xref: /openbmc/linux/mm/memory.c (revision 519a8a6c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <trace/events/kmem.h>
76 
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 
84 #include "internal.h"
85 
86 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
87 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
88 #endif
89 
90 #ifndef CONFIG_NEED_MULTIPLE_NODES
91 /* use the per-pgdat data instead for discontigmem - mbligh */
92 unsigned long max_mapnr;
93 EXPORT_SYMBOL(max_mapnr);
94 
95 struct page *mem_map;
96 EXPORT_SYMBOL(mem_map);
97 #endif
98 
99 /*
100  * A number of key systems in x86 including ioremap() rely on the assumption
101  * that high_memory defines the upper bound on direct map memory, then end
102  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
103  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
104  * and ZONE_HIGHMEM.
105  */
106 void *high_memory;
107 EXPORT_SYMBOL(high_memory);
108 
109 /*
110  * Randomize the address space (stacks, mmaps, brk, etc.).
111  *
112  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
113  *   as ancient (libc5 based) binaries can segfault. )
114  */
115 int randomize_va_space __read_mostly =
116 #ifdef CONFIG_COMPAT_BRK
117 					1;
118 #else
119 					2;
120 #endif
121 
122 #ifndef arch_faults_on_old_pte
123 static inline bool arch_faults_on_old_pte(void)
124 {
125 	/*
126 	 * Those arches which don't have hw access flag feature need to
127 	 * implement their own helper. By default, "true" means pagefault
128 	 * will be hit on old pte.
129 	 */
130 	return true;
131 }
132 #endif
133 
134 static int __init disable_randmaps(char *s)
135 {
136 	randomize_va_space = 0;
137 	return 1;
138 }
139 __setup("norandmaps", disable_randmaps);
140 
141 unsigned long zero_pfn __read_mostly;
142 EXPORT_SYMBOL(zero_pfn);
143 
144 unsigned long highest_memmap_pfn __read_mostly;
145 
146 /*
147  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
148  */
149 static int __init init_zero_pfn(void)
150 {
151 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
152 	return 0;
153 }
154 core_initcall(init_zero_pfn);
155 
156 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
157 {
158 	trace_rss_stat(mm, member, count);
159 }
160 
161 #if defined(SPLIT_RSS_COUNTING)
162 
163 void sync_mm_rss(struct mm_struct *mm)
164 {
165 	int i;
166 
167 	for (i = 0; i < NR_MM_COUNTERS; i++) {
168 		if (current->rss_stat.count[i]) {
169 			add_mm_counter(mm, i, current->rss_stat.count[i]);
170 			current->rss_stat.count[i] = 0;
171 		}
172 	}
173 	current->rss_stat.events = 0;
174 }
175 
176 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
177 {
178 	struct task_struct *task = current;
179 
180 	if (likely(task->mm == mm))
181 		task->rss_stat.count[member] += val;
182 	else
183 		add_mm_counter(mm, member, val);
184 }
185 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
186 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
187 
188 /* sync counter once per 64 page faults */
189 #define TASK_RSS_EVENTS_THRESH	(64)
190 static void check_sync_rss_stat(struct task_struct *task)
191 {
192 	if (unlikely(task != current))
193 		return;
194 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
195 		sync_mm_rss(task->mm);
196 }
197 #else /* SPLIT_RSS_COUNTING */
198 
199 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
200 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
201 
202 static void check_sync_rss_stat(struct task_struct *task)
203 {
204 }
205 
206 #endif /* SPLIT_RSS_COUNTING */
207 
208 /*
209  * Note: this doesn't free the actual pages themselves. That
210  * has been handled earlier when unmapping all the memory regions.
211  */
212 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
213 			   unsigned long addr)
214 {
215 	pgtable_t token = pmd_pgtable(*pmd);
216 	pmd_clear(pmd);
217 	pte_free_tlb(tlb, token, addr);
218 	mm_dec_nr_ptes(tlb->mm);
219 }
220 
221 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
222 				unsigned long addr, unsigned long end,
223 				unsigned long floor, unsigned long ceiling)
224 {
225 	pmd_t *pmd;
226 	unsigned long next;
227 	unsigned long start;
228 
229 	start = addr;
230 	pmd = pmd_offset(pud, addr);
231 	do {
232 		next = pmd_addr_end(addr, end);
233 		if (pmd_none_or_clear_bad(pmd))
234 			continue;
235 		free_pte_range(tlb, pmd, addr);
236 	} while (pmd++, addr = next, addr != end);
237 
238 	start &= PUD_MASK;
239 	if (start < floor)
240 		return;
241 	if (ceiling) {
242 		ceiling &= PUD_MASK;
243 		if (!ceiling)
244 			return;
245 	}
246 	if (end - 1 > ceiling - 1)
247 		return;
248 
249 	pmd = pmd_offset(pud, start);
250 	pud_clear(pud);
251 	pmd_free_tlb(tlb, pmd, start);
252 	mm_dec_nr_pmds(tlb->mm);
253 }
254 
255 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
256 				unsigned long addr, unsigned long end,
257 				unsigned long floor, unsigned long ceiling)
258 {
259 	pud_t *pud;
260 	unsigned long next;
261 	unsigned long start;
262 
263 	start = addr;
264 	pud = pud_offset(p4d, addr);
265 	do {
266 		next = pud_addr_end(addr, end);
267 		if (pud_none_or_clear_bad(pud))
268 			continue;
269 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
270 	} while (pud++, addr = next, addr != end);
271 
272 	start &= P4D_MASK;
273 	if (start < floor)
274 		return;
275 	if (ceiling) {
276 		ceiling &= P4D_MASK;
277 		if (!ceiling)
278 			return;
279 	}
280 	if (end - 1 > ceiling - 1)
281 		return;
282 
283 	pud = pud_offset(p4d, start);
284 	p4d_clear(p4d);
285 	pud_free_tlb(tlb, pud, start);
286 	mm_dec_nr_puds(tlb->mm);
287 }
288 
289 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
290 				unsigned long addr, unsigned long end,
291 				unsigned long floor, unsigned long ceiling)
292 {
293 	p4d_t *p4d;
294 	unsigned long next;
295 	unsigned long start;
296 
297 	start = addr;
298 	p4d = p4d_offset(pgd, addr);
299 	do {
300 		next = p4d_addr_end(addr, end);
301 		if (p4d_none_or_clear_bad(p4d))
302 			continue;
303 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
304 	} while (p4d++, addr = next, addr != end);
305 
306 	start &= PGDIR_MASK;
307 	if (start < floor)
308 		return;
309 	if (ceiling) {
310 		ceiling &= PGDIR_MASK;
311 		if (!ceiling)
312 			return;
313 	}
314 	if (end - 1 > ceiling - 1)
315 		return;
316 
317 	p4d = p4d_offset(pgd, start);
318 	pgd_clear(pgd);
319 	p4d_free_tlb(tlb, p4d, start);
320 }
321 
322 /*
323  * This function frees user-level page tables of a process.
324  */
325 void free_pgd_range(struct mmu_gather *tlb,
326 			unsigned long addr, unsigned long end,
327 			unsigned long floor, unsigned long ceiling)
328 {
329 	pgd_t *pgd;
330 	unsigned long next;
331 
332 	/*
333 	 * The next few lines have given us lots of grief...
334 	 *
335 	 * Why are we testing PMD* at this top level?  Because often
336 	 * there will be no work to do at all, and we'd prefer not to
337 	 * go all the way down to the bottom just to discover that.
338 	 *
339 	 * Why all these "- 1"s?  Because 0 represents both the bottom
340 	 * of the address space and the top of it (using -1 for the
341 	 * top wouldn't help much: the masks would do the wrong thing).
342 	 * The rule is that addr 0 and floor 0 refer to the bottom of
343 	 * the address space, but end 0 and ceiling 0 refer to the top
344 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
345 	 * that end 0 case should be mythical).
346 	 *
347 	 * Wherever addr is brought up or ceiling brought down, we must
348 	 * be careful to reject "the opposite 0" before it confuses the
349 	 * subsequent tests.  But what about where end is brought down
350 	 * by PMD_SIZE below? no, end can't go down to 0 there.
351 	 *
352 	 * Whereas we round start (addr) and ceiling down, by different
353 	 * masks at different levels, in order to test whether a table
354 	 * now has no other vmas using it, so can be freed, we don't
355 	 * bother to round floor or end up - the tests don't need that.
356 	 */
357 
358 	addr &= PMD_MASK;
359 	if (addr < floor) {
360 		addr += PMD_SIZE;
361 		if (!addr)
362 			return;
363 	}
364 	if (ceiling) {
365 		ceiling &= PMD_MASK;
366 		if (!ceiling)
367 			return;
368 	}
369 	if (end - 1 > ceiling - 1)
370 		end -= PMD_SIZE;
371 	if (addr > end - 1)
372 		return;
373 	/*
374 	 * We add page table cache pages with PAGE_SIZE,
375 	 * (see pte_free_tlb()), flush the tlb if we need
376 	 */
377 	tlb_change_page_size(tlb, PAGE_SIZE);
378 	pgd = pgd_offset(tlb->mm, addr);
379 	do {
380 		next = pgd_addr_end(addr, end);
381 		if (pgd_none_or_clear_bad(pgd))
382 			continue;
383 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
384 	} while (pgd++, addr = next, addr != end);
385 }
386 
387 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
388 		unsigned long floor, unsigned long ceiling)
389 {
390 	while (vma) {
391 		struct vm_area_struct *next = vma->vm_next;
392 		unsigned long addr = vma->vm_start;
393 
394 		/*
395 		 * Hide vma from rmap and truncate_pagecache before freeing
396 		 * pgtables
397 		 */
398 		unlink_anon_vmas(vma);
399 		unlink_file_vma(vma);
400 
401 		if (is_vm_hugetlb_page(vma)) {
402 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
403 				floor, next ? next->vm_start : ceiling);
404 		} else {
405 			/*
406 			 * Optimization: gather nearby vmas into one call down
407 			 */
408 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
409 			       && !is_vm_hugetlb_page(next)) {
410 				vma = next;
411 				next = vma->vm_next;
412 				unlink_anon_vmas(vma);
413 				unlink_file_vma(vma);
414 			}
415 			free_pgd_range(tlb, addr, vma->vm_end,
416 				floor, next ? next->vm_start : ceiling);
417 		}
418 		vma = next;
419 	}
420 }
421 
422 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
423 {
424 	spinlock_t *ptl;
425 	pgtable_t new = pte_alloc_one(mm);
426 	if (!new)
427 		return -ENOMEM;
428 
429 	/*
430 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
431 	 * visible before the pte is made visible to other CPUs by being
432 	 * put into page tables.
433 	 *
434 	 * The other side of the story is the pointer chasing in the page
435 	 * table walking code (when walking the page table without locking;
436 	 * ie. most of the time). Fortunately, these data accesses consist
437 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
438 	 * being the notable exception) will already guarantee loads are
439 	 * seen in-order. See the alpha page table accessors for the
440 	 * smp_rmb() barriers in page table walking code.
441 	 */
442 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
443 
444 	ptl = pmd_lock(mm, pmd);
445 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
446 		mm_inc_nr_ptes(mm);
447 		pmd_populate(mm, pmd, new);
448 		new = NULL;
449 	}
450 	spin_unlock(ptl);
451 	if (new)
452 		pte_free(mm, new);
453 	return 0;
454 }
455 
456 int __pte_alloc_kernel(pmd_t *pmd)
457 {
458 	pte_t *new = pte_alloc_one_kernel(&init_mm);
459 	if (!new)
460 		return -ENOMEM;
461 
462 	smp_wmb(); /* See comment in __pte_alloc */
463 
464 	spin_lock(&init_mm.page_table_lock);
465 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
466 		pmd_populate_kernel(&init_mm, pmd, new);
467 		new = NULL;
468 	}
469 	spin_unlock(&init_mm.page_table_lock);
470 	if (new)
471 		pte_free_kernel(&init_mm, new);
472 	return 0;
473 }
474 
475 static inline void init_rss_vec(int *rss)
476 {
477 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
478 }
479 
480 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
481 {
482 	int i;
483 
484 	if (current->mm == mm)
485 		sync_mm_rss(mm);
486 	for (i = 0; i < NR_MM_COUNTERS; i++)
487 		if (rss[i])
488 			add_mm_counter(mm, i, rss[i]);
489 }
490 
491 /*
492  * This function is called to print an error when a bad pte
493  * is found. For example, we might have a PFN-mapped pte in
494  * a region that doesn't allow it.
495  *
496  * The calling function must still handle the error.
497  */
498 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
499 			  pte_t pte, struct page *page)
500 {
501 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
502 	p4d_t *p4d = p4d_offset(pgd, addr);
503 	pud_t *pud = pud_offset(p4d, addr);
504 	pmd_t *pmd = pmd_offset(pud, addr);
505 	struct address_space *mapping;
506 	pgoff_t index;
507 	static unsigned long resume;
508 	static unsigned long nr_shown;
509 	static unsigned long nr_unshown;
510 
511 	/*
512 	 * Allow a burst of 60 reports, then keep quiet for that minute;
513 	 * or allow a steady drip of one report per second.
514 	 */
515 	if (nr_shown == 60) {
516 		if (time_before(jiffies, resume)) {
517 			nr_unshown++;
518 			return;
519 		}
520 		if (nr_unshown) {
521 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
522 				 nr_unshown);
523 			nr_unshown = 0;
524 		}
525 		nr_shown = 0;
526 	}
527 	if (nr_shown++ == 0)
528 		resume = jiffies + 60 * HZ;
529 
530 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
531 	index = linear_page_index(vma, addr);
532 
533 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
534 		 current->comm,
535 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
536 	if (page)
537 		dump_page(page, "bad pte");
538 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
539 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
540 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
541 		 vma->vm_file,
542 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
543 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
544 		 mapping ? mapping->a_ops->readpage : NULL);
545 	dump_stack();
546 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
547 }
548 
549 /*
550  * vm_normal_page -- This function gets the "struct page" associated with a pte.
551  *
552  * "Special" mappings do not wish to be associated with a "struct page" (either
553  * it doesn't exist, or it exists but they don't want to touch it). In this
554  * case, NULL is returned here. "Normal" mappings do have a struct page.
555  *
556  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
557  * pte bit, in which case this function is trivial. Secondly, an architecture
558  * may not have a spare pte bit, which requires a more complicated scheme,
559  * described below.
560  *
561  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
562  * special mapping (even if there are underlying and valid "struct pages").
563  * COWed pages of a VM_PFNMAP are always normal.
564  *
565  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
566  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
567  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
568  * mapping will always honor the rule
569  *
570  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
571  *
572  * And for normal mappings this is false.
573  *
574  * This restricts such mappings to be a linear translation from virtual address
575  * to pfn. To get around this restriction, we allow arbitrary mappings so long
576  * as the vma is not a COW mapping; in that case, we know that all ptes are
577  * special (because none can have been COWed).
578  *
579  *
580  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
581  *
582  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
583  * page" backing, however the difference is that _all_ pages with a struct
584  * page (that is, those where pfn_valid is true) are refcounted and considered
585  * normal pages by the VM. The disadvantage is that pages are refcounted
586  * (which can be slower and simply not an option for some PFNMAP users). The
587  * advantage is that we don't have to follow the strict linearity rule of
588  * PFNMAP mappings in order to support COWable mappings.
589  *
590  */
591 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
592 			    pte_t pte)
593 {
594 	unsigned long pfn = pte_pfn(pte);
595 
596 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
597 		if (likely(!pte_special(pte)))
598 			goto check_pfn;
599 		if (vma->vm_ops && vma->vm_ops->find_special_page)
600 			return vma->vm_ops->find_special_page(vma, addr);
601 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
602 			return NULL;
603 		if (is_zero_pfn(pfn))
604 			return NULL;
605 		if (pte_devmap(pte))
606 			return NULL;
607 
608 		print_bad_pte(vma, addr, pte, NULL);
609 		return NULL;
610 	}
611 
612 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613 
614 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 		if (vma->vm_flags & VM_MIXEDMAP) {
616 			if (!pfn_valid(pfn))
617 				return NULL;
618 			goto out;
619 		} else {
620 			unsigned long off;
621 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 			if (pfn == vma->vm_pgoff + off)
623 				return NULL;
624 			if (!is_cow_mapping(vma->vm_flags))
625 				return NULL;
626 		}
627 	}
628 
629 	if (is_zero_pfn(pfn))
630 		return NULL;
631 
632 check_pfn:
633 	if (unlikely(pfn > highest_memmap_pfn)) {
634 		print_bad_pte(vma, addr, pte, NULL);
635 		return NULL;
636 	}
637 
638 	/*
639 	 * NOTE! We still have PageReserved() pages in the page tables.
640 	 * eg. VDSO mappings can cause them to exist.
641 	 */
642 out:
643 	return pfn_to_page(pfn);
644 }
645 
646 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
647 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
648 				pmd_t pmd)
649 {
650 	unsigned long pfn = pmd_pfn(pmd);
651 
652 	/*
653 	 * There is no pmd_special() but there may be special pmds, e.g.
654 	 * in a direct-access (dax) mapping, so let's just replicate the
655 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
656 	 */
657 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
658 		if (vma->vm_flags & VM_MIXEDMAP) {
659 			if (!pfn_valid(pfn))
660 				return NULL;
661 			goto out;
662 		} else {
663 			unsigned long off;
664 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
665 			if (pfn == vma->vm_pgoff + off)
666 				return NULL;
667 			if (!is_cow_mapping(vma->vm_flags))
668 				return NULL;
669 		}
670 	}
671 
672 	if (pmd_devmap(pmd))
673 		return NULL;
674 	if (is_huge_zero_pmd(pmd))
675 		return NULL;
676 	if (unlikely(pfn > highest_memmap_pfn))
677 		return NULL;
678 
679 	/*
680 	 * NOTE! We still have PageReserved() pages in the page tables.
681 	 * eg. VDSO mappings can cause them to exist.
682 	 */
683 out:
684 	return pfn_to_page(pfn);
685 }
686 #endif
687 
688 /*
689  * copy one vm_area from one task to the other. Assumes the page tables
690  * already present in the new task to be cleared in the whole range
691  * covered by this vma.
692  */
693 
694 static inline unsigned long
695 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
696 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
697 		unsigned long addr, int *rss)
698 {
699 	unsigned long vm_flags = vma->vm_flags;
700 	pte_t pte = *src_pte;
701 	struct page *page;
702 
703 	/* pte contains position in swap or file, so copy. */
704 	if (unlikely(!pte_present(pte))) {
705 		swp_entry_t entry = pte_to_swp_entry(pte);
706 
707 		if (likely(!non_swap_entry(entry))) {
708 			if (swap_duplicate(entry) < 0)
709 				return entry.val;
710 
711 			/* make sure dst_mm is on swapoff's mmlist. */
712 			if (unlikely(list_empty(&dst_mm->mmlist))) {
713 				spin_lock(&mmlist_lock);
714 				if (list_empty(&dst_mm->mmlist))
715 					list_add(&dst_mm->mmlist,
716 							&src_mm->mmlist);
717 				spin_unlock(&mmlist_lock);
718 			}
719 			rss[MM_SWAPENTS]++;
720 		} else if (is_migration_entry(entry)) {
721 			page = migration_entry_to_page(entry);
722 
723 			rss[mm_counter(page)]++;
724 
725 			if (is_write_migration_entry(entry) &&
726 					is_cow_mapping(vm_flags)) {
727 				/*
728 				 * COW mappings require pages in both
729 				 * parent and child to be set to read.
730 				 */
731 				make_migration_entry_read(&entry);
732 				pte = swp_entry_to_pte(entry);
733 				if (pte_swp_soft_dirty(*src_pte))
734 					pte = pte_swp_mksoft_dirty(pte);
735 				if (pte_swp_uffd_wp(*src_pte))
736 					pte = pte_swp_mkuffd_wp(pte);
737 				set_pte_at(src_mm, addr, src_pte, pte);
738 			}
739 		} else if (is_device_private_entry(entry)) {
740 			page = device_private_entry_to_page(entry);
741 
742 			/*
743 			 * Update rss count even for unaddressable pages, as
744 			 * they should treated just like normal pages in this
745 			 * respect.
746 			 *
747 			 * We will likely want to have some new rss counters
748 			 * for unaddressable pages, at some point. But for now
749 			 * keep things as they are.
750 			 */
751 			get_page(page);
752 			rss[mm_counter(page)]++;
753 			page_dup_rmap(page, false);
754 
755 			/*
756 			 * We do not preserve soft-dirty information, because so
757 			 * far, checkpoint/restore is the only feature that
758 			 * requires that. And checkpoint/restore does not work
759 			 * when a device driver is involved (you cannot easily
760 			 * save and restore device driver state).
761 			 */
762 			if (is_write_device_private_entry(entry) &&
763 			    is_cow_mapping(vm_flags)) {
764 				make_device_private_entry_read(&entry);
765 				pte = swp_entry_to_pte(entry);
766 				if (pte_swp_uffd_wp(*src_pte))
767 					pte = pte_swp_mkuffd_wp(pte);
768 				set_pte_at(src_mm, addr, src_pte, pte);
769 			}
770 		}
771 		goto out_set_pte;
772 	}
773 
774 	/*
775 	 * If it's a COW mapping, write protect it both
776 	 * in the parent and the child
777 	 */
778 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
779 		ptep_set_wrprotect(src_mm, addr, src_pte);
780 		pte = pte_wrprotect(pte);
781 	}
782 
783 	/*
784 	 * If it's a shared mapping, mark it clean in
785 	 * the child
786 	 */
787 	if (vm_flags & VM_SHARED)
788 		pte = pte_mkclean(pte);
789 	pte = pte_mkold(pte);
790 
791 	/*
792 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
793 	 * does not have the VM_UFFD_WP, which means that the uffd
794 	 * fork event is not enabled.
795 	 */
796 	if (!(vm_flags & VM_UFFD_WP))
797 		pte = pte_clear_uffd_wp(pte);
798 
799 	page = vm_normal_page(vma, addr, pte);
800 	if (page) {
801 		get_page(page);
802 		page_dup_rmap(page, false);
803 		rss[mm_counter(page)]++;
804 	}
805 
806 out_set_pte:
807 	set_pte_at(dst_mm, addr, dst_pte, pte);
808 	return 0;
809 }
810 
811 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
812 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
813 		   unsigned long addr, unsigned long end)
814 {
815 	pte_t *orig_src_pte, *orig_dst_pte;
816 	pte_t *src_pte, *dst_pte;
817 	spinlock_t *src_ptl, *dst_ptl;
818 	int progress = 0;
819 	int rss[NR_MM_COUNTERS];
820 	swp_entry_t entry = (swp_entry_t){0};
821 
822 again:
823 	init_rss_vec(rss);
824 
825 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
826 	if (!dst_pte)
827 		return -ENOMEM;
828 	src_pte = pte_offset_map(src_pmd, addr);
829 	src_ptl = pte_lockptr(src_mm, src_pmd);
830 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
831 	orig_src_pte = src_pte;
832 	orig_dst_pte = dst_pte;
833 	arch_enter_lazy_mmu_mode();
834 
835 	do {
836 		/*
837 		 * We are holding two locks at this point - either of them
838 		 * could generate latencies in another task on another CPU.
839 		 */
840 		if (progress >= 32) {
841 			progress = 0;
842 			if (need_resched() ||
843 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
844 				break;
845 		}
846 		if (pte_none(*src_pte)) {
847 			progress++;
848 			continue;
849 		}
850 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
851 							vma, addr, rss);
852 		if (entry.val)
853 			break;
854 		progress += 8;
855 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
856 
857 	arch_leave_lazy_mmu_mode();
858 	spin_unlock(src_ptl);
859 	pte_unmap(orig_src_pte);
860 	add_mm_rss_vec(dst_mm, rss);
861 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
862 	cond_resched();
863 
864 	if (entry.val) {
865 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
866 			return -ENOMEM;
867 		progress = 0;
868 	}
869 	if (addr != end)
870 		goto again;
871 	return 0;
872 }
873 
874 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
875 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
876 		unsigned long addr, unsigned long end)
877 {
878 	pmd_t *src_pmd, *dst_pmd;
879 	unsigned long next;
880 
881 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
882 	if (!dst_pmd)
883 		return -ENOMEM;
884 	src_pmd = pmd_offset(src_pud, addr);
885 	do {
886 		next = pmd_addr_end(addr, end);
887 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
888 			|| pmd_devmap(*src_pmd)) {
889 			int err;
890 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
891 			err = copy_huge_pmd(dst_mm, src_mm,
892 					    dst_pmd, src_pmd, addr, vma);
893 			if (err == -ENOMEM)
894 				return -ENOMEM;
895 			if (!err)
896 				continue;
897 			/* fall through */
898 		}
899 		if (pmd_none_or_clear_bad(src_pmd))
900 			continue;
901 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
902 						vma, addr, next))
903 			return -ENOMEM;
904 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
905 	return 0;
906 }
907 
908 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
909 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
910 		unsigned long addr, unsigned long end)
911 {
912 	pud_t *src_pud, *dst_pud;
913 	unsigned long next;
914 
915 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
916 	if (!dst_pud)
917 		return -ENOMEM;
918 	src_pud = pud_offset(src_p4d, addr);
919 	do {
920 		next = pud_addr_end(addr, end);
921 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
922 			int err;
923 
924 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
925 			err = copy_huge_pud(dst_mm, src_mm,
926 					    dst_pud, src_pud, addr, vma);
927 			if (err == -ENOMEM)
928 				return -ENOMEM;
929 			if (!err)
930 				continue;
931 			/* fall through */
932 		}
933 		if (pud_none_or_clear_bad(src_pud))
934 			continue;
935 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
936 						vma, addr, next))
937 			return -ENOMEM;
938 	} while (dst_pud++, src_pud++, addr = next, addr != end);
939 	return 0;
940 }
941 
942 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
943 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
944 		unsigned long addr, unsigned long end)
945 {
946 	p4d_t *src_p4d, *dst_p4d;
947 	unsigned long next;
948 
949 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
950 	if (!dst_p4d)
951 		return -ENOMEM;
952 	src_p4d = p4d_offset(src_pgd, addr);
953 	do {
954 		next = p4d_addr_end(addr, end);
955 		if (p4d_none_or_clear_bad(src_p4d))
956 			continue;
957 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
958 						vma, addr, next))
959 			return -ENOMEM;
960 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
961 	return 0;
962 }
963 
964 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
965 		struct vm_area_struct *vma)
966 {
967 	pgd_t *src_pgd, *dst_pgd;
968 	unsigned long next;
969 	unsigned long addr = vma->vm_start;
970 	unsigned long end = vma->vm_end;
971 	struct mmu_notifier_range range;
972 	bool is_cow;
973 	int ret;
974 
975 	/*
976 	 * Don't copy ptes where a page fault will fill them correctly.
977 	 * Fork becomes much lighter when there are big shared or private
978 	 * readonly mappings. The tradeoff is that copy_page_range is more
979 	 * efficient than faulting.
980 	 */
981 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
982 			!vma->anon_vma)
983 		return 0;
984 
985 	if (is_vm_hugetlb_page(vma))
986 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
987 
988 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
989 		/*
990 		 * We do not free on error cases below as remove_vma
991 		 * gets called on error from higher level routine
992 		 */
993 		ret = track_pfn_copy(vma);
994 		if (ret)
995 			return ret;
996 	}
997 
998 	/*
999 	 * We need to invalidate the secondary MMU mappings only when
1000 	 * there could be a permission downgrade on the ptes of the
1001 	 * parent mm. And a permission downgrade will only happen if
1002 	 * is_cow_mapping() returns true.
1003 	 */
1004 	is_cow = is_cow_mapping(vma->vm_flags);
1005 
1006 	if (is_cow) {
1007 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1008 					0, vma, src_mm, addr, end);
1009 		mmu_notifier_invalidate_range_start(&range);
1010 	}
1011 
1012 	ret = 0;
1013 	dst_pgd = pgd_offset(dst_mm, addr);
1014 	src_pgd = pgd_offset(src_mm, addr);
1015 	do {
1016 		next = pgd_addr_end(addr, end);
1017 		if (pgd_none_or_clear_bad(src_pgd))
1018 			continue;
1019 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1020 					    vma, addr, next))) {
1021 			ret = -ENOMEM;
1022 			break;
1023 		}
1024 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1025 
1026 	if (is_cow)
1027 		mmu_notifier_invalidate_range_end(&range);
1028 	return ret;
1029 }
1030 
1031 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1032 				struct vm_area_struct *vma, pmd_t *pmd,
1033 				unsigned long addr, unsigned long end,
1034 				struct zap_details *details)
1035 {
1036 	struct mm_struct *mm = tlb->mm;
1037 	int force_flush = 0;
1038 	int rss[NR_MM_COUNTERS];
1039 	spinlock_t *ptl;
1040 	pte_t *start_pte;
1041 	pte_t *pte;
1042 	swp_entry_t entry;
1043 
1044 	tlb_change_page_size(tlb, PAGE_SIZE);
1045 again:
1046 	init_rss_vec(rss);
1047 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1048 	pte = start_pte;
1049 	flush_tlb_batched_pending(mm);
1050 	arch_enter_lazy_mmu_mode();
1051 	do {
1052 		pte_t ptent = *pte;
1053 		if (pte_none(ptent))
1054 			continue;
1055 
1056 		if (need_resched())
1057 			break;
1058 
1059 		if (pte_present(ptent)) {
1060 			struct page *page;
1061 
1062 			page = vm_normal_page(vma, addr, ptent);
1063 			if (unlikely(details) && page) {
1064 				/*
1065 				 * unmap_shared_mapping_pages() wants to
1066 				 * invalidate cache without truncating:
1067 				 * unmap shared but keep private pages.
1068 				 */
1069 				if (details->check_mapping &&
1070 				    details->check_mapping != page_rmapping(page))
1071 					continue;
1072 			}
1073 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1074 							tlb->fullmm);
1075 			tlb_remove_tlb_entry(tlb, pte, addr);
1076 			if (unlikely(!page))
1077 				continue;
1078 
1079 			if (!PageAnon(page)) {
1080 				if (pte_dirty(ptent)) {
1081 					force_flush = 1;
1082 					set_page_dirty(page);
1083 				}
1084 				if (pte_young(ptent) &&
1085 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1086 					mark_page_accessed(page);
1087 			}
1088 			rss[mm_counter(page)]--;
1089 			page_remove_rmap(page, false);
1090 			if (unlikely(page_mapcount(page) < 0))
1091 				print_bad_pte(vma, addr, ptent, page);
1092 			if (unlikely(__tlb_remove_page(tlb, page))) {
1093 				force_flush = 1;
1094 				addr += PAGE_SIZE;
1095 				break;
1096 			}
1097 			continue;
1098 		}
1099 
1100 		entry = pte_to_swp_entry(ptent);
1101 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1102 			struct page *page = device_private_entry_to_page(entry);
1103 
1104 			if (unlikely(details && details->check_mapping)) {
1105 				/*
1106 				 * unmap_shared_mapping_pages() wants to
1107 				 * invalidate cache without truncating:
1108 				 * unmap shared but keep private pages.
1109 				 */
1110 				if (details->check_mapping !=
1111 				    page_rmapping(page))
1112 					continue;
1113 			}
1114 
1115 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1116 			rss[mm_counter(page)]--;
1117 			page_remove_rmap(page, false);
1118 			put_page(page);
1119 			continue;
1120 		}
1121 
1122 		/* If details->check_mapping, we leave swap entries. */
1123 		if (unlikely(details))
1124 			continue;
1125 
1126 		if (!non_swap_entry(entry))
1127 			rss[MM_SWAPENTS]--;
1128 		else if (is_migration_entry(entry)) {
1129 			struct page *page;
1130 
1131 			page = migration_entry_to_page(entry);
1132 			rss[mm_counter(page)]--;
1133 		}
1134 		if (unlikely(!free_swap_and_cache(entry)))
1135 			print_bad_pte(vma, addr, ptent, NULL);
1136 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1137 	} while (pte++, addr += PAGE_SIZE, addr != end);
1138 
1139 	add_mm_rss_vec(mm, rss);
1140 	arch_leave_lazy_mmu_mode();
1141 
1142 	/* Do the actual TLB flush before dropping ptl */
1143 	if (force_flush)
1144 		tlb_flush_mmu_tlbonly(tlb);
1145 	pte_unmap_unlock(start_pte, ptl);
1146 
1147 	/*
1148 	 * If we forced a TLB flush (either due to running out of
1149 	 * batch buffers or because we needed to flush dirty TLB
1150 	 * entries before releasing the ptl), free the batched
1151 	 * memory too. Restart if we didn't do everything.
1152 	 */
1153 	if (force_flush) {
1154 		force_flush = 0;
1155 		tlb_flush_mmu(tlb);
1156 	}
1157 
1158 	if (addr != end) {
1159 		cond_resched();
1160 		goto again;
1161 	}
1162 
1163 	return addr;
1164 }
1165 
1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1167 				struct vm_area_struct *vma, pud_t *pud,
1168 				unsigned long addr, unsigned long end,
1169 				struct zap_details *details)
1170 {
1171 	pmd_t *pmd;
1172 	unsigned long next;
1173 
1174 	pmd = pmd_offset(pud, addr);
1175 	do {
1176 		next = pmd_addr_end(addr, end);
1177 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1178 			if (next - addr != HPAGE_PMD_SIZE)
1179 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1180 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1181 				goto next;
1182 			/* fall through */
1183 		}
1184 		/*
1185 		 * Here there can be other concurrent MADV_DONTNEED or
1186 		 * trans huge page faults running, and if the pmd is
1187 		 * none or trans huge it can change under us. This is
1188 		 * because MADV_DONTNEED holds the mmap_lock in read
1189 		 * mode.
1190 		 */
1191 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1192 			goto next;
1193 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1194 next:
1195 		cond_resched();
1196 	} while (pmd++, addr = next, addr != end);
1197 
1198 	return addr;
1199 }
1200 
1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1202 				struct vm_area_struct *vma, p4d_t *p4d,
1203 				unsigned long addr, unsigned long end,
1204 				struct zap_details *details)
1205 {
1206 	pud_t *pud;
1207 	unsigned long next;
1208 
1209 	pud = pud_offset(p4d, addr);
1210 	do {
1211 		next = pud_addr_end(addr, end);
1212 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1213 			if (next - addr != HPAGE_PUD_SIZE) {
1214 				mmap_assert_locked(tlb->mm);
1215 				split_huge_pud(vma, pud, addr);
1216 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1217 				goto next;
1218 			/* fall through */
1219 		}
1220 		if (pud_none_or_clear_bad(pud))
1221 			continue;
1222 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1223 next:
1224 		cond_resched();
1225 	} while (pud++, addr = next, addr != end);
1226 
1227 	return addr;
1228 }
1229 
1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1231 				struct vm_area_struct *vma, pgd_t *pgd,
1232 				unsigned long addr, unsigned long end,
1233 				struct zap_details *details)
1234 {
1235 	p4d_t *p4d;
1236 	unsigned long next;
1237 
1238 	p4d = p4d_offset(pgd, addr);
1239 	do {
1240 		next = p4d_addr_end(addr, end);
1241 		if (p4d_none_or_clear_bad(p4d))
1242 			continue;
1243 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1244 	} while (p4d++, addr = next, addr != end);
1245 
1246 	return addr;
1247 }
1248 
1249 void unmap_page_range(struct mmu_gather *tlb,
1250 			     struct vm_area_struct *vma,
1251 			     unsigned long addr, unsigned long end,
1252 			     struct zap_details *details)
1253 {
1254 	pgd_t *pgd;
1255 	unsigned long next;
1256 
1257 	BUG_ON(addr >= end);
1258 	tlb_start_vma(tlb, vma);
1259 	pgd = pgd_offset(vma->vm_mm, addr);
1260 	do {
1261 		next = pgd_addr_end(addr, end);
1262 		if (pgd_none_or_clear_bad(pgd))
1263 			continue;
1264 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1265 	} while (pgd++, addr = next, addr != end);
1266 	tlb_end_vma(tlb, vma);
1267 }
1268 
1269 
1270 static void unmap_single_vma(struct mmu_gather *tlb,
1271 		struct vm_area_struct *vma, unsigned long start_addr,
1272 		unsigned long end_addr,
1273 		struct zap_details *details)
1274 {
1275 	unsigned long start = max(vma->vm_start, start_addr);
1276 	unsigned long end;
1277 
1278 	if (start >= vma->vm_end)
1279 		return;
1280 	end = min(vma->vm_end, end_addr);
1281 	if (end <= vma->vm_start)
1282 		return;
1283 
1284 	if (vma->vm_file)
1285 		uprobe_munmap(vma, start, end);
1286 
1287 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1288 		untrack_pfn(vma, 0, 0);
1289 
1290 	if (start != end) {
1291 		if (unlikely(is_vm_hugetlb_page(vma))) {
1292 			/*
1293 			 * It is undesirable to test vma->vm_file as it
1294 			 * should be non-null for valid hugetlb area.
1295 			 * However, vm_file will be NULL in the error
1296 			 * cleanup path of mmap_region. When
1297 			 * hugetlbfs ->mmap method fails,
1298 			 * mmap_region() nullifies vma->vm_file
1299 			 * before calling this function to clean up.
1300 			 * Since no pte has actually been setup, it is
1301 			 * safe to do nothing in this case.
1302 			 */
1303 			if (vma->vm_file) {
1304 				i_mmap_lock_write(vma->vm_file->f_mapping);
1305 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1306 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1307 			}
1308 		} else
1309 			unmap_page_range(tlb, vma, start, end, details);
1310 	}
1311 }
1312 
1313 /**
1314  * unmap_vmas - unmap a range of memory covered by a list of vma's
1315  * @tlb: address of the caller's struct mmu_gather
1316  * @vma: the starting vma
1317  * @start_addr: virtual address at which to start unmapping
1318  * @end_addr: virtual address at which to end unmapping
1319  *
1320  * Unmap all pages in the vma list.
1321  *
1322  * Only addresses between `start' and `end' will be unmapped.
1323  *
1324  * The VMA list must be sorted in ascending virtual address order.
1325  *
1326  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1327  * range after unmap_vmas() returns.  So the only responsibility here is to
1328  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1329  * drops the lock and schedules.
1330  */
1331 void unmap_vmas(struct mmu_gather *tlb,
1332 		struct vm_area_struct *vma, unsigned long start_addr,
1333 		unsigned long end_addr)
1334 {
1335 	struct mmu_notifier_range range;
1336 
1337 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1338 				start_addr, end_addr);
1339 	mmu_notifier_invalidate_range_start(&range);
1340 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1341 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1342 	mmu_notifier_invalidate_range_end(&range);
1343 }
1344 
1345 /**
1346  * zap_page_range - remove user pages in a given range
1347  * @vma: vm_area_struct holding the applicable pages
1348  * @start: starting address of pages to zap
1349  * @size: number of bytes to zap
1350  *
1351  * Caller must protect the VMA list
1352  */
1353 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1354 		unsigned long size)
1355 {
1356 	struct mmu_notifier_range range;
1357 	struct mmu_gather tlb;
1358 
1359 	lru_add_drain();
1360 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1361 				start, start + size);
1362 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1363 	update_hiwater_rss(vma->vm_mm);
1364 	mmu_notifier_invalidate_range_start(&range);
1365 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1366 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1367 	mmu_notifier_invalidate_range_end(&range);
1368 	tlb_finish_mmu(&tlb, start, range.end);
1369 }
1370 
1371 /**
1372  * zap_page_range_single - remove user pages in a given range
1373  * @vma: vm_area_struct holding the applicable pages
1374  * @address: starting address of pages to zap
1375  * @size: number of bytes to zap
1376  * @details: details of shared cache invalidation
1377  *
1378  * The range must fit into one VMA.
1379  */
1380 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1381 		unsigned long size, struct zap_details *details)
1382 {
1383 	struct mmu_notifier_range range;
1384 	struct mmu_gather tlb;
1385 
1386 	lru_add_drain();
1387 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1388 				address, address + size);
1389 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1390 	update_hiwater_rss(vma->vm_mm);
1391 	mmu_notifier_invalidate_range_start(&range);
1392 	unmap_single_vma(&tlb, vma, address, range.end, details);
1393 	mmu_notifier_invalidate_range_end(&range);
1394 	tlb_finish_mmu(&tlb, address, range.end);
1395 }
1396 
1397 /**
1398  * zap_vma_ptes - remove ptes mapping the vma
1399  * @vma: vm_area_struct holding ptes to be zapped
1400  * @address: starting address of pages to zap
1401  * @size: number of bytes to zap
1402  *
1403  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1404  *
1405  * The entire address range must be fully contained within the vma.
1406  *
1407  */
1408 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1409 		unsigned long size)
1410 {
1411 	if (address < vma->vm_start || address + size > vma->vm_end ||
1412 	    		!(vma->vm_flags & VM_PFNMAP))
1413 		return;
1414 
1415 	zap_page_range_single(vma, address, size, NULL);
1416 }
1417 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1418 
1419 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1420 {
1421 	pgd_t *pgd;
1422 	p4d_t *p4d;
1423 	pud_t *pud;
1424 	pmd_t *pmd;
1425 
1426 	pgd = pgd_offset(mm, addr);
1427 	p4d = p4d_alloc(mm, pgd, addr);
1428 	if (!p4d)
1429 		return NULL;
1430 	pud = pud_alloc(mm, p4d, addr);
1431 	if (!pud)
1432 		return NULL;
1433 	pmd = pmd_alloc(mm, pud, addr);
1434 	if (!pmd)
1435 		return NULL;
1436 
1437 	VM_BUG_ON(pmd_trans_huge(*pmd));
1438 	return pmd;
1439 }
1440 
1441 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1442 			spinlock_t **ptl)
1443 {
1444 	pmd_t *pmd = walk_to_pmd(mm, addr);
1445 
1446 	if (!pmd)
1447 		return NULL;
1448 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1449 }
1450 
1451 static int validate_page_before_insert(struct page *page)
1452 {
1453 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1454 		return -EINVAL;
1455 	flush_dcache_page(page);
1456 	return 0;
1457 }
1458 
1459 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1460 			unsigned long addr, struct page *page, pgprot_t prot)
1461 {
1462 	if (!pte_none(*pte))
1463 		return -EBUSY;
1464 	/* Ok, finally just insert the thing.. */
1465 	get_page(page);
1466 	inc_mm_counter_fast(mm, mm_counter_file(page));
1467 	page_add_file_rmap(page, false);
1468 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1469 	return 0;
1470 }
1471 
1472 /*
1473  * This is the old fallback for page remapping.
1474  *
1475  * For historical reasons, it only allows reserved pages. Only
1476  * old drivers should use this, and they needed to mark their
1477  * pages reserved for the old functions anyway.
1478  */
1479 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1480 			struct page *page, pgprot_t prot)
1481 {
1482 	struct mm_struct *mm = vma->vm_mm;
1483 	int retval;
1484 	pte_t *pte;
1485 	spinlock_t *ptl;
1486 
1487 	retval = validate_page_before_insert(page);
1488 	if (retval)
1489 		goto out;
1490 	retval = -ENOMEM;
1491 	pte = get_locked_pte(mm, addr, &ptl);
1492 	if (!pte)
1493 		goto out;
1494 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1495 	pte_unmap_unlock(pte, ptl);
1496 out:
1497 	return retval;
1498 }
1499 
1500 #ifdef pte_index
1501 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1502 			unsigned long addr, struct page *page, pgprot_t prot)
1503 {
1504 	int err;
1505 
1506 	if (!page_count(page))
1507 		return -EINVAL;
1508 	err = validate_page_before_insert(page);
1509 	if (err)
1510 		return err;
1511 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1512 }
1513 
1514 /* insert_pages() amortizes the cost of spinlock operations
1515  * when inserting pages in a loop. Arch *must* define pte_index.
1516  */
1517 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1518 			struct page **pages, unsigned long *num, pgprot_t prot)
1519 {
1520 	pmd_t *pmd = NULL;
1521 	pte_t *start_pte, *pte;
1522 	spinlock_t *pte_lock;
1523 	struct mm_struct *const mm = vma->vm_mm;
1524 	unsigned long curr_page_idx = 0;
1525 	unsigned long remaining_pages_total = *num;
1526 	unsigned long pages_to_write_in_pmd;
1527 	int ret;
1528 more:
1529 	ret = -EFAULT;
1530 	pmd = walk_to_pmd(mm, addr);
1531 	if (!pmd)
1532 		goto out;
1533 
1534 	pages_to_write_in_pmd = min_t(unsigned long,
1535 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1536 
1537 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1538 	ret = -ENOMEM;
1539 	if (pte_alloc(mm, pmd))
1540 		goto out;
1541 
1542 	while (pages_to_write_in_pmd) {
1543 		int pte_idx = 0;
1544 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1545 
1546 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1547 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1548 			int err = insert_page_in_batch_locked(mm, pte,
1549 				addr, pages[curr_page_idx], prot);
1550 			if (unlikely(err)) {
1551 				pte_unmap_unlock(start_pte, pte_lock);
1552 				ret = err;
1553 				remaining_pages_total -= pte_idx;
1554 				goto out;
1555 			}
1556 			addr += PAGE_SIZE;
1557 			++curr_page_idx;
1558 		}
1559 		pte_unmap_unlock(start_pte, pte_lock);
1560 		pages_to_write_in_pmd -= batch_size;
1561 		remaining_pages_total -= batch_size;
1562 	}
1563 	if (remaining_pages_total)
1564 		goto more;
1565 	ret = 0;
1566 out:
1567 	*num = remaining_pages_total;
1568 	return ret;
1569 }
1570 #endif  /* ifdef pte_index */
1571 
1572 /**
1573  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1574  * @vma: user vma to map to
1575  * @addr: target start user address of these pages
1576  * @pages: source kernel pages
1577  * @num: in: number of pages to map. out: number of pages that were *not*
1578  * mapped. (0 means all pages were successfully mapped).
1579  *
1580  * Preferred over vm_insert_page() when inserting multiple pages.
1581  *
1582  * In case of error, we may have mapped a subset of the provided
1583  * pages. It is the caller's responsibility to account for this case.
1584  *
1585  * The same restrictions apply as in vm_insert_page().
1586  */
1587 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1588 			struct page **pages, unsigned long *num)
1589 {
1590 #ifdef pte_index
1591 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1592 
1593 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1594 		return -EFAULT;
1595 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1596 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1597 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1598 		vma->vm_flags |= VM_MIXEDMAP;
1599 	}
1600 	/* Defer page refcount checking till we're about to map that page. */
1601 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1602 #else
1603 	unsigned long idx = 0, pgcount = *num;
1604 	int err = -EINVAL;
1605 
1606 	for (; idx < pgcount; ++idx) {
1607 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1608 		if (err)
1609 			break;
1610 	}
1611 	*num = pgcount - idx;
1612 	return err;
1613 #endif  /* ifdef pte_index */
1614 }
1615 EXPORT_SYMBOL(vm_insert_pages);
1616 
1617 /**
1618  * vm_insert_page - insert single page into user vma
1619  * @vma: user vma to map to
1620  * @addr: target user address of this page
1621  * @page: source kernel page
1622  *
1623  * This allows drivers to insert individual pages they've allocated
1624  * into a user vma.
1625  *
1626  * The page has to be a nice clean _individual_ kernel allocation.
1627  * If you allocate a compound page, you need to have marked it as
1628  * such (__GFP_COMP), or manually just split the page up yourself
1629  * (see split_page()).
1630  *
1631  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1632  * took an arbitrary page protection parameter. This doesn't allow
1633  * that. Your vma protection will have to be set up correctly, which
1634  * means that if you want a shared writable mapping, you'd better
1635  * ask for a shared writable mapping!
1636  *
1637  * The page does not need to be reserved.
1638  *
1639  * Usually this function is called from f_op->mmap() handler
1640  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1641  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1642  * function from other places, for example from page-fault handler.
1643  *
1644  * Return: %0 on success, negative error code otherwise.
1645  */
1646 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1647 			struct page *page)
1648 {
1649 	if (addr < vma->vm_start || addr >= vma->vm_end)
1650 		return -EFAULT;
1651 	if (!page_count(page))
1652 		return -EINVAL;
1653 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1654 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1655 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1656 		vma->vm_flags |= VM_MIXEDMAP;
1657 	}
1658 	return insert_page(vma, addr, page, vma->vm_page_prot);
1659 }
1660 EXPORT_SYMBOL(vm_insert_page);
1661 
1662 /*
1663  * __vm_map_pages - maps range of kernel pages into user vma
1664  * @vma: user vma to map to
1665  * @pages: pointer to array of source kernel pages
1666  * @num: number of pages in page array
1667  * @offset: user's requested vm_pgoff
1668  *
1669  * This allows drivers to map range of kernel pages into a user vma.
1670  *
1671  * Return: 0 on success and error code otherwise.
1672  */
1673 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1674 				unsigned long num, unsigned long offset)
1675 {
1676 	unsigned long count = vma_pages(vma);
1677 	unsigned long uaddr = vma->vm_start;
1678 	int ret, i;
1679 
1680 	/* Fail if the user requested offset is beyond the end of the object */
1681 	if (offset >= num)
1682 		return -ENXIO;
1683 
1684 	/* Fail if the user requested size exceeds available object size */
1685 	if (count > num - offset)
1686 		return -ENXIO;
1687 
1688 	for (i = 0; i < count; i++) {
1689 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1690 		if (ret < 0)
1691 			return ret;
1692 		uaddr += PAGE_SIZE;
1693 	}
1694 
1695 	return 0;
1696 }
1697 
1698 /**
1699  * vm_map_pages - maps range of kernel pages starts with non zero offset
1700  * @vma: user vma to map to
1701  * @pages: pointer to array of source kernel pages
1702  * @num: number of pages in page array
1703  *
1704  * Maps an object consisting of @num pages, catering for the user's
1705  * requested vm_pgoff
1706  *
1707  * If we fail to insert any page into the vma, the function will return
1708  * immediately leaving any previously inserted pages present.  Callers
1709  * from the mmap handler may immediately return the error as their caller
1710  * will destroy the vma, removing any successfully inserted pages. Other
1711  * callers should make their own arrangements for calling unmap_region().
1712  *
1713  * Context: Process context. Called by mmap handlers.
1714  * Return: 0 on success and error code otherwise.
1715  */
1716 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1717 				unsigned long num)
1718 {
1719 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1720 }
1721 EXPORT_SYMBOL(vm_map_pages);
1722 
1723 /**
1724  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1725  * @vma: user vma to map to
1726  * @pages: pointer to array of source kernel pages
1727  * @num: number of pages in page array
1728  *
1729  * Similar to vm_map_pages(), except that it explicitly sets the offset
1730  * to 0. This function is intended for the drivers that did not consider
1731  * vm_pgoff.
1732  *
1733  * Context: Process context. Called by mmap handlers.
1734  * Return: 0 on success and error code otherwise.
1735  */
1736 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1737 				unsigned long num)
1738 {
1739 	return __vm_map_pages(vma, pages, num, 0);
1740 }
1741 EXPORT_SYMBOL(vm_map_pages_zero);
1742 
1743 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1744 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1745 {
1746 	struct mm_struct *mm = vma->vm_mm;
1747 	pte_t *pte, entry;
1748 	spinlock_t *ptl;
1749 
1750 	pte = get_locked_pte(mm, addr, &ptl);
1751 	if (!pte)
1752 		return VM_FAULT_OOM;
1753 	if (!pte_none(*pte)) {
1754 		if (mkwrite) {
1755 			/*
1756 			 * For read faults on private mappings the PFN passed
1757 			 * in may not match the PFN we have mapped if the
1758 			 * mapped PFN is a writeable COW page.  In the mkwrite
1759 			 * case we are creating a writable PTE for a shared
1760 			 * mapping and we expect the PFNs to match. If they
1761 			 * don't match, we are likely racing with block
1762 			 * allocation and mapping invalidation so just skip the
1763 			 * update.
1764 			 */
1765 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1766 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1767 				goto out_unlock;
1768 			}
1769 			entry = pte_mkyoung(*pte);
1770 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1771 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1772 				update_mmu_cache(vma, addr, pte);
1773 		}
1774 		goto out_unlock;
1775 	}
1776 
1777 	/* Ok, finally just insert the thing.. */
1778 	if (pfn_t_devmap(pfn))
1779 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1780 	else
1781 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1782 
1783 	if (mkwrite) {
1784 		entry = pte_mkyoung(entry);
1785 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1786 	}
1787 
1788 	set_pte_at(mm, addr, pte, entry);
1789 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1790 
1791 out_unlock:
1792 	pte_unmap_unlock(pte, ptl);
1793 	return VM_FAULT_NOPAGE;
1794 }
1795 
1796 /**
1797  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1798  * @vma: user vma to map to
1799  * @addr: target user address of this page
1800  * @pfn: source kernel pfn
1801  * @pgprot: pgprot flags for the inserted page
1802  *
1803  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1804  * to override pgprot on a per-page basis.
1805  *
1806  * This only makes sense for IO mappings, and it makes no sense for
1807  * COW mappings.  In general, using multiple vmas is preferable;
1808  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1809  * impractical.
1810  *
1811  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1812  * a value of @pgprot different from that of @vma->vm_page_prot.
1813  *
1814  * Context: Process context.  May allocate using %GFP_KERNEL.
1815  * Return: vm_fault_t value.
1816  */
1817 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1818 			unsigned long pfn, pgprot_t pgprot)
1819 {
1820 	/*
1821 	 * Technically, architectures with pte_special can avoid all these
1822 	 * restrictions (same for remap_pfn_range).  However we would like
1823 	 * consistency in testing and feature parity among all, so we should
1824 	 * try to keep these invariants in place for everybody.
1825 	 */
1826 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1827 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1828 						(VM_PFNMAP|VM_MIXEDMAP));
1829 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1830 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1831 
1832 	if (addr < vma->vm_start || addr >= vma->vm_end)
1833 		return VM_FAULT_SIGBUS;
1834 
1835 	if (!pfn_modify_allowed(pfn, pgprot))
1836 		return VM_FAULT_SIGBUS;
1837 
1838 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1839 
1840 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1841 			false);
1842 }
1843 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1844 
1845 /**
1846  * vmf_insert_pfn - insert single pfn into user vma
1847  * @vma: user vma to map to
1848  * @addr: target user address of this page
1849  * @pfn: source kernel pfn
1850  *
1851  * Similar to vm_insert_page, this allows drivers to insert individual pages
1852  * they've allocated into a user vma. Same comments apply.
1853  *
1854  * This function should only be called from a vm_ops->fault handler, and
1855  * in that case the handler should return the result of this function.
1856  *
1857  * vma cannot be a COW mapping.
1858  *
1859  * As this is called only for pages that do not currently exist, we
1860  * do not need to flush old virtual caches or the TLB.
1861  *
1862  * Context: Process context.  May allocate using %GFP_KERNEL.
1863  * Return: vm_fault_t value.
1864  */
1865 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1866 			unsigned long pfn)
1867 {
1868 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1869 }
1870 EXPORT_SYMBOL(vmf_insert_pfn);
1871 
1872 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1873 {
1874 	/* these checks mirror the abort conditions in vm_normal_page */
1875 	if (vma->vm_flags & VM_MIXEDMAP)
1876 		return true;
1877 	if (pfn_t_devmap(pfn))
1878 		return true;
1879 	if (pfn_t_special(pfn))
1880 		return true;
1881 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1882 		return true;
1883 	return false;
1884 }
1885 
1886 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1887 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1888 		bool mkwrite)
1889 {
1890 	int err;
1891 
1892 	BUG_ON(!vm_mixed_ok(vma, pfn));
1893 
1894 	if (addr < vma->vm_start || addr >= vma->vm_end)
1895 		return VM_FAULT_SIGBUS;
1896 
1897 	track_pfn_insert(vma, &pgprot, pfn);
1898 
1899 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1900 		return VM_FAULT_SIGBUS;
1901 
1902 	/*
1903 	 * If we don't have pte special, then we have to use the pfn_valid()
1904 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1905 	 * refcount the page if pfn_valid is true (hence insert_page rather
1906 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1907 	 * without pte special, it would there be refcounted as a normal page.
1908 	 */
1909 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1910 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1911 		struct page *page;
1912 
1913 		/*
1914 		 * At this point we are committed to insert_page()
1915 		 * regardless of whether the caller specified flags that
1916 		 * result in pfn_t_has_page() == false.
1917 		 */
1918 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1919 		err = insert_page(vma, addr, page, pgprot);
1920 	} else {
1921 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1922 	}
1923 
1924 	if (err == -ENOMEM)
1925 		return VM_FAULT_OOM;
1926 	if (err < 0 && err != -EBUSY)
1927 		return VM_FAULT_SIGBUS;
1928 
1929 	return VM_FAULT_NOPAGE;
1930 }
1931 
1932 /**
1933  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1934  * @vma: user vma to map to
1935  * @addr: target user address of this page
1936  * @pfn: source kernel pfn
1937  * @pgprot: pgprot flags for the inserted page
1938  *
1939  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1940  * to override pgprot on a per-page basis.
1941  *
1942  * Typically this function should be used by drivers to set caching- and
1943  * encryption bits different than those of @vma->vm_page_prot, because
1944  * the caching- or encryption mode may not be known at mmap() time.
1945  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1946  * to set caching and encryption bits for those vmas (except for COW pages).
1947  * This is ensured by core vm only modifying these page table entries using
1948  * functions that don't touch caching- or encryption bits, using pte_modify()
1949  * if needed. (See for example mprotect()).
1950  * Also when new page-table entries are created, this is only done using the
1951  * fault() callback, and never using the value of vma->vm_page_prot,
1952  * except for page-table entries that point to anonymous pages as the result
1953  * of COW.
1954  *
1955  * Context: Process context.  May allocate using %GFP_KERNEL.
1956  * Return: vm_fault_t value.
1957  */
1958 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1959 				 pfn_t pfn, pgprot_t pgprot)
1960 {
1961 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1962 }
1963 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1964 
1965 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1966 		pfn_t pfn)
1967 {
1968 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1969 }
1970 EXPORT_SYMBOL(vmf_insert_mixed);
1971 
1972 /*
1973  *  If the insertion of PTE failed because someone else already added a
1974  *  different entry in the mean time, we treat that as success as we assume
1975  *  the same entry was actually inserted.
1976  */
1977 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1978 		unsigned long addr, pfn_t pfn)
1979 {
1980 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1981 }
1982 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1983 
1984 /*
1985  * maps a range of physical memory into the requested pages. the old
1986  * mappings are removed. any references to nonexistent pages results
1987  * in null mappings (currently treated as "copy-on-access")
1988  */
1989 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1990 			unsigned long addr, unsigned long end,
1991 			unsigned long pfn, pgprot_t prot)
1992 {
1993 	pte_t *pte;
1994 	spinlock_t *ptl;
1995 	int err = 0;
1996 
1997 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1998 	if (!pte)
1999 		return -ENOMEM;
2000 	arch_enter_lazy_mmu_mode();
2001 	do {
2002 		BUG_ON(!pte_none(*pte));
2003 		if (!pfn_modify_allowed(pfn, prot)) {
2004 			err = -EACCES;
2005 			break;
2006 		}
2007 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2008 		pfn++;
2009 	} while (pte++, addr += PAGE_SIZE, addr != end);
2010 	arch_leave_lazy_mmu_mode();
2011 	pte_unmap_unlock(pte - 1, ptl);
2012 	return err;
2013 }
2014 
2015 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2016 			unsigned long addr, unsigned long end,
2017 			unsigned long pfn, pgprot_t prot)
2018 {
2019 	pmd_t *pmd;
2020 	unsigned long next;
2021 	int err;
2022 
2023 	pfn -= addr >> PAGE_SHIFT;
2024 	pmd = pmd_alloc(mm, pud, addr);
2025 	if (!pmd)
2026 		return -ENOMEM;
2027 	VM_BUG_ON(pmd_trans_huge(*pmd));
2028 	do {
2029 		next = pmd_addr_end(addr, end);
2030 		err = remap_pte_range(mm, pmd, addr, next,
2031 				pfn + (addr >> PAGE_SHIFT), prot);
2032 		if (err)
2033 			return err;
2034 	} while (pmd++, addr = next, addr != end);
2035 	return 0;
2036 }
2037 
2038 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2039 			unsigned long addr, unsigned long end,
2040 			unsigned long pfn, pgprot_t prot)
2041 {
2042 	pud_t *pud;
2043 	unsigned long next;
2044 	int err;
2045 
2046 	pfn -= addr >> PAGE_SHIFT;
2047 	pud = pud_alloc(mm, p4d, addr);
2048 	if (!pud)
2049 		return -ENOMEM;
2050 	do {
2051 		next = pud_addr_end(addr, end);
2052 		err = remap_pmd_range(mm, pud, addr, next,
2053 				pfn + (addr >> PAGE_SHIFT), prot);
2054 		if (err)
2055 			return err;
2056 	} while (pud++, addr = next, addr != end);
2057 	return 0;
2058 }
2059 
2060 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2061 			unsigned long addr, unsigned long end,
2062 			unsigned long pfn, pgprot_t prot)
2063 {
2064 	p4d_t *p4d;
2065 	unsigned long next;
2066 	int err;
2067 
2068 	pfn -= addr >> PAGE_SHIFT;
2069 	p4d = p4d_alloc(mm, pgd, addr);
2070 	if (!p4d)
2071 		return -ENOMEM;
2072 	do {
2073 		next = p4d_addr_end(addr, end);
2074 		err = remap_pud_range(mm, p4d, addr, next,
2075 				pfn + (addr >> PAGE_SHIFT), prot);
2076 		if (err)
2077 			return err;
2078 	} while (p4d++, addr = next, addr != end);
2079 	return 0;
2080 }
2081 
2082 /**
2083  * remap_pfn_range - remap kernel memory to userspace
2084  * @vma: user vma to map to
2085  * @addr: target user address to start at
2086  * @pfn: page frame number of kernel physical memory address
2087  * @size: size of mapping area
2088  * @prot: page protection flags for this mapping
2089  *
2090  * Note: this is only safe if the mm semaphore is held when called.
2091  *
2092  * Return: %0 on success, negative error code otherwise.
2093  */
2094 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2095 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2096 {
2097 	pgd_t *pgd;
2098 	unsigned long next;
2099 	unsigned long end = addr + PAGE_ALIGN(size);
2100 	struct mm_struct *mm = vma->vm_mm;
2101 	unsigned long remap_pfn = pfn;
2102 	int err;
2103 
2104 	/*
2105 	 * Physically remapped pages are special. Tell the
2106 	 * rest of the world about it:
2107 	 *   VM_IO tells people not to look at these pages
2108 	 *	(accesses can have side effects).
2109 	 *   VM_PFNMAP tells the core MM that the base pages are just
2110 	 *	raw PFN mappings, and do not have a "struct page" associated
2111 	 *	with them.
2112 	 *   VM_DONTEXPAND
2113 	 *      Disable vma merging and expanding with mremap().
2114 	 *   VM_DONTDUMP
2115 	 *      Omit vma from core dump, even when VM_IO turned off.
2116 	 *
2117 	 * There's a horrible special case to handle copy-on-write
2118 	 * behaviour that some programs depend on. We mark the "original"
2119 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2120 	 * See vm_normal_page() for details.
2121 	 */
2122 	if (is_cow_mapping(vma->vm_flags)) {
2123 		if (addr != vma->vm_start || end != vma->vm_end)
2124 			return -EINVAL;
2125 		vma->vm_pgoff = pfn;
2126 	}
2127 
2128 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2129 	if (err)
2130 		return -EINVAL;
2131 
2132 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2133 
2134 	BUG_ON(addr >= end);
2135 	pfn -= addr >> PAGE_SHIFT;
2136 	pgd = pgd_offset(mm, addr);
2137 	flush_cache_range(vma, addr, end);
2138 	do {
2139 		next = pgd_addr_end(addr, end);
2140 		err = remap_p4d_range(mm, pgd, addr, next,
2141 				pfn + (addr >> PAGE_SHIFT), prot);
2142 		if (err)
2143 			break;
2144 	} while (pgd++, addr = next, addr != end);
2145 
2146 	if (err)
2147 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2148 
2149 	return err;
2150 }
2151 EXPORT_SYMBOL(remap_pfn_range);
2152 
2153 /**
2154  * vm_iomap_memory - remap memory to userspace
2155  * @vma: user vma to map to
2156  * @start: start of the physical memory to be mapped
2157  * @len: size of area
2158  *
2159  * This is a simplified io_remap_pfn_range() for common driver use. The
2160  * driver just needs to give us the physical memory range to be mapped,
2161  * we'll figure out the rest from the vma information.
2162  *
2163  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2164  * whatever write-combining details or similar.
2165  *
2166  * Return: %0 on success, negative error code otherwise.
2167  */
2168 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2169 {
2170 	unsigned long vm_len, pfn, pages;
2171 
2172 	/* Check that the physical memory area passed in looks valid */
2173 	if (start + len < start)
2174 		return -EINVAL;
2175 	/*
2176 	 * You *really* shouldn't map things that aren't page-aligned,
2177 	 * but we've historically allowed it because IO memory might
2178 	 * just have smaller alignment.
2179 	 */
2180 	len += start & ~PAGE_MASK;
2181 	pfn = start >> PAGE_SHIFT;
2182 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2183 	if (pfn + pages < pfn)
2184 		return -EINVAL;
2185 
2186 	/* We start the mapping 'vm_pgoff' pages into the area */
2187 	if (vma->vm_pgoff > pages)
2188 		return -EINVAL;
2189 	pfn += vma->vm_pgoff;
2190 	pages -= vma->vm_pgoff;
2191 
2192 	/* Can we fit all of the mapping? */
2193 	vm_len = vma->vm_end - vma->vm_start;
2194 	if (vm_len >> PAGE_SHIFT > pages)
2195 		return -EINVAL;
2196 
2197 	/* Ok, let it rip */
2198 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2199 }
2200 EXPORT_SYMBOL(vm_iomap_memory);
2201 
2202 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2203 				     unsigned long addr, unsigned long end,
2204 				     pte_fn_t fn, void *data, bool create)
2205 {
2206 	pte_t *pte;
2207 	int err = 0;
2208 	spinlock_t *ptl;
2209 
2210 	if (create) {
2211 		pte = (mm == &init_mm) ?
2212 			pte_alloc_kernel(pmd, addr) :
2213 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2214 		if (!pte)
2215 			return -ENOMEM;
2216 	} else {
2217 		pte = (mm == &init_mm) ?
2218 			pte_offset_kernel(pmd, addr) :
2219 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2220 	}
2221 
2222 	BUG_ON(pmd_huge(*pmd));
2223 
2224 	arch_enter_lazy_mmu_mode();
2225 
2226 	do {
2227 		if (create || !pte_none(*pte)) {
2228 			err = fn(pte++, addr, data);
2229 			if (err)
2230 				break;
2231 		}
2232 	} while (addr += PAGE_SIZE, addr != end);
2233 
2234 	arch_leave_lazy_mmu_mode();
2235 
2236 	if (mm != &init_mm)
2237 		pte_unmap_unlock(pte-1, ptl);
2238 	return err;
2239 }
2240 
2241 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2242 				     unsigned long addr, unsigned long end,
2243 				     pte_fn_t fn, void *data, bool create)
2244 {
2245 	pmd_t *pmd;
2246 	unsigned long next;
2247 	int err = 0;
2248 
2249 	BUG_ON(pud_huge(*pud));
2250 
2251 	if (create) {
2252 		pmd = pmd_alloc(mm, pud, addr);
2253 		if (!pmd)
2254 			return -ENOMEM;
2255 	} else {
2256 		pmd = pmd_offset(pud, addr);
2257 	}
2258 	do {
2259 		next = pmd_addr_end(addr, end);
2260 		if (create || !pmd_none_or_clear_bad(pmd)) {
2261 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2262 						 create);
2263 			if (err)
2264 				break;
2265 		}
2266 	} while (pmd++, addr = next, addr != end);
2267 	return err;
2268 }
2269 
2270 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2271 				     unsigned long addr, unsigned long end,
2272 				     pte_fn_t fn, void *data, bool create)
2273 {
2274 	pud_t *pud;
2275 	unsigned long next;
2276 	int err = 0;
2277 
2278 	if (create) {
2279 		pud = pud_alloc(mm, p4d, addr);
2280 		if (!pud)
2281 			return -ENOMEM;
2282 	} else {
2283 		pud = pud_offset(p4d, addr);
2284 	}
2285 	do {
2286 		next = pud_addr_end(addr, end);
2287 		if (create || !pud_none_or_clear_bad(pud)) {
2288 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2289 						 create);
2290 			if (err)
2291 				break;
2292 		}
2293 	} while (pud++, addr = next, addr != end);
2294 	return err;
2295 }
2296 
2297 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2298 				     unsigned long addr, unsigned long end,
2299 				     pte_fn_t fn, void *data, bool create)
2300 {
2301 	p4d_t *p4d;
2302 	unsigned long next;
2303 	int err = 0;
2304 
2305 	if (create) {
2306 		p4d = p4d_alloc(mm, pgd, addr);
2307 		if (!p4d)
2308 			return -ENOMEM;
2309 	} else {
2310 		p4d = p4d_offset(pgd, addr);
2311 	}
2312 	do {
2313 		next = p4d_addr_end(addr, end);
2314 		if (create || !p4d_none_or_clear_bad(p4d)) {
2315 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2316 						 create);
2317 			if (err)
2318 				break;
2319 		}
2320 	} while (p4d++, addr = next, addr != end);
2321 	return err;
2322 }
2323 
2324 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2325 				 unsigned long size, pte_fn_t fn,
2326 				 void *data, bool create)
2327 {
2328 	pgd_t *pgd;
2329 	unsigned long next;
2330 	unsigned long end = addr + size;
2331 	int err = 0;
2332 
2333 	if (WARN_ON(addr >= end))
2334 		return -EINVAL;
2335 
2336 	pgd = pgd_offset(mm, addr);
2337 	do {
2338 		next = pgd_addr_end(addr, end);
2339 		if (!create && pgd_none_or_clear_bad(pgd))
2340 			continue;
2341 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2342 		if (err)
2343 			break;
2344 	} while (pgd++, addr = next, addr != end);
2345 
2346 	return err;
2347 }
2348 
2349 /*
2350  * Scan a region of virtual memory, filling in page tables as necessary
2351  * and calling a provided function on each leaf page table.
2352  */
2353 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2354 			unsigned long size, pte_fn_t fn, void *data)
2355 {
2356 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2357 }
2358 EXPORT_SYMBOL_GPL(apply_to_page_range);
2359 
2360 /*
2361  * Scan a region of virtual memory, calling a provided function on
2362  * each leaf page table where it exists.
2363  *
2364  * Unlike apply_to_page_range, this does _not_ fill in page tables
2365  * where they are absent.
2366  */
2367 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2368 				 unsigned long size, pte_fn_t fn, void *data)
2369 {
2370 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2371 }
2372 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2373 
2374 /*
2375  * handle_pte_fault chooses page fault handler according to an entry which was
2376  * read non-atomically.  Before making any commitment, on those architectures
2377  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2378  * parts, do_swap_page must check under lock before unmapping the pte and
2379  * proceeding (but do_wp_page is only called after already making such a check;
2380  * and do_anonymous_page can safely check later on).
2381  */
2382 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2383 				pte_t *page_table, pte_t orig_pte)
2384 {
2385 	int same = 1;
2386 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2387 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2388 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2389 		spin_lock(ptl);
2390 		same = pte_same(*page_table, orig_pte);
2391 		spin_unlock(ptl);
2392 	}
2393 #endif
2394 	pte_unmap(page_table);
2395 	return same;
2396 }
2397 
2398 static inline bool cow_user_page(struct page *dst, struct page *src,
2399 				 struct vm_fault *vmf)
2400 {
2401 	bool ret;
2402 	void *kaddr;
2403 	void __user *uaddr;
2404 	bool locked = false;
2405 	struct vm_area_struct *vma = vmf->vma;
2406 	struct mm_struct *mm = vma->vm_mm;
2407 	unsigned long addr = vmf->address;
2408 
2409 	debug_dma_assert_idle(src);
2410 
2411 	if (likely(src)) {
2412 		copy_user_highpage(dst, src, addr, vma);
2413 		return true;
2414 	}
2415 
2416 	/*
2417 	 * If the source page was a PFN mapping, we don't have
2418 	 * a "struct page" for it. We do a best-effort copy by
2419 	 * just copying from the original user address. If that
2420 	 * fails, we just zero-fill it. Live with it.
2421 	 */
2422 	kaddr = kmap_atomic(dst);
2423 	uaddr = (void __user *)(addr & PAGE_MASK);
2424 
2425 	/*
2426 	 * On architectures with software "accessed" bits, we would
2427 	 * take a double page fault, so mark it accessed here.
2428 	 */
2429 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2430 		pte_t entry;
2431 
2432 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2433 		locked = true;
2434 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2435 			/*
2436 			 * Other thread has already handled the fault
2437 			 * and update local tlb only
2438 			 */
2439 			update_mmu_tlb(vma, addr, vmf->pte);
2440 			ret = false;
2441 			goto pte_unlock;
2442 		}
2443 
2444 		entry = pte_mkyoung(vmf->orig_pte);
2445 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2446 			update_mmu_cache(vma, addr, vmf->pte);
2447 	}
2448 
2449 	/*
2450 	 * This really shouldn't fail, because the page is there
2451 	 * in the page tables. But it might just be unreadable,
2452 	 * in which case we just give up and fill the result with
2453 	 * zeroes.
2454 	 */
2455 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2456 		if (locked)
2457 			goto warn;
2458 
2459 		/* Re-validate under PTL if the page is still mapped */
2460 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2461 		locked = true;
2462 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2463 			/* The PTE changed under us, update local tlb */
2464 			update_mmu_tlb(vma, addr, vmf->pte);
2465 			ret = false;
2466 			goto pte_unlock;
2467 		}
2468 
2469 		/*
2470 		 * The same page can be mapped back since last copy attempt.
2471 		 * Try to copy again under PTL.
2472 		 */
2473 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2474 			/*
2475 			 * Give a warn in case there can be some obscure
2476 			 * use-case
2477 			 */
2478 warn:
2479 			WARN_ON_ONCE(1);
2480 			clear_page(kaddr);
2481 		}
2482 	}
2483 
2484 	ret = true;
2485 
2486 pte_unlock:
2487 	if (locked)
2488 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2489 	kunmap_atomic(kaddr);
2490 	flush_dcache_page(dst);
2491 
2492 	return ret;
2493 }
2494 
2495 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2496 {
2497 	struct file *vm_file = vma->vm_file;
2498 
2499 	if (vm_file)
2500 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2501 
2502 	/*
2503 	 * Special mappings (e.g. VDSO) do not have any file so fake
2504 	 * a default GFP_KERNEL for them.
2505 	 */
2506 	return GFP_KERNEL;
2507 }
2508 
2509 /*
2510  * Notify the address space that the page is about to become writable so that
2511  * it can prohibit this or wait for the page to get into an appropriate state.
2512  *
2513  * We do this without the lock held, so that it can sleep if it needs to.
2514  */
2515 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2516 {
2517 	vm_fault_t ret;
2518 	struct page *page = vmf->page;
2519 	unsigned int old_flags = vmf->flags;
2520 
2521 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2522 
2523 	if (vmf->vma->vm_file &&
2524 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2525 		return VM_FAULT_SIGBUS;
2526 
2527 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2528 	/* Restore original flags so that caller is not surprised */
2529 	vmf->flags = old_flags;
2530 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2531 		return ret;
2532 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2533 		lock_page(page);
2534 		if (!page->mapping) {
2535 			unlock_page(page);
2536 			return 0; /* retry */
2537 		}
2538 		ret |= VM_FAULT_LOCKED;
2539 	} else
2540 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2541 	return ret;
2542 }
2543 
2544 /*
2545  * Handle dirtying of a page in shared file mapping on a write fault.
2546  *
2547  * The function expects the page to be locked and unlocks it.
2548  */
2549 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2550 {
2551 	struct vm_area_struct *vma = vmf->vma;
2552 	struct address_space *mapping;
2553 	struct page *page = vmf->page;
2554 	bool dirtied;
2555 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2556 
2557 	dirtied = set_page_dirty(page);
2558 	VM_BUG_ON_PAGE(PageAnon(page), page);
2559 	/*
2560 	 * Take a local copy of the address_space - page.mapping may be zeroed
2561 	 * by truncate after unlock_page().   The address_space itself remains
2562 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2563 	 * release semantics to prevent the compiler from undoing this copying.
2564 	 */
2565 	mapping = page_rmapping(page);
2566 	unlock_page(page);
2567 
2568 	if (!page_mkwrite)
2569 		file_update_time(vma->vm_file);
2570 
2571 	/*
2572 	 * Throttle page dirtying rate down to writeback speed.
2573 	 *
2574 	 * mapping may be NULL here because some device drivers do not
2575 	 * set page.mapping but still dirty their pages
2576 	 *
2577 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2578 	 * is pinning the mapping, as per above.
2579 	 */
2580 	if ((dirtied || page_mkwrite) && mapping) {
2581 		struct file *fpin;
2582 
2583 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2584 		balance_dirty_pages_ratelimited(mapping);
2585 		if (fpin) {
2586 			fput(fpin);
2587 			return VM_FAULT_RETRY;
2588 		}
2589 	}
2590 
2591 	return 0;
2592 }
2593 
2594 /*
2595  * Handle write page faults for pages that can be reused in the current vma
2596  *
2597  * This can happen either due to the mapping being with the VM_SHARED flag,
2598  * or due to us being the last reference standing to the page. In either
2599  * case, all we need to do here is to mark the page as writable and update
2600  * any related book-keeping.
2601  */
2602 static inline void wp_page_reuse(struct vm_fault *vmf)
2603 	__releases(vmf->ptl)
2604 {
2605 	struct vm_area_struct *vma = vmf->vma;
2606 	struct page *page = vmf->page;
2607 	pte_t entry;
2608 	/*
2609 	 * Clear the pages cpupid information as the existing
2610 	 * information potentially belongs to a now completely
2611 	 * unrelated process.
2612 	 */
2613 	if (page)
2614 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2615 
2616 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2617 	entry = pte_mkyoung(vmf->orig_pte);
2618 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2619 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2620 		update_mmu_cache(vma, vmf->address, vmf->pte);
2621 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2622 }
2623 
2624 /*
2625  * Handle the case of a page which we actually need to copy to a new page.
2626  *
2627  * Called with mmap_lock locked and the old page referenced, but
2628  * without the ptl held.
2629  *
2630  * High level logic flow:
2631  *
2632  * - Allocate a page, copy the content of the old page to the new one.
2633  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2634  * - Take the PTL. If the pte changed, bail out and release the allocated page
2635  * - If the pte is still the way we remember it, update the page table and all
2636  *   relevant references. This includes dropping the reference the page-table
2637  *   held to the old page, as well as updating the rmap.
2638  * - In any case, unlock the PTL and drop the reference we took to the old page.
2639  */
2640 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2641 {
2642 	struct vm_area_struct *vma = vmf->vma;
2643 	struct mm_struct *mm = vma->vm_mm;
2644 	struct page *old_page = vmf->page;
2645 	struct page *new_page = NULL;
2646 	pte_t entry;
2647 	int page_copied = 0;
2648 	struct mmu_notifier_range range;
2649 
2650 	if (unlikely(anon_vma_prepare(vma)))
2651 		goto oom;
2652 
2653 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2654 		new_page = alloc_zeroed_user_highpage_movable(vma,
2655 							      vmf->address);
2656 		if (!new_page)
2657 			goto oom;
2658 	} else {
2659 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2660 				vmf->address);
2661 		if (!new_page)
2662 			goto oom;
2663 
2664 		if (!cow_user_page(new_page, old_page, vmf)) {
2665 			/*
2666 			 * COW failed, if the fault was solved by other,
2667 			 * it's fine. If not, userspace would re-fault on
2668 			 * the same address and we will handle the fault
2669 			 * from the second attempt.
2670 			 */
2671 			put_page(new_page);
2672 			if (old_page)
2673 				put_page(old_page);
2674 			return 0;
2675 		}
2676 	}
2677 
2678 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2679 		goto oom_free_new;
2680 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2681 
2682 	__SetPageUptodate(new_page);
2683 
2684 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2685 				vmf->address & PAGE_MASK,
2686 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2687 	mmu_notifier_invalidate_range_start(&range);
2688 
2689 	/*
2690 	 * Re-check the pte - we dropped the lock
2691 	 */
2692 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2693 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2694 		if (old_page) {
2695 			if (!PageAnon(old_page)) {
2696 				dec_mm_counter_fast(mm,
2697 						mm_counter_file(old_page));
2698 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2699 			}
2700 		} else {
2701 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2702 		}
2703 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2704 		entry = mk_pte(new_page, vma->vm_page_prot);
2705 		entry = pte_sw_mkyoung(entry);
2706 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2707 		/*
2708 		 * Clear the pte entry and flush it first, before updating the
2709 		 * pte with the new entry. This will avoid a race condition
2710 		 * seen in the presence of one thread doing SMC and another
2711 		 * thread doing COW.
2712 		 */
2713 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2714 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2715 		lru_cache_add_active_or_unevictable(new_page, vma);
2716 		/*
2717 		 * We call the notify macro here because, when using secondary
2718 		 * mmu page tables (such as kvm shadow page tables), we want the
2719 		 * new page to be mapped directly into the secondary page table.
2720 		 */
2721 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2722 		update_mmu_cache(vma, vmf->address, vmf->pte);
2723 		if (old_page) {
2724 			/*
2725 			 * Only after switching the pte to the new page may
2726 			 * we remove the mapcount here. Otherwise another
2727 			 * process may come and find the rmap count decremented
2728 			 * before the pte is switched to the new page, and
2729 			 * "reuse" the old page writing into it while our pte
2730 			 * here still points into it and can be read by other
2731 			 * threads.
2732 			 *
2733 			 * The critical issue is to order this
2734 			 * page_remove_rmap with the ptp_clear_flush above.
2735 			 * Those stores are ordered by (if nothing else,)
2736 			 * the barrier present in the atomic_add_negative
2737 			 * in page_remove_rmap.
2738 			 *
2739 			 * Then the TLB flush in ptep_clear_flush ensures that
2740 			 * no process can access the old page before the
2741 			 * decremented mapcount is visible. And the old page
2742 			 * cannot be reused until after the decremented
2743 			 * mapcount is visible. So transitively, TLBs to
2744 			 * old page will be flushed before it can be reused.
2745 			 */
2746 			page_remove_rmap(old_page, false);
2747 		}
2748 
2749 		/* Free the old page.. */
2750 		new_page = old_page;
2751 		page_copied = 1;
2752 	} else {
2753 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2754 	}
2755 
2756 	if (new_page)
2757 		put_page(new_page);
2758 
2759 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2760 	/*
2761 	 * No need to double call mmu_notifier->invalidate_range() callback as
2762 	 * the above ptep_clear_flush_notify() did already call it.
2763 	 */
2764 	mmu_notifier_invalidate_range_only_end(&range);
2765 	if (old_page) {
2766 		/*
2767 		 * Don't let another task, with possibly unlocked vma,
2768 		 * keep the mlocked page.
2769 		 */
2770 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2771 			lock_page(old_page);	/* LRU manipulation */
2772 			if (PageMlocked(old_page))
2773 				munlock_vma_page(old_page);
2774 			unlock_page(old_page);
2775 		}
2776 		put_page(old_page);
2777 	}
2778 	return page_copied ? VM_FAULT_WRITE : 0;
2779 oom_free_new:
2780 	put_page(new_page);
2781 oom:
2782 	if (old_page)
2783 		put_page(old_page);
2784 	return VM_FAULT_OOM;
2785 }
2786 
2787 /**
2788  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2789  *			  writeable once the page is prepared
2790  *
2791  * @vmf: structure describing the fault
2792  *
2793  * This function handles all that is needed to finish a write page fault in a
2794  * shared mapping due to PTE being read-only once the mapped page is prepared.
2795  * It handles locking of PTE and modifying it.
2796  *
2797  * The function expects the page to be locked or other protection against
2798  * concurrent faults / writeback (such as DAX radix tree locks).
2799  *
2800  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2801  * we acquired PTE lock.
2802  */
2803 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2804 {
2805 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2806 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2807 				       &vmf->ptl);
2808 	/*
2809 	 * We might have raced with another page fault while we released the
2810 	 * pte_offset_map_lock.
2811 	 */
2812 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2813 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
2814 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2815 		return VM_FAULT_NOPAGE;
2816 	}
2817 	wp_page_reuse(vmf);
2818 	return 0;
2819 }
2820 
2821 /*
2822  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2823  * mapping
2824  */
2825 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2826 {
2827 	struct vm_area_struct *vma = vmf->vma;
2828 
2829 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2830 		vm_fault_t ret;
2831 
2832 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2833 		vmf->flags |= FAULT_FLAG_MKWRITE;
2834 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2835 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2836 			return ret;
2837 		return finish_mkwrite_fault(vmf);
2838 	}
2839 	wp_page_reuse(vmf);
2840 	return VM_FAULT_WRITE;
2841 }
2842 
2843 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2844 	__releases(vmf->ptl)
2845 {
2846 	struct vm_area_struct *vma = vmf->vma;
2847 	vm_fault_t ret = VM_FAULT_WRITE;
2848 
2849 	get_page(vmf->page);
2850 
2851 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2852 		vm_fault_t tmp;
2853 
2854 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2855 		tmp = do_page_mkwrite(vmf);
2856 		if (unlikely(!tmp || (tmp &
2857 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2858 			put_page(vmf->page);
2859 			return tmp;
2860 		}
2861 		tmp = finish_mkwrite_fault(vmf);
2862 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2863 			unlock_page(vmf->page);
2864 			put_page(vmf->page);
2865 			return tmp;
2866 		}
2867 	} else {
2868 		wp_page_reuse(vmf);
2869 		lock_page(vmf->page);
2870 	}
2871 	ret |= fault_dirty_shared_page(vmf);
2872 	put_page(vmf->page);
2873 
2874 	return ret;
2875 }
2876 
2877 /*
2878  * This routine handles present pages, when users try to write
2879  * to a shared page. It is done by copying the page to a new address
2880  * and decrementing the shared-page counter for the old page.
2881  *
2882  * Note that this routine assumes that the protection checks have been
2883  * done by the caller (the low-level page fault routine in most cases).
2884  * Thus we can safely just mark it writable once we've done any necessary
2885  * COW.
2886  *
2887  * We also mark the page dirty at this point even though the page will
2888  * change only once the write actually happens. This avoids a few races,
2889  * and potentially makes it more efficient.
2890  *
2891  * We enter with non-exclusive mmap_lock (to exclude vma changes,
2892  * but allow concurrent faults), with pte both mapped and locked.
2893  * We return with mmap_lock still held, but pte unmapped and unlocked.
2894  */
2895 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2896 	__releases(vmf->ptl)
2897 {
2898 	struct vm_area_struct *vma = vmf->vma;
2899 
2900 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2901 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2902 		return handle_userfault(vmf, VM_UFFD_WP);
2903 	}
2904 
2905 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2906 	if (!vmf->page) {
2907 		/*
2908 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2909 		 * VM_PFNMAP VMA.
2910 		 *
2911 		 * We should not cow pages in a shared writeable mapping.
2912 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2913 		 */
2914 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2915 				     (VM_WRITE|VM_SHARED))
2916 			return wp_pfn_shared(vmf);
2917 
2918 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2919 		return wp_page_copy(vmf);
2920 	}
2921 
2922 	/*
2923 	 * Take out anonymous pages first, anonymous shared vmas are
2924 	 * not dirty accountable.
2925 	 */
2926 	if (PageAnon(vmf->page)) {
2927 		int total_map_swapcount;
2928 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2929 					   page_count(vmf->page) != 1))
2930 			goto copy;
2931 		if (!trylock_page(vmf->page)) {
2932 			get_page(vmf->page);
2933 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2934 			lock_page(vmf->page);
2935 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2936 					vmf->address, &vmf->ptl);
2937 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2938 				update_mmu_tlb(vma, vmf->address, vmf->pte);
2939 				unlock_page(vmf->page);
2940 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2941 				put_page(vmf->page);
2942 				return 0;
2943 			}
2944 			put_page(vmf->page);
2945 		}
2946 		if (PageKsm(vmf->page)) {
2947 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2948 						     vmf->address);
2949 			unlock_page(vmf->page);
2950 			if (!reused)
2951 				goto copy;
2952 			wp_page_reuse(vmf);
2953 			return VM_FAULT_WRITE;
2954 		}
2955 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2956 			if (total_map_swapcount == 1) {
2957 				/*
2958 				 * The page is all ours. Move it to
2959 				 * our anon_vma so the rmap code will
2960 				 * not search our parent or siblings.
2961 				 * Protected against the rmap code by
2962 				 * the page lock.
2963 				 */
2964 				page_move_anon_rmap(vmf->page, vma);
2965 			}
2966 			unlock_page(vmf->page);
2967 			wp_page_reuse(vmf);
2968 			return VM_FAULT_WRITE;
2969 		}
2970 		unlock_page(vmf->page);
2971 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2972 					(VM_WRITE|VM_SHARED))) {
2973 		return wp_page_shared(vmf);
2974 	}
2975 copy:
2976 	/*
2977 	 * Ok, we need to copy. Oh, well..
2978 	 */
2979 	get_page(vmf->page);
2980 
2981 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2982 	return wp_page_copy(vmf);
2983 }
2984 
2985 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2986 		unsigned long start_addr, unsigned long end_addr,
2987 		struct zap_details *details)
2988 {
2989 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2990 }
2991 
2992 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2993 					    struct zap_details *details)
2994 {
2995 	struct vm_area_struct *vma;
2996 	pgoff_t vba, vea, zba, zea;
2997 
2998 	vma_interval_tree_foreach(vma, root,
2999 			details->first_index, details->last_index) {
3000 
3001 		vba = vma->vm_pgoff;
3002 		vea = vba + vma_pages(vma) - 1;
3003 		zba = details->first_index;
3004 		if (zba < vba)
3005 			zba = vba;
3006 		zea = details->last_index;
3007 		if (zea > vea)
3008 			zea = vea;
3009 
3010 		unmap_mapping_range_vma(vma,
3011 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3012 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3013 				details);
3014 	}
3015 }
3016 
3017 /**
3018  * unmap_mapping_pages() - Unmap pages from processes.
3019  * @mapping: The address space containing pages to be unmapped.
3020  * @start: Index of first page to be unmapped.
3021  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3022  * @even_cows: Whether to unmap even private COWed pages.
3023  *
3024  * Unmap the pages in this address space from any userspace process which
3025  * has them mmaped.  Generally, you want to remove COWed pages as well when
3026  * a file is being truncated, but not when invalidating pages from the page
3027  * cache.
3028  */
3029 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3030 		pgoff_t nr, bool even_cows)
3031 {
3032 	struct zap_details details = { };
3033 
3034 	details.check_mapping = even_cows ? NULL : mapping;
3035 	details.first_index = start;
3036 	details.last_index = start + nr - 1;
3037 	if (details.last_index < details.first_index)
3038 		details.last_index = ULONG_MAX;
3039 
3040 	i_mmap_lock_write(mapping);
3041 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3042 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3043 	i_mmap_unlock_write(mapping);
3044 }
3045 
3046 /**
3047  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3048  * address_space corresponding to the specified byte range in the underlying
3049  * file.
3050  *
3051  * @mapping: the address space containing mmaps to be unmapped.
3052  * @holebegin: byte in first page to unmap, relative to the start of
3053  * the underlying file.  This will be rounded down to a PAGE_SIZE
3054  * boundary.  Note that this is different from truncate_pagecache(), which
3055  * must keep the partial page.  In contrast, we must get rid of
3056  * partial pages.
3057  * @holelen: size of prospective hole in bytes.  This will be rounded
3058  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3059  * end of the file.
3060  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3061  * but 0 when invalidating pagecache, don't throw away private data.
3062  */
3063 void unmap_mapping_range(struct address_space *mapping,
3064 		loff_t const holebegin, loff_t const holelen, int even_cows)
3065 {
3066 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3067 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3068 
3069 	/* Check for overflow. */
3070 	if (sizeof(holelen) > sizeof(hlen)) {
3071 		long long holeend =
3072 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3073 		if (holeend & ~(long long)ULONG_MAX)
3074 			hlen = ULONG_MAX - hba + 1;
3075 	}
3076 
3077 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3078 }
3079 EXPORT_SYMBOL(unmap_mapping_range);
3080 
3081 /*
3082  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3083  * but allow concurrent faults), and pte mapped but not yet locked.
3084  * We return with pte unmapped and unlocked.
3085  *
3086  * We return with the mmap_lock locked or unlocked in the same cases
3087  * as does filemap_fault().
3088  */
3089 vm_fault_t do_swap_page(struct vm_fault *vmf)
3090 {
3091 	struct vm_area_struct *vma = vmf->vma;
3092 	struct page *page = NULL, *swapcache;
3093 	swp_entry_t entry;
3094 	pte_t pte;
3095 	int locked;
3096 	int exclusive = 0;
3097 	vm_fault_t ret = 0;
3098 
3099 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3100 		goto out;
3101 
3102 	entry = pte_to_swp_entry(vmf->orig_pte);
3103 	if (unlikely(non_swap_entry(entry))) {
3104 		if (is_migration_entry(entry)) {
3105 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3106 					     vmf->address);
3107 		} else if (is_device_private_entry(entry)) {
3108 			vmf->page = device_private_entry_to_page(entry);
3109 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3110 		} else if (is_hwpoison_entry(entry)) {
3111 			ret = VM_FAULT_HWPOISON;
3112 		} else {
3113 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3114 			ret = VM_FAULT_SIGBUS;
3115 		}
3116 		goto out;
3117 	}
3118 
3119 
3120 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3121 	page = lookup_swap_cache(entry, vma, vmf->address);
3122 	swapcache = page;
3123 
3124 	if (!page) {
3125 		struct swap_info_struct *si = swp_swap_info(entry);
3126 
3127 		if (si->flags & SWP_SYNCHRONOUS_IO &&
3128 				__swap_count(entry) == 1) {
3129 			/* skip swapcache */
3130 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3131 							vmf->address);
3132 			if (page) {
3133 				int err;
3134 
3135 				__SetPageLocked(page);
3136 				__SetPageSwapBacked(page);
3137 				set_page_private(page, entry.val);
3138 
3139 				/* Tell memcg to use swap ownership records */
3140 				SetPageSwapCache(page);
3141 				err = mem_cgroup_charge(page, vma->vm_mm,
3142 							GFP_KERNEL);
3143 				ClearPageSwapCache(page);
3144 				if (err) {
3145 					ret = VM_FAULT_OOM;
3146 					goto out_page;
3147 				}
3148 
3149 				/*
3150 				 * XXX: Move to lru_cache_add() when it
3151 				 * supports new vs putback
3152 				 */
3153 				spin_lock_irq(&page_pgdat(page)->lru_lock);
3154 				lru_note_cost_page(page);
3155 				spin_unlock_irq(&page_pgdat(page)->lru_lock);
3156 
3157 				lru_cache_add(page);
3158 				swap_readpage(page, true);
3159 			}
3160 		} else {
3161 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3162 						vmf);
3163 			swapcache = page;
3164 		}
3165 
3166 		if (!page) {
3167 			/*
3168 			 * Back out if somebody else faulted in this pte
3169 			 * while we released the pte lock.
3170 			 */
3171 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3172 					vmf->address, &vmf->ptl);
3173 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3174 				ret = VM_FAULT_OOM;
3175 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3176 			goto unlock;
3177 		}
3178 
3179 		/* Had to read the page from swap area: Major fault */
3180 		ret = VM_FAULT_MAJOR;
3181 		count_vm_event(PGMAJFAULT);
3182 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3183 	} else if (PageHWPoison(page)) {
3184 		/*
3185 		 * hwpoisoned dirty swapcache pages are kept for killing
3186 		 * owner processes (which may be unknown at hwpoison time)
3187 		 */
3188 		ret = VM_FAULT_HWPOISON;
3189 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3190 		goto out_release;
3191 	}
3192 
3193 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3194 
3195 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3196 	if (!locked) {
3197 		ret |= VM_FAULT_RETRY;
3198 		goto out_release;
3199 	}
3200 
3201 	/*
3202 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3203 	 * release the swapcache from under us.  The page pin, and pte_same
3204 	 * test below, are not enough to exclude that.  Even if it is still
3205 	 * swapcache, we need to check that the page's swap has not changed.
3206 	 */
3207 	if (unlikely((!PageSwapCache(page) ||
3208 			page_private(page) != entry.val)) && swapcache)
3209 		goto out_page;
3210 
3211 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3212 	if (unlikely(!page)) {
3213 		ret = VM_FAULT_OOM;
3214 		page = swapcache;
3215 		goto out_page;
3216 	}
3217 
3218 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3219 
3220 	/*
3221 	 * Back out if somebody else already faulted in this pte.
3222 	 */
3223 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3224 			&vmf->ptl);
3225 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3226 		goto out_nomap;
3227 
3228 	if (unlikely(!PageUptodate(page))) {
3229 		ret = VM_FAULT_SIGBUS;
3230 		goto out_nomap;
3231 	}
3232 
3233 	/*
3234 	 * The page isn't present yet, go ahead with the fault.
3235 	 *
3236 	 * Be careful about the sequence of operations here.
3237 	 * To get its accounting right, reuse_swap_page() must be called
3238 	 * while the page is counted on swap but not yet in mapcount i.e.
3239 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3240 	 * must be called after the swap_free(), or it will never succeed.
3241 	 */
3242 
3243 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3244 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3245 	pte = mk_pte(page, vma->vm_page_prot);
3246 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3247 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3248 		vmf->flags &= ~FAULT_FLAG_WRITE;
3249 		ret |= VM_FAULT_WRITE;
3250 		exclusive = RMAP_EXCLUSIVE;
3251 	}
3252 	flush_icache_page(vma, page);
3253 	if (pte_swp_soft_dirty(vmf->orig_pte))
3254 		pte = pte_mksoft_dirty(pte);
3255 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3256 		pte = pte_mkuffd_wp(pte);
3257 		pte = pte_wrprotect(pte);
3258 	}
3259 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3260 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3261 	vmf->orig_pte = pte;
3262 
3263 	/* ksm created a completely new copy */
3264 	if (unlikely(page != swapcache && swapcache)) {
3265 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3266 		lru_cache_add_active_or_unevictable(page, vma);
3267 	} else {
3268 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3269 		activate_page(page);
3270 	}
3271 
3272 	swap_free(entry);
3273 	if (mem_cgroup_swap_full(page) ||
3274 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3275 		try_to_free_swap(page);
3276 	unlock_page(page);
3277 	if (page != swapcache && swapcache) {
3278 		/*
3279 		 * Hold the lock to avoid the swap entry to be reused
3280 		 * until we take the PT lock for the pte_same() check
3281 		 * (to avoid false positives from pte_same). For
3282 		 * further safety release the lock after the swap_free
3283 		 * so that the swap count won't change under a
3284 		 * parallel locked swapcache.
3285 		 */
3286 		unlock_page(swapcache);
3287 		put_page(swapcache);
3288 	}
3289 
3290 	if (vmf->flags & FAULT_FLAG_WRITE) {
3291 		ret |= do_wp_page(vmf);
3292 		if (ret & VM_FAULT_ERROR)
3293 			ret &= VM_FAULT_ERROR;
3294 		goto out;
3295 	}
3296 
3297 	/* No need to invalidate - it was non-present before */
3298 	update_mmu_cache(vma, vmf->address, vmf->pte);
3299 unlock:
3300 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3301 out:
3302 	return ret;
3303 out_nomap:
3304 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3305 out_page:
3306 	unlock_page(page);
3307 out_release:
3308 	put_page(page);
3309 	if (page != swapcache && swapcache) {
3310 		unlock_page(swapcache);
3311 		put_page(swapcache);
3312 	}
3313 	return ret;
3314 }
3315 
3316 /*
3317  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3318  * but allow concurrent faults), and pte mapped but not yet locked.
3319  * We return with mmap_lock still held, but pte unmapped and unlocked.
3320  */
3321 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3322 {
3323 	struct vm_area_struct *vma = vmf->vma;
3324 	struct page *page;
3325 	vm_fault_t ret = 0;
3326 	pte_t entry;
3327 
3328 	/* File mapping without ->vm_ops ? */
3329 	if (vma->vm_flags & VM_SHARED)
3330 		return VM_FAULT_SIGBUS;
3331 
3332 	/*
3333 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3334 	 * pte_offset_map() on pmds where a huge pmd might be created
3335 	 * from a different thread.
3336 	 *
3337 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3338 	 * parallel threads are excluded by other means.
3339 	 *
3340 	 * Here we only have mmap_read_lock(mm).
3341 	 */
3342 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3343 		return VM_FAULT_OOM;
3344 
3345 	/* See the comment in pte_alloc_one_map() */
3346 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3347 		return 0;
3348 
3349 	/* Use the zero-page for reads */
3350 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3351 			!mm_forbids_zeropage(vma->vm_mm)) {
3352 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3353 						vma->vm_page_prot));
3354 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3355 				vmf->address, &vmf->ptl);
3356 		if (!pte_none(*vmf->pte)) {
3357 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3358 			goto unlock;
3359 		}
3360 		ret = check_stable_address_space(vma->vm_mm);
3361 		if (ret)
3362 			goto unlock;
3363 		/* Deliver the page fault to userland, check inside PT lock */
3364 		if (userfaultfd_missing(vma)) {
3365 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3366 			return handle_userfault(vmf, VM_UFFD_MISSING);
3367 		}
3368 		goto setpte;
3369 	}
3370 
3371 	/* Allocate our own private page. */
3372 	if (unlikely(anon_vma_prepare(vma)))
3373 		goto oom;
3374 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3375 	if (!page)
3376 		goto oom;
3377 
3378 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3379 		goto oom_free_page;
3380 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3381 
3382 	/*
3383 	 * The memory barrier inside __SetPageUptodate makes sure that
3384 	 * preceding stores to the page contents become visible before
3385 	 * the set_pte_at() write.
3386 	 */
3387 	__SetPageUptodate(page);
3388 
3389 	entry = mk_pte(page, vma->vm_page_prot);
3390 	entry = pte_sw_mkyoung(entry);
3391 	if (vma->vm_flags & VM_WRITE)
3392 		entry = pte_mkwrite(pte_mkdirty(entry));
3393 
3394 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3395 			&vmf->ptl);
3396 	if (!pte_none(*vmf->pte)) {
3397 		update_mmu_cache(vma, vmf->address, vmf->pte);
3398 		goto release;
3399 	}
3400 
3401 	ret = check_stable_address_space(vma->vm_mm);
3402 	if (ret)
3403 		goto release;
3404 
3405 	/* Deliver the page fault to userland, check inside PT lock */
3406 	if (userfaultfd_missing(vma)) {
3407 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3408 		put_page(page);
3409 		return handle_userfault(vmf, VM_UFFD_MISSING);
3410 	}
3411 
3412 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3413 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3414 	lru_cache_add_active_or_unevictable(page, vma);
3415 setpte:
3416 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3417 
3418 	/* No need to invalidate - it was non-present before */
3419 	update_mmu_cache(vma, vmf->address, vmf->pte);
3420 unlock:
3421 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3422 	return ret;
3423 release:
3424 	put_page(page);
3425 	goto unlock;
3426 oom_free_page:
3427 	put_page(page);
3428 oom:
3429 	return VM_FAULT_OOM;
3430 }
3431 
3432 /*
3433  * The mmap_lock must have been held on entry, and may have been
3434  * released depending on flags and vma->vm_ops->fault() return value.
3435  * See filemap_fault() and __lock_page_retry().
3436  */
3437 static vm_fault_t __do_fault(struct vm_fault *vmf)
3438 {
3439 	struct vm_area_struct *vma = vmf->vma;
3440 	vm_fault_t ret;
3441 
3442 	/*
3443 	 * Preallocate pte before we take page_lock because this might lead to
3444 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3445 	 *				lock_page(A)
3446 	 *				SetPageWriteback(A)
3447 	 *				unlock_page(A)
3448 	 * lock_page(B)
3449 	 *				lock_page(B)
3450 	 * pte_alloc_pne
3451 	 *   shrink_page_list
3452 	 *     wait_on_page_writeback(A)
3453 	 *				SetPageWriteback(B)
3454 	 *				unlock_page(B)
3455 	 *				# flush A, B to clear the writeback
3456 	 */
3457 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3458 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3459 		if (!vmf->prealloc_pte)
3460 			return VM_FAULT_OOM;
3461 		smp_wmb(); /* See comment in __pte_alloc() */
3462 	}
3463 
3464 	ret = vma->vm_ops->fault(vmf);
3465 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3466 			    VM_FAULT_DONE_COW)))
3467 		return ret;
3468 
3469 	if (unlikely(PageHWPoison(vmf->page))) {
3470 		if (ret & VM_FAULT_LOCKED)
3471 			unlock_page(vmf->page);
3472 		put_page(vmf->page);
3473 		vmf->page = NULL;
3474 		return VM_FAULT_HWPOISON;
3475 	}
3476 
3477 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3478 		lock_page(vmf->page);
3479 	else
3480 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3481 
3482 	return ret;
3483 }
3484 
3485 /*
3486  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3487  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3488  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3489  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3490  */
3491 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3492 {
3493 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3494 }
3495 
3496 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3497 {
3498 	struct vm_area_struct *vma = vmf->vma;
3499 
3500 	if (!pmd_none(*vmf->pmd))
3501 		goto map_pte;
3502 	if (vmf->prealloc_pte) {
3503 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3504 		if (unlikely(!pmd_none(*vmf->pmd))) {
3505 			spin_unlock(vmf->ptl);
3506 			goto map_pte;
3507 		}
3508 
3509 		mm_inc_nr_ptes(vma->vm_mm);
3510 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3511 		spin_unlock(vmf->ptl);
3512 		vmf->prealloc_pte = NULL;
3513 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3514 		return VM_FAULT_OOM;
3515 	}
3516 map_pte:
3517 	/*
3518 	 * If a huge pmd materialized under us just retry later.  Use
3519 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3520 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3521 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3522 	 * running immediately after a huge pmd fault in a different thread of
3523 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3524 	 * All we have to ensure is that it is a regular pmd that we can walk
3525 	 * with pte_offset_map() and we can do that through an atomic read in
3526 	 * C, which is what pmd_trans_unstable() provides.
3527 	 */
3528 	if (pmd_devmap_trans_unstable(vmf->pmd))
3529 		return VM_FAULT_NOPAGE;
3530 
3531 	/*
3532 	 * At this point we know that our vmf->pmd points to a page of ptes
3533 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3534 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3535 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3536 	 * be valid and we will re-check to make sure the vmf->pte isn't
3537 	 * pte_none() under vmf->ptl protection when we return to
3538 	 * alloc_set_pte().
3539 	 */
3540 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3541 			&vmf->ptl);
3542 	return 0;
3543 }
3544 
3545 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3546 static void deposit_prealloc_pte(struct vm_fault *vmf)
3547 {
3548 	struct vm_area_struct *vma = vmf->vma;
3549 
3550 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3551 	/*
3552 	 * We are going to consume the prealloc table,
3553 	 * count that as nr_ptes.
3554 	 */
3555 	mm_inc_nr_ptes(vma->vm_mm);
3556 	vmf->prealloc_pte = NULL;
3557 }
3558 
3559 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3560 {
3561 	struct vm_area_struct *vma = vmf->vma;
3562 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3563 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3564 	pmd_t entry;
3565 	int i;
3566 	vm_fault_t ret;
3567 
3568 	if (!transhuge_vma_suitable(vma, haddr))
3569 		return VM_FAULT_FALLBACK;
3570 
3571 	ret = VM_FAULT_FALLBACK;
3572 	page = compound_head(page);
3573 
3574 	/*
3575 	 * Archs like ppc64 need additonal space to store information
3576 	 * related to pte entry. Use the preallocated table for that.
3577 	 */
3578 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3579 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3580 		if (!vmf->prealloc_pte)
3581 			return VM_FAULT_OOM;
3582 		smp_wmb(); /* See comment in __pte_alloc() */
3583 	}
3584 
3585 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3586 	if (unlikely(!pmd_none(*vmf->pmd)))
3587 		goto out;
3588 
3589 	for (i = 0; i < HPAGE_PMD_NR; i++)
3590 		flush_icache_page(vma, page + i);
3591 
3592 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3593 	if (write)
3594 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3595 
3596 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3597 	page_add_file_rmap(page, true);
3598 	/*
3599 	 * deposit and withdraw with pmd lock held
3600 	 */
3601 	if (arch_needs_pgtable_deposit())
3602 		deposit_prealloc_pte(vmf);
3603 
3604 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3605 
3606 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3607 
3608 	/* fault is handled */
3609 	ret = 0;
3610 	count_vm_event(THP_FILE_MAPPED);
3611 out:
3612 	spin_unlock(vmf->ptl);
3613 	return ret;
3614 }
3615 #else
3616 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3617 {
3618 	BUILD_BUG();
3619 	return 0;
3620 }
3621 #endif
3622 
3623 /**
3624  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3625  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3626  *
3627  * @vmf: fault environment
3628  * @page: page to map
3629  *
3630  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3631  * return.
3632  *
3633  * Target users are page handler itself and implementations of
3634  * vm_ops->map_pages.
3635  *
3636  * Return: %0 on success, %VM_FAULT_ code in case of error.
3637  */
3638 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page)
3639 {
3640 	struct vm_area_struct *vma = vmf->vma;
3641 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3642 	pte_t entry;
3643 	vm_fault_t ret;
3644 
3645 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3646 		ret = do_set_pmd(vmf, page);
3647 		if (ret != VM_FAULT_FALLBACK)
3648 			return ret;
3649 	}
3650 
3651 	if (!vmf->pte) {
3652 		ret = pte_alloc_one_map(vmf);
3653 		if (ret)
3654 			return ret;
3655 	}
3656 
3657 	/* Re-check under ptl */
3658 	if (unlikely(!pte_none(*vmf->pte))) {
3659 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3660 		return VM_FAULT_NOPAGE;
3661 	}
3662 
3663 	flush_icache_page(vma, page);
3664 	entry = mk_pte(page, vma->vm_page_prot);
3665 	entry = pte_sw_mkyoung(entry);
3666 	if (write)
3667 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3668 	/* copy-on-write page */
3669 	if (write && !(vma->vm_flags & VM_SHARED)) {
3670 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3671 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3672 		lru_cache_add_active_or_unevictable(page, vma);
3673 	} else {
3674 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3675 		page_add_file_rmap(page, false);
3676 	}
3677 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3678 
3679 	/* no need to invalidate: a not-present page won't be cached */
3680 	update_mmu_cache(vma, vmf->address, vmf->pte);
3681 
3682 	return 0;
3683 }
3684 
3685 
3686 /**
3687  * finish_fault - finish page fault once we have prepared the page to fault
3688  *
3689  * @vmf: structure describing the fault
3690  *
3691  * This function handles all that is needed to finish a page fault once the
3692  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3693  * given page, adds reverse page mapping, handles memcg charges and LRU
3694  * addition.
3695  *
3696  * The function expects the page to be locked and on success it consumes a
3697  * reference of a page being mapped (for the PTE which maps it).
3698  *
3699  * Return: %0 on success, %VM_FAULT_ code in case of error.
3700  */
3701 vm_fault_t finish_fault(struct vm_fault *vmf)
3702 {
3703 	struct page *page;
3704 	vm_fault_t ret = 0;
3705 
3706 	/* Did we COW the page? */
3707 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3708 	    !(vmf->vma->vm_flags & VM_SHARED))
3709 		page = vmf->cow_page;
3710 	else
3711 		page = vmf->page;
3712 
3713 	/*
3714 	 * check even for read faults because we might have lost our CoWed
3715 	 * page
3716 	 */
3717 	if (!(vmf->vma->vm_flags & VM_SHARED))
3718 		ret = check_stable_address_space(vmf->vma->vm_mm);
3719 	if (!ret)
3720 		ret = alloc_set_pte(vmf, page);
3721 	if (vmf->pte)
3722 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3723 	return ret;
3724 }
3725 
3726 static unsigned long fault_around_bytes __read_mostly =
3727 	rounddown_pow_of_two(65536);
3728 
3729 #ifdef CONFIG_DEBUG_FS
3730 static int fault_around_bytes_get(void *data, u64 *val)
3731 {
3732 	*val = fault_around_bytes;
3733 	return 0;
3734 }
3735 
3736 /*
3737  * fault_around_bytes must be rounded down to the nearest page order as it's
3738  * what do_fault_around() expects to see.
3739  */
3740 static int fault_around_bytes_set(void *data, u64 val)
3741 {
3742 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3743 		return -EINVAL;
3744 	if (val > PAGE_SIZE)
3745 		fault_around_bytes = rounddown_pow_of_two(val);
3746 	else
3747 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3748 	return 0;
3749 }
3750 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3751 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3752 
3753 static int __init fault_around_debugfs(void)
3754 {
3755 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3756 				   &fault_around_bytes_fops);
3757 	return 0;
3758 }
3759 late_initcall(fault_around_debugfs);
3760 #endif
3761 
3762 /*
3763  * do_fault_around() tries to map few pages around the fault address. The hope
3764  * is that the pages will be needed soon and this will lower the number of
3765  * faults to handle.
3766  *
3767  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3768  * not ready to be mapped: not up-to-date, locked, etc.
3769  *
3770  * This function is called with the page table lock taken. In the split ptlock
3771  * case the page table lock only protects only those entries which belong to
3772  * the page table corresponding to the fault address.
3773  *
3774  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3775  * only once.
3776  *
3777  * fault_around_bytes defines how many bytes we'll try to map.
3778  * do_fault_around() expects it to be set to a power of two less than or equal
3779  * to PTRS_PER_PTE.
3780  *
3781  * The virtual address of the area that we map is naturally aligned to
3782  * fault_around_bytes rounded down to the machine page size
3783  * (and therefore to page order).  This way it's easier to guarantee
3784  * that we don't cross page table boundaries.
3785  */
3786 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3787 {
3788 	unsigned long address = vmf->address, nr_pages, mask;
3789 	pgoff_t start_pgoff = vmf->pgoff;
3790 	pgoff_t end_pgoff;
3791 	int off;
3792 	vm_fault_t ret = 0;
3793 
3794 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3795 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3796 
3797 	vmf->address = max(address & mask, vmf->vma->vm_start);
3798 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3799 	start_pgoff -= off;
3800 
3801 	/*
3802 	 *  end_pgoff is either the end of the page table, the end of
3803 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3804 	 */
3805 	end_pgoff = start_pgoff -
3806 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3807 		PTRS_PER_PTE - 1;
3808 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3809 			start_pgoff + nr_pages - 1);
3810 
3811 	if (pmd_none(*vmf->pmd)) {
3812 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3813 		if (!vmf->prealloc_pte)
3814 			goto out;
3815 		smp_wmb(); /* See comment in __pte_alloc() */
3816 	}
3817 
3818 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3819 
3820 	/* Huge page is mapped? Page fault is solved */
3821 	if (pmd_trans_huge(*vmf->pmd)) {
3822 		ret = VM_FAULT_NOPAGE;
3823 		goto out;
3824 	}
3825 
3826 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3827 	if (!vmf->pte)
3828 		goto out;
3829 
3830 	/* check if the page fault is solved */
3831 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3832 	if (!pte_none(*vmf->pte))
3833 		ret = VM_FAULT_NOPAGE;
3834 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3835 out:
3836 	vmf->address = address;
3837 	vmf->pte = NULL;
3838 	return ret;
3839 }
3840 
3841 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3842 {
3843 	struct vm_area_struct *vma = vmf->vma;
3844 	vm_fault_t ret = 0;
3845 
3846 	/*
3847 	 * Let's call ->map_pages() first and use ->fault() as fallback
3848 	 * if page by the offset is not ready to be mapped (cold cache or
3849 	 * something).
3850 	 */
3851 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3852 		ret = do_fault_around(vmf);
3853 		if (ret)
3854 			return ret;
3855 	}
3856 
3857 	ret = __do_fault(vmf);
3858 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3859 		return ret;
3860 
3861 	ret |= finish_fault(vmf);
3862 	unlock_page(vmf->page);
3863 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3864 		put_page(vmf->page);
3865 	return ret;
3866 }
3867 
3868 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3869 {
3870 	struct vm_area_struct *vma = vmf->vma;
3871 	vm_fault_t ret;
3872 
3873 	if (unlikely(anon_vma_prepare(vma)))
3874 		return VM_FAULT_OOM;
3875 
3876 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3877 	if (!vmf->cow_page)
3878 		return VM_FAULT_OOM;
3879 
3880 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3881 		put_page(vmf->cow_page);
3882 		return VM_FAULT_OOM;
3883 	}
3884 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3885 
3886 	ret = __do_fault(vmf);
3887 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3888 		goto uncharge_out;
3889 	if (ret & VM_FAULT_DONE_COW)
3890 		return ret;
3891 
3892 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3893 	__SetPageUptodate(vmf->cow_page);
3894 
3895 	ret |= finish_fault(vmf);
3896 	unlock_page(vmf->page);
3897 	put_page(vmf->page);
3898 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3899 		goto uncharge_out;
3900 	return ret;
3901 uncharge_out:
3902 	put_page(vmf->cow_page);
3903 	return ret;
3904 }
3905 
3906 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3907 {
3908 	struct vm_area_struct *vma = vmf->vma;
3909 	vm_fault_t ret, tmp;
3910 
3911 	ret = __do_fault(vmf);
3912 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3913 		return ret;
3914 
3915 	/*
3916 	 * Check if the backing address space wants to know that the page is
3917 	 * about to become writable
3918 	 */
3919 	if (vma->vm_ops->page_mkwrite) {
3920 		unlock_page(vmf->page);
3921 		tmp = do_page_mkwrite(vmf);
3922 		if (unlikely(!tmp ||
3923 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3924 			put_page(vmf->page);
3925 			return tmp;
3926 		}
3927 	}
3928 
3929 	ret |= finish_fault(vmf);
3930 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3931 					VM_FAULT_RETRY))) {
3932 		unlock_page(vmf->page);
3933 		put_page(vmf->page);
3934 		return ret;
3935 	}
3936 
3937 	ret |= fault_dirty_shared_page(vmf);
3938 	return ret;
3939 }
3940 
3941 /*
3942  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3943  * but allow concurrent faults).
3944  * The mmap_lock may have been released depending on flags and our
3945  * return value.  See filemap_fault() and __lock_page_or_retry().
3946  * If mmap_lock is released, vma may become invalid (for example
3947  * by other thread calling munmap()).
3948  */
3949 static vm_fault_t do_fault(struct vm_fault *vmf)
3950 {
3951 	struct vm_area_struct *vma = vmf->vma;
3952 	struct mm_struct *vm_mm = vma->vm_mm;
3953 	vm_fault_t ret;
3954 
3955 	/*
3956 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3957 	 */
3958 	if (!vma->vm_ops->fault) {
3959 		/*
3960 		 * If we find a migration pmd entry or a none pmd entry, which
3961 		 * should never happen, return SIGBUS
3962 		 */
3963 		if (unlikely(!pmd_present(*vmf->pmd)))
3964 			ret = VM_FAULT_SIGBUS;
3965 		else {
3966 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3967 						       vmf->pmd,
3968 						       vmf->address,
3969 						       &vmf->ptl);
3970 			/*
3971 			 * Make sure this is not a temporary clearing of pte
3972 			 * by holding ptl and checking again. A R/M/W update
3973 			 * of pte involves: take ptl, clearing the pte so that
3974 			 * we don't have concurrent modification by hardware
3975 			 * followed by an update.
3976 			 */
3977 			if (unlikely(pte_none(*vmf->pte)))
3978 				ret = VM_FAULT_SIGBUS;
3979 			else
3980 				ret = VM_FAULT_NOPAGE;
3981 
3982 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3983 		}
3984 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3985 		ret = do_read_fault(vmf);
3986 	else if (!(vma->vm_flags & VM_SHARED))
3987 		ret = do_cow_fault(vmf);
3988 	else
3989 		ret = do_shared_fault(vmf);
3990 
3991 	/* preallocated pagetable is unused: free it */
3992 	if (vmf->prealloc_pte) {
3993 		pte_free(vm_mm, vmf->prealloc_pte);
3994 		vmf->prealloc_pte = NULL;
3995 	}
3996 	return ret;
3997 }
3998 
3999 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4000 				unsigned long addr, int page_nid,
4001 				int *flags)
4002 {
4003 	get_page(page);
4004 
4005 	count_vm_numa_event(NUMA_HINT_FAULTS);
4006 	if (page_nid == numa_node_id()) {
4007 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4008 		*flags |= TNF_FAULT_LOCAL;
4009 	}
4010 
4011 	return mpol_misplaced(page, vma, addr);
4012 }
4013 
4014 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4015 {
4016 	struct vm_area_struct *vma = vmf->vma;
4017 	struct page *page = NULL;
4018 	int page_nid = NUMA_NO_NODE;
4019 	int last_cpupid;
4020 	int target_nid;
4021 	bool migrated = false;
4022 	pte_t pte, old_pte;
4023 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4024 	int flags = 0;
4025 
4026 	/*
4027 	 * The "pte" at this point cannot be used safely without
4028 	 * validation through pte_unmap_same(). It's of NUMA type but
4029 	 * the pfn may be screwed if the read is non atomic.
4030 	 */
4031 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4032 	spin_lock(vmf->ptl);
4033 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4034 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4035 		goto out;
4036 	}
4037 
4038 	/*
4039 	 * Make it present again, Depending on how arch implementes non
4040 	 * accessible ptes, some can allow access by kernel mode.
4041 	 */
4042 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4043 	pte = pte_modify(old_pte, vma->vm_page_prot);
4044 	pte = pte_mkyoung(pte);
4045 	if (was_writable)
4046 		pte = pte_mkwrite(pte);
4047 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4048 	update_mmu_cache(vma, vmf->address, vmf->pte);
4049 
4050 	page = vm_normal_page(vma, vmf->address, pte);
4051 	if (!page) {
4052 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4053 		return 0;
4054 	}
4055 
4056 	/* TODO: handle PTE-mapped THP */
4057 	if (PageCompound(page)) {
4058 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4059 		return 0;
4060 	}
4061 
4062 	/*
4063 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4064 	 * much anyway since they can be in shared cache state. This misses
4065 	 * the case where a mapping is writable but the process never writes
4066 	 * to it but pte_write gets cleared during protection updates and
4067 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4068 	 * background writeback, dirty balancing and application behaviour.
4069 	 */
4070 	if (!pte_write(pte))
4071 		flags |= TNF_NO_GROUP;
4072 
4073 	/*
4074 	 * Flag if the page is shared between multiple address spaces. This
4075 	 * is later used when determining whether to group tasks together
4076 	 */
4077 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4078 		flags |= TNF_SHARED;
4079 
4080 	last_cpupid = page_cpupid_last(page);
4081 	page_nid = page_to_nid(page);
4082 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4083 			&flags);
4084 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4085 	if (target_nid == NUMA_NO_NODE) {
4086 		put_page(page);
4087 		goto out;
4088 	}
4089 
4090 	/* Migrate to the requested node */
4091 	migrated = migrate_misplaced_page(page, vma, target_nid);
4092 	if (migrated) {
4093 		page_nid = target_nid;
4094 		flags |= TNF_MIGRATED;
4095 	} else
4096 		flags |= TNF_MIGRATE_FAIL;
4097 
4098 out:
4099 	if (page_nid != NUMA_NO_NODE)
4100 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4101 	return 0;
4102 }
4103 
4104 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4105 {
4106 	if (vma_is_anonymous(vmf->vma))
4107 		return do_huge_pmd_anonymous_page(vmf);
4108 	if (vmf->vma->vm_ops->huge_fault)
4109 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4110 	return VM_FAULT_FALLBACK;
4111 }
4112 
4113 /* `inline' is required to avoid gcc 4.1.2 build error */
4114 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4115 {
4116 	if (vma_is_anonymous(vmf->vma)) {
4117 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4118 			return handle_userfault(vmf, VM_UFFD_WP);
4119 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4120 	}
4121 	if (vmf->vma->vm_ops->huge_fault) {
4122 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4123 
4124 		if (!(ret & VM_FAULT_FALLBACK))
4125 			return ret;
4126 	}
4127 
4128 	/* COW or write-notify handled on pte level: split pmd. */
4129 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4130 
4131 	return VM_FAULT_FALLBACK;
4132 }
4133 
4134 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4135 {
4136 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4137 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4138 	/* No support for anonymous transparent PUD pages yet */
4139 	if (vma_is_anonymous(vmf->vma))
4140 		goto split;
4141 	if (vmf->vma->vm_ops->huge_fault) {
4142 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4143 
4144 		if (!(ret & VM_FAULT_FALLBACK))
4145 			return ret;
4146 	}
4147 split:
4148 	/* COW or write-notify not handled on PUD level: split pud.*/
4149 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4150 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4151 	return VM_FAULT_FALLBACK;
4152 }
4153 
4154 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4155 {
4156 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4157 	/* No support for anonymous transparent PUD pages yet */
4158 	if (vma_is_anonymous(vmf->vma))
4159 		return VM_FAULT_FALLBACK;
4160 	if (vmf->vma->vm_ops->huge_fault)
4161 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4162 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4163 	return VM_FAULT_FALLBACK;
4164 }
4165 
4166 /*
4167  * These routines also need to handle stuff like marking pages dirty
4168  * and/or accessed for architectures that don't do it in hardware (most
4169  * RISC architectures).  The early dirtying is also good on the i386.
4170  *
4171  * There is also a hook called "update_mmu_cache()" that architectures
4172  * with external mmu caches can use to update those (ie the Sparc or
4173  * PowerPC hashed page tables that act as extended TLBs).
4174  *
4175  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4176  * concurrent faults).
4177  *
4178  * The mmap_lock may have been released depending on flags and our return value.
4179  * See filemap_fault() and __lock_page_or_retry().
4180  */
4181 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4182 {
4183 	pte_t entry;
4184 
4185 	if (unlikely(pmd_none(*vmf->pmd))) {
4186 		/*
4187 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4188 		 * want to allocate huge page, and if we expose page table
4189 		 * for an instant, it will be difficult to retract from
4190 		 * concurrent faults and from rmap lookups.
4191 		 */
4192 		vmf->pte = NULL;
4193 	} else {
4194 		/* See comment in pte_alloc_one_map() */
4195 		if (pmd_devmap_trans_unstable(vmf->pmd))
4196 			return 0;
4197 		/*
4198 		 * A regular pmd is established and it can't morph into a huge
4199 		 * pmd from under us anymore at this point because we hold the
4200 		 * mmap_lock read mode and khugepaged takes it in write mode.
4201 		 * So now it's safe to run pte_offset_map().
4202 		 */
4203 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4204 		vmf->orig_pte = *vmf->pte;
4205 
4206 		/*
4207 		 * some architectures can have larger ptes than wordsize,
4208 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4209 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4210 		 * accesses.  The code below just needs a consistent view
4211 		 * for the ifs and we later double check anyway with the
4212 		 * ptl lock held. So here a barrier will do.
4213 		 */
4214 		barrier();
4215 		if (pte_none(vmf->orig_pte)) {
4216 			pte_unmap(vmf->pte);
4217 			vmf->pte = NULL;
4218 		}
4219 	}
4220 
4221 	if (!vmf->pte) {
4222 		if (vma_is_anonymous(vmf->vma))
4223 			return do_anonymous_page(vmf);
4224 		else
4225 			return do_fault(vmf);
4226 	}
4227 
4228 	if (!pte_present(vmf->orig_pte))
4229 		return do_swap_page(vmf);
4230 
4231 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4232 		return do_numa_page(vmf);
4233 
4234 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4235 	spin_lock(vmf->ptl);
4236 	entry = vmf->orig_pte;
4237 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4238 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4239 		goto unlock;
4240 	}
4241 	if (vmf->flags & FAULT_FLAG_WRITE) {
4242 		if (!pte_write(entry))
4243 			return do_wp_page(vmf);
4244 		entry = pte_mkdirty(entry);
4245 	}
4246 	entry = pte_mkyoung(entry);
4247 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4248 				vmf->flags & FAULT_FLAG_WRITE)) {
4249 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4250 	} else {
4251 		/*
4252 		 * This is needed only for protection faults but the arch code
4253 		 * is not yet telling us if this is a protection fault or not.
4254 		 * This still avoids useless tlb flushes for .text page faults
4255 		 * with threads.
4256 		 */
4257 		if (vmf->flags & FAULT_FLAG_WRITE)
4258 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4259 	}
4260 unlock:
4261 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4262 	return 0;
4263 }
4264 
4265 /*
4266  * By the time we get here, we already hold the mm semaphore
4267  *
4268  * The mmap_lock may have been released depending on flags and our
4269  * return value.  See filemap_fault() and __lock_page_or_retry().
4270  */
4271 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4272 		unsigned long address, unsigned int flags)
4273 {
4274 	struct vm_fault vmf = {
4275 		.vma = vma,
4276 		.address = address & PAGE_MASK,
4277 		.flags = flags,
4278 		.pgoff = linear_page_index(vma, address),
4279 		.gfp_mask = __get_fault_gfp_mask(vma),
4280 	};
4281 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4282 	struct mm_struct *mm = vma->vm_mm;
4283 	pgd_t *pgd;
4284 	p4d_t *p4d;
4285 	vm_fault_t ret;
4286 
4287 	pgd = pgd_offset(mm, address);
4288 	p4d = p4d_alloc(mm, pgd, address);
4289 	if (!p4d)
4290 		return VM_FAULT_OOM;
4291 
4292 	vmf.pud = pud_alloc(mm, p4d, address);
4293 	if (!vmf.pud)
4294 		return VM_FAULT_OOM;
4295 retry_pud:
4296 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4297 		ret = create_huge_pud(&vmf);
4298 		if (!(ret & VM_FAULT_FALLBACK))
4299 			return ret;
4300 	} else {
4301 		pud_t orig_pud = *vmf.pud;
4302 
4303 		barrier();
4304 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4305 
4306 			/* NUMA case for anonymous PUDs would go here */
4307 
4308 			if (dirty && !pud_write(orig_pud)) {
4309 				ret = wp_huge_pud(&vmf, orig_pud);
4310 				if (!(ret & VM_FAULT_FALLBACK))
4311 					return ret;
4312 			} else {
4313 				huge_pud_set_accessed(&vmf, orig_pud);
4314 				return 0;
4315 			}
4316 		}
4317 	}
4318 
4319 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4320 	if (!vmf.pmd)
4321 		return VM_FAULT_OOM;
4322 
4323 	/* Huge pud page fault raced with pmd_alloc? */
4324 	if (pud_trans_unstable(vmf.pud))
4325 		goto retry_pud;
4326 
4327 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4328 		ret = create_huge_pmd(&vmf);
4329 		if (!(ret & VM_FAULT_FALLBACK))
4330 			return ret;
4331 	} else {
4332 		pmd_t orig_pmd = *vmf.pmd;
4333 
4334 		barrier();
4335 		if (unlikely(is_swap_pmd(orig_pmd))) {
4336 			VM_BUG_ON(thp_migration_supported() &&
4337 					  !is_pmd_migration_entry(orig_pmd));
4338 			if (is_pmd_migration_entry(orig_pmd))
4339 				pmd_migration_entry_wait(mm, vmf.pmd);
4340 			return 0;
4341 		}
4342 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4343 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4344 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4345 
4346 			if (dirty && !pmd_write(orig_pmd)) {
4347 				ret = wp_huge_pmd(&vmf, orig_pmd);
4348 				if (!(ret & VM_FAULT_FALLBACK))
4349 					return ret;
4350 			} else {
4351 				huge_pmd_set_accessed(&vmf, orig_pmd);
4352 				return 0;
4353 			}
4354 		}
4355 	}
4356 
4357 	return handle_pte_fault(&vmf);
4358 }
4359 
4360 /*
4361  * By the time we get here, we already hold the mm semaphore
4362  *
4363  * The mmap_lock may have been released depending on flags and our
4364  * return value.  See filemap_fault() and __lock_page_or_retry().
4365  */
4366 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4367 		unsigned int flags)
4368 {
4369 	vm_fault_t ret;
4370 
4371 	__set_current_state(TASK_RUNNING);
4372 
4373 	count_vm_event(PGFAULT);
4374 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4375 
4376 	/* do counter updates before entering really critical section. */
4377 	check_sync_rss_stat(current);
4378 
4379 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4380 					    flags & FAULT_FLAG_INSTRUCTION,
4381 					    flags & FAULT_FLAG_REMOTE))
4382 		return VM_FAULT_SIGSEGV;
4383 
4384 	/*
4385 	 * Enable the memcg OOM handling for faults triggered in user
4386 	 * space.  Kernel faults are handled more gracefully.
4387 	 */
4388 	if (flags & FAULT_FLAG_USER)
4389 		mem_cgroup_enter_user_fault();
4390 
4391 	if (unlikely(is_vm_hugetlb_page(vma)))
4392 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4393 	else
4394 		ret = __handle_mm_fault(vma, address, flags);
4395 
4396 	if (flags & FAULT_FLAG_USER) {
4397 		mem_cgroup_exit_user_fault();
4398 		/*
4399 		 * The task may have entered a memcg OOM situation but
4400 		 * if the allocation error was handled gracefully (no
4401 		 * VM_FAULT_OOM), there is no need to kill anything.
4402 		 * Just clean up the OOM state peacefully.
4403 		 */
4404 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4405 			mem_cgroup_oom_synchronize(false);
4406 	}
4407 
4408 	return ret;
4409 }
4410 EXPORT_SYMBOL_GPL(handle_mm_fault);
4411 
4412 #ifndef __PAGETABLE_P4D_FOLDED
4413 /*
4414  * Allocate p4d page table.
4415  * We've already handled the fast-path in-line.
4416  */
4417 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4418 {
4419 	p4d_t *new = p4d_alloc_one(mm, address);
4420 	if (!new)
4421 		return -ENOMEM;
4422 
4423 	smp_wmb(); /* See comment in __pte_alloc */
4424 
4425 	spin_lock(&mm->page_table_lock);
4426 	if (pgd_present(*pgd))		/* Another has populated it */
4427 		p4d_free(mm, new);
4428 	else
4429 		pgd_populate(mm, pgd, new);
4430 	spin_unlock(&mm->page_table_lock);
4431 	return 0;
4432 }
4433 #endif /* __PAGETABLE_P4D_FOLDED */
4434 
4435 #ifndef __PAGETABLE_PUD_FOLDED
4436 /*
4437  * Allocate page upper directory.
4438  * We've already handled the fast-path in-line.
4439  */
4440 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4441 {
4442 	pud_t *new = pud_alloc_one(mm, address);
4443 	if (!new)
4444 		return -ENOMEM;
4445 
4446 	smp_wmb(); /* See comment in __pte_alloc */
4447 
4448 	spin_lock(&mm->page_table_lock);
4449 	if (!p4d_present(*p4d)) {
4450 		mm_inc_nr_puds(mm);
4451 		p4d_populate(mm, p4d, new);
4452 	} else	/* Another has populated it */
4453 		pud_free(mm, new);
4454 	spin_unlock(&mm->page_table_lock);
4455 	return 0;
4456 }
4457 #endif /* __PAGETABLE_PUD_FOLDED */
4458 
4459 #ifndef __PAGETABLE_PMD_FOLDED
4460 /*
4461  * Allocate page middle directory.
4462  * We've already handled the fast-path in-line.
4463  */
4464 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4465 {
4466 	spinlock_t *ptl;
4467 	pmd_t *new = pmd_alloc_one(mm, address);
4468 	if (!new)
4469 		return -ENOMEM;
4470 
4471 	smp_wmb(); /* See comment in __pte_alloc */
4472 
4473 	ptl = pud_lock(mm, pud);
4474 	if (!pud_present(*pud)) {
4475 		mm_inc_nr_pmds(mm);
4476 		pud_populate(mm, pud, new);
4477 	} else	/* Another has populated it */
4478 		pmd_free(mm, new);
4479 	spin_unlock(ptl);
4480 	return 0;
4481 }
4482 #endif /* __PAGETABLE_PMD_FOLDED */
4483 
4484 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4485 			    struct mmu_notifier_range *range,
4486 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4487 {
4488 	pgd_t *pgd;
4489 	p4d_t *p4d;
4490 	pud_t *pud;
4491 	pmd_t *pmd;
4492 	pte_t *ptep;
4493 
4494 	pgd = pgd_offset(mm, address);
4495 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4496 		goto out;
4497 
4498 	p4d = p4d_offset(pgd, address);
4499 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4500 		goto out;
4501 
4502 	pud = pud_offset(p4d, address);
4503 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4504 		goto out;
4505 
4506 	pmd = pmd_offset(pud, address);
4507 	VM_BUG_ON(pmd_trans_huge(*pmd));
4508 
4509 	if (pmd_huge(*pmd)) {
4510 		if (!pmdpp)
4511 			goto out;
4512 
4513 		if (range) {
4514 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4515 						NULL, mm, address & PMD_MASK,
4516 						(address & PMD_MASK) + PMD_SIZE);
4517 			mmu_notifier_invalidate_range_start(range);
4518 		}
4519 		*ptlp = pmd_lock(mm, pmd);
4520 		if (pmd_huge(*pmd)) {
4521 			*pmdpp = pmd;
4522 			return 0;
4523 		}
4524 		spin_unlock(*ptlp);
4525 		if (range)
4526 			mmu_notifier_invalidate_range_end(range);
4527 	}
4528 
4529 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4530 		goto out;
4531 
4532 	if (range) {
4533 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4534 					address & PAGE_MASK,
4535 					(address & PAGE_MASK) + PAGE_SIZE);
4536 		mmu_notifier_invalidate_range_start(range);
4537 	}
4538 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4539 	if (!pte_present(*ptep))
4540 		goto unlock;
4541 	*ptepp = ptep;
4542 	return 0;
4543 unlock:
4544 	pte_unmap_unlock(ptep, *ptlp);
4545 	if (range)
4546 		mmu_notifier_invalidate_range_end(range);
4547 out:
4548 	return -EINVAL;
4549 }
4550 
4551 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4552 			     pte_t **ptepp, spinlock_t **ptlp)
4553 {
4554 	int res;
4555 
4556 	/* (void) is needed to make gcc happy */
4557 	(void) __cond_lock(*ptlp,
4558 			   !(res = __follow_pte_pmd(mm, address, NULL,
4559 						    ptepp, NULL, ptlp)));
4560 	return res;
4561 }
4562 
4563 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4564 		   struct mmu_notifier_range *range,
4565 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4566 {
4567 	int res;
4568 
4569 	/* (void) is needed to make gcc happy */
4570 	(void) __cond_lock(*ptlp,
4571 			   !(res = __follow_pte_pmd(mm, address, range,
4572 						    ptepp, pmdpp, ptlp)));
4573 	return res;
4574 }
4575 EXPORT_SYMBOL(follow_pte_pmd);
4576 
4577 /**
4578  * follow_pfn - look up PFN at a user virtual address
4579  * @vma: memory mapping
4580  * @address: user virtual address
4581  * @pfn: location to store found PFN
4582  *
4583  * Only IO mappings and raw PFN mappings are allowed.
4584  *
4585  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4586  */
4587 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4588 	unsigned long *pfn)
4589 {
4590 	int ret = -EINVAL;
4591 	spinlock_t *ptl;
4592 	pte_t *ptep;
4593 
4594 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4595 		return ret;
4596 
4597 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4598 	if (ret)
4599 		return ret;
4600 	*pfn = pte_pfn(*ptep);
4601 	pte_unmap_unlock(ptep, ptl);
4602 	return 0;
4603 }
4604 EXPORT_SYMBOL(follow_pfn);
4605 
4606 #ifdef CONFIG_HAVE_IOREMAP_PROT
4607 int follow_phys(struct vm_area_struct *vma,
4608 		unsigned long address, unsigned int flags,
4609 		unsigned long *prot, resource_size_t *phys)
4610 {
4611 	int ret = -EINVAL;
4612 	pte_t *ptep, pte;
4613 	spinlock_t *ptl;
4614 
4615 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4616 		goto out;
4617 
4618 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4619 		goto out;
4620 	pte = *ptep;
4621 
4622 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4623 		goto unlock;
4624 
4625 	*prot = pgprot_val(pte_pgprot(pte));
4626 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4627 
4628 	ret = 0;
4629 unlock:
4630 	pte_unmap_unlock(ptep, ptl);
4631 out:
4632 	return ret;
4633 }
4634 
4635 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4636 			void *buf, int len, int write)
4637 {
4638 	resource_size_t phys_addr;
4639 	unsigned long prot = 0;
4640 	void __iomem *maddr;
4641 	int offset = addr & (PAGE_SIZE-1);
4642 
4643 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4644 		return -EINVAL;
4645 
4646 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4647 	if (!maddr)
4648 		return -ENOMEM;
4649 
4650 	if (write)
4651 		memcpy_toio(maddr + offset, buf, len);
4652 	else
4653 		memcpy_fromio(buf, maddr + offset, len);
4654 	iounmap(maddr);
4655 
4656 	return len;
4657 }
4658 EXPORT_SYMBOL_GPL(generic_access_phys);
4659 #endif
4660 
4661 /*
4662  * Access another process' address space as given in mm.  If non-NULL, use the
4663  * given task for page fault accounting.
4664  */
4665 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4666 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4667 {
4668 	struct vm_area_struct *vma;
4669 	void *old_buf = buf;
4670 	int write = gup_flags & FOLL_WRITE;
4671 
4672 	if (mmap_read_lock_killable(mm))
4673 		return 0;
4674 
4675 	/* ignore errors, just check how much was successfully transferred */
4676 	while (len) {
4677 		int bytes, ret, offset;
4678 		void *maddr;
4679 		struct page *page = NULL;
4680 
4681 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4682 				gup_flags, &page, &vma, NULL);
4683 		if (ret <= 0) {
4684 #ifndef CONFIG_HAVE_IOREMAP_PROT
4685 			break;
4686 #else
4687 			/*
4688 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4689 			 * we can access using slightly different code.
4690 			 */
4691 			vma = find_vma(mm, addr);
4692 			if (!vma || vma->vm_start > addr)
4693 				break;
4694 			if (vma->vm_ops && vma->vm_ops->access)
4695 				ret = vma->vm_ops->access(vma, addr, buf,
4696 							  len, write);
4697 			if (ret <= 0)
4698 				break;
4699 			bytes = ret;
4700 #endif
4701 		} else {
4702 			bytes = len;
4703 			offset = addr & (PAGE_SIZE-1);
4704 			if (bytes > PAGE_SIZE-offset)
4705 				bytes = PAGE_SIZE-offset;
4706 
4707 			maddr = kmap(page);
4708 			if (write) {
4709 				copy_to_user_page(vma, page, addr,
4710 						  maddr + offset, buf, bytes);
4711 				set_page_dirty_lock(page);
4712 			} else {
4713 				copy_from_user_page(vma, page, addr,
4714 						    buf, maddr + offset, bytes);
4715 			}
4716 			kunmap(page);
4717 			put_page(page);
4718 		}
4719 		len -= bytes;
4720 		buf += bytes;
4721 		addr += bytes;
4722 	}
4723 	mmap_read_unlock(mm);
4724 
4725 	return buf - old_buf;
4726 }
4727 
4728 /**
4729  * access_remote_vm - access another process' address space
4730  * @mm:		the mm_struct of the target address space
4731  * @addr:	start address to access
4732  * @buf:	source or destination buffer
4733  * @len:	number of bytes to transfer
4734  * @gup_flags:	flags modifying lookup behaviour
4735  *
4736  * The caller must hold a reference on @mm.
4737  *
4738  * Return: number of bytes copied from source to destination.
4739  */
4740 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4741 		void *buf, int len, unsigned int gup_flags)
4742 {
4743 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4744 }
4745 
4746 /*
4747  * Access another process' address space.
4748  * Source/target buffer must be kernel space,
4749  * Do not walk the page table directly, use get_user_pages
4750  */
4751 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4752 		void *buf, int len, unsigned int gup_flags)
4753 {
4754 	struct mm_struct *mm;
4755 	int ret;
4756 
4757 	mm = get_task_mm(tsk);
4758 	if (!mm)
4759 		return 0;
4760 
4761 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4762 
4763 	mmput(mm);
4764 
4765 	return ret;
4766 }
4767 EXPORT_SYMBOL_GPL(access_process_vm);
4768 
4769 /*
4770  * Print the name of a VMA.
4771  */
4772 void print_vma_addr(char *prefix, unsigned long ip)
4773 {
4774 	struct mm_struct *mm = current->mm;
4775 	struct vm_area_struct *vma;
4776 
4777 	/*
4778 	 * we might be running from an atomic context so we cannot sleep
4779 	 */
4780 	if (!mmap_read_trylock(mm))
4781 		return;
4782 
4783 	vma = find_vma(mm, ip);
4784 	if (vma && vma->vm_file) {
4785 		struct file *f = vma->vm_file;
4786 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4787 		if (buf) {
4788 			char *p;
4789 
4790 			p = file_path(f, buf, PAGE_SIZE);
4791 			if (IS_ERR(p))
4792 				p = "?";
4793 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4794 					vma->vm_start,
4795 					vma->vm_end - vma->vm_start);
4796 			free_page((unsigned long)buf);
4797 		}
4798 	}
4799 	mmap_read_unlock(mm);
4800 }
4801 
4802 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4803 void __might_fault(const char *file, int line)
4804 {
4805 	/*
4806 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4807 	 * holding the mmap_lock, this is safe because kernel memory doesn't
4808 	 * get paged out, therefore we'll never actually fault, and the
4809 	 * below annotations will generate false positives.
4810 	 */
4811 	if (uaccess_kernel())
4812 		return;
4813 	if (pagefault_disabled())
4814 		return;
4815 	__might_sleep(file, line, 0);
4816 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4817 	if (current->mm)
4818 		might_lock_read(&current->mm->mmap_lock);
4819 #endif
4820 }
4821 EXPORT_SYMBOL(__might_fault);
4822 #endif
4823 
4824 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4825 /*
4826  * Process all subpages of the specified huge page with the specified
4827  * operation.  The target subpage will be processed last to keep its
4828  * cache lines hot.
4829  */
4830 static inline void process_huge_page(
4831 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4832 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4833 	void *arg)
4834 {
4835 	int i, n, base, l;
4836 	unsigned long addr = addr_hint &
4837 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4838 
4839 	/* Process target subpage last to keep its cache lines hot */
4840 	might_sleep();
4841 	n = (addr_hint - addr) / PAGE_SIZE;
4842 	if (2 * n <= pages_per_huge_page) {
4843 		/* If target subpage in first half of huge page */
4844 		base = 0;
4845 		l = n;
4846 		/* Process subpages at the end of huge page */
4847 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4848 			cond_resched();
4849 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4850 		}
4851 	} else {
4852 		/* If target subpage in second half of huge page */
4853 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4854 		l = pages_per_huge_page - n;
4855 		/* Process subpages at the begin of huge page */
4856 		for (i = 0; i < base; i++) {
4857 			cond_resched();
4858 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4859 		}
4860 	}
4861 	/*
4862 	 * Process remaining subpages in left-right-left-right pattern
4863 	 * towards the target subpage
4864 	 */
4865 	for (i = 0; i < l; i++) {
4866 		int left_idx = base + i;
4867 		int right_idx = base + 2 * l - 1 - i;
4868 
4869 		cond_resched();
4870 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4871 		cond_resched();
4872 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4873 	}
4874 }
4875 
4876 static void clear_gigantic_page(struct page *page,
4877 				unsigned long addr,
4878 				unsigned int pages_per_huge_page)
4879 {
4880 	int i;
4881 	struct page *p = page;
4882 
4883 	might_sleep();
4884 	for (i = 0; i < pages_per_huge_page;
4885 	     i++, p = mem_map_next(p, page, i)) {
4886 		cond_resched();
4887 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4888 	}
4889 }
4890 
4891 static void clear_subpage(unsigned long addr, int idx, void *arg)
4892 {
4893 	struct page *page = arg;
4894 
4895 	clear_user_highpage(page + idx, addr);
4896 }
4897 
4898 void clear_huge_page(struct page *page,
4899 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4900 {
4901 	unsigned long addr = addr_hint &
4902 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4903 
4904 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4905 		clear_gigantic_page(page, addr, pages_per_huge_page);
4906 		return;
4907 	}
4908 
4909 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4910 }
4911 
4912 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4913 				    unsigned long addr,
4914 				    struct vm_area_struct *vma,
4915 				    unsigned int pages_per_huge_page)
4916 {
4917 	int i;
4918 	struct page *dst_base = dst;
4919 	struct page *src_base = src;
4920 
4921 	for (i = 0; i < pages_per_huge_page; ) {
4922 		cond_resched();
4923 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4924 
4925 		i++;
4926 		dst = mem_map_next(dst, dst_base, i);
4927 		src = mem_map_next(src, src_base, i);
4928 	}
4929 }
4930 
4931 struct copy_subpage_arg {
4932 	struct page *dst;
4933 	struct page *src;
4934 	struct vm_area_struct *vma;
4935 };
4936 
4937 static void copy_subpage(unsigned long addr, int idx, void *arg)
4938 {
4939 	struct copy_subpage_arg *copy_arg = arg;
4940 
4941 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4942 			   addr, copy_arg->vma);
4943 }
4944 
4945 void copy_user_huge_page(struct page *dst, struct page *src,
4946 			 unsigned long addr_hint, struct vm_area_struct *vma,
4947 			 unsigned int pages_per_huge_page)
4948 {
4949 	unsigned long addr = addr_hint &
4950 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4951 	struct copy_subpage_arg arg = {
4952 		.dst = dst,
4953 		.src = src,
4954 		.vma = vma,
4955 	};
4956 
4957 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4958 		copy_user_gigantic_page(dst, src, addr, vma,
4959 					pages_per_huge_page);
4960 		return;
4961 	}
4962 
4963 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4964 }
4965 
4966 long copy_huge_page_from_user(struct page *dst_page,
4967 				const void __user *usr_src,
4968 				unsigned int pages_per_huge_page,
4969 				bool allow_pagefault)
4970 {
4971 	void *src = (void *)usr_src;
4972 	void *page_kaddr;
4973 	unsigned long i, rc = 0;
4974 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4975 
4976 	for (i = 0; i < pages_per_huge_page; i++) {
4977 		if (allow_pagefault)
4978 			page_kaddr = kmap(dst_page + i);
4979 		else
4980 			page_kaddr = kmap_atomic(dst_page + i);
4981 		rc = copy_from_user(page_kaddr,
4982 				(const void __user *)(src + i * PAGE_SIZE),
4983 				PAGE_SIZE);
4984 		if (allow_pagefault)
4985 			kunmap(dst_page + i);
4986 		else
4987 			kunmap_atomic(page_kaddr);
4988 
4989 		ret_val -= (PAGE_SIZE - rc);
4990 		if (rc)
4991 			break;
4992 
4993 		cond_resched();
4994 	}
4995 	return ret_val;
4996 }
4997 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4998 
4999 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5000 
5001 static struct kmem_cache *page_ptl_cachep;
5002 
5003 void __init ptlock_cache_init(void)
5004 {
5005 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5006 			SLAB_PANIC, NULL);
5007 }
5008 
5009 bool ptlock_alloc(struct page *page)
5010 {
5011 	spinlock_t *ptl;
5012 
5013 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5014 	if (!ptl)
5015 		return false;
5016 	page->ptl = ptl;
5017 	return true;
5018 }
5019 
5020 void ptlock_free(struct page *page)
5021 {
5022 	kmem_cache_free(page_ptl_cachep, page->ptl);
5023 }
5024 #endif
5025