1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 75 #include <asm/io.h> 76 #include <asm/mmu_context.h> 77 #include <asm/pgalloc.h> 78 #include <linux/uaccess.h> 79 #include <asm/tlb.h> 80 #include <asm/tlbflush.h> 81 #include <asm/pgtable.h> 82 83 #include "internal.h" 84 85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 87 #endif 88 89 #ifndef CONFIG_NEED_MULTIPLE_NODES 90 /* use the per-pgdat data instead for discontigmem - mbligh */ 91 unsigned long max_mapnr; 92 EXPORT_SYMBOL(max_mapnr); 93 94 struct page *mem_map; 95 EXPORT_SYMBOL(mem_map); 96 #endif 97 98 /* 99 * A number of key systems in x86 including ioremap() rely on the assumption 100 * that high_memory defines the upper bound on direct map memory, then end 101 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 102 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 103 * and ZONE_HIGHMEM. 104 */ 105 void *high_memory; 106 EXPORT_SYMBOL(high_memory); 107 108 /* 109 * Randomize the address space (stacks, mmaps, brk, etc.). 110 * 111 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 112 * as ancient (libc5 based) binaries can segfault. ) 113 */ 114 int randomize_va_space __read_mostly = 115 #ifdef CONFIG_COMPAT_BRK 116 1; 117 #else 118 2; 119 #endif 120 121 static int __init disable_randmaps(char *s) 122 { 123 randomize_va_space = 0; 124 return 1; 125 } 126 __setup("norandmaps", disable_randmaps); 127 128 unsigned long zero_pfn __read_mostly; 129 EXPORT_SYMBOL(zero_pfn); 130 131 unsigned long highest_memmap_pfn __read_mostly; 132 133 /* 134 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 135 */ 136 static int __init init_zero_pfn(void) 137 { 138 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 139 return 0; 140 } 141 core_initcall(init_zero_pfn); 142 143 144 #if defined(SPLIT_RSS_COUNTING) 145 146 void sync_mm_rss(struct mm_struct *mm) 147 { 148 int i; 149 150 for (i = 0; i < NR_MM_COUNTERS; i++) { 151 if (current->rss_stat.count[i]) { 152 add_mm_counter(mm, i, current->rss_stat.count[i]); 153 current->rss_stat.count[i] = 0; 154 } 155 } 156 current->rss_stat.events = 0; 157 } 158 159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 160 { 161 struct task_struct *task = current; 162 163 if (likely(task->mm == mm)) 164 task->rss_stat.count[member] += val; 165 else 166 add_mm_counter(mm, member, val); 167 } 168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 170 171 /* sync counter once per 64 page faults */ 172 #define TASK_RSS_EVENTS_THRESH (64) 173 static void check_sync_rss_stat(struct task_struct *task) 174 { 175 if (unlikely(task != current)) 176 return; 177 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 178 sync_mm_rss(task->mm); 179 } 180 #else /* SPLIT_RSS_COUNTING */ 181 182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 184 185 static void check_sync_rss_stat(struct task_struct *task) 186 { 187 } 188 189 #endif /* SPLIT_RSS_COUNTING */ 190 191 /* 192 * Note: this doesn't free the actual pages themselves. That 193 * has been handled earlier when unmapping all the memory regions. 194 */ 195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 196 unsigned long addr) 197 { 198 pgtable_t token = pmd_pgtable(*pmd); 199 pmd_clear(pmd); 200 pte_free_tlb(tlb, token, addr); 201 mm_dec_nr_ptes(tlb->mm); 202 } 203 204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 205 unsigned long addr, unsigned long end, 206 unsigned long floor, unsigned long ceiling) 207 { 208 pmd_t *pmd; 209 unsigned long next; 210 unsigned long start; 211 212 start = addr; 213 pmd = pmd_offset(pud, addr); 214 do { 215 next = pmd_addr_end(addr, end); 216 if (pmd_none_or_clear_bad(pmd)) 217 continue; 218 free_pte_range(tlb, pmd, addr); 219 } while (pmd++, addr = next, addr != end); 220 221 start &= PUD_MASK; 222 if (start < floor) 223 return; 224 if (ceiling) { 225 ceiling &= PUD_MASK; 226 if (!ceiling) 227 return; 228 } 229 if (end - 1 > ceiling - 1) 230 return; 231 232 pmd = pmd_offset(pud, start); 233 pud_clear(pud); 234 pmd_free_tlb(tlb, pmd, start); 235 mm_dec_nr_pmds(tlb->mm); 236 } 237 238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 239 unsigned long addr, unsigned long end, 240 unsigned long floor, unsigned long ceiling) 241 { 242 pud_t *pud; 243 unsigned long next; 244 unsigned long start; 245 246 start = addr; 247 pud = pud_offset(p4d, addr); 248 do { 249 next = pud_addr_end(addr, end); 250 if (pud_none_or_clear_bad(pud)) 251 continue; 252 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 253 } while (pud++, addr = next, addr != end); 254 255 start &= P4D_MASK; 256 if (start < floor) 257 return; 258 if (ceiling) { 259 ceiling &= P4D_MASK; 260 if (!ceiling) 261 return; 262 } 263 if (end - 1 > ceiling - 1) 264 return; 265 266 pud = pud_offset(p4d, start); 267 p4d_clear(p4d); 268 pud_free_tlb(tlb, pud, start); 269 mm_dec_nr_puds(tlb->mm); 270 } 271 272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 273 unsigned long addr, unsigned long end, 274 unsigned long floor, unsigned long ceiling) 275 { 276 p4d_t *p4d; 277 unsigned long next; 278 unsigned long start; 279 280 start = addr; 281 p4d = p4d_offset(pgd, addr); 282 do { 283 next = p4d_addr_end(addr, end); 284 if (p4d_none_or_clear_bad(p4d)) 285 continue; 286 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 287 } while (p4d++, addr = next, addr != end); 288 289 start &= PGDIR_MASK; 290 if (start < floor) 291 return; 292 if (ceiling) { 293 ceiling &= PGDIR_MASK; 294 if (!ceiling) 295 return; 296 } 297 if (end - 1 > ceiling - 1) 298 return; 299 300 p4d = p4d_offset(pgd, start); 301 pgd_clear(pgd); 302 p4d_free_tlb(tlb, p4d, start); 303 } 304 305 /* 306 * This function frees user-level page tables of a process. 307 */ 308 void free_pgd_range(struct mmu_gather *tlb, 309 unsigned long addr, unsigned long end, 310 unsigned long floor, unsigned long ceiling) 311 { 312 pgd_t *pgd; 313 unsigned long next; 314 315 /* 316 * The next few lines have given us lots of grief... 317 * 318 * Why are we testing PMD* at this top level? Because often 319 * there will be no work to do at all, and we'd prefer not to 320 * go all the way down to the bottom just to discover that. 321 * 322 * Why all these "- 1"s? Because 0 represents both the bottom 323 * of the address space and the top of it (using -1 for the 324 * top wouldn't help much: the masks would do the wrong thing). 325 * The rule is that addr 0 and floor 0 refer to the bottom of 326 * the address space, but end 0 and ceiling 0 refer to the top 327 * Comparisons need to use "end - 1" and "ceiling - 1" (though 328 * that end 0 case should be mythical). 329 * 330 * Wherever addr is brought up or ceiling brought down, we must 331 * be careful to reject "the opposite 0" before it confuses the 332 * subsequent tests. But what about where end is brought down 333 * by PMD_SIZE below? no, end can't go down to 0 there. 334 * 335 * Whereas we round start (addr) and ceiling down, by different 336 * masks at different levels, in order to test whether a table 337 * now has no other vmas using it, so can be freed, we don't 338 * bother to round floor or end up - the tests don't need that. 339 */ 340 341 addr &= PMD_MASK; 342 if (addr < floor) { 343 addr += PMD_SIZE; 344 if (!addr) 345 return; 346 } 347 if (ceiling) { 348 ceiling &= PMD_MASK; 349 if (!ceiling) 350 return; 351 } 352 if (end - 1 > ceiling - 1) 353 end -= PMD_SIZE; 354 if (addr > end - 1) 355 return; 356 /* 357 * We add page table cache pages with PAGE_SIZE, 358 * (see pte_free_tlb()), flush the tlb if we need 359 */ 360 tlb_change_page_size(tlb, PAGE_SIZE); 361 pgd = pgd_offset(tlb->mm, addr); 362 do { 363 next = pgd_addr_end(addr, end); 364 if (pgd_none_or_clear_bad(pgd)) 365 continue; 366 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 367 } while (pgd++, addr = next, addr != end); 368 } 369 370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 371 unsigned long floor, unsigned long ceiling) 372 { 373 while (vma) { 374 struct vm_area_struct *next = vma->vm_next; 375 unsigned long addr = vma->vm_start; 376 377 /* 378 * Hide vma from rmap and truncate_pagecache before freeing 379 * pgtables 380 */ 381 unlink_anon_vmas(vma); 382 unlink_file_vma(vma); 383 384 if (is_vm_hugetlb_page(vma)) { 385 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 386 floor, next ? next->vm_start : ceiling); 387 } else { 388 /* 389 * Optimization: gather nearby vmas into one call down 390 */ 391 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 392 && !is_vm_hugetlb_page(next)) { 393 vma = next; 394 next = vma->vm_next; 395 unlink_anon_vmas(vma); 396 unlink_file_vma(vma); 397 } 398 free_pgd_range(tlb, addr, vma->vm_end, 399 floor, next ? next->vm_start : ceiling); 400 } 401 vma = next; 402 } 403 } 404 405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 406 { 407 spinlock_t *ptl; 408 pgtable_t new = pte_alloc_one(mm); 409 if (!new) 410 return -ENOMEM; 411 412 /* 413 * Ensure all pte setup (eg. pte page lock and page clearing) are 414 * visible before the pte is made visible to other CPUs by being 415 * put into page tables. 416 * 417 * The other side of the story is the pointer chasing in the page 418 * table walking code (when walking the page table without locking; 419 * ie. most of the time). Fortunately, these data accesses consist 420 * of a chain of data-dependent loads, meaning most CPUs (alpha 421 * being the notable exception) will already guarantee loads are 422 * seen in-order. See the alpha page table accessors for the 423 * smp_read_barrier_depends() barriers in page table walking code. 424 */ 425 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 426 427 ptl = pmd_lock(mm, pmd); 428 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 429 mm_inc_nr_ptes(mm); 430 pmd_populate(mm, pmd, new); 431 new = NULL; 432 } 433 spin_unlock(ptl); 434 if (new) 435 pte_free(mm, new); 436 return 0; 437 } 438 439 int __pte_alloc_kernel(pmd_t *pmd) 440 { 441 pte_t *new = pte_alloc_one_kernel(&init_mm); 442 if (!new) 443 return -ENOMEM; 444 445 smp_wmb(); /* See comment in __pte_alloc */ 446 447 spin_lock(&init_mm.page_table_lock); 448 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 449 pmd_populate_kernel(&init_mm, pmd, new); 450 new = NULL; 451 } 452 spin_unlock(&init_mm.page_table_lock); 453 if (new) 454 pte_free_kernel(&init_mm, new); 455 return 0; 456 } 457 458 static inline void init_rss_vec(int *rss) 459 { 460 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 461 } 462 463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 464 { 465 int i; 466 467 if (current->mm == mm) 468 sync_mm_rss(mm); 469 for (i = 0; i < NR_MM_COUNTERS; i++) 470 if (rss[i]) 471 add_mm_counter(mm, i, rss[i]); 472 } 473 474 /* 475 * This function is called to print an error when a bad pte 476 * is found. For example, we might have a PFN-mapped pte in 477 * a region that doesn't allow it. 478 * 479 * The calling function must still handle the error. 480 */ 481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 482 pte_t pte, struct page *page) 483 { 484 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 485 p4d_t *p4d = p4d_offset(pgd, addr); 486 pud_t *pud = pud_offset(p4d, addr); 487 pmd_t *pmd = pmd_offset(pud, addr); 488 struct address_space *mapping; 489 pgoff_t index; 490 static unsigned long resume; 491 static unsigned long nr_shown; 492 static unsigned long nr_unshown; 493 494 /* 495 * Allow a burst of 60 reports, then keep quiet for that minute; 496 * or allow a steady drip of one report per second. 497 */ 498 if (nr_shown == 60) { 499 if (time_before(jiffies, resume)) { 500 nr_unshown++; 501 return; 502 } 503 if (nr_unshown) { 504 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 505 nr_unshown); 506 nr_unshown = 0; 507 } 508 nr_shown = 0; 509 } 510 if (nr_shown++ == 0) 511 resume = jiffies + 60 * HZ; 512 513 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 514 index = linear_page_index(vma, addr); 515 516 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 517 current->comm, 518 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 519 if (page) 520 dump_page(page, "bad pte"); 521 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 523 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 524 vma->vm_file, 525 vma->vm_ops ? vma->vm_ops->fault : NULL, 526 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 527 mapping ? mapping->a_ops->readpage : NULL); 528 dump_stack(); 529 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 530 } 531 532 /* 533 * vm_normal_page -- This function gets the "struct page" associated with a pte. 534 * 535 * "Special" mappings do not wish to be associated with a "struct page" (either 536 * it doesn't exist, or it exists but they don't want to touch it). In this 537 * case, NULL is returned here. "Normal" mappings do have a struct page. 538 * 539 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 540 * pte bit, in which case this function is trivial. Secondly, an architecture 541 * may not have a spare pte bit, which requires a more complicated scheme, 542 * described below. 543 * 544 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 545 * special mapping (even if there are underlying and valid "struct pages"). 546 * COWed pages of a VM_PFNMAP are always normal. 547 * 548 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 549 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 550 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 551 * mapping will always honor the rule 552 * 553 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 554 * 555 * And for normal mappings this is false. 556 * 557 * This restricts such mappings to be a linear translation from virtual address 558 * to pfn. To get around this restriction, we allow arbitrary mappings so long 559 * as the vma is not a COW mapping; in that case, we know that all ptes are 560 * special (because none can have been COWed). 561 * 562 * 563 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 564 * 565 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 566 * page" backing, however the difference is that _all_ pages with a struct 567 * page (that is, those where pfn_valid is true) are refcounted and considered 568 * normal pages by the VM. The disadvantage is that pages are refcounted 569 * (which can be slower and simply not an option for some PFNMAP users). The 570 * advantage is that we don't have to follow the strict linearity rule of 571 * PFNMAP mappings in order to support COWable mappings. 572 * 573 */ 574 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 575 pte_t pte, bool with_public_device) 576 { 577 unsigned long pfn = pte_pfn(pte); 578 579 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 580 if (likely(!pte_special(pte))) 581 goto check_pfn; 582 if (vma->vm_ops && vma->vm_ops->find_special_page) 583 return vma->vm_ops->find_special_page(vma, addr); 584 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 585 return NULL; 586 if (is_zero_pfn(pfn)) 587 return NULL; 588 589 /* 590 * Device public pages are special pages (they are ZONE_DEVICE 591 * pages but different from persistent memory). They behave 592 * allmost like normal pages. The difference is that they are 593 * not on the lru and thus should never be involve with any- 594 * thing that involve lru manipulation (mlock, numa balancing, 595 * ...). 596 * 597 * This is why we still want to return NULL for such page from 598 * vm_normal_page() so that we do not have to special case all 599 * call site of vm_normal_page(). 600 */ 601 if (likely(pfn <= highest_memmap_pfn)) { 602 struct page *page = pfn_to_page(pfn); 603 604 if (is_device_public_page(page)) { 605 if (with_public_device) 606 return page; 607 return NULL; 608 } 609 } 610 611 if (pte_devmap(pte)) 612 return NULL; 613 614 print_bad_pte(vma, addr, pte, NULL); 615 return NULL; 616 } 617 618 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 619 620 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 621 if (vma->vm_flags & VM_MIXEDMAP) { 622 if (!pfn_valid(pfn)) 623 return NULL; 624 goto out; 625 } else { 626 unsigned long off; 627 off = (addr - vma->vm_start) >> PAGE_SHIFT; 628 if (pfn == vma->vm_pgoff + off) 629 return NULL; 630 if (!is_cow_mapping(vma->vm_flags)) 631 return NULL; 632 } 633 } 634 635 if (is_zero_pfn(pfn)) 636 return NULL; 637 638 check_pfn: 639 if (unlikely(pfn > highest_memmap_pfn)) { 640 print_bad_pte(vma, addr, pte, NULL); 641 return NULL; 642 } 643 644 /* 645 * NOTE! We still have PageReserved() pages in the page tables. 646 * eg. VDSO mappings can cause them to exist. 647 */ 648 out: 649 return pfn_to_page(pfn); 650 } 651 652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 653 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 654 pmd_t pmd) 655 { 656 unsigned long pfn = pmd_pfn(pmd); 657 658 /* 659 * There is no pmd_special() but there may be special pmds, e.g. 660 * in a direct-access (dax) mapping, so let's just replicate the 661 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 662 */ 663 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 664 if (vma->vm_flags & VM_MIXEDMAP) { 665 if (!pfn_valid(pfn)) 666 return NULL; 667 goto out; 668 } else { 669 unsigned long off; 670 off = (addr - vma->vm_start) >> PAGE_SHIFT; 671 if (pfn == vma->vm_pgoff + off) 672 return NULL; 673 if (!is_cow_mapping(vma->vm_flags)) 674 return NULL; 675 } 676 } 677 678 if (pmd_devmap(pmd)) 679 return NULL; 680 if (is_zero_pfn(pfn)) 681 return NULL; 682 if (unlikely(pfn > highest_memmap_pfn)) 683 return NULL; 684 685 /* 686 * NOTE! We still have PageReserved() pages in the page tables. 687 * eg. VDSO mappings can cause them to exist. 688 */ 689 out: 690 return pfn_to_page(pfn); 691 } 692 #endif 693 694 /* 695 * copy one vm_area from one task to the other. Assumes the page tables 696 * already present in the new task to be cleared in the whole range 697 * covered by this vma. 698 */ 699 700 static inline unsigned long 701 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 702 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 703 unsigned long addr, int *rss) 704 { 705 unsigned long vm_flags = vma->vm_flags; 706 pte_t pte = *src_pte; 707 struct page *page; 708 709 /* pte contains position in swap or file, so copy. */ 710 if (unlikely(!pte_present(pte))) { 711 swp_entry_t entry = pte_to_swp_entry(pte); 712 713 if (likely(!non_swap_entry(entry))) { 714 if (swap_duplicate(entry) < 0) 715 return entry.val; 716 717 /* make sure dst_mm is on swapoff's mmlist. */ 718 if (unlikely(list_empty(&dst_mm->mmlist))) { 719 spin_lock(&mmlist_lock); 720 if (list_empty(&dst_mm->mmlist)) 721 list_add(&dst_mm->mmlist, 722 &src_mm->mmlist); 723 spin_unlock(&mmlist_lock); 724 } 725 rss[MM_SWAPENTS]++; 726 } else if (is_migration_entry(entry)) { 727 page = migration_entry_to_page(entry); 728 729 rss[mm_counter(page)]++; 730 731 if (is_write_migration_entry(entry) && 732 is_cow_mapping(vm_flags)) { 733 /* 734 * COW mappings require pages in both 735 * parent and child to be set to read. 736 */ 737 make_migration_entry_read(&entry); 738 pte = swp_entry_to_pte(entry); 739 if (pte_swp_soft_dirty(*src_pte)) 740 pte = pte_swp_mksoft_dirty(pte); 741 set_pte_at(src_mm, addr, src_pte, pte); 742 } 743 } else if (is_device_private_entry(entry)) { 744 page = device_private_entry_to_page(entry); 745 746 /* 747 * Update rss count even for unaddressable pages, as 748 * they should treated just like normal pages in this 749 * respect. 750 * 751 * We will likely want to have some new rss counters 752 * for unaddressable pages, at some point. But for now 753 * keep things as they are. 754 */ 755 get_page(page); 756 rss[mm_counter(page)]++; 757 page_dup_rmap(page, false); 758 759 /* 760 * We do not preserve soft-dirty information, because so 761 * far, checkpoint/restore is the only feature that 762 * requires that. And checkpoint/restore does not work 763 * when a device driver is involved (you cannot easily 764 * save and restore device driver state). 765 */ 766 if (is_write_device_private_entry(entry) && 767 is_cow_mapping(vm_flags)) { 768 make_device_private_entry_read(&entry); 769 pte = swp_entry_to_pte(entry); 770 set_pte_at(src_mm, addr, src_pte, pte); 771 } 772 } 773 goto out_set_pte; 774 } 775 776 /* 777 * If it's a COW mapping, write protect it both 778 * in the parent and the child 779 */ 780 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 781 ptep_set_wrprotect(src_mm, addr, src_pte); 782 pte = pte_wrprotect(pte); 783 } 784 785 /* 786 * If it's a shared mapping, mark it clean in 787 * the child 788 */ 789 if (vm_flags & VM_SHARED) 790 pte = pte_mkclean(pte); 791 pte = pte_mkold(pte); 792 793 page = vm_normal_page(vma, addr, pte); 794 if (page) { 795 get_page(page); 796 page_dup_rmap(page, false); 797 rss[mm_counter(page)]++; 798 } else if (pte_devmap(pte)) { 799 page = pte_page(pte); 800 801 /* 802 * Cache coherent device memory behave like regular page and 803 * not like persistent memory page. For more informations see 804 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 805 */ 806 if (is_device_public_page(page)) { 807 get_page(page); 808 page_dup_rmap(page, false); 809 rss[mm_counter(page)]++; 810 } 811 } 812 813 out_set_pte: 814 set_pte_at(dst_mm, addr, dst_pte, pte); 815 return 0; 816 } 817 818 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 819 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 820 unsigned long addr, unsigned long end) 821 { 822 pte_t *orig_src_pte, *orig_dst_pte; 823 pte_t *src_pte, *dst_pte; 824 spinlock_t *src_ptl, *dst_ptl; 825 int progress = 0; 826 int rss[NR_MM_COUNTERS]; 827 swp_entry_t entry = (swp_entry_t){0}; 828 829 again: 830 init_rss_vec(rss); 831 832 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 833 if (!dst_pte) 834 return -ENOMEM; 835 src_pte = pte_offset_map(src_pmd, addr); 836 src_ptl = pte_lockptr(src_mm, src_pmd); 837 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 838 orig_src_pte = src_pte; 839 orig_dst_pte = dst_pte; 840 arch_enter_lazy_mmu_mode(); 841 842 do { 843 /* 844 * We are holding two locks at this point - either of them 845 * could generate latencies in another task on another CPU. 846 */ 847 if (progress >= 32) { 848 progress = 0; 849 if (need_resched() || 850 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 851 break; 852 } 853 if (pte_none(*src_pte)) { 854 progress++; 855 continue; 856 } 857 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 858 vma, addr, rss); 859 if (entry.val) 860 break; 861 progress += 8; 862 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 863 864 arch_leave_lazy_mmu_mode(); 865 spin_unlock(src_ptl); 866 pte_unmap(orig_src_pte); 867 add_mm_rss_vec(dst_mm, rss); 868 pte_unmap_unlock(orig_dst_pte, dst_ptl); 869 cond_resched(); 870 871 if (entry.val) { 872 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 873 return -ENOMEM; 874 progress = 0; 875 } 876 if (addr != end) 877 goto again; 878 return 0; 879 } 880 881 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 882 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 883 unsigned long addr, unsigned long end) 884 { 885 pmd_t *src_pmd, *dst_pmd; 886 unsigned long next; 887 888 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 889 if (!dst_pmd) 890 return -ENOMEM; 891 src_pmd = pmd_offset(src_pud, addr); 892 do { 893 next = pmd_addr_end(addr, end); 894 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 895 || pmd_devmap(*src_pmd)) { 896 int err; 897 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 898 err = copy_huge_pmd(dst_mm, src_mm, 899 dst_pmd, src_pmd, addr, vma); 900 if (err == -ENOMEM) 901 return -ENOMEM; 902 if (!err) 903 continue; 904 /* fall through */ 905 } 906 if (pmd_none_or_clear_bad(src_pmd)) 907 continue; 908 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 909 vma, addr, next)) 910 return -ENOMEM; 911 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 912 return 0; 913 } 914 915 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 916 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 917 unsigned long addr, unsigned long end) 918 { 919 pud_t *src_pud, *dst_pud; 920 unsigned long next; 921 922 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 923 if (!dst_pud) 924 return -ENOMEM; 925 src_pud = pud_offset(src_p4d, addr); 926 do { 927 next = pud_addr_end(addr, end); 928 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 929 int err; 930 931 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 932 err = copy_huge_pud(dst_mm, src_mm, 933 dst_pud, src_pud, addr, vma); 934 if (err == -ENOMEM) 935 return -ENOMEM; 936 if (!err) 937 continue; 938 /* fall through */ 939 } 940 if (pud_none_or_clear_bad(src_pud)) 941 continue; 942 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 943 vma, addr, next)) 944 return -ENOMEM; 945 } while (dst_pud++, src_pud++, addr = next, addr != end); 946 return 0; 947 } 948 949 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 950 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 951 unsigned long addr, unsigned long end) 952 { 953 p4d_t *src_p4d, *dst_p4d; 954 unsigned long next; 955 956 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 957 if (!dst_p4d) 958 return -ENOMEM; 959 src_p4d = p4d_offset(src_pgd, addr); 960 do { 961 next = p4d_addr_end(addr, end); 962 if (p4d_none_or_clear_bad(src_p4d)) 963 continue; 964 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 965 vma, addr, next)) 966 return -ENOMEM; 967 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 968 return 0; 969 } 970 971 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 972 struct vm_area_struct *vma) 973 { 974 pgd_t *src_pgd, *dst_pgd; 975 unsigned long next; 976 unsigned long addr = vma->vm_start; 977 unsigned long end = vma->vm_end; 978 struct mmu_notifier_range range; 979 bool is_cow; 980 int ret; 981 982 /* 983 * Don't copy ptes where a page fault will fill them correctly. 984 * Fork becomes much lighter when there are big shared or private 985 * readonly mappings. The tradeoff is that copy_page_range is more 986 * efficient than faulting. 987 */ 988 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 989 !vma->anon_vma) 990 return 0; 991 992 if (is_vm_hugetlb_page(vma)) 993 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 994 995 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 996 /* 997 * We do not free on error cases below as remove_vma 998 * gets called on error from higher level routine 999 */ 1000 ret = track_pfn_copy(vma); 1001 if (ret) 1002 return ret; 1003 } 1004 1005 /* 1006 * We need to invalidate the secondary MMU mappings only when 1007 * there could be a permission downgrade on the ptes of the 1008 * parent mm. And a permission downgrade will only happen if 1009 * is_cow_mapping() returns true. 1010 */ 1011 is_cow = is_cow_mapping(vma->vm_flags); 1012 1013 if (is_cow) { 1014 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1015 0, vma, src_mm, addr, end); 1016 mmu_notifier_invalidate_range_start(&range); 1017 } 1018 1019 ret = 0; 1020 dst_pgd = pgd_offset(dst_mm, addr); 1021 src_pgd = pgd_offset(src_mm, addr); 1022 do { 1023 next = pgd_addr_end(addr, end); 1024 if (pgd_none_or_clear_bad(src_pgd)) 1025 continue; 1026 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1027 vma, addr, next))) { 1028 ret = -ENOMEM; 1029 break; 1030 } 1031 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1032 1033 if (is_cow) 1034 mmu_notifier_invalidate_range_end(&range); 1035 return ret; 1036 } 1037 1038 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1039 struct vm_area_struct *vma, pmd_t *pmd, 1040 unsigned long addr, unsigned long end, 1041 struct zap_details *details) 1042 { 1043 struct mm_struct *mm = tlb->mm; 1044 int force_flush = 0; 1045 int rss[NR_MM_COUNTERS]; 1046 spinlock_t *ptl; 1047 pte_t *start_pte; 1048 pte_t *pte; 1049 swp_entry_t entry; 1050 1051 tlb_change_page_size(tlb, PAGE_SIZE); 1052 again: 1053 init_rss_vec(rss); 1054 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1055 pte = start_pte; 1056 flush_tlb_batched_pending(mm); 1057 arch_enter_lazy_mmu_mode(); 1058 do { 1059 pte_t ptent = *pte; 1060 if (pte_none(ptent)) 1061 continue; 1062 1063 if (pte_present(ptent)) { 1064 struct page *page; 1065 1066 page = _vm_normal_page(vma, addr, ptent, true); 1067 if (unlikely(details) && page) { 1068 /* 1069 * unmap_shared_mapping_pages() wants to 1070 * invalidate cache without truncating: 1071 * unmap shared but keep private pages. 1072 */ 1073 if (details->check_mapping && 1074 details->check_mapping != page_rmapping(page)) 1075 continue; 1076 } 1077 ptent = ptep_get_and_clear_full(mm, addr, pte, 1078 tlb->fullmm); 1079 tlb_remove_tlb_entry(tlb, pte, addr); 1080 if (unlikely(!page)) 1081 continue; 1082 1083 if (!PageAnon(page)) { 1084 if (pte_dirty(ptent)) { 1085 force_flush = 1; 1086 set_page_dirty(page); 1087 } 1088 if (pte_young(ptent) && 1089 likely(!(vma->vm_flags & VM_SEQ_READ))) 1090 mark_page_accessed(page); 1091 } 1092 rss[mm_counter(page)]--; 1093 page_remove_rmap(page, false); 1094 if (unlikely(page_mapcount(page) < 0)) 1095 print_bad_pte(vma, addr, ptent, page); 1096 if (unlikely(__tlb_remove_page(tlb, page))) { 1097 force_flush = 1; 1098 addr += PAGE_SIZE; 1099 break; 1100 } 1101 continue; 1102 } 1103 1104 entry = pte_to_swp_entry(ptent); 1105 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1106 struct page *page = device_private_entry_to_page(entry); 1107 1108 if (unlikely(details && details->check_mapping)) { 1109 /* 1110 * unmap_shared_mapping_pages() wants to 1111 * invalidate cache without truncating: 1112 * unmap shared but keep private pages. 1113 */ 1114 if (details->check_mapping != 1115 page_rmapping(page)) 1116 continue; 1117 } 1118 1119 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1120 rss[mm_counter(page)]--; 1121 page_remove_rmap(page, false); 1122 put_page(page); 1123 continue; 1124 } 1125 1126 /* If details->check_mapping, we leave swap entries. */ 1127 if (unlikely(details)) 1128 continue; 1129 1130 entry = pte_to_swp_entry(ptent); 1131 if (!non_swap_entry(entry)) 1132 rss[MM_SWAPENTS]--; 1133 else if (is_migration_entry(entry)) { 1134 struct page *page; 1135 1136 page = migration_entry_to_page(entry); 1137 rss[mm_counter(page)]--; 1138 } 1139 if (unlikely(!free_swap_and_cache(entry))) 1140 print_bad_pte(vma, addr, ptent, NULL); 1141 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1142 } while (pte++, addr += PAGE_SIZE, addr != end); 1143 1144 add_mm_rss_vec(mm, rss); 1145 arch_leave_lazy_mmu_mode(); 1146 1147 /* Do the actual TLB flush before dropping ptl */ 1148 if (force_flush) 1149 tlb_flush_mmu_tlbonly(tlb); 1150 pte_unmap_unlock(start_pte, ptl); 1151 1152 /* 1153 * If we forced a TLB flush (either due to running out of 1154 * batch buffers or because we needed to flush dirty TLB 1155 * entries before releasing the ptl), free the batched 1156 * memory too. Restart if we didn't do everything. 1157 */ 1158 if (force_flush) { 1159 force_flush = 0; 1160 tlb_flush_mmu(tlb); 1161 if (addr != end) 1162 goto again; 1163 } 1164 1165 return addr; 1166 } 1167 1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1169 struct vm_area_struct *vma, pud_t *pud, 1170 unsigned long addr, unsigned long end, 1171 struct zap_details *details) 1172 { 1173 pmd_t *pmd; 1174 unsigned long next; 1175 1176 pmd = pmd_offset(pud, addr); 1177 do { 1178 next = pmd_addr_end(addr, end); 1179 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1180 if (next - addr != HPAGE_PMD_SIZE) 1181 __split_huge_pmd(vma, pmd, addr, false, NULL); 1182 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1183 goto next; 1184 /* fall through */ 1185 } 1186 /* 1187 * Here there can be other concurrent MADV_DONTNEED or 1188 * trans huge page faults running, and if the pmd is 1189 * none or trans huge it can change under us. This is 1190 * because MADV_DONTNEED holds the mmap_sem in read 1191 * mode. 1192 */ 1193 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1194 goto next; 1195 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1196 next: 1197 cond_resched(); 1198 } while (pmd++, addr = next, addr != end); 1199 1200 return addr; 1201 } 1202 1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1204 struct vm_area_struct *vma, p4d_t *p4d, 1205 unsigned long addr, unsigned long end, 1206 struct zap_details *details) 1207 { 1208 pud_t *pud; 1209 unsigned long next; 1210 1211 pud = pud_offset(p4d, addr); 1212 do { 1213 next = pud_addr_end(addr, end); 1214 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1215 if (next - addr != HPAGE_PUD_SIZE) { 1216 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1217 split_huge_pud(vma, pud, addr); 1218 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1219 goto next; 1220 /* fall through */ 1221 } 1222 if (pud_none_or_clear_bad(pud)) 1223 continue; 1224 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1225 next: 1226 cond_resched(); 1227 } while (pud++, addr = next, addr != end); 1228 1229 return addr; 1230 } 1231 1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1233 struct vm_area_struct *vma, pgd_t *pgd, 1234 unsigned long addr, unsigned long end, 1235 struct zap_details *details) 1236 { 1237 p4d_t *p4d; 1238 unsigned long next; 1239 1240 p4d = p4d_offset(pgd, addr); 1241 do { 1242 next = p4d_addr_end(addr, end); 1243 if (p4d_none_or_clear_bad(p4d)) 1244 continue; 1245 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1246 } while (p4d++, addr = next, addr != end); 1247 1248 return addr; 1249 } 1250 1251 void unmap_page_range(struct mmu_gather *tlb, 1252 struct vm_area_struct *vma, 1253 unsigned long addr, unsigned long end, 1254 struct zap_details *details) 1255 { 1256 pgd_t *pgd; 1257 unsigned long next; 1258 1259 BUG_ON(addr >= end); 1260 tlb_start_vma(tlb, vma); 1261 pgd = pgd_offset(vma->vm_mm, addr); 1262 do { 1263 next = pgd_addr_end(addr, end); 1264 if (pgd_none_or_clear_bad(pgd)) 1265 continue; 1266 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1267 } while (pgd++, addr = next, addr != end); 1268 tlb_end_vma(tlb, vma); 1269 } 1270 1271 1272 static void unmap_single_vma(struct mmu_gather *tlb, 1273 struct vm_area_struct *vma, unsigned long start_addr, 1274 unsigned long end_addr, 1275 struct zap_details *details) 1276 { 1277 unsigned long start = max(vma->vm_start, start_addr); 1278 unsigned long end; 1279 1280 if (start >= vma->vm_end) 1281 return; 1282 end = min(vma->vm_end, end_addr); 1283 if (end <= vma->vm_start) 1284 return; 1285 1286 if (vma->vm_file) 1287 uprobe_munmap(vma, start, end); 1288 1289 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1290 untrack_pfn(vma, 0, 0); 1291 1292 if (start != end) { 1293 if (unlikely(is_vm_hugetlb_page(vma))) { 1294 /* 1295 * It is undesirable to test vma->vm_file as it 1296 * should be non-null for valid hugetlb area. 1297 * However, vm_file will be NULL in the error 1298 * cleanup path of mmap_region. When 1299 * hugetlbfs ->mmap method fails, 1300 * mmap_region() nullifies vma->vm_file 1301 * before calling this function to clean up. 1302 * Since no pte has actually been setup, it is 1303 * safe to do nothing in this case. 1304 */ 1305 if (vma->vm_file) { 1306 i_mmap_lock_write(vma->vm_file->f_mapping); 1307 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1308 i_mmap_unlock_write(vma->vm_file->f_mapping); 1309 } 1310 } else 1311 unmap_page_range(tlb, vma, start, end, details); 1312 } 1313 } 1314 1315 /** 1316 * unmap_vmas - unmap a range of memory covered by a list of vma's 1317 * @tlb: address of the caller's struct mmu_gather 1318 * @vma: the starting vma 1319 * @start_addr: virtual address at which to start unmapping 1320 * @end_addr: virtual address at which to end unmapping 1321 * 1322 * Unmap all pages in the vma list. 1323 * 1324 * Only addresses between `start' and `end' will be unmapped. 1325 * 1326 * The VMA list must be sorted in ascending virtual address order. 1327 * 1328 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1329 * range after unmap_vmas() returns. So the only responsibility here is to 1330 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1331 * drops the lock and schedules. 1332 */ 1333 void unmap_vmas(struct mmu_gather *tlb, 1334 struct vm_area_struct *vma, unsigned long start_addr, 1335 unsigned long end_addr) 1336 { 1337 struct mmu_notifier_range range; 1338 1339 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1340 start_addr, end_addr); 1341 mmu_notifier_invalidate_range_start(&range); 1342 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1343 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1344 mmu_notifier_invalidate_range_end(&range); 1345 } 1346 1347 /** 1348 * zap_page_range - remove user pages in a given range 1349 * @vma: vm_area_struct holding the applicable pages 1350 * @start: starting address of pages to zap 1351 * @size: number of bytes to zap 1352 * 1353 * Caller must protect the VMA list 1354 */ 1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1356 unsigned long size) 1357 { 1358 struct mmu_notifier_range range; 1359 struct mmu_gather tlb; 1360 1361 lru_add_drain(); 1362 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1363 start, start + size); 1364 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1365 update_hiwater_rss(vma->vm_mm); 1366 mmu_notifier_invalidate_range_start(&range); 1367 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1368 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1369 mmu_notifier_invalidate_range_end(&range); 1370 tlb_finish_mmu(&tlb, start, range.end); 1371 } 1372 1373 /** 1374 * zap_page_range_single - remove user pages in a given range 1375 * @vma: vm_area_struct holding the applicable pages 1376 * @address: starting address of pages to zap 1377 * @size: number of bytes to zap 1378 * @details: details of shared cache invalidation 1379 * 1380 * The range must fit into one VMA. 1381 */ 1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1383 unsigned long size, struct zap_details *details) 1384 { 1385 struct mmu_notifier_range range; 1386 struct mmu_gather tlb; 1387 1388 lru_add_drain(); 1389 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1390 address, address + size); 1391 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1392 update_hiwater_rss(vma->vm_mm); 1393 mmu_notifier_invalidate_range_start(&range); 1394 unmap_single_vma(&tlb, vma, address, range.end, details); 1395 mmu_notifier_invalidate_range_end(&range); 1396 tlb_finish_mmu(&tlb, address, range.end); 1397 } 1398 1399 /** 1400 * zap_vma_ptes - remove ptes mapping the vma 1401 * @vma: vm_area_struct holding ptes to be zapped 1402 * @address: starting address of pages to zap 1403 * @size: number of bytes to zap 1404 * 1405 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1406 * 1407 * The entire address range must be fully contained within the vma. 1408 * 1409 */ 1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1411 unsigned long size) 1412 { 1413 if (address < vma->vm_start || address + size > vma->vm_end || 1414 !(vma->vm_flags & VM_PFNMAP)) 1415 return; 1416 1417 zap_page_range_single(vma, address, size, NULL); 1418 } 1419 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1420 1421 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1422 spinlock_t **ptl) 1423 { 1424 pgd_t *pgd; 1425 p4d_t *p4d; 1426 pud_t *pud; 1427 pmd_t *pmd; 1428 1429 pgd = pgd_offset(mm, addr); 1430 p4d = p4d_alloc(mm, pgd, addr); 1431 if (!p4d) 1432 return NULL; 1433 pud = pud_alloc(mm, p4d, addr); 1434 if (!pud) 1435 return NULL; 1436 pmd = pmd_alloc(mm, pud, addr); 1437 if (!pmd) 1438 return NULL; 1439 1440 VM_BUG_ON(pmd_trans_huge(*pmd)); 1441 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1442 } 1443 1444 /* 1445 * This is the old fallback for page remapping. 1446 * 1447 * For historical reasons, it only allows reserved pages. Only 1448 * old drivers should use this, and they needed to mark their 1449 * pages reserved for the old functions anyway. 1450 */ 1451 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1452 struct page *page, pgprot_t prot) 1453 { 1454 struct mm_struct *mm = vma->vm_mm; 1455 int retval; 1456 pte_t *pte; 1457 spinlock_t *ptl; 1458 1459 retval = -EINVAL; 1460 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1461 goto out; 1462 retval = -ENOMEM; 1463 flush_dcache_page(page); 1464 pte = get_locked_pte(mm, addr, &ptl); 1465 if (!pte) 1466 goto out; 1467 retval = -EBUSY; 1468 if (!pte_none(*pte)) 1469 goto out_unlock; 1470 1471 /* Ok, finally just insert the thing.. */ 1472 get_page(page); 1473 inc_mm_counter_fast(mm, mm_counter_file(page)); 1474 page_add_file_rmap(page, false); 1475 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1476 1477 retval = 0; 1478 pte_unmap_unlock(pte, ptl); 1479 return retval; 1480 out_unlock: 1481 pte_unmap_unlock(pte, ptl); 1482 out: 1483 return retval; 1484 } 1485 1486 /** 1487 * vm_insert_page - insert single page into user vma 1488 * @vma: user vma to map to 1489 * @addr: target user address of this page 1490 * @page: source kernel page 1491 * 1492 * This allows drivers to insert individual pages they've allocated 1493 * into a user vma. 1494 * 1495 * The page has to be a nice clean _individual_ kernel allocation. 1496 * If you allocate a compound page, you need to have marked it as 1497 * such (__GFP_COMP), or manually just split the page up yourself 1498 * (see split_page()). 1499 * 1500 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1501 * took an arbitrary page protection parameter. This doesn't allow 1502 * that. Your vma protection will have to be set up correctly, which 1503 * means that if you want a shared writable mapping, you'd better 1504 * ask for a shared writable mapping! 1505 * 1506 * The page does not need to be reserved. 1507 * 1508 * Usually this function is called from f_op->mmap() handler 1509 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1510 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1511 * function from other places, for example from page-fault handler. 1512 * 1513 * Return: %0 on success, negative error code otherwise. 1514 */ 1515 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1516 struct page *page) 1517 { 1518 if (addr < vma->vm_start || addr >= vma->vm_end) 1519 return -EFAULT; 1520 if (!page_count(page)) 1521 return -EINVAL; 1522 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1523 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1524 BUG_ON(vma->vm_flags & VM_PFNMAP); 1525 vma->vm_flags |= VM_MIXEDMAP; 1526 } 1527 return insert_page(vma, addr, page, vma->vm_page_prot); 1528 } 1529 EXPORT_SYMBOL(vm_insert_page); 1530 1531 /* 1532 * __vm_map_pages - maps range of kernel pages into user vma 1533 * @vma: user vma to map to 1534 * @pages: pointer to array of source kernel pages 1535 * @num: number of pages in page array 1536 * @offset: user's requested vm_pgoff 1537 * 1538 * This allows drivers to map range of kernel pages into a user vma. 1539 * 1540 * Return: 0 on success and error code otherwise. 1541 */ 1542 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1543 unsigned long num, unsigned long offset) 1544 { 1545 unsigned long count = vma_pages(vma); 1546 unsigned long uaddr = vma->vm_start; 1547 int ret, i; 1548 1549 /* Fail if the user requested offset is beyond the end of the object */ 1550 if (offset > num) 1551 return -ENXIO; 1552 1553 /* Fail if the user requested size exceeds available object size */ 1554 if (count > num - offset) 1555 return -ENXIO; 1556 1557 for (i = 0; i < count; i++) { 1558 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1559 if (ret < 0) 1560 return ret; 1561 uaddr += PAGE_SIZE; 1562 } 1563 1564 return 0; 1565 } 1566 1567 /** 1568 * vm_map_pages - maps range of kernel pages starts with non zero offset 1569 * @vma: user vma to map to 1570 * @pages: pointer to array of source kernel pages 1571 * @num: number of pages in page array 1572 * 1573 * Maps an object consisting of @num pages, catering for the user's 1574 * requested vm_pgoff 1575 * 1576 * If we fail to insert any page into the vma, the function will return 1577 * immediately leaving any previously inserted pages present. Callers 1578 * from the mmap handler may immediately return the error as their caller 1579 * will destroy the vma, removing any successfully inserted pages. Other 1580 * callers should make their own arrangements for calling unmap_region(). 1581 * 1582 * Context: Process context. Called by mmap handlers. 1583 * Return: 0 on success and error code otherwise. 1584 */ 1585 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1586 unsigned long num) 1587 { 1588 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1589 } 1590 EXPORT_SYMBOL(vm_map_pages); 1591 1592 /** 1593 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1594 * @vma: user vma to map to 1595 * @pages: pointer to array of source kernel pages 1596 * @num: number of pages in page array 1597 * 1598 * Similar to vm_map_pages(), except that it explicitly sets the offset 1599 * to 0. This function is intended for the drivers that did not consider 1600 * vm_pgoff. 1601 * 1602 * Context: Process context. Called by mmap handlers. 1603 * Return: 0 on success and error code otherwise. 1604 */ 1605 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1606 unsigned long num) 1607 { 1608 return __vm_map_pages(vma, pages, num, 0); 1609 } 1610 EXPORT_SYMBOL(vm_map_pages_zero); 1611 1612 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1613 pfn_t pfn, pgprot_t prot, bool mkwrite) 1614 { 1615 struct mm_struct *mm = vma->vm_mm; 1616 pte_t *pte, entry; 1617 spinlock_t *ptl; 1618 1619 pte = get_locked_pte(mm, addr, &ptl); 1620 if (!pte) 1621 return VM_FAULT_OOM; 1622 if (!pte_none(*pte)) { 1623 if (mkwrite) { 1624 /* 1625 * For read faults on private mappings the PFN passed 1626 * in may not match the PFN we have mapped if the 1627 * mapped PFN is a writeable COW page. In the mkwrite 1628 * case we are creating a writable PTE for a shared 1629 * mapping and we expect the PFNs to match. If they 1630 * don't match, we are likely racing with block 1631 * allocation and mapping invalidation so just skip the 1632 * update. 1633 */ 1634 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1635 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1636 goto out_unlock; 1637 } 1638 entry = pte_mkyoung(*pte); 1639 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1640 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1641 update_mmu_cache(vma, addr, pte); 1642 } 1643 goto out_unlock; 1644 } 1645 1646 /* Ok, finally just insert the thing.. */ 1647 if (pfn_t_devmap(pfn)) 1648 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1649 else 1650 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1651 1652 if (mkwrite) { 1653 entry = pte_mkyoung(entry); 1654 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1655 } 1656 1657 set_pte_at(mm, addr, pte, entry); 1658 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1659 1660 out_unlock: 1661 pte_unmap_unlock(pte, ptl); 1662 return VM_FAULT_NOPAGE; 1663 } 1664 1665 /** 1666 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1667 * @vma: user vma to map to 1668 * @addr: target user address of this page 1669 * @pfn: source kernel pfn 1670 * @pgprot: pgprot flags for the inserted page 1671 * 1672 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1673 * to override pgprot on a per-page basis. 1674 * 1675 * This only makes sense for IO mappings, and it makes no sense for 1676 * COW mappings. In general, using multiple vmas is preferable; 1677 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1678 * impractical. 1679 * 1680 * Context: Process context. May allocate using %GFP_KERNEL. 1681 * Return: vm_fault_t value. 1682 */ 1683 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1684 unsigned long pfn, pgprot_t pgprot) 1685 { 1686 /* 1687 * Technically, architectures with pte_special can avoid all these 1688 * restrictions (same for remap_pfn_range). However we would like 1689 * consistency in testing and feature parity among all, so we should 1690 * try to keep these invariants in place for everybody. 1691 */ 1692 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1693 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1694 (VM_PFNMAP|VM_MIXEDMAP)); 1695 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1696 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1697 1698 if (addr < vma->vm_start || addr >= vma->vm_end) 1699 return VM_FAULT_SIGBUS; 1700 1701 if (!pfn_modify_allowed(pfn, pgprot)) 1702 return VM_FAULT_SIGBUS; 1703 1704 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1705 1706 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1707 false); 1708 } 1709 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1710 1711 /** 1712 * vmf_insert_pfn - insert single pfn into user vma 1713 * @vma: user vma to map to 1714 * @addr: target user address of this page 1715 * @pfn: source kernel pfn 1716 * 1717 * Similar to vm_insert_page, this allows drivers to insert individual pages 1718 * they've allocated into a user vma. Same comments apply. 1719 * 1720 * This function should only be called from a vm_ops->fault handler, and 1721 * in that case the handler should return the result of this function. 1722 * 1723 * vma cannot be a COW mapping. 1724 * 1725 * As this is called only for pages that do not currently exist, we 1726 * do not need to flush old virtual caches or the TLB. 1727 * 1728 * Context: Process context. May allocate using %GFP_KERNEL. 1729 * Return: vm_fault_t value. 1730 */ 1731 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1732 unsigned long pfn) 1733 { 1734 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1735 } 1736 EXPORT_SYMBOL(vmf_insert_pfn); 1737 1738 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1739 { 1740 /* these checks mirror the abort conditions in vm_normal_page */ 1741 if (vma->vm_flags & VM_MIXEDMAP) 1742 return true; 1743 if (pfn_t_devmap(pfn)) 1744 return true; 1745 if (pfn_t_special(pfn)) 1746 return true; 1747 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1748 return true; 1749 return false; 1750 } 1751 1752 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1753 unsigned long addr, pfn_t pfn, bool mkwrite) 1754 { 1755 pgprot_t pgprot = vma->vm_page_prot; 1756 int err; 1757 1758 BUG_ON(!vm_mixed_ok(vma, pfn)); 1759 1760 if (addr < vma->vm_start || addr >= vma->vm_end) 1761 return VM_FAULT_SIGBUS; 1762 1763 track_pfn_insert(vma, &pgprot, pfn); 1764 1765 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1766 return VM_FAULT_SIGBUS; 1767 1768 /* 1769 * If we don't have pte special, then we have to use the pfn_valid() 1770 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1771 * refcount the page if pfn_valid is true (hence insert_page rather 1772 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1773 * without pte special, it would there be refcounted as a normal page. 1774 */ 1775 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1776 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1777 struct page *page; 1778 1779 /* 1780 * At this point we are committed to insert_page() 1781 * regardless of whether the caller specified flags that 1782 * result in pfn_t_has_page() == false. 1783 */ 1784 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1785 err = insert_page(vma, addr, page, pgprot); 1786 } else { 1787 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1788 } 1789 1790 if (err == -ENOMEM) 1791 return VM_FAULT_OOM; 1792 if (err < 0 && err != -EBUSY) 1793 return VM_FAULT_SIGBUS; 1794 1795 return VM_FAULT_NOPAGE; 1796 } 1797 1798 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1799 pfn_t pfn) 1800 { 1801 return __vm_insert_mixed(vma, addr, pfn, false); 1802 } 1803 EXPORT_SYMBOL(vmf_insert_mixed); 1804 1805 /* 1806 * If the insertion of PTE failed because someone else already added a 1807 * different entry in the mean time, we treat that as success as we assume 1808 * the same entry was actually inserted. 1809 */ 1810 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1811 unsigned long addr, pfn_t pfn) 1812 { 1813 return __vm_insert_mixed(vma, addr, pfn, true); 1814 } 1815 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1816 1817 /* 1818 * maps a range of physical memory into the requested pages. the old 1819 * mappings are removed. any references to nonexistent pages results 1820 * in null mappings (currently treated as "copy-on-access") 1821 */ 1822 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1823 unsigned long addr, unsigned long end, 1824 unsigned long pfn, pgprot_t prot) 1825 { 1826 pte_t *pte; 1827 spinlock_t *ptl; 1828 int err = 0; 1829 1830 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1831 if (!pte) 1832 return -ENOMEM; 1833 arch_enter_lazy_mmu_mode(); 1834 do { 1835 BUG_ON(!pte_none(*pte)); 1836 if (!pfn_modify_allowed(pfn, prot)) { 1837 err = -EACCES; 1838 break; 1839 } 1840 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1841 pfn++; 1842 } while (pte++, addr += PAGE_SIZE, addr != end); 1843 arch_leave_lazy_mmu_mode(); 1844 pte_unmap_unlock(pte - 1, ptl); 1845 return err; 1846 } 1847 1848 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1849 unsigned long addr, unsigned long end, 1850 unsigned long pfn, pgprot_t prot) 1851 { 1852 pmd_t *pmd; 1853 unsigned long next; 1854 int err; 1855 1856 pfn -= addr >> PAGE_SHIFT; 1857 pmd = pmd_alloc(mm, pud, addr); 1858 if (!pmd) 1859 return -ENOMEM; 1860 VM_BUG_ON(pmd_trans_huge(*pmd)); 1861 do { 1862 next = pmd_addr_end(addr, end); 1863 err = remap_pte_range(mm, pmd, addr, next, 1864 pfn + (addr >> PAGE_SHIFT), prot); 1865 if (err) 1866 return err; 1867 } while (pmd++, addr = next, addr != end); 1868 return 0; 1869 } 1870 1871 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1872 unsigned long addr, unsigned long end, 1873 unsigned long pfn, pgprot_t prot) 1874 { 1875 pud_t *pud; 1876 unsigned long next; 1877 int err; 1878 1879 pfn -= addr >> PAGE_SHIFT; 1880 pud = pud_alloc(mm, p4d, addr); 1881 if (!pud) 1882 return -ENOMEM; 1883 do { 1884 next = pud_addr_end(addr, end); 1885 err = remap_pmd_range(mm, pud, addr, next, 1886 pfn + (addr >> PAGE_SHIFT), prot); 1887 if (err) 1888 return err; 1889 } while (pud++, addr = next, addr != end); 1890 return 0; 1891 } 1892 1893 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1894 unsigned long addr, unsigned long end, 1895 unsigned long pfn, pgprot_t prot) 1896 { 1897 p4d_t *p4d; 1898 unsigned long next; 1899 int err; 1900 1901 pfn -= addr >> PAGE_SHIFT; 1902 p4d = p4d_alloc(mm, pgd, addr); 1903 if (!p4d) 1904 return -ENOMEM; 1905 do { 1906 next = p4d_addr_end(addr, end); 1907 err = remap_pud_range(mm, p4d, addr, next, 1908 pfn + (addr >> PAGE_SHIFT), prot); 1909 if (err) 1910 return err; 1911 } while (p4d++, addr = next, addr != end); 1912 return 0; 1913 } 1914 1915 /** 1916 * remap_pfn_range - remap kernel memory to userspace 1917 * @vma: user vma to map to 1918 * @addr: target user address to start at 1919 * @pfn: physical address of kernel memory 1920 * @size: size of map area 1921 * @prot: page protection flags for this mapping 1922 * 1923 * Note: this is only safe if the mm semaphore is held when called. 1924 * 1925 * Return: %0 on success, negative error code otherwise. 1926 */ 1927 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1928 unsigned long pfn, unsigned long size, pgprot_t prot) 1929 { 1930 pgd_t *pgd; 1931 unsigned long next; 1932 unsigned long end = addr + PAGE_ALIGN(size); 1933 struct mm_struct *mm = vma->vm_mm; 1934 unsigned long remap_pfn = pfn; 1935 int err; 1936 1937 /* 1938 * Physically remapped pages are special. Tell the 1939 * rest of the world about it: 1940 * VM_IO tells people not to look at these pages 1941 * (accesses can have side effects). 1942 * VM_PFNMAP tells the core MM that the base pages are just 1943 * raw PFN mappings, and do not have a "struct page" associated 1944 * with them. 1945 * VM_DONTEXPAND 1946 * Disable vma merging and expanding with mremap(). 1947 * VM_DONTDUMP 1948 * Omit vma from core dump, even when VM_IO turned off. 1949 * 1950 * There's a horrible special case to handle copy-on-write 1951 * behaviour that some programs depend on. We mark the "original" 1952 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1953 * See vm_normal_page() for details. 1954 */ 1955 if (is_cow_mapping(vma->vm_flags)) { 1956 if (addr != vma->vm_start || end != vma->vm_end) 1957 return -EINVAL; 1958 vma->vm_pgoff = pfn; 1959 } 1960 1961 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1962 if (err) 1963 return -EINVAL; 1964 1965 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1966 1967 BUG_ON(addr >= end); 1968 pfn -= addr >> PAGE_SHIFT; 1969 pgd = pgd_offset(mm, addr); 1970 flush_cache_range(vma, addr, end); 1971 do { 1972 next = pgd_addr_end(addr, end); 1973 err = remap_p4d_range(mm, pgd, addr, next, 1974 pfn + (addr >> PAGE_SHIFT), prot); 1975 if (err) 1976 break; 1977 } while (pgd++, addr = next, addr != end); 1978 1979 if (err) 1980 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1981 1982 return err; 1983 } 1984 EXPORT_SYMBOL(remap_pfn_range); 1985 1986 /** 1987 * vm_iomap_memory - remap memory to userspace 1988 * @vma: user vma to map to 1989 * @start: start of area 1990 * @len: size of area 1991 * 1992 * This is a simplified io_remap_pfn_range() for common driver use. The 1993 * driver just needs to give us the physical memory range to be mapped, 1994 * we'll figure out the rest from the vma information. 1995 * 1996 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1997 * whatever write-combining details or similar. 1998 * 1999 * Return: %0 on success, negative error code otherwise. 2000 */ 2001 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2002 { 2003 unsigned long vm_len, pfn, pages; 2004 2005 /* Check that the physical memory area passed in looks valid */ 2006 if (start + len < start) 2007 return -EINVAL; 2008 /* 2009 * You *really* shouldn't map things that aren't page-aligned, 2010 * but we've historically allowed it because IO memory might 2011 * just have smaller alignment. 2012 */ 2013 len += start & ~PAGE_MASK; 2014 pfn = start >> PAGE_SHIFT; 2015 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2016 if (pfn + pages < pfn) 2017 return -EINVAL; 2018 2019 /* We start the mapping 'vm_pgoff' pages into the area */ 2020 if (vma->vm_pgoff > pages) 2021 return -EINVAL; 2022 pfn += vma->vm_pgoff; 2023 pages -= vma->vm_pgoff; 2024 2025 /* Can we fit all of the mapping? */ 2026 vm_len = vma->vm_end - vma->vm_start; 2027 if (vm_len >> PAGE_SHIFT > pages) 2028 return -EINVAL; 2029 2030 /* Ok, let it rip */ 2031 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2032 } 2033 EXPORT_SYMBOL(vm_iomap_memory); 2034 2035 static int apply_to_pte_range(struct pfn_range_apply *closure, pmd_t *pmd, 2036 unsigned long addr, unsigned long end) 2037 { 2038 pte_t *pte; 2039 int err; 2040 pgtable_t token; 2041 spinlock_t *uninitialized_var(ptl); 2042 2043 pte = (closure->mm == &init_mm) ? 2044 pte_alloc_kernel(pmd, addr) : 2045 pte_alloc_map_lock(closure->mm, pmd, addr, &ptl); 2046 if (!pte) 2047 return -ENOMEM; 2048 2049 BUG_ON(pmd_huge(*pmd)); 2050 2051 arch_enter_lazy_mmu_mode(); 2052 2053 token = pmd_pgtable(*pmd); 2054 2055 do { 2056 err = closure->ptefn(pte++, token, addr, closure); 2057 if (err) 2058 break; 2059 } while (addr += PAGE_SIZE, addr != end); 2060 2061 arch_leave_lazy_mmu_mode(); 2062 2063 if (closure->mm != &init_mm) 2064 pte_unmap_unlock(pte-1, ptl); 2065 return err; 2066 } 2067 2068 static int apply_to_pmd_range(struct pfn_range_apply *closure, pud_t *pud, 2069 unsigned long addr, unsigned long end) 2070 { 2071 pmd_t *pmd; 2072 unsigned long next; 2073 int err = 0; 2074 2075 BUG_ON(pud_huge(*pud)); 2076 2077 pmd = pmd_alloc(closure->mm, pud, addr); 2078 if (!pmd) 2079 return -ENOMEM; 2080 2081 do { 2082 next = pmd_addr_end(addr, end); 2083 if (!closure->alloc && pmd_none_or_clear_bad(pmd)) 2084 continue; 2085 err = apply_to_pte_range(closure, pmd, addr, next); 2086 if (err) 2087 break; 2088 } while (pmd++, addr = next, addr != end); 2089 return err; 2090 } 2091 2092 static int apply_to_pud_range(struct pfn_range_apply *closure, p4d_t *p4d, 2093 unsigned long addr, unsigned long end) 2094 { 2095 pud_t *pud; 2096 unsigned long next; 2097 int err = 0; 2098 2099 pud = pud_alloc(closure->mm, p4d, addr); 2100 if (!pud) 2101 return -ENOMEM; 2102 2103 do { 2104 next = pud_addr_end(addr, end); 2105 if (!closure->alloc && pud_none_or_clear_bad(pud)) 2106 continue; 2107 err = apply_to_pmd_range(closure, pud, addr, next); 2108 if (err) 2109 break; 2110 } while (pud++, addr = next, addr != end); 2111 return err; 2112 } 2113 2114 static int apply_to_p4d_range(struct pfn_range_apply *closure, pgd_t *pgd, 2115 unsigned long addr, unsigned long end) 2116 { 2117 p4d_t *p4d; 2118 unsigned long next; 2119 int err = 0; 2120 2121 p4d = p4d_alloc(closure->mm, pgd, addr); 2122 if (!p4d) 2123 return -ENOMEM; 2124 2125 do { 2126 next = p4d_addr_end(addr, end); 2127 if (!closure->alloc && p4d_none_or_clear_bad(p4d)) 2128 continue; 2129 err = apply_to_pud_range(closure, p4d, addr, next); 2130 if (err) 2131 break; 2132 } while (p4d++, addr = next, addr != end); 2133 return err; 2134 } 2135 2136 /** 2137 * apply_to_pfn_range - Scan a region of virtual memory, calling a provided 2138 * function on each leaf page table entry 2139 * @closure: Details about how to scan and what function to apply 2140 * @addr: Start virtual address 2141 * @size: Size of the region 2142 * 2143 * If @closure->alloc is set to 1, the function will fill in the page table 2144 * as necessary. Otherwise it will skip non-present parts. 2145 * Note: The caller must ensure that the range does not contain huge pages. 2146 * The caller must also assure that the proper mmu_notifier functions are 2147 * called before and after the call to apply_to_pfn_range. 2148 * 2149 * WARNING: Do not use this function unless you know exactly what you are 2150 * doing. It is lacking support for huge pages and transparent huge pages. 2151 * 2152 * Return: Zero on success. If the provided function returns a non-zero status, 2153 * the page table walk will terminate and that status will be returned. 2154 * If @closure->alloc is set to 1, then this function may also return memory 2155 * allocation errors arising from allocating page table memory. 2156 */ 2157 int apply_to_pfn_range(struct pfn_range_apply *closure, 2158 unsigned long addr, unsigned long size) 2159 { 2160 pgd_t *pgd; 2161 unsigned long next; 2162 unsigned long end = addr + size; 2163 int err; 2164 2165 if (WARN_ON(addr >= end)) 2166 return -EINVAL; 2167 2168 pgd = pgd_offset(closure->mm, addr); 2169 do { 2170 next = pgd_addr_end(addr, end); 2171 if (!closure->alloc && pgd_none_or_clear_bad(pgd)) 2172 continue; 2173 err = apply_to_p4d_range(closure, pgd, addr, next); 2174 if (err) 2175 break; 2176 } while (pgd++, addr = next, addr != end); 2177 2178 return err; 2179 } 2180 2181 /** 2182 * struct page_range_apply - Closure structure for apply_to_page_range() 2183 * @pter: The base closure structure we derive from 2184 * @fn: The leaf pte function to call 2185 * @data: The leaf pte function closure 2186 */ 2187 struct page_range_apply { 2188 struct pfn_range_apply pter; 2189 pte_fn_t fn; 2190 void *data; 2191 }; 2192 2193 /* 2194 * Callback wrapper to enable use of apply_to_pfn_range for 2195 * the apply_to_page_range interface 2196 */ 2197 static int apply_to_page_range_wrapper(pte_t *pte, pgtable_t token, 2198 unsigned long addr, 2199 struct pfn_range_apply *pter) 2200 { 2201 struct page_range_apply *pra = 2202 container_of(pter, typeof(*pra), pter); 2203 2204 return pra->fn(pte, token, addr, pra->data); 2205 } 2206 2207 /* 2208 * Scan a region of virtual memory, filling in page tables as necessary 2209 * and calling a provided function on each leaf page table. 2210 * 2211 * WARNING: Do not use this function unless you know exactly what you are 2212 * doing. It is lacking support for huge pages and transparent huge pages. 2213 */ 2214 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2215 unsigned long size, pte_fn_t fn, void *data) 2216 { 2217 struct page_range_apply pra = { 2218 .pter = {.mm = mm, 2219 .alloc = 1, 2220 .ptefn = apply_to_page_range_wrapper }, 2221 .fn = fn, 2222 .data = data 2223 }; 2224 2225 return apply_to_pfn_range(&pra.pter, addr, size); 2226 } 2227 EXPORT_SYMBOL_GPL(apply_to_page_range); 2228 2229 /* 2230 * handle_pte_fault chooses page fault handler according to an entry which was 2231 * read non-atomically. Before making any commitment, on those architectures 2232 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2233 * parts, do_swap_page must check under lock before unmapping the pte and 2234 * proceeding (but do_wp_page is only called after already making such a check; 2235 * and do_anonymous_page can safely check later on). 2236 */ 2237 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2238 pte_t *page_table, pte_t orig_pte) 2239 { 2240 int same = 1; 2241 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2242 if (sizeof(pte_t) > sizeof(unsigned long)) { 2243 spinlock_t *ptl = pte_lockptr(mm, pmd); 2244 spin_lock(ptl); 2245 same = pte_same(*page_table, orig_pte); 2246 spin_unlock(ptl); 2247 } 2248 #endif 2249 pte_unmap(page_table); 2250 return same; 2251 } 2252 2253 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2254 { 2255 debug_dma_assert_idle(src); 2256 2257 /* 2258 * If the source page was a PFN mapping, we don't have 2259 * a "struct page" for it. We do a best-effort copy by 2260 * just copying from the original user address. If that 2261 * fails, we just zero-fill it. Live with it. 2262 */ 2263 if (unlikely(!src)) { 2264 void *kaddr = kmap_atomic(dst); 2265 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2266 2267 /* 2268 * This really shouldn't fail, because the page is there 2269 * in the page tables. But it might just be unreadable, 2270 * in which case we just give up and fill the result with 2271 * zeroes. 2272 */ 2273 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2274 clear_page(kaddr); 2275 kunmap_atomic(kaddr); 2276 flush_dcache_page(dst); 2277 } else 2278 copy_user_highpage(dst, src, va, vma); 2279 } 2280 2281 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2282 { 2283 struct file *vm_file = vma->vm_file; 2284 2285 if (vm_file) 2286 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2287 2288 /* 2289 * Special mappings (e.g. VDSO) do not have any file so fake 2290 * a default GFP_KERNEL for them. 2291 */ 2292 return GFP_KERNEL; 2293 } 2294 2295 /* 2296 * Notify the address space that the page is about to become writable so that 2297 * it can prohibit this or wait for the page to get into an appropriate state. 2298 * 2299 * We do this without the lock held, so that it can sleep if it needs to. 2300 */ 2301 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2302 { 2303 vm_fault_t ret; 2304 struct page *page = vmf->page; 2305 unsigned int old_flags = vmf->flags; 2306 2307 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2308 2309 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2310 /* Restore original flags so that caller is not surprised */ 2311 vmf->flags = old_flags; 2312 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2313 return ret; 2314 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2315 lock_page(page); 2316 if (!page->mapping) { 2317 unlock_page(page); 2318 return 0; /* retry */ 2319 } 2320 ret |= VM_FAULT_LOCKED; 2321 } else 2322 VM_BUG_ON_PAGE(!PageLocked(page), page); 2323 return ret; 2324 } 2325 2326 /* 2327 * Handle dirtying of a page in shared file mapping on a write fault. 2328 * 2329 * The function expects the page to be locked and unlocks it. 2330 */ 2331 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2332 struct page *page) 2333 { 2334 struct address_space *mapping; 2335 bool dirtied; 2336 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2337 2338 dirtied = set_page_dirty(page); 2339 VM_BUG_ON_PAGE(PageAnon(page), page); 2340 /* 2341 * Take a local copy of the address_space - page.mapping may be zeroed 2342 * by truncate after unlock_page(). The address_space itself remains 2343 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2344 * release semantics to prevent the compiler from undoing this copying. 2345 */ 2346 mapping = page_rmapping(page); 2347 unlock_page(page); 2348 2349 if ((dirtied || page_mkwrite) && mapping) { 2350 /* 2351 * Some device drivers do not set page.mapping 2352 * but still dirty their pages 2353 */ 2354 balance_dirty_pages_ratelimited(mapping); 2355 } 2356 2357 if (!page_mkwrite) 2358 file_update_time(vma->vm_file); 2359 } 2360 2361 /* 2362 * Handle write page faults for pages that can be reused in the current vma 2363 * 2364 * This can happen either due to the mapping being with the VM_SHARED flag, 2365 * or due to us being the last reference standing to the page. In either 2366 * case, all we need to do here is to mark the page as writable and update 2367 * any related book-keeping. 2368 */ 2369 static inline void wp_page_reuse(struct vm_fault *vmf) 2370 __releases(vmf->ptl) 2371 { 2372 struct vm_area_struct *vma = vmf->vma; 2373 struct page *page = vmf->page; 2374 pte_t entry; 2375 /* 2376 * Clear the pages cpupid information as the existing 2377 * information potentially belongs to a now completely 2378 * unrelated process. 2379 */ 2380 if (page) 2381 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2382 2383 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2384 entry = pte_mkyoung(vmf->orig_pte); 2385 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2386 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2387 update_mmu_cache(vma, vmf->address, vmf->pte); 2388 pte_unmap_unlock(vmf->pte, vmf->ptl); 2389 } 2390 2391 /* 2392 * Handle the case of a page which we actually need to copy to a new page. 2393 * 2394 * Called with mmap_sem locked and the old page referenced, but 2395 * without the ptl held. 2396 * 2397 * High level logic flow: 2398 * 2399 * - Allocate a page, copy the content of the old page to the new one. 2400 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2401 * - Take the PTL. If the pte changed, bail out and release the allocated page 2402 * - If the pte is still the way we remember it, update the page table and all 2403 * relevant references. This includes dropping the reference the page-table 2404 * held to the old page, as well as updating the rmap. 2405 * - In any case, unlock the PTL and drop the reference we took to the old page. 2406 */ 2407 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2408 { 2409 struct vm_area_struct *vma = vmf->vma; 2410 struct mm_struct *mm = vma->vm_mm; 2411 struct page *old_page = vmf->page; 2412 struct page *new_page = NULL; 2413 pte_t entry; 2414 int page_copied = 0; 2415 struct mem_cgroup *memcg; 2416 struct mmu_notifier_range range; 2417 2418 if (unlikely(anon_vma_prepare(vma))) 2419 goto oom; 2420 2421 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2422 new_page = alloc_zeroed_user_highpage_movable(vma, 2423 vmf->address); 2424 if (!new_page) 2425 goto oom; 2426 } else { 2427 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2428 vmf->address); 2429 if (!new_page) 2430 goto oom; 2431 cow_user_page(new_page, old_page, vmf->address, vma); 2432 } 2433 2434 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2435 goto oom_free_new; 2436 2437 __SetPageUptodate(new_page); 2438 2439 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2440 vmf->address & PAGE_MASK, 2441 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2442 mmu_notifier_invalidate_range_start(&range); 2443 2444 /* 2445 * Re-check the pte - we dropped the lock 2446 */ 2447 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2448 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2449 if (old_page) { 2450 if (!PageAnon(old_page)) { 2451 dec_mm_counter_fast(mm, 2452 mm_counter_file(old_page)); 2453 inc_mm_counter_fast(mm, MM_ANONPAGES); 2454 } 2455 } else { 2456 inc_mm_counter_fast(mm, MM_ANONPAGES); 2457 } 2458 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2459 entry = mk_pte(new_page, vma->vm_page_prot); 2460 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2461 /* 2462 * Clear the pte entry and flush it first, before updating the 2463 * pte with the new entry. This will avoid a race condition 2464 * seen in the presence of one thread doing SMC and another 2465 * thread doing COW. 2466 */ 2467 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2468 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2469 mem_cgroup_commit_charge(new_page, memcg, false, false); 2470 lru_cache_add_active_or_unevictable(new_page, vma); 2471 /* 2472 * We call the notify macro here because, when using secondary 2473 * mmu page tables (such as kvm shadow page tables), we want the 2474 * new page to be mapped directly into the secondary page table. 2475 */ 2476 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2477 update_mmu_cache(vma, vmf->address, vmf->pte); 2478 if (old_page) { 2479 /* 2480 * Only after switching the pte to the new page may 2481 * we remove the mapcount here. Otherwise another 2482 * process may come and find the rmap count decremented 2483 * before the pte is switched to the new page, and 2484 * "reuse" the old page writing into it while our pte 2485 * here still points into it and can be read by other 2486 * threads. 2487 * 2488 * The critical issue is to order this 2489 * page_remove_rmap with the ptp_clear_flush above. 2490 * Those stores are ordered by (if nothing else,) 2491 * the barrier present in the atomic_add_negative 2492 * in page_remove_rmap. 2493 * 2494 * Then the TLB flush in ptep_clear_flush ensures that 2495 * no process can access the old page before the 2496 * decremented mapcount is visible. And the old page 2497 * cannot be reused until after the decremented 2498 * mapcount is visible. So transitively, TLBs to 2499 * old page will be flushed before it can be reused. 2500 */ 2501 page_remove_rmap(old_page, false); 2502 } 2503 2504 /* Free the old page.. */ 2505 new_page = old_page; 2506 page_copied = 1; 2507 } else { 2508 mem_cgroup_cancel_charge(new_page, memcg, false); 2509 } 2510 2511 if (new_page) 2512 put_page(new_page); 2513 2514 pte_unmap_unlock(vmf->pte, vmf->ptl); 2515 /* 2516 * No need to double call mmu_notifier->invalidate_range() callback as 2517 * the above ptep_clear_flush_notify() did already call it. 2518 */ 2519 mmu_notifier_invalidate_range_only_end(&range); 2520 if (old_page) { 2521 /* 2522 * Don't let another task, with possibly unlocked vma, 2523 * keep the mlocked page. 2524 */ 2525 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2526 lock_page(old_page); /* LRU manipulation */ 2527 if (PageMlocked(old_page)) 2528 munlock_vma_page(old_page); 2529 unlock_page(old_page); 2530 } 2531 put_page(old_page); 2532 } 2533 return page_copied ? VM_FAULT_WRITE : 0; 2534 oom_free_new: 2535 put_page(new_page); 2536 oom: 2537 if (old_page) 2538 put_page(old_page); 2539 return VM_FAULT_OOM; 2540 } 2541 2542 /** 2543 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2544 * writeable once the page is prepared 2545 * 2546 * @vmf: structure describing the fault 2547 * 2548 * This function handles all that is needed to finish a write page fault in a 2549 * shared mapping due to PTE being read-only once the mapped page is prepared. 2550 * It handles locking of PTE and modifying it. 2551 * 2552 * The function expects the page to be locked or other protection against 2553 * concurrent faults / writeback (such as DAX radix tree locks). 2554 * 2555 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2556 * we acquired PTE lock. 2557 */ 2558 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2559 { 2560 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2561 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2562 &vmf->ptl); 2563 /* 2564 * We might have raced with another page fault while we released the 2565 * pte_offset_map_lock. 2566 */ 2567 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2568 pte_unmap_unlock(vmf->pte, vmf->ptl); 2569 return VM_FAULT_NOPAGE; 2570 } 2571 wp_page_reuse(vmf); 2572 return 0; 2573 } 2574 2575 /* 2576 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2577 * mapping 2578 */ 2579 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2580 { 2581 struct vm_area_struct *vma = vmf->vma; 2582 2583 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2584 vm_fault_t ret; 2585 2586 pte_unmap_unlock(vmf->pte, vmf->ptl); 2587 vmf->flags |= FAULT_FLAG_MKWRITE; 2588 ret = vma->vm_ops->pfn_mkwrite(vmf); 2589 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)) 2590 return ret; 2591 return finish_mkwrite_fault(vmf); 2592 } 2593 wp_page_reuse(vmf); 2594 return VM_FAULT_WRITE; 2595 } 2596 2597 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2598 __releases(vmf->ptl) 2599 { 2600 struct vm_area_struct *vma = vmf->vma; 2601 2602 get_page(vmf->page); 2603 2604 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2605 vm_fault_t tmp; 2606 2607 pte_unmap_unlock(vmf->pte, vmf->ptl); 2608 tmp = do_page_mkwrite(vmf); 2609 if (unlikely(!tmp || (tmp & 2610 (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 2611 VM_FAULT_RETRY)))) { 2612 put_page(vmf->page); 2613 return tmp; 2614 } 2615 tmp = finish_mkwrite_fault(vmf); 2616 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2617 unlock_page(vmf->page); 2618 put_page(vmf->page); 2619 return tmp; 2620 } 2621 } else { 2622 wp_page_reuse(vmf); 2623 lock_page(vmf->page); 2624 } 2625 fault_dirty_shared_page(vma, vmf->page); 2626 put_page(vmf->page); 2627 2628 return VM_FAULT_WRITE; 2629 } 2630 2631 /* 2632 * This routine handles present pages, when users try to write 2633 * to a shared page. It is done by copying the page to a new address 2634 * and decrementing the shared-page counter for the old page. 2635 * 2636 * Note that this routine assumes that the protection checks have been 2637 * done by the caller (the low-level page fault routine in most cases). 2638 * Thus we can safely just mark it writable once we've done any necessary 2639 * COW. 2640 * 2641 * We also mark the page dirty at this point even though the page will 2642 * change only once the write actually happens. This avoids a few races, 2643 * and potentially makes it more efficient. 2644 * 2645 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2646 * but allow concurrent faults), with pte both mapped and locked. 2647 * We return with mmap_sem still held, but pte unmapped and unlocked. 2648 */ 2649 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2650 __releases(vmf->ptl) 2651 { 2652 struct vm_area_struct *vma = vmf->vma; 2653 2654 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2655 if (!vmf->page) { 2656 /* 2657 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2658 * VM_PFNMAP VMA. 2659 * 2660 * We should not cow pages in a shared writeable mapping. 2661 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2662 */ 2663 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2664 (VM_WRITE|VM_SHARED)) 2665 return wp_pfn_shared(vmf); 2666 2667 pte_unmap_unlock(vmf->pte, vmf->ptl); 2668 return wp_page_copy(vmf); 2669 } 2670 2671 /* 2672 * Take out anonymous pages first, anonymous shared vmas are 2673 * not dirty accountable. 2674 */ 2675 if (PageAnon(vmf->page)) { 2676 int total_map_swapcount; 2677 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2678 page_count(vmf->page) != 1)) 2679 goto copy; 2680 if (!trylock_page(vmf->page)) { 2681 get_page(vmf->page); 2682 pte_unmap_unlock(vmf->pte, vmf->ptl); 2683 lock_page(vmf->page); 2684 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2685 vmf->address, &vmf->ptl); 2686 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2687 unlock_page(vmf->page); 2688 pte_unmap_unlock(vmf->pte, vmf->ptl); 2689 put_page(vmf->page); 2690 return 0; 2691 } 2692 put_page(vmf->page); 2693 } 2694 if (PageKsm(vmf->page)) { 2695 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2696 vmf->address); 2697 unlock_page(vmf->page); 2698 if (!reused) 2699 goto copy; 2700 wp_page_reuse(vmf); 2701 return VM_FAULT_WRITE; 2702 } 2703 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2704 if (total_map_swapcount == 1) { 2705 /* 2706 * The page is all ours. Move it to 2707 * our anon_vma so the rmap code will 2708 * not search our parent or siblings. 2709 * Protected against the rmap code by 2710 * the page lock. 2711 */ 2712 page_move_anon_rmap(vmf->page, vma); 2713 } 2714 unlock_page(vmf->page); 2715 wp_page_reuse(vmf); 2716 return VM_FAULT_WRITE; 2717 } 2718 unlock_page(vmf->page); 2719 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2720 (VM_WRITE|VM_SHARED))) { 2721 return wp_page_shared(vmf); 2722 } 2723 copy: 2724 /* 2725 * Ok, we need to copy. Oh, well.. 2726 */ 2727 get_page(vmf->page); 2728 2729 pte_unmap_unlock(vmf->pte, vmf->ptl); 2730 return wp_page_copy(vmf); 2731 } 2732 2733 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2734 unsigned long start_addr, unsigned long end_addr, 2735 struct zap_details *details) 2736 { 2737 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2738 } 2739 2740 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2741 struct zap_details *details) 2742 { 2743 struct vm_area_struct *vma; 2744 pgoff_t vba, vea, zba, zea; 2745 2746 vma_interval_tree_foreach(vma, root, 2747 details->first_index, details->last_index) { 2748 2749 vba = vma->vm_pgoff; 2750 vea = vba + vma_pages(vma) - 1; 2751 zba = details->first_index; 2752 if (zba < vba) 2753 zba = vba; 2754 zea = details->last_index; 2755 if (zea > vea) 2756 zea = vea; 2757 2758 unmap_mapping_range_vma(vma, 2759 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2760 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2761 details); 2762 } 2763 } 2764 2765 /** 2766 * unmap_mapping_pages() - Unmap pages from processes. 2767 * @mapping: The address space containing pages to be unmapped. 2768 * @start: Index of first page to be unmapped. 2769 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2770 * @even_cows: Whether to unmap even private COWed pages. 2771 * 2772 * Unmap the pages in this address space from any userspace process which 2773 * has them mmaped. Generally, you want to remove COWed pages as well when 2774 * a file is being truncated, but not when invalidating pages from the page 2775 * cache. 2776 */ 2777 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2778 pgoff_t nr, bool even_cows) 2779 { 2780 struct zap_details details = { }; 2781 2782 details.check_mapping = even_cows ? NULL : mapping; 2783 details.first_index = start; 2784 details.last_index = start + nr - 1; 2785 if (details.last_index < details.first_index) 2786 details.last_index = ULONG_MAX; 2787 2788 i_mmap_lock_write(mapping); 2789 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2790 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2791 i_mmap_unlock_write(mapping); 2792 } 2793 2794 /** 2795 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2796 * address_space corresponding to the specified byte range in the underlying 2797 * file. 2798 * 2799 * @mapping: the address space containing mmaps to be unmapped. 2800 * @holebegin: byte in first page to unmap, relative to the start of 2801 * the underlying file. This will be rounded down to a PAGE_SIZE 2802 * boundary. Note that this is different from truncate_pagecache(), which 2803 * must keep the partial page. In contrast, we must get rid of 2804 * partial pages. 2805 * @holelen: size of prospective hole in bytes. This will be rounded 2806 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2807 * end of the file. 2808 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2809 * but 0 when invalidating pagecache, don't throw away private data. 2810 */ 2811 void unmap_mapping_range(struct address_space *mapping, 2812 loff_t const holebegin, loff_t const holelen, int even_cows) 2813 { 2814 pgoff_t hba = holebegin >> PAGE_SHIFT; 2815 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2816 2817 /* Check for overflow. */ 2818 if (sizeof(holelen) > sizeof(hlen)) { 2819 long long holeend = 2820 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2821 if (holeend & ~(long long)ULONG_MAX) 2822 hlen = ULONG_MAX - hba + 1; 2823 } 2824 2825 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2826 } 2827 EXPORT_SYMBOL(unmap_mapping_range); 2828 2829 /* 2830 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2831 * but allow concurrent faults), and pte mapped but not yet locked. 2832 * We return with pte unmapped and unlocked. 2833 * 2834 * We return with the mmap_sem locked or unlocked in the same cases 2835 * as does filemap_fault(). 2836 */ 2837 vm_fault_t do_swap_page(struct vm_fault *vmf) 2838 { 2839 struct vm_area_struct *vma = vmf->vma; 2840 struct page *page = NULL, *swapcache; 2841 struct mem_cgroup *memcg; 2842 swp_entry_t entry; 2843 pte_t pte; 2844 int locked; 2845 int exclusive = 0; 2846 vm_fault_t ret = 0; 2847 2848 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2849 goto out; 2850 2851 entry = pte_to_swp_entry(vmf->orig_pte); 2852 if (unlikely(non_swap_entry(entry))) { 2853 if (is_migration_entry(entry)) { 2854 migration_entry_wait(vma->vm_mm, vmf->pmd, 2855 vmf->address); 2856 } else if (is_device_private_entry(entry)) { 2857 /* 2858 * For un-addressable device memory we call the pgmap 2859 * fault handler callback. The callback must migrate 2860 * the page back to some CPU accessible page. 2861 */ 2862 ret = device_private_entry_fault(vma, vmf->address, entry, 2863 vmf->flags, vmf->pmd); 2864 } else if (is_hwpoison_entry(entry)) { 2865 ret = VM_FAULT_HWPOISON; 2866 } else { 2867 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2868 ret = VM_FAULT_SIGBUS; 2869 } 2870 goto out; 2871 } 2872 2873 2874 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2875 page = lookup_swap_cache(entry, vma, vmf->address); 2876 swapcache = page; 2877 2878 if (!page) { 2879 struct swap_info_struct *si = swp_swap_info(entry); 2880 2881 if (si->flags & SWP_SYNCHRONOUS_IO && 2882 __swap_count(si, entry) == 1) { 2883 /* skip swapcache */ 2884 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2885 vmf->address); 2886 if (page) { 2887 __SetPageLocked(page); 2888 __SetPageSwapBacked(page); 2889 set_page_private(page, entry.val); 2890 lru_cache_add_anon(page); 2891 swap_readpage(page, true); 2892 } 2893 } else { 2894 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2895 vmf); 2896 swapcache = page; 2897 } 2898 2899 if (!page) { 2900 /* 2901 * Back out if somebody else faulted in this pte 2902 * while we released the pte lock. 2903 */ 2904 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2905 vmf->address, &vmf->ptl); 2906 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2907 ret = VM_FAULT_OOM; 2908 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2909 goto unlock; 2910 } 2911 2912 /* Had to read the page from swap area: Major fault */ 2913 ret = VM_FAULT_MAJOR; 2914 count_vm_event(PGMAJFAULT); 2915 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2916 } else if (PageHWPoison(page)) { 2917 /* 2918 * hwpoisoned dirty swapcache pages are kept for killing 2919 * owner processes (which may be unknown at hwpoison time) 2920 */ 2921 ret = VM_FAULT_HWPOISON; 2922 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2923 goto out_release; 2924 } 2925 2926 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2927 2928 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2929 if (!locked) { 2930 ret |= VM_FAULT_RETRY; 2931 goto out_release; 2932 } 2933 2934 /* 2935 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2936 * release the swapcache from under us. The page pin, and pte_same 2937 * test below, are not enough to exclude that. Even if it is still 2938 * swapcache, we need to check that the page's swap has not changed. 2939 */ 2940 if (unlikely((!PageSwapCache(page) || 2941 page_private(page) != entry.val)) && swapcache) 2942 goto out_page; 2943 2944 page = ksm_might_need_to_copy(page, vma, vmf->address); 2945 if (unlikely(!page)) { 2946 ret = VM_FAULT_OOM; 2947 page = swapcache; 2948 goto out_page; 2949 } 2950 2951 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 2952 &memcg, false)) { 2953 ret = VM_FAULT_OOM; 2954 goto out_page; 2955 } 2956 2957 /* 2958 * Back out if somebody else already faulted in this pte. 2959 */ 2960 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2961 &vmf->ptl); 2962 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2963 goto out_nomap; 2964 2965 if (unlikely(!PageUptodate(page))) { 2966 ret = VM_FAULT_SIGBUS; 2967 goto out_nomap; 2968 } 2969 2970 /* 2971 * The page isn't present yet, go ahead with the fault. 2972 * 2973 * Be careful about the sequence of operations here. 2974 * To get its accounting right, reuse_swap_page() must be called 2975 * while the page is counted on swap but not yet in mapcount i.e. 2976 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2977 * must be called after the swap_free(), or it will never succeed. 2978 */ 2979 2980 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2981 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2982 pte = mk_pte(page, vma->vm_page_prot); 2983 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2984 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2985 vmf->flags &= ~FAULT_FLAG_WRITE; 2986 ret |= VM_FAULT_WRITE; 2987 exclusive = RMAP_EXCLUSIVE; 2988 } 2989 flush_icache_page(vma, page); 2990 if (pte_swp_soft_dirty(vmf->orig_pte)) 2991 pte = pte_mksoft_dirty(pte); 2992 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2993 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 2994 vmf->orig_pte = pte; 2995 2996 /* ksm created a completely new copy */ 2997 if (unlikely(page != swapcache && swapcache)) { 2998 page_add_new_anon_rmap(page, vma, vmf->address, false); 2999 mem_cgroup_commit_charge(page, memcg, false, false); 3000 lru_cache_add_active_or_unevictable(page, vma); 3001 } else { 3002 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3003 mem_cgroup_commit_charge(page, memcg, true, false); 3004 activate_page(page); 3005 } 3006 3007 swap_free(entry); 3008 if (mem_cgroup_swap_full(page) || 3009 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3010 try_to_free_swap(page); 3011 unlock_page(page); 3012 if (page != swapcache && swapcache) { 3013 /* 3014 * Hold the lock to avoid the swap entry to be reused 3015 * until we take the PT lock for the pte_same() check 3016 * (to avoid false positives from pte_same). For 3017 * further safety release the lock after the swap_free 3018 * so that the swap count won't change under a 3019 * parallel locked swapcache. 3020 */ 3021 unlock_page(swapcache); 3022 put_page(swapcache); 3023 } 3024 3025 if (vmf->flags & FAULT_FLAG_WRITE) { 3026 ret |= do_wp_page(vmf); 3027 if (ret & VM_FAULT_ERROR) 3028 ret &= VM_FAULT_ERROR; 3029 goto out; 3030 } 3031 3032 /* No need to invalidate - it was non-present before */ 3033 update_mmu_cache(vma, vmf->address, vmf->pte); 3034 unlock: 3035 pte_unmap_unlock(vmf->pte, vmf->ptl); 3036 out: 3037 return ret; 3038 out_nomap: 3039 mem_cgroup_cancel_charge(page, memcg, false); 3040 pte_unmap_unlock(vmf->pte, vmf->ptl); 3041 out_page: 3042 unlock_page(page); 3043 out_release: 3044 put_page(page); 3045 if (page != swapcache && swapcache) { 3046 unlock_page(swapcache); 3047 put_page(swapcache); 3048 } 3049 return ret; 3050 } 3051 3052 /* 3053 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3054 * but allow concurrent faults), and pte mapped but not yet locked. 3055 * We return with mmap_sem still held, but pte unmapped and unlocked. 3056 */ 3057 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3058 { 3059 struct vm_area_struct *vma = vmf->vma; 3060 struct mem_cgroup *memcg; 3061 struct page *page; 3062 vm_fault_t ret = 0; 3063 pte_t entry; 3064 3065 /* File mapping without ->vm_ops ? */ 3066 if (vma->vm_flags & VM_SHARED) 3067 return VM_FAULT_SIGBUS; 3068 3069 /* 3070 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3071 * pte_offset_map() on pmds where a huge pmd might be created 3072 * from a different thread. 3073 * 3074 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3075 * parallel threads are excluded by other means. 3076 * 3077 * Here we only have down_read(mmap_sem). 3078 */ 3079 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3080 return VM_FAULT_OOM; 3081 3082 /* See the comment in pte_alloc_one_map() */ 3083 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3084 return 0; 3085 3086 /* Use the zero-page for reads */ 3087 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3088 !mm_forbids_zeropage(vma->vm_mm)) { 3089 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3090 vma->vm_page_prot)); 3091 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3092 vmf->address, &vmf->ptl); 3093 if (!pte_none(*vmf->pte)) 3094 goto unlock; 3095 ret = check_stable_address_space(vma->vm_mm); 3096 if (ret) 3097 goto unlock; 3098 /* Deliver the page fault to userland, check inside PT lock */ 3099 if (userfaultfd_missing(vma)) { 3100 pte_unmap_unlock(vmf->pte, vmf->ptl); 3101 return handle_userfault(vmf, VM_UFFD_MISSING); 3102 } 3103 goto setpte; 3104 } 3105 3106 /* Allocate our own private page. */ 3107 if (unlikely(anon_vma_prepare(vma))) 3108 goto oom; 3109 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3110 if (!page) 3111 goto oom; 3112 3113 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 3114 false)) 3115 goto oom_free_page; 3116 3117 /* 3118 * The memory barrier inside __SetPageUptodate makes sure that 3119 * preceeding stores to the page contents become visible before 3120 * the set_pte_at() write. 3121 */ 3122 __SetPageUptodate(page); 3123 3124 entry = mk_pte(page, vma->vm_page_prot); 3125 if (vma->vm_flags & VM_WRITE) 3126 entry = pte_mkwrite(pte_mkdirty(entry)); 3127 3128 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3129 &vmf->ptl); 3130 if (!pte_none(*vmf->pte)) 3131 goto release; 3132 3133 ret = check_stable_address_space(vma->vm_mm); 3134 if (ret) 3135 goto release; 3136 3137 /* Deliver the page fault to userland, check inside PT lock */ 3138 if (userfaultfd_missing(vma)) { 3139 pte_unmap_unlock(vmf->pte, vmf->ptl); 3140 mem_cgroup_cancel_charge(page, memcg, false); 3141 put_page(page); 3142 return handle_userfault(vmf, VM_UFFD_MISSING); 3143 } 3144 3145 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3146 page_add_new_anon_rmap(page, vma, vmf->address, false); 3147 mem_cgroup_commit_charge(page, memcg, false, false); 3148 lru_cache_add_active_or_unevictable(page, vma); 3149 setpte: 3150 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3151 3152 /* No need to invalidate - it was non-present before */ 3153 update_mmu_cache(vma, vmf->address, vmf->pte); 3154 unlock: 3155 pte_unmap_unlock(vmf->pte, vmf->ptl); 3156 return ret; 3157 release: 3158 mem_cgroup_cancel_charge(page, memcg, false); 3159 put_page(page); 3160 goto unlock; 3161 oom_free_page: 3162 put_page(page); 3163 oom: 3164 return VM_FAULT_OOM; 3165 } 3166 3167 /* 3168 * The mmap_sem must have been held on entry, and may have been 3169 * released depending on flags and vma->vm_ops->fault() return value. 3170 * See filemap_fault() and __lock_page_retry(). 3171 */ 3172 static vm_fault_t __do_fault(struct vm_fault *vmf) 3173 { 3174 struct vm_area_struct *vma = vmf->vma; 3175 vm_fault_t ret; 3176 3177 /* 3178 * Preallocate pte before we take page_lock because this might lead to 3179 * deadlocks for memcg reclaim which waits for pages under writeback: 3180 * lock_page(A) 3181 * SetPageWriteback(A) 3182 * unlock_page(A) 3183 * lock_page(B) 3184 * lock_page(B) 3185 * pte_alloc_pne 3186 * shrink_page_list 3187 * wait_on_page_writeback(A) 3188 * SetPageWriteback(B) 3189 * unlock_page(B) 3190 * # flush A, B to clear the writeback 3191 */ 3192 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3193 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3194 if (!vmf->prealloc_pte) 3195 return VM_FAULT_OOM; 3196 smp_wmb(); /* See comment in __pte_alloc() */ 3197 } 3198 3199 ret = vma->vm_ops->fault(vmf); 3200 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3201 VM_FAULT_DONE_COW))) 3202 return ret; 3203 3204 if (unlikely(PageHWPoison(vmf->page))) { 3205 if (ret & VM_FAULT_LOCKED) 3206 unlock_page(vmf->page); 3207 put_page(vmf->page); 3208 vmf->page = NULL; 3209 return VM_FAULT_HWPOISON; 3210 } 3211 3212 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3213 lock_page(vmf->page); 3214 else 3215 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3216 3217 return ret; 3218 } 3219 3220 /* 3221 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3222 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3223 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3224 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3225 */ 3226 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3227 { 3228 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3229 } 3230 3231 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3232 { 3233 struct vm_area_struct *vma = vmf->vma; 3234 3235 if (!pmd_none(*vmf->pmd)) 3236 goto map_pte; 3237 if (vmf->prealloc_pte) { 3238 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3239 if (unlikely(!pmd_none(*vmf->pmd))) { 3240 spin_unlock(vmf->ptl); 3241 goto map_pte; 3242 } 3243 3244 mm_inc_nr_ptes(vma->vm_mm); 3245 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3246 spin_unlock(vmf->ptl); 3247 vmf->prealloc_pte = NULL; 3248 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3249 return VM_FAULT_OOM; 3250 } 3251 map_pte: 3252 /* 3253 * If a huge pmd materialized under us just retry later. Use 3254 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3255 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3256 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3257 * running immediately after a huge pmd fault in a different thread of 3258 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3259 * All we have to ensure is that it is a regular pmd that we can walk 3260 * with pte_offset_map() and we can do that through an atomic read in 3261 * C, which is what pmd_trans_unstable() provides. 3262 */ 3263 if (pmd_devmap_trans_unstable(vmf->pmd)) 3264 return VM_FAULT_NOPAGE; 3265 3266 /* 3267 * At this point we know that our vmf->pmd points to a page of ptes 3268 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3269 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3270 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3271 * be valid and we will re-check to make sure the vmf->pte isn't 3272 * pte_none() under vmf->ptl protection when we return to 3273 * alloc_set_pte(). 3274 */ 3275 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3276 &vmf->ptl); 3277 return 0; 3278 } 3279 3280 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3281 3282 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3283 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3284 unsigned long haddr) 3285 { 3286 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3287 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3288 return false; 3289 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3290 return false; 3291 return true; 3292 } 3293 3294 static void deposit_prealloc_pte(struct vm_fault *vmf) 3295 { 3296 struct vm_area_struct *vma = vmf->vma; 3297 3298 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3299 /* 3300 * We are going to consume the prealloc table, 3301 * count that as nr_ptes. 3302 */ 3303 mm_inc_nr_ptes(vma->vm_mm); 3304 vmf->prealloc_pte = NULL; 3305 } 3306 3307 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3308 { 3309 struct vm_area_struct *vma = vmf->vma; 3310 bool write = vmf->flags & FAULT_FLAG_WRITE; 3311 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3312 pmd_t entry; 3313 int i; 3314 vm_fault_t ret; 3315 3316 if (!transhuge_vma_suitable(vma, haddr)) 3317 return VM_FAULT_FALLBACK; 3318 3319 ret = VM_FAULT_FALLBACK; 3320 page = compound_head(page); 3321 3322 /* 3323 * Archs like ppc64 need additonal space to store information 3324 * related to pte entry. Use the preallocated table for that. 3325 */ 3326 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3327 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3328 if (!vmf->prealloc_pte) 3329 return VM_FAULT_OOM; 3330 smp_wmb(); /* See comment in __pte_alloc() */ 3331 } 3332 3333 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3334 if (unlikely(!pmd_none(*vmf->pmd))) 3335 goto out; 3336 3337 for (i = 0; i < HPAGE_PMD_NR; i++) 3338 flush_icache_page(vma, page + i); 3339 3340 entry = mk_huge_pmd(page, vma->vm_page_prot); 3341 if (write) 3342 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3343 3344 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3345 page_add_file_rmap(page, true); 3346 /* 3347 * deposit and withdraw with pmd lock held 3348 */ 3349 if (arch_needs_pgtable_deposit()) 3350 deposit_prealloc_pte(vmf); 3351 3352 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3353 3354 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3355 3356 /* fault is handled */ 3357 ret = 0; 3358 count_vm_event(THP_FILE_MAPPED); 3359 out: 3360 spin_unlock(vmf->ptl); 3361 return ret; 3362 } 3363 #else 3364 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3365 { 3366 BUILD_BUG(); 3367 return 0; 3368 } 3369 #endif 3370 3371 /** 3372 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3373 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3374 * 3375 * @vmf: fault environment 3376 * @memcg: memcg to charge page (only for private mappings) 3377 * @page: page to map 3378 * 3379 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3380 * return. 3381 * 3382 * Target users are page handler itself and implementations of 3383 * vm_ops->map_pages. 3384 * 3385 * Return: %0 on success, %VM_FAULT_ code in case of error. 3386 */ 3387 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3388 struct page *page) 3389 { 3390 struct vm_area_struct *vma = vmf->vma; 3391 bool write = vmf->flags & FAULT_FLAG_WRITE; 3392 pte_t entry; 3393 vm_fault_t ret; 3394 3395 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3396 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3397 /* THP on COW? */ 3398 VM_BUG_ON_PAGE(memcg, page); 3399 3400 ret = do_set_pmd(vmf, page); 3401 if (ret != VM_FAULT_FALLBACK) 3402 return ret; 3403 } 3404 3405 if (!vmf->pte) { 3406 ret = pte_alloc_one_map(vmf); 3407 if (ret) 3408 return ret; 3409 } 3410 3411 /* Re-check under ptl */ 3412 if (unlikely(!pte_none(*vmf->pte))) 3413 return VM_FAULT_NOPAGE; 3414 3415 flush_icache_page(vma, page); 3416 entry = mk_pte(page, vma->vm_page_prot); 3417 if (write) 3418 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3419 /* copy-on-write page */ 3420 if (write && !(vma->vm_flags & VM_SHARED)) { 3421 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3422 page_add_new_anon_rmap(page, vma, vmf->address, false); 3423 mem_cgroup_commit_charge(page, memcg, false, false); 3424 lru_cache_add_active_or_unevictable(page, vma); 3425 } else { 3426 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3427 page_add_file_rmap(page, false); 3428 } 3429 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3430 3431 /* no need to invalidate: a not-present page won't be cached */ 3432 update_mmu_cache(vma, vmf->address, vmf->pte); 3433 3434 return 0; 3435 } 3436 3437 3438 /** 3439 * finish_fault - finish page fault once we have prepared the page to fault 3440 * 3441 * @vmf: structure describing the fault 3442 * 3443 * This function handles all that is needed to finish a page fault once the 3444 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3445 * given page, adds reverse page mapping, handles memcg charges and LRU 3446 * addition. 3447 * 3448 * The function expects the page to be locked and on success it consumes a 3449 * reference of a page being mapped (for the PTE which maps it). 3450 * 3451 * Return: %0 on success, %VM_FAULT_ code in case of error. 3452 */ 3453 vm_fault_t finish_fault(struct vm_fault *vmf) 3454 { 3455 struct page *page; 3456 vm_fault_t ret = 0; 3457 3458 /* Did we COW the page? */ 3459 if ((vmf->flags & FAULT_FLAG_WRITE) && 3460 !(vmf->vma->vm_flags & VM_SHARED)) 3461 page = vmf->cow_page; 3462 else 3463 page = vmf->page; 3464 3465 /* 3466 * check even for read faults because we might have lost our CoWed 3467 * page 3468 */ 3469 if (!(vmf->vma->vm_flags & VM_SHARED)) 3470 ret = check_stable_address_space(vmf->vma->vm_mm); 3471 if (!ret) 3472 ret = alloc_set_pte(vmf, vmf->memcg, page); 3473 if (vmf->pte) 3474 pte_unmap_unlock(vmf->pte, vmf->ptl); 3475 return ret; 3476 } 3477 3478 static unsigned long fault_around_bytes __read_mostly = 3479 rounddown_pow_of_two(65536); 3480 3481 #ifdef CONFIG_DEBUG_FS 3482 static int fault_around_bytes_get(void *data, u64 *val) 3483 { 3484 *val = fault_around_bytes; 3485 return 0; 3486 } 3487 3488 /* 3489 * fault_around_bytes must be rounded down to the nearest page order as it's 3490 * what do_fault_around() expects to see. 3491 */ 3492 static int fault_around_bytes_set(void *data, u64 val) 3493 { 3494 if (val / PAGE_SIZE > PTRS_PER_PTE) 3495 return -EINVAL; 3496 if (val > PAGE_SIZE) 3497 fault_around_bytes = rounddown_pow_of_two(val); 3498 else 3499 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3500 return 0; 3501 } 3502 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3503 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3504 3505 static int __init fault_around_debugfs(void) 3506 { 3507 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3508 &fault_around_bytes_fops); 3509 return 0; 3510 } 3511 late_initcall(fault_around_debugfs); 3512 #endif 3513 3514 /* 3515 * do_fault_around() tries to map few pages around the fault address. The hope 3516 * is that the pages will be needed soon and this will lower the number of 3517 * faults to handle. 3518 * 3519 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3520 * not ready to be mapped: not up-to-date, locked, etc. 3521 * 3522 * This function is called with the page table lock taken. In the split ptlock 3523 * case the page table lock only protects only those entries which belong to 3524 * the page table corresponding to the fault address. 3525 * 3526 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3527 * only once. 3528 * 3529 * fault_around_bytes defines how many bytes we'll try to map. 3530 * do_fault_around() expects it to be set to a power of two less than or equal 3531 * to PTRS_PER_PTE. 3532 * 3533 * The virtual address of the area that we map is naturally aligned to 3534 * fault_around_bytes rounded down to the machine page size 3535 * (and therefore to page order). This way it's easier to guarantee 3536 * that we don't cross page table boundaries. 3537 */ 3538 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3539 { 3540 unsigned long address = vmf->address, nr_pages, mask; 3541 pgoff_t start_pgoff = vmf->pgoff; 3542 pgoff_t end_pgoff; 3543 int off; 3544 vm_fault_t ret = 0; 3545 3546 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3547 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3548 3549 vmf->address = max(address & mask, vmf->vma->vm_start); 3550 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3551 start_pgoff -= off; 3552 3553 /* 3554 * end_pgoff is either the end of the page table, the end of 3555 * the vma or nr_pages from start_pgoff, depending what is nearest. 3556 */ 3557 end_pgoff = start_pgoff - 3558 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3559 PTRS_PER_PTE - 1; 3560 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3561 start_pgoff + nr_pages - 1); 3562 3563 if (pmd_none(*vmf->pmd)) { 3564 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3565 if (!vmf->prealloc_pte) 3566 goto out; 3567 smp_wmb(); /* See comment in __pte_alloc() */ 3568 } 3569 3570 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3571 3572 /* Huge page is mapped? Page fault is solved */ 3573 if (pmd_trans_huge(*vmf->pmd)) { 3574 ret = VM_FAULT_NOPAGE; 3575 goto out; 3576 } 3577 3578 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3579 if (!vmf->pte) 3580 goto out; 3581 3582 /* check if the page fault is solved */ 3583 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3584 if (!pte_none(*vmf->pte)) 3585 ret = VM_FAULT_NOPAGE; 3586 pte_unmap_unlock(vmf->pte, vmf->ptl); 3587 out: 3588 vmf->address = address; 3589 vmf->pte = NULL; 3590 return ret; 3591 } 3592 3593 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3594 { 3595 struct vm_area_struct *vma = vmf->vma; 3596 vm_fault_t ret = 0; 3597 3598 /* 3599 * Let's call ->map_pages() first and use ->fault() as fallback 3600 * if page by the offset is not ready to be mapped (cold cache or 3601 * something). 3602 */ 3603 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3604 ret = do_fault_around(vmf); 3605 if (ret) 3606 return ret; 3607 } 3608 3609 ret = __do_fault(vmf); 3610 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3611 return ret; 3612 3613 ret |= finish_fault(vmf); 3614 unlock_page(vmf->page); 3615 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3616 put_page(vmf->page); 3617 return ret; 3618 } 3619 3620 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3621 { 3622 struct vm_area_struct *vma = vmf->vma; 3623 vm_fault_t ret; 3624 3625 if (unlikely(anon_vma_prepare(vma))) 3626 return VM_FAULT_OOM; 3627 3628 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3629 if (!vmf->cow_page) 3630 return VM_FAULT_OOM; 3631 3632 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3633 &vmf->memcg, false)) { 3634 put_page(vmf->cow_page); 3635 return VM_FAULT_OOM; 3636 } 3637 3638 ret = __do_fault(vmf); 3639 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3640 goto uncharge_out; 3641 if (ret & VM_FAULT_DONE_COW) 3642 return ret; 3643 3644 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3645 __SetPageUptodate(vmf->cow_page); 3646 3647 ret |= finish_fault(vmf); 3648 unlock_page(vmf->page); 3649 put_page(vmf->page); 3650 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3651 goto uncharge_out; 3652 return ret; 3653 uncharge_out: 3654 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3655 put_page(vmf->cow_page); 3656 return ret; 3657 } 3658 3659 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3660 { 3661 struct vm_area_struct *vma = vmf->vma; 3662 vm_fault_t ret, tmp; 3663 3664 ret = __do_fault(vmf); 3665 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3666 return ret; 3667 3668 /* 3669 * Check if the backing address space wants to know that the page is 3670 * about to become writable 3671 */ 3672 if (vma->vm_ops->page_mkwrite) { 3673 unlock_page(vmf->page); 3674 tmp = do_page_mkwrite(vmf); 3675 if (unlikely(!tmp || 3676 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3677 VM_FAULT_RETRY)))) { 3678 put_page(vmf->page); 3679 return tmp; 3680 } 3681 } 3682 3683 ret |= finish_fault(vmf); 3684 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3685 VM_FAULT_RETRY))) { 3686 unlock_page(vmf->page); 3687 put_page(vmf->page); 3688 return ret; 3689 } 3690 3691 fault_dirty_shared_page(vma, vmf->page); 3692 return ret; 3693 } 3694 3695 /* 3696 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3697 * but allow concurrent faults). 3698 * The mmap_sem may have been released depending on flags and our 3699 * return value. See filemap_fault() and __lock_page_or_retry(). 3700 * If mmap_sem is released, vma may become invalid (for example 3701 * by other thread calling munmap()). 3702 */ 3703 static vm_fault_t do_fault(struct vm_fault *vmf) 3704 { 3705 struct vm_area_struct *vma = vmf->vma; 3706 struct mm_struct *vm_mm = vma->vm_mm; 3707 vm_fault_t ret; 3708 3709 /* 3710 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3711 */ 3712 if (!vma->vm_ops->fault) { 3713 /* 3714 * If we find a migration pmd entry or a none pmd entry, which 3715 * should never happen, return SIGBUS 3716 */ 3717 if (unlikely(!pmd_present(*vmf->pmd))) 3718 ret = VM_FAULT_SIGBUS; 3719 else { 3720 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3721 vmf->pmd, 3722 vmf->address, 3723 &vmf->ptl); 3724 /* 3725 * Make sure this is not a temporary clearing of pte 3726 * by holding ptl and checking again. A R/M/W update 3727 * of pte involves: take ptl, clearing the pte so that 3728 * we don't have concurrent modification by hardware 3729 * followed by an update. 3730 */ 3731 if (unlikely(pte_none(*vmf->pte))) 3732 ret = VM_FAULT_SIGBUS; 3733 else 3734 ret = VM_FAULT_NOPAGE; 3735 3736 pte_unmap_unlock(vmf->pte, vmf->ptl); 3737 } 3738 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3739 ret = do_read_fault(vmf); 3740 else if (!(vma->vm_flags & VM_SHARED)) 3741 ret = do_cow_fault(vmf); 3742 else 3743 ret = do_shared_fault(vmf); 3744 3745 /* preallocated pagetable is unused: free it */ 3746 if (vmf->prealloc_pte) { 3747 pte_free(vm_mm, vmf->prealloc_pte); 3748 vmf->prealloc_pte = NULL; 3749 } 3750 return ret; 3751 } 3752 3753 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3754 unsigned long addr, int page_nid, 3755 int *flags) 3756 { 3757 get_page(page); 3758 3759 count_vm_numa_event(NUMA_HINT_FAULTS); 3760 if (page_nid == numa_node_id()) { 3761 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3762 *flags |= TNF_FAULT_LOCAL; 3763 } 3764 3765 return mpol_misplaced(page, vma, addr); 3766 } 3767 3768 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3769 { 3770 struct vm_area_struct *vma = vmf->vma; 3771 struct page *page = NULL; 3772 int page_nid = NUMA_NO_NODE; 3773 int last_cpupid; 3774 int target_nid; 3775 bool migrated = false; 3776 pte_t pte, old_pte; 3777 bool was_writable = pte_savedwrite(vmf->orig_pte); 3778 int flags = 0; 3779 3780 /* 3781 * The "pte" at this point cannot be used safely without 3782 * validation through pte_unmap_same(). It's of NUMA type but 3783 * the pfn may be screwed if the read is non atomic. 3784 */ 3785 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3786 spin_lock(vmf->ptl); 3787 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3788 pte_unmap_unlock(vmf->pte, vmf->ptl); 3789 goto out; 3790 } 3791 3792 /* 3793 * Make it present again, Depending on how arch implementes non 3794 * accessible ptes, some can allow access by kernel mode. 3795 */ 3796 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 3797 pte = pte_modify(old_pte, vma->vm_page_prot); 3798 pte = pte_mkyoung(pte); 3799 if (was_writable) 3800 pte = pte_mkwrite(pte); 3801 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 3802 update_mmu_cache(vma, vmf->address, vmf->pte); 3803 3804 page = vm_normal_page(vma, vmf->address, pte); 3805 if (!page) { 3806 pte_unmap_unlock(vmf->pte, vmf->ptl); 3807 return 0; 3808 } 3809 3810 /* TODO: handle PTE-mapped THP */ 3811 if (PageCompound(page)) { 3812 pte_unmap_unlock(vmf->pte, vmf->ptl); 3813 return 0; 3814 } 3815 3816 /* 3817 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3818 * much anyway since they can be in shared cache state. This misses 3819 * the case where a mapping is writable but the process never writes 3820 * to it but pte_write gets cleared during protection updates and 3821 * pte_dirty has unpredictable behaviour between PTE scan updates, 3822 * background writeback, dirty balancing and application behaviour. 3823 */ 3824 if (!pte_write(pte)) 3825 flags |= TNF_NO_GROUP; 3826 3827 /* 3828 * Flag if the page is shared between multiple address spaces. This 3829 * is later used when determining whether to group tasks together 3830 */ 3831 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3832 flags |= TNF_SHARED; 3833 3834 last_cpupid = page_cpupid_last(page); 3835 page_nid = page_to_nid(page); 3836 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3837 &flags); 3838 pte_unmap_unlock(vmf->pte, vmf->ptl); 3839 if (target_nid == NUMA_NO_NODE) { 3840 put_page(page); 3841 goto out; 3842 } 3843 3844 /* Migrate to the requested node */ 3845 migrated = migrate_misplaced_page(page, vma, target_nid); 3846 if (migrated) { 3847 page_nid = target_nid; 3848 flags |= TNF_MIGRATED; 3849 } else 3850 flags |= TNF_MIGRATE_FAIL; 3851 3852 out: 3853 if (page_nid != NUMA_NO_NODE) 3854 task_numa_fault(last_cpupid, page_nid, 1, flags); 3855 return 0; 3856 } 3857 3858 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3859 { 3860 if (vma_is_anonymous(vmf->vma)) 3861 return do_huge_pmd_anonymous_page(vmf); 3862 if (vmf->vma->vm_ops->huge_fault) 3863 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3864 return VM_FAULT_FALLBACK; 3865 } 3866 3867 /* `inline' is required to avoid gcc 4.1.2 build error */ 3868 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3869 { 3870 if (vma_is_anonymous(vmf->vma)) 3871 return do_huge_pmd_wp_page(vmf, orig_pmd); 3872 if (vmf->vma->vm_ops->huge_fault) 3873 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3874 3875 /* COW handled on pte level: split pmd */ 3876 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3877 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3878 3879 return VM_FAULT_FALLBACK; 3880 } 3881 3882 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3883 { 3884 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3885 } 3886 3887 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3888 { 3889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3890 /* No support for anonymous transparent PUD pages yet */ 3891 if (vma_is_anonymous(vmf->vma)) 3892 return VM_FAULT_FALLBACK; 3893 if (vmf->vma->vm_ops->huge_fault) 3894 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3895 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3896 return VM_FAULT_FALLBACK; 3897 } 3898 3899 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3900 { 3901 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3902 /* No support for anonymous transparent PUD pages yet */ 3903 if (vma_is_anonymous(vmf->vma)) 3904 return VM_FAULT_FALLBACK; 3905 if (vmf->vma->vm_ops->huge_fault) 3906 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3908 return VM_FAULT_FALLBACK; 3909 } 3910 3911 /* 3912 * These routines also need to handle stuff like marking pages dirty 3913 * and/or accessed for architectures that don't do it in hardware (most 3914 * RISC architectures). The early dirtying is also good on the i386. 3915 * 3916 * There is also a hook called "update_mmu_cache()" that architectures 3917 * with external mmu caches can use to update those (ie the Sparc or 3918 * PowerPC hashed page tables that act as extended TLBs). 3919 * 3920 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3921 * concurrent faults). 3922 * 3923 * The mmap_sem may have been released depending on flags and our return value. 3924 * See filemap_fault() and __lock_page_or_retry(). 3925 */ 3926 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3927 { 3928 pte_t entry; 3929 3930 if (unlikely(pmd_none(*vmf->pmd))) { 3931 /* 3932 * Leave __pte_alloc() until later: because vm_ops->fault may 3933 * want to allocate huge page, and if we expose page table 3934 * for an instant, it will be difficult to retract from 3935 * concurrent faults and from rmap lookups. 3936 */ 3937 vmf->pte = NULL; 3938 } else { 3939 /* See comment in pte_alloc_one_map() */ 3940 if (pmd_devmap_trans_unstable(vmf->pmd)) 3941 return 0; 3942 /* 3943 * A regular pmd is established and it can't morph into a huge 3944 * pmd from under us anymore at this point because we hold the 3945 * mmap_sem read mode and khugepaged takes it in write mode. 3946 * So now it's safe to run pte_offset_map(). 3947 */ 3948 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3949 vmf->orig_pte = *vmf->pte; 3950 3951 /* 3952 * some architectures can have larger ptes than wordsize, 3953 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3954 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3955 * accesses. The code below just needs a consistent view 3956 * for the ifs and we later double check anyway with the 3957 * ptl lock held. So here a barrier will do. 3958 */ 3959 barrier(); 3960 if (pte_none(vmf->orig_pte)) { 3961 pte_unmap(vmf->pte); 3962 vmf->pte = NULL; 3963 } 3964 } 3965 3966 if (!vmf->pte) { 3967 if (vma_is_anonymous(vmf->vma)) 3968 return do_anonymous_page(vmf); 3969 else 3970 return do_fault(vmf); 3971 } 3972 3973 if (!pte_present(vmf->orig_pte)) 3974 return do_swap_page(vmf); 3975 3976 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3977 return do_numa_page(vmf); 3978 3979 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3980 spin_lock(vmf->ptl); 3981 entry = vmf->orig_pte; 3982 if (unlikely(!pte_same(*vmf->pte, entry))) 3983 goto unlock; 3984 if (vmf->flags & FAULT_FLAG_WRITE) { 3985 if (!pte_write(entry)) 3986 return do_wp_page(vmf); 3987 entry = pte_mkdirty(entry); 3988 } 3989 entry = pte_mkyoung(entry); 3990 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3991 vmf->flags & FAULT_FLAG_WRITE)) { 3992 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3993 } else { 3994 /* 3995 * This is needed only for protection faults but the arch code 3996 * is not yet telling us if this is a protection fault or not. 3997 * This still avoids useless tlb flushes for .text page faults 3998 * with threads. 3999 */ 4000 if (vmf->flags & FAULT_FLAG_WRITE) 4001 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4002 } 4003 unlock: 4004 pte_unmap_unlock(vmf->pte, vmf->ptl); 4005 return 0; 4006 } 4007 4008 /* 4009 * By the time we get here, we already hold the mm semaphore 4010 * 4011 * The mmap_sem may have been released depending on flags and our 4012 * return value. See filemap_fault() and __lock_page_or_retry(). 4013 */ 4014 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4015 unsigned long address, unsigned int flags) 4016 { 4017 struct vm_fault vmf = { 4018 .vma = vma, 4019 .address = address & PAGE_MASK, 4020 .flags = flags, 4021 .pgoff = linear_page_index(vma, address), 4022 .gfp_mask = __get_fault_gfp_mask(vma), 4023 }; 4024 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4025 struct mm_struct *mm = vma->vm_mm; 4026 pgd_t *pgd; 4027 p4d_t *p4d; 4028 vm_fault_t ret; 4029 4030 pgd = pgd_offset(mm, address); 4031 p4d = p4d_alloc(mm, pgd, address); 4032 if (!p4d) 4033 return VM_FAULT_OOM; 4034 4035 vmf.pud = pud_alloc(mm, p4d, address); 4036 if (!vmf.pud) 4037 return VM_FAULT_OOM; 4038 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4039 ret = create_huge_pud(&vmf); 4040 if (!(ret & VM_FAULT_FALLBACK)) 4041 return ret; 4042 } else { 4043 pud_t orig_pud = *vmf.pud; 4044 4045 barrier(); 4046 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4047 4048 /* NUMA case for anonymous PUDs would go here */ 4049 4050 if (dirty && !pud_write(orig_pud)) { 4051 ret = wp_huge_pud(&vmf, orig_pud); 4052 if (!(ret & VM_FAULT_FALLBACK)) 4053 return ret; 4054 } else { 4055 huge_pud_set_accessed(&vmf, orig_pud); 4056 return 0; 4057 } 4058 } 4059 } 4060 4061 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4062 if (!vmf.pmd) 4063 return VM_FAULT_OOM; 4064 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4065 ret = create_huge_pmd(&vmf); 4066 if (!(ret & VM_FAULT_FALLBACK)) 4067 return ret; 4068 } else { 4069 pmd_t orig_pmd = *vmf.pmd; 4070 4071 barrier(); 4072 if (unlikely(is_swap_pmd(orig_pmd))) { 4073 VM_BUG_ON(thp_migration_supported() && 4074 !is_pmd_migration_entry(orig_pmd)); 4075 if (is_pmd_migration_entry(orig_pmd)) 4076 pmd_migration_entry_wait(mm, vmf.pmd); 4077 return 0; 4078 } 4079 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4080 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4081 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4082 4083 if (dirty && !pmd_write(orig_pmd)) { 4084 ret = wp_huge_pmd(&vmf, orig_pmd); 4085 if (!(ret & VM_FAULT_FALLBACK)) 4086 return ret; 4087 } else { 4088 huge_pmd_set_accessed(&vmf, orig_pmd); 4089 return 0; 4090 } 4091 } 4092 } 4093 4094 return handle_pte_fault(&vmf); 4095 } 4096 4097 /* 4098 * By the time we get here, we already hold the mm semaphore 4099 * 4100 * The mmap_sem may have been released depending on flags and our 4101 * return value. See filemap_fault() and __lock_page_or_retry(). 4102 */ 4103 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4104 unsigned int flags) 4105 { 4106 vm_fault_t ret; 4107 4108 __set_current_state(TASK_RUNNING); 4109 4110 count_vm_event(PGFAULT); 4111 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4112 4113 /* do counter updates before entering really critical section. */ 4114 check_sync_rss_stat(current); 4115 4116 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4117 flags & FAULT_FLAG_INSTRUCTION, 4118 flags & FAULT_FLAG_REMOTE)) 4119 return VM_FAULT_SIGSEGV; 4120 4121 /* 4122 * Enable the memcg OOM handling for faults triggered in user 4123 * space. Kernel faults are handled more gracefully. 4124 */ 4125 if (flags & FAULT_FLAG_USER) 4126 mem_cgroup_enter_user_fault(); 4127 4128 if (unlikely(is_vm_hugetlb_page(vma))) 4129 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4130 else 4131 ret = __handle_mm_fault(vma, address, flags); 4132 4133 if (flags & FAULT_FLAG_USER) { 4134 mem_cgroup_exit_user_fault(); 4135 /* 4136 * The task may have entered a memcg OOM situation but 4137 * if the allocation error was handled gracefully (no 4138 * VM_FAULT_OOM), there is no need to kill anything. 4139 * Just clean up the OOM state peacefully. 4140 */ 4141 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4142 mem_cgroup_oom_synchronize(false); 4143 } 4144 4145 return ret; 4146 } 4147 EXPORT_SYMBOL_GPL(handle_mm_fault); 4148 4149 #ifndef __PAGETABLE_P4D_FOLDED 4150 /* 4151 * Allocate p4d page table. 4152 * We've already handled the fast-path in-line. 4153 */ 4154 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4155 { 4156 p4d_t *new = p4d_alloc_one(mm, address); 4157 if (!new) 4158 return -ENOMEM; 4159 4160 smp_wmb(); /* See comment in __pte_alloc */ 4161 4162 spin_lock(&mm->page_table_lock); 4163 if (pgd_present(*pgd)) /* Another has populated it */ 4164 p4d_free(mm, new); 4165 else 4166 pgd_populate(mm, pgd, new); 4167 spin_unlock(&mm->page_table_lock); 4168 return 0; 4169 } 4170 #endif /* __PAGETABLE_P4D_FOLDED */ 4171 4172 #ifndef __PAGETABLE_PUD_FOLDED 4173 /* 4174 * Allocate page upper directory. 4175 * We've already handled the fast-path in-line. 4176 */ 4177 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4178 { 4179 pud_t *new = pud_alloc_one(mm, address); 4180 if (!new) 4181 return -ENOMEM; 4182 4183 smp_wmb(); /* See comment in __pte_alloc */ 4184 4185 spin_lock(&mm->page_table_lock); 4186 #ifndef __ARCH_HAS_5LEVEL_HACK 4187 if (!p4d_present(*p4d)) { 4188 mm_inc_nr_puds(mm); 4189 p4d_populate(mm, p4d, new); 4190 } else /* Another has populated it */ 4191 pud_free(mm, new); 4192 #else 4193 if (!pgd_present(*p4d)) { 4194 mm_inc_nr_puds(mm); 4195 pgd_populate(mm, p4d, new); 4196 } else /* Another has populated it */ 4197 pud_free(mm, new); 4198 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4199 spin_unlock(&mm->page_table_lock); 4200 return 0; 4201 } 4202 #endif /* __PAGETABLE_PUD_FOLDED */ 4203 4204 #ifndef __PAGETABLE_PMD_FOLDED 4205 /* 4206 * Allocate page middle directory. 4207 * We've already handled the fast-path in-line. 4208 */ 4209 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4210 { 4211 spinlock_t *ptl; 4212 pmd_t *new = pmd_alloc_one(mm, address); 4213 if (!new) 4214 return -ENOMEM; 4215 4216 smp_wmb(); /* See comment in __pte_alloc */ 4217 4218 ptl = pud_lock(mm, pud); 4219 #ifndef __ARCH_HAS_4LEVEL_HACK 4220 if (!pud_present(*pud)) { 4221 mm_inc_nr_pmds(mm); 4222 pud_populate(mm, pud, new); 4223 } else /* Another has populated it */ 4224 pmd_free(mm, new); 4225 #else 4226 if (!pgd_present(*pud)) { 4227 mm_inc_nr_pmds(mm); 4228 pgd_populate(mm, pud, new); 4229 } else /* Another has populated it */ 4230 pmd_free(mm, new); 4231 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4232 spin_unlock(ptl); 4233 return 0; 4234 } 4235 #endif /* __PAGETABLE_PMD_FOLDED */ 4236 4237 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4238 struct mmu_notifier_range *range, 4239 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4240 { 4241 pgd_t *pgd; 4242 p4d_t *p4d; 4243 pud_t *pud; 4244 pmd_t *pmd; 4245 pte_t *ptep; 4246 4247 pgd = pgd_offset(mm, address); 4248 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4249 goto out; 4250 4251 p4d = p4d_offset(pgd, address); 4252 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4253 goto out; 4254 4255 pud = pud_offset(p4d, address); 4256 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4257 goto out; 4258 4259 pmd = pmd_offset(pud, address); 4260 VM_BUG_ON(pmd_trans_huge(*pmd)); 4261 4262 if (pmd_huge(*pmd)) { 4263 if (!pmdpp) 4264 goto out; 4265 4266 if (range) { 4267 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4268 NULL, mm, address & PMD_MASK, 4269 (address & PMD_MASK) + PMD_SIZE); 4270 mmu_notifier_invalidate_range_start(range); 4271 } 4272 *ptlp = pmd_lock(mm, pmd); 4273 if (pmd_huge(*pmd)) { 4274 *pmdpp = pmd; 4275 return 0; 4276 } 4277 spin_unlock(*ptlp); 4278 if (range) 4279 mmu_notifier_invalidate_range_end(range); 4280 } 4281 4282 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4283 goto out; 4284 4285 if (range) { 4286 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4287 address & PAGE_MASK, 4288 (address & PAGE_MASK) + PAGE_SIZE); 4289 mmu_notifier_invalidate_range_start(range); 4290 } 4291 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4292 if (!pte_present(*ptep)) 4293 goto unlock; 4294 *ptepp = ptep; 4295 return 0; 4296 unlock: 4297 pte_unmap_unlock(ptep, *ptlp); 4298 if (range) 4299 mmu_notifier_invalidate_range_end(range); 4300 out: 4301 return -EINVAL; 4302 } 4303 4304 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4305 pte_t **ptepp, spinlock_t **ptlp) 4306 { 4307 int res; 4308 4309 /* (void) is needed to make gcc happy */ 4310 (void) __cond_lock(*ptlp, 4311 !(res = __follow_pte_pmd(mm, address, NULL, 4312 ptepp, NULL, ptlp))); 4313 return res; 4314 } 4315 4316 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4317 struct mmu_notifier_range *range, 4318 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4319 { 4320 int res; 4321 4322 /* (void) is needed to make gcc happy */ 4323 (void) __cond_lock(*ptlp, 4324 !(res = __follow_pte_pmd(mm, address, range, 4325 ptepp, pmdpp, ptlp))); 4326 return res; 4327 } 4328 EXPORT_SYMBOL(follow_pte_pmd); 4329 4330 /** 4331 * follow_pfn - look up PFN at a user virtual address 4332 * @vma: memory mapping 4333 * @address: user virtual address 4334 * @pfn: location to store found PFN 4335 * 4336 * Only IO mappings and raw PFN mappings are allowed. 4337 * 4338 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4339 */ 4340 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4341 unsigned long *pfn) 4342 { 4343 int ret = -EINVAL; 4344 spinlock_t *ptl; 4345 pte_t *ptep; 4346 4347 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4348 return ret; 4349 4350 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4351 if (ret) 4352 return ret; 4353 *pfn = pte_pfn(*ptep); 4354 pte_unmap_unlock(ptep, ptl); 4355 return 0; 4356 } 4357 EXPORT_SYMBOL(follow_pfn); 4358 4359 #ifdef CONFIG_HAVE_IOREMAP_PROT 4360 int follow_phys(struct vm_area_struct *vma, 4361 unsigned long address, unsigned int flags, 4362 unsigned long *prot, resource_size_t *phys) 4363 { 4364 int ret = -EINVAL; 4365 pte_t *ptep, pte; 4366 spinlock_t *ptl; 4367 4368 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4369 goto out; 4370 4371 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4372 goto out; 4373 pte = *ptep; 4374 4375 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4376 goto unlock; 4377 4378 *prot = pgprot_val(pte_pgprot(pte)); 4379 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4380 4381 ret = 0; 4382 unlock: 4383 pte_unmap_unlock(ptep, ptl); 4384 out: 4385 return ret; 4386 } 4387 4388 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4389 void *buf, int len, int write) 4390 { 4391 resource_size_t phys_addr; 4392 unsigned long prot = 0; 4393 void __iomem *maddr; 4394 int offset = addr & (PAGE_SIZE-1); 4395 4396 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4397 return -EINVAL; 4398 4399 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4400 if (!maddr) 4401 return -ENOMEM; 4402 4403 if (write) 4404 memcpy_toio(maddr + offset, buf, len); 4405 else 4406 memcpy_fromio(buf, maddr + offset, len); 4407 iounmap(maddr); 4408 4409 return len; 4410 } 4411 EXPORT_SYMBOL_GPL(generic_access_phys); 4412 #endif 4413 4414 /* 4415 * Access another process' address space as given in mm. If non-NULL, use the 4416 * given task for page fault accounting. 4417 */ 4418 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4419 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4420 { 4421 struct vm_area_struct *vma; 4422 void *old_buf = buf; 4423 int write = gup_flags & FOLL_WRITE; 4424 4425 down_read(&mm->mmap_sem); 4426 /* ignore errors, just check how much was successfully transferred */ 4427 while (len) { 4428 int bytes, ret, offset; 4429 void *maddr; 4430 struct page *page = NULL; 4431 4432 ret = get_user_pages_remote(tsk, mm, addr, 1, 4433 gup_flags, &page, &vma, NULL); 4434 if (ret <= 0) { 4435 #ifndef CONFIG_HAVE_IOREMAP_PROT 4436 break; 4437 #else 4438 /* 4439 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4440 * we can access using slightly different code. 4441 */ 4442 vma = find_vma(mm, addr); 4443 if (!vma || vma->vm_start > addr) 4444 break; 4445 if (vma->vm_ops && vma->vm_ops->access) 4446 ret = vma->vm_ops->access(vma, addr, buf, 4447 len, write); 4448 if (ret <= 0) 4449 break; 4450 bytes = ret; 4451 #endif 4452 } else { 4453 bytes = len; 4454 offset = addr & (PAGE_SIZE-1); 4455 if (bytes > PAGE_SIZE-offset) 4456 bytes = PAGE_SIZE-offset; 4457 4458 maddr = kmap(page); 4459 if (write) { 4460 copy_to_user_page(vma, page, addr, 4461 maddr + offset, buf, bytes); 4462 set_page_dirty_lock(page); 4463 } else { 4464 copy_from_user_page(vma, page, addr, 4465 buf, maddr + offset, bytes); 4466 } 4467 kunmap(page); 4468 put_page(page); 4469 } 4470 len -= bytes; 4471 buf += bytes; 4472 addr += bytes; 4473 } 4474 up_read(&mm->mmap_sem); 4475 4476 return buf - old_buf; 4477 } 4478 4479 /** 4480 * access_remote_vm - access another process' address space 4481 * @mm: the mm_struct of the target address space 4482 * @addr: start address to access 4483 * @buf: source or destination buffer 4484 * @len: number of bytes to transfer 4485 * @gup_flags: flags modifying lookup behaviour 4486 * 4487 * The caller must hold a reference on @mm. 4488 * 4489 * Return: number of bytes copied from source to destination. 4490 */ 4491 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4492 void *buf, int len, unsigned int gup_flags) 4493 { 4494 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4495 } 4496 4497 /* 4498 * Access another process' address space. 4499 * Source/target buffer must be kernel space, 4500 * Do not walk the page table directly, use get_user_pages 4501 */ 4502 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4503 void *buf, int len, unsigned int gup_flags) 4504 { 4505 struct mm_struct *mm; 4506 int ret; 4507 4508 mm = get_task_mm(tsk); 4509 if (!mm) 4510 return 0; 4511 4512 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4513 4514 mmput(mm); 4515 4516 return ret; 4517 } 4518 EXPORT_SYMBOL_GPL(access_process_vm); 4519 4520 /* 4521 * Print the name of a VMA. 4522 */ 4523 void print_vma_addr(char *prefix, unsigned long ip) 4524 { 4525 struct mm_struct *mm = current->mm; 4526 struct vm_area_struct *vma; 4527 4528 /* 4529 * we might be running from an atomic context so we cannot sleep 4530 */ 4531 if (!down_read_trylock(&mm->mmap_sem)) 4532 return; 4533 4534 vma = find_vma(mm, ip); 4535 if (vma && vma->vm_file) { 4536 struct file *f = vma->vm_file; 4537 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4538 if (buf) { 4539 char *p; 4540 4541 p = file_path(f, buf, PAGE_SIZE); 4542 if (IS_ERR(p)) 4543 p = "?"; 4544 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4545 vma->vm_start, 4546 vma->vm_end - vma->vm_start); 4547 free_page((unsigned long)buf); 4548 } 4549 } 4550 up_read(&mm->mmap_sem); 4551 } 4552 4553 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4554 void __might_fault(const char *file, int line) 4555 { 4556 /* 4557 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4558 * holding the mmap_sem, this is safe because kernel memory doesn't 4559 * get paged out, therefore we'll never actually fault, and the 4560 * below annotations will generate false positives. 4561 */ 4562 if (uaccess_kernel()) 4563 return; 4564 if (pagefault_disabled()) 4565 return; 4566 __might_sleep(file, line, 0); 4567 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4568 if (current->mm) 4569 might_lock_read(¤t->mm->mmap_sem); 4570 #endif 4571 } 4572 EXPORT_SYMBOL(__might_fault); 4573 #endif 4574 4575 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4576 /* 4577 * Process all subpages of the specified huge page with the specified 4578 * operation. The target subpage will be processed last to keep its 4579 * cache lines hot. 4580 */ 4581 static inline void process_huge_page( 4582 unsigned long addr_hint, unsigned int pages_per_huge_page, 4583 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4584 void *arg) 4585 { 4586 int i, n, base, l; 4587 unsigned long addr = addr_hint & 4588 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4589 4590 /* Process target subpage last to keep its cache lines hot */ 4591 might_sleep(); 4592 n = (addr_hint - addr) / PAGE_SIZE; 4593 if (2 * n <= pages_per_huge_page) { 4594 /* If target subpage in first half of huge page */ 4595 base = 0; 4596 l = n; 4597 /* Process subpages at the end of huge page */ 4598 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4599 cond_resched(); 4600 process_subpage(addr + i * PAGE_SIZE, i, arg); 4601 } 4602 } else { 4603 /* If target subpage in second half of huge page */ 4604 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4605 l = pages_per_huge_page - n; 4606 /* Process subpages at the begin of huge page */ 4607 for (i = 0; i < base; i++) { 4608 cond_resched(); 4609 process_subpage(addr + i * PAGE_SIZE, i, arg); 4610 } 4611 } 4612 /* 4613 * Process remaining subpages in left-right-left-right pattern 4614 * towards the target subpage 4615 */ 4616 for (i = 0; i < l; i++) { 4617 int left_idx = base + i; 4618 int right_idx = base + 2 * l - 1 - i; 4619 4620 cond_resched(); 4621 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4622 cond_resched(); 4623 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4624 } 4625 } 4626 4627 static void clear_gigantic_page(struct page *page, 4628 unsigned long addr, 4629 unsigned int pages_per_huge_page) 4630 { 4631 int i; 4632 struct page *p = page; 4633 4634 might_sleep(); 4635 for (i = 0; i < pages_per_huge_page; 4636 i++, p = mem_map_next(p, page, i)) { 4637 cond_resched(); 4638 clear_user_highpage(p, addr + i * PAGE_SIZE); 4639 } 4640 } 4641 4642 static void clear_subpage(unsigned long addr, int idx, void *arg) 4643 { 4644 struct page *page = arg; 4645 4646 clear_user_highpage(page + idx, addr); 4647 } 4648 4649 void clear_huge_page(struct page *page, 4650 unsigned long addr_hint, unsigned int pages_per_huge_page) 4651 { 4652 unsigned long addr = addr_hint & 4653 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4654 4655 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4656 clear_gigantic_page(page, addr, pages_per_huge_page); 4657 return; 4658 } 4659 4660 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4661 } 4662 4663 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4664 unsigned long addr, 4665 struct vm_area_struct *vma, 4666 unsigned int pages_per_huge_page) 4667 { 4668 int i; 4669 struct page *dst_base = dst; 4670 struct page *src_base = src; 4671 4672 for (i = 0; i < pages_per_huge_page; ) { 4673 cond_resched(); 4674 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4675 4676 i++; 4677 dst = mem_map_next(dst, dst_base, i); 4678 src = mem_map_next(src, src_base, i); 4679 } 4680 } 4681 4682 struct copy_subpage_arg { 4683 struct page *dst; 4684 struct page *src; 4685 struct vm_area_struct *vma; 4686 }; 4687 4688 static void copy_subpage(unsigned long addr, int idx, void *arg) 4689 { 4690 struct copy_subpage_arg *copy_arg = arg; 4691 4692 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4693 addr, copy_arg->vma); 4694 } 4695 4696 void copy_user_huge_page(struct page *dst, struct page *src, 4697 unsigned long addr_hint, struct vm_area_struct *vma, 4698 unsigned int pages_per_huge_page) 4699 { 4700 unsigned long addr = addr_hint & 4701 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4702 struct copy_subpage_arg arg = { 4703 .dst = dst, 4704 .src = src, 4705 .vma = vma, 4706 }; 4707 4708 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4709 copy_user_gigantic_page(dst, src, addr, vma, 4710 pages_per_huge_page); 4711 return; 4712 } 4713 4714 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4715 } 4716 4717 long copy_huge_page_from_user(struct page *dst_page, 4718 const void __user *usr_src, 4719 unsigned int pages_per_huge_page, 4720 bool allow_pagefault) 4721 { 4722 void *src = (void *)usr_src; 4723 void *page_kaddr; 4724 unsigned long i, rc = 0; 4725 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4726 4727 for (i = 0; i < pages_per_huge_page; i++) { 4728 if (allow_pagefault) 4729 page_kaddr = kmap(dst_page + i); 4730 else 4731 page_kaddr = kmap_atomic(dst_page + i); 4732 rc = copy_from_user(page_kaddr, 4733 (const void __user *)(src + i * PAGE_SIZE), 4734 PAGE_SIZE); 4735 if (allow_pagefault) 4736 kunmap(dst_page + i); 4737 else 4738 kunmap_atomic(page_kaddr); 4739 4740 ret_val -= (PAGE_SIZE - rc); 4741 if (rc) 4742 break; 4743 4744 cond_resched(); 4745 } 4746 return ret_val; 4747 } 4748 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4749 4750 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4751 4752 static struct kmem_cache *page_ptl_cachep; 4753 4754 void __init ptlock_cache_init(void) 4755 { 4756 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4757 SLAB_PANIC, NULL); 4758 } 4759 4760 bool ptlock_alloc(struct page *page) 4761 { 4762 spinlock_t *ptl; 4763 4764 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4765 if (!ptl) 4766 return false; 4767 page->ptl = ptl; 4768 return true; 4769 } 4770 4771 void ptlock_free(struct page *page) 4772 { 4773 kmem_cache_free(page_ptl_cachep, page->ptl); 4774 } 4775 #endif 4776