1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 #include <linux/perf_event.h> 75 #include <linux/ptrace.h> 76 77 #include <trace/events/kmem.h> 78 79 #include <asm/io.h> 80 #include <asm/mmu_context.h> 81 #include <asm/pgalloc.h> 82 #include <linux/uaccess.h> 83 #include <asm/tlb.h> 84 #include <asm/tlbflush.h> 85 86 #include "internal.h" 87 88 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 89 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 90 #endif 91 92 #ifndef CONFIG_NEED_MULTIPLE_NODES 93 /* use the per-pgdat data instead for discontigmem - mbligh */ 94 unsigned long max_mapnr; 95 EXPORT_SYMBOL(max_mapnr); 96 97 struct page *mem_map; 98 EXPORT_SYMBOL(mem_map); 99 #endif 100 101 /* 102 * A number of key systems in x86 including ioremap() rely on the assumption 103 * that high_memory defines the upper bound on direct map memory, then end 104 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 105 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 106 * and ZONE_HIGHMEM. 107 */ 108 void *high_memory; 109 EXPORT_SYMBOL(high_memory); 110 111 /* 112 * Randomize the address space (stacks, mmaps, brk, etc.). 113 * 114 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 115 * as ancient (libc5 based) binaries can segfault. ) 116 */ 117 int randomize_va_space __read_mostly = 118 #ifdef CONFIG_COMPAT_BRK 119 1; 120 #else 121 2; 122 #endif 123 124 #ifndef arch_faults_on_old_pte 125 static inline bool arch_faults_on_old_pte(void) 126 { 127 /* 128 * Those arches which don't have hw access flag feature need to 129 * implement their own helper. By default, "true" means pagefault 130 * will be hit on old pte. 131 */ 132 return true; 133 } 134 #endif 135 136 static int __init disable_randmaps(char *s) 137 { 138 randomize_va_space = 0; 139 return 1; 140 } 141 __setup("norandmaps", disable_randmaps); 142 143 unsigned long zero_pfn __read_mostly; 144 EXPORT_SYMBOL(zero_pfn); 145 146 unsigned long highest_memmap_pfn __read_mostly; 147 148 /* 149 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 150 */ 151 static int __init init_zero_pfn(void) 152 { 153 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 154 return 0; 155 } 156 core_initcall(init_zero_pfn); 157 158 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 159 { 160 trace_rss_stat(mm, member, count); 161 } 162 163 #if defined(SPLIT_RSS_COUNTING) 164 165 void sync_mm_rss(struct mm_struct *mm) 166 { 167 int i; 168 169 for (i = 0; i < NR_MM_COUNTERS; i++) { 170 if (current->rss_stat.count[i]) { 171 add_mm_counter(mm, i, current->rss_stat.count[i]); 172 current->rss_stat.count[i] = 0; 173 } 174 } 175 current->rss_stat.events = 0; 176 } 177 178 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 179 { 180 struct task_struct *task = current; 181 182 if (likely(task->mm == mm)) 183 task->rss_stat.count[member] += val; 184 else 185 add_mm_counter(mm, member, val); 186 } 187 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 188 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 189 190 /* sync counter once per 64 page faults */ 191 #define TASK_RSS_EVENTS_THRESH (64) 192 static void check_sync_rss_stat(struct task_struct *task) 193 { 194 if (unlikely(task != current)) 195 return; 196 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 197 sync_mm_rss(task->mm); 198 } 199 #else /* SPLIT_RSS_COUNTING */ 200 201 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 202 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 203 204 static void check_sync_rss_stat(struct task_struct *task) 205 { 206 } 207 208 #endif /* SPLIT_RSS_COUNTING */ 209 210 /* 211 * Note: this doesn't free the actual pages themselves. That 212 * has been handled earlier when unmapping all the memory regions. 213 */ 214 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 215 unsigned long addr) 216 { 217 pgtable_t token = pmd_pgtable(*pmd); 218 pmd_clear(pmd); 219 pte_free_tlb(tlb, token, addr); 220 mm_dec_nr_ptes(tlb->mm); 221 } 222 223 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 224 unsigned long addr, unsigned long end, 225 unsigned long floor, unsigned long ceiling) 226 { 227 pmd_t *pmd; 228 unsigned long next; 229 unsigned long start; 230 231 start = addr; 232 pmd = pmd_offset(pud, addr); 233 do { 234 next = pmd_addr_end(addr, end); 235 if (pmd_none_or_clear_bad(pmd)) 236 continue; 237 free_pte_range(tlb, pmd, addr); 238 } while (pmd++, addr = next, addr != end); 239 240 start &= PUD_MASK; 241 if (start < floor) 242 return; 243 if (ceiling) { 244 ceiling &= PUD_MASK; 245 if (!ceiling) 246 return; 247 } 248 if (end - 1 > ceiling - 1) 249 return; 250 251 pmd = pmd_offset(pud, start); 252 pud_clear(pud); 253 pmd_free_tlb(tlb, pmd, start); 254 mm_dec_nr_pmds(tlb->mm); 255 } 256 257 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 258 unsigned long addr, unsigned long end, 259 unsigned long floor, unsigned long ceiling) 260 { 261 pud_t *pud; 262 unsigned long next; 263 unsigned long start; 264 265 start = addr; 266 pud = pud_offset(p4d, addr); 267 do { 268 next = pud_addr_end(addr, end); 269 if (pud_none_or_clear_bad(pud)) 270 continue; 271 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 272 } while (pud++, addr = next, addr != end); 273 274 start &= P4D_MASK; 275 if (start < floor) 276 return; 277 if (ceiling) { 278 ceiling &= P4D_MASK; 279 if (!ceiling) 280 return; 281 } 282 if (end - 1 > ceiling - 1) 283 return; 284 285 pud = pud_offset(p4d, start); 286 p4d_clear(p4d); 287 pud_free_tlb(tlb, pud, start); 288 mm_dec_nr_puds(tlb->mm); 289 } 290 291 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 292 unsigned long addr, unsigned long end, 293 unsigned long floor, unsigned long ceiling) 294 { 295 p4d_t *p4d; 296 unsigned long next; 297 unsigned long start; 298 299 start = addr; 300 p4d = p4d_offset(pgd, addr); 301 do { 302 next = p4d_addr_end(addr, end); 303 if (p4d_none_or_clear_bad(p4d)) 304 continue; 305 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 306 } while (p4d++, addr = next, addr != end); 307 308 start &= PGDIR_MASK; 309 if (start < floor) 310 return; 311 if (ceiling) { 312 ceiling &= PGDIR_MASK; 313 if (!ceiling) 314 return; 315 } 316 if (end - 1 > ceiling - 1) 317 return; 318 319 p4d = p4d_offset(pgd, start); 320 pgd_clear(pgd); 321 p4d_free_tlb(tlb, p4d, start); 322 } 323 324 /* 325 * This function frees user-level page tables of a process. 326 */ 327 void free_pgd_range(struct mmu_gather *tlb, 328 unsigned long addr, unsigned long end, 329 unsigned long floor, unsigned long ceiling) 330 { 331 pgd_t *pgd; 332 unsigned long next; 333 334 /* 335 * The next few lines have given us lots of grief... 336 * 337 * Why are we testing PMD* at this top level? Because often 338 * there will be no work to do at all, and we'd prefer not to 339 * go all the way down to the bottom just to discover that. 340 * 341 * Why all these "- 1"s? Because 0 represents both the bottom 342 * of the address space and the top of it (using -1 for the 343 * top wouldn't help much: the masks would do the wrong thing). 344 * The rule is that addr 0 and floor 0 refer to the bottom of 345 * the address space, but end 0 and ceiling 0 refer to the top 346 * Comparisons need to use "end - 1" and "ceiling - 1" (though 347 * that end 0 case should be mythical). 348 * 349 * Wherever addr is brought up or ceiling brought down, we must 350 * be careful to reject "the opposite 0" before it confuses the 351 * subsequent tests. But what about where end is brought down 352 * by PMD_SIZE below? no, end can't go down to 0 there. 353 * 354 * Whereas we round start (addr) and ceiling down, by different 355 * masks at different levels, in order to test whether a table 356 * now has no other vmas using it, so can be freed, we don't 357 * bother to round floor or end up - the tests don't need that. 358 */ 359 360 addr &= PMD_MASK; 361 if (addr < floor) { 362 addr += PMD_SIZE; 363 if (!addr) 364 return; 365 } 366 if (ceiling) { 367 ceiling &= PMD_MASK; 368 if (!ceiling) 369 return; 370 } 371 if (end - 1 > ceiling - 1) 372 end -= PMD_SIZE; 373 if (addr > end - 1) 374 return; 375 /* 376 * We add page table cache pages with PAGE_SIZE, 377 * (see pte_free_tlb()), flush the tlb if we need 378 */ 379 tlb_change_page_size(tlb, PAGE_SIZE); 380 pgd = pgd_offset(tlb->mm, addr); 381 do { 382 next = pgd_addr_end(addr, end); 383 if (pgd_none_or_clear_bad(pgd)) 384 continue; 385 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 386 } while (pgd++, addr = next, addr != end); 387 } 388 389 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 390 unsigned long floor, unsigned long ceiling) 391 { 392 while (vma) { 393 struct vm_area_struct *next = vma->vm_next; 394 unsigned long addr = vma->vm_start; 395 396 /* 397 * Hide vma from rmap and truncate_pagecache before freeing 398 * pgtables 399 */ 400 unlink_anon_vmas(vma); 401 unlink_file_vma(vma); 402 403 if (is_vm_hugetlb_page(vma)) { 404 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 405 floor, next ? next->vm_start : ceiling); 406 } else { 407 /* 408 * Optimization: gather nearby vmas into one call down 409 */ 410 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 411 && !is_vm_hugetlb_page(next)) { 412 vma = next; 413 next = vma->vm_next; 414 unlink_anon_vmas(vma); 415 unlink_file_vma(vma); 416 } 417 free_pgd_range(tlb, addr, vma->vm_end, 418 floor, next ? next->vm_start : ceiling); 419 } 420 vma = next; 421 } 422 } 423 424 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 425 { 426 spinlock_t *ptl; 427 pgtable_t new = pte_alloc_one(mm); 428 if (!new) 429 return -ENOMEM; 430 431 /* 432 * Ensure all pte setup (eg. pte page lock and page clearing) are 433 * visible before the pte is made visible to other CPUs by being 434 * put into page tables. 435 * 436 * The other side of the story is the pointer chasing in the page 437 * table walking code (when walking the page table without locking; 438 * ie. most of the time). Fortunately, these data accesses consist 439 * of a chain of data-dependent loads, meaning most CPUs (alpha 440 * being the notable exception) will already guarantee loads are 441 * seen in-order. See the alpha page table accessors for the 442 * smp_rmb() barriers in page table walking code. 443 */ 444 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 445 446 ptl = pmd_lock(mm, pmd); 447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 448 mm_inc_nr_ptes(mm); 449 pmd_populate(mm, pmd, new); 450 new = NULL; 451 } 452 spin_unlock(ptl); 453 if (new) 454 pte_free(mm, new); 455 return 0; 456 } 457 458 int __pte_alloc_kernel(pmd_t *pmd) 459 { 460 pte_t *new = pte_alloc_one_kernel(&init_mm); 461 if (!new) 462 return -ENOMEM; 463 464 smp_wmb(); /* See comment in __pte_alloc */ 465 466 spin_lock(&init_mm.page_table_lock); 467 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 468 pmd_populate_kernel(&init_mm, pmd, new); 469 new = NULL; 470 } 471 spin_unlock(&init_mm.page_table_lock); 472 if (new) 473 pte_free_kernel(&init_mm, new); 474 return 0; 475 } 476 477 static inline void init_rss_vec(int *rss) 478 { 479 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 480 } 481 482 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 483 { 484 int i; 485 486 if (current->mm == mm) 487 sync_mm_rss(mm); 488 for (i = 0; i < NR_MM_COUNTERS; i++) 489 if (rss[i]) 490 add_mm_counter(mm, i, rss[i]); 491 } 492 493 /* 494 * This function is called to print an error when a bad pte 495 * is found. For example, we might have a PFN-mapped pte in 496 * a region that doesn't allow it. 497 * 498 * The calling function must still handle the error. 499 */ 500 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 501 pte_t pte, struct page *page) 502 { 503 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 504 p4d_t *p4d = p4d_offset(pgd, addr); 505 pud_t *pud = pud_offset(p4d, addr); 506 pmd_t *pmd = pmd_offset(pud, addr); 507 struct address_space *mapping; 508 pgoff_t index; 509 static unsigned long resume; 510 static unsigned long nr_shown; 511 static unsigned long nr_unshown; 512 513 /* 514 * Allow a burst of 60 reports, then keep quiet for that minute; 515 * or allow a steady drip of one report per second. 516 */ 517 if (nr_shown == 60) { 518 if (time_before(jiffies, resume)) { 519 nr_unshown++; 520 return; 521 } 522 if (nr_unshown) { 523 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 524 nr_unshown); 525 nr_unshown = 0; 526 } 527 nr_shown = 0; 528 } 529 if (nr_shown++ == 0) 530 resume = jiffies + 60 * HZ; 531 532 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 533 index = linear_page_index(vma, addr); 534 535 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 536 current->comm, 537 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 538 if (page) 539 dump_page(page, "bad pte"); 540 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 541 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 542 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 543 vma->vm_file, 544 vma->vm_ops ? vma->vm_ops->fault : NULL, 545 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 546 mapping ? mapping->a_ops->readpage : NULL); 547 dump_stack(); 548 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 549 } 550 551 /* 552 * vm_normal_page -- This function gets the "struct page" associated with a pte. 553 * 554 * "Special" mappings do not wish to be associated with a "struct page" (either 555 * it doesn't exist, or it exists but they don't want to touch it). In this 556 * case, NULL is returned here. "Normal" mappings do have a struct page. 557 * 558 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 559 * pte bit, in which case this function is trivial. Secondly, an architecture 560 * may not have a spare pte bit, which requires a more complicated scheme, 561 * described below. 562 * 563 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 564 * special mapping (even if there are underlying and valid "struct pages"). 565 * COWed pages of a VM_PFNMAP are always normal. 566 * 567 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 568 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 569 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 570 * mapping will always honor the rule 571 * 572 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 573 * 574 * And for normal mappings this is false. 575 * 576 * This restricts such mappings to be a linear translation from virtual address 577 * to pfn. To get around this restriction, we allow arbitrary mappings so long 578 * as the vma is not a COW mapping; in that case, we know that all ptes are 579 * special (because none can have been COWed). 580 * 581 * 582 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 583 * 584 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 585 * page" backing, however the difference is that _all_ pages with a struct 586 * page (that is, those where pfn_valid is true) are refcounted and considered 587 * normal pages by the VM. The disadvantage is that pages are refcounted 588 * (which can be slower and simply not an option for some PFNMAP users). The 589 * advantage is that we don't have to follow the strict linearity rule of 590 * PFNMAP mappings in order to support COWable mappings. 591 * 592 */ 593 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 594 pte_t pte) 595 { 596 unsigned long pfn = pte_pfn(pte); 597 598 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 599 if (likely(!pte_special(pte))) 600 goto check_pfn; 601 if (vma->vm_ops && vma->vm_ops->find_special_page) 602 return vma->vm_ops->find_special_page(vma, addr); 603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 604 return NULL; 605 if (is_zero_pfn(pfn)) 606 return NULL; 607 if (pte_devmap(pte)) 608 return NULL; 609 610 print_bad_pte(vma, addr, pte, NULL); 611 return NULL; 612 } 613 614 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 615 616 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 617 if (vma->vm_flags & VM_MIXEDMAP) { 618 if (!pfn_valid(pfn)) 619 return NULL; 620 goto out; 621 } else { 622 unsigned long off; 623 off = (addr - vma->vm_start) >> PAGE_SHIFT; 624 if (pfn == vma->vm_pgoff + off) 625 return NULL; 626 if (!is_cow_mapping(vma->vm_flags)) 627 return NULL; 628 } 629 } 630 631 if (is_zero_pfn(pfn)) 632 return NULL; 633 634 check_pfn: 635 if (unlikely(pfn > highest_memmap_pfn)) { 636 print_bad_pte(vma, addr, pte, NULL); 637 return NULL; 638 } 639 640 /* 641 * NOTE! We still have PageReserved() pages in the page tables. 642 * eg. VDSO mappings can cause them to exist. 643 */ 644 out: 645 return pfn_to_page(pfn); 646 } 647 648 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 649 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 650 pmd_t pmd) 651 { 652 unsigned long pfn = pmd_pfn(pmd); 653 654 /* 655 * There is no pmd_special() but there may be special pmds, e.g. 656 * in a direct-access (dax) mapping, so let's just replicate the 657 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 658 */ 659 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 660 if (vma->vm_flags & VM_MIXEDMAP) { 661 if (!pfn_valid(pfn)) 662 return NULL; 663 goto out; 664 } else { 665 unsigned long off; 666 off = (addr - vma->vm_start) >> PAGE_SHIFT; 667 if (pfn == vma->vm_pgoff + off) 668 return NULL; 669 if (!is_cow_mapping(vma->vm_flags)) 670 return NULL; 671 } 672 } 673 674 if (pmd_devmap(pmd)) 675 return NULL; 676 if (is_huge_zero_pmd(pmd)) 677 return NULL; 678 if (unlikely(pfn > highest_memmap_pfn)) 679 return NULL; 680 681 /* 682 * NOTE! We still have PageReserved() pages in the page tables. 683 * eg. VDSO mappings can cause them to exist. 684 */ 685 out: 686 return pfn_to_page(pfn); 687 } 688 #endif 689 690 /* 691 * copy one vm_area from one task to the other. Assumes the page tables 692 * already present in the new task to be cleared in the whole range 693 * covered by this vma. 694 */ 695 696 static inline unsigned long 697 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 698 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 699 unsigned long addr, int *rss) 700 { 701 unsigned long vm_flags = vma->vm_flags; 702 pte_t pte = *src_pte; 703 struct page *page; 704 705 /* pte contains position in swap or file, so copy. */ 706 if (unlikely(!pte_present(pte))) { 707 swp_entry_t entry = pte_to_swp_entry(pte); 708 709 if (likely(!non_swap_entry(entry))) { 710 if (swap_duplicate(entry) < 0) 711 return entry.val; 712 713 /* make sure dst_mm is on swapoff's mmlist. */ 714 if (unlikely(list_empty(&dst_mm->mmlist))) { 715 spin_lock(&mmlist_lock); 716 if (list_empty(&dst_mm->mmlist)) 717 list_add(&dst_mm->mmlist, 718 &src_mm->mmlist); 719 spin_unlock(&mmlist_lock); 720 } 721 rss[MM_SWAPENTS]++; 722 } else if (is_migration_entry(entry)) { 723 page = migration_entry_to_page(entry); 724 725 rss[mm_counter(page)]++; 726 727 if (is_write_migration_entry(entry) && 728 is_cow_mapping(vm_flags)) { 729 /* 730 * COW mappings require pages in both 731 * parent and child to be set to read. 732 */ 733 make_migration_entry_read(&entry); 734 pte = swp_entry_to_pte(entry); 735 if (pte_swp_soft_dirty(*src_pte)) 736 pte = pte_swp_mksoft_dirty(pte); 737 if (pte_swp_uffd_wp(*src_pte)) 738 pte = pte_swp_mkuffd_wp(pte); 739 set_pte_at(src_mm, addr, src_pte, pte); 740 } 741 } else if (is_device_private_entry(entry)) { 742 page = device_private_entry_to_page(entry); 743 744 /* 745 * Update rss count even for unaddressable pages, as 746 * they should treated just like normal pages in this 747 * respect. 748 * 749 * We will likely want to have some new rss counters 750 * for unaddressable pages, at some point. But for now 751 * keep things as they are. 752 */ 753 get_page(page); 754 rss[mm_counter(page)]++; 755 page_dup_rmap(page, false); 756 757 /* 758 * We do not preserve soft-dirty information, because so 759 * far, checkpoint/restore is the only feature that 760 * requires that. And checkpoint/restore does not work 761 * when a device driver is involved (you cannot easily 762 * save and restore device driver state). 763 */ 764 if (is_write_device_private_entry(entry) && 765 is_cow_mapping(vm_flags)) { 766 make_device_private_entry_read(&entry); 767 pte = swp_entry_to_pte(entry); 768 if (pte_swp_uffd_wp(*src_pte)) 769 pte = pte_swp_mkuffd_wp(pte); 770 set_pte_at(src_mm, addr, src_pte, pte); 771 } 772 } 773 goto out_set_pte; 774 } 775 776 /* 777 * If it's a COW mapping, write protect it both 778 * in the parent and the child 779 */ 780 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 781 ptep_set_wrprotect(src_mm, addr, src_pte); 782 pte = pte_wrprotect(pte); 783 } 784 785 /* 786 * If it's a shared mapping, mark it clean in 787 * the child 788 */ 789 if (vm_flags & VM_SHARED) 790 pte = pte_mkclean(pte); 791 pte = pte_mkold(pte); 792 793 /* 794 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA 795 * does not have the VM_UFFD_WP, which means that the uffd 796 * fork event is not enabled. 797 */ 798 if (!(vm_flags & VM_UFFD_WP)) 799 pte = pte_clear_uffd_wp(pte); 800 801 page = vm_normal_page(vma, addr, pte); 802 if (page) { 803 get_page(page); 804 page_dup_rmap(page, false); 805 rss[mm_counter(page)]++; 806 } 807 808 out_set_pte: 809 set_pte_at(dst_mm, addr, dst_pte, pte); 810 return 0; 811 } 812 813 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 814 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 815 unsigned long addr, unsigned long end) 816 { 817 pte_t *orig_src_pte, *orig_dst_pte; 818 pte_t *src_pte, *dst_pte; 819 spinlock_t *src_ptl, *dst_ptl; 820 int progress = 0; 821 int rss[NR_MM_COUNTERS]; 822 swp_entry_t entry = (swp_entry_t){0}; 823 824 again: 825 init_rss_vec(rss); 826 827 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 828 if (!dst_pte) 829 return -ENOMEM; 830 src_pte = pte_offset_map(src_pmd, addr); 831 src_ptl = pte_lockptr(src_mm, src_pmd); 832 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 833 orig_src_pte = src_pte; 834 orig_dst_pte = dst_pte; 835 arch_enter_lazy_mmu_mode(); 836 837 do { 838 /* 839 * We are holding two locks at this point - either of them 840 * could generate latencies in another task on another CPU. 841 */ 842 if (progress >= 32) { 843 progress = 0; 844 if (need_resched() || 845 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 846 break; 847 } 848 if (pte_none(*src_pte)) { 849 progress++; 850 continue; 851 } 852 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 853 vma, addr, rss); 854 if (entry.val) 855 break; 856 progress += 8; 857 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 858 859 arch_leave_lazy_mmu_mode(); 860 spin_unlock(src_ptl); 861 pte_unmap(orig_src_pte); 862 add_mm_rss_vec(dst_mm, rss); 863 pte_unmap_unlock(orig_dst_pte, dst_ptl); 864 cond_resched(); 865 866 if (entry.val) { 867 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 868 return -ENOMEM; 869 progress = 0; 870 } 871 if (addr != end) 872 goto again; 873 return 0; 874 } 875 876 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 877 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 878 unsigned long addr, unsigned long end) 879 { 880 pmd_t *src_pmd, *dst_pmd; 881 unsigned long next; 882 883 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 884 if (!dst_pmd) 885 return -ENOMEM; 886 src_pmd = pmd_offset(src_pud, addr); 887 do { 888 next = pmd_addr_end(addr, end); 889 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 890 || pmd_devmap(*src_pmd)) { 891 int err; 892 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 893 err = copy_huge_pmd(dst_mm, src_mm, 894 dst_pmd, src_pmd, addr, vma); 895 if (err == -ENOMEM) 896 return -ENOMEM; 897 if (!err) 898 continue; 899 /* fall through */ 900 } 901 if (pmd_none_or_clear_bad(src_pmd)) 902 continue; 903 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 904 vma, addr, next)) 905 return -ENOMEM; 906 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 907 return 0; 908 } 909 910 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 911 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 912 unsigned long addr, unsigned long end) 913 { 914 pud_t *src_pud, *dst_pud; 915 unsigned long next; 916 917 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 918 if (!dst_pud) 919 return -ENOMEM; 920 src_pud = pud_offset(src_p4d, addr); 921 do { 922 next = pud_addr_end(addr, end); 923 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 924 int err; 925 926 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 927 err = copy_huge_pud(dst_mm, src_mm, 928 dst_pud, src_pud, addr, vma); 929 if (err == -ENOMEM) 930 return -ENOMEM; 931 if (!err) 932 continue; 933 /* fall through */ 934 } 935 if (pud_none_or_clear_bad(src_pud)) 936 continue; 937 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 938 vma, addr, next)) 939 return -ENOMEM; 940 } while (dst_pud++, src_pud++, addr = next, addr != end); 941 return 0; 942 } 943 944 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 945 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 946 unsigned long addr, unsigned long end) 947 { 948 p4d_t *src_p4d, *dst_p4d; 949 unsigned long next; 950 951 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 952 if (!dst_p4d) 953 return -ENOMEM; 954 src_p4d = p4d_offset(src_pgd, addr); 955 do { 956 next = p4d_addr_end(addr, end); 957 if (p4d_none_or_clear_bad(src_p4d)) 958 continue; 959 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 960 vma, addr, next)) 961 return -ENOMEM; 962 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 963 return 0; 964 } 965 966 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 967 struct vm_area_struct *vma) 968 { 969 pgd_t *src_pgd, *dst_pgd; 970 unsigned long next; 971 unsigned long addr = vma->vm_start; 972 unsigned long end = vma->vm_end; 973 struct mmu_notifier_range range; 974 bool is_cow; 975 int ret; 976 977 /* 978 * Don't copy ptes where a page fault will fill them correctly. 979 * Fork becomes much lighter when there are big shared or private 980 * readonly mappings. The tradeoff is that copy_page_range is more 981 * efficient than faulting. 982 */ 983 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 984 !vma->anon_vma) 985 return 0; 986 987 if (is_vm_hugetlb_page(vma)) 988 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 989 990 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 991 /* 992 * We do not free on error cases below as remove_vma 993 * gets called on error from higher level routine 994 */ 995 ret = track_pfn_copy(vma); 996 if (ret) 997 return ret; 998 } 999 1000 /* 1001 * We need to invalidate the secondary MMU mappings only when 1002 * there could be a permission downgrade on the ptes of the 1003 * parent mm. And a permission downgrade will only happen if 1004 * is_cow_mapping() returns true. 1005 */ 1006 is_cow = is_cow_mapping(vma->vm_flags); 1007 1008 if (is_cow) { 1009 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1010 0, vma, src_mm, addr, end); 1011 mmu_notifier_invalidate_range_start(&range); 1012 } 1013 1014 ret = 0; 1015 dst_pgd = pgd_offset(dst_mm, addr); 1016 src_pgd = pgd_offset(src_mm, addr); 1017 do { 1018 next = pgd_addr_end(addr, end); 1019 if (pgd_none_or_clear_bad(src_pgd)) 1020 continue; 1021 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1022 vma, addr, next))) { 1023 ret = -ENOMEM; 1024 break; 1025 } 1026 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1027 1028 if (is_cow) 1029 mmu_notifier_invalidate_range_end(&range); 1030 return ret; 1031 } 1032 1033 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1034 struct vm_area_struct *vma, pmd_t *pmd, 1035 unsigned long addr, unsigned long end, 1036 struct zap_details *details) 1037 { 1038 struct mm_struct *mm = tlb->mm; 1039 int force_flush = 0; 1040 int rss[NR_MM_COUNTERS]; 1041 spinlock_t *ptl; 1042 pte_t *start_pte; 1043 pte_t *pte; 1044 swp_entry_t entry; 1045 1046 tlb_change_page_size(tlb, PAGE_SIZE); 1047 again: 1048 init_rss_vec(rss); 1049 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1050 pte = start_pte; 1051 flush_tlb_batched_pending(mm); 1052 arch_enter_lazy_mmu_mode(); 1053 do { 1054 pte_t ptent = *pte; 1055 if (pte_none(ptent)) 1056 continue; 1057 1058 if (need_resched()) 1059 break; 1060 1061 if (pte_present(ptent)) { 1062 struct page *page; 1063 1064 page = vm_normal_page(vma, addr, ptent); 1065 if (unlikely(details) && page) { 1066 /* 1067 * unmap_shared_mapping_pages() wants to 1068 * invalidate cache without truncating: 1069 * unmap shared but keep private pages. 1070 */ 1071 if (details->check_mapping && 1072 details->check_mapping != page_rmapping(page)) 1073 continue; 1074 } 1075 ptent = ptep_get_and_clear_full(mm, addr, pte, 1076 tlb->fullmm); 1077 tlb_remove_tlb_entry(tlb, pte, addr); 1078 if (unlikely(!page)) 1079 continue; 1080 1081 if (!PageAnon(page)) { 1082 if (pte_dirty(ptent)) { 1083 force_flush = 1; 1084 set_page_dirty(page); 1085 } 1086 if (pte_young(ptent) && 1087 likely(!(vma->vm_flags & VM_SEQ_READ))) 1088 mark_page_accessed(page); 1089 } 1090 rss[mm_counter(page)]--; 1091 page_remove_rmap(page, false); 1092 if (unlikely(page_mapcount(page) < 0)) 1093 print_bad_pte(vma, addr, ptent, page); 1094 if (unlikely(__tlb_remove_page(tlb, page))) { 1095 force_flush = 1; 1096 addr += PAGE_SIZE; 1097 break; 1098 } 1099 continue; 1100 } 1101 1102 entry = pte_to_swp_entry(ptent); 1103 if (is_device_private_entry(entry)) { 1104 struct page *page = device_private_entry_to_page(entry); 1105 1106 if (unlikely(details && details->check_mapping)) { 1107 /* 1108 * unmap_shared_mapping_pages() wants to 1109 * invalidate cache without truncating: 1110 * unmap shared but keep private pages. 1111 */ 1112 if (details->check_mapping != 1113 page_rmapping(page)) 1114 continue; 1115 } 1116 1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1118 rss[mm_counter(page)]--; 1119 page_remove_rmap(page, false); 1120 put_page(page); 1121 continue; 1122 } 1123 1124 /* If details->check_mapping, we leave swap entries. */ 1125 if (unlikely(details)) 1126 continue; 1127 1128 if (!non_swap_entry(entry)) 1129 rss[MM_SWAPENTS]--; 1130 else if (is_migration_entry(entry)) { 1131 struct page *page; 1132 1133 page = migration_entry_to_page(entry); 1134 rss[mm_counter(page)]--; 1135 } 1136 if (unlikely(!free_swap_and_cache(entry))) 1137 print_bad_pte(vma, addr, ptent, NULL); 1138 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1139 } while (pte++, addr += PAGE_SIZE, addr != end); 1140 1141 add_mm_rss_vec(mm, rss); 1142 arch_leave_lazy_mmu_mode(); 1143 1144 /* Do the actual TLB flush before dropping ptl */ 1145 if (force_flush) 1146 tlb_flush_mmu_tlbonly(tlb); 1147 pte_unmap_unlock(start_pte, ptl); 1148 1149 /* 1150 * If we forced a TLB flush (either due to running out of 1151 * batch buffers or because we needed to flush dirty TLB 1152 * entries before releasing the ptl), free the batched 1153 * memory too. Restart if we didn't do everything. 1154 */ 1155 if (force_flush) { 1156 force_flush = 0; 1157 tlb_flush_mmu(tlb); 1158 } 1159 1160 if (addr != end) { 1161 cond_resched(); 1162 goto again; 1163 } 1164 1165 return addr; 1166 } 1167 1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1169 struct vm_area_struct *vma, pud_t *pud, 1170 unsigned long addr, unsigned long end, 1171 struct zap_details *details) 1172 { 1173 pmd_t *pmd; 1174 unsigned long next; 1175 1176 pmd = pmd_offset(pud, addr); 1177 do { 1178 next = pmd_addr_end(addr, end); 1179 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1180 if (next - addr != HPAGE_PMD_SIZE) 1181 __split_huge_pmd(vma, pmd, addr, false, NULL); 1182 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1183 goto next; 1184 /* fall through */ 1185 } 1186 /* 1187 * Here there can be other concurrent MADV_DONTNEED or 1188 * trans huge page faults running, and if the pmd is 1189 * none or trans huge it can change under us. This is 1190 * because MADV_DONTNEED holds the mmap_lock in read 1191 * mode. 1192 */ 1193 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1194 goto next; 1195 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1196 next: 1197 cond_resched(); 1198 } while (pmd++, addr = next, addr != end); 1199 1200 return addr; 1201 } 1202 1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1204 struct vm_area_struct *vma, p4d_t *p4d, 1205 unsigned long addr, unsigned long end, 1206 struct zap_details *details) 1207 { 1208 pud_t *pud; 1209 unsigned long next; 1210 1211 pud = pud_offset(p4d, addr); 1212 do { 1213 next = pud_addr_end(addr, end); 1214 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1215 if (next - addr != HPAGE_PUD_SIZE) { 1216 mmap_assert_locked(tlb->mm); 1217 split_huge_pud(vma, pud, addr); 1218 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1219 goto next; 1220 /* fall through */ 1221 } 1222 if (pud_none_or_clear_bad(pud)) 1223 continue; 1224 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1225 next: 1226 cond_resched(); 1227 } while (pud++, addr = next, addr != end); 1228 1229 return addr; 1230 } 1231 1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1233 struct vm_area_struct *vma, pgd_t *pgd, 1234 unsigned long addr, unsigned long end, 1235 struct zap_details *details) 1236 { 1237 p4d_t *p4d; 1238 unsigned long next; 1239 1240 p4d = p4d_offset(pgd, addr); 1241 do { 1242 next = p4d_addr_end(addr, end); 1243 if (p4d_none_or_clear_bad(p4d)) 1244 continue; 1245 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1246 } while (p4d++, addr = next, addr != end); 1247 1248 return addr; 1249 } 1250 1251 void unmap_page_range(struct mmu_gather *tlb, 1252 struct vm_area_struct *vma, 1253 unsigned long addr, unsigned long end, 1254 struct zap_details *details) 1255 { 1256 pgd_t *pgd; 1257 unsigned long next; 1258 1259 BUG_ON(addr >= end); 1260 tlb_start_vma(tlb, vma); 1261 pgd = pgd_offset(vma->vm_mm, addr); 1262 do { 1263 next = pgd_addr_end(addr, end); 1264 if (pgd_none_or_clear_bad(pgd)) 1265 continue; 1266 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1267 } while (pgd++, addr = next, addr != end); 1268 tlb_end_vma(tlb, vma); 1269 } 1270 1271 1272 static void unmap_single_vma(struct mmu_gather *tlb, 1273 struct vm_area_struct *vma, unsigned long start_addr, 1274 unsigned long end_addr, 1275 struct zap_details *details) 1276 { 1277 unsigned long start = max(vma->vm_start, start_addr); 1278 unsigned long end; 1279 1280 if (start >= vma->vm_end) 1281 return; 1282 end = min(vma->vm_end, end_addr); 1283 if (end <= vma->vm_start) 1284 return; 1285 1286 if (vma->vm_file) 1287 uprobe_munmap(vma, start, end); 1288 1289 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1290 untrack_pfn(vma, 0, 0); 1291 1292 if (start != end) { 1293 if (unlikely(is_vm_hugetlb_page(vma))) { 1294 /* 1295 * It is undesirable to test vma->vm_file as it 1296 * should be non-null for valid hugetlb area. 1297 * However, vm_file will be NULL in the error 1298 * cleanup path of mmap_region. When 1299 * hugetlbfs ->mmap method fails, 1300 * mmap_region() nullifies vma->vm_file 1301 * before calling this function to clean up. 1302 * Since no pte has actually been setup, it is 1303 * safe to do nothing in this case. 1304 */ 1305 if (vma->vm_file) { 1306 i_mmap_lock_write(vma->vm_file->f_mapping); 1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1308 i_mmap_unlock_write(vma->vm_file->f_mapping); 1309 } 1310 } else 1311 unmap_page_range(tlb, vma, start, end, details); 1312 } 1313 } 1314 1315 /** 1316 * unmap_vmas - unmap a range of memory covered by a list of vma's 1317 * @tlb: address of the caller's struct mmu_gather 1318 * @vma: the starting vma 1319 * @start_addr: virtual address at which to start unmapping 1320 * @end_addr: virtual address at which to end unmapping 1321 * 1322 * Unmap all pages in the vma list. 1323 * 1324 * Only addresses between `start' and `end' will be unmapped. 1325 * 1326 * The VMA list must be sorted in ascending virtual address order. 1327 * 1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1329 * range after unmap_vmas() returns. So the only responsibility here is to 1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1331 * drops the lock and schedules. 1332 */ 1333 void unmap_vmas(struct mmu_gather *tlb, 1334 struct vm_area_struct *vma, unsigned long start_addr, 1335 unsigned long end_addr) 1336 { 1337 struct mmu_notifier_range range; 1338 1339 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1340 start_addr, end_addr); 1341 mmu_notifier_invalidate_range_start(&range); 1342 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1343 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1344 mmu_notifier_invalidate_range_end(&range); 1345 } 1346 1347 /** 1348 * zap_page_range - remove user pages in a given range 1349 * @vma: vm_area_struct holding the applicable pages 1350 * @start: starting address of pages to zap 1351 * @size: number of bytes to zap 1352 * 1353 * Caller must protect the VMA list 1354 */ 1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1356 unsigned long size) 1357 { 1358 struct mmu_notifier_range range; 1359 struct mmu_gather tlb; 1360 1361 lru_add_drain(); 1362 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1363 start, start + size); 1364 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1365 update_hiwater_rss(vma->vm_mm); 1366 mmu_notifier_invalidate_range_start(&range); 1367 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1368 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1369 mmu_notifier_invalidate_range_end(&range); 1370 tlb_finish_mmu(&tlb, start, range.end); 1371 } 1372 1373 /** 1374 * zap_page_range_single - remove user pages in a given range 1375 * @vma: vm_area_struct holding the applicable pages 1376 * @address: starting address of pages to zap 1377 * @size: number of bytes to zap 1378 * @details: details of shared cache invalidation 1379 * 1380 * The range must fit into one VMA. 1381 */ 1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1383 unsigned long size, struct zap_details *details) 1384 { 1385 struct mmu_notifier_range range; 1386 struct mmu_gather tlb; 1387 1388 lru_add_drain(); 1389 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1390 address, address + size); 1391 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1392 update_hiwater_rss(vma->vm_mm); 1393 mmu_notifier_invalidate_range_start(&range); 1394 unmap_single_vma(&tlb, vma, address, range.end, details); 1395 mmu_notifier_invalidate_range_end(&range); 1396 tlb_finish_mmu(&tlb, address, range.end); 1397 } 1398 1399 /** 1400 * zap_vma_ptes - remove ptes mapping the vma 1401 * @vma: vm_area_struct holding ptes to be zapped 1402 * @address: starting address of pages to zap 1403 * @size: number of bytes to zap 1404 * 1405 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1406 * 1407 * The entire address range must be fully contained within the vma. 1408 * 1409 */ 1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1411 unsigned long size) 1412 { 1413 if (address < vma->vm_start || address + size > vma->vm_end || 1414 !(vma->vm_flags & VM_PFNMAP)) 1415 return; 1416 1417 zap_page_range_single(vma, address, size, NULL); 1418 } 1419 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1420 1421 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1422 { 1423 pgd_t *pgd; 1424 p4d_t *p4d; 1425 pud_t *pud; 1426 pmd_t *pmd; 1427 1428 pgd = pgd_offset(mm, addr); 1429 p4d = p4d_alloc(mm, pgd, addr); 1430 if (!p4d) 1431 return NULL; 1432 pud = pud_alloc(mm, p4d, addr); 1433 if (!pud) 1434 return NULL; 1435 pmd = pmd_alloc(mm, pud, addr); 1436 if (!pmd) 1437 return NULL; 1438 1439 VM_BUG_ON(pmd_trans_huge(*pmd)); 1440 return pmd; 1441 } 1442 1443 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1444 spinlock_t **ptl) 1445 { 1446 pmd_t *pmd = walk_to_pmd(mm, addr); 1447 1448 if (!pmd) 1449 return NULL; 1450 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1451 } 1452 1453 static int validate_page_before_insert(struct page *page) 1454 { 1455 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1456 return -EINVAL; 1457 flush_dcache_page(page); 1458 return 0; 1459 } 1460 1461 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte, 1462 unsigned long addr, struct page *page, pgprot_t prot) 1463 { 1464 if (!pte_none(*pte)) 1465 return -EBUSY; 1466 /* Ok, finally just insert the thing.. */ 1467 get_page(page); 1468 inc_mm_counter_fast(mm, mm_counter_file(page)); 1469 page_add_file_rmap(page, false); 1470 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1471 return 0; 1472 } 1473 1474 /* 1475 * This is the old fallback for page remapping. 1476 * 1477 * For historical reasons, it only allows reserved pages. Only 1478 * old drivers should use this, and they needed to mark their 1479 * pages reserved for the old functions anyway. 1480 */ 1481 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1482 struct page *page, pgprot_t prot) 1483 { 1484 struct mm_struct *mm = vma->vm_mm; 1485 int retval; 1486 pte_t *pte; 1487 spinlock_t *ptl; 1488 1489 retval = validate_page_before_insert(page); 1490 if (retval) 1491 goto out; 1492 retval = -ENOMEM; 1493 pte = get_locked_pte(mm, addr, &ptl); 1494 if (!pte) 1495 goto out; 1496 retval = insert_page_into_pte_locked(mm, pte, addr, page, prot); 1497 pte_unmap_unlock(pte, ptl); 1498 out: 1499 return retval; 1500 } 1501 1502 #ifdef pte_index 1503 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte, 1504 unsigned long addr, struct page *page, pgprot_t prot) 1505 { 1506 int err; 1507 1508 if (!page_count(page)) 1509 return -EINVAL; 1510 err = validate_page_before_insert(page); 1511 if (err) 1512 return err; 1513 return insert_page_into_pte_locked(mm, pte, addr, page, prot); 1514 } 1515 1516 /* insert_pages() amortizes the cost of spinlock operations 1517 * when inserting pages in a loop. Arch *must* define pte_index. 1518 */ 1519 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1520 struct page **pages, unsigned long *num, pgprot_t prot) 1521 { 1522 pmd_t *pmd = NULL; 1523 pte_t *start_pte, *pte; 1524 spinlock_t *pte_lock; 1525 struct mm_struct *const mm = vma->vm_mm; 1526 unsigned long curr_page_idx = 0; 1527 unsigned long remaining_pages_total = *num; 1528 unsigned long pages_to_write_in_pmd; 1529 int ret; 1530 more: 1531 ret = -EFAULT; 1532 pmd = walk_to_pmd(mm, addr); 1533 if (!pmd) 1534 goto out; 1535 1536 pages_to_write_in_pmd = min_t(unsigned long, 1537 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1538 1539 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1540 ret = -ENOMEM; 1541 if (pte_alloc(mm, pmd)) 1542 goto out; 1543 1544 while (pages_to_write_in_pmd) { 1545 int pte_idx = 0; 1546 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1547 1548 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1549 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1550 int err = insert_page_in_batch_locked(mm, pte, 1551 addr, pages[curr_page_idx], prot); 1552 if (unlikely(err)) { 1553 pte_unmap_unlock(start_pte, pte_lock); 1554 ret = err; 1555 remaining_pages_total -= pte_idx; 1556 goto out; 1557 } 1558 addr += PAGE_SIZE; 1559 ++curr_page_idx; 1560 } 1561 pte_unmap_unlock(start_pte, pte_lock); 1562 pages_to_write_in_pmd -= batch_size; 1563 remaining_pages_total -= batch_size; 1564 } 1565 if (remaining_pages_total) 1566 goto more; 1567 ret = 0; 1568 out: 1569 *num = remaining_pages_total; 1570 return ret; 1571 } 1572 #endif /* ifdef pte_index */ 1573 1574 /** 1575 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1576 * @vma: user vma to map to 1577 * @addr: target start user address of these pages 1578 * @pages: source kernel pages 1579 * @num: in: number of pages to map. out: number of pages that were *not* 1580 * mapped. (0 means all pages were successfully mapped). 1581 * 1582 * Preferred over vm_insert_page() when inserting multiple pages. 1583 * 1584 * In case of error, we may have mapped a subset of the provided 1585 * pages. It is the caller's responsibility to account for this case. 1586 * 1587 * The same restrictions apply as in vm_insert_page(). 1588 */ 1589 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1590 struct page **pages, unsigned long *num) 1591 { 1592 #ifdef pte_index 1593 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1594 1595 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1596 return -EFAULT; 1597 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1598 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1599 BUG_ON(vma->vm_flags & VM_PFNMAP); 1600 vma->vm_flags |= VM_MIXEDMAP; 1601 } 1602 /* Defer page refcount checking till we're about to map that page. */ 1603 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1604 #else 1605 unsigned long idx = 0, pgcount = *num; 1606 int err = -EINVAL; 1607 1608 for (; idx < pgcount; ++idx) { 1609 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1610 if (err) 1611 break; 1612 } 1613 *num = pgcount - idx; 1614 return err; 1615 #endif /* ifdef pte_index */ 1616 } 1617 EXPORT_SYMBOL(vm_insert_pages); 1618 1619 /** 1620 * vm_insert_page - insert single page into user vma 1621 * @vma: user vma to map to 1622 * @addr: target user address of this page 1623 * @page: source kernel page 1624 * 1625 * This allows drivers to insert individual pages they've allocated 1626 * into a user vma. 1627 * 1628 * The page has to be a nice clean _individual_ kernel allocation. 1629 * If you allocate a compound page, you need to have marked it as 1630 * such (__GFP_COMP), or manually just split the page up yourself 1631 * (see split_page()). 1632 * 1633 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1634 * took an arbitrary page protection parameter. This doesn't allow 1635 * that. Your vma protection will have to be set up correctly, which 1636 * means that if you want a shared writable mapping, you'd better 1637 * ask for a shared writable mapping! 1638 * 1639 * The page does not need to be reserved. 1640 * 1641 * Usually this function is called from f_op->mmap() handler 1642 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1643 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1644 * function from other places, for example from page-fault handler. 1645 * 1646 * Return: %0 on success, negative error code otherwise. 1647 */ 1648 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1649 struct page *page) 1650 { 1651 if (addr < vma->vm_start || addr >= vma->vm_end) 1652 return -EFAULT; 1653 if (!page_count(page)) 1654 return -EINVAL; 1655 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1656 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1657 BUG_ON(vma->vm_flags & VM_PFNMAP); 1658 vma->vm_flags |= VM_MIXEDMAP; 1659 } 1660 return insert_page(vma, addr, page, vma->vm_page_prot); 1661 } 1662 EXPORT_SYMBOL(vm_insert_page); 1663 1664 /* 1665 * __vm_map_pages - maps range of kernel pages into user vma 1666 * @vma: user vma to map to 1667 * @pages: pointer to array of source kernel pages 1668 * @num: number of pages in page array 1669 * @offset: user's requested vm_pgoff 1670 * 1671 * This allows drivers to map range of kernel pages into a user vma. 1672 * 1673 * Return: 0 on success and error code otherwise. 1674 */ 1675 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1676 unsigned long num, unsigned long offset) 1677 { 1678 unsigned long count = vma_pages(vma); 1679 unsigned long uaddr = vma->vm_start; 1680 int ret, i; 1681 1682 /* Fail if the user requested offset is beyond the end of the object */ 1683 if (offset >= num) 1684 return -ENXIO; 1685 1686 /* Fail if the user requested size exceeds available object size */ 1687 if (count > num - offset) 1688 return -ENXIO; 1689 1690 for (i = 0; i < count; i++) { 1691 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1692 if (ret < 0) 1693 return ret; 1694 uaddr += PAGE_SIZE; 1695 } 1696 1697 return 0; 1698 } 1699 1700 /** 1701 * vm_map_pages - maps range of kernel pages starts with non zero offset 1702 * @vma: user vma to map to 1703 * @pages: pointer to array of source kernel pages 1704 * @num: number of pages in page array 1705 * 1706 * Maps an object consisting of @num pages, catering for the user's 1707 * requested vm_pgoff 1708 * 1709 * If we fail to insert any page into the vma, the function will return 1710 * immediately leaving any previously inserted pages present. Callers 1711 * from the mmap handler may immediately return the error as their caller 1712 * will destroy the vma, removing any successfully inserted pages. Other 1713 * callers should make their own arrangements for calling unmap_region(). 1714 * 1715 * Context: Process context. Called by mmap handlers. 1716 * Return: 0 on success and error code otherwise. 1717 */ 1718 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1719 unsigned long num) 1720 { 1721 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1722 } 1723 EXPORT_SYMBOL(vm_map_pages); 1724 1725 /** 1726 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1727 * @vma: user vma to map to 1728 * @pages: pointer to array of source kernel pages 1729 * @num: number of pages in page array 1730 * 1731 * Similar to vm_map_pages(), except that it explicitly sets the offset 1732 * to 0. This function is intended for the drivers that did not consider 1733 * vm_pgoff. 1734 * 1735 * Context: Process context. Called by mmap handlers. 1736 * Return: 0 on success and error code otherwise. 1737 */ 1738 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1739 unsigned long num) 1740 { 1741 return __vm_map_pages(vma, pages, num, 0); 1742 } 1743 EXPORT_SYMBOL(vm_map_pages_zero); 1744 1745 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1746 pfn_t pfn, pgprot_t prot, bool mkwrite) 1747 { 1748 struct mm_struct *mm = vma->vm_mm; 1749 pte_t *pte, entry; 1750 spinlock_t *ptl; 1751 1752 pte = get_locked_pte(mm, addr, &ptl); 1753 if (!pte) 1754 return VM_FAULT_OOM; 1755 if (!pte_none(*pte)) { 1756 if (mkwrite) { 1757 /* 1758 * For read faults on private mappings the PFN passed 1759 * in may not match the PFN we have mapped if the 1760 * mapped PFN is a writeable COW page. In the mkwrite 1761 * case we are creating a writable PTE for a shared 1762 * mapping and we expect the PFNs to match. If they 1763 * don't match, we are likely racing with block 1764 * allocation and mapping invalidation so just skip the 1765 * update. 1766 */ 1767 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1768 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1769 goto out_unlock; 1770 } 1771 entry = pte_mkyoung(*pte); 1772 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1773 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1774 update_mmu_cache(vma, addr, pte); 1775 } 1776 goto out_unlock; 1777 } 1778 1779 /* Ok, finally just insert the thing.. */ 1780 if (pfn_t_devmap(pfn)) 1781 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1782 else 1783 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1784 1785 if (mkwrite) { 1786 entry = pte_mkyoung(entry); 1787 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1788 } 1789 1790 set_pte_at(mm, addr, pte, entry); 1791 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1792 1793 out_unlock: 1794 pte_unmap_unlock(pte, ptl); 1795 return VM_FAULT_NOPAGE; 1796 } 1797 1798 /** 1799 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1800 * @vma: user vma to map to 1801 * @addr: target user address of this page 1802 * @pfn: source kernel pfn 1803 * @pgprot: pgprot flags for the inserted page 1804 * 1805 * This is exactly like vmf_insert_pfn(), except that it allows drivers 1806 * to override pgprot on a per-page basis. 1807 * 1808 * This only makes sense for IO mappings, and it makes no sense for 1809 * COW mappings. In general, using multiple vmas is preferable; 1810 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1811 * impractical. 1812 * 1813 * See vmf_insert_mixed_prot() for a discussion of the implication of using 1814 * a value of @pgprot different from that of @vma->vm_page_prot. 1815 * 1816 * Context: Process context. May allocate using %GFP_KERNEL. 1817 * Return: vm_fault_t value. 1818 */ 1819 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1820 unsigned long pfn, pgprot_t pgprot) 1821 { 1822 /* 1823 * Technically, architectures with pte_special can avoid all these 1824 * restrictions (same for remap_pfn_range). However we would like 1825 * consistency in testing and feature parity among all, so we should 1826 * try to keep these invariants in place for everybody. 1827 */ 1828 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1829 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1830 (VM_PFNMAP|VM_MIXEDMAP)); 1831 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1832 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1833 1834 if (addr < vma->vm_start || addr >= vma->vm_end) 1835 return VM_FAULT_SIGBUS; 1836 1837 if (!pfn_modify_allowed(pfn, pgprot)) 1838 return VM_FAULT_SIGBUS; 1839 1840 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1841 1842 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1843 false); 1844 } 1845 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1846 1847 /** 1848 * vmf_insert_pfn - insert single pfn into user vma 1849 * @vma: user vma to map to 1850 * @addr: target user address of this page 1851 * @pfn: source kernel pfn 1852 * 1853 * Similar to vm_insert_page, this allows drivers to insert individual pages 1854 * they've allocated into a user vma. Same comments apply. 1855 * 1856 * This function should only be called from a vm_ops->fault handler, and 1857 * in that case the handler should return the result of this function. 1858 * 1859 * vma cannot be a COW mapping. 1860 * 1861 * As this is called only for pages that do not currently exist, we 1862 * do not need to flush old virtual caches or the TLB. 1863 * 1864 * Context: Process context. May allocate using %GFP_KERNEL. 1865 * Return: vm_fault_t value. 1866 */ 1867 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1868 unsigned long pfn) 1869 { 1870 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1871 } 1872 EXPORT_SYMBOL(vmf_insert_pfn); 1873 1874 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1875 { 1876 /* these checks mirror the abort conditions in vm_normal_page */ 1877 if (vma->vm_flags & VM_MIXEDMAP) 1878 return true; 1879 if (pfn_t_devmap(pfn)) 1880 return true; 1881 if (pfn_t_special(pfn)) 1882 return true; 1883 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1884 return true; 1885 return false; 1886 } 1887 1888 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1889 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 1890 bool mkwrite) 1891 { 1892 int err; 1893 1894 BUG_ON(!vm_mixed_ok(vma, pfn)); 1895 1896 if (addr < vma->vm_start || addr >= vma->vm_end) 1897 return VM_FAULT_SIGBUS; 1898 1899 track_pfn_insert(vma, &pgprot, pfn); 1900 1901 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1902 return VM_FAULT_SIGBUS; 1903 1904 /* 1905 * If we don't have pte special, then we have to use the pfn_valid() 1906 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1907 * refcount the page if pfn_valid is true (hence insert_page rather 1908 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1909 * without pte special, it would there be refcounted as a normal page. 1910 */ 1911 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1912 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1913 struct page *page; 1914 1915 /* 1916 * At this point we are committed to insert_page() 1917 * regardless of whether the caller specified flags that 1918 * result in pfn_t_has_page() == false. 1919 */ 1920 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1921 err = insert_page(vma, addr, page, pgprot); 1922 } else { 1923 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1924 } 1925 1926 if (err == -ENOMEM) 1927 return VM_FAULT_OOM; 1928 if (err < 0 && err != -EBUSY) 1929 return VM_FAULT_SIGBUS; 1930 1931 return VM_FAULT_NOPAGE; 1932 } 1933 1934 /** 1935 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 1936 * @vma: user vma to map to 1937 * @addr: target user address of this page 1938 * @pfn: source kernel pfn 1939 * @pgprot: pgprot flags for the inserted page 1940 * 1941 * This is exactly like vmf_insert_mixed(), except that it allows drivers 1942 * to override pgprot on a per-page basis. 1943 * 1944 * Typically this function should be used by drivers to set caching- and 1945 * encryption bits different than those of @vma->vm_page_prot, because 1946 * the caching- or encryption mode may not be known at mmap() time. 1947 * This is ok as long as @vma->vm_page_prot is not used by the core vm 1948 * to set caching and encryption bits for those vmas (except for COW pages). 1949 * This is ensured by core vm only modifying these page table entries using 1950 * functions that don't touch caching- or encryption bits, using pte_modify() 1951 * if needed. (See for example mprotect()). 1952 * Also when new page-table entries are created, this is only done using the 1953 * fault() callback, and never using the value of vma->vm_page_prot, 1954 * except for page-table entries that point to anonymous pages as the result 1955 * of COW. 1956 * 1957 * Context: Process context. May allocate using %GFP_KERNEL. 1958 * Return: vm_fault_t value. 1959 */ 1960 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 1961 pfn_t pfn, pgprot_t pgprot) 1962 { 1963 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 1964 } 1965 EXPORT_SYMBOL(vmf_insert_mixed_prot); 1966 1967 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1968 pfn_t pfn) 1969 { 1970 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 1971 } 1972 EXPORT_SYMBOL(vmf_insert_mixed); 1973 1974 /* 1975 * If the insertion of PTE failed because someone else already added a 1976 * different entry in the mean time, we treat that as success as we assume 1977 * the same entry was actually inserted. 1978 */ 1979 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1980 unsigned long addr, pfn_t pfn) 1981 { 1982 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 1983 } 1984 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1985 1986 /* 1987 * maps a range of physical memory into the requested pages. the old 1988 * mappings are removed. any references to nonexistent pages results 1989 * in null mappings (currently treated as "copy-on-access") 1990 */ 1991 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1992 unsigned long addr, unsigned long end, 1993 unsigned long pfn, pgprot_t prot) 1994 { 1995 pte_t *pte; 1996 spinlock_t *ptl; 1997 int err = 0; 1998 1999 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2000 if (!pte) 2001 return -ENOMEM; 2002 arch_enter_lazy_mmu_mode(); 2003 do { 2004 BUG_ON(!pte_none(*pte)); 2005 if (!pfn_modify_allowed(pfn, prot)) { 2006 err = -EACCES; 2007 break; 2008 } 2009 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2010 pfn++; 2011 } while (pte++, addr += PAGE_SIZE, addr != end); 2012 arch_leave_lazy_mmu_mode(); 2013 pte_unmap_unlock(pte - 1, ptl); 2014 return err; 2015 } 2016 2017 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2018 unsigned long addr, unsigned long end, 2019 unsigned long pfn, pgprot_t prot) 2020 { 2021 pmd_t *pmd; 2022 unsigned long next; 2023 int err; 2024 2025 pfn -= addr >> PAGE_SHIFT; 2026 pmd = pmd_alloc(mm, pud, addr); 2027 if (!pmd) 2028 return -ENOMEM; 2029 VM_BUG_ON(pmd_trans_huge(*pmd)); 2030 do { 2031 next = pmd_addr_end(addr, end); 2032 err = remap_pte_range(mm, pmd, addr, next, 2033 pfn + (addr >> PAGE_SHIFT), prot); 2034 if (err) 2035 return err; 2036 } while (pmd++, addr = next, addr != end); 2037 return 0; 2038 } 2039 2040 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2041 unsigned long addr, unsigned long end, 2042 unsigned long pfn, pgprot_t prot) 2043 { 2044 pud_t *pud; 2045 unsigned long next; 2046 int err; 2047 2048 pfn -= addr >> PAGE_SHIFT; 2049 pud = pud_alloc(mm, p4d, addr); 2050 if (!pud) 2051 return -ENOMEM; 2052 do { 2053 next = pud_addr_end(addr, end); 2054 err = remap_pmd_range(mm, pud, addr, next, 2055 pfn + (addr >> PAGE_SHIFT), prot); 2056 if (err) 2057 return err; 2058 } while (pud++, addr = next, addr != end); 2059 return 0; 2060 } 2061 2062 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2063 unsigned long addr, unsigned long end, 2064 unsigned long pfn, pgprot_t prot) 2065 { 2066 p4d_t *p4d; 2067 unsigned long next; 2068 int err; 2069 2070 pfn -= addr >> PAGE_SHIFT; 2071 p4d = p4d_alloc(mm, pgd, addr); 2072 if (!p4d) 2073 return -ENOMEM; 2074 do { 2075 next = p4d_addr_end(addr, end); 2076 err = remap_pud_range(mm, p4d, addr, next, 2077 pfn + (addr >> PAGE_SHIFT), prot); 2078 if (err) 2079 return err; 2080 } while (p4d++, addr = next, addr != end); 2081 return 0; 2082 } 2083 2084 /** 2085 * remap_pfn_range - remap kernel memory to userspace 2086 * @vma: user vma to map to 2087 * @addr: target page aligned user address to start at 2088 * @pfn: page frame number of kernel physical memory address 2089 * @size: size of mapping area 2090 * @prot: page protection flags for this mapping 2091 * 2092 * Note: this is only safe if the mm semaphore is held when called. 2093 * 2094 * Return: %0 on success, negative error code otherwise. 2095 */ 2096 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2097 unsigned long pfn, unsigned long size, pgprot_t prot) 2098 { 2099 pgd_t *pgd; 2100 unsigned long next; 2101 unsigned long end = addr + PAGE_ALIGN(size); 2102 struct mm_struct *mm = vma->vm_mm; 2103 unsigned long remap_pfn = pfn; 2104 int err; 2105 2106 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2107 return -EINVAL; 2108 2109 /* 2110 * Physically remapped pages are special. Tell the 2111 * rest of the world about it: 2112 * VM_IO tells people not to look at these pages 2113 * (accesses can have side effects). 2114 * VM_PFNMAP tells the core MM that the base pages are just 2115 * raw PFN mappings, and do not have a "struct page" associated 2116 * with them. 2117 * VM_DONTEXPAND 2118 * Disable vma merging and expanding with mremap(). 2119 * VM_DONTDUMP 2120 * Omit vma from core dump, even when VM_IO turned off. 2121 * 2122 * There's a horrible special case to handle copy-on-write 2123 * behaviour that some programs depend on. We mark the "original" 2124 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2125 * See vm_normal_page() for details. 2126 */ 2127 if (is_cow_mapping(vma->vm_flags)) { 2128 if (addr != vma->vm_start || end != vma->vm_end) 2129 return -EINVAL; 2130 vma->vm_pgoff = pfn; 2131 } 2132 2133 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2134 if (err) 2135 return -EINVAL; 2136 2137 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2138 2139 BUG_ON(addr >= end); 2140 pfn -= addr >> PAGE_SHIFT; 2141 pgd = pgd_offset(mm, addr); 2142 flush_cache_range(vma, addr, end); 2143 do { 2144 next = pgd_addr_end(addr, end); 2145 err = remap_p4d_range(mm, pgd, addr, next, 2146 pfn + (addr >> PAGE_SHIFT), prot); 2147 if (err) 2148 break; 2149 } while (pgd++, addr = next, addr != end); 2150 2151 if (err) 2152 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2153 2154 return err; 2155 } 2156 EXPORT_SYMBOL(remap_pfn_range); 2157 2158 /** 2159 * vm_iomap_memory - remap memory to userspace 2160 * @vma: user vma to map to 2161 * @start: start of the physical memory to be mapped 2162 * @len: size of area 2163 * 2164 * This is a simplified io_remap_pfn_range() for common driver use. The 2165 * driver just needs to give us the physical memory range to be mapped, 2166 * we'll figure out the rest from the vma information. 2167 * 2168 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2169 * whatever write-combining details or similar. 2170 * 2171 * Return: %0 on success, negative error code otherwise. 2172 */ 2173 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2174 { 2175 unsigned long vm_len, pfn, pages; 2176 2177 /* Check that the physical memory area passed in looks valid */ 2178 if (start + len < start) 2179 return -EINVAL; 2180 /* 2181 * You *really* shouldn't map things that aren't page-aligned, 2182 * but we've historically allowed it because IO memory might 2183 * just have smaller alignment. 2184 */ 2185 len += start & ~PAGE_MASK; 2186 pfn = start >> PAGE_SHIFT; 2187 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2188 if (pfn + pages < pfn) 2189 return -EINVAL; 2190 2191 /* We start the mapping 'vm_pgoff' pages into the area */ 2192 if (vma->vm_pgoff > pages) 2193 return -EINVAL; 2194 pfn += vma->vm_pgoff; 2195 pages -= vma->vm_pgoff; 2196 2197 /* Can we fit all of the mapping? */ 2198 vm_len = vma->vm_end - vma->vm_start; 2199 if (vm_len >> PAGE_SHIFT > pages) 2200 return -EINVAL; 2201 2202 /* Ok, let it rip */ 2203 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2204 } 2205 EXPORT_SYMBOL(vm_iomap_memory); 2206 2207 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2208 unsigned long addr, unsigned long end, 2209 pte_fn_t fn, void *data, bool create) 2210 { 2211 pte_t *pte; 2212 int err = 0; 2213 spinlock_t *ptl; 2214 2215 if (create) { 2216 pte = (mm == &init_mm) ? 2217 pte_alloc_kernel(pmd, addr) : 2218 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2219 if (!pte) 2220 return -ENOMEM; 2221 } else { 2222 pte = (mm == &init_mm) ? 2223 pte_offset_kernel(pmd, addr) : 2224 pte_offset_map_lock(mm, pmd, addr, &ptl); 2225 } 2226 2227 BUG_ON(pmd_huge(*pmd)); 2228 2229 arch_enter_lazy_mmu_mode(); 2230 2231 do { 2232 if (create || !pte_none(*pte)) { 2233 err = fn(pte++, addr, data); 2234 if (err) 2235 break; 2236 } 2237 } while (addr += PAGE_SIZE, addr != end); 2238 2239 arch_leave_lazy_mmu_mode(); 2240 2241 if (mm != &init_mm) 2242 pte_unmap_unlock(pte-1, ptl); 2243 return err; 2244 } 2245 2246 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2247 unsigned long addr, unsigned long end, 2248 pte_fn_t fn, void *data, bool create) 2249 { 2250 pmd_t *pmd; 2251 unsigned long next; 2252 int err = 0; 2253 2254 BUG_ON(pud_huge(*pud)); 2255 2256 if (create) { 2257 pmd = pmd_alloc(mm, pud, addr); 2258 if (!pmd) 2259 return -ENOMEM; 2260 } else { 2261 pmd = pmd_offset(pud, addr); 2262 } 2263 do { 2264 next = pmd_addr_end(addr, end); 2265 if (create || !pmd_none_or_clear_bad(pmd)) { 2266 err = apply_to_pte_range(mm, pmd, addr, next, fn, data, 2267 create); 2268 if (err) 2269 break; 2270 } 2271 } while (pmd++, addr = next, addr != end); 2272 return err; 2273 } 2274 2275 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2276 unsigned long addr, unsigned long end, 2277 pte_fn_t fn, void *data, bool create) 2278 { 2279 pud_t *pud; 2280 unsigned long next; 2281 int err = 0; 2282 2283 if (create) { 2284 pud = pud_alloc(mm, p4d, addr); 2285 if (!pud) 2286 return -ENOMEM; 2287 } else { 2288 pud = pud_offset(p4d, addr); 2289 } 2290 do { 2291 next = pud_addr_end(addr, end); 2292 if (create || !pud_none_or_clear_bad(pud)) { 2293 err = apply_to_pmd_range(mm, pud, addr, next, fn, data, 2294 create); 2295 if (err) 2296 break; 2297 } 2298 } while (pud++, addr = next, addr != end); 2299 return err; 2300 } 2301 2302 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2303 unsigned long addr, unsigned long end, 2304 pte_fn_t fn, void *data, bool create) 2305 { 2306 p4d_t *p4d; 2307 unsigned long next; 2308 int err = 0; 2309 2310 if (create) { 2311 p4d = p4d_alloc(mm, pgd, addr); 2312 if (!p4d) 2313 return -ENOMEM; 2314 } else { 2315 p4d = p4d_offset(pgd, addr); 2316 } 2317 do { 2318 next = p4d_addr_end(addr, end); 2319 if (create || !p4d_none_or_clear_bad(p4d)) { 2320 err = apply_to_pud_range(mm, p4d, addr, next, fn, data, 2321 create); 2322 if (err) 2323 break; 2324 } 2325 } while (p4d++, addr = next, addr != end); 2326 return err; 2327 } 2328 2329 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2330 unsigned long size, pte_fn_t fn, 2331 void *data, bool create) 2332 { 2333 pgd_t *pgd; 2334 unsigned long next; 2335 unsigned long end = addr + size; 2336 int err = 0; 2337 2338 if (WARN_ON(addr >= end)) 2339 return -EINVAL; 2340 2341 pgd = pgd_offset(mm, addr); 2342 do { 2343 next = pgd_addr_end(addr, end); 2344 if (!create && pgd_none_or_clear_bad(pgd)) 2345 continue; 2346 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create); 2347 if (err) 2348 break; 2349 } while (pgd++, addr = next, addr != end); 2350 2351 return err; 2352 } 2353 2354 /* 2355 * Scan a region of virtual memory, filling in page tables as necessary 2356 * and calling a provided function on each leaf page table. 2357 */ 2358 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2359 unsigned long size, pte_fn_t fn, void *data) 2360 { 2361 return __apply_to_page_range(mm, addr, size, fn, data, true); 2362 } 2363 EXPORT_SYMBOL_GPL(apply_to_page_range); 2364 2365 /* 2366 * Scan a region of virtual memory, calling a provided function on 2367 * each leaf page table where it exists. 2368 * 2369 * Unlike apply_to_page_range, this does _not_ fill in page tables 2370 * where they are absent. 2371 */ 2372 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2373 unsigned long size, pte_fn_t fn, void *data) 2374 { 2375 return __apply_to_page_range(mm, addr, size, fn, data, false); 2376 } 2377 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2378 2379 /* 2380 * handle_pte_fault chooses page fault handler according to an entry which was 2381 * read non-atomically. Before making any commitment, on those architectures 2382 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2383 * parts, do_swap_page must check under lock before unmapping the pte and 2384 * proceeding (but do_wp_page is only called after already making such a check; 2385 * and do_anonymous_page can safely check later on). 2386 */ 2387 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2388 pte_t *page_table, pte_t orig_pte) 2389 { 2390 int same = 1; 2391 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2392 if (sizeof(pte_t) > sizeof(unsigned long)) { 2393 spinlock_t *ptl = pte_lockptr(mm, pmd); 2394 spin_lock(ptl); 2395 same = pte_same(*page_table, orig_pte); 2396 spin_unlock(ptl); 2397 } 2398 #endif 2399 pte_unmap(page_table); 2400 return same; 2401 } 2402 2403 static inline bool cow_user_page(struct page *dst, struct page *src, 2404 struct vm_fault *vmf) 2405 { 2406 bool ret; 2407 void *kaddr; 2408 void __user *uaddr; 2409 bool locked = false; 2410 struct vm_area_struct *vma = vmf->vma; 2411 struct mm_struct *mm = vma->vm_mm; 2412 unsigned long addr = vmf->address; 2413 2414 if (likely(src)) { 2415 copy_user_highpage(dst, src, addr, vma); 2416 return true; 2417 } 2418 2419 /* 2420 * If the source page was a PFN mapping, we don't have 2421 * a "struct page" for it. We do a best-effort copy by 2422 * just copying from the original user address. If that 2423 * fails, we just zero-fill it. Live with it. 2424 */ 2425 kaddr = kmap_atomic(dst); 2426 uaddr = (void __user *)(addr & PAGE_MASK); 2427 2428 /* 2429 * On architectures with software "accessed" bits, we would 2430 * take a double page fault, so mark it accessed here. 2431 */ 2432 if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) { 2433 pte_t entry; 2434 2435 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2436 locked = true; 2437 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2438 /* 2439 * Other thread has already handled the fault 2440 * and update local tlb only 2441 */ 2442 update_mmu_tlb(vma, addr, vmf->pte); 2443 ret = false; 2444 goto pte_unlock; 2445 } 2446 2447 entry = pte_mkyoung(vmf->orig_pte); 2448 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2449 update_mmu_cache(vma, addr, vmf->pte); 2450 } 2451 2452 /* 2453 * This really shouldn't fail, because the page is there 2454 * in the page tables. But it might just be unreadable, 2455 * in which case we just give up and fill the result with 2456 * zeroes. 2457 */ 2458 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2459 if (locked) 2460 goto warn; 2461 2462 /* Re-validate under PTL if the page is still mapped */ 2463 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2464 locked = true; 2465 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2466 /* The PTE changed under us, update local tlb */ 2467 update_mmu_tlb(vma, addr, vmf->pte); 2468 ret = false; 2469 goto pte_unlock; 2470 } 2471 2472 /* 2473 * The same page can be mapped back since last copy attempt. 2474 * Try to copy again under PTL. 2475 */ 2476 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2477 /* 2478 * Give a warn in case there can be some obscure 2479 * use-case 2480 */ 2481 warn: 2482 WARN_ON_ONCE(1); 2483 clear_page(kaddr); 2484 } 2485 } 2486 2487 ret = true; 2488 2489 pte_unlock: 2490 if (locked) 2491 pte_unmap_unlock(vmf->pte, vmf->ptl); 2492 kunmap_atomic(kaddr); 2493 flush_dcache_page(dst); 2494 2495 return ret; 2496 } 2497 2498 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2499 { 2500 struct file *vm_file = vma->vm_file; 2501 2502 if (vm_file) 2503 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2504 2505 /* 2506 * Special mappings (e.g. VDSO) do not have any file so fake 2507 * a default GFP_KERNEL for them. 2508 */ 2509 return GFP_KERNEL; 2510 } 2511 2512 /* 2513 * Notify the address space that the page is about to become writable so that 2514 * it can prohibit this or wait for the page to get into an appropriate state. 2515 * 2516 * We do this without the lock held, so that it can sleep if it needs to. 2517 */ 2518 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2519 { 2520 vm_fault_t ret; 2521 struct page *page = vmf->page; 2522 unsigned int old_flags = vmf->flags; 2523 2524 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2525 2526 if (vmf->vma->vm_file && 2527 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2528 return VM_FAULT_SIGBUS; 2529 2530 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2531 /* Restore original flags so that caller is not surprised */ 2532 vmf->flags = old_flags; 2533 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2534 return ret; 2535 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2536 lock_page(page); 2537 if (!page->mapping) { 2538 unlock_page(page); 2539 return 0; /* retry */ 2540 } 2541 ret |= VM_FAULT_LOCKED; 2542 } else 2543 VM_BUG_ON_PAGE(!PageLocked(page), page); 2544 return ret; 2545 } 2546 2547 /* 2548 * Handle dirtying of a page in shared file mapping on a write fault. 2549 * 2550 * The function expects the page to be locked and unlocks it. 2551 */ 2552 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2553 { 2554 struct vm_area_struct *vma = vmf->vma; 2555 struct address_space *mapping; 2556 struct page *page = vmf->page; 2557 bool dirtied; 2558 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2559 2560 dirtied = set_page_dirty(page); 2561 VM_BUG_ON_PAGE(PageAnon(page), page); 2562 /* 2563 * Take a local copy of the address_space - page.mapping may be zeroed 2564 * by truncate after unlock_page(). The address_space itself remains 2565 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2566 * release semantics to prevent the compiler from undoing this copying. 2567 */ 2568 mapping = page_rmapping(page); 2569 unlock_page(page); 2570 2571 if (!page_mkwrite) 2572 file_update_time(vma->vm_file); 2573 2574 /* 2575 * Throttle page dirtying rate down to writeback speed. 2576 * 2577 * mapping may be NULL here because some device drivers do not 2578 * set page.mapping but still dirty their pages 2579 * 2580 * Drop the mmap_lock before waiting on IO, if we can. The file 2581 * is pinning the mapping, as per above. 2582 */ 2583 if ((dirtied || page_mkwrite) && mapping) { 2584 struct file *fpin; 2585 2586 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2587 balance_dirty_pages_ratelimited(mapping); 2588 if (fpin) { 2589 fput(fpin); 2590 return VM_FAULT_RETRY; 2591 } 2592 } 2593 2594 return 0; 2595 } 2596 2597 /* 2598 * Handle write page faults for pages that can be reused in the current vma 2599 * 2600 * This can happen either due to the mapping being with the VM_SHARED flag, 2601 * or due to us being the last reference standing to the page. In either 2602 * case, all we need to do here is to mark the page as writable and update 2603 * any related book-keeping. 2604 */ 2605 static inline void wp_page_reuse(struct vm_fault *vmf) 2606 __releases(vmf->ptl) 2607 { 2608 struct vm_area_struct *vma = vmf->vma; 2609 struct page *page = vmf->page; 2610 pte_t entry; 2611 /* 2612 * Clear the pages cpupid information as the existing 2613 * information potentially belongs to a now completely 2614 * unrelated process. 2615 */ 2616 if (page) 2617 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2618 2619 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2620 entry = pte_mkyoung(vmf->orig_pte); 2621 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2622 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2623 update_mmu_cache(vma, vmf->address, vmf->pte); 2624 pte_unmap_unlock(vmf->pte, vmf->ptl); 2625 } 2626 2627 /* 2628 * Handle the case of a page which we actually need to copy to a new page. 2629 * 2630 * Called with mmap_lock locked and the old page referenced, but 2631 * without the ptl held. 2632 * 2633 * High level logic flow: 2634 * 2635 * - Allocate a page, copy the content of the old page to the new one. 2636 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2637 * - Take the PTL. If the pte changed, bail out and release the allocated page 2638 * - If the pte is still the way we remember it, update the page table and all 2639 * relevant references. This includes dropping the reference the page-table 2640 * held to the old page, as well as updating the rmap. 2641 * - In any case, unlock the PTL and drop the reference we took to the old page. 2642 */ 2643 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2644 { 2645 struct vm_area_struct *vma = vmf->vma; 2646 struct mm_struct *mm = vma->vm_mm; 2647 struct page *old_page = vmf->page; 2648 struct page *new_page = NULL; 2649 pte_t entry; 2650 int page_copied = 0; 2651 struct mmu_notifier_range range; 2652 2653 if (unlikely(anon_vma_prepare(vma))) 2654 goto oom; 2655 2656 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2657 new_page = alloc_zeroed_user_highpage_movable(vma, 2658 vmf->address); 2659 if (!new_page) 2660 goto oom; 2661 } else { 2662 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2663 vmf->address); 2664 if (!new_page) 2665 goto oom; 2666 2667 if (!cow_user_page(new_page, old_page, vmf)) { 2668 /* 2669 * COW failed, if the fault was solved by other, 2670 * it's fine. If not, userspace would re-fault on 2671 * the same address and we will handle the fault 2672 * from the second attempt. 2673 */ 2674 put_page(new_page); 2675 if (old_page) 2676 put_page(old_page); 2677 return 0; 2678 } 2679 } 2680 2681 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL)) 2682 goto oom_free_new; 2683 cgroup_throttle_swaprate(new_page, GFP_KERNEL); 2684 2685 __SetPageUptodate(new_page); 2686 2687 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2688 vmf->address & PAGE_MASK, 2689 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2690 mmu_notifier_invalidate_range_start(&range); 2691 2692 /* 2693 * Re-check the pte - we dropped the lock 2694 */ 2695 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2696 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2697 if (old_page) { 2698 if (!PageAnon(old_page)) { 2699 dec_mm_counter_fast(mm, 2700 mm_counter_file(old_page)); 2701 inc_mm_counter_fast(mm, MM_ANONPAGES); 2702 } 2703 } else { 2704 inc_mm_counter_fast(mm, MM_ANONPAGES); 2705 } 2706 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2707 entry = mk_pte(new_page, vma->vm_page_prot); 2708 entry = pte_sw_mkyoung(entry); 2709 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2710 /* 2711 * Clear the pte entry and flush it first, before updating the 2712 * pte with the new entry. This will avoid a race condition 2713 * seen in the presence of one thread doing SMC and another 2714 * thread doing COW. 2715 */ 2716 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2717 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2718 lru_cache_add_inactive_or_unevictable(new_page, vma); 2719 /* 2720 * We call the notify macro here because, when using secondary 2721 * mmu page tables (such as kvm shadow page tables), we want the 2722 * new page to be mapped directly into the secondary page table. 2723 */ 2724 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2725 update_mmu_cache(vma, vmf->address, vmf->pte); 2726 if (old_page) { 2727 /* 2728 * Only after switching the pte to the new page may 2729 * we remove the mapcount here. Otherwise another 2730 * process may come and find the rmap count decremented 2731 * before the pte is switched to the new page, and 2732 * "reuse" the old page writing into it while our pte 2733 * here still points into it and can be read by other 2734 * threads. 2735 * 2736 * The critical issue is to order this 2737 * page_remove_rmap with the ptp_clear_flush above. 2738 * Those stores are ordered by (if nothing else,) 2739 * the barrier present in the atomic_add_negative 2740 * in page_remove_rmap. 2741 * 2742 * Then the TLB flush in ptep_clear_flush ensures that 2743 * no process can access the old page before the 2744 * decremented mapcount is visible. And the old page 2745 * cannot be reused until after the decremented 2746 * mapcount is visible. So transitively, TLBs to 2747 * old page will be flushed before it can be reused. 2748 */ 2749 page_remove_rmap(old_page, false); 2750 } 2751 2752 /* Free the old page.. */ 2753 new_page = old_page; 2754 page_copied = 1; 2755 } else { 2756 update_mmu_tlb(vma, vmf->address, vmf->pte); 2757 } 2758 2759 if (new_page) 2760 put_page(new_page); 2761 2762 pte_unmap_unlock(vmf->pte, vmf->ptl); 2763 /* 2764 * No need to double call mmu_notifier->invalidate_range() callback as 2765 * the above ptep_clear_flush_notify() did already call it. 2766 */ 2767 mmu_notifier_invalidate_range_only_end(&range); 2768 if (old_page) { 2769 /* 2770 * Don't let another task, with possibly unlocked vma, 2771 * keep the mlocked page. 2772 */ 2773 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2774 lock_page(old_page); /* LRU manipulation */ 2775 if (PageMlocked(old_page)) 2776 munlock_vma_page(old_page); 2777 unlock_page(old_page); 2778 } 2779 put_page(old_page); 2780 } 2781 return page_copied ? VM_FAULT_WRITE : 0; 2782 oom_free_new: 2783 put_page(new_page); 2784 oom: 2785 if (old_page) 2786 put_page(old_page); 2787 return VM_FAULT_OOM; 2788 } 2789 2790 /** 2791 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2792 * writeable once the page is prepared 2793 * 2794 * @vmf: structure describing the fault 2795 * 2796 * This function handles all that is needed to finish a write page fault in a 2797 * shared mapping due to PTE being read-only once the mapped page is prepared. 2798 * It handles locking of PTE and modifying it. 2799 * 2800 * The function expects the page to be locked or other protection against 2801 * concurrent faults / writeback (such as DAX radix tree locks). 2802 * 2803 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2804 * we acquired PTE lock. 2805 */ 2806 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2807 { 2808 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2809 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2810 &vmf->ptl); 2811 /* 2812 * We might have raced with another page fault while we released the 2813 * pte_offset_map_lock. 2814 */ 2815 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2816 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 2817 pte_unmap_unlock(vmf->pte, vmf->ptl); 2818 return VM_FAULT_NOPAGE; 2819 } 2820 wp_page_reuse(vmf); 2821 return 0; 2822 } 2823 2824 /* 2825 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2826 * mapping 2827 */ 2828 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2829 { 2830 struct vm_area_struct *vma = vmf->vma; 2831 2832 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2833 vm_fault_t ret; 2834 2835 pte_unmap_unlock(vmf->pte, vmf->ptl); 2836 vmf->flags |= FAULT_FLAG_MKWRITE; 2837 ret = vma->vm_ops->pfn_mkwrite(vmf); 2838 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2839 return ret; 2840 return finish_mkwrite_fault(vmf); 2841 } 2842 wp_page_reuse(vmf); 2843 return VM_FAULT_WRITE; 2844 } 2845 2846 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2847 __releases(vmf->ptl) 2848 { 2849 struct vm_area_struct *vma = vmf->vma; 2850 vm_fault_t ret = VM_FAULT_WRITE; 2851 2852 get_page(vmf->page); 2853 2854 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2855 vm_fault_t tmp; 2856 2857 pte_unmap_unlock(vmf->pte, vmf->ptl); 2858 tmp = do_page_mkwrite(vmf); 2859 if (unlikely(!tmp || (tmp & 2860 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2861 put_page(vmf->page); 2862 return tmp; 2863 } 2864 tmp = finish_mkwrite_fault(vmf); 2865 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2866 unlock_page(vmf->page); 2867 put_page(vmf->page); 2868 return tmp; 2869 } 2870 } else { 2871 wp_page_reuse(vmf); 2872 lock_page(vmf->page); 2873 } 2874 ret |= fault_dirty_shared_page(vmf); 2875 put_page(vmf->page); 2876 2877 return ret; 2878 } 2879 2880 /* 2881 * This routine handles present pages, when users try to write 2882 * to a shared page. It is done by copying the page to a new address 2883 * and decrementing the shared-page counter for the old page. 2884 * 2885 * Note that this routine assumes that the protection checks have been 2886 * done by the caller (the low-level page fault routine in most cases). 2887 * Thus we can safely just mark it writable once we've done any necessary 2888 * COW. 2889 * 2890 * We also mark the page dirty at this point even though the page will 2891 * change only once the write actually happens. This avoids a few races, 2892 * and potentially makes it more efficient. 2893 * 2894 * We enter with non-exclusive mmap_lock (to exclude vma changes, 2895 * but allow concurrent faults), with pte both mapped and locked. 2896 * We return with mmap_lock still held, but pte unmapped and unlocked. 2897 */ 2898 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2899 __releases(vmf->ptl) 2900 { 2901 struct vm_area_struct *vma = vmf->vma; 2902 2903 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 2904 pte_unmap_unlock(vmf->pte, vmf->ptl); 2905 return handle_userfault(vmf, VM_UFFD_WP); 2906 } 2907 2908 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2909 if (!vmf->page) { 2910 /* 2911 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2912 * VM_PFNMAP VMA. 2913 * 2914 * We should not cow pages in a shared writeable mapping. 2915 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2916 */ 2917 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2918 (VM_WRITE|VM_SHARED)) 2919 return wp_pfn_shared(vmf); 2920 2921 pte_unmap_unlock(vmf->pte, vmf->ptl); 2922 return wp_page_copy(vmf); 2923 } 2924 2925 /* 2926 * Take out anonymous pages first, anonymous shared vmas are 2927 * not dirty accountable. 2928 */ 2929 if (PageAnon(vmf->page)) { 2930 int total_map_swapcount; 2931 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2932 page_count(vmf->page) != 1)) 2933 goto copy; 2934 if (!trylock_page(vmf->page)) { 2935 get_page(vmf->page); 2936 pte_unmap_unlock(vmf->pte, vmf->ptl); 2937 lock_page(vmf->page); 2938 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2939 vmf->address, &vmf->ptl); 2940 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2941 update_mmu_tlb(vma, vmf->address, vmf->pte); 2942 unlock_page(vmf->page); 2943 pte_unmap_unlock(vmf->pte, vmf->ptl); 2944 put_page(vmf->page); 2945 return 0; 2946 } 2947 put_page(vmf->page); 2948 } 2949 if (PageKsm(vmf->page)) { 2950 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2951 vmf->address); 2952 unlock_page(vmf->page); 2953 if (!reused) 2954 goto copy; 2955 wp_page_reuse(vmf); 2956 return VM_FAULT_WRITE; 2957 } 2958 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2959 if (total_map_swapcount == 1) { 2960 /* 2961 * The page is all ours. Move it to 2962 * our anon_vma so the rmap code will 2963 * not search our parent or siblings. 2964 * Protected against the rmap code by 2965 * the page lock. 2966 */ 2967 page_move_anon_rmap(vmf->page, vma); 2968 } 2969 unlock_page(vmf->page); 2970 wp_page_reuse(vmf); 2971 return VM_FAULT_WRITE; 2972 } 2973 unlock_page(vmf->page); 2974 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2975 (VM_WRITE|VM_SHARED))) { 2976 return wp_page_shared(vmf); 2977 } 2978 copy: 2979 /* 2980 * Ok, we need to copy. Oh, well.. 2981 */ 2982 get_page(vmf->page); 2983 2984 pte_unmap_unlock(vmf->pte, vmf->ptl); 2985 return wp_page_copy(vmf); 2986 } 2987 2988 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2989 unsigned long start_addr, unsigned long end_addr, 2990 struct zap_details *details) 2991 { 2992 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2993 } 2994 2995 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2996 struct zap_details *details) 2997 { 2998 struct vm_area_struct *vma; 2999 pgoff_t vba, vea, zba, zea; 3000 3001 vma_interval_tree_foreach(vma, root, 3002 details->first_index, details->last_index) { 3003 3004 vba = vma->vm_pgoff; 3005 vea = vba + vma_pages(vma) - 1; 3006 zba = details->first_index; 3007 if (zba < vba) 3008 zba = vba; 3009 zea = details->last_index; 3010 if (zea > vea) 3011 zea = vea; 3012 3013 unmap_mapping_range_vma(vma, 3014 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3015 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3016 details); 3017 } 3018 } 3019 3020 /** 3021 * unmap_mapping_pages() - Unmap pages from processes. 3022 * @mapping: The address space containing pages to be unmapped. 3023 * @start: Index of first page to be unmapped. 3024 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3025 * @even_cows: Whether to unmap even private COWed pages. 3026 * 3027 * Unmap the pages in this address space from any userspace process which 3028 * has them mmaped. Generally, you want to remove COWed pages as well when 3029 * a file is being truncated, but not when invalidating pages from the page 3030 * cache. 3031 */ 3032 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3033 pgoff_t nr, bool even_cows) 3034 { 3035 struct zap_details details = { }; 3036 3037 details.check_mapping = even_cows ? NULL : mapping; 3038 details.first_index = start; 3039 details.last_index = start + nr - 1; 3040 if (details.last_index < details.first_index) 3041 details.last_index = ULONG_MAX; 3042 3043 i_mmap_lock_write(mapping); 3044 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3045 unmap_mapping_range_tree(&mapping->i_mmap, &details); 3046 i_mmap_unlock_write(mapping); 3047 } 3048 3049 /** 3050 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3051 * address_space corresponding to the specified byte range in the underlying 3052 * file. 3053 * 3054 * @mapping: the address space containing mmaps to be unmapped. 3055 * @holebegin: byte in first page to unmap, relative to the start of 3056 * the underlying file. This will be rounded down to a PAGE_SIZE 3057 * boundary. Note that this is different from truncate_pagecache(), which 3058 * must keep the partial page. In contrast, we must get rid of 3059 * partial pages. 3060 * @holelen: size of prospective hole in bytes. This will be rounded 3061 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3062 * end of the file. 3063 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3064 * but 0 when invalidating pagecache, don't throw away private data. 3065 */ 3066 void unmap_mapping_range(struct address_space *mapping, 3067 loff_t const holebegin, loff_t const holelen, int even_cows) 3068 { 3069 pgoff_t hba = holebegin >> PAGE_SHIFT; 3070 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3071 3072 /* Check for overflow. */ 3073 if (sizeof(holelen) > sizeof(hlen)) { 3074 long long holeend = 3075 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3076 if (holeend & ~(long long)ULONG_MAX) 3077 hlen = ULONG_MAX - hba + 1; 3078 } 3079 3080 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3081 } 3082 EXPORT_SYMBOL(unmap_mapping_range); 3083 3084 /* 3085 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3086 * but allow concurrent faults), and pte mapped but not yet locked. 3087 * We return with pte unmapped and unlocked. 3088 * 3089 * We return with the mmap_lock locked or unlocked in the same cases 3090 * as does filemap_fault(). 3091 */ 3092 vm_fault_t do_swap_page(struct vm_fault *vmf) 3093 { 3094 struct vm_area_struct *vma = vmf->vma; 3095 struct page *page = NULL, *swapcache; 3096 swp_entry_t entry; 3097 pte_t pte; 3098 int locked; 3099 int exclusive = 0; 3100 vm_fault_t ret = 0; 3101 void *shadow = NULL; 3102 3103 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 3104 goto out; 3105 3106 entry = pte_to_swp_entry(vmf->orig_pte); 3107 if (unlikely(non_swap_entry(entry))) { 3108 if (is_migration_entry(entry)) { 3109 migration_entry_wait(vma->vm_mm, vmf->pmd, 3110 vmf->address); 3111 } else if (is_device_private_entry(entry)) { 3112 vmf->page = device_private_entry_to_page(entry); 3113 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3114 } else if (is_hwpoison_entry(entry)) { 3115 ret = VM_FAULT_HWPOISON; 3116 } else { 3117 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3118 ret = VM_FAULT_SIGBUS; 3119 } 3120 goto out; 3121 } 3122 3123 3124 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3125 page = lookup_swap_cache(entry, vma, vmf->address); 3126 swapcache = page; 3127 3128 if (!page) { 3129 struct swap_info_struct *si = swp_swap_info(entry); 3130 3131 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3132 __swap_count(entry) == 1) { 3133 /* skip swapcache */ 3134 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 3135 vmf->address); 3136 if (page) { 3137 int err; 3138 3139 __SetPageLocked(page); 3140 __SetPageSwapBacked(page); 3141 set_page_private(page, entry.val); 3142 3143 /* Tell memcg to use swap ownership records */ 3144 SetPageSwapCache(page); 3145 err = mem_cgroup_charge(page, vma->vm_mm, 3146 GFP_KERNEL); 3147 ClearPageSwapCache(page); 3148 if (err) { 3149 ret = VM_FAULT_OOM; 3150 goto out_page; 3151 } 3152 3153 shadow = get_shadow_from_swap_cache(entry); 3154 if (shadow) 3155 workingset_refault(page, shadow); 3156 3157 lru_cache_add(page); 3158 swap_readpage(page, true); 3159 } 3160 } else { 3161 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3162 vmf); 3163 swapcache = page; 3164 } 3165 3166 if (!page) { 3167 /* 3168 * Back out if somebody else faulted in this pte 3169 * while we released the pte lock. 3170 */ 3171 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3172 vmf->address, &vmf->ptl); 3173 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3174 ret = VM_FAULT_OOM; 3175 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3176 goto unlock; 3177 } 3178 3179 /* Had to read the page from swap area: Major fault */ 3180 ret = VM_FAULT_MAJOR; 3181 count_vm_event(PGMAJFAULT); 3182 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3183 } else if (PageHWPoison(page)) { 3184 /* 3185 * hwpoisoned dirty swapcache pages are kept for killing 3186 * owner processes (which may be unknown at hwpoison time) 3187 */ 3188 ret = VM_FAULT_HWPOISON; 3189 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3190 goto out_release; 3191 } 3192 3193 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 3194 3195 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3196 if (!locked) { 3197 ret |= VM_FAULT_RETRY; 3198 goto out_release; 3199 } 3200 3201 /* 3202 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3203 * release the swapcache from under us. The page pin, and pte_same 3204 * test below, are not enough to exclude that. Even if it is still 3205 * swapcache, we need to check that the page's swap has not changed. 3206 */ 3207 if (unlikely((!PageSwapCache(page) || 3208 page_private(page) != entry.val)) && swapcache) 3209 goto out_page; 3210 3211 page = ksm_might_need_to_copy(page, vma, vmf->address); 3212 if (unlikely(!page)) { 3213 ret = VM_FAULT_OOM; 3214 page = swapcache; 3215 goto out_page; 3216 } 3217 3218 cgroup_throttle_swaprate(page, GFP_KERNEL); 3219 3220 /* 3221 * Back out if somebody else already faulted in this pte. 3222 */ 3223 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3224 &vmf->ptl); 3225 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3226 goto out_nomap; 3227 3228 if (unlikely(!PageUptodate(page))) { 3229 ret = VM_FAULT_SIGBUS; 3230 goto out_nomap; 3231 } 3232 3233 /* 3234 * The page isn't present yet, go ahead with the fault. 3235 * 3236 * Be careful about the sequence of operations here. 3237 * To get its accounting right, reuse_swap_page() must be called 3238 * while the page is counted on swap but not yet in mapcount i.e. 3239 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3240 * must be called after the swap_free(), or it will never succeed. 3241 */ 3242 3243 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3244 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3245 pte = mk_pte(page, vma->vm_page_prot); 3246 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3247 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3248 vmf->flags &= ~FAULT_FLAG_WRITE; 3249 ret |= VM_FAULT_WRITE; 3250 exclusive = RMAP_EXCLUSIVE; 3251 } 3252 flush_icache_page(vma, page); 3253 if (pte_swp_soft_dirty(vmf->orig_pte)) 3254 pte = pte_mksoft_dirty(pte); 3255 if (pte_swp_uffd_wp(vmf->orig_pte)) { 3256 pte = pte_mkuffd_wp(pte); 3257 pte = pte_wrprotect(pte); 3258 } 3259 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3260 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3261 vmf->orig_pte = pte; 3262 3263 /* ksm created a completely new copy */ 3264 if (unlikely(page != swapcache && swapcache)) { 3265 page_add_new_anon_rmap(page, vma, vmf->address, false); 3266 lru_cache_add_inactive_or_unevictable(page, vma); 3267 } else { 3268 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3269 } 3270 3271 swap_free(entry); 3272 if (mem_cgroup_swap_full(page) || 3273 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3274 try_to_free_swap(page); 3275 unlock_page(page); 3276 if (page != swapcache && swapcache) { 3277 /* 3278 * Hold the lock to avoid the swap entry to be reused 3279 * until we take the PT lock for the pte_same() check 3280 * (to avoid false positives from pte_same). For 3281 * further safety release the lock after the swap_free 3282 * so that the swap count won't change under a 3283 * parallel locked swapcache. 3284 */ 3285 unlock_page(swapcache); 3286 put_page(swapcache); 3287 } 3288 3289 if (vmf->flags & FAULT_FLAG_WRITE) { 3290 ret |= do_wp_page(vmf); 3291 if (ret & VM_FAULT_ERROR) 3292 ret &= VM_FAULT_ERROR; 3293 goto out; 3294 } 3295 3296 /* No need to invalidate - it was non-present before */ 3297 update_mmu_cache(vma, vmf->address, vmf->pte); 3298 unlock: 3299 pte_unmap_unlock(vmf->pte, vmf->ptl); 3300 out: 3301 return ret; 3302 out_nomap: 3303 pte_unmap_unlock(vmf->pte, vmf->ptl); 3304 out_page: 3305 unlock_page(page); 3306 out_release: 3307 put_page(page); 3308 if (page != swapcache && swapcache) { 3309 unlock_page(swapcache); 3310 put_page(swapcache); 3311 } 3312 return ret; 3313 } 3314 3315 /* 3316 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3317 * but allow concurrent faults), and pte mapped but not yet locked. 3318 * We return with mmap_lock still held, but pte unmapped and unlocked. 3319 */ 3320 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3321 { 3322 struct vm_area_struct *vma = vmf->vma; 3323 struct page *page; 3324 vm_fault_t ret = 0; 3325 pte_t entry; 3326 3327 /* File mapping without ->vm_ops ? */ 3328 if (vma->vm_flags & VM_SHARED) 3329 return VM_FAULT_SIGBUS; 3330 3331 /* 3332 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3333 * pte_offset_map() on pmds where a huge pmd might be created 3334 * from a different thread. 3335 * 3336 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 3337 * parallel threads are excluded by other means. 3338 * 3339 * Here we only have mmap_read_lock(mm). 3340 */ 3341 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3342 return VM_FAULT_OOM; 3343 3344 /* See the comment in pte_alloc_one_map() */ 3345 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3346 return 0; 3347 3348 /* Use the zero-page for reads */ 3349 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3350 !mm_forbids_zeropage(vma->vm_mm)) { 3351 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3352 vma->vm_page_prot)); 3353 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3354 vmf->address, &vmf->ptl); 3355 if (!pte_none(*vmf->pte)) { 3356 update_mmu_tlb(vma, vmf->address, vmf->pte); 3357 goto unlock; 3358 } 3359 ret = check_stable_address_space(vma->vm_mm); 3360 if (ret) 3361 goto unlock; 3362 /* Deliver the page fault to userland, check inside PT lock */ 3363 if (userfaultfd_missing(vma)) { 3364 pte_unmap_unlock(vmf->pte, vmf->ptl); 3365 return handle_userfault(vmf, VM_UFFD_MISSING); 3366 } 3367 goto setpte; 3368 } 3369 3370 /* Allocate our own private page. */ 3371 if (unlikely(anon_vma_prepare(vma))) 3372 goto oom; 3373 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3374 if (!page) 3375 goto oom; 3376 3377 if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL)) 3378 goto oom_free_page; 3379 cgroup_throttle_swaprate(page, GFP_KERNEL); 3380 3381 /* 3382 * The memory barrier inside __SetPageUptodate makes sure that 3383 * preceding stores to the page contents become visible before 3384 * the set_pte_at() write. 3385 */ 3386 __SetPageUptodate(page); 3387 3388 entry = mk_pte(page, vma->vm_page_prot); 3389 entry = pte_sw_mkyoung(entry); 3390 if (vma->vm_flags & VM_WRITE) 3391 entry = pte_mkwrite(pte_mkdirty(entry)); 3392 3393 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3394 &vmf->ptl); 3395 if (!pte_none(*vmf->pte)) { 3396 update_mmu_cache(vma, vmf->address, vmf->pte); 3397 goto release; 3398 } 3399 3400 ret = check_stable_address_space(vma->vm_mm); 3401 if (ret) 3402 goto release; 3403 3404 /* Deliver the page fault to userland, check inside PT lock */ 3405 if (userfaultfd_missing(vma)) { 3406 pte_unmap_unlock(vmf->pte, vmf->ptl); 3407 put_page(page); 3408 return handle_userfault(vmf, VM_UFFD_MISSING); 3409 } 3410 3411 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3412 page_add_new_anon_rmap(page, vma, vmf->address, false); 3413 lru_cache_add_inactive_or_unevictable(page, vma); 3414 setpte: 3415 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3416 3417 /* No need to invalidate - it was non-present before */ 3418 update_mmu_cache(vma, vmf->address, vmf->pte); 3419 unlock: 3420 pte_unmap_unlock(vmf->pte, vmf->ptl); 3421 return ret; 3422 release: 3423 put_page(page); 3424 goto unlock; 3425 oom_free_page: 3426 put_page(page); 3427 oom: 3428 return VM_FAULT_OOM; 3429 } 3430 3431 /* 3432 * The mmap_lock must have been held on entry, and may have been 3433 * released depending on flags and vma->vm_ops->fault() return value. 3434 * See filemap_fault() and __lock_page_retry(). 3435 */ 3436 static vm_fault_t __do_fault(struct vm_fault *vmf) 3437 { 3438 struct vm_area_struct *vma = vmf->vma; 3439 vm_fault_t ret; 3440 3441 /* 3442 * Preallocate pte before we take page_lock because this might lead to 3443 * deadlocks for memcg reclaim which waits for pages under writeback: 3444 * lock_page(A) 3445 * SetPageWriteback(A) 3446 * unlock_page(A) 3447 * lock_page(B) 3448 * lock_page(B) 3449 * pte_alloc_pne 3450 * shrink_page_list 3451 * wait_on_page_writeback(A) 3452 * SetPageWriteback(B) 3453 * unlock_page(B) 3454 * # flush A, B to clear the writeback 3455 */ 3456 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3457 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3458 if (!vmf->prealloc_pte) 3459 return VM_FAULT_OOM; 3460 smp_wmb(); /* See comment in __pte_alloc() */ 3461 } 3462 3463 ret = vma->vm_ops->fault(vmf); 3464 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3465 VM_FAULT_DONE_COW))) 3466 return ret; 3467 3468 if (unlikely(PageHWPoison(vmf->page))) { 3469 if (ret & VM_FAULT_LOCKED) 3470 unlock_page(vmf->page); 3471 put_page(vmf->page); 3472 vmf->page = NULL; 3473 return VM_FAULT_HWPOISON; 3474 } 3475 3476 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3477 lock_page(vmf->page); 3478 else 3479 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3480 3481 return ret; 3482 } 3483 3484 /* 3485 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3486 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3487 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3488 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3489 */ 3490 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3491 { 3492 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3493 } 3494 3495 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3496 { 3497 struct vm_area_struct *vma = vmf->vma; 3498 3499 if (!pmd_none(*vmf->pmd)) 3500 goto map_pte; 3501 if (vmf->prealloc_pte) { 3502 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3503 if (unlikely(!pmd_none(*vmf->pmd))) { 3504 spin_unlock(vmf->ptl); 3505 goto map_pte; 3506 } 3507 3508 mm_inc_nr_ptes(vma->vm_mm); 3509 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3510 spin_unlock(vmf->ptl); 3511 vmf->prealloc_pte = NULL; 3512 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3513 return VM_FAULT_OOM; 3514 } 3515 map_pte: 3516 /* 3517 * If a huge pmd materialized under us just retry later. Use 3518 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3519 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3520 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3521 * running immediately after a huge pmd fault in a different thread of 3522 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3523 * All we have to ensure is that it is a regular pmd that we can walk 3524 * with pte_offset_map() and we can do that through an atomic read in 3525 * C, which is what pmd_trans_unstable() provides. 3526 */ 3527 if (pmd_devmap_trans_unstable(vmf->pmd)) 3528 return VM_FAULT_NOPAGE; 3529 3530 /* 3531 * At this point we know that our vmf->pmd points to a page of ptes 3532 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3533 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3534 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3535 * be valid and we will re-check to make sure the vmf->pte isn't 3536 * pte_none() under vmf->ptl protection when we return to 3537 * alloc_set_pte(). 3538 */ 3539 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3540 &vmf->ptl); 3541 return 0; 3542 } 3543 3544 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3545 static void deposit_prealloc_pte(struct vm_fault *vmf) 3546 { 3547 struct vm_area_struct *vma = vmf->vma; 3548 3549 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3550 /* 3551 * We are going to consume the prealloc table, 3552 * count that as nr_ptes. 3553 */ 3554 mm_inc_nr_ptes(vma->vm_mm); 3555 vmf->prealloc_pte = NULL; 3556 } 3557 3558 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3559 { 3560 struct vm_area_struct *vma = vmf->vma; 3561 bool write = vmf->flags & FAULT_FLAG_WRITE; 3562 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3563 pmd_t entry; 3564 int i; 3565 vm_fault_t ret; 3566 3567 if (!transhuge_vma_suitable(vma, haddr)) 3568 return VM_FAULT_FALLBACK; 3569 3570 ret = VM_FAULT_FALLBACK; 3571 page = compound_head(page); 3572 3573 /* 3574 * Archs like ppc64 need additonal space to store information 3575 * related to pte entry. Use the preallocated table for that. 3576 */ 3577 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3578 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3579 if (!vmf->prealloc_pte) 3580 return VM_FAULT_OOM; 3581 smp_wmb(); /* See comment in __pte_alloc() */ 3582 } 3583 3584 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3585 if (unlikely(!pmd_none(*vmf->pmd))) 3586 goto out; 3587 3588 for (i = 0; i < HPAGE_PMD_NR; i++) 3589 flush_icache_page(vma, page + i); 3590 3591 entry = mk_huge_pmd(page, vma->vm_page_prot); 3592 if (write) 3593 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3594 3595 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3596 page_add_file_rmap(page, true); 3597 /* 3598 * deposit and withdraw with pmd lock held 3599 */ 3600 if (arch_needs_pgtable_deposit()) 3601 deposit_prealloc_pte(vmf); 3602 3603 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3604 3605 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3606 3607 /* fault is handled */ 3608 ret = 0; 3609 count_vm_event(THP_FILE_MAPPED); 3610 out: 3611 spin_unlock(vmf->ptl); 3612 return ret; 3613 } 3614 #else 3615 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3616 { 3617 BUILD_BUG(); 3618 return 0; 3619 } 3620 #endif 3621 3622 /** 3623 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3624 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3625 * 3626 * @vmf: fault environment 3627 * @page: page to map 3628 * 3629 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3630 * return. 3631 * 3632 * Target users are page handler itself and implementations of 3633 * vm_ops->map_pages. 3634 * 3635 * Return: %0 on success, %VM_FAULT_ code in case of error. 3636 */ 3637 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page) 3638 { 3639 struct vm_area_struct *vma = vmf->vma; 3640 bool write = vmf->flags & FAULT_FLAG_WRITE; 3641 pte_t entry; 3642 vm_fault_t ret; 3643 3644 if (pmd_none(*vmf->pmd) && PageTransCompound(page)) { 3645 ret = do_set_pmd(vmf, page); 3646 if (ret != VM_FAULT_FALLBACK) 3647 return ret; 3648 } 3649 3650 if (!vmf->pte) { 3651 ret = pte_alloc_one_map(vmf); 3652 if (ret) 3653 return ret; 3654 } 3655 3656 /* Re-check under ptl */ 3657 if (unlikely(!pte_none(*vmf->pte))) { 3658 update_mmu_tlb(vma, vmf->address, vmf->pte); 3659 return VM_FAULT_NOPAGE; 3660 } 3661 3662 flush_icache_page(vma, page); 3663 entry = mk_pte(page, vma->vm_page_prot); 3664 entry = pte_sw_mkyoung(entry); 3665 if (write) 3666 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3667 /* copy-on-write page */ 3668 if (write && !(vma->vm_flags & VM_SHARED)) { 3669 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3670 page_add_new_anon_rmap(page, vma, vmf->address, false); 3671 lru_cache_add_inactive_or_unevictable(page, vma); 3672 } else { 3673 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3674 page_add_file_rmap(page, false); 3675 } 3676 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3677 3678 /* no need to invalidate: a not-present page won't be cached */ 3679 update_mmu_cache(vma, vmf->address, vmf->pte); 3680 3681 return 0; 3682 } 3683 3684 3685 /** 3686 * finish_fault - finish page fault once we have prepared the page to fault 3687 * 3688 * @vmf: structure describing the fault 3689 * 3690 * This function handles all that is needed to finish a page fault once the 3691 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3692 * given page, adds reverse page mapping, handles memcg charges and LRU 3693 * addition. 3694 * 3695 * The function expects the page to be locked and on success it consumes a 3696 * reference of a page being mapped (for the PTE which maps it). 3697 * 3698 * Return: %0 on success, %VM_FAULT_ code in case of error. 3699 */ 3700 vm_fault_t finish_fault(struct vm_fault *vmf) 3701 { 3702 struct page *page; 3703 vm_fault_t ret = 0; 3704 3705 /* Did we COW the page? */ 3706 if ((vmf->flags & FAULT_FLAG_WRITE) && 3707 !(vmf->vma->vm_flags & VM_SHARED)) 3708 page = vmf->cow_page; 3709 else 3710 page = vmf->page; 3711 3712 /* 3713 * check even for read faults because we might have lost our CoWed 3714 * page 3715 */ 3716 if (!(vmf->vma->vm_flags & VM_SHARED)) 3717 ret = check_stable_address_space(vmf->vma->vm_mm); 3718 if (!ret) 3719 ret = alloc_set_pte(vmf, page); 3720 if (vmf->pte) 3721 pte_unmap_unlock(vmf->pte, vmf->ptl); 3722 return ret; 3723 } 3724 3725 static unsigned long fault_around_bytes __read_mostly = 3726 rounddown_pow_of_two(65536); 3727 3728 #ifdef CONFIG_DEBUG_FS 3729 static int fault_around_bytes_get(void *data, u64 *val) 3730 { 3731 *val = fault_around_bytes; 3732 return 0; 3733 } 3734 3735 /* 3736 * fault_around_bytes must be rounded down to the nearest page order as it's 3737 * what do_fault_around() expects to see. 3738 */ 3739 static int fault_around_bytes_set(void *data, u64 val) 3740 { 3741 if (val / PAGE_SIZE > PTRS_PER_PTE) 3742 return -EINVAL; 3743 if (val > PAGE_SIZE) 3744 fault_around_bytes = rounddown_pow_of_two(val); 3745 else 3746 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3747 return 0; 3748 } 3749 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3750 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3751 3752 static int __init fault_around_debugfs(void) 3753 { 3754 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3755 &fault_around_bytes_fops); 3756 return 0; 3757 } 3758 late_initcall(fault_around_debugfs); 3759 #endif 3760 3761 /* 3762 * do_fault_around() tries to map few pages around the fault address. The hope 3763 * is that the pages will be needed soon and this will lower the number of 3764 * faults to handle. 3765 * 3766 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3767 * not ready to be mapped: not up-to-date, locked, etc. 3768 * 3769 * This function is called with the page table lock taken. In the split ptlock 3770 * case the page table lock only protects only those entries which belong to 3771 * the page table corresponding to the fault address. 3772 * 3773 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3774 * only once. 3775 * 3776 * fault_around_bytes defines how many bytes we'll try to map. 3777 * do_fault_around() expects it to be set to a power of two less than or equal 3778 * to PTRS_PER_PTE. 3779 * 3780 * The virtual address of the area that we map is naturally aligned to 3781 * fault_around_bytes rounded down to the machine page size 3782 * (and therefore to page order). This way it's easier to guarantee 3783 * that we don't cross page table boundaries. 3784 */ 3785 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3786 { 3787 unsigned long address = vmf->address, nr_pages, mask; 3788 pgoff_t start_pgoff = vmf->pgoff; 3789 pgoff_t end_pgoff; 3790 int off; 3791 vm_fault_t ret = 0; 3792 3793 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3794 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3795 3796 vmf->address = max(address & mask, vmf->vma->vm_start); 3797 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3798 start_pgoff -= off; 3799 3800 /* 3801 * end_pgoff is either the end of the page table, the end of 3802 * the vma or nr_pages from start_pgoff, depending what is nearest. 3803 */ 3804 end_pgoff = start_pgoff - 3805 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3806 PTRS_PER_PTE - 1; 3807 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3808 start_pgoff + nr_pages - 1); 3809 3810 if (pmd_none(*vmf->pmd)) { 3811 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3812 if (!vmf->prealloc_pte) 3813 goto out; 3814 smp_wmb(); /* See comment in __pte_alloc() */ 3815 } 3816 3817 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3818 3819 /* Huge page is mapped? Page fault is solved */ 3820 if (pmd_trans_huge(*vmf->pmd)) { 3821 ret = VM_FAULT_NOPAGE; 3822 goto out; 3823 } 3824 3825 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3826 if (!vmf->pte) 3827 goto out; 3828 3829 /* check if the page fault is solved */ 3830 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3831 if (!pte_none(*vmf->pte)) 3832 ret = VM_FAULT_NOPAGE; 3833 pte_unmap_unlock(vmf->pte, vmf->ptl); 3834 out: 3835 vmf->address = address; 3836 vmf->pte = NULL; 3837 return ret; 3838 } 3839 3840 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3841 { 3842 struct vm_area_struct *vma = vmf->vma; 3843 vm_fault_t ret = 0; 3844 3845 /* 3846 * Let's call ->map_pages() first and use ->fault() as fallback 3847 * if page by the offset is not ready to be mapped (cold cache or 3848 * something). 3849 */ 3850 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3851 ret = do_fault_around(vmf); 3852 if (ret) 3853 return ret; 3854 } 3855 3856 ret = __do_fault(vmf); 3857 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3858 return ret; 3859 3860 ret |= finish_fault(vmf); 3861 unlock_page(vmf->page); 3862 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3863 put_page(vmf->page); 3864 return ret; 3865 } 3866 3867 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3868 { 3869 struct vm_area_struct *vma = vmf->vma; 3870 vm_fault_t ret; 3871 3872 if (unlikely(anon_vma_prepare(vma))) 3873 return VM_FAULT_OOM; 3874 3875 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3876 if (!vmf->cow_page) 3877 return VM_FAULT_OOM; 3878 3879 if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) { 3880 put_page(vmf->cow_page); 3881 return VM_FAULT_OOM; 3882 } 3883 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 3884 3885 ret = __do_fault(vmf); 3886 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3887 goto uncharge_out; 3888 if (ret & VM_FAULT_DONE_COW) 3889 return ret; 3890 3891 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3892 __SetPageUptodate(vmf->cow_page); 3893 3894 ret |= finish_fault(vmf); 3895 unlock_page(vmf->page); 3896 put_page(vmf->page); 3897 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3898 goto uncharge_out; 3899 return ret; 3900 uncharge_out: 3901 put_page(vmf->cow_page); 3902 return ret; 3903 } 3904 3905 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3906 { 3907 struct vm_area_struct *vma = vmf->vma; 3908 vm_fault_t ret, tmp; 3909 3910 ret = __do_fault(vmf); 3911 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3912 return ret; 3913 3914 /* 3915 * Check if the backing address space wants to know that the page is 3916 * about to become writable 3917 */ 3918 if (vma->vm_ops->page_mkwrite) { 3919 unlock_page(vmf->page); 3920 tmp = do_page_mkwrite(vmf); 3921 if (unlikely(!tmp || 3922 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3923 put_page(vmf->page); 3924 return tmp; 3925 } 3926 } 3927 3928 ret |= finish_fault(vmf); 3929 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3930 VM_FAULT_RETRY))) { 3931 unlock_page(vmf->page); 3932 put_page(vmf->page); 3933 return ret; 3934 } 3935 3936 ret |= fault_dirty_shared_page(vmf); 3937 return ret; 3938 } 3939 3940 /* 3941 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3942 * but allow concurrent faults). 3943 * The mmap_lock may have been released depending on flags and our 3944 * return value. See filemap_fault() and __lock_page_or_retry(). 3945 * If mmap_lock is released, vma may become invalid (for example 3946 * by other thread calling munmap()). 3947 */ 3948 static vm_fault_t do_fault(struct vm_fault *vmf) 3949 { 3950 struct vm_area_struct *vma = vmf->vma; 3951 struct mm_struct *vm_mm = vma->vm_mm; 3952 vm_fault_t ret; 3953 3954 /* 3955 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3956 */ 3957 if (!vma->vm_ops->fault) { 3958 /* 3959 * If we find a migration pmd entry or a none pmd entry, which 3960 * should never happen, return SIGBUS 3961 */ 3962 if (unlikely(!pmd_present(*vmf->pmd))) 3963 ret = VM_FAULT_SIGBUS; 3964 else { 3965 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3966 vmf->pmd, 3967 vmf->address, 3968 &vmf->ptl); 3969 /* 3970 * Make sure this is not a temporary clearing of pte 3971 * by holding ptl and checking again. A R/M/W update 3972 * of pte involves: take ptl, clearing the pte so that 3973 * we don't have concurrent modification by hardware 3974 * followed by an update. 3975 */ 3976 if (unlikely(pte_none(*vmf->pte))) 3977 ret = VM_FAULT_SIGBUS; 3978 else 3979 ret = VM_FAULT_NOPAGE; 3980 3981 pte_unmap_unlock(vmf->pte, vmf->ptl); 3982 } 3983 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3984 ret = do_read_fault(vmf); 3985 else if (!(vma->vm_flags & VM_SHARED)) 3986 ret = do_cow_fault(vmf); 3987 else 3988 ret = do_shared_fault(vmf); 3989 3990 /* preallocated pagetable is unused: free it */ 3991 if (vmf->prealloc_pte) { 3992 pte_free(vm_mm, vmf->prealloc_pte); 3993 vmf->prealloc_pte = NULL; 3994 } 3995 return ret; 3996 } 3997 3998 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3999 unsigned long addr, int page_nid, 4000 int *flags) 4001 { 4002 get_page(page); 4003 4004 count_vm_numa_event(NUMA_HINT_FAULTS); 4005 if (page_nid == numa_node_id()) { 4006 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4007 *flags |= TNF_FAULT_LOCAL; 4008 } 4009 4010 return mpol_misplaced(page, vma, addr); 4011 } 4012 4013 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4014 { 4015 struct vm_area_struct *vma = vmf->vma; 4016 struct page *page = NULL; 4017 int page_nid = NUMA_NO_NODE; 4018 int last_cpupid; 4019 int target_nid; 4020 bool migrated = false; 4021 pte_t pte, old_pte; 4022 bool was_writable = pte_savedwrite(vmf->orig_pte); 4023 int flags = 0; 4024 4025 /* 4026 * The "pte" at this point cannot be used safely without 4027 * validation through pte_unmap_same(). It's of NUMA type but 4028 * the pfn may be screwed if the read is non atomic. 4029 */ 4030 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4031 spin_lock(vmf->ptl); 4032 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4033 pte_unmap_unlock(vmf->pte, vmf->ptl); 4034 goto out; 4035 } 4036 4037 /* 4038 * Make it present again, Depending on how arch implementes non 4039 * accessible ptes, some can allow access by kernel mode. 4040 */ 4041 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4042 pte = pte_modify(old_pte, vma->vm_page_prot); 4043 pte = pte_mkyoung(pte); 4044 if (was_writable) 4045 pte = pte_mkwrite(pte); 4046 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4047 update_mmu_cache(vma, vmf->address, vmf->pte); 4048 4049 page = vm_normal_page(vma, vmf->address, pte); 4050 if (!page) { 4051 pte_unmap_unlock(vmf->pte, vmf->ptl); 4052 return 0; 4053 } 4054 4055 /* TODO: handle PTE-mapped THP */ 4056 if (PageCompound(page)) { 4057 pte_unmap_unlock(vmf->pte, vmf->ptl); 4058 return 0; 4059 } 4060 4061 /* 4062 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4063 * much anyway since they can be in shared cache state. This misses 4064 * the case where a mapping is writable but the process never writes 4065 * to it but pte_write gets cleared during protection updates and 4066 * pte_dirty has unpredictable behaviour between PTE scan updates, 4067 * background writeback, dirty balancing and application behaviour. 4068 */ 4069 if (!pte_write(pte)) 4070 flags |= TNF_NO_GROUP; 4071 4072 /* 4073 * Flag if the page is shared between multiple address spaces. This 4074 * is later used when determining whether to group tasks together 4075 */ 4076 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4077 flags |= TNF_SHARED; 4078 4079 last_cpupid = page_cpupid_last(page); 4080 page_nid = page_to_nid(page); 4081 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4082 &flags); 4083 pte_unmap_unlock(vmf->pte, vmf->ptl); 4084 if (target_nid == NUMA_NO_NODE) { 4085 put_page(page); 4086 goto out; 4087 } 4088 4089 /* Migrate to the requested node */ 4090 migrated = migrate_misplaced_page(page, vma, target_nid); 4091 if (migrated) { 4092 page_nid = target_nid; 4093 flags |= TNF_MIGRATED; 4094 } else 4095 flags |= TNF_MIGRATE_FAIL; 4096 4097 out: 4098 if (page_nid != NUMA_NO_NODE) 4099 task_numa_fault(last_cpupid, page_nid, 1, flags); 4100 return 0; 4101 } 4102 4103 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4104 { 4105 if (vma_is_anonymous(vmf->vma)) 4106 return do_huge_pmd_anonymous_page(vmf); 4107 if (vmf->vma->vm_ops->huge_fault) 4108 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4109 return VM_FAULT_FALLBACK; 4110 } 4111 4112 /* `inline' is required to avoid gcc 4.1.2 build error */ 4113 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 4114 { 4115 if (vma_is_anonymous(vmf->vma)) { 4116 if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd)) 4117 return handle_userfault(vmf, VM_UFFD_WP); 4118 return do_huge_pmd_wp_page(vmf, orig_pmd); 4119 } 4120 if (vmf->vma->vm_ops->huge_fault) { 4121 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4122 4123 if (!(ret & VM_FAULT_FALLBACK)) 4124 return ret; 4125 } 4126 4127 /* COW or write-notify handled on pte level: split pmd. */ 4128 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4129 4130 return VM_FAULT_FALLBACK; 4131 } 4132 4133 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4134 { 4135 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4136 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4137 /* No support for anonymous transparent PUD pages yet */ 4138 if (vma_is_anonymous(vmf->vma)) 4139 goto split; 4140 if (vmf->vma->vm_ops->huge_fault) { 4141 vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4142 4143 if (!(ret & VM_FAULT_FALLBACK)) 4144 return ret; 4145 } 4146 split: 4147 /* COW or write-notify not handled on PUD level: split pud.*/ 4148 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4149 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4150 return VM_FAULT_FALLBACK; 4151 } 4152 4153 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4154 { 4155 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4156 /* No support for anonymous transparent PUD pages yet */ 4157 if (vma_is_anonymous(vmf->vma)) 4158 return VM_FAULT_FALLBACK; 4159 if (vmf->vma->vm_ops->huge_fault) 4160 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4161 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4162 return VM_FAULT_FALLBACK; 4163 } 4164 4165 /* 4166 * These routines also need to handle stuff like marking pages dirty 4167 * and/or accessed for architectures that don't do it in hardware (most 4168 * RISC architectures). The early dirtying is also good on the i386. 4169 * 4170 * There is also a hook called "update_mmu_cache()" that architectures 4171 * with external mmu caches can use to update those (ie the Sparc or 4172 * PowerPC hashed page tables that act as extended TLBs). 4173 * 4174 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4175 * concurrent faults). 4176 * 4177 * The mmap_lock may have been released depending on flags and our return value. 4178 * See filemap_fault() and __lock_page_or_retry(). 4179 */ 4180 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4181 { 4182 pte_t entry; 4183 4184 if (unlikely(pmd_none(*vmf->pmd))) { 4185 /* 4186 * Leave __pte_alloc() until later: because vm_ops->fault may 4187 * want to allocate huge page, and if we expose page table 4188 * for an instant, it will be difficult to retract from 4189 * concurrent faults and from rmap lookups. 4190 */ 4191 vmf->pte = NULL; 4192 } else { 4193 /* See comment in pte_alloc_one_map() */ 4194 if (pmd_devmap_trans_unstable(vmf->pmd)) 4195 return 0; 4196 /* 4197 * A regular pmd is established and it can't morph into a huge 4198 * pmd from under us anymore at this point because we hold the 4199 * mmap_lock read mode and khugepaged takes it in write mode. 4200 * So now it's safe to run pte_offset_map(). 4201 */ 4202 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4203 vmf->orig_pte = *vmf->pte; 4204 4205 /* 4206 * some architectures can have larger ptes than wordsize, 4207 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4208 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4209 * accesses. The code below just needs a consistent view 4210 * for the ifs and we later double check anyway with the 4211 * ptl lock held. So here a barrier will do. 4212 */ 4213 barrier(); 4214 if (pte_none(vmf->orig_pte)) { 4215 pte_unmap(vmf->pte); 4216 vmf->pte = NULL; 4217 } 4218 } 4219 4220 if (!vmf->pte) { 4221 if (vma_is_anonymous(vmf->vma)) 4222 return do_anonymous_page(vmf); 4223 else 4224 return do_fault(vmf); 4225 } 4226 4227 if (!pte_present(vmf->orig_pte)) 4228 return do_swap_page(vmf); 4229 4230 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4231 return do_numa_page(vmf); 4232 4233 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4234 spin_lock(vmf->ptl); 4235 entry = vmf->orig_pte; 4236 if (unlikely(!pte_same(*vmf->pte, entry))) { 4237 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4238 goto unlock; 4239 } 4240 if (vmf->flags & FAULT_FLAG_WRITE) { 4241 if (!pte_write(entry)) 4242 return do_wp_page(vmf); 4243 entry = pte_mkdirty(entry); 4244 } 4245 entry = pte_mkyoung(entry); 4246 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4247 vmf->flags & FAULT_FLAG_WRITE)) { 4248 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4249 } else { 4250 /* 4251 * This is needed only for protection faults but the arch code 4252 * is not yet telling us if this is a protection fault or not. 4253 * This still avoids useless tlb flushes for .text page faults 4254 * with threads. 4255 */ 4256 if (vmf->flags & FAULT_FLAG_WRITE) 4257 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4258 } 4259 unlock: 4260 pte_unmap_unlock(vmf->pte, vmf->ptl); 4261 return 0; 4262 } 4263 4264 /* 4265 * By the time we get here, we already hold the mm semaphore 4266 * 4267 * The mmap_lock may have been released depending on flags and our 4268 * return value. See filemap_fault() and __lock_page_or_retry(). 4269 */ 4270 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4271 unsigned long address, unsigned int flags) 4272 { 4273 struct vm_fault vmf = { 4274 .vma = vma, 4275 .address = address & PAGE_MASK, 4276 .flags = flags, 4277 .pgoff = linear_page_index(vma, address), 4278 .gfp_mask = __get_fault_gfp_mask(vma), 4279 }; 4280 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4281 struct mm_struct *mm = vma->vm_mm; 4282 pgd_t *pgd; 4283 p4d_t *p4d; 4284 vm_fault_t ret; 4285 4286 pgd = pgd_offset(mm, address); 4287 p4d = p4d_alloc(mm, pgd, address); 4288 if (!p4d) 4289 return VM_FAULT_OOM; 4290 4291 vmf.pud = pud_alloc(mm, p4d, address); 4292 if (!vmf.pud) 4293 return VM_FAULT_OOM; 4294 retry_pud: 4295 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4296 ret = create_huge_pud(&vmf); 4297 if (!(ret & VM_FAULT_FALLBACK)) 4298 return ret; 4299 } else { 4300 pud_t orig_pud = *vmf.pud; 4301 4302 barrier(); 4303 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4304 4305 /* NUMA case for anonymous PUDs would go here */ 4306 4307 if (dirty && !pud_write(orig_pud)) { 4308 ret = wp_huge_pud(&vmf, orig_pud); 4309 if (!(ret & VM_FAULT_FALLBACK)) 4310 return ret; 4311 } else { 4312 huge_pud_set_accessed(&vmf, orig_pud); 4313 return 0; 4314 } 4315 } 4316 } 4317 4318 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4319 if (!vmf.pmd) 4320 return VM_FAULT_OOM; 4321 4322 /* Huge pud page fault raced with pmd_alloc? */ 4323 if (pud_trans_unstable(vmf.pud)) 4324 goto retry_pud; 4325 4326 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4327 ret = create_huge_pmd(&vmf); 4328 if (!(ret & VM_FAULT_FALLBACK)) 4329 return ret; 4330 } else { 4331 pmd_t orig_pmd = *vmf.pmd; 4332 4333 barrier(); 4334 if (unlikely(is_swap_pmd(orig_pmd))) { 4335 VM_BUG_ON(thp_migration_supported() && 4336 !is_pmd_migration_entry(orig_pmd)); 4337 if (is_pmd_migration_entry(orig_pmd)) 4338 pmd_migration_entry_wait(mm, vmf.pmd); 4339 return 0; 4340 } 4341 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4342 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4343 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4344 4345 if (dirty && !pmd_write(orig_pmd)) { 4346 ret = wp_huge_pmd(&vmf, orig_pmd); 4347 if (!(ret & VM_FAULT_FALLBACK)) 4348 return ret; 4349 } else { 4350 huge_pmd_set_accessed(&vmf, orig_pmd); 4351 return 0; 4352 } 4353 } 4354 } 4355 4356 return handle_pte_fault(&vmf); 4357 } 4358 4359 /** 4360 * mm_account_fault - Do page fault accountings 4361 * 4362 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 4363 * of perf event counters, but we'll still do the per-task accounting to 4364 * the task who triggered this page fault. 4365 * @address: the faulted address. 4366 * @flags: the fault flags. 4367 * @ret: the fault retcode. 4368 * 4369 * This will take care of most of the page fault accountings. Meanwhile, it 4370 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 4371 * updates. However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 4372 * still be in per-arch page fault handlers at the entry of page fault. 4373 */ 4374 static inline void mm_account_fault(struct pt_regs *regs, 4375 unsigned long address, unsigned int flags, 4376 vm_fault_t ret) 4377 { 4378 bool major; 4379 4380 /* 4381 * We don't do accounting for some specific faults: 4382 * 4383 * - Unsuccessful faults (e.g. when the address wasn't valid). That 4384 * includes arch_vma_access_permitted() failing before reaching here. 4385 * So this is not a "this many hardware page faults" counter. We 4386 * should use the hw profiling for that. 4387 * 4388 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 4389 * once they're completed. 4390 */ 4391 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 4392 return; 4393 4394 /* 4395 * We define the fault as a major fault when the final successful fault 4396 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 4397 * handle it immediately previously). 4398 */ 4399 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 4400 4401 if (major) 4402 current->maj_flt++; 4403 else 4404 current->min_flt++; 4405 4406 /* 4407 * If the fault is done for GUP, regs will be NULL. We only do the 4408 * accounting for the per thread fault counters who triggered the 4409 * fault, and we skip the perf event updates. 4410 */ 4411 if (!regs) 4412 return; 4413 4414 if (major) 4415 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 4416 else 4417 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 4418 } 4419 4420 /* 4421 * By the time we get here, we already hold the mm semaphore 4422 * 4423 * The mmap_lock may have been released depending on flags and our 4424 * return value. See filemap_fault() and __lock_page_or_retry(). 4425 */ 4426 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4427 unsigned int flags, struct pt_regs *regs) 4428 { 4429 vm_fault_t ret; 4430 4431 __set_current_state(TASK_RUNNING); 4432 4433 count_vm_event(PGFAULT); 4434 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4435 4436 /* do counter updates before entering really critical section. */ 4437 check_sync_rss_stat(current); 4438 4439 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4440 flags & FAULT_FLAG_INSTRUCTION, 4441 flags & FAULT_FLAG_REMOTE)) 4442 return VM_FAULT_SIGSEGV; 4443 4444 /* 4445 * Enable the memcg OOM handling for faults triggered in user 4446 * space. Kernel faults are handled more gracefully. 4447 */ 4448 if (flags & FAULT_FLAG_USER) 4449 mem_cgroup_enter_user_fault(); 4450 4451 if (unlikely(is_vm_hugetlb_page(vma))) 4452 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4453 else 4454 ret = __handle_mm_fault(vma, address, flags); 4455 4456 if (flags & FAULT_FLAG_USER) { 4457 mem_cgroup_exit_user_fault(); 4458 /* 4459 * The task may have entered a memcg OOM situation but 4460 * if the allocation error was handled gracefully (no 4461 * VM_FAULT_OOM), there is no need to kill anything. 4462 * Just clean up the OOM state peacefully. 4463 */ 4464 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4465 mem_cgroup_oom_synchronize(false); 4466 } 4467 4468 mm_account_fault(regs, address, flags, ret); 4469 4470 return ret; 4471 } 4472 EXPORT_SYMBOL_GPL(handle_mm_fault); 4473 4474 #ifndef __PAGETABLE_P4D_FOLDED 4475 /* 4476 * Allocate p4d page table. 4477 * We've already handled the fast-path in-line. 4478 */ 4479 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4480 { 4481 p4d_t *new = p4d_alloc_one(mm, address); 4482 if (!new) 4483 return -ENOMEM; 4484 4485 smp_wmb(); /* See comment in __pte_alloc */ 4486 4487 spin_lock(&mm->page_table_lock); 4488 if (pgd_present(*pgd)) /* Another has populated it */ 4489 p4d_free(mm, new); 4490 else 4491 pgd_populate(mm, pgd, new); 4492 spin_unlock(&mm->page_table_lock); 4493 return 0; 4494 } 4495 #endif /* __PAGETABLE_P4D_FOLDED */ 4496 4497 #ifndef __PAGETABLE_PUD_FOLDED 4498 /* 4499 * Allocate page upper directory. 4500 * We've already handled the fast-path in-line. 4501 */ 4502 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4503 { 4504 pud_t *new = pud_alloc_one(mm, address); 4505 if (!new) 4506 return -ENOMEM; 4507 4508 smp_wmb(); /* See comment in __pte_alloc */ 4509 4510 spin_lock(&mm->page_table_lock); 4511 if (!p4d_present(*p4d)) { 4512 mm_inc_nr_puds(mm); 4513 p4d_populate(mm, p4d, new); 4514 } else /* Another has populated it */ 4515 pud_free(mm, new); 4516 spin_unlock(&mm->page_table_lock); 4517 return 0; 4518 } 4519 #endif /* __PAGETABLE_PUD_FOLDED */ 4520 4521 #ifndef __PAGETABLE_PMD_FOLDED 4522 /* 4523 * Allocate page middle directory. 4524 * We've already handled the fast-path in-line. 4525 */ 4526 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4527 { 4528 spinlock_t *ptl; 4529 pmd_t *new = pmd_alloc_one(mm, address); 4530 if (!new) 4531 return -ENOMEM; 4532 4533 smp_wmb(); /* See comment in __pte_alloc */ 4534 4535 ptl = pud_lock(mm, pud); 4536 if (!pud_present(*pud)) { 4537 mm_inc_nr_pmds(mm); 4538 pud_populate(mm, pud, new); 4539 } else /* Another has populated it */ 4540 pmd_free(mm, new); 4541 spin_unlock(ptl); 4542 return 0; 4543 } 4544 #endif /* __PAGETABLE_PMD_FOLDED */ 4545 4546 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4547 struct mmu_notifier_range *range, 4548 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4549 { 4550 pgd_t *pgd; 4551 p4d_t *p4d; 4552 pud_t *pud; 4553 pmd_t *pmd; 4554 pte_t *ptep; 4555 4556 pgd = pgd_offset(mm, address); 4557 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4558 goto out; 4559 4560 p4d = p4d_offset(pgd, address); 4561 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4562 goto out; 4563 4564 pud = pud_offset(p4d, address); 4565 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4566 goto out; 4567 4568 pmd = pmd_offset(pud, address); 4569 VM_BUG_ON(pmd_trans_huge(*pmd)); 4570 4571 if (pmd_huge(*pmd)) { 4572 if (!pmdpp) 4573 goto out; 4574 4575 if (range) { 4576 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4577 NULL, mm, address & PMD_MASK, 4578 (address & PMD_MASK) + PMD_SIZE); 4579 mmu_notifier_invalidate_range_start(range); 4580 } 4581 *ptlp = pmd_lock(mm, pmd); 4582 if (pmd_huge(*pmd)) { 4583 *pmdpp = pmd; 4584 return 0; 4585 } 4586 spin_unlock(*ptlp); 4587 if (range) 4588 mmu_notifier_invalidate_range_end(range); 4589 } 4590 4591 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4592 goto out; 4593 4594 if (range) { 4595 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4596 address & PAGE_MASK, 4597 (address & PAGE_MASK) + PAGE_SIZE); 4598 mmu_notifier_invalidate_range_start(range); 4599 } 4600 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4601 if (!pte_present(*ptep)) 4602 goto unlock; 4603 *ptepp = ptep; 4604 return 0; 4605 unlock: 4606 pte_unmap_unlock(ptep, *ptlp); 4607 if (range) 4608 mmu_notifier_invalidate_range_end(range); 4609 out: 4610 return -EINVAL; 4611 } 4612 4613 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4614 pte_t **ptepp, spinlock_t **ptlp) 4615 { 4616 int res; 4617 4618 /* (void) is needed to make gcc happy */ 4619 (void) __cond_lock(*ptlp, 4620 !(res = __follow_pte_pmd(mm, address, NULL, 4621 ptepp, NULL, ptlp))); 4622 return res; 4623 } 4624 4625 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4626 struct mmu_notifier_range *range, 4627 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4628 { 4629 int res; 4630 4631 /* (void) is needed to make gcc happy */ 4632 (void) __cond_lock(*ptlp, 4633 !(res = __follow_pte_pmd(mm, address, range, 4634 ptepp, pmdpp, ptlp))); 4635 return res; 4636 } 4637 EXPORT_SYMBOL(follow_pte_pmd); 4638 4639 /** 4640 * follow_pfn - look up PFN at a user virtual address 4641 * @vma: memory mapping 4642 * @address: user virtual address 4643 * @pfn: location to store found PFN 4644 * 4645 * Only IO mappings and raw PFN mappings are allowed. 4646 * 4647 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4648 */ 4649 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4650 unsigned long *pfn) 4651 { 4652 int ret = -EINVAL; 4653 spinlock_t *ptl; 4654 pte_t *ptep; 4655 4656 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4657 return ret; 4658 4659 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4660 if (ret) 4661 return ret; 4662 *pfn = pte_pfn(*ptep); 4663 pte_unmap_unlock(ptep, ptl); 4664 return 0; 4665 } 4666 EXPORT_SYMBOL(follow_pfn); 4667 4668 #ifdef CONFIG_HAVE_IOREMAP_PROT 4669 int follow_phys(struct vm_area_struct *vma, 4670 unsigned long address, unsigned int flags, 4671 unsigned long *prot, resource_size_t *phys) 4672 { 4673 int ret = -EINVAL; 4674 pte_t *ptep, pte; 4675 spinlock_t *ptl; 4676 4677 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4678 goto out; 4679 4680 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4681 goto out; 4682 pte = *ptep; 4683 4684 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4685 goto unlock; 4686 4687 *prot = pgprot_val(pte_pgprot(pte)); 4688 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4689 4690 ret = 0; 4691 unlock: 4692 pte_unmap_unlock(ptep, ptl); 4693 out: 4694 return ret; 4695 } 4696 4697 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4698 void *buf, int len, int write) 4699 { 4700 resource_size_t phys_addr; 4701 unsigned long prot = 0; 4702 void __iomem *maddr; 4703 int offset = addr & (PAGE_SIZE-1); 4704 4705 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4706 return -EINVAL; 4707 4708 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4709 if (!maddr) 4710 return -ENOMEM; 4711 4712 if (write) 4713 memcpy_toio(maddr + offset, buf, len); 4714 else 4715 memcpy_fromio(buf, maddr + offset, len); 4716 iounmap(maddr); 4717 4718 return len; 4719 } 4720 EXPORT_SYMBOL_GPL(generic_access_phys); 4721 #endif 4722 4723 /* 4724 * Access another process' address space as given in mm. If non-NULL, use the 4725 * given task for page fault accounting. 4726 */ 4727 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4728 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4729 { 4730 struct vm_area_struct *vma; 4731 void *old_buf = buf; 4732 int write = gup_flags & FOLL_WRITE; 4733 4734 if (mmap_read_lock_killable(mm)) 4735 return 0; 4736 4737 /* ignore errors, just check how much was successfully transferred */ 4738 while (len) { 4739 int bytes, ret, offset; 4740 void *maddr; 4741 struct page *page = NULL; 4742 4743 ret = get_user_pages_remote(mm, addr, 1, 4744 gup_flags, &page, &vma, NULL); 4745 if (ret <= 0) { 4746 #ifndef CONFIG_HAVE_IOREMAP_PROT 4747 break; 4748 #else 4749 /* 4750 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4751 * we can access using slightly different code. 4752 */ 4753 vma = find_vma(mm, addr); 4754 if (!vma || vma->vm_start > addr) 4755 break; 4756 if (vma->vm_ops && vma->vm_ops->access) 4757 ret = vma->vm_ops->access(vma, addr, buf, 4758 len, write); 4759 if (ret <= 0) 4760 break; 4761 bytes = ret; 4762 #endif 4763 } else { 4764 bytes = len; 4765 offset = addr & (PAGE_SIZE-1); 4766 if (bytes > PAGE_SIZE-offset) 4767 bytes = PAGE_SIZE-offset; 4768 4769 maddr = kmap(page); 4770 if (write) { 4771 copy_to_user_page(vma, page, addr, 4772 maddr + offset, buf, bytes); 4773 set_page_dirty_lock(page); 4774 } else { 4775 copy_from_user_page(vma, page, addr, 4776 buf, maddr + offset, bytes); 4777 } 4778 kunmap(page); 4779 put_page(page); 4780 } 4781 len -= bytes; 4782 buf += bytes; 4783 addr += bytes; 4784 } 4785 mmap_read_unlock(mm); 4786 4787 return buf - old_buf; 4788 } 4789 4790 /** 4791 * access_remote_vm - access another process' address space 4792 * @mm: the mm_struct of the target address space 4793 * @addr: start address to access 4794 * @buf: source or destination buffer 4795 * @len: number of bytes to transfer 4796 * @gup_flags: flags modifying lookup behaviour 4797 * 4798 * The caller must hold a reference on @mm. 4799 * 4800 * Return: number of bytes copied from source to destination. 4801 */ 4802 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4803 void *buf, int len, unsigned int gup_flags) 4804 { 4805 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4806 } 4807 4808 /* 4809 * Access another process' address space. 4810 * Source/target buffer must be kernel space, 4811 * Do not walk the page table directly, use get_user_pages 4812 */ 4813 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4814 void *buf, int len, unsigned int gup_flags) 4815 { 4816 struct mm_struct *mm; 4817 int ret; 4818 4819 mm = get_task_mm(tsk); 4820 if (!mm) 4821 return 0; 4822 4823 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4824 4825 mmput(mm); 4826 4827 return ret; 4828 } 4829 EXPORT_SYMBOL_GPL(access_process_vm); 4830 4831 /* 4832 * Print the name of a VMA. 4833 */ 4834 void print_vma_addr(char *prefix, unsigned long ip) 4835 { 4836 struct mm_struct *mm = current->mm; 4837 struct vm_area_struct *vma; 4838 4839 /* 4840 * we might be running from an atomic context so we cannot sleep 4841 */ 4842 if (!mmap_read_trylock(mm)) 4843 return; 4844 4845 vma = find_vma(mm, ip); 4846 if (vma && vma->vm_file) { 4847 struct file *f = vma->vm_file; 4848 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4849 if (buf) { 4850 char *p; 4851 4852 p = file_path(f, buf, PAGE_SIZE); 4853 if (IS_ERR(p)) 4854 p = "?"; 4855 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4856 vma->vm_start, 4857 vma->vm_end - vma->vm_start); 4858 free_page((unsigned long)buf); 4859 } 4860 } 4861 mmap_read_unlock(mm); 4862 } 4863 4864 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4865 void __might_fault(const char *file, int line) 4866 { 4867 /* 4868 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4869 * holding the mmap_lock, this is safe because kernel memory doesn't 4870 * get paged out, therefore we'll never actually fault, and the 4871 * below annotations will generate false positives. 4872 */ 4873 if (uaccess_kernel()) 4874 return; 4875 if (pagefault_disabled()) 4876 return; 4877 __might_sleep(file, line, 0); 4878 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4879 if (current->mm) 4880 might_lock_read(¤t->mm->mmap_lock); 4881 #endif 4882 } 4883 EXPORT_SYMBOL(__might_fault); 4884 #endif 4885 4886 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4887 /* 4888 * Process all subpages of the specified huge page with the specified 4889 * operation. The target subpage will be processed last to keep its 4890 * cache lines hot. 4891 */ 4892 static inline void process_huge_page( 4893 unsigned long addr_hint, unsigned int pages_per_huge_page, 4894 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4895 void *arg) 4896 { 4897 int i, n, base, l; 4898 unsigned long addr = addr_hint & 4899 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4900 4901 /* Process target subpage last to keep its cache lines hot */ 4902 might_sleep(); 4903 n = (addr_hint - addr) / PAGE_SIZE; 4904 if (2 * n <= pages_per_huge_page) { 4905 /* If target subpage in first half of huge page */ 4906 base = 0; 4907 l = n; 4908 /* Process subpages at the end of huge page */ 4909 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4910 cond_resched(); 4911 process_subpage(addr + i * PAGE_SIZE, i, arg); 4912 } 4913 } else { 4914 /* If target subpage in second half of huge page */ 4915 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4916 l = pages_per_huge_page - n; 4917 /* Process subpages at the begin of huge page */ 4918 for (i = 0; i < base; i++) { 4919 cond_resched(); 4920 process_subpage(addr + i * PAGE_SIZE, i, arg); 4921 } 4922 } 4923 /* 4924 * Process remaining subpages in left-right-left-right pattern 4925 * towards the target subpage 4926 */ 4927 for (i = 0; i < l; i++) { 4928 int left_idx = base + i; 4929 int right_idx = base + 2 * l - 1 - i; 4930 4931 cond_resched(); 4932 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4933 cond_resched(); 4934 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4935 } 4936 } 4937 4938 static void clear_gigantic_page(struct page *page, 4939 unsigned long addr, 4940 unsigned int pages_per_huge_page) 4941 { 4942 int i; 4943 struct page *p = page; 4944 4945 might_sleep(); 4946 for (i = 0; i < pages_per_huge_page; 4947 i++, p = mem_map_next(p, page, i)) { 4948 cond_resched(); 4949 clear_user_highpage(p, addr + i * PAGE_SIZE); 4950 } 4951 } 4952 4953 static void clear_subpage(unsigned long addr, int idx, void *arg) 4954 { 4955 struct page *page = arg; 4956 4957 clear_user_highpage(page + idx, addr); 4958 } 4959 4960 void clear_huge_page(struct page *page, 4961 unsigned long addr_hint, unsigned int pages_per_huge_page) 4962 { 4963 unsigned long addr = addr_hint & 4964 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4965 4966 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4967 clear_gigantic_page(page, addr, pages_per_huge_page); 4968 return; 4969 } 4970 4971 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4972 } 4973 4974 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4975 unsigned long addr, 4976 struct vm_area_struct *vma, 4977 unsigned int pages_per_huge_page) 4978 { 4979 int i; 4980 struct page *dst_base = dst; 4981 struct page *src_base = src; 4982 4983 for (i = 0; i < pages_per_huge_page; ) { 4984 cond_resched(); 4985 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4986 4987 i++; 4988 dst = mem_map_next(dst, dst_base, i); 4989 src = mem_map_next(src, src_base, i); 4990 } 4991 } 4992 4993 struct copy_subpage_arg { 4994 struct page *dst; 4995 struct page *src; 4996 struct vm_area_struct *vma; 4997 }; 4998 4999 static void copy_subpage(unsigned long addr, int idx, void *arg) 5000 { 5001 struct copy_subpage_arg *copy_arg = arg; 5002 5003 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5004 addr, copy_arg->vma); 5005 } 5006 5007 void copy_user_huge_page(struct page *dst, struct page *src, 5008 unsigned long addr_hint, struct vm_area_struct *vma, 5009 unsigned int pages_per_huge_page) 5010 { 5011 unsigned long addr = addr_hint & 5012 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5013 struct copy_subpage_arg arg = { 5014 .dst = dst, 5015 .src = src, 5016 .vma = vma, 5017 }; 5018 5019 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5020 copy_user_gigantic_page(dst, src, addr, vma, 5021 pages_per_huge_page); 5022 return; 5023 } 5024 5025 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5026 } 5027 5028 long copy_huge_page_from_user(struct page *dst_page, 5029 const void __user *usr_src, 5030 unsigned int pages_per_huge_page, 5031 bool allow_pagefault) 5032 { 5033 void *src = (void *)usr_src; 5034 void *page_kaddr; 5035 unsigned long i, rc = 0; 5036 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5037 5038 for (i = 0; i < pages_per_huge_page; i++) { 5039 if (allow_pagefault) 5040 page_kaddr = kmap(dst_page + i); 5041 else 5042 page_kaddr = kmap_atomic(dst_page + i); 5043 rc = copy_from_user(page_kaddr, 5044 (const void __user *)(src + i * PAGE_SIZE), 5045 PAGE_SIZE); 5046 if (allow_pagefault) 5047 kunmap(dst_page + i); 5048 else 5049 kunmap_atomic(page_kaddr); 5050 5051 ret_val -= (PAGE_SIZE - rc); 5052 if (rc) 5053 break; 5054 5055 cond_resched(); 5056 } 5057 return ret_val; 5058 } 5059 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5060 5061 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5062 5063 static struct kmem_cache *page_ptl_cachep; 5064 5065 void __init ptlock_cache_init(void) 5066 { 5067 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5068 SLAB_PANIC, NULL); 5069 } 5070 5071 bool ptlock_alloc(struct page *page) 5072 { 5073 spinlock_t *ptl; 5074 5075 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5076 if (!ptl) 5077 return false; 5078 page->ptl = ptl; 5079 return true; 5080 } 5081 5082 void ptlock_free(struct page *page) 5083 { 5084 kmem_cache_free(page_ptl_cachep, page->ptl); 5085 } 5086 #endif 5087