xref: /openbmc/linux/mm/memory.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/memory-tiers.h>
70 #include <linux/debugfs.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/dax.h>
73 #include <linux/oom.h>
74 #include <linux/numa.h>
75 #include <linux/perf_event.h>
76 #include <linux/ptrace.h>
77 #include <linux/vmalloc.h>
78 #include <linux/sched/sysctl.h>
79 
80 #include <trace/events/kmem.h>
81 
82 #include <asm/io.h>
83 #include <asm/mmu_context.h>
84 #include <asm/pgalloc.h>
85 #include <linux/uaccess.h>
86 #include <asm/tlb.h>
87 #include <asm/tlbflush.h>
88 
89 #include "pgalloc-track.h"
90 #include "internal.h"
91 #include "swap.h"
92 
93 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
94 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
95 #endif
96 
97 #ifndef CONFIG_NUMA
98 unsigned long max_mapnr;
99 EXPORT_SYMBOL(max_mapnr);
100 
101 struct page *mem_map;
102 EXPORT_SYMBOL(mem_map);
103 #endif
104 
105 static vm_fault_t do_fault(struct vm_fault *vmf);
106 
107 /*
108  * A number of key systems in x86 including ioremap() rely on the assumption
109  * that high_memory defines the upper bound on direct map memory, then end
110  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
111  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
112  * and ZONE_HIGHMEM.
113  */
114 void *high_memory;
115 EXPORT_SYMBOL(high_memory);
116 
117 /*
118  * Randomize the address space (stacks, mmaps, brk, etc.).
119  *
120  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
121  *   as ancient (libc5 based) binaries can segfault. )
122  */
123 int randomize_va_space __read_mostly =
124 #ifdef CONFIG_COMPAT_BRK
125 					1;
126 #else
127 					2;
128 #endif
129 
130 #ifndef arch_wants_old_prefaulted_pte
131 static inline bool arch_wants_old_prefaulted_pte(void)
132 {
133 	/*
134 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
135 	 * some architectures, even if it's performed in hardware. By
136 	 * default, "false" means prefaulted entries will be 'young'.
137 	 */
138 	return false;
139 }
140 #endif
141 
142 static int __init disable_randmaps(char *s)
143 {
144 	randomize_va_space = 0;
145 	return 1;
146 }
147 __setup("norandmaps", disable_randmaps);
148 
149 unsigned long zero_pfn __read_mostly;
150 EXPORT_SYMBOL(zero_pfn);
151 
152 unsigned long highest_memmap_pfn __read_mostly;
153 
154 /*
155  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
156  */
157 static int __init init_zero_pfn(void)
158 {
159 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
160 	return 0;
161 }
162 early_initcall(init_zero_pfn);
163 
164 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
165 {
166 	trace_rss_stat(mm, member, count);
167 }
168 
169 #if defined(SPLIT_RSS_COUNTING)
170 
171 void sync_mm_rss(struct mm_struct *mm)
172 {
173 	int i;
174 
175 	for (i = 0; i < NR_MM_COUNTERS; i++) {
176 		if (current->rss_stat.count[i]) {
177 			add_mm_counter(mm, i, current->rss_stat.count[i]);
178 			current->rss_stat.count[i] = 0;
179 		}
180 	}
181 	current->rss_stat.events = 0;
182 }
183 
184 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
185 {
186 	struct task_struct *task = current;
187 
188 	if (likely(task->mm == mm))
189 		task->rss_stat.count[member] += val;
190 	else
191 		add_mm_counter(mm, member, val);
192 }
193 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
194 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
195 
196 /* sync counter once per 64 page faults */
197 #define TASK_RSS_EVENTS_THRESH	(64)
198 static void check_sync_rss_stat(struct task_struct *task)
199 {
200 	if (unlikely(task != current))
201 		return;
202 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
203 		sync_mm_rss(task->mm);
204 }
205 #else /* SPLIT_RSS_COUNTING */
206 
207 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
208 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
209 
210 static void check_sync_rss_stat(struct task_struct *task)
211 {
212 }
213 
214 #endif /* SPLIT_RSS_COUNTING */
215 
216 /*
217  * Note: this doesn't free the actual pages themselves. That
218  * has been handled earlier when unmapping all the memory regions.
219  */
220 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
221 			   unsigned long addr)
222 {
223 	pgtable_t token = pmd_pgtable(*pmd);
224 	pmd_clear(pmd);
225 	pte_free_tlb(tlb, token, addr);
226 	mm_dec_nr_ptes(tlb->mm);
227 }
228 
229 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
230 				unsigned long addr, unsigned long end,
231 				unsigned long floor, unsigned long ceiling)
232 {
233 	pmd_t *pmd;
234 	unsigned long next;
235 	unsigned long start;
236 
237 	start = addr;
238 	pmd = pmd_offset(pud, addr);
239 	do {
240 		next = pmd_addr_end(addr, end);
241 		if (pmd_none_or_clear_bad(pmd))
242 			continue;
243 		free_pte_range(tlb, pmd, addr);
244 	} while (pmd++, addr = next, addr != end);
245 
246 	start &= PUD_MASK;
247 	if (start < floor)
248 		return;
249 	if (ceiling) {
250 		ceiling &= PUD_MASK;
251 		if (!ceiling)
252 			return;
253 	}
254 	if (end - 1 > ceiling - 1)
255 		return;
256 
257 	pmd = pmd_offset(pud, start);
258 	pud_clear(pud);
259 	pmd_free_tlb(tlb, pmd, start);
260 	mm_dec_nr_pmds(tlb->mm);
261 }
262 
263 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
264 				unsigned long addr, unsigned long end,
265 				unsigned long floor, unsigned long ceiling)
266 {
267 	pud_t *pud;
268 	unsigned long next;
269 	unsigned long start;
270 
271 	start = addr;
272 	pud = pud_offset(p4d, addr);
273 	do {
274 		next = pud_addr_end(addr, end);
275 		if (pud_none_or_clear_bad(pud))
276 			continue;
277 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
278 	} while (pud++, addr = next, addr != end);
279 
280 	start &= P4D_MASK;
281 	if (start < floor)
282 		return;
283 	if (ceiling) {
284 		ceiling &= P4D_MASK;
285 		if (!ceiling)
286 			return;
287 	}
288 	if (end - 1 > ceiling - 1)
289 		return;
290 
291 	pud = pud_offset(p4d, start);
292 	p4d_clear(p4d);
293 	pud_free_tlb(tlb, pud, start);
294 	mm_dec_nr_puds(tlb->mm);
295 }
296 
297 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
298 				unsigned long addr, unsigned long end,
299 				unsigned long floor, unsigned long ceiling)
300 {
301 	p4d_t *p4d;
302 	unsigned long next;
303 	unsigned long start;
304 
305 	start = addr;
306 	p4d = p4d_offset(pgd, addr);
307 	do {
308 		next = p4d_addr_end(addr, end);
309 		if (p4d_none_or_clear_bad(p4d))
310 			continue;
311 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
312 	} while (p4d++, addr = next, addr != end);
313 
314 	start &= PGDIR_MASK;
315 	if (start < floor)
316 		return;
317 	if (ceiling) {
318 		ceiling &= PGDIR_MASK;
319 		if (!ceiling)
320 			return;
321 	}
322 	if (end - 1 > ceiling - 1)
323 		return;
324 
325 	p4d = p4d_offset(pgd, start);
326 	pgd_clear(pgd);
327 	p4d_free_tlb(tlb, p4d, start);
328 }
329 
330 /*
331  * This function frees user-level page tables of a process.
332  */
333 void free_pgd_range(struct mmu_gather *tlb,
334 			unsigned long addr, unsigned long end,
335 			unsigned long floor, unsigned long ceiling)
336 {
337 	pgd_t *pgd;
338 	unsigned long next;
339 
340 	/*
341 	 * The next few lines have given us lots of grief...
342 	 *
343 	 * Why are we testing PMD* at this top level?  Because often
344 	 * there will be no work to do at all, and we'd prefer not to
345 	 * go all the way down to the bottom just to discover that.
346 	 *
347 	 * Why all these "- 1"s?  Because 0 represents both the bottom
348 	 * of the address space and the top of it (using -1 for the
349 	 * top wouldn't help much: the masks would do the wrong thing).
350 	 * The rule is that addr 0 and floor 0 refer to the bottom of
351 	 * the address space, but end 0 and ceiling 0 refer to the top
352 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
353 	 * that end 0 case should be mythical).
354 	 *
355 	 * Wherever addr is brought up or ceiling brought down, we must
356 	 * be careful to reject "the opposite 0" before it confuses the
357 	 * subsequent tests.  But what about where end is brought down
358 	 * by PMD_SIZE below? no, end can't go down to 0 there.
359 	 *
360 	 * Whereas we round start (addr) and ceiling down, by different
361 	 * masks at different levels, in order to test whether a table
362 	 * now has no other vmas using it, so can be freed, we don't
363 	 * bother to round floor or end up - the tests don't need that.
364 	 */
365 
366 	addr &= PMD_MASK;
367 	if (addr < floor) {
368 		addr += PMD_SIZE;
369 		if (!addr)
370 			return;
371 	}
372 	if (ceiling) {
373 		ceiling &= PMD_MASK;
374 		if (!ceiling)
375 			return;
376 	}
377 	if (end - 1 > ceiling - 1)
378 		end -= PMD_SIZE;
379 	if (addr > end - 1)
380 		return;
381 	/*
382 	 * We add page table cache pages with PAGE_SIZE,
383 	 * (see pte_free_tlb()), flush the tlb if we need
384 	 */
385 	tlb_change_page_size(tlb, PAGE_SIZE);
386 	pgd = pgd_offset(tlb->mm, addr);
387 	do {
388 		next = pgd_addr_end(addr, end);
389 		if (pgd_none_or_clear_bad(pgd))
390 			continue;
391 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
392 	} while (pgd++, addr = next, addr != end);
393 }
394 
395 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
396 		unsigned long floor, unsigned long ceiling)
397 {
398 	while (vma) {
399 		struct vm_area_struct *next = vma->vm_next;
400 		unsigned long addr = vma->vm_start;
401 
402 		/*
403 		 * Hide vma from rmap and truncate_pagecache before freeing
404 		 * pgtables
405 		 */
406 		unlink_anon_vmas(vma);
407 		unlink_file_vma(vma);
408 
409 		if (is_vm_hugetlb_page(vma)) {
410 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
411 				floor, next ? next->vm_start : ceiling);
412 		} else {
413 			/*
414 			 * Optimization: gather nearby vmas into one call down
415 			 */
416 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
417 			       && !is_vm_hugetlb_page(next)) {
418 				vma = next;
419 				next = vma->vm_next;
420 				unlink_anon_vmas(vma);
421 				unlink_file_vma(vma);
422 			}
423 			free_pgd_range(tlb, addr, vma->vm_end,
424 				floor, next ? next->vm_start : ceiling);
425 		}
426 		vma = next;
427 	}
428 }
429 
430 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
431 {
432 	spinlock_t *ptl = pmd_lock(mm, pmd);
433 
434 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
435 		mm_inc_nr_ptes(mm);
436 		/*
437 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
438 		 * visible before the pte is made visible to other CPUs by being
439 		 * put into page tables.
440 		 *
441 		 * The other side of the story is the pointer chasing in the page
442 		 * table walking code (when walking the page table without locking;
443 		 * ie. most of the time). Fortunately, these data accesses consist
444 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
445 		 * being the notable exception) will already guarantee loads are
446 		 * seen in-order. See the alpha page table accessors for the
447 		 * smp_rmb() barriers in page table walking code.
448 		 */
449 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
450 		pmd_populate(mm, pmd, *pte);
451 		*pte = NULL;
452 	}
453 	spin_unlock(ptl);
454 }
455 
456 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
457 {
458 	pgtable_t new = pte_alloc_one(mm);
459 	if (!new)
460 		return -ENOMEM;
461 
462 	pmd_install(mm, pmd, &new);
463 	if (new)
464 		pte_free(mm, new);
465 	return 0;
466 }
467 
468 int __pte_alloc_kernel(pmd_t *pmd)
469 {
470 	pte_t *new = pte_alloc_one_kernel(&init_mm);
471 	if (!new)
472 		return -ENOMEM;
473 
474 	spin_lock(&init_mm.page_table_lock);
475 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
476 		smp_wmb(); /* See comment in pmd_install() */
477 		pmd_populate_kernel(&init_mm, pmd, new);
478 		new = NULL;
479 	}
480 	spin_unlock(&init_mm.page_table_lock);
481 	if (new)
482 		pte_free_kernel(&init_mm, new);
483 	return 0;
484 }
485 
486 static inline void init_rss_vec(int *rss)
487 {
488 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
489 }
490 
491 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
492 {
493 	int i;
494 
495 	if (current->mm == mm)
496 		sync_mm_rss(mm);
497 	for (i = 0; i < NR_MM_COUNTERS; i++)
498 		if (rss[i])
499 			add_mm_counter(mm, i, rss[i]);
500 }
501 
502 /*
503  * This function is called to print an error when a bad pte
504  * is found. For example, we might have a PFN-mapped pte in
505  * a region that doesn't allow it.
506  *
507  * The calling function must still handle the error.
508  */
509 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
510 			  pte_t pte, struct page *page)
511 {
512 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
513 	p4d_t *p4d = p4d_offset(pgd, addr);
514 	pud_t *pud = pud_offset(p4d, addr);
515 	pmd_t *pmd = pmd_offset(pud, addr);
516 	struct address_space *mapping;
517 	pgoff_t index;
518 	static unsigned long resume;
519 	static unsigned long nr_shown;
520 	static unsigned long nr_unshown;
521 
522 	/*
523 	 * Allow a burst of 60 reports, then keep quiet for that minute;
524 	 * or allow a steady drip of one report per second.
525 	 */
526 	if (nr_shown == 60) {
527 		if (time_before(jiffies, resume)) {
528 			nr_unshown++;
529 			return;
530 		}
531 		if (nr_unshown) {
532 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
533 				 nr_unshown);
534 			nr_unshown = 0;
535 		}
536 		nr_shown = 0;
537 	}
538 	if (nr_shown++ == 0)
539 		resume = jiffies + 60 * HZ;
540 
541 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
542 	index = linear_page_index(vma, addr);
543 
544 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
545 		 current->comm,
546 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
547 	if (page)
548 		dump_page(page, "bad pte");
549 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
550 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
551 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
552 		 vma->vm_file,
553 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
554 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
555 		 mapping ? mapping->a_ops->read_folio : NULL);
556 	dump_stack();
557 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
558 }
559 
560 /*
561  * vm_normal_page -- This function gets the "struct page" associated with a pte.
562  *
563  * "Special" mappings do not wish to be associated with a "struct page" (either
564  * it doesn't exist, or it exists but they don't want to touch it). In this
565  * case, NULL is returned here. "Normal" mappings do have a struct page.
566  *
567  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
568  * pte bit, in which case this function is trivial. Secondly, an architecture
569  * may not have a spare pte bit, which requires a more complicated scheme,
570  * described below.
571  *
572  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
573  * special mapping (even if there are underlying and valid "struct pages").
574  * COWed pages of a VM_PFNMAP are always normal.
575  *
576  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
577  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
578  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
579  * mapping will always honor the rule
580  *
581  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
582  *
583  * And for normal mappings this is false.
584  *
585  * This restricts such mappings to be a linear translation from virtual address
586  * to pfn. To get around this restriction, we allow arbitrary mappings so long
587  * as the vma is not a COW mapping; in that case, we know that all ptes are
588  * special (because none can have been COWed).
589  *
590  *
591  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
592  *
593  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
594  * page" backing, however the difference is that _all_ pages with a struct
595  * page (that is, those where pfn_valid is true) are refcounted and considered
596  * normal pages by the VM. The disadvantage is that pages are refcounted
597  * (which can be slower and simply not an option for some PFNMAP users). The
598  * advantage is that we don't have to follow the strict linearity rule of
599  * PFNMAP mappings in order to support COWable mappings.
600  *
601  */
602 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
603 			    pte_t pte)
604 {
605 	unsigned long pfn = pte_pfn(pte);
606 
607 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
608 		if (likely(!pte_special(pte)))
609 			goto check_pfn;
610 		if (vma->vm_ops && vma->vm_ops->find_special_page)
611 			return vma->vm_ops->find_special_page(vma, addr);
612 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
613 			return NULL;
614 		if (is_zero_pfn(pfn))
615 			return NULL;
616 		if (pte_devmap(pte))
617 		/*
618 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
619 		 * and will have refcounts incremented on their struct pages
620 		 * when they are inserted into PTEs, thus they are safe to
621 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
622 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
623 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
624 		 */
625 			return NULL;
626 
627 		print_bad_pte(vma, addr, pte, NULL);
628 		return NULL;
629 	}
630 
631 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
632 
633 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
634 		if (vma->vm_flags & VM_MIXEDMAP) {
635 			if (!pfn_valid(pfn))
636 				return NULL;
637 			goto out;
638 		} else {
639 			unsigned long off;
640 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
641 			if (pfn == vma->vm_pgoff + off)
642 				return NULL;
643 			if (!is_cow_mapping(vma->vm_flags))
644 				return NULL;
645 		}
646 	}
647 
648 	if (is_zero_pfn(pfn))
649 		return NULL;
650 
651 check_pfn:
652 	if (unlikely(pfn > highest_memmap_pfn)) {
653 		print_bad_pte(vma, addr, pte, NULL);
654 		return NULL;
655 	}
656 
657 	/*
658 	 * NOTE! We still have PageReserved() pages in the page tables.
659 	 * eg. VDSO mappings can cause them to exist.
660 	 */
661 out:
662 	return pfn_to_page(pfn);
663 }
664 
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
667 				pmd_t pmd)
668 {
669 	unsigned long pfn = pmd_pfn(pmd);
670 
671 	/*
672 	 * There is no pmd_special() but there may be special pmds, e.g.
673 	 * in a direct-access (dax) mapping, so let's just replicate the
674 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
675 	 */
676 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
677 		if (vma->vm_flags & VM_MIXEDMAP) {
678 			if (!pfn_valid(pfn))
679 				return NULL;
680 			goto out;
681 		} else {
682 			unsigned long off;
683 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
684 			if (pfn == vma->vm_pgoff + off)
685 				return NULL;
686 			if (!is_cow_mapping(vma->vm_flags))
687 				return NULL;
688 		}
689 	}
690 
691 	if (pmd_devmap(pmd))
692 		return NULL;
693 	if (is_huge_zero_pmd(pmd))
694 		return NULL;
695 	if (unlikely(pfn > highest_memmap_pfn))
696 		return NULL;
697 
698 	/*
699 	 * NOTE! We still have PageReserved() pages in the page tables.
700 	 * eg. VDSO mappings can cause them to exist.
701 	 */
702 out:
703 	return pfn_to_page(pfn);
704 }
705 #endif
706 
707 static void restore_exclusive_pte(struct vm_area_struct *vma,
708 				  struct page *page, unsigned long address,
709 				  pte_t *ptep)
710 {
711 	pte_t pte;
712 	swp_entry_t entry;
713 
714 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
715 	if (pte_swp_soft_dirty(*ptep))
716 		pte = pte_mksoft_dirty(pte);
717 
718 	entry = pte_to_swp_entry(*ptep);
719 	if (pte_swp_uffd_wp(*ptep))
720 		pte = pte_mkuffd_wp(pte);
721 	else if (is_writable_device_exclusive_entry(entry))
722 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
723 
724 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
725 
726 	/*
727 	 * No need to take a page reference as one was already
728 	 * created when the swap entry was made.
729 	 */
730 	if (PageAnon(page))
731 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
732 	else
733 		/*
734 		 * Currently device exclusive access only supports anonymous
735 		 * memory so the entry shouldn't point to a filebacked page.
736 		 */
737 		WARN_ON_ONCE(1);
738 
739 	set_pte_at(vma->vm_mm, address, ptep, pte);
740 
741 	/*
742 	 * No need to invalidate - it was non-present before. However
743 	 * secondary CPUs may have mappings that need invalidating.
744 	 */
745 	update_mmu_cache(vma, address, ptep);
746 }
747 
748 /*
749  * Tries to restore an exclusive pte if the page lock can be acquired without
750  * sleeping.
751  */
752 static int
753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754 			unsigned long addr)
755 {
756 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
757 	struct page *page = pfn_swap_entry_to_page(entry);
758 
759 	if (trylock_page(page)) {
760 		restore_exclusive_pte(vma, page, addr, src_pte);
761 		unlock_page(page);
762 		return 0;
763 	}
764 
765 	return -EBUSY;
766 }
767 
768 /*
769  * copy one vm_area from one task to the other. Assumes the page tables
770  * already present in the new task to be cleared in the whole range
771  * covered by this vma.
772  */
773 
774 static unsigned long
775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
776 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
778 {
779 	unsigned long vm_flags = dst_vma->vm_flags;
780 	pte_t pte = *src_pte;
781 	struct page *page;
782 	swp_entry_t entry = pte_to_swp_entry(pte);
783 
784 	if (likely(!non_swap_entry(entry))) {
785 		if (swap_duplicate(entry) < 0)
786 			return -EIO;
787 
788 		/* make sure dst_mm is on swapoff's mmlist. */
789 		if (unlikely(list_empty(&dst_mm->mmlist))) {
790 			spin_lock(&mmlist_lock);
791 			if (list_empty(&dst_mm->mmlist))
792 				list_add(&dst_mm->mmlist,
793 						&src_mm->mmlist);
794 			spin_unlock(&mmlist_lock);
795 		}
796 		/* Mark the swap entry as shared. */
797 		if (pte_swp_exclusive(*src_pte)) {
798 			pte = pte_swp_clear_exclusive(*src_pte);
799 			set_pte_at(src_mm, addr, src_pte, pte);
800 		}
801 		rss[MM_SWAPENTS]++;
802 	} else if (is_migration_entry(entry)) {
803 		page = pfn_swap_entry_to_page(entry);
804 
805 		rss[mm_counter(page)]++;
806 
807 		if (!is_readable_migration_entry(entry) &&
808 				is_cow_mapping(vm_flags)) {
809 			/*
810 			 * COW mappings require pages in both parent and child
811 			 * to be set to read. A previously exclusive entry is
812 			 * now shared.
813 			 */
814 			entry = make_readable_migration_entry(
815 							swp_offset(entry));
816 			pte = swp_entry_to_pte(entry);
817 			if (pte_swp_soft_dirty(*src_pte))
818 				pte = pte_swp_mksoft_dirty(pte);
819 			if (pte_swp_uffd_wp(*src_pte))
820 				pte = pte_swp_mkuffd_wp(pte);
821 			set_pte_at(src_mm, addr, src_pte, pte);
822 		}
823 	} else if (is_device_private_entry(entry)) {
824 		page = pfn_swap_entry_to_page(entry);
825 
826 		/*
827 		 * Update rss count even for unaddressable pages, as
828 		 * they should treated just like normal pages in this
829 		 * respect.
830 		 *
831 		 * We will likely want to have some new rss counters
832 		 * for unaddressable pages, at some point. But for now
833 		 * keep things as they are.
834 		 */
835 		get_page(page);
836 		rss[mm_counter(page)]++;
837 		/* Cannot fail as these pages cannot get pinned. */
838 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
839 
840 		/*
841 		 * We do not preserve soft-dirty information, because so
842 		 * far, checkpoint/restore is the only feature that
843 		 * requires that. And checkpoint/restore does not work
844 		 * when a device driver is involved (you cannot easily
845 		 * save and restore device driver state).
846 		 */
847 		if (is_writable_device_private_entry(entry) &&
848 		    is_cow_mapping(vm_flags)) {
849 			entry = make_readable_device_private_entry(
850 							swp_offset(entry));
851 			pte = swp_entry_to_pte(entry);
852 			if (pte_swp_uffd_wp(*src_pte))
853 				pte = pte_swp_mkuffd_wp(pte);
854 			set_pte_at(src_mm, addr, src_pte, pte);
855 		}
856 	} else if (is_device_exclusive_entry(entry)) {
857 		/*
858 		 * Make device exclusive entries present by restoring the
859 		 * original entry then copying as for a present pte. Device
860 		 * exclusive entries currently only support private writable
861 		 * (ie. COW) mappings.
862 		 */
863 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
864 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
865 			return -EBUSY;
866 		return -ENOENT;
867 	} else if (is_pte_marker_entry(entry)) {
868 		/*
869 		 * We're copying the pgtable should only because dst_vma has
870 		 * uffd-wp enabled, do sanity check.
871 		 */
872 		WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
873 		set_pte_at(dst_mm, addr, dst_pte, pte);
874 		return 0;
875 	}
876 	if (!userfaultfd_wp(dst_vma))
877 		pte = pte_swp_clear_uffd_wp(pte);
878 	set_pte_at(dst_mm, addr, dst_pte, pte);
879 	return 0;
880 }
881 
882 /*
883  * Copy a present and normal page.
884  *
885  * NOTE! The usual case is that this isn't required;
886  * instead, the caller can just increase the page refcount
887  * and re-use the pte the traditional way.
888  *
889  * And if we need a pre-allocated page but don't yet have
890  * one, return a negative error to let the preallocation
891  * code know so that it can do so outside the page table
892  * lock.
893  */
894 static inline int
895 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
896 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
897 		  struct page **prealloc, struct page *page)
898 {
899 	struct page *new_page;
900 	pte_t pte;
901 
902 	new_page = *prealloc;
903 	if (!new_page)
904 		return -EAGAIN;
905 
906 	/*
907 	 * We have a prealloc page, all good!  Take it
908 	 * over and copy the page & arm it.
909 	 */
910 	*prealloc = NULL;
911 	copy_user_highpage(new_page, page, addr, src_vma);
912 	__SetPageUptodate(new_page);
913 	page_add_new_anon_rmap(new_page, dst_vma, addr);
914 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
915 	rss[mm_counter(new_page)]++;
916 
917 	/* All done, just insert the new page copy in the child */
918 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
919 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
920 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
921 		/* Uffd-wp needs to be delivered to dest pte as well */
922 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
923 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
924 	return 0;
925 }
926 
927 /*
928  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
929  * is required to copy this pte.
930  */
931 static inline int
932 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
933 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
934 		 struct page **prealloc)
935 {
936 	struct mm_struct *src_mm = src_vma->vm_mm;
937 	unsigned long vm_flags = src_vma->vm_flags;
938 	pte_t pte = *src_pte;
939 	struct page *page;
940 
941 	page = vm_normal_page(src_vma, addr, pte);
942 	if (page && PageAnon(page)) {
943 		/*
944 		 * If this page may have been pinned by the parent process,
945 		 * copy the page immediately for the child so that we'll always
946 		 * guarantee the pinned page won't be randomly replaced in the
947 		 * future.
948 		 */
949 		get_page(page);
950 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
951 			/* Page maybe pinned, we have to copy. */
952 			put_page(page);
953 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
954 						 addr, rss, prealloc, page);
955 		}
956 		rss[mm_counter(page)]++;
957 	} else if (page) {
958 		get_page(page);
959 		page_dup_file_rmap(page, false);
960 		rss[mm_counter(page)]++;
961 	}
962 
963 	/*
964 	 * If it's a COW mapping, write protect it both
965 	 * in the parent and the child
966 	 */
967 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
968 		ptep_set_wrprotect(src_mm, addr, src_pte);
969 		pte = pte_wrprotect(pte);
970 	}
971 	VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
972 
973 	/*
974 	 * If it's a shared mapping, mark it clean in
975 	 * the child
976 	 */
977 	if (vm_flags & VM_SHARED)
978 		pte = pte_mkclean(pte);
979 	pte = pte_mkold(pte);
980 
981 	if (!userfaultfd_wp(dst_vma))
982 		pte = pte_clear_uffd_wp(pte);
983 
984 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
985 	return 0;
986 }
987 
988 static inline struct page *
989 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
990 		   unsigned long addr)
991 {
992 	struct page *new_page;
993 
994 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
995 	if (!new_page)
996 		return NULL;
997 
998 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
999 		put_page(new_page);
1000 		return NULL;
1001 	}
1002 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1003 
1004 	return new_page;
1005 }
1006 
1007 static int
1008 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1009 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1010 	       unsigned long end)
1011 {
1012 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1013 	struct mm_struct *src_mm = src_vma->vm_mm;
1014 	pte_t *orig_src_pte, *orig_dst_pte;
1015 	pte_t *src_pte, *dst_pte;
1016 	spinlock_t *src_ptl, *dst_ptl;
1017 	int progress, ret = 0;
1018 	int rss[NR_MM_COUNTERS];
1019 	swp_entry_t entry = (swp_entry_t){0};
1020 	struct page *prealloc = NULL;
1021 
1022 again:
1023 	progress = 0;
1024 	init_rss_vec(rss);
1025 
1026 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1027 	if (!dst_pte) {
1028 		ret = -ENOMEM;
1029 		goto out;
1030 	}
1031 	src_pte = pte_offset_map(src_pmd, addr);
1032 	src_ptl = pte_lockptr(src_mm, src_pmd);
1033 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1034 	orig_src_pte = src_pte;
1035 	orig_dst_pte = dst_pte;
1036 	arch_enter_lazy_mmu_mode();
1037 
1038 	do {
1039 		/*
1040 		 * We are holding two locks at this point - either of them
1041 		 * could generate latencies in another task on another CPU.
1042 		 */
1043 		if (progress >= 32) {
1044 			progress = 0;
1045 			if (need_resched() ||
1046 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1047 				break;
1048 		}
1049 		if (pte_none(*src_pte)) {
1050 			progress++;
1051 			continue;
1052 		}
1053 		if (unlikely(!pte_present(*src_pte))) {
1054 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1055 						  dst_pte, src_pte,
1056 						  dst_vma, src_vma,
1057 						  addr, rss);
1058 			if (ret == -EIO) {
1059 				entry = pte_to_swp_entry(*src_pte);
1060 				break;
1061 			} else if (ret == -EBUSY) {
1062 				break;
1063 			} else if (!ret) {
1064 				progress += 8;
1065 				continue;
1066 			}
1067 
1068 			/*
1069 			 * Device exclusive entry restored, continue by copying
1070 			 * the now present pte.
1071 			 */
1072 			WARN_ON_ONCE(ret != -ENOENT);
1073 		}
1074 		/* copy_present_pte() will clear `*prealloc' if consumed */
1075 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1076 				       addr, rss, &prealloc);
1077 		/*
1078 		 * If we need a pre-allocated page for this pte, drop the
1079 		 * locks, allocate, and try again.
1080 		 */
1081 		if (unlikely(ret == -EAGAIN))
1082 			break;
1083 		if (unlikely(prealloc)) {
1084 			/*
1085 			 * pre-alloc page cannot be reused by next time so as
1086 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1087 			 * will allocate page according to address).  This
1088 			 * could only happen if one pinned pte changed.
1089 			 */
1090 			put_page(prealloc);
1091 			prealloc = NULL;
1092 		}
1093 		progress += 8;
1094 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1095 
1096 	arch_leave_lazy_mmu_mode();
1097 	spin_unlock(src_ptl);
1098 	pte_unmap(orig_src_pte);
1099 	add_mm_rss_vec(dst_mm, rss);
1100 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1101 	cond_resched();
1102 
1103 	if (ret == -EIO) {
1104 		VM_WARN_ON_ONCE(!entry.val);
1105 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1106 			ret = -ENOMEM;
1107 			goto out;
1108 		}
1109 		entry.val = 0;
1110 	} else if (ret == -EBUSY) {
1111 		goto out;
1112 	} else if (ret ==  -EAGAIN) {
1113 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1114 		if (!prealloc)
1115 			return -ENOMEM;
1116 	} else if (ret) {
1117 		VM_WARN_ON_ONCE(1);
1118 	}
1119 
1120 	/* We've captured and resolved the error. Reset, try again. */
1121 	ret = 0;
1122 
1123 	if (addr != end)
1124 		goto again;
1125 out:
1126 	if (unlikely(prealloc))
1127 		put_page(prealloc);
1128 	return ret;
1129 }
1130 
1131 static inline int
1132 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1133 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1134 	       unsigned long end)
1135 {
1136 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1137 	struct mm_struct *src_mm = src_vma->vm_mm;
1138 	pmd_t *src_pmd, *dst_pmd;
1139 	unsigned long next;
1140 
1141 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1142 	if (!dst_pmd)
1143 		return -ENOMEM;
1144 	src_pmd = pmd_offset(src_pud, addr);
1145 	do {
1146 		next = pmd_addr_end(addr, end);
1147 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1148 			|| pmd_devmap(*src_pmd)) {
1149 			int err;
1150 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1151 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1152 					    addr, dst_vma, src_vma);
1153 			if (err == -ENOMEM)
1154 				return -ENOMEM;
1155 			if (!err)
1156 				continue;
1157 			/* fall through */
1158 		}
1159 		if (pmd_none_or_clear_bad(src_pmd))
1160 			continue;
1161 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1162 				   addr, next))
1163 			return -ENOMEM;
1164 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1165 	return 0;
1166 }
1167 
1168 static inline int
1169 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1170 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1171 	       unsigned long end)
1172 {
1173 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1174 	struct mm_struct *src_mm = src_vma->vm_mm;
1175 	pud_t *src_pud, *dst_pud;
1176 	unsigned long next;
1177 
1178 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1179 	if (!dst_pud)
1180 		return -ENOMEM;
1181 	src_pud = pud_offset(src_p4d, addr);
1182 	do {
1183 		next = pud_addr_end(addr, end);
1184 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1185 			int err;
1186 
1187 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1188 			err = copy_huge_pud(dst_mm, src_mm,
1189 					    dst_pud, src_pud, addr, src_vma);
1190 			if (err == -ENOMEM)
1191 				return -ENOMEM;
1192 			if (!err)
1193 				continue;
1194 			/* fall through */
1195 		}
1196 		if (pud_none_or_clear_bad(src_pud))
1197 			continue;
1198 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1199 				   addr, next))
1200 			return -ENOMEM;
1201 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1202 	return 0;
1203 }
1204 
1205 static inline int
1206 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1207 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1208 	       unsigned long end)
1209 {
1210 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1211 	p4d_t *src_p4d, *dst_p4d;
1212 	unsigned long next;
1213 
1214 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1215 	if (!dst_p4d)
1216 		return -ENOMEM;
1217 	src_p4d = p4d_offset(src_pgd, addr);
1218 	do {
1219 		next = p4d_addr_end(addr, end);
1220 		if (p4d_none_or_clear_bad(src_p4d))
1221 			continue;
1222 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1223 				   addr, next))
1224 			return -ENOMEM;
1225 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1226 	return 0;
1227 }
1228 
1229 /*
1230  * Return true if the vma needs to copy the pgtable during this fork().  Return
1231  * false when we can speed up fork() by allowing lazy page faults later until
1232  * when the child accesses the memory range.
1233  */
1234 static bool
1235 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1236 {
1237 	/*
1238 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1239 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1240 	 * contains uffd-wp protection information, that's something we can't
1241 	 * retrieve from page cache, and skip copying will lose those info.
1242 	 */
1243 	if (userfaultfd_wp(dst_vma))
1244 		return true;
1245 
1246 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1247 		return true;
1248 
1249 	if (src_vma->anon_vma)
1250 		return true;
1251 
1252 	/*
1253 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1254 	 * becomes much lighter when there are big shared or private readonly
1255 	 * mappings. The tradeoff is that copy_page_range is more efficient
1256 	 * than faulting.
1257 	 */
1258 	return false;
1259 }
1260 
1261 int
1262 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1263 {
1264 	pgd_t *src_pgd, *dst_pgd;
1265 	unsigned long next;
1266 	unsigned long addr = src_vma->vm_start;
1267 	unsigned long end = src_vma->vm_end;
1268 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1269 	struct mm_struct *src_mm = src_vma->vm_mm;
1270 	struct mmu_notifier_range range;
1271 	bool is_cow;
1272 	int ret;
1273 
1274 	if (!vma_needs_copy(dst_vma, src_vma))
1275 		return 0;
1276 
1277 	if (is_vm_hugetlb_page(src_vma))
1278 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1279 
1280 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1281 		/*
1282 		 * We do not free on error cases below as remove_vma
1283 		 * gets called on error from higher level routine
1284 		 */
1285 		ret = track_pfn_copy(src_vma);
1286 		if (ret)
1287 			return ret;
1288 	}
1289 
1290 	/*
1291 	 * We need to invalidate the secondary MMU mappings only when
1292 	 * there could be a permission downgrade on the ptes of the
1293 	 * parent mm. And a permission downgrade will only happen if
1294 	 * is_cow_mapping() returns true.
1295 	 */
1296 	is_cow = is_cow_mapping(src_vma->vm_flags);
1297 
1298 	if (is_cow) {
1299 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1300 					0, src_vma, src_mm, addr, end);
1301 		mmu_notifier_invalidate_range_start(&range);
1302 		/*
1303 		 * Disabling preemption is not needed for the write side, as
1304 		 * the read side doesn't spin, but goes to the mmap_lock.
1305 		 *
1306 		 * Use the raw variant of the seqcount_t write API to avoid
1307 		 * lockdep complaining about preemptibility.
1308 		 */
1309 		mmap_assert_write_locked(src_mm);
1310 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1311 	}
1312 
1313 	ret = 0;
1314 	dst_pgd = pgd_offset(dst_mm, addr);
1315 	src_pgd = pgd_offset(src_mm, addr);
1316 	do {
1317 		next = pgd_addr_end(addr, end);
1318 		if (pgd_none_or_clear_bad(src_pgd))
1319 			continue;
1320 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1321 					    addr, next))) {
1322 			ret = -ENOMEM;
1323 			break;
1324 		}
1325 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1326 
1327 	if (is_cow) {
1328 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1329 		mmu_notifier_invalidate_range_end(&range);
1330 	}
1331 	return ret;
1332 }
1333 
1334 /*
1335  * Parameter block passed down to zap_pte_range in exceptional cases.
1336  */
1337 struct zap_details {
1338 	struct folio *single_folio;	/* Locked folio to be unmapped */
1339 	bool even_cows;			/* Zap COWed private pages too? */
1340 	zap_flags_t zap_flags;		/* Extra flags for zapping */
1341 };
1342 
1343 /* Whether we should zap all COWed (private) pages too */
1344 static inline bool should_zap_cows(struct zap_details *details)
1345 {
1346 	/* By default, zap all pages */
1347 	if (!details)
1348 		return true;
1349 
1350 	/* Or, we zap COWed pages only if the caller wants to */
1351 	return details->even_cows;
1352 }
1353 
1354 /* Decides whether we should zap this page with the page pointer specified */
1355 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1356 {
1357 	/* If we can make a decision without *page.. */
1358 	if (should_zap_cows(details))
1359 		return true;
1360 
1361 	/* E.g. the caller passes NULL for the case of a zero page */
1362 	if (!page)
1363 		return true;
1364 
1365 	/* Otherwise we should only zap non-anon pages */
1366 	return !PageAnon(page);
1367 }
1368 
1369 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1370 {
1371 	if (!details)
1372 		return false;
1373 
1374 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1375 }
1376 
1377 /*
1378  * This function makes sure that we'll replace the none pte with an uffd-wp
1379  * swap special pte marker when necessary. Must be with the pgtable lock held.
1380  */
1381 static inline void
1382 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1383 			      unsigned long addr, pte_t *pte,
1384 			      struct zap_details *details, pte_t pteval)
1385 {
1386 	if (zap_drop_file_uffd_wp(details))
1387 		return;
1388 
1389 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1390 }
1391 
1392 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1393 				struct vm_area_struct *vma, pmd_t *pmd,
1394 				unsigned long addr, unsigned long end,
1395 				struct zap_details *details)
1396 {
1397 	struct mm_struct *mm = tlb->mm;
1398 	int force_flush = 0;
1399 	int rss[NR_MM_COUNTERS];
1400 	spinlock_t *ptl;
1401 	pte_t *start_pte;
1402 	pte_t *pte;
1403 	swp_entry_t entry;
1404 
1405 	tlb_change_page_size(tlb, PAGE_SIZE);
1406 again:
1407 	init_rss_vec(rss);
1408 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1409 	pte = start_pte;
1410 	flush_tlb_batched_pending(mm);
1411 	arch_enter_lazy_mmu_mode();
1412 	do {
1413 		pte_t ptent = *pte;
1414 		struct page *page;
1415 
1416 		if (pte_none(ptent))
1417 			continue;
1418 
1419 		if (need_resched())
1420 			break;
1421 
1422 		if (pte_present(ptent)) {
1423 			page = vm_normal_page(vma, addr, ptent);
1424 			if (unlikely(!should_zap_page(details, page)))
1425 				continue;
1426 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1427 							tlb->fullmm);
1428 			tlb_remove_tlb_entry(tlb, pte, addr);
1429 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1430 						      ptent);
1431 			if (unlikely(!page))
1432 				continue;
1433 
1434 			if (!PageAnon(page)) {
1435 				if (pte_dirty(ptent)) {
1436 					force_flush = 1;
1437 					set_page_dirty(page);
1438 				}
1439 				if (pte_young(ptent) &&
1440 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1441 					mark_page_accessed(page);
1442 			}
1443 			rss[mm_counter(page)]--;
1444 			page_remove_rmap(page, vma, false);
1445 			if (unlikely(page_mapcount(page) < 0))
1446 				print_bad_pte(vma, addr, ptent, page);
1447 			if (unlikely(__tlb_remove_page(tlb, page))) {
1448 				force_flush = 1;
1449 				addr += PAGE_SIZE;
1450 				break;
1451 			}
1452 			continue;
1453 		}
1454 
1455 		entry = pte_to_swp_entry(ptent);
1456 		if (is_device_private_entry(entry) ||
1457 		    is_device_exclusive_entry(entry)) {
1458 			page = pfn_swap_entry_to_page(entry);
1459 			if (unlikely(!should_zap_page(details, page)))
1460 				continue;
1461 			/*
1462 			 * Both device private/exclusive mappings should only
1463 			 * work with anonymous page so far, so we don't need to
1464 			 * consider uffd-wp bit when zap. For more information,
1465 			 * see zap_install_uffd_wp_if_needed().
1466 			 */
1467 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1468 			rss[mm_counter(page)]--;
1469 			if (is_device_private_entry(entry))
1470 				page_remove_rmap(page, vma, false);
1471 			put_page(page);
1472 		} else if (!non_swap_entry(entry)) {
1473 			/* Genuine swap entry, hence a private anon page */
1474 			if (!should_zap_cows(details))
1475 				continue;
1476 			rss[MM_SWAPENTS]--;
1477 			if (unlikely(!free_swap_and_cache(entry)))
1478 				print_bad_pte(vma, addr, ptent, NULL);
1479 		} else if (is_migration_entry(entry)) {
1480 			page = pfn_swap_entry_to_page(entry);
1481 			if (!should_zap_page(details, page))
1482 				continue;
1483 			rss[mm_counter(page)]--;
1484 		} else if (pte_marker_entry_uffd_wp(entry)) {
1485 			/* Only drop the uffd-wp marker if explicitly requested */
1486 			if (!zap_drop_file_uffd_wp(details))
1487 				continue;
1488 		} else if (is_hwpoison_entry(entry) ||
1489 			   is_swapin_error_entry(entry)) {
1490 			if (!should_zap_cows(details))
1491 				continue;
1492 		} else {
1493 			/* We should have covered all the swap entry types */
1494 			WARN_ON_ONCE(1);
1495 		}
1496 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1497 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1498 	} while (pte++, addr += PAGE_SIZE, addr != end);
1499 
1500 	add_mm_rss_vec(mm, rss);
1501 	arch_leave_lazy_mmu_mode();
1502 
1503 	/* Do the actual TLB flush before dropping ptl */
1504 	if (force_flush)
1505 		tlb_flush_mmu_tlbonly(tlb);
1506 	pte_unmap_unlock(start_pte, ptl);
1507 
1508 	/*
1509 	 * If we forced a TLB flush (either due to running out of
1510 	 * batch buffers or because we needed to flush dirty TLB
1511 	 * entries before releasing the ptl), free the batched
1512 	 * memory too. Restart if we didn't do everything.
1513 	 */
1514 	if (force_flush) {
1515 		force_flush = 0;
1516 		tlb_flush_mmu(tlb);
1517 	}
1518 
1519 	if (addr != end) {
1520 		cond_resched();
1521 		goto again;
1522 	}
1523 
1524 	return addr;
1525 }
1526 
1527 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1528 				struct vm_area_struct *vma, pud_t *pud,
1529 				unsigned long addr, unsigned long end,
1530 				struct zap_details *details)
1531 {
1532 	pmd_t *pmd;
1533 	unsigned long next;
1534 
1535 	pmd = pmd_offset(pud, addr);
1536 	do {
1537 		next = pmd_addr_end(addr, end);
1538 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1539 			if (next - addr != HPAGE_PMD_SIZE)
1540 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1541 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1542 				goto next;
1543 			/* fall through */
1544 		} else if (details && details->single_folio &&
1545 			   folio_test_pmd_mappable(details->single_folio) &&
1546 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1547 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1548 			/*
1549 			 * Take and drop THP pmd lock so that we cannot return
1550 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1551 			 * but not yet decremented compound_mapcount().
1552 			 */
1553 			spin_unlock(ptl);
1554 		}
1555 
1556 		/*
1557 		 * Here there can be other concurrent MADV_DONTNEED or
1558 		 * trans huge page faults running, and if the pmd is
1559 		 * none or trans huge it can change under us. This is
1560 		 * because MADV_DONTNEED holds the mmap_lock in read
1561 		 * mode.
1562 		 */
1563 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1564 			goto next;
1565 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1566 next:
1567 		cond_resched();
1568 	} while (pmd++, addr = next, addr != end);
1569 
1570 	return addr;
1571 }
1572 
1573 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1574 				struct vm_area_struct *vma, p4d_t *p4d,
1575 				unsigned long addr, unsigned long end,
1576 				struct zap_details *details)
1577 {
1578 	pud_t *pud;
1579 	unsigned long next;
1580 
1581 	pud = pud_offset(p4d, addr);
1582 	do {
1583 		next = pud_addr_end(addr, end);
1584 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1585 			if (next - addr != HPAGE_PUD_SIZE) {
1586 				mmap_assert_locked(tlb->mm);
1587 				split_huge_pud(vma, pud, addr);
1588 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1589 				goto next;
1590 			/* fall through */
1591 		}
1592 		if (pud_none_or_clear_bad(pud))
1593 			continue;
1594 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1595 next:
1596 		cond_resched();
1597 	} while (pud++, addr = next, addr != end);
1598 
1599 	return addr;
1600 }
1601 
1602 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1603 				struct vm_area_struct *vma, pgd_t *pgd,
1604 				unsigned long addr, unsigned long end,
1605 				struct zap_details *details)
1606 {
1607 	p4d_t *p4d;
1608 	unsigned long next;
1609 
1610 	p4d = p4d_offset(pgd, addr);
1611 	do {
1612 		next = p4d_addr_end(addr, end);
1613 		if (p4d_none_or_clear_bad(p4d))
1614 			continue;
1615 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1616 	} while (p4d++, addr = next, addr != end);
1617 
1618 	return addr;
1619 }
1620 
1621 void unmap_page_range(struct mmu_gather *tlb,
1622 			     struct vm_area_struct *vma,
1623 			     unsigned long addr, unsigned long end,
1624 			     struct zap_details *details)
1625 {
1626 	pgd_t *pgd;
1627 	unsigned long next;
1628 
1629 	BUG_ON(addr >= end);
1630 	tlb_start_vma(tlb, vma);
1631 	pgd = pgd_offset(vma->vm_mm, addr);
1632 	do {
1633 		next = pgd_addr_end(addr, end);
1634 		if (pgd_none_or_clear_bad(pgd))
1635 			continue;
1636 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1637 	} while (pgd++, addr = next, addr != end);
1638 	tlb_end_vma(tlb, vma);
1639 }
1640 
1641 
1642 static void unmap_single_vma(struct mmu_gather *tlb,
1643 		struct vm_area_struct *vma, unsigned long start_addr,
1644 		unsigned long end_addr,
1645 		struct zap_details *details)
1646 {
1647 	unsigned long start = max(vma->vm_start, start_addr);
1648 	unsigned long end;
1649 
1650 	if (start >= vma->vm_end)
1651 		return;
1652 	end = min(vma->vm_end, end_addr);
1653 	if (end <= vma->vm_start)
1654 		return;
1655 
1656 	if (vma->vm_file)
1657 		uprobe_munmap(vma, start, end);
1658 
1659 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1660 		untrack_pfn(vma, 0, 0);
1661 
1662 	if (start != end) {
1663 		if (unlikely(is_vm_hugetlb_page(vma))) {
1664 			/*
1665 			 * It is undesirable to test vma->vm_file as it
1666 			 * should be non-null for valid hugetlb area.
1667 			 * However, vm_file will be NULL in the error
1668 			 * cleanup path of mmap_region. When
1669 			 * hugetlbfs ->mmap method fails,
1670 			 * mmap_region() nullifies vma->vm_file
1671 			 * before calling this function to clean up.
1672 			 * Since no pte has actually been setup, it is
1673 			 * safe to do nothing in this case.
1674 			 */
1675 			if (vma->vm_file) {
1676 				zap_flags_t zap_flags = details ?
1677 				    details->zap_flags : 0;
1678 				i_mmap_lock_write(vma->vm_file->f_mapping);
1679 				__unmap_hugepage_range_final(tlb, vma, start, end,
1680 							     NULL, zap_flags);
1681 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1682 			}
1683 		} else
1684 			unmap_page_range(tlb, vma, start, end, details);
1685 	}
1686 }
1687 
1688 /**
1689  * unmap_vmas - unmap a range of memory covered by a list of vma's
1690  * @tlb: address of the caller's struct mmu_gather
1691  * @vma: the starting vma
1692  * @start_addr: virtual address at which to start unmapping
1693  * @end_addr: virtual address at which to end unmapping
1694  *
1695  * Unmap all pages in the vma list.
1696  *
1697  * Only addresses between `start' and `end' will be unmapped.
1698  *
1699  * The VMA list must be sorted in ascending virtual address order.
1700  *
1701  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1702  * range after unmap_vmas() returns.  So the only responsibility here is to
1703  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1704  * drops the lock and schedules.
1705  */
1706 void unmap_vmas(struct mmu_gather *tlb,
1707 		struct vm_area_struct *vma, unsigned long start_addr,
1708 		unsigned long end_addr)
1709 {
1710 	struct mmu_notifier_range range;
1711 	struct zap_details details = {
1712 		.zap_flags = ZAP_FLAG_DROP_MARKER,
1713 		/* Careful - we need to zap private pages too! */
1714 		.even_cows = true,
1715 	};
1716 
1717 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1718 				start_addr, end_addr);
1719 	mmu_notifier_invalidate_range_start(&range);
1720 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1721 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1722 	mmu_notifier_invalidate_range_end(&range);
1723 }
1724 
1725 /**
1726  * zap_page_range - remove user pages in a given range
1727  * @vma: vm_area_struct holding the applicable pages
1728  * @start: starting address of pages to zap
1729  * @size: number of bytes to zap
1730  *
1731  * Caller must protect the VMA list
1732  */
1733 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1734 		unsigned long size)
1735 {
1736 	struct mmu_notifier_range range;
1737 	struct mmu_gather tlb;
1738 
1739 	lru_add_drain();
1740 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1741 				start, start + size);
1742 	tlb_gather_mmu(&tlb, vma->vm_mm);
1743 	update_hiwater_rss(vma->vm_mm);
1744 	mmu_notifier_invalidate_range_start(&range);
1745 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1746 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1747 	mmu_notifier_invalidate_range_end(&range);
1748 	tlb_finish_mmu(&tlb);
1749 }
1750 
1751 /**
1752  * zap_page_range_single - remove user pages in a given range
1753  * @vma: vm_area_struct holding the applicable pages
1754  * @address: starting address of pages to zap
1755  * @size: number of bytes to zap
1756  * @details: details of shared cache invalidation
1757  *
1758  * The range must fit into one VMA.
1759  */
1760 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1761 		unsigned long size, struct zap_details *details)
1762 {
1763 	struct mmu_notifier_range range;
1764 	struct mmu_gather tlb;
1765 
1766 	lru_add_drain();
1767 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1768 				address, address + size);
1769 	tlb_gather_mmu(&tlb, vma->vm_mm);
1770 	update_hiwater_rss(vma->vm_mm);
1771 	mmu_notifier_invalidate_range_start(&range);
1772 	unmap_single_vma(&tlb, vma, address, range.end, details);
1773 	mmu_notifier_invalidate_range_end(&range);
1774 	tlb_finish_mmu(&tlb);
1775 }
1776 
1777 /**
1778  * zap_vma_ptes - remove ptes mapping the vma
1779  * @vma: vm_area_struct holding ptes to be zapped
1780  * @address: starting address of pages to zap
1781  * @size: number of bytes to zap
1782  *
1783  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1784  *
1785  * The entire address range must be fully contained within the vma.
1786  *
1787  */
1788 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1789 		unsigned long size)
1790 {
1791 	if (!range_in_vma(vma, address, address + size) ||
1792 	    		!(vma->vm_flags & VM_PFNMAP))
1793 		return;
1794 
1795 	zap_page_range_single(vma, address, size, NULL);
1796 }
1797 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1798 
1799 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1800 {
1801 	pgd_t *pgd;
1802 	p4d_t *p4d;
1803 	pud_t *pud;
1804 	pmd_t *pmd;
1805 
1806 	pgd = pgd_offset(mm, addr);
1807 	p4d = p4d_alloc(mm, pgd, addr);
1808 	if (!p4d)
1809 		return NULL;
1810 	pud = pud_alloc(mm, p4d, addr);
1811 	if (!pud)
1812 		return NULL;
1813 	pmd = pmd_alloc(mm, pud, addr);
1814 	if (!pmd)
1815 		return NULL;
1816 
1817 	VM_BUG_ON(pmd_trans_huge(*pmd));
1818 	return pmd;
1819 }
1820 
1821 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1822 			spinlock_t **ptl)
1823 {
1824 	pmd_t *pmd = walk_to_pmd(mm, addr);
1825 
1826 	if (!pmd)
1827 		return NULL;
1828 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1829 }
1830 
1831 static int validate_page_before_insert(struct page *page)
1832 {
1833 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1834 		return -EINVAL;
1835 	flush_dcache_page(page);
1836 	return 0;
1837 }
1838 
1839 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1840 			unsigned long addr, struct page *page, pgprot_t prot)
1841 {
1842 	if (!pte_none(*pte))
1843 		return -EBUSY;
1844 	/* Ok, finally just insert the thing.. */
1845 	get_page(page);
1846 	inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1847 	page_add_file_rmap(page, vma, false);
1848 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1849 	return 0;
1850 }
1851 
1852 /*
1853  * This is the old fallback for page remapping.
1854  *
1855  * For historical reasons, it only allows reserved pages. Only
1856  * old drivers should use this, and they needed to mark their
1857  * pages reserved for the old functions anyway.
1858  */
1859 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1860 			struct page *page, pgprot_t prot)
1861 {
1862 	int retval;
1863 	pte_t *pte;
1864 	spinlock_t *ptl;
1865 
1866 	retval = validate_page_before_insert(page);
1867 	if (retval)
1868 		goto out;
1869 	retval = -ENOMEM;
1870 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1871 	if (!pte)
1872 		goto out;
1873 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1874 	pte_unmap_unlock(pte, ptl);
1875 out:
1876 	return retval;
1877 }
1878 
1879 #ifdef pte_index
1880 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1881 			unsigned long addr, struct page *page, pgprot_t prot)
1882 {
1883 	int err;
1884 
1885 	if (!page_count(page))
1886 		return -EINVAL;
1887 	err = validate_page_before_insert(page);
1888 	if (err)
1889 		return err;
1890 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1891 }
1892 
1893 /* insert_pages() amortizes the cost of spinlock operations
1894  * when inserting pages in a loop. Arch *must* define pte_index.
1895  */
1896 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1897 			struct page **pages, unsigned long *num, pgprot_t prot)
1898 {
1899 	pmd_t *pmd = NULL;
1900 	pte_t *start_pte, *pte;
1901 	spinlock_t *pte_lock;
1902 	struct mm_struct *const mm = vma->vm_mm;
1903 	unsigned long curr_page_idx = 0;
1904 	unsigned long remaining_pages_total = *num;
1905 	unsigned long pages_to_write_in_pmd;
1906 	int ret;
1907 more:
1908 	ret = -EFAULT;
1909 	pmd = walk_to_pmd(mm, addr);
1910 	if (!pmd)
1911 		goto out;
1912 
1913 	pages_to_write_in_pmd = min_t(unsigned long,
1914 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1915 
1916 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1917 	ret = -ENOMEM;
1918 	if (pte_alloc(mm, pmd))
1919 		goto out;
1920 
1921 	while (pages_to_write_in_pmd) {
1922 		int pte_idx = 0;
1923 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1924 
1925 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1926 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1927 			int err = insert_page_in_batch_locked(vma, pte,
1928 				addr, pages[curr_page_idx], prot);
1929 			if (unlikely(err)) {
1930 				pte_unmap_unlock(start_pte, pte_lock);
1931 				ret = err;
1932 				remaining_pages_total -= pte_idx;
1933 				goto out;
1934 			}
1935 			addr += PAGE_SIZE;
1936 			++curr_page_idx;
1937 		}
1938 		pte_unmap_unlock(start_pte, pte_lock);
1939 		pages_to_write_in_pmd -= batch_size;
1940 		remaining_pages_total -= batch_size;
1941 	}
1942 	if (remaining_pages_total)
1943 		goto more;
1944 	ret = 0;
1945 out:
1946 	*num = remaining_pages_total;
1947 	return ret;
1948 }
1949 #endif  /* ifdef pte_index */
1950 
1951 /**
1952  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1953  * @vma: user vma to map to
1954  * @addr: target start user address of these pages
1955  * @pages: source kernel pages
1956  * @num: in: number of pages to map. out: number of pages that were *not*
1957  * mapped. (0 means all pages were successfully mapped).
1958  *
1959  * Preferred over vm_insert_page() when inserting multiple pages.
1960  *
1961  * In case of error, we may have mapped a subset of the provided
1962  * pages. It is the caller's responsibility to account for this case.
1963  *
1964  * The same restrictions apply as in vm_insert_page().
1965  */
1966 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1967 			struct page **pages, unsigned long *num)
1968 {
1969 #ifdef pte_index
1970 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1971 
1972 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1973 		return -EFAULT;
1974 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1975 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1976 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1977 		vma->vm_flags |= VM_MIXEDMAP;
1978 	}
1979 	/* Defer page refcount checking till we're about to map that page. */
1980 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1981 #else
1982 	unsigned long idx = 0, pgcount = *num;
1983 	int err = -EINVAL;
1984 
1985 	for (; idx < pgcount; ++idx) {
1986 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1987 		if (err)
1988 			break;
1989 	}
1990 	*num = pgcount - idx;
1991 	return err;
1992 #endif  /* ifdef pte_index */
1993 }
1994 EXPORT_SYMBOL(vm_insert_pages);
1995 
1996 /**
1997  * vm_insert_page - insert single page into user vma
1998  * @vma: user vma to map to
1999  * @addr: target user address of this page
2000  * @page: source kernel page
2001  *
2002  * This allows drivers to insert individual pages they've allocated
2003  * into a user vma.
2004  *
2005  * The page has to be a nice clean _individual_ kernel allocation.
2006  * If you allocate a compound page, you need to have marked it as
2007  * such (__GFP_COMP), or manually just split the page up yourself
2008  * (see split_page()).
2009  *
2010  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2011  * took an arbitrary page protection parameter. This doesn't allow
2012  * that. Your vma protection will have to be set up correctly, which
2013  * means that if you want a shared writable mapping, you'd better
2014  * ask for a shared writable mapping!
2015  *
2016  * The page does not need to be reserved.
2017  *
2018  * Usually this function is called from f_op->mmap() handler
2019  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2020  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2021  * function from other places, for example from page-fault handler.
2022  *
2023  * Return: %0 on success, negative error code otherwise.
2024  */
2025 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2026 			struct page *page)
2027 {
2028 	if (addr < vma->vm_start || addr >= vma->vm_end)
2029 		return -EFAULT;
2030 	if (!page_count(page))
2031 		return -EINVAL;
2032 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2033 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2034 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2035 		vma->vm_flags |= VM_MIXEDMAP;
2036 	}
2037 	return insert_page(vma, addr, page, vma->vm_page_prot);
2038 }
2039 EXPORT_SYMBOL(vm_insert_page);
2040 
2041 /*
2042  * __vm_map_pages - maps range of kernel pages into user vma
2043  * @vma: user vma to map to
2044  * @pages: pointer to array of source kernel pages
2045  * @num: number of pages in page array
2046  * @offset: user's requested vm_pgoff
2047  *
2048  * This allows drivers to map range of kernel pages into a user vma.
2049  *
2050  * Return: 0 on success and error code otherwise.
2051  */
2052 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2053 				unsigned long num, unsigned long offset)
2054 {
2055 	unsigned long count = vma_pages(vma);
2056 	unsigned long uaddr = vma->vm_start;
2057 	int ret, i;
2058 
2059 	/* Fail if the user requested offset is beyond the end of the object */
2060 	if (offset >= num)
2061 		return -ENXIO;
2062 
2063 	/* Fail if the user requested size exceeds available object size */
2064 	if (count > num - offset)
2065 		return -ENXIO;
2066 
2067 	for (i = 0; i < count; i++) {
2068 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2069 		if (ret < 0)
2070 			return ret;
2071 		uaddr += PAGE_SIZE;
2072 	}
2073 
2074 	return 0;
2075 }
2076 
2077 /**
2078  * vm_map_pages - maps range of kernel pages starts with non zero offset
2079  * @vma: user vma to map to
2080  * @pages: pointer to array of source kernel pages
2081  * @num: number of pages in page array
2082  *
2083  * Maps an object consisting of @num pages, catering for the user's
2084  * requested vm_pgoff
2085  *
2086  * If we fail to insert any page into the vma, the function will return
2087  * immediately leaving any previously inserted pages present.  Callers
2088  * from the mmap handler may immediately return the error as their caller
2089  * will destroy the vma, removing any successfully inserted pages. Other
2090  * callers should make their own arrangements for calling unmap_region().
2091  *
2092  * Context: Process context. Called by mmap handlers.
2093  * Return: 0 on success and error code otherwise.
2094  */
2095 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2096 				unsigned long num)
2097 {
2098 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2099 }
2100 EXPORT_SYMBOL(vm_map_pages);
2101 
2102 /**
2103  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2104  * @vma: user vma to map to
2105  * @pages: pointer to array of source kernel pages
2106  * @num: number of pages in page array
2107  *
2108  * Similar to vm_map_pages(), except that it explicitly sets the offset
2109  * to 0. This function is intended for the drivers that did not consider
2110  * vm_pgoff.
2111  *
2112  * Context: Process context. Called by mmap handlers.
2113  * Return: 0 on success and error code otherwise.
2114  */
2115 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2116 				unsigned long num)
2117 {
2118 	return __vm_map_pages(vma, pages, num, 0);
2119 }
2120 EXPORT_SYMBOL(vm_map_pages_zero);
2121 
2122 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2123 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2124 {
2125 	struct mm_struct *mm = vma->vm_mm;
2126 	pte_t *pte, entry;
2127 	spinlock_t *ptl;
2128 
2129 	pte = get_locked_pte(mm, addr, &ptl);
2130 	if (!pte)
2131 		return VM_FAULT_OOM;
2132 	if (!pte_none(*pte)) {
2133 		if (mkwrite) {
2134 			/*
2135 			 * For read faults on private mappings the PFN passed
2136 			 * in may not match the PFN we have mapped if the
2137 			 * mapped PFN is a writeable COW page.  In the mkwrite
2138 			 * case we are creating a writable PTE for a shared
2139 			 * mapping and we expect the PFNs to match. If they
2140 			 * don't match, we are likely racing with block
2141 			 * allocation and mapping invalidation so just skip the
2142 			 * update.
2143 			 */
2144 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2145 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2146 				goto out_unlock;
2147 			}
2148 			entry = pte_mkyoung(*pte);
2149 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2150 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2151 				update_mmu_cache(vma, addr, pte);
2152 		}
2153 		goto out_unlock;
2154 	}
2155 
2156 	/* Ok, finally just insert the thing.. */
2157 	if (pfn_t_devmap(pfn))
2158 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2159 	else
2160 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2161 
2162 	if (mkwrite) {
2163 		entry = pte_mkyoung(entry);
2164 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2165 	}
2166 
2167 	set_pte_at(mm, addr, pte, entry);
2168 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2169 
2170 out_unlock:
2171 	pte_unmap_unlock(pte, ptl);
2172 	return VM_FAULT_NOPAGE;
2173 }
2174 
2175 /**
2176  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2177  * @vma: user vma to map to
2178  * @addr: target user address of this page
2179  * @pfn: source kernel pfn
2180  * @pgprot: pgprot flags for the inserted page
2181  *
2182  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2183  * to override pgprot on a per-page basis.
2184  *
2185  * This only makes sense for IO mappings, and it makes no sense for
2186  * COW mappings.  In general, using multiple vmas is preferable;
2187  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2188  * impractical.
2189  *
2190  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2191  * a value of @pgprot different from that of @vma->vm_page_prot.
2192  *
2193  * Context: Process context.  May allocate using %GFP_KERNEL.
2194  * Return: vm_fault_t value.
2195  */
2196 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2197 			unsigned long pfn, pgprot_t pgprot)
2198 {
2199 	/*
2200 	 * Technically, architectures with pte_special can avoid all these
2201 	 * restrictions (same for remap_pfn_range).  However we would like
2202 	 * consistency in testing and feature parity among all, so we should
2203 	 * try to keep these invariants in place for everybody.
2204 	 */
2205 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2206 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2207 						(VM_PFNMAP|VM_MIXEDMAP));
2208 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2209 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2210 
2211 	if (addr < vma->vm_start || addr >= vma->vm_end)
2212 		return VM_FAULT_SIGBUS;
2213 
2214 	if (!pfn_modify_allowed(pfn, pgprot))
2215 		return VM_FAULT_SIGBUS;
2216 
2217 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2218 
2219 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2220 			false);
2221 }
2222 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2223 
2224 /**
2225  * vmf_insert_pfn - insert single pfn into user vma
2226  * @vma: user vma to map to
2227  * @addr: target user address of this page
2228  * @pfn: source kernel pfn
2229  *
2230  * Similar to vm_insert_page, this allows drivers to insert individual pages
2231  * they've allocated into a user vma. Same comments apply.
2232  *
2233  * This function should only be called from a vm_ops->fault handler, and
2234  * in that case the handler should return the result of this function.
2235  *
2236  * vma cannot be a COW mapping.
2237  *
2238  * As this is called only for pages that do not currently exist, we
2239  * do not need to flush old virtual caches or the TLB.
2240  *
2241  * Context: Process context.  May allocate using %GFP_KERNEL.
2242  * Return: vm_fault_t value.
2243  */
2244 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2245 			unsigned long pfn)
2246 {
2247 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2248 }
2249 EXPORT_SYMBOL(vmf_insert_pfn);
2250 
2251 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2252 {
2253 	/* these checks mirror the abort conditions in vm_normal_page */
2254 	if (vma->vm_flags & VM_MIXEDMAP)
2255 		return true;
2256 	if (pfn_t_devmap(pfn))
2257 		return true;
2258 	if (pfn_t_special(pfn))
2259 		return true;
2260 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2261 		return true;
2262 	return false;
2263 }
2264 
2265 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2266 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2267 		bool mkwrite)
2268 {
2269 	int err;
2270 
2271 	BUG_ON(!vm_mixed_ok(vma, pfn));
2272 
2273 	if (addr < vma->vm_start || addr >= vma->vm_end)
2274 		return VM_FAULT_SIGBUS;
2275 
2276 	track_pfn_insert(vma, &pgprot, pfn);
2277 
2278 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2279 		return VM_FAULT_SIGBUS;
2280 
2281 	/*
2282 	 * If we don't have pte special, then we have to use the pfn_valid()
2283 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2284 	 * refcount the page if pfn_valid is true (hence insert_page rather
2285 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2286 	 * without pte special, it would there be refcounted as a normal page.
2287 	 */
2288 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2289 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2290 		struct page *page;
2291 
2292 		/*
2293 		 * At this point we are committed to insert_page()
2294 		 * regardless of whether the caller specified flags that
2295 		 * result in pfn_t_has_page() == false.
2296 		 */
2297 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2298 		err = insert_page(vma, addr, page, pgprot);
2299 	} else {
2300 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2301 	}
2302 
2303 	if (err == -ENOMEM)
2304 		return VM_FAULT_OOM;
2305 	if (err < 0 && err != -EBUSY)
2306 		return VM_FAULT_SIGBUS;
2307 
2308 	return VM_FAULT_NOPAGE;
2309 }
2310 
2311 /**
2312  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2313  * @vma: user vma to map to
2314  * @addr: target user address of this page
2315  * @pfn: source kernel pfn
2316  * @pgprot: pgprot flags for the inserted page
2317  *
2318  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2319  * to override pgprot on a per-page basis.
2320  *
2321  * Typically this function should be used by drivers to set caching- and
2322  * encryption bits different than those of @vma->vm_page_prot, because
2323  * the caching- or encryption mode may not be known at mmap() time.
2324  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2325  * to set caching and encryption bits for those vmas (except for COW pages).
2326  * This is ensured by core vm only modifying these page table entries using
2327  * functions that don't touch caching- or encryption bits, using pte_modify()
2328  * if needed. (See for example mprotect()).
2329  * Also when new page-table entries are created, this is only done using the
2330  * fault() callback, and never using the value of vma->vm_page_prot,
2331  * except for page-table entries that point to anonymous pages as the result
2332  * of COW.
2333  *
2334  * Context: Process context.  May allocate using %GFP_KERNEL.
2335  * Return: vm_fault_t value.
2336  */
2337 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2338 				 pfn_t pfn, pgprot_t pgprot)
2339 {
2340 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2341 }
2342 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2343 
2344 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2345 		pfn_t pfn)
2346 {
2347 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2348 }
2349 EXPORT_SYMBOL(vmf_insert_mixed);
2350 
2351 /*
2352  *  If the insertion of PTE failed because someone else already added a
2353  *  different entry in the mean time, we treat that as success as we assume
2354  *  the same entry was actually inserted.
2355  */
2356 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2357 		unsigned long addr, pfn_t pfn)
2358 {
2359 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2360 }
2361 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2362 
2363 /*
2364  * maps a range of physical memory into the requested pages. the old
2365  * mappings are removed. any references to nonexistent pages results
2366  * in null mappings (currently treated as "copy-on-access")
2367  */
2368 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2369 			unsigned long addr, unsigned long end,
2370 			unsigned long pfn, pgprot_t prot)
2371 {
2372 	pte_t *pte, *mapped_pte;
2373 	spinlock_t *ptl;
2374 	int err = 0;
2375 
2376 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2377 	if (!pte)
2378 		return -ENOMEM;
2379 	arch_enter_lazy_mmu_mode();
2380 	do {
2381 		BUG_ON(!pte_none(*pte));
2382 		if (!pfn_modify_allowed(pfn, prot)) {
2383 			err = -EACCES;
2384 			break;
2385 		}
2386 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2387 		pfn++;
2388 	} while (pte++, addr += PAGE_SIZE, addr != end);
2389 	arch_leave_lazy_mmu_mode();
2390 	pte_unmap_unlock(mapped_pte, ptl);
2391 	return err;
2392 }
2393 
2394 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2395 			unsigned long addr, unsigned long end,
2396 			unsigned long pfn, pgprot_t prot)
2397 {
2398 	pmd_t *pmd;
2399 	unsigned long next;
2400 	int err;
2401 
2402 	pfn -= addr >> PAGE_SHIFT;
2403 	pmd = pmd_alloc(mm, pud, addr);
2404 	if (!pmd)
2405 		return -ENOMEM;
2406 	VM_BUG_ON(pmd_trans_huge(*pmd));
2407 	do {
2408 		next = pmd_addr_end(addr, end);
2409 		err = remap_pte_range(mm, pmd, addr, next,
2410 				pfn + (addr >> PAGE_SHIFT), prot);
2411 		if (err)
2412 			return err;
2413 	} while (pmd++, addr = next, addr != end);
2414 	return 0;
2415 }
2416 
2417 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2418 			unsigned long addr, unsigned long end,
2419 			unsigned long pfn, pgprot_t prot)
2420 {
2421 	pud_t *pud;
2422 	unsigned long next;
2423 	int err;
2424 
2425 	pfn -= addr >> PAGE_SHIFT;
2426 	pud = pud_alloc(mm, p4d, addr);
2427 	if (!pud)
2428 		return -ENOMEM;
2429 	do {
2430 		next = pud_addr_end(addr, end);
2431 		err = remap_pmd_range(mm, pud, addr, next,
2432 				pfn + (addr >> PAGE_SHIFT), prot);
2433 		if (err)
2434 			return err;
2435 	} while (pud++, addr = next, addr != end);
2436 	return 0;
2437 }
2438 
2439 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2440 			unsigned long addr, unsigned long end,
2441 			unsigned long pfn, pgprot_t prot)
2442 {
2443 	p4d_t *p4d;
2444 	unsigned long next;
2445 	int err;
2446 
2447 	pfn -= addr >> PAGE_SHIFT;
2448 	p4d = p4d_alloc(mm, pgd, addr);
2449 	if (!p4d)
2450 		return -ENOMEM;
2451 	do {
2452 		next = p4d_addr_end(addr, end);
2453 		err = remap_pud_range(mm, p4d, addr, next,
2454 				pfn + (addr >> PAGE_SHIFT), prot);
2455 		if (err)
2456 			return err;
2457 	} while (p4d++, addr = next, addr != end);
2458 	return 0;
2459 }
2460 
2461 /*
2462  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2463  * must have pre-validated the caching bits of the pgprot_t.
2464  */
2465 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2466 		unsigned long pfn, unsigned long size, pgprot_t prot)
2467 {
2468 	pgd_t *pgd;
2469 	unsigned long next;
2470 	unsigned long end = addr + PAGE_ALIGN(size);
2471 	struct mm_struct *mm = vma->vm_mm;
2472 	int err;
2473 
2474 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2475 		return -EINVAL;
2476 
2477 	/*
2478 	 * Physically remapped pages are special. Tell the
2479 	 * rest of the world about it:
2480 	 *   VM_IO tells people not to look at these pages
2481 	 *	(accesses can have side effects).
2482 	 *   VM_PFNMAP tells the core MM that the base pages are just
2483 	 *	raw PFN mappings, and do not have a "struct page" associated
2484 	 *	with them.
2485 	 *   VM_DONTEXPAND
2486 	 *      Disable vma merging and expanding with mremap().
2487 	 *   VM_DONTDUMP
2488 	 *      Omit vma from core dump, even when VM_IO turned off.
2489 	 *
2490 	 * There's a horrible special case to handle copy-on-write
2491 	 * behaviour that some programs depend on. We mark the "original"
2492 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2493 	 * See vm_normal_page() for details.
2494 	 */
2495 	if (is_cow_mapping(vma->vm_flags)) {
2496 		if (addr != vma->vm_start || end != vma->vm_end)
2497 			return -EINVAL;
2498 		vma->vm_pgoff = pfn;
2499 	}
2500 
2501 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2502 
2503 	BUG_ON(addr >= end);
2504 	pfn -= addr >> PAGE_SHIFT;
2505 	pgd = pgd_offset(mm, addr);
2506 	flush_cache_range(vma, addr, end);
2507 	do {
2508 		next = pgd_addr_end(addr, end);
2509 		err = remap_p4d_range(mm, pgd, addr, next,
2510 				pfn + (addr >> PAGE_SHIFT), prot);
2511 		if (err)
2512 			return err;
2513 	} while (pgd++, addr = next, addr != end);
2514 
2515 	return 0;
2516 }
2517 
2518 /**
2519  * remap_pfn_range - remap kernel memory to userspace
2520  * @vma: user vma to map to
2521  * @addr: target page aligned user address to start at
2522  * @pfn: page frame number of kernel physical memory address
2523  * @size: size of mapping area
2524  * @prot: page protection flags for this mapping
2525  *
2526  * Note: this is only safe if the mm semaphore is held when called.
2527  *
2528  * Return: %0 on success, negative error code otherwise.
2529  */
2530 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2531 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2532 {
2533 	int err;
2534 
2535 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2536 	if (err)
2537 		return -EINVAL;
2538 
2539 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2540 	if (err)
2541 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2542 	return err;
2543 }
2544 EXPORT_SYMBOL(remap_pfn_range);
2545 
2546 /**
2547  * vm_iomap_memory - remap memory to userspace
2548  * @vma: user vma to map to
2549  * @start: start of the physical memory to be mapped
2550  * @len: size of area
2551  *
2552  * This is a simplified io_remap_pfn_range() for common driver use. The
2553  * driver just needs to give us the physical memory range to be mapped,
2554  * we'll figure out the rest from the vma information.
2555  *
2556  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2557  * whatever write-combining details or similar.
2558  *
2559  * Return: %0 on success, negative error code otherwise.
2560  */
2561 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2562 {
2563 	unsigned long vm_len, pfn, pages;
2564 
2565 	/* Check that the physical memory area passed in looks valid */
2566 	if (start + len < start)
2567 		return -EINVAL;
2568 	/*
2569 	 * You *really* shouldn't map things that aren't page-aligned,
2570 	 * but we've historically allowed it because IO memory might
2571 	 * just have smaller alignment.
2572 	 */
2573 	len += start & ~PAGE_MASK;
2574 	pfn = start >> PAGE_SHIFT;
2575 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2576 	if (pfn + pages < pfn)
2577 		return -EINVAL;
2578 
2579 	/* We start the mapping 'vm_pgoff' pages into the area */
2580 	if (vma->vm_pgoff > pages)
2581 		return -EINVAL;
2582 	pfn += vma->vm_pgoff;
2583 	pages -= vma->vm_pgoff;
2584 
2585 	/* Can we fit all of the mapping? */
2586 	vm_len = vma->vm_end - vma->vm_start;
2587 	if (vm_len >> PAGE_SHIFT > pages)
2588 		return -EINVAL;
2589 
2590 	/* Ok, let it rip */
2591 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2592 }
2593 EXPORT_SYMBOL(vm_iomap_memory);
2594 
2595 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2596 				     unsigned long addr, unsigned long end,
2597 				     pte_fn_t fn, void *data, bool create,
2598 				     pgtbl_mod_mask *mask)
2599 {
2600 	pte_t *pte, *mapped_pte;
2601 	int err = 0;
2602 	spinlock_t *ptl;
2603 
2604 	if (create) {
2605 		mapped_pte = pte = (mm == &init_mm) ?
2606 			pte_alloc_kernel_track(pmd, addr, mask) :
2607 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2608 		if (!pte)
2609 			return -ENOMEM;
2610 	} else {
2611 		mapped_pte = pte = (mm == &init_mm) ?
2612 			pte_offset_kernel(pmd, addr) :
2613 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2614 	}
2615 
2616 	BUG_ON(pmd_huge(*pmd));
2617 
2618 	arch_enter_lazy_mmu_mode();
2619 
2620 	if (fn) {
2621 		do {
2622 			if (create || !pte_none(*pte)) {
2623 				err = fn(pte++, addr, data);
2624 				if (err)
2625 					break;
2626 			}
2627 		} while (addr += PAGE_SIZE, addr != end);
2628 	}
2629 	*mask |= PGTBL_PTE_MODIFIED;
2630 
2631 	arch_leave_lazy_mmu_mode();
2632 
2633 	if (mm != &init_mm)
2634 		pte_unmap_unlock(mapped_pte, ptl);
2635 	return err;
2636 }
2637 
2638 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2639 				     unsigned long addr, unsigned long end,
2640 				     pte_fn_t fn, void *data, bool create,
2641 				     pgtbl_mod_mask *mask)
2642 {
2643 	pmd_t *pmd;
2644 	unsigned long next;
2645 	int err = 0;
2646 
2647 	BUG_ON(pud_huge(*pud));
2648 
2649 	if (create) {
2650 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2651 		if (!pmd)
2652 			return -ENOMEM;
2653 	} else {
2654 		pmd = pmd_offset(pud, addr);
2655 	}
2656 	do {
2657 		next = pmd_addr_end(addr, end);
2658 		if (pmd_none(*pmd) && !create)
2659 			continue;
2660 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2661 			return -EINVAL;
2662 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2663 			if (!create)
2664 				continue;
2665 			pmd_clear_bad(pmd);
2666 		}
2667 		err = apply_to_pte_range(mm, pmd, addr, next,
2668 					 fn, data, create, mask);
2669 		if (err)
2670 			break;
2671 	} while (pmd++, addr = next, addr != end);
2672 
2673 	return err;
2674 }
2675 
2676 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2677 				     unsigned long addr, unsigned long end,
2678 				     pte_fn_t fn, void *data, bool create,
2679 				     pgtbl_mod_mask *mask)
2680 {
2681 	pud_t *pud;
2682 	unsigned long next;
2683 	int err = 0;
2684 
2685 	if (create) {
2686 		pud = pud_alloc_track(mm, p4d, addr, mask);
2687 		if (!pud)
2688 			return -ENOMEM;
2689 	} else {
2690 		pud = pud_offset(p4d, addr);
2691 	}
2692 	do {
2693 		next = pud_addr_end(addr, end);
2694 		if (pud_none(*pud) && !create)
2695 			continue;
2696 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2697 			return -EINVAL;
2698 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2699 			if (!create)
2700 				continue;
2701 			pud_clear_bad(pud);
2702 		}
2703 		err = apply_to_pmd_range(mm, pud, addr, next,
2704 					 fn, data, create, mask);
2705 		if (err)
2706 			break;
2707 	} while (pud++, addr = next, addr != end);
2708 
2709 	return err;
2710 }
2711 
2712 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2713 				     unsigned long addr, unsigned long end,
2714 				     pte_fn_t fn, void *data, bool create,
2715 				     pgtbl_mod_mask *mask)
2716 {
2717 	p4d_t *p4d;
2718 	unsigned long next;
2719 	int err = 0;
2720 
2721 	if (create) {
2722 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2723 		if (!p4d)
2724 			return -ENOMEM;
2725 	} else {
2726 		p4d = p4d_offset(pgd, addr);
2727 	}
2728 	do {
2729 		next = p4d_addr_end(addr, end);
2730 		if (p4d_none(*p4d) && !create)
2731 			continue;
2732 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2733 			return -EINVAL;
2734 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2735 			if (!create)
2736 				continue;
2737 			p4d_clear_bad(p4d);
2738 		}
2739 		err = apply_to_pud_range(mm, p4d, addr, next,
2740 					 fn, data, create, mask);
2741 		if (err)
2742 			break;
2743 	} while (p4d++, addr = next, addr != end);
2744 
2745 	return err;
2746 }
2747 
2748 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2749 				 unsigned long size, pte_fn_t fn,
2750 				 void *data, bool create)
2751 {
2752 	pgd_t *pgd;
2753 	unsigned long start = addr, next;
2754 	unsigned long end = addr + size;
2755 	pgtbl_mod_mask mask = 0;
2756 	int err = 0;
2757 
2758 	if (WARN_ON(addr >= end))
2759 		return -EINVAL;
2760 
2761 	pgd = pgd_offset(mm, addr);
2762 	do {
2763 		next = pgd_addr_end(addr, end);
2764 		if (pgd_none(*pgd) && !create)
2765 			continue;
2766 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2767 			return -EINVAL;
2768 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2769 			if (!create)
2770 				continue;
2771 			pgd_clear_bad(pgd);
2772 		}
2773 		err = apply_to_p4d_range(mm, pgd, addr, next,
2774 					 fn, data, create, &mask);
2775 		if (err)
2776 			break;
2777 	} while (pgd++, addr = next, addr != end);
2778 
2779 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2780 		arch_sync_kernel_mappings(start, start + size);
2781 
2782 	return err;
2783 }
2784 
2785 /*
2786  * Scan a region of virtual memory, filling in page tables as necessary
2787  * and calling a provided function on each leaf page table.
2788  */
2789 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2790 			unsigned long size, pte_fn_t fn, void *data)
2791 {
2792 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2793 }
2794 EXPORT_SYMBOL_GPL(apply_to_page_range);
2795 
2796 /*
2797  * Scan a region of virtual memory, calling a provided function on
2798  * each leaf page table where it exists.
2799  *
2800  * Unlike apply_to_page_range, this does _not_ fill in page tables
2801  * where they are absent.
2802  */
2803 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2804 				 unsigned long size, pte_fn_t fn, void *data)
2805 {
2806 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2807 }
2808 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2809 
2810 /*
2811  * handle_pte_fault chooses page fault handler according to an entry which was
2812  * read non-atomically.  Before making any commitment, on those architectures
2813  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2814  * parts, do_swap_page must check under lock before unmapping the pte and
2815  * proceeding (but do_wp_page is only called after already making such a check;
2816  * and do_anonymous_page can safely check later on).
2817  */
2818 static inline int pte_unmap_same(struct vm_fault *vmf)
2819 {
2820 	int same = 1;
2821 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2822 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2823 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2824 		spin_lock(ptl);
2825 		same = pte_same(*vmf->pte, vmf->orig_pte);
2826 		spin_unlock(ptl);
2827 	}
2828 #endif
2829 	pte_unmap(vmf->pte);
2830 	vmf->pte = NULL;
2831 	return same;
2832 }
2833 
2834 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2835 				       struct vm_fault *vmf)
2836 {
2837 	bool ret;
2838 	void *kaddr;
2839 	void __user *uaddr;
2840 	bool locked = false;
2841 	struct vm_area_struct *vma = vmf->vma;
2842 	struct mm_struct *mm = vma->vm_mm;
2843 	unsigned long addr = vmf->address;
2844 
2845 	if (likely(src)) {
2846 		copy_user_highpage(dst, src, addr, vma);
2847 		return true;
2848 	}
2849 
2850 	/*
2851 	 * If the source page was a PFN mapping, we don't have
2852 	 * a "struct page" for it. We do a best-effort copy by
2853 	 * just copying from the original user address. If that
2854 	 * fails, we just zero-fill it. Live with it.
2855 	 */
2856 	kaddr = kmap_atomic(dst);
2857 	uaddr = (void __user *)(addr & PAGE_MASK);
2858 
2859 	/*
2860 	 * On architectures with software "accessed" bits, we would
2861 	 * take a double page fault, so mark it accessed here.
2862 	 */
2863 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2864 		pte_t entry;
2865 
2866 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2867 		locked = true;
2868 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2869 			/*
2870 			 * Other thread has already handled the fault
2871 			 * and update local tlb only
2872 			 */
2873 			update_mmu_tlb(vma, addr, vmf->pte);
2874 			ret = false;
2875 			goto pte_unlock;
2876 		}
2877 
2878 		entry = pte_mkyoung(vmf->orig_pte);
2879 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2880 			update_mmu_cache(vma, addr, vmf->pte);
2881 	}
2882 
2883 	/*
2884 	 * This really shouldn't fail, because the page is there
2885 	 * in the page tables. But it might just be unreadable,
2886 	 * in which case we just give up and fill the result with
2887 	 * zeroes.
2888 	 */
2889 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2890 		if (locked)
2891 			goto warn;
2892 
2893 		/* Re-validate under PTL if the page is still mapped */
2894 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2895 		locked = true;
2896 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2897 			/* The PTE changed under us, update local tlb */
2898 			update_mmu_tlb(vma, addr, vmf->pte);
2899 			ret = false;
2900 			goto pte_unlock;
2901 		}
2902 
2903 		/*
2904 		 * The same page can be mapped back since last copy attempt.
2905 		 * Try to copy again under PTL.
2906 		 */
2907 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2908 			/*
2909 			 * Give a warn in case there can be some obscure
2910 			 * use-case
2911 			 */
2912 warn:
2913 			WARN_ON_ONCE(1);
2914 			clear_page(kaddr);
2915 		}
2916 	}
2917 
2918 	ret = true;
2919 
2920 pte_unlock:
2921 	if (locked)
2922 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2923 	kunmap_atomic(kaddr);
2924 	flush_dcache_page(dst);
2925 
2926 	return ret;
2927 }
2928 
2929 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2930 {
2931 	struct file *vm_file = vma->vm_file;
2932 
2933 	if (vm_file)
2934 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2935 
2936 	/*
2937 	 * Special mappings (e.g. VDSO) do not have any file so fake
2938 	 * a default GFP_KERNEL for them.
2939 	 */
2940 	return GFP_KERNEL;
2941 }
2942 
2943 /*
2944  * Notify the address space that the page is about to become writable so that
2945  * it can prohibit this or wait for the page to get into an appropriate state.
2946  *
2947  * We do this without the lock held, so that it can sleep if it needs to.
2948  */
2949 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2950 {
2951 	vm_fault_t ret;
2952 	struct page *page = vmf->page;
2953 	unsigned int old_flags = vmf->flags;
2954 
2955 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2956 
2957 	if (vmf->vma->vm_file &&
2958 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2959 		return VM_FAULT_SIGBUS;
2960 
2961 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2962 	/* Restore original flags so that caller is not surprised */
2963 	vmf->flags = old_flags;
2964 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2965 		return ret;
2966 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2967 		lock_page(page);
2968 		if (!page->mapping) {
2969 			unlock_page(page);
2970 			return 0; /* retry */
2971 		}
2972 		ret |= VM_FAULT_LOCKED;
2973 	} else
2974 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2975 	return ret;
2976 }
2977 
2978 /*
2979  * Handle dirtying of a page in shared file mapping on a write fault.
2980  *
2981  * The function expects the page to be locked and unlocks it.
2982  */
2983 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2984 {
2985 	struct vm_area_struct *vma = vmf->vma;
2986 	struct address_space *mapping;
2987 	struct page *page = vmf->page;
2988 	bool dirtied;
2989 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2990 
2991 	dirtied = set_page_dirty(page);
2992 	VM_BUG_ON_PAGE(PageAnon(page), page);
2993 	/*
2994 	 * Take a local copy of the address_space - page.mapping may be zeroed
2995 	 * by truncate after unlock_page().   The address_space itself remains
2996 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2997 	 * release semantics to prevent the compiler from undoing this copying.
2998 	 */
2999 	mapping = page_rmapping(page);
3000 	unlock_page(page);
3001 
3002 	if (!page_mkwrite)
3003 		file_update_time(vma->vm_file);
3004 
3005 	/*
3006 	 * Throttle page dirtying rate down to writeback speed.
3007 	 *
3008 	 * mapping may be NULL here because some device drivers do not
3009 	 * set page.mapping but still dirty their pages
3010 	 *
3011 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3012 	 * is pinning the mapping, as per above.
3013 	 */
3014 	if ((dirtied || page_mkwrite) && mapping) {
3015 		struct file *fpin;
3016 
3017 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3018 		balance_dirty_pages_ratelimited(mapping);
3019 		if (fpin) {
3020 			fput(fpin);
3021 			return VM_FAULT_COMPLETED;
3022 		}
3023 	}
3024 
3025 	return 0;
3026 }
3027 
3028 /*
3029  * Handle write page faults for pages that can be reused in the current vma
3030  *
3031  * This can happen either due to the mapping being with the VM_SHARED flag,
3032  * or due to us being the last reference standing to the page. In either
3033  * case, all we need to do here is to mark the page as writable and update
3034  * any related book-keeping.
3035  */
3036 static inline void wp_page_reuse(struct vm_fault *vmf)
3037 	__releases(vmf->ptl)
3038 {
3039 	struct vm_area_struct *vma = vmf->vma;
3040 	struct page *page = vmf->page;
3041 	pte_t entry;
3042 
3043 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3044 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3045 
3046 	/*
3047 	 * Clear the pages cpupid information as the existing
3048 	 * information potentially belongs to a now completely
3049 	 * unrelated process.
3050 	 */
3051 	if (page)
3052 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3053 
3054 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3055 	entry = pte_mkyoung(vmf->orig_pte);
3056 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3057 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3058 		update_mmu_cache(vma, vmf->address, vmf->pte);
3059 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3060 	count_vm_event(PGREUSE);
3061 }
3062 
3063 /*
3064  * Handle the case of a page which we actually need to copy to a new page,
3065  * either due to COW or unsharing.
3066  *
3067  * Called with mmap_lock locked and the old page referenced, but
3068  * without the ptl held.
3069  *
3070  * High level logic flow:
3071  *
3072  * - Allocate a page, copy the content of the old page to the new one.
3073  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3074  * - Take the PTL. If the pte changed, bail out and release the allocated page
3075  * - If the pte is still the way we remember it, update the page table and all
3076  *   relevant references. This includes dropping the reference the page-table
3077  *   held to the old page, as well as updating the rmap.
3078  * - In any case, unlock the PTL and drop the reference we took to the old page.
3079  */
3080 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3081 {
3082 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3083 	struct vm_area_struct *vma = vmf->vma;
3084 	struct mm_struct *mm = vma->vm_mm;
3085 	struct page *old_page = vmf->page;
3086 	struct page *new_page = NULL;
3087 	pte_t entry;
3088 	int page_copied = 0;
3089 	struct mmu_notifier_range range;
3090 
3091 	delayacct_wpcopy_start();
3092 
3093 	if (unlikely(anon_vma_prepare(vma)))
3094 		goto oom;
3095 
3096 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3097 		new_page = alloc_zeroed_user_highpage_movable(vma,
3098 							      vmf->address);
3099 		if (!new_page)
3100 			goto oom;
3101 	} else {
3102 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3103 				vmf->address);
3104 		if (!new_page)
3105 			goto oom;
3106 
3107 		if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3108 			/*
3109 			 * COW failed, if the fault was solved by other,
3110 			 * it's fine. If not, userspace would re-fault on
3111 			 * the same address and we will handle the fault
3112 			 * from the second attempt.
3113 			 */
3114 			put_page(new_page);
3115 			if (old_page)
3116 				put_page(old_page);
3117 
3118 			delayacct_wpcopy_end();
3119 			return 0;
3120 		}
3121 	}
3122 
3123 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3124 		goto oom_free_new;
3125 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3126 
3127 	__SetPageUptodate(new_page);
3128 
3129 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3130 				vmf->address & PAGE_MASK,
3131 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3132 	mmu_notifier_invalidate_range_start(&range);
3133 
3134 	/*
3135 	 * Re-check the pte - we dropped the lock
3136 	 */
3137 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3138 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3139 		if (old_page) {
3140 			if (!PageAnon(old_page)) {
3141 				dec_mm_counter_fast(mm,
3142 						mm_counter_file(old_page));
3143 				inc_mm_counter_fast(mm, MM_ANONPAGES);
3144 			}
3145 		} else {
3146 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3147 		}
3148 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3149 		entry = mk_pte(new_page, vma->vm_page_prot);
3150 		entry = pte_sw_mkyoung(entry);
3151 		if (unlikely(unshare)) {
3152 			if (pte_soft_dirty(vmf->orig_pte))
3153 				entry = pte_mksoft_dirty(entry);
3154 			if (pte_uffd_wp(vmf->orig_pte))
3155 				entry = pte_mkuffd_wp(entry);
3156 		} else {
3157 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3158 		}
3159 
3160 		/*
3161 		 * Clear the pte entry and flush it first, before updating the
3162 		 * pte with the new entry, to keep TLBs on different CPUs in
3163 		 * sync. This code used to set the new PTE then flush TLBs, but
3164 		 * that left a window where the new PTE could be loaded into
3165 		 * some TLBs while the old PTE remains in others.
3166 		 */
3167 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3168 		page_add_new_anon_rmap(new_page, vma, vmf->address);
3169 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3170 		/*
3171 		 * We call the notify macro here because, when using secondary
3172 		 * mmu page tables (such as kvm shadow page tables), we want the
3173 		 * new page to be mapped directly into the secondary page table.
3174 		 */
3175 		BUG_ON(unshare && pte_write(entry));
3176 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3177 		update_mmu_cache(vma, vmf->address, vmf->pte);
3178 		if (old_page) {
3179 			/*
3180 			 * Only after switching the pte to the new page may
3181 			 * we remove the mapcount here. Otherwise another
3182 			 * process may come and find the rmap count decremented
3183 			 * before the pte is switched to the new page, and
3184 			 * "reuse" the old page writing into it while our pte
3185 			 * here still points into it and can be read by other
3186 			 * threads.
3187 			 *
3188 			 * The critical issue is to order this
3189 			 * page_remove_rmap with the ptp_clear_flush above.
3190 			 * Those stores are ordered by (if nothing else,)
3191 			 * the barrier present in the atomic_add_negative
3192 			 * in page_remove_rmap.
3193 			 *
3194 			 * Then the TLB flush in ptep_clear_flush ensures that
3195 			 * no process can access the old page before the
3196 			 * decremented mapcount is visible. And the old page
3197 			 * cannot be reused until after the decremented
3198 			 * mapcount is visible. So transitively, TLBs to
3199 			 * old page will be flushed before it can be reused.
3200 			 */
3201 			page_remove_rmap(old_page, vma, false);
3202 		}
3203 
3204 		/* Free the old page.. */
3205 		new_page = old_page;
3206 		page_copied = 1;
3207 	} else {
3208 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3209 	}
3210 
3211 	if (new_page)
3212 		put_page(new_page);
3213 
3214 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3215 	/*
3216 	 * No need to double call mmu_notifier->invalidate_range() callback as
3217 	 * the above ptep_clear_flush_notify() did already call it.
3218 	 */
3219 	mmu_notifier_invalidate_range_only_end(&range);
3220 	if (old_page) {
3221 		if (page_copied)
3222 			free_swap_cache(old_page);
3223 		put_page(old_page);
3224 	}
3225 
3226 	delayacct_wpcopy_end();
3227 	return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3228 oom_free_new:
3229 	put_page(new_page);
3230 oom:
3231 	if (old_page)
3232 		put_page(old_page);
3233 
3234 	delayacct_wpcopy_end();
3235 	return VM_FAULT_OOM;
3236 }
3237 
3238 /**
3239  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3240  *			  writeable once the page is prepared
3241  *
3242  * @vmf: structure describing the fault
3243  *
3244  * This function handles all that is needed to finish a write page fault in a
3245  * shared mapping due to PTE being read-only once the mapped page is prepared.
3246  * It handles locking of PTE and modifying it.
3247  *
3248  * The function expects the page to be locked or other protection against
3249  * concurrent faults / writeback (such as DAX radix tree locks).
3250  *
3251  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3252  * we acquired PTE lock.
3253  */
3254 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3255 {
3256 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3257 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3258 				       &vmf->ptl);
3259 	/*
3260 	 * We might have raced with another page fault while we released the
3261 	 * pte_offset_map_lock.
3262 	 */
3263 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3264 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3265 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3266 		return VM_FAULT_NOPAGE;
3267 	}
3268 	wp_page_reuse(vmf);
3269 	return 0;
3270 }
3271 
3272 /*
3273  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3274  * mapping
3275  */
3276 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3277 {
3278 	struct vm_area_struct *vma = vmf->vma;
3279 
3280 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3281 		vm_fault_t ret;
3282 
3283 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3284 		vmf->flags |= FAULT_FLAG_MKWRITE;
3285 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3286 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3287 			return ret;
3288 		return finish_mkwrite_fault(vmf);
3289 	}
3290 	wp_page_reuse(vmf);
3291 	return VM_FAULT_WRITE;
3292 }
3293 
3294 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3295 	__releases(vmf->ptl)
3296 {
3297 	struct vm_area_struct *vma = vmf->vma;
3298 	vm_fault_t ret = VM_FAULT_WRITE;
3299 
3300 	get_page(vmf->page);
3301 
3302 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3303 		vm_fault_t tmp;
3304 
3305 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3306 		tmp = do_page_mkwrite(vmf);
3307 		if (unlikely(!tmp || (tmp &
3308 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3309 			put_page(vmf->page);
3310 			return tmp;
3311 		}
3312 		tmp = finish_mkwrite_fault(vmf);
3313 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3314 			unlock_page(vmf->page);
3315 			put_page(vmf->page);
3316 			return tmp;
3317 		}
3318 	} else {
3319 		wp_page_reuse(vmf);
3320 		lock_page(vmf->page);
3321 	}
3322 	ret |= fault_dirty_shared_page(vmf);
3323 	put_page(vmf->page);
3324 
3325 	return ret;
3326 }
3327 
3328 /*
3329  * This routine handles present pages, when
3330  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3331  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3332  *   (FAULT_FLAG_UNSHARE)
3333  *
3334  * It is done by copying the page to a new address and decrementing the
3335  * shared-page counter for the old page.
3336  *
3337  * Note that this routine assumes that the protection checks have been
3338  * done by the caller (the low-level page fault routine in most cases).
3339  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3340  * done any necessary COW.
3341  *
3342  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3343  * though the page will change only once the write actually happens. This
3344  * avoids a few races, and potentially makes it more efficient.
3345  *
3346  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3347  * but allow concurrent faults), with pte both mapped and locked.
3348  * We return with mmap_lock still held, but pte unmapped and unlocked.
3349  */
3350 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3351 	__releases(vmf->ptl)
3352 {
3353 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3354 	struct vm_area_struct *vma = vmf->vma;
3355 
3356 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3357 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3358 
3359 	if (likely(!unshare)) {
3360 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3361 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3362 			return handle_userfault(vmf, VM_UFFD_WP);
3363 		}
3364 
3365 		/*
3366 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3367 		 * is flushed in this case before copying.
3368 		 */
3369 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3370 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3371 			flush_tlb_page(vmf->vma, vmf->address);
3372 	}
3373 
3374 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3375 	if (!vmf->page) {
3376 		if (unlikely(unshare)) {
3377 			/* No anonymous page -> nothing to do. */
3378 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3379 			return 0;
3380 		}
3381 
3382 		/*
3383 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3384 		 * VM_PFNMAP VMA.
3385 		 *
3386 		 * We should not cow pages in a shared writeable mapping.
3387 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3388 		 */
3389 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3390 				     (VM_WRITE|VM_SHARED))
3391 			return wp_pfn_shared(vmf);
3392 
3393 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3394 		return wp_page_copy(vmf);
3395 	}
3396 
3397 	/*
3398 	 * Take out anonymous pages first, anonymous shared vmas are
3399 	 * not dirty accountable.
3400 	 */
3401 	if (PageAnon(vmf->page)) {
3402 		struct page *page = vmf->page;
3403 
3404 		/*
3405 		 * If the page is exclusive to this process we must reuse the
3406 		 * page without further checks.
3407 		 */
3408 		if (PageAnonExclusive(page))
3409 			goto reuse;
3410 
3411 		/*
3412 		 * We have to verify under page lock: these early checks are
3413 		 * just an optimization to avoid locking the page and freeing
3414 		 * the swapcache if there is little hope that we can reuse.
3415 		 *
3416 		 * PageKsm() doesn't necessarily raise the page refcount.
3417 		 */
3418 		if (PageKsm(page) || page_count(page) > 3)
3419 			goto copy;
3420 		if (!PageLRU(page))
3421 			/*
3422 			 * Note: We cannot easily detect+handle references from
3423 			 * remote LRU pagevecs or references to PageLRU() pages.
3424 			 */
3425 			lru_add_drain();
3426 		if (page_count(page) > 1 + PageSwapCache(page))
3427 			goto copy;
3428 		if (!trylock_page(page))
3429 			goto copy;
3430 		if (PageSwapCache(page))
3431 			try_to_free_swap(page);
3432 		if (PageKsm(page) || page_count(page) != 1) {
3433 			unlock_page(page);
3434 			goto copy;
3435 		}
3436 		/*
3437 		 * Ok, we've got the only page reference from our mapping
3438 		 * and the page is locked, it's dark out, and we're wearing
3439 		 * sunglasses. Hit it.
3440 		 */
3441 		page_move_anon_rmap(page, vma);
3442 		unlock_page(page);
3443 reuse:
3444 		if (unlikely(unshare)) {
3445 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3446 			return 0;
3447 		}
3448 		wp_page_reuse(vmf);
3449 		return VM_FAULT_WRITE;
3450 	} else if (unshare) {
3451 		/* No anonymous page -> nothing to do. */
3452 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3453 		return 0;
3454 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3455 					(VM_WRITE|VM_SHARED))) {
3456 		return wp_page_shared(vmf);
3457 	}
3458 copy:
3459 	/*
3460 	 * Ok, we need to copy. Oh, well..
3461 	 */
3462 	get_page(vmf->page);
3463 
3464 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3465 #ifdef CONFIG_KSM
3466 	if (PageKsm(vmf->page))
3467 		count_vm_event(COW_KSM);
3468 #endif
3469 	return wp_page_copy(vmf);
3470 }
3471 
3472 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3473 		unsigned long start_addr, unsigned long end_addr,
3474 		struct zap_details *details)
3475 {
3476 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3477 }
3478 
3479 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3480 					    pgoff_t first_index,
3481 					    pgoff_t last_index,
3482 					    struct zap_details *details)
3483 {
3484 	struct vm_area_struct *vma;
3485 	pgoff_t vba, vea, zba, zea;
3486 
3487 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3488 		vba = vma->vm_pgoff;
3489 		vea = vba + vma_pages(vma) - 1;
3490 		zba = max(first_index, vba);
3491 		zea = min(last_index, vea);
3492 
3493 		unmap_mapping_range_vma(vma,
3494 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3495 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3496 				details);
3497 	}
3498 }
3499 
3500 /**
3501  * unmap_mapping_folio() - Unmap single folio from processes.
3502  * @folio: The locked folio to be unmapped.
3503  *
3504  * Unmap this folio from any userspace process which still has it mmaped.
3505  * Typically, for efficiency, the range of nearby pages has already been
3506  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3507  * truncation or invalidation holds the lock on a folio, it may find that
3508  * the page has been remapped again: and then uses unmap_mapping_folio()
3509  * to unmap it finally.
3510  */
3511 void unmap_mapping_folio(struct folio *folio)
3512 {
3513 	struct address_space *mapping = folio->mapping;
3514 	struct zap_details details = { };
3515 	pgoff_t	first_index;
3516 	pgoff_t	last_index;
3517 
3518 	VM_BUG_ON(!folio_test_locked(folio));
3519 
3520 	first_index = folio->index;
3521 	last_index = folio->index + folio_nr_pages(folio) - 1;
3522 
3523 	details.even_cows = false;
3524 	details.single_folio = folio;
3525 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3526 
3527 	i_mmap_lock_read(mapping);
3528 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3529 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3530 					 last_index, &details);
3531 	i_mmap_unlock_read(mapping);
3532 }
3533 
3534 /**
3535  * unmap_mapping_pages() - Unmap pages from processes.
3536  * @mapping: The address space containing pages to be unmapped.
3537  * @start: Index of first page to be unmapped.
3538  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3539  * @even_cows: Whether to unmap even private COWed pages.
3540  *
3541  * Unmap the pages in this address space from any userspace process which
3542  * has them mmaped.  Generally, you want to remove COWed pages as well when
3543  * a file is being truncated, but not when invalidating pages from the page
3544  * cache.
3545  */
3546 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3547 		pgoff_t nr, bool even_cows)
3548 {
3549 	struct zap_details details = { };
3550 	pgoff_t	first_index = start;
3551 	pgoff_t	last_index = start + nr - 1;
3552 
3553 	details.even_cows = even_cows;
3554 	if (last_index < first_index)
3555 		last_index = ULONG_MAX;
3556 
3557 	i_mmap_lock_read(mapping);
3558 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3559 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3560 					 last_index, &details);
3561 	i_mmap_unlock_read(mapping);
3562 }
3563 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3564 
3565 /**
3566  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3567  * address_space corresponding to the specified byte range in the underlying
3568  * file.
3569  *
3570  * @mapping: the address space containing mmaps to be unmapped.
3571  * @holebegin: byte in first page to unmap, relative to the start of
3572  * the underlying file.  This will be rounded down to a PAGE_SIZE
3573  * boundary.  Note that this is different from truncate_pagecache(), which
3574  * must keep the partial page.  In contrast, we must get rid of
3575  * partial pages.
3576  * @holelen: size of prospective hole in bytes.  This will be rounded
3577  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3578  * end of the file.
3579  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3580  * but 0 when invalidating pagecache, don't throw away private data.
3581  */
3582 void unmap_mapping_range(struct address_space *mapping,
3583 		loff_t const holebegin, loff_t const holelen, int even_cows)
3584 {
3585 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3586 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3587 
3588 	/* Check for overflow. */
3589 	if (sizeof(holelen) > sizeof(hlen)) {
3590 		long long holeend =
3591 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3592 		if (holeend & ~(long long)ULONG_MAX)
3593 			hlen = ULONG_MAX - hba + 1;
3594 	}
3595 
3596 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3597 }
3598 EXPORT_SYMBOL(unmap_mapping_range);
3599 
3600 /*
3601  * Restore a potential device exclusive pte to a working pte entry
3602  */
3603 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3604 {
3605 	struct page *page = vmf->page;
3606 	struct vm_area_struct *vma = vmf->vma;
3607 	struct mmu_notifier_range range;
3608 
3609 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3610 		return VM_FAULT_RETRY;
3611 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3612 				vma->vm_mm, vmf->address & PAGE_MASK,
3613 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3614 	mmu_notifier_invalidate_range_start(&range);
3615 
3616 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3617 				&vmf->ptl);
3618 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3619 		restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3620 
3621 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3622 	unlock_page(page);
3623 
3624 	mmu_notifier_invalidate_range_end(&range);
3625 	return 0;
3626 }
3627 
3628 static inline bool should_try_to_free_swap(struct page *page,
3629 					   struct vm_area_struct *vma,
3630 					   unsigned int fault_flags)
3631 {
3632 	if (!PageSwapCache(page))
3633 		return false;
3634 	if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3635 	    PageMlocked(page))
3636 		return true;
3637 	/*
3638 	 * If we want to map a page that's in the swapcache writable, we
3639 	 * have to detect via the refcount if we're really the exclusive
3640 	 * user. Try freeing the swapcache to get rid of the swapcache
3641 	 * reference only in case it's likely that we'll be the exlusive user.
3642 	 */
3643 	return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3644 		page_count(page) == 2;
3645 }
3646 
3647 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3648 {
3649 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3650 				       vmf->address, &vmf->ptl);
3651 	/*
3652 	 * Be careful so that we will only recover a special uffd-wp pte into a
3653 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3654 	 */
3655 	if (is_pte_marker(*vmf->pte))
3656 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3657 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3658 	return 0;
3659 }
3660 
3661 /*
3662  * This is actually a page-missing access, but with uffd-wp special pte
3663  * installed.  It means this pte was wr-protected before being unmapped.
3664  */
3665 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3666 {
3667 	/*
3668 	 * Just in case there're leftover special ptes even after the region
3669 	 * got unregistered - we can simply clear them.  We can also do that
3670 	 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3671 	 * ranges, but it should be more efficient to be done lazily here.
3672 	 */
3673 	if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3674 		return pte_marker_clear(vmf);
3675 
3676 	/* do_fault() can handle pte markers too like none pte */
3677 	return do_fault(vmf);
3678 }
3679 
3680 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3681 {
3682 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3683 	unsigned long marker = pte_marker_get(entry);
3684 
3685 	/*
3686 	 * PTE markers should always be with file-backed memories, and the
3687 	 * marker should never be empty.  If anything weird happened, the best
3688 	 * thing to do is to kill the process along with its mm.
3689 	 */
3690 	if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3691 		return VM_FAULT_SIGBUS;
3692 
3693 	if (pte_marker_entry_uffd_wp(entry))
3694 		return pte_marker_handle_uffd_wp(vmf);
3695 
3696 	/* This is an unknown pte marker */
3697 	return VM_FAULT_SIGBUS;
3698 }
3699 
3700 /*
3701  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3702  * but allow concurrent faults), and pte mapped but not yet locked.
3703  * We return with pte unmapped and unlocked.
3704  *
3705  * We return with the mmap_lock locked or unlocked in the same cases
3706  * as does filemap_fault().
3707  */
3708 vm_fault_t do_swap_page(struct vm_fault *vmf)
3709 {
3710 	struct vm_area_struct *vma = vmf->vma;
3711 	struct page *page = NULL, *swapcache;
3712 	struct swap_info_struct *si = NULL;
3713 	rmap_t rmap_flags = RMAP_NONE;
3714 	bool exclusive = false;
3715 	swp_entry_t entry;
3716 	pte_t pte;
3717 	int locked;
3718 	vm_fault_t ret = 0;
3719 	void *shadow = NULL;
3720 
3721 	if (!pte_unmap_same(vmf))
3722 		goto out;
3723 
3724 	entry = pte_to_swp_entry(vmf->orig_pte);
3725 	if (unlikely(non_swap_entry(entry))) {
3726 		if (is_migration_entry(entry)) {
3727 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3728 					     vmf->address);
3729 		} else if (is_device_exclusive_entry(entry)) {
3730 			vmf->page = pfn_swap_entry_to_page(entry);
3731 			ret = remove_device_exclusive_entry(vmf);
3732 		} else if (is_device_private_entry(entry)) {
3733 			vmf->page = pfn_swap_entry_to_page(entry);
3734 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3735 		} else if (is_hwpoison_entry(entry)) {
3736 			ret = VM_FAULT_HWPOISON;
3737 		} else if (is_swapin_error_entry(entry)) {
3738 			ret = VM_FAULT_SIGBUS;
3739 		} else if (is_pte_marker_entry(entry)) {
3740 			ret = handle_pte_marker(vmf);
3741 		} else {
3742 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3743 			ret = VM_FAULT_SIGBUS;
3744 		}
3745 		goto out;
3746 	}
3747 
3748 	/* Prevent swapoff from happening to us. */
3749 	si = get_swap_device(entry);
3750 	if (unlikely(!si))
3751 		goto out;
3752 
3753 	page = lookup_swap_cache(entry, vma, vmf->address);
3754 	swapcache = page;
3755 
3756 	if (!page) {
3757 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3758 		    __swap_count(entry) == 1) {
3759 			/* skip swapcache */
3760 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3761 							vmf->address);
3762 			if (page) {
3763 				__SetPageLocked(page);
3764 				__SetPageSwapBacked(page);
3765 
3766 				if (mem_cgroup_swapin_charge_page(page,
3767 					vma->vm_mm, GFP_KERNEL, entry)) {
3768 					ret = VM_FAULT_OOM;
3769 					goto out_page;
3770 				}
3771 				mem_cgroup_swapin_uncharge_swap(entry);
3772 
3773 				shadow = get_shadow_from_swap_cache(entry);
3774 				if (shadow)
3775 					workingset_refault(page_folio(page),
3776 								shadow);
3777 
3778 				lru_cache_add(page);
3779 
3780 				/* To provide entry to swap_readpage() */
3781 				set_page_private(page, entry.val);
3782 				swap_readpage(page, true, NULL);
3783 				set_page_private(page, 0);
3784 			}
3785 		} else {
3786 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3787 						vmf);
3788 			swapcache = page;
3789 		}
3790 
3791 		if (!page) {
3792 			/*
3793 			 * Back out if somebody else faulted in this pte
3794 			 * while we released the pte lock.
3795 			 */
3796 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3797 					vmf->address, &vmf->ptl);
3798 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3799 				ret = VM_FAULT_OOM;
3800 			goto unlock;
3801 		}
3802 
3803 		/* Had to read the page from swap area: Major fault */
3804 		ret = VM_FAULT_MAJOR;
3805 		count_vm_event(PGMAJFAULT);
3806 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3807 	} else if (PageHWPoison(page)) {
3808 		/*
3809 		 * hwpoisoned dirty swapcache pages are kept for killing
3810 		 * owner processes (which may be unknown at hwpoison time)
3811 		 */
3812 		ret = VM_FAULT_HWPOISON;
3813 		goto out_release;
3814 	}
3815 
3816 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3817 
3818 	if (!locked) {
3819 		ret |= VM_FAULT_RETRY;
3820 		goto out_release;
3821 	}
3822 
3823 	if (swapcache) {
3824 		/*
3825 		 * Make sure try_to_free_swap or swapoff did not release the
3826 		 * swapcache from under us.  The page pin, and pte_same test
3827 		 * below, are not enough to exclude that.  Even if it is still
3828 		 * swapcache, we need to check that the page's swap has not
3829 		 * changed.
3830 		 */
3831 		if (unlikely(!PageSwapCache(page) ||
3832 			     page_private(page) != entry.val))
3833 			goto out_page;
3834 
3835 		/*
3836 		 * KSM sometimes has to copy on read faults, for example, if
3837 		 * page->index of !PageKSM() pages would be nonlinear inside the
3838 		 * anon VMA -- PageKSM() is lost on actual swapout.
3839 		 */
3840 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3841 		if (unlikely(!page)) {
3842 			ret = VM_FAULT_OOM;
3843 			page = swapcache;
3844 			goto out_page;
3845 		}
3846 
3847 		/*
3848 		 * If we want to map a page that's in the swapcache writable, we
3849 		 * have to detect via the refcount if we're really the exclusive
3850 		 * owner. Try removing the extra reference from the local LRU
3851 		 * pagevecs if required.
3852 		 */
3853 		if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3854 		    !PageKsm(page) && !PageLRU(page))
3855 			lru_add_drain();
3856 	}
3857 
3858 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3859 
3860 	/*
3861 	 * Back out if somebody else already faulted in this pte.
3862 	 */
3863 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3864 			&vmf->ptl);
3865 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3866 		goto out_nomap;
3867 
3868 	if (unlikely(!PageUptodate(page))) {
3869 		ret = VM_FAULT_SIGBUS;
3870 		goto out_nomap;
3871 	}
3872 
3873 	/*
3874 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3875 	 * must never point at an anonymous page in the swapcache that is
3876 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3877 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3878 	 * check after taking the PT lock and making sure that nobody
3879 	 * concurrently faulted in this page and set PG_anon_exclusive.
3880 	 */
3881 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3882 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3883 
3884 	/*
3885 	 * Check under PT lock (to protect against concurrent fork() sharing
3886 	 * the swap entry concurrently) for certainly exclusive pages.
3887 	 */
3888 	if (!PageKsm(page)) {
3889 		/*
3890 		 * Note that pte_swp_exclusive() == false for architectures
3891 		 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3892 		 */
3893 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3894 		if (page != swapcache) {
3895 			/*
3896 			 * We have a fresh page that is not exposed to the
3897 			 * swapcache -> certainly exclusive.
3898 			 */
3899 			exclusive = true;
3900 		} else if (exclusive && PageWriteback(page) &&
3901 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3902 			/*
3903 			 * This is tricky: not all swap backends support
3904 			 * concurrent page modifications while under writeback.
3905 			 *
3906 			 * So if we stumble over such a page in the swapcache
3907 			 * we must not set the page exclusive, otherwise we can
3908 			 * map it writable without further checks and modify it
3909 			 * while still under writeback.
3910 			 *
3911 			 * For these problematic swap backends, simply drop the
3912 			 * exclusive marker: this is perfectly fine as we start
3913 			 * writeback only if we fully unmapped the page and
3914 			 * there are no unexpected references on the page after
3915 			 * unmapping succeeded. After fully unmapped, no
3916 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3917 			 * appear, so dropping the exclusive marker and mapping
3918 			 * it only R/O is fine.
3919 			 */
3920 			exclusive = false;
3921 		}
3922 	}
3923 
3924 	/*
3925 	 * Remove the swap entry and conditionally try to free up the swapcache.
3926 	 * We're already holding a reference on the page but haven't mapped it
3927 	 * yet.
3928 	 */
3929 	swap_free(entry);
3930 	if (should_try_to_free_swap(page, vma, vmf->flags))
3931 		try_to_free_swap(page);
3932 
3933 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3934 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3935 	pte = mk_pte(page, vma->vm_page_prot);
3936 
3937 	/*
3938 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3939 	 * certainly not shared either because we just allocated them without
3940 	 * exposing them to the swapcache or because the swap entry indicates
3941 	 * exclusivity.
3942 	 */
3943 	if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
3944 		if (vmf->flags & FAULT_FLAG_WRITE) {
3945 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3946 			vmf->flags &= ~FAULT_FLAG_WRITE;
3947 			ret |= VM_FAULT_WRITE;
3948 		}
3949 		rmap_flags |= RMAP_EXCLUSIVE;
3950 	}
3951 	flush_icache_page(vma, page);
3952 	if (pte_swp_soft_dirty(vmf->orig_pte))
3953 		pte = pte_mksoft_dirty(pte);
3954 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3955 		pte = pte_mkuffd_wp(pte);
3956 		pte = pte_wrprotect(pte);
3957 	}
3958 	vmf->orig_pte = pte;
3959 
3960 	/* ksm created a completely new copy */
3961 	if (unlikely(page != swapcache && swapcache)) {
3962 		page_add_new_anon_rmap(page, vma, vmf->address);
3963 		lru_cache_add_inactive_or_unevictable(page, vma);
3964 	} else {
3965 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3966 	}
3967 
3968 	VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
3969 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3970 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3971 
3972 	unlock_page(page);
3973 	if (page != swapcache && swapcache) {
3974 		/*
3975 		 * Hold the lock to avoid the swap entry to be reused
3976 		 * until we take the PT lock for the pte_same() check
3977 		 * (to avoid false positives from pte_same). For
3978 		 * further safety release the lock after the swap_free
3979 		 * so that the swap count won't change under a
3980 		 * parallel locked swapcache.
3981 		 */
3982 		unlock_page(swapcache);
3983 		put_page(swapcache);
3984 	}
3985 
3986 	if (vmf->flags & FAULT_FLAG_WRITE) {
3987 		ret |= do_wp_page(vmf);
3988 		if (ret & VM_FAULT_ERROR)
3989 			ret &= VM_FAULT_ERROR;
3990 		goto out;
3991 	}
3992 
3993 	/* No need to invalidate - it was non-present before */
3994 	update_mmu_cache(vma, vmf->address, vmf->pte);
3995 unlock:
3996 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3997 out:
3998 	if (si)
3999 		put_swap_device(si);
4000 	return ret;
4001 out_nomap:
4002 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4003 out_page:
4004 	unlock_page(page);
4005 out_release:
4006 	put_page(page);
4007 	if (page != swapcache && swapcache) {
4008 		unlock_page(swapcache);
4009 		put_page(swapcache);
4010 	}
4011 	if (si)
4012 		put_swap_device(si);
4013 	return ret;
4014 }
4015 
4016 /*
4017  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4018  * but allow concurrent faults), and pte mapped but not yet locked.
4019  * We return with mmap_lock still held, but pte unmapped and unlocked.
4020  */
4021 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4022 {
4023 	struct vm_area_struct *vma = vmf->vma;
4024 	struct page *page;
4025 	vm_fault_t ret = 0;
4026 	pte_t entry;
4027 
4028 	/* File mapping without ->vm_ops ? */
4029 	if (vma->vm_flags & VM_SHARED)
4030 		return VM_FAULT_SIGBUS;
4031 
4032 	/*
4033 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4034 	 * pte_offset_map() on pmds where a huge pmd might be created
4035 	 * from a different thread.
4036 	 *
4037 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4038 	 * parallel threads are excluded by other means.
4039 	 *
4040 	 * Here we only have mmap_read_lock(mm).
4041 	 */
4042 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4043 		return VM_FAULT_OOM;
4044 
4045 	/* See comment in handle_pte_fault() */
4046 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4047 		return 0;
4048 
4049 	/* Use the zero-page for reads */
4050 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4051 			!mm_forbids_zeropage(vma->vm_mm)) {
4052 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4053 						vma->vm_page_prot));
4054 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4055 				vmf->address, &vmf->ptl);
4056 		if (!pte_none(*vmf->pte)) {
4057 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4058 			goto unlock;
4059 		}
4060 		ret = check_stable_address_space(vma->vm_mm);
4061 		if (ret)
4062 			goto unlock;
4063 		/* Deliver the page fault to userland, check inside PT lock */
4064 		if (userfaultfd_missing(vma)) {
4065 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4066 			return handle_userfault(vmf, VM_UFFD_MISSING);
4067 		}
4068 		goto setpte;
4069 	}
4070 
4071 	/* Allocate our own private page. */
4072 	if (unlikely(anon_vma_prepare(vma)))
4073 		goto oom;
4074 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4075 	if (!page)
4076 		goto oom;
4077 
4078 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4079 		goto oom_free_page;
4080 	cgroup_throttle_swaprate(page, GFP_KERNEL);
4081 
4082 	/*
4083 	 * The memory barrier inside __SetPageUptodate makes sure that
4084 	 * preceding stores to the page contents become visible before
4085 	 * the set_pte_at() write.
4086 	 */
4087 	__SetPageUptodate(page);
4088 
4089 	entry = mk_pte(page, vma->vm_page_prot);
4090 	entry = pte_sw_mkyoung(entry);
4091 	if (vma->vm_flags & VM_WRITE)
4092 		entry = pte_mkwrite(pte_mkdirty(entry));
4093 
4094 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4095 			&vmf->ptl);
4096 	if (!pte_none(*vmf->pte)) {
4097 		update_mmu_cache(vma, vmf->address, vmf->pte);
4098 		goto release;
4099 	}
4100 
4101 	ret = check_stable_address_space(vma->vm_mm);
4102 	if (ret)
4103 		goto release;
4104 
4105 	/* Deliver the page fault to userland, check inside PT lock */
4106 	if (userfaultfd_missing(vma)) {
4107 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4108 		put_page(page);
4109 		return handle_userfault(vmf, VM_UFFD_MISSING);
4110 	}
4111 
4112 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4113 	page_add_new_anon_rmap(page, vma, vmf->address);
4114 	lru_cache_add_inactive_or_unevictable(page, vma);
4115 setpte:
4116 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4117 
4118 	/* No need to invalidate - it was non-present before */
4119 	update_mmu_cache(vma, vmf->address, vmf->pte);
4120 unlock:
4121 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4122 	return ret;
4123 release:
4124 	put_page(page);
4125 	goto unlock;
4126 oom_free_page:
4127 	put_page(page);
4128 oom:
4129 	return VM_FAULT_OOM;
4130 }
4131 
4132 /*
4133  * The mmap_lock must have been held on entry, and may have been
4134  * released depending on flags and vma->vm_ops->fault() return value.
4135  * See filemap_fault() and __lock_page_retry().
4136  */
4137 static vm_fault_t __do_fault(struct vm_fault *vmf)
4138 {
4139 	struct vm_area_struct *vma = vmf->vma;
4140 	vm_fault_t ret;
4141 
4142 	/*
4143 	 * Preallocate pte before we take page_lock because this might lead to
4144 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4145 	 *				lock_page(A)
4146 	 *				SetPageWriteback(A)
4147 	 *				unlock_page(A)
4148 	 * lock_page(B)
4149 	 *				lock_page(B)
4150 	 * pte_alloc_one
4151 	 *   shrink_page_list
4152 	 *     wait_on_page_writeback(A)
4153 	 *				SetPageWriteback(B)
4154 	 *				unlock_page(B)
4155 	 *				# flush A, B to clear the writeback
4156 	 */
4157 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4158 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4159 		if (!vmf->prealloc_pte)
4160 			return VM_FAULT_OOM;
4161 	}
4162 
4163 	ret = vma->vm_ops->fault(vmf);
4164 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4165 			    VM_FAULT_DONE_COW)))
4166 		return ret;
4167 
4168 	if (unlikely(PageHWPoison(vmf->page))) {
4169 		struct page *page = vmf->page;
4170 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4171 		if (ret & VM_FAULT_LOCKED) {
4172 			if (page_mapped(page))
4173 				unmap_mapping_pages(page_mapping(page),
4174 						    page->index, 1, false);
4175 			/* Retry if a clean page was removed from the cache. */
4176 			if (invalidate_inode_page(page))
4177 				poisonret = VM_FAULT_NOPAGE;
4178 			unlock_page(page);
4179 		}
4180 		put_page(page);
4181 		vmf->page = NULL;
4182 		return poisonret;
4183 	}
4184 
4185 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4186 		lock_page(vmf->page);
4187 	else
4188 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4189 
4190 	return ret;
4191 }
4192 
4193 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4194 static void deposit_prealloc_pte(struct vm_fault *vmf)
4195 {
4196 	struct vm_area_struct *vma = vmf->vma;
4197 
4198 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4199 	/*
4200 	 * We are going to consume the prealloc table,
4201 	 * count that as nr_ptes.
4202 	 */
4203 	mm_inc_nr_ptes(vma->vm_mm);
4204 	vmf->prealloc_pte = NULL;
4205 }
4206 
4207 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4208 {
4209 	struct vm_area_struct *vma = vmf->vma;
4210 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4211 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4212 	pmd_t entry;
4213 	int i;
4214 	vm_fault_t ret = VM_FAULT_FALLBACK;
4215 
4216 	if (!transhuge_vma_suitable(vma, haddr))
4217 		return ret;
4218 
4219 	page = compound_head(page);
4220 	if (compound_order(page) != HPAGE_PMD_ORDER)
4221 		return ret;
4222 
4223 	/*
4224 	 * Just backoff if any subpage of a THP is corrupted otherwise
4225 	 * the corrupted page may mapped by PMD silently to escape the
4226 	 * check.  This kind of THP just can be PTE mapped.  Access to
4227 	 * the corrupted subpage should trigger SIGBUS as expected.
4228 	 */
4229 	if (unlikely(PageHasHWPoisoned(page)))
4230 		return ret;
4231 
4232 	/*
4233 	 * Archs like ppc64 need additional space to store information
4234 	 * related to pte entry. Use the preallocated table for that.
4235 	 */
4236 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4237 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4238 		if (!vmf->prealloc_pte)
4239 			return VM_FAULT_OOM;
4240 	}
4241 
4242 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4243 	if (unlikely(!pmd_none(*vmf->pmd)))
4244 		goto out;
4245 
4246 	for (i = 0; i < HPAGE_PMD_NR; i++)
4247 		flush_icache_page(vma, page + i);
4248 
4249 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4250 	if (write)
4251 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4252 
4253 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4254 	page_add_file_rmap(page, vma, true);
4255 
4256 	/*
4257 	 * deposit and withdraw with pmd lock held
4258 	 */
4259 	if (arch_needs_pgtable_deposit())
4260 		deposit_prealloc_pte(vmf);
4261 
4262 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4263 
4264 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4265 
4266 	/* fault is handled */
4267 	ret = 0;
4268 	count_vm_event(THP_FILE_MAPPED);
4269 out:
4270 	spin_unlock(vmf->ptl);
4271 	return ret;
4272 }
4273 #else
4274 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4275 {
4276 	return VM_FAULT_FALLBACK;
4277 }
4278 #endif
4279 
4280 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4281 {
4282 	struct vm_area_struct *vma = vmf->vma;
4283 	bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4284 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4285 	bool prefault = vmf->address != addr;
4286 	pte_t entry;
4287 
4288 	flush_icache_page(vma, page);
4289 	entry = mk_pte(page, vma->vm_page_prot);
4290 
4291 	if (prefault && arch_wants_old_prefaulted_pte())
4292 		entry = pte_mkold(entry);
4293 	else
4294 		entry = pte_sw_mkyoung(entry);
4295 
4296 	if (write)
4297 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4298 	if (unlikely(uffd_wp))
4299 		entry = pte_mkuffd_wp(pte_wrprotect(entry));
4300 	/* copy-on-write page */
4301 	if (write && !(vma->vm_flags & VM_SHARED)) {
4302 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4303 		page_add_new_anon_rmap(page, vma, addr);
4304 		lru_cache_add_inactive_or_unevictable(page, vma);
4305 	} else {
4306 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4307 		page_add_file_rmap(page, vma, false);
4308 	}
4309 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4310 }
4311 
4312 static bool vmf_pte_changed(struct vm_fault *vmf)
4313 {
4314 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4315 		return !pte_same(*vmf->pte, vmf->orig_pte);
4316 
4317 	return !pte_none(*vmf->pte);
4318 }
4319 
4320 /**
4321  * finish_fault - finish page fault once we have prepared the page to fault
4322  *
4323  * @vmf: structure describing the fault
4324  *
4325  * This function handles all that is needed to finish a page fault once the
4326  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4327  * given page, adds reverse page mapping, handles memcg charges and LRU
4328  * addition.
4329  *
4330  * The function expects the page to be locked and on success it consumes a
4331  * reference of a page being mapped (for the PTE which maps it).
4332  *
4333  * Return: %0 on success, %VM_FAULT_ code in case of error.
4334  */
4335 vm_fault_t finish_fault(struct vm_fault *vmf)
4336 {
4337 	struct vm_area_struct *vma = vmf->vma;
4338 	struct page *page;
4339 	vm_fault_t ret;
4340 
4341 	/* Did we COW the page? */
4342 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4343 		page = vmf->cow_page;
4344 	else
4345 		page = vmf->page;
4346 
4347 	/*
4348 	 * check even for read faults because we might have lost our CoWed
4349 	 * page
4350 	 */
4351 	if (!(vma->vm_flags & VM_SHARED)) {
4352 		ret = check_stable_address_space(vma->vm_mm);
4353 		if (ret)
4354 			return ret;
4355 	}
4356 
4357 	if (pmd_none(*vmf->pmd)) {
4358 		if (PageTransCompound(page)) {
4359 			ret = do_set_pmd(vmf, page);
4360 			if (ret != VM_FAULT_FALLBACK)
4361 				return ret;
4362 		}
4363 
4364 		if (vmf->prealloc_pte)
4365 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4366 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4367 			return VM_FAULT_OOM;
4368 	}
4369 
4370 	/*
4371 	 * See comment in handle_pte_fault() for how this scenario happens, we
4372 	 * need to return NOPAGE so that we drop this page.
4373 	 */
4374 	if (pmd_devmap_trans_unstable(vmf->pmd))
4375 		return VM_FAULT_NOPAGE;
4376 
4377 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4378 				      vmf->address, &vmf->ptl);
4379 
4380 	/* Re-check under ptl */
4381 	if (likely(!vmf_pte_changed(vmf))) {
4382 		do_set_pte(vmf, page, vmf->address);
4383 
4384 		/* no need to invalidate: a not-present page won't be cached */
4385 		update_mmu_cache(vma, vmf->address, vmf->pte);
4386 
4387 		ret = 0;
4388 	} else {
4389 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4390 		ret = VM_FAULT_NOPAGE;
4391 	}
4392 
4393 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4394 	return ret;
4395 }
4396 
4397 static unsigned long fault_around_bytes __read_mostly =
4398 	rounddown_pow_of_two(65536);
4399 
4400 #ifdef CONFIG_DEBUG_FS
4401 static int fault_around_bytes_get(void *data, u64 *val)
4402 {
4403 	*val = fault_around_bytes;
4404 	return 0;
4405 }
4406 
4407 /*
4408  * fault_around_bytes must be rounded down to the nearest page order as it's
4409  * what do_fault_around() expects to see.
4410  */
4411 static int fault_around_bytes_set(void *data, u64 val)
4412 {
4413 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4414 		return -EINVAL;
4415 	if (val > PAGE_SIZE)
4416 		fault_around_bytes = rounddown_pow_of_two(val);
4417 	else
4418 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4419 	return 0;
4420 }
4421 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4422 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4423 
4424 static int __init fault_around_debugfs(void)
4425 {
4426 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4427 				   &fault_around_bytes_fops);
4428 	return 0;
4429 }
4430 late_initcall(fault_around_debugfs);
4431 #endif
4432 
4433 /*
4434  * do_fault_around() tries to map few pages around the fault address. The hope
4435  * is that the pages will be needed soon and this will lower the number of
4436  * faults to handle.
4437  *
4438  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4439  * not ready to be mapped: not up-to-date, locked, etc.
4440  *
4441  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4442  * only once.
4443  *
4444  * fault_around_bytes defines how many bytes we'll try to map.
4445  * do_fault_around() expects it to be set to a power of two less than or equal
4446  * to PTRS_PER_PTE.
4447  *
4448  * The virtual address of the area that we map is naturally aligned to
4449  * fault_around_bytes rounded down to the machine page size
4450  * (and therefore to page order).  This way it's easier to guarantee
4451  * that we don't cross page table boundaries.
4452  */
4453 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4454 {
4455 	unsigned long address = vmf->address, nr_pages, mask;
4456 	pgoff_t start_pgoff = vmf->pgoff;
4457 	pgoff_t end_pgoff;
4458 	int off;
4459 
4460 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4461 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4462 
4463 	address = max(address & mask, vmf->vma->vm_start);
4464 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4465 	start_pgoff -= off;
4466 
4467 	/*
4468 	 *  end_pgoff is either the end of the page table, the end of
4469 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4470 	 */
4471 	end_pgoff = start_pgoff -
4472 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4473 		PTRS_PER_PTE - 1;
4474 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4475 			start_pgoff + nr_pages - 1);
4476 
4477 	if (pmd_none(*vmf->pmd)) {
4478 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4479 		if (!vmf->prealloc_pte)
4480 			return VM_FAULT_OOM;
4481 	}
4482 
4483 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4484 }
4485 
4486 /* Return true if we should do read fault-around, false otherwise */
4487 static inline bool should_fault_around(struct vm_fault *vmf)
4488 {
4489 	/* No ->map_pages?  No way to fault around... */
4490 	if (!vmf->vma->vm_ops->map_pages)
4491 		return false;
4492 
4493 	if (uffd_disable_fault_around(vmf->vma))
4494 		return false;
4495 
4496 	return fault_around_bytes >> PAGE_SHIFT > 1;
4497 }
4498 
4499 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4500 {
4501 	vm_fault_t ret = 0;
4502 
4503 	/*
4504 	 * Let's call ->map_pages() first and use ->fault() as fallback
4505 	 * if page by the offset is not ready to be mapped (cold cache or
4506 	 * something).
4507 	 */
4508 	if (should_fault_around(vmf)) {
4509 		ret = do_fault_around(vmf);
4510 		if (ret)
4511 			return ret;
4512 	}
4513 
4514 	ret = __do_fault(vmf);
4515 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4516 		return ret;
4517 
4518 	ret |= finish_fault(vmf);
4519 	unlock_page(vmf->page);
4520 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4521 		put_page(vmf->page);
4522 	return ret;
4523 }
4524 
4525 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4526 {
4527 	struct vm_area_struct *vma = vmf->vma;
4528 	vm_fault_t ret;
4529 
4530 	if (unlikely(anon_vma_prepare(vma)))
4531 		return VM_FAULT_OOM;
4532 
4533 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4534 	if (!vmf->cow_page)
4535 		return VM_FAULT_OOM;
4536 
4537 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4538 				GFP_KERNEL)) {
4539 		put_page(vmf->cow_page);
4540 		return VM_FAULT_OOM;
4541 	}
4542 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4543 
4544 	ret = __do_fault(vmf);
4545 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4546 		goto uncharge_out;
4547 	if (ret & VM_FAULT_DONE_COW)
4548 		return ret;
4549 
4550 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4551 	__SetPageUptodate(vmf->cow_page);
4552 
4553 	ret |= finish_fault(vmf);
4554 	unlock_page(vmf->page);
4555 	put_page(vmf->page);
4556 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4557 		goto uncharge_out;
4558 	return ret;
4559 uncharge_out:
4560 	put_page(vmf->cow_page);
4561 	return ret;
4562 }
4563 
4564 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4565 {
4566 	struct vm_area_struct *vma = vmf->vma;
4567 	vm_fault_t ret, tmp;
4568 
4569 	ret = __do_fault(vmf);
4570 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4571 		return ret;
4572 
4573 	/*
4574 	 * Check if the backing address space wants to know that the page is
4575 	 * about to become writable
4576 	 */
4577 	if (vma->vm_ops->page_mkwrite) {
4578 		unlock_page(vmf->page);
4579 		tmp = do_page_mkwrite(vmf);
4580 		if (unlikely(!tmp ||
4581 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4582 			put_page(vmf->page);
4583 			return tmp;
4584 		}
4585 	}
4586 
4587 	ret |= finish_fault(vmf);
4588 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4589 					VM_FAULT_RETRY))) {
4590 		unlock_page(vmf->page);
4591 		put_page(vmf->page);
4592 		return ret;
4593 	}
4594 
4595 	ret |= fault_dirty_shared_page(vmf);
4596 	return ret;
4597 }
4598 
4599 /*
4600  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4601  * but allow concurrent faults).
4602  * The mmap_lock may have been released depending on flags and our
4603  * return value.  See filemap_fault() and __folio_lock_or_retry().
4604  * If mmap_lock is released, vma may become invalid (for example
4605  * by other thread calling munmap()).
4606  */
4607 static vm_fault_t do_fault(struct vm_fault *vmf)
4608 {
4609 	struct vm_area_struct *vma = vmf->vma;
4610 	struct mm_struct *vm_mm = vma->vm_mm;
4611 	vm_fault_t ret;
4612 
4613 	/*
4614 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4615 	 */
4616 	if (!vma->vm_ops->fault) {
4617 		/*
4618 		 * If we find a migration pmd entry or a none pmd entry, which
4619 		 * should never happen, return SIGBUS
4620 		 */
4621 		if (unlikely(!pmd_present(*vmf->pmd)))
4622 			ret = VM_FAULT_SIGBUS;
4623 		else {
4624 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4625 						       vmf->pmd,
4626 						       vmf->address,
4627 						       &vmf->ptl);
4628 			/*
4629 			 * Make sure this is not a temporary clearing of pte
4630 			 * by holding ptl and checking again. A R/M/W update
4631 			 * of pte involves: take ptl, clearing the pte so that
4632 			 * we don't have concurrent modification by hardware
4633 			 * followed by an update.
4634 			 */
4635 			if (unlikely(pte_none(*vmf->pte)))
4636 				ret = VM_FAULT_SIGBUS;
4637 			else
4638 				ret = VM_FAULT_NOPAGE;
4639 
4640 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4641 		}
4642 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4643 		ret = do_read_fault(vmf);
4644 	else if (!(vma->vm_flags & VM_SHARED))
4645 		ret = do_cow_fault(vmf);
4646 	else
4647 		ret = do_shared_fault(vmf);
4648 
4649 	/* preallocated pagetable is unused: free it */
4650 	if (vmf->prealloc_pte) {
4651 		pte_free(vm_mm, vmf->prealloc_pte);
4652 		vmf->prealloc_pte = NULL;
4653 	}
4654 	return ret;
4655 }
4656 
4657 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4658 		      unsigned long addr, int page_nid, int *flags)
4659 {
4660 	get_page(page);
4661 
4662 	count_vm_numa_event(NUMA_HINT_FAULTS);
4663 	if (page_nid == numa_node_id()) {
4664 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4665 		*flags |= TNF_FAULT_LOCAL;
4666 	}
4667 
4668 	return mpol_misplaced(page, vma, addr);
4669 }
4670 
4671 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4672 {
4673 	struct vm_area_struct *vma = vmf->vma;
4674 	struct page *page = NULL;
4675 	int page_nid = NUMA_NO_NODE;
4676 	int last_cpupid;
4677 	int target_nid;
4678 	pte_t pte, old_pte;
4679 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4680 	int flags = 0;
4681 
4682 	/*
4683 	 * The "pte" at this point cannot be used safely without
4684 	 * validation through pte_unmap_same(). It's of NUMA type but
4685 	 * the pfn may be screwed if the read is non atomic.
4686 	 */
4687 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4688 	spin_lock(vmf->ptl);
4689 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4690 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4691 		goto out;
4692 	}
4693 
4694 	/* Get the normal PTE  */
4695 	old_pte = ptep_get(vmf->pte);
4696 	pte = pte_modify(old_pte, vma->vm_page_prot);
4697 
4698 	page = vm_normal_page(vma, vmf->address, pte);
4699 	if (!page || is_zone_device_page(page))
4700 		goto out_map;
4701 
4702 	/* TODO: handle PTE-mapped THP */
4703 	if (PageCompound(page))
4704 		goto out_map;
4705 
4706 	/*
4707 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4708 	 * much anyway since they can be in shared cache state. This misses
4709 	 * the case where a mapping is writable but the process never writes
4710 	 * to it but pte_write gets cleared during protection updates and
4711 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4712 	 * background writeback, dirty balancing and application behaviour.
4713 	 */
4714 	if (!was_writable)
4715 		flags |= TNF_NO_GROUP;
4716 
4717 	/*
4718 	 * Flag if the page is shared between multiple address spaces. This
4719 	 * is later used when determining whether to group tasks together
4720 	 */
4721 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4722 		flags |= TNF_SHARED;
4723 
4724 	page_nid = page_to_nid(page);
4725 	/*
4726 	 * For memory tiering mode, cpupid of slow memory page is used
4727 	 * to record page access time.  So use default value.
4728 	 */
4729 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4730 	    !node_is_toptier(page_nid))
4731 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4732 	else
4733 		last_cpupid = page_cpupid_last(page);
4734 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4735 			&flags);
4736 	if (target_nid == NUMA_NO_NODE) {
4737 		put_page(page);
4738 		goto out_map;
4739 	}
4740 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4741 
4742 	/* Migrate to the requested node */
4743 	if (migrate_misplaced_page(page, vma, target_nid)) {
4744 		page_nid = target_nid;
4745 		flags |= TNF_MIGRATED;
4746 	} else {
4747 		flags |= TNF_MIGRATE_FAIL;
4748 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4749 		spin_lock(vmf->ptl);
4750 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4751 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4752 			goto out;
4753 		}
4754 		goto out_map;
4755 	}
4756 
4757 out:
4758 	if (page_nid != NUMA_NO_NODE)
4759 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4760 	return 0;
4761 out_map:
4762 	/*
4763 	 * Make it present again, depending on how arch implements
4764 	 * non-accessible ptes, some can allow access by kernel mode.
4765 	 */
4766 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4767 	pte = pte_modify(old_pte, vma->vm_page_prot);
4768 	pte = pte_mkyoung(pte);
4769 	if (was_writable)
4770 		pte = pte_mkwrite(pte);
4771 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4772 	update_mmu_cache(vma, vmf->address, vmf->pte);
4773 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4774 	goto out;
4775 }
4776 
4777 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4778 {
4779 	if (vma_is_anonymous(vmf->vma))
4780 		return do_huge_pmd_anonymous_page(vmf);
4781 	if (vmf->vma->vm_ops->huge_fault)
4782 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4783 	return VM_FAULT_FALLBACK;
4784 }
4785 
4786 /* `inline' is required to avoid gcc 4.1.2 build error */
4787 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4788 {
4789 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4790 
4791 	if (vma_is_anonymous(vmf->vma)) {
4792 		if (likely(!unshare) &&
4793 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4794 			return handle_userfault(vmf, VM_UFFD_WP);
4795 		return do_huge_pmd_wp_page(vmf);
4796 	}
4797 	if (vmf->vma->vm_ops->huge_fault) {
4798 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4799 
4800 		if (!(ret & VM_FAULT_FALLBACK))
4801 			return ret;
4802 	}
4803 
4804 	/* COW or write-notify handled on pte level: split pmd. */
4805 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4806 
4807 	return VM_FAULT_FALLBACK;
4808 }
4809 
4810 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4811 {
4812 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4813 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4814 	/* No support for anonymous transparent PUD pages yet */
4815 	if (vma_is_anonymous(vmf->vma))
4816 		return VM_FAULT_FALLBACK;
4817 	if (vmf->vma->vm_ops->huge_fault)
4818 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4819 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4820 	return VM_FAULT_FALLBACK;
4821 }
4822 
4823 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4824 {
4825 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4826 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4827 	/* No support for anonymous transparent PUD pages yet */
4828 	if (vma_is_anonymous(vmf->vma))
4829 		goto split;
4830 	if (vmf->vma->vm_ops->huge_fault) {
4831 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4832 
4833 		if (!(ret & VM_FAULT_FALLBACK))
4834 			return ret;
4835 	}
4836 split:
4837 	/* COW or write-notify not handled on PUD level: split pud.*/
4838 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4839 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4840 	return VM_FAULT_FALLBACK;
4841 }
4842 
4843 /*
4844  * These routines also need to handle stuff like marking pages dirty
4845  * and/or accessed for architectures that don't do it in hardware (most
4846  * RISC architectures).  The early dirtying is also good on the i386.
4847  *
4848  * There is also a hook called "update_mmu_cache()" that architectures
4849  * with external mmu caches can use to update those (ie the Sparc or
4850  * PowerPC hashed page tables that act as extended TLBs).
4851  *
4852  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4853  * concurrent faults).
4854  *
4855  * The mmap_lock may have been released depending on flags and our return value.
4856  * See filemap_fault() and __folio_lock_or_retry().
4857  */
4858 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4859 {
4860 	pte_t entry;
4861 
4862 	if (unlikely(pmd_none(*vmf->pmd))) {
4863 		/*
4864 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4865 		 * want to allocate huge page, and if we expose page table
4866 		 * for an instant, it will be difficult to retract from
4867 		 * concurrent faults and from rmap lookups.
4868 		 */
4869 		vmf->pte = NULL;
4870 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4871 	} else {
4872 		/*
4873 		 * If a huge pmd materialized under us just retry later.  Use
4874 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4875 		 * of pmd_trans_huge() to ensure the pmd didn't become
4876 		 * pmd_trans_huge under us and then back to pmd_none, as a
4877 		 * result of MADV_DONTNEED running immediately after a huge pmd
4878 		 * fault in a different thread of this mm, in turn leading to a
4879 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4880 		 * that it is a regular pmd that we can walk with
4881 		 * pte_offset_map() and we can do that through an atomic read
4882 		 * in C, which is what pmd_trans_unstable() provides.
4883 		 */
4884 		if (pmd_devmap_trans_unstable(vmf->pmd))
4885 			return 0;
4886 		/*
4887 		 * A regular pmd is established and it can't morph into a huge
4888 		 * pmd from under us anymore at this point because we hold the
4889 		 * mmap_lock read mode and khugepaged takes it in write mode.
4890 		 * So now it's safe to run pte_offset_map().
4891 		 */
4892 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4893 		vmf->orig_pte = *vmf->pte;
4894 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4895 
4896 		/*
4897 		 * some architectures can have larger ptes than wordsize,
4898 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4899 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4900 		 * accesses.  The code below just needs a consistent view
4901 		 * for the ifs and we later double check anyway with the
4902 		 * ptl lock held. So here a barrier will do.
4903 		 */
4904 		barrier();
4905 		if (pte_none(vmf->orig_pte)) {
4906 			pte_unmap(vmf->pte);
4907 			vmf->pte = NULL;
4908 		}
4909 	}
4910 
4911 	if (!vmf->pte) {
4912 		if (vma_is_anonymous(vmf->vma))
4913 			return do_anonymous_page(vmf);
4914 		else
4915 			return do_fault(vmf);
4916 	}
4917 
4918 	if (!pte_present(vmf->orig_pte))
4919 		return do_swap_page(vmf);
4920 
4921 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4922 		return do_numa_page(vmf);
4923 
4924 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4925 	spin_lock(vmf->ptl);
4926 	entry = vmf->orig_pte;
4927 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4928 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4929 		goto unlock;
4930 	}
4931 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4932 		if (!pte_write(entry))
4933 			return do_wp_page(vmf);
4934 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4935 			entry = pte_mkdirty(entry);
4936 	}
4937 	entry = pte_mkyoung(entry);
4938 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4939 				vmf->flags & FAULT_FLAG_WRITE)) {
4940 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4941 	} else {
4942 		/* Skip spurious TLB flush for retried page fault */
4943 		if (vmf->flags & FAULT_FLAG_TRIED)
4944 			goto unlock;
4945 		/*
4946 		 * This is needed only for protection faults but the arch code
4947 		 * is not yet telling us if this is a protection fault or not.
4948 		 * This still avoids useless tlb flushes for .text page faults
4949 		 * with threads.
4950 		 */
4951 		if (vmf->flags & FAULT_FLAG_WRITE)
4952 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4953 	}
4954 unlock:
4955 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4956 	return 0;
4957 }
4958 
4959 /*
4960  * By the time we get here, we already hold the mm semaphore
4961  *
4962  * The mmap_lock may have been released depending on flags and our
4963  * return value.  See filemap_fault() and __folio_lock_or_retry().
4964  */
4965 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4966 		unsigned long address, unsigned int flags)
4967 {
4968 	struct vm_fault vmf = {
4969 		.vma = vma,
4970 		.address = address & PAGE_MASK,
4971 		.real_address = address,
4972 		.flags = flags,
4973 		.pgoff = linear_page_index(vma, address),
4974 		.gfp_mask = __get_fault_gfp_mask(vma),
4975 	};
4976 	struct mm_struct *mm = vma->vm_mm;
4977 	unsigned long vm_flags = vma->vm_flags;
4978 	pgd_t *pgd;
4979 	p4d_t *p4d;
4980 	vm_fault_t ret;
4981 
4982 	pgd = pgd_offset(mm, address);
4983 	p4d = p4d_alloc(mm, pgd, address);
4984 	if (!p4d)
4985 		return VM_FAULT_OOM;
4986 
4987 	vmf.pud = pud_alloc(mm, p4d, address);
4988 	if (!vmf.pud)
4989 		return VM_FAULT_OOM;
4990 retry_pud:
4991 	if (pud_none(*vmf.pud) &&
4992 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
4993 		ret = create_huge_pud(&vmf);
4994 		if (!(ret & VM_FAULT_FALLBACK))
4995 			return ret;
4996 	} else {
4997 		pud_t orig_pud = *vmf.pud;
4998 
4999 		barrier();
5000 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5001 
5002 			/*
5003 			 * TODO once we support anonymous PUDs: NUMA case and
5004 			 * FAULT_FLAG_UNSHARE handling.
5005 			 */
5006 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5007 				ret = wp_huge_pud(&vmf, orig_pud);
5008 				if (!(ret & VM_FAULT_FALLBACK))
5009 					return ret;
5010 			} else {
5011 				huge_pud_set_accessed(&vmf, orig_pud);
5012 				return 0;
5013 			}
5014 		}
5015 	}
5016 
5017 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5018 	if (!vmf.pmd)
5019 		return VM_FAULT_OOM;
5020 
5021 	/* Huge pud page fault raced with pmd_alloc? */
5022 	if (pud_trans_unstable(vmf.pud))
5023 		goto retry_pud;
5024 
5025 	if (pmd_none(*vmf.pmd) &&
5026 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5027 		ret = create_huge_pmd(&vmf);
5028 		if (!(ret & VM_FAULT_FALLBACK))
5029 			return ret;
5030 	} else {
5031 		vmf.orig_pmd = *vmf.pmd;
5032 
5033 		barrier();
5034 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5035 			VM_BUG_ON(thp_migration_supported() &&
5036 					  !is_pmd_migration_entry(vmf.orig_pmd));
5037 			if (is_pmd_migration_entry(vmf.orig_pmd))
5038 				pmd_migration_entry_wait(mm, vmf.pmd);
5039 			return 0;
5040 		}
5041 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5042 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5043 				return do_huge_pmd_numa_page(&vmf);
5044 
5045 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5046 			    !pmd_write(vmf.orig_pmd)) {
5047 				ret = wp_huge_pmd(&vmf);
5048 				if (!(ret & VM_FAULT_FALLBACK))
5049 					return ret;
5050 			} else {
5051 				huge_pmd_set_accessed(&vmf);
5052 				return 0;
5053 			}
5054 		}
5055 	}
5056 
5057 	return handle_pte_fault(&vmf);
5058 }
5059 
5060 /**
5061  * mm_account_fault - Do page fault accounting
5062  *
5063  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5064  *        of perf event counters, but we'll still do the per-task accounting to
5065  *        the task who triggered this page fault.
5066  * @address: the faulted address.
5067  * @flags: the fault flags.
5068  * @ret: the fault retcode.
5069  *
5070  * This will take care of most of the page fault accounting.  Meanwhile, it
5071  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5072  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5073  * still be in per-arch page fault handlers at the entry of page fault.
5074  */
5075 static inline void mm_account_fault(struct pt_regs *regs,
5076 				    unsigned long address, unsigned int flags,
5077 				    vm_fault_t ret)
5078 {
5079 	bool major;
5080 
5081 	/*
5082 	 * We don't do accounting for some specific faults:
5083 	 *
5084 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5085 	 *   includes arch_vma_access_permitted() failing before reaching here.
5086 	 *   So this is not a "this many hardware page faults" counter.  We
5087 	 *   should use the hw profiling for that.
5088 	 *
5089 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5090 	 *   once they're completed.
5091 	 */
5092 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5093 		return;
5094 
5095 	/*
5096 	 * We define the fault as a major fault when the final successful fault
5097 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5098 	 * handle it immediately previously).
5099 	 */
5100 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5101 
5102 	if (major)
5103 		current->maj_flt++;
5104 	else
5105 		current->min_flt++;
5106 
5107 	/*
5108 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5109 	 * accounting for the per thread fault counters who triggered the
5110 	 * fault, and we skip the perf event updates.
5111 	 */
5112 	if (!regs)
5113 		return;
5114 
5115 	if (major)
5116 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5117 	else
5118 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5119 }
5120 
5121 #ifdef CONFIG_LRU_GEN
5122 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5123 {
5124 	/* the LRU algorithm doesn't apply to sequential or random reads */
5125 	current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5126 }
5127 
5128 static void lru_gen_exit_fault(void)
5129 {
5130 	current->in_lru_fault = false;
5131 }
5132 #else
5133 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5134 {
5135 }
5136 
5137 static void lru_gen_exit_fault(void)
5138 {
5139 }
5140 #endif /* CONFIG_LRU_GEN */
5141 
5142 /*
5143  * By the time we get here, we already hold the mm semaphore
5144  *
5145  * The mmap_lock may have been released depending on flags and our
5146  * return value.  See filemap_fault() and __folio_lock_or_retry().
5147  */
5148 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5149 			   unsigned int flags, struct pt_regs *regs)
5150 {
5151 	vm_fault_t ret;
5152 
5153 	__set_current_state(TASK_RUNNING);
5154 
5155 	count_vm_event(PGFAULT);
5156 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
5157 
5158 	/* do counter updates before entering really critical section. */
5159 	check_sync_rss_stat(current);
5160 
5161 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5162 					    flags & FAULT_FLAG_INSTRUCTION,
5163 					    flags & FAULT_FLAG_REMOTE))
5164 		return VM_FAULT_SIGSEGV;
5165 
5166 	/*
5167 	 * Enable the memcg OOM handling for faults triggered in user
5168 	 * space.  Kernel faults are handled more gracefully.
5169 	 */
5170 	if (flags & FAULT_FLAG_USER)
5171 		mem_cgroup_enter_user_fault();
5172 
5173 	lru_gen_enter_fault(vma);
5174 
5175 	if (unlikely(is_vm_hugetlb_page(vma)))
5176 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5177 	else
5178 		ret = __handle_mm_fault(vma, address, flags);
5179 
5180 	lru_gen_exit_fault();
5181 
5182 	if (flags & FAULT_FLAG_USER) {
5183 		mem_cgroup_exit_user_fault();
5184 		/*
5185 		 * The task may have entered a memcg OOM situation but
5186 		 * if the allocation error was handled gracefully (no
5187 		 * VM_FAULT_OOM), there is no need to kill anything.
5188 		 * Just clean up the OOM state peacefully.
5189 		 */
5190 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5191 			mem_cgroup_oom_synchronize(false);
5192 	}
5193 
5194 	mm_account_fault(regs, address, flags, ret);
5195 
5196 	return ret;
5197 }
5198 EXPORT_SYMBOL_GPL(handle_mm_fault);
5199 
5200 #ifndef __PAGETABLE_P4D_FOLDED
5201 /*
5202  * Allocate p4d page table.
5203  * We've already handled the fast-path in-line.
5204  */
5205 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5206 {
5207 	p4d_t *new = p4d_alloc_one(mm, address);
5208 	if (!new)
5209 		return -ENOMEM;
5210 
5211 	spin_lock(&mm->page_table_lock);
5212 	if (pgd_present(*pgd)) {	/* Another has populated it */
5213 		p4d_free(mm, new);
5214 	} else {
5215 		smp_wmb(); /* See comment in pmd_install() */
5216 		pgd_populate(mm, pgd, new);
5217 	}
5218 	spin_unlock(&mm->page_table_lock);
5219 	return 0;
5220 }
5221 #endif /* __PAGETABLE_P4D_FOLDED */
5222 
5223 #ifndef __PAGETABLE_PUD_FOLDED
5224 /*
5225  * Allocate page upper directory.
5226  * We've already handled the fast-path in-line.
5227  */
5228 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5229 {
5230 	pud_t *new = pud_alloc_one(mm, address);
5231 	if (!new)
5232 		return -ENOMEM;
5233 
5234 	spin_lock(&mm->page_table_lock);
5235 	if (!p4d_present(*p4d)) {
5236 		mm_inc_nr_puds(mm);
5237 		smp_wmb(); /* See comment in pmd_install() */
5238 		p4d_populate(mm, p4d, new);
5239 	} else	/* Another has populated it */
5240 		pud_free(mm, new);
5241 	spin_unlock(&mm->page_table_lock);
5242 	return 0;
5243 }
5244 #endif /* __PAGETABLE_PUD_FOLDED */
5245 
5246 #ifndef __PAGETABLE_PMD_FOLDED
5247 /*
5248  * Allocate page middle directory.
5249  * We've already handled the fast-path in-line.
5250  */
5251 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5252 {
5253 	spinlock_t *ptl;
5254 	pmd_t *new = pmd_alloc_one(mm, address);
5255 	if (!new)
5256 		return -ENOMEM;
5257 
5258 	ptl = pud_lock(mm, pud);
5259 	if (!pud_present(*pud)) {
5260 		mm_inc_nr_pmds(mm);
5261 		smp_wmb(); /* See comment in pmd_install() */
5262 		pud_populate(mm, pud, new);
5263 	} else {	/* Another has populated it */
5264 		pmd_free(mm, new);
5265 	}
5266 	spin_unlock(ptl);
5267 	return 0;
5268 }
5269 #endif /* __PAGETABLE_PMD_FOLDED */
5270 
5271 /**
5272  * follow_pte - look up PTE at a user virtual address
5273  * @mm: the mm_struct of the target address space
5274  * @address: user virtual address
5275  * @ptepp: location to store found PTE
5276  * @ptlp: location to store the lock for the PTE
5277  *
5278  * On a successful return, the pointer to the PTE is stored in @ptepp;
5279  * the corresponding lock is taken and its location is stored in @ptlp.
5280  * The contents of the PTE are only stable until @ptlp is released;
5281  * any further use, if any, must be protected against invalidation
5282  * with MMU notifiers.
5283  *
5284  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5285  * should be taken for read.
5286  *
5287  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5288  * it is not a good general-purpose API.
5289  *
5290  * Return: zero on success, -ve otherwise.
5291  */
5292 int follow_pte(struct mm_struct *mm, unsigned long address,
5293 	       pte_t **ptepp, spinlock_t **ptlp)
5294 {
5295 	pgd_t *pgd;
5296 	p4d_t *p4d;
5297 	pud_t *pud;
5298 	pmd_t *pmd;
5299 	pte_t *ptep;
5300 
5301 	pgd = pgd_offset(mm, address);
5302 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5303 		goto out;
5304 
5305 	p4d = p4d_offset(pgd, address);
5306 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5307 		goto out;
5308 
5309 	pud = pud_offset(p4d, address);
5310 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5311 		goto out;
5312 
5313 	pmd = pmd_offset(pud, address);
5314 	VM_BUG_ON(pmd_trans_huge(*pmd));
5315 
5316 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5317 		goto out;
5318 
5319 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5320 	if (!pte_present(*ptep))
5321 		goto unlock;
5322 	*ptepp = ptep;
5323 	return 0;
5324 unlock:
5325 	pte_unmap_unlock(ptep, *ptlp);
5326 out:
5327 	return -EINVAL;
5328 }
5329 EXPORT_SYMBOL_GPL(follow_pte);
5330 
5331 /**
5332  * follow_pfn - look up PFN at a user virtual address
5333  * @vma: memory mapping
5334  * @address: user virtual address
5335  * @pfn: location to store found PFN
5336  *
5337  * Only IO mappings and raw PFN mappings are allowed.
5338  *
5339  * This function does not allow the caller to read the permissions
5340  * of the PTE.  Do not use it.
5341  *
5342  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5343  */
5344 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5345 	unsigned long *pfn)
5346 {
5347 	int ret = -EINVAL;
5348 	spinlock_t *ptl;
5349 	pte_t *ptep;
5350 
5351 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5352 		return ret;
5353 
5354 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5355 	if (ret)
5356 		return ret;
5357 	*pfn = pte_pfn(*ptep);
5358 	pte_unmap_unlock(ptep, ptl);
5359 	return 0;
5360 }
5361 EXPORT_SYMBOL(follow_pfn);
5362 
5363 #ifdef CONFIG_HAVE_IOREMAP_PROT
5364 int follow_phys(struct vm_area_struct *vma,
5365 		unsigned long address, unsigned int flags,
5366 		unsigned long *prot, resource_size_t *phys)
5367 {
5368 	int ret = -EINVAL;
5369 	pte_t *ptep, pte;
5370 	spinlock_t *ptl;
5371 
5372 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5373 		goto out;
5374 
5375 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5376 		goto out;
5377 	pte = *ptep;
5378 
5379 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5380 		goto unlock;
5381 
5382 	*prot = pgprot_val(pte_pgprot(pte));
5383 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5384 
5385 	ret = 0;
5386 unlock:
5387 	pte_unmap_unlock(ptep, ptl);
5388 out:
5389 	return ret;
5390 }
5391 
5392 /**
5393  * generic_access_phys - generic implementation for iomem mmap access
5394  * @vma: the vma to access
5395  * @addr: userspace address, not relative offset within @vma
5396  * @buf: buffer to read/write
5397  * @len: length of transfer
5398  * @write: set to FOLL_WRITE when writing, otherwise reading
5399  *
5400  * This is a generic implementation for &vm_operations_struct.access for an
5401  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5402  * not page based.
5403  */
5404 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5405 			void *buf, int len, int write)
5406 {
5407 	resource_size_t phys_addr;
5408 	unsigned long prot = 0;
5409 	void __iomem *maddr;
5410 	pte_t *ptep, pte;
5411 	spinlock_t *ptl;
5412 	int offset = offset_in_page(addr);
5413 	int ret = -EINVAL;
5414 
5415 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5416 		return -EINVAL;
5417 
5418 retry:
5419 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5420 		return -EINVAL;
5421 	pte = *ptep;
5422 	pte_unmap_unlock(ptep, ptl);
5423 
5424 	prot = pgprot_val(pte_pgprot(pte));
5425 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5426 
5427 	if ((write & FOLL_WRITE) && !pte_write(pte))
5428 		return -EINVAL;
5429 
5430 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5431 	if (!maddr)
5432 		return -ENOMEM;
5433 
5434 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5435 		goto out_unmap;
5436 
5437 	if (!pte_same(pte, *ptep)) {
5438 		pte_unmap_unlock(ptep, ptl);
5439 		iounmap(maddr);
5440 
5441 		goto retry;
5442 	}
5443 
5444 	if (write)
5445 		memcpy_toio(maddr + offset, buf, len);
5446 	else
5447 		memcpy_fromio(buf, maddr + offset, len);
5448 	ret = len;
5449 	pte_unmap_unlock(ptep, ptl);
5450 out_unmap:
5451 	iounmap(maddr);
5452 
5453 	return ret;
5454 }
5455 EXPORT_SYMBOL_GPL(generic_access_phys);
5456 #endif
5457 
5458 /*
5459  * Access another process' address space as given in mm.
5460  */
5461 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5462 		       int len, unsigned int gup_flags)
5463 {
5464 	struct vm_area_struct *vma;
5465 	void *old_buf = buf;
5466 	int write = gup_flags & FOLL_WRITE;
5467 
5468 	if (mmap_read_lock_killable(mm))
5469 		return 0;
5470 
5471 	/* ignore errors, just check how much was successfully transferred */
5472 	while (len) {
5473 		int bytes, ret, offset;
5474 		void *maddr;
5475 		struct page *page = NULL;
5476 
5477 		ret = get_user_pages_remote(mm, addr, 1,
5478 				gup_flags, &page, &vma, NULL);
5479 		if (ret <= 0) {
5480 #ifndef CONFIG_HAVE_IOREMAP_PROT
5481 			break;
5482 #else
5483 			/*
5484 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5485 			 * we can access using slightly different code.
5486 			 */
5487 			vma = vma_lookup(mm, addr);
5488 			if (!vma)
5489 				break;
5490 			if (vma->vm_ops && vma->vm_ops->access)
5491 				ret = vma->vm_ops->access(vma, addr, buf,
5492 							  len, write);
5493 			if (ret <= 0)
5494 				break;
5495 			bytes = ret;
5496 #endif
5497 		} else {
5498 			bytes = len;
5499 			offset = addr & (PAGE_SIZE-1);
5500 			if (bytes > PAGE_SIZE-offset)
5501 				bytes = PAGE_SIZE-offset;
5502 
5503 			maddr = kmap(page);
5504 			if (write) {
5505 				copy_to_user_page(vma, page, addr,
5506 						  maddr + offset, buf, bytes);
5507 				set_page_dirty_lock(page);
5508 			} else {
5509 				copy_from_user_page(vma, page, addr,
5510 						    buf, maddr + offset, bytes);
5511 			}
5512 			kunmap(page);
5513 			put_page(page);
5514 		}
5515 		len -= bytes;
5516 		buf += bytes;
5517 		addr += bytes;
5518 	}
5519 	mmap_read_unlock(mm);
5520 
5521 	return buf - old_buf;
5522 }
5523 
5524 /**
5525  * access_remote_vm - access another process' address space
5526  * @mm:		the mm_struct of the target address space
5527  * @addr:	start address to access
5528  * @buf:	source or destination buffer
5529  * @len:	number of bytes to transfer
5530  * @gup_flags:	flags modifying lookup behaviour
5531  *
5532  * The caller must hold a reference on @mm.
5533  *
5534  * Return: number of bytes copied from source to destination.
5535  */
5536 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5537 		void *buf, int len, unsigned int gup_flags)
5538 {
5539 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5540 }
5541 
5542 /*
5543  * Access another process' address space.
5544  * Source/target buffer must be kernel space,
5545  * Do not walk the page table directly, use get_user_pages
5546  */
5547 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5548 		void *buf, int len, unsigned int gup_flags)
5549 {
5550 	struct mm_struct *mm;
5551 	int ret;
5552 
5553 	mm = get_task_mm(tsk);
5554 	if (!mm)
5555 		return 0;
5556 
5557 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5558 
5559 	mmput(mm);
5560 
5561 	return ret;
5562 }
5563 EXPORT_SYMBOL_GPL(access_process_vm);
5564 
5565 /*
5566  * Print the name of a VMA.
5567  */
5568 void print_vma_addr(char *prefix, unsigned long ip)
5569 {
5570 	struct mm_struct *mm = current->mm;
5571 	struct vm_area_struct *vma;
5572 
5573 	/*
5574 	 * we might be running from an atomic context so we cannot sleep
5575 	 */
5576 	if (!mmap_read_trylock(mm))
5577 		return;
5578 
5579 	vma = find_vma(mm, ip);
5580 	if (vma && vma->vm_file) {
5581 		struct file *f = vma->vm_file;
5582 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5583 		if (buf) {
5584 			char *p;
5585 
5586 			p = file_path(f, buf, PAGE_SIZE);
5587 			if (IS_ERR(p))
5588 				p = "?";
5589 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5590 					vma->vm_start,
5591 					vma->vm_end - vma->vm_start);
5592 			free_page((unsigned long)buf);
5593 		}
5594 	}
5595 	mmap_read_unlock(mm);
5596 }
5597 
5598 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5599 void __might_fault(const char *file, int line)
5600 {
5601 	if (pagefault_disabled())
5602 		return;
5603 	__might_sleep(file, line);
5604 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5605 	if (current->mm)
5606 		might_lock_read(&current->mm->mmap_lock);
5607 #endif
5608 }
5609 EXPORT_SYMBOL(__might_fault);
5610 #endif
5611 
5612 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5613 /*
5614  * Process all subpages of the specified huge page with the specified
5615  * operation.  The target subpage will be processed last to keep its
5616  * cache lines hot.
5617  */
5618 static inline void process_huge_page(
5619 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5620 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5621 	void *arg)
5622 {
5623 	int i, n, base, l;
5624 	unsigned long addr = addr_hint &
5625 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5626 
5627 	/* Process target subpage last to keep its cache lines hot */
5628 	might_sleep();
5629 	n = (addr_hint - addr) / PAGE_SIZE;
5630 	if (2 * n <= pages_per_huge_page) {
5631 		/* If target subpage in first half of huge page */
5632 		base = 0;
5633 		l = n;
5634 		/* Process subpages at the end of huge page */
5635 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5636 			cond_resched();
5637 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5638 		}
5639 	} else {
5640 		/* If target subpage in second half of huge page */
5641 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5642 		l = pages_per_huge_page - n;
5643 		/* Process subpages at the begin of huge page */
5644 		for (i = 0; i < base; i++) {
5645 			cond_resched();
5646 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5647 		}
5648 	}
5649 	/*
5650 	 * Process remaining subpages in left-right-left-right pattern
5651 	 * towards the target subpage
5652 	 */
5653 	for (i = 0; i < l; i++) {
5654 		int left_idx = base + i;
5655 		int right_idx = base + 2 * l - 1 - i;
5656 
5657 		cond_resched();
5658 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5659 		cond_resched();
5660 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5661 	}
5662 }
5663 
5664 static void clear_gigantic_page(struct page *page,
5665 				unsigned long addr,
5666 				unsigned int pages_per_huge_page)
5667 {
5668 	int i;
5669 	struct page *p = page;
5670 
5671 	might_sleep();
5672 	for (i = 0; i < pages_per_huge_page;
5673 	     i++, p = mem_map_next(p, page, i)) {
5674 		cond_resched();
5675 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5676 	}
5677 }
5678 
5679 static void clear_subpage(unsigned long addr, int idx, void *arg)
5680 {
5681 	struct page *page = arg;
5682 
5683 	clear_user_highpage(page + idx, addr);
5684 }
5685 
5686 void clear_huge_page(struct page *page,
5687 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5688 {
5689 	unsigned long addr = addr_hint &
5690 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5691 
5692 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5693 		clear_gigantic_page(page, addr, pages_per_huge_page);
5694 		return;
5695 	}
5696 
5697 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5698 }
5699 
5700 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5701 				    unsigned long addr,
5702 				    struct vm_area_struct *vma,
5703 				    unsigned int pages_per_huge_page)
5704 {
5705 	int i;
5706 	struct page *dst_base = dst;
5707 	struct page *src_base = src;
5708 
5709 	for (i = 0; i < pages_per_huge_page; ) {
5710 		cond_resched();
5711 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5712 
5713 		i++;
5714 		dst = mem_map_next(dst, dst_base, i);
5715 		src = mem_map_next(src, src_base, i);
5716 	}
5717 }
5718 
5719 struct copy_subpage_arg {
5720 	struct page *dst;
5721 	struct page *src;
5722 	struct vm_area_struct *vma;
5723 };
5724 
5725 static void copy_subpage(unsigned long addr, int idx, void *arg)
5726 {
5727 	struct copy_subpage_arg *copy_arg = arg;
5728 
5729 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5730 			   addr, copy_arg->vma);
5731 }
5732 
5733 void copy_user_huge_page(struct page *dst, struct page *src,
5734 			 unsigned long addr_hint, struct vm_area_struct *vma,
5735 			 unsigned int pages_per_huge_page)
5736 {
5737 	unsigned long addr = addr_hint &
5738 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5739 	struct copy_subpage_arg arg = {
5740 		.dst = dst,
5741 		.src = src,
5742 		.vma = vma,
5743 	};
5744 
5745 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5746 		copy_user_gigantic_page(dst, src, addr, vma,
5747 					pages_per_huge_page);
5748 		return;
5749 	}
5750 
5751 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5752 }
5753 
5754 long copy_huge_page_from_user(struct page *dst_page,
5755 				const void __user *usr_src,
5756 				unsigned int pages_per_huge_page,
5757 				bool allow_pagefault)
5758 {
5759 	void *page_kaddr;
5760 	unsigned long i, rc = 0;
5761 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5762 	struct page *subpage = dst_page;
5763 
5764 	for (i = 0; i < pages_per_huge_page;
5765 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5766 		if (allow_pagefault)
5767 			page_kaddr = kmap(subpage);
5768 		else
5769 			page_kaddr = kmap_atomic(subpage);
5770 		rc = copy_from_user(page_kaddr,
5771 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5772 		if (allow_pagefault)
5773 			kunmap(subpage);
5774 		else
5775 			kunmap_atomic(page_kaddr);
5776 
5777 		ret_val -= (PAGE_SIZE - rc);
5778 		if (rc)
5779 			break;
5780 
5781 		flush_dcache_page(subpage);
5782 
5783 		cond_resched();
5784 	}
5785 	return ret_val;
5786 }
5787 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5788 
5789 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5790 
5791 static struct kmem_cache *page_ptl_cachep;
5792 
5793 void __init ptlock_cache_init(void)
5794 {
5795 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5796 			SLAB_PANIC, NULL);
5797 }
5798 
5799 bool ptlock_alloc(struct page *page)
5800 {
5801 	spinlock_t *ptl;
5802 
5803 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5804 	if (!ptl)
5805 		return false;
5806 	page->ptl = ptl;
5807 	return true;
5808 }
5809 
5810 void ptlock_free(struct page *page)
5811 {
5812 	kmem_cache_free(page_ptl_cachep, page->ptl);
5813 }
5814 #endif
5815