1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/sched/mm.h> 45 #include <linux/sched/coredump.h> 46 #include <linux/sched/numa_balancing.h> 47 #include <linux/sched/task.h> 48 #include <linux/hugetlb.h> 49 #include <linux/mman.h> 50 #include <linux/swap.h> 51 #include <linux/highmem.h> 52 #include <linux/pagemap.h> 53 #include <linux/memremap.h> 54 #include <linux/ksm.h> 55 #include <linux/rmap.h> 56 #include <linux/export.h> 57 #include <linux/delayacct.h> 58 #include <linux/init.h> 59 #include <linux/pfn_t.h> 60 #include <linux/writeback.h> 61 #include <linux/memcontrol.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/swapops.h> 64 #include <linux/elf.h> 65 #include <linux/gfp.h> 66 #include <linux/migrate.h> 67 #include <linux/string.h> 68 #include <linux/dma-debug.h> 69 #include <linux/debugfs.h> 70 #include <linux/userfaultfd_k.h> 71 #include <linux/dax.h> 72 #include <linux/oom.h> 73 #include <linux/numa.h> 74 75 #include <trace/events/kmem.h> 76 77 #include <asm/io.h> 78 #include <asm/mmu_context.h> 79 #include <asm/pgalloc.h> 80 #include <linux/uaccess.h> 81 #include <asm/tlb.h> 82 #include <asm/tlbflush.h> 83 #include <asm/pgtable.h> 84 85 #include "internal.h" 86 87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 89 #endif 90 91 #ifndef CONFIG_NEED_MULTIPLE_NODES 92 /* use the per-pgdat data instead for discontigmem - mbligh */ 93 unsigned long max_mapnr; 94 EXPORT_SYMBOL(max_mapnr); 95 96 struct page *mem_map; 97 EXPORT_SYMBOL(mem_map); 98 #endif 99 100 /* 101 * A number of key systems in x86 including ioremap() rely on the assumption 102 * that high_memory defines the upper bound on direct map memory, then end 103 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 104 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 105 * and ZONE_HIGHMEM. 106 */ 107 void *high_memory; 108 EXPORT_SYMBOL(high_memory); 109 110 /* 111 * Randomize the address space (stacks, mmaps, brk, etc.). 112 * 113 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 114 * as ancient (libc5 based) binaries can segfault. ) 115 */ 116 int randomize_va_space __read_mostly = 117 #ifdef CONFIG_COMPAT_BRK 118 1; 119 #else 120 2; 121 #endif 122 123 #ifndef arch_faults_on_old_pte 124 static inline bool arch_faults_on_old_pte(void) 125 { 126 /* 127 * Those arches which don't have hw access flag feature need to 128 * implement their own helper. By default, "true" means pagefault 129 * will be hit on old pte. 130 */ 131 return true; 132 } 133 #endif 134 135 static int __init disable_randmaps(char *s) 136 { 137 randomize_va_space = 0; 138 return 1; 139 } 140 __setup("norandmaps", disable_randmaps); 141 142 unsigned long zero_pfn __read_mostly; 143 EXPORT_SYMBOL(zero_pfn); 144 145 unsigned long highest_memmap_pfn __read_mostly; 146 147 /* 148 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 149 */ 150 static int __init init_zero_pfn(void) 151 { 152 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 153 return 0; 154 } 155 core_initcall(init_zero_pfn); 156 157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count) 158 { 159 trace_rss_stat(mm, member, count); 160 } 161 162 #if defined(SPLIT_RSS_COUNTING) 163 164 void sync_mm_rss(struct mm_struct *mm) 165 { 166 int i; 167 168 for (i = 0; i < NR_MM_COUNTERS; i++) { 169 if (current->rss_stat.count[i]) { 170 add_mm_counter(mm, i, current->rss_stat.count[i]); 171 current->rss_stat.count[i] = 0; 172 } 173 } 174 current->rss_stat.events = 0; 175 } 176 177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 178 { 179 struct task_struct *task = current; 180 181 if (likely(task->mm == mm)) 182 task->rss_stat.count[member] += val; 183 else 184 add_mm_counter(mm, member, val); 185 } 186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 188 189 /* sync counter once per 64 page faults */ 190 #define TASK_RSS_EVENTS_THRESH (64) 191 static void check_sync_rss_stat(struct task_struct *task) 192 { 193 if (unlikely(task != current)) 194 return; 195 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 196 sync_mm_rss(task->mm); 197 } 198 #else /* SPLIT_RSS_COUNTING */ 199 200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 202 203 static void check_sync_rss_stat(struct task_struct *task) 204 { 205 } 206 207 #endif /* SPLIT_RSS_COUNTING */ 208 209 /* 210 * Note: this doesn't free the actual pages themselves. That 211 * has been handled earlier when unmapping all the memory regions. 212 */ 213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 214 unsigned long addr) 215 { 216 pgtable_t token = pmd_pgtable(*pmd); 217 pmd_clear(pmd); 218 pte_free_tlb(tlb, token, addr); 219 mm_dec_nr_ptes(tlb->mm); 220 } 221 222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 223 unsigned long addr, unsigned long end, 224 unsigned long floor, unsigned long ceiling) 225 { 226 pmd_t *pmd; 227 unsigned long next; 228 unsigned long start; 229 230 start = addr; 231 pmd = pmd_offset(pud, addr); 232 do { 233 next = pmd_addr_end(addr, end); 234 if (pmd_none_or_clear_bad(pmd)) 235 continue; 236 free_pte_range(tlb, pmd, addr); 237 } while (pmd++, addr = next, addr != end); 238 239 start &= PUD_MASK; 240 if (start < floor) 241 return; 242 if (ceiling) { 243 ceiling &= PUD_MASK; 244 if (!ceiling) 245 return; 246 } 247 if (end - 1 > ceiling - 1) 248 return; 249 250 pmd = pmd_offset(pud, start); 251 pud_clear(pud); 252 pmd_free_tlb(tlb, pmd, start); 253 mm_dec_nr_pmds(tlb->mm); 254 } 255 256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 257 unsigned long addr, unsigned long end, 258 unsigned long floor, unsigned long ceiling) 259 { 260 pud_t *pud; 261 unsigned long next; 262 unsigned long start; 263 264 start = addr; 265 pud = pud_offset(p4d, addr); 266 do { 267 next = pud_addr_end(addr, end); 268 if (pud_none_or_clear_bad(pud)) 269 continue; 270 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 271 } while (pud++, addr = next, addr != end); 272 273 start &= P4D_MASK; 274 if (start < floor) 275 return; 276 if (ceiling) { 277 ceiling &= P4D_MASK; 278 if (!ceiling) 279 return; 280 } 281 if (end - 1 > ceiling - 1) 282 return; 283 284 pud = pud_offset(p4d, start); 285 p4d_clear(p4d); 286 pud_free_tlb(tlb, pud, start); 287 mm_dec_nr_puds(tlb->mm); 288 } 289 290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 291 unsigned long addr, unsigned long end, 292 unsigned long floor, unsigned long ceiling) 293 { 294 p4d_t *p4d; 295 unsigned long next; 296 unsigned long start; 297 298 start = addr; 299 p4d = p4d_offset(pgd, addr); 300 do { 301 next = p4d_addr_end(addr, end); 302 if (p4d_none_or_clear_bad(p4d)) 303 continue; 304 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 305 } while (p4d++, addr = next, addr != end); 306 307 start &= PGDIR_MASK; 308 if (start < floor) 309 return; 310 if (ceiling) { 311 ceiling &= PGDIR_MASK; 312 if (!ceiling) 313 return; 314 } 315 if (end - 1 > ceiling - 1) 316 return; 317 318 p4d = p4d_offset(pgd, start); 319 pgd_clear(pgd); 320 p4d_free_tlb(tlb, p4d, start); 321 } 322 323 /* 324 * This function frees user-level page tables of a process. 325 */ 326 void free_pgd_range(struct mmu_gather *tlb, 327 unsigned long addr, unsigned long end, 328 unsigned long floor, unsigned long ceiling) 329 { 330 pgd_t *pgd; 331 unsigned long next; 332 333 /* 334 * The next few lines have given us lots of grief... 335 * 336 * Why are we testing PMD* at this top level? Because often 337 * there will be no work to do at all, and we'd prefer not to 338 * go all the way down to the bottom just to discover that. 339 * 340 * Why all these "- 1"s? Because 0 represents both the bottom 341 * of the address space and the top of it (using -1 for the 342 * top wouldn't help much: the masks would do the wrong thing). 343 * The rule is that addr 0 and floor 0 refer to the bottom of 344 * the address space, but end 0 and ceiling 0 refer to the top 345 * Comparisons need to use "end - 1" and "ceiling - 1" (though 346 * that end 0 case should be mythical). 347 * 348 * Wherever addr is brought up or ceiling brought down, we must 349 * be careful to reject "the opposite 0" before it confuses the 350 * subsequent tests. But what about where end is brought down 351 * by PMD_SIZE below? no, end can't go down to 0 there. 352 * 353 * Whereas we round start (addr) and ceiling down, by different 354 * masks at different levels, in order to test whether a table 355 * now has no other vmas using it, so can be freed, we don't 356 * bother to round floor or end up - the tests don't need that. 357 */ 358 359 addr &= PMD_MASK; 360 if (addr < floor) { 361 addr += PMD_SIZE; 362 if (!addr) 363 return; 364 } 365 if (ceiling) { 366 ceiling &= PMD_MASK; 367 if (!ceiling) 368 return; 369 } 370 if (end - 1 > ceiling - 1) 371 end -= PMD_SIZE; 372 if (addr > end - 1) 373 return; 374 /* 375 * We add page table cache pages with PAGE_SIZE, 376 * (see pte_free_tlb()), flush the tlb if we need 377 */ 378 tlb_change_page_size(tlb, PAGE_SIZE); 379 pgd = pgd_offset(tlb->mm, addr); 380 do { 381 next = pgd_addr_end(addr, end); 382 if (pgd_none_or_clear_bad(pgd)) 383 continue; 384 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 385 } while (pgd++, addr = next, addr != end); 386 } 387 388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 389 unsigned long floor, unsigned long ceiling) 390 { 391 while (vma) { 392 struct vm_area_struct *next = vma->vm_next; 393 unsigned long addr = vma->vm_start; 394 395 /* 396 * Hide vma from rmap and truncate_pagecache before freeing 397 * pgtables 398 */ 399 unlink_anon_vmas(vma); 400 unlink_file_vma(vma); 401 402 if (is_vm_hugetlb_page(vma)) { 403 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 404 floor, next ? next->vm_start : ceiling); 405 } else { 406 /* 407 * Optimization: gather nearby vmas into one call down 408 */ 409 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 410 && !is_vm_hugetlb_page(next)) { 411 vma = next; 412 next = vma->vm_next; 413 unlink_anon_vmas(vma); 414 unlink_file_vma(vma); 415 } 416 free_pgd_range(tlb, addr, vma->vm_end, 417 floor, next ? next->vm_start : ceiling); 418 } 419 vma = next; 420 } 421 } 422 423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 424 { 425 spinlock_t *ptl; 426 pgtable_t new = pte_alloc_one(mm); 427 if (!new) 428 return -ENOMEM; 429 430 /* 431 * Ensure all pte setup (eg. pte page lock and page clearing) are 432 * visible before the pte is made visible to other CPUs by being 433 * put into page tables. 434 * 435 * The other side of the story is the pointer chasing in the page 436 * table walking code (when walking the page table without locking; 437 * ie. most of the time). Fortunately, these data accesses consist 438 * of a chain of data-dependent loads, meaning most CPUs (alpha 439 * being the notable exception) will already guarantee loads are 440 * seen in-order. See the alpha page table accessors for the 441 * smp_read_barrier_depends() barriers in page table walking code. 442 */ 443 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 444 445 ptl = pmd_lock(mm, pmd); 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 447 mm_inc_nr_ptes(mm); 448 pmd_populate(mm, pmd, new); 449 new = NULL; 450 } 451 spin_unlock(ptl); 452 if (new) 453 pte_free(mm, new); 454 return 0; 455 } 456 457 int __pte_alloc_kernel(pmd_t *pmd) 458 { 459 pte_t *new = pte_alloc_one_kernel(&init_mm); 460 if (!new) 461 return -ENOMEM; 462 463 smp_wmb(); /* See comment in __pte_alloc */ 464 465 spin_lock(&init_mm.page_table_lock); 466 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 467 pmd_populate_kernel(&init_mm, pmd, new); 468 new = NULL; 469 } 470 spin_unlock(&init_mm.page_table_lock); 471 if (new) 472 pte_free_kernel(&init_mm, new); 473 return 0; 474 } 475 476 static inline void init_rss_vec(int *rss) 477 { 478 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 479 } 480 481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 482 { 483 int i; 484 485 if (current->mm == mm) 486 sync_mm_rss(mm); 487 for (i = 0; i < NR_MM_COUNTERS; i++) 488 if (rss[i]) 489 add_mm_counter(mm, i, rss[i]); 490 } 491 492 /* 493 * This function is called to print an error when a bad pte 494 * is found. For example, we might have a PFN-mapped pte in 495 * a region that doesn't allow it. 496 * 497 * The calling function must still handle the error. 498 */ 499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 500 pte_t pte, struct page *page) 501 { 502 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 503 p4d_t *p4d = p4d_offset(pgd, addr); 504 pud_t *pud = pud_offset(p4d, addr); 505 pmd_t *pmd = pmd_offset(pud, addr); 506 struct address_space *mapping; 507 pgoff_t index; 508 static unsigned long resume; 509 static unsigned long nr_shown; 510 static unsigned long nr_unshown; 511 512 /* 513 * Allow a burst of 60 reports, then keep quiet for that minute; 514 * or allow a steady drip of one report per second. 515 */ 516 if (nr_shown == 60) { 517 if (time_before(jiffies, resume)) { 518 nr_unshown++; 519 return; 520 } 521 if (nr_unshown) { 522 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 523 nr_unshown); 524 nr_unshown = 0; 525 } 526 nr_shown = 0; 527 } 528 if (nr_shown++ == 0) 529 resume = jiffies + 60 * HZ; 530 531 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 532 index = linear_page_index(vma, addr); 533 534 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 535 current->comm, 536 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 537 if (page) 538 dump_page(page, "bad pte"); 539 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 540 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 541 pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n", 542 vma->vm_file, 543 vma->vm_ops ? vma->vm_ops->fault : NULL, 544 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 545 mapping ? mapping->a_ops->readpage : NULL); 546 dump_stack(); 547 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 548 } 549 550 /* 551 * vm_normal_page -- This function gets the "struct page" associated with a pte. 552 * 553 * "Special" mappings do not wish to be associated with a "struct page" (either 554 * it doesn't exist, or it exists but they don't want to touch it). In this 555 * case, NULL is returned here. "Normal" mappings do have a struct page. 556 * 557 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 558 * pte bit, in which case this function is trivial. Secondly, an architecture 559 * may not have a spare pte bit, which requires a more complicated scheme, 560 * described below. 561 * 562 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 563 * special mapping (even if there are underlying and valid "struct pages"). 564 * COWed pages of a VM_PFNMAP are always normal. 565 * 566 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 567 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 568 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 569 * mapping will always honor the rule 570 * 571 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 572 * 573 * And for normal mappings this is false. 574 * 575 * This restricts such mappings to be a linear translation from virtual address 576 * to pfn. To get around this restriction, we allow arbitrary mappings so long 577 * as the vma is not a COW mapping; in that case, we know that all ptes are 578 * special (because none can have been COWed). 579 * 580 * 581 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 582 * 583 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 584 * page" backing, however the difference is that _all_ pages with a struct 585 * page (that is, those where pfn_valid is true) are refcounted and considered 586 * normal pages by the VM. The disadvantage is that pages are refcounted 587 * (which can be slower and simply not an option for some PFNMAP users). The 588 * advantage is that we don't have to follow the strict linearity rule of 589 * PFNMAP mappings in order to support COWable mappings. 590 * 591 */ 592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 593 pte_t pte) 594 { 595 unsigned long pfn = pte_pfn(pte); 596 597 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 598 if (likely(!pte_special(pte))) 599 goto check_pfn; 600 if (vma->vm_ops && vma->vm_ops->find_special_page) 601 return vma->vm_ops->find_special_page(vma, addr); 602 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 603 return NULL; 604 if (is_zero_pfn(pfn)) 605 return NULL; 606 if (pte_devmap(pte)) 607 return NULL; 608 609 print_bad_pte(vma, addr, pte, NULL); 610 return NULL; 611 } 612 613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 614 615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 616 if (vma->vm_flags & VM_MIXEDMAP) { 617 if (!pfn_valid(pfn)) 618 return NULL; 619 goto out; 620 } else { 621 unsigned long off; 622 off = (addr - vma->vm_start) >> PAGE_SHIFT; 623 if (pfn == vma->vm_pgoff + off) 624 return NULL; 625 if (!is_cow_mapping(vma->vm_flags)) 626 return NULL; 627 } 628 } 629 630 if (is_zero_pfn(pfn)) 631 return NULL; 632 633 check_pfn: 634 if (unlikely(pfn > highest_memmap_pfn)) { 635 print_bad_pte(vma, addr, pte, NULL); 636 return NULL; 637 } 638 639 /* 640 * NOTE! We still have PageReserved() pages in the page tables. 641 * eg. VDSO mappings can cause them to exist. 642 */ 643 out: 644 return pfn_to_page(pfn); 645 } 646 647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 649 pmd_t pmd) 650 { 651 unsigned long pfn = pmd_pfn(pmd); 652 653 /* 654 * There is no pmd_special() but there may be special pmds, e.g. 655 * in a direct-access (dax) mapping, so let's just replicate the 656 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 657 */ 658 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 659 if (vma->vm_flags & VM_MIXEDMAP) { 660 if (!pfn_valid(pfn)) 661 return NULL; 662 goto out; 663 } else { 664 unsigned long off; 665 off = (addr - vma->vm_start) >> PAGE_SHIFT; 666 if (pfn == vma->vm_pgoff + off) 667 return NULL; 668 if (!is_cow_mapping(vma->vm_flags)) 669 return NULL; 670 } 671 } 672 673 if (pmd_devmap(pmd)) 674 return NULL; 675 if (is_huge_zero_pmd(pmd)) 676 return NULL; 677 if (unlikely(pfn > highest_memmap_pfn)) 678 return NULL; 679 680 /* 681 * NOTE! We still have PageReserved() pages in the page tables. 682 * eg. VDSO mappings can cause them to exist. 683 */ 684 out: 685 return pfn_to_page(pfn); 686 } 687 #endif 688 689 /* 690 * copy one vm_area from one task to the other. Assumes the page tables 691 * already present in the new task to be cleared in the whole range 692 * covered by this vma. 693 */ 694 695 static inline unsigned long 696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 697 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 698 unsigned long addr, int *rss) 699 { 700 unsigned long vm_flags = vma->vm_flags; 701 pte_t pte = *src_pte; 702 struct page *page; 703 704 /* pte contains position in swap or file, so copy. */ 705 if (unlikely(!pte_present(pte))) { 706 swp_entry_t entry = pte_to_swp_entry(pte); 707 708 if (likely(!non_swap_entry(entry))) { 709 if (swap_duplicate(entry) < 0) 710 return entry.val; 711 712 /* make sure dst_mm is on swapoff's mmlist. */ 713 if (unlikely(list_empty(&dst_mm->mmlist))) { 714 spin_lock(&mmlist_lock); 715 if (list_empty(&dst_mm->mmlist)) 716 list_add(&dst_mm->mmlist, 717 &src_mm->mmlist); 718 spin_unlock(&mmlist_lock); 719 } 720 rss[MM_SWAPENTS]++; 721 } else if (is_migration_entry(entry)) { 722 page = migration_entry_to_page(entry); 723 724 rss[mm_counter(page)]++; 725 726 if (is_write_migration_entry(entry) && 727 is_cow_mapping(vm_flags)) { 728 /* 729 * COW mappings require pages in both 730 * parent and child to be set to read. 731 */ 732 make_migration_entry_read(&entry); 733 pte = swp_entry_to_pte(entry); 734 if (pte_swp_soft_dirty(*src_pte)) 735 pte = pte_swp_mksoft_dirty(pte); 736 set_pte_at(src_mm, addr, src_pte, pte); 737 } 738 } else if (is_device_private_entry(entry)) { 739 page = device_private_entry_to_page(entry); 740 741 /* 742 * Update rss count even for unaddressable pages, as 743 * they should treated just like normal pages in this 744 * respect. 745 * 746 * We will likely want to have some new rss counters 747 * for unaddressable pages, at some point. But for now 748 * keep things as they are. 749 */ 750 get_page(page); 751 rss[mm_counter(page)]++; 752 page_dup_rmap(page, false); 753 754 /* 755 * We do not preserve soft-dirty information, because so 756 * far, checkpoint/restore is the only feature that 757 * requires that. And checkpoint/restore does not work 758 * when a device driver is involved (you cannot easily 759 * save and restore device driver state). 760 */ 761 if (is_write_device_private_entry(entry) && 762 is_cow_mapping(vm_flags)) { 763 make_device_private_entry_read(&entry); 764 pte = swp_entry_to_pte(entry); 765 set_pte_at(src_mm, addr, src_pte, pte); 766 } 767 } 768 goto out_set_pte; 769 } 770 771 /* 772 * If it's a COW mapping, write protect it both 773 * in the parent and the child 774 */ 775 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 776 ptep_set_wrprotect(src_mm, addr, src_pte); 777 pte = pte_wrprotect(pte); 778 } 779 780 /* 781 * If it's a shared mapping, mark it clean in 782 * the child 783 */ 784 if (vm_flags & VM_SHARED) 785 pte = pte_mkclean(pte); 786 pte = pte_mkold(pte); 787 788 page = vm_normal_page(vma, addr, pte); 789 if (page) { 790 get_page(page); 791 page_dup_rmap(page, false); 792 rss[mm_counter(page)]++; 793 } else if (pte_devmap(pte)) { 794 page = pte_page(pte); 795 } 796 797 out_set_pte: 798 set_pte_at(dst_mm, addr, dst_pte, pte); 799 return 0; 800 } 801 802 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 803 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 804 unsigned long addr, unsigned long end) 805 { 806 pte_t *orig_src_pte, *orig_dst_pte; 807 pte_t *src_pte, *dst_pte; 808 spinlock_t *src_ptl, *dst_ptl; 809 int progress = 0; 810 int rss[NR_MM_COUNTERS]; 811 swp_entry_t entry = (swp_entry_t){0}; 812 813 again: 814 init_rss_vec(rss); 815 816 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 817 if (!dst_pte) 818 return -ENOMEM; 819 src_pte = pte_offset_map(src_pmd, addr); 820 src_ptl = pte_lockptr(src_mm, src_pmd); 821 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 822 orig_src_pte = src_pte; 823 orig_dst_pte = dst_pte; 824 arch_enter_lazy_mmu_mode(); 825 826 do { 827 /* 828 * We are holding two locks at this point - either of them 829 * could generate latencies in another task on another CPU. 830 */ 831 if (progress >= 32) { 832 progress = 0; 833 if (need_resched() || 834 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 835 break; 836 } 837 if (pte_none(*src_pte)) { 838 progress++; 839 continue; 840 } 841 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 842 vma, addr, rss); 843 if (entry.val) 844 break; 845 progress += 8; 846 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 847 848 arch_leave_lazy_mmu_mode(); 849 spin_unlock(src_ptl); 850 pte_unmap(orig_src_pte); 851 add_mm_rss_vec(dst_mm, rss); 852 pte_unmap_unlock(orig_dst_pte, dst_ptl); 853 cond_resched(); 854 855 if (entry.val) { 856 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 857 return -ENOMEM; 858 progress = 0; 859 } 860 if (addr != end) 861 goto again; 862 return 0; 863 } 864 865 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 866 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 867 unsigned long addr, unsigned long end) 868 { 869 pmd_t *src_pmd, *dst_pmd; 870 unsigned long next; 871 872 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 873 if (!dst_pmd) 874 return -ENOMEM; 875 src_pmd = pmd_offset(src_pud, addr); 876 do { 877 next = pmd_addr_end(addr, end); 878 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 879 || pmd_devmap(*src_pmd)) { 880 int err; 881 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 882 err = copy_huge_pmd(dst_mm, src_mm, 883 dst_pmd, src_pmd, addr, vma); 884 if (err == -ENOMEM) 885 return -ENOMEM; 886 if (!err) 887 continue; 888 /* fall through */ 889 } 890 if (pmd_none_or_clear_bad(src_pmd)) 891 continue; 892 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 893 vma, addr, next)) 894 return -ENOMEM; 895 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 896 return 0; 897 } 898 899 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 900 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 901 unsigned long addr, unsigned long end) 902 { 903 pud_t *src_pud, *dst_pud; 904 unsigned long next; 905 906 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 907 if (!dst_pud) 908 return -ENOMEM; 909 src_pud = pud_offset(src_p4d, addr); 910 do { 911 next = pud_addr_end(addr, end); 912 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 913 int err; 914 915 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 916 err = copy_huge_pud(dst_mm, src_mm, 917 dst_pud, src_pud, addr, vma); 918 if (err == -ENOMEM) 919 return -ENOMEM; 920 if (!err) 921 continue; 922 /* fall through */ 923 } 924 if (pud_none_or_clear_bad(src_pud)) 925 continue; 926 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 927 vma, addr, next)) 928 return -ENOMEM; 929 } while (dst_pud++, src_pud++, addr = next, addr != end); 930 return 0; 931 } 932 933 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 934 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 935 unsigned long addr, unsigned long end) 936 { 937 p4d_t *src_p4d, *dst_p4d; 938 unsigned long next; 939 940 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 941 if (!dst_p4d) 942 return -ENOMEM; 943 src_p4d = p4d_offset(src_pgd, addr); 944 do { 945 next = p4d_addr_end(addr, end); 946 if (p4d_none_or_clear_bad(src_p4d)) 947 continue; 948 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 949 vma, addr, next)) 950 return -ENOMEM; 951 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 952 return 0; 953 } 954 955 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 956 struct vm_area_struct *vma) 957 { 958 pgd_t *src_pgd, *dst_pgd; 959 unsigned long next; 960 unsigned long addr = vma->vm_start; 961 unsigned long end = vma->vm_end; 962 struct mmu_notifier_range range; 963 bool is_cow; 964 int ret; 965 966 /* 967 * Don't copy ptes where a page fault will fill them correctly. 968 * Fork becomes much lighter when there are big shared or private 969 * readonly mappings. The tradeoff is that copy_page_range is more 970 * efficient than faulting. 971 */ 972 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 973 !vma->anon_vma) 974 return 0; 975 976 if (is_vm_hugetlb_page(vma)) 977 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 978 979 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 980 /* 981 * We do not free on error cases below as remove_vma 982 * gets called on error from higher level routine 983 */ 984 ret = track_pfn_copy(vma); 985 if (ret) 986 return ret; 987 } 988 989 /* 990 * We need to invalidate the secondary MMU mappings only when 991 * there could be a permission downgrade on the ptes of the 992 * parent mm. And a permission downgrade will only happen if 993 * is_cow_mapping() returns true. 994 */ 995 is_cow = is_cow_mapping(vma->vm_flags); 996 997 if (is_cow) { 998 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 999 0, vma, src_mm, addr, end); 1000 mmu_notifier_invalidate_range_start(&range); 1001 } 1002 1003 ret = 0; 1004 dst_pgd = pgd_offset(dst_mm, addr); 1005 src_pgd = pgd_offset(src_mm, addr); 1006 do { 1007 next = pgd_addr_end(addr, end); 1008 if (pgd_none_or_clear_bad(src_pgd)) 1009 continue; 1010 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1011 vma, addr, next))) { 1012 ret = -ENOMEM; 1013 break; 1014 } 1015 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1016 1017 if (is_cow) 1018 mmu_notifier_invalidate_range_end(&range); 1019 return ret; 1020 } 1021 1022 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1023 struct vm_area_struct *vma, pmd_t *pmd, 1024 unsigned long addr, unsigned long end, 1025 struct zap_details *details) 1026 { 1027 struct mm_struct *mm = tlb->mm; 1028 int force_flush = 0; 1029 int rss[NR_MM_COUNTERS]; 1030 spinlock_t *ptl; 1031 pte_t *start_pte; 1032 pte_t *pte; 1033 swp_entry_t entry; 1034 1035 tlb_change_page_size(tlb, PAGE_SIZE); 1036 again: 1037 init_rss_vec(rss); 1038 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1039 pte = start_pte; 1040 flush_tlb_batched_pending(mm); 1041 arch_enter_lazy_mmu_mode(); 1042 do { 1043 pte_t ptent = *pte; 1044 if (pte_none(ptent)) 1045 continue; 1046 1047 if (need_resched()) 1048 break; 1049 1050 if (pte_present(ptent)) { 1051 struct page *page; 1052 1053 page = vm_normal_page(vma, addr, ptent); 1054 if (unlikely(details) && page) { 1055 /* 1056 * unmap_shared_mapping_pages() wants to 1057 * invalidate cache without truncating: 1058 * unmap shared but keep private pages. 1059 */ 1060 if (details->check_mapping && 1061 details->check_mapping != page_rmapping(page)) 1062 continue; 1063 } 1064 ptent = ptep_get_and_clear_full(mm, addr, pte, 1065 tlb->fullmm); 1066 tlb_remove_tlb_entry(tlb, pte, addr); 1067 if (unlikely(!page)) 1068 continue; 1069 1070 if (!PageAnon(page)) { 1071 if (pte_dirty(ptent)) { 1072 force_flush = 1; 1073 set_page_dirty(page); 1074 } 1075 if (pte_young(ptent) && 1076 likely(!(vma->vm_flags & VM_SEQ_READ))) 1077 mark_page_accessed(page); 1078 } 1079 rss[mm_counter(page)]--; 1080 page_remove_rmap(page, false); 1081 if (unlikely(page_mapcount(page) < 0)) 1082 print_bad_pte(vma, addr, ptent, page); 1083 if (unlikely(__tlb_remove_page(tlb, page))) { 1084 force_flush = 1; 1085 addr += PAGE_SIZE; 1086 break; 1087 } 1088 continue; 1089 } 1090 1091 entry = pte_to_swp_entry(ptent); 1092 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1093 struct page *page = device_private_entry_to_page(entry); 1094 1095 if (unlikely(details && details->check_mapping)) { 1096 /* 1097 * unmap_shared_mapping_pages() wants to 1098 * invalidate cache without truncating: 1099 * unmap shared but keep private pages. 1100 */ 1101 if (details->check_mapping != 1102 page_rmapping(page)) 1103 continue; 1104 } 1105 1106 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1107 rss[mm_counter(page)]--; 1108 page_remove_rmap(page, false); 1109 put_page(page); 1110 continue; 1111 } 1112 1113 /* If details->check_mapping, we leave swap entries. */ 1114 if (unlikely(details)) 1115 continue; 1116 1117 if (!non_swap_entry(entry)) 1118 rss[MM_SWAPENTS]--; 1119 else if (is_migration_entry(entry)) { 1120 struct page *page; 1121 1122 page = migration_entry_to_page(entry); 1123 rss[mm_counter(page)]--; 1124 } 1125 if (unlikely(!free_swap_and_cache(entry))) 1126 print_bad_pte(vma, addr, ptent, NULL); 1127 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1128 } while (pte++, addr += PAGE_SIZE, addr != end); 1129 1130 add_mm_rss_vec(mm, rss); 1131 arch_leave_lazy_mmu_mode(); 1132 1133 /* Do the actual TLB flush before dropping ptl */ 1134 if (force_flush) 1135 tlb_flush_mmu_tlbonly(tlb); 1136 pte_unmap_unlock(start_pte, ptl); 1137 1138 /* 1139 * If we forced a TLB flush (either due to running out of 1140 * batch buffers or because we needed to flush dirty TLB 1141 * entries before releasing the ptl), free the batched 1142 * memory too. Restart if we didn't do everything. 1143 */ 1144 if (force_flush) { 1145 force_flush = 0; 1146 tlb_flush_mmu(tlb); 1147 } 1148 1149 if (addr != end) { 1150 cond_resched(); 1151 goto again; 1152 } 1153 1154 return addr; 1155 } 1156 1157 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1158 struct vm_area_struct *vma, pud_t *pud, 1159 unsigned long addr, unsigned long end, 1160 struct zap_details *details) 1161 { 1162 pmd_t *pmd; 1163 unsigned long next; 1164 1165 pmd = pmd_offset(pud, addr); 1166 do { 1167 next = pmd_addr_end(addr, end); 1168 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1169 if (next - addr != HPAGE_PMD_SIZE) 1170 __split_huge_pmd(vma, pmd, addr, false, NULL); 1171 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1172 goto next; 1173 /* fall through */ 1174 } 1175 /* 1176 * Here there can be other concurrent MADV_DONTNEED or 1177 * trans huge page faults running, and if the pmd is 1178 * none or trans huge it can change under us. This is 1179 * because MADV_DONTNEED holds the mmap_sem in read 1180 * mode. 1181 */ 1182 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1183 goto next; 1184 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1185 next: 1186 cond_resched(); 1187 } while (pmd++, addr = next, addr != end); 1188 1189 return addr; 1190 } 1191 1192 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1193 struct vm_area_struct *vma, p4d_t *p4d, 1194 unsigned long addr, unsigned long end, 1195 struct zap_details *details) 1196 { 1197 pud_t *pud; 1198 unsigned long next; 1199 1200 pud = pud_offset(p4d, addr); 1201 do { 1202 next = pud_addr_end(addr, end); 1203 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1204 if (next - addr != HPAGE_PUD_SIZE) { 1205 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1206 split_huge_pud(vma, pud, addr); 1207 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1208 goto next; 1209 /* fall through */ 1210 } 1211 if (pud_none_or_clear_bad(pud)) 1212 continue; 1213 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1214 next: 1215 cond_resched(); 1216 } while (pud++, addr = next, addr != end); 1217 1218 return addr; 1219 } 1220 1221 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1222 struct vm_area_struct *vma, pgd_t *pgd, 1223 unsigned long addr, unsigned long end, 1224 struct zap_details *details) 1225 { 1226 p4d_t *p4d; 1227 unsigned long next; 1228 1229 p4d = p4d_offset(pgd, addr); 1230 do { 1231 next = p4d_addr_end(addr, end); 1232 if (p4d_none_or_clear_bad(p4d)) 1233 continue; 1234 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1235 } while (p4d++, addr = next, addr != end); 1236 1237 return addr; 1238 } 1239 1240 void unmap_page_range(struct mmu_gather *tlb, 1241 struct vm_area_struct *vma, 1242 unsigned long addr, unsigned long end, 1243 struct zap_details *details) 1244 { 1245 pgd_t *pgd; 1246 unsigned long next; 1247 1248 BUG_ON(addr >= end); 1249 tlb_start_vma(tlb, vma); 1250 pgd = pgd_offset(vma->vm_mm, addr); 1251 do { 1252 next = pgd_addr_end(addr, end); 1253 if (pgd_none_or_clear_bad(pgd)) 1254 continue; 1255 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1256 } while (pgd++, addr = next, addr != end); 1257 tlb_end_vma(tlb, vma); 1258 } 1259 1260 1261 static void unmap_single_vma(struct mmu_gather *tlb, 1262 struct vm_area_struct *vma, unsigned long start_addr, 1263 unsigned long end_addr, 1264 struct zap_details *details) 1265 { 1266 unsigned long start = max(vma->vm_start, start_addr); 1267 unsigned long end; 1268 1269 if (start >= vma->vm_end) 1270 return; 1271 end = min(vma->vm_end, end_addr); 1272 if (end <= vma->vm_start) 1273 return; 1274 1275 if (vma->vm_file) 1276 uprobe_munmap(vma, start, end); 1277 1278 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1279 untrack_pfn(vma, 0, 0); 1280 1281 if (start != end) { 1282 if (unlikely(is_vm_hugetlb_page(vma))) { 1283 /* 1284 * It is undesirable to test vma->vm_file as it 1285 * should be non-null for valid hugetlb area. 1286 * However, vm_file will be NULL in the error 1287 * cleanup path of mmap_region. When 1288 * hugetlbfs ->mmap method fails, 1289 * mmap_region() nullifies vma->vm_file 1290 * before calling this function to clean up. 1291 * Since no pte has actually been setup, it is 1292 * safe to do nothing in this case. 1293 */ 1294 if (vma->vm_file) { 1295 i_mmap_lock_write(vma->vm_file->f_mapping); 1296 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1297 i_mmap_unlock_write(vma->vm_file->f_mapping); 1298 } 1299 } else 1300 unmap_page_range(tlb, vma, start, end, details); 1301 } 1302 } 1303 1304 /** 1305 * unmap_vmas - unmap a range of memory covered by a list of vma's 1306 * @tlb: address of the caller's struct mmu_gather 1307 * @vma: the starting vma 1308 * @start_addr: virtual address at which to start unmapping 1309 * @end_addr: virtual address at which to end unmapping 1310 * 1311 * Unmap all pages in the vma list. 1312 * 1313 * Only addresses between `start' and `end' will be unmapped. 1314 * 1315 * The VMA list must be sorted in ascending virtual address order. 1316 * 1317 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1318 * range after unmap_vmas() returns. So the only responsibility here is to 1319 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1320 * drops the lock and schedules. 1321 */ 1322 void unmap_vmas(struct mmu_gather *tlb, 1323 struct vm_area_struct *vma, unsigned long start_addr, 1324 unsigned long end_addr) 1325 { 1326 struct mmu_notifier_range range; 1327 1328 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm, 1329 start_addr, end_addr); 1330 mmu_notifier_invalidate_range_start(&range); 1331 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1332 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1333 mmu_notifier_invalidate_range_end(&range); 1334 } 1335 1336 /** 1337 * zap_page_range - remove user pages in a given range 1338 * @vma: vm_area_struct holding the applicable pages 1339 * @start: starting address of pages to zap 1340 * @size: number of bytes to zap 1341 * 1342 * Caller must protect the VMA list 1343 */ 1344 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1345 unsigned long size) 1346 { 1347 struct mmu_notifier_range range; 1348 struct mmu_gather tlb; 1349 1350 lru_add_drain(); 1351 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1352 start, start + size); 1353 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1354 update_hiwater_rss(vma->vm_mm); 1355 mmu_notifier_invalidate_range_start(&range); 1356 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1357 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1358 mmu_notifier_invalidate_range_end(&range); 1359 tlb_finish_mmu(&tlb, start, range.end); 1360 } 1361 1362 /** 1363 * zap_page_range_single - remove user pages in a given range 1364 * @vma: vm_area_struct holding the applicable pages 1365 * @address: starting address of pages to zap 1366 * @size: number of bytes to zap 1367 * @details: details of shared cache invalidation 1368 * 1369 * The range must fit into one VMA. 1370 */ 1371 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1372 unsigned long size, struct zap_details *details) 1373 { 1374 struct mmu_notifier_range range; 1375 struct mmu_gather tlb; 1376 1377 lru_add_drain(); 1378 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm, 1379 address, address + size); 1380 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1381 update_hiwater_rss(vma->vm_mm); 1382 mmu_notifier_invalidate_range_start(&range); 1383 unmap_single_vma(&tlb, vma, address, range.end, details); 1384 mmu_notifier_invalidate_range_end(&range); 1385 tlb_finish_mmu(&tlb, address, range.end); 1386 } 1387 1388 /** 1389 * zap_vma_ptes - remove ptes mapping the vma 1390 * @vma: vm_area_struct holding ptes to be zapped 1391 * @address: starting address of pages to zap 1392 * @size: number of bytes to zap 1393 * 1394 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1395 * 1396 * The entire address range must be fully contained within the vma. 1397 * 1398 */ 1399 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1400 unsigned long size) 1401 { 1402 if (address < vma->vm_start || address + size > vma->vm_end || 1403 !(vma->vm_flags & VM_PFNMAP)) 1404 return; 1405 1406 zap_page_range_single(vma, address, size, NULL); 1407 } 1408 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1409 1410 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1411 spinlock_t **ptl) 1412 { 1413 pgd_t *pgd; 1414 p4d_t *p4d; 1415 pud_t *pud; 1416 pmd_t *pmd; 1417 1418 pgd = pgd_offset(mm, addr); 1419 p4d = p4d_alloc(mm, pgd, addr); 1420 if (!p4d) 1421 return NULL; 1422 pud = pud_alloc(mm, p4d, addr); 1423 if (!pud) 1424 return NULL; 1425 pmd = pmd_alloc(mm, pud, addr); 1426 if (!pmd) 1427 return NULL; 1428 1429 VM_BUG_ON(pmd_trans_huge(*pmd)); 1430 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1431 } 1432 1433 /* 1434 * This is the old fallback for page remapping. 1435 * 1436 * For historical reasons, it only allows reserved pages. Only 1437 * old drivers should use this, and they needed to mark their 1438 * pages reserved for the old functions anyway. 1439 */ 1440 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1441 struct page *page, pgprot_t prot) 1442 { 1443 struct mm_struct *mm = vma->vm_mm; 1444 int retval; 1445 pte_t *pte; 1446 spinlock_t *ptl; 1447 1448 retval = -EINVAL; 1449 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1450 goto out; 1451 retval = -ENOMEM; 1452 flush_dcache_page(page); 1453 pte = get_locked_pte(mm, addr, &ptl); 1454 if (!pte) 1455 goto out; 1456 retval = -EBUSY; 1457 if (!pte_none(*pte)) 1458 goto out_unlock; 1459 1460 /* Ok, finally just insert the thing.. */ 1461 get_page(page); 1462 inc_mm_counter_fast(mm, mm_counter_file(page)); 1463 page_add_file_rmap(page, false); 1464 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1465 1466 retval = 0; 1467 out_unlock: 1468 pte_unmap_unlock(pte, ptl); 1469 out: 1470 return retval; 1471 } 1472 1473 /** 1474 * vm_insert_page - insert single page into user vma 1475 * @vma: user vma to map to 1476 * @addr: target user address of this page 1477 * @page: source kernel page 1478 * 1479 * This allows drivers to insert individual pages they've allocated 1480 * into a user vma. 1481 * 1482 * The page has to be a nice clean _individual_ kernel allocation. 1483 * If you allocate a compound page, you need to have marked it as 1484 * such (__GFP_COMP), or manually just split the page up yourself 1485 * (see split_page()). 1486 * 1487 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1488 * took an arbitrary page protection parameter. This doesn't allow 1489 * that. Your vma protection will have to be set up correctly, which 1490 * means that if you want a shared writable mapping, you'd better 1491 * ask for a shared writable mapping! 1492 * 1493 * The page does not need to be reserved. 1494 * 1495 * Usually this function is called from f_op->mmap() handler 1496 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1497 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1498 * function from other places, for example from page-fault handler. 1499 * 1500 * Return: %0 on success, negative error code otherwise. 1501 */ 1502 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1503 struct page *page) 1504 { 1505 if (addr < vma->vm_start || addr >= vma->vm_end) 1506 return -EFAULT; 1507 if (!page_count(page)) 1508 return -EINVAL; 1509 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1510 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1511 BUG_ON(vma->vm_flags & VM_PFNMAP); 1512 vma->vm_flags |= VM_MIXEDMAP; 1513 } 1514 return insert_page(vma, addr, page, vma->vm_page_prot); 1515 } 1516 EXPORT_SYMBOL(vm_insert_page); 1517 1518 /* 1519 * __vm_map_pages - maps range of kernel pages into user vma 1520 * @vma: user vma to map to 1521 * @pages: pointer to array of source kernel pages 1522 * @num: number of pages in page array 1523 * @offset: user's requested vm_pgoff 1524 * 1525 * This allows drivers to map range of kernel pages into a user vma. 1526 * 1527 * Return: 0 on success and error code otherwise. 1528 */ 1529 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1530 unsigned long num, unsigned long offset) 1531 { 1532 unsigned long count = vma_pages(vma); 1533 unsigned long uaddr = vma->vm_start; 1534 int ret, i; 1535 1536 /* Fail if the user requested offset is beyond the end of the object */ 1537 if (offset >= num) 1538 return -ENXIO; 1539 1540 /* Fail if the user requested size exceeds available object size */ 1541 if (count > num - offset) 1542 return -ENXIO; 1543 1544 for (i = 0; i < count; i++) { 1545 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 1546 if (ret < 0) 1547 return ret; 1548 uaddr += PAGE_SIZE; 1549 } 1550 1551 return 0; 1552 } 1553 1554 /** 1555 * vm_map_pages - maps range of kernel pages starts with non zero offset 1556 * @vma: user vma to map to 1557 * @pages: pointer to array of source kernel pages 1558 * @num: number of pages in page array 1559 * 1560 * Maps an object consisting of @num pages, catering for the user's 1561 * requested vm_pgoff 1562 * 1563 * If we fail to insert any page into the vma, the function will return 1564 * immediately leaving any previously inserted pages present. Callers 1565 * from the mmap handler may immediately return the error as their caller 1566 * will destroy the vma, removing any successfully inserted pages. Other 1567 * callers should make their own arrangements for calling unmap_region(). 1568 * 1569 * Context: Process context. Called by mmap handlers. 1570 * Return: 0 on success and error code otherwise. 1571 */ 1572 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 1573 unsigned long num) 1574 { 1575 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 1576 } 1577 EXPORT_SYMBOL(vm_map_pages); 1578 1579 /** 1580 * vm_map_pages_zero - map range of kernel pages starts with zero offset 1581 * @vma: user vma to map to 1582 * @pages: pointer to array of source kernel pages 1583 * @num: number of pages in page array 1584 * 1585 * Similar to vm_map_pages(), except that it explicitly sets the offset 1586 * to 0. This function is intended for the drivers that did not consider 1587 * vm_pgoff. 1588 * 1589 * Context: Process context. Called by mmap handlers. 1590 * Return: 0 on success and error code otherwise. 1591 */ 1592 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 1593 unsigned long num) 1594 { 1595 return __vm_map_pages(vma, pages, num, 0); 1596 } 1597 EXPORT_SYMBOL(vm_map_pages_zero); 1598 1599 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1600 pfn_t pfn, pgprot_t prot, bool mkwrite) 1601 { 1602 struct mm_struct *mm = vma->vm_mm; 1603 pte_t *pte, entry; 1604 spinlock_t *ptl; 1605 1606 pte = get_locked_pte(mm, addr, &ptl); 1607 if (!pte) 1608 return VM_FAULT_OOM; 1609 if (!pte_none(*pte)) { 1610 if (mkwrite) { 1611 /* 1612 * For read faults on private mappings the PFN passed 1613 * in may not match the PFN we have mapped if the 1614 * mapped PFN is a writeable COW page. In the mkwrite 1615 * case we are creating a writable PTE for a shared 1616 * mapping and we expect the PFNs to match. If they 1617 * don't match, we are likely racing with block 1618 * allocation and mapping invalidation so just skip the 1619 * update. 1620 */ 1621 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1622 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1623 goto out_unlock; 1624 } 1625 entry = pte_mkyoung(*pte); 1626 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1627 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1628 update_mmu_cache(vma, addr, pte); 1629 } 1630 goto out_unlock; 1631 } 1632 1633 /* Ok, finally just insert the thing.. */ 1634 if (pfn_t_devmap(pfn)) 1635 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1636 else 1637 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1638 1639 if (mkwrite) { 1640 entry = pte_mkyoung(entry); 1641 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1642 } 1643 1644 set_pte_at(mm, addr, pte, entry); 1645 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1646 1647 out_unlock: 1648 pte_unmap_unlock(pte, ptl); 1649 return VM_FAULT_NOPAGE; 1650 } 1651 1652 /** 1653 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1654 * @vma: user vma to map to 1655 * @addr: target user address of this page 1656 * @pfn: source kernel pfn 1657 * @pgprot: pgprot flags for the inserted page 1658 * 1659 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1660 * to override pgprot on a per-page basis. 1661 * 1662 * This only makes sense for IO mappings, and it makes no sense for 1663 * COW mappings. In general, using multiple vmas is preferable; 1664 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1665 * impractical. 1666 * 1667 * Context: Process context. May allocate using %GFP_KERNEL. 1668 * Return: vm_fault_t value. 1669 */ 1670 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1671 unsigned long pfn, pgprot_t pgprot) 1672 { 1673 /* 1674 * Technically, architectures with pte_special can avoid all these 1675 * restrictions (same for remap_pfn_range). However we would like 1676 * consistency in testing and feature parity among all, so we should 1677 * try to keep these invariants in place for everybody. 1678 */ 1679 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1680 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1681 (VM_PFNMAP|VM_MIXEDMAP)); 1682 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1683 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1684 1685 if (addr < vma->vm_start || addr >= vma->vm_end) 1686 return VM_FAULT_SIGBUS; 1687 1688 if (!pfn_modify_allowed(pfn, pgprot)) 1689 return VM_FAULT_SIGBUS; 1690 1691 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1692 1693 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1694 false); 1695 } 1696 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1697 1698 /** 1699 * vmf_insert_pfn - insert single pfn into user vma 1700 * @vma: user vma to map to 1701 * @addr: target user address of this page 1702 * @pfn: source kernel pfn 1703 * 1704 * Similar to vm_insert_page, this allows drivers to insert individual pages 1705 * they've allocated into a user vma. Same comments apply. 1706 * 1707 * This function should only be called from a vm_ops->fault handler, and 1708 * in that case the handler should return the result of this function. 1709 * 1710 * vma cannot be a COW mapping. 1711 * 1712 * As this is called only for pages that do not currently exist, we 1713 * do not need to flush old virtual caches or the TLB. 1714 * 1715 * Context: Process context. May allocate using %GFP_KERNEL. 1716 * Return: vm_fault_t value. 1717 */ 1718 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1719 unsigned long pfn) 1720 { 1721 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1722 } 1723 EXPORT_SYMBOL(vmf_insert_pfn); 1724 1725 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1726 { 1727 /* these checks mirror the abort conditions in vm_normal_page */ 1728 if (vma->vm_flags & VM_MIXEDMAP) 1729 return true; 1730 if (pfn_t_devmap(pfn)) 1731 return true; 1732 if (pfn_t_special(pfn)) 1733 return true; 1734 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1735 return true; 1736 return false; 1737 } 1738 1739 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1740 unsigned long addr, pfn_t pfn, bool mkwrite) 1741 { 1742 pgprot_t pgprot = vma->vm_page_prot; 1743 int err; 1744 1745 BUG_ON(!vm_mixed_ok(vma, pfn)); 1746 1747 if (addr < vma->vm_start || addr >= vma->vm_end) 1748 return VM_FAULT_SIGBUS; 1749 1750 track_pfn_insert(vma, &pgprot, pfn); 1751 1752 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1753 return VM_FAULT_SIGBUS; 1754 1755 /* 1756 * If we don't have pte special, then we have to use the pfn_valid() 1757 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1758 * refcount the page if pfn_valid is true (hence insert_page rather 1759 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1760 * without pte special, it would there be refcounted as a normal page. 1761 */ 1762 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1763 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1764 struct page *page; 1765 1766 /* 1767 * At this point we are committed to insert_page() 1768 * regardless of whether the caller specified flags that 1769 * result in pfn_t_has_page() == false. 1770 */ 1771 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1772 err = insert_page(vma, addr, page, pgprot); 1773 } else { 1774 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1775 } 1776 1777 if (err == -ENOMEM) 1778 return VM_FAULT_OOM; 1779 if (err < 0 && err != -EBUSY) 1780 return VM_FAULT_SIGBUS; 1781 1782 return VM_FAULT_NOPAGE; 1783 } 1784 1785 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1786 pfn_t pfn) 1787 { 1788 return __vm_insert_mixed(vma, addr, pfn, false); 1789 } 1790 EXPORT_SYMBOL(vmf_insert_mixed); 1791 1792 /* 1793 * If the insertion of PTE failed because someone else already added a 1794 * different entry in the mean time, we treat that as success as we assume 1795 * the same entry was actually inserted. 1796 */ 1797 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1798 unsigned long addr, pfn_t pfn) 1799 { 1800 return __vm_insert_mixed(vma, addr, pfn, true); 1801 } 1802 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1803 1804 /* 1805 * maps a range of physical memory into the requested pages. the old 1806 * mappings are removed. any references to nonexistent pages results 1807 * in null mappings (currently treated as "copy-on-access") 1808 */ 1809 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1810 unsigned long addr, unsigned long end, 1811 unsigned long pfn, pgprot_t prot) 1812 { 1813 pte_t *pte; 1814 spinlock_t *ptl; 1815 int err = 0; 1816 1817 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1818 if (!pte) 1819 return -ENOMEM; 1820 arch_enter_lazy_mmu_mode(); 1821 do { 1822 BUG_ON(!pte_none(*pte)); 1823 if (!pfn_modify_allowed(pfn, prot)) { 1824 err = -EACCES; 1825 break; 1826 } 1827 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1828 pfn++; 1829 } while (pte++, addr += PAGE_SIZE, addr != end); 1830 arch_leave_lazy_mmu_mode(); 1831 pte_unmap_unlock(pte - 1, ptl); 1832 return err; 1833 } 1834 1835 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1836 unsigned long addr, unsigned long end, 1837 unsigned long pfn, pgprot_t prot) 1838 { 1839 pmd_t *pmd; 1840 unsigned long next; 1841 int err; 1842 1843 pfn -= addr >> PAGE_SHIFT; 1844 pmd = pmd_alloc(mm, pud, addr); 1845 if (!pmd) 1846 return -ENOMEM; 1847 VM_BUG_ON(pmd_trans_huge(*pmd)); 1848 do { 1849 next = pmd_addr_end(addr, end); 1850 err = remap_pte_range(mm, pmd, addr, next, 1851 pfn + (addr >> PAGE_SHIFT), prot); 1852 if (err) 1853 return err; 1854 } while (pmd++, addr = next, addr != end); 1855 return 0; 1856 } 1857 1858 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1859 unsigned long addr, unsigned long end, 1860 unsigned long pfn, pgprot_t prot) 1861 { 1862 pud_t *pud; 1863 unsigned long next; 1864 int err; 1865 1866 pfn -= addr >> PAGE_SHIFT; 1867 pud = pud_alloc(mm, p4d, addr); 1868 if (!pud) 1869 return -ENOMEM; 1870 do { 1871 next = pud_addr_end(addr, end); 1872 err = remap_pmd_range(mm, pud, addr, next, 1873 pfn + (addr >> PAGE_SHIFT), prot); 1874 if (err) 1875 return err; 1876 } while (pud++, addr = next, addr != end); 1877 return 0; 1878 } 1879 1880 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1881 unsigned long addr, unsigned long end, 1882 unsigned long pfn, pgprot_t prot) 1883 { 1884 p4d_t *p4d; 1885 unsigned long next; 1886 int err; 1887 1888 pfn -= addr >> PAGE_SHIFT; 1889 p4d = p4d_alloc(mm, pgd, addr); 1890 if (!p4d) 1891 return -ENOMEM; 1892 do { 1893 next = p4d_addr_end(addr, end); 1894 err = remap_pud_range(mm, p4d, addr, next, 1895 pfn + (addr >> PAGE_SHIFT), prot); 1896 if (err) 1897 return err; 1898 } while (p4d++, addr = next, addr != end); 1899 return 0; 1900 } 1901 1902 /** 1903 * remap_pfn_range - remap kernel memory to userspace 1904 * @vma: user vma to map to 1905 * @addr: target user address to start at 1906 * @pfn: physical address of kernel memory 1907 * @size: size of map area 1908 * @prot: page protection flags for this mapping 1909 * 1910 * Note: this is only safe if the mm semaphore is held when called. 1911 * 1912 * Return: %0 on success, negative error code otherwise. 1913 */ 1914 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1915 unsigned long pfn, unsigned long size, pgprot_t prot) 1916 { 1917 pgd_t *pgd; 1918 unsigned long next; 1919 unsigned long end = addr + PAGE_ALIGN(size); 1920 struct mm_struct *mm = vma->vm_mm; 1921 unsigned long remap_pfn = pfn; 1922 int err; 1923 1924 /* 1925 * Physically remapped pages are special. Tell the 1926 * rest of the world about it: 1927 * VM_IO tells people not to look at these pages 1928 * (accesses can have side effects). 1929 * VM_PFNMAP tells the core MM that the base pages are just 1930 * raw PFN mappings, and do not have a "struct page" associated 1931 * with them. 1932 * VM_DONTEXPAND 1933 * Disable vma merging and expanding with mremap(). 1934 * VM_DONTDUMP 1935 * Omit vma from core dump, even when VM_IO turned off. 1936 * 1937 * There's a horrible special case to handle copy-on-write 1938 * behaviour that some programs depend on. We mark the "original" 1939 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1940 * See vm_normal_page() for details. 1941 */ 1942 if (is_cow_mapping(vma->vm_flags)) { 1943 if (addr != vma->vm_start || end != vma->vm_end) 1944 return -EINVAL; 1945 vma->vm_pgoff = pfn; 1946 } 1947 1948 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1949 if (err) 1950 return -EINVAL; 1951 1952 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1953 1954 BUG_ON(addr >= end); 1955 pfn -= addr >> PAGE_SHIFT; 1956 pgd = pgd_offset(mm, addr); 1957 flush_cache_range(vma, addr, end); 1958 do { 1959 next = pgd_addr_end(addr, end); 1960 err = remap_p4d_range(mm, pgd, addr, next, 1961 pfn + (addr >> PAGE_SHIFT), prot); 1962 if (err) 1963 break; 1964 } while (pgd++, addr = next, addr != end); 1965 1966 if (err) 1967 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1968 1969 return err; 1970 } 1971 EXPORT_SYMBOL(remap_pfn_range); 1972 1973 /** 1974 * vm_iomap_memory - remap memory to userspace 1975 * @vma: user vma to map to 1976 * @start: start of area 1977 * @len: size of area 1978 * 1979 * This is a simplified io_remap_pfn_range() for common driver use. The 1980 * driver just needs to give us the physical memory range to be mapped, 1981 * we'll figure out the rest from the vma information. 1982 * 1983 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1984 * whatever write-combining details or similar. 1985 * 1986 * Return: %0 on success, negative error code otherwise. 1987 */ 1988 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1989 { 1990 unsigned long vm_len, pfn, pages; 1991 1992 /* Check that the physical memory area passed in looks valid */ 1993 if (start + len < start) 1994 return -EINVAL; 1995 /* 1996 * You *really* shouldn't map things that aren't page-aligned, 1997 * but we've historically allowed it because IO memory might 1998 * just have smaller alignment. 1999 */ 2000 len += start & ~PAGE_MASK; 2001 pfn = start >> PAGE_SHIFT; 2002 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2003 if (pfn + pages < pfn) 2004 return -EINVAL; 2005 2006 /* We start the mapping 'vm_pgoff' pages into the area */ 2007 if (vma->vm_pgoff > pages) 2008 return -EINVAL; 2009 pfn += vma->vm_pgoff; 2010 pages -= vma->vm_pgoff; 2011 2012 /* Can we fit all of the mapping? */ 2013 vm_len = vma->vm_end - vma->vm_start; 2014 if (vm_len >> PAGE_SHIFT > pages) 2015 return -EINVAL; 2016 2017 /* Ok, let it rip */ 2018 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2019 } 2020 EXPORT_SYMBOL(vm_iomap_memory); 2021 2022 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2023 unsigned long addr, unsigned long end, 2024 pte_fn_t fn, void *data) 2025 { 2026 pte_t *pte; 2027 int err; 2028 spinlock_t *uninitialized_var(ptl); 2029 2030 pte = (mm == &init_mm) ? 2031 pte_alloc_kernel(pmd, addr) : 2032 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2033 if (!pte) 2034 return -ENOMEM; 2035 2036 BUG_ON(pmd_huge(*pmd)); 2037 2038 arch_enter_lazy_mmu_mode(); 2039 2040 do { 2041 err = fn(pte++, addr, data); 2042 if (err) 2043 break; 2044 } while (addr += PAGE_SIZE, addr != end); 2045 2046 arch_leave_lazy_mmu_mode(); 2047 2048 if (mm != &init_mm) 2049 pte_unmap_unlock(pte-1, ptl); 2050 return err; 2051 } 2052 2053 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2054 unsigned long addr, unsigned long end, 2055 pte_fn_t fn, void *data) 2056 { 2057 pmd_t *pmd; 2058 unsigned long next; 2059 int err; 2060 2061 BUG_ON(pud_huge(*pud)); 2062 2063 pmd = pmd_alloc(mm, pud, addr); 2064 if (!pmd) 2065 return -ENOMEM; 2066 do { 2067 next = pmd_addr_end(addr, end); 2068 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2069 if (err) 2070 break; 2071 } while (pmd++, addr = next, addr != end); 2072 return err; 2073 } 2074 2075 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2076 unsigned long addr, unsigned long end, 2077 pte_fn_t fn, void *data) 2078 { 2079 pud_t *pud; 2080 unsigned long next; 2081 int err; 2082 2083 pud = pud_alloc(mm, p4d, addr); 2084 if (!pud) 2085 return -ENOMEM; 2086 do { 2087 next = pud_addr_end(addr, end); 2088 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2089 if (err) 2090 break; 2091 } while (pud++, addr = next, addr != end); 2092 return err; 2093 } 2094 2095 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2096 unsigned long addr, unsigned long end, 2097 pte_fn_t fn, void *data) 2098 { 2099 p4d_t *p4d; 2100 unsigned long next; 2101 int err; 2102 2103 p4d = p4d_alloc(mm, pgd, addr); 2104 if (!p4d) 2105 return -ENOMEM; 2106 do { 2107 next = p4d_addr_end(addr, end); 2108 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2109 if (err) 2110 break; 2111 } while (p4d++, addr = next, addr != end); 2112 return err; 2113 } 2114 2115 /* 2116 * Scan a region of virtual memory, filling in page tables as necessary 2117 * and calling a provided function on each leaf page table. 2118 */ 2119 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2120 unsigned long size, pte_fn_t fn, void *data) 2121 { 2122 pgd_t *pgd; 2123 unsigned long next; 2124 unsigned long end = addr + size; 2125 int err; 2126 2127 if (WARN_ON(addr >= end)) 2128 return -EINVAL; 2129 2130 pgd = pgd_offset(mm, addr); 2131 do { 2132 next = pgd_addr_end(addr, end); 2133 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2134 if (err) 2135 break; 2136 } while (pgd++, addr = next, addr != end); 2137 2138 return err; 2139 } 2140 EXPORT_SYMBOL_GPL(apply_to_page_range); 2141 2142 /* 2143 * handle_pte_fault chooses page fault handler according to an entry which was 2144 * read non-atomically. Before making any commitment, on those architectures 2145 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2146 * parts, do_swap_page must check under lock before unmapping the pte and 2147 * proceeding (but do_wp_page is only called after already making such a check; 2148 * and do_anonymous_page can safely check later on). 2149 */ 2150 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2151 pte_t *page_table, pte_t orig_pte) 2152 { 2153 int same = 1; 2154 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2155 if (sizeof(pte_t) > sizeof(unsigned long)) { 2156 spinlock_t *ptl = pte_lockptr(mm, pmd); 2157 spin_lock(ptl); 2158 same = pte_same(*page_table, orig_pte); 2159 spin_unlock(ptl); 2160 } 2161 #endif 2162 pte_unmap(page_table); 2163 return same; 2164 } 2165 2166 static inline bool cow_user_page(struct page *dst, struct page *src, 2167 struct vm_fault *vmf) 2168 { 2169 bool ret; 2170 void *kaddr; 2171 void __user *uaddr; 2172 bool force_mkyoung; 2173 struct vm_area_struct *vma = vmf->vma; 2174 struct mm_struct *mm = vma->vm_mm; 2175 unsigned long addr = vmf->address; 2176 2177 debug_dma_assert_idle(src); 2178 2179 if (likely(src)) { 2180 copy_user_highpage(dst, src, addr, vma); 2181 return true; 2182 } 2183 2184 /* 2185 * If the source page was a PFN mapping, we don't have 2186 * a "struct page" for it. We do a best-effort copy by 2187 * just copying from the original user address. If that 2188 * fails, we just zero-fill it. Live with it. 2189 */ 2190 kaddr = kmap_atomic(dst); 2191 uaddr = (void __user *)(addr & PAGE_MASK); 2192 2193 /* 2194 * On architectures with software "accessed" bits, we would 2195 * take a double page fault, so mark it accessed here. 2196 */ 2197 force_mkyoung = arch_faults_on_old_pte() && !pte_young(vmf->orig_pte); 2198 if (force_mkyoung) { 2199 pte_t entry; 2200 2201 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2202 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2203 /* 2204 * Other thread has already handled the fault 2205 * and we don't need to do anything. If it's 2206 * not the case, the fault will be triggered 2207 * again on the same address. 2208 */ 2209 ret = false; 2210 goto pte_unlock; 2211 } 2212 2213 entry = pte_mkyoung(vmf->orig_pte); 2214 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2215 update_mmu_cache(vma, addr, vmf->pte); 2216 } 2217 2218 /* 2219 * This really shouldn't fail, because the page is there 2220 * in the page tables. But it might just be unreadable, 2221 * in which case we just give up and fill the result with 2222 * zeroes. 2223 */ 2224 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2225 /* 2226 * Give a warn in case there can be some obscure 2227 * use-case 2228 */ 2229 WARN_ON_ONCE(1); 2230 clear_page(kaddr); 2231 } 2232 2233 ret = true; 2234 2235 pte_unlock: 2236 if (force_mkyoung) 2237 pte_unmap_unlock(vmf->pte, vmf->ptl); 2238 kunmap_atomic(kaddr); 2239 flush_dcache_page(dst); 2240 2241 return ret; 2242 } 2243 2244 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2245 { 2246 struct file *vm_file = vma->vm_file; 2247 2248 if (vm_file) 2249 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2250 2251 /* 2252 * Special mappings (e.g. VDSO) do not have any file so fake 2253 * a default GFP_KERNEL for them. 2254 */ 2255 return GFP_KERNEL; 2256 } 2257 2258 /* 2259 * Notify the address space that the page is about to become writable so that 2260 * it can prohibit this or wait for the page to get into an appropriate state. 2261 * 2262 * We do this without the lock held, so that it can sleep if it needs to. 2263 */ 2264 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2265 { 2266 vm_fault_t ret; 2267 struct page *page = vmf->page; 2268 unsigned int old_flags = vmf->flags; 2269 2270 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2271 2272 if (vmf->vma->vm_file && 2273 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2274 return VM_FAULT_SIGBUS; 2275 2276 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2277 /* Restore original flags so that caller is not surprised */ 2278 vmf->flags = old_flags; 2279 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2280 return ret; 2281 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2282 lock_page(page); 2283 if (!page->mapping) { 2284 unlock_page(page); 2285 return 0; /* retry */ 2286 } 2287 ret |= VM_FAULT_LOCKED; 2288 } else 2289 VM_BUG_ON_PAGE(!PageLocked(page), page); 2290 return ret; 2291 } 2292 2293 /* 2294 * Handle dirtying of a page in shared file mapping on a write fault. 2295 * 2296 * The function expects the page to be locked and unlocks it. 2297 */ 2298 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2299 { 2300 struct vm_area_struct *vma = vmf->vma; 2301 struct address_space *mapping; 2302 struct page *page = vmf->page; 2303 bool dirtied; 2304 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2305 2306 dirtied = set_page_dirty(page); 2307 VM_BUG_ON_PAGE(PageAnon(page), page); 2308 /* 2309 * Take a local copy of the address_space - page.mapping may be zeroed 2310 * by truncate after unlock_page(). The address_space itself remains 2311 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2312 * release semantics to prevent the compiler from undoing this copying. 2313 */ 2314 mapping = page_rmapping(page); 2315 unlock_page(page); 2316 2317 if (!page_mkwrite) 2318 file_update_time(vma->vm_file); 2319 2320 /* 2321 * Throttle page dirtying rate down to writeback speed. 2322 * 2323 * mapping may be NULL here because some device drivers do not 2324 * set page.mapping but still dirty their pages 2325 * 2326 * Drop the mmap_sem before waiting on IO, if we can. The file 2327 * is pinning the mapping, as per above. 2328 */ 2329 if ((dirtied || page_mkwrite) && mapping) { 2330 struct file *fpin; 2331 2332 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2333 balance_dirty_pages_ratelimited(mapping); 2334 if (fpin) { 2335 fput(fpin); 2336 return VM_FAULT_RETRY; 2337 } 2338 } 2339 2340 return 0; 2341 } 2342 2343 /* 2344 * Handle write page faults for pages that can be reused in the current vma 2345 * 2346 * This can happen either due to the mapping being with the VM_SHARED flag, 2347 * or due to us being the last reference standing to the page. In either 2348 * case, all we need to do here is to mark the page as writable and update 2349 * any related book-keeping. 2350 */ 2351 static inline void wp_page_reuse(struct vm_fault *vmf) 2352 __releases(vmf->ptl) 2353 { 2354 struct vm_area_struct *vma = vmf->vma; 2355 struct page *page = vmf->page; 2356 pte_t entry; 2357 /* 2358 * Clear the pages cpupid information as the existing 2359 * information potentially belongs to a now completely 2360 * unrelated process. 2361 */ 2362 if (page) 2363 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2364 2365 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2366 entry = pte_mkyoung(vmf->orig_pte); 2367 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2368 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2369 update_mmu_cache(vma, vmf->address, vmf->pte); 2370 pte_unmap_unlock(vmf->pte, vmf->ptl); 2371 } 2372 2373 /* 2374 * Handle the case of a page which we actually need to copy to a new page. 2375 * 2376 * Called with mmap_sem locked and the old page referenced, but 2377 * without the ptl held. 2378 * 2379 * High level logic flow: 2380 * 2381 * - Allocate a page, copy the content of the old page to the new one. 2382 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2383 * - Take the PTL. If the pte changed, bail out and release the allocated page 2384 * - If the pte is still the way we remember it, update the page table and all 2385 * relevant references. This includes dropping the reference the page-table 2386 * held to the old page, as well as updating the rmap. 2387 * - In any case, unlock the PTL and drop the reference we took to the old page. 2388 */ 2389 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2390 { 2391 struct vm_area_struct *vma = vmf->vma; 2392 struct mm_struct *mm = vma->vm_mm; 2393 struct page *old_page = vmf->page; 2394 struct page *new_page = NULL; 2395 pte_t entry; 2396 int page_copied = 0; 2397 struct mem_cgroup *memcg; 2398 struct mmu_notifier_range range; 2399 2400 if (unlikely(anon_vma_prepare(vma))) 2401 goto oom; 2402 2403 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2404 new_page = alloc_zeroed_user_highpage_movable(vma, 2405 vmf->address); 2406 if (!new_page) 2407 goto oom; 2408 } else { 2409 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2410 vmf->address); 2411 if (!new_page) 2412 goto oom; 2413 2414 if (!cow_user_page(new_page, old_page, vmf)) { 2415 /* 2416 * COW failed, if the fault was solved by other, 2417 * it's fine. If not, userspace would re-fault on 2418 * the same address and we will handle the fault 2419 * from the second attempt. 2420 */ 2421 put_page(new_page); 2422 if (old_page) 2423 put_page(old_page); 2424 return 0; 2425 } 2426 } 2427 2428 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2429 goto oom_free_new; 2430 2431 __SetPageUptodate(new_page); 2432 2433 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, 2434 vmf->address & PAGE_MASK, 2435 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2436 mmu_notifier_invalidate_range_start(&range); 2437 2438 /* 2439 * Re-check the pte - we dropped the lock 2440 */ 2441 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2442 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2443 if (old_page) { 2444 if (!PageAnon(old_page)) { 2445 dec_mm_counter_fast(mm, 2446 mm_counter_file(old_page)); 2447 inc_mm_counter_fast(mm, MM_ANONPAGES); 2448 } 2449 } else { 2450 inc_mm_counter_fast(mm, MM_ANONPAGES); 2451 } 2452 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2453 entry = mk_pte(new_page, vma->vm_page_prot); 2454 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2455 /* 2456 * Clear the pte entry and flush it first, before updating the 2457 * pte with the new entry. This will avoid a race condition 2458 * seen in the presence of one thread doing SMC and another 2459 * thread doing COW. 2460 */ 2461 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2462 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2463 mem_cgroup_commit_charge(new_page, memcg, false, false); 2464 lru_cache_add_active_or_unevictable(new_page, vma); 2465 /* 2466 * We call the notify macro here because, when using secondary 2467 * mmu page tables (such as kvm shadow page tables), we want the 2468 * new page to be mapped directly into the secondary page table. 2469 */ 2470 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2471 update_mmu_cache(vma, vmf->address, vmf->pte); 2472 if (old_page) { 2473 /* 2474 * Only after switching the pte to the new page may 2475 * we remove the mapcount here. Otherwise another 2476 * process may come and find the rmap count decremented 2477 * before the pte is switched to the new page, and 2478 * "reuse" the old page writing into it while our pte 2479 * here still points into it and can be read by other 2480 * threads. 2481 * 2482 * The critical issue is to order this 2483 * page_remove_rmap with the ptp_clear_flush above. 2484 * Those stores are ordered by (if nothing else,) 2485 * the barrier present in the atomic_add_negative 2486 * in page_remove_rmap. 2487 * 2488 * Then the TLB flush in ptep_clear_flush ensures that 2489 * no process can access the old page before the 2490 * decremented mapcount is visible. And the old page 2491 * cannot be reused until after the decremented 2492 * mapcount is visible. So transitively, TLBs to 2493 * old page will be flushed before it can be reused. 2494 */ 2495 page_remove_rmap(old_page, false); 2496 } 2497 2498 /* Free the old page.. */ 2499 new_page = old_page; 2500 page_copied = 1; 2501 } else { 2502 mem_cgroup_cancel_charge(new_page, memcg, false); 2503 } 2504 2505 if (new_page) 2506 put_page(new_page); 2507 2508 pte_unmap_unlock(vmf->pte, vmf->ptl); 2509 /* 2510 * No need to double call mmu_notifier->invalidate_range() callback as 2511 * the above ptep_clear_flush_notify() did already call it. 2512 */ 2513 mmu_notifier_invalidate_range_only_end(&range); 2514 if (old_page) { 2515 /* 2516 * Don't let another task, with possibly unlocked vma, 2517 * keep the mlocked page. 2518 */ 2519 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2520 lock_page(old_page); /* LRU manipulation */ 2521 if (PageMlocked(old_page)) 2522 munlock_vma_page(old_page); 2523 unlock_page(old_page); 2524 } 2525 put_page(old_page); 2526 } 2527 return page_copied ? VM_FAULT_WRITE : 0; 2528 oom_free_new: 2529 put_page(new_page); 2530 oom: 2531 if (old_page) 2532 put_page(old_page); 2533 return VM_FAULT_OOM; 2534 } 2535 2536 /** 2537 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2538 * writeable once the page is prepared 2539 * 2540 * @vmf: structure describing the fault 2541 * 2542 * This function handles all that is needed to finish a write page fault in a 2543 * shared mapping due to PTE being read-only once the mapped page is prepared. 2544 * It handles locking of PTE and modifying it. 2545 * 2546 * The function expects the page to be locked or other protection against 2547 * concurrent faults / writeback (such as DAX radix tree locks). 2548 * 2549 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2550 * we acquired PTE lock. 2551 */ 2552 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2553 { 2554 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2555 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2556 &vmf->ptl); 2557 /* 2558 * We might have raced with another page fault while we released the 2559 * pte_offset_map_lock. 2560 */ 2561 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2562 pte_unmap_unlock(vmf->pte, vmf->ptl); 2563 return VM_FAULT_NOPAGE; 2564 } 2565 wp_page_reuse(vmf); 2566 return 0; 2567 } 2568 2569 /* 2570 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2571 * mapping 2572 */ 2573 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2574 { 2575 struct vm_area_struct *vma = vmf->vma; 2576 2577 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2578 vm_fault_t ret; 2579 2580 pte_unmap_unlock(vmf->pte, vmf->ptl); 2581 vmf->flags |= FAULT_FLAG_MKWRITE; 2582 ret = vma->vm_ops->pfn_mkwrite(vmf); 2583 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2584 return ret; 2585 return finish_mkwrite_fault(vmf); 2586 } 2587 wp_page_reuse(vmf); 2588 return VM_FAULT_WRITE; 2589 } 2590 2591 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2592 __releases(vmf->ptl) 2593 { 2594 struct vm_area_struct *vma = vmf->vma; 2595 vm_fault_t ret = VM_FAULT_WRITE; 2596 2597 get_page(vmf->page); 2598 2599 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2600 vm_fault_t tmp; 2601 2602 pte_unmap_unlock(vmf->pte, vmf->ptl); 2603 tmp = do_page_mkwrite(vmf); 2604 if (unlikely(!tmp || (tmp & 2605 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2606 put_page(vmf->page); 2607 return tmp; 2608 } 2609 tmp = finish_mkwrite_fault(vmf); 2610 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2611 unlock_page(vmf->page); 2612 put_page(vmf->page); 2613 return tmp; 2614 } 2615 } else { 2616 wp_page_reuse(vmf); 2617 lock_page(vmf->page); 2618 } 2619 ret |= fault_dirty_shared_page(vmf); 2620 put_page(vmf->page); 2621 2622 return ret; 2623 } 2624 2625 /* 2626 * This routine handles present pages, when users try to write 2627 * to a shared page. It is done by copying the page to a new address 2628 * and decrementing the shared-page counter for the old page. 2629 * 2630 * Note that this routine assumes that the protection checks have been 2631 * done by the caller (the low-level page fault routine in most cases). 2632 * Thus we can safely just mark it writable once we've done any necessary 2633 * COW. 2634 * 2635 * We also mark the page dirty at this point even though the page will 2636 * change only once the write actually happens. This avoids a few races, 2637 * and potentially makes it more efficient. 2638 * 2639 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2640 * but allow concurrent faults), with pte both mapped and locked. 2641 * We return with mmap_sem still held, but pte unmapped and unlocked. 2642 */ 2643 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2644 __releases(vmf->ptl) 2645 { 2646 struct vm_area_struct *vma = vmf->vma; 2647 2648 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2649 if (!vmf->page) { 2650 /* 2651 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2652 * VM_PFNMAP VMA. 2653 * 2654 * We should not cow pages in a shared writeable mapping. 2655 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2656 */ 2657 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2658 (VM_WRITE|VM_SHARED)) 2659 return wp_pfn_shared(vmf); 2660 2661 pte_unmap_unlock(vmf->pte, vmf->ptl); 2662 return wp_page_copy(vmf); 2663 } 2664 2665 /* 2666 * Take out anonymous pages first, anonymous shared vmas are 2667 * not dirty accountable. 2668 */ 2669 if (PageAnon(vmf->page)) { 2670 int total_map_swapcount; 2671 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2672 page_count(vmf->page) != 1)) 2673 goto copy; 2674 if (!trylock_page(vmf->page)) { 2675 get_page(vmf->page); 2676 pte_unmap_unlock(vmf->pte, vmf->ptl); 2677 lock_page(vmf->page); 2678 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2679 vmf->address, &vmf->ptl); 2680 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2681 unlock_page(vmf->page); 2682 pte_unmap_unlock(vmf->pte, vmf->ptl); 2683 put_page(vmf->page); 2684 return 0; 2685 } 2686 put_page(vmf->page); 2687 } 2688 if (PageKsm(vmf->page)) { 2689 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2690 vmf->address); 2691 unlock_page(vmf->page); 2692 if (!reused) 2693 goto copy; 2694 wp_page_reuse(vmf); 2695 return VM_FAULT_WRITE; 2696 } 2697 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2698 if (total_map_swapcount == 1) { 2699 /* 2700 * The page is all ours. Move it to 2701 * our anon_vma so the rmap code will 2702 * not search our parent or siblings. 2703 * Protected against the rmap code by 2704 * the page lock. 2705 */ 2706 page_move_anon_rmap(vmf->page, vma); 2707 } 2708 unlock_page(vmf->page); 2709 wp_page_reuse(vmf); 2710 return VM_FAULT_WRITE; 2711 } 2712 unlock_page(vmf->page); 2713 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2714 (VM_WRITE|VM_SHARED))) { 2715 return wp_page_shared(vmf); 2716 } 2717 copy: 2718 /* 2719 * Ok, we need to copy. Oh, well.. 2720 */ 2721 get_page(vmf->page); 2722 2723 pte_unmap_unlock(vmf->pte, vmf->ptl); 2724 return wp_page_copy(vmf); 2725 } 2726 2727 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2728 unsigned long start_addr, unsigned long end_addr, 2729 struct zap_details *details) 2730 { 2731 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2732 } 2733 2734 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2735 struct zap_details *details) 2736 { 2737 struct vm_area_struct *vma; 2738 pgoff_t vba, vea, zba, zea; 2739 2740 vma_interval_tree_foreach(vma, root, 2741 details->first_index, details->last_index) { 2742 2743 vba = vma->vm_pgoff; 2744 vea = vba + vma_pages(vma) - 1; 2745 zba = details->first_index; 2746 if (zba < vba) 2747 zba = vba; 2748 zea = details->last_index; 2749 if (zea > vea) 2750 zea = vea; 2751 2752 unmap_mapping_range_vma(vma, 2753 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2754 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2755 details); 2756 } 2757 } 2758 2759 /** 2760 * unmap_mapping_pages() - Unmap pages from processes. 2761 * @mapping: The address space containing pages to be unmapped. 2762 * @start: Index of first page to be unmapped. 2763 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2764 * @even_cows: Whether to unmap even private COWed pages. 2765 * 2766 * Unmap the pages in this address space from any userspace process which 2767 * has them mmaped. Generally, you want to remove COWed pages as well when 2768 * a file is being truncated, but not when invalidating pages from the page 2769 * cache. 2770 */ 2771 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2772 pgoff_t nr, bool even_cows) 2773 { 2774 struct zap_details details = { }; 2775 2776 details.check_mapping = even_cows ? NULL : mapping; 2777 details.first_index = start; 2778 details.last_index = start + nr - 1; 2779 if (details.last_index < details.first_index) 2780 details.last_index = ULONG_MAX; 2781 2782 i_mmap_lock_write(mapping); 2783 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2784 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2785 i_mmap_unlock_write(mapping); 2786 } 2787 2788 /** 2789 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2790 * address_space corresponding to the specified byte range in the underlying 2791 * file. 2792 * 2793 * @mapping: the address space containing mmaps to be unmapped. 2794 * @holebegin: byte in first page to unmap, relative to the start of 2795 * the underlying file. This will be rounded down to a PAGE_SIZE 2796 * boundary. Note that this is different from truncate_pagecache(), which 2797 * must keep the partial page. In contrast, we must get rid of 2798 * partial pages. 2799 * @holelen: size of prospective hole in bytes. This will be rounded 2800 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2801 * end of the file. 2802 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2803 * but 0 when invalidating pagecache, don't throw away private data. 2804 */ 2805 void unmap_mapping_range(struct address_space *mapping, 2806 loff_t const holebegin, loff_t const holelen, int even_cows) 2807 { 2808 pgoff_t hba = holebegin >> PAGE_SHIFT; 2809 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2810 2811 /* Check for overflow. */ 2812 if (sizeof(holelen) > sizeof(hlen)) { 2813 long long holeend = 2814 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2815 if (holeend & ~(long long)ULONG_MAX) 2816 hlen = ULONG_MAX - hba + 1; 2817 } 2818 2819 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2820 } 2821 EXPORT_SYMBOL(unmap_mapping_range); 2822 2823 /* 2824 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2825 * but allow concurrent faults), and pte mapped but not yet locked. 2826 * We return with pte unmapped and unlocked. 2827 * 2828 * We return with the mmap_sem locked or unlocked in the same cases 2829 * as does filemap_fault(). 2830 */ 2831 vm_fault_t do_swap_page(struct vm_fault *vmf) 2832 { 2833 struct vm_area_struct *vma = vmf->vma; 2834 struct page *page = NULL, *swapcache; 2835 struct mem_cgroup *memcg; 2836 swp_entry_t entry; 2837 pte_t pte; 2838 int locked; 2839 int exclusive = 0; 2840 vm_fault_t ret = 0; 2841 2842 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2843 goto out; 2844 2845 entry = pte_to_swp_entry(vmf->orig_pte); 2846 if (unlikely(non_swap_entry(entry))) { 2847 if (is_migration_entry(entry)) { 2848 migration_entry_wait(vma->vm_mm, vmf->pmd, 2849 vmf->address); 2850 } else if (is_device_private_entry(entry)) { 2851 vmf->page = device_private_entry_to_page(entry); 2852 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 2853 } else if (is_hwpoison_entry(entry)) { 2854 ret = VM_FAULT_HWPOISON; 2855 } else { 2856 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2857 ret = VM_FAULT_SIGBUS; 2858 } 2859 goto out; 2860 } 2861 2862 2863 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2864 page = lookup_swap_cache(entry, vma, vmf->address); 2865 swapcache = page; 2866 2867 if (!page) { 2868 struct swap_info_struct *si = swp_swap_info(entry); 2869 2870 if (si->flags & SWP_SYNCHRONOUS_IO && 2871 __swap_count(entry) == 1) { 2872 /* skip swapcache */ 2873 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2874 vmf->address); 2875 if (page) { 2876 __SetPageLocked(page); 2877 __SetPageSwapBacked(page); 2878 set_page_private(page, entry.val); 2879 lru_cache_add_anon(page); 2880 swap_readpage(page, true); 2881 } 2882 } else { 2883 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2884 vmf); 2885 swapcache = page; 2886 } 2887 2888 if (!page) { 2889 /* 2890 * Back out if somebody else faulted in this pte 2891 * while we released the pte lock. 2892 */ 2893 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2894 vmf->address, &vmf->ptl); 2895 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2896 ret = VM_FAULT_OOM; 2897 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2898 goto unlock; 2899 } 2900 2901 /* Had to read the page from swap area: Major fault */ 2902 ret = VM_FAULT_MAJOR; 2903 count_vm_event(PGMAJFAULT); 2904 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2905 } else if (PageHWPoison(page)) { 2906 /* 2907 * hwpoisoned dirty swapcache pages are kept for killing 2908 * owner processes (which may be unknown at hwpoison time) 2909 */ 2910 ret = VM_FAULT_HWPOISON; 2911 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2912 goto out_release; 2913 } 2914 2915 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2916 2917 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2918 if (!locked) { 2919 ret |= VM_FAULT_RETRY; 2920 goto out_release; 2921 } 2922 2923 /* 2924 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2925 * release the swapcache from under us. The page pin, and pte_same 2926 * test below, are not enough to exclude that. Even if it is still 2927 * swapcache, we need to check that the page's swap has not changed. 2928 */ 2929 if (unlikely((!PageSwapCache(page) || 2930 page_private(page) != entry.val)) && swapcache) 2931 goto out_page; 2932 2933 page = ksm_might_need_to_copy(page, vma, vmf->address); 2934 if (unlikely(!page)) { 2935 ret = VM_FAULT_OOM; 2936 page = swapcache; 2937 goto out_page; 2938 } 2939 2940 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 2941 &memcg, false)) { 2942 ret = VM_FAULT_OOM; 2943 goto out_page; 2944 } 2945 2946 /* 2947 * Back out if somebody else already faulted in this pte. 2948 */ 2949 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2950 &vmf->ptl); 2951 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2952 goto out_nomap; 2953 2954 if (unlikely(!PageUptodate(page))) { 2955 ret = VM_FAULT_SIGBUS; 2956 goto out_nomap; 2957 } 2958 2959 /* 2960 * The page isn't present yet, go ahead with the fault. 2961 * 2962 * Be careful about the sequence of operations here. 2963 * To get its accounting right, reuse_swap_page() must be called 2964 * while the page is counted on swap but not yet in mapcount i.e. 2965 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2966 * must be called after the swap_free(), or it will never succeed. 2967 */ 2968 2969 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2970 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2971 pte = mk_pte(page, vma->vm_page_prot); 2972 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2973 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2974 vmf->flags &= ~FAULT_FLAG_WRITE; 2975 ret |= VM_FAULT_WRITE; 2976 exclusive = RMAP_EXCLUSIVE; 2977 } 2978 flush_icache_page(vma, page); 2979 if (pte_swp_soft_dirty(vmf->orig_pte)) 2980 pte = pte_mksoft_dirty(pte); 2981 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2982 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 2983 vmf->orig_pte = pte; 2984 2985 /* ksm created a completely new copy */ 2986 if (unlikely(page != swapcache && swapcache)) { 2987 page_add_new_anon_rmap(page, vma, vmf->address, false); 2988 mem_cgroup_commit_charge(page, memcg, false, false); 2989 lru_cache_add_active_or_unevictable(page, vma); 2990 } else { 2991 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2992 mem_cgroup_commit_charge(page, memcg, true, false); 2993 activate_page(page); 2994 } 2995 2996 swap_free(entry); 2997 if (mem_cgroup_swap_full(page) || 2998 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2999 try_to_free_swap(page); 3000 unlock_page(page); 3001 if (page != swapcache && swapcache) { 3002 /* 3003 * Hold the lock to avoid the swap entry to be reused 3004 * until we take the PT lock for the pte_same() check 3005 * (to avoid false positives from pte_same). For 3006 * further safety release the lock after the swap_free 3007 * so that the swap count won't change under a 3008 * parallel locked swapcache. 3009 */ 3010 unlock_page(swapcache); 3011 put_page(swapcache); 3012 } 3013 3014 if (vmf->flags & FAULT_FLAG_WRITE) { 3015 ret |= do_wp_page(vmf); 3016 if (ret & VM_FAULT_ERROR) 3017 ret &= VM_FAULT_ERROR; 3018 goto out; 3019 } 3020 3021 /* No need to invalidate - it was non-present before */ 3022 update_mmu_cache(vma, vmf->address, vmf->pte); 3023 unlock: 3024 pte_unmap_unlock(vmf->pte, vmf->ptl); 3025 out: 3026 return ret; 3027 out_nomap: 3028 mem_cgroup_cancel_charge(page, memcg, false); 3029 pte_unmap_unlock(vmf->pte, vmf->ptl); 3030 out_page: 3031 unlock_page(page); 3032 out_release: 3033 put_page(page); 3034 if (page != swapcache && swapcache) { 3035 unlock_page(swapcache); 3036 put_page(swapcache); 3037 } 3038 return ret; 3039 } 3040 3041 /* 3042 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3043 * but allow concurrent faults), and pte mapped but not yet locked. 3044 * We return with mmap_sem still held, but pte unmapped and unlocked. 3045 */ 3046 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 3047 { 3048 struct vm_area_struct *vma = vmf->vma; 3049 struct mem_cgroup *memcg; 3050 struct page *page; 3051 vm_fault_t ret = 0; 3052 pte_t entry; 3053 3054 /* File mapping without ->vm_ops ? */ 3055 if (vma->vm_flags & VM_SHARED) 3056 return VM_FAULT_SIGBUS; 3057 3058 /* 3059 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3060 * pte_offset_map() on pmds where a huge pmd might be created 3061 * from a different thread. 3062 * 3063 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3064 * parallel threads are excluded by other means. 3065 * 3066 * Here we only have down_read(mmap_sem). 3067 */ 3068 if (pte_alloc(vma->vm_mm, vmf->pmd)) 3069 return VM_FAULT_OOM; 3070 3071 /* See the comment in pte_alloc_one_map() */ 3072 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3073 return 0; 3074 3075 /* Use the zero-page for reads */ 3076 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3077 !mm_forbids_zeropage(vma->vm_mm)) { 3078 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3079 vma->vm_page_prot)); 3080 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3081 vmf->address, &vmf->ptl); 3082 if (!pte_none(*vmf->pte)) 3083 goto unlock; 3084 ret = check_stable_address_space(vma->vm_mm); 3085 if (ret) 3086 goto unlock; 3087 /* Deliver the page fault to userland, check inside PT lock */ 3088 if (userfaultfd_missing(vma)) { 3089 pte_unmap_unlock(vmf->pte, vmf->ptl); 3090 return handle_userfault(vmf, VM_UFFD_MISSING); 3091 } 3092 goto setpte; 3093 } 3094 3095 /* Allocate our own private page. */ 3096 if (unlikely(anon_vma_prepare(vma))) 3097 goto oom; 3098 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3099 if (!page) 3100 goto oom; 3101 3102 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 3103 false)) 3104 goto oom_free_page; 3105 3106 /* 3107 * The memory barrier inside __SetPageUptodate makes sure that 3108 * preceding stores to the page contents become visible before 3109 * the set_pte_at() write. 3110 */ 3111 __SetPageUptodate(page); 3112 3113 entry = mk_pte(page, vma->vm_page_prot); 3114 if (vma->vm_flags & VM_WRITE) 3115 entry = pte_mkwrite(pte_mkdirty(entry)); 3116 3117 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3118 &vmf->ptl); 3119 if (!pte_none(*vmf->pte)) 3120 goto release; 3121 3122 ret = check_stable_address_space(vma->vm_mm); 3123 if (ret) 3124 goto release; 3125 3126 /* Deliver the page fault to userland, check inside PT lock */ 3127 if (userfaultfd_missing(vma)) { 3128 pte_unmap_unlock(vmf->pte, vmf->ptl); 3129 mem_cgroup_cancel_charge(page, memcg, false); 3130 put_page(page); 3131 return handle_userfault(vmf, VM_UFFD_MISSING); 3132 } 3133 3134 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3135 page_add_new_anon_rmap(page, vma, vmf->address, false); 3136 mem_cgroup_commit_charge(page, memcg, false, false); 3137 lru_cache_add_active_or_unevictable(page, vma); 3138 setpte: 3139 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3140 3141 /* No need to invalidate - it was non-present before */ 3142 update_mmu_cache(vma, vmf->address, vmf->pte); 3143 unlock: 3144 pte_unmap_unlock(vmf->pte, vmf->ptl); 3145 return ret; 3146 release: 3147 mem_cgroup_cancel_charge(page, memcg, false); 3148 put_page(page); 3149 goto unlock; 3150 oom_free_page: 3151 put_page(page); 3152 oom: 3153 return VM_FAULT_OOM; 3154 } 3155 3156 /* 3157 * The mmap_sem must have been held on entry, and may have been 3158 * released depending on flags and vma->vm_ops->fault() return value. 3159 * See filemap_fault() and __lock_page_retry(). 3160 */ 3161 static vm_fault_t __do_fault(struct vm_fault *vmf) 3162 { 3163 struct vm_area_struct *vma = vmf->vma; 3164 vm_fault_t ret; 3165 3166 /* 3167 * Preallocate pte before we take page_lock because this might lead to 3168 * deadlocks for memcg reclaim which waits for pages under writeback: 3169 * lock_page(A) 3170 * SetPageWriteback(A) 3171 * unlock_page(A) 3172 * lock_page(B) 3173 * lock_page(B) 3174 * pte_alloc_pne 3175 * shrink_page_list 3176 * wait_on_page_writeback(A) 3177 * SetPageWriteback(B) 3178 * unlock_page(B) 3179 * # flush A, B to clear the writeback 3180 */ 3181 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3182 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3183 if (!vmf->prealloc_pte) 3184 return VM_FAULT_OOM; 3185 smp_wmb(); /* See comment in __pte_alloc() */ 3186 } 3187 3188 ret = vma->vm_ops->fault(vmf); 3189 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3190 VM_FAULT_DONE_COW))) 3191 return ret; 3192 3193 if (unlikely(PageHWPoison(vmf->page))) { 3194 if (ret & VM_FAULT_LOCKED) 3195 unlock_page(vmf->page); 3196 put_page(vmf->page); 3197 vmf->page = NULL; 3198 return VM_FAULT_HWPOISON; 3199 } 3200 3201 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3202 lock_page(vmf->page); 3203 else 3204 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3205 3206 return ret; 3207 } 3208 3209 /* 3210 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3211 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3212 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3213 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3214 */ 3215 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3216 { 3217 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3218 } 3219 3220 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3221 { 3222 struct vm_area_struct *vma = vmf->vma; 3223 3224 if (!pmd_none(*vmf->pmd)) 3225 goto map_pte; 3226 if (vmf->prealloc_pte) { 3227 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3228 if (unlikely(!pmd_none(*vmf->pmd))) { 3229 spin_unlock(vmf->ptl); 3230 goto map_pte; 3231 } 3232 3233 mm_inc_nr_ptes(vma->vm_mm); 3234 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3235 spin_unlock(vmf->ptl); 3236 vmf->prealloc_pte = NULL; 3237 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3238 return VM_FAULT_OOM; 3239 } 3240 map_pte: 3241 /* 3242 * If a huge pmd materialized under us just retry later. Use 3243 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3244 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3245 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3246 * running immediately after a huge pmd fault in a different thread of 3247 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3248 * All we have to ensure is that it is a regular pmd that we can walk 3249 * with pte_offset_map() and we can do that through an atomic read in 3250 * C, which is what pmd_trans_unstable() provides. 3251 */ 3252 if (pmd_devmap_trans_unstable(vmf->pmd)) 3253 return VM_FAULT_NOPAGE; 3254 3255 /* 3256 * At this point we know that our vmf->pmd points to a page of ptes 3257 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3258 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3259 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3260 * be valid and we will re-check to make sure the vmf->pte isn't 3261 * pte_none() under vmf->ptl protection when we return to 3262 * alloc_set_pte(). 3263 */ 3264 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3265 &vmf->ptl); 3266 return 0; 3267 } 3268 3269 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3270 static void deposit_prealloc_pte(struct vm_fault *vmf) 3271 { 3272 struct vm_area_struct *vma = vmf->vma; 3273 3274 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3275 /* 3276 * We are going to consume the prealloc table, 3277 * count that as nr_ptes. 3278 */ 3279 mm_inc_nr_ptes(vma->vm_mm); 3280 vmf->prealloc_pte = NULL; 3281 } 3282 3283 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3284 { 3285 struct vm_area_struct *vma = vmf->vma; 3286 bool write = vmf->flags & FAULT_FLAG_WRITE; 3287 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3288 pmd_t entry; 3289 int i; 3290 vm_fault_t ret; 3291 3292 if (!transhuge_vma_suitable(vma, haddr)) 3293 return VM_FAULT_FALLBACK; 3294 3295 ret = VM_FAULT_FALLBACK; 3296 page = compound_head(page); 3297 3298 /* 3299 * Archs like ppc64 need additonal space to store information 3300 * related to pte entry. Use the preallocated table for that. 3301 */ 3302 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3303 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3304 if (!vmf->prealloc_pte) 3305 return VM_FAULT_OOM; 3306 smp_wmb(); /* See comment in __pte_alloc() */ 3307 } 3308 3309 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3310 if (unlikely(!pmd_none(*vmf->pmd))) 3311 goto out; 3312 3313 for (i = 0; i < HPAGE_PMD_NR; i++) 3314 flush_icache_page(vma, page + i); 3315 3316 entry = mk_huge_pmd(page, vma->vm_page_prot); 3317 if (write) 3318 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3319 3320 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3321 page_add_file_rmap(page, true); 3322 /* 3323 * deposit and withdraw with pmd lock held 3324 */ 3325 if (arch_needs_pgtable_deposit()) 3326 deposit_prealloc_pte(vmf); 3327 3328 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3329 3330 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3331 3332 /* fault is handled */ 3333 ret = 0; 3334 count_vm_event(THP_FILE_MAPPED); 3335 out: 3336 spin_unlock(vmf->ptl); 3337 return ret; 3338 } 3339 #else 3340 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3341 { 3342 BUILD_BUG(); 3343 return 0; 3344 } 3345 #endif 3346 3347 /** 3348 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3349 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3350 * 3351 * @vmf: fault environment 3352 * @memcg: memcg to charge page (only for private mappings) 3353 * @page: page to map 3354 * 3355 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3356 * return. 3357 * 3358 * Target users are page handler itself and implementations of 3359 * vm_ops->map_pages. 3360 * 3361 * Return: %0 on success, %VM_FAULT_ code in case of error. 3362 */ 3363 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3364 struct page *page) 3365 { 3366 struct vm_area_struct *vma = vmf->vma; 3367 bool write = vmf->flags & FAULT_FLAG_WRITE; 3368 pte_t entry; 3369 vm_fault_t ret; 3370 3371 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3372 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3373 /* THP on COW? */ 3374 VM_BUG_ON_PAGE(memcg, page); 3375 3376 ret = do_set_pmd(vmf, page); 3377 if (ret != VM_FAULT_FALLBACK) 3378 return ret; 3379 } 3380 3381 if (!vmf->pte) { 3382 ret = pte_alloc_one_map(vmf); 3383 if (ret) 3384 return ret; 3385 } 3386 3387 /* Re-check under ptl */ 3388 if (unlikely(!pte_none(*vmf->pte))) 3389 return VM_FAULT_NOPAGE; 3390 3391 flush_icache_page(vma, page); 3392 entry = mk_pte(page, vma->vm_page_prot); 3393 if (write) 3394 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3395 /* copy-on-write page */ 3396 if (write && !(vma->vm_flags & VM_SHARED)) { 3397 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3398 page_add_new_anon_rmap(page, vma, vmf->address, false); 3399 mem_cgroup_commit_charge(page, memcg, false, false); 3400 lru_cache_add_active_or_unevictable(page, vma); 3401 } else { 3402 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3403 page_add_file_rmap(page, false); 3404 } 3405 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3406 3407 /* no need to invalidate: a not-present page won't be cached */ 3408 update_mmu_cache(vma, vmf->address, vmf->pte); 3409 3410 return 0; 3411 } 3412 3413 3414 /** 3415 * finish_fault - finish page fault once we have prepared the page to fault 3416 * 3417 * @vmf: structure describing the fault 3418 * 3419 * This function handles all that is needed to finish a page fault once the 3420 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3421 * given page, adds reverse page mapping, handles memcg charges and LRU 3422 * addition. 3423 * 3424 * The function expects the page to be locked and on success it consumes a 3425 * reference of a page being mapped (for the PTE which maps it). 3426 * 3427 * Return: %0 on success, %VM_FAULT_ code in case of error. 3428 */ 3429 vm_fault_t finish_fault(struct vm_fault *vmf) 3430 { 3431 struct page *page; 3432 vm_fault_t ret = 0; 3433 3434 /* Did we COW the page? */ 3435 if ((vmf->flags & FAULT_FLAG_WRITE) && 3436 !(vmf->vma->vm_flags & VM_SHARED)) 3437 page = vmf->cow_page; 3438 else 3439 page = vmf->page; 3440 3441 /* 3442 * check even for read faults because we might have lost our CoWed 3443 * page 3444 */ 3445 if (!(vmf->vma->vm_flags & VM_SHARED)) 3446 ret = check_stable_address_space(vmf->vma->vm_mm); 3447 if (!ret) 3448 ret = alloc_set_pte(vmf, vmf->memcg, page); 3449 if (vmf->pte) 3450 pte_unmap_unlock(vmf->pte, vmf->ptl); 3451 return ret; 3452 } 3453 3454 static unsigned long fault_around_bytes __read_mostly = 3455 rounddown_pow_of_two(65536); 3456 3457 #ifdef CONFIG_DEBUG_FS 3458 static int fault_around_bytes_get(void *data, u64 *val) 3459 { 3460 *val = fault_around_bytes; 3461 return 0; 3462 } 3463 3464 /* 3465 * fault_around_bytes must be rounded down to the nearest page order as it's 3466 * what do_fault_around() expects to see. 3467 */ 3468 static int fault_around_bytes_set(void *data, u64 val) 3469 { 3470 if (val / PAGE_SIZE > PTRS_PER_PTE) 3471 return -EINVAL; 3472 if (val > PAGE_SIZE) 3473 fault_around_bytes = rounddown_pow_of_two(val); 3474 else 3475 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3476 return 0; 3477 } 3478 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3479 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3480 3481 static int __init fault_around_debugfs(void) 3482 { 3483 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3484 &fault_around_bytes_fops); 3485 return 0; 3486 } 3487 late_initcall(fault_around_debugfs); 3488 #endif 3489 3490 /* 3491 * do_fault_around() tries to map few pages around the fault address. The hope 3492 * is that the pages will be needed soon and this will lower the number of 3493 * faults to handle. 3494 * 3495 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3496 * not ready to be mapped: not up-to-date, locked, etc. 3497 * 3498 * This function is called with the page table lock taken. In the split ptlock 3499 * case the page table lock only protects only those entries which belong to 3500 * the page table corresponding to the fault address. 3501 * 3502 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3503 * only once. 3504 * 3505 * fault_around_bytes defines how many bytes we'll try to map. 3506 * do_fault_around() expects it to be set to a power of two less than or equal 3507 * to PTRS_PER_PTE. 3508 * 3509 * The virtual address of the area that we map is naturally aligned to 3510 * fault_around_bytes rounded down to the machine page size 3511 * (and therefore to page order). This way it's easier to guarantee 3512 * that we don't cross page table boundaries. 3513 */ 3514 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3515 { 3516 unsigned long address = vmf->address, nr_pages, mask; 3517 pgoff_t start_pgoff = vmf->pgoff; 3518 pgoff_t end_pgoff; 3519 int off; 3520 vm_fault_t ret = 0; 3521 3522 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3523 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3524 3525 vmf->address = max(address & mask, vmf->vma->vm_start); 3526 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3527 start_pgoff -= off; 3528 3529 /* 3530 * end_pgoff is either the end of the page table, the end of 3531 * the vma or nr_pages from start_pgoff, depending what is nearest. 3532 */ 3533 end_pgoff = start_pgoff - 3534 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3535 PTRS_PER_PTE - 1; 3536 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3537 start_pgoff + nr_pages - 1); 3538 3539 if (pmd_none(*vmf->pmd)) { 3540 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3541 if (!vmf->prealloc_pte) 3542 goto out; 3543 smp_wmb(); /* See comment in __pte_alloc() */ 3544 } 3545 3546 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3547 3548 /* Huge page is mapped? Page fault is solved */ 3549 if (pmd_trans_huge(*vmf->pmd)) { 3550 ret = VM_FAULT_NOPAGE; 3551 goto out; 3552 } 3553 3554 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3555 if (!vmf->pte) 3556 goto out; 3557 3558 /* check if the page fault is solved */ 3559 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3560 if (!pte_none(*vmf->pte)) 3561 ret = VM_FAULT_NOPAGE; 3562 pte_unmap_unlock(vmf->pte, vmf->ptl); 3563 out: 3564 vmf->address = address; 3565 vmf->pte = NULL; 3566 return ret; 3567 } 3568 3569 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3570 { 3571 struct vm_area_struct *vma = vmf->vma; 3572 vm_fault_t ret = 0; 3573 3574 /* 3575 * Let's call ->map_pages() first and use ->fault() as fallback 3576 * if page by the offset is not ready to be mapped (cold cache or 3577 * something). 3578 */ 3579 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3580 ret = do_fault_around(vmf); 3581 if (ret) 3582 return ret; 3583 } 3584 3585 ret = __do_fault(vmf); 3586 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3587 return ret; 3588 3589 ret |= finish_fault(vmf); 3590 unlock_page(vmf->page); 3591 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3592 put_page(vmf->page); 3593 return ret; 3594 } 3595 3596 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3597 { 3598 struct vm_area_struct *vma = vmf->vma; 3599 vm_fault_t ret; 3600 3601 if (unlikely(anon_vma_prepare(vma))) 3602 return VM_FAULT_OOM; 3603 3604 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3605 if (!vmf->cow_page) 3606 return VM_FAULT_OOM; 3607 3608 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3609 &vmf->memcg, false)) { 3610 put_page(vmf->cow_page); 3611 return VM_FAULT_OOM; 3612 } 3613 3614 ret = __do_fault(vmf); 3615 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3616 goto uncharge_out; 3617 if (ret & VM_FAULT_DONE_COW) 3618 return ret; 3619 3620 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3621 __SetPageUptodate(vmf->cow_page); 3622 3623 ret |= finish_fault(vmf); 3624 unlock_page(vmf->page); 3625 put_page(vmf->page); 3626 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3627 goto uncharge_out; 3628 return ret; 3629 uncharge_out: 3630 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3631 put_page(vmf->cow_page); 3632 return ret; 3633 } 3634 3635 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3636 { 3637 struct vm_area_struct *vma = vmf->vma; 3638 vm_fault_t ret, tmp; 3639 3640 ret = __do_fault(vmf); 3641 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3642 return ret; 3643 3644 /* 3645 * Check if the backing address space wants to know that the page is 3646 * about to become writable 3647 */ 3648 if (vma->vm_ops->page_mkwrite) { 3649 unlock_page(vmf->page); 3650 tmp = do_page_mkwrite(vmf); 3651 if (unlikely(!tmp || 3652 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3653 put_page(vmf->page); 3654 return tmp; 3655 } 3656 } 3657 3658 ret |= finish_fault(vmf); 3659 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3660 VM_FAULT_RETRY))) { 3661 unlock_page(vmf->page); 3662 put_page(vmf->page); 3663 return ret; 3664 } 3665 3666 ret |= fault_dirty_shared_page(vmf); 3667 return ret; 3668 } 3669 3670 /* 3671 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3672 * but allow concurrent faults). 3673 * The mmap_sem may have been released depending on flags and our 3674 * return value. See filemap_fault() and __lock_page_or_retry(). 3675 * If mmap_sem is released, vma may become invalid (for example 3676 * by other thread calling munmap()). 3677 */ 3678 static vm_fault_t do_fault(struct vm_fault *vmf) 3679 { 3680 struct vm_area_struct *vma = vmf->vma; 3681 struct mm_struct *vm_mm = vma->vm_mm; 3682 vm_fault_t ret; 3683 3684 /* 3685 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3686 */ 3687 if (!vma->vm_ops->fault) { 3688 /* 3689 * If we find a migration pmd entry or a none pmd entry, which 3690 * should never happen, return SIGBUS 3691 */ 3692 if (unlikely(!pmd_present(*vmf->pmd))) 3693 ret = VM_FAULT_SIGBUS; 3694 else { 3695 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3696 vmf->pmd, 3697 vmf->address, 3698 &vmf->ptl); 3699 /* 3700 * Make sure this is not a temporary clearing of pte 3701 * by holding ptl and checking again. A R/M/W update 3702 * of pte involves: take ptl, clearing the pte so that 3703 * we don't have concurrent modification by hardware 3704 * followed by an update. 3705 */ 3706 if (unlikely(pte_none(*vmf->pte))) 3707 ret = VM_FAULT_SIGBUS; 3708 else 3709 ret = VM_FAULT_NOPAGE; 3710 3711 pte_unmap_unlock(vmf->pte, vmf->ptl); 3712 } 3713 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3714 ret = do_read_fault(vmf); 3715 else if (!(vma->vm_flags & VM_SHARED)) 3716 ret = do_cow_fault(vmf); 3717 else 3718 ret = do_shared_fault(vmf); 3719 3720 /* preallocated pagetable is unused: free it */ 3721 if (vmf->prealloc_pte) { 3722 pte_free(vm_mm, vmf->prealloc_pte); 3723 vmf->prealloc_pte = NULL; 3724 } 3725 return ret; 3726 } 3727 3728 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3729 unsigned long addr, int page_nid, 3730 int *flags) 3731 { 3732 get_page(page); 3733 3734 count_vm_numa_event(NUMA_HINT_FAULTS); 3735 if (page_nid == numa_node_id()) { 3736 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3737 *flags |= TNF_FAULT_LOCAL; 3738 } 3739 3740 return mpol_misplaced(page, vma, addr); 3741 } 3742 3743 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3744 { 3745 struct vm_area_struct *vma = vmf->vma; 3746 struct page *page = NULL; 3747 int page_nid = NUMA_NO_NODE; 3748 int last_cpupid; 3749 int target_nid; 3750 bool migrated = false; 3751 pte_t pte, old_pte; 3752 bool was_writable = pte_savedwrite(vmf->orig_pte); 3753 int flags = 0; 3754 3755 /* 3756 * The "pte" at this point cannot be used safely without 3757 * validation through pte_unmap_same(). It's of NUMA type but 3758 * the pfn may be screwed if the read is non atomic. 3759 */ 3760 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3761 spin_lock(vmf->ptl); 3762 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3763 pte_unmap_unlock(vmf->pte, vmf->ptl); 3764 goto out; 3765 } 3766 3767 /* 3768 * Make it present again, Depending on how arch implementes non 3769 * accessible ptes, some can allow access by kernel mode. 3770 */ 3771 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 3772 pte = pte_modify(old_pte, vma->vm_page_prot); 3773 pte = pte_mkyoung(pte); 3774 if (was_writable) 3775 pte = pte_mkwrite(pte); 3776 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 3777 update_mmu_cache(vma, vmf->address, vmf->pte); 3778 3779 page = vm_normal_page(vma, vmf->address, pte); 3780 if (!page) { 3781 pte_unmap_unlock(vmf->pte, vmf->ptl); 3782 return 0; 3783 } 3784 3785 /* TODO: handle PTE-mapped THP */ 3786 if (PageCompound(page)) { 3787 pte_unmap_unlock(vmf->pte, vmf->ptl); 3788 return 0; 3789 } 3790 3791 /* 3792 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3793 * much anyway since they can be in shared cache state. This misses 3794 * the case where a mapping is writable but the process never writes 3795 * to it but pte_write gets cleared during protection updates and 3796 * pte_dirty has unpredictable behaviour between PTE scan updates, 3797 * background writeback, dirty balancing and application behaviour. 3798 */ 3799 if (!pte_write(pte)) 3800 flags |= TNF_NO_GROUP; 3801 3802 /* 3803 * Flag if the page is shared between multiple address spaces. This 3804 * is later used when determining whether to group tasks together 3805 */ 3806 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3807 flags |= TNF_SHARED; 3808 3809 last_cpupid = page_cpupid_last(page); 3810 page_nid = page_to_nid(page); 3811 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3812 &flags); 3813 pte_unmap_unlock(vmf->pte, vmf->ptl); 3814 if (target_nid == NUMA_NO_NODE) { 3815 put_page(page); 3816 goto out; 3817 } 3818 3819 /* Migrate to the requested node */ 3820 migrated = migrate_misplaced_page(page, vma, target_nid); 3821 if (migrated) { 3822 page_nid = target_nid; 3823 flags |= TNF_MIGRATED; 3824 } else 3825 flags |= TNF_MIGRATE_FAIL; 3826 3827 out: 3828 if (page_nid != NUMA_NO_NODE) 3829 task_numa_fault(last_cpupid, page_nid, 1, flags); 3830 return 0; 3831 } 3832 3833 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3834 { 3835 if (vma_is_anonymous(vmf->vma)) 3836 return do_huge_pmd_anonymous_page(vmf); 3837 if (vmf->vma->vm_ops->huge_fault) 3838 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3839 return VM_FAULT_FALLBACK; 3840 } 3841 3842 /* `inline' is required to avoid gcc 4.1.2 build error */ 3843 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3844 { 3845 if (vma_is_anonymous(vmf->vma)) 3846 return do_huge_pmd_wp_page(vmf, orig_pmd); 3847 if (vmf->vma->vm_ops->huge_fault) 3848 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3849 3850 /* COW handled on pte level: split pmd */ 3851 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3852 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3853 3854 return VM_FAULT_FALLBACK; 3855 } 3856 3857 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3858 { 3859 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3860 } 3861 3862 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3863 { 3864 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3865 /* No support for anonymous transparent PUD pages yet */ 3866 if (vma_is_anonymous(vmf->vma)) 3867 return VM_FAULT_FALLBACK; 3868 if (vmf->vma->vm_ops->huge_fault) 3869 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3870 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3871 return VM_FAULT_FALLBACK; 3872 } 3873 3874 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3875 { 3876 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3877 /* No support for anonymous transparent PUD pages yet */ 3878 if (vma_is_anonymous(vmf->vma)) 3879 return VM_FAULT_FALLBACK; 3880 if (vmf->vma->vm_ops->huge_fault) 3881 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3882 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3883 return VM_FAULT_FALLBACK; 3884 } 3885 3886 /* 3887 * These routines also need to handle stuff like marking pages dirty 3888 * and/or accessed for architectures that don't do it in hardware (most 3889 * RISC architectures). The early dirtying is also good on the i386. 3890 * 3891 * There is also a hook called "update_mmu_cache()" that architectures 3892 * with external mmu caches can use to update those (ie the Sparc or 3893 * PowerPC hashed page tables that act as extended TLBs). 3894 * 3895 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3896 * concurrent faults). 3897 * 3898 * The mmap_sem may have been released depending on flags and our return value. 3899 * See filemap_fault() and __lock_page_or_retry(). 3900 */ 3901 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3902 { 3903 pte_t entry; 3904 3905 if (unlikely(pmd_none(*vmf->pmd))) { 3906 /* 3907 * Leave __pte_alloc() until later: because vm_ops->fault may 3908 * want to allocate huge page, and if we expose page table 3909 * for an instant, it will be difficult to retract from 3910 * concurrent faults and from rmap lookups. 3911 */ 3912 vmf->pte = NULL; 3913 } else { 3914 /* See comment in pte_alloc_one_map() */ 3915 if (pmd_devmap_trans_unstable(vmf->pmd)) 3916 return 0; 3917 /* 3918 * A regular pmd is established and it can't morph into a huge 3919 * pmd from under us anymore at this point because we hold the 3920 * mmap_sem read mode and khugepaged takes it in write mode. 3921 * So now it's safe to run pte_offset_map(). 3922 */ 3923 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3924 vmf->orig_pte = *vmf->pte; 3925 3926 /* 3927 * some architectures can have larger ptes than wordsize, 3928 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3929 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3930 * accesses. The code below just needs a consistent view 3931 * for the ifs and we later double check anyway with the 3932 * ptl lock held. So here a barrier will do. 3933 */ 3934 barrier(); 3935 if (pte_none(vmf->orig_pte)) { 3936 pte_unmap(vmf->pte); 3937 vmf->pte = NULL; 3938 } 3939 } 3940 3941 if (!vmf->pte) { 3942 if (vma_is_anonymous(vmf->vma)) 3943 return do_anonymous_page(vmf); 3944 else 3945 return do_fault(vmf); 3946 } 3947 3948 if (!pte_present(vmf->orig_pte)) 3949 return do_swap_page(vmf); 3950 3951 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3952 return do_numa_page(vmf); 3953 3954 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3955 spin_lock(vmf->ptl); 3956 entry = vmf->orig_pte; 3957 if (unlikely(!pte_same(*vmf->pte, entry))) 3958 goto unlock; 3959 if (vmf->flags & FAULT_FLAG_WRITE) { 3960 if (!pte_write(entry)) 3961 return do_wp_page(vmf); 3962 entry = pte_mkdirty(entry); 3963 } 3964 entry = pte_mkyoung(entry); 3965 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3966 vmf->flags & FAULT_FLAG_WRITE)) { 3967 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3968 } else { 3969 /* 3970 * This is needed only for protection faults but the arch code 3971 * is not yet telling us if this is a protection fault or not. 3972 * This still avoids useless tlb flushes for .text page faults 3973 * with threads. 3974 */ 3975 if (vmf->flags & FAULT_FLAG_WRITE) 3976 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3977 } 3978 unlock: 3979 pte_unmap_unlock(vmf->pte, vmf->ptl); 3980 return 0; 3981 } 3982 3983 /* 3984 * By the time we get here, we already hold the mm semaphore 3985 * 3986 * The mmap_sem may have been released depending on flags and our 3987 * return value. See filemap_fault() and __lock_page_or_retry(). 3988 */ 3989 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 3990 unsigned long address, unsigned int flags) 3991 { 3992 struct vm_fault vmf = { 3993 .vma = vma, 3994 .address = address & PAGE_MASK, 3995 .flags = flags, 3996 .pgoff = linear_page_index(vma, address), 3997 .gfp_mask = __get_fault_gfp_mask(vma), 3998 }; 3999 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4000 struct mm_struct *mm = vma->vm_mm; 4001 pgd_t *pgd; 4002 p4d_t *p4d; 4003 vm_fault_t ret; 4004 4005 pgd = pgd_offset(mm, address); 4006 p4d = p4d_alloc(mm, pgd, address); 4007 if (!p4d) 4008 return VM_FAULT_OOM; 4009 4010 vmf.pud = pud_alloc(mm, p4d, address); 4011 if (!vmf.pud) 4012 return VM_FAULT_OOM; 4013 retry_pud: 4014 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 4015 ret = create_huge_pud(&vmf); 4016 if (!(ret & VM_FAULT_FALLBACK)) 4017 return ret; 4018 } else { 4019 pud_t orig_pud = *vmf.pud; 4020 4021 barrier(); 4022 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4023 4024 /* NUMA case for anonymous PUDs would go here */ 4025 4026 if (dirty && !pud_write(orig_pud)) { 4027 ret = wp_huge_pud(&vmf, orig_pud); 4028 if (!(ret & VM_FAULT_FALLBACK)) 4029 return ret; 4030 } else { 4031 huge_pud_set_accessed(&vmf, orig_pud); 4032 return 0; 4033 } 4034 } 4035 } 4036 4037 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4038 if (!vmf.pmd) 4039 return VM_FAULT_OOM; 4040 4041 /* Huge pud page fault raced with pmd_alloc? */ 4042 if (pud_trans_unstable(vmf.pud)) 4043 goto retry_pud; 4044 4045 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 4046 ret = create_huge_pmd(&vmf); 4047 if (!(ret & VM_FAULT_FALLBACK)) 4048 return ret; 4049 } else { 4050 pmd_t orig_pmd = *vmf.pmd; 4051 4052 barrier(); 4053 if (unlikely(is_swap_pmd(orig_pmd))) { 4054 VM_BUG_ON(thp_migration_supported() && 4055 !is_pmd_migration_entry(orig_pmd)); 4056 if (is_pmd_migration_entry(orig_pmd)) 4057 pmd_migration_entry_wait(mm, vmf.pmd); 4058 return 0; 4059 } 4060 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4061 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4062 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4063 4064 if (dirty && !pmd_write(orig_pmd)) { 4065 ret = wp_huge_pmd(&vmf, orig_pmd); 4066 if (!(ret & VM_FAULT_FALLBACK)) 4067 return ret; 4068 } else { 4069 huge_pmd_set_accessed(&vmf, orig_pmd); 4070 return 0; 4071 } 4072 } 4073 } 4074 4075 return handle_pte_fault(&vmf); 4076 } 4077 4078 /* 4079 * By the time we get here, we already hold the mm semaphore 4080 * 4081 * The mmap_sem may have been released depending on flags and our 4082 * return value. See filemap_fault() and __lock_page_or_retry(). 4083 */ 4084 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4085 unsigned int flags) 4086 { 4087 vm_fault_t ret; 4088 4089 __set_current_state(TASK_RUNNING); 4090 4091 count_vm_event(PGFAULT); 4092 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4093 4094 /* do counter updates before entering really critical section. */ 4095 check_sync_rss_stat(current); 4096 4097 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4098 flags & FAULT_FLAG_INSTRUCTION, 4099 flags & FAULT_FLAG_REMOTE)) 4100 return VM_FAULT_SIGSEGV; 4101 4102 /* 4103 * Enable the memcg OOM handling for faults triggered in user 4104 * space. Kernel faults are handled more gracefully. 4105 */ 4106 if (flags & FAULT_FLAG_USER) 4107 mem_cgroup_enter_user_fault(); 4108 4109 if (unlikely(is_vm_hugetlb_page(vma))) 4110 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4111 else 4112 ret = __handle_mm_fault(vma, address, flags); 4113 4114 if (flags & FAULT_FLAG_USER) { 4115 mem_cgroup_exit_user_fault(); 4116 /* 4117 * The task may have entered a memcg OOM situation but 4118 * if the allocation error was handled gracefully (no 4119 * VM_FAULT_OOM), there is no need to kill anything. 4120 * Just clean up the OOM state peacefully. 4121 */ 4122 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4123 mem_cgroup_oom_synchronize(false); 4124 } 4125 4126 return ret; 4127 } 4128 EXPORT_SYMBOL_GPL(handle_mm_fault); 4129 4130 #ifndef __PAGETABLE_P4D_FOLDED 4131 /* 4132 * Allocate p4d page table. 4133 * We've already handled the fast-path in-line. 4134 */ 4135 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4136 { 4137 p4d_t *new = p4d_alloc_one(mm, address); 4138 if (!new) 4139 return -ENOMEM; 4140 4141 smp_wmb(); /* See comment in __pte_alloc */ 4142 4143 spin_lock(&mm->page_table_lock); 4144 if (pgd_present(*pgd)) /* Another has populated it */ 4145 p4d_free(mm, new); 4146 else 4147 pgd_populate(mm, pgd, new); 4148 spin_unlock(&mm->page_table_lock); 4149 return 0; 4150 } 4151 #endif /* __PAGETABLE_P4D_FOLDED */ 4152 4153 #ifndef __PAGETABLE_PUD_FOLDED 4154 /* 4155 * Allocate page upper directory. 4156 * We've already handled the fast-path in-line. 4157 */ 4158 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4159 { 4160 pud_t *new = pud_alloc_one(mm, address); 4161 if (!new) 4162 return -ENOMEM; 4163 4164 smp_wmb(); /* See comment in __pte_alloc */ 4165 4166 spin_lock(&mm->page_table_lock); 4167 #ifndef __ARCH_HAS_5LEVEL_HACK 4168 if (!p4d_present(*p4d)) { 4169 mm_inc_nr_puds(mm); 4170 p4d_populate(mm, p4d, new); 4171 } else /* Another has populated it */ 4172 pud_free(mm, new); 4173 #else 4174 if (!pgd_present(*p4d)) { 4175 mm_inc_nr_puds(mm); 4176 pgd_populate(mm, p4d, new); 4177 } else /* Another has populated it */ 4178 pud_free(mm, new); 4179 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4180 spin_unlock(&mm->page_table_lock); 4181 return 0; 4182 } 4183 #endif /* __PAGETABLE_PUD_FOLDED */ 4184 4185 #ifndef __PAGETABLE_PMD_FOLDED 4186 /* 4187 * Allocate page middle directory. 4188 * We've already handled the fast-path in-line. 4189 */ 4190 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4191 { 4192 spinlock_t *ptl; 4193 pmd_t *new = pmd_alloc_one(mm, address); 4194 if (!new) 4195 return -ENOMEM; 4196 4197 smp_wmb(); /* See comment in __pte_alloc */ 4198 4199 ptl = pud_lock(mm, pud); 4200 if (!pud_present(*pud)) { 4201 mm_inc_nr_pmds(mm); 4202 pud_populate(mm, pud, new); 4203 } else /* Another has populated it */ 4204 pmd_free(mm, new); 4205 spin_unlock(ptl); 4206 return 0; 4207 } 4208 #endif /* __PAGETABLE_PMD_FOLDED */ 4209 4210 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4211 struct mmu_notifier_range *range, 4212 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4213 { 4214 pgd_t *pgd; 4215 p4d_t *p4d; 4216 pud_t *pud; 4217 pmd_t *pmd; 4218 pte_t *ptep; 4219 4220 pgd = pgd_offset(mm, address); 4221 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4222 goto out; 4223 4224 p4d = p4d_offset(pgd, address); 4225 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4226 goto out; 4227 4228 pud = pud_offset(p4d, address); 4229 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4230 goto out; 4231 4232 pmd = pmd_offset(pud, address); 4233 VM_BUG_ON(pmd_trans_huge(*pmd)); 4234 4235 if (pmd_huge(*pmd)) { 4236 if (!pmdpp) 4237 goto out; 4238 4239 if (range) { 4240 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, 4241 NULL, mm, address & PMD_MASK, 4242 (address & PMD_MASK) + PMD_SIZE); 4243 mmu_notifier_invalidate_range_start(range); 4244 } 4245 *ptlp = pmd_lock(mm, pmd); 4246 if (pmd_huge(*pmd)) { 4247 *pmdpp = pmd; 4248 return 0; 4249 } 4250 spin_unlock(*ptlp); 4251 if (range) 4252 mmu_notifier_invalidate_range_end(range); 4253 } 4254 4255 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4256 goto out; 4257 4258 if (range) { 4259 mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm, 4260 address & PAGE_MASK, 4261 (address & PAGE_MASK) + PAGE_SIZE); 4262 mmu_notifier_invalidate_range_start(range); 4263 } 4264 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4265 if (!pte_present(*ptep)) 4266 goto unlock; 4267 *ptepp = ptep; 4268 return 0; 4269 unlock: 4270 pte_unmap_unlock(ptep, *ptlp); 4271 if (range) 4272 mmu_notifier_invalidate_range_end(range); 4273 out: 4274 return -EINVAL; 4275 } 4276 4277 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4278 pte_t **ptepp, spinlock_t **ptlp) 4279 { 4280 int res; 4281 4282 /* (void) is needed to make gcc happy */ 4283 (void) __cond_lock(*ptlp, 4284 !(res = __follow_pte_pmd(mm, address, NULL, 4285 ptepp, NULL, ptlp))); 4286 return res; 4287 } 4288 4289 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4290 struct mmu_notifier_range *range, 4291 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4292 { 4293 int res; 4294 4295 /* (void) is needed to make gcc happy */ 4296 (void) __cond_lock(*ptlp, 4297 !(res = __follow_pte_pmd(mm, address, range, 4298 ptepp, pmdpp, ptlp))); 4299 return res; 4300 } 4301 EXPORT_SYMBOL(follow_pte_pmd); 4302 4303 /** 4304 * follow_pfn - look up PFN at a user virtual address 4305 * @vma: memory mapping 4306 * @address: user virtual address 4307 * @pfn: location to store found PFN 4308 * 4309 * Only IO mappings and raw PFN mappings are allowed. 4310 * 4311 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4312 */ 4313 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4314 unsigned long *pfn) 4315 { 4316 int ret = -EINVAL; 4317 spinlock_t *ptl; 4318 pte_t *ptep; 4319 4320 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4321 return ret; 4322 4323 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4324 if (ret) 4325 return ret; 4326 *pfn = pte_pfn(*ptep); 4327 pte_unmap_unlock(ptep, ptl); 4328 return 0; 4329 } 4330 EXPORT_SYMBOL(follow_pfn); 4331 4332 #ifdef CONFIG_HAVE_IOREMAP_PROT 4333 int follow_phys(struct vm_area_struct *vma, 4334 unsigned long address, unsigned int flags, 4335 unsigned long *prot, resource_size_t *phys) 4336 { 4337 int ret = -EINVAL; 4338 pte_t *ptep, pte; 4339 spinlock_t *ptl; 4340 4341 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4342 goto out; 4343 4344 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4345 goto out; 4346 pte = *ptep; 4347 4348 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4349 goto unlock; 4350 4351 *prot = pgprot_val(pte_pgprot(pte)); 4352 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4353 4354 ret = 0; 4355 unlock: 4356 pte_unmap_unlock(ptep, ptl); 4357 out: 4358 return ret; 4359 } 4360 4361 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4362 void *buf, int len, int write) 4363 { 4364 resource_size_t phys_addr; 4365 unsigned long prot = 0; 4366 void __iomem *maddr; 4367 int offset = addr & (PAGE_SIZE-1); 4368 4369 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4370 return -EINVAL; 4371 4372 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4373 if (!maddr) 4374 return -ENOMEM; 4375 4376 if (write) 4377 memcpy_toio(maddr + offset, buf, len); 4378 else 4379 memcpy_fromio(buf, maddr + offset, len); 4380 iounmap(maddr); 4381 4382 return len; 4383 } 4384 EXPORT_SYMBOL_GPL(generic_access_phys); 4385 #endif 4386 4387 /* 4388 * Access another process' address space as given in mm. If non-NULL, use the 4389 * given task for page fault accounting. 4390 */ 4391 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4392 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4393 { 4394 struct vm_area_struct *vma; 4395 void *old_buf = buf; 4396 int write = gup_flags & FOLL_WRITE; 4397 4398 if (down_read_killable(&mm->mmap_sem)) 4399 return 0; 4400 4401 /* ignore errors, just check how much was successfully transferred */ 4402 while (len) { 4403 int bytes, ret, offset; 4404 void *maddr; 4405 struct page *page = NULL; 4406 4407 ret = get_user_pages_remote(tsk, mm, addr, 1, 4408 gup_flags, &page, &vma, NULL); 4409 if (ret <= 0) { 4410 #ifndef CONFIG_HAVE_IOREMAP_PROT 4411 break; 4412 #else 4413 /* 4414 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4415 * we can access using slightly different code. 4416 */ 4417 vma = find_vma(mm, addr); 4418 if (!vma || vma->vm_start > addr) 4419 break; 4420 if (vma->vm_ops && vma->vm_ops->access) 4421 ret = vma->vm_ops->access(vma, addr, buf, 4422 len, write); 4423 if (ret <= 0) 4424 break; 4425 bytes = ret; 4426 #endif 4427 } else { 4428 bytes = len; 4429 offset = addr & (PAGE_SIZE-1); 4430 if (bytes > PAGE_SIZE-offset) 4431 bytes = PAGE_SIZE-offset; 4432 4433 maddr = kmap(page); 4434 if (write) { 4435 copy_to_user_page(vma, page, addr, 4436 maddr + offset, buf, bytes); 4437 set_page_dirty_lock(page); 4438 } else { 4439 copy_from_user_page(vma, page, addr, 4440 buf, maddr + offset, bytes); 4441 } 4442 kunmap(page); 4443 put_page(page); 4444 } 4445 len -= bytes; 4446 buf += bytes; 4447 addr += bytes; 4448 } 4449 up_read(&mm->mmap_sem); 4450 4451 return buf - old_buf; 4452 } 4453 4454 /** 4455 * access_remote_vm - access another process' address space 4456 * @mm: the mm_struct of the target address space 4457 * @addr: start address to access 4458 * @buf: source or destination buffer 4459 * @len: number of bytes to transfer 4460 * @gup_flags: flags modifying lookup behaviour 4461 * 4462 * The caller must hold a reference on @mm. 4463 * 4464 * Return: number of bytes copied from source to destination. 4465 */ 4466 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4467 void *buf, int len, unsigned int gup_flags) 4468 { 4469 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4470 } 4471 4472 /* 4473 * Access another process' address space. 4474 * Source/target buffer must be kernel space, 4475 * Do not walk the page table directly, use get_user_pages 4476 */ 4477 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4478 void *buf, int len, unsigned int gup_flags) 4479 { 4480 struct mm_struct *mm; 4481 int ret; 4482 4483 mm = get_task_mm(tsk); 4484 if (!mm) 4485 return 0; 4486 4487 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4488 4489 mmput(mm); 4490 4491 return ret; 4492 } 4493 EXPORT_SYMBOL_GPL(access_process_vm); 4494 4495 /* 4496 * Print the name of a VMA. 4497 */ 4498 void print_vma_addr(char *prefix, unsigned long ip) 4499 { 4500 struct mm_struct *mm = current->mm; 4501 struct vm_area_struct *vma; 4502 4503 /* 4504 * we might be running from an atomic context so we cannot sleep 4505 */ 4506 if (!down_read_trylock(&mm->mmap_sem)) 4507 return; 4508 4509 vma = find_vma(mm, ip); 4510 if (vma && vma->vm_file) { 4511 struct file *f = vma->vm_file; 4512 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4513 if (buf) { 4514 char *p; 4515 4516 p = file_path(f, buf, PAGE_SIZE); 4517 if (IS_ERR(p)) 4518 p = "?"; 4519 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4520 vma->vm_start, 4521 vma->vm_end - vma->vm_start); 4522 free_page((unsigned long)buf); 4523 } 4524 } 4525 up_read(&mm->mmap_sem); 4526 } 4527 4528 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4529 void __might_fault(const char *file, int line) 4530 { 4531 /* 4532 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4533 * holding the mmap_sem, this is safe because kernel memory doesn't 4534 * get paged out, therefore we'll never actually fault, and the 4535 * below annotations will generate false positives. 4536 */ 4537 if (uaccess_kernel()) 4538 return; 4539 if (pagefault_disabled()) 4540 return; 4541 __might_sleep(file, line, 0); 4542 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4543 if (current->mm) 4544 might_lock_read(¤t->mm->mmap_sem); 4545 #endif 4546 } 4547 EXPORT_SYMBOL(__might_fault); 4548 #endif 4549 4550 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4551 /* 4552 * Process all subpages of the specified huge page with the specified 4553 * operation. The target subpage will be processed last to keep its 4554 * cache lines hot. 4555 */ 4556 static inline void process_huge_page( 4557 unsigned long addr_hint, unsigned int pages_per_huge_page, 4558 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4559 void *arg) 4560 { 4561 int i, n, base, l; 4562 unsigned long addr = addr_hint & 4563 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4564 4565 /* Process target subpage last to keep its cache lines hot */ 4566 might_sleep(); 4567 n = (addr_hint - addr) / PAGE_SIZE; 4568 if (2 * n <= pages_per_huge_page) { 4569 /* If target subpage in first half of huge page */ 4570 base = 0; 4571 l = n; 4572 /* Process subpages at the end of huge page */ 4573 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4574 cond_resched(); 4575 process_subpage(addr + i * PAGE_SIZE, i, arg); 4576 } 4577 } else { 4578 /* If target subpage in second half of huge page */ 4579 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4580 l = pages_per_huge_page - n; 4581 /* Process subpages at the begin of huge page */ 4582 for (i = 0; i < base; i++) { 4583 cond_resched(); 4584 process_subpage(addr + i * PAGE_SIZE, i, arg); 4585 } 4586 } 4587 /* 4588 * Process remaining subpages in left-right-left-right pattern 4589 * towards the target subpage 4590 */ 4591 for (i = 0; i < l; i++) { 4592 int left_idx = base + i; 4593 int right_idx = base + 2 * l - 1 - i; 4594 4595 cond_resched(); 4596 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4597 cond_resched(); 4598 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4599 } 4600 } 4601 4602 static void clear_gigantic_page(struct page *page, 4603 unsigned long addr, 4604 unsigned int pages_per_huge_page) 4605 { 4606 int i; 4607 struct page *p = page; 4608 4609 might_sleep(); 4610 for (i = 0; i < pages_per_huge_page; 4611 i++, p = mem_map_next(p, page, i)) { 4612 cond_resched(); 4613 clear_user_highpage(p, addr + i * PAGE_SIZE); 4614 } 4615 } 4616 4617 static void clear_subpage(unsigned long addr, int idx, void *arg) 4618 { 4619 struct page *page = arg; 4620 4621 clear_user_highpage(page + idx, addr); 4622 } 4623 4624 void clear_huge_page(struct page *page, 4625 unsigned long addr_hint, unsigned int pages_per_huge_page) 4626 { 4627 unsigned long addr = addr_hint & 4628 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4629 4630 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4631 clear_gigantic_page(page, addr, pages_per_huge_page); 4632 return; 4633 } 4634 4635 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4636 } 4637 4638 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4639 unsigned long addr, 4640 struct vm_area_struct *vma, 4641 unsigned int pages_per_huge_page) 4642 { 4643 int i; 4644 struct page *dst_base = dst; 4645 struct page *src_base = src; 4646 4647 for (i = 0; i < pages_per_huge_page; ) { 4648 cond_resched(); 4649 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4650 4651 i++; 4652 dst = mem_map_next(dst, dst_base, i); 4653 src = mem_map_next(src, src_base, i); 4654 } 4655 } 4656 4657 struct copy_subpage_arg { 4658 struct page *dst; 4659 struct page *src; 4660 struct vm_area_struct *vma; 4661 }; 4662 4663 static void copy_subpage(unsigned long addr, int idx, void *arg) 4664 { 4665 struct copy_subpage_arg *copy_arg = arg; 4666 4667 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4668 addr, copy_arg->vma); 4669 } 4670 4671 void copy_user_huge_page(struct page *dst, struct page *src, 4672 unsigned long addr_hint, struct vm_area_struct *vma, 4673 unsigned int pages_per_huge_page) 4674 { 4675 unsigned long addr = addr_hint & 4676 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4677 struct copy_subpage_arg arg = { 4678 .dst = dst, 4679 .src = src, 4680 .vma = vma, 4681 }; 4682 4683 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4684 copy_user_gigantic_page(dst, src, addr, vma, 4685 pages_per_huge_page); 4686 return; 4687 } 4688 4689 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4690 } 4691 4692 long copy_huge_page_from_user(struct page *dst_page, 4693 const void __user *usr_src, 4694 unsigned int pages_per_huge_page, 4695 bool allow_pagefault) 4696 { 4697 void *src = (void *)usr_src; 4698 void *page_kaddr; 4699 unsigned long i, rc = 0; 4700 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4701 4702 for (i = 0; i < pages_per_huge_page; i++) { 4703 if (allow_pagefault) 4704 page_kaddr = kmap(dst_page + i); 4705 else 4706 page_kaddr = kmap_atomic(dst_page + i); 4707 rc = copy_from_user(page_kaddr, 4708 (const void __user *)(src + i * PAGE_SIZE), 4709 PAGE_SIZE); 4710 if (allow_pagefault) 4711 kunmap(dst_page + i); 4712 else 4713 kunmap_atomic(page_kaddr); 4714 4715 ret_val -= (PAGE_SIZE - rc); 4716 if (rc) 4717 break; 4718 4719 cond_resched(); 4720 } 4721 return ret_val; 4722 } 4723 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4724 4725 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4726 4727 static struct kmem_cache *page_ptl_cachep; 4728 4729 void __init ptlock_cache_init(void) 4730 { 4731 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4732 SLAB_PANIC, NULL); 4733 } 4734 4735 bool ptlock_alloc(struct page *page) 4736 { 4737 spinlock_t *ptl; 4738 4739 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4740 if (!ptl) 4741 return false; 4742 page->ptl = ptl; 4743 return true; 4744 } 4745 4746 void ptlock_free(struct page *page) 4747 { 4748 kmem_cache_free(page_ptl_cachep, page->ptl); 4749 } 4750 #endif 4751