xref: /openbmc/linux/mm/memory.c (revision 54cbac81)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69 
70 #include "internal.h"
71 
72 #ifndef CONFIG_NEED_MULTIPLE_NODES
73 /* use the per-pgdat data instead for discontigmem - mbligh */
74 unsigned long max_mapnr;
75 struct page *mem_map;
76 
77 EXPORT_SYMBOL(max_mapnr);
78 EXPORT_SYMBOL(mem_map);
79 #endif
80 
81 unsigned long num_physpages;
82 /*
83  * A number of key systems in x86 including ioremap() rely on the assumption
84  * that high_memory defines the upper bound on direct map memory, then end
85  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
86  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
87  * and ZONE_HIGHMEM.
88  */
89 void * high_memory;
90 
91 EXPORT_SYMBOL(num_physpages);
92 EXPORT_SYMBOL(high_memory);
93 
94 /*
95  * Randomize the address space (stacks, mmaps, brk, etc.).
96  *
97  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
98  *   as ancient (libc5 based) binaries can segfault. )
99  */
100 int randomize_va_space __read_mostly =
101 #ifdef CONFIG_COMPAT_BRK
102 					1;
103 #else
104 					2;
105 #endif
106 
107 static int __init disable_randmaps(char *s)
108 {
109 	randomize_va_space = 0;
110 	return 1;
111 }
112 __setup("norandmaps", disable_randmaps);
113 
114 unsigned long zero_pfn __read_mostly;
115 unsigned long highest_memmap_pfn __read_mostly;
116 
117 /*
118  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
119  */
120 static int __init init_zero_pfn(void)
121 {
122 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
123 	return 0;
124 }
125 core_initcall(init_zero_pfn);
126 
127 
128 #if defined(SPLIT_RSS_COUNTING)
129 
130 void sync_mm_rss(struct mm_struct *mm)
131 {
132 	int i;
133 
134 	for (i = 0; i < NR_MM_COUNTERS; i++) {
135 		if (current->rss_stat.count[i]) {
136 			add_mm_counter(mm, i, current->rss_stat.count[i]);
137 			current->rss_stat.count[i] = 0;
138 		}
139 	}
140 	current->rss_stat.events = 0;
141 }
142 
143 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
144 {
145 	struct task_struct *task = current;
146 
147 	if (likely(task->mm == mm))
148 		task->rss_stat.count[member] += val;
149 	else
150 		add_mm_counter(mm, member, val);
151 }
152 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
153 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
154 
155 /* sync counter once per 64 page faults */
156 #define TASK_RSS_EVENTS_THRESH	(64)
157 static void check_sync_rss_stat(struct task_struct *task)
158 {
159 	if (unlikely(task != current))
160 		return;
161 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
162 		sync_mm_rss(task->mm);
163 }
164 #else /* SPLIT_RSS_COUNTING */
165 
166 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
167 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
168 
169 static void check_sync_rss_stat(struct task_struct *task)
170 {
171 }
172 
173 #endif /* SPLIT_RSS_COUNTING */
174 
175 #ifdef HAVE_GENERIC_MMU_GATHER
176 
177 static int tlb_next_batch(struct mmu_gather *tlb)
178 {
179 	struct mmu_gather_batch *batch;
180 
181 	batch = tlb->active;
182 	if (batch->next) {
183 		tlb->active = batch->next;
184 		return 1;
185 	}
186 
187 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
188 		return 0;
189 
190 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
191 	if (!batch)
192 		return 0;
193 
194 	tlb->batch_count++;
195 	batch->next = NULL;
196 	batch->nr   = 0;
197 	batch->max  = MAX_GATHER_BATCH;
198 
199 	tlb->active->next = batch;
200 	tlb->active = batch;
201 
202 	return 1;
203 }
204 
205 /* tlb_gather_mmu
206  *	Called to initialize an (on-stack) mmu_gather structure for page-table
207  *	tear-down from @mm. The @fullmm argument is used when @mm is without
208  *	users and we're going to destroy the full address space (exit/execve).
209  */
210 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
211 {
212 	tlb->mm = mm;
213 
214 	tlb->fullmm     = fullmm;
215 	tlb->start	= -1UL;
216 	tlb->end	= 0;
217 	tlb->need_flush = 0;
218 	tlb->fast_mode  = (num_possible_cpus() == 1);
219 	tlb->local.next = NULL;
220 	tlb->local.nr   = 0;
221 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
222 	tlb->active     = &tlb->local;
223 	tlb->batch_count = 0;
224 
225 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
226 	tlb->batch = NULL;
227 #endif
228 }
229 
230 void tlb_flush_mmu(struct mmu_gather *tlb)
231 {
232 	struct mmu_gather_batch *batch;
233 
234 	if (!tlb->need_flush)
235 		return;
236 	tlb->need_flush = 0;
237 	tlb_flush(tlb);
238 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
239 	tlb_table_flush(tlb);
240 #endif
241 
242 	if (tlb_fast_mode(tlb))
243 		return;
244 
245 	for (batch = &tlb->local; batch; batch = batch->next) {
246 		free_pages_and_swap_cache(batch->pages, batch->nr);
247 		batch->nr = 0;
248 	}
249 	tlb->active = &tlb->local;
250 }
251 
252 /* tlb_finish_mmu
253  *	Called at the end of the shootdown operation to free up any resources
254  *	that were required.
255  */
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257 {
258 	struct mmu_gather_batch *batch, *next;
259 
260 	tlb->start = start;
261 	tlb->end   = end;
262 	tlb_flush_mmu(tlb);
263 
264 	/* keep the page table cache within bounds */
265 	check_pgt_cache();
266 
267 	for (batch = tlb->local.next; batch; batch = next) {
268 		next = batch->next;
269 		free_pages((unsigned long)batch, 0);
270 	}
271 	tlb->local.next = NULL;
272 }
273 
274 /* __tlb_remove_page
275  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
276  *	handling the additional races in SMP caused by other CPUs caching valid
277  *	mappings in their TLBs. Returns the number of free page slots left.
278  *	When out of page slots we must call tlb_flush_mmu().
279  */
280 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
281 {
282 	struct mmu_gather_batch *batch;
283 
284 	VM_BUG_ON(!tlb->need_flush);
285 
286 	if (tlb_fast_mode(tlb)) {
287 		free_page_and_swap_cache(page);
288 		return 1; /* avoid calling tlb_flush_mmu() */
289 	}
290 
291 	batch = tlb->active;
292 	batch->pages[batch->nr++] = page;
293 	if (batch->nr == batch->max) {
294 		if (!tlb_next_batch(tlb))
295 			return 0;
296 		batch = tlb->active;
297 	}
298 	VM_BUG_ON(batch->nr > batch->max);
299 
300 	return batch->max - batch->nr;
301 }
302 
303 #endif /* HAVE_GENERIC_MMU_GATHER */
304 
305 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
306 
307 /*
308  * See the comment near struct mmu_table_batch.
309  */
310 
311 static void tlb_remove_table_smp_sync(void *arg)
312 {
313 	/* Simply deliver the interrupt */
314 }
315 
316 static void tlb_remove_table_one(void *table)
317 {
318 	/*
319 	 * This isn't an RCU grace period and hence the page-tables cannot be
320 	 * assumed to be actually RCU-freed.
321 	 *
322 	 * It is however sufficient for software page-table walkers that rely on
323 	 * IRQ disabling. See the comment near struct mmu_table_batch.
324 	 */
325 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
326 	__tlb_remove_table(table);
327 }
328 
329 static void tlb_remove_table_rcu(struct rcu_head *head)
330 {
331 	struct mmu_table_batch *batch;
332 	int i;
333 
334 	batch = container_of(head, struct mmu_table_batch, rcu);
335 
336 	for (i = 0; i < batch->nr; i++)
337 		__tlb_remove_table(batch->tables[i]);
338 
339 	free_page((unsigned long)batch);
340 }
341 
342 void tlb_table_flush(struct mmu_gather *tlb)
343 {
344 	struct mmu_table_batch **batch = &tlb->batch;
345 
346 	if (*batch) {
347 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
348 		*batch = NULL;
349 	}
350 }
351 
352 void tlb_remove_table(struct mmu_gather *tlb, void *table)
353 {
354 	struct mmu_table_batch **batch = &tlb->batch;
355 
356 	tlb->need_flush = 1;
357 
358 	/*
359 	 * When there's less then two users of this mm there cannot be a
360 	 * concurrent page-table walk.
361 	 */
362 	if (atomic_read(&tlb->mm->mm_users) < 2) {
363 		__tlb_remove_table(table);
364 		return;
365 	}
366 
367 	if (*batch == NULL) {
368 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
369 		if (*batch == NULL) {
370 			tlb_remove_table_one(table);
371 			return;
372 		}
373 		(*batch)->nr = 0;
374 	}
375 	(*batch)->tables[(*batch)->nr++] = table;
376 	if ((*batch)->nr == MAX_TABLE_BATCH)
377 		tlb_table_flush(tlb);
378 }
379 
380 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
381 
382 /*
383  * If a p?d_bad entry is found while walking page tables, report
384  * the error, before resetting entry to p?d_none.  Usually (but
385  * very seldom) called out from the p?d_none_or_clear_bad macros.
386  */
387 
388 void pgd_clear_bad(pgd_t *pgd)
389 {
390 	pgd_ERROR(*pgd);
391 	pgd_clear(pgd);
392 }
393 
394 void pud_clear_bad(pud_t *pud)
395 {
396 	pud_ERROR(*pud);
397 	pud_clear(pud);
398 }
399 
400 void pmd_clear_bad(pmd_t *pmd)
401 {
402 	pmd_ERROR(*pmd);
403 	pmd_clear(pmd);
404 }
405 
406 /*
407  * Note: this doesn't free the actual pages themselves. That
408  * has been handled earlier when unmapping all the memory regions.
409  */
410 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
411 			   unsigned long addr)
412 {
413 	pgtable_t token = pmd_pgtable(*pmd);
414 	pmd_clear(pmd);
415 	pte_free_tlb(tlb, token, addr);
416 	tlb->mm->nr_ptes--;
417 }
418 
419 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
420 				unsigned long addr, unsigned long end,
421 				unsigned long floor, unsigned long ceiling)
422 {
423 	pmd_t *pmd;
424 	unsigned long next;
425 	unsigned long start;
426 
427 	start = addr;
428 	pmd = pmd_offset(pud, addr);
429 	do {
430 		next = pmd_addr_end(addr, end);
431 		if (pmd_none_or_clear_bad(pmd))
432 			continue;
433 		free_pte_range(tlb, pmd, addr);
434 	} while (pmd++, addr = next, addr != end);
435 
436 	start &= PUD_MASK;
437 	if (start < floor)
438 		return;
439 	if (ceiling) {
440 		ceiling &= PUD_MASK;
441 		if (!ceiling)
442 			return;
443 	}
444 	if (end - 1 > ceiling - 1)
445 		return;
446 
447 	pmd = pmd_offset(pud, start);
448 	pud_clear(pud);
449 	pmd_free_tlb(tlb, pmd, start);
450 }
451 
452 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
453 				unsigned long addr, unsigned long end,
454 				unsigned long floor, unsigned long ceiling)
455 {
456 	pud_t *pud;
457 	unsigned long next;
458 	unsigned long start;
459 
460 	start = addr;
461 	pud = pud_offset(pgd, addr);
462 	do {
463 		next = pud_addr_end(addr, end);
464 		if (pud_none_or_clear_bad(pud))
465 			continue;
466 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
467 	} while (pud++, addr = next, addr != end);
468 
469 	start &= PGDIR_MASK;
470 	if (start < floor)
471 		return;
472 	if (ceiling) {
473 		ceiling &= PGDIR_MASK;
474 		if (!ceiling)
475 			return;
476 	}
477 	if (end - 1 > ceiling - 1)
478 		return;
479 
480 	pud = pud_offset(pgd, start);
481 	pgd_clear(pgd);
482 	pud_free_tlb(tlb, pud, start);
483 }
484 
485 /*
486  * This function frees user-level page tables of a process.
487  *
488  * Must be called with pagetable lock held.
489  */
490 void free_pgd_range(struct mmu_gather *tlb,
491 			unsigned long addr, unsigned long end,
492 			unsigned long floor, unsigned long ceiling)
493 {
494 	pgd_t *pgd;
495 	unsigned long next;
496 
497 	/*
498 	 * The next few lines have given us lots of grief...
499 	 *
500 	 * Why are we testing PMD* at this top level?  Because often
501 	 * there will be no work to do at all, and we'd prefer not to
502 	 * go all the way down to the bottom just to discover that.
503 	 *
504 	 * Why all these "- 1"s?  Because 0 represents both the bottom
505 	 * of the address space and the top of it (using -1 for the
506 	 * top wouldn't help much: the masks would do the wrong thing).
507 	 * The rule is that addr 0 and floor 0 refer to the bottom of
508 	 * the address space, but end 0 and ceiling 0 refer to the top
509 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
510 	 * that end 0 case should be mythical).
511 	 *
512 	 * Wherever addr is brought up or ceiling brought down, we must
513 	 * be careful to reject "the opposite 0" before it confuses the
514 	 * subsequent tests.  But what about where end is brought down
515 	 * by PMD_SIZE below? no, end can't go down to 0 there.
516 	 *
517 	 * Whereas we round start (addr) and ceiling down, by different
518 	 * masks at different levels, in order to test whether a table
519 	 * now has no other vmas using it, so can be freed, we don't
520 	 * bother to round floor or end up - the tests don't need that.
521 	 */
522 
523 	addr &= PMD_MASK;
524 	if (addr < floor) {
525 		addr += PMD_SIZE;
526 		if (!addr)
527 			return;
528 	}
529 	if (ceiling) {
530 		ceiling &= PMD_MASK;
531 		if (!ceiling)
532 			return;
533 	}
534 	if (end - 1 > ceiling - 1)
535 		end -= PMD_SIZE;
536 	if (addr > end - 1)
537 		return;
538 
539 	pgd = pgd_offset(tlb->mm, addr);
540 	do {
541 		next = pgd_addr_end(addr, end);
542 		if (pgd_none_or_clear_bad(pgd))
543 			continue;
544 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
545 	} while (pgd++, addr = next, addr != end);
546 }
547 
548 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
549 		unsigned long floor, unsigned long ceiling)
550 {
551 	while (vma) {
552 		struct vm_area_struct *next = vma->vm_next;
553 		unsigned long addr = vma->vm_start;
554 
555 		/*
556 		 * Hide vma from rmap and truncate_pagecache before freeing
557 		 * pgtables
558 		 */
559 		unlink_anon_vmas(vma);
560 		unlink_file_vma(vma);
561 
562 		if (is_vm_hugetlb_page(vma)) {
563 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
564 				floor, next? next->vm_start: ceiling);
565 		} else {
566 			/*
567 			 * Optimization: gather nearby vmas into one call down
568 			 */
569 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
570 			       && !is_vm_hugetlb_page(next)) {
571 				vma = next;
572 				next = vma->vm_next;
573 				unlink_anon_vmas(vma);
574 				unlink_file_vma(vma);
575 			}
576 			free_pgd_range(tlb, addr, vma->vm_end,
577 				floor, next? next->vm_start: ceiling);
578 		}
579 		vma = next;
580 	}
581 }
582 
583 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
584 		pmd_t *pmd, unsigned long address)
585 {
586 	pgtable_t new = pte_alloc_one(mm, address);
587 	int wait_split_huge_page;
588 	if (!new)
589 		return -ENOMEM;
590 
591 	/*
592 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
593 	 * visible before the pte is made visible to other CPUs by being
594 	 * put into page tables.
595 	 *
596 	 * The other side of the story is the pointer chasing in the page
597 	 * table walking code (when walking the page table without locking;
598 	 * ie. most of the time). Fortunately, these data accesses consist
599 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
600 	 * being the notable exception) will already guarantee loads are
601 	 * seen in-order. See the alpha page table accessors for the
602 	 * smp_read_barrier_depends() barriers in page table walking code.
603 	 */
604 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
605 
606 	spin_lock(&mm->page_table_lock);
607 	wait_split_huge_page = 0;
608 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
609 		mm->nr_ptes++;
610 		pmd_populate(mm, pmd, new);
611 		new = NULL;
612 	} else if (unlikely(pmd_trans_splitting(*pmd)))
613 		wait_split_huge_page = 1;
614 	spin_unlock(&mm->page_table_lock);
615 	if (new)
616 		pte_free(mm, new);
617 	if (wait_split_huge_page)
618 		wait_split_huge_page(vma->anon_vma, pmd);
619 	return 0;
620 }
621 
622 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
623 {
624 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
625 	if (!new)
626 		return -ENOMEM;
627 
628 	smp_wmb(); /* See comment in __pte_alloc */
629 
630 	spin_lock(&init_mm.page_table_lock);
631 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
632 		pmd_populate_kernel(&init_mm, pmd, new);
633 		new = NULL;
634 	} else
635 		VM_BUG_ON(pmd_trans_splitting(*pmd));
636 	spin_unlock(&init_mm.page_table_lock);
637 	if (new)
638 		pte_free_kernel(&init_mm, new);
639 	return 0;
640 }
641 
642 static inline void init_rss_vec(int *rss)
643 {
644 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
645 }
646 
647 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
648 {
649 	int i;
650 
651 	if (current->mm == mm)
652 		sync_mm_rss(mm);
653 	for (i = 0; i < NR_MM_COUNTERS; i++)
654 		if (rss[i])
655 			add_mm_counter(mm, i, rss[i]);
656 }
657 
658 /*
659  * This function is called to print an error when a bad pte
660  * is found. For example, we might have a PFN-mapped pte in
661  * a region that doesn't allow it.
662  *
663  * The calling function must still handle the error.
664  */
665 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
666 			  pte_t pte, struct page *page)
667 {
668 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
669 	pud_t *pud = pud_offset(pgd, addr);
670 	pmd_t *pmd = pmd_offset(pud, addr);
671 	struct address_space *mapping;
672 	pgoff_t index;
673 	static unsigned long resume;
674 	static unsigned long nr_shown;
675 	static unsigned long nr_unshown;
676 
677 	/*
678 	 * Allow a burst of 60 reports, then keep quiet for that minute;
679 	 * or allow a steady drip of one report per second.
680 	 */
681 	if (nr_shown == 60) {
682 		if (time_before(jiffies, resume)) {
683 			nr_unshown++;
684 			return;
685 		}
686 		if (nr_unshown) {
687 			printk(KERN_ALERT
688 				"BUG: Bad page map: %lu messages suppressed\n",
689 				nr_unshown);
690 			nr_unshown = 0;
691 		}
692 		nr_shown = 0;
693 	}
694 	if (nr_shown++ == 0)
695 		resume = jiffies + 60 * HZ;
696 
697 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
698 	index = linear_page_index(vma, addr);
699 
700 	printk(KERN_ALERT
701 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
702 		current->comm,
703 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
704 	if (page)
705 		dump_page(page);
706 	printk(KERN_ALERT
707 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
708 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
709 	/*
710 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
711 	 */
712 	if (vma->vm_ops)
713 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
714 				(unsigned long)vma->vm_ops->fault);
715 	if (vma->vm_file && vma->vm_file->f_op)
716 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
717 				(unsigned long)vma->vm_file->f_op->mmap);
718 	dump_stack();
719 	add_taint(TAINT_BAD_PAGE);
720 }
721 
722 static inline bool is_cow_mapping(vm_flags_t flags)
723 {
724 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
725 }
726 
727 /*
728  * vm_normal_page -- This function gets the "struct page" associated with a pte.
729  *
730  * "Special" mappings do not wish to be associated with a "struct page" (either
731  * it doesn't exist, or it exists but they don't want to touch it). In this
732  * case, NULL is returned here. "Normal" mappings do have a struct page.
733  *
734  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
735  * pte bit, in which case this function is trivial. Secondly, an architecture
736  * may not have a spare pte bit, which requires a more complicated scheme,
737  * described below.
738  *
739  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
740  * special mapping (even if there are underlying and valid "struct pages").
741  * COWed pages of a VM_PFNMAP are always normal.
742  *
743  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
744  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
745  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
746  * mapping will always honor the rule
747  *
748  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
749  *
750  * And for normal mappings this is false.
751  *
752  * This restricts such mappings to be a linear translation from virtual address
753  * to pfn. To get around this restriction, we allow arbitrary mappings so long
754  * as the vma is not a COW mapping; in that case, we know that all ptes are
755  * special (because none can have been COWed).
756  *
757  *
758  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
759  *
760  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
761  * page" backing, however the difference is that _all_ pages with a struct
762  * page (that is, those where pfn_valid is true) are refcounted and considered
763  * normal pages by the VM. The disadvantage is that pages are refcounted
764  * (which can be slower and simply not an option for some PFNMAP users). The
765  * advantage is that we don't have to follow the strict linearity rule of
766  * PFNMAP mappings in order to support COWable mappings.
767  *
768  */
769 #ifdef __HAVE_ARCH_PTE_SPECIAL
770 # define HAVE_PTE_SPECIAL 1
771 #else
772 # define HAVE_PTE_SPECIAL 0
773 #endif
774 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
775 				pte_t pte)
776 {
777 	unsigned long pfn = pte_pfn(pte);
778 
779 	if (HAVE_PTE_SPECIAL) {
780 		if (likely(!pte_special(pte)))
781 			goto check_pfn;
782 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
783 			return NULL;
784 		if (!is_zero_pfn(pfn))
785 			print_bad_pte(vma, addr, pte, NULL);
786 		return NULL;
787 	}
788 
789 	/* !HAVE_PTE_SPECIAL case follows: */
790 
791 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
792 		if (vma->vm_flags & VM_MIXEDMAP) {
793 			if (!pfn_valid(pfn))
794 				return NULL;
795 			goto out;
796 		} else {
797 			unsigned long off;
798 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
799 			if (pfn == vma->vm_pgoff + off)
800 				return NULL;
801 			if (!is_cow_mapping(vma->vm_flags))
802 				return NULL;
803 		}
804 	}
805 
806 	if (is_zero_pfn(pfn))
807 		return NULL;
808 check_pfn:
809 	if (unlikely(pfn > highest_memmap_pfn)) {
810 		print_bad_pte(vma, addr, pte, NULL);
811 		return NULL;
812 	}
813 
814 	/*
815 	 * NOTE! We still have PageReserved() pages in the page tables.
816 	 * eg. VDSO mappings can cause them to exist.
817 	 */
818 out:
819 	return pfn_to_page(pfn);
820 }
821 
822 /*
823  * copy one vm_area from one task to the other. Assumes the page tables
824  * already present in the new task to be cleared in the whole range
825  * covered by this vma.
826  */
827 
828 static inline unsigned long
829 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
830 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
831 		unsigned long addr, int *rss)
832 {
833 	unsigned long vm_flags = vma->vm_flags;
834 	pte_t pte = *src_pte;
835 	struct page *page;
836 
837 	/* pte contains position in swap or file, so copy. */
838 	if (unlikely(!pte_present(pte))) {
839 		if (!pte_file(pte)) {
840 			swp_entry_t entry = pte_to_swp_entry(pte);
841 
842 			if (swap_duplicate(entry) < 0)
843 				return entry.val;
844 
845 			/* make sure dst_mm is on swapoff's mmlist. */
846 			if (unlikely(list_empty(&dst_mm->mmlist))) {
847 				spin_lock(&mmlist_lock);
848 				if (list_empty(&dst_mm->mmlist))
849 					list_add(&dst_mm->mmlist,
850 						 &src_mm->mmlist);
851 				spin_unlock(&mmlist_lock);
852 			}
853 			if (likely(!non_swap_entry(entry)))
854 				rss[MM_SWAPENTS]++;
855 			else if (is_migration_entry(entry)) {
856 				page = migration_entry_to_page(entry);
857 
858 				if (PageAnon(page))
859 					rss[MM_ANONPAGES]++;
860 				else
861 					rss[MM_FILEPAGES]++;
862 
863 				if (is_write_migration_entry(entry) &&
864 				    is_cow_mapping(vm_flags)) {
865 					/*
866 					 * COW mappings require pages in both
867 					 * parent and child to be set to read.
868 					 */
869 					make_migration_entry_read(&entry);
870 					pte = swp_entry_to_pte(entry);
871 					set_pte_at(src_mm, addr, src_pte, pte);
872 				}
873 			}
874 		}
875 		goto out_set_pte;
876 	}
877 
878 	/*
879 	 * If it's a COW mapping, write protect it both
880 	 * in the parent and the child
881 	 */
882 	if (is_cow_mapping(vm_flags)) {
883 		ptep_set_wrprotect(src_mm, addr, src_pte);
884 		pte = pte_wrprotect(pte);
885 	}
886 
887 	/*
888 	 * If it's a shared mapping, mark it clean in
889 	 * the child
890 	 */
891 	if (vm_flags & VM_SHARED)
892 		pte = pte_mkclean(pte);
893 	pte = pte_mkold(pte);
894 
895 	page = vm_normal_page(vma, addr, pte);
896 	if (page) {
897 		get_page(page);
898 		page_dup_rmap(page);
899 		if (PageAnon(page))
900 			rss[MM_ANONPAGES]++;
901 		else
902 			rss[MM_FILEPAGES]++;
903 	}
904 
905 out_set_pte:
906 	set_pte_at(dst_mm, addr, dst_pte, pte);
907 	return 0;
908 }
909 
910 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
911 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
912 		   unsigned long addr, unsigned long end)
913 {
914 	pte_t *orig_src_pte, *orig_dst_pte;
915 	pte_t *src_pte, *dst_pte;
916 	spinlock_t *src_ptl, *dst_ptl;
917 	int progress = 0;
918 	int rss[NR_MM_COUNTERS];
919 	swp_entry_t entry = (swp_entry_t){0};
920 
921 again:
922 	init_rss_vec(rss);
923 
924 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
925 	if (!dst_pte)
926 		return -ENOMEM;
927 	src_pte = pte_offset_map(src_pmd, addr);
928 	src_ptl = pte_lockptr(src_mm, src_pmd);
929 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
930 	orig_src_pte = src_pte;
931 	orig_dst_pte = dst_pte;
932 	arch_enter_lazy_mmu_mode();
933 
934 	do {
935 		/*
936 		 * We are holding two locks at this point - either of them
937 		 * could generate latencies in another task on another CPU.
938 		 */
939 		if (progress >= 32) {
940 			progress = 0;
941 			if (need_resched() ||
942 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
943 				break;
944 		}
945 		if (pte_none(*src_pte)) {
946 			progress++;
947 			continue;
948 		}
949 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
950 							vma, addr, rss);
951 		if (entry.val)
952 			break;
953 		progress += 8;
954 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
955 
956 	arch_leave_lazy_mmu_mode();
957 	spin_unlock(src_ptl);
958 	pte_unmap(orig_src_pte);
959 	add_mm_rss_vec(dst_mm, rss);
960 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
961 	cond_resched();
962 
963 	if (entry.val) {
964 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
965 			return -ENOMEM;
966 		progress = 0;
967 	}
968 	if (addr != end)
969 		goto again;
970 	return 0;
971 }
972 
973 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
974 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
975 		unsigned long addr, unsigned long end)
976 {
977 	pmd_t *src_pmd, *dst_pmd;
978 	unsigned long next;
979 
980 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
981 	if (!dst_pmd)
982 		return -ENOMEM;
983 	src_pmd = pmd_offset(src_pud, addr);
984 	do {
985 		next = pmd_addr_end(addr, end);
986 		if (pmd_trans_huge(*src_pmd)) {
987 			int err;
988 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
989 			err = copy_huge_pmd(dst_mm, src_mm,
990 					    dst_pmd, src_pmd, addr, vma);
991 			if (err == -ENOMEM)
992 				return -ENOMEM;
993 			if (!err)
994 				continue;
995 			/* fall through */
996 		}
997 		if (pmd_none_or_clear_bad(src_pmd))
998 			continue;
999 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1000 						vma, addr, next))
1001 			return -ENOMEM;
1002 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1003 	return 0;
1004 }
1005 
1006 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1008 		unsigned long addr, unsigned long end)
1009 {
1010 	pud_t *src_pud, *dst_pud;
1011 	unsigned long next;
1012 
1013 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1014 	if (!dst_pud)
1015 		return -ENOMEM;
1016 	src_pud = pud_offset(src_pgd, addr);
1017 	do {
1018 		next = pud_addr_end(addr, end);
1019 		if (pud_none_or_clear_bad(src_pud))
1020 			continue;
1021 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1022 						vma, addr, next))
1023 			return -ENOMEM;
1024 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1025 	return 0;
1026 }
1027 
1028 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1029 		struct vm_area_struct *vma)
1030 {
1031 	pgd_t *src_pgd, *dst_pgd;
1032 	unsigned long next;
1033 	unsigned long addr = vma->vm_start;
1034 	unsigned long end = vma->vm_end;
1035 	unsigned long mmun_start;	/* For mmu_notifiers */
1036 	unsigned long mmun_end;		/* For mmu_notifiers */
1037 	bool is_cow;
1038 	int ret;
1039 
1040 	/*
1041 	 * Don't copy ptes where a page fault will fill them correctly.
1042 	 * Fork becomes much lighter when there are big shared or private
1043 	 * readonly mappings. The tradeoff is that copy_page_range is more
1044 	 * efficient than faulting.
1045 	 */
1046 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1047 			       VM_PFNMAP | VM_MIXEDMAP))) {
1048 		if (!vma->anon_vma)
1049 			return 0;
1050 	}
1051 
1052 	if (is_vm_hugetlb_page(vma))
1053 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1054 
1055 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1056 		/*
1057 		 * We do not free on error cases below as remove_vma
1058 		 * gets called on error from higher level routine
1059 		 */
1060 		ret = track_pfn_copy(vma);
1061 		if (ret)
1062 			return ret;
1063 	}
1064 
1065 	/*
1066 	 * We need to invalidate the secondary MMU mappings only when
1067 	 * there could be a permission downgrade on the ptes of the
1068 	 * parent mm. And a permission downgrade will only happen if
1069 	 * is_cow_mapping() returns true.
1070 	 */
1071 	is_cow = is_cow_mapping(vma->vm_flags);
1072 	mmun_start = addr;
1073 	mmun_end   = end;
1074 	if (is_cow)
1075 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1076 						    mmun_end);
1077 
1078 	ret = 0;
1079 	dst_pgd = pgd_offset(dst_mm, addr);
1080 	src_pgd = pgd_offset(src_mm, addr);
1081 	do {
1082 		next = pgd_addr_end(addr, end);
1083 		if (pgd_none_or_clear_bad(src_pgd))
1084 			continue;
1085 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1086 					    vma, addr, next))) {
1087 			ret = -ENOMEM;
1088 			break;
1089 		}
1090 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1091 
1092 	if (is_cow)
1093 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1094 	return ret;
1095 }
1096 
1097 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1098 				struct vm_area_struct *vma, pmd_t *pmd,
1099 				unsigned long addr, unsigned long end,
1100 				struct zap_details *details)
1101 {
1102 	struct mm_struct *mm = tlb->mm;
1103 	int force_flush = 0;
1104 	int rss[NR_MM_COUNTERS];
1105 	spinlock_t *ptl;
1106 	pte_t *start_pte;
1107 	pte_t *pte;
1108 
1109 again:
1110 	init_rss_vec(rss);
1111 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1112 	pte = start_pte;
1113 	arch_enter_lazy_mmu_mode();
1114 	do {
1115 		pte_t ptent = *pte;
1116 		if (pte_none(ptent)) {
1117 			continue;
1118 		}
1119 
1120 		if (pte_present(ptent)) {
1121 			struct page *page;
1122 
1123 			page = vm_normal_page(vma, addr, ptent);
1124 			if (unlikely(details) && page) {
1125 				/*
1126 				 * unmap_shared_mapping_pages() wants to
1127 				 * invalidate cache without truncating:
1128 				 * unmap shared but keep private pages.
1129 				 */
1130 				if (details->check_mapping &&
1131 				    details->check_mapping != page->mapping)
1132 					continue;
1133 				/*
1134 				 * Each page->index must be checked when
1135 				 * invalidating or truncating nonlinear.
1136 				 */
1137 				if (details->nonlinear_vma &&
1138 				    (page->index < details->first_index ||
1139 				     page->index > details->last_index))
1140 					continue;
1141 			}
1142 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1143 							tlb->fullmm);
1144 			tlb_remove_tlb_entry(tlb, pte, addr);
1145 			if (unlikely(!page))
1146 				continue;
1147 			if (unlikely(details) && details->nonlinear_vma
1148 			    && linear_page_index(details->nonlinear_vma,
1149 						addr) != page->index)
1150 				set_pte_at(mm, addr, pte,
1151 					   pgoff_to_pte(page->index));
1152 			if (PageAnon(page))
1153 				rss[MM_ANONPAGES]--;
1154 			else {
1155 				if (pte_dirty(ptent))
1156 					set_page_dirty(page);
1157 				if (pte_young(ptent) &&
1158 				    likely(!VM_SequentialReadHint(vma)))
1159 					mark_page_accessed(page);
1160 				rss[MM_FILEPAGES]--;
1161 			}
1162 			page_remove_rmap(page);
1163 			if (unlikely(page_mapcount(page) < 0))
1164 				print_bad_pte(vma, addr, ptent, page);
1165 			force_flush = !__tlb_remove_page(tlb, page);
1166 			if (force_flush)
1167 				break;
1168 			continue;
1169 		}
1170 		/*
1171 		 * If details->check_mapping, we leave swap entries;
1172 		 * if details->nonlinear_vma, we leave file entries.
1173 		 */
1174 		if (unlikely(details))
1175 			continue;
1176 		if (pte_file(ptent)) {
1177 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1178 				print_bad_pte(vma, addr, ptent, NULL);
1179 		} else {
1180 			swp_entry_t entry = pte_to_swp_entry(ptent);
1181 
1182 			if (!non_swap_entry(entry))
1183 				rss[MM_SWAPENTS]--;
1184 			else if (is_migration_entry(entry)) {
1185 				struct page *page;
1186 
1187 				page = migration_entry_to_page(entry);
1188 
1189 				if (PageAnon(page))
1190 					rss[MM_ANONPAGES]--;
1191 				else
1192 					rss[MM_FILEPAGES]--;
1193 			}
1194 			if (unlikely(!free_swap_and_cache(entry)))
1195 				print_bad_pte(vma, addr, ptent, NULL);
1196 		}
1197 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1198 	} while (pte++, addr += PAGE_SIZE, addr != end);
1199 
1200 	add_mm_rss_vec(mm, rss);
1201 	arch_leave_lazy_mmu_mode();
1202 	pte_unmap_unlock(start_pte, ptl);
1203 
1204 	/*
1205 	 * mmu_gather ran out of room to batch pages, we break out of
1206 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1207 	 * and page-free while holding it.
1208 	 */
1209 	if (force_flush) {
1210 		force_flush = 0;
1211 
1212 #ifdef HAVE_GENERIC_MMU_GATHER
1213 		tlb->start = addr;
1214 		tlb->end = end;
1215 #endif
1216 		tlb_flush_mmu(tlb);
1217 		if (addr != end)
1218 			goto again;
1219 	}
1220 
1221 	return addr;
1222 }
1223 
1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225 				struct vm_area_struct *vma, pud_t *pud,
1226 				unsigned long addr, unsigned long end,
1227 				struct zap_details *details)
1228 {
1229 	pmd_t *pmd;
1230 	unsigned long next;
1231 
1232 	pmd = pmd_offset(pud, addr);
1233 	do {
1234 		next = pmd_addr_end(addr, end);
1235 		if (pmd_trans_huge(*pmd)) {
1236 			if (next - addr != HPAGE_PMD_SIZE) {
1237 #ifdef CONFIG_DEBUG_VM
1238 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240 						__func__, addr, end,
1241 						vma->vm_start,
1242 						vma->vm_end);
1243 					BUG();
1244 				}
1245 #endif
1246 				split_huge_page_pmd(vma, addr, pmd);
1247 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248 				goto next;
1249 			/* fall through */
1250 		}
1251 		/*
1252 		 * Here there can be other concurrent MADV_DONTNEED or
1253 		 * trans huge page faults running, and if the pmd is
1254 		 * none or trans huge it can change under us. This is
1255 		 * because MADV_DONTNEED holds the mmap_sem in read
1256 		 * mode.
1257 		 */
1258 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259 			goto next;
1260 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261 next:
1262 		cond_resched();
1263 	} while (pmd++, addr = next, addr != end);
1264 
1265 	return addr;
1266 }
1267 
1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269 				struct vm_area_struct *vma, pgd_t *pgd,
1270 				unsigned long addr, unsigned long end,
1271 				struct zap_details *details)
1272 {
1273 	pud_t *pud;
1274 	unsigned long next;
1275 
1276 	pud = pud_offset(pgd, addr);
1277 	do {
1278 		next = pud_addr_end(addr, end);
1279 		if (pud_none_or_clear_bad(pud))
1280 			continue;
1281 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1282 	} while (pud++, addr = next, addr != end);
1283 
1284 	return addr;
1285 }
1286 
1287 static void unmap_page_range(struct mmu_gather *tlb,
1288 			     struct vm_area_struct *vma,
1289 			     unsigned long addr, unsigned long end,
1290 			     struct zap_details *details)
1291 {
1292 	pgd_t *pgd;
1293 	unsigned long next;
1294 
1295 	if (details && !details->check_mapping && !details->nonlinear_vma)
1296 		details = NULL;
1297 
1298 	BUG_ON(addr >= end);
1299 	mem_cgroup_uncharge_start();
1300 	tlb_start_vma(tlb, vma);
1301 	pgd = pgd_offset(vma->vm_mm, addr);
1302 	do {
1303 		next = pgd_addr_end(addr, end);
1304 		if (pgd_none_or_clear_bad(pgd))
1305 			continue;
1306 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307 	} while (pgd++, addr = next, addr != end);
1308 	tlb_end_vma(tlb, vma);
1309 	mem_cgroup_uncharge_end();
1310 }
1311 
1312 
1313 static void unmap_single_vma(struct mmu_gather *tlb,
1314 		struct vm_area_struct *vma, unsigned long start_addr,
1315 		unsigned long end_addr,
1316 		struct zap_details *details)
1317 {
1318 	unsigned long start = max(vma->vm_start, start_addr);
1319 	unsigned long end;
1320 
1321 	if (start >= vma->vm_end)
1322 		return;
1323 	end = min(vma->vm_end, end_addr);
1324 	if (end <= vma->vm_start)
1325 		return;
1326 
1327 	if (vma->vm_file)
1328 		uprobe_munmap(vma, start, end);
1329 
1330 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1331 		untrack_pfn(vma, 0, 0);
1332 
1333 	if (start != end) {
1334 		if (unlikely(is_vm_hugetlb_page(vma))) {
1335 			/*
1336 			 * It is undesirable to test vma->vm_file as it
1337 			 * should be non-null for valid hugetlb area.
1338 			 * However, vm_file will be NULL in the error
1339 			 * cleanup path of do_mmap_pgoff. When
1340 			 * hugetlbfs ->mmap method fails,
1341 			 * do_mmap_pgoff() nullifies vma->vm_file
1342 			 * before calling this function to clean up.
1343 			 * Since no pte has actually been setup, it is
1344 			 * safe to do nothing in this case.
1345 			 */
1346 			if (vma->vm_file) {
1347 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1348 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1350 			}
1351 		} else
1352 			unmap_page_range(tlb, vma, start, end, details);
1353 	}
1354 }
1355 
1356 /**
1357  * unmap_vmas - unmap a range of memory covered by a list of vma's
1358  * @tlb: address of the caller's struct mmu_gather
1359  * @vma: the starting vma
1360  * @start_addr: virtual address at which to start unmapping
1361  * @end_addr: virtual address at which to end unmapping
1362  *
1363  * Unmap all pages in the vma list.
1364  *
1365  * Only addresses between `start' and `end' will be unmapped.
1366  *
1367  * The VMA list must be sorted in ascending virtual address order.
1368  *
1369  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370  * range after unmap_vmas() returns.  So the only responsibility here is to
1371  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372  * drops the lock and schedules.
1373  */
1374 void unmap_vmas(struct mmu_gather *tlb,
1375 		struct vm_area_struct *vma, unsigned long start_addr,
1376 		unsigned long end_addr)
1377 {
1378 	struct mm_struct *mm = vma->vm_mm;
1379 
1380 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1384 }
1385 
1386 /**
1387  * zap_page_range - remove user pages in a given range
1388  * @vma: vm_area_struct holding the applicable pages
1389  * @start: starting address of pages to zap
1390  * @size: number of bytes to zap
1391  * @details: details of nonlinear truncation or shared cache invalidation
1392  *
1393  * Caller must protect the VMA list
1394  */
1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396 		unsigned long size, struct zap_details *details)
1397 {
1398 	struct mm_struct *mm = vma->vm_mm;
1399 	struct mmu_gather tlb;
1400 	unsigned long end = start + size;
1401 
1402 	lru_add_drain();
1403 	tlb_gather_mmu(&tlb, mm, 0);
1404 	update_hiwater_rss(mm);
1405 	mmu_notifier_invalidate_range_start(mm, start, end);
1406 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407 		unmap_single_vma(&tlb, vma, start, end, details);
1408 	mmu_notifier_invalidate_range_end(mm, start, end);
1409 	tlb_finish_mmu(&tlb, start, end);
1410 }
1411 
1412 /**
1413  * zap_page_range_single - remove user pages in a given range
1414  * @vma: vm_area_struct holding the applicable pages
1415  * @address: starting address of pages to zap
1416  * @size: number of bytes to zap
1417  * @details: details of nonlinear truncation or shared cache invalidation
1418  *
1419  * The range must fit into one VMA.
1420  */
1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422 		unsigned long size, struct zap_details *details)
1423 {
1424 	struct mm_struct *mm = vma->vm_mm;
1425 	struct mmu_gather tlb;
1426 	unsigned long end = address + size;
1427 
1428 	lru_add_drain();
1429 	tlb_gather_mmu(&tlb, mm, 0);
1430 	update_hiwater_rss(mm);
1431 	mmu_notifier_invalidate_range_start(mm, address, end);
1432 	unmap_single_vma(&tlb, vma, address, end, details);
1433 	mmu_notifier_invalidate_range_end(mm, address, end);
1434 	tlb_finish_mmu(&tlb, address, end);
1435 }
1436 
1437 /**
1438  * zap_vma_ptes - remove ptes mapping the vma
1439  * @vma: vm_area_struct holding ptes to be zapped
1440  * @address: starting address of pages to zap
1441  * @size: number of bytes to zap
1442  *
1443  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444  *
1445  * The entire address range must be fully contained within the vma.
1446  *
1447  * Returns 0 if successful.
1448  */
1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450 		unsigned long size)
1451 {
1452 	if (address < vma->vm_start || address + size > vma->vm_end ||
1453 	    		!(vma->vm_flags & VM_PFNMAP))
1454 		return -1;
1455 	zap_page_range_single(vma, address, size, NULL);
1456 	return 0;
1457 }
1458 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459 
1460 /**
1461  * follow_page - look up a page descriptor from a user-virtual address
1462  * @vma: vm_area_struct mapping @address
1463  * @address: virtual address to look up
1464  * @flags: flags modifying lookup behaviour
1465  *
1466  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1467  *
1468  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1469  * an error pointer if there is a mapping to something not represented
1470  * by a page descriptor (see also vm_normal_page()).
1471  */
1472 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1473 			unsigned int flags)
1474 {
1475 	pgd_t *pgd;
1476 	pud_t *pud;
1477 	pmd_t *pmd;
1478 	pte_t *ptep, pte;
1479 	spinlock_t *ptl;
1480 	struct page *page;
1481 	struct mm_struct *mm = vma->vm_mm;
1482 
1483 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1484 	if (!IS_ERR(page)) {
1485 		BUG_ON(flags & FOLL_GET);
1486 		goto out;
1487 	}
1488 
1489 	page = NULL;
1490 	pgd = pgd_offset(mm, address);
1491 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1492 		goto no_page_table;
1493 
1494 	pud = pud_offset(pgd, address);
1495 	if (pud_none(*pud))
1496 		goto no_page_table;
1497 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1498 		BUG_ON(flags & FOLL_GET);
1499 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1500 		goto out;
1501 	}
1502 	if (unlikely(pud_bad(*pud)))
1503 		goto no_page_table;
1504 
1505 	pmd = pmd_offset(pud, address);
1506 	if (pmd_none(*pmd))
1507 		goto no_page_table;
1508 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1509 		BUG_ON(flags & FOLL_GET);
1510 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1511 		goto out;
1512 	}
1513 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1514 		goto no_page_table;
1515 	if (pmd_trans_huge(*pmd)) {
1516 		if (flags & FOLL_SPLIT) {
1517 			split_huge_page_pmd(vma, address, pmd);
1518 			goto split_fallthrough;
1519 		}
1520 		spin_lock(&mm->page_table_lock);
1521 		if (likely(pmd_trans_huge(*pmd))) {
1522 			if (unlikely(pmd_trans_splitting(*pmd))) {
1523 				spin_unlock(&mm->page_table_lock);
1524 				wait_split_huge_page(vma->anon_vma, pmd);
1525 			} else {
1526 				page = follow_trans_huge_pmd(vma, address,
1527 							     pmd, flags);
1528 				spin_unlock(&mm->page_table_lock);
1529 				goto out;
1530 			}
1531 		} else
1532 			spin_unlock(&mm->page_table_lock);
1533 		/* fall through */
1534 	}
1535 split_fallthrough:
1536 	if (unlikely(pmd_bad(*pmd)))
1537 		goto no_page_table;
1538 
1539 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1540 
1541 	pte = *ptep;
1542 	if (!pte_present(pte))
1543 		goto no_page;
1544 	if ((flags & FOLL_NUMA) && pte_numa(pte))
1545 		goto no_page;
1546 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1547 		goto unlock;
1548 
1549 	page = vm_normal_page(vma, address, pte);
1550 	if (unlikely(!page)) {
1551 		if ((flags & FOLL_DUMP) ||
1552 		    !is_zero_pfn(pte_pfn(pte)))
1553 			goto bad_page;
1554 		page = pte_page(pte);
1555 	}
1556 
1557 	if (flags & FOLL_GET)
1558 		get_page_foll(page);
1559 	if (flags & FOLL_TOUCH) {
1560 		if ((flags & FOLL_WRITE) &&
1561 		    !pte_dirty(pte) && !PageDirty(page))
1562 			set_page_dirty(page);
1563 		/*
1564 		 * pte_mkyoung() would be more correct here, but atomic care
1565 		 * is needed to avoid losing the dirty bit: it is easier to use
1566 		 * mark_page_accessed().
1567 		 */
1568 		mark_page_accessed(page);
1569 	}
1570 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1571 		/*
1572 		 * The preliminary mapping check is mainly to avoid the
1573 		 * pointless overhead of lock_page on the ZERO_PAGE
1574 		 * which might bounce very badly if there is contention.
1575 		 *
1576 		 * If the page is already locked, we don't need to
1577 		 * handle it now - vmscan will handle it later if and
1578 		 * when it attempts to reclaim the page.
1579 		 */
1580 		if (page->mapping && trylock_page(page)) {
1581 			lru_add_drain();  /* push cached pages to LRU */
1582 			/*
1583 			 * Because we lock page here, and migration is
1584 			 * blocked by the pte's page reference, and we
1585 			 * know the page is still mapped, we don't even
1586 			 * need to check for file-cache page truncation.
1587 			 */
1588 			mlock_vma_page(page);
1589 			unlock_page(page);
1590 		}
1591 	}
1592 unlock:
1593 	pte_unmap_unlock(ptep, ptl);
1594 out:
1595 	return page;
1596 
1597 bad_page:
1598 	pte_unmap_unlock(ptep, ptl);
1599 	return ERR_PTR(-EFAULT);
1600 
1601 no_page:
1602 	pte_unmap_unlock(ptep, ptl);
1603 	if (!pte_none(pte))
1604 		return page;
1605 
1606 no_page_table:
1607 	/*
1608 	 * When core dumping an enormous anonymous area that nobody
1609 	 * has touched so far, we don't want to allocate unnecessary pages or
1610 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1611 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1612 	 * But we can only make this optimization where a hole would surely
1613 	 * be zero-filled if handle_mm_fault() actually did handle it.
1614 	 */
1615 	if ((flags & FOLL_DUMP) &&
1616 	    (!vma->vm_ops || !vma->vm_ops->fault))
1617 		return ERR_PTR(-EFAULT);
1618 	return page;
1619 }
1620 
1621 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1622 {
1623 	return stack_guard_page_start(vma, addr) ||
1624 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1625 }
1626 
1627 /**
1628  * __get_user_pages() - pin user pages in memory
1629  * @tsk:	task_struct of target task
1630  * @mm:		mm_struct of target mm
1631  * @start:	starting user address
1632  * @nr_pages:	number of pages from start to pin
1633  * @gup_flags:	flags modifying pin behaviour
1634  * @pages:	array that receives pointers to the pages pinned.
1635  *		Should be at least nr_pages long. Or NULL, if caller
1636  *		only intends to ensure the pages are faulted in.
1637  * @vmas:	array of pointers to vmas corresponding to each page.
1638  *		Or NULL if the caller does not require them.
1639  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1640  *
1641  * Returns number of pages pinned. This may be fewer than the number
1642  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1643  * were pinned, returns -errno. Each page returned must be released
1644  * with a put_page() call when it is finished with. vmas will only
1645  * remain valid while mmap_sem is held.
1646  *
1647  * Must be called with mmap_sem held for read or write.
1648  *
1649  * __get_user_pages walks a process's page tables and takes a reference to
1650  * each struct page that each user address corresponds to at a given
1651  * instant. That is, it takes the page that would be accessed if a user
1652  * thread accesses the given user virtual address at that instant.
1653  *
1654  * This does not guarantee that the page exists in the user mappings when
1655  * __get_user_pages returns, and there may even be a completely different
1656  * page there in some cases (eg. if mmapped pagecache has been invalidated
1657  * and subsequently re faulted). However it does guarantee that the page
1658  * won't be freed completely. And mostly callers simply care that the page
1659  * contains data that was valid *at some point in time*. Typically, an IO
1660  * or similar operation cannot guarantee anything stronger anyway because
1661  * locks can't be held over the syscall boundary.
1662  *
1663  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1664  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1665  * appropriate) must be called after the page is finished with, and
1666  * before put_page is called.
1667  *
1668  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1669  * or mmap_sem contention, and if waiting is needed to pin all pages,
1670  * *@nonblocking will be set to 0.
1671  *
1672  * In most cases, get_user_pages or get_user_pages_fast should be used
1673  * instead of __get_user_pages. __get_user_pages should be used only if
1674  * you need some special @gup_flags.
1675  */
1676 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1677 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1678 		     struct page **pages, struct vm_area_struct **vmas,
1679 		     int *nonblocking)
1680 {
1681 	int i;
1682 	unsigned long vm_flags;
1683 
1684 	if (nr_pages <= 0)
1685 		return 0;
1686 
1687 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1688 
1689 	/*
1690 	 * Require read or write permissions.
1691 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1692 	 */
1693 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1694 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1695 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1696 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1697 
1698 	/*
1699 	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1700 	 * would be called on PROT_NONE ranges. We must never invoke
1701 	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1702 	 * page faults would unprotect the PROT_NONE ranges if
1703 	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1704 	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1705 	 * FOLL_FORCE is set.
1706 	 */
1707 	if (!(gup_flags & FOLL_FORCE))
1708 		gup_flags |= FOLL_NUMA;
1709 
1710 	i = 0;
1711 
1712 	do {
1713 		struct vm_area_struct *vma;
1714 
1715 		vma = find_extend_vma(mm, start);
1716 		if (!vma && in_gate_area(mm, start)) {
1717 			unsigned long pg = start & PAGE_MASK;
1718 			pgd_t *pgd;
1719 			pud_t *pud;
1720 			pmd_t *pmd;
1721 			pte_t *pte;
1722 
1723 			/* user gate pages are read-only */
1724 			if (gup_flags & FOLL_WRITE)
1725 				return i ? : -EFAULT;
1726 			if (pg > TASK_SIZE)
1727 				pgd = pgd_offset_k(pg);
1728 			else
1729 				pgd = pgd_offset_gate(mm, pg);
1730 			BUG_ON(pgd_none(*pgd));
1731 			pud = pud_offset(pgd, pg);
1732 			BUG_ON(pud_none(*pud));
1733 			pmd = pmd_offset(pud, pg);
1734 			if (pmd_none(*pmd))
1735 				return i ? : -EFAULT;
1736 			VM_BUG_ON(pmd_trans_huge(*pmd));
1737 			pte = pte_offset_map(pmd, pg);
1738 			if (pte_none(*pte)) {
1739 				pte_unmap(pte);
1740 				return i ? : -EFAULT;
1741 			}
1742 			vma = get_gate_vma(mm);
1743 			if (pages) {
1744 				struct page *page;
1745 
1746 				page = vm_normal_page(vma, start, *pte);
1747 				if (!page) {
1748 					if (!(gup_flags & FOLL_DUMP) &&
1749 					     is_zero_pfn(pte_pfn(*pte)))
1750 						page = pte_page(*pte);
1751 					else {
1752 						pte_unmap(pte);
1753 						return i ? : -EFAULT;
1754 					}
1755 				}
1756 				pages[i] = page;
1757 				get_page(page);
1758 			}
1759 			pte_unmap(pte);
1760 			goto next_page;
1761 		}
1762 
1763 		if (!vma ||
1764 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1765 		    !(vm_flags & vma->vm_flags))
1766 			return i ? : -EFAULT;
1767 
1768 		if (is_vm_hugetlb_page(vma)) {
1769 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1770 					&start, &nr_pages, i, gup_flags);
1771 			continue;
1772 		}
1773 
1774 		do {
1775 			struct page *page;
1776 			unsigned int foll_flags = gup_flags;
1777 
1778 			/*
1779 			 * If we have a pending SIGKILL, don't keep faulting
1780 			 * pages and potentially allocating memory.
1781 			 */
1782 			if (unlikely(fatal_signal_pending(current)))
1783 				return i ? i : -ERESTARTSYS;
1784 
1785 			cond_resched();
1786 			while (!(page = follow_page(vma, start, foll_flags))) {
1787 				int ret;
1788 				unsigned int fault_flags = 0;
1789 
1790 				/* For mlock, just skip the stack guard page. */
1791 				if (foll_flags & FOLL_MLOCK) {
1792 					if (stack_guard_page(vma, start))
1793 						goto next_page;
1794 				}
1795 				if (foll_flags & FOLL_WRITE)
1796 					fault_flags |= FAULT_FLAG_WRITE;
1797 				if (nonblocking)
1798 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1799 				if (foll_flags & FOLL_NOWAIT)
1800 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1801 
1802 				ret = handle_mm_fault(mm, vma, start,
1803 							fault_flags);
1804 
1805 				if (ret & VM_FAULT_ERROR) {
1806 					if (ret & VM_FAULT_OOM)
1807 						return i ? i : -ENOMEM;
1808 					if (ret & (VM_FAULT_HWPOISON |
1809 						   VM_FAULT_HWPOISON_LARGE)) {
1810 						if (i)
1811 							return i;
1812 						else if (gup_flags & FOLL_HWPOISON)
1813 							return -EHWPOISON;
1814 						else
1815 							return -EFAULT;
1816 					}
1817 					if (ret & VM_FAULT_SIGBUS)
1818 						return i ? i : -EFAULT;
1819 					BUG();
1820 				}
1821 
1822 				if (tsk) {
1823 					if (ret & VM_FAULT_MAJOR)
1824 						tsk->maj_flt++;
1825 					else
1826 						tsk->min_flt++;
1827 				}
1828 
1829 				if (ret & VM_FAULT_RETRY) {
1830 					if (nonblocking)
1831 						*nonblocking = 0;
1832 					return i;
1833 				}
1834 
1835 				/*
1836 				 * The VM_FAULT_WRITE bit tells us that
1837 				 * do_wp_page has broken COW when necessary,
1838 				 * even if maybe_mkwrite decided not to set
1839 				 * pte_write. We can thus safely do subsequent
1840 				 * page lookups as if they were reads. But only
1841 				 * do so when looping for pte_write is futile:
1842 				 * in some cases userspace may also be wanting
1843 				 * to write to the gotten user page, which a
1844 				 * read fault here might prevent (a readonly
1845 				 * page might get reCOWed by userspace write).
1846 				 */
1847 				if ((ret & VM_FAULT_WRITE) &&
1848 				    !(vma->vm_flags & VM_WRITE))
1849 					foll_flags &= ~FOLL_WRITE;
1850 
1851 				cond_resched();
1852 			}
1853 			if (IS_ERR(page))
1854 				return i ? i : PTR_ERR(page);
1855 			if (pages) {
1856 				pages[i] = page;
1857 
1858 				flush_anon_page(vma, page, start);
1859 				flush_dcache_page(page);
1860 			}
1861 next_page:
1862 			if (vmas)
1863 				vmas[i] = vma;
1864 			i++;
1865 			start += PAGE_SIZE;
1866 			nr_pages--;
1867 		} while (nr_pages && start < vma->vm_end);
1868 	} while (nr_pages);
1869 	return i;
1870 }
1871 EXPORT_SYMBOL(__get_user_pages);
1872 
1873 /*
1874  * fixup_user_fault() - manually resolve a user page fault
1875  * @tsk:	the task_struct to use for page fault accounting, or
1876  *		NULL if faults are not to be recorded.
1877  * @mm:		mm_struct of target mm
1878  * @address:	user address
1879  * @fault_flags:flags to pass down to handle_mm_fault()
1880  *
1881  * This is meant to be called in the specific scenario where for locking reasons
1882  * we try to access user memory in atomic context (within a pagefault_disable()
1883  * section), this returns -EFAULT, and we want to resolve the user fault before
1884  * trying again.
1885  *
1886  * Typically this is meant to be used by the futex code.
1887  *
1888  * The main difference with get_user_pages() is that this function will
1889  * unconditionally call handle_mm_fault() which will in turn perform all the
1890  * necessary SW fixup of the dirty and young bits in the PTE, while
1891  * handle_mm_fault() only guarantees to update these in the struct page.
1892  *
1893  * This is important for some architectures where those bits also gate the
1894  * access permission to the page because they are maintained in software.  On
1895  * such architectures, gup() will not be enough to make a subsequent access
1896  * succeed.
1897  *
1898  * This should be called with the mm_sem held for read.
1899  */
1900 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1901 		     unsigned long address, unsigned int fault_flags)
1902 {
1903 	struct vm_area_struct *vma;
1904 	int ret;
1905 
1906 	vma = find_extend_vma(mm, address);
1907 	if (!vma || address < vma->vm_start)
1908 		return -EFAULT;
1909 
1910 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1911 	if (ret & VM_FAULT_ERROR) {
1912 		if (ret & VM_FAULT_OOM)
1913 			return -ENOMEM;
1914 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1915 			return -EHWPOISON;
1916 		if (ret & VM_FAULT_SIGBUS)
1917 			return -EFAULT;
1918 		BUG();
1919 	}
1920 	if (tsk) {
1921 		if (ret & VM_FAULT_MAJOR)
1922 			tsk->maj_flt++;
1923 		else
1924 			tsk->min_flt++;
1925 	}
1926 	return 0;
1927 }
1928 
1929 /*
1930  * get_user_pages() - pin user pages in memory
1931  * @tsk:	the task_struct to use for page fault accounting, or
1932  *		NULL if faults are not to be recorded.
1933  * @mm:		mm_struct of target mm
1934  * @start:	starting user address
1935  * @nr_pages:	number of pages from start to pin
1936  * @write:	whether pages will be written to by the caller
1937  * @force:	whether to force write access even if user mapping is
1938  *		readonly. This will result in the page being COWed even
1939  *		in MAP_SHARED mappings. You do not want this.
1940  * @pages:	array that receives pointers to the pages pinned.
1941  *		Should be at least nr_pages long. Or NULL, if caller
1942  *		only intends to ensure the pages are faulted in.
1943  * @vmas:	array of pointers to vmas corresponding to each page.
1944  *		Or NULL if the caller does not require them.
1945  *
1946  * Returns number of pages pinned. This may be fewer than the number
1947  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1948  * were pinned, returns -errno. Each page returned must be released
1949  * with a put_page() call when it is finished with. vmas will only
1950  * remain valid while mmap_sem is held.
1951  *
1952  * Must be called with mmap_sem held for read or write.
1953  *
1954  * get_user_pages walks a process's page tables and takes a reference to
1955  * each struct page that each user address corresponds to at a given
1956  * instant. That is, it takes the page that would be accessed if a user
1957  * thread accesses the given user virtual address at that instant.
1958  *
1959  * This does not guarantee that the page exists in the user mappings when
1960  * get_user_pages returns, and there may even be a completely different
1961  * page there in some cases (eg. if mmapped pagecache has been invalidated
1962  * and subsequently re faulted). However it does guarantee that the page
1963  * won't be freed completely. And mostly callers simply care that the page
1964  * contains data that was valid *at some point in time*. Typically, an IO
1965  * or similar operation cannot guarantee anything stronger anyway because
1966  * locks can't be held over the syscall boundary.
1967  *
1968  * If write=0, the page must not be written to. If the page is written to,
1969  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1970  * after the page is finished with, and before put_page is called.
1971  *
1972  * get_user_pages is typically used for fewer-copy IO operations, to get a
1973  * handle on the memory by some means other than accesses via the user virtual
1974  * addresses. The pages may be submitted for DMA to devices or accessed via
1975  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1976  * use the correct cache flushing APIs.
1977  *
1978  * See also get_user_pages_fast, for performance critical applications.
1979  */
1980 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1981 		unsigned long start, int nr_pages, int write, int force,
1982 		struct page **pages, struct vm_area_struct **vmas)
1983 {
1984 	int flags = FOLL_TOUCH;
1985 
1986 	if (pages)
1987 		flags |= FOLL_GET;
1988 	if (write)
1989 		flags |= FOLL_WRITE;
1990 	if (force)
1991 		flags |= FOLL_FORCE;
1992 
1993 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1994 				NULL);
1995 }
1996 EXPORT_SYMBOL(get_user_pages);
1997 
1998 /**
1999  * get_dump_page() - pin user page in memory while writing it to core dump
2000  * @addr: user address
2001  *
2002  * Returns struct page pointer of user page pinned for dump,
2003  * to be freed afterwards by page_cache_release() or put_page().
2004  *
2005  * Returns NULL on any kind of failure - a hole must then be inserted into
2006  * the corefile, to preserve alignment with its headers; and also returns
2007  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2008  * allowing a hole to be left in the corefile to save diskspace.
2009  *
2010  * Called without mmap_sem, but after all other threads have been killed.
2011  */
2012 #ifdef CONFIG_ELF_CORE
2013 struct page *get_dump_page(unsigned long addr)
2014 {
2015 	struct vm_area_struct *vma;
2016 	struct page *page;
2017 
2018 	if (__get_user_pages(current, current->mm, addr, 1,
2019 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2020 			     NULL) < 1)
2021 		return NULL;
2022 	flush_cache_page(vma, addr, page_to_pfn(page));
2023 	return page;
2024 }
2025 #endif /* CONFIG_ELF_CORE */
2026 
2027 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2028 			spinlock_t **ptl)
2029 {
2030 	pgd_t * pgd = pgd_offset(mm, addr);
2031 	pud_t * pud = pud_alloc(mm, pgd, addr);
2032 	if (pud) {
2033 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2034 		if (pmd) {
2035 			VM_BUG_ON(pmd_trans_huge(*pmd));
2036 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2037 		}
2038 	}
2039 	return NULL;
2040 }
2041 
2042 /*
2043  * This is the old fallback for page remapping.
2044  *
2045  * For historical reasons, it only allows reserved pages. Only
2046  * old drivers should use this, and they needed to mark their
2047  * pages reserved for the old functions anyway.
2048  */
2049 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2050 			struct page *page, pgprot_t prot)
2051 {
2052 	struct mm_struct *mm = vma->vm_mm;
2053 	int retval;
2054 	pte_t *pte;
2055 	spinlock_t *ptl;
2056 
2057 	retval = -EINVAL;
2058 	if (PageAnon(page))
2059 		goto out;
2060 	retval = -ENOMEM;
2061 	flush_dcache_page(page);
2062 	pte = get_locked_pte(mm, addr, &ptl);
2063 	if (!pte)
2064 		goto out;
2065 	retval = -EBUSY;
2066 	if (!pte_none(*pte))
2067 		goto out_unlock;
2068 
2069 	/* Ok, finally just insert the thing.. */
2070 	get_page(page);
2071 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2072 	page_add_file_rmap(page);
2073 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2074 
2075 	retval = 0;
2076 	pte_unmap_unlock(pte, ptl);
2077 	return retval;
2078 out_unlock:
2079 	pte_unmap_unlock(pte, ptl);
2080 out:
2081 	return retval;
2082 }
2083 
2084 /**
2085  * vm_insert_page - insert single page into user vma
2086  * @vma: user vma to map to
2087  * @addr: target user address of this page
2088  * @page: source kernel page
2089  *
2090  * This allows drivers to insert individual pages they've allocated
2091  * into a user vma.
2092  *
2093  * The page has to be a nice clean _individual_ kernel allocation.
2094  * If you allocate a compound page, you need to have marked it as
2095  * such (__GFP_COMP), or manually just split the page up yourself
2096  * (see split_page()).
2097  *
2098  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2099  * took an arbitrary page protection parameter. This doesn't allow
2100  * that. Your vma protection will have to be set up correctly, which
2101  * means that if you want a shared writable mapping, you'd better
2102  * ask for a shared writable mapping!
2103  *
2104  * The page does not need to be reserved.
2105  *
2106  * Usually this function is called from f_op->mmap() handler
2107  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2108  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2109  * function from other places, for example from page-fault handler.
2110  */
2111 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2112 			struct page *page)
2113 {
2114 	if (addr < vma->vm_start || addr >= vma->vm_end)
2115 		return -EFAULT;
2116 	if (!page_count(page))
2117 		return -EINVAL;
2118 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2119 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2120 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2121 		vma->vm_flags |= VM_MIXEDMAP;
2122 	}
2123 	return insert_page(vma, addr, page, vma->vm_page_prot);
2124 }
2125 EXPORT_SYMBOL(vm_insert_page);
2126 
2127 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2128 			unsigned long pfn, pgprot_t prot)
2129 {
2130 	struct mm_struct *mm = vma->vm_mm;
2131 	int retval;
2132 	pte_t *pte, entry;
2133 	spinlock_t *ptl;
2134 
2135 	retval = -ENOMEM;
2136 	pte = get_locked_pte(mm, addr, &ptl);
2137 	if (!pte)
2138 		goto out;
2139 	retval = -EBUSY;
2140 	if (!pte_none(*pte))
2141 		goto out_unlock;
2142 
2143 	/* Ok, finally just insert the thing.. */
2144 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2145 	set_pte_at(mm, addr, pte, entry);
2146 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2147 
2148 	retval = 0;
2149 out_unlock:
2150 	pte_unmap_unlock(pte, ptl);
2151 out:
2152 	return retval;
2153 }
2154 
2155 /**
2156  * vm_insert_pfn - insert single pfn into user vma
2157  * @vma: user vma to map to
2158  * @addr: target user address of this page
2159  * @pfn: source kernel pfn
2160  *
2161  * Similar to vm_insert_page, this allows drivers to insert individual pages
2162  * they've allocated into a user vma. Same comments apply.
2163  *
2164  * This function should only be called from a vm_ops->fault handler, and
2165  * in that case the handler should return NULL.
2166  *
2167  * vma cannot be a COW mapping.
2168  *
2169  * As this is called only for pages that do not currently exist, we
2170  * do not need to flush old virtual caches or the TLB.
2171  */
2172 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2173 			unsigned long pfn)
2174 {
2175 	int ret;
2176 	pgprot_t pgprot = vma->vm_page_prot;
2177 	/*
2178 	 * Technically, architectures with pte_special can avoid all these
2179 	 * restrictions (same for remap_pfn_range).  However we would like
2180 	 * consistency in testing and feature parity among all, so we should
2181 	 * try to keep these invariants in place for everybody.
2182 	 */
2183 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2184 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2185 						(VM_PFNMAP|VM_MIXEDMAP));
2186 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2187 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2188 
2189 	if (addr < vma->vm_start || addr >= vma->vm_end)
2190 		return -EFAULT;
2191 	if (track_pfn_insert(vma, &pgprot, pfn))
2192 		return -EINVAL;
2193 
2194 	ret = insert_pfn(vma, addr, pfn, pgprot);
2195 
2196 	return ret;
2197 }
2198 EXPORT_SYMBOL(vm_insert_pfn);
2199 
2200 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2201 			unsigned long pfn)
2202 {
2203 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2204 
2205 	if (addr < vma->vm_start || addr >= vma->vm_end)
2206 		return -EFAULT;
2207 
2208 	/*
2209 	 * If we don't have pte special, then we have to use the pfn_valid()
2210 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2211 	 * refcount the page if pfn_valid is true (hence insert_page rather
2212 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2213 	 * without pte special, it would there be refcounted as a normal page.
2214 	 */
2215 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2216 		struct page *page;
2217 
2218 		page = pfn_to_page(pfn);
2219 		return insert_page(vma, addr, page, vma->vm_page_prot);
2220 	}
2221 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2222 }
2223 EXPORT_SYMBOL(vm_insert_mixed);
2224 
2225 /*
2226  * maps a range of physical memory into the requested pages. the old
2227  * mappings are removed. any references to nonexistent pages results
2228  * in null mappings (currently treated as "copy-on-access")
2229  */
2230 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2231 			unsigned long addr, unsigned long end,
2232 			unsigned long pfn, pgprot_t prot)
2233 {
2234 	pte_t *pte;
2235 	spinlock_t *ptl;
2236 
2237 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2238 	if (!pte)
2239 		return -ENOMEM;
2240 	arch_enter_lazy_mmu_mode();
2241 	do {
2242 		BUG_ON(!pte_none(*pte));
2243 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2244 		pfn++;
2245 	} while (pte++, addr += PAGE_SIZE, addr != end);
2246 	arch_leave_lazy_mmu_mode();
2247 	pte_unmap_unlock(pte - 1, ptl);
2248 	return 0;
2249 }
2250 
2251 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2252 			unsigned long addr, unsigned long end,
2253 			unsigned long pfn, pgprot_t prot)
2254 {
2255 	pmd_t *pmd;
2256 	unsigned long next;
2257 
2258 	pfn -= addr >> PAGE_SHIFT;
2259 	pmd = pmd_alloc(mm, pud, addr);
2260 	if (!pmd)
2261 		return -ENOMEM;
2262 	VM_BUG_ON(pmd_trans_huge(*pmd));
2263 	do {
2264 		next = pmd_addr_end(addr, end);
2265 		if (remap_pte_range(mm, pmd, addr, next,
2266 				pfn + (addr >> PAGE_SHIFT), prot))
2267 			return -ENOMEM;
2268 	} while (pmd++, addr = next, addr != end);
2269 	return 0;
2270 }
2271 
2272 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2273 			unsigned long addr, unsigned long end,
2274 			unsigned long pfn, pgprot_t prot)
2275 {
2276 	pud_t *pud;
2277 	unsigned long next;
2278 
2279 	pfn -= addr >> PAGE_SHIFT;
2280 	pud = pud_alloc(mm, pgd, addr);
2281 	if (!pud)
2282 		return -ENOMEM;
2283 	do {
2284 		next = pud_addr_end(addr, end);
2285 		if (remap_pmd_range(mm, pud, addr, next,
2286 				pfn + (addr >> PAGE_SHIFT), prot))
2287 			return -ENOMEM;
2288 	} while (pud++, addr = next, addr != end);
2289 	return 0;
2290 }
2291 
2292 /**
2293  * remap_pfn_range - remap kernel memory to userspace
2294  * @vma: user vma to map to
2295  * @addr: target user address to start at
2296  * @pfn: physical address of kernel memory
2297  * @size: size of map area
2298  * @prot: page protection flags for this mapping
2299  *
2300  *  Note: this is only safe if the mm semaphore is held when called.
2301  */
2302 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2303 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2304 {
2305 	pgd_t *pgd;
2306 	unsigned long next;
2307 	unsigned long end = addr + PAGE_ALIGN(size);
2308 	struct mm_struct *mm = vma->vm_mm;
2309 	int err;
2310 
2311 	/*
2312 	 * Physically remapped pages are special. Tell the
2313 	 * rest of the world about it:
2314 	 *   VM_IO tells people not to look at these pages
2315 	 *	(accesses can have side effects).
2316 	 *   VM_PFNMAP tells the core MM that the base pages are just
2317 	 *	raw PFN mappings, and do not have a "struct page" associated
2318 	 *	with them.
2319 	 *   VM_DONTEXPAND
2320 	 *      Disable vma merging and expanding with mremap().
2321 	 *   VM_DONTDUMP
2322 	 *      Omit vma from core dump, even when VM_IO turned off.
2323 	 *
2324 	 * There's a horrible special case to handle copy-on-write
2325 	 * behaviour that some programs depend on. We mark the "original"
2326 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2327 	 * See vm_normal_page() for details.
2328 	 */
2329 	if (is_cow_mapping(vma->vm_flags)) {
2330 		if (addr != vma->vm_start || end != vma->vm_end)
2331 			return -EINVAL;
2332 		vma->vm_pgoff = pfn;
2333 	}
2334 
2335 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2336 	if (err)
2337 		return -EINVAL;
2338 
2339 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2340 
2341 	BUG_ON(addr >= end);
2342 	pfn -= addr >> PAGE_SHIFT;
2343 	pgd = pgd_offset(mm, addr);
2344 	flush_cache_range(vma, addr, end);
2345 	do {
2346 		next = pgd_addr_end(addr, end);
2347 		err = remap_pud_range(mm, pgd, addr, next,
2348 				pfn + (addr >> PAGE_SHIFT), prot);
2349 		if (err)
2350 			break;
2351 	} while (pgd++, addr = next, addr != end);
2352 
2353 	if (err)
2354 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2355 
2356 	return err;
2357 }
2358 EXPORT_SYMBOL(remap_pfn_range);
2359 
2360 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2361 				     unsigned long addr, unsigned long end,
2362 				     pte_fn_t fn, void *data)
2363 {
2364 	pte_t *pte;
2365 	int err;
2366 	pgtable_t token;
2367 	spinlock_t *uninitialized_var(ptl);
2368 
2369 	pte = (mm == &init_mm) ?
2370 		pte_alloc_kernel(pmd, addr) :
2371 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2372 	if (!pte)
2373 		return -ENOMEM;
2374 
2375 	BUG_ON(pmd_huge(*pmd));
2376 
2377 	arch_enter_lazy_mmu_mode();
2378 
2379 	token = pmd_pgtable(*pmd);
2380 
2381 	do {
2382 		err = fn(pte++, token, addr, data);
2383 		if (err)
2384 			break;
2385 	} while (addr += PAGE_SIZE, addr != end);
2386 
2387 	arch_leave_lazy_mmu_mode();
2388 
2389 	if (mm != &init_mm)
2390 		pte_unmap_unlock(pte-1, ptl);
2391 	return err;
2392 }
2393 
2394 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2395 				     unsigned long addr, unsigned long end,
2396 				     pte_fn_t fn, void *data)
2397 {
2398 	pmd_t *pmd;
2399 	unsigned long next;
2400 	int err;
2401 
2402 	BUG_ON(pud_huge(*pud));
2403 
2404 	pmd = pmd_alloc(mm, pud, addr);
2405 	if (!pmd)
2406 		return -ENOMEM;
2407 	do {
2408 		next = pmd_addr_end(addr, end);
2409 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2410 		if (err)
2411 			break;
2412 	} while (pmd++, addr = next, addr != end);
2413 	return err;
2414 }
2415 
2416 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2417 				     unsigned long addr, unsigned long end,
2418 				     pte_fn_t fn, void *data)
2419 {
2420 	pud_t *pud;
2421 	unsigned long next;
2422 	int err;
2423 
2424 	pud = pud_alloc(mm, pgd, addr);
2425 	if (!pud)
2426 		return -ENOMEM;
2427 	do {
2428 		next = pud_addr_end(addr, end);
2429 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2430 		if (err)
2431 			break;
2432 	} while (pud++, addr = next, addr != end);
2433 	return err;
2434 }
2435 
2436 /*
2437  * Scan a region of virtual memory, filling in page tables as necessary
2438  * and calling a provided function on each leaf page table.
2439  */
2440 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2441 			unsigned long size, pte_fn_t fn, void *data)
2442 {
2443 	pgd_t *pgd;
2444 	unsigned long next;
2445 	unsigned long end = addr + size;
2446 	int err;
2447 
2448 	BUG_ON(addr >= end);
2449 	pgd = pgd_offset(mm, addr);
2450 	do {
2451 		next = pgd_addr_end(addr, end);
2452 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2453 		if (err)
2454 			break;
2455 	} while (pgd++, addr = next, addr != end);
2456 
2457 	return err;
2458 }
2459 EXPORT_SYMBOL_GPL(apply_to_page_range);
2460 
2461 /*
2462  * handle_pte_fault chooses page fault handler according to an entry
2463  * which was read non-atomically.  Before making any commitment, on
2464  * those architectures or configurations (e.g. i386 with PAE) which
2465  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2466  * must check under lock before unmapping the pte and proceeding
2467  * (but do_wp_page is only called after already making such a check;
2468  * and do_anonymous_page can safely check later on).
2469  */
2470 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2471 				pte_t *page_table, pte_t orig_pte)
2472 {
2473 	int same = 1;
2474 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2475 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2476 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2477 		spin_lock(ptl);
2478 		same = pte_same(*page_table, orig_pte);
2479 		spin_unlock(ptl);
2480 	}
2481 #endif
2482 	pte_unmap(page_table);
2483 	return same;
2484 }
2485 
2486 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2487 {
2488 	/*
2489 	 * If the source page was a PFN mapping, we don't have
2490 	 * a "struct page" for it. We do a best-effort copy by
2491 	 * just copying from the original user address. If that
2492 	 * fails, we just zero-fill it. Live with it.
2493 	 */
2494 	if (unlikely(!src)) {
2495 		void *kaddr = kmap_atomic(dst);
2496 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2497 
2498 		/*
2499 		 * This really shouldn't fail, because the page is there
2500 		 * in the page tables. But it might just be unreadable,
2501 		 * in which case we just give up and fill the result with
2502 		 * zeroes.
2503 		 */
2504 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2505 			clear_page(kaddr);
2506 		kunmap_atomic(kaddr);
2507 		flush_dcache_page(dst);
2508 	} else
2509 		copy_user_highpage(dst, src, va, vma);
2510 }
2511 
2512 /*
2513  * This routine handles present pages, when users try to write
2514  * to a shared page. It is done by copying the page to a new address
2515  * and decrementing the shared-page counter for the old page.
2516  *
2517  * Note that this routine assumes that the protection checks have been
2518  * done by the caller (the low-level page fault routine in most cases).
2519  * Thus we can safely just mark it writable once we've done any necessary
2520  * COW.
2521  *
2522  * We also mark the page dirty at this point even though the page will
2523  * change only once the write actually happens. This avoids a few races,
2524  * and potentially makes it more efficient.
2525  *
2526  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2527  * but allow concurrent faults), with pte both mapped and locked.
2528  * We return with mmap_sem still held, but pte unmapped and unlocked.
2529  */
2530 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2531 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2532 		spinlock_t *ptl, pte_t orig_pte)
2533 	__releases(ptl)
2534 {
2535 	struct page *old_page, *new_page = NULL;
2536 	pte_t entry;
2537 	int ret = 0;
2538 	int page_mkwrite = 0;
2539 	struct page *dirty_page = NULL;
2540 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2541 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2542 
2543 	old_page = vm_normal_page(vma, address, orig_pte);
2544 	if (!old_page) {
2545 		/*
2546 		 * VM_MIXEDMAP !pfn_valid() case
2547 		 *
2548 		 * We should not cow pages in a shared writeable mapping.
2549 		 * Just mark the pages writable as we can't do any dirty
2550 		 * accounting on raw pfn maps.
2551 		 */
2552 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2553 				     (VM_WRITE|VM_SHARED))
2554 			goto reuse;
2555 		goto gotten;
2556 	}
2557 
2558 	/*
2559 	 * Take out anonymous pages first, anonymous shared vmas are
2560 	 * not dirty accountable.
2561 	 */
2562 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2563 		if (!trylock_page(old_page)) {
2564 			page_cache_get(old_page);
2565 			pte_unmap_unlock(page_table, ptl);
2566 			lock_page(old_page);
2567 			page_table = pte_offset_map_lock(mm, pmd, address,
2568 							 &ptl);
2569 			if (!pte_same(*page_table, orig_pte)) {
2570 				unlock_page(old_page);
2571 				goto unlock;
2572 			}
2573 			page_cache_release(old_page);
2574 		}
2575 		if (reuse_swap_page(old_page)) {
2576 			/*
2577 			 * The page is all ours.  Move it to our anon_vma so
2578 			 * the rmap code will not search our parent or siblings.
2579 			 * Protected against the rmap code by the page lock.
2580 			 */
2581 			page_move_anon_rmap(old_page, vma, address);
2582 			unlock_page(old_page);
2583 			goto reuse;
2584 		}
2585 		unlock_page(old_page);
2586 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2587 					(VM_WRITE|VM_SHARED))) {
2588 		/*
2589 		 * Only catch write-faults on shared writable pages,
2590 		 * read-only shared pages can get COWed by
2591 		 * get_user_pages(.write=1, .force=1).
2592 		 */
2593 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2594 			struct vm_fault vmf;
2595 			int tmp;
2596 
2597 			vmf.virtual_address = (void __user *)(address &
2598 								PAGE_MASK);
2599 			vmf.pgoff = old_page->index;
2600 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2601 			vmf.page = old_page;
2602 
2603 			/*
2604 			 * Notify the address space that the page is about to
2605 			 * become writable so that it can prohibit this or wait
2606 			 * for the page to get into an appropriate state.
2607 			 *
2608 			 * We do this without the lock held, so that it can
2609 			 * sleep if it needs to.
2610 			 */
2611 			page_cache_get(old_page);
2612 			pte_unmap_unlock(page_table, ptl);
2613 
2614 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2615 			if (unlikely(tmp &
2616 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2617 				ret = tmp;
2618 				goto unwritable_page;
2619 			}
2620 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2621 				lock_page(old_page);
2622 				if (!old_page->mapping) {
2623 					ret = 0; /* retry the fault */
2624 					unlock_page(old_page);
2625 					goto unwritable_page;
2626 				}
2627 			} else
2628 				VM_BUG_ON(!PageLocked(old_page));
2629 
2630 			/*
2631 			 * Since we dropped the lock we need to revalidate
2632 			 * the PTE as someone else may have changed it.  If
2633 			 * they did, we just return, as we can count on the
2634 			 * MMU to tell us if they didn't also make it writable.
2635 			 */
2636 			page_table = pte_offset_map_lock(mm, pmd, address,
2637 							 &ptl);
2638 			if (!pte_same(*page_table, orig_pte)) {
2639 				unlock_page(old_page);
2640 				goto unlock;
2641 			}
2642 
2643 			page_mkwrite = 1;
2644 		}
2645 		dirty_page = old_page;
2646 		get_page(dirty_page);
2647 
2648 reuse:
2649 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2650 		entry = pte_mkyoung(orig_pte);
2651 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2652 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2653 			update_mmu_cache(vma, address, page_table);
2654 		pte_unmap_unlock(page_table, ptl);
2655 		ret |= VM_FAULT_WRITE;
2656 
2657 		if (!dirty_page)
2658 			return ret;
2659 
2660 		/*
2661 		 * Yes, Virginia, this is actually required to prevent a race
2662 		 * with clear_page_dirty_for_io() from clearing the page dirty
2663 		 * bit after it clear all dirty ptes, but before a racing
2664 		 * do_wp_page installs a dirty pte.
2665 		 *
2666 		 * __do_fault is protected similarly.
2667 		 */
2668 		if (!page_mkwrite) {
2669 			wait_on_page_locked(dirty_page);
2670 			set_page_dirty_balance(dirty_page, page_mkwrite);
2671 			/* file_update_time outside page_lock */
2672 			if (vma->vm_file)
2673 				file_update_time(vma->vm_file);
2674 		}
2675 		put_page(dirty_page);
2676 		if (page_mkwrite) {
2677 			struct address_space *mapping = dirty_page->mapping;
2678 
2679 			set_page_dirty(dirty_page);
2680 			unlock_page(dirty_page);
2681 			page_cache_release(dirty_page);
2682 			if (mapping)	{
2683 				/*
2684 				 * Some device drivers do not set page.mapping
2685 				 * but still dirty their pages
2686 				 */
2687 				balance_dirty_pages_ratelimited(mapping);
2688 			}
2689 		}
2690 
2691 		return ret;
2692 	}
2693 
2694 	/*
2695 	 * Ok, we need to copy. Oh, well..
2696 	 */
2697 	page_cache_get(old_page);
2698 gotten:
2699 	pte_unmap_unlock(page_table, ptl);
2700 
2701 	if (unlikely(anon_vma_prepare(vma)))
2702 		goto oom;
2703 
2704 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2705 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2706 		if (!new_page)
2707 			goto oom;
2708 	} else {
2709 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2710 		if (!new_page)
2711 			goto oom;
2712 		cow_user_page(new_page, old_page, address, vma);
2713 	}
2714 	__SetPageUptodate(new_page);
2715 
2716 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2717 		goto oom_free_new;
2718 
2719 	mmun_start  = address & PAGE_MASK;
2720 	mmun_end    = mmun_start + PAGE_SIZE;
2721 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2722 
2723 	/*
2724 	 * Re-check the pte - we dropped the lock
2725 	 */
2726 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2727 	if (likely(pte_same(*page_table, orig_pte))) {
2728 		if (old_page) {
2729 			if (!PageAnon(old_page)) {
2730 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2731 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2732 			}
2733 		} else
2734 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2735 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2736 		entry = mk_pte(new_page, vma->vm_page_prot);
2737 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2738 		/*
2739 		 * Clear the pte entry and flush it first, before updating the
2740 		 * pte with the new entry. This will avoid a race condition
2741 		 * seen in the presence of one thread doing SMC and another
2742 		 * thread doing COW.
2743 		 */
2744 		ptep_clear_flush(vma, address, page_table);
2745 		page_add_new_anon_rmap(new_page, vma, address);
2746 		/*
2747 		 * We call the notify macro here because, when using secondary
2748 		 * mmu page tables (such as kvm shadow page tables), we want the
2749 		 * new page to be mapped directly into the secondary page table.
2750 		 */
2751 		set_pte_at_notify(mm, address, page_table, entry);
2752 		update_mmu_cache(vma, address, page_table);
2753 		if (old_page) {
2754 			/*
2755 			 * Only after switching the pte to the new page may
2756 			 * we remove the mapcount here. Otherwise another
2757 			 * process may come and find the rmap count decremented
2758 			 * before the pte is switched to the new page, and
2759 			 * "reuse" the old page writing into it while our pte
2760 			 * here still points into it and can be read by other
2761 			 * threads.
2762 			 *
2763 			 * The critical issue is to order this
2764 			 * page_remove_rmap with the ptp_clear_flush above.
2765 			 * Those stores are ordered by (if nothing else,)
2766 			 * the barrier present in the atomic_add_negative
2767 			 * in page_remove_rmap.
2768 			 *
2769 			 * Then the TLB flush in ptep_clear_flush ensures that
2770 			 * no process can access the old page before the
2771 			 * decremented mapcount is visible. And the old page
2772 			 * cannot be reused until after the decremented
2773 			 * mapcount is visible. So transitively, TLBs to
2774 			 * old page will be flushed before it can be reused.
2775 			 */
2776 			page_remove_rmap(old_page);
2777 		}
2778 
2779 		/* Free the old page.. */
2780 		new_page = old_page;
2781 		ret |= VM_FAULT_WRITE;
2782 	} else
2783 		mem_cgroup_uncharge_page(new_page);
2784 
2785 	if (new_page)
2786 		page_cache_release(new_page);
2787 unlock:
2788 	pte_unmap_unlock(page_table, ptl);
2789 	if (mmun_end > mmun_start)
2790 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2791 	if (old_page) {
2792 		/*
2793 		 * Don't let another task, with possibly unlocked vma,
2794 		 * keep the mlocked page.
2795 		 */
2796 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2797 			lock_page(old_page);	/* LRU manipulation */
2798 			munlock_vma_page(old_page);
2799 			unlock_page(old_page);
2800 		}
2801 		page_cache_release(old_page);
2802 	}
2803 	return ret;
2804 oom_free_new:
2805 	page_cache_release(new_page);
2806 oom:
2807 	if (old_page)
2808 		page_cache_release(old_page);
2809 	return VM_FAULT_OOM;
2810 
2811 unwritable_page:
2812 	page_cache_release(old_page);
2813 	return ret;
2814 }
2815 
2816 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2817 		unsigned long start_addr, unsigned long end_addr,
2818 		struct zap_details *details)
2819 {
2820 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2821 }
2822 
2823 static inline void unmap_mapping_range_tree(struct rb_root *root,
2824 					    struct zap_details *details)
2825 {
2826 	struct vm_area_struct *vma;
2827 	pgoff_t vba, vea, zba, zea;
2828 
2829 	vma_interval_tree_foreach(vma, root,
2830 			details->first_index, details->last_index) {
2831 
2832 		vba = vma->vm_pgoff;
2833 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2834 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2835 		zba = details->first_index;
2836 		if (zba < vba)
2837 			zba = vba;
2838 		zea = details->last_index;
2839 		if (zea > vea)
2840 			zea = vea;
2841 
2842 		unmap_mapping_range_vma(vma,
2843 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2844 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2845 				details);
2846 	}
2847 }
2848 
2849 static inline void unmap_mapping_range_list(struct list_head *head,
2850 					    struct zap_details *details)
2851 {
2852 	struct vm_area_struct *vma;
2853 
2854 	/*
2855 	 * In nonlinear VMAs there is no correspondence between virtual address
2856 	 * offset and file offset.  So we must perform an exhaustive search
2857 	 * across *all* the pages in each nonlinear VMA, not just the pages
2858 	 * whose virtual address lies outside the file truncation point.
2859 	 */
2860 	list_for_each_entry(vma, head, shared.nonlinear) {
2861 		details->nonlinear_vma = vma;
2862 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2863 	}
2864 }
2865 
2866 /**
2867  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2868  * @mapping: the address space containing mmaps to be unmapped.
2869  * @holebegin: byte in first page to unmap, relative to the start of
2870  * the underlying file.  This will be rounded down to a PAGE_SIZE
2871  * boundary.  Note that this is different from truncate_pagecache(), which
2872  * must keep the partial page.  In contrast, we must get rid of
2873  * partial pages.
2874  * @holelen: size of prospective hole in bytes.  This will be rounded
2875  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2876  * end of the file.
2877  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2878  * but 0 when invalidating pagecache, don't throw away private data.
2879  */
2880 void unmap_mapping_range(struct address_space *mapping,
2881 		loff_t const holebegin, loff_t const holelen, int even_cows)
2882 {
2883 	struct zap_details details;
2884 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2885 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2886 
2887 	/* Check for overflow. */
2888 	if (sizeof(holelen) > sizeof(hlen)) {
2889 		long long holeend =
2890 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2891 		if (holeend & ~(long long)ULONG_MAX)
2892 			hlen = ULONG_MAX - hba + 1;
2893 	}
2894 
2895 	details.check_mapping = even_cows? NULL: mapping;
2896 	details.nonlinear_vma = NULL;
2897 	details.first_index = hba;
2898 	details.last_index = hba + hlen - 1;
2899 	if (details.last_index < details.first_index)
2900 		details.last_index = ULONG_MAX;
2901 
2902 
2903 	mutex_lock(&mapping->i_mmap_mutex);
2904 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2905 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2906 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2907 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2908 	mutex_unlock(&mapping->i_mmap_mutex);
2909 }
2910 EXPORT_SYMBOL(unmap_mapping_range);
2911 
2912 /*
2913  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2914  * but allow concurrent faults), and pte mapped but not yet locked.
2915  * We return with mmap_sem still held, but pte unmapped and unlocked.
2916  */
2917 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2918 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2919 		unsigned int flags, pte_t orig_pte)
2920 {
2921 	spinlock_t *ptl;
2922 	struct page *page, *swapcache = NULL;
2923 	swp_entry_t entry;
2924 	pte_t pte;
2925 	int locked;
2926 	struct mem_cgroup *ptr;
2927 	int exclusive = 0;
2928 	int ret = 0;
2929 
2930 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2931 		goto out;
2932 
2933 	entry = pte_to_swp_entry(orig_pte);
2934 	if (unlikely(non_swap_entry(entry))) {
2935 		if (is_migration_entry(entry)) {
2936 			migration_entry_wait(mm, pmd, address);
2937 		} else if (is_hwpoison_entry(entry)) {
2938 			ret = VM_FAULT_HWPOISON;
2939 		} else {
2940 			print_bad_pte(vma, address, orig_pte, NULL);
2941 			ret = VM_FAULT_SIGBUS;
2942 		}
2943 		goto out;
2944 	}
2945 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2946 	page = lookup_swap_cache(entry);
2947 	if (!page) {
2948 		page = swapin_readahead(entry,
2949 					GFP_HIGHUSER_MOVABLE, vma, address);
2950 		if (!page) {
2951 			/*
2952 			 * Back out if somebody else faulted in this pte
2953 			 * while we released the pte lock.
2954 			 */
2955 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2956 			if (likely(pte_same(*page_table, orig_pte)))
2957 				ret = VM_FAULT_OOM;
2958 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2959 			goto unlock;
2960 		}
2961 
2962 		/* Had to read the page from swap area: Major fault */
2963 		ret = VM_FAULT_MAJOR;
2964 		count_vm_event(PGMAJFAULT);
2965 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2966 	} else if (PageHWPoison(page)) {
2967 		/*
2968 		 * hwpoisoned dirty swapcache pages are kept for killing
2969 		 * owner processes (which may be unknown at hwpoison time)
2970 		 */
2971 		ret = VM_FAULT_HWPOISON;
2972 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2973 		goto out_release;
2974 	}
2975 
2976 	locked = lock_page_or_retry(page, mm, flags);
2977 
2978 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2979 	if (!locked) {
2980 		ret |= VM_FAULT_RETRY;
2981 		goto out_release;
2982 	}
2983 
2984 	/*
2985 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2986 	 * release the swapcache from under us.  The page pin, and pte_same
2987 	 * test below, are not enough to exclude that.  Even if it is still
2988 	 * swapcache, we need to check that the page's swap has not changed.
2989 	 */
2990 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2991 		goto out_page;
2992 
2993 	if (ksm_might_need_to_copy(page, vma, address)) {
2994 		swapcache = page;
2995 		page = ksm_does_need_to_copy(page, vma, address);
2996 
2997 		if (unlikely(!page)) {
2998 			ret = VM_FAULT_OOM;
2999 			page = swapcache;
3000 			swapcache = NULL;
3001 			goto out_page;
3002 		}
3003 	}
3004 
3005 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3006 		ret = VM_FAULT_OOM;
3007 		goto out_page;
3008 	}
3009 
3010 	/*
3011 	 * Back out if somebody else already faulted in this pte.
3012 	 */
3013 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3014 	if (unlikely(!pte_same(*page_table, orig_pte)))
3015 		goto out_nomap;
3016 
3017 	if (unlikely(!PageUptodate(page))) {
3018 		ret = VM_FAULT_SIGBUS;
3019 		goto out_nomap;
3020 	}
3021 
3022 	/*
3023 	 * The page isn't present yet, go ahead with the fault.
3024 	 *
3025 	 * Be careful about the sequence of operations here.
3026 	 * To get its accounting right, reuse_swap_page() must be called
3027 	 * while the page is counted on swap but not yet in mapcount i.e.
3028 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3029 	 * must be called after the swap_free(), or it will never succeed.
3030 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3031 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3032 	 * in page->private. In this case, a record in swap_cgroup  is silently
3033 	 * discarded at swap_free().
3034 	 */
3035 
3036 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3037 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3038 	pte = mk_pte(page, vma->vm_page_prot);
3039 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3040 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3041 		flags &= ~FAULT_FLAG_WRITE;
3042 		ret |= VM_FAULT_WRITE;
3043 		exclusive = 1;
3044 	}
3045 	flush_icache_page(vma, page);
3046 	set_pte_at(mm, address, page_table, pte);
3047 	do_page_add_anon_rmap(page, vma, address, exclusive);
3048 	/* It's better to call commit-charge after rmap is established */
3049 	mem_cgroup_commit_charge_swapin(page, ptr);
3050 
3051 	swap_free(entry);
3052 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3053 		try_to_free_swap(page);
3054 	unlock_page(page);
3055 	if (swapcache) {
3056 		/*
3057 		 * Hold the lock to avoid the swap entry to be reused
3058 		 * until we take the PT lock for the pte_same() check
3059 		 * (to avoid false positives from pte_same). For
3060 		 * further safety release the lock after the swap_free
3061 		 * so that the swap count won't change under a
3062 		 * parallel locked swapcache.
3063 		 */
3064 		unlock_page(swapcache);
3065 		page_cache_release(swapcache);
3066 	}
3067 
3068 	if (flags & FAULT_FLAG_WRITE) {
3069 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3070 		if (ret & VM_FAULT_ERROR)
3071 			ret &= VM_FAULT_ERROR;
3072 		goto out;
3073 	}
3074 
3075 	/* No need to invalidate - it was non-present before */
3076 	update_mmu_cache(vma, address, page_table);
3077 unlock:
3078 	pte_unmap_unlock(page_table, ptl);
3079 out:
3080 	return ret;
3081 out_nomap:
3082 	mem_cgroup_cancel_charge_swapin(ptr);
3083 	pte_unmap_unlock(page_table, ptl);
3084 out_page:
3085 	unlock_page(page);
3086 out_release:
3087 	page_cache_release(page);
3088 	if (swapcache) {
3089 		unlock_page(swapcache);
3090 		page_cache_release(swapcache);
3091 	}
3092 	return ret;
3093 }
3094 
3095 /*
3096  * This is like a special single-page "expand_{down|up}wards()",
3097  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3098  * doesn't hit another vma.
3099  */
3100 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3101 {
3102 	address &= PAGE_MASK;
3103 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3104 		struct vm_area_struct *prev = vma->vm_prev;
3105 
3106 		/*
3107 		 * Is there a mapping abutting this one below?
3108 		 *
3109 		 * That's only ok if it's the same stack mapping
3110 		 * that has gotten split..
3111 		 */
3112 		if (prev && prev->vm_end == address)
3113 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3114 
3115 		expand_downwards(vma, address - PAGE_SIZE);
3116 	}
3117 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3118 		struct vm_area_struct *next = vma->vm_next;
3119 
3120 		/* As VM_GROWSDOWN but s/below/above/ */
3121 		if (next && next->vm_start == address + PAGE_SIZE)
3122 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3123 
3124 		expand_upwards(vma, address + PAGE_SIZE);
3125 	}
3126 	return 0;
3127 }
3128 
3129 /*
3130  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3131  * but allow concurrent faults), and pte mapped but not yet locked.
3132  * We return with mmap_sem still held, but pte unmapped and unlocked.
3133  */
3134 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3135 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3136 		unsigned int flags)
3137 {
3138 	struct page *page;
3139 	spinlock_t *ptl;
3140 	pte_t entry;
3141 
3142 	pte_unmap(page_table);
3143 
3144 	/* Check if we need to add a guard page to the stack */
3145 	if (check_stack_guard_page(vma, address) < 0)
3146 		return VM_FAULT_SIGBUS;
3147 
3148 	/* Use the zero-page for reads */
3149 	if (!(flags & FAULT_FLAG_WRITE)) {
3150 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3151 						vma->vm_page_prot));
3152 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3153 		if (!pte_none(*page_table))
3154 			goto unlock;
3155 		goto setpte;
3156 	}
3157 
3158 	/* Allocate our own private page. */
3159 	if (unlikely(anon_vma_prepare(vma)))
3160 		goto oom;
3161 	page = alloc_zeroed_user_highpage_movable(vma, address);
3162 	if (!page)
3163 		goto oom;
3164 	__SetPageUptodate(page);
3165 
3166 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3167 		goto oom_free_page;
3168 
3169 	entry = mk_pte(page, vma->vm_page_prot);
3170 	if (vma->vm_flags & VM_WRITE)
3171 		entry = pte_mkwrite(pte_mkdirty(entry));
3172 
3173 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3174 	if (!pte_none(*page_table))
3175 		goto release;
3176 
3177 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3178 	page_add_new_anon_rmap(page, vma, address);
3179 setpte:
3180 	set_pte_at(mm, address, page_table, entry);
3181 
3182 	/* No need to invalidate - it was non-present before */
3183 	update_mmu_cache(vma, address, page_table);
3184 unlock:
3185 	pte_unmap_unlock(page_table, ptl);
3186 	return 0;
3187 release:
3188 	mem_cgroup_uncharge_page(page);
3189 	page_cache_release(page);
3190 	goto unlock;
3191 oom_free_page:
3192 	page_cache_release(page);
3193 oom:
3194 	return VM_FAULT_OOM;
3195 }
3196 
3197 /*
3198  * __do_fault() tries to create a new page mapping. It aggressively
3199  * tries to share with existing pages, but makes a separate copy if
3200  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3201  * the next page fault.
3202  *
3203  * As this is called only for pages that do not currently exist, we
3204  * do not need to flush old virtual caches or the TLB.
3205  *
3206  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3207  * but allow concurrent faults), and pte neither mapped nor locked.
3208  * We return with mmap_sem still held, but pte unmapped and unlocked.
3209  */
3210 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3211 		unsigned long address, pmd_t *pmd,
3212 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3213 {
3214 	pte_t *page_table;
3215 	spinlock_t *ptl;
3216 	struct page *page;
3217 	struct page *cow_page;
3218 	pte_t entry;
3219 	int anon = 0;
3220 	struct page *dirty_page = NULL;
3221 	struct vm_fault vmf;
3222 	int ret;
3223 	int page_mkwrite = 0;
3224 
3225 	/*
3226 	 * If we do COW later, allocate page befor taking lock_page()
3227 	 * on the file cache page. This will reduce lock holding time.
3228 	 */
3229 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3230 
3231 		if (unlikely(anon_vma_prepare(vma)))
3232 			return VM_FAULT_OOM;
3233 
3234 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3235 		if (!cow_page)
3236 			return VM_FAULT_OOM;
3237 
3238 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3239 			page_cache_release(cow_page);
3240 			return VM_FAULT_OOM;
3241 		}
3242 	} else
3243 		cow_page = NULL;
3244 
3245 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3246 	vmf.pgoff = pgoff;
3247 	vmf.flags = flags;
3248 	vmf.page = NULL;
3249 
3250 	ret = vma->vm_ops->fault(vma, &vmf);
3251 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3252 			    VM_FAULT_RETRY)))
3253 		goto uncharge_out;
3254 
3255 	if (unlikely(PageHWPoison(vmf.page))) {
3256 		if (ret & VM_FAULT_LOCKED)
3257 			unlock_page(vmf.page);
3258 		ret = VM_FAULT_HWPOISON;
3259 		goto uncharge_out;
3260 	}
3261 
3262 	/*
3263 	 * For consistency in subsequent calls, make the faulted page always
3264 	 * locked.
3265 	 */
3266 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3267 		lock_page(vmf.page);
3268 	else
3269 		VM_BUG_ON(!PageLocked(vmf.page));
3270 
3271 	/*
3272 	 * Should we do an early C-O-W break?
3273 	 */
3274 	page = vmf.page;
3275 	if (flags & FAULT_FLAG_WRITE) {
3276 		if (!(vma->vm_flags & VM_SHARED)) {
3277 			page = cow_page;
3278 			anon = 1;
3279 			copy_user_highpage(page, vmf.page, address, vma);
3280 			__SetPageUptodate(page);
3281 		} else {
3282 			/*
3283 			 * If the page will be shareable, see if the backing
3284 			 * address space wants to know that the page is about
3285 			 * to become writable
3286 			 */
3287 			if (vma->vm_ops->page_mkwrite) {
3288 				int tmp;
3289 
3290 				unlock_page(page);
3291 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3292 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3293 				if (unlikely(tmp &
3294 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3295 					ret = tmp;
3296 					goto unwritable_page;
3297 				}
3298 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3299 					lock_page(page);
3300 					if (!page->mapping) {
3301 						ret = 0; /* retry the fault */
3302 						unlock_page(page);
3303 						goto unwritable_page;
3304 					}
3305 				} else
3306 					VM_BUG_ON(!PageLocked(page));
3307 				page_mkwrite = 1;
3308 			}
3309 		}
3310 
3311 	}
3312 
3313 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3314 
3315 	/*
3316 	 * This silly early PAGE_DIRTY setting removes a race
3317 	 * due to the bad i386 page protection. But it's valid
3318 	 * for other architectures too.
3319 	 *
3320 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3321 	 * an exclusive copy of the page, or this is a shared mapping,
3322 	 * so we can make it writable and dirty to avoid having to
3323 	 * handle that later.
3324 	 */
3325 	/* Only go through if we didn't race with anybody else... */
3326 	if (likely(pte_same(*page_table, orig_pte))) {
3327 		flush_icache_page(vma, page);
3328 		entry = mk_pte(page, vma->vm_page_prot);
3329 		if (flags & FAULT_FLAG_WRITE)
3330 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3331 		if (anon) {
3332 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3333 			page_add_new_anon_rmap(page, vma, address);
3334 		} else {
3335 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3336 			page_add_file_rmap(page);
3337 			if (flags & FAULT_FLAG_WRITE) {
3338 				dirty_page = page;
3339 				get_page(dirty_page);
3340 			}
3341 		}
3342 		set_pte_at(mm, address, page_table, entry);
3343 
3344 		/* no need to invalidate: a not-present page won't be cached */
3345 		update_mmu_cache(vma, address, page_table);
3346 	} else {
3347 		if (cow_page)
3348 			mem_cgroup_uncharge_page(cow_page);
3349 		if (anon)
3350 			page_cache_release(page);
3351 		else
3352 			anon = 1; /* no anon but release faulted_page */
3353 	}
3354 
3355 	pte_unmap_unlock(page_table, ptl);
3356 
3357 	if (dirty_page) {
3358 		struct address_space *mapping = page->mapping;
3359 		int dirtied = 0;
3360 
3361 		if (set_page_dirty(dirty_page))
3362 			dirtied = 1;
3363 		unlock_page(dirty_page);
3364 		put_page(dirty_page);
3365 		if ((dirtied || page_mkwrite) && mapping) {
3366 			/*
3367 			 * Some device drivers do not set page.mapping but still
3368 			 * dirty their pages
3369 			 */
3370 			balance_dirty_pages_ratelimited(mapping);
3371 		}
3372 
3373 		/* file_update_time outside page_lock */
3374 		if (vma->vm_file && !page_mkwrite)
3375 			file_update_time(vma->vm_file);
3376 	} else {
3377 		unlock_page(vmf.page);
3378 		if (anon)
3379 			page_cache_release(vmf.page);
3380 	}
3381 
3382 	return ret;
3383 
3384 unwritable_page:
3385 	page_cache_release(page);
3386 	return ret;
3387 uncharge_out:
3388 	/* fs's fault handler get error */
3389 	if (cow_page) {
3390 		mem_cgroup_uncharge_page(cow_page);
3391 		page_cache_release(cow_page);
3392 	}
3393 	return ret;
3394 }
3395 
3396 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3397 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3398 		unsigned int flags, pte_t orig_pte)
3399 {
3400 	pgoff_t pgoff = (((address & PAGE_MASK)
3401 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3402 
3403 	pte_unmap(page_table);
3404 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3405 }
3406 
3407 /*
3408  * Fault of a previously existing named mapping. Repopulate the pte
3409  * from the encoded file_pte if possible. This enables swappable
3410  * nonlinear vmas.
3411  *
3412  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3413  * but allow concurrent faults), and pte mapped but not yet locked.
3414  * We return with mmap_sem still held, but pte unmapped and unlocked.
3415  */
3416 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3417 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3418 		unsigned int flags, pte_t orig_pte)
3419 {
3420 	pgoff_t pgoff;
3421 
3422 	flags |= FAULT_FLAG_NONLINEAR;
3423 
3424 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3425 		return 0;
3426 
3427 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3428 		/*
3429 		 * Page table corrupted: show pte and kill process.
3430 		 */
3431 		print_bad_pte(vma, address, orig_pte, NULL);
3432 		return VM_FAULT_SIGBUS;
3433 	}
3434 
3435 	pgoff = pte_to_pgoff(orig_pte);
3436 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3437 }
3438 
3439 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3440 				unsigned long addr, int current_nid)
3441 {
3442 	get_page(page);
3443 
3444 	count_vm_numa_event(NUMA_HINT_FAULTS);
3445 	if (current_nid == numa_node_id())
3446 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3447 
3448 	return mpol_misplaced(page, vma, addr);
3449 }
3450 
3451 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3452 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3453 {
3454 	struct page *page = NULL;
3455 	spinlock_t *ptl;
3456 	int current_nid = -1;
3457 	int target_nid;
3458 	bool migrated = false;
3459 
3460 	/*
3461 	* The "pte" at this point cannot be used safely without
3462 	* validation through pte_unmap_same(). It's of NUMA type but
3463 	* the pfn may be screwed if the read is non atomic.
3464 	*
3465 	* ptep_modify_prot_start is not called as this is clearing
3466 	* the _PAGE_NUMA bit and it is not really expected that there
3467 	* would be concurrent hardware modifications to the PTE.
3468 	*/
3469 	ptl = pte_lockptr(mm, pmd);
3470 	spin_lock(ptl);
3471 	if (unlikely(!pte_same(*ptep, pte))) {
3472 		pte_unmap_unlock(ptep, ptl);
3473 		goto out;
3474 	}
3475 
3476 	pte = pte_mknonnuma(pte);
3477 	set_pte_at(mm, addr, ptep, pte);
3478 	update_mmu_cache(vma, addr, ptep);
3479 
3480 	page = vm_normal_page(vma, addr, pte);
3481 	if (!page) {
3482 		pte_unmap_unlock(ptep, ptl);
3483 		return 0;
3484 	}
3485 
3486 	current_nid = page_to_nid(page);
3487 	target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3488 	pte_unmap_unlock(ptep, ptl);
3489 	if (target_nid == -1) {
3490 		/*
3491 		 * Account for the fault against the current node if it not
3492 		 * being replaced regardless of where the page is located.
3493 		 */
3494 		current_nid = numa_node_id();
3495 		put_page(page);
3496 		goto out;
3497 	}
3498 
3499 	/* Migrate to the requested node */
3500 	migrated = migrate_misplaced_page(page, target_nid);
3501 	if (migrated)
3502 		current_nid = target_nid;
3503 
3504 out:
3505 	if (current_nid != -1)
3506 		task_numa_fault(current_nid, 1, migrated);
3507 	return 0;
3508 }
3509 
3510 /* NUMA hinting page fault entry point for regular pmds */
3511 #ifdef CONFIG_NUMA_BALANCING
3512 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3513 		     unsigned long addr, pmd_t *pmdp)
3514 {
3515 	pmd_t pmd;
3516 	pte_t *pte, *orig_pte;
3517 	unsigned long _addr = addr & PMD_MASK;
3518 	unsigned long offset;
3519 	spinlock_t *ptl;
3520 	bool numa = false;
3521 	int local_nid = numa_node_id();
3522 
3523 	spin_lock(&mm->page_table_lock);
3524 	pmd = *pmdp;
3525 	if (pmd_numa(pmd)) {
3526 		set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3527 		numa = true;
3528 	}
3529 	spin_unlock(&mm->page_table_lock);
3530 
3531 	if (!numa)
3532 		return 0;
3533 
3534 	/* we're in a page fault so some vma must be in the range */
3535 	BUG_ON(!vma);
3536 	BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3537 	offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3538 	VM_BUG_ON(offset >= PMD_SIZE);
3539 	orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3540 	pte += offset >> PAGE_SHIFT;
3541 	for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3542 		pte_t pteval = *pte;
3543 		struct page *page;
3544 		int curr_nid = local_nid;
3545 		int target_nid;
3546 		bool migrated;
3547 		if (!pte_present(pteval))
3548 			continue;
3549 		if (!pte_numa(pteval))
3550 			continue;
3551 		if (addr >= vma->vm_end) {
3552 			vma = find_vma(mm, addr);
3553 			/* there's a pte present so there must be a vma */
3554 			BUG_ON(!vma);
3555 			BUG_ON(addr < vma->vm_start);
3556 		}
3557 		if (pte_numa(pteval)) {
3558 			pteval = pte_mknonnuma(pteval);
3559 			set_pte_at(mm, addr, pte, pteval);
3560 		}
3561 		page = vm_normal_page(vma, addr, pteval);
3562 		if (unlikely(!page))
3563 			continue;
3564 		/* only check non-shared pages */
3565 		if (unlikely(page_mapcount(page) != 1))
3566 			continue;
3567 
3568 		/*
3569 		 * Note that the NUMA fault is later accounted to either
3570 		 * the node that is currently running or where the page is
3571 		 * migrated to.
3572 		 */
3573 		curr_nid = local_nid;
3574 		target_nid = numa_migrate_prep(page, vma, addr,
3575 					       page_to_nid(page));
3576 		if (target_nid == -1) {
3577 			put_page(page);
3578 			continue;
3579 		}
3580 
3581 		/* Migrate to the requested node */
3582 		pte_unmap_unlock(pte, ptl);
3583 		migrated = migrate_misplaced_page(page, target_nid);
3584 		if (migrated)
3585 			curr_nid = target_nid;
3586 		task_numa_fault(curr_nid, 1, migrated);
3587 
3588 		pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3589 	}
3590 	pte_unmap_unlock(orig_pte, ptl);
3591 
3592 	return 0;
3593 }
3594 #else
3595 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3596 		     unsigned long addr, pmd_t *pmdp)
3597 {
3598 	BUG();
3599 	return 0;
3600 }
3601 #endif /* CONFIG_NUMA_BALANCING */
3602 
3603 /*
3604  * These routines also need to handle stuff like marking pages dirty
3605  * and/or accessed for architectures that don't do it in hardware (most
3606  * RISC architectures).  The early dirtying is also good on the i386.
3607  *
3608  * There is also a hook called "update_mmu_cache()" that architectures
3609  * with external mmu caches can use to update those (ie the Sparc or
3610  * PowerPC hashed page tables that act as extended TLBs).
3611  *
3612  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3613  * but allow concurrent faults), and pte mapped but not yet locked.
3614  * We return with mmap_sem still held, but pte unmapped and unlocked.
3615  */
3616 int handle_pte_fault(struct mm_struct *mm,
3617 		     struct vm_area_struct *vma, unsigned long address,
3618 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3619 {
3620 	pte_t entry;
3621 	spinlock_t *ptl;
3622 
3623 	entry = *pte;
3624 	if (!pte_present(entry)) {
3625 		if (pte_none(entry)) {
3626 			if (vma->vm_ops) {
3627 				if (likely(vma->vm_ops->fault))
3628 					return do_linear_fault(mm, vma, address,
3629 						pte, pmd, flags, entry);
3630 			}
3631 			return do_anonymous_page(mm, vma, address,
3632 						 pte, pmd, flags);
3633 		}
3634 		if (pte_file(entry))
3635 			return do_nonlinear_fault(mm, vma, address,
3636 					pte, pmd, flags, entry);
3637 		return do_swap_page(mm, vma, address,
3638 					pte, pmd, flags, entry);
3639 	}
3640 
3641 	if (pte_numa(entry))
3642 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3643 
3644 	ptl = pte_lockptr(mm, pmd);
3645 	spin_lock(ptl);
3646 	if (unlikely(!pte_same(*pte, entry)))
3647 		goto unlock;
3648 	if (flags & FAULT_FLAG_WRITE) {
3649 		if (!pte_write(entry))
3650 			return do_wp_page(mm, vma, address,
3651 					pte, pmd, ptl, entry);
3652 		entry = pte_mkdirty(entry);
3653 	}
3654 	entry = pte_mkyoung(entry);
3655 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3656 		update_mmu_cache(vma, address, pte);
3657 	} else {
3658 		/*
3659 		 * This is needed only for protection faults but the arch code
3660 		 * is not yet telling us if this is a protection fault or not.
3661 		 * This still avoids useless tlb flushes for .text page faults
3662 		 * with threads.
3663 		 */
3664 		if (flags & FAULT_FLAG_WRITE)
3665 			flush_tlb_fix_spurious_fault(vma, address);
3666 	}
3667 unlock:
3668 	pte_unmap_unlock(pte, ptl);
3669 	return 0;
3670 }
3671 
3672 /*
3673  * By the time we get here, we already hold the mm semaphore
3674  */
3675 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3676 		unsigned long address, unsigned int flags)
3677 {
3678 	pgd_t *pgd;
3679 	pud_t *pud;
3680 	pmd_t *pmd;
3681 	pte_t *pte;
3682 
3683 	__set_current_state(TASK_RUNNING);
3684 
3685 	count_vm_event(PGFAULT);
3686 	mem_cgroup_count_vm_event(mm, PGFAULT);
3687 
3688 	/* do counter updates before entering really critical section. */
3689 	check_sync_rss_stat(current);
3690 
3691 	if (unlikely(is_vm_hugetlb_page(vma)))
3692 		return hugetlb_fault(mm, vma, address, flags);
3693 
3694 retry:
3695 	pgd = pgd_offset(mm, address);
3696 	pud = pud_alloc(mm, pgd, address);
3697 	if (!pud)
3698 		return VM_FAULT_OOM;
3699 	pmd = pmd_alloc(mm, pud, address);
3700 	if (!pmd)
3701 		return VM_FAULT_OOM;
3702 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3703 		if (!vma->vm_ops)
3704 			return do_huge_pmd_anonymous_page(mm, vma, address,
3705 							  pmd, flags);
3706 	} else {
3707 		pmd_t orig_pmd = *pmd;
3708 		int ret;
3709 
3710 		barrier();
3711 		if (pmd_trans_huge(orig_pmd)) {
3712 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3713 
3714 			/*
3715 			 * If the pmd is splitting, return and retry the
3716 			 * the fault.  Alternative: wait until the split
3717 			 * is done, and goto retry.
3718 			 */
3719 			if (pmd_trans_splitting(orig_pmd))
3720 				return 0;
3721 
3722 			if (pmd_numa(orig_pmd))
3723 				return do_huge_pmd_numa_page(mm, vma, address,
3724 							     orig_pmd, pmd);
3725 
3726 			if (dirty && !pmd_write(orig_pmd)) {
3727 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3728 							  orig_pmd);
3729 				/*
3730 				 * If COW results in an oom, the huge pmd will
3731 				 * have been split, so retry the fault on the
3732 				 * pte for a smaller charge.
3733 				 */
3734 				if (unlikely(ret & VM_FAULT_OOM))
3735 					goto retry;
3736 				return ret;
3737 			} else {
3738 				huge_pmd_set_accessed(mm, vma, address, pmd,
3739 						      orig_pmd, dirty);
3740 			}
3741 
3742 			return 0;
3743 		}
3744 	}
3745 
3746 	if (pmd_numa(*pmd))
3747 		return do_pmd_numa_page(mm, vma, address, pmd);
3748 
3749 	/*
3750 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3751 	 * run pte_offset_map on the pmd, if an huge pmd could
3752 	 * materialize from under us from a different thread.
3753 	 */
3754 	if (unlikely(pmd_none(*pmd)) &&
3755 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3756 		return VM_FAULT_OOM;
3757 	/* if an huge pmd materialized from under us just retry later */
3758 	if (unlikely(pmd_trans_huge(*pmd)))
3759 		return 0;
3760 	/*
3761 	 * A regular pmd is established and it can't morph into a huge pmd
3762 	 * from under us anymore at this point because we hold the mmap_sem
3763 	 * read mode and khugepaged takes it in write mode. So now it's
3764 	 * safe to run pte_offset_map().
3765 	 */
3766 	pte = pte_offset_map(pmd, address);
3767 
3768 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3769 }
3770 
3771 #ifndef __PAGETABLE_PUD_FOLDED
3772 /*
3773  * Allocate page upper directory.
3774  * We've already handled the fast-path in-line.
3775  */
3776 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3777 {
3778 	pud_t *new = pud_alloc_one(mm, address);
3779 	if (!new)
3780 		return -ENOMEM;
3781 
3782 	smp_wmb(); /* See comment in __pte_alloc */
3783 
3784 	spin_lock(&mm->page_table_lock);
3785 	if (pgd_present(*pgd))		/* Another has populated it */
3786 		pud_free(mm, new);
3787 	else
3788 		pgd_populate(mm, pgd, new);
3789 	spin_unlock(&mm->page_table_lock);
3790 	return 0;
3791 }
3792 #endif /* __PAGETABLE_PUD_FOLDED */
3793 
3794 #ifndef __PAGETABLE_PMD_FOLDED
3795 /*
3796  * Allocate page middle directory.
3797  * We've already handled the fast-path in-line.
3798  */
3799 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3800 {
3801 	pmd_t *new = pmd_alloc_one(mm, address);
3802 	if (!new)
3803 		return -ENOMEM;
3804 
3805 	smp_wmb(); /* See comment in __pte_alloc */
3806 
3807 	spin_lock(&mm->page_table_lock);
3808 #ifndef __ARCH_HAS_4LEVEL_HACK
3809 	if (pud_present(*pud))		/* Another has populated it */
3810 		pmd_free(mm, new);
3811 	else
3812 		pud_populate(mm, pud, new);
3813 #else
3814 	if (pgd_present(*pud))		/* Another has populated it */
3815 		pmd_free(mm, new);
3816 	else
3817 		pgd_populate(mm, pud, new);
3818 #endif /* __ARCH_HAS_4LEVEL_HACK */
3819 	spin_unlock(&mm->page_table_lock);
3820 	return 0;
3821 }
3822 #endif /* __PAGETABLE_PMD_FOLDED */
3823 
3824 int make_pages_present(unsigned long addr, unsigned long end)
3825 {
3826 	int ret, len, write;
3827 	struct vm_area_struct * vma;
3828 
3829 	vma = find_vma(current->mm, addr);
3830 	if (!vma)
3831 		return -ENOMEM;
3832 	/*
3833 	 * We want to touch writable mappings with a write fault in order
3834 	 * to break COW, except for shared mappings because these don't COW
3835 	 * and we would not want to dirty them for nothing.
3836 	 */
3837 	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3838 	BUG_ON(addr >= end);
3839 	BUG_ON(end > vma->vm_end);
3840 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3841 	ret = get_user_pages(current, current->mm, addr,
3842 			len, write, 0, NULL, NULL);
3843 	if (ret < 0)
3844 		return ret;
3845 	return ret == len ? 0 : -EFAULT;
3846 }
3847 
3848 #if !defined(__HAVE_ARCH_GATE_AREA)
3849 
3850 #if defined(AT_SYSINFO_EHDR)
3851 static struct vm_area_struct gate_vma;
3852 
3853 static int __init gate_vma_init(void)
3854 {
3855 	gate_vma.vm_mm = NULL;
3856 	gate_vma.vm_start = FIXADDR_USER_START;
3857 	gate_vma.vm_end = FIXADDR_USER_END;
3858 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3859 	gate_vma.vm_page_prot = __P101;
3860 
3861 	return 0;
3862 }
3863 __initcall(gate_vma_init);
3864 #endif
3865 
3866 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3867 {
3868 #ifdef AT_SYSINFO_EHDR
3869 	return &gate_vma;
3870 #else
3871 	return NULL;
3872 #endif
3873 }
3874 
3875 int in_gate_area_no_mm(unsigned long addr)
3876 {
3877 #ifdef AT_SYSINFO_EHDR
3878 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3879 		return 1;
3880 #endif
3881 	return 0;
3882 }
3883 
3884 #endif	/* __HAVE_ARCH_GATE_AREA */
3885 
3886 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3887 		pte_t **ptepp, spinlock_t **ptlp)
3888 {
3889 	pgd_t *pgd;
3890 	pud_t *pud;
3891 	pmd_t *pmd;
3892 	pte_t *ptep;
3893 
3894 	pgd = pgd_offset(mm, address);
3895 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3896 		goto out;
3897 
3898 	pud = pud_offset(pgd, address);
3899 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3900 		goto out;
3901 
3902 	pmd = pmd_offset(pud, address);
3903 	VM_BUG_ON(pmd_trans_huge(*pmd));
3904 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3905 		goto out;
3906 
3907 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3908 	if (pmd_huge(*pmd))
3909 		goto out;
3910 
3911 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3912 	if (!ptep)
3913 		goto out;
3914 	if (!pte_present(*ptep))
3915 		goto unlock;
3916 	*ptepp = ptep;
3917 	return 0;
3918 unlock:
3919 	pte_unmap_unlock(ptep, *ptlp);
3920 out:
3921 	return -EINVAL;
3922 }
3923 
3924 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3925 			     pte_t **ptepp, spinlock_t **ptlp)
3926 {
3927 	int res;
3928 
3929 	/* (void) is needed to make gcc happy */
3930 	(void) __cond_lock(*ptlp,
3931 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3932 	return res;
3933 }
3934 
3935 /**
3936  * follow_pfn - look up PFN at a user virtual address
3937  * @vma: memory mapping
3938  * @address: user virtual address
3939  * @pfn: location to store found PFN
3940  *
3941  * Only IO mappings and raw PFN mappings are allowed.
3942  *
3943  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3944  */
3945 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3946 	unsigned long *pfn)
3947 {
3948 	int ret = -EINVAL;
3949 	spinlock_t *ptl;
3950 	pte_t *ptep;
3951 
3952 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3953 		return ret;
3954 
3955 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3956 	if (ret)
3957 		return ret;
3958 	*pfn = pte_pfn(*ptep);
3959 	pte_unmap_unlock(ptep, ptl);
3960 	return 0;
3961 }
3962 EXPORT_SYMBOL(follow_pfn);
3963 
3964 #ifdef CONFIG_HAVE_IOREMAP_PROT
3965 int follow_phys(struct vm_area_struct *vma,
3966 		unsigned long address, unsigned int flags,
3967 		unsigned long *prot, resource_size_t *phys)
3968 {
3969 	int ret = -EINVAL;
3970 	pte_t *ptep, pte;
3971 	spinlock_t *ptl;
3972 
3973 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3974 		goto out;
3975 
3976 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3977 		goto out;
3978 	pte = *ptep;
3979 
3980 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3981 		goto unlock;
3982 
3983 	*prot = pgprot_val(pte_pgprot(pte));
3984 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3985 
3986 	ret = 0;
3987 unlock:
3988 	pte_unmap_unlock(ptep, ptl);
3989 out:
3990 	return ret;
3991 }
3992 
3993 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3994 			void *buf, int len, int write)
3995 {
3996 	resource_size_t phys_addr;
3997 	unsigned long prot = 0;
3998 	void __iomem *maddr;
3999 	int offset = addr & (PAGE_SIZE-1);
4000 
4001 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4002 		return -EINVAL;
4003 
4004 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4005 	if (write)
4006 		memcpy_toio(maddr + offset, buf, len);
4007 	else
4008 		memcpy_fromio(buf, maddr + offset, len);
4009 	iounmap(maddr);
4010 
4011 	return len;
4012 }
4013 #endif
4014 
4015 /*
4016  * Access another process' address space as given in mm.  If non-NULL, use the
4017  * given task for page fault accounting.
4018  */
4019 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4020 		unsigned long addr, void *buf, int len, int write)
4021 {
4022 	struct vm_area_struct *vma;
4023 	void *old_buf = buf;
4024 
4025 	down_read(&mm->mmap_sem);
4026 	/* ignore errors, just check how much was successfully transferred */
4027 	while (len) {
4028 		int bytes, ret, offset;
4029 		void *maddr;
4030 		struct page *page = NULL;
4031 
4032 		ret = get_user_pages(tsk, mm, addr, 1,
4033 				write, 1, &page, &vma);
4034 		if (ret <= 0) {
4035 			/*
4036 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4037 			 * we can access using slightly different code.
4038 			 */
4039 #ifdef CONFIG_HAVE_IOREMAP_PROT
4040 			vma = find_vma(mm, addr);
4041 			if (!vma || vma->vm_start > addr)
4042 				break;
4043 			if (vma->vm_ops && vma->vm_ops->access)
4044 				ret = vma->vm_ops->access(vma, addr, buf,
4045 							  len, write);
4046 			if (ret <= 0)
4047 #endif
4048 				break;
4049 			bytes = ret;
4050 		} else {
4051 			bytes = len;
4052 			offset = addr & (PAGE_SIZE-1);
4053 			if (bytes > PAGE_SIZE-offset)
4054 				bytes = PAGE_SIZE-offset;
4055 
4056 			maddr = kmap(page);
4057 			if (write) {
4058 				copy_to_user_page(vma, page, addr,
4059 						  maddr + offset, buf, bytes);
4060 				set_page_dirty_lock(page);
4061 			} else {
4062 				copy_from_user_page(vma, page, addr,
4063 						    buf, maddr + offset, bytes);
4064 			}
4065 			kunmap(page);
4066 			page_cache_release(page);
4067 		}
4068 		len -= bytes;
4069 		buf += bytes;
4070 		addr += bytes;
4071 	}
4072 	up_read(&mm->mmap_sem);
4073 
4074 	return buf - old_buf;
4075 }
4076 
4077 /**
4078  * access_remote_vm - access another process' address space
4079  * @mm:		the mm_struct of the target address space
4080  * @addr:	start address to access
4081  * @buf:	source or destination buffer
4082  * @len:	number of bytes to transfer
4083  * @write:	whether the access is a write
4084  *
4085  * The caller must hold a reference on @mm.
4086  */
4087 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4088 		void *buf, int len, int write)
4089 {
4090 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4091 }
4092 
4093 /*
4094  * Access another process' address space.
4095  * Source/target buffer must be kernel space,
4096  * Do not walk the page table directly, use get_user_pages
4097  */
4098 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4099 		void *buf, int len, int write)
4100 {
4101 	struct mm_struct *mm;
4102 	int ret;
4103 
4104 	mm = get_task_mm(tsk);
4105 	if (!mm)
4106 		return 0;
4107 
4108 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4109 	mmput(mm);
4110 
4111 	return ret;
4112 }
4113 
4114 /*
4115  * Print the name of a VMA.
4116  */
4117 void print_vma_addr(char *prefix, unsigned long ip)
4118 {
4119 	struct mm_struct *mm = current->mm;
4120 	struct vm_area_struct *vma;
4121 
4122 	/*
4123 	 * Do not print if we are in atomic
4124 	 * contexts (in exception stacks, etc.):
4125 	 */
4126 	if (preempt_count())
4127 		return;
4128 
4129 	down_read(&mm->mmap_sem);
4130 	vma = find_vma(mm, ip);
4131 	if (vma && vma->vm_file) {
4132 		struct file *f = vma->vm_file;
4133 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4134 		if (buf) {
4135 			char *p;
4136 
4137 			p = d_path(&f->f_path, buf, PAGE_SIZE);
4138 			if (IS_ERR(p))
4139 				p = "?";
4140 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4141 					vma->vm_start,
4142 					vma->vm_end - vma->vm_start);
4143 			free_page((unsigned long)buf);
4144 		}
4145 	}
4146 	up_read(&mm->mmap_sem);
4147 }
4148 
4149 #ifdef CONFIG_PROVE_LOCKING
4150 void might_fault(void)
4151 {
4152 	/*
4153 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4154 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4155 	 * get paged out, therefore we'll never actually fault, and the
4156 	 * below annotations will generate false positives.
4157 	 */
4158 	if (segment_eq(get_fs(), KERNEL_DS))
4159 		return;
4160 
4161 	might_sleep();
4162 	/*
4163 	 * it would be nicer only to annotate paths which are not under
4164 	 * pagefault_disable, however that requires a larger audit and
4165 	 * providing helpers like get_user_atomic.
4166 	 */
4167 	if (!in_atomic() && current->mm)
4168 		might_lock_read(&current->mm->mmap_sem);
4169 }
4170 EXPORT_SYMBOL(might_fault);
4171 #endif
4172 
4173 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4174 static void clear_gigantic_page(struct page *page,
4175 				unsigned long addr,
4176 				unsigned int pages_per_huge_page)
4177 {
4178 	int i;
4179 	struct page *p = page;
4180 
4181 	might_sleep();
4182 	for (i = 0; i < pages_per_huge_page;
4183 	     i++, p = mem_map_next(p, page, i)) {
4184 		cond_resched();
4185 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4186 	}
4187 }
4188 void clear_huge_page(struct page *page,
4189 		     unsigned long addr, unsigned int pages_per_huge_page)
4190 {
4191 	int i;
4192 
4193 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4194 		clear_gigantic_page(page, addr, pages_per_huge_page);
4195 		return;
4196 	}
4197 
4198 	might_sleep();
4199 	for (i = 0; i < pages_per_huge_page; i++) {
4200 		cond_resched();
4201 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4202 	}
4203 }
4204 
4205 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4206 				    unsigned long addr,
4207 				    struct vm_area_struct *vma,
4208 				    unsigned int pages_per_huge_page)
4209 {
4210 	int i;
4211 	struct page *dst_base = dst;
4212 	struct page *src_base = src;
4213 
4214 	for (i = 0; i < pages_per_huge_page; ) {
4215 		cond_resched();
4216 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4217 
4218 		i++;
4219 		dst = mem_map_next(dst, dst_base, i);
4220 		src = mem_map_next(src, src_base, i);
4221 	}
4222 }
4223 
4224 void copy_user_huge_page(struct page *dst, struct page *src,
4225 			 unsigned long addr, struct vm_area_struct *vma,
4226 			 unsigned int pages_per_huge_page)
4227 {
4228 	int i;
4229 
4230 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4231 		copy_user_gigantic_page(dst, src, addr, vma,
4232 					pages_per_huge_page);
4233 		return;
4234 	}
4235 
4236 	might_sleep();
4237 	for (i = 0; i < pages_per_huge_page; i++) {
4238 		cond_resched();
4239 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4240 	}
4241 }
4242 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4243