xref: /openbmc/linux/mm/memory.c (revision 4f727ecefefbd180de10e25b3e74c03dce3f1e75)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <asm/io.h>
76 #include <asm/mmu_context.h>
77 #include <asm/pgalloc.h>
78 #include <linux/uaccess.h>
79 #include <asm/tlb.h>
80 #include <asm/tlbflush.h>
81 #include <asm/pgtable.h>
82 
83 #include "internal.h"
84 
85 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
86 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
87 #endif
88 
89 #ifndef CONFIG_NEED_MULTIPLE_NODES
90 /* use the per-pgdat data instead for discontigmem - mbligh */
91 unsigned long max_mapnr;
92 EXPORT_SYMBOL(max_mapnr);
93 
94 struct page *mem_map;
95 EXPORT_SYMBOL(mem_map);
96 #endif
97 
98 /*
99  * A number of key systems in x86 including ioremap() rely on the assumption
100  * that high_memory defines the upper bound on direct map memory, then end
101  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
102  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
103  * and ZONE_HIGHMEM.
104  */
105 void *high_memory;
106 EXPORT_SYMBOL(high_memory);
107 
108 /*
109  * Randomize the address space (stacks, mmaps, brk, etc.).
110  *
111  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
112  *   as ancient (libc5 based) binaries can segfault. )
113  */
114 int randomize_va_space __read_mostly =
115 #ifdef CONFIG_COMPAT_BRK
116 					1;
117 #else
118 					2;
119 #endif
120 
121 static int __init disable_randmaps(char *s)
122 {
123 	randomize_va_space = 0;
124 	return 1;
125 }
126 __setup("norandmaps", disable_randmaps);
127 
128 unsigned long zero_pfn __read_mostly;
129 EXPORT_SYMBOL(zero_pfn);
130 
131 unsigned long highest_memmap_pfn __read_mostly;
132 
133 /*
134  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
135  */
136 static int __init init_zero_pfn(void)
137 {
138 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
139 	return 0;
140 }
141 core_initcall(init_zero_pfn);
142 
143 
144 #if defined(SPLIT_RSS_COUNTING)
145 
146 void sync_mm_rss(struct mm_struct *mm)
147 {
148 	int i;
149 
150 	for (i = 0; i < NR_MM_COUNTERS; i++) {
151 		if (current->rss_stat.count[i]) {
152 			add_mm_counter(mm, i, current->rss_stat.count[i]);
153 			current->rss_stat.count[i] = 0;
154 		}
155 	}
156 	current->rss_stat.events = 0;
157 }
158 
159 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
160 {
161 	struct task_struct *task = current;
162 
163 	if (likely(task->mm == mm))
164 		task->rss_stat.count[member] += val;
165 	else
166 		add_mm_counter(mm, member, val);
167 }
168 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
169 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
170 
171 /* sync counter once per 64 page faults */
172 #define TASK_RSS_EVENTS_THRESH	(64)
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 	if (unlikely(task != current))
176 		return;
177 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
178 		sync_mm_rss(task->mm);
179 }
180 #else /* SPLIT_RSS_COUNTING */
181 
182 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
183 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
184 
185 static void check_sync_rss_stat(struct task_struct *task)
186 {
187 }
188 
189 #endif /* SPLIT_RSS_COUNTING */
190 
191 /*
192  * Note: this doesn't free the actual pages themselves. That
193  * has been handled earlier when unmapping all the memory regions.
194  */
195 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
196 			   unsigned long addr)
197 {
198 	pgtable_t token = pmd_pgtable(*pmd);
199 	pmd_clear(pmd);
200 	pte_free_tlb(tlb, token, addr);
201 	mm_dec_nr_ptes(tlb->mm);
202 }
203 
204 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
205 				unsigned long addr, unsigned long end,
206 				unsigned long floor, unsigned long ceiling)
207 {
208 	pmd_t *pmd;
209 	unsigned long next;
210 	unsigned long start;
211 
212 	start = addr;
213 	pmd = pmd_offset(pud, addr);
214 	do {
215 		next = pmd_addr_end(addr, end);
216 		if (pmd_none_or_clear_bad(pmd))
217 			continue;
218 		free_pte_range(tlb, pmd, addr);
219 	} while (pmd++, addr = next, addr != end);
220 
221 	start &= PUD_MASK;
222 	if (start < floor)
223 		return;
224 	if (ceiling) {
225 		ceiling &= PUD_MASK;
226 		if (!ceiling)
227 			return;
228 	}
229 	if (end - 1 > ceiling - 1)
230 		return;
231 
232 	pmd = pmd_offset(pud, start);
233 	pud_clear(pud);
234 	pmd_free_tlb(tlb, pmd, start);
235 	mm_dec_nr_pmds(tlb->mm);
236 }
237 
238 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
239 				unsigned long addr, unsigned long end,
240 				unsigned long floor, unsigned long ceiling)
241 {
242 	pud_t *pud;
243 	unsigned long next;
244 	unsigned long start;
245 
246 	start = addr;
247 	pud = pud_offset(p4d, addr);
248 	do {
249 		next = pud_addr_end(addr, end);
250 		if (pud_none_or_clear_bad(pud))
251 			continue;
252 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
253 	} while (pud++, addr = next, addr != end);
254 
255 	start &= P4D_MASK;
256 	if (start < floor)
257 		return;
258 	if (ceiling) {
259 		ceiling &= P4D_MASK;
260 		if (!ceiling)
261 			return;
262 	}
263 	if (end - 1 > ceiling - 1)
264 		return;
265 
266 	pud = pud_offset(p4d, start);
267 	p4d_clear(p4d);
268 	pud_free_tlb(tlb, pud, start);
269 	mm_dec_nr_puds(tlb->mm);
270 }
271 
272 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
273 				unsigned long addr, unsigned long end,
274 				unsigned long floor, unsigned long ceiling)
275 {
276 	p4d_t *p4d;
277 	unsigned long next;
278 	unsigned long start;
279 
280 	start = addr;
281 	p4d = p4d_offset(pgd, addr);
282 	do {
283 		next = p4d_addr_end(addr, end);
284 		if (p4d_none_or_clear_bad(p4d))
285 			continue;
286 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
287 	} while (p4d++, addr = next, addr != end);
288 
289 	start &= PGDIR_MASK;
290 	if (start < floor)
291 		return;
292 	if (ceiling) {
293 		ceiling &= PGDIR_MASK;
294 		if (!ceiling)
295 			return;
296 	}
297 	if (end - 1 > ceiling - 1)
298 		return;
299 
300 	p4d = p4d_offset(pgd, start);
301 	pgd_clear(pgd);
302 	p4d_free_tlb(tlb, p4d, start);
303 }
304 
305 /*
306  * This function frees user-level page tables of a process.
307  */
308 void free_pgd_range(struct mmu_gather *tlb,
309 			unsigned long addr, unsigned long end,
310 			unsigned long floor, unsigned long ceiling)
311 {
312 	pgd_t *pgd;
313 	unsigned long next;
314 
315 	/*
316 	 * The next few lines have given us lots of grief...
317 	 *
318 	 * Why are we testing PMD* at this top level?  Because often
319 	 * there will be no work to do at all, and we'd prefer not to
320 	 * go all the way down to the bottom just to discover that.
321 	 *
322 	 * Why all these "- 1"s?  Because 0 represents both the bottom
323 	 * of the address space and the top of it (using -1 for the
324 	 * top wouldn't help much: the masks would do the wrong thing).
325 	 * The rule is that addr 0 and floor 0 refer to the bottom of
326 	 * the address space, but end 0 and ceiling 0 refer to the top
327 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
328 	 * that end 0 case should be mythical).
329 	 *
330 	 * Wherever addr is brought up or ceiling brought down, we must
331 	 * be careful to reject "the opposite 0" before it confuses the
332 	 * subsequent tests.  But what about where end is brought down
333 	 * by PMD_SIZE below? no, end can't go down to 0 there.
334 	 *
335 	 * Whereas we round start (addr) and ceiling down, by different
336 	 * masks at different levels, in order to test whether a table
337 	 * now has no other vmas using it, so can be freed, we don't
338 	 * bother to round floor or end up - the tests don't need that.
339 	 */
340 
341 	addr &= PMD_MASK;
342 	if (addr < floor) {
343 		addr += PMD_SIZE;
344 		if (!addr)
345 			return;
346 	}
347 	if (ceiling) {
348 		ceiling &= PMD_MASK;
349 		if (!ceiling)
350 			return;
351 	}
352 	if (end - 1 > ceiling - 1)
353 		end -= PMD_SIZE;
354 	if (addr > end - 1)
355 		return;
356 	/*
357 	 * We add page table cache pages with PAGE_SIZE,
358 	 * (see pte_free_tlb()), flush the tlb if we need
359 	 */
360 	tlb_change_page_size(tlb, PAGE_SIZE);
361 	pgd = pgd_offset(tlb->mm, addr);
362 	do {
363 		next = pgd_addr_end(addr, end);
364 		if (pgd_none_or_clear_bad(pgd))
365 			continue;
366 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
367 	} while (pgd++, addr = next, addr != end);
368 }
369 
370 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
371 		unsigned long floor, unsigned long ceiling)
372 {
373 	while (vma) {
374 		struct vm_area_struct *next = vma->vm_next;
375 		unsigned long addr = vma->vm_start;
376 
377 		/*
378 		 * Hide vma from rmap and truncate_pagecache before freeing
379 		 * pgtables
380 		 */
381 		unlink_anon_vmas(vma);
382 		unlink_file_vma(vma);
383 
384 		if (is_vm_hugetlb_page(vma)) {
385 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
386 				floor, next ? next->vm_start : ceiling);
387 		} else {
388 			/*
389 			 * Optimization: gather nearby vmas into one call down
390 			 */
391 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
392 			       && !is_vm_hugetlb_page(next)) {
393 				vma = next;
394 				next = vma->vm_next;
395 				unlink_anon_vmas(vma);
396 				unlink_file_vma(vma);
397 			}
398 			free_pgd_range(tlb, addr, vma->vm_end,
399 				floor, next ? next->vm_start : ceiling);
400 		}
401 		vma = next;
402 	}
403 }
404 
405 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
406 {
407 	spinlock_t *ptl;
408 	pgtable_t new = pte_alloc_one(mm);
409 	if (!new)
410 		return -ENOMEM;
411 
412 	/*
413 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
414 	 * visible before the pte is made visible to other CPUs by being
415 	 * put into page tables.
416 	 *
417 	 * The other side of the story is the pointer chasing in the page
418 	 * table walking code (when walking the page table without locking;
419 	 * ie. most of the time). Fortunately, these data accesses consist
420 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
421 	 * being the notable exception) will already guarantee loads are
422 	 * seen in-order. See the alpha page table accessors for the
423 	 * smp_read_barrier_depends() barriers in page table walking code.
424 	 */
425 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
426 
427 	ptl = pmd_lock(mm, pmd);
428 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
429 		mm_inc_nr_ptes(mm);
430 		pmd_populate(mm, pmd, new);
431 		new = NULL;
432 	}
433 	spin_unlock(ptl);
434 	if (new)
435 		pte_free(mm, new);
436 	return 0;
437 }
438 
439 int __pte_alloc_kernel(pmd_t *pmd)
440 {
441 	pte_t *new = pte_alloc_one_kernel(&init_mm);
442 	if (!new)
443 		return -ENOMEM;
444 
445 	smp_wmb(); /* See comment in __pte_alloc */
446 
447 	spin_lock(&init_mm.page_table_lock);
448 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
449 		pmd_populate_kernel(&init_mm, pmd, new);
450 		new = NULL;
451 	}
452 	spin_unlock(&init_mm.page_table_lock);
453 	if (new)
454 		pte_free_kernel(&init_mm, new);
455 	return 0;
456 }
457 
458 static inline void init_rss_vec(int *rss)
459 {
460 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
461 }
462 
463 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
464 {
465 	int i;
466 
467 	if (current->mm == mm)
468 		sync_mm_rss(mm);
469 	for (i = 0; i < NR_MM_COUNTERS; i++)
470 		if (rss[i])
471 			add_mm_counter(mm, i, rss[i]);
472 }
473 
474 /*
475  * This function is called to print an error when a bad pte
476  * is found. For example, we might have a PFN-mapped pte in
477  * a region that doesn't allow it.
478  *
479  * The calling function must still handle the error.
480  */
481 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
482 			  pte_t pte, struct page *page)
483 {
484 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
485 	p4d_t *p4d = p4d_offset(pgd, addr);
486 	pud_t *pud = pud_offset(p4d, addr);
487 	pmd_t *pmd = pmd_offset(pud, addr);
488 	struct address_space *mapping;
489 	pgoff_t index;
490 	static unsigned long resume;
491 	static unsigned long nr_shown;
492 	static unsigned long nr_unshown;
493 
494 	/*
495 	 * Allow a burst of 60 reports, then keep quiet for that minute;
496 	 * or allow a steady drip of one report per second.
497 	 */
498 	if (nr_shown == 60) {
499 		if (time_before(jiffies, resume)) {
500 			nr_unshown++;
501 			return;
502 		}
503 		if (nr_unshown) {
504 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
505 				 nr_unshown);
506 			nr_unshown = 0;
507 		}
508 		nr_shown = 0;
509 	}
510 	if (nr_shown++ == 0)
511 		resume = jiffies + 60 * HZ;
512 
513 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
514 	index = linear_page_index(vma, addr);
515 
516 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
517 		 current->comm,
518 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
519 	if (page)
520 		dump_page(page, "bad pte");
521 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
522 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
523 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
524 		 vma->vm_file,
525 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
526 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
527 		 mapping ? mapping->a_ops->readpage : NULL);
528 	dump_stack();
529 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
530 }
531 
532 /*
533  * vm_normal_page -- This function gets the "struct page" associated with a pte.
534  *
535  * "Special" mappings do not wish to be associated with a "struct page" (either
536  * it doesn't exist, or it exists but they don't want to touch it). In this
537  * case, NULL is returned here. "Normal" mappings do have a struct page.
538  *
539  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
540  * pte bit, in which case this function is trivial. Secondly, an architecture
541  * may not have a spare pte bit, which requires a more complicated scheme,
542  * described below.
543  *
544  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
545  * special mapping (even if there are underlying and valid "struct pages").
546  * COWed pages of a VM_PFNMAP are always normal.
547  *
548  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
549  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
550  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
551  * mapping will always honor the rule
552  *
553  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
554  *
555  * And for normal mappings this is false.
556  *
557  * This restricts such mappings to be a linear translation from virtual address
558  * to pfn. To get around this restriction, we allow arbitrary mappings so long
559  * as the vma is not a COW mapping; in that case, we know that all ptes are
560  * special (because none can have been COWed).
561  *
562  *
563  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
564  *
565  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
566  * page" backing, however the difference is that _all_ pages with a struct
567  * page (that is, those where pfn_valid is true) are refcounted and considered
568  * normal pages by the VM. The disadvantage is that pages are refcounted
569  * (which can be slower and simply not an option for some PFNMAP users). The
570  * advantage is that we don't have to follow the strict linearity rule of
571  * PFNMAP mappings in order to support COWable mappings.
572  *
573  */
574 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
575 			     pte_t pte, bool with_public_device)
576 {
577 	unsigned long pfn = pte_pfn(pte);
578 
579 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
580 		if (likely(!pte_special(pte)))
581 			goto check_pfn;
582 		if (vma->vm_ops && vma->vm_ops->find_special_page)
583 			return vma->vm_ops->find_special_page(vma, addr);
584 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
585 			return NULL;
586 		if (is_zero_pfn(pfn))
587 			return NULL;
588 
589 		/*
590 		 * Device public pages are special pages (they are ZONE_DEVICE
591 		 * pages but different from persistent memory). They behave
592 		 * allmost like normal pages. The difference is that they are
593 		 * not on the lru and thus should never be involve with any-
594 		 * thing that involve lru manipulation (mlock, numa balancing,
595 		 * ...).
596 		 *
597 		 * This is why we still want to return NULL for such page from
598 		 * vm_normal_page() so that we do not have to special case all
599 		 * call site of vm_normal_page().
600 		 */
601 		if (likely(pfn <= highest_memmap_pfn)) {
602 			struct page *page = pfn_to_page(pfn);
603 
604 			if (is_device_public_page(page)) {
605 				if (with_public_device)
606 					return page;
607 				return NULL;
608 			}
609 		}
610 
611 		if (pte_devmap(pte))
612 			return NULL;
613 
614 		print_bad_pte(vma, addr, pte, NULL);
615 		return NULL;
616 	}
617 
618 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
619 
620 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
621 		if (vma->vm_flags & VM_MIXEDMAP) {
622 			if (!pfn_valid(pfn))
623 				return NULL;
624 			goto out;
625 		} else {
626 			unsigned long off;
627 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
628 			if (pfn == vma->vm_pgoff + off)
629 				return NULL;
630 			if (!is_cow_mapping(vma->vm_flags))
631 				return NULL;
632 		}
633 	}
634 
635 	if (is_zero_pfn(pfn))
636 		return NULL;
637 
638 check_pfn:
639 	if (unlikely(pfn > highest_memmap_pfn)) {
640 		print_bad_pte(vma, addr, pte, NULL);
641 		return NULL;
642 	}
643 
644 	/*
645 	 * NOTE! We still have PageReserved() pages in the page tables.
646 	 * eg. VDSO mappings can cause them to exist.
647 	 */
648 out:
649 	return pfn_to_page(pfn);
650 }
651 
652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
653 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
654 				pmd_t pmd)
655 {
656 	unsigned long pfn = pmd_pfn(pmd);
657 
658 	/*
659 	 * There is no pmd_special() but there may be special pmds, e.g.
660 	 * in a direct-access (dax) mapping, so let's just replicate the
661 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
662 	 */
663 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
664 		if (vma->vm_flags & VM_MIXEDMAP) {
665 			if (!pfn_valid(pfn))
666 				return NULL;
667 			goto out;
668 		} else {
669 			unsigned long off;
670 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
671 			if (pfn == vma->vm_pgoff + off)
672 				return NULL;
673 			if (!is_cow_mapping(vma->vm_flags))
674 				return NULL;
675 		}
676 	}
677 
678 	if (pmd_devmap(pmd))
679 		return NULL;
680 	if (is_zero_pfn(pfn))
681 		return NULL;
682 	if (unlikely(pfn > highest_memmap_pfn))
683 		return NULL;
684 
685 	/*
686 	 * NOTE! We still have PageReserved() pages in the page tables.
687 	 * eg. VDSO mappings can cause them to exist.
688 	 */
689 out:
690 	return pfn_to_page(pfn);
691 }
692 #endif
693 
694 /*
695  * copy one vm_area from one task to the other. Assumes the page tables
696  * already present in the new task to be cleared in the whole range
697  * covered by this vma.
698  */
699 
700 static inline unsigned long
701 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
702 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
703 		unsigned long addr, int *rss)
704 {
705 	unsigned long vm_flags = vma->vm_flags;
706 	pte_t pte = *src_pte;
707 	struct page *page;
708 
709 	/* pte contains position in swap or file, so copy. */
710 	if (unlikely(!pte_present(pte))) {
711 		swp_entry_t entry = pte_to_swp_entry(pte);
712 
713 		if (likely(!non_swap_entry(entry))) {
714 			if (swap_duplicate(entry) < 0)
715 				return entry.val;
716 
717 			/* make sure dst_mm is on swapoff's mmlist. */
718 			if (unlikely(list_empty(&dst_mm->mmlist))) {
719 				spin_lock(&mmlist_lock);
720 				if (list_empty(&dst_mm->mmlist))
721 					list_add(&dst_mm->mmlist,
722 							&src_mm->mmlist);
723 				spin_unlock(&mmlist_lock);
724 			}
725 			rss[MM_SWAPENTS]++;
726 		} else if (is_migration_entry(entry)) {
727 			page = migration_entry_to_page(entry);
728 
729 			rss[mm_counter(page)]++;
730 
731 			if (is_write_migration_entry(entry) &&
732 					is_cow_mapping(vm_flags)) {
733 				/*
734 				 * COW mappings require pages in both
735 				 * parent and child to be set to read.
736 				 */
737 				make_migration_entry_read(&entry);
738 				pte = swp_entry_to_pte(entry);
739 				if (pte_swp_soft_dirty(*src_pte))
740 					pte = pte_swp_mksoft_dirty(pte);
741 				set_pte_at(src_mm, addr, src_pte, pte);
742 			}
743 		} else if (is_device_private_entry(entry)) {
744 			page = device_private_entry_to_page(entry);
745 
746 			/*
747 			 * Update rss count even for unaddressable pages, as
748 			 * they should treated just like normal pages in this
749 			 * respect.
750 			 *
751 			 * We will likely want to have some new rss counters
752 			 * for unaddressable pages, at some point. But for now
753 			 * keep things as they are.
754 			 */
755 			get_page(page);
756 			rss[mm_counter(page)]++;
757 			page_dup_rmap(page, false);
758 
759 			/*
760 			 * We do not preserve soft-dirty information, because so
761 			 * far, checkpoint/restore is the only feature that
762 			 * requires that. And checkpoint/restore does not work
763 			 * when a device driver is involved (you cannot easily
764 			 * save and restore device driver state).
765 			 */
766 			if (is_write_device_private_entry(entry) &&
767 			    is_cow_mapping(vm_flags)) {
768 				make_device_private_entry_read(&entry);
769 				pte = swp_entry_to_pte(entry);
770 				set_pte_at(src_mm, addr, src_pte, pte);
771 			}
772 		}
773 		goto out_set_pte;
774 	}
775 
776 	/*
777 	 * If it's a COW mapping, write protect it both
778 	 * in the parent and the child
779 	 */
780 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
781 		ptep_set_wrprotect(src_mm, addr, src_pte);
782 		pte = pte_wrprotect(pte);
783 	}
784 
785 	/*
786 	 * If it's a shared mapping, mark it clean in
787 	 * the child
788 	 */
789 	if (vm_flags & VM_SHARED)
790 		pte = pte_mkclean(pte);
791 	pte = pte_mkold(pte);
792 
793 	page = vm_normal_page(vma, addr, pte);
794 	if (page) {
795 		get_page(page);
796 		page_dup_rmap(page, false);
797 		rss[mm_counter(page)]++;
798 	} else if (pte_devmap(pte)) {
799 		page = pte_page(pte);
800 
801 		/*
802 		 * Cache coherent device memory behave like regular page and
803 		 * not like persistent memory page. For more informations see
804 		 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
805 		 */
806 		if (is_device_public_page(page)) {
807 			get_page(page);
808 			page_dup_rmap(page, false);
809 			rss[mm_counter(page)]++;
810 		}
811 	}
812 
813 out_set_pte:
814 	set_pte_at(dst_mm, addr, dst_pte, pte);
815 	return 0;
816 }
817 
818 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
819 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
820 		   unsigned long addr, unsigned long end)
821 {
822 	pte_t *orig_src_pte, *orig_dst_pte;
823 	pte_t *src_pte, *dst_pte;
824 	spinlock_t *src_ptl, *dst_ptl;
825 	int progress = 0;
826 	int rss[NR_MM_COUNTERS];
827 	swp_entry_t entry = (swp_entry_t){0};
828 
829 again:
830 	init_rss_vec(rss);
831 
832 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
833 	if (!dst_pte)
834 		return -ENOMEM;
835 	src_pte = pte_offset_map(src_pmd, addr);
836 	src_ptl = pte_lockptr(src_mm, src_pmd);
837 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
838 	orig_src_pte = src_pte;
839 	orig_dst_pte = dst_pte;
840 	arch_enter_lazy_mmu_mode();
841 
842 	do {
843 		/*
844 		 * We are holding two locks at this point - either of them
845 		 * could generate latencies in another task on another CPU.
846 		 */
847 		if (progress >= 32) {
848 			progress = 0;
849 			if (need_resched() ||
850 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
851 				break;
852 		}
853 		if (pte_none(*src_pte)) {
854 			progress++;
855 			continue;
856 		}
857 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
858 							vma, addr, rss);
859 		if (entry.val)
860 			break;
861 		progress += 8;
862 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
863 
864 	arch_leave_lazy_mmu_mode();
865 	spin_unlock(src_ptl);
866 	pte_unmap(orig_src_pte);
867 	add_mm_rss_vec(dst_mm, rss);
868 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
869 	cond_resched();
870 
871 	if (entry.val) {
872 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
873 			return -ENOMEM;
874 		progress = 0;
875 	}
876 	if (addr != end)
877 		goto again;
878 	return 0;
879 }
880 
881 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
882 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
883 		unsigned long addr, unsigned long end)
884 {
885 	pmd_t *src_pmd, *dst_pmd;
886 	unsigned long next;
887 
888 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
889 	if (!dst_pmd)
890 		return -ENOMEM;
891 	src_pmd = pmd_offset(src_pud, addr);
892 	do {
893 		next = pmd_addr_end(addr, end);
894 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
895 			|| pmd_devmap(*src_pmd)) {
896 			int err;
897 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
898 			err = copy_huge_pmd(dst_mm, src_mm,
899 					    dst_pmd, src_pmd, addr, vma);
900 			if (err == -ENOMEM)
901 				return -ENOMEM;
902 			if (!err)
903 				continue;
904 			/* fall through */
905 		}
906 		if (pmd_none_or_clear_bad(src_pmd))
907 			continue;
908 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
909 						vma, addr, next))
910 			return -ENOMEM;
911 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
912 	return 0;
913 }
914 
915 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
916 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
917 		unsigned long addr, unsigned long end)
918 {
919 	pud_t *src_pud, *dst_pud;
920 	unsigned long next;
921 
922 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
923 	if (!dst_pud)
924 		return -ENOMEM;
925 	src_pud = pud_offset(src_p4d, addr);
926 	do {
927 		next = pud_addr_end(addr, end);
928 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
929 			int err;
930 
931 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
932 			err = copy_huge_pud(dst_mm, src_mm,
933 					    dst_pud, src_pud, addr, vma);
934 			if (err == -ENOMEM)
935 				return -ENOMEM;
936 			if (!err)
937 				continue;
938 			/* fall through */
939 		}
940 		if (pud_none_or_clear_bad(src_pud))
941 			continue;
942 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
943 						vma, addr, next))
944 			return -ENOMEM;
945 	} while (dst_pud++, src_pud++, addr = next, addr != end);
946 	return 0;
947 }
948 
949 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
950 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
951 		unsigned long addr, unsigned long end)
952 {
953 	p4d_t *src_p4d, *dst_p4d;
954 	unsigned long next;
955 
956 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
957 	if (!dst_p4d)
958 		return -ENOMEM;
959 	src_p4d = p4d_offset(src_pgd, addr);
960 	do {
961 		next = p4d_addr_end(addr, end);
962 		if (p4d_none_or_clear_bad(src_p4d))
963 			continue;
964 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
965 						vma, addr, next))
966 			return -ENOMEM;
967 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
968 	return 0;
969 }
970 
971 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
972 		struct vm_area_struct *vma)
973 {
974 	pgd_t *src_pgd, *dst_pgd;
975 	unsigned long next;
976 	unsigned long addr = vma->vm_start;
977 	unsigned long end = vma->vm_end;
978 	struct mmu_notifier_range range;
979 	bool is_cow;
980 	int ret;
981 
982 	/*
983 	 * Don't copy ptes where a page fault will fill them correctly.
984 	 * Fork becomes much lighter when there are big shared or private
985 	 * readonly mappings. The tradeoff is that copy_page_range is more
986 	 * efficient than faulting.
987 	 */
988 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
989 			!vma->anon_vma)
990 		return 0;
991 
992 	if (is_vm_hugetlb_page(vma))
993 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
994 
995 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
996 		/*
997 		 * We do not free on error cases below as remove_vma
998 		 * gets called on error from higher level routine
999 		 */
1000 		ret = track_pfn_copy(vma);
1001 		if (ret)
1002 			return ret;
1003 	}
1004 
1005 	/*
1006 	 * We need to invalidate the secondary MMU mappings only when
1007 	 * there could be a permission downgrade on the ptes of the
1008 	 * parent mm. And a permission downgrade will only happen if
1009 	 * is_cow_mapping() returns true.
1010 	 */
1011 	is_cow = is_cow_mapping(vma->vm_flags);
1012 
1013 	if (is_cow) {
1014 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1015 					0, vma, src_mm, addr, end);
1016 		mmu_notifier_invalidate_range_start(&range);
1017 	}
1018 
1019 	ret = 0;
1020 	dst_pgd = pgd_offset(dst_mm, addr);
1021 	src_pgd = pgd_offset(src_mm, addr);
1022 	do {
1023 		next = pgd_addr_end(addr, end);
1024 		if (pgd_none_or_clear_bad(src_pgd))
1025 			continue;
1026 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1027 					    vma, addr, next))) {
1028 			ret = -ENOMEM;
1029 			break;
1030 		}
1031 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1032 
1033 	if (is_cow)
1034 		mmu_notifier_invalidate_range_end(&range);
1035 	return ret;
1036 }
1037 
1038 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1039 				struct vm_area_struct *vma, pmd_t *pmd,
1040 				unsigned long addr, unsigned long end,
1041 				struct zap_details *details)
1042 {
1043 	struct mm_struct *mm = tlb->mm;
1044 	int force_flush = 0;
1045 	int rss[NR_MM_COUNTERS];
1046 	spinlock_t *ptl;
1047 	pte_t *start_pte;
1048 	pte_t *pte;
1049 	swp_entry_t entry;
1050 
1051 	tlb_change_page_size(tlb, PAGE_SIZE);
1052 again:
1053 	init_rss_vec(rss);
1054 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1055 	pte = start_pte;
1056 	flush_tlb_batched_pending(mm);
1057 	arch_enter_lazy_mmu_mode();
1058 	do {
1059 		pte_t ptent = *pte;
1060 		if (pte_none(ptent))
1061 			continue;
1062 
1063 		if (pte_present(ptent)) {
1064 			struct page *page;
1065 
1066 			page = _vm_normal_page(vma, addr, ptent, true);
1067 			if (unlikely(details) && page) {
1068 				/*
1069 				 * unmap_shared_mapping_pages() wants to
1070 				 * invalidate cache without truncating:
1071 				 * unmap shared but keep private pages.
1072 				 */
1073 				if (details->check_mapping &&
1074 				    details->check_mapping != page_rmapping(page))
1075 					continue;
1076 			}
1077 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1078 							tlb->fullmm);
1079 			tlb_remove_tlb_entry(tlb, pte, addr);
1080 			if (unlikely(!page))
1081 				continue;
1082 
1083 			if (!PageAnon(page)) {
1084 				if (pte_dirty(ptent)) {
1085 					force_flush = 1;
1086 					set_page_dirty(page);
1087 				}
1088 				if (pte_young(ptent) &&
1089 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1090 					mark_page_accessed(page);
1091 			}
1092 			rss[mm_counter(page)]--;
1093 			page_remove_rmap(page, false);
1094 			if (unlikely(page_mapcount(page) < 0))
1095 				print_bad_pte(vma, addr, ptent, page);
1096 			if (unlikely(__tlb_remove_page(tlb, page))) {
1097 				force_flush = 1;
1098 				addr += PAGE_SIZE;
1099 				break;
1100 			}
1101 			continue;
1102 		}
1103 
1104 		entry = pte_to_swp_entry(ptent);
1105 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1106 			struct page *page = device_private_entry_to_page(entry);
1107 
1108 			if (unlikely(details && details->check_mapping)) {
1109 				/*
1110 				 * unmap_shared_mapping_pages() wants to
1111 				 * invalidate cache without truncating:
1112 				 * unmap shared but keep private pages.
1113 				 */
1114 				if (details->check_mapping !=
1115 				    page_rmapping(page))
1116 					continue;
1117 			}
1118 
1119 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1120 			rss[mm_counter(page)]--;
1121 			page_remove_rmap(page, false);
1122 			put_page(page);
1123 			continue;
1124 		}
1125 
1126 		/* If details->check_mapping, we leave swap entries. */
1127 		if (unlikely(details))
1128 			continue;
1129 
1130 		entry = pte_to_swp_entry(ptent);
1131 		if (!non_swap_entry(entry))
1132 			rss[MM_SWAPENTS]--;
1133 		else if (is_migration_entry(entry)) {
1134 			struct page *page;
1135 
1136 			page = migration_entry_to_page(entry);
1137 			rss[mm_counter(page)]--;
1138 		}
1139 		if (unlikely(!free_swap_and_cache(entry)))
1140 			print_bad_pte(vma, addr, ptent, NULL);
1141 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1142 	} while (pte++, addr += PAGE_SIZE, addr != end);
1143 
1144 	add_mm_rss_vec(mm, rss);
1145 	arch_leave_lazy_mmu_mode();
1146 
1147 	/* Do the actual TLB flush before dropping ptl */
1148 	if (force_flush)
1149 		tlb_flush_mmu_tlbonly(tlb);
1150 	pte_unmap_unlock(start_pte, ptl);
1151 
1152 	/*
1153 	 * If we forced a TLB flush (either due to running out of
1154 	 * batch buffers or because we needed to flush dirty TLB
1155 	 * entries before releasing the ptl), free the batched
1156 	 * memory too. Restart if we didn't do everything.
1157 	 */
1158 	if (force_flush) {
1159 		force_flush = 0;
1160 		tlb_flush_mmu(tlb);
1161 		if (addr != end)
1162 			goto again;
1163 	}
1164 
1165 	return addr;
1166 }
1167 
1168 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1169 				struct vm_area_struct *vma, pud_t *pud,
1170 				unsigned long addr, unsigned long end,
1171 				struct zap_details *details)
1172 {
1173 	pmd_t *pmd;
1174 	unsigned long next;
1175 
1176 	pmd = pmd_offset(pud, addr);
1177 	do {
1178 		next = pmd_addr_end(addr, end);
1179 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1180 			if (next - addr != HPAGE_PMD_SIZE)
1181 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1182 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1183 				goto next;
1184 			/* fall through */
1185 		}
1186 		/*
1187 		 * Here there can be other concurrent MADV_DONTNEED or
1188 		 * trans huge page faults running, and if the pmd is
1189 		 * none or trans huge it can change under us. This is
1190 		 * because MADV_DONTNEED holds the mmap_sem in read
1191 		 * mode.
1192 		 */
1193 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1194 			goto next;
1195 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1196 next:
1197 		cond_resched();
1198 	} while (pmd++, addr = next, addr != end);
1199 
1200 	return addr;
1201 }
1202 
1203 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1204 				struct vm_area_struct *vma, p4d_t *p4d,
1205 				unsigned long addr, unsigned long end,
1206 				struct zap_details *details)
1207 {
1208 	pud_t *pud;
1209 	unsigned long next;
1210 
1211 	pud = pud_offset(p4d, addr);
1212 	do {
1213 		next = pud_addr_end(addr, end);
1214 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1215 			if (next - addr != HPAGE_PUD_SIZE) {
1216 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1217 				split_huge_pud(vma, pud, addr);
1218 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1219 				goto next;
1220 			/* fall through */
1221 		}
1222 		if (pud_none_or_clear_bad(pud))
1223 			continue;
1224 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1225 next:
1226 		cond_resched();
1227 	} while (pud++, addr = next, addr != end);
1228 
1229 	return addr;
1230 }
1231 
1232 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1233 				struct vm_area_struct *vma, pgd_t *pgd,
1234 				unsigned long addr, unsigned long end,
1235 				struct zap_details *details)
1236 {
1237 	p4d_t *p4d;
1238 	unsigned long next;
1239 
1240 	p4d = p4d_offset(pgd, addr);
1241 	do {
1242 		next = p4d_addr_end(addr, end);
1243 		if (p4d_none_or_clear_bad(p4d))
1244 			continue;
1245 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1246 	} while (p4d++, addr = next, addr != end);
1247 
1248 	return addr;
1249 }
1250 
1251 void unmap_page_range(struct mmu_gather *tlb,
1252 			     struct vm_area_struct *vma,
1253 			     unsigned long addr, unsigned long end,
1254 			     struct zap_details *details)
1255 {
1256 	pgd_t *pgd;
1257 	unsigned long next;
1258 
1259 	BUG_ON(addr >= end);
1260 	tlb_start_vma(tlb, vma);
1261 	pgd = pgd_offset(vma->vm_mm, addr);
1262 	do {
1263 		next = pgd_addr_end(addr, end);
1264 		if (pgd_none_or_clear_bad(pgd))
1265 			continue;
1266 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1267 	} while (pgd++, addr = next, addr != end);
1268 	tlb_end_vma(tlb, vma);
1269 }
1270 
1271 
1272 static void unmap_single_vma(struct mmu_gather *tlb,
1273 		struct vm_area_struct *vma, unsigned long start_addr,
1274 		unsigned long end_addr,
1275 		struct zap_details *details)
1276 {
1277 	unsigned long start = max(vma->vm_start, start_addr);
1278 	unsigned long end;
1279 
1280 	if (start >= vma->vm_end)
1281 		return;
1282 	end = min(vma->vm_end, end_addr);
1283 	if (end <= vma->vm_start)
1284 		return;
1285 
1286 	if (vma->vm_file)
1287 		uprobe_munmap(vma, start, end);
1288 
1289 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1290 		untrack_pfn(vma, 0, 0);
1291 
1292 	if (start != end) {
1293 		if (unlikely(is_vm_hugetlb_page(vma))) {
1294 			/*
1295 			 * It is undesirable to test vma->vm_file as it
1296 			 * should be non-null for valid hugetlb area.
1297 			 * However, vm_file will be NULL in the error
1298 			 * cleanup path of mmap_region. When
1299 			 * hugetlbfs ->mmap method fails,
1300 			 * mmap_region() nullifies vma->vm_file
1301 			 * before calling this function to clean up.
1302 			 * Since no pte has actually been setup, it is
1303 			 * safe to do nothing in this case.
1304 			 */
1305 			if (vma->vm_file) {
1306 				i_mmap_lock_write(vma->vm_file->f_mapping);
1307 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1308 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1309 			}
1310 		} else
1311 			unmap_page_range(tlb, vma, start, end, details);
1312 	}
1313 }
1314 
1315 /**
1316  * unmap_vmas - unmap a range of memory covered by a list of vma's
1317  * @tlb: address of the caller's struct mmu_gather
1318  * @vma: the starting vma
1319  * @start_addr: virtual address at which to start unmapping
1320  * @end_addr: virtual address at which to end unmapping
1321  *
1322  * Unmap all pages in the vma list.
1323  *
1324  * Only addresses between `start' and `end' will be unmapped.
1325  *
1326  * The VMA list must be sorted in ascending virtual address order.
1327  *
1328  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1329  * range after unmap_vmas() returns.  So the only responsibility here is to
1330  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1331  * drops the lock and schedules.
1332  */
1333 void unmap_vmas(struct mmu_gather *tlb,
1334 		struct vm_area_struct *vma, unsigned long start_addr,
1335 		unsigned long end_addr)
1336 {
1337 	struct mmu_notifier_range range;
1338 
1339 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1340 				start_addr, end_addr);
1341 	mmu_notifier_invalidate_range_start(&range);
1342 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1343 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1344 	mmu_notifier_invalidate_range_end(&range);
1345 }
1346 
1347 /**
1348  * zap_page_range - remove user pages in a given range
1349  * @vma: vm_area_struct holding the applicable pages
1350  * @start: starting address of pages to zap
1351  * @size: number of bytes to zap
1352  *
1353  * Caller must protect the VMA list
1354  */
1355 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1356 		unsigned long size)
1357 {
1358 	struct mmu_notifier_range range;
1359 	struct mmu_gather tlb;
1360 
1361 	lru_add_drain();
1362 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1363 				start, start + size);
1364 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1365 	update_hiwater_rss(vma->vm_mm);
1366 	mmu_notifier_invalidate_range_start(&range);
1367 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1368 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1369 	mmu_notifier_invalidate_range_end(&range);
1370 	tlb_finish_mmu(&tlb, start, range.end);
1371 }
1372 
1373 /**
1374  * zap_page_range_single - remove user pages in a given range
1375  * @vma: vm_area_struct holding the applicable pages
1376  * @address: starting address of pages to zap
1377  * @size: number of bytes to zap
1378  * @details: details of shared cache invalidation
1379  *
1380  * The range must fit into one VMA.
1381  */
1382 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1383 		unsigned long size, struct zap_details *details)
1384 {
1385 	struct mmu_notifier_range range;
1386 	struct mmu_gather tlb;
1387 
1388 	lru_add_drain();
1389 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1390 				address, address + size);
1391 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1392 	update_hiwater_rss(vma->vm_mm);
1393 	mmu_notifier_invalidate_range_start(&range);
1394 	unmap_single_vma(&tlb, vma, address, range.end, details);
1395 	mmu_notifier_invalidate_range_end(&range);
1396 	tlb_finish_mmu(&tlb, address, range.end);
1397 }
1398 
1399 /**
1400  * zap_vma_ptes - remove ptes mapping the vma
1401  * @vma: vm_area_struct holding ptes to be zapped
1402  * @address: starting address of pages to zap
1403  * @size: number of bytes to zap
1404  *
1405  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1406  *
1407  * The entire address range must be fully contained within the vma.
1408  *
1409  */
1410 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1411 		unsigned long size)
1412 {
1413 	if (address < vma->vm_start || address + size > vma->vm_end ||
1414 	    		!(vma->vm_flags & VM_PFNMAP))
1415 		return;
1416 
1417 	zap_page_range_single(vma, address, size, NULL);
1418 }
1419 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1420 
1421 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1422 			spinlock_t **ptl)
1423 {
1424 	pgd_t *pgd;
1425 	p4d_t *p4d;
1426 	pud_t *pud;
1427 	pmd_t *pmd;
1428 
1429 	pgd = pgd_offset(mm, addr);
1430 	p4d = p4d_alloc(mm, pgd, addr);
1431 	if (!p4d)
1432 		return NULL;
1433 	pud = pud_alloc(mm, p4d, addr);
1434 	if (!pud)
1435 		return NULL;
1436 	pmd = pmd_alloc(mm, pud, addr);
1437 	if (!pmd)
1438 		return NULL;
1439 
1440 	VM_BUG_ON(pmd_trans_huge(*pmd));
1441 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1442 }
1443 
1444 /*
1445  * This is the old fallback for page remapping.
1446  *
1447  * For historical reasons, it only allows reserved pages. Only
1448  * old drivers should use this, and they needed to mark their
1449  * pages reserved for the old functions anyway.
1450  */
1451 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1452 			struct page *page, pgprot_t prot)
1453 {
1454 	struct mm_struct *mm = vma->vm_mm;
1455 	int retval;
1456 	pte_t *pte;
1457 	spinlock_t *ptl;
1458 
1459 	retval = -EINVAL;
1460 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1461 		goto out;
1462 	retval = -ENOMEM;
1463 	flush_dcache_page(page);
1464 	pte = get_locked_pte(mm, addr, &ptl);
1465 	if (!pte)
1466 		goto out;
1467 	retval = -EBUSY;
1468 	if (!pte_none(*pte))
1469 		goto out_unlock;
1470 
1471 	/* Ok, finally just insert the thing.. */
1472 	get_page(page);
1473 	inc_mm_counter_fast(mm, mm_counter_file(page));
1474 	page_add_file_rmap(page, false);
1475 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1476 
1477 	retval = 0;
1478 	pte_unmap_unlock(pte, ptl);
1479 	return retval;
1480 out_unlock:
1481 	pte_unmap_unlock(pte, ptl);
1482 out:
1483 	return retval;
1484 }
1485 
1486 /**
1487  * vm_insert_page - insert single page into user vma
1488  * @vma: user vma to map to
1489  * @addr: target user address of this page
1490  * @page: source kernel page
1491  *
1492  * This allows drivers to insert individual pages they've allocated
1493  * into a user vma.
1494  *
1495  * The page has to be a nice clean _individual_ kernel allocation.
1496  * If you allocate a compound page, you need to have marked it as
1497  * such (__GFP_COMP), or manually just split the page up yourself
1498  * (see split_page()).
1499  *
1500  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1501  * took an arbitrary page protection parameter. This doesn't allow
1502  * that. Your vma protection will have to be set up correctly, which
1503  * means that if you want a shared writable mapping, you'd better
1504  * ask for a shared writable mapping!
1505  *
1506  * The page does not need to be reserved.
1507  *
1508  * Usually this function is called from f_op->mmap() handler
1509  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1510  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1511  * function from other places, for example from page-fault handler.
1512  *
1513  * Return: %0 on success, negative error code otherwise.
1514  */
1515 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1516 			struct page *page)
1517 {
1518 	if (addr < vma->vm_start || addr >= vma->vm_end)
1519 		return -EFAULT;
1520 	if (!page_count(page))
1521 		return -EINVAL;
1522 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1523 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1524 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1525 		vma->vm_flags |= VM_MIXEDMAP;
1526 	}
1527 	return insert_page(vma, addr, page, vma->vm_page_prot);
1528 }
1529 EXPORT_SYMBOL(vm_insert_page);
1530 
1531 /*
1532  * __vm_map_pages - maps range of kernel pages into user vma
1533  * @vma: user vma to map to
1534  * @pages: pointer to array of source kernel pages
1535  * @num: number of pages in page array
1536  * @offset: user's requested vm_pgoff
1537  *
1538  * This allows drivers to map range of kernel pages into a user vma.
1539  *
1540  * Return: 0 on success and error code otherwise.
1541  */
1542 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1543 				unsigned long num, unsigned long offset)
1544 {
1545 	unsigned long count = vma_pages(vma);
1546 	unsigned long uaddr = vma->vm_start;
1547 	int ret, i;
1548 
1549 	/* Fail if the user requested offset is beyond the end of the object */
1550 	if (offset > num)
1551 		return -ENXIO;
1552 
1553 	/* Fail if the user requested size exceeds available object size */
1554 	if (count > num - offset)
1555 		return -ENXIO;
1556 
1557 	for (i = 0; i < count; i++) {
1558 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1559 		if (ret < 0)
1560 			return ret;
1561 		uaddr += PAGE_SIZE;
1562 	}
1563 
1564 	return 0;
1565 }
1566 
1567 /**
1568  * vm_map_pages - maps range of kernel pages starts with non zero offset
1569  * @vma: user vma to map to
1570  * @pages: pointer to array of source kernel pages
1571  * @num: number of pages in page array
1572  *
1573  * Maps an object consisting of @num pages, catering for the user's
1574  * requested vm_pgoff
1575  *
1576  * If we fail to insert any page into the vma, the function will return
1577  * immediately leaving any previously inserted pages present.  Callers
1578  * from the mmap handler may immediately return the error as their caller
1579  * will destroy the vma, removing any successfully inserted pages. Other
1580  * callers should make their own arrangements for calling unmap_region().
1581  *
1582  * Context: Process context. Called by mmap handlers.
1583  * Return: 0 on success and error code otherwise.
1584  */
1585 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1586 				unsigned long num)
1587 {
1588 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1589 }
1590 EXPORT_SYMBOL(vm_map_pages);
1591 
1592 /**
1593  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1594  * @vma: user vma to map to
1595  * @pages: pointer to array of source kernel pages
1596  * @num: number of pages in page array
1597  *
1598  * Similar to vm_map_pages(), except that it explicitly sets the offset
1599  * to 0. This function is intended for the drivers that did not consider
1600  * vm_pgoff.
1601  *
1602  * Context: Process context. Called by mmap handlers.
1603  * Return: 0 on success and error code otherwise.
1604  */
1605 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1606 				unsigned long num)
1607 {
1608 	return __vm_map_pages(vma, pages, num, 0);
1609 }
1610 EXPORT_SYMBOL(vm_map_pages_zero);
1611 
1612 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1613 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1614 {
1615 	struct mm_struct *mm = vma->vm_mm;
1616 	pte_t *pte, entry;
1617 	spinlock_t *ptl;
1618 
1619 	pte = get_locked_pte(mm, addr, &ptl);
1620 	if (!pte)
1621 		return VM_FAULT_OOM;
1622 	if (!pte_none(*pte)) {
1623 		if (mkwrite) {
1624 			/*
1625 			 * For read faults on private mappings the PFN passed
1626 			 * in may not match the PFN we have mapped if the
1627 			 * mapped PFN is a writeable COW page.  In the mkwrite
1628 			 * case we are creating a writable PTE for a shared
1629 			 * mapping and we expect the PFNs to match. If they
1630 			 * don't match, we are likely racing with block
1631 			 * allocation and mapping invalidation so just skip the
1632 			 * update.
1633 			 */
1634 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1635 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1636 				goto out_unlock;
1637 			}
1638 			entry = pte_mkyoung(*pte);
1639 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1640 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1641 				update_mmu_cache(vma, addr, pte);
1642 		}
1643 		goto out_unlock;
1644 	}
1645 
1646 	/* Ok, finally just insert the thing.. */
1647 	if (pfn_t_devmap(pfn))
1648 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1649 	else
1650 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1651 
1652 	if (mkwrite) {
1653 		entry = pte_mkyoung(entry);
1654 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1655 	}
1656 
1657 	set_pte_at(mm, addr, pte, entry);
1658 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1659 
1660 out_unlock:
1661 	pte_unmap_unlock(pte, ptl);
1662 	return VM_FAULT_NOPAGE;
1663 }
1664 
1665 /**
1666  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1667  * @vma: user vma to map to
1668  * @addr: target user address of this page
1669  * @pfn: source kernel pfn
1670  * @pgprot: pgprot flags for the inserted page
1671  *
1672  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1673  * to override pgprot on a per-page basis.
1674  *
1675  * This only makes sense for IO mappings, and it makes no sense for
1676  * COW mappings.  In general, using multiple vmas is preferable;
1677  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1678  * impractical.
1679  *
1680  * Context: Process context.  May allocate using %GFP_KERNEL.
1681  * Return: vm_fault_t value.
1682  */
1683 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1684 			unsigned long pfn, pgprot_t pgprot)
1685 {
1686 	/*
1687 	 * Technically, architectures with pte_special can avoid all these
1688 	 * restrictions (same for remap_pfn_range).  However we would like
1689 	 * consistency in testing and feature parity among all, so we should
1690 	 * try to keep these invariants in place for everybody.
1691 	 */
1692 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1693 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1694 						(VM_PFNMAP|VM_MIXEDMAP));
1695 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1696 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1697 
1698 	if (addr < vma->vm_start || addr >= vma->vm_end)
1699 		return VM_FAULT_SIGBUS;
1700 
1701 	if (!pfn_modify_allowed(pfn, pgprot))
1702 		return VM_FAULT_SIGBUS;
1703 
1704 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1705 
1706 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1707 			false);
1708 }
1709 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1710 
1711 /**
1712  * vmf_insert_pfn - insert single pfn into user vma
1713  * @vma: user vma to map to
1714  * @addr: target user address of this page
1715  * @pfn: source kernel pfn
1716  *
1717  * Similar to vm_insert_page, this allows drivers to insert individual pages
1718  * they've allocated into a user vma. Same comments apply.
1719  *
1720  * This function should only be called from a vm_ops->fault handler, and
1721  * in that case the handler should return the result of this function.
1722  *
1723  * vma cannot be a COW mapping.
1724  *
1725  * As this is called only for pages that do not currently exist, we
1726  * do not need to flush old virtual caches or the TLB.
1727  *
1728  * Context: Process context.  May allocate using %GFP_KERNEL.
1729  * Return: vm_fault_t value.
1730  */
1731 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1732 			unsigned long pfn)
1733 {
1734 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1735 }
1736 EXPORT_SYMBOL(vmf_insert_pfn);
1737 
1738 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1739 {
1740 	/* these checks mirror the abort conditions in vm_normal_page */
1741 	if (vma->vm_flags & VM_MIXEDMAP)
1742 		return true;
1743 	if (pfn_t_devmap(pfn))
1744 		return true;
1745 	if (pfn_t_special(pfn))
1746 		return true;
1747 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1748 		return true;
1749 	return false;
1750 }
1751 
1752 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1753 		unsigned long addr, pfn_t pfn, bool mkwrite)
1754 {
1755 	pgprot_t pgprot = vma->vm_page_prot;
1756 	int err;
1757 
1758 	BUG_ON(!vm_mixed_ok(vma, pfn));
1759 
1760 	if (addr < vma->vm_start || addr >= vma->vm_end)
1761 		return VM_FAULT_SIGBUS;
1762 
1763 	track_pfn_insert(vma, &pgprot, pfn);
1764 
1765 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1766 		return VM_FAULT_SIGBUS;
1767 
1768 	/*
1769 	 * If we don't have pte special, then we have to use the pfn_valid()
1770 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1771 	 * refcount the page if pfn_valid is true (hence insert_page rather
1772 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1773 	 * without pte special, it would there be refcounted as a normal page.
1774 	 */
1775 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1776 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1777 		struct page *page;
1778 
1779 		/*
1780 		 * At this point we are committed to insert_page()
1781 		 * regardless of whether the caller specified flags that
1782 		 * result in pfn_t_has_page() == false.
1783 		 */
1784 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1785 		err = insert_page(vma, addr, page, pgprot);
1786 	} else {
1787 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1788 	}
1789 
1790 	if (err == -ENOMEM)
1791 		return VM_FAULT_OOM;
1792 	if (err < 0 && err != -EBUSY)
1793 		return VM_FAULT_SIGBUS;
1794 
1795 	return VM_FAULT_NOPAGE;
1796 }
1797 
1798 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1799 		pfn_t pfn)
1800 {
1801 	return __vm_insert_mixed(vma, addr, pfn, false);
1802 }
1803 EXPORT_SYMBOL(vmf_insert_mixed);
1804 
1805 /*
1806  *  If the insertion of PTE failed because someone else already added a
1807  *  different entry in the mean time, we treat that as success as we assume
1808  *  the same entry was actually inserted.
1809  */
1810 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1811 		unsigned long addr, pfn_t pfn)
1812 {
1813 	return __vm_insert_mixed(vma, addr, pfn, true);
1814 }
1815 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1816 
1817 /*
1818  * maps a range of physical memory into the requested pages. the old
1819  * mappings are removed. any references to nonexistent pages results
1820  * in null mappings (currently treated as "copy-on-access")
1821  */
1822 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1823 			unsigned long addr, unsigned long end,
1824 			unsigned long pfn, pgprot_t prot)
1825 {
1826 	pte_t *pte;
1827 	spinlock_t *ptl;
1828 	int err = 0;
1829 
1830 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1831 	if (!pte)
1832 		return -ENOMEM;
1833 	arch_enter_lazy_mmu_mode();
1834 	do {
1835 		BUG_ON(!pte_none(*pte));
1836 		if (!pfn_modify_allowed(pfn, prot)) {
1837 			err = -EACCES;
1838 			break;
1839 		}
1840 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1841 		pfn++;
1842 	} while (pte++, addr += PAGE_SIZE, addr != end);
1843 	arch_leave_lazy_mmu_mode();
1844 	pte_unmap_unlock(pte - 1, ptl);
1845 	return err;
1846 }
1847 
1848 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1849 			unsigned long addr, unsigned long end,
1850 			unsigned long pfn, pgprot_t prot)
1851 {
1852 	pmd_t *pmd;
1853 	unsigned long next;
1854 	int err;
1855 
1856 	pfn -= addr >> PAGE_SHIFT;
1857 	pmd = pmd_alloc(mm, pud, addr);
1858 	if (!pmd)
1859 		return -ENOMEM;
1860 	VM_BUG_ON(pmd_trans_huge(*pmd));
1861 	do {
1862 		next = pmd_addr_end(addr, end);
1863 		err = remap_pte_range(mm, pmd, addr, next,
1864 				pfn + (addr >> PAGE_SHIFT), prot);
1865 		if (err)
1866 			return err;
1867 	} while (pmd++, addr = next, addr != end);
1868 	return 0;
1869 }
1870 
1871 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1872 			unsigned long addr, unsigned long end,
1873 			unsigned long pfn, pgprot_t prot)
1874 {
1875 	pud_t *pud;
1876 	unsigned long next;
1877 	int err;
1878 
1879 	pfn -= addr >> PAGE_SHIFT;
1880 	pud = pud_alloc(mm, p4d, addr);
1881 	if (!pud)
1882 		return -ENOMEM;
1883 	do {
1884 		next = pud_addr_end(addr, end);
1885 		err = remap_pmd_range(mm, pud, addr, next,
1886 				pfn + (addr >> PAGE_SHIFT), prot);
1887 		if (err)
1888 			return err;
1889 	} while (pud++, addr = next, addr != end);
1890 	return 0;
1891 }
1892 
1893 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1894 			unsigned long addr, unsigned long end,
1895 			unsigned long pfn, pgprot_t prot)
1896 {
1897 	p4d_t *p4d;
1898 	unsigned long next;
1899 	int err;
1900 
1901 	pfn -= addr >> PAGE_SHIFT;
1902 	p4d = p4d_alloc(mm, pgd, addr);
1903 	if (!p4d)
1904 		return -ENOMEM;
1905 	do {
1906 		next = p4d_addr_end(addr, end);
1907 		err = remap_pud_range(mm, p4d, addr, next,
1908 				pfn + (addr >> PAGE_SHIFT), prot);
1909 		if (err)
1910 			return err;
1911 	} while (p4d++, addr = next, addr != end);
1912 	return 0;
1913 }
1914 
1915 /**
1916  * remap_pfn_range - remap kernel memory to userspace
1917  * @vma: user vma to map to
1918  * @addr: target user address to start at
1919  * @pfn: physical address of kernel memory
1920  * @size: size of map area
1921  * @prot: page protection flags for this mapping
1922  *
1923  * Note: this is only safe if the mm semaphore is held when called.
1924  *
1925  * Return: %0 on success, negative error code otherwise.
1926  */
1927 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1928 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1929 {
1930 	pgd_t *pgd;
1931 	unsigned long next;
1932 	unsigned long end = addr + PAGE_ALIGN(size);
1933 	struct mm_struct *mm = vma->vm_mm;
1934 	unsigned long remap_pfn = pfn;
1935 	int err;
1936 
1937 	/*
1938 	 * Physically remapped pages are special. Tell the
1939 	 * rest of the world about it:
1940 	 *   VM_IO tells people not to look at these pages
1941 	 *	(accesses can have side effects).
1942 	 *   VM_PFNMAP tells the core MM that the base pages are just
1943 	 *	raw PFN mappings, and do not have a "struct page" associated
1944 	 *	with them.
1945 	 *   VM_DONTEXPAND
1946 	 *      Disable vma merging and expanding with mremap().
1947 	 *   VM_DONTDUMP
1948 	 *      Omit vma from core dump, even when VM_IO turned off.
1949 	 *
1950 	 * There's a horrible special case to handle copy-on-write
1951 	 * behaviour that some programs depend on. We mark the "original"
1952 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1953 	 * See vm_normal_page() for details.
1954 	 */
1955 	if (is_cow_mapping(vma->vm_flags)) {
1956 		if (addr != vma->vm_start || end != vma->vm_end)
1957 			return -EINVAL;
1958 		vma->vm_pgoff = pfn;
1959 	}
1960 
1961 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1962 	if (err)
1963 		return -EINVAL;
1964 
1965 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1966 
1967 	BUG_ON(addr >= end);
1968 	pfn -= addr >> PAGE_SHIFT;
1969 	pgd = pgd_offset(mm, addr);
1970 	flush_cache_range(vma, addr, end);
1971 	do {
1972 		next = pgd_addr_end(addr, end);
1973 		err = remap_p4d_range(mm, pgd, addr, next,
1974 				pfn + (addr >> PAGE_SHIFT), prot);
1975 		if (err)
1976 			break;
1977 	} while (pgd++, addr = next, addr != end);
1978 
1979 	if (err)
1980 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1981 
1982 	return err;
1983 }
1984 EXPORT_SYMBOL(remap_pfn_range);
1985 
1986 /**
1987  * vm_iomap_memory - remap memory to userspace
1988  * @vma: user vma to map to
1989  * @start: start of area
1990  * @len: size of area
1991  *
1992  * This is a simplified io_remap_pfn_range() for common driver use. The
1993  * driver just needs to give us the physical memory range to be mapped,
1994  * we'll figure out the rest from the vma information.
1995  *
1996  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1997  * whatever write-combining details or similar.
1998  *
1999  * Return: %0 on success, negative error code otherwise.
2000  */
2001 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2002 {
2003 	unsigned long vm_len, pfn, pages;
2004 
2005 	/* Check that the physical memory area passed in looks valid */
2006 	if (start + len < start)
2007 		return -EINVAL;
2008 	/*
2009 	 * You *really* shouldn't map things that aren't page-aligned,
2010 	 * but we've historically allowed it because IO memory might
2011 	 * just have smaller alignment.
2012 	 */
2013 	len += start & ~PAGE_MASK;
2014 	pfn = start >> PAGE_SHIFT;
2015 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2016 	if (pfn + pages < pfn)
2017 		return -EINVAL;
2018 
2019 	/* We start the mapping 'vm_pgoff' pages into the area */
2020 	if (vma->vm_pgoff > pages)
2021 		return -EINVAL;
2022 	pfn += vma->vm_pgoff;
2023 	pages -= vma->vm_pgoff;
2024 
2025 	/* Can we fit all of the mapping? */
2026 	vm_len = vma->vm_end - vma->vm_start;
2027 	if (vm_len >> PAGE_SHIFT > pages)
2028 		return -EINVAL;
2029 
2030 	/* Ok, let it rip */
2031 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2032 }
2033 EXPORT_SYMBOL(vm_iomap_memory);
2034 
2035 static int apply_to_pte_range(struct pfn_range_apply *closure, pmd_t *pmd,
2036 			      unsigned long addr, unsigned long end)
2037 {
2038 	pte_t *pte;
2039 	int err;
2040 	pgtable_t token;
2041 	spinlock_t *uninitialized_var(ptl);
2042 
2043 	pte = (closure->mm == &init_mm) ?
2044 		pte_alloc_kernel(pmd, addr) :
2045 		pte_alloc_map_lock(closure->mm, pmd, addr, &ptl);
2046 	if (!pte)
2047 		return -ENOMEM;
2048 
2049 	BUG_ON(pmd_huge(*pmd));
2050 
2051 	arch_enter_lazy_mmu_mode();
2052 
2053 	token = pmd_pgtable(*pmd);
2054 
2055 	do {
2056 		err = closure->ptefn(pte++, token, addr, closure);
2057 		if (err)
2058 			break;
2059 	} while (addr += PAGE_SIZE, addr != end);
2060 
2061 	arch_leave_lazy_mmu_mode();
2062 
2063 	if (closure->mm != &init_mm)
2064 		pte_unmap_unlock(pte-1, ptl);
2065 	return err;
2066 }
2067 
2068 static int apply_to_pmd_range(struct pfn_range_apply *closure, pud_t *pud,
2069 			      unsigned long addr, unsigned long end)
2070 {
2071 	pmd_t *pmd;
2072 	unsigned long next;
2073 	int err = 0;
2074 
2075 	BUG_ON(pud_huge(*pud));
2076 
2077 	pmd = pmd_alloc(closure->mm, pud, addr);
2078 	if (!pmd)
2079 		return -ENOMEM;
2080 
2081 	do {
2082 		next = pmd_addr_end(addr, end);
2083 		if (!closure->alloc && pmd_none_or_clear_bad(pmd))
2084 			continue;
2085 		err = apply_to_pte_range(closure, pmd, addr, next);
2086 		if (err)
2087 			break;
2088 	} while (pmd++, addr = next, addr != end);
2089 	return err;
2090 }
2091 
2092 static int apply_to_pud_range(struct pfn_range_apply *closure, p4d_t *p4d,
2093 			      unsigned long addr, unsigned long end)
2094 {
2095 	pud_t *pud;
2096 	unsigned long next;
2097 	int err = 0;
2098 
2099 	pud = pud_alloc(closure->mm, p4d, addr);
2100 	if (!pud)
2101 		return -ENOMEM;
2102 
2103 	do {
2104 		next = pud_addr_end(addr, end);
2105 		if (!closure->alloc && pud_none_or_clear_bad(pud))
2106 			continue;
2107 		err = apply_to_pmd_range(closure, pud, addr, next);
2108 		if (err)
2109 			break;
2110 	} while (pud++, addr = next, addr != end);
2111 	return err;
2112 }
2113 
2114 static int apply_to_p4d_range(struct pfn_range_apply *closure, pgd_t *pgd,
2115 			      unsigned long addr, unsigned long end)
2116 {
2117 	p4d_t *p4d;
2118 	unsigned long next;
2119 	int err = 0;
2120 
2121 	p4d = p4d_alloc(closure->mm, pgd, addr);
2122 	if (!p4d)
2123 		return -ENOMEM;
2124 
2125 	do {
2126 		next = p4d_addr_end(addr, end);
2127 		if (!closure->alloc && p4d_none_or_clear_bad(p4d))
2128 			continue;
2129 		err = apply_to_pud_range(closure, p4d, addr, next);
2130 		if (err)
2131 			break;
2132 	} while (p4d++, addr = next, addr != end);
2133 	return err;
2134 }
2135 
2136 /**
2137  * apply_to_pfn_range - Scan a region of virtual memory, calling a provided
2138  * function on each leaf page table entry
2139  * @closure: Details about how to scan and what function to apply
2140  * @addr: Start virtual address
2141  * @size: Size of the region
2142  *
2143  * If @closure->alloc is set to 1, the function will fill in the page table
2144  * as necessary. Otherwise it will skip non-present parts.
2145  * Note: The caller must ensure that the range does not contain huge pages.
2146  * The caller must also assure that the proper mmu_notifier functions are
2147  * called before and after the call to apply_to_pfn_range.
2148  *
2149  * WARNING: Do not use this function unless you know exactly what you are
2150  * doing. It is lacking support for huge pages and transparent huge pages.
2151  *
2152  * Return: Zero on success. If the provided function returns a non-zero status,
2153  * the page table walk will terminate and that status will be returned.
2154  * If @closure->alloc is set to 1, then this function may also return memory
2155  * allocation errors arising from allocating page table memory.
2156  */
2157 int apply_to_pfn_range(struct pfn_range_apply *closure,
2158 		       unsigned long addr, unsigned long size)
2159 {
2160 	pgd_t *pgd;
2161 	unsigned long next;
2162 	unsigned long end = addr + size;
2163 	int err;
2164 
2165 	if (WARN_ON(addr >= end))
2166 		return -EINVAL;
2167 
2168 	pgd = pgd_offset(closure->mm, addr);
2169 	do {
2170 		next = pgd_addr_end(addr, end);
2171 		if (!closure->alloc && pgd_none_or_clear_bad(pgd))
2172 			continue;
2173 		err = apply_to_p4d_range(closure, pgd, addr, next);
2174 		if (err)
2175 			break;
2176 	} while (pgd++, addr = next, addr != end);
2177 
2178 	return err;
2179 }
2180 
2181 /**
2182  * struct page_range_apply - Closure structure for apply_to_page_range()
2183  * @pter: The base closure structure we derive from
2184  * @fn: The leaf pte function to call
2185  * @data: The leaf pte function closure
2186  */
2187 struct page_range_apply {
2188 	struct pfn_range_apply pter;
2189 	pte_fn_t fn;
2190 	void *data;
2191 };
2192 
2193 /*
2194  * Callback wrapper to enable use of apply_to_pfn_range for
2195  * the apply_to_page_range interface
2196  */
2197 static int apply_to_page_range_wrapper(pte_t *pte, pgtable_t token,
2198 				       unsigned long addr,
2199 				       struct pfn_range_apply *pter)
2200 {
2201 	struct page_range_apply *pra =
2202 		container_of(pter, typeof(*pra), pter);
2203 
2204 	return pra->fn(pte, token, addr, pra->data);
2205 }
2206 
2207 /*
2208  * Scan a region of virtual memory, filling in page tables as necessary
2209  * and calling a provided function on each leaf page table.
2210  *
2211  * WARNING: Do not use this function unless you know exactly what you are
2212  * doing. It is lacking support for huge pages and transparent huge pages.
2213  */
2214 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2215 			unsigned long size, pte_fn_t fn, void *data)
2216 {
2217 	struct page_range_apply pra = {
2218 		.pter = {.mm = mm,
2219 			 .alloc = 1,
2220 			 .ptefn = apply_to_page_range_wrapper },
2221 		.fn = fn,
2222 		.data = data
2223 	};
2224 
2225 	return apply_to_pfn_range(&pra.pter, addr, size);
2226 }
2227 EXPORT_SYMBOL_GPL(apply_to_page_range);
2228 
2229 /*
2230  * handle_pte_fault chooses page fault handler according to an entry which was
2231  * read non-atomically.  Before making any commitment, on those architectures
2232  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2233  * parts, do_swap_page must check under lock before unmapping the pte and
2234  * proceeding (but do_wp_page is only called after already making such a check;
2235  * and do_anonymous_page can safely check later on).
2236  */
2237 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2238 				pte_t *page_table, pte_t orig_pte)
2239 {
2240 	int same = 1;
2241 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2242 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2243 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2244 		spin_lock(ptl);
2245 		same = pte_same(*page_table, orig_pte);
2246 		spin_unlock(ptl);
2247 	}
2248 #endif
2249 	pte_unmap(page_table);
2250 	return same;
2251 }
2252 
2253 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2254 {
2255 	debug_dma_assert_idle(src);
2256 
2257 	/*
2258 	 * If the source page was a PFN mapping, we don't have
2259 	 * a "struct page" for it. We do a best-effort copy by
2260 	 * just copying from the original user address. If that
2261 	 * fails, we just zero-fill it. Live with it.
2262 	 */
2263 	if (unlikely(!src)) {
2264 		void *kaddr = kmap_atomic(dst);
2265 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2266 
2267 		/*
2268 		 * This really shouldn't fail, because the page is there
2269 		 * in the page tables. But it might just be unreadable,
2270 		 * in which case we just give up and fill the result with
2271 		 * zeroes.
2272 		 */
2273 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2274 			clear_page(kaddr);
2275 		kunmap_atomic(kaddr);
2276 		flush_dcache_page(dst);
2277 	} else
2278 		copy_user_highpage(dst, src, va, vma);
2279 }
2280 
2281 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2282 {
2283 	struct file *vm_file = vma->vm_file;
2284 
2285 	if (vm_file)
2286 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2287 
2288 	/*
2289 	 * Special mappings (e.g. VDSO) do not have any file so fake
2290 	 * a default GFP_KERNEL for them.
2291 	 */
2292 	return GFP_KERNEL;
2293 }
2294 
2295 /*
2296  * Notify the address space that the page is about to become writable so that
2297  * it can prohibit this or wait for the page to get into an appropriate state.
2298  *
2299  * We do this without the lock held, so that it can sleep if it needs to.
2300  */
2301 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2302 {
2303 	vm_fault_t ret;
2304 	struct page *page = vmf->page;
2305 	unsigned int old_flags = vmf->flags;
2306 
2307 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2308 
2309 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2310 	/* Restore original flags so that caller is not surprised */
2311 	vmf->flags = old_flags;
2312 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2313 		return ret;
2314 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2315 		lock_page(page);
2316 		if (!page->mapping) {
2317 			unlock_page(page);
2318 			return 0; /* retry */
2319 		}
2320 		ret |= VM_FAULT_LOCKED;
2321 	} else
2322 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2323 	return ret;
2324 }
2325 
2326 /*
2327  * Handle dirtying of a page in shared file mapping on a write fault.
2328  *
2329  * The function expects the page to be locked and unlocks it.
2330  */
2331 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2332 				    struct page *page)
2333 {
2334 	struct address_space *mapping;
2335 	bool dirtied;
2336 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2337 
2338 	dirtied = set_page_dirty(page);
2339 	VM_BUG_ON_PAGE(PageAnon(page), page);
2340 	/*
2341 	 * Take a local copy of the address_space - page.mapping may be zeroed
2342 	 * by truncate after unlock_page().   The address_space itself remains
2343 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2344 	 * release semantics to prevent the compiler from undoing this copying.
2345 	 */
2346 	mapping = page_rmapping(page);
2347 	unlock_page(page);
2348 
2349 	if ((dirtied || page_mkwrite) && mapping) {
2350 		/*
2351 		 * Some device drivers do not set page.mapping
2352 		 * but still dirty their pages
2353 		 */
2354 		balance_dirty_pages_ratelimited(mapping);
2355 	}
2356 
2357 	if (!page_mkwrite)
2358 		file_update_time(vma->vm_file);
2359 }
2360 
2361 /*
2362  * Handle write page faults for pages that can be reused in the current vma
2363  *
2364  * This can happen either due to the mapping being with the VM_SHARED flag,
2365  * or due to us being the last reference standing to the page. In either
2366  * case, all we need to do here is to mark the page as writable and update
2367  * any related book-keeping.
2368  */
2369 static inline void wp_page_reuse(struct vm_fault *vmf)
2370 	__releases(vmf->ptl)
2371 {
2372 	struct vm_area_struct *vma = vmf->vma;
2373 	struct page *page = vmf->page;
2374 	pte_t entry;
2375 	/*
2376 	 * Clear the pages cpupid information as the existing
2377 	 * information potentially belongs to a now completely
2378 	 * unrelated process.
2379 	 */
2380 	if (page)
2381 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2382 
2383 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2384 	entry = pte_mkyoung(vmf->orig_pte);
2385 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2386 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2387 		update_mmu_cache(vma, vmf->address, vmf->pte);
2388 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2389 }
2390 
2391 /*
2392  * Handle the case of a page which we actually need to copy to a new page.
2393  *
2394  * Called with mmap_sem locked and the old page referenced, but
2395  * without the ptl held.
2396  *
2397  * High level logic flow:
2398  *
2399  * - Allocate a page, copy the content of the old page to the new one.
2400  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2401  * - Take the PTL. If the pte changed, bail out and release the allocated page
2402  * - If the pte is still the way we remember it, update the page table and all
2403  *   relevant references. This includes dropping the reference the page-table
2404  *   held to the old page, as well as updating the rmap.
2405  * - In any case, unlock the PTL and drop the reference we took to the old page.
2406  */
2407 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2408 {
2409 	struct vm_area_struct *vma = vmf->vma;
2410 	struct mm_struct *mm = vma->vm_mm;
2411 	struct page *old_page = vmf->page;
2412 	struct page *new_page = NULL;
2413 	pte_t entry;
2414 	int page_copied = 0;
2415 	struct mem_cgroup *memcg;
2416 	struct mmu_notifier_range range;
2417 
2418 	if (unlikely(anon_vma_prepare(vma)))
2419 		goto oom;
2420 
2421 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2422 		new_page = alloc_zeroed_user_highpage_movable(vma,
2423 							      vmf->address);
2424 		if (!new_page)
2425 			goto oom;
2426 	} else {
2427 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2428 				vmf->address);
2429 		if (!new_page)
2430 			goto oom;
2431 		cow_user_page(new_page, old_page, vmf->address, vma);
2432 	}
2433 
2434 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2435 		goto oom_free_new;
2436 
2437 	__SetPageUptodate(new_page);
2438 
2439 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2440 				vmf->address & PAGE_MASK,
2441 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2442 	mmu_notifier_invalidate_range_start(&range);
2443 
2444 	/*
2445 	 * Re-check the pte - we dropped the lock
2446 	 */
2447 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2448 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2449 		if (old_page) {
2450 			if (!PageAnon(old_page)) {
2451 				dec_mm_counter_fast(mm,
2452 						mm_counter_file(old_page));
2453 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2454 			}
2455 		} else {
2456 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2457 		}
2458 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2459 		entry = mk_pte(new_page, vma->vm_page_prot);
2460 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2461 		/*
2462 		 * Clear the pte entry and flush it first, before updating the
2463 		 * pte with the new entry. This will avoid a race condition
2464 		 * seen in the presence of one thread doing SMC and another
2465 		 * thread doing COW.
2466 		 */
2467 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2468 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2469 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2470 		lru_cache_add_active_or_unevictable(new_page, vma);
2471 		/*
2472 		 * We call the notify macro here because, when using secondary
2473 		 * mmu page tables (such as kvm shadow page tables), we want the
2474 		 * new page to be mapped directly into the secondary page table.
2475 		 */
2476 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2477 		update_mmu_cache(vma, vmf->address, vmf->pte);
2478 		if (old_page) {
2479 			/*
2480 			 * Only after switching the pte to the new page may
2481 			 * we remove the mapcount here. Otherwise another
2482 			 * process may come and find the rmap count decremented
2483 			 * before the pte is switched to the new page, and
2484 			 * "reuse" the old page writing into it while our pte
2485 			 * here still points into it and can be read by other
2486 			 * threads.
2487 			 *
2488 			 * The critical issue is to order this
2489 			 * page_remove_rmap with the ptp_clear_flush above.
2490 			 * Those stores are ordered by (if nothing else,)
2491 			 * the barrier present in the atomic_add_negative
2492 			 * in page_remove_rmap.
2493 			 *
2494 			 * Then the TLB flush in ptep_clear_flush ensures that
2495 			 * no process can access the old page before the
2496 			 * decremented mapcount is visible. And the old page
2497 			 * cannot be reused until after the decremented
2498 			 * mapcount is visible. So transitively, TLBs to
2499 			 * old page will be flushed before it can be reused.
2500 			 */
2501 			page_remove_rmap(old_page, false);
2502 		}
2503 
2504 		/* Free the old page.. */
2505 		new_page = old_page;
2506 		page_copied = 1;
2507 	} else {
2508 		mem_cgroup_cancel_charge(new_page, memcg, false);
2509 	}
2510 
2511 	if (new_page)
2512 		put_page(new_page);
2513 
2514 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2515 	/*
2516 	 * No need to double call mmu_notifier->invalidate_range() callback as
2517 	 * the above ptep_clear_flush_notify() did already call it.
2518 	 */
2519 	mmu_notifier_invalidate_range_only_end(&range);
2520 	if (old_page) {
2521 		/*
2522 		 * Don't let another task, with possibly unlocked vma,
2523 		 * keep the mlocked page.
2524 		 */
2525 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2526 			lock_page(old_page);	/* LRU manipulation */
2527 			if (PageMlocked(old_page))
2528 				munlock_vma_page(old_page);
2529 			unlock_page(old_page);
2530 		}
2531 		put_page(old_page);
2532 	}
2533 	return page_copied ? VM_FAULT_WRITE : 0;
2534 oom_free_new:
2535 	put_page(new_page);
2536 oom:
2537 	if (old_page)
2538 		put_page(old_page);
2539 	return VM_FAULT_OOM;
2540 }
2541 
2542 /**
2543  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2544  *			  writeable once the page is prepared
2545  *
2546  * @vmf: structure describing the fault
2547  *
2548  * This function handles all that is needed to finish a write page fault in a
2549  * shared mapping due to PTE being read-only once the mapped page is prepared.
2550  * It handles locking of PTE and modifying it.
2551  *
2552  * The function expects the page to be locked or other protection against
2553  * concurrent faults / writeback (such as DAX radix tree locks).
2554  *
2555  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2556  * we acquired PTE lock.
2557  */
2558 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2559 {
2560 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2561 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2562 				       &vmf->ptl);
2563 	/*
2564 	 * We might have raced with another page fault while we released the
2565 	 * pte_offset_map_lock.
2566 	 */
2567 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2568 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2569 		return VM_FAULT_NOPAGE;
2570 	}
2571 	wp_page_reuse(vmf);
2572 	return 0;
2573 }
2574 
2575 /*
2576  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2577  * mapping
2578  */
2579 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2580 {
2581 	struct vm_area_struct *vma = vmf->vma;
2582 
2583 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2584 		vm_fault_t ret;
2585 
2586 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2587 		vmf->flags |= FAULT_FLAG_MKWRITE;
2588 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2589 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))
2590 			return ret;
2591 		return finish_mkwrite_fault(vmf);
2592 	}
2593 	wp_page_reuse(vmf);
2594 	return VM_FAULT_WRITE;
2595 }
2596 
2597 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2598 	__releases(vmf->ptl)
2599 {
2600 	struct vm_area_struct *vma = vmf->vma;
2601 
2602 	get_page(vmf->page);
2603 
2604 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2605 		vm_fault_t tmp;
2606 
2607 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2608 		tmp = do_page_mkwrite(vmf);
2609 		if (unlikely(!tmp || (tmp &
2610 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
2611 				       VM_FAULT_RETRY)))) {
2612 			put_page(vmf->page);
2613 			return tmp;
2614 		}
2615 		tmp = finish_mkwrite_fault(vmf);
2616 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2617 			unlock_page(vmf->page);
2618 			put_page(vmf->page);
2619 			return tmp;
2620 		}
2621 	} else {
2622 		wp_page_reuse(vmf);
2623 		lock_page(vmf->page);
2624 	}
2625 	fault_dirty_shared_page(vma, vmf->page);
2626 	put_page(vmf->page);
2627 
2628 	return VM_FAULT_WRITE;
2629 }
2630 
2631 /*
2632  * This routine handles present pages, when users try to write
2633  * to a shared page. It is done by copying the page to a new address
2634  * and decrementing the shared-page counter for the old page.
2635  *
2636  * Note that this routine assumes that the protection checks have been
2637  * done by the caller (the low-level page fault routine in most cases).
2638  * Thus we can safely just mark it writable once we've done any necessary
2639  * COW.
2640  *
2641  * We also mark the page dirty at this point even though the page will
2642  * change only once the write actually happens. This avoids a few races,
2643  * and potentially makes it more efficient.
2644  *
2645  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2646  * but allow concurrent faults), with pte both mapped and locked.
2647  * We return with mmap_sem still held, but pte unmapped and unlocked.
2648  */
2649 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2650 	__releases(vmf->ptl)
2651 {
2652 	struct vm_area_struct *vma = vmf->vma;
2653 
2654 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2655 	if (!vmf->page) {
2656 		/*
2657 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2658 		 * VM_PFNMAP VMA.
2659 		 *
2660 		 * We should not cow pages in a shared writeable mapping.
2661 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2662 		 */
2663 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2664 				     (VM_WRITE|VM_SHARED))
2665 			return wp_pfn_shared(vmf);
2666 
2667 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2668 		return wp_page_copy(vmf);
2669 	}
2670 
2671 	/*
2672 	 * Take out anonymous pages first, anonymous shared vmas are
2673 	 * not dirty accountable.
2674 	 */
2675 	if (PageAnon(vmf->page)) {
2676 		int total_map_swapcount;
2677 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2678 					   page_count(vmf->page) != 1))
2679 			goto copy;
2680 		if (!trylock_page(vmf->page)) {
2681 			get_page(vmf->page);
2682 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2683 			lock_page(vmf->page);
2684 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2685 					vmf->address, &vmf->ptl);
2686 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2687 				unlock_page(vmf->page);
2688 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2689 				put_page(vmf->page);
2690 				return 0;
2691 			}
2692 			put_page(vmf->page);
2693 		}
2694 		if (PageKsm(vmf->page)) {
2695 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2696 						     vmf->address);
2697 			unlock_page(vmf->page);
2698 			if (!reused)
2699 				goto copy;
2700 			wp_page_reuse(vmf);
2701 			return VM_FAULT_WRITE;
2702 		}
2703 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2704 			if (total_map_swapcount == 1) {
2705 				/*
2706 				 * The page is all ours. Move it to
2707 				 * our anon_vma so the rmap code will
2708 				 * not search our parent or siblings.
2709 				 * Protected against the rmap code by
2710 				 * the page lock.
2711 				 */
2712 				page_move_anon_rmap(vmf->page, vma);
2713 			}
2714 			unlock_page(vmf->page);
2715 			wp_page_reuse(vmf);
2716 			return VM_FAULT_WRITE;
2717 		}
2718 		unlock_page(vmf->page);
2719 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2720 					(VM_WRITE|VM_SHARED))) {
2721 		return wp_page_shared(vmf);
2722 	}
2723 copy:
2724 	/*
2725 	 * Ok, we need to copy. Oh, well..
2726 	 */
2727 	get_page(vmf->page);
2728 
2729 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2730 	return wp_page_copy(vmf);
2731 }
2732 
2733 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2734 		unsigned long start_addr, unsigned long end_addr,
2735 		struct zap_details *details)
2736 {
2737 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2738 }
2739 
2740 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2741 					    struct zap_details *details)
2742 {
2743 	struct vm_area_struct *vma;
2744 	pgoff_t vba, vea, zba, zea;
2745 
2746 	vma_interval_tree_foreach(vma, root,
2747 			details->first_index, details->last_index) {
2748 
2749 		vba = vma->vm_pgoff;
2750 		vea = vba + vma_pages(vma) - 1;
2751 		zba = details->first_index;
2752 		if (zba < vba)
2753 			zba = vba;
2754 		zea = details->last_index;
2755 		if (zea > vea)
2756 			zea = vea;
2757 
2758 		unmap_mapping_range_vma(vma,
2759 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2760 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2761 				details);
2762 	}
2763 }
2764 
2765 /**
2766  * unmap_mapping_pages() - Unmap pages from processes.
2767  * @mapping: The address space containing pages to be unmapped.
2768  * @start: Index of first page to be unmapped.
2769  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2770  * @even_cows: Whether to unmap even private COWed pages.
2771  *
2772  * Unmap the pages in this address space from any userspace process which
2773  * has them mmaped.  Generally, you want to remove COWed pages as well when
2774  * a file is being truncated, but not when invalidating pages from the page
2775  * cache.
2776  */
2777 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2778 		pgoff_t nr, bool even_cows)
2779 {
2780 	struct zap_details details = { };
2781 
2782 	details.check_mapping = even_cows ? NULL : mapping;
2783 	details.first_index = start;
2784 	details.last_index = start + nr - 1;
2785 	if (details.last_index < details.first_index)
2786 		details.last_index = ULONG_MAX;
2787 
2788 	i_mmap_lock_write(mapping);
2789 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2790 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2791 	i_mmap_unlock_write(mapping);
2792 }
2793 
2794 /**
2795  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2796  * address_space corresponding to the specified byte range in the underlying
2797  * file.
2798  *
2799  * @mapping: the address space containing mmaps to be unmapped.
2800  * @holebegin: byte in first page to unmap, relative to the start of
2801  * the underlying file.  This will be rounded down to a PAGE_SIZE
2802  * boundary.  Note that this is different from truncate_pagecache(), which
2803  * must keep the partial page.  In contrast, we must get rid of
2804  * partial pages.
2805  * @holelen: size of prospective hole in bytes.  This will be rounded
2806  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2807  * end of the file.
2808  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2809  * but 0 when invalidating pagecache, don't throw away private data.
2810  */
2811 void unmap_mapping_range(struct address_space *mapping,
2812 		loff_t const holebegin, loff_t const holelen, int even_cows)
2813 {
2814 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2815 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2816 
2817 	/* Check for overflow. */
2818 	if (sizeof(holelen) > sizeof(hlen)) {
2819 		long long holeend =
2820 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2821 		if (holeend & ~(long long)ULONG_MAX)
2822 			hlen = ULONG_MAX - hba + 1;
2823 	}
2824 
2825 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2826 }
2827 EXPORT_SYMBOL(unmap_mapping_range);
2828 
2829 /*
2830  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2831  * but allow concurrent faults), and pte mapped but not yet locked.
2832  * We return with pte unmapped and unlocked.
2833  *
2834  * We return with the mmap_sem locked or unlocked in the same cases
2835  * as does filemap_fault().
2836  */
2837 vm_fault_t do_swap_page(struct vm_fault *vmf)
2838 {
2839 	struct vm_area_struct *vma = vmf->vma;
2840 	struct page *page = NULL, *swapcache;
2841 	struct mem_cgroup *memcg;
2842 	swp_entry_t entry;
2843 	pte_t pte;
2844 	int locked;
2845 	int exclusive = 0;
2846 	vm_fault_t ret = 0;
2847 
2848 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2849 		goto out;
2850 
2851 	entry = pte_to_swp_entry(vmf->orig_pte);
2852 	if (unlikely(non_swap_entry(entry))) {
2853 		if (is_migration_entry(entry)) {
2854 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2855 					     vmf->address);
2856 		} else if (is_device_private_entry(entry)) {
2857 			/*
2858 			 * For un-addressable device memory we call the pgmap
2859 			 * fault handler callback. The callback must migrate
2860 			 * the page back to some CPU accessible page.
2861 			 */
2862 			ret = device_private_entry_fault(vma, vmf->address, entry,
2863 						 vmf->flags, vmf->pmd);
2864 		} else if (is_hwpoison_entry(entry)) {
2865 			ret = VM_FAULT_HWPOISON;
2866 		} else {
2867 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2868 			ret = VM_FAULT_SIGBUS;
2869 		}
2870 		goto out;
2871 	}
2872 
2873 
2874 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2875 	page = lookup_swap_cache(entry, vma, vmf->address);
2876 	swapcache = page;
2877 
2878 	if (!page) {
2879 		struct swap_info_struct *si = swp_swap_info(entry);
2880 
2881 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2882 				__swap_count(si, entry) == 1) {
2883 			/* skip swapcache */
2884 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2885 							vmf->address);
2886 			if (page) {
2887 				__SetPageLocked(page);
2888 				__SetPageSwapBacked(page);
2889 				set_page_private(page, entry.val);
2890 				lru_cache_add_anon(page);
2891 				swap_readpage(page, true);
2892 			}
2893 		} else {
2894 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2895 						vmf);
2896 			swapcache = page;
2897 		}
2898 
2899 		if (!page) {
2900 			/*
2901 			 * Back out if somebody else faulted in this pte
2902 			 * while we released the pte lock.
2903 			 */
2904 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2905 					vmf->address, &vmf->ptl);
2906 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2907 				ret = VM_FAULT_OOM;
2908 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2909 			goto unlock;
2910 		}
2911 
2912 		/* Had to read the page from swap area: Major fault */
2913 		ret = VM_FAULT_MAJOR;
2914 		count_vm_event(PGMAJFAULT);
2915 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2916 	} else if (PageHWPoison(page)) {
2917 		/*
2918 		 * hwpoisoned dirty swapcache pages are kept for killing
2919 		 * owner processes (which may be unknown at hwpoison time)
2920 		 */
2921 		ret = VM_FAULT_HWPOISON;
2922 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2923 		goto out_release;
2924 	}
2925 
2926 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2927 
2928 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2929 	if (!locked) {
2930 		ret |= VM_FAULT_RETRY;
2931 		goto out_release;
2932 	}
2933 
2934 	/*
2935 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2936 	 * release the swapcache from under us.  The page pin, and pte_same
2937 	 * test below, are not enough to exclude that.  Even if it is still
2938 	 * swapcache, we need to check that the page's swap has not changed.
2939 	 */
2940 	if (unlikely((!PageSwapCache(page) ||
2941 			page_private(page) != entry.val)) && swapcache)
2942 		goto out_page;
2943 
2944 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2945 	if (unlikely(!page)) {
2946 		ret = VM_FAULT_OOM;
2947 		page = swapcache;
2948 		goto out_page;
2949 	}
2950 
2951 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
2952 					&memcg, false)) {
2953 		ret = VM_FAULT_OOM;
2954 		goto out_page;
2955 	}
2956 
2957 	/*
2958 	 * Back out if somebody else already faulted in this pte.
2959 	 */
2960 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2961 			&vmf->ptl);
2962 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2963 		goto out_nomap;
2964 
2965 	if (unlikely(!PageUptodate(page))) {
2966 		ret = VM_FAULT_SIGBUS;
2967 		goto out_nomap;
2968 	}
2969 
2970 	/*
2971 	 * The page isn't present yet, go ahead with the fault.
2972 	 *
2973 	 * Be careful about the sequence of operations here.
2974 	 * To get its accounting right, reuse_swap_page() must be called
2975 	 * while the page is counted on swap but not yet in mapcount i.e.
2976 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2977 	 * must be called after the swap_free(), or it will never succeed.
2978 	 */
2979 
2980 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2981 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2982 	pte = mk_pte(page, vma->vm_page_prot);
2983 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2984 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2985 		vmf->flags &= ~FAULT_FLAG_WRITE;
2986 		ret |= VM_FAULT_WRITE;
2987 		exclusive = RMAP_EXCLUSIVE;
2988 	}
2989 	flush_icache_page(vma, page);
2990 	if (pte_swp_soft_dirty(vmf->orig_pte))
2991 		pte = pte_mksoft_dirty(pte);
2992 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2993 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
2994 	vmf->orig_pte = pte;
2995 
2996 	/* ksm created a completely new copy */
2997 	if (unlikely(page != swapcache && swapcache)) {
2998 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2999 		mem_cgroup_commit_charge(page, memcg, false, false);
3000 		lru_cache_add_active_or_unevictable(page, vma);
3001 	} else {
3002 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3003 		mem_cgroup_commit_charge(page, memcg, true, false);
3004 		activate_page(page);
3005 	}
3006 
3007 	swap_free(entry);
3008 	if (mem_cgroup_swap_full(page) ||
3009 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3010 		try_to_free_swap(page);
3011 	unlock_page(page);
3012 	if (page != swapcache && swapcache) {
3013 		/*
3014 		 * Hold the lock to avoid the swap entry to be reused
3015 		 * until we take the PT lock for the pte_same() check
3016 		 * (to avoid false positives from pte_same). For
3017 		 * further safety release the lock after the swap_free
3018 		 * so that the swap count won't change under a
3019 		 * parallel locked swapcache.
3020 		 */
3021 		unlock_page(swapcache);
3022 		put_page(swapcache);
3023 	}
3024 
3025 	if (vmf->flags & FAULT_FLAG_WRITE) {
3026 		ret |= do_wp_page(vmf);
3027 		if (ret & VM_FAULT_ERROR)
3028 			ret &= VM_FAULT_ERROR;
3029 		goto out;
3030 	}
3031 
3032 	/* No need to invalidate - it was non-present before */
3033 	update_mmu_cache(vma, vmf->address, vmf->pte);
3034 unlock:
3035 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3036 out:
3037 	return ret;
3038 out_nomap:
3039 	mem_cgroup_cancel_charge(page, memcg, false);
3040 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3041 out_page:
3042 	unlock_page(page);
3043 out_release:
3044 	put_page(page);
3045 	if (page != swapcache && swapcache) {
3046 		unlock_page(swapcache);
3047 		put_page(swapcache);
3048 	}
3049 	return ret;
3050 }
3051 
3052 /*
3053  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3054  * but allow concurrent faults), and pte mapped but not yet locked.
3055  * We return with mmap_sem still held, but pte unmapped and unlocked.
3056  */
3057 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3058 {
3059 	struct vm_area_struct *vma = vmf->vma;
3060 	struct mem_cgroup *memcg;
3061 	struct page *page;
3062 	vm_fault_t ret = 0;
3063 	pte_t entry;
3064 
3065 	/* File mapping without ->vm_ops ? */
3066 	if (vma->vm_flags & VM_SHARED)
3067 		return VM_FAULT_SIGBUS;
3068 
3069 	/*
3070 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3071 	 * pte_offset_map() on pmds where a huge pmd might be created
3072 	 * from a different thread.
3073 	 *
3074 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3075 	 * parallel threads are excluded by other means.
3076 	 *
3077 	 * Here we only have down_read(mmap_sem).
3078 	 */
3079 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3080 		return VM_FAULT_OOM;
3081 
3082 	/* See the comment in pte_alloc_one_map() */
3083 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3084 		return 0;
3085 
3086 	/* Use the zero-page for reads */
3087 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3088 			!mm_forbids_zeropage(vma->vm_mm)) {
3089 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3090 						vma->vm_page_prot));
3091 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3092 				vmf->address, &vmf->ptl);
3093 		if (!pte_none(*vmf->pte))
3094 			goto unlock;
3095 		ret = check_stable_address_space(vma->vm_mm);
3096 		if (ret)
3097 			goto unlock;
3098 		/* Deliver the page fault to userland, check inside PT lock */
3099 		if (userfaultfd_missing(vma)) {
3100 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3101 			return handle_userfault(vmf, VM_UFFD_MISSING);
3102 		}
3103 		goto setpte;
3104 	}
3105 
3106 	/* Allocate our own private page. */
3107 	if (unlikely(anon_vma_prepare(vma)))
3108 		goto oom;
3109 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3110 	if (!page)
3111 		goto oom;
3112 
3113 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3114 					false))
3115 		goto oom_free_page;
3116 
3117 	/*
3118 	 * The memory barrier inside __SetPageUptodate makes sure that
3119 	 * preceeding stores to the page contents become visible before
3120 	 * the set_pte_at() write.
3121 	 */
3122 	__SetPageUptodate(page);
3123 
3124 	entry = mk_pte(page, vma->vm_page_prot);
3125 	if (vma->vm_flags & VM_WRITE)
3126 		entry = pte_mkwrite(pte_mkdirty(entry));
3127 
3128 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3129 			&vmf->ptl);
3130 	if (!pte_none(*vmf->pte))
3131 		goto release;
3132 
3133 	ret = check_stable_address_space(vma->vm_mm);
3134 	if (ret)
3135 		goto release;
3136 
3137 	/* Deliver the page fault to userland, check inside PT lock */
3138 	if (userfaultfd_missing(vma)) {
3139 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3140 		mem_cgroup_cancel_charge(page, memcg, false);
3141 		put_page(page);
3142 		return handle_userfault(vmf, VM_UFFD_MISSING);
3143 	}
3144 
3145 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3146 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3147 	mem_cgroup_commit_charge(page, memcg, false, false);
3148 	lru_cache_add_active_or_unevictable(page, vma);
3149 setpte:
3150 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3151 
3152 	/* No need to invalidate - it was non-present before */
3153 	update_mmu_cache(vma, vmf->address, vmf->pte);
3154 unlock:
3155 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3156 	return ret;
3157 release:
3158 	mem_cgroup_cancel_charge(page, memcg, false);
3159 	put_page(page);
3160 	goto unlock;
3161 oom_free_page:
3162 	put_page(page);
3163 oom:
3164 	return VM_FAULT_OOM;
3165 }
3166 
3167 /*
3168  * The mmap_sem must have been held on entry, and may have been
3169  * released depending on flags and vma->vm_ops->fault() return value.
3170  * See filemap_fault() and __lock_page_retry().
3171  */
3172 static vm_fault_t __do_fault(struct vm_fault *vmf)
3173 {
3174 	struct vm_area_struct *vma = vmf->vma;
3175 	vm_fault_t ret;
3176 
3177 	/*
3178 	 * Preallocate pte before we take page_lock because this might lead to
3179 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3180 	 *				lock_page(A)
3181 	 *				SetPageWriteback(A)
3182 	 *				unlock_page(A)
3183 	 * lock_page(B)
3184 	 *				lock_page(B)
3185 	 * pte_alloc_pne
3186 	 *   shrink_page_list
3187 	 *     wait_on_page_writeback(A)
3188 	 *				SetPageWriteback(B)
3189 	 *				unlock_page(B)
3190 	 *				# flush A, B to clear the writeback
3191 	 */
3192 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3193 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3194 		if (!vmf->prealloc_pte)
3195 			return VM_FAULT_OOM;
3196 		smp_wmb(); /* See comment in __pte_alloc() */
3197 	}
3198 
3199 	ret = vma->vm_ops->fault(vmf);
3200 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3201 			    VM_FAULT_DONE_COW)))
3202 		return ret;
3203 
3204 	if (unlikely(PageHWPoison(vmf->page))) {
3205 		if (ret & VM_FAULT_LOCKED)
3206 			unlock_page(vmf->page);
3207 		put_page(vmf->page);
3208 		vmf->page = NULL;
3209 		return VM_FAULT_HWPOISON;
3210 	}
3211 
3212 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3213 		lock_page(vmf->page);
3214 	else
3215 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3216 
3217 	return ret;
3218 }
3219 
3220 /*
3221  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3222  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3223  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3224  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3225  */
3226 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3227 {
3228 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3229 }
3230 
3231 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3232 {
3233 	struct vm_area_struct *vma = vmf->vma;
3234 
3235 	if (!pmd_none(*vmf->pmd))
3236 		goto map_pte;
3237 	if (vmf->prealloc_pte) {
3238 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3239 		if (unlikely(!pmd_none(*vmf->pmd))) {
3240 			spin_unlock(vmf->ptl);
3241 			goto map_pte;
3242 		}
3243 
3244 		mm_inc_nr_ptes(vma->vm_mm);
3245 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3246 		spin_unlock(vmf->ptl);
3247 		vmf->prealloc_pte = NULL;
3248 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3249 		return VM_FAULT_OOM;
3250 	}
3251 map_pte:
3252 	/*
3253 	 * If a huge pmd materialized under us just retry later.  Use
3254 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3255 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3256 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3257 	 * running immediately after a huge pmd fault in a different thread of
3258 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3259 	 * All we have to ensure is that it is a regular pmd that we can walk
3260 	 * with pte_offset_map() and we can do that through an atomic read in
3261 	 * C, which is what pmd_trans_unstable() provides.
3262 	 */
3263 	if (pmd_devmap_trans_unstable(vmf->pmd))
3264 		return VM_FAULT_NOPAGE;
3265 
3266 	/*
3267 	 * At this point we know that our vmf->pmd points to a page of ptes
3268 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3269 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3270 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3271 	 * be valid and we will re-check to make sure the vmf->pte isn't
3272 	 * pte_none() under vmf->ptl protection when we return to
3273 	 * alloc_set_pte().
3274 	 */
3275 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3276 			&vmf->ptl);
3277 	return 0;
3278 }
3279 
3280 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3281 
3282 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3283 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3284 		unsigned long haddr)
3285 {
3286 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3287 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3288 		return false;
3289 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3290 		return false;
3291 	return true;
3292 }
3293 
3294 static void deposit_prealloc_pte(struct vm_fault *vmf)
3295 {
3296 	struct vm_area_struct *vma = vmf->vma;
3297 
3298 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3299 	/*
3300 	 * We are going to consume the prealloc table,
3301 	 * count that as nr_ptes.
3302 	 */
3303 	mm_inc_nr_ptes(vma->vm_mm);
3304 	vmf->prealloc_pte = NULL;
3305 }
3306 
3307 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3308 {
3309 	struct vm_area_struct *vma = vmf->vma;
3310 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3311 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3312 	pmd_t entry;
3313 	int i;
3314 	vm_fault_t ret;
3315 
3316 	if (!transhuge_vma_suitable(vma, haddr))
3317 		return VM_FAULT_FALLBACK;
3318 
3319 	ret = VM_FAULT_FALLBACK;
3320 	page = compound_head(page);
3321 
3322 	/*
3323 	 * Archs like ppc64 need additonal space to store information
3324 	 * related to pte entry. Use the preallocated table for that.
3325 	 */
3326 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3327 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3328 		if (!vmf->prealloc_pte)
3329 			return VM_FAULT_OOM;
3330 		smp_wmb(); /* See comment in __pte_alloc() */
3331 	}
3332 
3333 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3334 	if (unlikely(!pmd_none(*vmf->pmd)))
3335 		goto out;
3336 
3337 	for (i = 0; i < HPAGE_PMD_NR; i++)
3338 		flush_icache_page(vma, page + i);
3339 
3340 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3341 	if (write)
3342 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3343 
3344 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3345 	page_add_file_rmap(page, true);
3346 	/*
3347 	 * deposit and withdraw with pmd lock held
3348 	 */
3349 	if (arch_needs_pgtable_deposit())
3350 		deposit_prealloc_pte(vmf);
3351 
3352 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3353 
3354 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3355 
3356 	/* fault is handled */
3357 	ret = 0;
3358 	count_vm_event(THP_FILE_MAPPED);
3359 out:
3360 	spin_unlock(vmf->ptl);
3361 	return ret;
3362 }
3363 #else
3364 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3365 {
3366 	BUILD_BUG();
3367 	return 0;
3368 }
3369 #endif
3370 
3371 /**
3372  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3373  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3374  *
3375  * @vmf: fault environment
3376  * @memcg: memcg to charge page (only for private mappings)
3377  * @page: page to map
3378  *
3379  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3380  * return.
3381  *
3382  * Target users are page handler itself and implementations of
3383  * vm_ops->map_pages.
3384  *
3385  * Return: %0 on success, %VM_FAULT_ code in case of error.
3386  */
3387 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3388 		struct page *page)
3389 {
3390 	struct vm_area_struct *vma = vmf->vma;
3391 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3392 	pte_t entry;
3393 	vm_fault_t ret;
3394 
3395 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3396 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3397 		/* THP on COW? */
3398 		VM_BUG_ON_PAGE(memcg, page);
3399 
3400 		ret = do_set_pmd(vmf, page);
3401 		if (ret != VM_FAULT_FALLBACK)
3402 			return ret;
3403 	}
3404 
3405 	if (!vmf->pte) {
3406 		ret = pte_alloc_one_map(vmf);
3407 		if (ret)
3408 			return ret;
3409 	}
3410 
3411 	/* Re-check under ptl */
3412 	if (unlikely(!pte_none(*vmf->pte)))
3413 		return VM_FAULT_NOPAGE;
3414 
3415 	flush_icache_page(vma, page);
3416 	entry = mk_pte(page, vma->vm_page_prot);
3417 	if (write)
3418 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3419 	/* copy-on-write page */
3420 	if (write && !(vma->vm_flags & VM_SHARED)) {
3421 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3422 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3423 		mem_cgroup_commit_charge(page, memcg, false, false);
3424 		lru_cache_add_active_or_unevictable(page, vma);
3425 	} else {
3426 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3427 		page_add_file_rmap(page, false);
3428 	}
3429 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3430 
3431 	/* no need to invalidate: a not-present page won't be cached */
3432 	update_mmu_cache(vma, vmf->address, vmf->pte);
3433 
3434 	return 0;
3435 }
3436 
3437 
3438 /**
3439  * finish_fault - finish page fault once we have prepared the page to fault
3440  *
3441  * @vmf: structure describing the fault
3442  *
3443  * This function handles all that is needed to finish a page fault once the
3444  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3445  * given page, adds reverse page mapping, handles memcg charges and LRU
3446  * addition.
3447  *
3448  * The function expects the page to be locked and on success it consumes a
3449  * reference of a page being mapped (for the PTE which maps it).
3450  *
3451  * Return: %0 on success, %VM_FAULT_ code in case of error.
3452  */
3453 vm_fault_t finish_fault(struct vm_fault *vmf)
3454 {
3455 	struct page *page;
3456 	vm_fault_t ret = 0;
3457 
3458 	/* Did we COW the page? */
3459 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3460 	    !(vmf->vma->vm_flags & VM_SHARED))
3461 		page = vmf->cow_page;
3462 	else
3463 		page = vmf->page;
3464 
3465 	/*
3466 	 * check even for read faults because we might have lost our CoWed
3467 	 * page
3468 	 */
3469 	if (!(vmf->vma->vm_flags & VM_SHARED))
3470 		ret = check_stable_address_space(vmf->vma->vm_mm);
3471 	if (!ret)
3472 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3473 	if (vmf->pte)
3474 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3475 	return ret;
3476 }
3477 
3478 static unsigned long fault_around_bytes __read_mostly =
3479 	rounddown_pow_of_two(65536);
3480 
3481 #ifdef CONFIG_DEBUG_FS
3482 static int fault_around_bytes_get(void *data, u64 *val)
3483 {
3484 	*val = fault_around_bytes;
3485 	return 0;
3486 }
3487 
3488 /*
3489  * fault_around_bytes must be rounded down to the nearest page order as it's
3490  * what do_fault_around() expects to see.
3491  */
3492 static int fault_around_bytes_set(void *data, u64 val)
3493 {
3494 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3495 		return -EINVAL;
3496 	if (val > PAGE_SIZE)
3497 		fault_around_bytes = rounddown_pow_of_two(val);
3498 	else
3499 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3500 	return 0;
3501 }
3502 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3503 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3504 
3505 static int __init fault_around_debugfs(void)
3506 {
3507 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3508 				   &fault_around_bytes_fops);
3509 	return 0;
3510 }
3511 late_initcall(fault_around_debugfs);
3512 #endif
3513 
3514 /*
3515  * do_fault_around() tries to map few pages around the fault address. The hope
3516  * is that the pages will be needed soon and this will lower the number of
3517  * faults to handle.
3518  *
3519  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3520  * not ready to be mapped: not up-to-date, locked, etc.
3521  *
3522  * This function is called with the page table lock taken. In the split ptlock
3523  * case the page table lock only protects only those entries which belong to
3524  * the page table corresponding to the fault address.
3525  *
3526  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3527  * only once.
3528  *
3529  * fault_around_bytes defines how many bytes we'll try to map.
3530  * do_fault_around() expects it to be set to a power of two less than or equal
3531  * to PTRS_PER_PTE.
3532  *
3533  * The virtual address of the area that we map is naturally aligned to
3534  * fault_around_bytes rounded down to the machine page size
3535  * (and therefore to page order).  This way it's easier to guarantee
3536  * that we don't cross page table boundaries.
3537  */
3538 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3539 {
3540 	unsigned long address = vmf->address, nr_pages, mask;
3541 	pgoff_t start_pgoff = vmf->pgoff;
3542 	pgoff_t end_pgoff;
3543 	int off;
3544 	vm_fault_t ret = 0;
3545 
3546 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3547 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3548 
3549 	vmf->address = max(address & mask, vmf->vma->vm_start);
3550 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3551 	start_pgoff -= off;
3552 
3553 	/*
3554 	 *  end_pgoff is either the end of the page table, the end of
3555 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3556 	 */
3557 	end_pgoff = start_pgoff -
3558 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3559 		PTRS_PER_PTE - 1;
3560 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3561 			start_pgoff + nr_pages - 1);
3562 
3563 	if (pmd_none(*vmf->pmd)) {
3564 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3565 		if (!vmf->prealloc_pte)
3566 			goto out;
3567 		smp_wmb(); /* See comment in __pte_alloc() */
3568 	}
3569 
3570 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3571 
3572 	/* Huge page is mapped? Page fault is solved */
3573 	if (pmd_trans_huge(*vmf->pmd)) {
3574 		ret = VM_FAULT_NOPAGE;
3575 		goto out;
3576 	}
3577 
3578 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3579 	if (!vmf->pte)
3580 		goto out;
3581 
3582 	/* check if the page fault is solved */
3583 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3584 	if (!pte_none(*vmf->pte))
3585 		ret = VM_FAULT_NOPAGE;
3586 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3587 out:
3588 	vmf->address = address;
3589 	vmf->pte = NULL;
3590 	return ret;
3591 }
3592 
3593 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3594 {
3595 	struct vm_area_struct *vma = vmf->vma;
3596 	vm_fault_t ret = 0;
3597 
3598 	/*
3599 	 * Let's call ->map_pages() first and use ->fault() as fallback
3600 	 * if page by the offset is not ready to be mapped (cold cache or
3601 	 * something).
3602 	 */
3603 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3604 		ret = do_fault_around(vmf);
3605 		if (ret)
3606 			return ret;
3607 	}
3608 
3609 	ret = __do_fault(vmf);
3610 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3611 		return ret;
3612 
3613 	ret |= finish_fault(vmf);
3614 	unlock_page(vmf->page);
3615 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3616 		put_page(vmf->page);
3617 	return ret;
3618 }
3619 
3620 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3621 {
3622 	struct vm_area_struct *vma = vmf->vma;
3623 	vm_fault_t ret;
3624 
3625 	if (unlikely(anon_vma_prepare(vma)))
3626 		return VM_FAULT_OOM;
3627 
3628 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3629 	if (!vmf->cow_page)
3630 		return VM_FAULT_OOM;
3631 
3632 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3633 				&vmf->memcg, false)) {
3634 		put_page(vmf->cow_page);
3635 		return VM_FAULT_OOM;
3636 	}
3637 
3638 	ret = __do_fault(vmf);
3639 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3640 		goto uncharge_out;
3641 	if (ret & VM_FAULT_DONE_COW)
3642 		return ret;
3643 
3644 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3645 	__SetPageUptodate(vmf->cow_page);
3646 
3647 	ret |= finish_fault(vmf);
3648 	unlock_page(vmf->page);
3649 	put_page(vmf->page);
3650 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3651 		goto uncharge_out;
3652 	return ret;
3653 uncharge_out:
3654 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3655 	put_page(vmf->cow_page);
3656 	return ret;
3657 }
3658 
3659 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3660 {
3661 	struct vm_area_struct *vma = vmf->vma;
3662 	vm_fault_t ret, tmp;
3663 
3664 	ret = __do_fault(vmf);
3665 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3666 		return ret;
3667 
3668 	/*
3669 	 * Check if the backing address space wants to know that the page is
3670 	 * about to become writable
3671 	 */
3672 	if (vma->vm_ops->page_mkwrite) {
3673 		unlock_page(vmf->page);
3674 		tmp = do_page_mkwrite(vmf);
3675 		if (unlikely(!tmp ||
3676 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3677 					VM_FAULT_RETRY)))) {
3678 			put_page(vmf->page);
3679 			return tmp;
3680 		}
3681 	}
3682 
3683 	ret |= finish_fault(vmf);
3684 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3685 					VM_FAULT_RETRY))) {
3686 		unlock_page(vmf->page);
3687 		put_page(vmf->page);
3688 		return ret;
3689 	}
3690 
3691 	fault_dirty_shared_page(vma, vmf->page);
3692 	return ret;
3693 }
3694 
3695 /*
3696  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3697  * but allow concurrent faults).
3698  * The mmap_sem may have been released depending on flags and our
3699  * return value.  See filemap_fault() and __lock_page_or_retry().
3700  * If mmap_sem is released, vma may become invalid (for example
3701  * by other thread calling munmap()).
3702  */
3703 static vm_fault_t do_fault(struct vm_fault *vmf)
3704 {
3705 	struct vm_area_struct *vma = vmf->vma;
3706 	struct mm_struct *vm_mm = vma->vm_mm;
3707 	vm_fault_t ret;
3708 
3709 	/*
3710 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3711 	 */
3712 	if (!vma->vm_ops->fault) {
3713 		/*
3714 		 * If we find a migration pmd entry or a none pmd entry, which
3715 		 * should never happen, return SIGBUS
3716 		 */
3717 		if (unlikely(!pmd_present(*vmf->pmd)))
3718 			ret = VM_FAULT_SIGBUS;
3719 		else {
3720 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3721 						       vmf->pmd,
3722 						       vmf->address,
3723 						       &vmf->ptl);
3724 			/*
3725 			 * Make sure this is not a temporary clearing of pte
3726 			 * by holding ptl and checking again. A R/M/W update
3727 			 * of pte involves: take ptl, clearing the pte so that
3728 			 * we don't have concurrent modification by hardware
3729 			 * followed by an update.
3730 			 */
3731 			if (unlikely(pte_none(*vmf->pte)))
3732 				ret = VM_FAULT_SIGBUS;
3733 			else
3734 				ret = VM_FAULT_NOPAGE;
3735 
3736 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3737 		}
3738 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3739 		ret = do_read_fault(vmf);
3740 	else if (!(vma->vm_flags & VM_SHARED))
3741 		ret = do_cow_fault(vmf);
3742 	else
3743 		ret = do_shared_fault(vmf);
3744 
3745 	/* preallocated pagetable is unused: free it */
3746 	if (vmf->prealloc_pte) {
3747 		pte_free(vm_mm, vmf->prealloc_pte);
3748 		vmf->prealloc_pte = NULL;
3749 	}
3750 	return ret;
3751 }
3752 
3753 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3754 				unsigned long addr, int page_nid,
3755 				int *flags)
3756 {
3757 	get_page(page);
3758 
3759 	count_vm_numa_event(NUMA_HINT_FAULTS);
3760 	if (page_nid == numa_node_id()) {
3761 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3762 		*flags |= TNF_FAULT_LOCAL;
3763 	}
3764 
3765 	return mpol_misplaced(page, vma, addr);
3766 }
3767 
3768 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3769 {
3770 	struct vm_area_struct *vma = vmf->vma;
3771 	struct page *page = NULL;
3772 	int page_nid = NUMA_NO_NODE;
3773 	int last_cpupid;
3774 	int target_nid;
3775 	bool migrated = false;
3776 	pte_t pte, old_pte;
3777 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3778 	int flags = 0;
3779 
3780 	/*
3781 	 * The "pte" at this point cannot be used safely without
3782 	 * validation through pte_unmap_same(). It's of NUMA type but
3783 	 * the pfn may be screwed if the read is non atomic.
3784 	 */
3785 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3786 	spin_lock(vmf->ptl);
3787 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3788 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3789 		goto out;
3790 	}
3791 
3792 	/*
3793 	 * Make it present again, Depending on how arch implementes non
3794 	 * accessible ptes, some can allow access by kernel mode.
3795 	 */
3796 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3797 	pte = pte_modify(old_pte, vma->vm_page_prot);
3798 	pte = pte_mkyoung(pte);
3799 	if (was_writable)
3800 		pte = pte_mkwrite(pte);
3801 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3802 	update_mmu_cache(vma, vmf->address, vmf->pte);
3803 
3804 	page = vm_normal_page(vma, vmf->address, pte);
3805 	if (!page) {
3806 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3807 		return 0;
3808 	}
3809 
3810 	/* TODO: handle PTE-mapped THP */
3811 	if (PageCompound(page)) {
3812 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3813 		return 0;
3814 	}
3815 
3816 	/*
3817 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3818 	 * much anyway since they can be in shared cache state. This misses
3819 	 * the case where a mapping is writable but the process never writes
3820 	 * to it but pte_write gets cleared during protection updates and
3821 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3822 	 * background writeback, dirty balancing and application behaviour.
3823 	 */
3824 	if (!pte_write(pte))
3825 		flags |= TNF_NO_GROUP;
3826 
3827 	/*
3828 	 * Flag if the page is shared between multiple address spaces. This
3829 	 * is later used when determining whether to group tasks together
3830 	 */
3831 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3832 		flags |= TNF_SHARED;
3833 
3834 	last_cpupid = page_cpupid_last(page);
3835 	page_nid = page_to_nid(page);
3836 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3837 			&flags);
3838 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3839 	if (target_nid == NUMA_NO_NODE) {
3840 		put_page(page);
3841 		goto out;
3842 	}
3843 
3844 	/* Migrate to the requested node */
3845 	migrated = migrate_misplaced_page(page, vma, target_nid);
3846 	if (migrated) {
3847 		page_nid = target_nid;
3848 		flags |= TNF_MIGRATED;
3849 	} else
3850 		flags |= TNF_MIGRATE_FAIL;
3851 
3852 out:
3853 	if (page_nid != NUMA_NO_NODE)
3854 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3855 	return 0;
3856 }
3857 
3858 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3859 {
3860 	if (vma_is_anonymous(vmf->vma))
3861 		return do_huge_pmd_anonymous_page(vmf);
3862 	if (vmf->vma->vm_ops->huge_fault)
3863 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3864 	return VM_FAULT_FALLBACK;
3865 }
3866 
3867 /* `inline' is required to avoid gcc 4.1.2 build error */
3868 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3869 {
3870 	if (vma_is_anonymous(vmf->vma))
3871 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3872 	if (vmf->vma->vm_ops->huge_fault)
3873 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3874 
3875 	/* COW handled on pte level: split pmd */
3876 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3877 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3878 
3879 	return VM_FAULT_FALLBACK;
3880 }
3881 
3882 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3883 {
3884 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3885 }
3886 
3887 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3888 {
3889 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3890 	/* No support for anonymous transparent PUD pages yet */
3891 	if (vma_is_anonymous(vmf->vma))
3892 		return VM_FAULT_FALLBACK;
3893 	if (vmf->vma->vm_ops->huge_fault)
3894 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3895 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3896 	return VM_FAULT_FALLBACK;
3897 }
3898 
3899 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3900 {
3901 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3902 	/* No support for anonymous transparent PUD pages yet */
3903 	if (vma_is_anonymous(vmf->vma))
3904 		return VM_FAULT_FALLBACK;
3905 	if (vmf->vma->vm_ops->huge_fault)
3906 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3907 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3908 	return VM_FAULT_FALLBACK;
3909 }
3910 
3911 /*
3912  * These routines also need to handle stuff like marking pages dirty
3913  * and/or accessed for architectures that don't do it in hardware (most
3914  * RISC architectures).  The early dirtying is also good on the i386.
3915  *
3916  * There is also a hook called "update_mmu_cache()" that architectures
3917  * with external mmu caches can use to update those (ie the Sparc or
3918  * PowerPC hashed page tables that act as extended TLBs).
3919  *
3920  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3921  * concurrent faults).
3922  *
3923  * The mmap_sem may have been released depending on flags and our return value.
3924  * See filemap_fault() and __lock_page_or_retry().
3925  */
3926 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3927 {
3928 	pte_t entry;
3929 
3930 	if (unlikely(pmd_none(*vmf->pmd))) {
3931 		/*
3932 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3933 		 * want to allocate huge page, and if we expose page table
3934 		 * for an instant, it will be difficult to retract from
3935 		 * concurrent faults and from rmap lookups.
3936 		 */
3937 		vmf->pte = NULL;
3938 	} else {
3939 		/* See comment in pte_alloc_one_map() */
3940 		if (pmd_devmap_trans_unstable(vmf->pmd))
3941 			return 0;
3942 		/*
3943 		 * A regular pmd is established and it can't morph into a huge
3944 		 * pmd from under us anymore at this point because we hold the
3945 		 * mmap_sem read mode and khugepaged takes it in write mode.
3946 		 * So now it's safe to run pte_offset_map().
3947 		 */
3948 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3949 		vmf->orig_pte = *vmf->pte;
3950 
3951 		/*
3952 		 * some architectures can have larger ptes than wordsize,
3953 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3954 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3955 		 * accesses.  The code below just needs a consistent view
3956 		 * for the ifs and we later double check anyway with the
3957 		 * ptl lock held. So here a barrier will do.
3958 		 */
3959 		barrier();
3960 		if (pte_none(vmf->orig_pte)) {
3961 			pte_unmap(vmf->pte);
3962 			vmf->pte = NULL;
3963 		}
3964 	}
3965 
3966 	if (!vmf->pte) {
3967 		if (vma_is_anonymous(vmf->vma))
3968 			return do_anonymous_page(vmf);
3969 		else
3970 			return do_fault(vmf);
3971 	}
3972 
3973 	if (!pte_present(vmf->orig_pte))
3974 		return do_swap_page(vmf);
3975 
3976 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3977 		return do_numa_page(vmf);
3978 
3979 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3980 	spin_lock(vmf->ptl);
3981 	entry = vmf->orig_pte;
3982 	if (unlikely(!pte_same(*vmf->pte, entry)))
3983 		goto unlock;
3984 	if (vmf->flags & FAULT_FLAG_WRITE) {
3985 		if (!pte_write(entry))
3986 			return do_wp_page(vmf);
3987 		entry = pte_mkdirty(entry);
3988 	}
3989 	entry = pte_mkyoung(entry);
3990 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3991 				vmf->flags & FAULT_FLAG_WRITE)) {
3992 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3993 	} else {
3994 		/*
3995 		 * This is needed only for protection faults but the arch code
3996 		 * is not yet telling us if this is a protection fault or not.
3997 		 * This still avoids useless tlb flushes for .text page faults
3998 		 * with threads.
3999 		 */
4000 		if (vmf->flags & FAULT_FLAG_WRITE)
4001 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4002 	}
4003 unlock:
4004 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4005 	return 0;
4006 }
4007 
4008 /*
4009  * By the time we get here, we already hold the mm semaphore
4010  *
4011  * The mmap_sem may have been released depending on flags and our
4012  * return value.  See filemap_fault() and __lock_page_or_retry().
4013  */
4014 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4015 		unsigned long address, unsigned int flags)
4016 {
4017 	struct vm_fault vmf = {
4018 		.vma = vma,
4019 		.address = address & PAGE_MASK,
4020 		.flags = flags,
4021 		.pgoff = linear_page_index(vma, address),
4022 		.gfp_mask = __get_fault_gfp_mask(vma),
4023 	};
4024 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4025 	struct mm_struct *mm = vma->vm_mm;
4026 	pgd_t *pgd;
4027 	p4d_t *p4d;
4028 	vm_fault_t ret;
4029 
4030 	pgd = pgd_offset(mm, address);
4031 	p4d = p4d_alloc(mm, pgd, address);
4032 	if (!p4d)
4033 		return VM_FAULT_OOM;
4034 
4035 	vmf.pud = pud_alloc(mm, p4d, address);
4036 	if (!vmf.pud)
4037 		return VM_FAULT_OOM;
4038 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4039 		ret = create_huge_pud(&vmf);
4040 		if (!(ret & VM_FAULT_FALLBACK))
4041 			return ret;
4042 	} else {
4043 		pud_t orig_pud = *vmf.pud;
4044 
4045 		barrier();
4046 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4047 
4048 			/* NUMA case for anonymous PUDs would go here */
4049 
4050 			if (dirty && !pud_write(orig_pud)) {
4051 				ret = wp_huge_pud(&vmf, orig_pud);
4052 				if (!(ret & VM_FAULT_FALLBACK))
4053 					return ret;
4054 			} else {
4055 				huge_pud_set_accessed(&vmf, orig_pud);
4056 				return 0;
4057 			}
4058 		}
4059 	}
4060 
4061 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4062 	if (!vmf.pmd)
4063 		return VM_FAULT_OOM;
4064 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4065 		ret = create_huge_pmd(&vmf);
4066 		if (!(ret & VM_FAULT_FALLBACK))
4067 			return ret;
4068 	} else {
4069 		pmd_t orig_pmd = *vmf.pmd;
4070 
4071 		barrier();
4072 		if (unlikely(is_swap_pmd(orig_pmd))) {
4073 			VM_BUG_ON(thp_migration_supported() &&
4074 					  !is_pmd_migration_entry(orig_pmd));
4075 			if (is_pmd_migration_entry(orig_pmd))
4076 				pmd_migration_entry_wait(mm, vmf.pmd);
4077 			return 0;
4078 		}
4079 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4080 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4081 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4082 
4083 			if (dirty && !pmd_write(orig_pmd)) {
4084 				ret = wp_huge_pmd(&vmf, orig_pmd);
4085 				if (!(ret & VM_FAULT_FALLBACK))
4086 					return ret;
4087 			} else {
4088 				huge_pmd_set_accessed(&vmf, orig_pmd);
4089 				return 0;
4090 			}
4091 		}
4092 	}
4093 
4094 	return handle_pte_fault(&vmf);
4095 }
4096 
4097 /*
4098  * By the time we get here, we already hold the mm semaphore
4099  *
4100  * The mmap_sem may have been released depending on flags and our
4101  * return value.  See filemap_fault() and __lock_page_or_retry().
4102  */
4103 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4104 		unsigned int flags)
4105 {
4106 	vm_fault_t ret;
4107 
4108 	__set_current_state(TASK_RUNNING);
4109 
4110 	count_vm_event(PGFAULT);
4111 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4112 
4113 	/* do counter updates before entering really critical section. */
4114 	check_sync_rss_stat(current);
4115 
4116 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4117 					    flags & FAULT_FLAG_INSTRUCTION,
4118 					    flags & FAULT_FLAG_REMOTE))
4119 		return VM_FAULT_SIGSEGV;
4120 
4121 	/*
4122 	 * Enable the memcg OOM handling for faults triggered in user
4123 	 * space.  Kernel faults are handled more gracefully.
4124 	 */
4125 	if (flags & FAULT_FLAG_USER)
4126 		mem_cgroup_enter_user_fault();
4127 
4128 	if (unlikely(is_vm_hugetlb_page(vma)))
4129 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4130 	else
4131 		ret = __handle_mm_fault(vma, address, flags);
4132 
4133 	if (flags & FAULT_FLAG_USER) {
4134 		mem_cgroup_exit_user_fault();
4135 		/*
4136 		 * The task may have entered a memcg OOM situation but
4137 		 * if the allocation error was handled gracefully (no
4138 		 * VM_FAULT_OOM), there is no need to kill anything.
4139 		 * Just clean up the OOM state peacefully.
4140 		 */
4141 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4142 			mem_cgroup_oom_synchronize(false);
4143 	}
4144 
4145 	return ret;
4146 }
4147 EXPORT_SYMBOL_GPL(handle_mm_fault);
4148 
4149 #ifndef __PAGETABLE_P4D_FOLDED
4150 /*
4151  * Allocate p4d page table.
4152  * We've already handled the fast-path in-line.
4153  */
4154 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4155 {
4156 	p4d_t *new = p4d_alloc_one(mm, address);
4157 	if (!new)
4158 		return -ENOMEM;
4159 
4160 	smp_wmb(); /* See comment in __pte_alloc */
4161 
4162 	spin_lock(&mm->page_table_lock);
4163 	if (pgd_present(*pgd))		/* Another has populated it */
4164 		p4d_free(mm, new);
4165 	else
4166 		pgd_populate(mm, pgd, new);
4167 	spin_unlock(&mm->page_table_lock);
4168 	return 0;
4169 }
4170 #endif /* __PAGETABLE_P4D_FOLDED */
4171 
4172 #ifndef __PAGETABLE_PUD_FOLDED
4173 /*
4174  * Allocate page upper directory.
4175  * We've already handled the fast-path in-line.
4176  */
4177 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4178 {
4179 	pud_t *new = pud_alloc_one(mm, address);
4180 	if (!new)
4181 		return -ENOMEM;
4182 
4183 	smp_wmb(); /* See comment in __pte_alloc */
4184 
4185 	spin_lock(&mm->page_table_lock);
4186 #ifndef __ARCH_HAS_5LEVEL_HACK
4187 	if (!p4d_present(*p4d)) {
4188 		mm_inc_nr_puds(mm);
4189 		p4d_populate(mm, p4d, new);
4190 	} else	/* Another has populated it */
4191 		pud_free(mm, new);
4192 #else
4193 	if (!pgd_present(*p4d)) {
4194 		mm_inc_nr_puds(mm);
4195 		pgd_populate(mm, p4d, new);
4196 	} else	/* Another has populated it */
4197 		pud_free(mm, new);
4198 #endif /* __ARCH_HAS_5LEVEL_HACK */
4199 	spin_unlock(&mm->page_table_lock);
4200 	return 0;
4201 }
4202 #endif /* __PAGETABLE_PUD_FOLDED */
4203 
4204 #ifndef __PAGETABLE_PMD_FOLDED
4205 /*
4206  * Allocate page middle directory.
4207  * We've already handled the fast-path in-line.
4208  */
4209 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4210 {
4211 	spinlock_t *ptl;
4212 	pmd_t *new = pmd_alloc_one(mm, address);
4213 	if (!new)
4214 		return -ENOMEM;
4215 
4216 	smp_wmb(); /* See comment in __pte_alloc */
4217 
4218 	ptl = pud_lock(mm, pud);
4219 #ifndef __ARCH_HAS_4LEVEL_HACK
4220 	if (!pud_present(*pud)) {
4221 		mm_inc_nr_pmds(mm);
4222 		pud_populate(mm, pud, new);
4223 	} else	/* Another has populated it */
4224 		pmd_free(mm, new);
4225 #else
4226 	if (!pgd_present(*pud)) {
4227 		mm_inc_nr_pmds(mm);
4228 		pgd_populate(mm, pud, new);
4229 	} else /* Another has populated it */
4230 		pmd_free(mm, new);
4231 #endif /* __ARCH_HAS_4LEVEL_HACK */
4232 	spin_unlock(ptl);
4233 	return 0;
4234 }
4235 #endif /* __PAGETABLE_PMD_FOLDED */
4236 
4237 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4238 			    struct mmu_notifier_range *range,
4239 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4240 {
4241 	pgd_t *pgd;
4242 	p4d_t *p4d;
4243 	pud_t *pud;
4244 	pmd_t *pmd;
4245 	pte_t *ptep;
4246 
4247 	pgd = pgd_offset(mm, address);
4248 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4249 		goto out;
4250 
4251 	p4d = p4d_offset(pgd, address);
4252 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4253 		goto out;
4254 
4255 	pud = pud_offset(p4d, address);
4256 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4257 		goto out;
4258 
4259 	pmd = pmd_offset(pud, address);
4260 	VM_BUG_ON(pmd_trans_huge(*pmd));
4261 
4262 	if (pmd_huge(*pmd)) {
4263 		if (!pmdpp)
4264 			goto out;
4265 
4266 		if (range) {
4267 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4268 						NULL, mm, address & PMD_MASK,
4269 						(address & PMD_MASK) + PMD_SIZE);
4270 			mmu_notifier_invalidate_range_start(range);
4271 		}
4272 		*ptlp = pmd_lock(mm, pmd);
4273 		if (pmd_huge(*pmd)) {
4274 			*pmdpp = pmd;
4275 			return 0;
4276 		}
4277 		spin_unlock(*ptlp);
4278 		if (range)
4279 			mmu_notifier_invalidate_range_end(range);
4280 	}
4281 
4282 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4283 		goto out;
4284 
4285 	if (range) {
4286 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4287 					address & PAGE_MASK,
4288 					(address & PAGE_MASK) + PAGE_SIZE);
4289 		mmu_notifier_invalidate_range_start(range);
4290 	}
4291 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4292 	if (!pte_present(*ptep))
4293 		goto unlock;
4294 	*ptepp = ptep;
4295 	return 0;
4296 unlock:
4297 	pte_unmap_unlock(ptep, *ptlp);
4298 	if (range)
4299 		mmu_notifier_invalidate_range_end(range);
4300 out:
4301 	return -EINVAL;
4302 }
4303 
4304 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4305 			     pte_t **ptepp, spinlock_t **ptlp)
4306 {
4307 	int res;
4308 
4309 	/* (void) is needed to make gcc happy */
4310 	(void) __cond_lock(*ptlp,
4311 			   !(res = __follow_pte_pmd(mm, address, NULL,
4312 						    ptepp, NULL, ptlp)));
4313 	return res;
4314 }
4315 
4316 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4317 		   struct mmu_notifier_range *range,
4318 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4319 {
4320 	int res;
4321 
4322 	/* (void) is needed to make gcc happy */
4323 	(void) __cond_lock(*ptlp,
4324 			   !(res = __follow_pte_pmd(mm, address, range,
4325 						    ptepp, pmdpp, ptlp)));
4326 	return res;
4327 }
4328 EXPORT_SYMBOL(follow_pte_pmd);
4329 
4330 /**
4331  * follow_pfn - look up PFN at a user virtual address
4332  * @vma: memory mapping
4333  * @address: user virtual address
4334  * @pfn: location to store found PFN
4335  *
4336  * Only IO mappings and raw PFN mappings are allowed.
4337  *
4338  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4339  */
4340 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4341 	unsigned long *pfn)
4342 {
4343 	int ret = -EINVAL;
4344 	spinlock_t *ptl;
4345 	pte_t *ptep;
4346 
4347 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4348 		return ret;
4349 
4350 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4351 	if (ret)
4352 		return ret;
4353 	*pfn = pte_pfn(*ptep);
4354 	pte_unmap_unlock(ptep, ptl);
4355 	return 0;
4356 }
4357 EXPORT_SYMBOL(follow_pfn);
4358 
4359 #ifdef CONFIG_HAVE_IOREMAP_PROT
4360 int follow_phys(struct vm_area_struct *vma,
4361 		unsigned long address, unsigned int flags,
4362 		unsigned long *prot, resource_size_t *phys)
4363 {
4364 	int ret = -EINVAL;
4365 	pte_t *ptep, pte;
4366 	spinlock_t *ptl;
4367 
4368 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4369 		goto out;
4370 
4371 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4372 		goto out;
4373 	pte = *ptep;
4374 
4375 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4376 		goto unlock;
4377 
4378 	*prot = pgprot_val(pte_pgprot(pte));
4379 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4380 
4381 	ret = 0;
4382 unlock:
4383 	pte_unmap_unlock(ptep, ptl);
4384 out:
4385 	return ret;
4386 }
4387 
4388 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4389 			void *buf, int len, int write)
4390 {
4391 	resource_size_t phys_addr;
4392 	unsigned long prot = 0;
4393 	void __iomem *maddr;
4394 	int offset = addr & (PAGE_SIZE-1);
4395 
4396 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4397 		return -EINVAL;
4398 
4399 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4400 	if (!maddr)
4401 		return -ENOMEM;
4402 
4403 	if (write)
4404 		memcpy_toio(maddr + offset, buf, len);
4405 	else
4406 		memcpy_fromio(buf, maddr + offset, len);
4407 	iounmap(maddr);
4408 
4409 	return len;
4410 }
4411 EXPORT_SYMBOL_GPL(generic_access_phys);
4412 #endif
4413 
4414 /*
4415  * Access another process' address space as given in mm.  If non-NULL, use the
4416  * given task for page fault accounting.
4417  */
4418 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4419 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4420 {
4421 	struct vm_area_struct *vma;
4422 	void *old_buf = buf;
4423 	int write = gup_flags & FOLL_WRITE;
4424 
4425 	down_read(&mm->mmap_sem);
4426 	/* ignore errors, just check how much was successfully transferred */
4427 	while (len) {
4428 		int bytes, ret, offset;
4429 		void *maddr;
4430 		struct page *page = NULL;
4431 
4432 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4433 				gup_flags, &page, &vma, NULL);
4434 		if (ret <= 0) {
4435 #ifndef CONFIG_HAVE_IOREMAP_PROT
4436 			break;
4437 #else
4438 			/*
4439 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4440 			 * we can access using slightly different code.
4441 			 */
4442 			vma = find_vma(mm, addr);
4443 			if (!vma || vma->vm_start > addr)
4444 				break;
4445 			if (vma->vm_ops && vma->vm_ops->access)
4446 				ret = vma->vm_ops->access(vma, addr, buf,
4447 							  len, write);
4448 			if (ret <= 0)
4449 				break;
4450 			bytes = ret;
4451 #endif
4452 		} else {
4453 			bytes = len;
4454 			offset = addr & (PAGE_SIZE-1);
4455 			if (bytes > PAGE_SIZE-offset)
4456 				bytes = PAGE_SIZE-offset;
4457 
4458 			maddr = kmap(page);
4459 			if (write) {
4460 				copy_to_user_page(vma, page, addr,
4461 						  maddr + offset, buf, bytes);
4462 				set_page_dirty_lock(page);
4463 			} else {
4464 				copy_from_user_page(vma, page, addr,
4465 						    buf, maddr + offset, bytes);
4466 			}
4467 			kunmap(page);
4468 			put_page(page);
4469 		}
4470 		len -= bytes;
4471 		buf += bytes;
4472 		addr += bytes;
4473 	}
4474 	up_read(&mm->mmap_sem);
4475 
4476 	return buf - old_buf;
4477 }
4478 
4479 /**
4480  * access_remote_vm - access another process' address space
4481  * @mm:		the mm_struct of the target address space
4482  * @addr:	start address to access
4483  * @buf:	source or destination buffer
4484  * @len:	number of bytes to transfer
4485  * @gup_flags:	flags modifying lookup behaviour
4486  *
4487  * The caller must hold a reference on @mm.
4488  *
4489  * Return: number of bytes copied from source to destination.
4490  */
4491 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4492 		void *buf, int len, unsigned int gup_flags)
4493 {
4494 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4495 }
4496 
4497 /*
4498  * Access another process' address space.
4499  * Source/target buffer must be kernel space,
4500  * Do not walk the page table directly, use get_user_pages
4501  */
4502 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4503 		void *buf, int len, unsigned int gup_flags)
4504 {
4505 	struct mm_struct *mm;
4506 	int ret;
4507 
4508 	mm = get_task_mm(tsk);
4509 	if (!mm)
4510 		return 0;
4511 
4512 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4513 
4514 	mmput(mm);
4515 
4516 	return ret;
4517 }
4518 EXPORT_SYMBOL_GPL(access_process_vm);
4519 
4520 /*
4521  * Print the name of a VMA.
4522  */
4523 void print_vma_addr(char *prefix, unsigned long ip)
4524 {
4525 	struct mm_struct *mm = current->mm;
4526 	struct vm_area_struct *vma;
4527 
4528 	/*
4529 	 * we might be running from an atomic context so we cannot sleep
4530 	 */
4531 	if (!down_read_trylock(&mm->mmap_sem))
4532 		return;
4533 
4534 	vma = find_vma(mm, ip);
4535 	if (vma && vma->vm_file) {
4536 		struct file *f = vma->vm_file;
4537 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4538 		if (buf) {
4539 			char *p;
4540 
4541 			p = file_path(f, buf, PAGE_SIZE);
4542 			if (IS_ERR(p))
4543 				p = "?";
4544 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4545 					vma->vm_start,
4546 					vma->vm_end - vma->vm_start);
4547 			free_page((unsigned long)buf);
4548 		}
4549 	}
4550 	up_read(&mm->mmap_sem);
4551 }
4552 
4553 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4554 void __might_fault(const char *file, int line)
4555 {
4556 	/*
4557 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4558 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4559 	 * get paged out, therefore we'll never actually fault, and the
4560 	 * below annotations will generate false positives.
4561 	 */
4562 	if (uaccess_kernel())
4563 		return;
4564 	if (pagefault_disabled())
4565 		return;
4566 	__might_sleep(file, line, 0);
4567 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4568 	if (current->mm)
4569 		might_lock_read(&current->mm->mmap_sem);
4570 #endif
4571 }
4572 EXPORT_SYMBOL(__might_fault);
4573 #endif
4574 
4575 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4576 /*
4577  * Process all subpages of the specified huge page with the specified
4578  * operation.  The target subpage will be processed last to keep its
4579  * cache lines hot.
4580  */
4581 static inline void process_huge_page(
4582 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4583 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4584 	void *arg)
4585 {
4586 	int i, n, base, l;
4587 	unsigned long addr = addr_hint &
4588 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4589 
4590 	/* Process target subpage last to keep its cache lines hot */
4591 	might_sleep();
4592 	n = (addr_hint - addr) / PAGE_SIZE;
4593 	if (2 * n <= pages_per_huge_page) {
4594 		/* If target subpage in first half of huge page */
4595 		base = 0;
4596 		l = n;
4597 		/* Process subpages at the end of huge page */
4598 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4599 			cond_resched();
4600 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4601 		}
4602 	} else {
4603 		/* If target subpage in second half of huge page */
4604 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4605 		l = pages_per_huge_page - n;
4606 		/* Process subpages at the begin of huge page */
4607 		for (i = 0; i < base; i++) {
4608 			cond_resched();
4609 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4610 		}
4611 	}
4612 	/*
4613 	 * Process remaining subpages in left-right-left-right pattern
4614 	 * towards the target subpage
4615 	 */
4616 	for (i = 0; i < l; i++) {
4617 		int left_idx = base + i;
4618 		int right_idx = base + 2 * l - 1 - i;
4619 
4620 		cond_resched();
4621 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4622 		cond_resched();
4623 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4624 	}
4625 }
4626 
4627 static void clear_gigantic_page(struct page *page,
4628 				unsigned long addr,
4629 				unsigned int pages_per_huge_page)
4630 {
4631 	int i;
4632 	struct page *p = page;
4633 
4634 	might_sleep();
4635 	for (i = 0; i < pages_per_huge_page;
4636 	     i++, p = mem_map_next(p, page, i)) {
4637 		cond_resched();
4638 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4639 	}
4640 }
4641 
4642 static void clear_subpage(unsigned long addr, int idx, void *arg)
4643 {
4644 	struct page *page = arg;
4645 
4646 	clear_user_highpage(page + idx, addr);
4647 }
4648 
4649 void clear_huge_page(struct page *page,
4650 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4651 {
4652 	unsigned long addr = addr_hint &
4653 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4654 
4655 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4656 		clear_gigantic_page(page, addr, pages_per_huge_page);
4657 		return;
4658 	}
4659 
4660 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4661 }
4662 
4663 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4664 				    unsigned long addr,
4665 				    struct vm_area_struct *vma,
4666 				    unsigned int pages_per_huge_page)
4667 {
4668 	int i;
4669 	struct page *dst_base = dst;
4670 	struct page *src_base = src;
4671 
4672 	for (i = 0; i < pages_per_huge_page; ) {
4673 		cond_resched();
4674 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4675 
4676 		i++;
4677 		dst = mem_map_next(dst, dst_base, i);
4678 		src = mem_map_next(src, src_base, i);
4679 	}
4680 }
4681 
4682 struct copy_subpage_arg {
4683 	struct page *dst;
4684 	struct page *src;
4685 	struct vm_area_struct *vma;
4686 };
4687 
4688 static void copy_subpage(unsigned long addr, int idx, void *arg)
4689 {
4690 	struct copy_subpage_arg *copy_arg = arg;
4691 
4692 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4693 			   addr, copy_arg->vma);
4694 }
4695 
4696 void copy_user_huge_page(struct page *dst, struct page *src,
4697 			 unsigned long addr_hint, struct vm_area_struct *vma,
4698 			 unsigned int pages_per_huge_page)
4699 {
4700 	unsigned long addr = addr_hint &
4701 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4702 	struct copy_subpage_arg arg = {
4703 		.dst = dst,
4704 		.src = src,
4705 		.vma = vma,
4706 	};
4707 
4708 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4709 		copy_user_gigantic_page(dst, src, addr, vma,
4710 					pages_per_huge_page);
4711 		return;
4712 	}
4713 
4714 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4715 }
4716 
4717 long copy_huge_page_from_user(struct page *dst_page,
4718 				const void __user *usr_src,
4719 				unsigned int pages_per_huge_page,
4720 				bool allow_pagefault)
4721 {
4722 	void *src = (void *)usr_src;
4723 	void *page_kaddr;
4724 	unsigned long i, rc = 0;
4725 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4726 
4727 	for (i = 0; i < pages_per_huge_page; i++) {
4728 		if (allow_pagefault)
4729 			page_kaddr = kmap(dst_page + i);
4730 		else
4731 			page_kaddr = kmap_atomic(dst_page + i);
4732 		rc = copy_from_user(page_kaddr,
4733 				(const void __user *)(src + i * PAGE_SIZE),
4734 				PAGE_SIZE);
4735 		if (allow_pagefault)
4736 			kunmap(dst_page + i);
4737 		else
4738 			kunmap_atomic(page_kaddr);
4739 
4740 		ret_val -= (PAGE_SIZE - rc);
4741 		if (rc)
4742 			break;
4743 
4744 		cond_resched();
4745 	}
4746 	return ret_val;
4747 }
4748 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4749 
4750 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4751 
4752 static struct kmem_cache *page_ptl_cachep;
4753 
4754 void __init ptlock_cache_init(void)
4755 {
4756 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4757 			SLAB_PANIC, NULL);
4758 }
4759 
4760 bool ptlock_alloc(struct page *page)
4761 {
4762 	spinlock_t *ptl;
4763 
4764 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4765 	if (!ptl)
4766 		return false;
4767 	page->ptl = ptl;
4768 	return true;
4769 }
4770 
4771 void ptlock_free(struct page *page)
4772 {
4773 	kmem_cache_free(page_ptl_cachep, page->ptl);
4774 }
4775 #endif
4776