1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 add_mm_counter(mm, i, task->rss_stat.count[i]); 135 task->rss_stat.count[i] = 0; 136 } 137 } 138 task->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 __sync_task_rss_stat(task, task->mm); 161 } 162 163 unsigned long get_mm_counter(struct mm_struct *mm, int member) 164 { 165 long val = 0; 166 167 /* 168 * Don't use task->mm here...for avoiding to use task_get_mm().. 169 * The caller must guarantee task->mm is not invalid. 170 */ 171 val = atomic_long_read(&mm->rss_stat.count[member]); 172 /* 173 * counter is updated in asynchronous manner and may go to minus. 174 * But it's never be expected number for users. 175 */ 176 if (val < 0) 177 return 0; 178 return (unsigned long)val; 179 } 180 181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 182 { 183 __sync_task_rss_stat(task, mm); 184 } 185 #else 186 187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 189 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 } 193 194 #endif 195 196 /* 197 * If a p?d_bad entry is found while walking page tables, report 198 * the error, before resetting entry to p?d_none. Usually (but 199 * very seldom) called out from the p?d_none_or_clear_bad macros. 200 */ 201 202 void pgd_clear_bad(pgd_t *pgd) 203 { 204 pgd_ERROR(*pgd); 205 pgd_clear(pgd); 206 } 207 208 void pud_clear_bad(pud_t *pud) 209 { 210 pud_ERROR(*pud); 211 pud_clear(pud); 212 } 213 214 void pmd_clear_bad(pmd_t *pmd) 215 { 216 pmd_ERROR(*pmd); 217 pmd_clear(pmd); 218 } 219 220 /* 221 * Note: this doesn't free the actual pages themselves. That 222 * has been handled earlier when unmapping all the memory regions. 223 */ 224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 225 unsigned long addr) 226 { 227 pgtable_t token = pmd_pgtable(*pmd); 228 pmd_clear(pmd); 229 pte_free_tlb(tlb, token, addr); 230 tlb->mm->nr_ptes--; 231 } 232 233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 234 unsigned long addr, unsigned long end, 235 unsigned long floor, unsigned long ceiling) 236 { 237 pmd_t *pmd; 238 unsigned long next; 239 unsigned long start; 240 241 start = addr; 242 pmd = pmd_offset(pud, addr); 243 do { 244 next = pmd_addr_end(addr, end); 245 if (pmd_none_or_clear_bad(pmd)) 246 continue; 247 free_pte_range(tlb, pmd, addr); 248 } while (pmd++, addr = next, addr != end); 249 250 start &= PUD_MASK; 251 if (start < floor) 252 return; 253 if (ceiling) { 254 ceiling &= PUD_MASK; 255 if (!ceiling) 256 return; 257 } 258 if (end - 1 > ceiling - 1) 259 return; 260 261 pmd = pmd_offset(pud, start); 262 pud_clear(pud); 263 pmd_free_tlb(tlb, pmd, start); 264 } 265 266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 pud_t *pud; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 pud = pud_offset(pgd, addr); 276 do { 277 next = pud_addr_end(addr, end); 278 if (pud_none_or_clear_bad(pud)) 279 continue; 280 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 281 } while (pud++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 pud = pud_offset(pgd, start); 295 pgd_clear(pgd); 296 pud_free_tlb(tlb, pud, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 * 302 * Must be called with pagetable lock held. 303 */ 304 void free_pgd_range(struct mmu_gather *tlb, 305 unsigned long addr, unsigned long end, 306 unsigned long floor, unsigned long ceiling) 307 { 308 pgd_t *pgd; 309 unsigned long next; 310 311 /* 312 * The next few lines have given us lots of grief... 313 * 314 * Why are we testing PMD* at this top level? Because often 315 * there will be no work to do at all, and we'd prefer not to 316 * go all the way down to the bottom just to discover that. 317 * 318 * Why all these "- 1"s? Because 0 represents both the bottom 319 * of the address space and the top of it (using -1 for the 320 * top wouldn't help much: the masks would do the wrong thing). 321 * The rule is that addr 0 and floor 0 refer to the bottom of 322 * the address space, but end 0 and ceiling 0 refer to the top 323 * Comparisons need to use "end - 1" and "ceiling - 1" (though 324 * that end 0 case should be mythical). 325 * 326 * Wherever addr is brought up or ceiling brought down, we must 327 * be careful to reject "the opposite 0" before it confuses the 328 * subsequent tests. But what about where end is brought down 329 * by PMD_SIZE below? no, end can't go down to 0 there. 330 * 331 * Whereas we round start (addr) and ceiling down, by different 332 * masks at different levels, in order to test whether a table 333 * now has no other vmas using it, so can be freed, we don't 334 * bother to round floor or end up - the tests don't need that. 335 */ 336 337 addr &= PMD_MASK; 338 if (addr < floor) { 339 addr += PMD_SIZE; 340 if (!addr) 341 return; 342 } 343 if (ceiling) { 344 ceiling &= PMD_MASK; 345 if (!ceiling) 346 return; 347 } 348 if (end - 1 > ceiling - 1) 349 end -= PMD_SIZE; 350 if (addr > end - 1) 351 return; 352 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 363 unsigned long floor, unsigned long ceiling) 364 { 365 while (vma) { 366 struct vm_area_struct *next = vma->vm_next; 367 unsigned long addr = vma->vm_start; 368 369 /* 370 * Hide vma from rmap and truncate_pagecache before freeing 371 * pgtables 372 */ 373 unlink_anon_vmas(vma); 374 unlink_file_vma(vma); 375 376 if (is_vm_hugetlb_page(vma)) { 377 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 378 floor, next? next->vm_start: ceiling); 379 } else { 380 /* 381 * Optimization: gather nearby vmas into one call down 382 */ 383 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 384 && !is_vm_hugetlb_page(next)) { 385 vma = next; 386 next = vma->vm_next; 387 unlink_anon_vmas(vma); 388 unlink_file_vma(vma); 389 } 390 free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next? next->vm_start: ceiling); 392 } 393 vma = next; 394 } 395 } 396 397 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 398 { 399 pgtable_t new = pte_alloc_one(mm, address); 400 if (!new) 401 return -ENOMEM; 402 403 /* 404 * Ensure all pte setup (eg. pte page lock and page clearing) are 405 * visible before the pte is made visible to other CPUs by being 406 * put into page tables. 407 * 408 * The other side of the story is the pointer chasing in the page 409 * table walking code (when walking the page table without locking; 410 * ie. most of the time). Fortunately, these data accesses consist 411 * of a chain of data-dependent loads, meaning most CPUs (alpha 412 * being the notable exception) will already guarantee loads are 413 * seen in-order. See the alpha page table accessors for the 414 * smp_read_barrier_depends() barriers in page table walking code. 415 */ 416 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 417 418 spin_lock(&mm->page_table_lock); 419 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 420 mm->nr_ptes++; 421 pmd_populate(mm, pmd, new); 422 new = NULL; 423 } 424 spin_unlock(&mm->page_table_lock); 425 if (new) 426 pte_free(mm, new); 427 return 0; 428 } 429 430 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 431 { 432 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 433 if (!new) 434 return -ENOMEM; 435 436 smp_wmb(); /* See comment in __pte_alloc */ 437 438 spin_lock(&init_mm.page_table_lock); 439 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 440 pmd_populate_kernel(&init_mm, pmd, new); 441 new = NULL; 442 } 443 spin_unlock(&init_mm.page_table_lock); 444 if (new) 445 pte_free_kernel(&init_mm, new); 446 return 0; 447 } 448 449 static inline void init_rss_vec(int *rss) 450 { 451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 452 } 453 454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 455 { 456 int i; 457 458 if (current->mm == mm) 459 sync_mm_rss(current, mm); 460 for (i = 0; i < NR_MM_COUNTERS; i++) 461 if (rss[i]) 462 add_mm_counter(mm, i, rss[i]); 463 } 464 465 /* 466 * This function is called to print an error when a bad pte 467 * is found. For example, we might have a PFN-mapped pte in 468 * a region that doesn't allow it. 469 * 470 * The calling function must still handle the error. 471 */ 472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 473 pte_t pte, struct page *page) 474 { 475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 476 pud_t *pud = pud_offset(pgd, addr); 477 pmd_t *pmd = pmd_offset(pud, addr); 478 struct address_space *mapping; 479 pgoff_t index; 480 static unsigned long resume; 481 static unsigned long nr_shown; 482 static unsigned long nr_unshown; 483 484 /* 485 * Allow a burst of 60 reports, then keep quiet for that minute; 486 * or allow a steady drip of one report per second. 487 */ 488 if (nr_shown == 60) { 489 if (time_before(jiffies, resume)) { 490 nr_unshown++; 491 return; 492 } 493 if (nr_unshown) { 494 printk(KERN_ALERT 495 "BUG: Bad page map: %lu messages suppressed\n", 496 nr_unshown); 497 nr_unshown = 0; 498 } 499 nr_shown = 0; 500 } 501 if (nr_shown++ == 0) 502 resume = jiffies + 60 * HZ; 503 504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 505 index = linear_page_index(vma, addr); 506 507 printk(KERN_ALERT 508 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 509 current->comm, 510 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 511 if (page) 512 dump_page(page); 513 printk(KERN_ALERT 514 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 515 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 516 /* 517 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 518 */ 519 if (vma->vm_ops) 520 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 521 (unsigned long)vma->vm_ops->fault); 522 if (vma->vm_file && vma->vm_file->f_op) 523 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 524 (unsigned long)vma->vm_file->f_op->mmap); 525 dump_stack(); 526 add_taint(TAINT_BAD_PAGE); 527 } 528 529 static inline int is_cow_mapping(unsigned int flags) 530 { 531 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 532 } 533 534 #ifndef is_zero_pfn 535 static inline int is_zero_pfn(unsigned long pfn) 536 { 537 return pfn == zero_pfn; 538 } 539 #endif 540 541 #ifndef my_zero_pfn 542 static inline unsigned long my_zero_pfn(unsigned long addr) 543 { 544 return zero_pfn; 545 } 546 #endif 547 548 /* 549 * vm_normal_page -- This function gets the "struct page" associated with a pte. 550 * 551 * "Special" mappings do not wish to be associated with a "struct page" (either 552 * it doesn't exist, or it exists but they don't want to touch it). In this 553 * case, NULL is returned here. "Normal" mappings do have a struct page. 554 * 555 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 556 * pte bit, in which case this function is trivial. Secondly, an architecture 557 * may not have a spare pte bit, which requires a more complicated scheme, 558 * described below. 559 * 560 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 561 * special mapping (even if there are underlying and valid "struct pages"). 562 * COWed pages of a VM_PFNMAP are always normal. 563 * 564 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 565 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 566 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 567 * mapping will always honor the rule 568 * 569 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 570 * 571 * And for normal mappings this is false. 572 * 573 * This restricts such mappings to be a linear translation from virtual address 574 * to pfn. To get around this restriction, we allow arbitrary mappings so long 575 * as the vma is not a COW mapping; in that case, we know that all ptes are 576 * special (because none can have been COWed). 577 * 578 * 579 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 580 * 581 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 582 * page" backing, however the difference is that _all_ pages with a struct 583 * page (that is, those where pfn_valid is true) are refcounted and considered 584 * normal pages by the VM. The disadvantage is that pages are refcounted 585 * (which can be slower and simply not an option for some PFNMAP users). The 586 * advantage is that we don't have to follow the strict linearity rule of 587 * PFNMAP mappings in order to support COWable mappings. 588 * 589 */ 590 #ifdef __HAVE_ARCH_PTE_SPECIAL 591 # define HAVE_PTE_SPECIAL 1 592 #else 593 # define HAVE_PTE_SPECIAL 0 594 #endif 595 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 596 pte_t pte) 597 { 598 unsigned long pfn = pte_pfn(pte); 599 600 if (HAVE_PTE_SPECIAL) { 601 if (likely(!pte_special(pte))) 602 goto check_pfn; 603 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 604 return NULL; 605 if (!is_zero_pfn(pfn)) 606 print_bad_pte(vma, addr, pte, NULL); 607 return NULL; 608 } 609 610 /* !HAVE_PTE_SPECIAL case follows: */ 611 612 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 613 if (vma->vm_flags & VM_MIXEDMAP) { 614 if (!pfn_valid(pfn)) 615 return NULL; 616 goto out; 617 } else { 618 unsigned long off; 619 off = (addr - vma->vm_start) >> PAGE_SHIFT; 620 if (pfn == vma->vm_pgoff + off) 621 return NULL; 622 if (!is_cow_mapping(vma->vm_flags)) 623 return NULL; 624 } 625 } 626 627 if (is_zero_pfn(pfn)) 628 return NULL; 629 check_pfn: 630 if (unlikely(pfn > highest_memmap_pfn)) { 631 print_bad_pte(vma, addr, pte, NULL); 632 return NULL; 633 } 634 635 /* 636 * NOTE! We still have PageReserved() pages in the page tables. 637 * eg. VDSO mappings can cause them to exist. 638 */ 639 out: 640 return pfn_to_page(pfn); 641 } 642 643 /* 644 * copy one vm_area from one task to the other. Assumes the page tables 645 * already present in the new task to be cleared in the whole range 646 * covered by this vma. 647 */ 648 649 static inline unsigned long 650 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 651 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 652 unsigned long addr, int *rss) 653 { 654 unsigned long vm_flags = vma->vm_flags; 655 pte_t pte = *src_pte; 656 struct page *page; 657 658 /* pte contains position in swap or file, so copy. */ 659 if (unlikely(!pte_present(pte))) { 660 if (!pte_file(pte)) { 661 swp_entry_t entry = pte_to_swp_entry(pte); 662 663 if (swap_duplicate(entry) < 0) 664 return entry.val; 665 666 /* make sure dst_mm is on swapoff's mmlist. */ 667 if (unlikely(list_empty(&dst_mm->mmlist))) { 668 spin_lock(&mmlist_lock); 669 if (list_empty(&dst_mm->mmlist)) 670 list_add(&dst_mm->mmlist, 671 &src_mm->mmlist); 672 spin_unlock(&mmlist_lock); 673 } 674 if (likely(!non_swap_entry(entry))) 675 rss[MM_SWAPENTS]++; 676 else if (is_write_migration_entry(entry) && 677 is_cow_mapping(vm_flags)) { 678 /* 679 * COW mappings require pages in both parent 680 * and child to be set to read. 681 */ 682 make_migration_entry_read(&entry); 683 pte = swp_entry_to_pte(entry); 684 set_pte_at(src_mm, addr, src_pte, pte); 685 } 686 } 687 goto out_set_pte; 688 } 689 690 /* 691 * If it's a COW mapping, write protect it both 692 * in the parent and the child 693 */ 694 if (is_cow_mapping(vm_flags)) { 695 ptep_set_wrprotect(src_mm, addr, src_pte); 696 pte = pte_wrprotect(pte); 697 } 698 699 /* 700 * If it's a shared mapping, mark it clean in 701 * the child 702 */ 703 if (vm_flags & VM_SHARED) 704 pte = pte_mkclean(pte); 705 pte = pte_mkold(pte); 706 707 page = vm_normal_page(vma, addr, pte); 708 if (page) { 709 get_page(page); 710 page_dup_rmap(page); 711 if (PageAnon(page)) 712 rss[MM_ANONPAGES]++; 713 else 714 rss[MM_FILEPAGES]++; 715 } 716 717 out_set_pte: 718 set_pte_at(dst_mm, addr, dst_pte, pte); 719 return 0; 720 } 721 722 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 723 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 724 unsigned long addr, unsigned long end) 725 { 726 pte_t *orig_src_pte, *orig_dst_pte; 727 pte_t *src_pte, *dst_pte; 728 spinlock_t *src_ptl, *dst_ptl; 729 int progress = 0; 730 int rss[NR_MM_COUNTERS]; 731 swp_entry_t entry = (swp_entry_t){0}; 732 733 again: 734 init_rss_vec(rss); 735 736 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 737 if (!dst_pte) 738 return -ENOMEM; 739 src_pte = pte_offset_map_nested(src_pmd, addr); 740 src_ptl = pte_lockptr(src_mm, src_pmd); 741 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 742 orig_src_pte = src_pte; 743 orig_dst_pte = dst_pte; 744 arch_enter_lazy_mmu_mode(); 745 746 do { 747 /* 748 * We are holding two locks at this point - either of them 749 * could generate latencies in another task on another CPU. 750 */ 751 if (progress >= 32) { 752 progress = 0; 753 if (need_resched() || 754 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 755 break; 756 } 757 if (pte_none(*src_pte)) { 758 progress++; 759 continue; 760 } 761 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 762 vma, addr, rss); 763 if (entry.val) 764 break; 765 progress += 8; 766 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 767 768 arch_leave_lazy_mmu_mode(); 769 spin_unlock(src_ptl); 770 pte_unmap_nested(orig_src_pte); 771 add_mm_rss_vec(dst_mm, rss); 772 pte_unmap_unlock(orig_dst_pte, dst_ptl); 773 cond_resched(); 774 775 if (entry.val) { 776 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 777 return -ENOMEM; 778 progress = 0; 779 } 780 if (addr != end) 781 goto again; 782 return 0; 783 } 784 785 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 786 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 787 unsigned long addr, unsigned long end) 788 { 789 pmd_t *src_pmd, *dst_pmd; 790 unsigned long next; 791 792 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 793 if (!dst_pmd) 794 return -ENOMEM; 795 src_pmd = pmd_offset(src_pud, addr); 796 do { 797 next = pmd_addr_end(addr, end); 798 if (pmd_none_or_clear_bad(src_pmd)) 799 continue; 800 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 801 vma, addr, next)) 802 return -ENOMEM; 803 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 804 return 0; 805 } 806 807 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 808 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 809 unsigned long addr, unsigned long end) 810 { 811 pud_t *src_pud, *dst_pud; 812 unsigned long next; 813 814 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 815 if (!dst_pud) 816 return -ENOMEM; 817 src_pud = pud_offset(src_pgd, addr); 818 do { 819 next = pud_addr_end(addr, end); 820 if (pud_none_or_clear_bad(src_pud)) 821 continue; 822 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 823 vma, addr, next)) 824 return -ENOMEM; 825 } while (dst_pud++, src_pud++, addr = next, addr != end); 826 return 0; 827 } 828 829 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 830 struct vm_area_struct *vma) 831 { 832 pgd_t *src_pgd, *dst_pgd; 833 unsigned long next; 834 unsigned long addr = vma->vm_start; 835 unsigned long end = vma->vm_end; 836 int ret; 837 838 /* 839 * Don't copy ptes where a page fault will fill them correctly. 840 * Fork becomes much lighter when there are big shared or private 841 * readonly mappings. The tradeoff is that copy_page_range is more 842 * efficient than faulting. 843 */ 844 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 845 if (!vma->anon_vma) 846 return 0; 847 } 848 849 if (is_vm_hugetlb_page(vma)) 850 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 851 852 if (unlikely(is_pfn_mapping(vma))) { 853 /* 854 * We do not free on error cases below as remove_vma 855 * gets called on error from higher level routine 856 */ 857 ret = track_pfn_vma_copy(vma); 858 if (ret) 859 return ret; 860 } 861 862 /* 863 * We need to invalidate the secondary MMU mappings only when 864 * there could be a permission downgrade on the ptes of the 865 * parent mm. And a permission downgrade will only happen if 866 * is_cow_mapping() returns true. 867 */ 868 if (is_cow_mapping(vma->vm_flags)) 869 mmu_notifier_invalidate_range_start(src_mm, addr, end); 870 871 ret = 0; 872 dst_pgd = pgd_offset(dst_mm, addr); 873 src_pgd = pgd_offset(src_mm, addr); 874 do { 875 next = pgd_addr_end(addr, end); 876 if (pgd_none_or_clear_bad(src_pgd)) 877 continue; 878 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 879 vma, addr, next))) { 880 ret = -ENOMEM; 881 break; 882 } 883 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 884 885 if (is_cow_mapping(vma->vm_flags)) 886 mmu_notifier_invalidate_range_end(src_mm, 887 vma->vm_start, end); 888 return ret; 889 } 890 891 static unsigned long zap_pte_range(struct mmu_gather *tlb, 892 struct vm_area_struct *vma, pmd_t *pmd, 893 unsigned long addr, unsigned long end, 894 long *zap_work, struct zap_details *details) 895 { 896 struct mm_struct *mm = tlb->mm; 897 pte_t *pte; 898 spinlock_t *ptl; 899 int rss[NR_MM_COUNTERS]; 900 901 init_rss_vec(rss); 902 903 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 904 arch_enter_lazy_mmu_mode(); 905 do { 906 pte_t ptent = *pte; 907 if (pte_none(ptent)) { 908 (*zap_work)--; 909 continue; 910 } 911 912 (*zap_work) -= PAGE_SIZE; 913 914 if (pte_present(ptent)) { 915 struct page *page; 916 917 page = vm_normal_page(vma, addr, ptent); 918 if (unlikely(details) && page) { 919 /* 920 * unmap_shared_mapping_pages() wants to 921 * invalidate cache without truncating: 922 * unmap shared but keep private pages. 923 */ 924 if (details->check_mapping && 925 details->check_mapping != page->mapping) 926 continue; 927 /* 928 * Each page->index must be checked when 929 * invalidating or truncating nonlinear. 930 */ 931 if (details->nonlinear_vma && 932 (page->index < details->first_index || 933 page->index > details->last_index)) 934 continue; 935 } 936 ptent = ptep_get_and_clear_full(mm, addr, pte, 937 tlb->fullmm); 938 tlb_remove_tlb_entry(tlb, pte, addr); 939 if (unlikely(!page)) 940 continue; 941 if (unlikely(details) && details->nonlinear_vma 942 && linear_page_index(details->nonlinear_vma, 943 addr) != page->index) 944 set_pte_at(mm, addr, pte, 945 pgoff_to_pte(page->index)); 946 if (PageAnon(page)) 947 rss[MM_ANONPAGES]--; 948 else { 949 if (pte_dirty(ptent)) 950 set_page_dirty(page); 951 if (pte_young(ptent) && 952 likely(!VM_SequentialReadHint(vma))) 953 mark_page_accessed(page); 954 rss[MM_FILEPAGES]--; 955 } 956 page_remove_rmap(page); 957 if (unlikely(page_mapcount(page) < 0)) 958 print_bad_pte(vma, addr, ptent, page); 959 tlb_remove_page(tlb, page); 960 continue; 961 } 962 /* 963 * If details->check_mapping, we leave swap entries; 964 * if details->nonlinear_vma, we leave file entries. 965 */ 966 if (unlikely(details)) 967 continue; 968 if (pte_file(ptent)) { 969 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 970 print_bad_pte(vma, addr, ptent, NULL); 971 } else { 972 swp_entry_t entry = pte_to_swp_entry(ptent); 973 974 if (!non_swap_entry(entry)) 975 rss[MM_SWAPENTS]--; 976 if (unlikely(!free_swap_and_cache(entry))) 977 print_bad_pte(vma, addr, ptent, NULL); 978 } 979 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 980 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 981 982 add_mm_rss_vec(mm, rss); 983 arch_leave_lazy_mmu_mode(); 984 pte_unmap_unlock(pte - 1, ptl); 985 986 return addr; 987 } 988 989 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 990 struct vm_area_struct *vma, pud_t *pud, 991 unsigned long addr, unsigned long end, 992 long *zap_work, struct zap_details *details) 993 { 994 pmd_t *pmd; 995 unsigned long next; 996 997 pmd = pmd_offset(pud, addr); 998 do { 999 next = pmd_addr_end(addr, end); 1000 if (pmd_none_or_clear_bad(pmd)) { 1001 (*zap_work)--; 1002 continue; 1003 } 1004 next = zap_pte_range(tlb, vma, pmd, addr, next, 1005 zap_work, details); 1006 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 1007 1008 return addr; 1009 } 1010 1011 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1012 struct vm_area_struct *vma, pgd_t *pgd, 1013 unsigned long addr, unsigned long end, 1014 long *zap_work, struct zap_details *details) 1015 { 1016 pud_t *pud; 1017 unsigned long next; 1018 1019 pud = pud_offset(pgd, addr); 1020 do { 1021 next = pud_addr_end(addr, end); 1022 if (pud_none_or_clear_bad(pud)) { 1023 (*zap_work)--; 1024 continue; 1025 } 1026 next = zap_pmd_range(tlb, vma, pud, addr, next, 1027 zap_work, details); 1028 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 1029 1030 return addr; 1031 } 1032 1033 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1034 struct vm_area_struct *vma, 1035 unsigned long addr, unsigned long end, 1036 long *zap_work, struct zap_details *details) 1037 { 1038 pgd_t *pgd; 1039 unsigned long next; 1040 1041 if (details && !details->check_mapping && !details->nonlinear_vma) 1042 details = NULL; 1043 1044 BUG_ON(addr >= end); 1045 mem_cgroup_uncharge_start(); 1046 tlb_start_vma(tlb, vma); 1047 pgd = pgd_offset(vma->vm_mm, addr); 1048 do { 1049 next = pgd_addr_end(addr, end); 1050 if (pgd_none_or_clear_bad(pgd)) { 1051 (*zap_work)--; 1052 continue; 1053 } 1054 next = zap_pud_range(tlb, vma, pgd, addr, next, 1055 zap_work, details); 1056 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 1057 tlb_end_vma(tlb, vma); 1058 mem_cgroup_uncharge_end(); 1059 1060 return addr; 1061 } 1062 1063 #ifdef CONFIG_PREEMPT 1064 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 1065 #else 1066 /* No preempt: go for improved straight-line efficiency */ 1067 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 1068 #endif 1069 1070 /** 1071 * unmap_vmas - unmap a range of memory covered by a list of vma's 1072 * @tlbp: address of the caller's struct mmu_gather 1073 * @vma: the starting vma 1074 * @start_addr: virtual address at which to start unmapping 1075 * @end_addr: virtual address at which to end unmapping 1076 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1077 * @details: details of nonlinear truncation or shared cache invalidation 1078 * 1079 * Returns the end address of the unmapping (restart addr if interrupted). 1080 * 1081 * Unmap all pages in the vma list. 1082 * 1083 * We aim to not hold locks for too long (for scheduling latency reasons). 1084 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 1085 * return the ending mmu_gather to the caller. 1086 * 1087 * Only addresses between `start' and `end' will be unmapped. 1088 * 1089 * The VMA list must be sorted in ascending virtual address order. 1090 * 1091 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1092 * range after unmap_vmas() returns. So the only responsibility here is to 1093 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1094 * drops the lock and schedules. 1095 */ 1096 unsigned long unmap_vmas(struct mmu_gather **tlbp, 1097 struct vm_area_struct *vma, unsigned long start_addr, 1098 unsigned long end_addr, unsigned long *nr_accounted, 1099 struct zap_details *details) 1100 { 1101 long zap_work = ZAP_BLOCK_SIZE; 1102 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 1103 int tlb_start_valid = 0; 1104 unsigned long start = start_addr; 1105 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 1106 int fullmm = (*tlbp)->fullmm; 1107 struct mm_struct *mm = vma->vm_mm; 1108 1109 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1110 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1111 unsigned long end; 1112 1113 start = max(vma->vm_start, start_addr); 1114 if (start >= vma->vm_end) 1115 continue; 1116 end = min(vma->vm_end, end_addr); 1117 if (end <= vma->vm_start) 1118 continue; 1119 1120 if (vma->vm_flags & VM_ACCOUNT) 1121 *nr_accounted += (end - start) >> PAGE_SHIFT; 1122 1123 if (unlikely(is_pfn_mapping(vma))) 1124 untrack_pfn_vma(vma, 0, 0); 1125 1126 while (start != end) { 1127 if (!tlb_start_valid) { 1128 tlb_start = start; 1129 tlb_start_valid = 1; 1130 } 1131 1132 if (unlikely(is_vm_hugetlb_page(vma))) { 1133 /* 1134 * It is undesirable to test vma->vm_file as it 1135 * should be non-null for valid hugetlb area. 1136 * However, vm_file will be NULL in the error 1137 * cleanup path of do_mmap_pgoff. When 1138 * hugetlbfs ->mmap method fails, 1139 * do_mmap_pgoff() nullifies vma->vm_file 1140 * before calling this function to clean up. 1141 * Since no pte has actually been setup, it is 1142 * safe to do nothing in this case. 1143 */ 1144 if (vma->vm_file) { 1145 unmap_hugepage_range(vma, start, end, NULL); 1146 zap_work -= (end - start) / 1147 pages_per_huge_page(hstate_vma(vma)); 1148 } 1149 1150 start = end; 1151 } else 1152 start = unmap_page_range(*tlbp, vma, 1153 start, end, &zap_work, details); 1154 1155 if (zap_work > 0) { 1156 BUG_ON(start != end); 1157 break; 1158 } 1159 1160 tlb_finish_mmu(*tlbp, tlb_start, start); 1161 1162 if (need_resched() || 1163 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1164 if (i_mmap_lock) { 1165 *tlbp = NULL; 1166 goto out; 1167 } 1168 cond_resched(); 1169 } 1170 1171 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1172 tlb_start_valid = 0; 1173 zap_work = ZAP_BLOCK_SIZE; 1174 } 1175 } 1176 out: 1177 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1178 return start; /* which is now the end (or restart) address */ 1179 } 1180 1181 /** 1182 * zap_page_range - remove user pages in a given range 1183 * @vma: vm_area_struct holding the applicable pages 1184 * @address: starting address of pages to zap 1185 * @size: number of bytes to zap 1186 * @details: details of nonlinear truncation or shared cache invalidation 1187 */ 1188 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1189 unsigned long size, struct zap_details *details) 1190 { 1191 struct mm_struct *mm = vma->vm_mm; 1192 struct mmu_gather *tlb; 1193 unsigned long end = address + size; 1194 unsigned long nr_accounted = 0; 1195 1196 lru_add_drain(); 1197 tlb = tlb_gather_mmu(mm, 0); 1198 update_hiwater_rss(mm); 1199 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1200 if (tlb) 1201 tlb_finish_mmu(tlb, address, end); 1202 return end; 1203 } 1204 1205 /** 1206 * zap_vma_ptes - remove ptes mapping the vma 1207 * @vma: vm_area_struct holding ptes to be zapped 1208 * @address: starting address of pages to zap 1209 * @size: number of bytes to zap 1210 * 1211 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1212 * 1213 * The entire address range must be fully contained within the vma. 1214 * 1215 * Returns 0 if successful. 1216 */ 1217 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1218 unsigned long size) 1219 { 1220 if (address < vma->vm_start || address + size > vma->vm_end || 1221 !(vma->vm_flags & VM_PFNMAP)) 1222 return -1; 1223 zap_page_range(vma, address, size, NULL); 1224 return 0; 1225 } 1226 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1227 1228 /** 1229 * follow_page - look up a page descriptor from a user-virtual address 1230 * @vma: vm_area_struct mapping @address 1231 * @address: virtual address to look up 1232 * @flags: flags modifying lookup behaviour 1233 * 1234 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1235 * 1236 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1237 * an error pointer if there is a mapping to something not represented 1238 * by a page descriptor (see also vm_normal_page()). 1239 */ 1240 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1241 unsigned int flags) 1242 { 1243 pgd_t *pgd; 1244 pud_t *pud; 1245 pmd_t *pmd; 1246 pte_t *ptep, pte; 1247 spinlock_t *ptl; 1248 struct page *page; 1249 struct mm_struct *mm = vma->vm_mm; 1250 1251 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1252 if (!IS_ERR(page)) { 1253 BUG_ON(flags & FOLL_GET); 1254 goto out; 1255 } 1256 1257 page = NULL; 1258 pgd = pgd_offset(mm, address); 1259 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1260 goto no_page_table; 1261 1262 pud = pud_offset(pgd, address); 1263 if (pud_none(*pud)) 1264 goto no_page_table; 1265 if (pud_huge(*pud)) { 1266 BUG_ON(flags & FOLL_GET); 1267 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1268 goto out; 1269 } 1270 if (unlikely(pud_bad(*pud))) 1271 goto no_page_table; 1272 1273 pmd = pmd_offset(pud, address); 1274 if (pmd_none(*pmd)) 1275 goto no_page_table; 1276 if (pmd_huge(*pmd)) { 1277 BUG_ON(flags & FOLL_GET); 1278 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1279 goto out; 1280 } 1281 if (unlikely(pmd_bad(*pmd))) 1282 goto no_page_table; 1283 1284 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1285 1286 pte = *ptep; 1287 if (!pte_present(pte)) 1288 goto no_page; 1289 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1290 goto unlock; 1291 1292 page = vm_normal_page(vma, address, pte); 1293 if (unlikely(!page)) { 1294 if ((flags & FOLL_DUMP) || 1295 !is_zero_pfn(pte_pfn(pte))) 1296 goto bad_page; 1297 page = pte_page(pte); 1298 } 1299 1300 if (flags & FOLL_GET) 1301 get_page(page); 1302 if (flags & FOLL_TOUCH) { 1303 if ((flags & FOLL_WRITE) && 1304 !pte_dirty(pte) && !PageDirty(page)) 1305 set_page_dirty(page); 1306 /* 1307 * pte_mkyoung() would be more correct here, but atomic care 1308 * is needed to avoid losing the dirty bit: it is easier to use 1309 * mark_page_accessed(). 1310 */ 1311 mark_page_accessed(page); 1312 } 1313 unlock: 1314 pte_unmap_unlock(ptep, ptl); 1315 out: 1316 return page; 1317 1318 bad_page: 1319 pte_unmap_unlock(ptep, ptl); 1320 return ERR_PTR(-EFAULT); 1321 1322 no_page: 1323 pte_unmap_unlock(ptep, ptl); 1324 if (!pte_none(pte)) 1325 return page; 1326 1327 no_page_table: 1328 /* 1329 * When core dumping an enormous anonymous area that nobody 1330 * has touched so far, we don't want to allocate unnecessary pages or 1331 * page tables. Return error instead of NULL to skip handle_mm_fault, 1332 * then get_dump_page() will return NULL to leave a hole in the dump. 1333 * But we can only make this optimization where a hole would surely 1334 * be zero-filled if handle_mm_fault() actually did handle it. 1335 */ 1336 if ((flags & FOLL_DUMP) && 1337 (!vma->vm_ops || !vma->vm_ops->fault)) 1338 return ERR_PTR(-EFAULT); 1339 return page; 1340 } 1341 1342 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1343 unsigned long start, int nr_pages, unsigned int gup_flags, 1344 struct page **pages, struct vm_area_struct **vmas) 1345 { 1346 int i; 1347 unsigned long vm_flags; 1348 1349 if (nr_pages <= 0) 1350 return 0; 1351 1352 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1353 1354 /* 1355 * Require read or write permissions. 1356 * If FOLL_FORCE is set, we only require the "MAY" flags. 1357 */ 1358 vm_flags = (gup_flags & FOLL_WRITE) ? 1359 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1360 vm_flags &= (gup_flags & FOLL_FORCE) ? 1361 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1362 i = 0; 1363 1364 do { 1365 struct vm_area_struct *vma; 1366 1367 vma = find_extend_vma(mm, start); 1368 if (!vma && in_gate_area(tsk, start)) { 1369 unsigned long pg = start & PAGE_MASK; 1370 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1371 pgd_t *pgd; 1372 pud_t *pud; 1373 pmd_t *pmd; 1374 pte_t *pte; 1375 1376 /* user gate pages are read-only */ 1377 if (gup_flags & FOLL_WRITE) 1378 return i ? : -EFAULT; 1379 if (pg > TASK_SIZE) 1380 pgd = pgd_offset_k(pg); 1381 else 1382 pgd = pgd_offset_gate(mm, pg); 1383 BUG_ON(pgd_none(*pgd)); 1384 pud = pud_offset(pgd, pg); 1385 BUG_ON(pud_none(*pud)); 1386 pmd = pmd_offset(pud, pg); 1387 if (pmd_none(*pmd)) 1388 return i ? : -EFAULT; 1389 pte = pte_offset_map(pmd, pg); 1390 if (pte_none(*pte)) { 1391 pte_unmap(pte); 1392 return i ? : -EFAULT; 1393 } 1394 if (pages) { 1395 struct page *page; 1396 1397 page = vm_normal_page(gate_vma, start, *pte); 1398 if (!page) { 1399 if (!(gup_flags & FOLL_DUMP) && 1400 is_zero_pfn(pte_pfn(*pte))) 1401 page = pte_page(*pte); 1402 else { 1403 pte_unmap(pte); 1404 return i ? : -EFAULT; 1405 } 1406 } 1407 pages[i] = page; 1408 get_page(page); 1409 } 1410 pte_unmap(pte); 1411 if (vmas) 1412 vmas[i] = gate_vma; 1413 i++; 1414 start += PAGE_SIZE; 1415 nr_pages--; 1416 continue; 1417 } 1418 1419 if (!vma || 1420 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1421 !(vm_flags & vma->vm_flags)) 1422 return i ? : -EFAULT; 1423 1424 if (is_vm_hugetlb_page(vma)) { 1425 i = follow_hugetlb_page(mm, vma, pages, vmas, 1426 &start, &nr_pages, i, gup_flags); 1427 continue; 1428 } 1429 1430 do { 1431 struct page *page; 1432 unsigned int foll_flags = gup_flags; 1433 1434 /* 1435 * If we have a pending SIGKILL, don't keep faulting 1436 * pages and potentially allocating memory. 1437 */ 1438 if (unlikely(fatal_signal_pending(current))) 1439 return i ? i : -ERESTARTSYS; 1440 1441 cond_resched(); 1442 while (!(page = follow_page(vma, start, foll_flags))) { 1443 int ret; 1444 1445 ret = handle_mm_fault(mm, vma, start, 1446 (foll_flags & FOLL_WRITE) ? 1447 FAULT_FLAG_WRITE : 0); 1448 1449 if (ret & VM_FAULT_ERROR) { 1450 if (ret & VM_FAULT_OOM) 1451 return i ? i : -ENOMEM; 1452 if (ret & 1453 (VM_FAULT_HWPOISON|VM_FAULT_SIGBUS)) 1454 return i ? i : -EFAULT; 1455 BUG(); 1456 } 1457 if (ret & VM_FAULT_MAJOR) 1458 tsk->maj_flt++; 1459 else 1460 tsk->min_flt++; 1461 1462 /* 1463 * The VM_FAULT_WRITE bit tells us that 1464 * do_wp_page has broken COW when necessary, 1465 * even if maybe_mkwrite decided not to set 1466 * pte_write. We can thus safely do subsequent 1467 * page lookups as if they were reads. But only 1468 * do so when looping for pte_write is futile: 1469 * in some cases userspace may also be wanting 1470 * to write to the gotten user page, which a 1471 * read fault here might prevent (a readonly 1472 * page might get reCOWed by userspace write). 1473 */ 1474 if ((ret & VM_FAULT_WRITE) && 1475 !(vma->vm_flags & VM_WRITE)) 1476 foll_flags &= ~FOLL_WRITE; 1477 1478 cond_resched(); 1479 } 1480 if (IS_ERR(page)) 1481 return i ? i : PTR_ERR(page); 1482 if (pages) { 1483 pages[i] = page; 1484 1485 flush_anon_page(vma, page, start); 1486 flush_dcache_page(page); 1487 } 1488 if (vmas) 1489 vmas[i] = vma; 1490 i++; 1491 start += PAGE_SIZE; 1492 nr_pages--; 1493 } while (nr_pages && start < vma->vm_end); 1494 } while (nr_pages); 1495 return i; 1496 } 1497 1498 /** 1499 * get_user_pages() - pin user pages in memory 1500 * @tsk: task_struct of target task 1501 * @mm: mm_struct of target mm 1502 * @start: starting user address 1503 * @nr_pages: number of pages from start to pin 1504 * @write: whether pages will be written to by the caller 1505 * @force: whether to force write access even if user mapping is 1506 * readonly. This will result in the page being COWed even 1507 * in MAP_SHARED mappings. You do not want this. 1508 * @pages: array that receives pointers to the pages pinned. 1509 * Should be at least nr_pages long. Or NULL, if caller 1510 * only intends to ensure the pages are faulted in. 1511 * @vmas: array of pointers to vmas corresponding to each page. 1512 * Or NULL if the caller does not require them. 1513 * 1514 * Returns number of pages pinned. This may be fewer than the number 1515 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1516 * were pinned, returns -errno. Each page returned must be released 1517 * with a put_page() call when it is finished with. vmas will only 1518 * remain valid while mmap_sem is held. 1519 * 1520 * Must be called with mmap_sem held for read or write. 1521 * 1522 * get_user_pages walks a process's page tables and takes a reference to 1523 * each struct page that each user address corresponds to at a given 1524 * instant. That is, it takes the page that would be accessed if a user 1525 * thread accesses the given user virtual address at that instant. 1526 * 1527 * This does not guarantee that the page exists in the user mappings when 1528 * get_user_pages returns, and there may even be a completely different 1529 * page there in some cases (eg. if mmapped pagecache has been invalidated 1530 * and subsequently re faulted). However it does guarantee that the page 1531 * won't be freed completely. And mostly callers simply care that the page 1532 * contains data that was valid *at some point in time*. Typically, an IO 1533 * or similar operation cannot guarantee anything stronger anyway because 1534 * locks can't be held over the syscall boundary. 1535 * 1536 * If write=0, the page must not be written to. If the page is written to, 1537 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1538 * after the page is finished with, and before put_page is called. 1539 * 1540 * get_user_pages is typically used for fewer-copy IO operations, to get a 1541 * handle on the memory by some means other than accesses via the user virtual 1542 * addresses. The pages may be submitted for DMA to devices or accessed via 1543 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1544 * use the correct cache flushing APIs. 1545 * 1546 * See also get_user_pages_fast, for performance critical applications. 1547 */ 1548 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1549 unsigned long start, int nr_pages, int write, int force, 1550 struct page **pages, struct vm_area_struct **vmas) 1551 { 1552 int flags = FOLL_TOUCH; 1553 1554 if (pages) 1555 flags |= FOLL_GET; 1556 if (write) 1557 flags |= FOLL_WRITE; 1558 if (force) 1559 flags |= FOLL_FORCE; 1560 1561 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); 1562 } 1563 EXPORT_SYMBOL(get_user_pages); 1564 1565 /** 1566 * get_dump_page() - pin user page in memory while writing it to core dump 1567 * @addr: user address 1568 * 1569 * Returns struct page pointer of user page pinned for dump, 1570 * to be freed afterwards by page_cache_release() or put_page(). 1571 * 1572 * Returns NULL on any kind of failure - a hole must then be inserted into 1573 * the corefile, to preserve alignment with its headers; and also returns 1574 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1575 * allowing a hole to be left in the corefile to save diskspace. 1576 * 1577 * Called without mmap_sem, but after all other threads have been killed. 1578 */ 1579 #ifdef CONFIG_ELF_CORE 1580 struct page *get_dump_page(unsigned long addr) 1581 { 1582 struct vm_area_struct *vma; 1583 struct page *page; 1584 1585 if (__get_user_pages(current, current->mm, addr, 1, 1586 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma) < 1) 1587 return NULL; 1588 flush_cache_page(vma, addr, page_to_pfn(page)); 1589 return page; 1590 } 1591 #endif /* CONFIG_ELF_CORE */ 1592 1593 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1594 spinlock_t **ptl) 1595 { 1596 pgd_t * pgd = pgd_offset(mm, addr); 1597 pud_t * pud = pud_alloc(mm, pgd, addr); 1598 if (pud) { 1599 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1600 if (pmd) 1601 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1602 } 1603 return NULL; 1604 } 1605 1606 /* 1607 * This is the old fallback for page remapping. 1608 * 1609 * For historical reasons, it only allows reserved pages. Only 1610 * old drivers should use this, and they needed to mark their 1611 * pages reserved for the old functions anyway. 1612 */ 1613 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1614 struct page *page, pgprot_t prot) 1615 { 1616 struct mm_struct *mm = vma->vm_mm; 1617 int retval; 1618 pte_t *pte; 1619 spinlock_t *ptl; 1620 1621 retval = -EINVAL; 1622 if (PageAnon(page)) 1623 goto out; 1624 retval = -ENOMEM; 1625 flush_dcache_page(page); 1626 pte = get_locked_pte(mm, addr, &ptl); 1627 if (!pte) 1628 goto out; 1629 retval = -EBUSY; 1630 if (!pte_none(*pte)) 1631 goto out_unlock; 1632 1633 /* Ok, finally just insert the thing.. */ 1634 get_page(page); 1635 inc_mm_counter_fast(mm, MM_FILEPAGES); 1636 page_add_file_rmap(page); 1637 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1638 1639 retval = 0; 1640 pte_unmap_unlock(pte, ptl); 1641 return retval; 1642 out_unlock: 1643 pte_unmap_unlock(pte, ptl); 1644 out: 1645 return retval; 1646 } 1647 1648 /** 1649 * vm_insert_page - insert single page into user vma 1650 * @vma: user vma to map to 1651 * @addr: target user address of this page 1652 * @page: source kernel page 1653 * 1654 * This allows drivers to insert individual pages they've allocated 1655 * into a user vma. 1656 * 1657 * The page has to be a nice clean _individual_ kernel allocation. 1658 * If you allocate a compound page, you need to have marked it as 1659 * such (__GFP_COMP), or manually just split the page up yourself 1660 * (see split_page()). 1661 * 1662 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1663 * took an arbitrary page protection parameter. This doesn't allow 1664 * that. Your vma protection will have to be set up correctly, which 1665 * means that if you want a shared writable mapping, you'd better 1666 * ask for a shared writable mapping! 1667 * 1668 * The page does not need to be reserved. 1669 */ 1670 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1671 struct page *page) 1672 { 1673 if (addr < vma->vm_start || addr >= vma->vm_end) 1674 return -EFAULT; 1675 if (!page_count(page)) 1676 return -EINVAL; 1677 vma->vm_flags |= VM_INSERTPAGE; 1678 return insert_page(vma, addr, page, vma->vm_page_prot); 1679 } 1680 EXPORT_SYMBOL(vm_insert_page); 1681 1682 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1683 unsigned long pfn, pgprot_t prot) 1684 { 1685 struct mm_struct *mm = vma->vm_mm; 1686 int retval; 1687 pte_t *pte, entry; 1688 spinlock_t *ptl; 1689 1690 retval = -ENOMEM; 1691 pte = get_locked_pte(mm, addr, &ptl); 1692 if (!pte) 1693 goto out; 1694 retval = -EBUSY; 1695 if (!pte_none(*pte)) 1696 goto out_unlock; 1697 1698 /* Ok, finally just insert the thing.. */ 1699 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1700 set_pte_at(mm, addr, pte, entry); 1701 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1702 1703 retval = 0; 1704 out_unlock: 1705 pte_unmap_unlock(pte, ptl); 1706 out: 1707 return retval; 1708 } 1709 1710 /** 1711 * vm_insert_pfn - insert single pfn into user vma 1712 * @vma: user vma to map to 1713 * @addr: target user address of this page 1714 * @pfn: source kernel pfn 1715 * 1716 * Similar to vm_inert_page, this allows drivers to insert individual pages 1717 * they've allocated into a user vma. Same comments apply. 1718 * 1719 * This function should only be called from a vm_ops->fault handler, and 1720 * in that case the handler should return NULL. 1721 * 1722 * vma cannot be a COW mapping. 1723 * 1724 * As this is called only for pages that do not currently exist, we 1725 * do not need to flush old virtual caches or the TLB. 1726 */ 1727 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1728 unsigned long pfn) 1729 { 1730 int ret; 1731 pgprot_t pgprot = vma->vm_page_prot; 1732 /* 1733 * Technically, architectures with pte_special can avoid all these 1734 * restrictions (same for remap_pfn_range). However we would like 1735 * consistency in testing and feature parity among all, so we should 1736 * try to keep these invariants in place for everybody. 1737 */ 1738 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1739 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1740 (VM_PFNMAP|VM_MIXEDMAP)); 1741 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1742 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1743 1744 if (addr < vma->vm_start || addr >= vma->vm_end) 1745 return -EFAULT; 1746 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1747 return -EINVAL; 1748 1749 ret = insert_pfn(vma, addr, pfn, pgprot); 1750 1751 if (ret) 1752 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1753 1754 return ret; 1755 } 1756 EXPORT_SYMBOL(vm_insert_pfn); 1757 1758 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1759 unsigned long pfn) 1760 { 1761 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1762 1763 if (addr < vma->vm_start || addr >= vma->vm_end) 1764 return -EFAULT; 1765 1766 /* 1767 * If we don't have pte special, then we have to use the pfn_valid() 1768 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1769 * refcount the page if pfn_valid is true (hence insert_page rather 1770 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1771 * without pte special, it would there be refcounted as a normal page. 1772 */ 1773 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1774 struct page *page; 1775 1776 page = pfn_to_page(pfn); 1777 return insert_page(vma, addr, page, vma->vm_page_prot); 1778 } 1779 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1780 } 1781 EXPORT_SYMBOL(vm_insert_mixed); 1782 1783 /* 1784 * maps a range of physical memory into the requested pages. the old 1785 * mappings are removed. any references to nonexistent pages results 1786 * in null mappings (currently treated as "copy-on-access") 1787 */ 1788 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1789 unsigned long addr, unsigned long end, 1790 unsigned long pfn, pgprot_t prot) 1791 { 1792 pte_t *pte; 1793 spinlock_t *ptl; 1794 1795 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1796 if (!pte) 1797 return -ENOMEM; 1798 arch_enter_lazy_mmu_mode(); 1799 do { 1800 BUG_ON(!pte_none(*pte)); 1801 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1802 pfn++; 1803 } while (pte++, addr += PAGE_SIZE, addr != end); 1804 arch_leave_lazy_mmu_mode(); 1805 pte_unmap_unlock(pte - 1, ptl); 1806 return 0; 1807 } 1808 1809 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1810 unsigned long addr, unsigned long end, 1811 unsigned long pfn, pgprot_t prot) 1812 { 1813 pmd_t *pmd; 1814 unsigned long next; 1815 1816 pfn -= addr >> PAGE_SHIFT; 1817 pmd = pmd_alloc(mm, pud, addr); 1818 if (!pmd) 1819 return -ENOMEM; 1820 do { 1821 next = pmd_addr_end(addr, end); 1822 if (remap_pte_range(mm, pmd, addr, next, 1823 pfn + (addr >> PAGE_SHIFT), prot)) 1824 return -ENOMEM; 1825 } while (pmd++, addr = next, addr != end); 1826 return 0; 1827 } 1828 1829 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1830 unsigned long addr, unsigned long end, 1831 unsigned long pfn, pgprot_t prot) 1832 { 1833 pud_t *pud; 1834 unsigned long next; 1835 1836 pfn -= addr >> PAGE_SHIFT; 1837 pud = pud_alloc(mm, pgd, addr); 1838 if (!pud) 1839 return -ENOMEM; 1840 do { 1841 next = pud_addr_end(addr, end); 1842 if (remap_pmd_range(mm, pud, addr, next, 1843 pfn + (addr >> PAGE_SHIFT), prot)) 1844 return -ENOMEM; 1845 } while (pud++, addr = next, addr != end); 1846 return 0; 1847 } 1848 1849 /** 1850 * remap_pfn_range - remap kernel memory to userspace 1851 * @vma: user vma to map to 1852 * @addr: target user address to start at 1853 * @pfn: physical address of kernel memory 1854 * @size: size of map area 1855 * @prot: page protection flags for this mapping 1856 * 1857 * Note: this is only safe if the mm semaphore is held when called. 1858 */ 1859 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1860 unsigned long pfn, unsigned long size, pgprot_t prot) 1861 { 1862 pgd_t *pgd; 1863 unsigned long next; 1864 unsigned long end = addr + PAGE_ALIGN(size); 1865 struct mm_struct *mm = vma->vm_mm; 1866 int err; 1867 1868 /* 1869 * Physically remapped pages are special. Tell the 1870 * rest of the world about it: 1871 * VM_IO tells people not to look at these pages 1872 * (accesses can have side effects). 1873 * VM_RESERVED is specified all over the place, because 1874 * in 2.4 it kept swapout's vma scan off this vma; but 1875 * in 2.6 the LRU scan won't even find its pages, so this 1876 * flag means no more than count its pages in reserved_vm, 1877 * and omit it from core dump, even when VM_IO turned off. 1878 * VM_PFNMAP tells the core MM that the base pages are just 1879 * raw PFN mappings, and do not have a "struct page" associated 1880 * with them. 1881 * 1882 * There's a horrible special case to handle copy-on-write 1883 * behaviour that some programs depend on. We mark the "original" 1884 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1885 */ 1886 if (addr == vma->vm_start && end == vma->vm_end) { 1887 vma->vm_pgoff = pfn; 1888 vma->vm_flags |= VM_PFN_AT_MMAP; 1889 } else if (is_cow_mapping(vma->vm_flags)) 1890 return -EINVAL; 1891 1892 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1893 1894 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 1895 if (err) { 1896 /* 1897 * To indicate that track_pfn related cleanup is not 1898 * needed from higher level routine calling unmap_vmas 1899 */ 1900 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 1901 vma->vm_flags &= ~VM_PFN_AT_MMAP; 1902 return -EINVAL; 1903 } 1904 1905 BUG_ON(addr >= end); 1906 pfn -= addr >> PAGE_SHIFT; 1907 pgd = pgd_offset(mm, addr); 1908 flush_cache_range(vma, addr, end); 1909 do { 1910 next = pgd_addr_end(addr, end); 1911 err = remap_pud_range(mm, pgd, addr, next, 1912 pfn + (addr >> PAGE_SHIFT), prot); 1913 if (err) 1914 break; 1915 } while (pgd++, addr = next, addr != end); 1916 1917 if (err) 1918 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1919 1920 return err; 1921 } 1922 EXPORT_SYMBOL(remap_pfn_range); 1923 1924 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1925 unsigned long addr, unsigned long end, 1926 pte_fn_t fn, void *data) 1927 { 1928 pte_t *pte; 1929 int err; 1930 pgtable_t token; 1931 spinlock_t *uninitialized_var(ptl); 1932 1933 pte = (mm == &init_mm) ? 1934 pte_alloc_kernel(pmd, addr) : 1935 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1936 if (!pte) 1937 return -ENOMEM; 1938 1939 BUG_ON(pmd_huge(*pmd)); 1940 1941 arch_enter_lazy_mmu_mode(); 1942 1943 token = pmd_pgtable(*pmd); 1944 1945 do { 1946 err = fn(pte++, token, addr, data); 1947 if (err) 1948 break; 1949 } while (addr += PAGE_SIZE, addr != end); 1950 1951 arch_leave_lazy_mmu_mode(); 1952 1953 if (mm != &init_mm) 1954 pte_unmap_unlock(pte-1, ptl); 1955 return err; 1956 } 1957 1958 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1959 unsigned long addr, unsigned long end, 1960 pte_fn_t fn, void *data) 1961 { 1962 pmd_t *pmd; 1963 unsigned long next; 1964 int err; 1965 1966 BUG_ON(pud_huge(*pud)); 1967 1968 pmd = pmd_alloc(mm, pud, addr); 1969 if (!pmd) 1970 return -ENOMEM; 1971 do { 1972 next = pmd_addr_end(addr, end); 1973 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1974 if (err) 1975 break; 1976 } while (pmd++, addr = next, addr != end); 1977 return err; 1978 } 1979 1980 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1981 unsigned long addr, unsigned long end, 1982 pte_fn_t fn, void *data) 1983 { 1984 pud_t *pud; 1985 unsigned long next; 1986 int err; 1987 1988 pud = pud_alloc(mm, pgd, addr); 1989 if (!pud) 1990 return -ENOMEM; 1991 do { 1992 next = pud_addr_end(addr, end); 1993 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1994 if (err) 1995 break; 1996 } while (pud++, addr = next, addr != end); 1997 return err; 1998 } 1999 2000 /* 2001 * Scan a region of virtual memory, filling in page tables as necessary 2002 * and calling a provided function on each leaf page table. 2003 */ 2004 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2005 unsigned long size, pte_fn_t fn, void *data) 2006 { 2007 pgd_t *pgd; 2008 unsigned long next; 2009 unsigned long end = addr + size; 2010 int err; 2011 2012 BUG_ON(addr >= end); 2013 pgd = pgd_offset(mm, addr); 2014 do { 2015 next = pgd_addr_end(addr, end); 2016 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2017 if (err) 2018 break; 2019 } while (pgd++, addr = next, addr != end); 2020 2021 return err; 2022 } 2023 EXPORT_SYMBOL_GPL(apply_to_page_range); 2024 2025 /* 2026 * handle_pte_fault chooses page fault handler according to an entry 2027 * which was read non-atomically. Before making any commitment, on 2028 * those architectures or configurations (e.g. i386 with PAE) which 2029 * might give a mix of unmatched parts, do_swap_page and do_file_page 2030 * must check under lock before unmapping the pte and proceeding 2031 * (but do_wp_page is only called after already making such a check; 2032 * and do_anonymous_page and do_no_page can safely check later on). 2033 */ 2034 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2035 pte_t *page_table, pte_t orig_pte) 2036 { 2037 int same = 1; 2038 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2039 if (sizeof(pte_t) > sizeof(unsigned long)) { 2040 spinlock_t *ptl = pte_lockptr(mm, pmd); 2041 spin_lock(ptl); 2042 same = pte_same(*page_table, orig_pte); 2043 spin_unlock(ptl); 2044 } 2045 #endif 2046 pte_unmap(page_table); 2047 return same; 2048 } 2049 2050 /* 2051 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 2052 * servicing faults for write access. In the normal case, do always want 2053 * pte_mkwrite. But get_user_pages can cause write faults for mappings 2054 * that do not have writing enabled, when used by access_process_vm. 2055 */ 2056 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 2057 { 2058 if (likely(vma->vm_flags & VM_WRITE)) 2059 pte = pte_mkwrite(pte); 2060 return pte; 2061 } 2062 2063 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2064 { 2065 /* 2066 * If the source page was a PFN mapping, we don't have 2067 * a "struct page" for it. We do a best-effort copy by 2068 * just copying from the original user address. If that 2069 * fails, we just zero-fill it. Live with it. 2070 */ 2071 if (unlikely(!src)) { 2072 void *kaddr = kmap_atomic(dst, KM_USER0); 2073 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2074 2075 /* 2076 * This really shouldn't fail, because the page is there 2077 * in the page tables. But it might just be unreadable, 2078 * in which case we just give up and fill the result with 2079 * zeroes. 2080 */ 2081 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2082 memset(kaddr, 0, PAGE_SIZE); 2083 kunmap_atomic(kaddr, KM_USER0); 2084 flush_dcache_page(dst); 2085 } else 2086 copy_user_highpage(dst, src, va, vma); 2087 } 2088 2089 /* 2090 * This routine handles present pages, when users try to write 2091 * to a shared page. It is done by copying the page to a new address 2092 * and decrementing the shared-page counter for the old page. 2093 * 2094 * Note that this routine assumes that the protection checks have been 2095 * done by the caller (the low-level page fault routine in most cases). 2096 * Thus we can safely just mark it writable once we've done any necessary 2097 * COW. 2098 * 2099 * We also mark the page dirty at this point even though the page will 2100 * change only once the write actually happens. This avoids a few races, 2101 * and potentially makes it more efficient. 2102 * 2103 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2104 * but allow concurrent faults), with pte both mapped and locked. 2105 * We return with mmap_sem still held, but pte unmapped and unlocked. 2106 */ 2107 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2108 unsigned long address, pte_t *page_table, pmd_t *pmd, 2109 spinlock_t *ptl, pte_t orig_pte) 2110 { 2111 struct page *old_page, *new_page; 2112 pte_t entry; 2113 int reuse = 0, ret = 0; 2114 int page_mkwrite = 0; 2115 struct page *dirty_page = NULL; 2116 2117 old_page = vm_normal_page(vma, address, orig_pte); 2118 if (!old_page) { 2119 /* 2120 * VM_MIXEDMAP !pfn_valid() case 2121 * 2122 * We should not cow pages in a shared writeable mapping. 2123 * Just mark the pages writable as we can't do any dirty 2124 * accounting on raw pfn maps. 2125 */ 2126 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2127 (VM_WRITE|VM_SHARED)) 2128 goto reuse; 2129 goto gotten; 2130 } 2131 2132 /* 2133 * Take out anonymous pages first, anonymous shared vmas are 2134 * not dirty accountable. 2135 */ 2136 if (PageAnon(old_page) && !PageKsm(old_page)) { 2137 if (!trylock_page(old_page)) { 2138 page_cache_get(old_page); 2139 pte_unmap_unlock(page_table, ptl); 2140 lock_page(old_page); 2141 page_table = pte_offset_map_lock(mm, pmd, address, 2142 &ptl); 2143 if (!pte_same(*page_table, orig_pte)) { 2144 unlock_page(old_page); 2145 page_cache_release(old_page); 2146 goto unlock; 2147 } 2148 page_cache_release(old_page); 2149 } 2150 reuse = reuse_swap_page(old_page); 2151 if (reuse) 2152 /* 2153 * The page is all ours. Move it to our anon_vma so 2154 * the rmap code will not search our parent or siblings. 2155 * Protected against the rmap code by the page lock. 2156 */ 2157 page_move_anon_rmap(old_page, vma, address); 2158 unlock_page(old_page); 2159 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2160 (VM_WRITE|VM_SHARED))) { 2161 /* 2162 * Only catch write-faults on shared writable pages, 2163 * read-only shared pages can get COWed by 2164 * get_user_pages(.write=1, .force=1). 2165 */ 2166 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2167 struct vm_fault vmf; 2168 int tmp; 2169 2170 vmf.virtual_address = (void __user *)(address & 2171 PAGE_MASK); 2172 vmf.pgoff = old_page->index; 2173 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2174 vmf.page = old_page; 2175 2176 /* 2177 * Notify the address space that the page is about to 2178 * become writable so that it can prohibit this or wait 2179 * for the page to get into an appropriate state. 2180 * 2181 * We do this without the lock held, so that it can 2182 * sleep if it needs to. 2183 */ 2184 page_cache_get(old_page); 2185 pte_unmap_unlock(page_table, ptl); 2186 2187 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2188 if (unlikely(tmp & 2189 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2190 ret = tmp; 2191 goto unwritable_page; 2192 } 2193 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2194 lock_page(old_page); 2195 if (!old_page->mapping) { 2196 ret = 0; /* retry the fault */ 2197 unlock_page(old_page); 2198 goto unwritable_page; 2199 } 2200 } else 2201 VM_BUG_ON(!PageLocked(old_page)); 2202 2203 /* 2204 * Since we dropped the lock we need to revalidate 2205 * the PTE as someone else may have changed it. If 2206 * they did, we just return, as we can count on the 2207 * MMU to tell us if they didn't also make it writable. 2208 */ 2209 page_table = pte_offset_map_lock(mm, pmd, address, 2210 &ptl); 2211 if (!pte_same(*page_table, orig_pte)) { 2212 unlock_page(old_page); 2213 page_cache_release(old_page); 2214 goto unlock; 2215 } 2216 2217 page_mkwrite = 1; 2218 } 2219 dirty_page = old_page; 2220 get_page(dirty_page); 2221 reuse = 1; 2222 } 2223 2224 if (reuse) { 2225 reuse: 2226 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2227 entry = pte_mkyoung(orig_pte); 2228 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2229 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2230 update_mmu_cache(vma, address, page_table); 2231 ret |= VM_FAULT_WRITE; 2232 goto unlock; 2233 } 2234 2235 /* 2236 * Ok, we need to copy. Oh, well.. 2237 */ 2238 page_cache_get(old_page); 2239 gotten: 2240 pte_unmap_unlock(page_table, ptl); 2241 2242 if (unlikely(anon_vma_prepare(vma))) 2243 goto oom; 2244 2245 if (is_zero_pfn(pte_pfn(orig_pte))) { 2246 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2247 if (!new_page) 2248 goto oom; 2249 } else { 2250 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2251 if (!new_page) 2252 goto oom; 2253 cow_user_page(new_page, old_page, address, vma); 2254 } 2255 __SetPageUptodate(new_page); 2256 2257 /* 2258 * Don't let another task, with possibly unlocked vma, 2259 * keep the mlocked page. 2260 */ 2261 if ((vma->vm_flags & VM_LOCKED) && old_page) { 2262 lock_page(old_page); /* for LRU manipulation */ 2263 clear_page_mlock(old_page); 2264 unlock_page(old_page); 2265 } 2266 2267 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2268 goto oom_free_new; 2269 2270 /* 2271 * Re-check the pte - we dropped the lock 2272 */ 2273 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2274 if (likely(pte_same(*page_table, orig_pte))) { 2275 if (old_page) { 2276 if (!PageAnon(old_page)) { 2277 dec_mm_counter_fast(mm, MM_FILEPAGES); 2278 inc_mm_counter_fast(mm, MM_ANONPAGES); 2279 } 2280 } else 2281 inc_mm_counter_fast(mm, MM_ANONPAGES); 2282 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2283 entry = mk_pte(new_page, vma->vm_page_prot); 2284 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2285 /* 2286 * Clear the pte entry and flush it first, before updating the 2287 * pte with the new entry. This will avoid a race condition 2288 * seen in the presence of one thread doing SMC and another 2289 * thread doing COW. 2290 */ 2291 ptep_clear_flush(vma, address, page_table); 2292 page_add_new_anon_rmap(new_page, vma, address); 2293 /* 2294 * We call the notify macro here because, when using secondary 2295 * mmu page tables (such as kvm shadow page tables), we want the 2296 * new page to be mapped directly into the secondary page table. 2297 */ 2298 set_pte_at_notify(mm, address, page_table, entry); 2299 update_mmu_cache(vma, address, page_table); 2300 if (old_page) { 2301 /* 2302 * Only after switching the pte to the new page may 2303 * we remove the mapcount here. Otherwise another 2304 * process may come and find the rmap count decremented 2305 * before the pte is switched to the new page, and 2306 * "reuse" the old page writing into it while our pte 2307 * here still points into it and can be read by other 2308 * threads. 2309 * 2310 * The critical issue is to order this 2311 * page_remove_rmap with the ptp_clear_flush above. 2312 * Those stores are ordered by (if nothing else,) 2313 * the barrier present in the atomic_add_negative 2314 * in page_remove_rmap. 2315 * 2316 * Then the TLB flush in ptep_clear_flush ensures that 2317 * no process can access the old page before the 2318 * decremented mapcount is visible. And the old page 2319 * cannot be reused until after the decremented 2320 * mapcount is visible. So transitively, TLBs to 2321 * old page will be flushed before it can be reused. 2322 */ 2323 page_remove_rmap(old_page); 2324 } 2325 2326 /* Free the old page.. */ 2327 new_page = old_page; 2328 ret |= VM_FAULT_WRITE; 2329 } else 2330 mem_cgroup_uncharge_page(new_page); 2331 2332 if (new_page) 2333 page_cache_release(new_page); 2334 if (old_page) 2335 page_cache_release(old_page); 2336 unlock: 2337 pte_unmap_unlock(page_table, ptl); 2338 if (dirty_page) { 2339 /* 2340 * Yes, Virginia, this is actually required to prevent a race 2341 * with clear_page_dirty_for_io() from clearing the page dirty 2342 * bit after it clear all dirty ptes, but before a racing 2343 * do_wp_page installs a dirty pte. 2344 * 2345 * do_no_page is protected similarly. 2346 */ 2347 if (!page_mkwrite) { 2348 wait_on_page_locked(dirty_page); 2349 set_page_dirty_balance(dirty_page, page_mkwrite); 2350 } 2351 put_page(dirty_page); 2352 if (page_mkwrite) { 2353 struct address_space *mapping = dirty_page->mapping; 2354 2355 set_page_dirty(dirty_page); 2356 unlock_page(dirty_page); 2357 page_cache_release(dirty_page); 2358 if (mapping) { 2359 /* 2360 * Some device drivers do not set page.mapping 2361 * but still dirty their pages 2362 */ 2363 balance_dirty_pages_ratelimited(mapping); 2364 } 2365 } 2366 2367 /* file_update_time outside page_lock */ 2368 if (vma->vm_file) 2369 file_update_time(vma->vm_file); 2370 } 2371 return ret; 2372 oom_free_new: 2373 page_cache_release(new_page); 2374 oom: 2375 if (old_page) { 2376 if (page_mkwrite) { 2377 unlock_page(old_page); 2378 page_cache_release(old_page); 2379 } 2380 page_cache_release(old_page); 2381 } 2382 return VM_FAULT_OOM; 2383 2384 unwritable_page: 2385 page_cache_release(old_page); 2386 return ret; 2387 } 2388 2389 /* 2390 * Helper functions for unmap_mapping_range(). 2391 * 2392 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2393 * 2394 * We have to restart searching the prio_tree whenever we drop the lock, 2395 * since the iterator is only valid while the lock is held, and anyway 2396 * a later vma might be split and reinserted earlier while lock dropped. 2397 * 2398 * The list of nonlinear vmas could be handled more efficiently, using 2399 * a placeholder, but handle it in the same way until a need is shown. 2400 * It is important to search the prio_tree before nonlinear list: a vma 2401 * may become nonlinear and be shifted from prio_tree to nonlinear list 2402 * while the lock is dropped; but never shifted from list to prio_tree. 2403 * 2404 * In order to make forward progress despite restarting the search, 2405 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2406 * quickly skip it next time around. Since the prio_tree search only 2407 * shows us those vmas affected by unmapping the range in question, we 2408 * can't efficiently keep all vmas in step with mapping->truncate_count: 2409 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2410 * mapping->truncate_count and vma->vm_truncate_count are protected by 2411 * i_mmap_lock. 2412 * 2413 * In order to make forward progress despite repeatedly restarting some 2414 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2415 * and restart from that address when we reach that vma again. It might 2416 * have been split or merged, shrunk or extended, but never shifted: so 2417 * restart_addr remains valid so long as it remains in the vma's range. 2418 * unmap_mapping_range forces truncate_count to leap over page-aligned 2419 * values so we can save vma's restart_addr in its truncate_count field. 2420 */ 2421 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2422 2423 static void reset_vma_truncate_counts(struct address_space *mapping) 2424 { 2425 struct vm_area_struct *vma; 2426 struct prio_tree_iter iter; 2427 2428 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2429 vma->vm_truncate_count = 0; 2430 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2431 vma->vm_truncate_count = 0; 2432 } 2433 2434 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2435 unsigned long start_addr, unsigned long end_addr, 2436 struct zap_details *details) 2437 { 2438 unsigned long restart_addr; 2439 int need_break; 2440 2441 /* 2442 * files that support invalidating or truncating portions of the 2443 * file from under mmaped areas must have their ->fault function 2444 * return a locked page (and set VM_FAULT_LOCKED in the return). 2445 * This provides synchronisation against concurrent unmapping here. 2446 */ 2447 2448 again: 2449 restart_addr = vma->vm_truncate_count; 2450 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2451 start_addr = restart_addr; 2452 if (start_addr >= end_addr) { 2453 /* Top of vma has been split off since last time */ 2454 vma->vm_truncate_count = details->truncate_count; 2455 return 0; 2456 } 2457 } 2458 2459 restart_addr = zap_page_range(vma, start_addr, 2460 end_addr - start_addr, details); 2461 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2462 2463 if (restart_addr >= end_addr) { 2464 /* We have now completed this vma: mark it so */ 2465 vma->vm_truncate_count = details->truncate_count; 2466 if (!need_break) 2467 return 0; 2468 } else { 2469 /* Note restart_addr in vma's truncate_count field */ 2470 vma->vm_truncate_count = restart_addr; 2471 if (!need_break) 2472 goto again; 2473 } 2474 2475 spin_unlock(details->i_mmap_lock); 2476 cond_resched(); 2477 spin_lock(details->i_mmap_lock); 2478 return -EINTR; 2479 } 2480 2481 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2482 struct zap_details *details) 2483 { 2484 struct vm_area_struct *vma; 2485 struct prio_tree_iter iter; 2486 pgoff_t vba, vea, zba, zea; 2487 2488 restart: 2489 vma_prio_tree_foreach(vma, &iter, root, 2490 details->first_index, details->last_index) { 2491 /* Skip quickly over those we have already dealt with */ 2492 if (vma->vm_truncate_count == details->truncate_count) 2493 continue; 2494 2495 vba = vma->vm_pgoff; 2496 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2497 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2498 zba = details->first_index; 2499 if (zba < vba) 2500 zba = vba; 2501 zea = details->last_index; 2502 if (zea > vea) 2503 zea = vea; 2504 2505 if (unmap_mapping_range_vma(vma, 2506 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2507 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2508 details) < 0) 2509 goto restart; 2510 } 2511 } 2512 2513 static inline void unmap_mapping_range_list(struct list_head *head, 2514 struct zap_details *details) 2515 { 2516 struct vm_area_struct *vma; 2517 2518 /* 2519 * In nonlinear VMAs there is no correspondence between virtual address 2520 * offset and file offset. So we must perform an exhaustive search 2521 * across *all* the pages in each nonlinear VMA, not just the pages 2522 * whose virtual address lies outside the file truncation point. 2523 */ 2524 restart: 2525 list_for_each_entry(vma, head, shared.vm_set.list) { 2526 /* Skip quickly over those we have already dealt with */ 2527 if (vma->vm_truncate_count == details->truncate_count) 2528 continue; 2529 details->nonlinear_vma = vma; 2530 if (unmap_mapping_range_vma(vma, vma->vm_start, 2531 vma->vm_end, details) < 0) 2532 goto restart; 2533 } 2534 } 2535 2536 /** 2537 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2538 * @mapping: the address space containing mmaps to be unmapped. 2539 * @holebegin: byte in first page to unmap, relative to the start of 2540 * the underlying file. This will be rounded down to a PAGE_SIZE 2541 * boundary. Note that this is different from truncate_pagecache(), which 2542 * must keep the partial page. In contrast, we must get rid of 2543 * partial pages. 2544 * @holelen: size of prospective hole in bytes. This will be rounded 2545 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2546 * end of the file. 2547 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2548 * but 0 when invalidating pagecache, don't throw away private data. 2549 */ 2550 void unmap_mapping_range(struct address_space *mapping, 2551 loff_t const holebegin, loff_t const holelen, int even_cows) 2552 { 2553 struct zap_details details; 2554 pgoff_t hba = holebegin >> PAGE_SHIFT; 2555 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2556 2557 /* Check for overflow. */ 2558 if (sizeof(holelen) > sizeof(hlen)) { 2559 long long holeend = 2560 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2561 if (holeend & ~(long long)ULONG_MAX) 2562 hlen = ULONG_MAX - hba + 1; 2563 } 2564 2565 details.check_mapping = even_cows? NULL: mapping; 2566 details.nonlinear_vma = NULL; 2567 details.first_index = hba; 2568 details.last_index = hba + hlen - 1; 2569 if (details.last_index < details.first_index) 2570 details.last_index = ULONG_MAX; 2571 details.i_mmap_lock = &mapping->i_mmap_lock; 2572 2573 spin_lock(&mapping->i_mmap_lock); 2574 2575 /* Protect against endless unmapping loops */ 2576 mapping->truncate_count++; 2577 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2578 if (mapping->truncate_count == 0) 2579 reset_vma_truncate_counts(mapping); 2580 mapping->truncate_count++; 2581 } 2582 details.truncate_count = mapping->truncate_count; 2583 2584 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2585 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2586 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2587 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2588 spin_unlock(&mapping->i_mmap_lock); 2589 } 2590 EXPORT_SYMBOL(unmap_mapping_range); 2591 2592 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2593 { 2594 struct address_space *mapping = inode->i_mapping; 2595 2596 /* 2597 * If the underlying filesystem is not going to provide 2598 * a way to truncate a range of blocks (punch a hole) - 2599 * we should return failure right now. 2600 */ 2601 if (!inode->i_op->truncate_range) 2602 return -ENOSYS; 2603 2604 mutex_lock(&inode->i_mutex); 2605 down_write(&inode->i_alloc_sem); 2606 unmap_mapping_range(mapping, offset, (end - offset), 1); 2607 truncate_inode_pages_range(mapping, offset, end); 2608 unmap_mapping_range(mapping, offset, (end - offset), 1); 2609 inode->i_op->truncate_range(inode, offset, end); 2610 up_write(&inode->i_alloc_sem); 2611 mutex_unlock(&inode->i_mutex); 2612 2613 return 0; 2614 } 2615 2616 /* 2617 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2618 * but allow concurrent faults), and pte mapped but not yet locked. 2619 * We return with mmap_sem still held, but pte unmapped and unlocked. 2620 */ 2621 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2622 unsigned long address, pte_t *page_table, pmd_t *pmd, 2623 unsigned int flags, pte_t orig_pte) 2624 { 2625 spinlock_t *ptl; 2626 struct page *page; 2627 swp_entry_t entry; 2628 pte_t pte; 2629 struct mem_cgroup *ptr = NULL; 2630 int exclusive = 0; 2631 int ret = 0; 2632 2633 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2634 goto out; 2635 2636 entry = pte_to_swp_entry(orig_pte); 2637 if (unlikely(non_swap_entry(entry))) { 2638 if (is_migration_entry(entry)) { 2639 migration_entry_wait(mm, pmd, address); 2640 } else if (is_hwpoison_entry(entry)) { 2641 ret = VM_FAULT_HWPOISON; 2642 } else { 2643 print_bad_pte(vma, address, orig_pte, NULL); 2644 ret = VM_FAULT_SIGBUS; 2645 } 2646 goto out; 2647 } 2648 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2649 page = lookup_swap_cache(entry); 2650 if (!page) { 2651 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2652 page = swapin_readahead(entry, 2653 GFP_HIGHUSER_MOVABLE, vma, address); 2654 if (!page) { 2655 /* 2656 * Back out if somebody else faulted in this pte 2657 * while we released the pte lock. 2658 */ 2659 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2660 if (likely(pte_same(*page_table, orig_pte))) 2661 ret = VM_FAULT_OOM; 2662 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2663 goto unlock; 2664 } 2665 2666 /* Had to read the page from swap area: Major fault */ 2667 ret = VM_FAULT_MAJOR; 2668 count_vm_event(PGMAJFAULT); 2669 } else if (PageHWPoison(page)) { 2670 /* 2671 * hwpoisoned dirty swapcache pages are kept for killing 2672 * owner processes (which may be unknown at hwpoison time) 2673 */ 2674 ret = VM_FAULT_HWPOISON; 2675 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2676 goto out_release; 2677 } 2678 2679 lock_page(page); 2680 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2681 2682 page = ksm_might_need_to_copy(page, vma, address); 2683 if (!page) { 2684 ret = VM_FAULT_OOM; 2685 goto out; 2686 } 2687 2688 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2689 ret = VM_FAULT_OOM; 2690 goto out_page; 2691 } 2692 2693 /* 2694 * Back out if somebody else already faulted in this pte. 2695 */ 2696 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2697 if (unlikely(!pte_same(*page_table, orig_pte))) 2698 goto out_nomap; 2699 2700 if (unlikely(!PageUptodate(page))) { 2701 ret = VM_FAULT_SIGBUS; 2702 goto out_nomap; 2703 } 2704 2705 /* 2706 * The page isn't present yet, go ahead with the fault. 2707 * 2708 * Be careful about the sequence of operations here. 2709 * To get its accounting right, reuse_swap_page() must be called 2710 * while the page is counted on swap but not yet in mapcount i.e. 2711 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2712 * must be called after the swap_free(), or it will never succeed. 2713 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2714 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2715 * in page->private. In this case, a record in swap_cgroup is silently 2716 * discarded at swap_free(). 2717 */ 2718 2719 inc_mm_counter_fast(mm, MM_ANONPAGES); 2720 dec_mm_counter_fast(mm, MM_SWAPENTS); 2721 pte = mk_pte(page, vma->vm_page_prot); 2722 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2723 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2724 flags &= ~FAULT_FLAG_WRITE; 2725 ret |= VM_FAULT_WRITE; 2726 exclusive = 1; 2727 } 2728 flush_icache_page(vma, page); 2729 set_pte_at(mm, address, page_table, pte); 2730 do_page_add_anon_rmap(page, vma, address, exclusive); 2731 /* It's better to call commit-charge after rmap is established */ 2732 mem_cgroup_commit_charge_swapin(page, ptr); 2733 2734 swap_free(entry); 2735 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2736 try_to_free_swap(page); 2737 unlock_page(page); 2738 2739 if (flags & FAULT_FLAG_WRITE) { 2740 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2741 if (ret & VM_FAULT_ERROR) 2742 ret &= VM_FAULT_ERROR; 2743 goto out; 2744 } 2745 2746 /* No need to invalidate - it was non-present before */ 2747 update_mmu_cache(vma, address, page_table); 2748 unlock: 2749 pte_unmap_unlock(page_table, ptl); 2750 out: 2751 return ret; 2752 out_nomap: 2753 mem_cgroup_cancel_charge_swapin(ptr); 2754 pte_unmap_unlock(page_table, ptl); 2755 out_page: 2756 unlock_page(page); 2757 out_release: 2758 page_cache_release(page); 2759 return ret; 2760 } 2761 2762 /* 2763 * This is like a special single-page "expand_{down|up}wards()", 2764 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2765 * doesn't hit another vma. 2766 */ 2767 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2768 { 2769 address &= PAGE_MASK; 2770 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2771 struct vm_area_struct *prev = vma->vm_prev; 2772 2773 /* 2774 * Is there a mapping abutting this one below? 2775 * 2776 * That's only ok if it's the same stack mapping 2777 * that has gotten split.. 2778 */ 2779 if (prev && prev->vm_end == address) 2780 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2781 2782 expand_stack(vma, address - PAGE_SIZE); 2783 } 2784 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2785 struct vm_area_struct *next = vma->vm_next; 2786 2787 /* As VM_GROWSDOWN but s/below/above/ */ 2788 if (next && next->vm_start == address + PAGE_SIZE) 2789 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2790 2791 expand_upwards(vma, address + PAGE_SIZE); 2792 } 2793 return 0; 2794 } 2795 2796 /* 2797 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2798 * but allow concurrent faults), and pte mapped but not yet locked. 2799 * We return with mmap_sem still held, but pte unmapped and unlocked. 2800 */ 2801 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2802 unsigned long address, pte_t *page_table, pmd_t *pmd, 2803 unsigned int flags) 2804 { 2805 struct page *page; 2806 spinlock_t *ptl; 2807 pte_t entry; 2808 2809 pte_unmap(page_table); 2810 2811 /* Check if we need to add a guard page to the stack */ 2812 if (check_stack_guard_page(vma, address) < 0) 2813 return VM_FAULT_SIGBUS; 2814 2815 /* Use the zero-page for reads */ 2816 if (!(flags & FAULT_FLAG_WRITE)) { 2817 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2818 vma->vm_page_prot)); 2819 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2820 if (!pte_none(*page_table)) 2821 goto unlock; 2822 goto setpte; 2823 } 2824 2825 /* Allocate our own private page. */ 2826 if (unlikely(anon_vma_prepare(vma))) 2827 goto oom; 2828 page = alloc_zeroed_user_highpage_movable(vma, address); 2829 if (!page) 2830 goto oom; 2831 __SetPageUptodate(page); 2832 2833 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 2834 goto oom_free_page; 2835 2836 entry = mk_pte(page, vma->vm_page_prot); 2837 if (vma->vm_flags & VM_WRITE) 2838 entry = pte_mkwrite(pte_mkdirty(entry)); 2839 2840 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2841 if (!pte_none(*page_table)) 2842 goto release; 2843 2844 inc_mm_counter_fast(mm, MM_ANONPAGES); 2845 page_add_new_anon_rmap(page, vma, address); 2846 setpte: 2847 set_pte_at(mm, address, page_table, entry); 2848 2849 /* No need to invalidate - it was non-present before */ 2850 update_mmu_cache(vma, address, page_table); 2851 unlock: 2852 pte_unmap_unlock(page_table, ptl); 2853 return 0; 2854 release: 2855 mem_cgroup_uncharge_page(page); 2856 page_cache_release(page); 2857 goto unlock; 2858 oom_free_page: 2859 page_cache_release(page); 2860 oom: 2861 return VM_FAULT_OOM; 2862 } 2863 2864 /* 2865 * __do_fault() tries to create a new page mapping. It aggressively 2866 * tries to share with existing pages, but makes a separate copy if 2867 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2868 * the next page fault. 2869 * 2870 * As this is called only for pages that do not currently exist, we 2871 * do not need to flush old virtual caches or the TLB. 2872 * 2873 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2874 * but allow concurrent faults), and pte neither mapped nor locked. 2875 * We return with mmap_sem still held, but pte unmapped and unlocked. 2876 */ 2877 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2878 unsigned long address, pmd_t *pmd, 2879 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2880 { 2881 pte_t *page_table; 2882 spinlock_t *ptl; 2883 struct page *page; 2884 pte_t entry; 2885 int anon = 0; 2886 int charged = 0; 2887 struct page *dirty_page = NULL; 2888 struct vm_fault vmf; 2889 int ret; 2890 int page_mkwrite = 0; 2891 2892 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2893 vmf.pgoff = pgoff; 2894 vmf.flags = flags; 2895 vmf.page = NULL; 2896 2897 ret = vma->vm_ops->fault(vma, &vmf); 2898 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2899 return ret; 2900 2901 if (unlikely(PageHWPoison(vmf.page))) { 2902 if (ret & VM_FAULT_LOCKED) 2903 unlock_page(vmf.page); 2904 return VM_FAULT_HWPOISON; 2905 } 2906 2907 /* 2908 * For consistency in subsequent calls, make the faulted page always 2909 * locked. 2910 */ 2911 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2912 lock_page(vmf.page); 2913 else 2914 VM_BUG_ON(!PageLocked(vmf.page)); 2915 2916 /* 2917 * Should we do an early C-O-W break? 2918 */ 2919 page = vmf.page; 2920 if (flags & FAULT_FLAG_WRITE) { 2921 if (!(vma->vm_flags & VM_SHARED)) { 2922 anon = 1; 2923 if (unlikely(anon_vma_prepare(vma))) { 2924 ret = VM_FAULT_OOM; 2925 goto out; 2926 } 2927 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2928 vma, address); 2929 if (!page) { 2930 ret = VM_FAULT_OOM; 2931 goto out; 2932 } 2933 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 2934 ret = VM_FAULT_OOM; 2935 page_cache_release(page); 2936 goto out; 2937 } 2938 charged = 1; 2939 /* 2940 * Don't let another task, with possibly unlocked vma, 2941 * keep the mlocked page. 2942 */ 2943 if (vma->vm_flags & VM_LOCKED) 2944 clear_page_mlock(vmf.page); 2945 copy_user_highpage(page, vmf.page, address, vma); 2946 __SetPageUptodate(page); 2947 } else { 2948 /* 2949 * If the page will be shareable, see if the backing 2950 * address space wants to know that the page is about 2951 * to become writable 2952 */ 2953 if (vma->vm_ops->page_mkwrite) { 2954 int tmp; 2955 2956 unlock_page(page); 2957 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2958 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2959 if (unlikely(tmp & 2960 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2961 ret = tmp; 2962 goto unwritable_page; 2963 } 2964 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2965 lock_page(page); 2966 if (!page->mapping) { 2967 ret = 0; /* retry the fault */ 2968 unlock_page(page); 2969 goto unwritable_page; 2970 } 2971 } else 2972 VM_BUG_ON(!PageLocked(page)); 2973 page_mkwrite = 1; 2974 } 2975 } 2976 2977 } 2978 2979 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2980 2981 /* 2982 * This silly early PAGE_DIRTY setting removes a race 2983 * due to the bad i386 page protection. But it's valid 2984 * for other architectures too. 2985 * 2986 * Note that if FAULT_FLAG_WRITE is set, we either now have 2987 * an exclusive copy of the page, or this is a shared mapping, 2988 * so we can make it writable and dirty to avoid having to 2989 * handle that later. 2990 */ 2991 /* Only go through if we didn't race with anybody else... */ 2992 if (likely(pte_same(*page_table, orig_pte))) { 2993 flush_icache_page(vma, page); 2994 entry = mk_pte(page, vma->vm_page_prot); 2995 if (flags & FAULT_FLAG_WRITE) 2996 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2997 if (anon) { 2998 inc_mm_counter_fast(mm, MM_ANONPAGES); 2999 page_add_new_anon_rmap(page, vma, address); 3000 } else { 3001 inc_mm_counter_fast(mm, MM_FILEPAGES); 3002 page_add_file_rmap(page); 3003 if (flags & FAULT_FLAG_WRITE) { 3004 dirty_page = page; 3005 get_page(dirty_page); 3006 } 3007 } 3008 set_pte_at(mm, address, page_table, entry); 3009 3010 /* no need to invalidate: a not-present page won't be cached */ 3011 update_mmu_cache(vma, address, page_table); 3012 } else { 3013 if (charged) 3014 mem_cgroup_uncharge_page(page); 3015 if (anon) 3016 page_cache_release(page); 3017 else 3018 anon = 1; /* no anon but release faulted_page */ 3019 } 3020 3021 pte_unmap_unlock(page_table, ptl); 3022 3023 out: 3024 if (dirty_page) { 3025 struct address_space *mapping = page->mapping; 3026 3027 if (set_page_dirty(dirty_page)) 3028 page_mkwrite = 1; 3029 unlock_page(dirty_page); 3030 put_page(dirty_page); 3031 if (page_mkwrite && mapping) { 3032 /* 3033 * Some device drivers do not set page.mapping but still 3034 * dirty their pages 3035 */ 3036 balance_dirty_pages_ratelimited(mapping); 3037 } 3038 3039 /* file_update_time outside page_lock */ 3040 if (vma->vm_file) 3041 file_update_time(vma->vm_file); 3042 } else { 3043 unlock_page(vmf.page); 3044 if (anon) 3045 page_cache_release(vmf.page); 3046 } 3047 3048 return ret; 3049 3050 unwritable_page: 3051 page_cache_release(page); 3052 return ret; 3053 } 3054 3055 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3056 unsigned long address, pte_t *page_table, pmd_t *pmd, 3057 unsigned int flags, pte_t orig_pte) 3058 { 3059 pgoff_t pgoff = (((address & PAGE_MASK) 3060 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3061 3062 pte_unmap(page_table); 3063 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3064 } 3065 3066 /* 3067 * Fault of a previously existing named mapping. Repopulate the pte 3068 * from the encoded file_pte if possible. This enables swappable 3069 * nonlinear vmas. 3070 * 3071 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3072 * but allow concurrent faults), and pte mapped but not yet locked. 3073 * We return with mmap_sem still held, but pte unmapped and unlocked. 3074 */ 3075 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3076 unsigned long address, pte_t *page_table, pmd_t *pmd, 3077 unsigned int flags, pte_t orig_pte) 3078 { 3079 pgoff_t pgoff; 3080 3081 flags |= FAULT_FLAG_NONLINEAR; 3082 3083 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3084 return 0; 3085 3086 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3087 /* 3088 * Page table corrupted: show pte and kill process. 3089 */ 3090 print_bad_pte(vma, address, orig_pte, NULL); 3091 return VM_FAULT_SIGBUS; 3092 } 3093 3094 pgoff = pte_to_pgoff(orig_pte); 3095 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3096 } 3097 3098 /* 3099 * These routines also need to handle stuff like marking pages dirty 3100 * and/or accessed for architectures that don't do it in hardware (most 3101 * RISC architectures). The early dirtying is also good on the i386. 3102 * 3103 * There is also a hook called "update_mmu_cache()" that architectures 3104 * with external mmu caches can use to update those (ie the Sparc or 3105 * PowerPC hashed page tables that act as extended TLBs). 3106 * 3107 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3108 * but allow concurrent faults), and pte mapped but not yet locked. 3109 * We return with mmap_sem still held, but pte unmapped and unlocked. 3110 */ 3111 static inline int handle_pte_fault(struct mm_struct *mm, 3112 struct vm_area_struct *vma, unsigned long address, 3113 pte_t *pte, pmd_t *pmd, unsigned int flags) 3114 { 3115 pte_t entry; 3116 spinlock_t *ptl; 3117 3118 entry = *pte; 3119 if (!pte_present(entry)) { 3120 if (pte_none(entry)) { 3121 if (vma->vm_ops) { 3122 if (likely(vma->vm_ops->fault)) 3123 return do_linear_fault(mm, vma, address, 3124 pte, pmd, flags, entry); 3125 } 3126 return do_anonymous_page(mm, vma, address, 3127 pte, pmd, flags); 3128 } 3129 if (pte_file(entry)) 3130 return do_nonlinear_fault(mm, vma, address, 3131 pte, pmd, flags, entry); 3132 return do_swap_page(mm, vma, address, 3133 pte, pmd, flags, entry); 3134 } 3135 3136 ptl = pte_lockptr(mm, pmd); 3137 spin_lock(ptl); 3138 if (unlikely(!pte_same(*pte, entry))) 3139 goto unlock; 3140 if (flags & FAULT_FLAG_WRITE) { 3141 if (!pte_write(entry)) 3142 return do_wp_page(mm, vma, address, 3143 pte, pmd, ptl, entry); 3144 entry = pte_mkdirty(entry); 3145 } 3146 entry = pte_mkyoung(entry); 3147 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3148 update_mmu_cache(vma, address, pte); 3149 } else { 3150 /* 3151 * This is needed only for protection faults but the arch code 3152 * is not yet telling us if this is a protection fault or not. 3153 * This still avoids useless tlb flushes for .text page faults 3154 * with threads. 3155 */ 3156 if (flags & FAULT_FLAG_WRITE) 3157 flush_tlb_page(vma, address); 3158 } 3159 unlock: 3160 pte_unmap_unlock(pte, ptl); 3161 return 0; 3162 } 3163 3164 /* 3165 * By the time we get here, we already hold the mm semaphore 3166 */ 3167 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3168 unsigned long address, unsigned int flags) 3169 { 3170 pgd_t *pgd; 3171 pud_t *pud; 3172 pmd_t *pmd; 3173 pte_t *pte; 3174 3175 __set_current_state(TASK_RUNNING); 3176 3177 count_vm_event(PGFAULT); 3178 3179 /* do counter updates before entering really critical section. */ 3180 check_sync_rss_stat(current); 3181 3182 if (unlikely(is_vm_hugetlb_page(vma))) 3183 return hugetlb_fault(mm, vma, address, flags); 3184 3185 pgd = pgd_offset(mm, address); 3186 pud = pud_alloc(mm, pgd, address); 3187 if (!pud) 3188 return VM_FAULT_OOM; 3189 pmd = pmd_alloc(mm, pud, address); 3190 if (!pmd) 3191 return VM_FAULT_OOM; 3192 pte = pte_alloc_map(mm, pmd, address); 3193 if (!pte) 3194 return VM_FAULT_OOM; 3195 3196 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3197 } 3198 3199 #ifndef __PAGETABLE_PUD_FOLDED 3200 /* 3201 * Allocate page upper directory. 3202 * We've already handled the fast-path in-line. 3203 */ 3204 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3205 { 3206 pud_t *new = pud_alloc_one(mm, address); 3207 if (!new) 3208 return -ENOMEM; 3209 3210 smp_wmb(); /* See comment in __pte_alloc */ 3211 3212 spin_lock(&mm->page_table_lock); 3213 if (pgd_present(*pgd)) /* Another has populated it */ 3214 pud_free(mm, new); 3215 else 3216 pgd_populate(mm, pgd, new); 3217 spin_unlock(&mm->page_table_lock); 3218 return 0; 3219 } 3220 #endif /* __PAGETABLE_PUD_FOLDED */ 3221 3222 #ifndef __PAGETABLE_PMD_FOLDED 3223 /* 3224 * Allocate page middle directory. 3225 * We've already handled the fast-path in-line. 3226 */ 3227 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3228 { 3229 pmd_t *new = pmd_alloc_one(mm, address); 3230 if (!new) 3231 return -ENOMEM; 3232 3233 smp_wmb(); /* See comment in __pte_alloc */ 3234 3235 spin_lock(&mm->page_table_lock); 3236 #ifndef __ARCH_HAS_4LEVEL_HACK 3237 if (pud_present(*pud)) /* Another has populated it */ 3238 pmd_free(mm, new); 3239 else 3240 pud_populate(mm, pud, new); 3241 #else 3242 if (pgd_present(*pud)) /* Another has populated it */ 3243 pmd_free(mm, new); 3244 else 3245 pgd_populate(mm, pud, new); 3246 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3247 spin_unlock(&mm->page_table_lock); 3248 return 0; 3249 } 3250 #endif /* __PAGETABLE_PMD_FOLDED */ 3251 3252 int make_pages_present(unsigned long addr, unsigned long end) 3253 { 3254 int ret, len, write; 3255 struct vm_area_struct * vma; 3256 3257 vma = find_vma(current->mm, addr); 3258 if (!vma) 3259 return -ENOMEM; 3260 write = (vma->vm_flags & VM_WRITE) != 0; 3261 BUG_ON(addr >= end); 3262 BUG_ON(end > vma->vm_end); 3263 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3264 ret = get_user_pages(current, current->mm, addr, 3265 len, write, 0, NULL, NULL); 3266 if (ret < 0) 3267 return ret; 3268 return ret == len ? 0 : -EFAULT; 3269 } 3270 3271 #if !defined(__HAVE_ARCH_GATE_AREA) 3272 3273 #if defined(AT_SYSINFO_EHDR) 3274 static struct vm_area_struct gate_vma; 3275 3276 static int __init gate_vma_init(void) 3277 { 3278 gate_vma.vm_mm = NULL; 3279 gate_vma.vm_start = FIXADDR_USER_START; 3280 gate_vma.vm_end = FIXADDR_USER_END; 3281 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3282 gate_vma.vm_page_prot = __P101; 3283 /* 3284 * Make sure the vDSO gets into every core dump. 3285 * Dumping its contents makes post-mortem fully interpretable later 3286 * without matching up the same kernel and hardware config to see 3287 * what PC values meant. 3288 */ 3289 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3290 return 0; 3291 } 3292 __initcall(gate_vma_init); 3293 #endif 3294 3295 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 3296 { 3297 #ifdef AT_SYSINFO_EHDR 3298 return &gate_vma; 3299 #else 3300 return NULL; 3301 #endif 3302 } 3303 3304 int in_gate_area_no_task(unsigned long addr) 3305 { 3306 #ifdef AT_SYSINFO_EHDR 3307 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3308 return 1; 3309 #endif 3310 return 0; 3311 } 3312 3313 #endif /* __HAVE_ARCH_GATE_AREA */ 3314 3315 static int follow_pte(struct mm_struct *mm, unsigned long address, 3316 pte_t **ptepp, spinlock_t **ptlp) 3317 { 3318 pgd_t *pgd; 3319 pud_t *pud; 3320 pmd_t *pmd; 3321 pte_t *ptep; 3322 3323 pgd = pgd_offset(mm, address); 3324 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3325 goto out; 3326 3327 pud = pud_offset(pgd, address); 3328 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3329 goto out; 3330 3331 pmd = pmd_offset(pud, address); 3332 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3333 goto out; 3334 3335 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3336 if (pmd_huge(*pmd)) 3337 goto out; 3338 3339 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3340 if (!ptep) 3341 goto out; 3342 if (!pte_present(*ptep)) 3343 goto unlock; 3344 *ptepp = ptep; 3345 return 0; 3346 unlock: 3347 pte_unmap_unlock(ptep, *ptlp); 3348 out: 3349 return -EINVAL; 3350 } 3351 3352 /** 3353 * follow_pfn - look up PFN at a user virtual address 3354 * @vma: memory mapping 3355 * @address: user virtual address 3356 * @pfn: location to store found PFN 3357 * 3358 * Only IO mappings and raw PFN mappings are allowed. 3359 * 3360 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3361 */ 3362 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3363 unsigned long *pfn) 3364 { 3365 int ret = -EINVAL; 3366 spinlock_t *ptl; 3367 pte_t *ptep; 3368 3369 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3370 return ret; 3371 3372 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3373 if (ret) 3374 return ret; 3375 *pfn = pte_pfn(*ptep); 3376 pte_unmap_unlock(ptep, ptl); 3377 return 0; 3378 } 3379 EXPORT_SYMBOL(follow_pfn); 3380 3381 #ifdef CONFIG_HAVE_IOREMAP_PROT 3382 int follow_phys(struct vm_area_struct *vma, 3383 unsigned long address, unsigned int flags, 3384 unsigned long *prot, resource_size_t *phys) 3385 { 3386 int ret = -EINVAL; 3387 pte_t *ptep, pte; 3388 spinlock_t *ptl; 3389 3390 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3391 goto out; 3392 3393 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3394 goto out; 3395 pte = *ptep; 3396 3397 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3398 goto unlock; 3399 3400 *prot = pgprot_val(pte_pgprot(pte)); 3401 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3402 3403 ret = 0; 3404 unlock: 3405 pte_unmap_unlock(ptep, ptl); 3406 out: 3407 return ret; 3408 } 3409 3410 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3411 void *buf, int len, int write) 3412 { 3413 resource_size_t phys_addr; 3414 unsigned long prot = 0; 3415 void __iomem *maddr; 3416 int offset = addr & (PAGE_SIZE-1); 3417 3418 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3419 return -EINVAL; 3420 3421 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3422 if (write) 3423 memcpy_toio(maddr + offset, buf, len); 3424 else 3425 memcpy_fromio(buf, maddr + offset, len); 3426 iounmap(maddr); 3427 3428 return len; 3429 } 3430 #endif 3431 3432 /* 3433 * Access another process' address space. 3434 * Source/target buffer must be kernel space, 3435 * Do not walk the page table directly, use get_user_pages 3436 */ 3437 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3438 { 3439 struct mm_struct *mm; 3440 struct vm_area_struct *vma; 3441 void *old_buf = buf; 3442 3443 mm = get_task_mm(tsk); 3444 if (!mm) 3445 return 0; 3446 3447 down_read(&mm->mmap_sem); 3448 /* ignore errors, just check how much was successfully transferred */ 3449 while (len) { 3450 int bytes, ret, offset; 3451 void *maddr; 3452 struct page *page = NULL; 3453 3454 ret = get_user_pages(tsk, mm, addr, 1, 3455 write, 1, &page, &vma); 3456 if (ret <= 0) { 3457 /* 3458 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3459 * we can access using slightly different code. 3460 */ 3461 #ifdef CONFIG_HAVE_IOREMAP_PROT 3462 vma = find_vma(mm, addr); 3463 if (!vma) 3464 break; 3465 if (vma->vm_ops && vma->vm_ops->access) 3466 ret = vma->vm_ops->access(vma, addr, buf, 3467 len, write); 3468 if (ret <= 0) 3469 #endif 3470 break; 3471 bytes = ret; 3472 } else { 3473 bytes = len; 3474 offset = addr & (PAGE_SIZE-1); 3475 if (bytes > PAGE_SIZE-offset) 3476 bytes = PAGE_SIZE-offset; 3477 3478 maddr = kmap(page); 3479 if (write) { 3480 copy_to_user_page(vma, page, addr, 3481 maddr + offset, buf, bytes); 3482 set_page_dirty_lock(page); 3483 } else { 3484 copy_from_user_page(vma, page, addr, 3485 buf, maddr + offset, bytes); 3486 } 3487 kunmap(page); 3488 page_cache_release(page); 3489 } 3490 len -= bytes; 3491 buf += bytes; 3492 addr += bytes; 3493 } 3494 up_read(&mm->mmap_sem); 3495 mmput(mm); 3496 3497 return buf - old_buf; 3498 } 3499 3500 /* 3501 * Print the name of a VMA. 3502 */ 3503 void print_vma_addr(char *prefix, unsigned long ip) 3504 { 3505 struct mm_struct *mm = current->mm; 3506 struct vm_area_struct *vma; 3507 3508 /* 3509 * Do not print if we are in atomic 3510 * contexts (in exception stacks, etc.): 3511 */ 3512 if (preempt_count()) 3513 return; 3514 3515 down_read(&mm->mmap_sem); 3516 vma = find_vma(mm, ip); 3517 if (vma && vma->vm_file) { 3518 struct file *f = vma->vm_file; 3519 char *buf = (char *)__get_free_page(GFP_KERNEL); 3520 if (buf) { 3521 char *p, *s; 3522 3523 p = d_path(&f->f_path, buf, PAGE_SIZE); 3524 if (IS_ERR(p)) 3525 p = "?"; 3526 s = strrchr(p, '/'); 3527 if (s) 3528 p = s+1; 3529 printk("%s%s[%lx+%lx]", prefix, p, 3530 vma->vm_start, 3531 vma->vm_end - vma->vm_start); 3532 free_page((unsigned long)buf); 3533 } 3534 } 3535 up_read(¤t->mm->mmap_sem); 3536 } 3537 3538 #ifdef CONFIG_PROVE_LOCKING 3539 void might_fault(void) 3540 { 3541 /* 3542 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3543 * holding the mmap_sem, this is safe because kernel memory doesn't 3544 * get paged out, therefore we'll never actually fault, and the 3545 * below annotations will generate false positives. 3546 */ 3547 if (segment_eq(get_fs(), KERNEL_DS)) 3548 return; 3549 3550 might_sleep(); 3551 /* 3552 * it would be nicer only to annotate paths which are not under 3553 * pagefault_disable, however that requires a larger audit and 3554 * providing helpers like get_user_atomic. 3555 */ 3556 if (!in_atomic() && current->mm) 3557 might_lock_read(¤t->mm->mmap_sem); 3558 } 3559 EXPORT_SYMBOL(might_fault); 3560 #endif 3561