIG_ELF_CORE */ 2026 2027 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2028 spinlock_t **ptl) 2029 { 2030 pgd_t * pgd = pgd_offset(mm, addr); 2031 pud_t * pud = pud_alloc(mm, pgd, addr); 2032 if (pud) { 2033 pmd_t * pmd = pmd_alloc(mm, pud, addr); 2034 if (pmd) { 2035 VM_BUG_ON(pmd_trans_huge(*pmd)); 2036 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2037 } 2038 } 2039 return NULL; 2040 } 2041 2042 /* 2043 * This is the old fallback for page remapping. 2044 * 2045 * For historical reasons, it only allows reserved pages. Only 2046 * old drivers should use this, and they needed to mark their 2047 * pages reserved for the old functions anyway. 2048 */ 2049 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2050 struct page *page, pgprot_t prot) 2051 { 2052 struct mm_struct *mm = vma->vm_mm; 2053 int retval; 2054 pte_t *pte; 2055 spinlock_t *ptl; 2056 2057 retval = -EINVAL; 2058 if (PageAnon(page)) 2059 goto out; 2060 retval = -ENOMEM; 2061 flush_dcache_page(page); 2062 pte = get_locked_pte(mm, addr, &ptl); 2063 if (!pte) 2064 goto out; 2065 retval = -EBUSY; 2066 if (!pte_none(*pte)) 2067 goto out_unlock; 2068 2069 /* Ok, finally just insert the thing.. */ 2070 get_page(page); 2071 inc_mm_counter_fast(mm, MM_FILEPAGES); 2072 page_add_file_rmap(page); 2073 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2074 2075 retval = 0; 2076 pte_unmap_unlock(pte, ptl); 2077 return retval; 2078 out_unlock: 2079 pte_unmap_unlock(pte, ptl); 2080 out: 2081 return retval; 2082 } 2083 2084 /** 2085 * vm_insert_page - insert single page into user vma 2086 * @vma: user vma to map to 2087 * @addr: target user address of this page 2088 * @page: source kernel page 2089 * 2090 * This allows drivers to insert individual pages they've allocated 2091 * into a user vma. 2092 * 2093 * The page has to be a nice clean _individual_ kernel allocation. 2094 * If you allocate a compound page, you need to have marked it as 2095 * such (__GFP_COMP), or manually just split the page up yourself 2096 * (see split_page()). 2097 * 2098 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2099 * took an arbitrary page protection parameter. This doesn't allow 2100 * that. Your vma protection will have to be set up correctly, which 2101 * means that if you want a shared writable mapping, you'd better 2102 * ask for a shared writable mapping! 2103 * 2104 * The page does not need to be reserved. 2105 * 2106 * Usually this function is called from f_op->mmap() handler 2107 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 2108 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2109 * function from other places, for example from page-fault handler. 2110 */ 2111 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2112 struct page *page) 2113 { 2114 if (addr < vma->vm_start || addr >= vma->vm_end) 2115 return -EFAULT; 2116 if (!page_count(page)) 2117 return -EINVAL; 2118 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2119 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 2120 BUG_ON(vma->vm_flags & VM_PFNMAP); 2121 vma->vm_flags |= VM_MIXEDMAP; 2122 } 2123 return insert_page(vma, addr, page, vma->vm_page_prot); 2124 } 2125 EXPORT_SYMBOL(vm_insert_page); 2126 2127 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2128 unsigned long pfn, pgprot_t prot) 2129 { 2130 struct mm_struct *mm = vma->vm_mm; 2131 int retval; 2132 pte_t *pte, entry; 2133 spinlock_t *ptl; 2134 2135 retval = -ENOMEM; 2136 pte = get_locked_pte(mm, addr, &ptl); 2137 if (!pte) 2138 goto out; 2139 retval = -EBUSY; 2140 if (!pte_none(*pte)) 2141 goto out_unlock; 2142 2143 /* Ok, finally just insert the thing.. */ 2144 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2145 set_pte_at(mm, addr, pte, entry); 2146 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2147 2148 retval = 0; 2149 out_unlock: 2150 pte_unmap_unlock(pte, ptl); 2151 out: 2152 return retval; 2153 } 2154 2155 /** 2156 * vm_insert_pfn - insert single pfn into user vma 2157 * @vma: user vma to map to 2158 * @addr: target user address of this page 2159 * @pfn: source kernel pfn 2160 * 2161 * Similar to vm_insert_page, this allows drivers to insert individual pages 2162 * they've allocated into a user vma. Same comments apply. 2163 * 2164 * This function should only be called from a vm_ops->fault handler, and 2165 * in that case the handler should return NULL. 2166 * 2167 * vma cannot be a COW mapping. 2168 * 2169 * As this is called only for pages that do not currently exist, we 2170 * do not need to flush old virtual caches or the TLB. 2171 */ 2172 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2173 unsigned long pfn) 2174 { 2175 int ret; 2176 pgprot_t pgprot = vma->vm_page_prot; 2177 /* 2178 * Technically, architectures with pte_special can avoid all these 2179 * restrictions (same for remap_pfn_range). However we would like 2180 * consistency in testing and feature parity among all, so we should 2181 * try to keep these invariants in place for everybody. 2182 */ 2183 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2184 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2185 (VM_PFNMAP|VM_MIXEDMAP)); 2186 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2187 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2188 2189 if (addr < vma->vm_start || addr >= vma->vm_end) 2190 return -EFAULT; 2191 if (track_pfn_insert(vma, &pgprot, pfn)) 2192 return -EINVAL; 2193 2194 ret = insert_pfn(vma, addr, pfn, pgprot); 2195 2196 return ret; 2197 } 2198 EXPORT_SYMBOL(vm_insert_pfn); 2199 2200 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2201 unsigned long pfn) 2202 { 2203 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2204 2205 if (addr < vma->vm_start || addr >= vma->vm_end) 2206 return -EFAULT; 2207 2208 /* 2209 * If we don't have pte special, then we have to use the pfn_valid() 2210 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2211 * refcount the page if pfn_valid is true (hence insert_page rather 2212 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2213 * without pte special, it would there be refcounted as a normal page. 2214 */ 2215 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2216 struct page *page; 2217 2218 page = pfn_to_page(pfn); 2219 return insert_page(vma, addr, page, vma->vm_page_prot); 2220 } 2221 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2222 } 2223 EXPORT_SYMBOL(vm_insert_mixed); 2224 2225 /* 2226 * maps a range of physical memory into the requested pages. the old 2227 * mappings are removed. any references to nonexistent pages results 2228 * in null mappings (currently treated as "copy-on-access") 2229 */ 2230 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2231 unsigned long addr, unsigned long end, 2232 unsigned long pfn, pgprot_t prot) 2233 { 2234 pte_t *pte; 2235 spinlock_t *ptl; 2236 2237 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2238 if (!pte) 2239 return -ENOMEM; 2240 arch_enter_lazy_mmu_mode(); 2241 do { 2242 BUG_ON(!pte_none(*pte)); 2243 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2244 pfn++; 2245 } while (pte++, addr += PAGE_SIZE, addr != end); 2246 arch_leave_lazy_mmu_mode(); 2247 pte_unmap_unlock(pte - 1, ptl); 2248 return 0; 2249 } 2250 2251 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2252 unsigned long addr, unsigned long end, 2253 unsigned long pfn, pgprot_t prot) 2254 { 2255 pmd_t *pmd; 2256 unsigned long next; 2257 2258 pfn -= addr >> PAGE_SHIFT; 2259 pmd = pmd_alloc(mm, pud, addr); 2260 if (!pmd) 2261 return -ENOMEM; 2262 VM_BUG_ON(pmd_trans_huge(*pmd)); 2263 do { 2264 next = pmd_addr_end(addr, end); 2265 if (remap_pte_range(mm, pmd, addr, next, 2266 pfn + (addr >> PAGE_SHIFT), prot)) 2267 return -ENOMEM; 2268 } while (pmd++, addr = next, addr != end); 2269 return 0; 2270 } 2271 2272 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2273 unsigned long addr, unsigned long end, 2274 unsigned long pfn, pgprot_t prot) 2275 { 2276 pud_t *pud; 2277 unsigned long next; 2278 2279 pfn -= addr >> PAGE_SHIFT; 2280 pud = pud_alloc(mm, pgd, addr); 2281 if (!pud) 2282 return -ENOMEM; 2283 do { 2284 next = pud_addr_end(addr, end); 2285 if (remap_pmd_range(mm, pud, addr, next, 2286 pfn + (addr >> PAGE_SHIFT), prot)) 2287 return -ENOMEM; 2288 } while (pud++, addr = next, addr != end); 2289 return 0; 2290 } 2291 2292 /** 2293 * remap_pfn_range - remap kernel memory to userspace 2294 * @vma: user vma to map to 2295 * @addr: target user address to start at 2296 * @pfn: physical address of kernel memory 2297 * @size: size of map area 2298 * @prot: page protection flags for this mapping 2299 * 2300 * Note: this is only safe if the mm semaphore is held when called. 2301 */ 2302 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2303 unsigned long pfn, unsigned long size, pgprot_t prot) 2304 { 2305 pgd_t *pgd; 2306 unsigned long next; 2307 unsigned long end = addr + PAGE_ALIGN(size); 2308 struct mm_struct *mm = vma->vm_mm; 2309 int err; 2310 2311 /* 2312 * Physically remapped pages are special. Tell the 2313 * rest of the world about it: 2314 * VM_IO tells people not to look at these pages 2315 * (accesses can have side effects). 2316 * VM_PFNMAP tells the core MM that the base pages are just 2317 * raw PFN mappings, and do not have a "struct page" associated 2318 * with them. 2319 * VM_DONTEXPAND 2320 * Disable vma merging and expanding with mremap(). 2321 * VM_DONTDUMP 2322 * Omit vma from core dump, even when VM_IO turned off. 2323 * 2324 * There's a horrible special case to handle copy-on-write 2325 * behaviour that some programs depend on. We mark the "original" 2326 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2327 * See vm_normal_page() for details. 2328 */ 2329 if (is_cow_mapping(vma->vm_flags)) { 2330 if (addr != vma->vm_start || end != vma->vm_end) 2331 return -EINVAL; 2332 vma->vm_pgoff = pfn; 2333 } 2334 2335 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2336 if (err) 2337 return -EINVAL; 2338 2339 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2340 2341 BUG_ON(addr >= end); 2342 pfn -= addr >> PAGE_SHIFT; 2343 pgd = pgd_offset(mm, addr); 2344 flush_cache_range(vma, addr, end); 2345 do { 2346 next = pgd_addr_end(addr, end); 2347 err = remap_pud_range(mm, pgd, addr, next, 2348 pfn + (addr >> PAGE_SHIFT), prot); 2349 if (err) 2350 break; 2351 } while (pgd++, addr = next, addr != end); 2352 2353 if (err) 2354 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2355 2356 return err; 2357 } 2358 EXPORT_SYMBOL(remap_pfn_range); 2359 2360 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2361 unsigned long addr, unsigned long end, 2362 pte_fn_t fn, void *data) 2363 { 2364 pte_t *pte; 2365 int err; 2366 pgtable_t token; 2367 spinlock_t *uninitialized_var(ptl); 2368 2369 pte = (mm == &init_mm) ? 2370 pte_alloc_kernel(pmd, addr) : 2371 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2372 if (!pte) 2373 return -ENOMEM; 2374 2375 BUG_ON(pmd_huge(*pmd)); 2376 2377 arch_enter_lazy_mmu_mode(); 2378 2379 token = pmd_pgtable(*pmd); 2380 2381 do { 2382 err = fn(pte++, token, addr, data); 2383 if (err) 2384 break; 2385 } while (addr += PAGE_SIZE, addr != end); 2386 2387 arch_leave_lazy_mmu_mode(); 2388 2389 if (mm != &init_mm) 2390 pte_unmap_unlock(pte-1, ptl); 2391 return err; 2392 } 2393 2394 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2395 unsigned long addr, unsigned long end, 2396 pte_fn_t fn, void *data) 2397 { 2398 pmd_t *pmd; 2399 unsigned long next; 2400 int err; 2401 2402 BUG_ON(pud_huge(*pud)); 2403 2404 pmd = pmd_alloc(mm, pud, addr); 2405 if (!pmd) 2406 return -ENOMEM; 2407 do { 2408 next = pmd_addr_end(addr, end); 2409 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2410 if (err) 2411 break; 2412 } while (pmd++, addr = next, addr != end); 2413 return err; 2414 } 2415 2416 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2417 unsigned long addr, unsigned long end, 2418 pte_fn_t fn, void *data) 2419 { 2420 pud_t *pud; 2421 unsigned long next; 2422 int err; 2423 2424 pud = pud_alloc(mm, pgd, addr); 2425 if (!pud) 2426 return -ENOMEM; 2427 do { 2428 next = pud_addr_end(addr, end); 2429 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2430 if (err) 2431 break; 2432 } while (pud++, addr = next, addr != end); 2433 return err; 2434 } 2435 2436 /* 2437 * Scan a region of virtual memory, filling in page tables as necessary 2438 * and calling a provided function on each leaf page table. 2439 */ 2440 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2441 unsigned long size, pte_fn_t fn, void *data) 2442 { 2443 pgd_t *pgd; 2444 unsigned long next; 2445 unsigned long end = addr + size; 2446 int err; 2447 2448 BUG_ON(addr >= end); 2449 pgd = pgd_offset(mm, addr); 2450 do { 2451 next = pgd_addr_end(addr, end); 2452 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2453 if (err) 2454 break; 2455 } while (pgd++, addr = next, addr != end); 2456 2457 return err; 2458 } 2459 EXPORT_SYMBOL_GPL(apply_to_page_range); 2460 2461 /* 2462 * handle_pte_fault chooses page fault handler according to an entry 2463 * which was read non-atomically. Before making any commitment, on 2464 * those architectures or configurations (e.g. i386 with PAE) which 2465 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2466 * must check under lock before unmapping the pte and proceeding 2467 * (but do_wp_page is only called after already making such a check; 2468 * and do_anonymous_page can safely check later on). 2469 */ 2470 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2471 pte_t *page_table, pte_t orig_pte) 2472 { 2473 int same = 1; 2474 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2475 if (sizeof(pte_t) > sizeof(unsigned long)) { 2476 spinlock_t *ptl = pte_lockptr(mm, pmd); 2477 spin_lock(ptl); 2478 same = pte_same(*page_table, orig_pte); 2479 spin_unlock(ptl); 2480 } 2481 #endif 2482 pte_unmap(page_table); 2483 return same; 2484 } 2485 2486 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2487 { 2488 /* 2489 * If the source page was a PFN mapping, we don't have 2490 * a "struct page" for it. We do a best-effort copy by 2491 * just copying from the original user address. If that 2492 * fails, we just zero-fill it. Live with it. 2493 */ 2494 if (unlikely(!src)) { 2495 void *kaddr = kmap_atomic(dst); 2496 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2497 2498 /* 2499 * This really shouldn't fail, because the page is there 2500 * in the page tables. But it might just be unreadable, 2501 * in which case we just give up and fill the result with 2502 * zeroes. 2503 */ 2504 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2505 clear_page(kaddr); 2506 kunmap_atomic(kaddr); 2507 flush_dcache_page(dst); 2508 } else 2509 copy_user_highpage(dst, src, va, vma); 2510 } 2511 2512 /* 2513 * This routine handles present pages, when users try to write 2514 * to a shared page. It is done by copying the page to a new address 2515 * and decrementing the shared-page counter for the old page. 2516 * 2517 * Note that this routine assumes that the protection checks have been 2518 * done by the caller (the low-level page fault routine in most cases). 2519 * Thus we can safely just mark it writable once we've done any necessary 2520 * COW. 2521 * 2522 * We also mark the page dirty at this point even though the page will 2523 * change only once the write actually happens. This avoids a few races, 2524 * and potentially makes it more efficient. 2525 * 2526 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2527 * but allow concurrent faults), with pte both mapped and locked. 2528 * We return with mmap_sem still held, but pte unmapped and unlocked. 2529 */ 2530 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2531 unsigned long address, pte_t *page_table, pmd_t *pmd, 2532 spinlock_t *ptl, pte_t orig_pte) 2533 __releases(ptl) 2534 { 2535 struct page *old_page, *new_page = NULL; 2536 pte_t entry; 2537 int ret = 0; 2538 int page_mkwrite = 0; 2539 struct page *dirty_page = NULL; 2540 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2541 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2542 2543 old_page = vm_normal_page(vma, address, orig_pte); 2544 if (!old_page) { 2545 /* 2546 * VM_MIXEDMAP !pfn_valid() case 2547 * 2548 * We should not cow pages in a shared writeable mapping. 2549 * Just mark the pages writable as we can't do any dirty 2550 * accounting on raw pfn maps. 2551 */ 2552 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2553 (VM_WRITE|VM_SHARED)) 2554 goto reuse; 2555 goto gotten; 2556 } 2557 2558 /* 2559 * Take out anonymous pages first, anonymous shared vmas are 2560 * not dirty accountable. 2561 */ 2562 if (PageAnon(old_page) && !PageKsm(old_page)) { 2563 if (!trylock_page(old_page)) { 2564 page_cache_get(old_page); 2565 pte_unmap_unlock(page_table, ptl); 2566 lock_page(old_page); 2567 page_table = pte_offset_map_lock(mm, pmd, address, 2568 &ptl); 2569 if (!pte_same(*page_table, orig_pte)) { 2570 unlock_page(old_page); 2571 goto unlock; 2572 } 2573 page_cache_release(old_page); 2574 } 2575 if (reuse_swap_page(old_page)) { 2576 /* 2577 * The page is all ours. Move it to our anon_vma so 2578 * the rmap code will not search our parent or siblings. 2579 * Protected against the rmap code by the page lock. 2580 */ 2581 page_move_anon_rmap(old_page, vma, address); 2582 unlock_page(old_page); 2583 goto reuse; 2584 } 2585 unlock_page(old_page); 2586 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2587 (VM_WRITE|VM_SHARED))) { 2588 /* 2589 * Only catch write-faults on shared writable pages, 2590 * read-only shared pages can get COWed by 2591 * get_user_pages(.write=1, .force=1). 2592 */ 2593 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2594 struct vm_fault vmf; 2595 int tmp; 2596 2597 vmf.virtual_address = (void __user *)(address & 2598 PAGE_MASK); 2599 vmf.pgoff = old_page->index; 2600 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2601 vmf.page = old_page; 2602 2603 /* 2604 * Notify the address space that the page is about to 2605 * become writable so that it can prohibit this or wait 2606 * for the page to get into an appropriate state. 2607 * 2608 * We do this without the lock held, so that it can 2609 * sleep if it needs to. 2610 */ 2611 page_cache_get(old_page); 2612 pte_unmap_unlock(page_table, ptl); 2613 2614 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2615 if (unlikely(tmp & 2616 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2617 ret = tmp; 2618 goto unwritable_page; 2619 } 2620 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2621 lock_page(old_page); 2622 if (!old_page->mapping) { 2623 ret = 0; /* retry the fault */ 2624 unlock_page(old_page); 2625 goto unwritable_page; 2626 } 2627 } else 2628 VM_BUG_ON(!PageLocked(old_page)); 2629 2630 /* 2631 * Since we dropped the lock we need to revalidate 2632 * the PTE as someone else may have changed it. If 2633 * they did, we just return, as we can count on the 2634 * MMU to tell us if they didn't also make it writable. 2635 */ 2636 page_table = pte_offset_map_lock(mm, pmd, address, 2637 &ptl); 2638 if (!pte_same(*page_table, orig_pte)) { 2639 unlock_page(old_page); 2640 goto unlock; 2641 } 2642 2643 page_mkwrite = 1; 2644 } 2645 dirty_page = old_page; 2646 get_page(dirty_page); 2647 2648 reuse: 2649 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2650 entry = pte_mkyoung(orig_pte); 2651 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2652 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2653 update_mmu_cache(vma, address, page_table); 2654 pte_unmap_unlock(page_table, ptl); 2655 ret |= VM_FAULT_WRITE; 2656 2657 if (!dirty_page) 2658 return ret; 2659 2660 /* 2661 * Yes, Virginia, this is actually required to prevent a race 2662 * with clear_page_dirty_for_io() from clearing the page dirty 2663 * bit after it clear all dirty ptes, but before a racing 2664 * do_wp_page installs a dirty pte. 2665 * 2666 * __do_fault is protected similarly. 2667 */ 2668 if (!page_mkwrite) { 2669 wait_on_page_locked(dirty_page); 2670 set_page_dirty_balance(dirty_page, page_mkwrite); 2671 /* file_update_time outside page_lock */ 2672 if (vma->vm_file) 2673 file_update_time(vma->vm_file); 2674 } 2675 put_page(dirty_page); 2676 if (page_mkwrite) { 2677 struct address_space *mapping = dirty_page->mapping; 2678 2679 set_page_dirty(dirty_page); 2680 unlock_page(dirty_page); 2681 page_cache_release(dirty_page); 2682 if (mapping) { 2683 /* 2684 * Some device drivers do not set page.mapping 2685 * but still dirty their pages 2686 */ 2687 balance_dirty_pages_ratelimited(mapping); 2688 } 2689 } 2690 2691 return ret; 2692 } 2693 2694 /* 2695 * Ok, we need to copy. Oh, well.. 2696 */ 2697 page_cache_get(old_page); 2698 gotten: 2699 pte_unmap_unlock(page_table, ptl); 2700 2701 if (unlikely(anon_vma_prepare(vma))) 2702 goto oom; 2703 2704 if (is_zero_pfn(pte_pfn(orig_pte))) { 2705 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2706 if (!new_page) 2707 goto oom; 2708 } else { 2709 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2710 if (!new_page) 2711 goto oom; 2712 cow_user_page(new_page, old_page, address, vma); 2713 } 2714 __SetPageUptodate(new_page); 2715 2716 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2717 goto oom_free_new; 2718 2719 mmun_start = address & PAGE_MASK; 2720 mmun_end = mmun_start + PAGE_SIZE; 2721 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2722 2723 /* 2724 * Re-check the pte - we dropped the lock 2725 */ 2726 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2727 if (likely(pte_same(*page_table, orig_pte))) { 2728 if (old_page) { 2729 if (!PageAnon(old_page)) { 2730 dec_mm_counter_fast(mm, MM_FILEPAGES); 2731 inc_mm_counter_fast(mm, MM_ANONPAGES); 2732 } 2733 } else 2734 inc_mm_counter_fast(mm, MM_ANONPAGES); 2735 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2736 entry = mk_pte(new_page, vma->vm_page_prot); 2737 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2738 /* 2739 * Clear the pte entry and flush it first, before updating the 2740 * pte with the new entry. This will avoid a race condition 2741 * seen in the presence of one thread doing SMC and another 2742 * thread doing COW. 2743 */ 2744 ptep_clear_flush(vma, address, page_table); 2745 page_add_new_anon_rmap(new_page, vma, address); 2746 /* 2747 * We call the notify macro here because, when using secondary 2748 * mmu page tables (such as kvm shadow page tables), we want the 2749 * new page to be mapped directly into the secondary page table. 2750 */ 2751 set_pte_at_notify(mm, address, page_table, entry); 2752 update_mmu_cache(vma, address, page_table); 2753 if (old_page) { 2754 /* 2755 * Only after switching the pte to the new page may 2756 * we remove the mapcount here. Otherwise another 2757 * process may come and find the rmap count decremented 2758 * before the pte is switched to the new page, and 2759 * "reuse" the old page writing into it while our pte 2760 * here still points into it and can be read by other 2761 * threads. 2762 * 2763 * The critical issue is to order this 2764 * page_remove_rmap with the ptp_clear_flush above. 2765 * Those stores are ordered by (if nothing else,) 2766 * the barrier present in the atomic_add_negative 2767 * in page_remove_rmap. 2768 * 2769 * Then the TLB flush in ptep_clear_flush ensures that 2770 * no process can access the old page before the 2771 * decremented mapcount is visible. And the old page 2772 * cannot be reused until after the decremented 2773 * mapcount is visible. So transitively, TLBs to 2774 * old page will be flushed before it can be reused. 2775 */ 2776 page_remove_rmap(old_page); 2777 } 2778 2779 /* Free the old page.. */ 2780 new_page = old_page; 2781 ret |= VM_FAULT_WRITE; 2782 } else 2783 mem_cgroup_uncharge_page(new_page); 2784 2785 if (new_page) 2786 page_cache_release(new_page); 2787 unlock: 2788 pte_unmap_unlock(page_table, ptl); 2789 if (mmun_end > mmun_start) 2790 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2791 if (old_page) { 2792 /* 2793 * Don't let another task, with possibly unlocked vma, 2794 * keep the mlocked page. 2795 */ 2796 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2797 lock_page(old_page); /* LRU manipulation */ 2798 munlock_vma_page(old_page); 2799 unlock_page(old_page); 2800 } 2801 page_cache_release(old_page); 2802 } 2803 return ret; 2804 oom_free_new: 2805 page_cache_release(new_page); 2806 oom: 2807 if (old_page) 2808 page_cache_release(old_page); 2809 return VM_FAULT_OOM; 2810 2811 unwritable_page: 2812 page_cache_release(old_page); 2813 return ret; 2814 } 2815 2816 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2817 unsigned long start_addr, unsigned long end_addr, 2818 struct zap_details *details) 2819 { 2820 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2821 } 2822 2823 static inline void unmap_mapping_range_tree(struct rb_root *root, 2824 struct zap_details *details) 2825 { 2826 struct vm_area_struct *vma; 2827 pgoff_t vba, vea, zba, zea; 2828 2829 vma_interval_tree_foreach(vma, root, 2830 details->first_index, details->last_index) { 2831 2832 vba = vma->vm_pgoff; 2833 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2834 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2835 zba = details->first_index; 2836 if (zba < vba) 2837 zba = vba; 2838 zea = details->last_index; 2839 if (zea > vea) 2840 zea = vea; 2841 2842 unmap_mapping_range_vma(vma, 2843 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2844 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2845 details); 2846 } 2847 } 2848 2849 static inline void unmap_mapping_range_list(struct list_head *head, 2850 struct zap_details *details) 2851 { 2852 struct vm_area_struct *vma; 2853 2854 /* 2855 * In nonlinear VMAs there is no correspondence between virtual address 2856 * offset and file offset. So we must perform an exhaustive search 2857 * across *all* the pages in each nonlinear VMA, not just the pages 2858 * whose virtual address lies outside the file truncation point. 2859 */ 2860 list_for_each_entry(vma, head, shared.nonlinear) { 2861 details->nonlinear_vma = vma; 2862 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2863 } 2864 } 2865 2866 /** 2867 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2868 * @mapping: the address space containing mmaps to be unmapped. 2869 * @holebegin: byte in first page to unmap, relative to the start of 2870 * the underlying file. This will be rounded down to a PAGE_SIZE 2871 * boundary. Note that this is different from truncate_pagecache(), which 2872 * must keep the partial page. In contrast, we must get rid of 2873 * partial pages. 2874 * @holelen: size of prospective hole in bytes. This will be rounded 2875 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2876 * end of the file. 2877 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2878 * but 0 when invalidating pagecache, don't throw away private data. 2879 */ 2880 void unmap_mapping_range(struct address_space *mapping, 2881 loff_t const holebegin, loff_t const holelen, int even_cows) 2882 { 2883 struct zap_details details; 2884 pgoff_t hba = holebegin >> PAGE_SHIFT; 2885 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2886 2887 /* Check for overflow. */ 2888 if (sizeof(holelen) > sizeof(hlen)) { 2889 long long holeend = 2890 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2891 if (holeend & ~(long long)ULONG_MAX) 2892 hlen = ULONG_MAX - hba + 1; 2893 } 2894 2895 details.check_mapping = even_cows? NULL: mapping; 2896 details.nonlinear_vma = NULL; 2897 details.first_index = hba; 2898 details.last_index = hba + hlen - 1; 2899 if (details.last_index < details.first_index) 2900 details.last_index = ULONG_MAX; 2901 2902 2903 mutex_lock(&mapping->i_mmap_mutex); 2904 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2905 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2906 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2907 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2908 mutex_unlock(&mapping->i_mmap_mutex); 2909 } 2910 EXPORT_SYMBOL(unmap_mapping_range); 2911 2912 /* 2913 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2914 * but allow concurrent faults), and pte mapped but not yet locked. 2915 * We return with mmap_sem still held, but pte unmapped and unlocked. 2916 */ 2917 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2918 unsigned long address, pte_t *page_table, pmd_t *pmd, 2919 unsigned int flags, pte_t orig_pte) 2920 { 2921 spinlock_t *ptl; 2922 struct page *page, *swapcache = NULL; 2923 swp_entry_t entry; 2924 pte_t pte; 2925 int locked; 2926 struct mem_cgroup *ptr; 2927 int exclusive = 0; 2928 int ret = 0; 2929 2930 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2931 goto out; 2932 2933 entry = pte_to_swp_entry(orig_pte); 2934 if (unlikely(non_swap_entry(entry))) { 2935 if (is_migration_entry(entry)) { 2936 migration_entry_wait(mm, pmd, address); 2937 } else if (is_hwpoison_entry(entry)) { 2938 ret = VM_FAULT_HWPOISON; 2939 } else { 2940 print_bad_pte(vma, address, orig_pte, NULL); 2941 ret = VM_FAULT_SIGBUS; 2942 } 2943 goto out; 2944 } 2945 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2946 page = lookup_swap_cache(entry); 2947 if (!page) { 2948 page = swapin_readahead(entry, 2949 GFP_HIGHUSER_MOVABLE, vma, address); 2950 if (!page) { 2951 /* 2952 * Back out if somebody else faulted in this pte 2953 * while we released the pte lock. 2954 */ 2955 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2956 if (likely(pte_same(*page_table, orig_pte))) 2957 ret = VM_FAULT_OOM; 2958 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2959 goto unlock; 2960 } 2961 2962 /* Had to read the page from swap area: Major fault */ 2963 ret = VM_FAULT_MAJOR; 2964 count_vm_event(PGMAJFAULT); 2965 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2966 } else if (PageHWPoison(page)) { 2967 /* 2968 * hwpoisoned dirty swapcache pages are kept for killing 2969 * owner processes (which may be unknown at hwpoison time) 2970 */ 2971 ret = VM_FAULT_HWPOISON; 2972 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2973 goto out_release; 2974 } 2975 2976 locked = lock_page_or_retry(page, mm, flags); 2977 2978 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2979 if (!locked) { 2980 ret |= VM_FAULT_RETRY; 2981 goto out_release; 2982 } 2983 2984 /* 2985 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2986 * release the swapcache from under us. The page pin, and pte_same 2987 * test below, are not enough to exclude that. Even if it is still 2988 * swapcache, we need to check that the page's swap has not changed. 2989 */ 2990 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2991 goto out_page; 2992 2993 if (ksm_might_need_to_copy(page, vma, address)) { 2994 swapcache = page; 2995 page = ksm_does_need_to_copy(page, vma, address); 2996 2997 if (unlikely(!page)) { 2998 ret = VM_FAULT_OOM; 2999 page = swapcache; 3000 swapcache = NULL; 3001 goto out_page; 3002 } 3003 } 3004 3005 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 3006 ret = VM_FAULT_OOM; 3007 goto out_page; 3008 } 3009 3010 /* 3011 * Back out if somebody else already faulted in this pte. 3012 */ 3013 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3014 if (unlikely(!pte_same(*page_table, orig_pte))) 3015 goto out_nomap; 3016 3017 if (unlikely(!PageUptodate(page))) { 3018 ret = VM_FAULT_SIGBUS; 3019 goto out_nomap; 3020 } 3021 3022 /* 3023 * The page isn't present yet, go ahead with the fault. 3024 * 3025 * Be careful about the sequence of operations here. 3026 * To get its accounting right, reuse_swap_page() must be called 3027 * while the page is counted on swap but not yet in mapcount i.e. 3028 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3029 * must be called after the swap_free(), or it will never succeed. 3030 * Because delete_from_swap_page() may be called by reuse_swap_page(), 3031 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 3032 * in page->private. In this case, a record in swap_cgroup is silently 3033 * discarded at swap_free(). 3034 */ 3035 3036 inc_mm_counter_fast(mm, MM_ANONPAGES); 3037 dec_mm_counter_fast(mm, MM_SWAPENTS); 3038 pte = mk_pte(page, vma->vm_page_prot); 3039 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 3040 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3041 flags &= ~FAULT_FLAG_WRITE; 3042 ret |= VM_FAULT_WRITE; 3043 exclusive = 1; 3044 } 3045 flush_icache_page(vma, page); 3046 set_pte_at(mm, address, page_table, pte); 3047 do_page_add_anon_rmap(page, vma, address, exclusive); 3048 /* It's better to call commit-charge after rmap is established */ 3049 mem_cgroup_commit_charge_swapin(page, ptr); 3050 3051 swap_free(entry); 3052 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3053 try_to_free_swap(page); 3054 unlock_page(page); 3055 if (swapcache) { 3056 /* 3057 * Hold the lock to avoid the swap entry to be reused 3058 * until we take the PT lock for the pte_same() check 3059 * (to avoid false positives from pte_same). For 3060 * further safety release the lock after the swap_free 3061 * so that the swap count won't change under a 3062 * parallel locked swapcache. 3063 */ 3064 unlock_page(swapcache); 3065 page_cache_release(swapcache); 3066 } 3067 3068 if (flags & FAULT_FLAG_WRITE) { 3069 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3070 if (ret & VM_FAULT_ERROR) 3071 ret &= VM_FAULT_ERROR; 3072 goto out; 3073 } 3074 3075 /* No need to invalidate - it was non-present before */ 3076 update_mmu_cache(vma, address, page_table); 3077 unlock: 3078 pte_unmap_unlock(page_table, ptl); 3079 out: 3080 return ret; 3081 out_nomap: 3082 mem_cgroup_cancel_charge_swapin(ptr); 3083 pte_unmap_unlock(page_table, ptl); 3084 out_page: 3085 unlock_page(page); 3086 out_release: 3087 page_cache_release(page); 3088 if (swapcache) { 3089 unlock_page(swapcache); 3090 page_cache_release(swapcache); 3091 } 3092 return ret; 3093 } 3094 3095 /* 3096 * This is like a special single-page "expand_{down|up}wards()", 3097 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3098 * doesn't hit another vma. 3099 */ 3100 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3101 { 3102 address &= PAGE_MASK; 3103 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3104 struct vm_area_struct *prev = vma->vm_prev; 3105 3106 /* 3107 * Is there a mapping abutting this one below? 3108 * 3109 * That's only ok if it's the same stack mapping 3110 * that has gotten split.. 3111 */ 3112 if (prev && prev->vm_end == address) 3113 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3114 3115 expand_downwards(vma, address - PAGE_SIZE); 3116 } 3117 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3118 struct vm_area_struct *next = vma->vm_next; 3119 3120 /* As VM_GROWSDOWN but s/below/above/ */ 3121 if (next && next->vm_start == address + PAGE_SIZE) 3122 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3123 3124 expand_upwards(vma, address + PAGE_SIZE); 3125 } 3126 return 0; 3127 } 3128 3129 /* 3130 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3131 * but allow concurrent faults), and pte mapped but not yet locked. 3132 * We return with mmap_sem still held, but pte unmapped and unlocked. 3133 */ 3134 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3135 unsigned long address, pte_t *page_table, pmd_t *pmd, 3136 unsigned int flags) 3137 { 3138 struct page *page; 3139 spinlock_t *ptl; 3140 pte_t entry; 3141 3142 pte_unmap(page_table); 3143 3144 /* Check if we need to add a guard page to the stack */ 3145 if (check_stack_guard_page(vma, address) < 0) 3146 return VM_FAULT_SIGBUS; 3147 3148 /* Use the zero-page for reads */ 3149 if (!(flags & FAULT_FLAG_WRITE)) { 3150 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3151 vma->vm_page_prot)); 3152 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3153 if (!pte_none(*page_table)) 3154 goto unlock; 3155 goto setpte; 3156 } 3157 3158 /* Allocate our own private page. */ 3159 if (unlikely(anon_vma_prepare(vma))) 3160 goto oom; 3161 page = alloc_zeroed_user_highpage_movable(vma, address); 3162 if (!page) 3163 goto oom; 3164 __SetPageUptodate(page); 3165 3166 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3167 goto oom_free_page; 3168 3169 entry = mk_pte(page, vma->vm_page_prot); 3170 if (vma->vm_flags & VM_WRITE) 3171 entry = pte_mkwrite(pte_mkdirty(entry)); 3172 3173 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3174 if (!pte_none(*page_table)) 3175 goto release; 3176 3177 inc_mm_counter_fast(mm, MM_ANONPAGES); 3178 page_add_new_anon_rmap(page, vma, address); 3179 setpte: 3180 set_pte_at(mm, address, page_table, entry); 3181 3182 /* No need to invalidate - it was non-present before */ 3183 update_mmu_cache(vma, address, page_table); 3184 unlock: 3185 pte_unmap_unlock(page_table, ptl); 3186 return 0; 3187 release: 3188 mem_cgroup_uncharge_page(page); 3189 page_cache_release(page); 3190 goto unlock; 3191 oom_free_page: 3192 page_cache_release(page); 3193 oom: 3194 return VM_FAULT_OOM; 3195 } 3196 3197 /* 3198 * __do_fault() tries to create a new page mapping. It aggressively 3199 * tries to share with existing pages, but makes a separate copy if 3200 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3201 * the next page fault. 3202 * 3203 * As this is called only for pages that do not currently exist, we 3204 * do not need to flush old virtual caches or the TLB. 3205 * 3206 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3207 * but allow concurrent faults), and pte neither mapped nor locked. 3208 * We return with mmap_sem still held, but pte unmapped and unlocked. 3209 */ 3210 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3211 unsigned long address, pmd_t *pmd, 3212 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3213 { 3214 pte_t *page_table; 3215 spinlock_t *ptl; 3216 struct page *page; 3217 struct page *cow_page; 3218 pte_t entry; 3219 int anon = 0; 3220 struct page *dirty_page = NULL; 3221 struct vm_fault vmf; 3222 int ret; 3223 int page_mkwrite = 0; 3224 3225 /* 3226 * If we do COW later, allocate page befor taking lock_page() 3227 * on the file cache page. This will reduce lock holding time. 3228 */ 3229 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3230 3231 if (unlikely(anon_vma_prepare(vma))) 3232 return VM_FAULT_OOM; 3233 3234 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3235 if (!cow_page) 3236 return VM_FAULT_OOM; 3237 3238 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { 3239 page_cache_release(cow_page); 3240 return VM_FAULT_OOM; 3241 } 3242 } else 3243 cow_page = NULL; 3244 3245 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3246 vmf.pgoff = pgoff; 3247 vmf.flags = flags; 3248 vmf.page = NULL; 3249 3250 ret = vma->vm_ops->fault(vma, &vmf); 3251 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3252 VM_FAULT_RETRY))) 3253 goto uncharge_out; 3254 3255 if (unlikely(PageHWPoison(vmf.page))) { 3256 if (ret & VM_FAULT_LOCKED) 3257 unlock_page(vmf.page); 3258 ret = VM_FAULT_HWPOISON; 3259 goto uncharge_out; 3260 } 3261 3262 /* 3263 * For consistency in subsequent calls, make the faulted page always 3264 * locked. 3265 */ 3266 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3267 lock_page(vmf.page); 3268 else 3269 VM_BUG_ON(!PageLocked(vmf.page)); 3270 3271 /* 3272 * Should we do an early C-O-W break? 3273 */ 3274 page = vmf.page; 3275 if (flags & FAULT_FLAG_WRITE) { 3276 if (!(vma->vm_flags & VM_SHARED)) { 3277 page = cow_page; 3278 anon = 1; 3279 copy_user_highpage(page, vmf.page, address, vma); 3280 __SetPageUptodate(page); 3281 } else { 3282 /* 3283 * If the page will be shareable, see if the backing 3284 * address space wants to know that the page is about 3285 * to become writable 3286 */ 3287 if (vma->vm_ops->page_mkwrite) { 3288 int tmp; 3289 3290 unlock_page(page); 3291 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3292 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3293 if (unlikely(tmp & 3294 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3295 ret = tmp; 3296 goto unwritable_page; 3297 } 3298 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3299 lock_page(page); 3300 if (!page->mapping) { 3301 ret = 0; /* retry the fault */ 3302 unlock_page(page); 3303 goto unwritable_page; 3304 } 3305 } else 3306 VM_BUG_ON(!PageLocked(page)); 3307 page_mkwrite = 1; 3308 } 3309 } 3310 3311 } 3312 3313 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3314 3315 /* 3316 * This silly early PAGE_DIRTY setting removes a race 3317 * due to the bad i386 page protection. But it's valid 3318 * for other architectures too. 3319 * 3320 * Note that if FAULT_FLAG_WRITE is set, we either now have 3321 * an exclusive copy of the page, or this is a shared mapping, 3322 * so we can make it writable and dirty to avoid having to 3323 * handle that later. 3324 */ 3325 /* Only go through if we didn't race with anybody else... */ 3326 if (likely(pte_same(*page_table, orig_pte))) { 3327 flush_icache_page(vma, page); 3328 entry = mk_pte(page, vma->vm_page_prot); 3329 if (flags & FAULT_FLAG_WRITE) 3330 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3331 if (anon) { 3332 inc_mm_counter_fast(mm, MM_ANONPAGES); 3333 page_add_new_anon_rmap(page, vma, address); 3334 } else { 3335 inc_mm_counter_fast(mm, MM_FILEPAGES); 3336 page_add_file_rmap(page); 3337 if (flags & FAULT_FLAG_WRITE) { 3338 dirty_page = page; 3339 get_page(dirty_page); 3340 } 3341 } 3342 set_pte_at(mm, address, page_table, entry); 3343 3344 /* no need to invalidate: a not-present page won't be cached */ 3345 update_mmu_cache(vma, address, page_table); 3346 } else { 3347 if (cow_page) 3348 mem_cgroup_uncharge_page(cow_page); 3349 if (anon) 3350 page_cache_release(page); 3351 else 3352 anon = 1; /* no anon but release faulted_page */ 3353 } 3354 3355 pte_unmap_unlock(page_table, ptl); 3356 3357 if (dirty_page) { 3358 struct address_space *mapping = page->mapping; 3359 int dirtied = 0; 3360 3361 if (set_page_dirty(dirty_page)) 3362 dirtied = 1; 3363 unlock_page(dirty_page); 3364 put_page(dirty_page); 3365 if ((dirtied || page_mkwrite) && mapping) { 3366 /* 3367 * Some device drivers do not set page.mapping but still 3368 * dirty their pages 3369 */ 3370 balance_dirty_pages_ratelimited(mapping); 3371 } 3372 3373 /* file_update_time outside page_lock */ 3374 if (vma->vm_file && !page_mkwrite) 3375 file_update_time(vma->vm_file); 3376 } else { 3377 unlock_page(vmf.page); 3378 if (anon) 3379 page_cache_release(vmf.page); 3380 } 3381 3382 return ret; 3383 3384 unwritable_page: 3385 page_cache_release(page); 3386 return ret; 3387 uncharge_out: 3388 /* fs's fault handler get error */ 3389 if (cow_page) { 3390 mem_cgroup_uncharge_page(cow_page); 3391 page_cache_release(cow_page); 3392 } 3393 return ret; 3394 } 3395 3396 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3397 unsigned long address, pte_t *page_table, pmd_t *pmd, 3398 unsigned int flags, pte_t orig_pte) 3399 { 3400 pgoff_t pgoff = (((address & PAGE_MASK) 3401 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3402 3403 pte_unmap(page_table); 3404 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3405 } 3406 3407 /* 3408 * Fault of a previously existing named mapping. Repopulate the pte 3409 * from the encoded file_pte if possible. This enables swappable 3410 * nonlinear vmas. 3411 * 3412 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3413 * but allow concurrent faults), and pte mapped but not yet locked. 3414 * We return with mmap_sem still held, but pte unmapped and unlocked. 3415 */ 3416 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3417 unsigned long address, pte_t *page_table, pmd_t *pmd, 3418 unsigned int flags, pte_t orig_pte) 3419 { 3420 pgoff_t pgoff; 3421 3422 flags |= FAULT_FLAG_NONLINEAR; 3423 3424 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3425 return 0; 3426 3427 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3428 /* 3429 * Page table corrupted: show pte and kill process. 3430 */ 3431 print_bad_pte(vma, address, orig_pte, NULL); 3432 return VM_FAULT_SIGBUS; 3433 } 3434 3435 pgoff = pte_to_pgoff(orig_pte); 3436 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3437 } 3438 3439 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3440 unsigned long addr, int current_nid) 3441 { 3442 get_page(page); 3443 3444 count_vm_numa_event(NUMA_HINT_FAULTS); 3445 if (current_nid == numa_node_id()) 3446 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3447 3448 return mpol_misplaced(page, vma, addr); 3449 } 3450 3451 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3452 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3453 { 3454 struct page *page = NULL; 3455 spinlock_t *ptl; 3456 int current_nid = -1; 3457 int target_nid; 3458 bool migrated = false; 3459 3460 /* 3461 * The "pte" at this point cannot be used safely without 3462 * validation through pte_unmap_same(). It's of NUMA type but 3463 * the pfn may be screwed if the read is non atomic. 3464 * 3465 * ptep_modify_prot_start is not called as this is clearing 3466 * the _PAGE_NUMA bit and it is not really expected that there 3467 * would be concurrent hardware modifications to the PTE. 3468 */ 3469 ptl = pte_lockptr(mm, pmd); 3470 spin_lock(ptl); 3471 if (unlikely(!pte_same(*ptep, pte))) { 3472 pte_unmap_unlock(ptep, ptl); 3473 goto out; 3474 } 3475 3476 pte = pte_mknonnuma(pte); 3477 set_pte_at(mm, addr, ptep, pte); 3478 update_mmu_cache(vma, addr, ptep); 3479 3480 page = vm_normal_page(vma, addr, pte); 3481 if (!page) { 3482 pte_unmap_unlock(ptep, ptl); 3483 return 0; 3484 } 3485 3486 current_nid = page_to_nid(page); 3487 target_nid = numa_migrate_prep(page, vma, addr, current_nid); 3488 pte_unmap_unlock(ptep, ptl); 3489 if (target_nid == -1) { 3490 /* 3491 * Account for the fault against the current node if it not 3492 * being replaced regardless of where the page is located. 3493 */ 3494 current_nid = numa_node_id(); 3495 put_page(page); 3496 goto out; 3497 } 3498 3499 /* Migrate to the requested node */ 3500 migrated = migrate_misplaced_page(page, target_nid); 3501 if (migrated) 3502 current_nid = target_nid; 3503 3504 out: 3505 if (current_nid != -1) 3506 task_numa_fault(current_nid, 1, migrated); 3507 return 0; 3508 } 3509 3510 /* NUMA hinting page fault entry point for regular pmds */ 3511 #ifdef CONFIG_NUMA_BALANCING 3512 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3513 unsigned long addr, pmd_t *pmdp) 3514 { 3515 pmd_t pmd; 3516 pte_t *pte, *orig_pte; 3517 unsigned long _addr = addr & PMD_MASK; 3518 unsigned long offset; 3519 spinlock_t *ptl; 3520 bool numa = false; 3521 int local_nid = numa_node_id(); 3522 3523 spin_lock(&mm->page_table_lock); 3524 pmd = *pmdp; 3525 if (pmd_numa(pmd)) { 3526 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd)); 3527 numa = true; 3528 } 3529 spin_unlock(&mm->page_table_lock); 3530 3531 if (!numa) 3532 return 0; 3533 3534 /* we're in a page fault so some vma must be in the range */ 3535 BUG_ON(!vma); 3536 BUG_ON(vma->vm_start >= _addr + PMD_SIZE); 3537 offset = max(_addr, vma->vm_start) & ~PMD_MASK; 3538 VM_BUG_ON(offset >= PMD_SIZE); 3539 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl); 3540 pte += offset >> PAGE_SHIFT; 3541 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) { 3542 pte_t pteval = *pte; 3543 struct page *page; 3544 int curr_nid = local_nid; 3545 int target_nid; 3546 bool migrated; 3547 if (!pte_present(pteval)) 3548 continue; 3549 if (!pte_numa(pteval)) 3550 continue; 3551 if (addr >= vma->vm_end) { 3552 vma = find_vma(mm, addr); 3553 /* there's a pte present so there must be a vma */ 3554 BUG_ON(!vma); 3555 BUG_ON(addr < vma->vm_start); 3556 } 3557 if (pte_numa(pteval)) { 3558 pteval = pte_mknonnuma(pteval); 3559 set_pte_at(mm, addr, pte, pteval); 3560 } 3561 page = vm_normal_page(vma, addr, pteval); 3562 if (unlikely(!page)) 3563 continue; 3564 /* only check non-shared pages */ 3565 if (unlikely(page_mapcount(page) != 1)) 3566 continue; 3567 3568 /* 3569 * Note that the NUMA fault is later accounted to either 3570 * the node that is currently running or where the page is 3571 * migrated to. 3572 */ 3573 curr_nid = local_nid; 3574 target_nid = numa_migrate_prep(page, vma, addr, 3575 page_to_nid(page)); 3576 if (target_nid == -1) { 3577 put_page(page); 3578 continue; 3579 } 3580 3581 /* Migrate to the requested node */ 3582 pte_unmap_unlock(pte, ptl); 3583 migrated = migrate_misplaced_page(page, target_nid); 3584 if (migrated) 3585 curr_nid = target_nid; 3586 task_numa_fault(curr_nid, 1, migrated); 3587 3588 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl); 3589 } 3590 pte_unmap_unlock(orig_pte, ptl); 3591 3592 return 0; 3593 } 3594 #else 3595 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3596 unsigned long addr, pmd_t *pmdp) 3597 { 3598 BUG(); 3599 return 0; 3600 } 3601 #endif /* CONFIG_NUMA_BALANCING */ 3602 3603 /* 3604 * These routines also need to handle stuff like marking pages dirty 3605 * and/or accessed for architectures that don't do it in hardware (most 3606 * RISC architectures). The early dirtying is also good on the i386. 3607 * 3608 * There is also a hook called "update_mmu_cache()" that architectures 3609 * with external mmu caches can use to update those (ie the Sparc or 3610 * PowerPC hashed page tables that act as extended TLBs). 3611 * 3612 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3613 * but allow concurrent faults), and pte mapped but not yet locked. 3614 * We return with mmap_sem still held, but pte unmapped and unlocked. 3615 */ 3616 int handle_pte_fault(struct mm_struct *mm, 3617 struct vm_area_struct *vma, unsigned long address, 3618 pte_t *pte, pmd_t *pmd, unsigned int flags) 3619 { 3620 pte_t entry; 3621 spinlock_t *ptl; 3622 3623 entry = *pte; 3624 if (!pte_present(entry)) { 3625 if (pte_none(entry)) { 3626 if (vma->vm_ops) { 3627 if (likely(vma->vm_ops->fault)) 3628 return do_linear_fault(mm, vma, address, 3629 pte, pmd, flags, entry); 3630 } 3631 return do_anonymous_page(mm, vma, address, 3632 pte, pmd, flags); 3633 } 3634 if (pte_file(entry)) 3635 return do_nonlinear_fault(mm, vma, address, 3636 pte, pmd, flags, entry); 3637 return do_swap_page(mm, vma, address, 3638 pte, pmd, flags, entry); 3639 } 3640 3641 if (pte_numa(entry)) 3642 return do_numa_page(mm, vma, address, entry, pte, pmd); 3643 3644 ptl = pte_lockptr(mm, pmd); 3645 spin_lock(ptl); 3646 if (unlikely(!pte_same(*pte, entry))) 3647 goto unlock; 3648 if (flags & FAULT_FLAG_WRITE) { 3649 if (!pte_write(entry)) 3650 return do_wp_page(mm, vma, address, 3651 pte, pmd, ptl, entry); 3652 entry = pte_mkdirty(entry); 3653 } 3654 entry = pte_mkyoung(entry); 3655 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3656 update_mmu_cache(vma, address, pte); 3657 } else { 3658 /* 3659 * This is needed only for protection faults but the arch code 3660 * is not yet telling us if this is a protection fault or not. 3661 * This still avoids useless tlb flushes for .text page faults 3662 * with threads. 3663 */ 3664 if (flags & FAULT_FLAG_WRITE) 3665 flush_tlb_fix_spurious_fault(vma, address); 3666 } 3667 unlock: 3668 pte_unmap_unlock(pte, ptl); 3669 return 0; 3670 } 3671 3672 /* 3673 * By the time we get here, we already hold the mm semaphore 3674 */ 3675 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3676 unsigned long address, unsigned int flags) 3677 { 3678 pgd_t *pgd; 3679 pud_t *pud; 3680 pmd_t *pmd; 3681 pte_t *pte; 3682 3683 __set_current_state(TASK_RUNNING); 3684 3685 count_vm_event(PGFAULT); 3686 mem_cgroup_count_vm_event(mm, PGFAULT); 3687 3688 /* do counter updates before entering really critical section. */ 3689 check_sync_rss_stat(current); 3690 3691 if (unlikely(is_vm_hugetlb_page(vma))) 3692 return hugetlb_fault(mm, vma, address, flags); 3693 3694 retry: 3695 pgd = pgd_offset(mm, address); 3696 pud = pud_alloc(mm, pgd, address); 3697 if (!pud) 3698 return VM_FAULT_OOM; 3699 pmd = pmd_alloc(mm, pud, address); 3700 if (!pmd) 3701 return VM_FAULT_OOM; 3702 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3703 if (!vma->vm_ops) 3704 return do_huge_pmd_anonymous_page(mm, vma, address, 3705 pmd, flags); 3706 } else { 3707 pmd_t orig_pmd = *pmd; 3708 int ret; 3709 3710 barrier(); 3711 if (pmd_trans_huge(orig_pmd)) { 3712 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3713 3714 /* 3715 * If the pmd is splitting, return and retry the 3716 * the fault. Alternative: wait until the split 3717 * is done, and goto retry. 3718 */ 3719 if (pmd_trans_splitting(orig_pmd)) 3720 return 0; 3721 3722 if (pmd_numa(orig_pmd)) 3723 return do_huge_pmd_numa_page(mm, vma, address, 3724 orig_pmd, pmd); 3725 3726 if (dirty && !pmd_write(orig_pmd)) { 3727 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3728 orig_pmd); 3729 /* 3730 * If COW results in an oom, the huge pmd will 3731 * have been split, so retry the fault on the 3732 * pte for a smaller charge. 3733 */ 3734 if (unlikely(ret & VM_FAULT_OOM)) 3735 goto retry; 3736 return ret; 3737 } else { 3738 huge_pmd_set_accessed(mm, vma, address, pmd, 3739 orig_pmd, dirty); 3740 } 3741 3742 return 0; 3743 } 3744 } 3745 3746 if (pmd_numa(*pmd)) 3747 return do_pmd_numa_page(mm, vma, address, pmd); 3748 3749 /* 3750 * Use __pte_alloc instead of pte_alloc_map, because we can't 3751 * run pte_offset_map on the pmd, if an huge pmd could 3752 * materialize from under us from a different thread. 3753 */ 3754 if (unlikely(pmd_none(*pmd)) && 3755 unlikely(__pte_alloc(mm, vma, pmd, address))) 3756 return VM_FAULT_OOM; 3757 /* if an huge pmd materialized from under us just retry later */ 3758 if (unlikely(pmd_trans_huge(*pmd))) 3759 return 0; 3760 /* 3761 * A regular pmd is established and it can't morph into a huge pmd 3762 * from under us anymore at this point because we hold the mmap_sem 3763 * read mode and khugepaged takes it in write mode. So now it's 3764 * safe to run pte_offset_map(). 3765 */ 3766 pte = pte_offset_map(pmd, address); 3767 3768 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3769 } 3770 3771 #ifndef __PAGETABLE_PUD_FOLDED 3772 /* 3773 * Allocate page upper directory. 3774 * We've already handled the fast-path in-line. 3775 */ 3776 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3777 { 3778 pud_t *new = pud_alloc_one(mm, address); 3779 if (!new) 3780 return -ENOMEM; 3781 3782 smp_wmb(); /* See comment in __pte_alloc */ 3783 3784 spin_lock(&mm->page_table_lock); 3785 if (pgd_present(*pgd)) /* Another has populated it */ 3786 pud_free(mm, new); 3787 else 3788 pgd_populate(mm, pgd, new); 3789 spin_unlock(&mm->page_table_lock); 3790 return 0; 3791 } 3792 #endif /* __PAGETABLE_PUD_FOLDED */ 3793 3794 #ifndef __PAGETABLE_PMD_FOLDED 3795 /* 3796 * Allocate page middle directory. 3797 * We've already handled the fast-path in-line. 3798 */ 3799 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3800 { 3801 pmd_t *new = pmd_alloc_one(mm, address); 3802 if (!new) 3803 return -ENOMEM; 3804 3805 smp_wmb(); /* See comment in __pte_alloc */ 3806 3807 spin_lock(&mm->page_table_lock); 3808 #ifndef __ARCH_HAS_4LEVEL_HACK 3809 if (pud_present(*pud)) /* Another has populated it */ 3810 pmd_free(mm, new); 3811 else 3812 pud_populate(mm, pud, new); 3813 #else 3814 if (pgd_present(*pud)) /* Another has populated it */ 3815 pmd_free(mm, new); 3816 else 3817 pgd_populate(mm, pud, new); 3818 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3819 spin_unlock(&mm->page_table_lock); 3820 return 0; 3821 } 3822 #endif /* __PAGETABLE_PMD_FOLDED */ 3823 3824 int make_pages_present(unsigned long addr, unsigned long end) 3825 { 3826 int ret, len, write; 3827 struct vm_area_struct * vma; 3828 3829 vma = find_vma(current->mm, addr); 3830 if (!vma) 3831 return -ENOMEM; 3832 /* 3833 * We want to touch writable mappings with a write fault in order 3834 * to break COW, except for shared mappings because these don't COW 3835 * and we would not want to dirty them for nothing. 3836 */ 3837 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; 3838 BUG_ON(addr >= end); 3839 BUG_ON(end > vma->vm_end); 3840 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3841 ret = get_user_pages(current, current->mm, addr, 3842 len, write, 0, NULL, NULL); 3843 if (ret < 0) 3844 return ret; 3845 return ret == len ? 0 : -EFAULT; 3846 } 3847 3848 #if !defined(__HAVE_ARCH_GATE_AREA) 3849 3850 #if defined(AT_SYSINFO_EHDR) 3851 static struct vm_area_struct gate_vma; 3852 3853 static int __init gate_vma_init(void) 3854 { 3855 gate_vma.vm_mm = NULL; 3856 gate_vma.vm_start = FIXADDR_USER_START; 3857 gate_vma.vm_end = FIXADDR_USER_END; 3858 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3859 gate_vma.vm_page_prot = __P101; 3860 3861 return 0; 3862 } 3863 __initcall(gate_vma_init); 3864 #endif 3865 3866 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3867 { 3868 #ifdef AT_SYSINFO_EHDR 3869 return &gate_vma; 3870 #else 3871 return NULL; 3872 #endif 3873 } 3874 3875 int in_gate_area_no_mm(unsigned long addr) 3876 { 3877 #ifdef AT_SYSINFO_EHDR 3878 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3879 return 1; 3880 #endif 3881 return 0; 3882 } 3883 3884 #endif /* __HAVE_ARCH_GATE_AREA */ 3885 3886 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3887 pte_t **ptepp, spinlock_t **ptlp) 3888 { 3889 pgd_t *pgd; 3890 pud_t *pud; 3891 pmd_t *pmd; 3892 pte_t *ptep; 3893 3894 pgd = pgd_offset(mm, address); 3895 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3896 goto out; 3897 3898 pud = pud_offset(pgd, address); 3899 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3900 goto out; 3901 3902 pmd = pmd_offset(pud, address); 3903 VM_BUG_ON(pmd_trans_huge(*pmd)); 3904 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3905 goto out; 3906 3907 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3908 if (pmd_huge(*pmd)) 3909 goto out; 3910 3911 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3912 if (!ptep) 3913 goto out; 3914 if (!pte_present(*ptep)) 3915 goto unlock; 3916 *ptepp = ptep; 3917 return 0; 3918 unlock: 3919 pte_unmap_unlock(ptep, *ptlp); 3920 out: 3921 return -EINVAL; 3922 } 3923 3924 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3925 pte_t **ptepp, spinlock_t **ptlp) 3926 { 3927 int res; 3928 3929 /* (void) is needed to make gcc happy */ 3930 (void) __cond_lock(*ptlp, 3931 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3932 return res; 3933 } 3934 3935 /** 3936 * follow_pfn - look up PFN at a user virtual address 3937 * @vma: memory mapping 3938 * @address: user virtual address 3939 * @pfn: location to store found PFN 3940 * 3941 * Only IO mappings and raw PFN mappings are allowed. 3942 * 3943 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3944 */ 3945 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3946 unsigned long *pfn) 3947 { 3948 int ret = -EINVAL; 3949 spinlock_t *ptl; 3950 pte_t *ptep; 3951 3952 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3953 return ret; 3954 3955 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3956 if (ret) 3957 return ret; 3958 *pfn = pte_pfn(*ptep); 3959 pte_unmap_unlock(ptep, ptl); 3960 return 0; 3961 } 3962 EXPORT_SYMBOL(follow_pfn); 3963 3964 #ifdef CONFIG_HAVE_IOREMAP_PROT 3965 int follow_phys(struct vm_area_struct *vma, 3966 unsigned long address, unsigned int flags, 3967 unsigned long *prot, resource_size_t *phys) 3968 { 3969 int ret = -EINVAL; 3970 pte_t *ptep, pte; 3971 spinlock_t *ptl; 3972 3973 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3974 goto out; 3975 3976 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3977 goto out; 3978 pte = *ptep; 3979 3980 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3981 goto unlock; 3982 3983 *prot = pgprot_val(pte_pgprot(pte)); 3984 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3985 3986 ret = 0; 3987 unlock: 3988 pte_unmap_unlock(ptep, ptl); 3989 out: 3990 return ret; 3991 } 3992 3993 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3994 void *buf, int len, int write) 3995 { 3996 resource_size_t phys_addr; 3997 unsigned long prot = 0; 3998 void __iomem *maddr; 3999 int offset = addr & (PAGE_SIZE-1); 4000 4001 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4002 return -EINVAL; 4003 4004 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 4005 if (write) 4006 memcpy_toio(maddr + offset, buf, len); 4007 else 4008 memcpy_fromio(buf, maddr + offset, len); 4009 iounmap(maddr); 4010 4011 return len; 4012 } 4013 #endif 4014 4015 /* 4016 * Access another process' address space as given in mm. If non-NULL, use the 4017 * given task for page fault accounting. 4018 */ 4019 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4020 unsigned long addr, void *buf, int len, int write) 4021 { 4022 struct vm_area_struct *vma; 4023 void *old_buf = buf; 4024 4025 down_read(&mm->mmap_sem); 4026 /* ignore errors, just check how much was successfully transferred */ 4027 while (len) { 4028 int bytes, ret, offset; 4029 void *maddr; 4030 struct page *page = NULL; 4031 4032 ret = get_user_pages(tsk, mm, addr, 1, 4033 write, 1, &page, &vma); 4034 if (ret <= 0) { 4035 /* 4036 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4037 * we can access using slightly different code. 4038 */ 4039 #ifdef CONFIG_HAVE_IOREMAP_PROT 4040 vma = find_vma(mm, addr); 4041 if (!vma || vma->vm_start > addr) 4042 break; 4043 if (vma->vm_ops && vma->vm_ops->access) 4044 ret = vma->vm_ops->access(vma, addr, buf, 4045 len, write); 4046 if (ret <= 0) 4047 #endif 4048 break; 4049 bytes = ret; 4050 } else { 4051 bytes = len; 4052 offset = addr & (PAGE_SIZE-1); 4053 if (bytes > PAGE_SIZE-offset) 4054 bytes = PAGE_SIZE-offset; 4055 4056 maddr = kmap(page); 4057 if (write) { 4058 copy_to_user_page(vma, page, addr, 4059 maddr + offset, buf, bytes); 4060 set_page_dirty_lock(page); 4061 } else { 4062 copy_from_user_page(vma, page, addr, 4063 buf, maddr + offset, bytes); 4064 } 4065 kunmap(page); 4066 page_cache_release(page); 4067 } 4068 len -= bytes; 4069 buf += bytes; 4070 addr += bytes; 4071 } 4072 up_read(&mm->mmap_sem); 4073 4074 return buf - old_buf; 4075 } 4076 4077 /** 4078 * access_remote_vm - access another process' address space 4079 * @mm: the mm_struct of the target address space 4080 * @addr: start address to access 4081 * @buf: source or destination buffer 4082 * @len: number of bytes to transfer 4083 * @write: whether the access is a write 4084 * 4085 * The caller must hold a reference on @mm. 4086 */ 4087 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4088 void *buf, int len, int write) 4089 { 4090 return __access_remote_vm(NULL, mm, addr, buf, len, write); 4091 } 4092 4093 /* 4094 * Access another process' address space. 4095 * Source/target buffer must be kernel space, 4096 * Do not walk the page table directly, use get_user_pages 4097 */ 4098 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4099 void *buf, int len, int write) 4100 { 4101 struct mm_struct *mm; 4102 int ret; 4103 4104 mm = get_task_mm(tsk); 4105 if (!mm) 4106 return 0; 4107 4108 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 4109 mmput(mm); 4110 4111 return ret; 4112 } 4113 4114 /* 4115 * Print the name of a VMA. 4116 */ 4117 void print_vma_addr(char *prefix, unsigned long ip) 4118 { 4119 struct mm_struct *mm = current->mm; 4120 struct vm_area_struct *vma; 4121 4122 /* 4123 * Do not print if we are in atomic 4124 * contexts (in exception stacks, etc.): 4125 */ 4126 if (preempt_count()) 4127 return; 4128 4129 down_read(&mm->mmap_sem); 4130 vma = find_vma(mm, ip); 4131 if (vma && vma->vm_file) { 4132 struct file *f = vma->vm_file; 4133 char *buf = (char *)__get_free_page(GFP_KERNEL); 4134 if (buf) { 4135 char *p; 4136 4137 p = d_path(&f->f_path, buf, PAGE_SIZE); 4138 if (IS_ERR(p)) 4139 p = "?"; 4140 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4141 vma->vm_start, 4142 vma->vm_end - vma->vm_start); 4143 free_page((unsigned long)buf); 4144 } 4145 } 4146 up_read(&mm->mmap_sem); 4147 } 4148 4149 #ifdef CONFIG_PROVE_LOCKING 4150 void might_fault(void) 4151 { 4152 /* 4153 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4154 * holding the mmap_sem, this is safe because kernel memory doesn't 4155 * get paged out, therefore we'll never actually fault, and the 4156 * below annotations will generate false positives. 4157 */ 4158 if (segment_eq(get_fs(), KERNEL_DS)) 4159 return; 4160 4161 might_sleep(); 4162 /* 4163 * it would be nicer only to annotate paths which are not under 4164 * pagefault_disable, however that requires a larger audit and 4165 * providing helpers like get_user_atomic. 4166 */ 4167 if (!in_atomic() && current->mm) 4168 might_lock_read(¤t->mm->mmap_sem); 4169 } 4170 EXPORT_SYMBOL(might_fault); 4171 #endif 4172 4173 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4174 static void clear_gigantic_page(struct page *page, 4175 unsigned long addr, 4176 unsigned int pages_per_huge_page) 4177 { 4178 int i; 4179 struct page *p = page; 4180 4181 might_sleep(); 4182 for (i = 0; i < pages_per_huge_page; 4183 i++, p = mem_map_next(p, page, i)) { 4184 cond_resched(); 4185 clear_user_highpage(p, addr + i * PAGE_SIZE); 4186 } 4187 } 4188 void clear_huge_page(struct page *page, 4189 unsigned long addr, unsigned int pages_per_huge_page) 4190 { 4191 int i; 4192 4193 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4194 clear_gigantic_page(page, addr, pages_per_huge_page); 4195 return; 4196 } 4197 4198 might_sleep(); 4199 for (i = 0; i < pages_per_huge_page; i++) { 4200 cond_resched(); 4201 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4202 } 4203 } 4204 4205 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4206 unsigned long addr, 4207 struct vm_area_struct *vma, 4208 unsigned int pages_per_huge_page) 4209 { 4210 int i; 4211 struct page *dst_base = dst; 4212 struct page *src_base = src; 4213 4214 for (i = 0; i < pages_per_huge_page; ) { 4215 cond_resched(); 4216 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4217 4218 i++; 4219 dst = mem_map_next(dst, dst_base, i); 4220 src = mem_map_next(src, src_base, i); 4221 } 4222 } 4223 4224 void copy_user_huge_page(struct page *dst, struct page *src, 4225 unsigned long addr, struct vm_area_struct *vma, 4226 unsigned int pages_per_huge_page) 4227 { 4228 int i; 4229 4230 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4231 copy_user_gigantic_page(dst, src, addr, vma, 4232 pages_per_huge_page); 4233 return; 4234 } 4235 4236 might_sleep(); 4237 for (i = 0; i < pages_per_huge_page; i++) { 4238 cond_resched(); 4239 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4240 } 4241 } 4242 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4243