1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf); 108 static bool vmf_pte_changed(struct vm_fault *vmf); 109 110 /* 111 * Return true if the original pte was a uffd-wp pte marker (so the pte was 112 * wr-protected). 113 */ 114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf) 115 { 116 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 117 return false; 118 119 return pte_marker_uffd_wp(vmf->orig_pte); 120 } 121 122 /* 123 * A number of key systems in x86 including ioremap() rely on the assumption 124 * that high_memory defines the upper bound on direct map memory, then end 125 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 126 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 127 * and ZONE_HIGHMEM. 128 */ 129 void *high_memory; 130 EXPORT_SYMBOL(high_memory); 131 132 /* 133 * Randomize the address space (stacks, mmaps, brk, etc.). 134 * 135 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 136 * as ancient (libc5 based) binaries can segfault. ) 137 */ 138 int randomize_va_space __read_mostly = 139 #ifdef CONFIG_COMPAT_BRK 140 1; 141 #else 142 2; 143 #endif 144 145 #ifndef arch_wants_old_prefaulted_pte 146 static inline bool arch_wants_old_prefaulted_pte(void) 147 { 148 /* 149 * Transitioning a PTE from 'old' to 'young' can be expensive on 150 * some architectures, even if it's performed in hardware. By 151 * default, "false" means prefaulted entries will be 'young'. 152 */ 153 return false; 154 } 155 #endif 156 157 static int __init disable_randmaps(char *s) 158 { 159 randomize_va_space = 0; 160 return 1; 161 } 162 __setup("norandmaps", disable_randmaps); 163 164 unsigned long zero_pfn __read_mostly; 165 EXPORT_SYMBOL(zero_pfn); 166 167 unsigned long highest_memmap_pfn __read_mostly; 168 169 /* 170 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 171 */ 172 static int __init init_zero_pfn(void) 173 { 174 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 175 return 0; 176 } 177 early_initcall(init_zero_pfn); 178 179 void mm_trace_rss_stat(struct mm_struct *mm, int member) 180 { 181 trace_rss_stat(mm, member); 182 } 183 184 /* 185 * Note: this doesn't free the actual pages themselves. That 186 * has been handled earlier when unmapping all the memory regions. 187 */ 188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 189 unsigned long addr) 190 { 191 pgtable_t token = pmd_pgtable(*pmd); 192 pmd_clear(pmd); 193 pte_free_tlb(tlb, token, addr); 194 mm_dec_nr_ptes(tlb->mm); 195 } 196 197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 198 unsigned long addr, unsigned long end, 199 unsigned long floor, unsigned long ceiling) 200 { 201 pmd_t *pmd; 202 unsigned long next; 203 unsigned long start; 204 205 start = addr; 206 pmd = pmd_offset(pud, addr); 207 do { 208 next = pmd_addr_end(addr, end); 209 if (pmd_none_or_clear_bad(pmd)) 210 continue; 211 free_pte_range(tlb, pmd, addr); 212 } while (pmd++, addr = next, addr != end); 213 214 start &= PUD_MASK; 215 if (start < floor) 216 return; 217 if (ceiling) { 218 ceiling &= PUD_MASK; 219 if (!ceiling) 220 return; 221 } 222 if (end - 1 > ceiling - 1) 223 return; 224 225 pmd = pmd_offset(pud, start); 226 pud_clear(pud); 227 pmd_free_tlb(tlb, pmd, start); 228 mm_dec_nr_pmds(tlb->mm); 229 } 230 231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 232 unsigned long addr, unsigned long end, 233 unsigned long floor, unsigned long ceiling) 234 { 235 pud_t *pud; 236 unsigned long next; 237 unsigned long start; 238 239 start = addr; 240 pud = pud_offset(p4d, addr); 241 do { 242 next = pud_addr_end(addr, end); 243 if (pud_none_or_clear_bad(pud)) 244 continue; 245 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 246 } while (pud++, addr = next, addr != end); 247 248 start &= P4D_MASK; 249 if (start < floor) 250 return; 251 if (ceiling) { 252 ceiling &= P4D_MASK; 253 if (!ceiling) 254 return; 255 } 256 if (end - 1 > ceiling - 1) 257 return; 258 259 pud = pud_offset(p4d, start); 260 p4d_clear(p4d); 261 pud_free_tlb(tlb, pud, start); 262 mm_dec_nr_puds(tlb->mm); 263 } 264 265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 266 unsigned long addr, unsigned long end, 267 unsigned long floor, unsigned long ceiling) 268 { 269 p4d_t *p4d; 270 unsigned long next; 271 unsigned long start; 272 273 start = addr; 274 p4d = p4d_offset(pgd, addr); 275 do { 276 next = p4d_addr_end(addr, end); 277 if (p4d_none_or_clear_bad(p4d)) 278 continue; 279 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 280 } while (p4d++, addr = next, addr != end); 281 282 start &= PGDIR_MASK; 283 if (start < floor) 284 return; 285 if (ceiling) { 286 ceiling &= PGDIR_MASK; 287 if (!ceiling) 288 return; 289 } 290 if (end - 1 > ceiling - 1) 291 return; 292 293 p4d = p4d_offset(pgd, start); 294 pgd_clear(pgd); 295 p4d_free_tlb(tlb, p4d, start); 296 } 297 298 /* 299 * This function frees user-level page tables of a process. 300 */ 301 void free_pgd_range(struct mmu_gather *tlb, 302 unsigned long addr, unsigned long end, 303 unsigned long floor, unsigned long ceiling) 304 { 305 pgd_t *pgd; 306 unsigned long next; 307 308 /* 309 * The next few lines have given us lots of grief... 310 * 311 * Why are we testing PMD* at this top level? Because often 312 * there will be no work to do at all, and we'd prefer not to 313 * go all the way down to the bottom just to discover that. 314 * 315 * Why all these "- 1"s? Because 0 represents both the bottom 316 * of the address space and the top of it (using -1 for the 317 * top wouldn't help much: the masks would do the wrong thing). 318 * The rule is that addr 0 and floor 0 refer to the bottom of 319 * the address space, but end 0 and ceiling 0 refer to the top 320 * Comparisons need to use "end - 1" and "ceiling - 1" (though 321 * that end 0 case should be mythical). 322 * 323 * Wherever addr is brought up or ceiling brought down, we must 324 * be careful to reject "the opposite 0" before it confuses the 325 * subsequent tests. But what about where end is brought down 326 * by PMD_SIZE below? no, end can't go down to 0 there. 327 * 328 * Whereas we round start (addr) and ceiling down, by different 329 * masks at different levels, in order to test whether a table 330 * now has no other vmas using it, so can be freed, we don't 331 * bother to round floor or end up - the tests don't need that. 332 */ 333 334 addr &= PMD_MASK; 335 if (addr < floor) { 336 addr += PMD_SIZE; 337 if (!addr) 338 return; 339 } 340 if (ceiling) { 341 ceiling &= PMD_MASK; 342 if (!ceiling) 343 return; 344 } 345 if (end - 1 > ceiling - 1) 346 end -= PMD_SIZE; 347 if (addr > end - 1) 348 return; 349 /* 350 * We add page table cache pages with PAGE_SIZE, 351 * (see pte_free_tlb()), flush the tlb if we need 352 */ 353 tlb_change_page_size(tlb, PAGE_SIZE); 354 pgd = pgd_offset(tlb->mm, addr); 355 do { 356 next = pgd_addr_end(addr, end); 357 if (pgd_none_or_clear_bad(pgd)) 358 continue; 359 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 360 } while (pgd++, addr = next, addr != end); 361 } 362 363 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 364 struct vm_area_struct *vma, unsigned long floor, 365 unsigned long ceiling, bool mm_wr_locked) 366 { 367 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 368 369 do { 370 unsigned long addr = vma->vm_start; 371 struct vm_area_struct *next; 372 373 /* 374 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 375 * be 0. This will underflow and is okay. 376 */ 377 next = mas_find(&mas, ceiling - 1); 378 379 /* 380 * Hide vma from rmap and truncate_pagecache before freeing 381 * pgtables 382 */ 383 if (mm_wr_locked) 384 vma_start_write(vma); 385 unlink_anon_vmas(vma); 386 unlink_file_vma(vma); 387 388 if (is_vm_hugetlb_page(vma)) { 389 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 390 floor, next ? next->vm_start : ceiling); 391 } else { 392 /* 393 * Optimization: gather nearby vmas into one call down 394 */ 395 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 396 && !is_vm_hugetlb_page(next)) { 397 vma = next; 398 next = mas_find(&mas, ceiling - 1); 399 if (mm_wr_locked) 400 vma_start_write(vma); 401 unlink_anon_vmas(vma); 402 unlink_file_vma(vma); 403 } 404 free_pgd_range(tlb, addr, vma->vm_end, 405 floor, next ? next->vm_start : ceiling); 406 } 407 vma = next; 408 } while (vma); 409 } 410 411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 412 { 413 spinlock_t *ptl = pmd_lock(mm, pmd); 414 415 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 416 mm_inc_nr_ptes(mm); 417 /* 418 * Ensure all pte setup (eg. pte page lock and page clearing) are 419 * visible before the pte is made visible to other CPUs by being 420 * put into page tables. 421 * 422 * The other side of the story is the pointer chasing in the page 423 * table walking code (when walking the page table without locking; 424 * ie. most of the time). Fortunately, these data accesses consist 425 * of a chain of data-dependent loads, meaning most CPUs (alpha 426 * being the notable exception) will already guarantee loads are 427 * seen in-order. See the alpha page table accessors for the 428 * smp_rmb() barriers in page table walking code. 429 */ 430 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 431 pmd_populate(mm, pmd, *pte); 432 *pte = NULL; 433 } 434 spin_unlock(ptl); 435 } 436 437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 438 { 439 pgtable_t new = pte_alloc_one(mm); 440 if (!new) 441 return -ENOMEM; 442 443 pmd_install(mm, pmd, &new); 444 if (new) 445 pte_free(mm, new); 446 return 0; 447 } 448 449 int __pte_alloc_kernel(pmd_t *pmd) 450 { 451 pte_t *new = pte_alloc_one_kernel(&init_mm); 452 if (!new) 453 return -ENOMEM; 454 455 spin_lock(&init_mm.page_table_lock); 456 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 457 smp_wmb(); /* See comment in pmd_install() */ 458 pmd_populate_kernel(&init_mm, pmd, new); 459 new = NULL; 460 } 461 spin_unlock(&init_mm.page_table_lock); 462 if (new) 463 pte_free_kernel(&init_mm, new); 464 return 0; 465 } 466 467 static inline void init_rss_vec(int *rss) 468 { 469 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 470 } 471 472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 473 { 474 int i; 475 476 if (current->mm == mm) 477 sync_mm_rss(mm); 478 for (i = 0; i < NR_MM_COUNTERS; i++) 479 if (rss[i]) 480 add_mm_counter(mm, i, rss[i]); 481 } 482 483 /* 484 * This function is called to print an error when a bad pte 485 * is found. For example, we might have a PFN-mapped pte in 486 * a region that doesn't allow it. 487 * 488 * The calling function must still handle the error. 489 */ 490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 491 pte_t pte, struct page *page) 492 { 493 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 494 p4d_t *p4d = p4d_offset(pgd, addr); 495 pud_t *pud = pud_offset(p4d, addr); 496 pmd_t *pmd = pmd_offset(pud, addr); 497 struct address_space *mapping; 498 pgoff_t index; 499 static unsigned long resume; 500 static unsigned long nr_shown; 501 static unsigned long nr_unshown; 502 503 /* 504 * Allow a burst of 60 reports, then keep quiet for that minute; 505 * or allow a steady drip of one report per second. 506 */ 507 if (nr_shown == 60) { 508 if (time_before(jiffies, resume)) { 509 nr_unshown++; 510 return; 511 } 512 if (nr_unshown) { 513 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 514 nr_unshown); 515 nr_unshown = 0; 516 } 517 nr_shown = 0; 518 } 519 if (nr_shown++ == 0) 520 resume = jiffies + 60 * HZ; 521 522 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 523 index = linear_page_index(vma, addr); 524 525 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 526 current->comm, 527 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 528 if (page) 529 dump_page(page, "bad pte"); 530 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 531 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 532 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 533 vma->vm_file, 534 vma->vm_ops ? vma->vm_ops->fault : NULL, 535 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 536 mapping ? mapping->a_ops->read_folio : NULL); 537 dump_stack(); 538 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 539 } 540 541 /* 542 * vm_normal_page -- This function gets the "struct page" associated with a pte. 543 * 544 * "Special" mappings do not wish to be associated with a "struct page" (either 545 * it doesn't exist, or it exists but they don't want to touch it). In this 546 * case, NULL is returned here. "Normal" mappings do have a struct page. 547 * 548 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 549 * pte bit, in which case this function is trivial. Secondly, an architecture 550 * may not have a spare pte bit, which requires a more complicated scheme, 551 * described below. 552 * 553 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 554 * special mapping (even if there are underlying and valid "struct pages"). 555 * COWed pages of a VM_PFNMAP are always normal. 556 * 557 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 558 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 559 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 560 * mapping will always honor the rule 561 * 562 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 563 * 564 * And for normal mappings this is false. 565 * 566 * This restricts such mappings to be a linear translation from virtual address 567 * to pfn. To get around this restriction, we allow arbitrary mappings so long 568 * as the vma is not a COW mapping; in that case, we know that all ptes are 569 * special (because none can have been COWed). 570 * 571 * 572 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 573 * 574 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 575 * page" backing, however the difference is that _all_ pages with a struct 576 * page (that is, those where pfn_valid is true) are refcounted and considered 577 * normal pages by the VM. The disadvantage is that pages are refcounted 578 * (which can be slower and simply not an option for some PFNMAP users). The 579 * advantage is that we don't have to follow the strict linearity rule of 580 * PFNMAP mappings in order to support COWable mappings. 581 * 582 */ 583 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 584 pte_t pte) 585 { 586 unsigned long pfn = pte_pfn(pte); 587 588 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 589 if (likely(!pte_special(pte))) 590 goto check_pfn; 591 if (vma->vm_ops && vma->vm_ops->find_special_page) 592 return vma->vm_ops->find_special_page(vma, addr); 593 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 594 return NULL; 595 if (is_zero_pfn(pfn)) 596 return NULL; 597 if (pte_devmap(pte)) 598 /* 599 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 600 * and will have refcounts incremented on their struct pages 601 * when they are inserted into PTEs, thus they are safe to 602 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 603 * do not have refcounts. Example of legacy ZONE_DEVICE is 604 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 605 */ 606 return NULL; 607 608 print_bad_pte(vma, addr, pte, NULL); 609 return NULL; 610 } 611 612 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 613 614 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 615 if (vma->vm_flags & VM_MIXEDMAP) { 616 if (!pfn_valid(pfn)) 617 return NULL; 618 goto out; 619 } else { 620 unsigned long off; 621 off = (addr - vma->vm_start) >> PAGE_SHIFT; 622 if (pfn == vma->vm_pgoff + off) 623 return NULL; 624 if (!is_cow_mapping(vma->vm_flags)) 625 return NULL; 626 } 627 } 628 629 if (is_zero_pfn(pfn)) 630 return NULL; 631 632 check_pfn: 633 if (unlikely(pfn > highest_memmap_pfn)) { 634 print_bad_pte(vma, addr, pte, NULL); 635 return NULL; 636 } 637 638 /* 639 * NOTE! We still have PageReserved() pages in the page tables. 640 * eg. VDSO mappings can cause them to exist. 641 */ 642 out: 643 return pfn_to_page(pfn); 644 } 645 646 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 647 pte_t pte) 648 { 649 struct page *page = vm_normal_page(vma, addr, pte); 650 651 if (page) 652 return page_folio(page); 653 return NULL; 654 } 655 656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 657 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 658 pmd_t pmd) 659 { 660 unsigned long pfn = pmd_pfn(pmd); 661 662 /* 663 * There is no pmd_special() but there may be special pmds, e.g. 664 * in a direct-access (dax) mapping, so let's just replicate the 665 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 666 */ 667 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 668 if (vma->vm_flags & VM_MIXEDMAP) { 669 if (!pfn_valid(pfn)) 670 return NULL; 671 goto out; 672 } else { 673 unsigned long off; 674 off = (addr - vma->vm_start) >> PAGE_SHIFT; 675 if (pfn == vma->vm_pgoff + off) 676 return NULL; 677 if (!is_cow_mapping(vma->vm_flags)) 678 return NULL; 679 } 680 } 681 682 if (pmd_devmap(pmd)) 683 return NULL; 684 if (is_huge_zero_pmd(pmd)) 685 return NULL; 686 if (unlikely(pfn > highest_memmap_pfn)) 687 return NULL; 688 689 /* 690 * NOTE! We still have PageReserved() pages in the page tables. 691 * eg. VDSO mappings can cause them to exist. 692 */ 693 out: 694 return pfn_to_page(pfn); 695 } 696 #endif 697 698 static void restore_exclusive_pte(struct vm_area_struct *vma, 699 struct page *page, unsigned long address, 700 pte_t *ptep) 701 { 702 pte_t pte; 703 swp_entry_t entry; 704 705 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 706 if (pte_swp_soft_dirty(*ptep)) 707 pte = pte_mksoft_dirty(pte); 708 709 entry = pte_to_swp_entry(*ptep); 710 if (pte_swp_uffd_wp(*ptep)) 711 pte = pte_mkuffd_wp(pte); 712 else if (is_writable_device_exclusive_entry(entry)) 713 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 714 715 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 716 717 /* 718 * No need to take a page reference as one was already 719 * created when the swap entry was made. 720 */ 721 if (PageAnon(page)) 722 page_add_anon_rmap(page, vma, address, RMAP_NONE); 723 else 724 /* 725 * Currently device exclusive access only supports anonymous 726 * memory so the entry shouldn't point to a filebacked page. 727 */ 728 WARN_ON_ONCE(1); 729 730 set_pte_at(vma->vm_mm, address, ptep, pte); 731 732 /* 733 * No need to invalidate - it was non-present before. However 734 * secondary CPUs may have mappings that need invalidating. 735 */ 736 update_mmu_cache(vma, address, ptep); 737 } 738 739 /* 740 * Tries to restore an exclusive pte if the page lock can be acquired without 741 * sleeping. 742 */ 743 static int 744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 745 unsigned long addr) 746 { 747 swp_entry_t entry = pte_to_swp_entry(*src_pte); 748 struct page *page = pfn_swap_entry_to_page(entry); 749 750 if (trylock_page(page)) { 751 restore_exclusive_pte(vma, page, addr, src_pte); 752 unlock_page(page); 753 return 0; 754 } 755 756 return -EBUSY; 757 } 758 759 /* 760 * copy one vm_area from one task to the other. Assumes the page tables 761 * already present in the new task to be cleared in the whole range 762 * covered by this vma. 763 */ 764 765 static unsigned long 766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 767 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 768 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 769 { 770 unsigned long vm_flags = dst_vma->vm_flags; 771 pte_t pte = *src_pte; 772 struct page *page; 773 swp_entry_t entry = pte_to_swp_entry(pte); 774 775 if (likely(!non_swap_entry(entry))) { 776 if (swap_duplicate(entry) < 0) 777 return -EIO; 778 779 /* make sure dst_mm is on swapoff's mmlist. */ 780 if (unlikely(list_empty(&dst_mm->mmlist))) { 781 spin_lock(&mmlist_lock); 782 if (list_empty(&dst_mm->mmlist)) 783 list_add(&dst_mm->mmlist, 784 &src_mm->mmlist); 785 spin_unlock(&mmlist_lock); 786 } 787 /* Mark the swap entry as shared. */ 788 if (pte_swp_exclusive(*src_pte)) { 789 pte = pte_swp_clear_exclusive(*src_pte); 790 set_pte_at(src_mm, addr, src_pte, pte); 791 } 792 rss[MM_SWAPENTS]++; 793 } else if (is_migration_entry(entry)) { 794 page = pfn_swap_entry_to_page(entry); 795 796 rss[mm_counter(page)]++; 797 798 if (!is_readable_migration_entry(entry) && 799 is_cow_mapping(vm_flags)) { 800 /* 801 * COW mappings require pages in both parent and child 802 * to be set to read. A previously exclusive entry is 803 * now shared. 804 */ 805 entry = make_readable_migration_entry( 806 swp_offset(entry)); 807 pte = swp_entry_to_pte(entry); 808 if (pte_swp_soft_dirty(*src_pte)) 809 pte = pte_swp_mksoft_dirty(pte); 810 if (pte_swp_uffd_wp(*src_pte)) 811 pte = pte_swp_mkuffd_wp(pte); 812 set_pte_at(src_mm, addr, src_pte, pte); 813 } 814 } else if (is_device_private_entry(entry)) { 815 page = pfn_swap_entry_to_page(entry); 816 817 /* 818 * Update rss count even for unaddressable pages, as 819 * they should treated just like normal pages in this 820 * respect. 821 * 822 * We will likely want to have some new rss counters 823 * for unaddressable pages, at some point. But for now 824 * keep things as they are. 825 */ 826 get_page(page); 827 rss[mm_counter(page)]++; 828 /* Cannot fail as these pages cannot get pinned. */ 829 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 830 831 /* 832 * We do not preserve soft-dirty information, because so 833 * far, checkpoint/restore is the only feature that 834 * requires that. And checkpoint/restore does not work 835 * when a device driver is involved (you cannot easily 836 * save and restore device driver state). 837 */ 838 if (is_writable_device_private_entry(entry) && 839 is_cow_mapping(vm_flags)) { 840 entry = make_readable_device_private_entry( 841 swp_offset(entry)); 842 pte = swp_entry_to_pte(entry); 843 if (pte_swp_uffd_wp(*src_pte)) 844 pte = pte_swp_mkuffd_wp(pte); 845 set_pte_at(src_mm, addr, src_pte, pte); 846 } 847 } else if (is_device_exclusive_entry(entry)) { 848 /* 849 * Make device exclusive entries present by restoring the 850 * original entry then copying as for a present pte. Device 851 * exclusive entries currently only support private writable 852 * (ie. COW) mappings. 853 */ 854 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 855 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 856 return -EBUSY; 857 return -ENOENT; 858 } else if (is_pte_marker_entry(entry)) { 859 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma)) 860 set_pte_at(dst_mm, addr, dst_pte, pte); 861 return 0; 862 } 863 if (!userfaultfd_wp(dst_vma)) 864 pte = pte_swp_clear_uffd_wp(pte); 865 set_pte_at(dst_mm, addr, dst_pte, pte); 866 return 0; 867 } 868 869 /* 870 * Copy a present and normal page. 871 * 872 * NOTE! The usual case is that this isn't required; 873 * instead, the caller can just increase the page refcount 874 * and re-use the pte the traditional way. 875 * 876 * And if we need a pre-allocated page but don't yet have 877 * one, return a negative error to let the preallocation 878 * code know so that it can do so outside the page table 879 * lock. 880 */ 881 static inline int 882 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 883 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 884 struct folio **prealloc, struct page *page) 885 { 886 struct folio *new_folio; 887 pte_t pte; 888 889 new_folio = *prealloc; 890 if (!new_folio) 891 return -EAGAIN; 892 893 /* 894 * We have a prealloc page, all good! Take it 895 * over and copy the page & arm it. 896 */ 897 *prealloc = NULL; 898 copy_user_highpage(&new_folio->page, page, addr, src_vma); 899 __folio_mark_uptodate(new_folio); 900 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 901 folio_add_lru_vma(new_folio, dst_vma); 902 rss[MM_ANONPAGES]++; 903 904 /* All done, just insert the new page copy in the child */ 905 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 906 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 907 if (userfaultfd_pte_wp(dst_vma, *src_pte)) 908 /* Uffd-wp needs to be delivered to dest pte as well */ 909 pte = pte_mkuffd_wp(pte); 910 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 911 return 0; 912 } 913 914 /* 915 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 916 * is required to copy this pte. 917 */ 918 static inline int 919 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 920 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 921 struct folio **prealloc) 922 { 923 struct mm_struct *src_mm = src_vma->vm_mm; 924 unsigned long vm_flags = src_vma->vm_flags; 925 pte_t pte = *src_pte; 926 struct page *page; 927 struct folio *folio; 928 929 page = vm_normal_page(src_vma, addr, pte); 930 if (page) 931 folio = page_folio(page); 932 if (page && folio_test_anon(folio)) { 933 /* 934 * If this page may have been pinned by the parent process, 935 * copy the page immediately for the child so that we'll always 936 * guarantee the pinned page won't be randomly replaced in the 937 * future. 938 */ 939 folio_get(folio); 940 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 941 /* Page may be pinned, we have to copy. */ 942 folio_put(folio); 943 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 944 addr, rss, prealloc, page); 945 } 946 rss[MM_ANONPAGES]++; 947 } else if (page) { 948 folio_get(folio); 949 page_dup_file_rmap(page, false); 950 rss[mm_counter_file(page)]++; 951 } 952 953 /* 954 * If it's a COW mapping, write protect it both 955 * in the parent and the child 956 */ 957 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 958 ptep_set_wrprotect(src_mm, addr, src_pte); 959 pte = pte_wrprotect(pte); 960 } 961 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 962 963 /* 964 * If it's a shared mapping, mark it clean in 965 * the child 966 */ 967 if (vm_flags & VM_SHARED) 968 pte = pte_mkclean(pte); 969 pte = pte_mkold(pte); 970 971 if (!userfaultfd_wp(dst_vma)) 972 pte = pte_clear_uffd_wp(pte); 973 974 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 975 return 0; 976 } 977 978 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 979 struct vm_area_struct *vma, unsigned long addr) 980 { 981 struct folio *new_folio; 982 983 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 984 if (!new_folio) 985 return NULL; 986 987 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 988 folio_put(new_folio); 989 return NULL; 990 } 991 folio_throttle_swaprate(new_folio, GFP_KERNEL); 992 993 return new_folio; 994 } 995 996 static int 997 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 998 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 999 unsigned long end) 1000 { 1001 struct mm_struct *dst_mm = dst_vma->vm_mm; 1002 struct mm_struct *src_mm = src_vma->vm_mm; 1003 pte_t *orig_src_pte, *orig_dst_pte; 1004 pte_t *src_pte, *dst_pte; 1005 spinlock_t *src_ptl, *dst_ptl; 1006 int progress, ret = 0; 1007 int rss[NR_MM_COUNTERS]; 1008 swp_entry_t entry = (swp_entry_t){0}; 1009 struct folio *prealloc = NULL; 1010 1011 again: 1012 progress = 0; 1013 init_rss_vec(rss); 1014 1015 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1016 if (!dst_pte) { 1017 ret = -ENOMEM; 1018 goto out; 1019 } 1020 src_pte = pte_offset_map(src_pmd, addr); 1021 src_ptl = pte_lockptr(src_mm, src_pmd); 1022 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1023 orig_src_pte = src_pte; 1024 orig_dst_pte = dst_pte; 1025 arch_enter_lazy_mmu_mode(); 1026 1027 do { 1028 /* 1029 * We are holding two locks at this point - either of them 1030 * could generate latencies in another task on another CPU. 1031 */ 1032 if (progress >= 32) { 1033 progress = 0; 1034 if (need_resched() || 1035 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1036 break; 1037 } 1038 if (pte_none(*src_pte)) { 1039 progress++; 1040 continue; 1041 } 1042 if (unlikely(!pte_present(*src_pte))) { 1043 ret = copy_nonpresent_pte(dst_mm, src_mm, 1044 dst_pte, src_pte, 1045 dst_vma, src_vma, 1046 addr, rss); 1047 if (ret == -EIO) { 1048 entry = pte_to_swp_entry(*src_pte); 1049 break; 1050 } else if (ret == -EBUSY) { 1051 break; 1052 } else if (!ret) { 1053 progress += 8; 1054 continue; 1055 } 1056 1057 /* 1058 * Device exclusive entry restored, continue by copying 1059 * the now present pte. 1060 */ 1061 WARN_ON_ONCE(ret != -ENOENT); 1062 } 1063 /* copy_present_pte() will clear `*prealloc' if consumed */ 1064 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1065 addr, rss, &prealloc); 1066 /* 1067 * If we need a pre-allocated page for this pte, drop the 1068 * locks, allocate, and try again. 1069 */ 1070 if (unlikely(ret == -EAGAIN)) 1071 break; 1072 if (unlikely(prealloc)) { 1073 /* 1074 * pre-alloc page cannot be reused by next time so as 1075 * to strictly follow mempolicy (e.g., alloc_page_vma() 1076 * will allocate page according to address). This 1077 * could only happen if one pinned pte changed. 1078 */ 1079 folio_put(prealloc); 1080 prealloc = NULL; 1081 } 1082 progress += 8; 1083 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1084 1085 arch_leave_lazy_mmu_mode(); 1086 spin_unlock(src_ptl); 1087 pte_unmap(orig_src_pte); 1088 add_mm_rss_vec(dst_mm, rss); 1089 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1090 cond_resched(); 1091 1092 if (ret == -EIO) { 1093 VM_WARN_ON_ONCE(!entry.val); 1094 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1095 ret = -ENOMEM; 1096 goto out; 1097 } 1098 entry.val = 0; 1099 } else if (ret == -EBUSY) { 1100 goto out; 1101 } else if (ret == -EAGAIN) { 1102 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1103 if (!prealloc) 1104 return -ENOMEM; 1105 } else if (ret) { 1106 VM_WARN_ON_ONCE(1); 1107 } 1108 1109 /* We've captured and resolved the error. Reset, try again. */ 1110 ret = 0; 1111 1112 if (addr != end) 1113 goto again; 1114 out: 1115 if (unlikely(prealloc)) 1116 folio_put(prealloc); 1117 return ret; 1118 } 1119 1120 static inline int 1121 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1122 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1123 unsigned long end) 1124 { 1125 struct mm_struct *dst_mm = dst_vma->vm_mm; 1126 struct mm_struct *src_mm = src_vma->vm_mm; 1127 pmd_t *src_pmd, *dst_pmd; 1128 unsigned long next; 1129 1130 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1131 if (!dst_pmd) 1132 return -ENOMEM; 1133 src_pmd = pmd_offset(src_pud, addr); 1134 do { 1135 next = pmd_addr_end(addr, end); 1136 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1137 || pmd_devmap(*src_pmd)) { 1138 int err; 1139 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1140 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1141 addr, dst_vma, src_vma); 1142 if (err == -ENOMEM) 1143 return -ENOMEM; 1144 if (!err) 1145 continue; 1146 /* fall through */ 1147 } 1148 if (pmd_none_or_clear_bad(src_pmd)) 1149 continue; 1150 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1151 addr, next)) 1152 return -ENOMEM; 1153 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1154 return 0; 1155 } 1156 1157 static inline int 1158 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1159 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1160 unsigned long end) 1161 { 1162 struct mm_struct *dst_mm = dst_vma->vm_mm; 1163 struct mm_struct *src_mm = src_vma->vm_mm; 1164 pud_t *src_pud, *dst_pud; 1165 unsigned long next; 1166 1167 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1168 if (!dst_pud) 1169 return -ENOMEM; 1170 src_pud = pud_offset(src_p4d, addr); 1171 do { 1172 next = pud_addr_end(addr, end); 1173 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1174 int err; 1175 1176 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1177 err = copy_huge_pud(dst_mm, src_mm, 1178 dst_pud, src_pud, addr, src_vma); 1179 if (err == -ENOMEM) 1180 return -ENOMEM; 1181 if (!err) 1182 continue; 1183 /* fall through */ 1184 } 1185 if (pud_none_or_clear_bad(src_pud)) 1186 continue; 1187 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1188 addr, next)) 1189 return -ENOMEM; 1190 } while (dst_pud++, src_pud++, addr = next, addr != end); 1191 return 0; 1192 } 1193 1194 static inline int 1195 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1196 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1197 unsigned long end) 1198 { 1199 struct mm_struct *dst_mm = dst_vma->vm_mm; 1200 p4d_t *src_p4d, *dst_p4d; 1201 unsigned long next; 1202 1203 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1204 if (!dst_p4d) 1205 return -ENOMEM; 1206 src_p4d = p4d_offset(src_pgd, addr); 1207 do { 1208 next = p4d_addr_end(addr, end); 1209 if (p4d_none_or_clear_bad(src_p4d)) 1210 continue; 1211 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1212 addr, next)) 1213 return -ENOMEM; 1214 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1215 return 0; 1216 } 1217 1218 /* 1219 * Return true if the vma needs to copy the pgtable during this fork(). Return 1220 * false when we can speed up fork() by allowing lazy page faults later until 1221 * when the child accesses the memory range. 1222 */ 1223 static bool 1224 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1225 { 1226 /* 1227 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1228 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1229 * contains uffd-wp protection information, that's something we can't 1230 * retrieve from page cache, and skip copying will lose those info. 1231 */ 1232 if (userfaultfd_wp(dst_vma)) 1233 return true; 1234 1235 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1236 return true; 1237 1238 if (src_vma->anon_vma) 1239 return true; 1240 1241 /* 1242 * Don't copy ptes where a page fault will fill them correctly. Fork 1243 * becomes much lighter when there are big shared or private readonly 1244 * mappings. The tradeoff is that copy_page_range is more efficient 1245 * than faulting. 1246 */ 1247 return false; 1248 } 1249 1250 int 1251 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1252 { 1253 pgd_t *src_pgd, *dst_pgd; 1254 unsigned long next; 1255 unsigned long addr = src_vma->vm_start; 1256 unsigned long end = src_vma->vm_end; 1257 struct mm_struct *dst_mm = dst_vma->vm_mm; 1258 struct mm_struct *src_mm = src_vma->vm_mm; 1259 struct mmu_notifier_range range; 1260 bool is_cow; 1261 int ret; 1262 1263 if (!vma_needs_copy(dst_vma, src_vma)) 1264 return 0; 1265 1266 if (is_vm_hugetlb_page(src_vma)) 1267 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1268 1269 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1270 /* 1271 * We do not free on error cases below as remove_vma 1272 * gets called on error from higher level routine 1273 */ 1274 ret = track_pfn_copy(src_vma); 1275 if (ret) 1276 return ret; 1277 } 1278 1279 /* 1280 * We need to invalidate the secondary MMU mappings only when 1281 * there could be a permission downgrade on the ptes of the 1282 * parent mm. And a permission downgrade will only happen if 1283 * is_cow_mapping() returns true. 1284 */ 1285 is_cow = is_cow_mapping(src_vma->vm_flags); 1286 1287 if (is_cow) { 1288 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1289 0, src_mm, addr, end); 1290 mmu_notifier_invalidate_range_start(&range); 1291 /* 1292 * Disabling preemption is not needed for the write side, as 1293 * the read side doesn't spin, but goes to the mmap_lock. 1294 * 1295 * Use the raw variant of the seqcount_t write API to avoid 1296 * lockdep complaining about preemptibility. 1297 */ 1298 mmap_assert_write_locked(src_mm); 1299 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1300 } 1301 1302 ret = 0; 1303 dst_pgd = pgd_offset(dst_mm, addr); 1304 src_pgd = pgd_offset(src_mm, addr); 1305 do { 1306 next = pgd_addr_end(addr, end); 1307 if (pgd_none_or_clear_bad(src_pgd)) 1308 continue; 1309 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1310 addr, next))) { 1311 untrack_pfn_clear(dst_vma); 1312 ret = -ENOMEM; 1313 break; 1314 } 1315 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1316 1317 if (is_cow) { 1318 raw_write_seqcount_end(&src_mm->write_protect_seq); 1319 mmu_notifier_invalidate_range_end(&range); 1320 } 1321 return ret; 1322 } 1323 1324 /* Whether we should zap all COWed (private) pages too */ 1325 static inline bool should_zap_cows(struct zap_details *details) 1326 { 1327 /* By default, zap all pages */ 1328 if (!details) 1329 return true; 1330 1331 /* Or, we zap COWed pages only if the caller wants to */ 1332 return details->even_cows; 1333 } 1334 1335 /* Decides whether we should zap this page with the page pointer specified */ 1336 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1337 { 1338 /* If we can make a decision without *page.. */ 1339 if (should_zap_cows(details)) 1340 return true; 1341 1342 /* E.g. the caller passes NULL for the case of a zero page */ 1343 if (!page) 1344 return true; 1345 1346 /* Otherwise we should only zap non-anon pages */ 1347 return !PageAnon(page); 1348 } 1349 1350 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1351 { 1352 if (!details) 1353 return false; 1354 1355 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1356 } 1357 1358 /* 1359 * This function makes sure that we'll replace the none pte with an uffd-wp 1360 * swap special pte marker when necessary. Must be with the pgtable lock held. 1361 */ 1362 static inline void 1363 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1364 unsigned long addr, pte_t *pte, 1365 struct zap_details *details, pte_t pteval) 1366 { 1367 /* Zap on anonymous always means dropping everything */ 1368 if (vma_is_anonymous(vma)) 1369 return; 1370 1371 if (zap_drop_file_uffd_wp(details)) 1372 return; 1373 1374 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1375 } 1376 1377 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1378 struct vm_area_struct *vma, pmd_t *pmd, 1379 unsigned long addr, unsigned long end, 1380 struct zap_details *details) 1381 { 1382 struct mm_struct *mm = tlb->mm; 1383 int force_flush = 0; 1384 int rss[NR_MM_COUNTERS]; 1385 spinlock_t *ptl; 1386 pte_t *start_pte; 1387 pte_t *pte; 1388 swp_entry_t entry; 1389 1390 tlb_change_page_size(tlb, PAGE_SIZE); 1391 again: 1392 init_rss_vec(rss); 1393 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1394 pte = start_pte; 1395 flush_tlb_batched_pending(mm); 1396 arch_enter_lazy_mmu_mode(); 1397 do { 1398 pte_t ptent = *pte; 1399 struct page *page; 1400 1401 if (pte_none(ptent)) 1402 continue; 1403 1404 if (need_resched()) 1405 break; 1406 1407 if (pte_present(ptent)) { 1408 unsigned int delay_rmap; 1409 1410 page = vm_normal_page(vma, addr, ptent); 1411 if (unlikely(!should_zap_page(details, page))) 1412 continue; 1413 ptent = ptep_get_and_clear_full(mm, addr, pte, 1414 tlb->fullmm); 1415 tlb_remove_tlb_entry(tlb, pte, addr); 1416 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1417 ptent); 1418 if (unlikely(!page)) 1419 continue; 1420 1421 delay_rmap = 0; 1422 if (!PageAnon(page)) { 1423 if (pte_dirty(ptent)) { 1424 set_page_dirty(page); 1425 if (tlb_delay_rmap(tlb)) { 1426 delay_rmap = 1; 1427 force_flush = 1; 1428 } 1429 } 1430 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1431 mark_page_accessed(page); 1432 } 1433 rss[mm_counter(page)]--; 1434 if (!delay_rmap) { 1435 page_remove_rmap(page, vma, false); 1436 if (unlikely(page_mapcount(page) < 0)) 1437 print_bad_pte(vma, addr, ptent, page); 1438 } 1439 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1440 force_flush = 1; 1441 addr += PAGE_SIZE; 1442 break; 1443 } 1444 continue; 1445 } 1446 1447 entry = pte_to_swp_entry(ptent); 1448 if (is_device_private_entry(entry) || 1449 is_device_exclusive_entry(entry)) { 1450 page = pfn_swap_entry_to_page(entry); 1451 if (unlikely(!should_zap_page(details, page))) 1452 continue; 1453 /* 1454 * Both device private/exclusive mappings should only 1455 * work with anonymous page so far, so we don't need to 1456 * consider uffd-wp bit when zap. For more information, 1457 * see zap_install_uffd_wp_if_needed(). 1458 */ 1459 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1460 rss[mm_counter(page)]--; 1461 if (is_device_private_entry(entry)) 1462 page_remove_rmap(page, vma, false); 1463 put_page(page); 1464 } else if (!non_swap_entry(entry)) { 1465 /* Genuine swap entry, hence a private anon page */ 1466 if (!should_zap_cows(details)) 1467 continue; 1468 rss[MM_SWAPENTS]--; 1469 if (unlikely(!free_swap_and_cache(entry))) 1470 print_bad_pte(vma, addr, ptent, NULL); 1471 } else if (is_migration_entry(entry)) { 1472 page = pfn_swap_entry_to_page(entry); 1473 if (!should_zap_page(details, page)) 1474 continue; 1475 rss[mm_counter(page)]--; 1476 } else if (pte_marker_entry_uffd_wp(entry)) { 1477 /* 1478 * For anon: always drop the marker; for file: only 1479 * drop the marker if explicitly requested. 1480 */ 1481 if (!vma_is_anonymous(vma) && 1482 !zap_drop_file_uffd_wp(details)) 1483 continue; 1484 } else if (is_hwpoison_entry(entry) || 1485 is_swapin_error_entry(entry)) { 1486 if (!should_zap_cows(details)) 1487 continue; 1488 } else { 1489 /* We should have covered all the swap entry types */ 1490 WARN_ON_ONCE(1); 1491 } 1492 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1493 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1494 } while (pte++, addr += PAGE_SIZE, addr != end); 1495 1496 add_mm_rss_vec(mm, rss); 1497 arch_leave_lazy_mmu_mode(); 1498 1499 /* Do the actual TLB flush before dropping ptl */ 1500 if (force_flush) { 1501 tlb_flush_mmu_tlbonly(tlb); 1502 tlb_flush_rmaps(tlb, vma); 1503 } 1504 pte_unmap_unlock(start_pte, ptl); 1505 1506 /* 1507 * If we forced a TLB flush (either due to running out of 1508 * batch buffers or because we needed to flush dirty TLB 1509 * entries before releasing the ptl), free the batched 1510 * memory too. Restart if we didn't do everything. 1511 */ 1512 if (force_flush) { 1513 force_flush = 0; 1514 tlb_flush_mmu(tlb); 1515 } 1516 1517 if (addr != end) { 1518 cond_resched(); 1519 goto again; 1520 } 1521 1522 return addr; 1523 } 1524 1525 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1526 struct vm_area_struct *vma, pud_t *pud, 1527 unsigned long addr, unsigned long end, 1528 struct zap_details *details) 1529 { 1530 pmd_t *pmd; 1531 unsigned long next; 1532 1533 pmd = pmd_offset(pud, addr); 1534 do { 1535 next = pmd_addr_end(addr, end); 1536 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1537 if (next - addr != HPAGE_PMD_SIZE) 1538 __split_huge_pmd(vma, pmd, addr, false, NULL); 1539 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1540 goto next; 1541 /* fall through */ 1542 } else if (details && details->single_folio && 1543 folio_test_pmd_mappable(details->single_folio) && 1544 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1545 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1546 /* 1547 * Take and drop THP pmd lock so that we cannot return 1548 * prematurely, while zap_huge_pmd() has cleared *pmd, 1549 * but not yet decremented compound_mapcount(). 1550 */ 1551 spin_unlock(ptl); 1552 } 1553 1554 /* 1555 * Here there can be other concurrent MADV_DONTNEED or 1556 * trans huge page faults running, and if the pmd is 1557 * none or trans huge it can change under us. This is 1558 * because MADV_DONTNEED holds the mmap_lock in read 1559 * mode. 1560 */ 1561 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1562 goto next; 1563 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1564 next: 1565 cond_resched(); 1566 } while (pmd++, addr = next, addr != end); 1567 1568 return addr; 1569 } 1570 1571 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1572 struct vm_area_struct *vma, p4d_t *p4d, 1573 unsigned long addr, unsigned long end, 1574 struct zap_details *details) 1575 { 1576 pud_t *pud; 1577 unsigned long next; 1578 1579 pud = pud_offset(p4d, addr); 1580 do { 1581 next = pud_addr_end(addr, end); 1582 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1583 if (next - addr != HPAGE_PUD_SIZE) { 1584 mmap_assert_locked(tlb->mm); 1585 split_huge_pud(vma, pud, addr); 1586 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1587 goto next; 1588 /* fall through */ 1589 } 1590 if (pud_none_or_clear_bad(pud)) 1591 continue; 1592 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1593 next: 1594 cond_resched(); 1595 } while (pud++, addr = next, addr != end); 1596 1597 return addr; 1598 } 1599 1600 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1601 struct vm_area_struct *vma, pgd_t *pgd, 1602 unsigned long addr, unsigned long end, 1603 struct zap_details *details) 1604 { 1605 p4d_t *p4d; 1606 unsigned long next; 1607 1608 p4d = p4d_offset(pgd, addr); 1609 do { 1610 next = p4d_addr_end(addr, end); 1611 if (p4d_none_or_clear_bad(p4d)) 1612 continue; 1613 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1614 } while (p4d++, addr = next, addr != end); 1615 1616 return addr; 1617 } 1618 1619 void unmap_page_range(struct mmu_gather *tlb, 1620 struct vm_area_struct *vma, 1621 unsigned long addr, unsigned long end, 1622 struct zap_details *details) 1623 { 1624 pgd_t *pgd; 1625 unsigned long next; 1626 1627 BUG_ON(addr >= end); 1628 tlb_start_vma(tlb, vma); 1629 pgd = pgd_offset(vma->vm_mm, addr); 1630 do { 1631 next = pgd_addr_end(addr, end); 1632 if (pgd_none_or_clear_bad(pgd)) 1633 continue; 1634 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1635 } while (pgd++, addr = next, addr != end); 1636 tlb_end_vma(tlb, vma); 1637 } 1638 1639 1640 static void unmap_single_vma(struct mmu_gather *tlb, 1641 struct vm_area_struct *vma, unsigned long start_addr, 1642 unsigned long end_addr, 1643 struct zap_details *details, bool mm_wr_locked) 1644 { 1645 unsigned long start = max(vma->vm_start, start_addr); 1646 unsigned long end; 1647 1648 if (start >= vma->vm_end) 1649 return; 1650 end = min(vma->vm_end, end_addr); 1651 if (end <= vma->vm_start) 1652 return; 1653 1654 if (vma->vm_file) 1655 uprobe_munmap(vma, start, end); 1656 1657 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1658 untrack_pfn(vma, 0, 0, mm_wr_locked); 1659 1660 if (start != end) { 1661 if (unlikely(is_vm_hugetlb_page(vma))) { 1662 /* 1663 * It is undesirable to test vma->vm_file as it 1664 * should be non-null for valid hugetlb area. 1665 * However, vm_file will be NULL in the error 1666 * cleanup path of mmap_region. When 1667 * hugetlbfs ->mmap method fails, 1668 * mmap_region() nullifies vma->vm_file 1669 * before calling this function to clean up. 1670 * Since no pte has actually been setup, it is 1671 * safe to do nothing in this case. 1672 */ 1673 if (vma->vm_file) { 1674 zap_flags_t zap_flags = details ? 1675 details->zap_flags : 0; 1676 __unmap_hugepage_range_final(tlb, vma, start, end, 1677 NULL, zap_flags); 1678 } 1679 } else 1680 unmap_page_range(tlb, vma, start, end, details); 1681 } 1682 } 1683 1684 /** 1685 * unmap_vmas - unmap a range of memory covered by a list of vma's 1686 * @tlb: address of the caller's struct mmu_gather 1687 * @mt: the maple tree 1688 * @vma: the starting vma 1689 * @start_addr: virtual address at which to start unmapping 1690 * @end_addr: virtual address at which to end unmapping 1691 * 1692 * Unmap all pages in the vma list. 1693 * 1694 * Only addresses between `start' and `end' will be unmapped. 1695 * 1696 * The VMA list must be sorted in ascending virtual address order. 1697 * 1698 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1699 * range after unmap_vmas() returns. So the only responsibility here is to 1700 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1701 * drops the lock and schedules. 1702 */ 1703 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1704 struct vm_area_struct *vma, unsigned long start_addr, 1705 unsigned long end_addr, bool mm_wr_locked) 1706 { 1707 struct mmu_notifier_range range; 1708 struct zap_details details = { 1709 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1710 /* Careful - we need to zap private pages too! */ 1711 .even_cows = true, 1712 }; 1713 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1714 1715 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1716 start_addr, end_addr); 1717 mmu_notifier_invalidate_range_start(&range); 1718 do { 1719 unmap_single_vma(tlb, vma, start_addr, end_addr, &details, 1720 mm_wr_locked); 1721 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); 1722 mmu_notifier_invalidate_range_end(&range); 1723 } 1724 1725 /** 1726 * zap_page_range_single - remove user pages in a given range 1727 * @vma: vm_area_struct holding the applicable pages 1728 * @address: starting address of pages to zap 1729 * @size: number of bytes to zap 1730 * @details: details of shared cache invalidation 1731 * 1732 * The range must fit into one VMA. 1733 */ 1734 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1735 unsigned long size, struct zap_details *details) 1736 { 1737 const unsigned long end = address + size; 1738 struct mmu_notifier_range range; 1739 struct mmu_gather tlb; 1740 1741 lru_add_drain(); 1742 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1743 address, end); 1744 if (is_vm_hugetlb_page(vma)) 1745 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1746 &range.end); 1747 tlb_gather_mmu(&tlb, vma->vm_mm); 1748 update_hiwater_rss(vma->vm_mm); 1749 mmu_notifier_invalidate_range_start(&range); 1750 /* 1751 * unmap 'address-end' not 'range.start-range.end' as range 1752 * could have been expanded for hugetlb pmd sharing. 1753 */ 1754 unmap_single_vma(&tlb, vma, address, end, details, false); 1755 mmu_notifier_invalidate_range_end(&range); 1756 tlb_finish_mmu(&tlb); 1757 } 1758 1759 /** 1760 * zap_vma_ptes - remove ptes mapping the vma 1761 * @vma: vm_area_struct holding ptes to be zapped 1762 * @address: starting address of pages to zap 1763 * @size: number of bytes to zap 1764 * 1765 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1766 * 1767 * The entire address range must be fully contained within the vma. 1768 * 1769 */ 1770 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1771 unsigned long size) 1772 { 1773 if (!range_in_vma(vma, address, address + size) || 1774 !(vma->vm_flags & VM_PFNMAP)) 1775 return; 1776 1777 zap_page_range_single(vma, address, size, NULL); 1778 } 1779 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1780 1781 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1782 { 1783 pgd_t *pgd; 1784 p4d_t *p4d; 1785 pud_t *pud; 1786 pmd_t *pmd; 1787 1788 pgd = pgd_offset(mm, addr); 1789 p4d = p4d_alloc(mm, pgd, addr); 1790 if (!p4d) 1791 return NULL; 1792 pud = pud_alloc(mm, p4d, addr); 1793 if (!pud) 1794 return NULL; 1795 pmd = pmd_alloc(mm, pud, addr); 1796 if (!pmd) 1797 return NULL; 1798 1799 VM_BUG_ON(pmd_trans_huge(*pmd)); 1800 return pmd; 1801 } 1802 1803 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1804 spinlock_t **ptl) 1805 { 1806 pmd_t *pmd = walk_to_pmd(mm, addr); 1807 1808 if (!pmd) 1809 return NULL; 1810 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1811 } 1812 1813 static int validate_page_before_insert(struct page *page) 1814 { 1815 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1816 return -EINVAL; 1817 flush_dcache_page(page); 1818 return 0; 1819 } 1820 1821 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1822 unsigned long addr, struct page *page, pgprot_t prot) 1823 { 1824 if (!pte_none(*pte)) 1825 return -EBUSY; 1826 /* Ok, finally just insert the thing.. */ 1827 get_page(page); 1828 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1829 page_add_file_rmap(page, vma, false); 1830 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1831 return 0; 1832 } 1833 1834 /* 1835 * This is the old fallback for page remapping. 1836 * 1837 * For historical reasons, it only allows reserved pages. Only 1838 * old drivers should use this, and they needed to mark their 1839 * pages reserved for the old functions anyway. 1840 */ 1841 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1842 struct page *page, pgprot_t prot) 1843 { 1844 int retval; 1845 pte_t *pte; 1846 spinlock_t *ptl; 1847 1848 retval = validate_page_before_insert(page); 1849 if (retval) 1850 goto out; 1851 retval = -ENOMEM; 1852 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1853 if (!pte) 1854 goto out; 1855 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1856 pte_unmap_unlock(pte, ptl); 1857 out: 1858 return retval; 1859 } 1860 1861 #ifdef pte_index 1862 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1863 unsigned long addr, struct page *page, pgprot_t prot) 1864 { 1865 int err; 1866 1867 if (!page_count(page)) 1868 return -EINVAL; 1869 err = validate_page_before_insert(page); 1870 if (err) 1871 return err; 1872 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1873 } 1874 1875 /* insert_pages() amortizes the cost of spinlock operations 1876 * when inserting pages in a loop. Arch *must* define pte_index. 1877 */ 1878 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1879 struct page **pages, unsigned long *num, pgprot_t prot) 1880 { 1881 pmd_t *pmd = NULL; 1882 pte_t *start_pte, *pte; 1883 spinlock_t *pte_lock; 1884 struct mm_struct *const mm = vma->vm_mm; 1885 unsigned long curr_page_idx = 0; 1886 unsigned long remaining_pages_total = *num; 1887 unsigned long pages_to_write_in_pmd; 1888 int ret; 1889 more: 1890 ret = -EFAULT; 1891 pmd = walk_to_pmd(mm, addr); 1892 if (!pmd) 1893 goto out; 1894 1895 pages_to_write_in_pmd = min_t(unsigned long, 1896 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1897 1898 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1899 ret = -ENOMEM; 1900 if (pte_alloc(mm, pmd)) 1901 goto out; 1902 1903 while (pages_to_write_in_pmd) { 1904 int pte_idx = 0; 1905 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1906 1907 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1908 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1909 int err = insert_page_in_batch_locked(vma, pte, 1910 addr, pages[curr_page_idx], prot); 1911 if (unlikely(err)) { 1912 pte_unmap_unlock(start_pte, pte_lock); 1913 ret = err; 1914 remaining_pages_total -= pte_idx; 1915 goto out; 1916 } 1917 addr += PAGE_SIZE; 1918 ++curr_page_idx; 1919 } 1920 pte_unmap_unlock(start_pte, pte_lock); 1921 pages_to_write_in_pmd -= batch_size; 1922 remaining_pages_total -= batch_size; 1923 } 1924 if (remaining_pages_total) 1925 goto more; 1926 ret = 0; 1927 out: 1928 *num = remaining_pages_total; 1929 return ret; 1930 } 1931 #endif /* ifdef pte_index */ 1932 1933 /** 1934 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1935 * @vma: user vma to map to 1936 * @addr: target start user address of these pages 1937 * @pages: source kernel pages 1938 * @num: in: number of pages to map. out: number of pages that were *not* 1939 * mapped. (0 means all pages were successfully mapped). 1940 * 1941 * Preferred over vm_insert_page() when inserting multiple pages. 1942 * 1943 * In case of error, we may have mapped a subset of the provided 1944 * pages. It is the caller's responsibility to account for this case. 1945 * 1946 * The same restrictions apply as in vm_insert_page(). 1947 */ 1948 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1949 struct page **pages, unsigned long *num) 1950 { 1951 #ifdef pte_index 1952 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1953 1954 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1955 return -EFAULT; 1956 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1957 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1958 BUG_ON(vma->vm_flags & VM_PFNMAP); 1959 vm_flags_set(vma, VM_MIXEDMAP); 1960 } 1961 /* Defer page refcount checking till we're about to map that page. */ 1962 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1963 #else 1964 unsigned long idx = 0, pgcount = *num; 1965 int err = -EINVAL; 1966 1967 for (; idx < pgcount; ++idx) { 1968 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1969 if (err) 1970 break; 1971 } 1972 *num = pgcount - idx; 1973 return err; 1974 #endif /* ifdef pte_index */ 1975 } 1976 EXPORT_SYMBOL(vm_insert_pages); 1977 1978 /** 1979 * vm_insert_page - insert single page into user vma 1980 * @vma: user vma to map to 1981 * @addr: target user address of this page 1982 * @page: source kernel page 1983 * 1984 * This allows drivers to insert individual pages they've allocated 1985 * into a user vma. 1986 * 1987 * The page has to be a nice clean _individual_ kernel allocation. 1988 * If you allocate a compound page, you need to have marked it as 1989 * such (__GFP_COMP), or manually just split the page up yourself 1990 * (see split_page()). 1991 * 1992 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1993 * took an arbitrary page protection parameter. This doesn't allow 1994 * that. Your vma protection will have to be set up correctly, which 1995 * means that if you want a shared writable mapping, you'd better 1996 * ask for a shared writable mapping! 1997 * 1998 * The page does not need to be reserved. 1999 * 2000 * Usually this function is called from f_op->mmap() handler 2001 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 2002 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2003 * function from other places, for example from page-fault handler. 2004 * 2005 * Return: %0 on success, negative error code otherwise. 2006 */ 2007 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2008 struct page *page) 2009 { 2010 if (addr < vma->vm_start || addr >= vma->vm_end) 2011 return -EFAULT; 2012 if (!page_count(page)) 2013 return -EINVAL; 2014 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2015 BUG_ON(mmap_read_trylock(vma->vm_mm)); 2016 BUG_ON(vma->vm_flags & VM_PFNMAP); 2017 vm_flags_set(vma, VM_MIXEDMAP); 2018 } 2019 return insert_page(vma, addr, page, vma->vm_page_prot); 2020 } 2021 EXPORT_SYMBOL(vm_insert_page); 2022 2023 /* 2024 * __vm_map_pages - maps range of kernel pages into user vma 2025 * @vma: user vma to map to 2026 * @pages: pointer to array of source kernel pages 2027 * @num: number of pages in page array 2028 * @offset: user's requested vm_pgoff 2029 * 2030 * This allows drivers to map range of kernel pages into a user vma. 2031 * 2032 * Return: 0 on success and error code otherwise. 2033 */ 2034 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2035 unsigned long num, unsigned long offset) 2036 { 2037 unsigned long count = vma_pages(vma); 2038 unsigned long uaddr = vma->vm_start; 2039 int ret, i; 2040 2041 /* Fail if the user requested offset is beyond the end of the object */ 2042 if (offset >= num) 2043 return -ENXIO; 2044 2045 /* Fail if the user requested size exceeds available object size */ 2046 if (count > num - offset) 2047 return -ENXIO; 2048 2049 for (i = 0; i < count; i++) { 2050 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2051 if (ret < 0) 2052 return ret; 2053 uaddr += PAGE_SIZE; 2054 } 2055 2056 return 0; 2057 } 2058 2059 /** 2060 * vm_map_pages - maps range of kernel pages starts with non zero offset 2061 * @vma: user vma to map to 2062 * @pages: pointer to array of source kernel pages 2063 * @num: number of pages in page array 2064 * 2065 * Maps an object consisting of @num pages, catering for the user's 2066 * requested vm_pgoff 2067 * 2068 * If we fail to insert any page into the vma, the function will return 2069 * immediately leaving any previously inserted pages present. Callers 2070 * from the mmap handler may immediately return the error as their caller 2071 * will destroy the vma, removing any successfully inserted pages. Other 2072 * callers should make their own arrangements for calling unmap_region(). 2073 * 2074 * Context: Process context. Called by mmap handlers. 2075 * Return: 0 on success and error code otherwise. 2076 */ 2077 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2078 unsigned long num) 2079 { 2080 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2081 } 2082 EXPORT_SYMBOL(vm_map_pages); 2083 2084 /** 2085 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2086 * @vma: user vma to map to 2087 * @pages: pointer to array of source kernel pages 2088 * @num: number of pages in page array 2089 * 2090 * Similar to vm_map_pages(), except that it explicitly sets the offset 2091 * to 0. This function is intended for the drivers that did not consider 2092 * vm_pgoff. 2093 * 2094 * Context: Process context. Called by mmap handlers. 2095 * Return: 0 on success and error code otherwise. 2096 */ 2097 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2098 unsigned long num) 2099 { 2100 return __vm_map_pages(vma, pages, num, 0); 2101 } 2102 EXPORT_SYMBOL(vm_map_pages_zero); 2103 2104 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2105 pfn_t pfn, pgprot_t prot, bool mkwrite) 2106 { 2107 struct mm_struct *mm = vma->vm_mm; 2108 pte_t *pte, entry; 2109 spinlock_t *ptl; 2110 2111 pte = get_locked_pte(mm, addr, &ptl); 2112 if (!pte) 2113 return VM_FAULT_OOM; 2114 if (!pte_none(*pte)) { 2115 if (mkwrite) { 2116 /* 2117 * For read faults on private mappings the PFN passed 2118 * in may not match the PFN we have mapped if the 2119 * mapped PFN is a writeable COW page. In the mkwrite 2120 * case we are creating a writable PTE for a shared 2121 * mapping and we expect the PFNs to match. If they 2122 * don't match, we are likely racing with block 2123 * allocation and mapping invalidation so just skip the 2124 * update. 2125 */ 2126 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2127 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2128 goto out_unlock; 2129 } 2130 entry = pte_mkyoung(*pte); 2131 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2132 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2133 update_mmu_cache(vma, addr, pte); 2134 } 2135 goto out_unlock; 2136 } 2137 2138 /* Ok, finally just insert the thing.. */ 2139 if (pfn_t_devmap(pfn)) 2140 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2141 else 2142 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2143 2144 if (mkwrite) { 2145 entry = pte_mkyoung(entry); 2146 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2147 } 2148 2149 set_pte_at(mm, addr, pte, entry); 2150 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2151 2152 out_unlock: 2153 pte_unmap_unlock(pte, ptl); 2154 return VM_FAULT_NOPAGE; 2155 } 2156 2157 /** 2158 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2159 * @vma: user vma to map to 2160 * @addr: target user address of this page 2161 * @pfn: source kernel pfn 2162 * @pgprot: pgprot flags for the inserted page 2163 * 2164 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2165 * to override pgprot on a per-page basis. 2166 * 2167 * This only makes sense for IO mappings, and it makes no sense for 2168 * COW mappings. In general, using multiple vmas is preferable; 2169 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2170 * impractical. 2171 * 2172 * pgprot typically only differs from @vma->vm_page_prot when drivers set 2173 * caching- and encryption bits different than those of @vma->vm_page_prot, 2174 * because the caching- or encryption mode may not be known at mmap() time. 2175 * 2176 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2177 * to set caching and encryption bits for those vmas (except for COW pages). 2178 * This is ensured by core vm only modifying these page table entries using 2179 * functions that don't touch caching- or encryption bits, using pte_modify() 2180 * if needed. (See for example mprotect()). 2181 * 2182 * Also when new page-table entries are created, this is only done using the 2183 * fault() callback, and never using the value of vma->vm_page_prot, 2184 * except for page-table entries that point to anonymous pages as the result 2185 * of COW. 2186 * 2187 * Context: Process context. May allocate using %GFP_KERNEL. 2188 * Return: vm_fault_t value. 2189 */ 2190 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2191 unsigned long pfn, pgprot_t pgprot) 2192 { 2193 /* 2194 * Technically, architectures with pte_special can avoid all these 2195 * restrictions (same for remap_pfn_range). However we would like 2196 * consistency in testing and feature parity among all, so we should 2197 * try to keep these invariants in place for everybody. 2198 */ 2199 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2200 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2201 (VM_PFNMAP|VM_MIXEDMAP)); 2202 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2203 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2204 2205 if (addr < vma->vm_start || addr >= vma->vm_end) 2206 return VM_FAULT_SIGBUS; 2207 2208 if (!pfn_modify_allowed(pfn, pgprot)) 2209 return VM_FAULT_SIGBUS; 2210 2211 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2212 2213 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2214 false); 2215 } 2216 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2217 2218 /** 2219 * vmf_insert_pfn - insert single pfn into user vma 2220 * @vma: user vma to map to 2221 * @addr: target user address of this page 2222 * @pfn: source kernel pfn 2223 * 2224 * Similar to vm_insert_page, this allows drivers to insert individual pages 2225 * they've allocated into a user vma. Same comments apply. 2226 * 2227 * This function should only be called from a vm_ops->fault handler, and 2228 * in that case the handler should return the result of this function. 2229 * 2230 * vma cannot be a COW mapping. 2231 * 2232 * As this is called only for pages that do not currently exist, we 2233 * do not need to flush old virtual caches or the TLB. 2234 * 2235 * Context: Process context. May allocate using %GFP_KERNEL. 2236 * Return: vm_fault_t value. 2237 */ 2238 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2239 unsigned long pfn) 2240 { 2241 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2242 } 2243 EXPORT_SYMBOL(vmf_insert_pfn); 2244 2245 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2246 { 2247 /* these checks mirror the abort conditions in vm_normal_page */ 2248 if (vma->vm_flags & VM_MIXEDMAP) 2249 return true; 2250 if (pfn_t_devmap(pfn)) 2251 return true; 2252 if (pfn_t_special(pfn)) 2253 return true; 2254 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2255 return true; 2256 return false; 2257 } 2258 2259 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2260 unsigned long addr, pfn_t pfn, bool mkwrite) 2261 { 2262 pgprot_t pgprot = vma->vm_page_prot; 2263 int err; 2264 2265 BUG_ON(!vm_mixed_ok(vma, pfn)); 2266 2267 if (addr < vma->vm_start || addr >= vma->vm_end) 2268 return VM_FAULT_SIGBUS; 2269 2270 track_pfn_insert(vma, &pgprot, pfn); 2271 2272 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2273 return VM_FAULT_SIGBUS; 2274 2275 /* 2276 * If we don't have pte special, then we have to use the pfn_valid() 2277 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2278 * refcount the page if pfn_valid is true (hence insert_page rather 2279 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2280 * without pte special, it would there be refcounted as a normal page. 2281 */ 2282 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2283 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2284 struct page *page; 2285 2286 /* 2287 * At this point we are committed to insert_page() 2288 * regardless of whether the caller specified flags that 2289 * result in pfn_t_has_page() == false. 2290 */ 2291 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2292 err = insert_page(vma, addr, page, pgprot); 2293 } else { 2294 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2295 } 2296 2297 if (err == -ENOMEM) 2298 return VM_FAULT_OOM; 2299 if (err < 0 && err != -EBUSY) 2300 return VM_FAULT_SIGBUS; 2301 2302 return VM_FAULT_NOPAGE; 2303 } 2304 2305 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2306 pfn_t pfn) 2307 { 2308 return __vm_insert_mixed(vma, addr, pfn, false); 2309 } 2310 EXPORT_SYMBOL(vmf_insert_mixed); 2311 2312 /* 2313 * If the insertion of PTE failed because someone else already added a 2314 * different entry in the mean time, we treat that as success as we assume 2315 * the same entry was actually inserted. 2316 */ 2317 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2318 unsigned long addr, pfn_t pfn) 2319 { 2320 return __vm_insert_mixed(vma, addr, pfn, true); 2321 } 2322 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2323 2324 /* 2325 * maps a range of physical memory into the requested pages. the old 2326 * mappings are removed. any references to nonexistent pages results 2327 * in null mappings (currently treated as "copy-on-access") 2328 */ 2329 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2330 unsigned long addr, unsigned long end, 2331 unsigned long pfn, pgprot_t prot) 2332 { 2333 pte_t *pte, *mapped_pte; 2334 spinlock_t *ptl; 2335 int err = 0; 2336 2337 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2338 if (!pte) 2339 return -ENOMEM; 2340 arch_enter_lazy_mmu_mode(); 2341 do { 2342 BUG_ON(!pte_none(*pte)); 2343 if (!pfn_modify_allowed(pfn, prot)) { 2344 err = -EACCES; 2345 break; 2346 } 2347 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2348 pfn++; 2349 } while (pte++, addr += PAGE_SIZE, addr != end); 2350 arch_leave_lazy_mmu_mode(); 2351 pte_unmap_unlock(mapped_pte, ptl); 2352 return err; 2353 } 2354 2355 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2356 unsigned long addr, unsigned long end, 2357 unsigned long pfn, pgprot_t prot) 2358 { 2359 pmd_t *pmd; 2360 unsigned long next; 2361 int err; 2362 2363 pfn -= addr >> PAGE_SHIFT; 2364 pmd = pmd_alloc(mm, pud, addr); 2365 if (!pmd) 2366 return -ENOMEM; 2367 VM_BUG_ON(pmd_trans_huge(*pmd)); 2368 do { 2369 next = pmd_addr_end(addr, end); 2370 err = remap_pte_range(mm, pmd, addr, next, 2371 pfn + (addr >> PAGE_SHIFT), prot); 2372 if (err) 2373 return err; 2374 } while (pmd++, addr = next, addr != end); 2375 return 0; 2376 } 2377 2378 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2379 unsigned long addr, unsigned long end, 2380 unsigned long pfn, pgprot_t prot) 2381 { 2382 pud_t *pud; 2383 unsigned long next; 2384 int err; 2385 2386 pfn -= addr >> PAGE_SHIFT; 2387 pud = pud_alloc(mm, p4d, addr); 2388 if (!pud) 2389 return -ENOMEM; 2390 do { 2391 next = pud_addr_end(addr, end); 2392 err = remap_pmd_range(mm, pud, addr, next, 2393 pfn + (addr >> PAGE_SHIFT), prot); 2394 if (err) 2395 return err; 2396 } while (pud++, addr = next, addr != end); 2397 return 0; 2398 } 2399 2400 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2401 unsigned long addr, unsigned long end, 2402 unsigned long pfn, pgprot_t prot) 2403 { 2404 p4d_t *p4d; 2405 unsigned long next; 2406 int err; 2407 2408 pfn -= addr >> PAGE_SHIFT; 2409 p4d = p4d_alloc(mm, pgd, addr); 2410 if (!p4d) 2411 return -ENOMEM; 2412 do { 2413 next = p4d_addr_end(addr, end); 2414 err = remap_pud_range(mm, p4d, addr, next, 2415 pfn + (addr >> PAGE_SHIFT), prot); 2416 if (err) 2417 return err; 2418 } while (p4d++, addr = next, addr != end); 2419 return 0; 2420 } 2421 2422 /* 2423 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2424 * must have pre-validated the caching bits of the pgprot_t. 2425 */ 2426 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2427 unsigned long pfn, unsigned long size, pgprot_t prot) 2428 { 2429 pgd_t *pgd; 2430 unsigned long next; 2431 unsigned long end = addr + PAGE_ALIGN(size); 2432 struct mm_struct *mm = vma->vm_mm; 2433 int err; 2434 2435 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2436 return -EINVAL; 2437 2438 /* 2439 * Physically remapped pages are special. Tell the 2440 * rest of the world about it: 2441 * VM_IO tells people not to look at these pages 2442 * (accesses can have side effects). 2443 * VM_PFNMAP tells the core MM that the base pages are just 2444 * raw PFN mappings, and do not have a "struct page" associated 2445 * with them. 2446 * VM_DONTEXPAND 2447 * Disable vma merging and expanding with mremap(). 2448 * VM_DONTDUMP 2449 * Omit vma from core dump, even when VM_IO turned off. 2450 * 2451 * There's a horrible special case to handle copy-on-write 2452 * behaviour that some programs depend on. We mark the "original" 2453 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2454 * See vm_normal_page() for details. 2455 */ 2456 if (is_cow_mapping(vma->vm_flags)) { 2457 if (addr != vma->vm_start || end != vma->vm_end) 2458 return -EINVAL; 2459 vma->vm_pgoff = pfn; 2460 } 2461 2462 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2463 2464 BUG_ON(addr >= end); 2465 pfn -= addr >> PAGE_SHIFT; 2466 pgd = pgd_offset(mm, addr); 2467 flush_cache_range(vma, addr, end); 2468 do { 2469 next = pgd_addr_end(addr, end); 2470 err = remap_p4d_range(mm, pgd, addr, next, 2471 pfn + (addr >> PAGE_SHIFT), prot); 2472 if (err) 2473 return err; 2474 } while (pgd++, addr = next, addr != end); 2475 2476 return 0; 2477 } 2478 2479 /** 2480 * remap_pfn_range - remap kernel memory to userspace 2481 * @vma: user vma to map to 2482 * @addr: target page aligned user address to start at 2483 * @pfn: page frame number of kernel physical memory address 2484 * @size: size of mapping area 2485 * @prot: page protection flags for this mapping 2486 * 2487 * Note: this is only safe if the mm semaphore is held when called. 2488 * 2489 * Return: %0 on success, negative error code otherwise. 2490 */ 2491 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2492 unsigned long pfn, unsigned long size, pgprot_t prot) 2493 { 2494 int err; 2495 2496 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2497 if (err) 2498 return -EINVAL; 2499 2500 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2501 if (err) 2502 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2503 return err; 2504 } 2505 EXPORT_SYMBOL(remap_pfn_range); 2506 2507 /** 2508 * vm_iomap_memory - remap memory to userspace 2509 * @vma: user vma to map to 2510 * @start: start of the physical memory to be mapped 2511 * @len: size of area 2512 * 2513 * This is a simplified io_remap_pfn_range() for common driver use. The 2514 * driver just needs to give us the physical memory range to be mapped, 2515 * we'll figure out the rest from the vma information. 2516 * 2517 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2518 * whatever write-combining details or similar. 2519 * 2520 * Return: %0 on success, negative error code otherwise. 2521 */ 2522 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2523 { 2524 unsigned long vm_len, pfn, pages; 2525 2526 /* Check that the physical memory area passed in looks valid */ 2527 if (start + len < start) 2528 return -EINVAL; 2529 /* 2530 * You *really* shouldn't map things that aren't page-aligned, 2531 * but we've historically allowed it because IO memory might 2532 * just have smaller alignment. 2533 */ 2534 len += start & ~PAGE_MASK; 2535 pfn = start >> PAGE_SHIFT; 2536 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2537 if (pfn + pages < pfn) 2538 return -EINVAL; 2539 2540 /* We start the mapping 'vm_pgoff' pages into the area */ 2541 if (vma->vm_pgoff > pages) 2542 return -EINVAL; 2543 pfn += vma->vm_pgoff; 2544 pages -= vma->vm_pgoff; 2545 2546 /* Can we fit all of the mapping? */ 2547 vm_len = vma->vm_end - vma->vm_start; 2548 if (vm_len >> PAGE_SHIFT > pages) 2549 return -EINVAL; 2550 2551 /* Ok, let it rip */ 2552 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2553 } 2554 EXPORT_SYMBOL(vm_iomap_memory); 2555 2556 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2557 unsigned long addr, unsigned long end, 2558 pte_fn_t fn, void *data, bool create, 2559 pgtbl_mod_mask *mask) 2560 { 2561 pte_t *pte, *mapped_pte; 2562 int err = 0; 2563 spinlock_t *ptl; 2564 2565 if (create) { 2566 mapped_pte = pte = (mm == &init_mm) ? 2567 pte_alloc_kernel_track(pmd, addr, mask) : 2568 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2569 if (!pte) 2570 return -ENOMEM; 2571 } else { 2572 mapped_pte = pte = (mm == &init_mm) ? 2573 pte_offset_kernel(pmd, addr) : 2574 pte_offset_map_lock(mm, pmd, addr, &ptl); 2575 } 2576 2577 BUG_ON(pmd_huge(*pmd)); 2578 2579 arch_enter_lazy_mmu_mode(); 2580 2581 if (fn) { 2582 do { 2583 if (create || !pte_none(*pte)) { 2584 err = fn(pte++, addr, data); 2585 if (err) 2586 break; 2587 } 2588 } while (addr += PAGE_SIZE, addr != end); 2589 } 2590 *mask |= PGTBL_PTE_MODIFIED; 2591 2592 arch_leave_lazy_mmu_mode(); 2593 2594 if (mm != &init_mm) 2595 pte_unmap_unlock(mapped_pte, ptl); 2596 return err; 2597 } 2598 2599 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2600 unsigned long addr, unsigned long end, 2601 pte_fn_t fn, void *data, bool create, 2602 pgtbl_mod_mask *mask) 2603 { 2604 pmd_t *pmd; 2605 unsigned long next; 2606 int err = 0; 2607 2608 BUG_ON(pud_huge(*pud)); 2609 2610 if (create) { 2611 pmd = pmd_alloc_track(mm, pud, addr, mask); 2612 if (!pmd) 2613 return -ENOMEM; 2614 } else { 2615 pmd = pmd_offset(pud, addr); 2616 } 2617 do { 2618 next = pmd_addr_end(addr, end); 2619 if (pmd_none(*pmd) && !create) 2620 continue; 2621 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2622 return -EINVAL; 2623 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2624 if (!create) 2625 continue; 2626 pmd_clear_bad(pmd); 2627 } 2628 err = apply_to_pte_range(mm, pmd, addr, next, 2629 fn, data, create, mask); 2630 if (err) 2631 break; 2632 } while (pmd++, addr = next, addr != end); 2633 2634 return err; 2635 } 2636 2637 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2638 unsigned long addr, unsigned long end, 2639 pte_fn_t fn, void *data, bool create, 2640 pgtbl_mod_mask *mask) 2641 { 2642 pud_t *pud; 2643 unsigned long next; 2644 int err = 0; 2645 2646 if (create) { 2647 pud = pud_alloc_track(mm, p4d, addr, mask); 2648 if (!pud) 2649 return -ENOMEM; 2650 } else { 2651 pud = pud_offset(p4d, addr); 2652 } 2653 do { 2654 next = pud_addr_end(addr, end); 2655 if (pud_none(*pud) && !create) 2656 continue; 2657 if (WARN_ON_ONCE(pud_leaf(*pud))) 2658 return -EINVAL; 2659 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2660 if (!create) 2661 continue; 2662 pud_clear_bad(pud); 2663 } 2664 err = apply_to_pmd_range(mm, pud, addr, next, 2665 fn, data, create, mask); 2666 if (err) 2667 break; 2668 } while (pud++, addr = next, addr != end); 2669 2670 return err; 2671 } 2672 2673 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2674 unsigned long addr, unsigned long end, 2675 pte_fn_t fn, void *data, bool create, 2676 pgtbl_mod_mask *mask) 2677 { 2678 p4d_t *p4d; 2679 unsigned long next; 2680 int err = 0; 2681 2682 if (create) { 2683 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2684 if (!p4d) 2685 return -ENOMEM; 2686 } else { 2687 p4d = p4d_offset(pgd, addr); 2688 } 2689 do { 2690 next = p4d_addr_end(addr, end); 2691 if (p4d_none(*p4d) && !create) 2692 continue; 2693 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2694 return -EINVAL; 2695 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2696 if (!create) 2697 continue; 2698 p4d_clear_bad(p4d); 2699 } 2700 err = apply_to_pud_range(mm, p4d, addr, next, 2701 fn, data, create, mask); 2702 if (err) 2703 break; 2704 } while (p4d++, addr = next, addr != end); 2705 2706 return err; 2707 } 2708 2709 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2710 unsigned long size, pte_fn_t fn, 2711 void *data, bool create) 2712 { 2713 pgd_t *pgd; 2714 unsigned long start = addr, next; 2715 unsigned long end = addr + size; 2716 pgtbl_mod_mask mask = 0; 2717 int err = 0; 2718 2719 if (WARN_ON(addr >= end)) 2720 return -EINVAL; 2721 2722 pgd = pgd_offset(mm, addr); 2723 do { 2724 next = pgd_addr_end(addr, end); 2725 if (pgd_none(*pgd) && !create) 2726 continue; 2727 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2728 return -EINVAL; 2729 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2730 if (!create) 2731 continue; 2732 pgd_clear_bad(pgd); 2733 } 2734 err = apply_to_p4d_range(mm, pgd, addr, next, 2735 fn, data, create, &mask); 2736 if (err) 2737 break; 2738 } while (pgd++, addr = next, addr != end); 2739 2740 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2741 arch_sync_kernel_mappings(start, start + size); 2742 2743 return err; 2744 } 2745 2746 /* 2747 * Scan a region of virtual memory, filling in page tables as necessary 2748 * and calling a provided function on each leaf page table. 2749 */ 2750 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2751 unsigned long size, pte_fn_t fn, void *data) 2752 { 2753 return __apply_to_page_range(mm, addr, size, fn, data, true); 2754 } 2755 EXPORT_SYMBOL_GPL(apply_to_page_range); 2756 2757 /* 2758 * Scan a region of virtual memory, calling a provided function on 2759 * each leaf page table where it exists. 2760 * 2761 * Unlike apply_to_page_range, this does _not_ fill in page tables 2762 * where they are absent. 2763 */ 2764 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2765 unsigned long size, pte_fn_t fn, void *data) 2766 { 2767 return __apply_to_page_range(mm, addr, size, fn, data, false); 2768 } 2769 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2770 2771 /* 2772 * handle_pte_fault chooses page fault handler according to an entry which was 2773 * read non-atomically. Before making any commitment, on those architectures 2774 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2775 * parts, do_swap_page must check under lock before unmapping the pte and 2776 * proceeding (but do_wp_page is only called after already making such a check; 2777 * and do_anonymous_page can safely check later on). 2778 */ 2779 static inline int pte_unmap_same(struct vm_fault *vmf) 2780 { 2781 int same = 1; 2782 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2783 if (sizeof(pte_t) > sizeof(unsigned long)) { 2784 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 2785 spin_lock(ptl); 2786 same = pte_same(*vmf->pte, vmf->orig_pte); 2787 spin_unlock(ptl); 2788 } 2789 #endif 2790 pte_unmap(vmf->pte); 2791 vmf->pte = NULL; 2792 return same; 2793 } 2794 2795 /* 2796 * Return: 2797 * 0: copied succeeded 2798 * -EHWPOISON: copy failed due to hwpoison in source page 2799 * -EAGAIN: copied failed (some other reason) 2800 */ 2801 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2802 struct vm_fault *vmf) 2803 { 2804 int ret; 2805 void *kaddr; 2806 void __user *uaddr; 2807 bool locked = false; 2808 struct vm_area_struct *vma = vmf->vma; 2809 struct mm_struct *mm = vma->vm_mm; 2810 unsigned long addr = vmf->address; 2811 2812 if (likely(src)) { 2813 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2814 memory_failure_queue(page_to_pfn(src), 0); 2815 return -EHWPOISON; 2816 } 2817 return 0; 2818 } 2819 2820 /* 2821 * If the source page was a PFN mapping, we don't have 2822 * a "struct page" for it. We do a best-effort copy by 2823 * just copying from the original user address. If that 2824 * fails, we just zero-fill it. Live with it. 2825 */ 2826 kaddr = kmap_atomic(dst); 2827 uaddr = (void __user *)(addr & PAGE_MASK); 2828 2829 /* 2830 * On architectures with software "accessed" bits, we would 2831 * take a double page fault, so mark it accessed here. 2832 */ 2833 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2834 pte_t entry; 2835 2836 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2837 locked = true; 2838 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2839 /* 2840 * Other thread has already handled the fault 2841 * and update local tlb only 2842 */ 2843 update_mmu_tlb(vma, addr, vmf->pte); 2844 ret = -EAGAIN; 2845 goto pte_unlock; 2846 } 2847 2848 entry = pte_mkyoung(vmf->orig_pte); 2849 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2850 update_mmu_cache(vma, addr, vmf->pte); 2851 } 2852 2853 /* 2854 * This really shouldn't fail, because the page is there 2855 * in the page tables. But it might just be unreadable, 2856 * in which case we just give up and fill the result with 2857 * zeroes. 2858 */ 2859 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2860 if (locked) 2861 goto warn; 2862 2863 /* Re-validate under PTL if the page is still mapped */ 2864 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2865 locked = true; 2866 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2867 /* The PTE changed under us, update local tlb */ 2868 update_mmu_tlb(vma, addr, vmf->pte); 2869 ret = -EAGAIN; 2870 goto pte_unlock; 2871 } 2872 2873 /* 2874 * The same page can be mapped back since last copy attempt. 2875 * Try to copy again under PTL. 2876 */ 2877 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2878 /* 2879 * Give a warn in case there can be some obscure 2880 * use-case 2881 */ 2882 warn: 2883 WARN_ON_ONCE(1); 2884 clear_page(kaddr); 2885 } 2886 } 2887 2888 ret = 0; 2889 2890 pte_unlock: 2891 if (locked) 2892 pte_unmap_unlock(vmf->pte, vmf->ptl); 2893 kunmap_atomic(kaddr); 2894 flush_dcache_page(dst); 2895 2896 return ret; 2897 } 2898 2899 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2900 { 2901 struct file *vm_file = vma->vm_file; 2902 2903 if (vm_file) 2904 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2905 2906 /* 2907 * Special mappings (e.g. VDSO) do not have any file so fake 2908 * a default GFP_KERNEL for them. 2909 */ 2910 return GFP_KERNEL; 2911 } 2912 2913 /* 2914 * Notify the address space that the page is about to become writable so that 2915 * it can prohibit this or wait for the page to get into an appropriate state. 2916 * 2917 * We do this without the lock held, so that it can sleep if it needs to. 2918 */ 2919 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2920 { 2921 vm_fault_t ret; 2922 struct page *page = vmf->page; 2923 unsigned int old_flags = vmf->flags; 2924 2925 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2926 2927 if (vmf->vma->vm_file && 2928 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2929 return VM_FAULT_SIGBUS; 2930 2931 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2932 /* Restore original flags so that caller is not surprised */ 2933 vmf->flags = old_flags; 2934 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2935 return ret; 2936 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2937 lock_page(page); 2938 if (!page->mapping) { 2939 unlock_page(page); 2940 return 0; /* retry */ 2941 } 2942 ret |= VM_FAULT_LOCKED; 2943 } else 2944 VM_BUG_ON_PAGE(!PageLocked(page), page); 2945 return ret; 2946 } 2947 2948 /* 2949 * Handle dirtying of a page in shared file mapping on a write fault. 2950 * 2951 * The function expects the page to be locked and unlocks it. 2952 */ 2953 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2954 { 2955 struct vm_area_struct *vma = vmf->vma; 2956 struct address_space *mapping; 2957 struct page *page = vmf->page; 2958 bool dirtied; 2959 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2960 2961 dirtied = set_page_dirty(page); 2962 VM_BUG_ON_PAGE(PageAnon(page), page); 2963 /* 2964 * Take a local copy of the address_space - page.mapping may be zeroed 2965 * by truncate after unlock_page(). The address_space itself remains 2966 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2967 * release semantics to prevent the compiler from undoing this copying. 2968 */ 2969 mapping = page_rmapping(page); 2970 unlock_page(page); 2971 2972 if (!page_mkwrite) 2973 file_update_time(vma->vm_file); 2974 2975 /* 2976 * Throttle page dirtying rate down to writeback speed. 2977 * 2978 * mapping may be NULL here because some device drivers do not 2979 * set page.mapping but still dirty their pages 2980 * 2981 * Drop the mmap_lock before waiting on IO, if we can. The file 2982 * is pinning the mapping, as per above. 2983 */ 2984 if ((dirtied || page_mkwrite) && mapping) { 2985 struct file *fpin; 2986 2987 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2988 balance_dirty_pages_ratelimited(mapping); 2989 if (fpin) { 2990 fput(fpin); 2991 return VM_FAULT_COMPLETED; 2992 } 2993 } 2994 2995 return 0; 2996 } 2997 2998 /* 2999 * Handle write page faults for pages that can be reused in the current vma 3000 * 3001 * This can happen either due to the mapping being with the VM_SHARED flag, 3002 * or due to us being the last reference standing to the page. In either 3003 * case, all we need to do here is to mark the page as writable and update 3004 * any related book-keeping. 3005 */ 3006 static inline void wp_page_reuse(struct vm_fault *vmf) 3007 __releases(vmf->ptl) 3008 { 3009 struct vm_area_struct *vma = vmf->vma; 3010 struct page *page = vmf->page; 3011 pte_t entry; 3012 3013 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3014 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3015 3016 /* 3017 * Clear the pages cpupid information as the existing 3018 * information potentially belongs to a now completely 3019 * unrelated process. 3020 */ 3021 if (page) 3022 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3023 3024 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3025 entry = pte_mkyoung(vmf->orig_pte); 3026 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3027 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3028 update_mmu_cache(vma, vmf->address, vmf->pte); 3029 pte_unmap_unlock(vmf->pte, vmf->ptl); 3030 count_vm_event(PGREUSE); 3031 } 3032 3033 /* 3034 * Handle the case of a page which we actually need to copy to a new page, 3035 * either due to COW or unsharing. 3036 * 3037 * Called with mmap_lock locked and the old page referenced, but 3038 * without the ptl held. 3039 * 3040 * High level logic flow: 3041 * 3042 * - Allocate a page, copy the content of the old page to the new one. 3043 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3044 * - Take the PTL. If the pte changed, bail out and release the allocated page 3045 * - If the pte is still the way we remember it, update the page table and all 3046 * relevant references. This includes dropping the reference the page-table 3047 * held to the old page, as well as updating the rmap. 3048 * - In any case, unlock the PTL and drop the reference we took to the old page. 3049 */ 3050 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3051 { 3052 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3053 struct vm_area_struct *vma = vmf->vma; 3054 struct mm_struct *mm = vma->vm_mm; 3055 struct folio *old_folio = NULL; 3056 struct folio *new_folio = NULL; 3057 pte_t entry; 3058 int page_copied = 0; 3059 struct mmu_notifier_range range; 3060 int ret; 3061 3062 delayacct_wpcopy_start(); 3063 3064 if (vmf->page) 3065 old_folio = page_folio(vmf->page); 3066 if (unlikely(anon_vma_prepare(vma))) 3067 goto oom; 3068 3069 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3070 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3071 if (!new_folio) 3072 goto oom; 3073 } else { 3074 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3075 vmf->address, false); 3076 if (!new_folio) 3077 goto oom; 3078 3079 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3080 if (ret) { 3081 /* 3082 * COW failed, if the fault was solved by other, 3083 * it's fine. If not, userspace would re-fault on 3084 * the same address and we will handle the fault 3085 * from the second attempt. 3086 * The -EHWPOISON case will not be retried. 3087 */ 3088 folio_put(new_folio); 3089 if (old_folio) 3090 folio_put(old_folio); 3091 3092 delayacct_wpcopy_end(); 3093 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3094 } 3095 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3096 } 3097 3098 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3099 goto oom_free_new; 3100 folio_throttle_swaprate(new_folio, GFP_KERNEL); 3101 3102 __folio_mark_uptodate(new_folio); 3103 3104 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3105 vmf->address & PAGE_MASK, 3106 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3107 mmu_notifier_invalidate_range_start(&range); 3108 3109 /* 3110 * Re-check the pte - we dropped the lock 3111 */ 3112 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3113 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3114 if (old_folio) { 3115 if (!folio_test_anon(old_folio)) { 3116 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3117 inc_mm_counter(mm, MM_ANONPAGES); 3118 } 3119 } else { 3120 inc_mm_counter(mm, MM_ANONPAGES); 3121 } 3122 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3123 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3124 entry = pte_sw_mkyoung(entry); 3125 if (unlikely(unshare)) { 3126 if (pte_soft_dirty(vmf->orig_pte)) 3127 entry = pte_mksoft_dirty(entry); 3128 if (pte_uffd_wp(vmf->orig_pte)) 3129 entry = pte_mkuffd_wp(entry); 3130 } else { 3131 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3132 } 3133 3134 /* 3135 * Clear the pte entry and flush it first, before updating the 3136 * pte with the new entry, to keep TLBs on different CPUs in 3137 * sync. This code used to set the new PTE then flush TLBs, but 3138 * that left a window where the new PTE could be loaded into 3139 * some TLBs while the old PTE remains in others. 3140 */ 3141 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3142 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3143 folio_add_lru_vma(new_folio, vma); 3144 /* 3145 * We call the notify macro here because, when using secondary 3146 * mmu page tables (such as kvm shadow page tables), we want the 3147 * new page to be mapped directly into the secondary page table. 3148 */ 3149 BUG_ON(unshare && pte_write(entry)); 3150 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3151 update_mmu_cache(vma, vmf->address, vmf->pte); 3152 if (old_folio) { 3153 /* 3154 * Only after switching the pte to the new page may 3155 * we remove the mapcount here. Otherwise another 3156 * process may come and find the rmap count decremented 3157 * before the pte is switched to the new page, and 3158 * "reuse" the old page writing into it while our pte 3159 * here still points into it and can be read by other 3160 * threads. 3161 * 3162 * The critical issue is to order this 3163 * page_remove_rmap with the ptp_clear_flush above. 3164 * Those stores are ordered by (if nothing else,) 3165 * the barrier present in the atomic_add_negative 3166 * in page_remove_rmap. 3167 * 3168 * Then the TLB flush in ptep_clear_flush ensures that 3169 * no process can access the old page before the 3170 * decremented mapcount is visible. And the old page 3171 * cannot be reused until after the decremented 3172 * mapcount is visible. So transitively, TLBs to 3173 * old page will be flushed before it can be reused. 3174 */ 3175 page_remove_rmap(vmf->page, vma, false); 3176 } 3177 3178 /* Free the old page.. */ 3179 new_folio = old_folio; 3180 page_copied = 1; 3181 } else { 3182 update_mmu_tlb(vma, vmf->address, vmf->pte); 3183 } 3184 3185 if (new_folio) 3186 folio_put(new_folio); 3187 3188 pte_unmap_unlock(vmf->pte, vmf->ptl); 3189 /* 3190 * No need to double call mmu_notifier->invalidate_range() callback as 3191 * the above ptep_clear_flush_notify() did already call it. 3192 */ 3193 mmu_notifier_invalidate_range_only_end(&range); 3194 if (old_folio) { 3195 if (page_copied) 3196 free_swap_cache(&old_folio->page); 3197 folio_put(old_folio); 3198 } 3199 3200 delayacct_wpcopy_end(); 3201 return 0; 3202 oom_free_new: 3203 folio_put(new_folio); 3204 oom: 3205 if (old_folio) 3206 folio_put(old_folio); 3207 3208 delayacct_wpcopy_end(); 3209 return VM_FAULT_OOM; 3210 } 3211 3212 /** 3213 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3214 * writeable once the page is prepared 3215 * 3216 * @vmf: structure describing the fault 3217 * 3218 * This function handles all that is needed to finish a write page fault in a 3219 * shared mapping due to PTE being read-only once the mapped page is prepared. 3220 * It handles locking of PTE and modifying it. 3221 * 3222 * The function expects the page to be locked or other protection against 3223 * concurrent faults / writeback (such as DAX radix tree locks). 3224 * 3225 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3226 * we acquired PTE lock. 3227 */ 3228 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3229 { 3230 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3231 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3232 &vmf->ptl); 3233 /* 3234 * We might have raced with another page fault while we released the 3235 * pte_offset_map_lock. 3236 */ 3237 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3238 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3239 pte_unmap_unlock(vmf->pte, vmf->ptl); 3240 return VM_FAULT_NOPAGE; 3241 } 3242 wp_page_reuse(vmf); 3243 return 0; 3244 } 3245 3246 /* 3247 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3248 * mapping 3249 */ 3250 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3251 { 3252 struct vm_area_struct *vma = vmf->vma; 3253 3254 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3255 vm_fault_t ret; 3256 3257 pte_unmap_unlock(vmf->pte, vmf->ptl); 3258 vmf->flags |= FAULT_FLAG_MKWRITE; 3259 ret = vma->vm_ops->pfn_mkwrite(vmf); 3260 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3261 return ret; 3262 return finish_mkwrite_fault(vmf); 3263 } 3264 wp_page_reuse(vmf); 3265 return 0; 3266 } 3267 3268 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3269 __releases(vmf->ptl) 3270 { 3271 struct vm_area_struct *vma = vmf->vma; 3272 vm_fault_t ret = 0; 3273 3274 get_page(vmf->page); 3275 3276 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3277 vm_fault_t tmp; 3278 3279 pte_unmap_unlock(vmf->pte, vmf->ptl); 3280 tmp = do_page_mkwrite(vmf); 3281 if (unlikely(!tmp || (tmp & 3282 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3283 put_page(vmf->page); 3284 return tmp; 3285 } 3286 tmp = finish_mkwrite_fault(vmf); 3287 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3288 unlock_page(vmf->page); 3289 put_page(vmf->page); 3290 return tmp; 3291 } 3292 } else { 3293 wp_page_reuse(vmf); 3294 lock_page(vmf->page); 3295 } 3296 ret |= fault_dirty_shared_page(vmf); 3297 put_page(vmf->page); 3298 3299 return ret; 3300 } 3301 3302 /* 3303 * This routine handles present pages, when 3304 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3305 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3306 * (FAULT_FLAG_UNSHARE) 3307 * 3308 * It is done by copying the page to a new address and decrementing the 3309 * shared-page counter for the old page. 3310 * 3311 * Note that this routine assumes that the protection checks have been 3312 * done by the caller (the low-level page fault routine in most cases). 3313 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3314 * done any necessary COW. 3315 * 3316 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3317 * though the page will change only once the write actually happens. This 3318 * avoids a few races, and potentially makes it more efficient. 3319 * 3320 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3321 * but allow concurrent faults), with pte both mapped and locked. 3322 * We return with mmap_lock still held, but pte unmapped and unlocked. 3323 */ 3324 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3325 __releases(vmf->ptl) 3326 { 3327 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3328 struct vm_area_struct *vma = vmf->vma; 3329 struct folio *folio = NULL; 3330 3331 if (likely(!unshare)) { 3332 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3333 pte_unmap_unlock(vmf->pte, vmf->ptl); 3334 return handle_userfault(vmf, VM_UFFD_WP); 3335 } 3336 3337 /* 3338 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3339 * is flushed in this case before copying. 3340 */ 3341 if (unlikely(userfaultfd_wp(vmf->vma) && 3342 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3343 flush_tlb_page(vmf->vma, vmf->address); 3344 } 3345 3346 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3347 3348 /* 3349 * Shared mapping: we are guaranteed to have VM_WRITE and 3350 * FAULT_FLAG_WRITE set at this point. 3351 */ 3352 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3353 /* 3354 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3355 * VM_PFNMAP VMA. 3356 * 3357 * We should not cow pages in a shared writeable mapping. 3358 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3359 */ 3360 if (!vmf->page) 3361 return wp_pfn_shared(vmf); 3362 return wp_page_shared(vmf); 3363 } 3364 3365 if (vmf->page) 3366 folio = page_folio(vmf->page); 3367 3368 /* 3369 * Private mapping: create an exclusive anonymous page copy if reuse 3370 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3371 */ 3372 if (folio && folio_test_anon(folio)) { 3373 /* 3374 * If the page is exclusive to this process we must reuse the 3375 * page without further checks. 3376 */ 3377 if (PageAnonExclusive(vmf->page)) 3378 goto reuse; 3379 3380 /* 3381 * We have to verify under folio lock: these early checks are 3382 * just an optimization to avoid locking the folio and freeing 3383 * the swapcache if there is little hope that we can reuse. 3384 * 3385 * KSM doesn't necessarily raise the folio refcount. 3386 */ 3387 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3388 goto copy; 3389 if (!folio_test_lru(folio)) 3390 /* 3391 * Note: We cannot easily detect+handle references from 3392 * remote LRU pagevecs or references to LRU folios. 3393 */ 3394 lru_add_drain(); 3395 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3396 goto copy; 3397 if (!folio_trylock(folio)) 3398 goto copy; 3399 if (folio_test_swapcache(folio)) 3400 folio_free_swap(folio); 3401 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3402 folio_unlock(folio); 3403 goto copy; 3404 } 3405 /* 3406 * Ok, we've got the only folio reference from our mapping 3407 * and the folio is locked, it's dark out, and we're wearing 3408 * sunglasses. Hit it. 3409 */ 3410 page_move_anon_rmap(vmf->page, vma); 3411 folio_unlock(folio); 3412 reuse: 3413 if (unlikely(unshare)) { 3414 pte_unmap_unlock(vmf->pte, vmf->ptl); 3415 return 0; 3416 } 3417 wp_page_reuse(vmf); 3418 return 0; 3419 } 3420 copy: 3421 /* 3422 * Ok, we need to copy. Oh, well.. 3423 */ 3424 if (folio) 3425 folio_get(folio); 3426 3427 pte_unmap_unlock(vmf->pte, vmf->ptl); 3428 #ifdef CONFIG_KSM 3429 if (folio && folio_test_ksm(folio)) 3430 count_vm_event(COW_KSM); 3431 #endif 3432 return wp_page_copy(vmf); 3433 } 3434 3435 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3436 unsigned long start_addr, unsigned long end_addr, 3437 struct zap_details *details) 3438 { 3439 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3440 } 3441 3442 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3443 pgoff_t first_index, 3444 pgoff_t last_index, 3445 struct zap_details *details) 3446 { 3447 struct vm_area_struct *vma; 3448 pgoff_t vba, vea, zba, zea; 3449 3450 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3451 vba = vma->vm_pgoff; 3452 vea = vba + vma_pages(vma) - 1; 3453 zba = max(first_index, vba); 3454 zea = min(last_index, vea); 3455 3456 unmap_mapping_range_vma(vma, 3457 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3458 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3459 details); 3460 } 3461 } 3462 3463 /** 3464 * unmap_mapping_folio() - Unmap single folio from processes. 3465 * @folio: The locked folio to be unmapped. 3466 * 3467 * Unmap this folio from any userspace process which still has it mmaped. 3468 * Typically, for efficiency, the range of nearby pages has already been 3469 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3470 * truncation or invalidation holds the lock on a folio, it may find that 3471 * the page has been remapped again: and then uses unmap_mapping_folio() 3472 * to unmap it finally. 3473 */ 3474 void unmap_mapping_folio(struct folio *folio) 3475 { 3476 struct address_space *mapping = folio->mapping; 3477 struct zap_details details = { }; 3478 pgoff_t first_index; 3479 pgoff_t last_index; 3480 3481 VM_BUG_ON(!folio_test_locked(folio)); 3482 3483 first_index = folio->index; 3484 last_index = folio->index + folio_nr_pages(folio) - 1; 3485 3486 details.even_cows = false; 3487 details.single_folio = folio; 3488 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3489 3490 i_mmap_lock_read(mapping); 3491 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3492 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3493 last_index, &details); 3494 i_mmap_unlock_read(mapping); 3495 } 3496 3497 /** 3498 * unmap_mapping_pages() - Unmap pages from processes. 3499 * @mapping: The address space containing pages to be unmapped. 3500 * @start: Index of first page to be unmapped. 3501 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3502 * @even_cows: Whether to unmap even private COWed pages. 3503 * 3504 * Unmap the pages in this address space from any userspace process which 3505 * has them mmaped. Generally, you want to remove COWed pages as well when 3506 * a file is being truncated, but not when invalidating pages from the page 3507 * cache. 3508 */ 3509 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3510 pgoff_t nr, bool even_cows) 3511 { 3512 struct zap_details details = { }; 3513 pgoff_t first_index = start; 3514 pgoff_t last_index = start + nr - 1; 3515 3516 details.even_cows = even_cows; 3517 if (last_index < first_index) 3518 last_index = ULONG_MAX; 3519 3520 i_mmap_lock_read(mapping); 3521 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3522 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3523 last_index, &details); 3524 i_mmap_unlock_read(mapping); 3525 } 3526 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3527 3528 /** 3529 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3530 * address_space corresponding to the specified byte range in the underlying 3531 * file. 3532 * 3533 * @mapping: the address space containing mmaps to be unmapped. 3534 * @holebegin: byte in first page to unmap, relative to the start of 3535 * the underlying file. This will be rounded down to a PAGE_SIZE 3536 * boundary. Note that this is different from truncate_pagecache(), which 3537 * must keep the partial page. In contrast, we must get rid of 3538 * partial pages. 3539 * @holelen: size of prospective hole in bytes. This will be rounded 3540 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3541 * end of the file. 3542 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3543 * but 0 when invalidating pagecache, don't throw away private data. 3544 */ 3545 void unmap_mapping_range(struct address_space *mapping, 3546 loff_t const holebegin, loff_t const holelen, int even_cows) 3547 { 3548 pgoff_t hba = holebegin >> PAGE_SHIFT; 3549 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3550 3551 /* Check for overflow. */ 3552 if (sizeof(holelen) > sizeof(hlen)) { 3553 long long holeend = 3554 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3555 if (holeend & ~(long long)ULONG_MAX) 3556 hlen = ULONG_MAX - hba + 1; 3557 } 3558 3559 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3560 } 3561 EXPORT_SYMBOL(unmap_mapping_range); 3562 3563 /* 3564 * Restore a potential device exclusive pte to a working pte entry 3565 */ 3566 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3567 { 3568 struct folio *folio = page_folio(vmf->page); 3569 struct vm_area_struct *vma = vmf->vma; 3570 struct mmu_notifier_range range; 3571 3572 /* 3573 * We need a reference to lock the folio because we don't hold 3574 * the PTL so a racing thread can remove the device-exclusive 3575 * entry and unmap it. If the folio is free the entry must 3576 * have been removed already. If it happens to have already 3577 * been re-allocated after being freed all we do is lock and 3578 * unlock it. 3579 */ 3580 if (!folio_try_get(folio)) 3581 return 0; 3582 3583 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) { 3584 folio_put(folio); 3585 return VM_FAULT_RETRY; 3586 } 3587 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3588 vma->vm_mm, vmf->address & PAGE_MASK, 3589 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3590 mmu_notifier_invalidate_range_start(&range); 3591 3592 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3593 &vmf->ptl); 3594 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3595 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3596 3597 pte_unmap_unlock(vmf->pte, vmf->ptl); 3598 folio_unlock(folio); 3599 folio_put(folio); 3600 3601 mmu_notifier_invalidate_range_end(&range); 3602 return 0; 3603 } 3604 3605 static inline bool should_try_to_free_swap(struct folio *folio, 3606 struct vm_area_struct *vma, 3607 unsigned int fault_flags) 3608 { 3609 if (!folio_test_swapcache(folio)) 3610 return false; 3611 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3612 folio_test_mlocked(folio)) 3613 return true; 3614 /* 3615 * If we want to map a page that's in the swapcache writable, we 3616 * have to detect via the refcount if we're really the exclusive 3617 * user. Try freeing the swapcache to get rid of the swapcache 3618 * reference only in case it's likely that we'll be the exlusive user. 3619 */ 3620 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3621 folio_ref_count(folio) == 2; 3622 } 3623 3624 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3625 { 3626 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3627 vmf->address, &vmf->ptl); 3628 /* 3629 * Be careful so that we will only recover a special uffd-wp pte into a 3630 * none pte. Otherwise it means the pte could have changed, so retry. 3631 * 3632 * This should also cover the case where e.g. the pte changed 3633 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR. 3634 * So is_pte_marker() check is not enough to safely drop the pte. 3635 */ 3636 if (pte_same(vmf->orig_pte, *vmf->pte)) 3637 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3638 pte_unmap_unlock(vmf->pte, vmf->ptl); 3639 return 0; 3640 } 3641 3642 static vm_fault_t do_pte_missing(struct vm_fault *vmf) 3643 { 3644 if (vma_is_anonymous(vmf->vma)) 3645 return do_anonymous_page(vmf); 3646 else 3647 return do_fault(vmf); 3648 } 3649 3650 /* 3651 * This is actually a page-missing access, but with uffd-wp special pte 3652 * installed. It means this pte was wr-protected before being unmapped. 3653 */ 3654 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3655 { 3656 /* 3657 * Just in case there're leftover special ptes even after the region 3658 * got unregistered - we can simply clear them. 3659 */ 3660 if (unlikely(!userfaultfd_wp(vmf->vma))) 3661 return pte_marker_clear(vmf); 3662 3663 return do_pte_missing(vmf); 3664 } 3665 3666 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3667 { 3668 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3669 unsigned long marker = pte_marker_get(entry); 3670 3671 /* 3672 * PTE markers should never be empty. If anything weird happened, 3673 * the best thing to do is to kill the process along with its mm. 3674 */ 3675 if (WARN_ON_ONCE(!marker)) 3676 return VM_FAULT_SIGBUS; 3677 3678 /* Higher priority than uffd-wp when data corrupted */ 3679 if (marker & PTE_MARKER_SWAPIN_ERROR) 3680 return VM_FAULT_SIGBUS; 3681 3682 if (pte_marker_entry_uffd_wp(entry)) 3683 return pte_marker_handle_uffd_wp(vmf); 3684 3685 /* This is an unknown pte marker */ 3686 return VM_FAULT_SIGBUS; 3687 } 3688 3689 /* 3690 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3691 * but allow concurrent faults), and pte mapped but not yet locked. 3692 * We return with pte unmapped and unlocked. 3693 * 3694 * We return with the mmap_lock locked or unlocked in the same cases 3695 * as does filemap_fault(). 3696 */ 3697 vm_fault_t do_swap_page(struct vm_fault *vmf) 3698 { 3699 struct vm_area_struct *vma = vmf->vma; 3700 struct folio *swapcache, *folio = NULL; 3701 struct page *page; 3702 struct swap_info_struct *si = NULL; 3703 rmap_t rmap_flags = RMAP_NONE; 3704 bool exclusive = false; 3705 swp_entry_t entry; 3706 pte_t pte; 3707 int locked; 3708 vm_fault_t ret = 0; 3709 void *shadow = NULL; 3710 3711 if (!pte_unmap_same(vmf)) 3712 goto out; 3713 3714 if (vmf->flags & FAULT_FLAG_VMA_LOCK) { 3715 ret = VM_FAULT_RETRY; 3716 goto out; 3717 } 3718 3719 entry = pte_to_swp_entry(vmf->orig_pte); 3720 if (unlikely(non_swap_entry(entry))) { 3721 if (is_migration_entry(entry)) { 3722 migration_entry_wait(vma->vm_mm, vmf->pmd, 3723 vmf->address); 3724 } else if (is_device_exclusive_entry(entry)) { 3725 vmf->page = pfn_swap_entry_to_page(entry); 3726 ret = remove_device_exclusive_entry(vmf); 3727 } else if (is_device_private_entry(entry)) { 3728 vmf->page = pfn_swap_entry_to_page(entry); 3729 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3730 vmf->address, &vmf->ptl); 3731 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3732 spin_unlock(vmf->ptl); 3733 goto out; 3734 } 3735 3736 /* 3737 * Get a page reference while we know the page can't be 3738 * freed. 3739 */ 3740 get_page(vmf->page); 3741 pte_unmap_unlock(vmf->pte, vmf->ptl); 3742 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3743 put_page(vmf->page); 3744 } else if (is_hwpoison_entry(entry)) { 3745 ret = VM_FAULT_HWPOISON; 3746 } else if (is_pte_marker_entry(entry)) { 3747 ret = handle_pte_marker(vmf); 3748 } else { 3749 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3750 ret = VM_FAULT_SIGBUS; 3751 } 3752 goto out; 3753 } 3754 3755 /* Prevent swapoff from happening to us. */ 3756 si = get_swap_device(entry); 3757 if (unlikely(!si)) 3758 goto out; 3759 3760 folio = swap_cache_get_folio(entry, vma, vmf->address); 3761 if (folio) 3762 page = folio_file_page(folio, swp_offset(entry)); 3763 swapcache = folio; 3764 3765 if (!folio) { 3766 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3767 __swap_count(entry) == 1) { 3768 /* skip swapcache */ 3769 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3770 vma, vmf->address, false); 3771 page = &folio->page; 3772 if (folio) { 3773 __folio_set_locked(folio); 3774 __folio_set_swapbacked(folio); 3775 3776 if (mem_cgroup_swapin_charge_folio(folio, 3777 vma->vm_mm, GFP_KERNEL, 3778 entry)) { 3779 ret = VM_FAULT_OOM; 3780 goto out_page; 3781 } 3782 mem_cgroup_swapin_uncharge_swap(entry); 3783 3784 shadow = get_shadow_from_swap_cache(entry); 3785 if (shadow) 3786 workingset_refault(folio, shadow); 3787 3788 folio_add_lru(folio); 3789 3790 /* To provide entry to swap_readpage() */ 3791 folio_set_swap_entry(folio, entry); 3792 swap_readpage(page, true, NULL); 3793 folio->private = NULL; 3794 } 3795 } else { 3796 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3797 vmf); 3798 if (page) 3799 folio = page_folio(page); 3800 swapcache = folio; 3801 } 3802 3803 if (!folio) { 3804 /* 3805 * Back out if somebody else faulted in this pte 3806 * while we released the pte lock. 3807 */ 3808 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3809 vmf->address, &vmf->ptl); 3810 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3811 ret = VM_FAULT_OOM; 3812 goto unlock; 3813 } 3814 3815 /* Had to read the page from swap area: Major fault */ 3816 ret = VM_FAULT_MAJOR; 3817 count_vm_event(PGMAJFAULT); 3818 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3819 } else if (PageHWPoison(page)) { 3820 /* 3821 * hwpoisoned dirty swapcache pages are kept for killing 3822 * owner processes (which may be unknown at hwpoison time) 3823 */ 3824 ret = VM_FAULT_HWPOISON; 3825 goto out_release; 3826 } 3827 3828 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); 3829 3830 if (!locked) { 3831 ret |= VM_FAULT_RETRY; 3832 goto out_release; 3833 } 3834 3835 if (swapcache) { 3836 /* 3837 * Make sure folio_free_swap() or swapoff did not release the 3838 * swapcache from under us. The page pin, and pte_same test 3839 * below, are not enough to exclude that. Even if it is still 3840 * swapcache, we need to check that the page's swap has not 3841 * changed. 3842 */ 3843 if (unlikely(!folio_test_swapcache(folio) || 3844 page_private(page) != entry.val)) 3845 goto out_page; 3846 3847 /* 3848 * KSM sometimes has to copy on read faults, for example, if 3849 * page->index of !PageKSM() pages would be nonlinear inside the 3850 * anon VMA -- PageKSM() is lost on actual swapout. 3851 */ 3852 page = ksm_might_need_to_copy(page, vma, vmf->address); 3853 if (unlikely(!page)) { 3854 ret = VM_FAULT_OOM; 3855 goto out_page; 3856 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3857 ret = VM_FAULT_HWPOISON; 3858 goto out_page; 3859 } 3860 folio = page_folio(page); 3861 3862 /* 3863 * If we want to map a page that's in the swapcache writable, we 3864 * have to detect via the refcount if we're really the exclusive 3865 * owner. Try removing the extra reference from the local LRU 3866 * pagevecs if required. 3867 */ 3868 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3869 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3870 lru_add_drain(); 3871 } 3872 3873 folio_throttle_swaprate(folio, GFP_KERNEL); 3874 3875 /* 3876 * Back out if somebody else already faulted in this pte. 3877 */ 3878 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3879 &vmf->ptl); 3880 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3881 goto out_nomap; 3882 3883 if (unlikely(!folio_test_uptodate(folio))) { 3884 ret = VM_FAULT_SIGBUS; 3885 goto out_nomap; 3886 } 3887 3888 /* 3889 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3890 * must never point at an anonymous page in the swapcache that is 3891 * PG_anon_exclusive. Sanity check that this holds and especially, that 3892 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3893 * check after taking the PT lock and making sure that nobody 3894 * concurrently faulted in this page and set PG_anon_exclusive. 3895 */ 3896 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3897 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3898 3899 /* 3900 * Check under PT lock (to protect against concurrent fork() sharing 3901 * the swap entry concurrently) for certainly exclusive pages. 3902 */ 3903 if (!folio_test_ksm(folio)) { 3904 exclusive = pte_swp_exclusive(vmf->orig_pte); 3905 if (folio != swapcache) { 3906 /* 3907 * We have a fresh page that is not exposed to the 3908 * swapcache -> certainly exclusive. 3909 */ 3910 exclusive = true; 3911 } else if (exclusive && folio_test_writeback(folio) && 3912 data_race(si->flags & SWP_STABLE_WRITES)) { 3913 /* 3914 * This is tricky: not all swap backends support 3915 * concurrent page modifications while under writeback. 3916 * 3917 * So if we stumble over such a page in the swapcache 3918 * we must not set the page exclusive, otherwise we can 3919 * map it writable without further checks and modify it 3920 * while still under writeback. 3921 * 3922 * For these problematic swap backends, simply drop the 3923 * exclusive marker: this is perfectly fine as we start 3924 * writeback only if we fully unmapped the page and 3925 * there are no unexpected references on the page after 3926 * unmapping succeeded. After fully unmapped, no 3927 * further GUP references (FOLL_GET and FOLL_PIN) can 3928 * appear, so dropping the exclusive marker and mapping 3929 * it only R/O is fine. 3930 */ 3931 exclusive = false; 3932 } 3933 } 3934 3935 /* 3936 * Remove the swap entry and conditionally try to free up the swapcache. 3937 * We're already holding a reference on the page but haven't mapped it 3938 * yet. 3939 */ 3940 swap_free(entry); 3941 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3942 folio_free_swap(folio); 3943 3944 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3945 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3946 pte = mk_pte(page, vma->vm_page_prot); 3947 3948 /* 3949 * Same logic as in do_wp_page(); however, optimize for pages that are 3950 * certainly not shared either because we just allocated them without 3951 * exposing them to the swapcache or because the swap entry indicates 3952 * exclusivity. 3953 */ 3954 if (!folio_test_ksm(folio) && 3955 (exclusive || folio_ref_count(folio) == 1)) { 3956 if (vmf->flags & FAULT_FLAG_WRITE) { 3957 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3958 vmf->flags &= ~FAULT_FLAG_WRITE; 3959 } 3960 rmap_flags |= RMAP_EXCLUSIVE; 3961 } 3962 flush_icache_page(vma, page); 3963 if (pte_swp_soft_dirty(vmf->orig_pte)) 3964 pte = pte_mksoft_dirty(pte); 3965 if (pte_swp_uffd_wp(vmf->orig_pte)) 3966 pte = pte_mkuffd_wp(pte); 3967 vmf->orig_pte = pte; 3968 3969 /* ksm created a completely new copy */ 3970 if (unlikely(folio != swapcache && swapcache)) { 3971 page_add_new_anon_rmap(page, vma, vmf->address); 3972 folio_add_lru_vma(folio, vma); 3973 } else { 3974 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 3975 } 3976 3977 VM_BUG_ON(!folio_test_anon(folio) || 3978 (pte_write(pte) && !PageAnonExclusive(page))); 3979 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3980 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3981 3982 folio_unlock(folio); 3983 if (folio != swapcache && swapcache) { 3984 /* 3985 * Hold the lock to avoid the swap entry to be reused 3986 * until we take the PT lock for the pte_same() check 3987 * (to avoid false positives from pte_same). For 3988 * further safety release the lock after the swap_free 3989 * so that the swap count won't change under a 3990 * parallel locked swapcache. 3991 */ 3992 folio_unlock(swapcache); 3993 folio_put(swapcache); 3994 } 3995 3996 if (vmf->flags & FAULT_FLAG_WRITE) { 3997 ret |= do_wp_page(vmf); 3998 if (ret & VM_FAULT_ERROR) 3999 ret &= VM_FAULT_ERROR; 4000 goto out; 4001 } 4002 4003 /* No need to invalidate - it was non-present before */ 4004 update_mmu_cache(vma, vmf->address, vmf->pte); 4005 unlock: 4006 pte_unmap_unlock(vmf->pte, vmf->ptl); 4007 out: 4008 if (si) 4009 put_swap_device(si); 4010 return ret; 4011 out_nomap: 4012 pte_unmap_unlock(vmf->pte, vmf->ptl); 4013 out_page: 4014 folio_unlock(folio); 4015 out_release: 4016 folio_put(folio); 4017 if (folio != swapcache && swapcache) { 4018 folio_unlock(swapcache); 4019 folio_put(swapcache); 4020 } 4021 if (si) 4022 put_swap_device(si); 4023 return ret; 4024 } 4025 4026 /* 4027 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4028 * but allow concurrent faults), and pte mapped but not yet locked. 4029 * We return with mmap_lock still held, but pte unmapped and unlocked. 4030 */ 4031 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4032 { 4033 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4034 struct vm_area_struct *vma = vmf->vma; 4035 struct folio *folio; 4036 vm_fault_t ret = 0; 4037 pte_t entry; 4038 4039 /* File mapping without ->vm_ops ? */ 4040 if (vma->vm_flags & VM_SHARED) 4041 return VM_FAULT_SIGBUS; 4042 4043 /* 4044 * Use pte_alloc() instead of pte_alloc_map(). We can't run 4045 * pte_offset_map() on pmds where a huge pmd might be created 4046 * from a different thread. 4047 * 4048 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 4049 * parallel threads are excluded by other means. 4050 * 4051 * Here we only have mmap_read_lock(mm). 4052 */ 4053 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4054 return VM_FAULT_OOM; 4055 4056 /* See comment in handle_pte_fault() */ 4057 if (unlikely(pmd_trans_unstable(vmf->pmd))) 4058 return 0; 4059 4060 /* Use the zero-page for reads */ 4061 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4062 !mm_forbids_zeropage(vma->vm_mm)) { 4063 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4064 vma->vm_page_prot)); 4065 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4066 vmf->address, &vmf->ptl); 4067 if (vmf_pte_changed(vmf)) { 4068 update_mmu_tlb(vma, vmf->address, vmf->pte); 4069 goto unlock; 4070 } 4071 ret = check_stable_address_space(vma->vm_mm); 4072 if (ret) 4073 goto unlock; 4074 /* Deliver the page fault to userland, check inside PT lock */ 4075 if (userfaultfd_missing(vma)) { 4076 pte_unmap_unlock(vmf->pte, vmf->ptl); 4077 return handle_userfault(vmf, VM_UFFD_MISSING); 4078 } 4079 goto setpte; 4080 } 4081 4082 /* Allocate our own private page. */ 4083 if (unlikely(anon_vma_prepare(vma))) 4084 goto oom; 4085 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4086 if (!folio) 4087 goto oom; 4088 4089 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4090 goto oom_free_page; 4091 folio_throttle_swaprate(folio, GFP_KERNEL); 4092 4093 /* 4094 * The memory barrier inside __folio_mark_uptodate makes sure that 4095 * preceding stores to the page contents become visible before 4096 * the set_pte_at() write. 4097 */ 4098 __folio_mark_uptodate(folio); 4099 4100 entry = mk_pte(&folio->page, vma->vm_page_prot); 4101 entry = pte_sw_mkyoung(entry); 4102 if (vma->vm_flags & VM_WRITE) 4103 entry = pte_mkwrite(pte_mkdirty(entry)); 4104 4105 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4106 &vmf->ptl); 4107 if (vmf_pte_changed(vmf)) { 4108 update_mmu_tlb(vma, vmf->address, vmf->pte); 4109 goto release; 4110 } 4111 4112 ret = check_stable_address_space(vma->vm_mm); 4113 if (ret) 4114 goto release; 4115 4116 /* Deliver the page fault to userland, check inside PT lock */ 4117 if (userfaultfd_missing(vma)) { 4118 pte_unmap_unlock(vmf->pte, vmf->ptl); 4119 folio_put(folio); 4120 return handle_userfault(vmf, VM_UFFD_MISSING); 4121 } 4122 4123 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4124 folio_add_new_anon_rmap(folio, vma, vmf->address); 4125 folio_add_lru_vma(folio, vma); 4126 setpte: 4127 if (uffd_wp) 4128 entry = pte_mkuffd_wp(entry); 4129 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4130 4131 /* No need to invalidate - it was non-present before */ 4132 update_mmu_cache(vma, vmf->address, vmf->pte); 4133 unlock: 4134 pte_unmap_unlock(vmf->pte, vmf->ptl); 4135 return ret; 4136 release: 4137 folio_put(folio); 4138 goto unlock; 4139 oom_free_page: 4140 folio_put(folio); 4141 oom: 4142 return VM_FAULT_OOM; 4143 } 4144 4145 /* 4146 * The mmap_lock must have been held on entry, and may have been 4147 * released depending on flags and vma->vm_ops->fault() return value. 4148 * See filemap_fault() and __lock_page_retry(). 4149 */ 4150 static vm_fault_t __do_fault(struct vm_fault *vmf) 4151 { 4152 struct vm_area_struct *vma = vmf->vma; 4153 vm_fault_t ret; 4154 4155 /* 4156 * Preallocate pte before we take page_lock because this might lead to 4157 * deadlocks for memcg reclaim which waits for pages under writeback: 4158 * lock_page(A) 4159 * SetPageWriteback(A) 4160 * unlock_page(A) 4161 * lock_page(B) 4162 * lock_page(B) 4163 * pte_alloc_one 4164 * shrink_page_list 4165 * wait_on_page_writeback(A) 4166 * SetPageWriteback(B) 4167 * unlock_page(B) 4168 * # flush A, B to clear the writeback 4169 */ 4170 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4171 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4172 if (!vmf->prealloc_pte) 4173 return VM_FAULT_OOM; 4174 } 4175 4176 ret = vma->vm_ops->fault(vmf); 4177 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4178 VM_FAULT_DONE_COW))) 4179 return ret; 4180 4181 if (unlikely(PageHWPoison(vmf->page))) { 4182 struct page *page = vmf->page; 4183 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4184 if (ret & VM_FAULT_LOCKED) { 4185 if (page_mapped(page)) 4186 unmap_mapping_pages(page_mapping(page), 4187 page->index, 1, false); 4188 /* Retry if a clean page was removed from the cache. */ 4189 if (invalidate_inode_page(page)) 4190 poisonret = VM_FAULT_NOPAGE; 4191 unlock_page(page); 4192 } 4193 put_page(page); 4194 vmf->page = NULL; 4195 return poisonret; 4196 } 4197 4198 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4199 lock_page(vmf->page); 4200 else 4201 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4202 4203 return ret; 4204 } 4205 4206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4207 static void deposit_prealloc_pte(struct vm_fault *vmf) 4208 { 4209 struct vm_area_struct *vma = vmf->vma; 4210 4211 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4212 /* 4213 * We are going to consume the prealloc table, 4214 * count that as nr_ptes. 4215 */ 4216 mm_inc_nr_ptes(vma->vm_mm); 4217 vmf->prealloc_pte = NULL; 4218 } 4219 4220 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4221 { 4222 struct vm_area_struct *vma = vmf->vma; 4223 bool write = vmf->flags & FAULT_FLAG_WRITE; 4224 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4225 pmd_t entry; 4226 int i; 4227 vm_fault_t ret = VM_FAULT_FALLBACK; 4228 4229 if (!transhuge_vma_suitable(vma, haddr)) 4230 return ret; 4231 4232 page = compound_head(page); 4233 if (compound_order(page) != HPAGE_PMD_ORDER) 4234 return ret; 4235 4236 /* 4237 * Just backoff if any subpage of a THP is corrupted otherwise 4238 * the corrupted page may mapped by PMD silently to escape the 4239 * check. This kind of THP just can be PTE mapped. Access to 4240 * the corrupted subpage should trigger SIGBUS as expected. 4241 */ 4242 if (unlikely(PageHasHWPoisoned(page))) 4243 return ret; 4244 4245 /* 4246 * Archs like ppc64 need additional space to store information 4247 * related to pte entry. Use the preallocated table for that. 4248 */ 4249 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4250 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4251 if (!vmf->prealloc_pte) 4252 return VM_FAULT_OOM; 4253 } 4254 4255 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4256 if (unlikely(!pmd_none(*vmf->pmd))) 4257 goto out; 4258 4259 for (i = 0; i < HPAGE_PMD_NR; i++) 4260 flush_icache_page(vma, page + i); 4261 4262 entry = mk_huge_pmd(page, vma->vm_page_prot); 4263 if (write) 4264 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4265 4266 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4267 page_add_file_rmap(page, vma, true); 4268 4269 /* 4270 * deposit and withdraw with pmd lock held 4271 */ 4272 if (arch_needs_pgtable_deposit()) 4273 deposit_prealloc_pte(vmf); 4274 4275 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4276 4277 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4278 4279 /* fault is handled */ 4280 ret = 0; 4281 count_vm_event(THP_FILE_MAPPED); 4282 out: 4283 spin_unlock(vmf->ptl); 4284 return ret; 4285 } 4286 #else 4287 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4288 { 4289 return VM_FAULT_FALLBACK; 4290 } 4291 #endif 4292 4293 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4294 { 4295 struct vm_area_struct *vma = vmf->vma; 4296 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf); 4297 bool write = vmf->flags & FAULT_FLAG_WRITE; 4298 bool prefault = vmf->address != addr; 4299 pte_t entry; 4300 4301 flush_icache_page(vma, page); 4302 entry = mk_pte(page, vma->vm_page_prot); 4303 4304 if (prefault && arch_wants_old_prefaulted_pte()) 4305 entry = pte_mkold(entry); 4306 else 4307 entry = pte_sw_mkyoung(entry); 4308 4309 if (write) 4310 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4311 if (unlikely(uffd_wp)) 4312 entry = pte_mkuffd_wp(entry); 4313 /* copy-on-write page */ 4314 if (write && !(vma->vm_flags & VM_SHARED)) { 4315 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4316 page_add_new_anon_rmap(page, vma, addr); 4317 lru_cache_add_inactive_or_unevictable(page, vma); 4318 } else { 4319 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 4320 page_add_file_rmap(page, vma, false); 4321 } 4322 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4323 } 4324 4325 static bool vmf_pte_changed(struct vm_fault *vmf) 4326 { 4327 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4328 return !pte_same(*vmf->pte, vmf->orig_pte); 4329 4330 return !pte_none(*vmf->pte); 4331 } 4332 4333 /** 4334 * finish_fault - finish page fault once we have prepared the page to fault 4335 * 4336 * @vmf: structure describing the fault 4337 * 4338 * This function handles all that is needed to finish a page fault once the 4339 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4340 * given page, adds reverse page mapping, handles memcg charges and LRU 4341 * addition. 4342 * 4343 * The function expects the page to be locked and on success it consumes a 4344 * reference of a page being mapped (for the PTE which maps it). 4345 * 4346 * Return: %0 on success, %VM_FAULT_ code in case of error. 4347 */ 4348 vm_fault_t finish_fault(struct vm_fault *vmf) 4349 { 4350 struct vm_area_struct *vma = vmf->vma; 4351 struct page *page; 4352 vm_fault_t ret; 4353 4354 /* Did we COW the page? */ 4355 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4356 page = vmf->cow_page; 4357 else 4358 page = vmf->page; 4359 4360 /* 4361 * check even for read faults because we might have lost our CoWed 4362 * page 4363 */ 4364 if (!(vma->vm_flags & VM_SHARED)) { 4365 ret = check_stable_address_space(vma->vm_mm); 4366 if (ret) 4367 return ret; 4368 } 4369 4370 if (pmd_none(*vmf->pmd)) { 4371 if (PageTransCompound(page)) { 4372 ret = do_set_pmd(vmf, page); 4373 if (ret != VM_FAULT_FALLBACK) 4374 return ret; 4375 } 4376 4377 if (vmf->prealloc_pte) 4378 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4379 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4380 return VM_FAULT_OOM; 4381 } 4382 4383 /* 4384 * See comment in handle_pte_fault() for how this scenario happens, we 4385 * need to return NOPAGE so that we drop this page. 4386 */ 4387 if (pmd_devmap_trans_unstable(vmf->pmd)) 4388 return VM_FAULT_NOPAGE; 4389 4390 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4391 vmf->address, &vmf->ptl); 4392 4393 /* Re-check under ptl */ 4394 if (likely(!vmf_pte_changed(vmf))) { 4395 do_set_pte(vmf, page, vmf->address); 4396 4397 /* no need to invalidate: a not-present page won't be cached */ 4398 update_mmu_cache(vma, vmf->address, vmf->pte); 4399 4400 ret = 0; 4401 } else { 4402 update_mmu_tlb(vma, vmf->address, vmf->pte); 4403 ret = VM_FAULT_NOPAGE; 4404 } 4405 4406 pte_unmap_unlock(vmf->pte, vmf->ptl); 4407 return ret; 4408 } 4409 4410 static unsigned long fault_around_pages __read_mostly = 4411 65536 >> PAGE_SHIFT; 4412 4413 #ifdef CONFIG_DEBUG_FS 4414 static int fault_around_bytes_get(void *data, u64 *val) 4415 { 4416 *val = fault_around_pages << PAGE_SHIFT; 4417 return 0; 4418 } 4419 4420 /* 4421 * fault_around_bytes must be rounded down to the nearest page order as it's 4422 * what do_fault_around() expects to see. 4423 */ 4424 static int fault_around_bytes_set(void *data, u64 val) 4425 { 4426 if (val / PAGE_SIZE > PTRS_PER_PTE) 4427 return -EINVAL; 4428 4429 /* 4430 * The minimum value is 1 page, however this results in no fault-around 4431 * at all. See should_fault_around(). 4432 */ 4433 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL); 4434 4435 return 0; 4436 } 4437 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4438 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4439 4440 static int __init fault_around_debugfs(void) 4441 { 4442 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4443 &fault_around_bytes_fops); 4444 return 0; 4445 } 4446 late_initcall(fault_around_debugfs); 4447 #endif 4448 4449 /* 4450 * do_fault_around() tries to map few pages around the fault address. The hope 4451 * is that the pages will be needed soon and this will lower the number of 4452 * faults to handle. 4453 * 4454 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4455 * not ready to be mapped: not up-to-date, locked, etc. 4456 * 4457 * This function doesn't cross VMA or page table boundaries, in order to call 4458 * map_pages() and acquire a PTE lock only once. 4459 * 4460 * fault_around_pages defines how many pages we'll try to map. 4461 * do_fault_around() expects it to be set to a power of two less than or equal 4462 * to PTRS_PER_PTE. 4463 * 4464 * The virtual address of the area that we map is naturally aligned to 4465 * fault_around_pages * PAGE_SIZE rounded down to the machine page size 4466 * (and therefore to page order). This way it's easier to guarantee 4467 * that we don't cross page table boundaries. 4468 */ 4469 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4470 { 4471 pgoff_t nr_pages = READ_ONCE(fault_around_pages); 4472 pgoff_t pte_off = pte_index(vmf->address); 4473 /* The page offset of vmf->address within the VMA. */ 4474 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff; 4475 pgoff_t from_pte, to_pte; 4476 vm_fault_t ret; 4477 4478 /* The PTE offset of the start address, clamped to the VMA. */ 4479 from_pte = max(ALIGN_DOWN(pte_off, nr_pages), 4480 pte_off - min(pte_off, vma_off)); 4481 4482 /* The PTE offset of the end address, clamped to the VMA and PTE. */ 4483 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE, 4484 pte_off + vma_pages(vmf->vma) - vma_off) - 1; 4485 4486 if (pmd_none(*vmf->pmd)) { 4487 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4488 if (!vmf->prealloc_pte) 4489 return VM_FAULT_OOM; 4490 } 4491 4492 rcu_read_lock(); 4493 ret = vmf->vma->vm_ops->map_pages(vmf, 4494 vmf->pgoff + from_pte - pte_off, 4495 vmf->pgoff + to_pte - pte_off); 4496 rcu_read_unlock(); 4497 4498 return ret; 4499 } 4500 4501 /* Return true if we should do read fault-around, false otherwise */ 4502 static inline bool should_fault_around(struct vm_fault *vmf) 4503 { 4504 /* No ->map_pages? No way to fault around... */ 4505 if (!vmf->vma->vm_ops->map_pages) 4506 return false; 4507 4508 if (uffd_disable_fault_around(vmf->vma)) 4509 return false; 4510 4511 /* A single page implies no faulting 'around' at all. */ 4512 return fault_around_pages > 1; 4513 } 4514 4515 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4516 { 4517 vm_fault_t ret = 0; 4518 4519 /* 4520 * Let's call ->map_pages() first and use ->fault() as fallback 4521 * if page by the offset is not ready to be mapped (cold cache or 4522 * something). 4523 */ 4524 if (should_fault_around(vmf)) { 4525 ret = do_fault_around(vmf); 4526 if (ret) 4527 return ret; 4528 } 4529 4530 ret = __do_fault(vmf); 4531 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4532 return ret; 4533 4534 ret |= finish_fault(vmf); 4535 unlock_page(vmf->page); 4536 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4537 put_page(vmf->page); 4538 return ret; 4539 } 4540 4541 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4542 { 4543 struct vm_area_struct *vma = vmf->vma; 4544 vm_fault_t ret; 4545 4546 if (unlikely(anon_vma_prepare(vma))) 4547 return VM_FAULT_OOM; 4548 4549 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4550 if (!vmf->cow_page) 4551 return VM_FAULT_OOM; 4552 4553 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4554 GFP_KERNEL)) { 4555 put_page(vmf->cow_page); 4556 return VM_FAULT_OOM; 4557 } 4558 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL); 4559 4560 ret = __do_fault(vmf); 4561 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4562 goto uncharge_out; 4563 if (ret & VM_FAULT_DONE_COW) 4564 return ret; 4565 4566 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4567 __SetPageUptodate(vmf->cow_page); 4568 4569 ret |= finish_fault(vmf); 4570 unlock_page(vmf->page); 4571 put_page(vmf->page); 4572 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4573 goto uncharge_out; 4574 return ret; 4575 uncharge_out: 4576 put_page(vmf->cow_page); 4577 return ret; 4578 } 4579 4580 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4581 { 4582 struct vm_area_struct *vma = vmf->vma; 4583 vm_fault_t ret, tmp; 4584 4585 ret = __do_fault(vmf); 4586 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4587 return ret; 4588 4589 /* 4590 * Check if the backing address space wants to know that the page is 4591 * about to become writable 4592 */ 4593 if (vma->vm_ops->page_mkwrite) { 4594 unlock_page(vmf->page); 4595 tmp = do_page_mkwrite(vmf); 4596 if (unlikely(!tmp || 4597 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4598 put_page(vmf->page); 4599 return tmp; 4600 } 4601 } 4602 4603 ret |= finish_fault(vmf); 4604 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4605 VM_FAULT_RETRY))) { 4606 unlock_page(vmf->page); 4607 put_page(vmf->page); 4608 return ret; 4609 } 4610 4611 ret |= fault_dirty_shared_page(vmf); 4612 return ret; 4613 } 4614 4615 /* 4616 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4617 * but allow concurrent faults). 4618 * The mmap_lock may have been released depending on flags and our 4619 * return value. See filemap_fault() and __folio_lock_or_retry(). 4620 * If mmap_lock is released, vma may become invalid (for example 4621 * by other thread calling munmap()). 4622 */ 4623 static vm_fault_t do_fault(struct vm_fault *vmf) 4624 { 4625 struct vm_area_struct *vma = vmf->vma; 4626 struct mm_struct *vm_mm = vma->vm_mm; 4627 vm_fault_t ret; 4628 4629 /* 4630 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4631 */ 4632 if (!vma->vm_ops->fault) { 4633 /* 4634 * If we find a migration pmd entry or a none pmd entry, which 4635 * should never happen, return SIGBUS 4636 */ 4637 if (unlikely(!pmd_present(*vmf->pmd))) 4638 ret = VM_FAULT_SIGBUS; 4639 else { 4640 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4641 vmf->pmd, 4642 vmf->address, 4643 &vmf->ptl); 4644 /* 4645 * Make sure this is not a temporary clearing of pte 4646 * by holding ptl and checking again. A R/M/W update 4647 * of pte involves: take ptl, clearing the pte so that 4648 * we don't have concurrent modification by hardware 4649 * followed by an update. 4650 */ 4651 if (unlikely(pte_none(*vmf->pte))) 4652 ret = VM_FAULT_SIGBUS; 4653 else 4654 ret = VM_FAULT_NOPAGE; 4655 4656 pte_unmap_unlock(vmf->pte, vmf->ptl); 4657 } 4658 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4659 ret = do_read_fault(vmf); 4660 else if (!(vma->vm_flags & VM_SHARED)) 4661 ret = do_cow_fault(vmf); 4662 else 4663 ret = do_shared_fault(vmf); 4664 4665 /* preallocated pagetable is unused: free it */ 4666 if (vmf->prealloc_pte) { 4667 pte_free(vm_mm, vmf->prealloc_pte); 4668 vmf->prealloc_pte = NULL; 4669 } 4670 return ret; 4671 } 4672 4673 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4674 unsigned long addr, int page_nid, int *flags) 4675 { 4676 get_page(page); 4677 4678 /* Record the current PID acceesing VMA */ 4679 vma_set_access_pid_bit(vma); 4680 4681 count_vm_numa_event(NUMA_HINT_FAULTS); 4682 if (page_nid == numa_node_id()) { 4683 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4684 *flags |= TNF_FAULT_LOCAL; 4685 } 4686 4687 return mpol_misplaced(page, vma, addr); 4688 } 4689 4690 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4691 { 4692 struct vm_area_struct *vma = vmf->vma; 4693 struct page *page = NULL; 4694 int page_nid = NUMA_NO_NODE; 4695 bool writable = false; 4696 int last_cpupid; 4697 int target_nid; 4698 pte_t pte, old_pte; 4699 int flags = 0; 4700 4701 /* 4702 * The "pte" at this point cannot be used safely without 4703 * validation through pte_unmap_same(). It's of NUMA type but 4704 * the pfn may be screwed if the read is non atomic. 4705 */ 4706 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4707 spin_lock(vmf->ptl); 4708 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4709 pte_unmap_unlock(vmf->pte, vmf->ptl); 4710 goto out; 4711 } 4712 4713 /* Get the normal PTE */ 4714 old_pte = ptep_get(vmf->pte); 4715 pte = pte_modify(old_pte, vma->vm_page_prot); 4716 4717 /* 4718 * Detect now whether the PTE could be writable; this information 4719 * is only valid while holding the PT lock. 4720 */ 4721 writable = pte_write(pte); 4722 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4723 can_change_pte_writable(vma, vmf->address, pte)) 4724 writable = true; 4725 4726 page = vm_normal_page(vma, vmf->address, pte); 4727 if (!page || is_zone_device_page(page)) 4728 goto out_map; 4729 4730 /* TODO: handle PTE-mapped THP */ 4731 if (PageCompound(page)) 4732 goto out_map; 4733 4734 /* 4735 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4736 * much anyway since they can be in shared cache state. This misses 4737 * the case where a mapping is writable but the process never writes 4738 * to it but pte_write gets cleared during protection updates and 4739 * pte_dirty has unpredictable behaviour between PTE scan updates, 4740 * background writeback, dirty balancing and application behaviour. 4741 */ 4742 if (!writable) 4743 flags |= TNF_NO_GROUP; 4744 4745 /* 4746 * Flag if the page is shared between multiple address spaces. This 4747 * is later used when determining whether to group tasks together 4748 */ 4749 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4750 flags |= TNF_SHARED; 4751 4752 page_nid = page_to_nid(page); 4753 /* 4754 * For memory tiering mode, cpupid of slow memory page is used 4755 * to record page access time. So use default value. 4756 */ 4757 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4758 !node_is_toptier(page_nid)) 4759 last_cpupid = (-1 & LAST_CPUPID_MASK); 4760 else 4761 last_cpupid = page_cpupid_last(page); 4762 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4763 &flags); 4764 if (target_nid == NUMA_NO_NODE) { 4765 put_page(page); 4766 goto out_map; 4767 } 4768 pte_unmap_unlock(vmf->pte, vmf->ptl); 4769 writable = false; 4770 4771 /* Migrate to the requested node */ 4772 if (migrate_misplaced_page(page, vma, target_nid)) { 4773 page_nid = target_nid; 4774 flags |= TNF_MIGRATED; 4775 } else { 4776 flags |= TNF_MIGRATE_FAIL; 4777 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4778 spin_lock(vmf->ptl); 4779 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4780 pte_unmap_unlock(vmf->pte, vmf->ptl); 4781 goto out; 4782 } 4783 goto out_map; 4784 } 4785 4786 out: 4787 if (page_nid != NUMA_NO_NODE) 4788 task_numa_fault(last_cpupid, page_nid, 1, flags); 4789 return 0; 4790 out_map: 4791 /* 4792 * Make it present again, depending on how arch implements 4793 * non-accessible ptes, some can allow access by kernel mode. 4794 */ 4795 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4796 pte = pte_modify(old_pte, vma->vm_page_prot); 4797 pte = pte_mkyoung(pte); 4798 if (writable) 4799 pte = pte_mkwrite(pte); 4800 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4801 update_mmu_cache(vma, vmf->address, vmf->pte); 4802 pte_unmap_unlock(vmf->pte, vmf->ptl); 4803 goto out; 4804 } 4805 4806 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4807 { 4808 if (vma_is_anonymous(vmf->vma)) 4809 return do_huge_pmd_anonymous_page(vmf); 4810 if (vmf->vma->vm_ops->huge_fault) 4811 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4812 return VM_FAULT_FALLBACK; 4813 } 4814 4815 /* `inline' is required to avoid gcc 4.1.2 build error */ 4816 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4817 { 4818 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4819 vm_fault_t ret; 4820 4821 if (vma_is_anonymous(vmf->vma)) { 4822 if (likely(!unshare) && 4823 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4824 return handle_userfault(vmf, VM_UFFD_WP); 4825 return do_huge_pmd_wp_page(vmf); 4826 } 4827 4828 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4829 if (vmf->vma->vm_ops->huge_fault) { 4830 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4831 if (!(ret & VM_FAULT_FALLBACK)) 4832 return ret; 4833 } 4834 } 4835 4836 /* COW or write-notify handled on pte level: split pmd. */ 4837 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4838 4839 return VM_FAULT_FALLBACK; 4840 } 4841 4842 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4843 { 4844 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4845 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4846 /* No support for anonymous transparent PUD pages yet */ 4847 if (vma_is_anonymous(vmf->vma)) 4848 return VM_FAULT_FALLBACK; 4849 if (vmf->vma->vm_ops->huge_fault) 4850 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4851 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4852 return VM_FAULT_FALLBACK; 4853 } 4854 4855 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4856 { 4857 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4858 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4859 vm_fault_t ret; 4860 4861 /* No support for anonymous transparent PUD pages yet */ 4862 if (vma_is_anonymous(vmf->vma)) 4863 goto split; 4864 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4865 if (vmf->vma->vm_ops->huge_fault) { 4866 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4867 if (!(ret & VM_FAULT_FALLBACK)) 4868 return ret; 4869 } 4870 } 4871 split: 4872 /* COW or write-notify not handled on PUD level: split pud.*/ 4873 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4874 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4875 return VM_FAULT_FALLBACK; 4876 } 4877 4878 /* 4879 * These routines also need to handle stuff like marking pages dirty 4880 * and/or accessed for architectures that don't do it in hardware (most 4881 * RISC architectures). The early dirtying is also good on the i386. 4882 * 4883 * There is also a hook called "update_mmu_cache()" that architectures 4884 * with external mmu caches can use to update those (ie the Sparc or 4885 * PowerPC hashed page tables that act as extended TLBs). 4886 * 4887 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4888 * concurrent faults). 4889 * 4890 * The mmap_lock may have been released depending on flags and our return value. 4891 * See filemap_fault() and __folio_lock_or_retry(). 4892 */ 4893 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4894 { 4895 pte_t entry; 4896 4897 if (unlikely(pmd_none(*vmf->pmd))) { 4898 /* 4899 * Leave __pte_alloc() until later: because vm_ops->fault may 4900 * want to allocate huge page, and if we expose page table 4901 * for an instant, it will be difficult to retract from 4902 * concurrent faults and from rmap lookups. 4903 */ 4904 vmf->pte = NULL; 4905 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4906 } else { 4907 /* 4908 * If a huge pmd materialized under us just retry later. Use 4909 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4910 * of pmd_trans_huge() to ensure the pmd didn't become 4911 * pmd_trans_huge under us and then back to pmd_none, as a 4912 * result of MADV_DONTNEED running immediately after a huge pmd 4913 * fault in a different thread of this mm, in turn leading to a 4914 * misleading pmd_trans_huge() retval. All we have to ensure is 4915 * that it is a regular pmd that we can walk with 4916 * pte_offset_map() and we can do that through an atomic read 4917 * in C, which is what pmd_trans_unstable() provides. 4918 */ 4919 if (pmd_devmap_trans_unstable(vmf->pmd)) 4920 return 0; 4921 /* 4922 * A regular pmd is established and it can't morph into a huge 4923 * pmd from under us anymore at this point because we hold the 4924 * mmap_lock read mode and khugepaged takes it in write mode. 4925 * So now it's safe to run pte_offset_map(). 4926 */ 4927 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4928 vmf->orig_pte = *vmf->pte; 4929 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4930 4931 /* 4932 * some architectures can have larger ptes than wordsize, 4933 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4934 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4935 * accesses. The code below just needs a consistent view 4936 * for the ifs and we later double check anyway with the 4937 * ptl lock held. So here a barrier will do. 4938 */ 4939 barrier(); 4940 if (pte_none(vmf->orig_pte)) { 4941 pte_unmap(vmf->pte); 4942 vmf->pte = NULL; 4943 } 4944 } 4945 4946 if (!vmf->pte) 4947 return do_pte_missing(vmf); 4948 4949 if (!pte_present(vmf->orig_pte)) 4950 return do_swap_page(vmf); 4951 4952 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4953 return do_numa_page(vmf); 4954 4955 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4956 spin_lock(vmf->ptl); 4957 entry = vmf->orig_pte; 4958 if (unlikely(!pte_same(*vmf->pte, entry))) { 4959 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4960 goto unlock; 4961 } 4962 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4963 if (!pte_write(entry)) 4964 return do_wp_page(vmf); 4965 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4966 entry = pte_mkdirty(entry); 4967 } 4968 entry = pte_mkyoung(entry); 4969 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4970 vmf->flags & FAULT_FLAG_WRITE)) { 4971 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4972 } else { 4973 /* Skip spurious TLB flush for retried page fault */ 4974 if (vmf->flags & FAULT_FLAG_TRIED) 4975 goto unlock; 4976 /* 4977 * This is needed only for protection faults but the arch code 4978 * is not yet telling us if this is a protection fault or not. 4979 * This still avoids useless tlb flushes for .text page faults 4980 * with threads. 4981 */ 4982 if (vmf->flags & FAULT_FLAG_WRITE) 4983 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address, 4984 vmf->pte); 4985 } 4986 unlock: 4987 pte_unmap_unlock(vmf->pte, vmf->ptl); 4988 return 0; 4989 } 4990 4991 /* 4992 * By the time we get here, we already hold the mm semaphore 4993 * 4994 * The mmap_lock may have been released depending on flags and our 4995 * return value. See filemap_fault() and __folio_lock_or_retry(). 4996 */ 4997 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4998 unsigned long address, unsigned int flags) 4999 { 5000 struct vm_fault vmf = { 5001 .vma = vma, 5002 .address = address & PAGE_MASK, 5003 .real_address = address, 5004 .flags = flags, 5005 .pgoff = linear_page_index(vma, address), 5006 .gfp_mask = __get_fault_gfp_mask(vma), 5007 }; 5008 struct mm_struct *mm = vma->vm_mm; 5009 unsigned long vm_flags = vma->vm_flags; 5010 pgd_t *pgd; 5011 p4d_t *p4d; 5012 vm_fault_t ret; 5013 5014 pgd = pgd_offset(mm, address); 5015 p4d = p4d_alloc(mm, pgd, address); 5016 if (!p4d) 5017 return VM_FAULT_OOM; 5018 5019 vmf.pud = pud_alloc(mm, p4d, address); 5020 if (!vmf.pud) 5021 return VM_FAULT_OOM; 5022 retry_pud: 5023 if (pud_none(*vmf.pud) && 5024 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5025 ret = create_huge_pud(&vmf); 5026 if (!(ret & VM_FAULT_FALLBACK)) 5027 return ret; 5028 } else { 5029 pud_t orig_pud = *vmf.pud; 5030 5031 barrier(); 5032 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5033 5034 /* 5035 * TODO once we support anonymous PUDs: NUMA case and 5036 * FAULT_FLAG_UNSHARE handling. 5037 */ 5038 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5039 ret = wp_huge_pud(&vmf, orig_pud); 5040 if (!(ret & VM_FAULT_FALLBACK)) 5041 return ret; 5042 } else { 5043 huge_pud_set_accessed(&vmf, orig_pud); 5044 return 0; 5045 } 5046 } 5047 } 5048 5049 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5050 if (!vmf.pmd) 5051 return VM_FAULT_OOM; 5052 5053 /* Huge pud page fault raced with pmd_alloc? */ 5054 if (pud_trans_unstable(vmf.pud)) 5055 goto retry_pud; 5056 5057 if (pmd_none(*vmf.pmd) && 5058 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5059 ret = create_huge_pmd(&vmf); 5060 if (!(ret & VM_FAULT_FALLBACK)) 5061 return ret; 5062 } else { 5063 vmf.orig_pmd = *vmf.pmd; 5064 5065 barrier(); 5066 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5067 VM_BUG_ON(thp_migration_supported() && 5068 !is_pmd_migration_entry(vmf.orig_pmd)); 5069 if (is_pmd_migration_entry(vmf.orig_pmd)) 5070 pmd_migration_entry_wait(mm, vmf.pmd); 5071 return 0; 5072 } 5073 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5074 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5075 return do_huge_pmd_numa_page(&vmf); 5076 5077 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5078 !pmd_write(vmf.orig_pmd)) { 5079 ret = wp_huge_pmd(&vmf); 5080 if (!(ret & VM_FAULT_FALLBACK)) 5081 return ret; 5082 } else { 5083 huge_pmd_set_accessed(&vmf); 5084 return 0; 5085 } 5086 } 5087 } 5088 5089 return handle_pte_fault(&vmf); 5090 } 5091 5092 /** 5093 * mm_account_fault - Do page fault accounting 5094 * 5095 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5096 * of perf event counters, but we'll still do the per-task accounting to 5097 * the task who triggered this page fault. 5098 * @address: the faulted address. 5099 * @flags: the fault flags. 5100 * @ret: the fault retcode. 5101 * 5102 * This will take care of most of the page fault accounting. Meanwhile, it 5103 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5104 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5105 * still be in per-arch page fault handlers at the entry of page fault. 5106 */ 5107 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs, 5108 unsigned long address, unsigned int flags, 5109 vm_fault_t ret) 5110 { 5111 bool major; 5112 5113 /* Incomplete faults will be accounted upon completion. */ 5114 if (ret & VM_FAULT_RETRY) 5115 return; 5116 5117 /* 5118 * To preserve the behavior of older kernels, PGFAULT counters record 5119 * both successful and failed faults, as opposed to perf counters, 5120 * which ignore failed cases. 5121 */ 5122 count_vm_event(PGFAULT); 5123 count_memcg_event_mm(mm, PGFAULT); 5124 5125 /* 5126 * Do not account for unsuccessful faults (e.g. when the address wasn't 5127 * valid). That includes arch_vma_access_permitted() failing before 5128 * reaching here. So this is not a "this many hardware page faults" 5129 * counter. We should use the hw profiling for that. 5130 */ 5131 if (ret & VM_FAULT_ERROR) 5132 return; 5133 5134 /* 5135 * We define the fault as a major fault when the final successful fault 5136 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5137 * handle it immediately previously). 5138 */ 5139 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5140 5141 if (major) 5142 current->maj_flt++; 5143 else 5144 current->min_flt++; 5145 5146 /* 5147 * If the fault is done for GUP, regs will be NULL. We only do the 5148 * accounting for the per thread fault counters who triggered the 5149 * fault, and we skip the perf event updates. 5150 */ 5151 if (!regs) 5152 return; 5153 5154 if (major) 5155 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5156 else 5157 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5158 } 5159 5160 #ifdef CONFIG_LRU_GEN 5161 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5162 { 5163 /* the LRU algorithm only applies to accesses with recency */ 5164 current->in_lru_fault = vma_has_recency(vma); 5165 } 5166 5167 static void lru_gen_exit_fault(void) 5168 { 5169 current->in_lru_fault = false; 5170 } 5171 #else 5172 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5173 { 5174 } 5175 5176 static void lru_gen_exit_fault(void) 5177 { 5178 } 5179 #endif /* CONFIG_LRU_GEN */ 5180 5181 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5182 unsigned int *flags) 5183 { 5184 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5185 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5186 return VM_FAULT_SIGSEGV; 5187 /* 5188 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5189 * just treat it like an ordinary read-fault otherwise. 5190 */ 5191 if (!is_cow_mapping(vma->vm_flags)) 5192 *flags &= ~FAULT_FLAG_UNSHARE; 5193 } else if (*flags & FAULT_FLAG_WRITE) { 5194 /* Write faults on read-only mappings are impossible ... */ 5195 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5196 return VM_FAULT_SIGSEGV; 5197 /* ... and FOLL_FORCE only applies to COW mappings. */ 5198 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5199 !is_cow_mapping(vma->vm_flags))) 5200 return VM_FAULT_SIGSEGV; 5201 } 5202 return 0; 5203 } 5204 5205 /* 5206 * By the time we get here, we already hold the mm semaphore 5207 * 5208 * The mmap_lock may have been released depending on flags and our 5209 * return value. See filemap_fault() and __folio_lock_or_retry(). 5210 */ 5211 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5212 unsigned int flags, struct pt_regs *regs) 5213 { 5214 /* If the fault handler drops the mmap_lock, vma may be freed */ 5215 struct mm_struct *mm = vma->vm_mm; 5216 vm_fault_t ret; 5217 5218 __set_current_state(TASK_RUNNING); 5219 5220 ret = sanitize_fault_flags(vma, &flags); 5221 if (ret) 5222 goto out; 5223 5224 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5225 flags & FAULT_FLAG_INSTRUCTION, 5226 flags & FAULT_FLAG_REMOTE)) { 5227 ret = VM_FAULT_SIGSEGV; 5228 goto out; 5229 } 5230 5231 /* 5232 * Enable the memcg OOM handling for faults triggered in user 5233 * space. Kernel faults are handled more gracefully. 5234 */ 5235 if (flags & FAULT_FLAG_USER) 5236 mem_cgroup_enter_user_fault(); 5237 5238 lru_gen_enter_fault(vma); 5239 5240 if (unlikely(is_vm_hugetlb_page(vma))) 5241 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5242 else 5243 ret = __handle_mm_fault(vma, address, flags); 5244 5245 lru_gen_exit_fault(); 5246 5247 if (flags & FAULT_FLAG_USER) { 5248 mem_cgroup_exit_user_fault(); 5249 /* 5250 * The task may have entered a memcg OOM situation but 5251 * if the allocation error was handled gracefully (no 5252 * VM_FAULT_OOM), there is no need to kill anything. 5253 * Just clean up the OOM state peacefully. 5254 */ 5255 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5256 mem_cgroup_oom_synchronize(false); 5257 } 5258 out: 5259 mm_account_fault(mm, regs, address, flags, ret); 5260 5261 return ret; 5262 } 5263 EXPORT_SYMBOL_GPL(handle_mm_fault); 5264 5265 #ifdef CONFIG_PER_VMA_LOCK 5266 /* 5267 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be 5268 * stable and not isolated. If the VMA is not found or is being modified the 5269 * function returns NULL. 5270 */ 5271 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 5272 unsigned long address) 5273 { 5274 MA_STATE(mas, &mm->mm_mt, address, address); 5275 struct vm_area_struct *vma; 5276 5277 rcu_read_lock(); 5278 retry: 5279 vma = mas_walk(&mas); 5280 if (!vma) 5281 goto inval; 5282 5283 /* Only anonymous vmas are supported for now */ 5284 if (!vma_is_anonymous(vma)) 5285 goto inval; 5286 5287 /* find_mergeable_anon_vma uses adjacent vmas which are not locked */ 5288 if (!vma->anon_vma) 5289 goto inval; 5290 5291 if (!vma_start_read(vma)) 5292 goto inval; 5293 5294 /* 5295 * Due to the possibility of userfault handler dropping mmap_lock, avoid 5296 * it for now and fall back to page fault handling under mmap_lock. 5297 */ 5298 if (userfaultfd_armed(vma)) { 5299 vma_end_read(vma); 5300 goto inval; 5301 } 5302 5303 /* Check since vm_start/vm_end might change before we lock the VMA */ 5304 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { 5305 vma_end_read(vma); 5306 goto inval; 5307 } 5308 5309 /* Check if the VMA got isolated after we found it */ 5310 if (vma->detached) { 5311 vma_end_read(vma); 5312 count_vm_vma_lock_event(VMA_LOCK_MISS); 5313 /* The area was replaced with another one */ 5314 goto retry; 5315 } 5316 5317 rcu_read_unlock(); 5318 return vma; 5319 inval: 5320 rcu_read_unlock(); 5321 count_vm_vma_lock_event(VMA_LOCK_ABORT); 5322 return NULL; 5323 } 5324 #endif /* CONFIG_PER_VMA_LOCK */ 5325 5326 #ifndef __PAGETABLE_P4D_FOLDED 5327 /* 5328 * Allocate p4d page table. 5329 * We've already handled the fast-path in-line. 5330 */ 5331 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5332 { 5333 p4d_t *new = p4d_alloc_one(mm, address); 5334 if (!new) 5335 return -ENOMEM; 5336 5337 spin_lock(&mm->page_table_lock); 5338 if (pgd_present(*pgd)) { /* Another has populated it */ 5339 p4d_free(mm, new); 5340 } else { 5341 smp_wmb(); /* See comment in pmd_install() */ 5342 pgd_populate(mm, pgd, new); 5343 } 5344 spin_unlock(&mm->page_table_lock); 5345 return 0; 5346 } 5347 #endif /* __PAGETABLE_P4D_FOLDED */ 5348 5349 #ifndef __PAGETABLE_PUD_FOLDED 5350 /* 5351 * Allocate page upper directory. 5352 * We've already handled the fast-path in-line. 5353 */ 5354 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5355 { 5356 pud_t *new = pud_alloc_one(mm, address); 5357 if (!new) 5358 return -ENOMEM; 5359 5360 spin_lock(&mm->page_table_lock); 5361 if (!p4d_present(*p4d)) { 5362 mm_inc_nr_puds(mm); 5363 smp_wmb(); /* See comment in pmd_install() */ 5364 p4d_populate(mm, p4d, new); 5365 } else /* Another has populated it */ 5366 pud_free(mm, new); 5367 spin_unlock(&mm->page_table_lock); 5368 return 0; 5369 } 5370 #endif /* __PAGETABLE_PUD_FOLDED */ 5371 5372 #ifndef __PAGETABLE_PMD_FOLDED 5373 /* 5374 * Allocate page middle directory. 5375 * We've already handled the fast-path in-line. 5376 */ 5377 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5378 { 5379 spinlock_t *ptl; 5380 pmd_t *new = pmd_alloc_one(mm, address); 5381 if (!new) 5382 return -ENOMEM; 5383 5384 ptl = pud_lock(mm, pud); 5385 if (!pud_present(*pud)) { 5386 mm_inc_nr_pmds(mm); 5387 smp_wmb(); /* See comment in pmd_install() */ 5388 pud_populate(mm, pud, new); 5389 } else { /* Another has populated it */ 5390 pmd_free(mm, new); 5391 } 5392 spin_unlock(ptl); 5393 return 0; 5394 } 5395 #endif /* __PAGETABLE_PMD_FOLDED */ 5396 5397 /** 5398 * follow_pte - look up PTE at a user virtual address 5399 * @mm: the mm_struct of the target address space 5400 * @address: user virtual address 5401 * @ptepp: location to store found PTE 5402 * @ptlp: location to store the lock for the PTE 5403 * 5404 * On a successful return, the pointer to the PTE is stored in @ptepp; 5405 * the corresponding lock is taken and its location is stored in @ptlp. 5406 * The contents of the PTE are only stable until @ptlp is released; 5407 * any further use, if any, must be protected against invalidation 5408 * with MMU notifiers. 5409 * 5410 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5411 * should be taken for read. 5412 * 5413 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5414 * it is not a good general-purpose API. 5415 * 5416 * Return: zero on success, -ve otherwise. 5417 */ 5418 int follow_pte(struct mm_struct *mm, unsigned long address, 5419 pte_t **ptepp, spinlock_t **ptlp) 5420 { 5421 pgd_t *pgd; 5422 p4d_t *p4d; 5423 pud_t *pud; 5424 pmd_t *pmd; 5425 pte_t *ptep; 5426 5427 pgd = pgd_offset(mm, address); 5428 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5429 goto out; 5430 5431 p4d = p4d_offset(pgd, address); 5432 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5433 goto out; 5434 5435 pud = pud_offset(p4d, address); 5436 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5437 goto out; 5438 5439 pmd = pmd_offset(pud, address); 5440 VM_BUG_ON(pmd_trans_huge(*pmd)); 5441 5442 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 5443 goto out; 5444 5445 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5446 if (!pte_present(*ptep)) 5447 goto unlock; 5448 *ptepp = ptep; 5449 return 0; 5450 unlock: 5451 pte_unmap_unlock(ptep, *ptlp); 5452 out: 5453 return -EINVAL; 5454 } 5455 EXPORT_SYMBOL_GPL(follow_pte); 5456 5457 /** 5458 * follow_pfn - look up PFN at a user virtual address 5459 * @vma: memory mapping 5460 * @address: user virtual address 5461 * @pfn: location to store found PFN 5462 * 5463 * Only IO mappings and raw PFN mappings are allowed. 5464 * 5465 * This function does not allow the caller to read the permissions 5466 * of the PTE. Do not use it. 5467 * 5468 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5469 */ 5470 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5471 unsigned long *pfn) 5472 { 5473 int ret = -EINVAL; 5474 spinlock_t *ptl; 5475 pte_t *ptep; 5476 5477 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5478 return ret; 5479 5480 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5481 if (ret) 5482 return ret; 5483 *pfn = pte_pfn(*ptep); 5484 pte_unmap_unlock(ptep, ptl); 5485 return 0; 5486 } 5487 EXPORT_SYMBOL(follow_pfn); 5488 5489 #ifdef CONFIG_HAVE_IOREMAP_PROT 5490 int follow_phys(struct vm_area_struct *vma, 5491 unsigned long address, unsigned int flags, 5492 unsigned long *prot, resource_size_t *phys) 5493 { 5494 int ret = -EINVAL; 5495 pte_t *ptep, pte; 5496 spinlock_t *ptl; 5497 5498 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5499 goto out; 5500 5501 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5502 goto out; 5503 pte = *ptep; 5504 5505 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5506 goto unlock; 5507 5508 *prot = pgprot_val(pte_pgprot(pte)); 5509 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5510 5511 ret = 0; 5512 unlock: 5513 pte_unmap_unlock(ptep, ptl); 5514 out: 5515 return ret; 5516 } 5517 5518 /** 5519 * generic_access_phys - generic implementation for iomem mmap access 5520 * @vma: the vma to access 5521 * @addr: userspace address, not relative offset within @vma 5522 * @buf: buffer to read/write 5523 * @len: length of transfer 5524 * @write: set to FOLL_WRITE when writing, otherwise reading 5525 * 5526 * This is a generic implementation for &vm_operations_struct.access for an 5527 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5528 * not page based. 5529 */ 5530 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5531 void *buf, int len, int write) 5532 { 5533 resource_size_t phys_addr; 5534 unsigned long prot = 0; 5535 void __iomem *maddr; 5536 pte_t *ptep, pte; 5537 spinlock_t *ptl; 5538 int offset = offset_in_page(addr); 5539 int ret = -EINVAL; 5540 5541 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5542 return -EINVAL; 5543 5544 retry: 5545 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5546 return -EINVAL; 5547 pte = *ptep; 5548 pte_unmap_unlock(ptep, ptl); 5549 5550 prot = pgprot_val(pte_pgprot(pte)); 5551 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5552 5553 if ((write & FOLL_WRITE) && !pte_write(pte)) 5554 return -EINVAL; 5555 5556 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5557 if (!maddr) 5558 return -ENOMEM; 5559 5560 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5561 goto out_unmap; 5562 5563 if (!pte_same(pte, *ptep)) { 5564 pte_unmap_unlock(ptep, ptl); 5565 iounmap(maddr); 5566 5567 goto retry; 5568 } 5569 5570 if (write) 5571 memcpy_toio(maddr + offset, buf, len); 5572 else 5573 memcpy_fromio(buf, maddr + offset, len); 5574 ret = len; 5575 pte_unmap_unlock(ptep, ptl); 5576 out_unmap: 5577 iounmap(maddr); 5578 5579 return ret; 5580 } 5581 EXPORT_SYMBOL_GPL(generic_access_phys); 5582 #endif 5583 5584 /* 5585 * Access another process' address space as given in mm. 5586 */ 5587 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5588 int len, unsigned int gup_flags) 5589 { 5590 struct vm_area_struct *vma; 5591 void *old_buf = buf; 5592 int write = gup_flags & FOLL_WRITE; 5593 5594 if (mmap_read_lock_killable(mm)) 5595 return 0; 5596 5597 /* ignore errors, just check how much was successfully transferred */ 5598 while (len) { 5599 int bytes, ret, offset; 5600 void *maddr; 5601 struct page *page = NULL; 5602 5603 ret = get_user_pages_remote(mm, addr, 1, 5604 gup_flags, &page, &vma, NULL); 5605 if (ret <= 0) { 5606 #ifndef CONFIG_HAVE_IOREMAP_PROT 5607 break; 5608 #else 5609 /* 5610 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5611 * we can access using slightly different code. 5612 */ 5613 vma = vma_lookup(mm, addr); 5614 if (!vma) 5615 break; 5616 if (vma->vm_ops && vma->vm_ops->access) 5617 ret = vma->vm_ops->access(vma, addr, buf, 5618 len, write); 5619 if (ret <= 0) 5620 break; 5621 bytes = ret; 5622 #endif 5623 } else { 5624 bytes = len; 5625 offset = addr & (PAGE_SIZE-1); 5626 if (bytes > PAGE_SIZE-offset) 5627 bytes = PAGE_SIZE-offset; 5628 5629 maddr = kmap(page); 5630 if (write) { 5631 copy_to_user_page(vma, page, addr, 5632 maddr + offset, buf, bytes); 5633 set_page_dirty_lock(page); 5634 } else { 5635 copy_from_user_page(vma, page, addr, 5636 buf, maddr + offset, bytes); 5637 } 5638 kunmap(page); 5639 put_page(page); 5640 } 5641 len -= bytes; 5642 buf += bytes; 5643 addr += bytes; 5644 } 5645 mmap_read_unlock(mm); 5646 5647 return buf - old_buf; 5648 } 5649 5650 /** 5651 * access_remote_vm - access another process' address space 5652 * @mm: the mm_struct of the target address space 5653 * @addr: start address to access 5654 * @buf: source or destination buffer 5655 * @len: number of bytes to transfer 5656 * @gup_flags: flags modifying lookup behaviour 5657 * 5658 * The caller must hold a reference on @mm. 5659 * 5660 * Return: number of bytes copied from source to destination. 5661 */ 5662 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5663 void *buf, int len, unsigned int gup_flags) 5664 { 5665 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5666 } 5667 5668 /* 5669 * Access another process' address space. 5670 * Source/target buffer must be kernel space, 5671 * Do not walk the page table directly, use get_user_pages 5672 */ 5673 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5674 void *buf, int len, unsigned int gup_flags) 5675 { 5676 struct mm_struct *mm; 5677 int ret; 5678 5679 mm = get_task_mm(tsk); 5680 if (!mm) 5681 return 0; 5682 5683 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5684 5685 mmput(mm); 5686 5687 return ret; 5688 } 5689 EXPORT_SYMBOL_GPL(access_process_vm); 5690 5691 /* 5692 * Print the name of a VMA. 5693 */ 5694 void print_vma_addr(char *prefix, unsigned long ip) 5695 { 5696 struct mm_struct *mm = current->mm; 5697 struct vm_area_struct *vma; 5698 5699 /* 5700 * we might be running from an atomic context so we cannot sleep 5701 */ 5702 if (!mmap_read_trylock(mm)) 5703 return; 5704 5705 vma = find_vma(mm, ip); 5706 if (vma && vma->vm_file) { 5707 struct file *f = vma->vm_file; 5708 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5709 if (buf) { 5710 char *p; 5711 5712 p = file_path(f, buf, PAGE_SIZE); 5713 if (IS_ERR(p)) 5714 p = "?"; 5715 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5716 vma->vm_start, 5717 vma->vm_end - vma->vm_start); 5718 free_page((unsigned long)buf); 5719 } 5720 } 5721 mmap_read_unlock(mm); 5722 } 5723 5724 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5725 void __might_fault(const char *file, int line) 5726 { 5727 if (pagefault_disabled()) 5728 return; 5729 __might_sleep(file, line); 5730 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5731 if (current->mm) 5732 might_lock_read(¤t->mm->mmap_lock); 5733 #endif 5734 } 5735 EXPORT_SYMBOL(__might_fault); 5736 #endif 5737 5738 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5739 /* 5740 * Process all subpages of the specified huge page with the specified 5741 * operation. The target subpage will be processed last to keep its 5742 * cache lines hot. 5743 */ 5744 static inline int process_huge_page( 5745 unsigned long addr_hint, unsigned int pages_per_huge_page, 5746 int (*process_subpage)(unsigned long addr, int idx, void *arg), 5747 void *arg) 5748 { 5749 int i, n, base, l, ret; 5750 unsigned long addr = addr_hint & 5751 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5752 5753 /* Process target subpage last to keep its cache lines hot */ 5754 might_sleep(); 5755 n = (addr_hint - addr) / PAGE_SIZE; 5756 if (2 * n <= pages_per_huge_page) { 5757 /* If target subpage in first half of huge page */ 5758 base = 0; 5759 l = n; 5760 /* Process subpages at the end of huge page */ 5761 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5762 cond_resched(); 5763 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5764 if (ret) 5765 return ret; 5766 } 5767 } else { 5768 /* If target subpage in second half of huge page */ 5769 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5770 l = pages_per_huge_page - n; 5771 /* Process subpages at the begin of huge page */ 5772 for (i = 0; i < base; i++) { 5773 cond_resched(); 5774 ret = process_subpage(addr + i * PAGE_SIZE, i, arg); 5775 if (ret) 5776 return ret; 5777 } 5778 } 5779 /* 5780 * Process remaining subpages in left-right-left-right pattern 5781 * towards the target subpage 5782 */ 5783 for (i = 0; i < l; i++) { 5784 int left_idx = base + i; 5785 int right_idx = base + 2 * l - 1 - i; 5786 5787 cond_resched(); 5788 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5789 if (ret) 5790 return ret; 5791 cond_resched(); 5792 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5793 if (ret) 5794 return ret; 5795 } 5796 return 0; 5797 } 5798 5799 static void clear_gigantic_page(struct page *page, 5800 unsigned long addr, 5801 unsigned int pages_per_huge_page) 5802 { 5803 int i; 5804 struct page *p; 5805 5806 might_sleep(); 5807 for (i = 0; i < pages_per_huge_page; i++) { 5808 p = nth_page(page, i); 5809 cond_resched(); 5810 clear_user_highpage(p, addr + i * PAGE_SIZE); 5811 } 5812 } 5813 5814 static int clear_subpage(unsigned long addr, int idx, void *arg) 5815 { 5816 struct page *page = arg; 5817 5818 clear_user_highpage(page + idx, addr); 5819 return 0; 5820 } 5821 5822 void clear_huge_page(struct page *page, 5823 unsigned long addr_hint, unsigned int pages_per_huge_page) 5824 { 5825 unsigned long addr = addr_hint & 5826 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5827 5828 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5829 clear_gigantic_page(page, addr, pages_per_huge_page); 5830 return; 5831 } 5832 5833 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5834 } 5835 5836 static int copy_user_gigantic_page(struct folio *dst, struct folio *src, 5837 unsigned long addr, 5838 struct vm_area_struct *vma, 5839 unsigned int pages_per_huge_page) 5840 { 5841 int i; 5842 struct page *dst_page; 5843 struct page *src_page; 5844 5845 for (i = 0; i < pages_per_huge_page; i++) { 5846 dst_page = folio_page(dst, i); 5847 src_page = folio_page(src, i); 5848 5849 cond_resched(); 5850 if (copy_mc_user_highpage(dst_page, src_page, 5851 addr + i*PAGE_SIZE, vma)) { 5852 memory_failure_queue(page_to_pfn(src_page), 0); 5853 return -EHWPOISON; 5854 } 5855 } 5856 return 0; 5857 } 5858 5859 struct copy_subpage_arg { 5860 struct page *dst; 5861 struct page *src; 5862 struct vm_area_struct *vma; 5863 }; 5864 5865 static int copy_subpage(unsigned long addr, int idx, void *arg) 5866 { 5867 struct copy_subpage_arg *copy_arg = arg; 5868 5869 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5870 addr, copy_arg->vma)) { 5871 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0); 5872 return -EHWPOISON; 5873 } 5874 return 0; 5875 } 5876 5877 int copy_user_large_folio(struct folio *dst, struct folio *src, 5878 unsigned long addr_hint, struct vm_area_struct *vma) 5879 { 5880 unsigned int pages_per_huge_page = folio_nr_pages(dst); 5881 unsigned long addr = addr_hint & 5882 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5883 struct copy_subpage_arg arg = { 5884 .dst = &dst->page, 5885 .src = &src->page, 5886 .vma = vma, 5887 }; 5888 5889 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) 5890 return copy_user_gigantic_page(dst, src, addr, vma, 5891 pages_per_huge_page); 5892 5893 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5894 } 5895 5896 long copy_folio_from_user(struct folio *dst_folio, 5897 const void __user *usr_src, 5898 bool allow_pagefault) 5899 { 5900 void *kaddr; 5901 unsigned long i, rc = 0; 5902 unsigned int nr_pages = folio_nr_pages(dst_folio); 5903 unsigned long ret_val = nr_pages * PAGE_SIZE; 5904 struct page *subpage; 5905 5906 for (i = 0; i < nr_pages; i++) { 5907 subpage = folio_page(dst_folio, i); 5908 kaddr = kmap_local_page(subpage); 5909 if (!allow_pagefault) 5910 pagefault_disable(); 5911 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE); 5912 if (!allow_pagefault) 5913 pagefault_enable(); 5914 kunmap_local(kaddr); 5915 5916 ret_val -= (PAGE_SIZE - rc); 5917 if (rc) 5918 break; 5919 5920 flush_dcache_page(subpage); 5921 5922 cond_resched(); 5923 } 5924 return ret_val; 5925 } 5926 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5927 5928 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5929 5930 static struct kmem_cache *page_ptl_cachep; 5931 5932 void __init ptlock_cache_init(void) 5933 { 5934 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5935 SLAB_PANIC, NULL); 5936 } 5937 5938 bool ptlock_alloc(struct page *page) 5939 { 5940 spinlock_t *ptl; 5941 5942 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5943 if (!ptl) 5944 return false; 5945 page->ptl = ptl; 5946 return true; 5947 } 5948 5949 void ptlock_free(struct page *page) 5950 { 5951 kmem_cache_free(page_ptl_cachep, page->ptl); 5952 } 5953 #endif 5954