xref: /openbmc/linux/mm/memory.c (revision 47ebd031)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117 
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126 					1;
127 #else
128 					2;
129 #endif
130 
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134 	/*
135 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 	 * some architectures, even if it's performed in hardware. By
137 	 * default, "false" means prefaulted entries will be 'young'.
138 	 */
139 	return false;
140 }
141 #endif
142 
143 static int __init disable_randmaps(char *s)
144 {
145 	randomize_va_space = 0;
146 	return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149 
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152 
153 unsigned long highest_memmap_pfn __read_mostly;
154 
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 	return 0;
162 }
163 early_initcall(init_zero_pfn);
164 
165 void mm_trace_rss_stat(struct mm_struct *mm, int member)
166 {
167 	trace_rss_stat(mm, member);
168 }
169 
170 /*
171  * Note: this doesn't free the actual pages themselves. That
172  * has been handled earlier when unmapping all the memory regions.
173  */
174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
175 			   unsigned long addr)
176 {
177 	pgtable_t token = pmd_pgtable(*pmd);
178 	pmd_clear(pmd);
179 	pte_free_tlb(tlb, token, addr);
180 	mm_dec_nr_ptes(tlb->mm);
181 }
182 
183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
184 				unsigned long addr, unsigned long end,
185 				unsigned long floor, unsigned long ceiling)
186 {
187 	pmd_t *pmd;
188 	unsigned long next;
189 	unsigned long start;
190 
191 	start = addr;
192 	pmd = pmd_offset(pud, addr);
193 	do {
194 		next = pmd_addr_end(addr, end);
195 		if (pmd_none_or_clear_bad(pmd))
196 			continue;
197 		free_pte_range(tlb, pmd, addr);
198 	} while (pmd++, addr = next, addr != end);
199 
200 	start &= PUD_MASK;
201 	if (start < floor)
202 		return;
203 	if (ceiling) {
204 		ceiling &= PUD_MASK;
205 		if (!ceiling)
206 			return;
207 	}
208 	if (end - 1 > ceiling - 1)
209 		return;
210 
211 	pmd = pmd_offset(pud, start);
212 	pud_clear(pud);
213 	pmd_free_tlb(tlb, pmd, start);
214 	mm_dec_nr_pmds(tlb->mm);
215 }
216 
217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
218 				unsigned long addr, unsigned long end,
219 				unsigned long floor, unsigned long ceiling)
220 {
221 	pud_t *pud;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	start = addr;
226 	pud = pud_offset(p4d, addr);
227 	do {
228 		next = pud_addr_end(addr, end);
229 		if (pud_none_or_clear_bad(pud))
230 			continue;
231 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
232 	} while (pud++, addr = next, addr != end);
233 
234 	start &= P4D_MASK;
235 	if (start < floor)
236 		return;
237 	if (ceiling) {
238 		ceiling &= P4D_MASK;
239 		if (!ceiling)
240 			return;
241 	}
242 	if (end - 1 > ceiling - 1)
243 		return;
244 
245 	pud = pud_offset(p4d, start);
246 	p4d_clear(p4d);
247 	pud_free_tlb(tlb, pud, start);
248 	mm_dec_nr_puds(tlb->mm);
249 }
250 
251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
252 				unsigned long addr, unsigned long end,
253 				unsigned long floor, unsigned long ceiling)
254 {
255 	p4d_t *p4d;
256 	unsigned long next;
257 	unsigned long start;
258 
259 	start = addr;
260 	p4d = p4d_offset(pgd, addr);
261 	do {
262 		next = p4d_addr_end(addr, end);
263 		if (p4d_none_or_clear_bad(p4d))
264 			continue;
265 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
266 	} while (p4d++, addr = next, addr != end);
267 
268 	start &= PGDIR_MASK;
269 	if (start < floor)
270 		return;
271 	if (ceiling) {
272 		ceiling &= PGDIR_MASK;
273 		if (!ceiling)
274 			return;
275 	}
276 	if (end - 1 > ceiling - 1)
277 		return;
278 
279 	p4d = p4d_offset(pgd, start);
280 	pgd_clear(pgd);
281 	p4d_free_tlb(tlb, p4d, start);
282 }
283 
284 /*
285  * This function frees user-level page tables of a process.
286  */
287 void free_pgd_range(struct mmu_gather *tlb,
288 			unsigned long addr, unsigned long end,
289 			unsigned long floor, unsigned long ceiling)
290 {
291 	pgd_t *pgd;
292 	unsigned long next;
293 
294 	/*
295 	 * The next few lines have given us lots of grief...
296 	 *
297 	 * Why are we testing PMD* at this top level?  Because often
298 	 * there will be no work to do at all, and we'd prefer not to
299 	 * go all the way down to the bottom just to discover that.
300 	 *
301 	 * Why all these "- 1"s?  Because 0 represents both the bottom
302 	 * of the address space and the top of it (using -1 for the
303 	 * top wouldn't help much: the masks would do the wrong thing).
304 	 * The rule is that addr 0 and floor 0 refer to the bottom of
305 	 * the address space, but end 0 and ceiling 0 refer to the top
306 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
307 	 * that end 0 case should be mythical).
308 	 *
309 	 * Wherever addr is brought up or ceiling brought down, we must
310 	 * be careful to reject "the opposite 0" before it confuses the
311 	 * subsequent tests.  But what about where end is brought down
312 	 * by PMD_SIZE below? no, end can't go down to 0 there.
313 	 *
314 	 * Whereas we round start (addr) and ceiling down, by different
315 	 * masks at different levels, in order to test whether a table
316 	 * now has no other vmas using it, so can be freed, we don't
317 	 * bother to round floor or end up - the tests don't need that.
318 	 */
319 
320 	addr &= PMD_MASK;
321 	if (addr < floor) {
322 		addr += PMD_SIZE;
323 		if (!addr)
324 			return;
325 	}
326 	if (ceiling) {
327 		ceiling &= PMD_MASK;
328 		if (!ceiling)
329 			return;
330 	}
331 	if (end - 1 > ceiling - 1)
332 		end -= PMD_SIZE;
333 	if (addr > end - 1)
334 		return;
335 	/*
336 	 * We add page table cache pages with PAGE_SIZE,
337 	 * (see pte_free_tlb()), flush the tlb if we need
338 	 */
339 	tlb_change_page_size(tlb, PAGE_SIZE);
340 	pgd = pgd_offset(tlb->mm, addr);
341 	do {
342 		next = pgd_addr_end(addr, end);
343 		if (pgd_none_or_clear_bad(pgd))
344 			continue;
345 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
346 	} while (pgd++, addr = next, addr != end);
347 }
348 
349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
350 		   struct vm_area_struct *vma, unsigned long floor,
351 		   unsigned long ceiling)
352 {
353 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
354 
355 	do {
356 		unsigned long addr = vma->vm_start;
357 		struct vm_area_struct *next;
358 
359 		/*
360 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
361 		 * be 0.  This will underflow and is okay.
362 		 */
363 		next = mas_find(&mas, ceiling - 1);
364 
365 		/*
366 		 * Hide vma from rmap and truncate_pagecache before freeing
367 		 * pgtables
368 		 */
369 		unlink_anon_vmas(vma);
370 		unlink_file_vma(vma);
371 
372 		if (is_vm_hugetlb_page(vma)) {
373 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
374 				floor, next ? next->vm_start : ceiling);
375 		} else {
376 			/*
377 			 * Optimization: gather nearby vmas into one call down
378 			 */
379 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
380 			       && !is_vm_hugetlb_page(next)) {
381 				vma = next;
382 				next = mas_find(&mas, ceiling - 1);
383 				unlink_anon_vmas(vma);
384 				unlink_file_vma(vma);
385 			}
386 			free_pgd_range(tlb, addr, vma->vm_end,
387 				floor, next ? next->vm_start : ceiling);
388 		}
389 		vma = next;
390 	} while (vma);
391 }
392 
393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
394 {
395 	spinlock_t *ptl = pmd_lock(mm, pmd);
396 
397 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
398 		mm_inc_nr_ptes(mm);
399 		/*
400 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
401 		 * visible before the pte is made visible to other CPUs by being
402 		 * put into page tables.
403 		 *
404 		 * The other side of the story is the pointer chasing in the page
405 		 * table walking code (when walking the page table without locking;
406 		 * ie. most of the time). Fortunately, these data accesses consist
407 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
408 		 * being the notable exception) will already guarantee loads are
409 		 * seen in-order. See the alpha page table accessors for the
410 		 * smp_rmb() barriers in page table walking code.
411 		 */
412 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
413 		pmd_populate(mm, pmd, *pte);
414 		*pte = NULL;
415 	}
416 	spin_unlock(ptl);
417 }
418 
419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
420 {
421 	pgtable_t new = pte_alloc_one(mm);
422 	if (!new)
423 		return -ENOMEM;
424 
425 	pmd_install(mm, pmd, &new);
426 	if (new)
427 		pte_free(mm, new);
428 	return 0;
429 }
430 
431 int __pte_alloc_kernel(pmd_t *pmd)
432 {
433 	pte_t *new = pte_alloc_one_kernel(&init_mm);
434 	if (!new)
435 		return -ENOMEM;
436 
437 	spin_lock(&init_mm.page_table_lock);
438 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
439 		smp_wmb(); /* See comment in pmd_install() */
440 		pmd_populate_kernel(&init_mm, pmd, new);
441 		new = NULL;
442 	}
443 	spin_unlock(&init_mm.page_table_lock);
444 	if (new)
445 		pte_free_kernel(&init_mm, new);
446 	return 0;
447 }
448 
449 static inline void init_rss_vec(int *rss)
450 {
451 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
452 }
453 
454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
455 {
456 	int i;
457 
458 	if (current->mm == mm)
459 		sync_mm_rss(mm);
460 	for (i = 0; i < NR_MM_COUNTERS; i++)
461 		if (rss[i])
462 			add_mm_counter(mm, i, rss[i]);
463 }
464 
465 /*
466  * This function is called to print an error when a bad pte
467  * is found. For example, we might have a PFN-mapped pte in
468  * a region that doesn't allow it.
469  *
470  * The calling function must still handle the error.
471  */
472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
473 			  pte_t pte, struct page *page)
474 {
475 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
476 	p4d_t *p4d = p4d_offset(pgd, addr);
477 	pud_t *pud = pud_offset(p4d, addr);
478 	pmd_t *pmd = pmd_offset(pud, addr);
479 	struct address_space *mapping;
480 	pgoff_t index;
481 	static unsigned long resume;
482 	static unsigned long nr_shown;
483 	static unsigned long nr_unshown;
484 
485 	/*
486 	 * Allow a burst of 60 reports, then keep quiet for that minute;
487 	 * or allow a steady drip of one report per second.
488 	 */
489 	if (nr_shown == 60) {
490 		if (time_before(jiffies, resume)) {
491 			nr_unshown++;
492 			return;
493 		}
494 		if (nr_unshown) {
495 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
496 				 nr_unshown);
497 			nr_unshown = 0;
498 		}
499 		nr_shown = 0;
500 	}
501 	if (nr_shown++ == 0)
502 		resume = jiffies + 60 * HZ;
503 
504 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
505 	index = linear_page_index(vma, addr);
506 
507 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
508 		 current->comm,
509 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
510 	if (page)
511 		dump_page(page, "bad pte");
512 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
513 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
514 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
515 		 vma->vm_file,
516 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
517 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
518 		 mapping ? mapping->a_ops->read_folio : NULL);
519 	dump_stack();
520 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
521 }
522 
523 /*
524  * vm_normal_page -- This function gets the "struct page" associated with a pte.
525  *
526  * "Special" mappings do not wish to be associated with a "struct page" (either
527  * it doesn't exist, or it exists but they don't want to touch it). In this
528  * case, NULL is returned here. "Normal" mappings do have a struct page.
529  *
530  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
531  * pte bit, in which case this function is trivial. Secondly, an architecture
532  * may not have a spare pte bit, which requires a more complicated scheme,
533  * described below.
534  *
535  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
536  * special mapping (even if there are underlying and valid "struct pages").
537  * COWed pages of a VM_PFNMAP are always normal.
538  *
539  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
540  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
541  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
542  * mapping will always honor the rule
543  *
544  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
545  *
546  * And for normal mappings this is false.
547  *
548  * This restricts such mappings to be a linear translation from virtual address
549  * to pfn. To get around this restriction, we allow arbitrary mappings so long
550  * as the vma is not a COW mapping; in that case, we know that all ptes are
551  * special (because none can have been COWed).
552  *
553  *
554  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
555  *
556  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
557  * page" backing, however the difference is that _all_ pages with a struct
558  * page (that is, those where pfn_valid is true) are refcounted and considered
559  * normal pages by the VM. The disadvantage is that pages are refcounted
560  * (which can be slower and simply not an option for some PFNMAP users). The
561  * advantage is that we don't have to follow the strict linearity rule of
562  * PFNMAP mappings in order to support COWable mappings.
563  *
564  */
565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
566 			    pte_t pte)
567 {
568 	unsigned long pfn = pte_pfn(pte);
569 
570 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
571 		if (likely(!pte_special(pte)))
572 			goto check_pfn;
573 		if (vma->vm_ops && vma->vm_ops->find_special_page)
574 			return vma->vm_ops->find_special_page(vma, addr);
575 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
576 			return NULL;
577 		if (is_zero_pfn(pfn))
578 			return NULL;
579 		if (pte_devmap(pte))
580 		/*
581 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
582 		 * and will have refcounts incremented on their struct pages
583 		 * when they are inserted into PTEs, thus they are safe to
584 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
585 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
586 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
587 		 */
588 			return NULL;
589 
590 		print_bad_pte(vma, addr, pte, NULL);
591 		return NULL;
592 	}
593 
594 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
595 
596 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
597 		if (vma->vm_flags & VM_MIXEDMAP) {
598 			if (!pfn_valid(pfn))
599 				return NULL;
600 			goto out;
601 		} else {
602 			unsigned long off;
603 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
604 			if (pfn == vma->vm_pgoff + off)
605 				return NULL;
606 			if (!is_cow_mapping(vma->vm_flags))
607 				return NULL;
608 		}
609 	}
610 
611 	if (is_zero_pfn(pfn))
612 		return NULL;
613 
614 check_pfn:
615 	if (unlikely(pfn > highest_memmap_pfn)) {
616 		print_bad_pte(vma, addr, pte, NULL);
617 		return NULL;
618 	}
619 
620 	/*
621 	 * NOTE! We still have PageReserved() pages in the page tables.
622 	 * eg. VDSO mappings can cause them to exist.
623 	 */
624 out:
625 	return pfn_to_page(pfn);
626 }
627 
628 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
629 			    pte_t pte)
630 {
631 	struct page *page = vm_normal_page(vma, addr, pte);
632 
633 	if (page)
634 		return page_folio(page);
635 	return NULL;
636 }
637 
638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
639 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
640 				pmd_t pmd)
641 {
642 	unsigned long pfn = pmd_pfn(pmd);
643 
644 	/*
645 	 * There is no pmd_special() but there may be special pmds, e.g.
646 	 * in a direct-access (dax) mapping, so let's just replicate the
647 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
648 	 */
649 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
650 		if (vma->vm_flags & VM_MIXEDMAP) {
651 			if (!pfn_valid(pfn))
652 				return NULL;
653 			goto out;
654 		} else {
655 			unsigned long off;
656 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
657 			if (pfn == vma->vm_pgoff + off)
658 				return NULL;
659 			if (!is_cow_mapping(vma->vm_flags))
660 				return NULL;
661 		}
662 	}
663 
664 	if (pmd_devmap(pmd))
665 		return NULL;
666 	if (is_huge_zero_pmd(pmd))
667 		return NULL;
668 	if (unlikely(pfn > highest_memmap_pfn))
669 		return NULL;
670 
671 	/*
672 	 * NOTE! We still have PageReserved() pages in the page tables.
673 	 * eg. VDSO mappings can cause them to exist.
674 	 */
675 out:
676 	return pfn_to_page(pfn);
677 }
678 #endif
679 
680 static void restore_exclusive_pte(struct vm_area_struct *vma,
681 				  struct page *page, unsigned long address,
682 				  pte_t *ptep)
683 {
684 	pte_t pte;
685 	swp_entry_t entry;
686 
687 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
688 	if (pte_swp_soft_dirty(*ptep))
689 		pte = pte_mksoft_dirty(pte);
690 
691 	entry = pte_to_swp_entry(*ptep);
692 	if (pte_swp_uffd_wp(*ptep))
693 		pte = pte_mkuffd_wp(pte);
694 	else if (is_writable_device_exclusive_entry(entry))
695 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
696 
697 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
698 
699 	/*
700 	 * No need to take a page reference as one was already
701 	 * created when the swap entry was made.
702 	 */
703 	if (PageAnon(page))
704 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
705 	else
706 		/*
707 		 * Currently device exclusive access only supports anonymous
708 		 * memory so the entry shouldn't point to a filebacked page.
709 		 */
710 		WARN_ON_ONCE(1);
711 
712 	set_pte_at(vma->vm_mm, address, ptep, pte);
713 
714 	/*
715 	 * No need to invalidate - it was non-present before. However
716 	 * secondary CPUs may have mappings that need invalidating.
717 	 */
718 	update_mmu_cache(vma, address, ptep);
719 }
720 
721 /*
722  * Tries to restore an exclusive pte if the page lock can be acquired without
723  * sleeping.
724  */
725 static int
726 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
727 			unsigned long addr)
728 {
729 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
730 	struct page *page = pfn_swap_entry_to_page(entry);
731 
732 	if (trylock_page(page)) {
733 		restore_exclusive_pte(vma, page, addr, src_pte);
734 		unlock_page(page);
735 		return 0;
736 	}
737 
738 	return -EBUSY;
739 }
740 
741 /*
742  * copy one vm_area from one task to the other. Assumes the page tables
743  * already present in the new task to be cleared in the whole range
744  * covered by this vma.
745  */
746 
747 static unsigned long
748 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
749 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
750 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
751 {
752 	unsigned long vm_flags = dst_vma->vm_flags;
753 	pte_t pte = *src_pte;
754 	struct page *page;
755 	swp_entry_t entry = pte_to_swp_entry(pte);
756 
757 	if (likely(!non_swap_entry(entry))) {
758 		if (swap_duplicate(entry) < 0)
759 			return -EIO;
760 
761 		/* make sure dst_mm is on swapoff's mmlist. */
762 		if (unlikely(list_empty(&dst_mm->mmlist))) {
763 			spin_lock(&mmlist_lock);
764 			if (list_empty(&dst_mm->mmlist))
765 				list_add(&dst_mm->mmlist,
766 						&src_mm->mmlist);
767 			spin_unlock(&mmlist_lock);
768 		}
769 		/* Mark the swap entry as shared. */
770 		if (pte_swp_exclusive(*src_pte)) {
771 			pte = pte_swp_clear_exclusive(*src_pte);
772 			set_pte_at(src_mm, addr, src_pte, pte);
773 		}
774 		rss[MM_SWAPENTS]++;
775 	} else if (is_migration_entry(entry)) {
776 		page = pfn_swap_entry_to_page(entry);
777 
778 		rss[mm_counter(page)]++;
779 
780 		if (!is_readable_migration_entry(entry) &&
781 				is_cow_mapping(vm_flags)) {
782 			/*
783 			 * COW mappings require pages in both parent and child
784 			 * to be set to read. A previously exclusive entry is
785 			 * now shared.
786 			 */
787 			entry = make_readable_migration_entry(
788 							swp_offset(entry));
789 			pte = swp_entry_to_pte(entry);
790 			if (pte_swp_soft_dirty(*src_pte))
791 				pte = pte_swp_mksoft_dirty(pte);
792 			if (pte_swp_uffd_wp(*src_pte))
793 				pte = pte_swp_mkuffd_wp(pte);
794 			set_pte_at(src_mm, addr, src_pte, pte);
795 		}
796 	} else if (is_device_private_entry(entry)) {
797 		page = pfn_swap_entry_to_page(entry);
798 
799 		/*
800 		 * Update rss count even for unaddressable pages, as
801 		 * they should treated just like normal pages in this
802 		 * respect.
803 		 *
804 		 * We will likely want to have some new rss counters
805 		 * for unaddressable pages, at some point. But for now
806 		 * keep things as they are.
807 		 */
808 		get_page(page);
809 		rss[mm_counter(page)]++;
810 		/* Cannot fail as these pages cannot get pinned. */
811 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
812 
813 		/*
814 		 * We do not preserve soft-dirty information, because so
815 		 * far, checkpoint/restore is the only feature that
816 		 * requires that. And checkpoint/restore does not work
817 		 * when a device driver is involved (you cannot easily
818 		 * save and restore device driver state).
819 		 */
820 		if (is_writable_device_private_entry(entry) &&
821 		    is_cow_mapping(vm_flags)) {
822 			entry = make_readable_device_private_entry(
823 							swp_offset(entry));
824 			pte = swp_entry_to_pte(entry);
825 			if (pte_swp_uffd_wp(*src_pte))
826 				pte = pte_swp_mkuffd_wp(pte);
827 			set_pte_at(src_mm, addr, src_pte, pte);
828 		}
829 	} else if (is_device_exclusive_entry(entry)) {
830 		/*
831 		 * Make device exclusive entries present by restoring the
832 		 * original entry then copying as for a present pte. Device
833 		 * exclusive entries currently only support private writable
834 		 * (ie. COW) mappings.
835 		 */
836 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
837 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
838 			return -EBUSY;
839 		return -ENOENT;
840 	} else if (is_pte_marker_entry(entry)) {
841 		if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
842 			set_pte_at(dst_mm, addr, dst_pte, pte);
843 		return 0;
844 	}
845 	if (!userfaultfd_wp(dst_vma))
846 		pte = pte_swp_clear_uffd_wp(pte);
847 	set_pte_at(dst_mm, addr, dst_pte, pte);
848 	return 0;
849 }
850 
851 /*
852  * Copy a present and normal page.
853  *
854  * NOTE! The usual case is that this isn't required;
855  * instead, the caller can just increase the page refcount
856  * and re-use the pte the traditional way.
857  *
858  * And if we need a pre-allocated page but don't yet have
859  * one, return a negative error to let the preallocation
860  * code know so that it can do so outside the page table
861  * lock.
862  */
863 static inline int
864 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
865 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
866 		  struct folio **prealloc, struct page *page)
867 {
868 	struct folio *new_folio;
869 	pte_t pte;
870 
871 	new_folio = *prealloc;
872 	if (!new_folio)
873 		return -EAGAIN;
874 
875 	/*
876 	 * We have a prealloc page, all good!  Take it
877 	 * over and copy the page & arm it.
878 	 */
879 	*prealloc = NULL;
880 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
881 	__folio_mark_uptodate(new_folio);
882 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
883 	folio_add_lru_vma(new_folio, dst_vma);
884 	rss[MM_ANONPAGES]++;
885 
886 	/* All done, just insert the new page copy in the child */
887 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
888 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
889 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
890 		/* Uffd-wp needs to be delivered to dest pte as well */
891 		pte = pte_mkuffd_wp(pte);
892 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
893 	return 0;
894 }
895 
896 /*
897  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
898  * is required to copy this pte.
899  */
900 static inline int
901 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
902 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
903 		 struct folio **prealloc)
904 {
905 	struct mm_struct *src_mm = src_vma->vm_mm;
906 	unsigned long vm_flags = src_vma->vm_flags;
907 	pte_t pte = *src_pte;
908 	struct page *page;
909 	struct folio *folio;
910 
911 	page = vm_normal_page(src_vma, addr, pte);
912 	if (page)
913 		folio = page_folio(page);
914 	if (page && folio_test_anon(folio)) {
915 		/*
916 		 * If this page may have been pinned by the parent process,
917 		 * copy the page immediately for the child so that we'll always
918 		 * guarantee the pinned page won't be randomly replaced in the
919 		 * future.
920 		 */
921 		folio_get(folio);
922 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
923 			/* Page may be pinned, we have to copy. */
924 			folio_put(folio);
925 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
926 						 addr, rss, prealloc, page);
927 		}
928 		rss[MM_ANONPAGES]++;
929 	} else if (page) {
930 		folio_get(folio);
931 		page_dup_file_rmap(page, false);
932 		rss[mm_counter_file(page)]++;
933 	}
934 
935 	/*
936 	 * If it's a COW mapping, write protect it both
937 	 * in the parent and the child
938 	 */
939 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
940 		ptep_set_wrprotect(src_mm, addr, src_pte);
941 		pte = pte_wrprotect(pte);
942 	}
943 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
944 
945 	/*
946 	 * If it's a shared mapping, mark it clean in
947 	 * the child
948 	 */
949 	if (vm_flags & VM_SHARED)
950 		pte = pte_mkclean(pte);
951 	pte = pte_mkold(pte);
952 
953 	if (!userfaultfd_wp(dst_vma))
954 		pte = pte_clear_uffd_wp(pte);
955 
956 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
957 	return 0;
958 }
959 
960 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
961 		struct vm_area_struct *vma, unsigned long addr)
962 {
963 	struct folio *new_folio;
964 
965 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
966 	if (!new_folio)
967 		return NULL;
968 
969 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
970 		folio_put(new_folio);
971 		return NULL;
972 	}
973 	cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL);
974 
975 	return new_folio;
976 }
977 
978 static int
979 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
980 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
981 	       unsigned long end)
982 {
983 	struct mm_struct *dst_mm = dst_vma->vm_mm;
984 	struct mm_struct *src_mm = src_vma->vm_mm;
985 	pte_t *orig_src_pte, *orig_dst_pte;
986 	pte_t *src_pte, *dst_pte;
987 	spinlock_t *src_ptl, *dst_ptl;
988 	int progress, ret = 0;
989 	int rss[NR_MM_COUNTERS];
990 	swp_entry_t entry = (swp_entry_t){0};
991 	struct folio *prealloc = NULL;
992 
993 again:
994 	progress = 0;
995 	init_rss_vec(rss);
996 
997 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
998 	if (!dst_pte) {
999 		ret = -ENOMEM;
1000 		goto out;
1001 	}
1002 	src_pte = pte_offset_map(src_pmd, addr);
1003 	src_ptl = pte_lockptr(src_mm, src_pmd);
1004 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1005 	orig_src_pte = src_pte;
1006 	orig_dst_pte = dst_pte;
1007 	arch_enter_lazy_mmu_mode();
1008 
1009 	do {
1010 		/*
1011 		 * We are holding two locks at this point - either of them
1012 		 * could generate latencies in another task on another CPU.
1013 		 */
1014 		if (progress >= 32) {
1015 			progress = 0;
1016 			if (need_resched() ||
1017 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1018 				break;
1019 		}
1020 		if (pte_none(*src_pte)) {
1021 			progress++;
1022 			continue;
1023 		}
1024 		if (unlikely(!pte_present(*src_pte))) {
1025 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1026 						  dst_pte, src_pte,
1027 						  dst_vma, src_vma,
1028 						  addr, rss);
1029 			if (ret == -EIO) {
1030 				entry = pte_to_swp_entry(*src_pte);
1031 				break;
1032 			} else if (ret == -EBUSY) {
1033 				break;
1034 			} else if (!ret) {
1035 				progress += 8;
1036 				continue;
1037 			}
1038 
1039 			/*
1040 			 * Device exclusive entry restored, continue by copying
1041 			 * the now present pte.
1042 			 */
1043 			WARN_ON_ONCE(ret != -ENOENT);
1044 		}
1045 		/* copy_present_pte() will clear `*prealloc' if consumed */
1046 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1047 				       addr, rss, &prealloc);
1048 		/*
1049 		 * If we need a pre-allocated page for this pte, drop the
1050 		 * locks, allocate, and try again.
1051 		 */
1052 		if (unlikely(ret == -EAGAIN))
1053 			break;
1054 		if (unlikely(prealloc)) {
1055 			/*
1056 			 * pre-alloc page cannot be reused by next time so as
1057 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1058 			 * will allocate page according to address).  This
1059 			 * could only happen if one pinned pte changed.
1060 			 */
1061 			folio_put(prealloc);
1062 			prealloc = NULL;
1063 		}
1064 		progress += 8;
1065 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1066 
1067 	arch_leave_lazy_mmu_mode();
1068 	spin_unlock(src_ptl);
1069 	pte_unmap(orig_src_pte);
1070 	add_mm_rss_vec(dst_mm, rss);
1071 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1072 	cond_resched();
1073 
1074 	if (ret == -EIO) {
1075 		VM_WARN_ON_ONCE(!entry.val);
1076 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1077 			ret = -ENOMEM;
1078 			goto out;
1079 		}
1080 		entry.val = 0;
1081 	} else if (ret == -EBUSY) {
1082 		goto out;
1083 	} else if (ret ==  -EAGAIN) {
1084 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1085 		if (!prealloc)
1086 			return -ENOMEM;
1087 	} else if (ret) {
1088 		VM_WARN_ON_ONCE(1);
1089 	}
1090 
1091 	/* We've captured and resolved the error. Reset, try again. */
1092 	ret = 0;
1093 
1094 	if (addr != end)
1095 		goto again;
1096 out:
1097 	if (unlikely(prealloc))
1098 		folio_put(prealloc);
1099 	return ret;
1100 }
1101 
1102 static inline int
1103 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1104 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1105 	       unsigned long end)
1106 {
1107 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1108 	struct mm_struct *src_mm = src_vma->vm_mm;
1109 	pmd_t *src_pmd, *dst_pmd;
1110 	unsigned long next;
1111 
1112 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1113 	if (!dst_pmd)
1114 		return -ENOMEM;
1115 	src_pmd = pmd_offset(src_pud, addr);
1116 	do {
1117 		next = pmd_addr_end(addr, end);
1118 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1119 			|| pmd_devmap(*src_pmd)) {
1120 			int err;
1121 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1122 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1123 					    addr, dst_vma, src_vma);
1124 			if (err == -ENOMEM)
1125 				return -ENOMEM;
1126 			if (!err)
1127 				continue;
1128 			/* fall through */
1129 		}
1130 		if (pmd_none_or_clear_bad(src_pmd))
1131 			continue;
1132 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1133 				   addr, next))
1134 			return -ENOMEM;
1135 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1136 	return 0;
1137 }
1138 
1139 static inline int
1140 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1141 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1142 	       unsigned long end)
1143 {
1144 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1145 	struct mm_struct *src_mm = src_vma->vm_mm;
1146 	pud_t *src_pud, *dst_pud;
1147 	unsigned long next;
1148 
1149 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1150 	if (!dst_pud)
1151 		return -ENOMEM;
1152 	src_pud = pud_offset(src_p4d, addr);
1153 	do {
1154 		next = pud_addr_end(addr, end);
1155 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1156 			int err;
1157 
1158 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1159 			err = copy_huge_pud(dst_mm, src_mm,
1160 					    dst_pud, src_pud, addr, src_vma);
1161 			if (err == -ENOMEM)
1162 				return -ENOMEM;
1163 			if (!err)
1164 				continue;
1165 			/* fall through */
1166 		}
1167 		if (pud_none_or_clear_bad(src_pud))
1168 			continue;
1169 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1170 				   addr, next))
1171 			return -ENOMEM;
1172 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1173 	return 0;
1174 }
1175 
1176 static inline int
1177 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1178 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1179 	       unsigned long end)
1180 {
1181 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1182 	p4d_t *src_p4d, *dst_p4d;
1183 	unsigned long next;
1184 
1185 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1186 	if (!dst_p4d)
1187 		return -ENOMEM;
1188 	src_p4d = p4d_offset(src_pgd, addr);
1189 	do {
1190 		next = p4d_addr_end(addr, end);
1191 		if (p4d_none_or_clear_bad(src_p4d))
1192 			continue;
1193 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1194 				   addr, next))
1195 			return -ENOMEM;
1196 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1197 	return 0;
1198 }
1199 
1200 /*
1201  * Return true if the vma needs to copy the pgtable during this fork().  Return
1202  * false when we can speed up fork() by allowing lazy page faults later until
1203  * when the child accesses the memory range.
1204  */
1205 static bool
1206 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1207 {
1208 	/*
1209 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1210 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1211 	 * contains uffd-wp protection information, that's something we can't
1212 	 * retrieve from page cache, and skip copying will lose those info.
1213 	 */
1214 	if (userfaultfd_wp(dst_vma))
1215 		return true;
1216 
1217 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1218 		return true;
1219 
1220 	if (src_vma->anon_vma)
1221 		return true;
1222 
1223 	/*
1224 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1225 	 * becomes much lighter when there are big shared or private readonly
1226 	 * mappings. The tradeoff is that copy_page_range is more efficient
1227 	 * than faulting.
1228 	 */
1229 	return false;
1230 }
1231 
1232 int
1233 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1234 {
1235 	pgd_t *src_pgd, *dst_pgd;
1236 	unsigned long next;
1237 	unsigned long addr = src_vma->vm_start;
1238 	unsigned long end = src_vma->vm_end;
1239 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1240 	struct mm_struct *src_mm = src_vma->vm_mm;
1241 	struct mmu_notifier_range range;
1242 	bool is_cow;
1243 	int ret;
1244 
1245 	if (!vma_needs_copy(dst_vma, src_vma))
1246 		return 0;
1247 
1248 	if (is_vm_hugetlb_page(src_vma))
1249 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1250 
1251 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1252 		/*
1253 		 * We do not free on error cases below as remove_vma
1254 		 * gets called on error from higher level routine
1255 		 */
1256 		ret = track_pfn_copy(src_vma);
1257 		if (ret)
1258 			return ret;
1259 	}
1260 
1261 	/*
1262 	 * We need to invalidate the secondary MMU mappings only when
1263 	 * there could be a permission downgrade on the ptes of the
1264 	 * parent mm. And a permission downgrade will only happen if
1265 	 * is_cow_mapping() returns true.
1266 	 */
1267 	is_cow = is_cow_mapping(src_vma->vm_flags);
1268 
1269 	if (is_cow) {
1270 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1271 					0, src_mm, addr, end);
1272 		mmu_notifier_invalidate_range_start(&range);
1273 		/*
1274 		 * Disabling preemption is not needed for the write side, as
1275 		 * the read side doesn't spin, but goes to the mmap_lock.
1276 		 *
1277 		 * Use the raw variant of the seqcount_t write API to avoid
1278 		 * lockdep complaining about preemptibility.
1279 		 */
1280 		mmap_assert_write_locked(src_mm);
1281 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1282 	}
1283 
1284 	ret = 0;
1285 	dst_pgd = pgd_offset(dst_mm, addr);
1286 	src_pgd = pgd_offset(src_mm, addr);
1287 	do {
1288 		next = pgd_addr_end(addr, end);
1289 		if (pgd_none_or_clear_bad(src_pgd))
1290 			continue;
1291 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1292 					    addr, next))) {
1293 			ret = -ENOMEM;
1294 			break;
1295 		}
1296 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1297 
1298 	if (is_cow) {
1299 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1300 		mmu_notifier_invalidate_range_end(&range);
1301 	}
1302 	return ret;
1303 }
1304 
1305 /* Whether we should zap all COWed (private) pages too */
1306 static inline bool should_zap_cows(struct zap_details *details)
1307 {
1308 	/* By default, zap all pages */
1309 	if (!details)
1310 		return true;
1311 
1312 	/* Or, we zap COWed pages only if the caller wants to */
1313 	return details->even_cows;
1314 }
1315 
1316 /* Decides whether we should zap this page with the page pointer specified */
1317 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1318 {
1319 	/* If we can make a decision without *page.. */
1320 	if (should_zap_cows(details))
1321 		return true;
1322 
1323 	/* E.g. the caller passes NULL for the case of a zero page */
1324 	if (!page)
1325 		return true;
1326 
1327 	/* Otherwise we should only zap non-anon pages */
1328 	return !PageAnon(page);
1329 }
1330 
1331 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1332 {
1333 	if (!details)
1334 		return false;
1335 
1336 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1337 }
1338 
1339 /*
1340  * This function makes sure that we'll replace the none pte with an uffd-wp
1341  * swap special pte marker when necessary. Must be with the pgtable lock held.
1342  */
1343 static inline void
1344 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1345 			      unsigned long addr, pte_t *pte,
1346 			      struct zap_details *details, pte_t pteval)
1347 {
1348 	if (zap_drop_file_uffd_wp(details))
1349 		return;
1350 
1351 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1352 }
1353 
1354 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1355 				struct vm_area_struct *vma, pmd_t *pmd,
1356 				unsigned long addr, unsigned long end,
1357 				struct zap_details *details)
1358 {
1359 	struct mm_struct *mm = tlb->mm;
1360 	int force_flush = 0;
1361 	int rss[NR_MM_COUNTERS];
1362 	spinlock_t *ptl;
1363 	pte_t *start_pte;
1364 	pte_t *pte;
1365 	swp_entry_t entry;
1366 
1367 	tlb_change_page_size(tlb, PAGE_SIZE);
1368 again:
1369 	init_rss_vec(rss);
1370 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1371 	pte = start_pte;
1372 	flush_tlb_batched_pending(mm);
1373 	arch_enter_lazy_mmu_mode();
1374 	do {
1375 		pte_t ptent = *pte;
1376 		struct page *page;
1377 
1378 		if (pte_none(ptent))
1379 			continue;
1380 
1381 		if (need_resched())
1382 			break;
1383 
1384 		if (pte_present(ptent)) {
1385 			unsigned int delay_rmap;
1386 
1387 			page = vm_normal_page(vma, addr, ptent);
1388 			if (unlikely(!should_zap_page(details, page)))
1389 				continue;
1390 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1391 							tlb->fullmm);
1392 			tlb_remove_tlb_entry(tlb, pte, addr);
1393 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1394 						      ptent);
1395 			if (unlikely(!page))
1396 				continue;
1397 
1398 			delay_rmap = 0;
1399 			if (!PageAnon(page)) {
1400 				if (pte_dirty(ptent)) {
1401 					set_page_dirty(page);
1402 					if (tlb_delay_rmap(tlb)) {
1403 						delay_rmap = 1;
1404 						force_flush = 1;
1405 					}
1406 				}
1407 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1408 					mark_page_accessed(page);
1409 			}
1410 			rss[mm_counter(page)]--;
1411 			if (!delay_rmap) {
1412 				page_remove_rmap(page, vma, false);
1413 				if (unlikely(page_mapcount(page) < 0))
1414 					print_bad_pte(vma, addr, ptent, page);
1415 			}
1416 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1417 				force_flush = 1;
1418 				addr += PAGE_SIZE;
1419 				break;
1420 			}
1421 			continue;
1422 		}
1423 
1424 		entry = pte_to_swp_entry(ptent);
1425 		if (is_device_private_entry(entry) ||
1426 		    is_device_exclusive_entry(entry)) {
1427 			page = pfn_swap_entry_to_page(entry);
1428 			if (unlikely(!should_zap_page(details, page)))
1429 				continue;
1430 			/*
1431 			 * Both device private/exclusive mappings should only
1432 			 * work with anonymous page so far, so we don't need to
1433 			 * consider uffd-wp bit when zap. For more information,
1434 			 * see zap_install_uffd_wp_if_needed().
1435 			 */
1436 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1437 			rss[mm_counter(page)]--;
1438 			if (is_device_private_entry(entry))
1439 				page_remove_rmap(page, vma, false);
1440 			put_page(page);
1441 		} else if (!non_swap_entry(entry)) {
1442 			/* Genuine swap entry, hence a private anon page */
1443 			if (!should_zap_cows(details))
1444 				continue;
1445 			rss[MM_SWAPENTS]--;
1446 			if (unlikely(!free_swap_and_cache(entry)))
1447 				print_bad_pte(vma, addr, ptent, NULL);
1448 		} else if (is_migration_entry(entry)) {
1449 			page = pfn_swap_entry_to_page(entry);
1450 			if (!should_zap_page(details, page))
1451 				continue;
1452 			rss[mm_counter(page)]--;
1453 		} else if (pte_marker_entry_uffd_wp(entry)) {
1454 			/* Only drop the uffd-wp marker if explicitly requested */
1455 			if (!zap_drop_file_uffd_wp(details))
1456 				continue;
1457 		} else if (is_hwpoison_entry(entry) ||
1458 			   is_swapin_error_entry(entry)) {
1459 			if (!should_zap_cows(details))
1460 				continue;
1461 		} else {
1462 			/* We should have covered all the swap entry types */
1463 			WARN_ON_ONCE(1);
1464 		}
1465 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1466 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1467 	} while (pte++, addr += PAGE_SIZE, addr != end);
1468 
1469 	add_mm_rss_vec(mm, rss);
1470 	arch_leave_lazy_mmu_mode();
1471 
1472 	/* Do the actual TLB flush before dropping ptl */
1473 	if (force_flush) {
1474 		tlb_flush_mmu_tlbonly(tlb);
1475 		tlb_flush_rmaps(tlb, vma);
1476 	}
1477 	pte_unmap_unlock(start_pte, ptl);
1478 
1479 	/*
1480 	 * If we forced a TLB flush (either due to running out of
1481 	 * batch buffers or because we needed to flush dirty TLB
1482 	 * entries before releasing the ptl), free the batched
1483 	 * memory too. Restart if we didn't do everything.
1484 	 */
1485 	if (force_flush) {
1486 		force_flush = 0;
1487 		tlb_flush_mmu(tlb);
1488 	}
1489 
1490 	if (addr != end) {
1491 		cond_resched();
1492 		goto again;
1493 	}
1494 
1495 	return addr;
1496 }
1497 
1498 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1499 				struct vm_area_struct *vma, pud_t *pud,
1500 				unsigned long addr, unsigned long end,
1501 				struct zap_details *details)
1502 {
1503 	pmd_t *pmd;
1504 	unsigned long next;
1505 
1506 	pmd = pmd_offset(pud, addr);
1507 	do {
1508 		next = pmd_addr_end(addr, end);
1509 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1510 			if (next - addr != HPAGE_PMD_SIZE)
1511 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1512 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1513 				goto next;
1514 			/* fall through */
1515 		} else if (details && details->single_folio &&
1516 			   folio_test_pmd_mappable(details->single_folio) &&
1517 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1518 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1519 			/*
1520 			 * Take and drop THP pmd lock so that we cannot return
1521 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1522 			 * but not yet decremented compound_mapcount().
1523 			 */
1524 			spin_unlock(ptl);
1525 		}
1526 
1527 		/*
1528 		 * Here there can be other concurrent MADV_DONTNEED or
1529 		 * trans huge page faults running, and if the pmd is
1530 		 * none or trans huge it can change under us. This is
1531 		 * because MADV_DONTNEED holds the mmap_lock in read
1532 		 * mode.
1533 		 */
1534 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1535 			goto next;
1536 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1537 next:
1538 		cond_resched();
1539 	} while (pmd++, addr = next, addr != end);
1540 
1541 	return addr;
1542 }
1543 
1544 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1545 				struct vm_area_struct *vma, p4d_t *p4d,
1546 				unsigned long addr, unsigned long end,
1547 				struct zap_details *details)
1548 {
1549 	pud_t *pud;
1550 	unsigned long next;
1551 
1552 	pud = pud_offset(p4d, addr);
1553 	do {
1554 		next = pud_addr_end(addr, end);
1555 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1556 			if (next - addr != HPAGE_PUD_SIZE) {
1557 				mmap_assert_locked(tlb->mm);
1558 				split_huge_pud(vma, pud, addr);
1559 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1560 				goto next;
1561 			/* fall through */
1562 		}
1563 		if (pud_none_or_clear_bad(pud))
1564 			continue;
1565 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1566 next:
1567 		cond_resched();
1568 	} while (pud++, addr = next, addr != end);
1569 
1570 	return addr;
1571 }
1572 
1573 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1574 				struct vm_area_struct *vma, pgd_t *pgd,
1575 				unsigned long addr, unsigned long end,
1576 				struct zap_details *details)
1577 {
1578 	p4d_t *p4d;
1579 	unsigned long next;
1580 
1581 	p4d = p4d_offset(pgd, addr);
1582 	do {
1583 		next = p4d_addr_end(addr, end);
1584 		if (p4d_none_or_clear_bad(p4d))
1585 			continue;
1586 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1587 	} while (p4d++, addr = next, addr != end);
1588 
1589 	return addr;
1590 }
1591 
1592 void unmap_page_range(struct mmu_gather *tlb,
1593 			     struct vm_area_struct *vma,
1594 			     unsigned long addr, unsigned long end,
1595 			     struct zap_details *details)
1596 {
1597 	pgd_t *pgd;
1598 	unsigned long next;
1599 
1600 	BUG_ON(addr >= end);
1601 	tlb_start_vma(tlb, vma);
1602 	pgd = pgd_offset(vma->vm_mm, addr);
1603 	do {
1604 		next = pgd_addr_end(addr, end);
1605 		if (pgd_none_or_clear_bad(pgd))
1606 			continue;
1607 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1608 	} while (pgd++, addr = next, addr != end);
1609 	tlb_end_vma(tlb, vma);
1610 }
1611 
1612 
1613 static void unmap_single_vma(struct mmu_gather *tlb,
1614 		struct vm_area_struct *vma, unsigned long start_addr,
1615 		unsigned long end_addr,
1616 		struct zap_details *details, bool mm_wr_locked)
1617 {
1618 	unsigned long start = max(vma->vm_start, start_addr);
1619 	unsigned long end;
1620 
1621 	if (start >= vma->vm_end)
1622 		return;
1623 	end = min(vma->vm_end, end_addr);
1624 	if (end <= vma->vm_start)
1625 		return;
1626 
1627 	if (vma->vm_file)
1628 		uprobe_munmap(vma, start, end);
1629 
1630 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1631 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1632 
1633 	if (start != end) {
1634 		if (unlikely(is_vm_hugetlb_page(vma))) {
1635 			/*
1636 			 * It is undesirable to test vma->vm_file as it
1637 			 * should be non-null for valid hugetlb area.
1638 			 * However, vm_file will be NULL in the error
1639 			 * cleanup path of mmap_region. When
1640 			 * hugetlbfs ->mmap method fails,
1641 			 * mmap_region() nullifies vma->vm_file
1642 			 * before calling this function to clean up.
1643 			 * Since no pte has actually been setup, it is
1644 			 * safe to do nothing in this case.
1645 			 */
1646 			if (vma->vm_file) {
1647 				zap_flags_t zap_flags = details ?
1648 				    details->zap_flags : 0;
1649 				__unmap_hugepage_range_final(tlb, vma, start, end,
1650 							     NULL, zap_flags);
1651 			}
1652 		} else
1653 			unmap_page_range(tlb, vma, start, end, details);
1654 	}
1655 }
1656 
1657 /**
1658  * unmap_vmas - unmap a range of memory covered by a list of vma's
1659  * @tlb: address of the caller's struct mmu_gather
1660  * @mt: the maple tree
1661  * @vma: the starting vma
1662  * @start_addr: virtual address at which to start unmapping
1663  * @end_addr: virtual address at which to end unmapping
1664  *
1665  * Unmap all pages in the vma list.
1666  *
1667  * Only addresses between `start' and `end' will be unmapped.
1668  *
1669  * The VMA list must be sorted in ascending virtual address order.
1670  *
1671  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1672  * range after unmap_vmas() returns.  So the only responsibility here is to
1673  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1674  * drops the lock and schedules.
1675  */
1676 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1677 		struct vm_area_struct *vma, unsigned long start_addr,
1678 		unsigned long end_addr, bool mm_wr_locked)
1679 {
1680 	struct mmu_notifier_range range;
1681 	struct zap_details details = {
1682 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1683 		/* Careful - we need to zap private pages too! */
1684 		.even_cows = true,
1685 	};
1686 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1687 
1688 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1689 				start_addr, end_addr);
1690 	mmu_notifier_invalidate_range_start(&range);
1691 	do {
1692 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1693 				 mm_wr_locked);
1694 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1695 	mmu_notifier_invalidate_range_end(&range);
1696 }
1697 
1698 /**
1699  * zap_page_range_single - remove user pages in a given range
1700  * @vma: vm_area_struct holding the applicable pages
1701  * @address: starting address of pages to zap
1702  * @size: number of bytes to zap
1703  * @details: details of shared cache invalidation
1704  *
1705  * The range must fit into one VMA.
1706  */
1707 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1708 		unsigned long size, struct zap_details *details)
1709 {
1710 	const unsigned long end = address + size;
1711 	struct mmu_notifier_range range;
1712 	struct mmu_gather tlb;
1713 
1714 	lru_add_drain();
1715 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1716 				address, end);
1717 	if (is_vm_hugetlb_page(vma))
1718 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1719 						     &range.end);
1720 	tlb_gather_mmu(&tlb, vma->vm_mm);
1721 	update_hiwater_rss(vma->vm_mm);
1722 	mmu_notifier_invalidate_range_start(&range);
1723 	/*
1724 	 * unmap 'address-end' not 'range.start-range.end' as range
1725 	 * could have been expanded for hugetlb pmd sharing.
1726 	 */
1727 	unmap_single_vma(&tlb, vma, address, end, details, false);
1728 	mmu_notifier_invalidate_range_end(&range);
1729 	tlb_finish_mmu(&tlb);
1730 }
1731 
1732 /**
1733  * zap_vma_ptes - remove ptes mapping the vma
1734  * @vma: vm_area_struct holding ptes to be zapped
1735  * @address: starting address of pages to zap
1736  * @size: number of bytes to zap
1737  *
1738  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1739  *
1740  * The entire address range must be fully contained within the vma.
1741  *
1742  */
1743 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1744 		unsigned long size)
1745 {
1746 	if (!range_in_vma(vma, address, address + size) ||
1747 	    		!(vma->vm_flags & VM_PFNMAP))
1748 		return;
1749 
1750 	zap_page_range_single(vma, address, size, NULL);
1751 }
1752 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1753 
1754 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1755 {
1756 	pgd_t *pgd;
1757 	p4d_t *p4d;
1758 	pud_t *pud;
1759 	pmd_t *pmd;
1760 
1761 	pgd = pgd_offset(mm, addr);
1762 	p4d = p4d_alloc(mm, pgd, addr);
1763 	if (!p4d)
1764 		return NULL;
1765 	pud = pud_alloc(mm, p4d, addr);
1766 	if (!pud)
1767 		return NULL;
1768 	pmd = pmd_alloc(mm, pud, addr);
1769 	if (!pmd)
1770 		return NULL;
1771 
1772 	VM_BUG_ON(pmd_trans_huge(*pmd));
1773 	return pmd;
1774 }
1775 
1776 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1777 			spinlock_t **ptl)
1778 {
1779 	pmd_t *pmd = walk_to_pmd(mm, addr);
1780 
1781 	if (!pmd)
1782 		return NULL;
1783 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1784 }
1785 
1786 static int validate_page_before_insert(struct page *page)
1787 {
1788 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1789 		return -EINVAL;
1790 	flush_dcache_page(page);
1791 	return 0;
1792 }
1793 
1794 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1795 			unsigned long addr, struct page *page, pgprot_t prot)
1796 {
1797 	if (!pte_none(*pte))
1798 		return -EBUSY;
1799 	/* Ok, finally just insert the thing.. */
1800 	get_page(page);
1801 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1802 	page_add_file_rmap(page, vma, false);
1803 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1804 	return 0;
1805 }
1806 
1807 /*
1808  * This is the old fallback for page remapping.
1809  *
1810  * For historical reasons, it only allows reserved pages. Only
1811  * old drivers should use this, and they needed to mark their
1812  * pages reserved for the old functions anyway.
1813  */
1814 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1815 			struct page *page, pgprot_t prot)
1816 {
1817 	int retval;
1818 	pte_t *pte;
1819 	spinlock_t *ptl;
1820 
1821 	retval = validate_page_before_insert(page);
1822 	if (retval)
1823 		goto out;
1824 	retval = -ENOMEM;
1825 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1826 	if (!pte)
1827 		goto out;
1828 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1829 	pte_unmap_unlock(pte, ptl);
1830 out:
1831 	return retval;
1832 }
1833 
1834 #ifdef pte_index
1835 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1836 			unsigned long addr, struct page *page, pgprot_t prot)
1837 {
1838 	int err;
1839 
1840 	if (!page_count(page))
1841 		return -EINVAL;
1842 	err = validate_page_before_insert(page);
1843 	if (err)
1844 		return err;
1845 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1846 }
1847 
1848 /* insert_pages() amortizes the cost of spinlock operations
1849  * when inserting pages in a loop. Arch *must* define pte_index.
1850  */
1851 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1852 			struct page **pages, unsigned long *num, pgprot_t prot)
1853 {
1854 	pmd_t *pmd = NULL;
1855 	pte_t *start_pte, *pte;
1856 	spinlock_t *pte_lock;
1857 	struct mm_struct *const mm = vma->vm_mm;
1858 	unsigned long curr_page_idx = 0;
1859 	unsigned long remaining_pages_total = *num;
1860 	unsigned long pages_to_write_in_pmd;
1861 	int ret;
1862 more:
1863 	ret = -EFAULT;
1864 	pmd = walk_to_pmd(mm, addr);
1865 	if (!pmd)
1866 		goto out;
1867 
1868 	pages_to_write_in_pmd = min_t(unsigned long,
1869 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1870 
1871 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1872 	ret = -ENOMEM;
1873 	if (pte_alloc(mm, pmd))
1874 		goto out;
1875 
1876 	while (pages_to_write_in_pmd) {
1877 		int pte_idx = 0;
1878 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1879 
1880 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1881 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1882 			int err = insert_page_in_batch_locked(vma, pte,
1883 				addr, pages[curr_page_idx], prot);
1884 			if (unlikely(err)) {
1885 				pte_unmap_unlock(start_pte, pte_lock);
1886 				ret = err;
1887 				remaining_pages_total -= pte_idx;
1888 				goto out;
1889 			}
1890 			addr += PAGE_SIZE;
1891 			++curr_page_idx;
1892 		}
1893 		pte_unmap_unlock(start_pte, pte_lock);
1894 		pages_to_write_in_pmd -= batch_size;
1895 		remaining_pages_total -= batch_size;
1896 	}
1897 	if (remaining_pages_total)
1898 		goto more;
1899 	ret = 0;
1900 out:
1901 	*num = remaining_pages_total;
1902 	return ret;
1903 }
1904 #endif  /* ifdef pte_index */
1905 
1906 /**
1907  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1908  * @vma: user vma to map to
1909  * @addr: target start user address of these pages
1910  * @pages: source kernel pages
1911  * @num: in: number of pages to map. out: number of pages that were *not*
1912  * mapped. (0 means all pages were successfully mapped).
1913  *
1914  * Preferred over vm_insert_page() when inserting multiple pages.
1915  *
1916  * In case of error, we may have mapped a subset of the provided
1917  * pages. It is the caller's responsibility to account for this case.
1918  *
1919  * The same restrictions apply as in vm_insert_page().
1920  */
1921 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1922 			struct page **pages, unsigned long *num)
1923 {
1924 #ifdef pte_index
1925 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1926 
1927 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1928 		return -EFAULT;
1929 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1930 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1931 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1932 		vm_flags_set(vma, VM_MIXEDMAP);
1933 	}
1934 	/* Defer page refcount checking till we're about to map that page. */
1935 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1936 #else
1937 	unsigned long idx = 0, pgcount = *num;
1938 	int err = -EINVAL;
1939 
1940 	for (; idx < pgcount; ++idx) {
1941 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1942 		if (err)
1943 			break;
1944 	}
1945 	*num = pgcount - idx;
1946 	return err;
1947 #endif  /* ifdef pte_index */
1948 }
1949 EXPORT_SYMBOL(vm_insert_pages);
1950 
1951 /**
1952  * vm_insert_page - insert single page into user vma
1953  * @vma: user vma to map to
1954  * @addr: target user address of this page
1955  * @page: source kernel page
1956  *
1957  * This allows drivers to insert individual pages they've allocated
1958  * into a user vma.
1959  *
1960  * The page has to be a nice clean _individual_ kernel allocation.
1961  * If you allocate a compound page, you need to have marked it as
1962  * such (__GFP_COMP), or manually just split the page up yourself
1963  * (see split_page()).
1964  *
1965  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1966  * took an arbitrary page protection parameter. This doesn't allow
1967  * that. Your vma protection will have to be set up correctly, which
1968  * means that if you want a shared writable mapping, you'd better
1969  * ask for a shared writable mapping!
1970  *
1971  * The page does not need to be reserved.
1972  *
1973  * Usually this function is called from f_op->mmap() handler
1974  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1975  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1976  * function from other places, for example from page-fault handler.
1977  *
1978  * Return: %0 on success, negative error code otherwise.
1979  */
1980 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1981 			struct page *page)
1982 {
1983 	if (addr < vma->vm_start || addr >= vma->vm_end)
1984 		return -EFAULT;
1985 	if (!page_count(page))
1986 		return -EINVAL;
1987 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1988 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1989 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1990 		vm_flags_set(vma, VM_MIXEDMAP);
1991 	}
1992 	return insert_page(vma, addr, page, vma->vm_page_prot);
1993 }
1994 EXPORT_SYMBOL(vm_insert_page);
1995 
1996 /*
1997  * __vm_map_pages - maps range of kernel pages into user vma
1998  * @vma: user vma to map to
1999  * @pages: pointer to array of source kernel pages
2000  * @num: number of pages in page array
2001  * @offset: user's requested vm_pgoff
2002  *
2003  * This allows drivers to map range of kernel pages into a user vma.
2004  *
2005  * Return: 0 on success and error code otherwise.
2006  */
2007 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2008 				unsigned long num, unsigned long offset)
2009 {
2010 	unsigned long count = vma_pages(vma);
2011 	unsigned long uaddr = vma->vm_start;
2012 	int ret, i;
2013 
2014 	/* Fail if the user requested offset is beyond the end of the object */
2015 	if (offset >= num)
2016 		return -ENXIO;
2017 
2018 	/* Fail if the user requested size exceeds available object size */
2019 	if (count > num - offset)
2020 		return -ENXIO;
2021 
2022 	for (i = 0; i < count; i++) {
2023 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2024 		if (ret < 0)
2025 			return ret;
2026 		uaddr += PAGE_SIZE;
2027 	}
2028 
2029 	return 0;
2030 }
2031 
2032 /**
2033  * vm_map_pages - maps range of kernel pages starts with non zero offset
2034  * @vma: user vma to map to
2035  * @pages: pointer to array of source kernel pages
2036  * @num: number of pages in page array
2037  *
2038  * Maps an object consisting of @num pages, catering for the user's
2039  * requested vm_pgoff
2040  *
2041  * If we fail to insert any page into the vma, the function will return
2042  * immediately leaving any previously inserted pages present.  Callers
2043  * from the mmap handler may immediately return the error as their caller
2044  * will destroy the vma, removing any successfully inserted pages. Other
2045  * callers should make their own arrangements for calling unmap_region().
2046  *
2047  * Context: Process context. Called by mmap handlers.
2048  * Return: 0 on success and error code otherwise.
2049  */
2050 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2051 				unsigned long num)
2052 {
2053 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2054 }
2055 EXPORT_SYMBOL(vm_map_pages);
2056 
2057 /**
2058  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2059  * @vma: user vma to map to
2060  * @pages: pointer to array of source kernel pages
2061  * @num: number of pages in page array
2062  *
2063  * Similar to vm_map_pages(), except that it explicitly sets the offset
2064  * to 0. This function is intended for the drivers that did not consider
2065  * vm_pgoff.
2066  *
2067  * Context: Process context. Called by mmap handlers.
2068  * Return: 0 on success and error code otherwise.
2069  */
2070 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2071 				unsigned long num)
2072 {
2073 	return __vm_map_pages(vma, pages, num, 0);
2074 }
2075 EXPORT_SYMBOL(vm_map_pages_zero);
2076 
2077 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2078 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2079 {
2080 	struct mm_struct *mm = vma->vm_mm;
2081 	pte_t *pte, entry;
2082 	spinlock_t *ptl;
2083 
2084 	pte = get_locked_pte(mm, addr, &ptl);
2085 	if (!pte)
2086 		return VM_FAULT_OOM;
2087 	if (!pte_none(*pte)) {
2088 		if (mkwrite) {
2089 			/*
2090 			 * For read faults on private mappings the PFN passed
2091 			 * in may not match the PFN we have mapped if the
2092 			 * mapped PFN is a writeable COW page.  In the mkwrite
2093 			 * case we are creating a writable PTE for a shared
2094 			 * mapping and we expect the PFNs to match. If they
2095 			 * don't match, we are likely racing with block
2096 			 * allocation and mapping invalidation so just skip the
2097 			 * update.
2098 			 */
2099 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2100 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2101 				goto out_unlock;
2102 			}
2103 			entry = pte_mkyoung(*pte);
2104 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2105 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2106 				update_mmu_cache(vma, addr, pte);
2107 		}
2108 		goto out_unlock;
2109 	}
2110 
2111 	/* Ok, finally just insert the thing.. */
2112 	if (pfn_t_devmap(pfn))
2113 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2114 	else
2115 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2116 
2117 	if (mkwrite) {
2118 		entry = pte_mkyoung(entry);
2119 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2120 	}
2121 
2122 	set_pte_at(mm, addr, pte, entry);
2123 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2124 
2125 out_unlock:
2126 	pte_unmap_unlock(pte, ptl);
2127 	return VM_FAULT_NOPAGE;
2128 }
2129 
2130 /**
2131  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2132  * @vma: user vma to map to
2133  * @addr: target user address of this page
2134  * @pfn: source kernel pfn
2135  * @pgprot: pgprot flags for the inserted page
2136  *
2137  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2138  * to override pgprot on a per-page basis.
2139  *
2140  * This only makes sense for IO mappings, and it makes no sense for
2141  * COW mappings.  In general, using multiple vmas is preferable;
2142  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2143  * impractical.
2144  *
2145  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2146  * a value of @pgprot different from that of @vma->vm_page_prot.
2147  *
2148  * Context: Process context.  May allocate using %GFP_KERNEL.
2149  * Return: vm_fault_t value.
2150  */
2151 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2152 			unsigned long pfn, pgprot_t pgprot)
2153 {
2154 	/*
2155 	 * Technically, architectures with pte_special can avoid all these
2156 	 * restrictions (same for remap_pfn_range).  However we would like
2157 	 * consistency in testing and feature parity among all, so we should
2158 	 * try to keep these invariants in place for everybody.
2159 	 */
2160 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2161 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2162 						(VM_PFNMAP|VM_MIXEDMAP));
2163 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2164 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2165 
2166 	if (addr < vma->vm_start || addr >= vma->vm_end)
2167 		return VM_FAULT_SIGBUS;
2168 
2169 	if (!pfn_modify_allowed(pfn, pgprot))
2170 		return VM_FAULT_SIGBUS;
2171 
2172 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2173 
2174 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2175 			false);
2176 }
2177 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2178 
2179 /**
2180  * vmf_insert_pfn - insert single pfn into user vma
2181  * @vma: user vma to map to
2182  * @addr: target user address of this page
2183  * @pfn: source kernel pfn
2184  *
2185  * Similar to vm_insert_page, this allows drivers to insert individual pages
2186  * they've allocated into a user vma. Same comments apply.
2187  *
2188  * This function should only be called from a vm_ops->fault handler, and
2189  * in that case the handler should return the result of this function.
2190  *
2191  * vma cannot be a COW mapping.
2192  *
2193  * As this is called only for pages that do not currently exist, we
2194  * do not need to flush old virtual caches or the TLB.
2195  *
2196  * Context: Process context.  May allocate using %GFP_KERNEL.
2197  * Return: vm_fault_t value.
2198  */
2199 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2200 			unsigned long pfn)
2201 {
2202 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2203 }
2204 EXPORT_SYMBOL(vmf_insert_pfn);
2205 
2206 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2207 {
2208 	/* these checks mirror the abort conditions in vm_normal_page */
2209 	if (vma->vm_flags & VM_MIXEDMAP)
2210 		return true;
2211 	if (pfn_t_devmap(pfn))
2212 		return true;
2213 	if (pfn_t_special(pfn))
2214 		return true;
2215 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2216 		return true;
2217 	return false;
2218 }
2219 
2220 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2221 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2222 		bool mkwrite)
2223 {
2224 	int err;
2225 
2226 	BUG_ON(!vm_mixed_ok(vma, pfn));
2227 
2228 	if (addr < vma->vm_start || addr >= vma->vm_end)
2229 		return VM_FAULT_SIGBUS;
2230 
2231 	track_pfn_insert(vma, &pgprot, pfn);
2232 
2233 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2234 		return VM_FAULT_SIGBUS;
2235 
2236 	/*
2237 	 * If we don't have pte special, then we have to use the pfn_valid()
2238 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2239 	 * refcount the page if pfn_valid is true (hence insert_page rather
2240 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2241 	 * without pte special, it would there be refcounted as a normal page.
2242 	 */
2243 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2244 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2245 		struct page *page;
2246 
2247 		/*
2248 		 * At this point we are committed to insert_page()
2249 		 * regardless of whether the caller specified flags that
2250 		 * result in pfn_t_has_page() == false.
2251 		 */
2252 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2253 		err = insert_page(vma, addr, page, pgprot);
2254 	} else {
2255 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2256 	}
2257 
2258 	if (err == -ENOMEM)
2259 		return VM_FAULT_OOM;
2260 	if (err < 0 && err != -EBUSY)
2261 		return VM_FAULT_SIGBUS;
2262 
2263 	return VM_FAULT_NOPAGE;
2264 }
2265 
2266 /**
2267  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2268  * @vma: user vma to map to
2269  * @addr: target user address of this page
2270  * @pfn: source kernel pfn
2271  * @pgprot: pgprot flags for the inserted page
2272  *
2273  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2274  * to override pgprot on a per-page basis.
2275  *
2276  * Typically this function should be used by drivers to set caching- and
2277  * encryption bits different than those of @vma->vm_page_prot, because
2278  * the caching- or encryption mode may not be known at mmap() time.
2279  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2280  * to set caching and encryption bits for those vmas (except for COW pages).
2281  * This is ensured by core vm only modifying these page table entries using
2282  * functions that don't touch caching- or encryption bits, using pte_modify()
2283  * if needed. (See for example mprotect()).
2284  * Also when new page-table entries are created, this is only done using the
2285  * fault() callback, and never using the value of vma->vm_page_prot,
2286  * except for page-table entries that point to anonymous pages as the result
2287  * of COW.
2288  *
2289  * Context: Process context.  May allocate using %GFP_KERNEL.
2290  * Return: vm_fault_t value.
2291  */
2292 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2293 				 pfn_t pfn, pgprot_t pgprot)
2294 {
2295 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2296 }
2297 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2298 
2299 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2300 		pfn_t pfn)
2301 {
2302 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2303 }
2304 EXPORT_SYMBOL(vmf_insert_mixed);
2305 
2306 /*
2307  *  If the insertion of PTE failed because someone else already added a
2308  *  different entry in the mean time, we treat that as success as we assume
2309  *  the same entry was actually inserted.
2310  */
2311 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2312 		unsigned long addr, pfn_t pfn)
2313 {
2314 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2315 }
2316 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2317 
2318 /*
2319  * maps a range of physical memory into the requested pages. the old
2320  * mappings are removed. any references to nonexistent pages results
2321  * in null mappings (currently treated as "copy-on-access")
2322  */
2323 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2324 			unsigned long addr, unsigned long end,
2325 			unsigned long pfn, pgprot_t prot)
2326 {
2327 	pte_t *pte, *mapped_pte;
2328 	spinlock_t *ptl;
2329 	int err = 0;
2330 
2331 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2332 	if (!pte)
2333 		return -ENOMEM;
2334 	arch_enter_lazy_mmu_mode();
2335 	do {
2336 		BUG_ON(!pte_none(*pte));
2337 		if (!pfn_modify_allowed(pfn, prot)) {
2338 			err = -EACCES;
2339 			break;
2340 		}
2341 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2342 		pfn++;
2343 	} while (pte++, addr += PAGE_SIZE, addr != end);
2344 	arch_leave_lazy_mmu_mode();
2345 	pte_unmap_unlock(mapped_pte, ptl);
2346 	return err;
2347 }
2348 
2349 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2350 			unsigned long addr, unsigned long end,
2351 			unsigned long pfn, pgprot_t prot)
2352 {
2353 	pmd_t *pmd;
2354 	unsigned long next;
2355 	int err;
2356 
2357 	pfn -= addr >> PAGE_SHIFT;
2358 	pmd = pmd_alloc(mm, pud, addr);
2359 	if (!pmd)
2360 		return -ENOMEM;
2361 	VM_BUG_ON(pmd_trans_huge(*pmd));
2362 	do {
2363 		next = pmd_addr_end(addr, end);
2364 		err = remap_pte_range(mm, pmd, addr, next,
2365 				pfn + (addr >> PAGE_SHIFT), prot);
2366 		if (err)
2367 			return err;
2368 	} while (pmd++, addr = next, addr != end);
2369 	return 0;
2370 }
2371 
2372 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2373 			unsigned long addr, unsigned long end,
2374 			unsigned long pfn, pgprot_t prot)
2375 {
2376 	pud_t *pud;
2377 	unsigned long next;
2378 	int err;
2379 
2380 	pfn -= addr >> PAGE_SHIFT;
2381 	pud = pud_alloc(mm, p4d, addr);
2382 	if (!pud)
2383 		return -ENOMEM;
2384 	do {
2385 		next = pud_addr_end(addr, end);
2386 		err = remap_pmd_range(mm, pud, addr, next,
2387 				pfn + (addr >> PAGE_SHIFT), prot);
2388 		if (err)
2389 			return err;
2390 	} while (pud++, addr = next, addr != end);
2391 	return 0;
2392 }
2393 
2394 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2395 			unsigned long addr, unsigned long end,
2396 			unsigned long pfn, pgprot_t prot)
2397 {
2398 	p4d_t *p4d;
2399 	unsigned long next;
2400 	int err;
2401 
2402 	pfn -= addr >> PAGE_SHIFT;
2403 	p4d = p4d_alloc(mm, pgd, addr);
2404 	if (!p4d)
2405 		return -ENOMEM;
2406 	do {
2407 		next = p4d_addr_end(addr, end);
2408 		err = remap_pud_range(mm, p4d, addr, next,
2409 				pfn + (addr >> PAGE_SHIFT), prot);
2410 		if (err)
2411 			return err;
2412 	} while (p4d++, addr = next, addr != end);
2413 	return 0;
2414 }
2415 
2416 /*
2417  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2418  * must have pre-validated the caching bits of the pgprot_t.
2419  */
2420 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2421 		unsigned long pfn, unsigned long size, pgprot_t prot)
2422 {
2423 	pgd_t *pgd;
2424 	unsigned long next;
2425 	unsigned long end = addr + PAGE_ALIGN(size);
2426 	struct mm_struct *mm = vma->vm_mm;
2427 	int err;
2428 
2429 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2430 		return -EINVAL;
2431 
2432 	/*
2433 	 * Physically remapped pages are special. Tell the
2434 	 * rest of the world about it:
2435 	 *   VM_IO tells people not to look at these pages
2436 	 *	(accesses can have side effects).
2437 	 *   VM_PFNMAP tells the core MM that the base pages are just
2438 	 *	raw PFN mappings, and do not have a "struct page" associated
2439 	 *	with them.
2440 	 *   VM_DONTEXPAND
2441 	 *      Disable vma merging and expanding with mremap().
2442 	 *   VM_DONTDUMP
2443 	 *      Omit vma from core dump, even when VM_IO turned off.
2444 	 *
2445 	 * There's a horrible special case to handle copy-on-write
2446 	 * behaviour that some programs depend on. We mark the "original"
2447 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2448 	 * See vm_normal_page() for details.
2449 	 */
2450 	if (is_cow_mapping(vma->vm_flags)) {
2451 		if (addr != vma->vm_start || end != vma->vm_end)
2452 			return -EINVAL;
2453 		vma->vm_pgoff = pfn;
2454 	}
2455 
2456 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2457 
2458 	BUG_ON(addr >= end);
2459 	pfn -= addr >> PAGE_SHIFT;
2460 	pgd = pgd_offset(mm, addr);
2461 	flush_cache_range(vma, addr, end);
2462 	do {
2463 		next = pgd_addr_end(addr, end);
2464 		err = remap_p4d_range(mm, pgd, addr, next,
2465 				pfn + (addr >> PAGE_SHIFT), prot);
2466 		if (err)
2467 			return err;
2468 	} while (pgd++, addr = next, addr != end);
2469 
2470 	return 0;
2471 }
2472 
2473 /**
2474  * remap_pfn_range - remap kernel memory to userspace
2475  * @vma: user vma to map to
2476  * @addr: target page aligned user address to start at
2477  * @pfn: page frame number of kernel physical memory address
2478  * @size: size of mapping area
2479  * @prot: page protection flags for this mapping
2480  *
2481  * Note: this is only safe if the mm semaphore is held when called.
2482  *
2483  * Return: %0 on success, negative error code otherwise.
2484  */
2485 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2486 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2487 {
2488 	int err;
2489 
2490 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2491 	if (err)
2492 		return -EINVAL;
2493 
2494 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2495 	if (err)
2496 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2497 	return err;
2498 }
2499 EXPORT_SYMBOL(remap_pfn_range);
2500 
2501 /**
2502  * vm_iomap_memory - remap memory to userspace
2503  * @vma: user vma to map to
2504  * @start: start of the physical memory to be mapped
2505  * @len: size of area
2506  *
2507  * This is a simplified io_remap_pfn_range() for common driver use. The
2508  * driver just needs to give us the physical memory range to be mapped,
2509  * we'll figure out the rest from the vma information.
2510  *
2511  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2512  * whatever write-combining details or similar.
2513  *
2514  * Return: %0 on success, negative error code otherwise.
2515  */
2516 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2517 {
2518 	unsigned long vm_len, pfn, pages;
2519 
2520 	/* Check that the physical memory area passed in looks valid */
2521 	if (start + len < start)
2522 		return -EINVAL;
2523 	/*
2524 	 * You *really* shouldn't map things that aren't page-aligned,
2525 	 * but we've historically allowed it because IO memory might
2526 	 * just have smaller alignment.
2527 	 */
2528 	len += start & ~PAGE_MASK;
2529 	pfn = start >> PAGE_SHIFT;
2530 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2531 	if (pfn + pages < pfn)
2532 		return -EINVAL;
2533 
2534 	/* We start the mapping 'vm_pgoff' pages into the area */
2535 	if (vma->vm_pgoff > pages)
2536 		return -EINVAL;
2537 	pfn += vma->vm_pgoff;
2538 	pages -= vma->vm_pgoff;
2539 
2540 	/* Can we fit all of the mapping? */
2541 	vm_len = vma->vm_end - vma->vm_start;
2542 	if (vm_len >> PAGE_SHIFT > pages)
2543 		return -EINVAL;
2544 
2545 	/* Ok, let it rip */
2546 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2547 }
2548 EXPORT_SYMBOL(vm_iomap_memory);
2549 
2550 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2551 				     unsigned long addr, unsigned long end,
2552 				     pte_fn_t fn, void *data, bool create,
2553 				     pgtbl_mod_mask *mask)
2554 {
2555 	pte_t *pte, *mapped_pte;
2556 	int err = 0;
2557 	spinlock_t *ptl;
2558 
2559 	if (create) {
2560 		mapped_pte = pte = (mm == &init_mm) ?
2561 			pte_alloc_kernel_track(pmd, addr, mask) :
2562 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2563 		if (!pte)
2564 			return -ENOMEM;
2565 	} else {
2566 		mapped_pte = pte = (mm == &init_mm) ?
2567 			pte_offset_kernel(pmd, addr) :
2568 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2569 	}
2570 
2571 	BUG_ON(pmd_huge(*pmd));
2572 
2573 	arch_enter_lazy_mmu_mode();
2574 
2575 	if (fn) {
2576 		do {
2577 			if (create || !pte_none(*pte)) {
2578 				err = fn(pte++, addr, data);
2579 				if (err)
2580 					break;
2581 			}
2582 		} while (addr += PAGE_SIZE, addr != end);
2583 	}
2584 	*mask |= PGTBL_PTE_MODIFIED;
2585 
2586 	arch_leave_lazy_mmu_mode();
2587 
2588 	if (mm != &init_mm)
2589 		pte_unmap_unlock(mapped_pte, ptl);
2590 	return err;
2591 }
2592 
2593 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2594 				     unsigned long addr, unsigned long end,
2595 				     pte_fn_t fn, void *data, bool create,
2596 				     pgtbl_mod_mask *mask)
2597 {
2598 	pmd_t *pmd;
2599 	unsigned long next;
2600 	int err = 0;
2601 
2602 	BUG_ON(pud_huge(*pud));
2603 
2604 	if (create) {
2605 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2606 		if (!pmd)
2607 			return -ENOMEM;
2608 	} else {
2609 		pmd = pmd_offset(pud, addr);
2610 	}
2611 	do {
2612 		next = pmd_addr_end(addr, end);
2613 		if (pmd_none(*pmd) && !create)
2614 			continue;
2615 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2616 			return -EINVAL;
2617 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2618 			if (!create)
2619 				continue;
2620 			pmd_clear_bad(pmd);
2621 		}
2622 		err = apply_to_pte_range(mm, pmd, addr, next,
2623 					 fn, data, create, mask);
2624 		if (err)
2625 			break;
2626 	} while (pmd++, addr = next, addr != end);
2627 
2628 	return err;
2629 }
2630 
2631 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2632 				     unsigned long addr, unsigned long end,
2633 				     pte_fn_t fn, void *data, bool create,
2634 				     pgtbl_mod_mask *mask)
2635 {
2636 	pud_t *pud;
2637 	unsigned long next;
2638 	int err = 0;
2639 
2640 	if (create) {
2641 		pud = pud_alloc_track(mm, p4d, addr, mask);
2642 		if (!pud)
2643 			return -ENOMEM;
2644 	} else {
2645 		pud = pud_offset(p4d, addr);
2646 	}
2647 	do {
2648 		next = pud_addr_end(addr, end);
2649 		if (pud_none(*pud) && !create)
2650 			continue;
2651 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2652 			return -EINVAL;
2653 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2654 			if (!create)
2655 				continue;
2656 			pud_clear_bad(pud);
2657 		}
2658 		err = apply_to_pmd_range(mm, pud, addr, next,
2659 					 fn, data, create, mask);
2660 		if (err)
2661 			break;
2662 	} while (pud++, addr = next, addr != end);
2663 
2664 	return err;
2665 }
2666 
2667 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2668 				     unsigned long addr, unsigned long end,
2669 				     pte_fn_t fn, void *data, bool create,
2670 				     pgtbl_mod_mask *mask)
2671 {
2672 	p4d_t *p4d;
2673 	unsigned long next;
2674 	int err = 0;
2675 
2676 	if (create) {
2677 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2678 		if (!p4d)
2679 			return -ENOMEM;
2680 	} else {
2681 		p4d = p4d_offset(pgd, addr);
2682 	}
2683 	do {
2684 		next = p4d_addr_end(addr, end);
2685 		if (p4d_none(*p4d) && !create)
2686 			continue;
2687 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2688 			return -EINVAL;
2689 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2690 			if (!create)
2691 				continue;
2692 			p4d_clear_bad(p4d);
2693 		}
2694 		err = apply_to_pud_range(mm, p4d, addr, next,
2695 					 fn, data, create, mask);
2696 		if (err)
2697 			break;
2698 	} while (p4d++, addr = next, addr != end);
2699 
2700 	return err;
2701 }
2702 
2703 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2704 				 unsigned long size, pte_fn_t fn,
2705 				 void *data, bool create)
2706 {
2707 	pgd_t *pgd;
2708 	unsigned long start = addr, next;
2709 	unsigned long end = addr + size;
2710 	pgtbl_mod_mask mask = 0;
2711 	int err = 0;
2712 
2713 	if (WARN_ON(addr >= end))
2714 		return -EINVAL;
2715 
2716 	pgd = pgd_offset(mm, addr);
2717 	do {
2718 		next = pgd_addr_end(addr, end);
2719 		if (pgd_none(*pgd) && !create)
2720 			continue;
2721 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2722 			return -EINVAL;
2723 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2724 			if (!create)
2725 				continue;
2726 			pgd_clear_bad(pgd);
2727 		}
2728 		err = apply_to_p4d_range(mm, pgd, addr, next,
2729 					 fn, data, create, &mask);
2730 		if (err)
2731 			break;
2732 	} while (pgd++, addr = next, addr != end);
2733 
2734 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2735 		arch_sync_kernel_mappings(start, start + size);
2736 
2737 	return err;
2738 }
2739 
2740 /*
2741  * Scan a region of virtual memory, filling in page tables as necessary
2742  * and calling a provided function on each leaf page table.
2743  */
2744 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2745 			unsigned long size, pte_fn_t fn, void *data)
2746 {
2747 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2748 }
2749 EXPORT_SYMBOL_GPL(apply_to_page_range);
2750 
2751 /*
2752  * Scan a region of virtual memory, calling a provided function on
2753  * each leaf page table where it exists.
2754  *
2755  * Unlike apply_to_page_range, this does _not_ fill in page tables
2756  * where they are absent.
2757  */
2758 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2759 				 unsigned long size, pte_fn_t fn, void *data)
2760 {
2761 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2762 }
2763 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2764 
2765 /*
2766  * handle_pte_fault chooses page fault handler according to an entry which was
2767  * read non-atomically.  Before making any commitment, on those architectures
2768  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2769  * parts, do_swap_page must check under lock before unmapping the pte and
2770  * proceeding (but do_wp_page is only called after already making such a check;
2771  * and do_anonymous_page can safely check later on).
2772  */
2773 static inline int pte_unmap_same(struct vm_fault *vmf)
2774 {
2775 	int same = 1;
2776 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2777 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2778 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2779 		spin_lock(ptl);
2780 		same = pte_same(*vmf->pte, vmf->orig_pte);
2781 		spin_unlock(ptl);
2782 	}
2783 #endif
2784 	pte_unmap(vmf->pte);
2785 	vmf->pte = NULL;
2786 	return same;
2787 }
2788 
2789 /*
2790  * Return:
2791  *	0:		copied succeeded
2792  *	-EHWPOISON:	copy failed due to hwpoison in source page
2793  *	-EAGAIN:	copied failed (some other reason)
2794  */
2795 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2796 				      struct vm_fault *vmf)
2797 {
2798 	int ret;
2799 	void *kaddr;
2800 	void __user *uaddr;
2801 	bool locked = false;
2802 	struct vm_area_struct *vma = vmf->vma;
2803 	struct mm_struct *mm = vma->vm_mm;
2804 	unsigned long addr = vmf->address;
2805 
2806 	if (likely(src)) {
2807 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2808 			memory_failure_queue(page_to_pfn(src), 0);
2809 			return -EHWPOISON;
2810 		}
2811 		return 0;
2812 	}
2813 
2814 	/*
2815 	 * If the source page was a PFN mapping, we don't have
2816 	 * a "struct page" for it. We do a best-effort copy by
2817 	 * just copying from the original user address. If that
2818 	 * fails, we just zero-fill it. Live with it.
2819 	 */
2820 	kaddr = kmap_atomic(dst);
2821 	uaddr = (void __user *)(addr & PAGE_MASK);
2822 
2823 	/*
2824 	 * On architectures with software "accessed" bits, we would
2825 	 * take a double page fault, so mark it accessed here.
2826 	 */
2827 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2828 		pte_t entry;
2829 
2830 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2831 		locked = true;
2832 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2833 			/*
2834 			 * Other thread has already handled the fault
2835 			 * and update local tlb only
2836 			 */
2837 			update_mmu_tlb(vma, addr, vmf->pte);
2838 			ret = -EAGAIN;
2839 			goto pte_unlock;
2840 		}
2841 
2842 		entry = pte_mkyoung(vmf->orig_pte);
2843 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2844 			update_mmu_cache(vma, addr, vmf->pte);
2845 	}
2846 
2847 	/*
2848 	 * This really shouldn't fail, because the page is there
2849 	 * in the page tables. But it might just be unreadable,
2850 	 * in which case we just give up and fill the result with
2851 	 * zeroes.
2852 	 */
2853 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2854 		if (locked)
2855 			goto warn;
2856 
2857 		/* Re-validate under PTL if the page is still mapped */
2858 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2859 		locked = true;
2860 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2861 			/* The PTE changed under us, update local tlb */
2862 			update_mmu_tlb(vma, addr, vmf->pte);
2863 			ret = -EAGAIN;
2864 			goto pte_unlock;
2865 		}
2866 
2867 		/*
2868 		 * The same page can be mapped back since last copy attempt.
2869 		 * Try to copy again under PTL.
2870 		 */
2871 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2872 			/*
2873 			 * Give a warn in case there can be some obscure
2874 			 * use-case
2875 			 */
2876 warn:
2877 			WARN_ON_ONCE(1);
2878 			clear_page(kaddr);
2879 		}
2880 	}
2881 
2882 	ret = 0;
2883 
2884 pte_unlock:
2885 	if (locked)
2886 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2887 	kunmap_atomic(kaddr);
2888 	flush_dcache_page(dst);
2889 
2890 	return ret;
2891 }
2892 
2893 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2894 {
2895 	struct file *vm_file = vma->vm_file;
2896 
2897 	if (vm_file)
2898 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2899 
2900 	/*
2901 	 * Special mappings (e.g. VDSO) do not have any file so fake
2902 	 * a default GFP_KERNEL for them.
2903 	 */
2904 	return GFP_KERNEL;
2905 }
2906 
2907 /*
2908  * Notify the address space that the page is about to become writable so that
2909  * it can prohibit this or wait for the page to get into an appropriate state.
2910  *
2911  * We do this without the lock held, so that it can sleep if it needs to.
2912  */
2913 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2914 {
2915 	vm_fault_t ret;
2916 	struct page *page = vmf->page;
2917 	unsigned int old_flags = vmf->flags;
2918 
2919 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2920 
2921 	if (vmf->vma->vm_file &&
2922 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2923 		return VM_FAULT_SIGBUS;
2924 
2925 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2926 	/* Restore original flags so that caller is not surprised */
2927 	vmf->flags = old_flags;
2928 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2929 		return ret;
2930 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2931 		lock_page(page);
2932 		if (!page->mapping) {
2933 			unlock_page(page);
2934 			return 0; /* retry */
2935 		}
2936 		ret |= VM_FAULT_LOCKED;
2937 	} else
2938 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2939 	return ret;
2940 }
2941 
2942 /*
2943  * Handle dirtying of a page in shared file mapping on a write fault.
2944  *
2945  * The function expects the page to be locked and unlocks it.
2946  */
2947 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2948 {
2949 	struct vm_area_struct *vma = vmf->vma;
2950 	struct address_space *mapping;
2951 	struct page *page = vmf->page;
2952 	bool dirtied;
2953 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2954 
2955 	dirtied = set_page_dirty(page);
2956 	VM_BUG_ON_PAGE(PageAnon(page), page);
2957 	/*
2958 	 * Take a local copy of the address_space - page.mapping may be zeroed
2959 	 * by truncate after unlock_page().   The address_space itself remains
2960 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2961 	 * release semantics to prevent the compiler from undoing this copying.
2962 	 */
2963 	mapping = page_rmapping(page);
2964 	unlock_page(page);
2965 
2966 	if (!page_mkwrite)
2967 		file_update_time(vma->vm_file);
2968 
2969 	/*
2970 	 * Throttle page dirtying rate down to writeback speed.
2971 	 *
2972 	 * mapping may be NULL here because some device drivers do not
2973 	 * set page.mapping but still dirty their pages
2974 	 *
2975 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2976 	 * is pinning the mapping, as per above.
2977 	 */
2978 	if ((dirtied || page_mkwrite) && mapping) {
2979 		struct file *fpin;
2980 
2981 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2982 		balance_dirty_pages_ratelimited(mapping);
2983 		if (fpin) {
2984 			fput(fpin);
2985 			return VM_FAULT_COMPLETED;
2986 		}
2987 	}
2988 
2989 	return 0;
2990 }
2991 
2992 /*
2993  * Handle write page faults for pages that can be reused in the current vma
2994  *
2995  * This can happen either due to the mapping being with the VM_SHARED flag,
2996  * or due to us being the last reference standing to the page. In either
2997  * case, all we need to do here is to mark the page as writable and update
2998  * any related book-keeping.
2999  */
3000 static inline void wp_page_reuse(struct vm_fault *vmf)
3001 	__releases(vmf->ptl)
3002 {
3003 	struct vm_area_struct *vma = vmf->vma;
3004 	struct page *page = vmf->page;
3005 	pte_t entry;
3006 
3007 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3008 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3009 
3010 	/*
3011 	 * Clear the pages cpupid information as the existing
3012 	 * information potentially belongs to a now completely
3013 	 * unrelated process.
3014 	 */
3015 	if (page)
3016 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3017 
3018 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3019 	entry = pte_mkyoung(vmf->orig_pte);
3020 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3021 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3022 		update_mmu_cache(vma, vmf->address, vmf->pte);
3023 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3024 	count_vm_event(PGREUSE);
3025 }
3026 
3027 /*
3028  * Handle the case of a page which we actually need to copy to a new page,
3029  * either due to COW or unsharing.
3030  *
3031  * Called with mmap_lock locked and the old page referenced, but
3032  * without the ptl held.
3033  *
3034  * High level logic flow:
3035  *
3036  * - Allocate a page, copy the content of the old page to the new one.
3037  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3038  * - Take the PTL. If the pte changed, bail out and release the allocated page
3039  * - If the pte is still the way we remember it, update the page table and all
3040  *   relevant references. This includes dropping the reference the page-table
3041  *   held to the old page, as well as updating the rmap.
3042  * - In any case, unlock the PTL and drop the reference we took to the old page.
3043  */
3044 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3045 {
3046 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3047 	struct vm_area_struct *vma = vmf->vma;
3048 	struct mm_struct *mm = vma->vm_mm;
3049 	struct folio *old_folio = NULL;
3050 	struct folio *new_folio = NULL;
3051 	pte_t entry;
3052 	int page_copied = 0;
3053 	struct mmu_notifier_range range;
3054 	int ret;
3055 
3056 	delayacct_wpcopy_start();
3057 
3058 	if (vmf->page)
3059 		old_folio = page_folio(vmf->page);
3060 	if (unlikely(anon_vma_prepare(vma)))
3061 		goto oom;
3062 
3063 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3064 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3065 		if (!new_folio)
3066 			goto oom;
3067 	} else {
3068 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3069 				vmf->address, false);
3070 		if (!new_folio)
3071 			goto oom;
3072 
3073 		ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3074 		if (ret) {
3075 			/*
3076 			 * COW failed, if the fault was solved by other,
3077 			 * it's fine. If not, userspace would re-fault on
3078 			 * the same address and we will handle the fault
3079 			 * from the second attempt.
3080 			 * The -EHWPOISON case will not be retried.
3081 			 */
3082 			folio_put(new_folio);
3083 			if (old_folio)
3084 				folio_put(old_folio);
3085 
3086 			delayacct_wpcopy_end();
3087 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3088 		}
3089 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3090 	}
3091 
3092 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3093 		goto oom_free_new;
3094 	cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL);
3095 
3096 	__folio_mark_uptodate(new_folio);
3097 
3098 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3099 				vmf->address & PAGE_MASK,
3100 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3101 	mmu_notifier_invalidate_range_start(&range);
3102 
3103 	/*
3104 	 * Re-check the pte - we dropped the lock
3105 	 */
3106 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3107 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3108 		if (old_folio) {
3109 			if (!folio_test_anon(old_folio)) {
3110 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3111 				inc_mm_counter(mm, MM_ANONPAGES);
3112 			}
3113 		} else {
3114 			inc_mm_counter(mm, MM_ANONPAGES);
3115 		}
3116 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3117 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3118 		entry = pte_sw_mkyoung(entry);
3119 		if (unlikely(unshare)) {
3120 			if (pte_soft_dirty(vmf->orig_pte))
3121 				entry = pte_mksoft_dirty(entry);
3122 			if (pte_uffd_wp(vmf->orig_pte))
3123 				entry = pte_mkuffd_wp(entry);
3124 		} else {
3125 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3126 		}
3127 
3128 		/*
3129 		 * Clear the pte entry and flush it first, before updating the
3130 		 * pte with the new entry, to keep TLBs on different CPUs in
3131 		 * sync. This code used to set the new PTE then flush TLBs, but
3132 		 * that left a window where the new PTE could be loaded into
3133 		 * some TLBs while the old PTE remains in others.
3134 		 */
3135 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3136 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3137 		folio_add_lru_vma(new_folio, vma);
3138 		/*
3139 		 * We call the notify macro here because, when using secondary
3140 		 * mmu page tables (such as kvm shadow page tables), we want the
3141 		 * new page to be mapped directly into the secondary page table.
3142 		 */
3143 		BUG_ON(unshare && pte_write(entry));
3144 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3145 		update_mmu_cache(vma, vmf->address, vmf->pte);
3146 		if (old_folio) {
3147 			/*
3148 			 * Only after switching the pte to the new page may
3149 			 * we remove the mapcount here. Otherwise another
3150 			 * process may come and find the rmap count decremented
3151 			 * before the pte is switched to the new page, and
3152 			 * "reuse" the old page writing into it while our pte
3153 			 * here still points into it and can be read by other
3154 			 * threads.
3155 			 *
3156 			 * The critical issue is to order this
3157 			 * page_remove_rmap with the ptp_clear_flush above.
3158 			 * Those stores are ordered by (if nothing else,)
3159 			 * the barrier present in the atomic_add_negative
3160 			 * in page_remove_rmap.
3161 			 *
3162 			 * Then the TLB flush in ptep_clear_flush ensures that
3163 			 * no process can access the old page before the
3164 			 * decremented mapcount is visible. And the old page
3165 			 * cannot be reused until after the decremented
3166 			 * mapcount is visible. So transitively, TLBs to
3167 			 * old page will be flushed before it can be reused.
3168 			 */
3169 			page_remove_rmap(vmf->page, vma, false);
3170 		}
3171 
3172 		/* Free the old page.. */
3173 		new_folio = old_folio;
3174 		page_copied = 1;
3175 	} else {
3176 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3177 	}
3178 
3179 	if (new_folio)
3180 		folio_put(new_folio);
3181 
3182 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3183 	/*
3184 	 * No need to double call mmu_notifier->invalidate_range() callback as
3185 	 * the above ptep_clear_flush_notify() did already call it.
3186 	 */
3187 	mmu_notifier_invalidate_range_only_end(&range);
3188 	if (old_folio) {
3189 		if (page_copied)
3190 			free_swap_cache(&old_folio->page);
3191 		folio_put(old_folio);
3192 	}
3193 
3194 	delayacct_wpcopy_end();
3195 	return 0;
3196 oom_free_new:
3197 	folio_put(new_folio);
3198 oom:
3199 	if (old_folio)
3200 		folio_put(old_folio);
3201 
3202 	delayacct_wpcopy_end();
3203 	return VM_FAULT_OOM;
3204 }
3205 
3206 /**
3207  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3208  *			  writeable once the page is prepared
3209  *
3210  * @vmf: structure describing the fault
3211  *
3212  * This function handles all that is needed to finish a write page fault in a
3213  * shared mapping due to PTE being read-only once the mapped page is prepared.
3214  * It handles locking of PTE and modifying it.
3215  *
3216  * The function expects the page to be locked or other protection against
3217  * concurrent faults / writeback (such as DAX radix tree locks).
3218  *
3219  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3220  * we acquired PTE lock.
3221  */
3222 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3223 {
3224 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3225 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3226 				       &vmf->ptl);
3227 	/*
3228 	 * We might have raced with another page fault while we released the
3229 	 * pte_offset_map_lock.
3230 	 */
3231 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3232 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3233 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3234 		return VM_FAULT_NOPAGE;
3235 	}
3236 	wp_page_reuse(vmf);
3237 	return 0;
3238 }
3239 
3240 /*
3241  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3242  * mapping
3243  */
3244 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3245 {
3246 	struct vm_area_struct *vma = vmf->vma;
3247 
3248 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3249 		vm_fault_t ret;
3250 
3251 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3252 		vmf->flags |= FAULT_FLAG_MKWRITE;
3253 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3254 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3255 			return ret;
3256 		return finish_mkwrite_fault(vmf);
3257 	}
3258 	wp_page_reuse(vmf);
3259 	return 0;
3260 }
3261 
3262 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3263 	__releases(vmf->ptl)
3264 {
3265 	struct vm_area_struct *vma = vmf->vma;
3266 	vm_fault_t ret = 0;
3267 
3268 	get_page(vmf->page);
3269 
3270 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3271 		vm_fault_t tmp;
3272 
3273 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3274 		tmp = do_page_mkwrite(vmf);
3275 		if (unlikely(!tmp || (tmp &
3276 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3277 			put_page(vmf->page);
3278 			return tmp;
3279 		}
3280 		tmp = finish_mkwrite_fault(vmf);
3281 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3282 			unlock_page(vmf->page);
3283 			put_page(vmf->page);
3284 			return tmp;
3285 		}
3286 	} else {
3287 		wp_page_reuse(vmf);
3288 		lock_page(vmf->page);
3289 	}
3290 	ret |= fault_dirty_shared_page(vmf);
3291 	put_page(vmf->page);
3292 
3293 	return ret;
3294 }
3295 
3296 /*
3297  * This routine handles present pages, when
3298  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3299  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3300  *   (FAULT_FLAG_UNSHARE)
3301  *
3302  * It is done by copying the page to a new address and decrementing the
3303  * shared-page counter for the old page.
3304  *
3305  * Note that this routine assumes that the protection checks have been
3306  * done by the caller (the low-level page fault routine in most cases).
3307  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3308  * done any necessary COW.
3309  *
3310  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3311  * though the page will change only once the write actually happens. This
3312  * avoids a few races, and potentially makes it more efficient.
3313  *
3314  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3315  * but allow concurrent faults), with pte both mapped and locked.
3316  * We return with mmap_lock still held, but pte unmapped and unlocked.
3317  */
3318 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3319 	__releases(vmf->ptl)
3320 {
3321 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3322 	struct vm_area_struct *vma = vmf->vma;
3323 	struct folio *folio = NULL;
3324 
3325 	if (likely(!unshare)) {
3326 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3327 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3328 			return handle_userfault(vmf, VM_UFFD_WP);
3329 		}
3330 
3331 		/*
3332 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3333 		 * is flushed in this case before copying.
3334 		 */
3335 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3336 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3337 			flush_tlb_page(vmf->vma, vmf->address);
3338 	}
3339 
3340 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3341 
3342 	/*
3343 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3344 	 * FAULT_FLAG_WRITE set at this point.
3345 	 */
3346 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3347 		/*
3348 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3349 		 * VM_PFNMAP VMA.
3350 		 *
3351 		 * We should not cow pages in a shared writeable mapping.
3352 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3353 		 */
3354 		if (!vmf->page)
3355 			return wp_pfn_shared(vmf);
3356 		return wp_page_shared(vmf);
3357 	}
3358 
3359 	if (vmf->page)
3360 		folio = page_folio(vmf->page);
3361 
3362 	/*
3363 	 * Private mapping: create an exclusive anonymous page copy if reuse
3364 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3365 	 */
3366 	if (folio && folio_test_anon(folio)) {
3367 		/*
3368 		 * If the page is exclusive to this process we must reuse the
3369 		 * page without further checks.
3370 		 */
3371 		if (PageAnonExclusive(vmf->page))
3372 			goto reuse;
3373 
3374 		/*
3375 		 * We have to verify under folio lock: these early checks are
3376 		 * just an optimization to avoid locking the folio and freeing
3377 		 * the swapcache if there is little hope that we can reuse.
3378 		 *
3379 		 * KSM doesn't necessarily raise the folio refcount.
3380 		 */
3381 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3382 			goto copy;
3383 		if (!folio_test_lru(folio))
3384 			/*
3385 			 * Note: We cannot easily detect+handle references from
3386 			 * remote LRU pagevecs or references to LRU folios.
3387 			 */
3388 			lru_add_drain();
3389 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3390 			goto copy;
3391 		if (!folio_trylock(folio))
3392 			goto copy;
3393 		if (folio_test_swapcache(folio))
3394 			folio_free_swap(folio);
3395 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3396 			folio_unlock(folio);
3397 			goto copy;
3398 		}
3399 		/*
3400 		 * Ok, we've got the only folio reference from our mapping
3401 		 * and the folio is locked, it's dark out, and we're wearing
3402 		 * sunglasses. Hit it.
3403 		 */
3404 		page_move_anon_rmap(vmf->page, vma);
3405 		folio_unlock(folio);
3406 reuse:
3407 		if (unlikely(unshare)) {
3408 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3409 			return 0;
3410 		}
3411 		wp_page_reuse(vmf);
3412 		return 0;
3413 	}
3414 copy:
3415 	/*
3416 	 * Ok, we need to copy. Oh, well..
3417 	 */
3418 	if (folio)
3419 		folio_get(folio);
3420 
3421 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3422 #ifdef CONFIG_KSM
3423 	if (folio && folio_test_ksm(folio))
3424 		count_vm_event(COW_KSM);
3425 #endif
3426 	return wp_page_copy(vmf);
3427 }
3428 
3429 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3430 		unsigned long start_addr, unsigned long end_addr,
3431 		struct zap_details *details)
3432 {
3433 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3434 }
3435 
3436 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3437 					    pgoff_t first_index,
3438 					    pgoff_t last_index,
3439 					    struct zap_details *details)
3440 {
3441 	struct vm_area_struct *vma;
3442 	pgoff_t vba, vea, zba, zea;
3443 
3444 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3445 		vba = vma->vm_pgoff;
3446 		vea = vba + vma_pages(vma) - 1;
3447 		zba = max(first_index, vba);
3448 		zea = min(last_index, vea);
3449 
3450 		unmap_mapping_range_vma(vma,
3451 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3452 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3453 				details);
3454 	}
3455 }
3456 
3457 /**
3458  * unmap_mapping_folio() - Unmap single folio from processes.
3459  * @folio: The locked folio to be unmapped.
3460  *
3461  * Unmap this folio from any userspace process which still has it mmaped.
3462  * Typically, for efficiency, the range of nearby pages has already been
3463  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3464  * truncation or invalidation holds the lock on a folio, it may find that
3465  * the page has been remapped again: and then uses unmap_mapping_folio()
3466  * to unmap it finally.
3467  */
3468 void unmap_mapping_folio(struct folio *folio)
3469 {
3470 	struct address_space *mapping = folio->mapping;
3471 	struct zap_details details = { };
3472 	pgoff_t	first_index;
3473 	pgoff_t	last_index;
3474 
3475 	VM_BUG_ON(!folio_test_locked(folio));
3476 
3477 	first_index = folio->index;
3478 	last_index = folio->index + folio_nr_pages(folio) - 1;
3479 
3480 	details.even_cows = false;
3481 	details.single_folio = folio;
3482 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3483 
3484 	i_mmap_lock_read(mapping);
3485 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3486 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3487 					 last_index, &details);
3488 	i_mmap_unlock_read(mapping);
3489 }
3490 
3491 /**
3492  * unmap_mapping_pages() - Unmap pages from processes.
3493  * @mapping: The address space containing pages to be unmapped.
3494  * @start: Index of first page to be unmapped.
3495  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3496  * @even_cows: Whether to unmap even private COWed pages.
3497  *
3498  * Unmap the pages in this address space from any userspace process which
3499  * has them mmaped.  Generally, you want to remove COWed pages as well when
3500  * a file is being truncated, but not when invalidating pages from the page
3501  * cache.
3502  */
3503 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3504 		pgoff_t nr, bool even_cows)
3505 {
3506 	struct zap_details details = { };
3507 	pgoff_t	first_index = start;
3508 	pgoff_t	last_index = start + nr - 1;
3509 
3510 	details.even_cows = even_cows;
3511 	if (last_index < first_index)
3512 		last_index = ULONG_MAX;
3513 
3514 	i_mmap_lock_read(mapping);
3515 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3516 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3517 					 last_index, &details);
3518 	i_mmap_unlock_read(mapping);
3519 }
3520 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3521 
3522 /**
3523  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3524  * address_space corresponding to the specified byte range in the underlying
3525  * file.
3526  *
3527  * @mapping: the address space containing mmaps to be unmapped.
3528  * @holebegin: byte in first page to unmap, relative to the start of
3529  * the underlying file.  This will be rounded down to a PAGE_SIZE
3530  * boundary.  Note that this is different from truncate_pagecache(), which
3531  * must keep the partial page.  In contrast, we must get rid of
3532  * partial pages.
3533  * @holelen: size of prospective hole in bytes.  This will be rounded
3534  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3535  * end of the file.
3536  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3537  * but 0 when invalidating pagecache, don't throw away private data.
3538  */
3539 void unmap_mapping_range(struct address_space *mapping,
3540 		loff_t const holebegin, loff_t const holelen, int even_cows)
3541 {
3542 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3543 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3544 
3545 	/* Check for overflow. */
3546 	if (sizeof(holelen) > sizeof(hlen)) {
3547 		long long holeend =
3548 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3549 		if (holeend & ~(long long)ULONG_MAX)
3550 			hlen = ULONG_MAX - hba + 1;
3551 	}
3552 
3553 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3554 }
3555 EXPORT_SYMBOL(unmap_mapping_range);
3556 
3557 /*
3558  * Restore a potential device exclusive pte to a working pte entry
3559  */
3560 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3561 {
3562 	struct folio *folio = page_folio(vmf->page);
3563 	struct vm_area_struct *vma = vmf->vma;
3564 	struct mmu_notifier_range range;
3565 
3566 	/*
3567 	 * We need a reference to lock the folio because we don't hold
3568 	 * the PTL so a racing thread can remove the device-exclusive
3569 	 * entry and unmap it. If the folio is free the entry must
3570 	 * have been removed already. If it happens to have already
3571 	 * been re-allocated after being freed all we do is lock and
3572 	 * unlock it.
3573 	 */
3574 	if (!folio_try_get(folio))
3575 		return 0;
3576 
3577 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3578 		folio_put(folio);
3579 		return VM_FAULT_RETRY;
3580 	}
3581 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3582 				vma->vm_mm, vmf->address & PAGE_MASK,
3583 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3584 	mmu_notifier_invalidate_range_start(&range);
3585 
3586 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3587 				&vmf->ptl);
3588 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3589 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3590 
3591 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3592 	folio_unlock(folio);
3593 	folio_put(folio);
3594 
3595 	mmu_notifier_invalidate_range_end(&range);
3596 	return 0;
3597 }
3598 
3599 static inline bool should_try_to_free_swap(struct folio *folio,
3600 					   struct vm_area_struct *vma,
3601 					   unsigned int fault_flags)
3602 {
3603 	if (!folio_test_swapcache(folio))
3604 		return false;
3605 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3606 	    folio_test_mlocked(folio))
3607 		return true;
3608 	/*
3609 	 * If we want to map a page that's in the swapcache writable, we
3610 	 * have to detect via the refcount if we're really the exclusive
3611 	 * user. Try freeing the swapcache to get rid of the swapcache
3612 	 * reference only in case it's likely that we'll be the exlusive user.
3613 	 */
3614 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3615 		folio_ref_count(folio) == 2;
3616 }
3617 
3618 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3619 {
3620 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3621 				       vmf->address, &vmf->ptl);
3622 	/*
3623 	 * Be careful so that we will only recover a special uffd-wp pte into a
3624 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3625 	 *
3626 	 * This should also cover the case where e.g. the pte changed
3627 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3628 	 * So is_pte_marker() check is not enough to safely drop the pte.
3629 	 */
3630 	if (pte_same(vmf->orig_pte, *vmf->pte))
3631 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3632 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3633 	return 0;
3634 }
3635 
3636 /*
3637  * This is actually a page-missing access, but with uffd-wp special pte
3638  * installed.  It means this pte was wr-protected before being unmapped.
3639  */
3640 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3641 {
3642 	/*
3643 	 * Just in case there're leftover special ptes even after the region
3644 	 * got unregistered - we can simply clear them.
3645 	 */
3646 	if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3647 		return pte_marker_clear(vmf);
3648 
3649 	/* do_fault() can handle pte markers too like none pte */
3650 	return do_fault(vmf);
3651 }
3652 
3653 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3654 {
3655 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3656 	unsigned long marker = pte_marker_get(entry);
3657 
3658 	/*
3659 	 * PTE markers should never be empty.  If anything weird happened,
3660 	 * the best thing to do is to kill the process along with its mm.
3661 	 */
3662 	if (WARN_ON_ONCE(!marker))
3663 		return VM_FAULT_SIGBUS;
3664 
3665 	/* Higher priority than uffd-wp when data corrupted */
3666 	if (marker & PTE_MARKER_SWAPIN_ERROR)
3667 		return VM_FAULT_SIGBUS;
3668 
3669 	if (pte_marker_entry_uffd_wp(entry))
3670 		return pte_marker_handle_uffd_wp(vmf);
3671 
3672 	/* This is an unknown pte marker */
3673 	return VM_FAULT_SIGBUS;
3674 }
3675 
3676 /*
3677  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3678  * but allow concurrent faults), and pte mapped but not yet locked.
3679  * We return with pte unmapped and unlocked.
3680  *
3681  * We return with the mmap_lock locked or unlocked in the same cases
3682  * as does filemap_fault().
3683  */
3684 vm_fault_t do_swap_page(struct vm_fault *vmf)
3685 {
3686 	struct vm_area_struct *vma = vmf->vma;
3687 	struct folio *swapcache, *folio = NULL;
3688 	struct page *page;
3689 	struct swap_info_struct *si = NULL;
3690 	rmap_t rmap_flags = RMAP_NONE;
3691 	bool exclusive = false;
3692 	swp_entry_t entry;
3693 	pte_t pte;
3694 	int locked;
3695 	vm_fault_t ret = 0;
3696 	void *shadow = NULL;
3697 
3698 	if (!pte_unmap_same(vmf))
3699 		goto out;
3700 
3701 	entry = pte_to_swp_entry(vmf->orig_pte);
3702 	if (unlikely(non_swap_entry(entry))) {
3703 		if (is_migration_entry(entry)) {
3704 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3705 					     vmf->address);
3706 		} else if (is_device_exclusive_entry(entry)) {
3707 			vmf->page = pfn_swap_entry_to_page(entry);
3708 			ret = remove_device_exclusive_entry(vmf);
3709 		} else if (is_device_private_entry(entry)) {
3710 			vmf->page = pfn_swap_entry_to_page(entry);
3711 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3712 					vmf->address, &vmf->ptl);
3713 			if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3714 				spin_unlock(vmf->ptl);
3715 				goto out;
3716 			}
3717 
3718 			/*
3719 			 * Get a page reference while we know the page can't be
3720 			 * freed.
3721 			 */
3722 			get_page(vmf->page);
3723 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3724 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3725 			put_page(vmf->page);
3726 		} else if (is_hwpoison_entry(entry)) {
3727 			ret = VM_FAULT_HWPOISON;
3728 		} else if (is_pte_marker_entry(entry)) {
3729 			ret = handle_pte_marker(vmf);
3730 		} else {
3731 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3732 			ret = VM_FAULT_SIGBUS;
3733 		}
3734 		goto out;
3735 	}
3736 
3737 	/* Prevent swapoff from happening to us. */
3738 	si = get_swap_device(entry);
3739 	if (unlikely(!si))
3740 		goto out;
3741 
3742 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3743 	if (folio)
3744 		page = folio_file_page(folio, swp_offset(entry));
3745 	swapcache = folio;
3746 
3747 	if (!folio) {
3748 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3749 		    __swap_count(entry) == 1) {
3750 			/* skip swapcache */
3751 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3752 						vma, vmf->address, false);
3753 			page = &folio->page;
3754 			if (folio) {
3755 				__folio_set_locked(folio);
3756 				__folio_set_swapbacked(folio);
3757 
3758 				if (mem_cgroup_swapin_charge_folio(folio,
3759 							vma->vm_mm, GFP_KERNEL,
3760 							entry)) {
3761 					ret = VM_FAULT_OOM;
3762 					goto out_page;
3763 				}
3764 				mem_cgroup_swapin_uncharge_swap(entry);
3765 
3766 				shadow = get_shadow_from_swap_cache(entry);
3767 				if (shadow)
3768 					workingset_refault(folio, shadow);
3769 
3770 				folio_add_lru(folio);
3771 
3772 				/* To provide entry to swap_readpage() */
3773 				folio_set_swap_entry(folio, entry);
3774 				swap_readpage(page, true, NULL);
3775 				folio->private = NULL;
3776 			}
3777 		} else {
3778 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3779 						vmf);
3780 			if (page)
3781 				folio = page_folio(page);
3782 			swapcache = folio;
3783 		}
3784 
3785 		if (!folio) {
3786 			/*
3787 			 * Back out if somebody else faulted in this pte
3788 			 * while we released the pte lock.
3789 			 */
3790 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3791 					vmf->address, &vmf->ptl);
3792 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3793 				ret = VM_FAULT_OOM;
3794 			goto unlock;
3795 		}
3796 
3797 		/* Had to read the page from swap area: Major fault */
3798 		ret = VM_FAULT_MAJOR;
3799 		count_vm_event(PGMAJFAULT);
3800 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3801 	} else if (PageHWPoison(page)) {
3802 		/*
3803 		 * hwpoisoned dirty swapcache pages are kept for killing
3804 		 * owner processes (which may be unknown at hwpoison time)
3805 		 */
3806 		ret = VM_FAULT_HWPOISON;
3807 		goto out_release;
3808 	}
3809 
3810 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3811 
3812 	if (!locked) {
3813 		ret |= VM_FAULT_RETRY;
3814 		goto out_release;
3815 	}
3816 
3817 	if (swapcache) {
3818 		/*
3819 		 * Make sure folio_free_swap() or swapoff did not release the
3820 		 * swapcache from under us.  The page pin, and pte_same test
3821 		 * below, are not enough to exclude that.  Even if it is still
3822 		 * swapcache, we need to check that the page's swap has not
3823 		 * changed.
3824 		 */
3825 		if (unlikely(!folio_test_swapcache(folio) ||
3826 			     page_private(page) != entry.val))
3827 			goto out_page;
3828 
3829 		/*
3830 		 * KSM sometimes has to copy on read faults, for example, if
3831 		 * page->index of !PageKSM() pages would be nonlinear inside the
3832 		 * anon VMA -- PageKSM() is lost on actual swapout.
3833 		 */
3834 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3835 		if (unlikely(!page)) {
3836 			ret = VM_FAULT_OOM;
3837 			goto out_page;
3838 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3839 			ret = VM_FAULT_HWPOISON;
3840 			goto out_page;
3841 		}
3842 		folio = page_folio(page);
3843 
3844 		/*
3845 		 * If we want to map a page that's in the swapcache writable, we
3846 		 * have to detect via the refcount if we're really the exclusive
3847 		 * owner. Try removing the extra reference from the local LRU
3848 		 * pagevecs if required.
3849 		 */
3850 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3851 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3852 			lru_add_drain();
3853 	}
3854 
3855 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3856 
3857 	/*
3858 	 * Back out if somebody else already faulted in this pte.
3859 	 */
3860 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3861 			&vmf->ptl);
3862 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3863 		goto out_nomap;
3864 
3865 	if (unlikely(!folio_test_uptodate(folio))) {
3866 		ret = VM_FAULT_SIGBUS;
3867 		goto out_nomap;
3868 	}
3869 
3870 	/*
3871 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3872 	 * must never point at an anonymous page in the swapcache that is
3873 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3874 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3875 	 * check after taking the PT lock and making sure that nobody
3876 	 * concurrently faulted in this page and set PG_anon_exclusive.
3877 	 */
3878 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3879 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3880 
3881 	/*
3882 	 * Check under PT lock (to protect against concurrent fork() sharing
3883 	 * the swap entry concurrently) for certainly exclusive pages.
3884 	 */
3885 	if (!folio_test_ksm(folio)) {
3886 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3887 		if (folio != swapcache) {
3888 			/*
3889 			 * We have a fresh page that is not exposed to the
3890 			 * swapcache -> certainly exclusive.
3891 			 */
3892 			exclusive = true;
3893 		} else if (exclusive && folio_test_writeback(folio) &&
3894 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3895 			/*
3896 			 * This is tricky: not all swap backends support
3897 			 * concurrent page modifications while under writeback.
3898 			 *
3899 			 * So if we stumble over such a page in the swapcache
3900 			 * we must not set the page exclusive, otherwise we can
3901 			 * map it writable without further checks and modify it
3902 			 * while still under writeback.
3903 			 *
3904 			 * For these problematic swap backends, simply drop the
3905 			 * exclusive marker: this is perfectly fine as we start
3906 			 * writeback only if we fully unmapped the page and
3907 			 * there are no unexpected references on the page after
3908 			 * unmapping succeeded. After fully unmapped, no
3909 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3910 			 * appear, so dropping the exclusive marker and mapping
3911 			 * it only R/O is fine.
3912 			 */
3913 			exclusive = false;
3914 		}
3915 	}
3916 
3917 	/*
3918 	 * Remove the swap entry and conditionally try to free up the swapcache.
3919 	 * We're already holding a reference on the page but haven't mapped it
3920 	 * yet.
3921 	 */
3922 	swap_free(entry);
3923 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3924 		folio_free_swap(folio);
3925 
3926 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3927 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3928 	pte = mk_pte(page, vma->vm_page_prot);
3929 
3930 	/*
3931 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3932 	 * certainly not shared either because we just allocated them without
3933 	 * exposing them to the swapcache or because the swap entry indicates
3934 	 * exclusivity.
3935 	 */
3936 	if (!folio_test_ksm(folio) &&
3937 	    (exclusive || folio_ref_count(folio) == 1)) {
3938 		if (vmf->flags & FAULT_FLAG_WRITE) {
3939 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3940 			vmf->flags &= ~FAULT_FLAG_WRITE;
3941 		}
3942 		rmap_flags |= RMAP_EXCLUSIVE;
3943 	}
3944 	flush_icache_page(vma, page);
3945 	if (pte_swp_soft_dirty(vmf->orig_pte))
3946 		pte = pte_mksoft_dirty(pte);
3947 	if (pte_swp_uffd_wp(vmf->orig_pte))
3948 		pte = pte_mkuffd_wp(pte);
3949 	vmf->orig_pte = pte;
3950 
3951 	/* ksm created a completely new copy */
3952 	if (unlikely(folio != swapcache && swapcache)) {
3953 		page_add_new_anon_rmap(page, vma, vmf->address);
3954 		folio_add_lru_vma(folio, vma);
3955 	} else {
3956 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3957 	}
3958 
3959 	VM_BUG_ON(!folio_test_anon(folio) ||
3960 			(pte_write(pte) && !PageAnonExclusive(page)));
3961 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3962 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3963 
3964 	folio_unlock(folio);
3965 	if (folio != swapcache && swapcache) {
3966 		/*
3967 		 * Hold the lock to avoid the swap entry to be reused
3968 		 * until we take the PT lock for the pte_same() check
3969 		 * (to avoid false positives from pte_same). For
3970 		 * further safety release the lock after the swap_free
3971 		 * so that the swap count won't change under a
3972 		 * parallel locked swapcache.
3973 		 */
3974 		folio_unlock(swapcache);
3975 		folio_put(swapcache);
3976 	}
3977 
3978 	if (vmf->flags & FAULT_FLAG_WRITE) {
3979 		ret |= do_wp_page(vmf);
3980 		if (ret & VM_FAULT_ERROR)
3981 			ret &= VM_FAULT_ERROR;
3982 		goto out;
3983 	}
3984 
3985 	/* No need to invalidate - it was non-present before */
3986 	update_mmu_cache(vma, vmf->address, vmf->pte);
3987 unlock:
3988 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3989 out:
3990 	if (si)
3991 		put_swap_device(si);
3992 	return ret;
3993 out_nomap:
3994 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3995 out_page:
3996 	folio_unlock(folio);
3997 out_release:
3998 	folio_put(folio);
3999 	if (folio != swapcache && swapcache) {
4000 		folio_unlock(swapcache);
4001 		folio_put(swapcache);
4002 	}
4003 	if (si)
4004 		put_swap_device(si);
4005 	return ret;
4006 }
4007 
4008 /*
4009  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4010  * but allow concurrent faults), and pte mapped but not yet locked.
4011  * We return with mmap_lock still held, but pte unmapped and unlocked.
4012  */
4013 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4014 {
4015 	struct vm_area_struct *vma = vmf->vma;
4016 	struct folio *folio;
4017 	vm_fault_t ret = 0;
4018 	pte_t entry;
4019 
4020 	/* File mapping without ->vm_ops ? */
4021 	if (vma->vm_flags & VM_SHARED)
4022 		return VM_FAULT_SIGBUS;
4023 
4024 	/*
4025 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4026 	 * pte_offset_map() on pmds where a huge pmd might be created
4027 	 * from a different thread.
4028 	 *
4029 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4030 	 * parallel threads are excluded by other means.
4031 	 *
4032 	 * Here we only have mmap_read_lock(mm).
4033 	 */
4034 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4035 		return VM_FAULT_OOM;
4036 
4037 	/* See comment in handle_pte_fault() */
4038 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4039 		return 0;
4040 
4041 	/* Use the zero-page for reads */
4042 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4043 			!mm_forbids_zeropage(vma->vm_mm)) {
4044 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4045 						vma->vm_page_prot));
4046 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4047 				vmf->address, &vmf->ptl);
4048 		if (!pte_none(*vmf->pte)) {
4049 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4050 			goto unlock;
4051 		}
4052 		ret = check_stable_address_space(vma->vm_mm);
4053 		if (ret)
4054 			goto unlock;
4055 		/* Deliver the page fault to userland, check inside PT lock */
4056 		if (userfaultfd_missing(vma)) {
4057 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4058 			return handle_userfault(vmf, VM_UFFD_MISSING);
4059 		}
4060 		goto setpte;
4061 	}
4062 
4063 	/* Allocate our own private page. */
4064 	if (unlikely(anon_vma_prepare(vma)))
4065 		goto oom;
4066 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4067 	if (!folio)
4068 		goto oom;
4069 
4070 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4071 		goto oom_free_page;
4072 	cgroup_throttle_swaprate(&folio->page, GFP_KERNEL);
4073 
4074 	/*
4075 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4076 	 * preceding stores to the page contents become visible before
4077 	 * the set_pte_at() write.
4078 	 */
4079 	__folio_mark_uptodate(folio);
4080 
4081 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4082 	entry = pte_sw_mkyoung(entry);
4083 	if (vma->vm_flags & VM_WRITE)
4084 		entry = pte_mkwrite(pte_mkdirty(entry));
4085 
4086 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4087 			&vmf->ptl);
4088 	if (!pte_none(*vmf->pte)) {
4089 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4090 		goto release;
4091 	}
4092 
4093 	ret = check_stable_address_space(vma->vm_mm);
4094 	if (ret)
4095 		goto release;
4096 
4097 	/* Deliver the page fault to userland, check inside PT lock */
4098 	if (userfaultfd_missing(vma)) {
4099 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4100 		folio_put(folio);
4101 		return handle_userfault(vmf, VM_UFFD_MISSING);
4102 	}
4103 
4104 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4105 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4106 	folio_add_lru_vma(folio, vma);
4107 setpte:
4108 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4109 
4110 	/* No need to invalidate - it was non-present before */
4111 	update_mmu_cache(vma, vmf->address, vmf->pte);
4112 unlock:
4113 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4114 	return ret;
4115 release:
4116 	folio_put(folio);
4117 	goto unlock;
4118 oom_free_page:
4119 	folio_put(folio);
4120 oom:
4121 	return VM_FAULT_OOM;
4122 }
4123 
4124 /*
4125  * The mmap_lock must have been held on entry, and may have been
4126  * released depending on flags and vma->vm_ops->fault() return value.
4127  * See filemap_fault() and __lock_page_retry().
4128  */
4129 static vm_fault_t __do_fault(struct vm_fault *vmf)
4130 {
4131 	struct vm_area_struct *vma = vmf->vma;
4132 	vm_fault_t ret;
4133 
4134 	/*
4135 	 * Preallocate pte before we take page_lock because this might lead to
4136 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4137 	 *				lock_page(A)
4138 	 *				SetPageWriteback(A)
4139 	 *				unlock_page(A)
4140 	 * lock_page(B)
4141 	 *				lock_page(B)
4142 	 * pte_alloc_one
4143 	 *   shrink_page_list
4144 	 *     wait_on_page_writeback(A)
4145 	 *				SetPageWriteback(B)
4146 	 *				unlock_page(B)
4147 	 *				# flush A, B to clear the writeback
4148 	 */
4149 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4150 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4151 		if (!vmf->prealloc_pte)
4152 			return VM_FAULT_OOM;
4153 	}
4154 
4155 	ret = vma->vm_ops->fault(vmf);
4156 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4157 			    VM_FAULT_DONE_COW)))
4158 		return ret;
4159 
4160 	if (unlikely(PageHWPoison(vmf->page))) {
4161 		struct page *page = vmf->page;
4162 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4163 		if (ret & VM_FAULT_LOCKED) {
4164 			if (page_mapped(page))
4165 				unmap_mapping_pages(page_mapping(page),
4166 						    page->index, 1, false);
4167 			/* Retry if a clean page was removed from the cache. */
4168 			if (invalidate_inode_page(page))
4169 				poisonret = VM_FAULT_NOPAGE;
4170 			unlock_page(page);
4171 		}
4172 		put_page(page);
4173 		vmf->page = NULL;
4174 		return poisonret;
4175 	}
4176 
4177 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4178 		lock_page(vmf->page);
4179 	else
4180 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4181 
4182 	return ret;
4183 }
4184 
4185 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4186 static void deposit_prealloc_pte(struct vm_fault *vmf)
4187 {
4188 	struct vm_area_struct *vma = vmf->vma;
4189 
4190 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4191 	/*
4192 	 * We are going to consume the prealloc table,
4193 	 * count that as nr_ptes.
4194 	 */
4195 	mm_inc_nr_ptes(vma->vm_mm);
4196 	vmf->prealloc_pte = NULL;
4197 }
4198 
4199 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4200 {
4201 	struct vm_area_struct *vma = vmf->vma;
4202 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4203 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4204 	pmd_t entry;
4205 	int i;
4206 	vm_fault_t ret = VM_FAULT_FALLBACK;
4207 
4208 	if (!transhuge_vma_suitable(vma, haddr))
4209 		return ret;
4210 
4211 	page = compound_head(page);
4212 	if (compound_order(page) != HPAGE_PMD_ORDER)
4213 		return ret;
4214 
4215 	/*
4216 	 * Just backoff if any subpage of a THP is corrupted otherwise
4217 	 * the corrupted page may mapped by PMD silently to escape the
4218 	 * check.  This kind of THP just can be PTE mapped.  Access to
4219 	 * the corrupted subpage should trigger SIGBUS as expected.
4220 	 */
4221 	if (unlikely(PageHasHWPoisoned(page)))
4222 		return ret;
4223 
4224 	/*
4225 	 * Archs like ppc64 need additional space to store information
4226 	 * related to pte entry. Use the preallocated table for that.
4227 	 */
4228 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4229 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4230 		if (!vmf->prealloc_pte)
4231 			return VM_FAULT_OOM;
4232 	}
4233 
4234 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4235 	if (unlikely(!pmd_none(*vmf->pmd)))
4236 		goto out;
4237 
4238 	for (i = 0; i < HPAGE_PMD_NR; i++)
4239 		flush_icache_page(vma, page + i);
4240 
4241 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4242 	if (write)
4243 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4244 
4245 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4246 	page_add_file_rmap(page, vma, true);
4247 
4248 	/*
4249 	 * deposit and withdraw with pmd lock held
4250 	 */
4251 	if (arch_needs_pgtable_deposit())
4252 		deposit_prealloc_pte(vmf);
4253 
4254 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4255 
4256 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4257 
4258 	/* fault is handled */
4259 	ret = 0;
4260 	count_vm_event(THP_FILE_MAPPED);
4261 out:
4262 	spin_unlock(vmf->ptl);
4263 	return ret;
4264 }
4265 #else
4266 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4267 {
4268 	return VM_FAULT_FALLBACK;
4269 }
4270 #endif
4271 
4272 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4273 {
4274 	struct vm_area_struct *vma = vmf->vma;
4275 	bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4276 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4277 	bool prefault = vmf->address != addr;
4278 	pte_t entry;
4279 
4280 	flush_icache_page(vma, page);
4281 	entry = mk_pte(page, vma->vm_page_prot);
4282 
4283 	if (prefault && arch_wants_old_prefaulted_pte())
4284 		entry = pte_mkold(entry);
4285 	else
4286 		entry = pte_sw_mkyoung(entry);
4287 
4288 	if (write)
4289 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4290 	if (unlikely(uffd_wp))
4291 		entry = pte_mkuffd_wp(entry);
4292 	/* copy-on-write page */
4293 	if (write && !(vma->vm_flags & VM_SHARED)) {
4294 		inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4295 		page_add_new_anon_rmap(page, vma, addr);
4296 		lru_cache_add_inactive_or_unevictable(page, vma);
4297 	} else {
4298 		inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4299 		page_add_file_rmap(page, vma, false);
4300 	}
4301 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4302 }
4303 
4304 static bool vmf_pte_changed(struct vm_fault *vmf)
4305 {
4306 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4307 		return !pte_same(*vmf->pte, vmf->orig_pte);
4308 
4309 	return !pte_none(*vmf->pte);
4310 }
4311 
4312 /**
4313  * finish_fault - finish page fault once we have prepared the page to fault
4314  *
4315  * @vmf: structure describing the fault
4316  *
4317  * This function handles all that is needed to finish a page fault once the
4318  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4319  * given page, adds reverse page mapping, handles memcg charges and LRU
4320  * addition.
4321  *
4322  * The function expects the page to be locked and on success it consumes a
4323  * reference of a page being mapped (for the PTE which maps it).
4324  *
4325  * Return: %0 on success, %VM_FAULT_ code in case of error.
4326  */
4327 vm_fault_t finish_fault(struct vm_fault *vmf)
4328 {
4329 	struct vm_area_struct *vma = vmf->vma;
4330 	struct page *page;
4331 	vm_fault_t ret;
4332 
4333 	/* Did we COW the page? */
4334 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4335 		page = vmf->cow_page;
4336 	else
4337 		page = vmf->page;
4338 
4339 	/*
4340 	 * check even for read faults because we might have lost our CoWed
4341 	 * page
4342 	 */
4343 	if (!(vma->vm_flags & VM_SHARED)) {
4344 		ret = check_stable_address_space(vma->vm_mm);
4345 		if (ret)
4346 			return ret;
4347 	}
4348 
4349 	if (pmd_none(*vmf->pmd)) {
4350 		if (PageTransCompound(page)) {
4351 			ret = do_set_pmd(vmf, page);
4352 			if (ret != VM_FAULT_FALLBACK)
4353 				return ret;
4354 		}
4355 
4356 		if (vmf->prealloc_pte)
4357 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4358 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4359 			return VM_FAULT_OOM;
4360 	}
4361 
4362 	/*
4363 	 * See comment in handle_pte_fault() for how this scenario happens, we
4364 	 * need to return NOPAGE so that we drop this page.
4365 	 */
4366 	if (pmd_devmap_trans_unstable(vmf->pmd))
4367 		return VM_FAULT_NOPAGE;
4368 
4369 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4370 				      vmf->address, &vmf->ptl);
4371 
4372 	/* Re-check under ptl */
4373 	if (likely(!vmf_pte_changed(vmf))) {
4374 		do_set_pte(vmf, page, vmf->address);
4375 
4376 		/* no need to invalidate: a not-present page won't be cached */
4377 		update_mmu_cache(vma, vmf->address, vmf->pte);
4378 
4379 		ret = 0;
4380 	} else {
4381 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4382 		ret = VM_FAULT_NOPAGE;
4383 	}
4384 
4385 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4386 	return ret;
4387 }
4388 
4389 static unsigned long fault_around_bytes __read_mostly =
4390 	rounddown_pow_of_two(65536);
4391 
4392 #ifdef CONFIG_DEBUG_FS
4393 static int fault_around_bytes_get(void *data, u64 *val)
4394 {
4395 	*val = fault_around_bytes;
4396 	return 0;
4397 }
4398 
4399 /*
4400  * fault_around_bytes must be rounded down to the nearest page order as it's
4401  * what do_fault_around() expects to see.
4402  */
4403 static int fault_around_bytes_set(void *data, u64 val)
4404 {
4405 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4406 		return -EINVAL;
4407 	if (val > PAGE_SIZE)
4408 		fault_around_bytes = rounddown_pow_of_two(val);
4409 	else
4410 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4411 	return 0;
4412 }
4413 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4414 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4415 
4416 static int __init fault_around_debugfs(void)
4417 {
4418 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4419 				   &fault_around_bytes_fops);
4420 	return 0;
4421 }
4422 late_initcall(fault_around_debugfs);
4423 #endif
4424 
4425 /*
4426  * do_fault_around() tries to map few pages around the fault address. The hope
4427  * is that the pages will be needed soon and this will lower the number of
4428  * faults to handle.
4429  *
4430  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4431  * not ready to be mapped: not up-to-date, locked, etc.
4432  *
4433  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4434  * only once.
4435  *
4436  * fault_around_bytes defines how many bytes we'll try to map.
4437  * do_fault_around() expects it to be set to a power of two less than or equal
4438  * to PTRS_PER_PTE.
4439  *
4440  * The virtual address of the area that we map is naturally aligned to
4441  * fault_around_bytes rounded down to the machine page size
4442  * (and therefore to page order).  This way it's easier to guarantee
4443  * that we don't cross page table boundaries.
4444  */
4445 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4446 {
4447 	unsigned long address = vmf->address, nr_pages, mask;
4448 	pgoff_t start_pgoff = vmf->pgoff;
4449 	pgoff_t end_pgoff;
4450 	int off;
4451 
4452 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4453 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4454 
4455 	address = max(address & mask, vmf->vma->vm_start);
4456 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4457 	start_pgoff -= off;
4458 
4459 	/*
4460 	 *  end_pgoff is either the end of the page table, the end of
4461 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4462 	 */
4463 	end_pgoff = start_pgoff -
4464 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4465 		PTRS_PER_PTE - 1;
4466 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4467 			start_pgoff + nr_pages - 1);
4468 
4469 	if (pmd_none(*vmf->pmd)) {
4470 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4471 		if (!vmf->prealloc_pte)
4472 			return VM_FAULT_OOM;
4473 	}
4474 
4475 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4476 }
4477 
4478 /* Return true if we should do read fault-around, false otherwise */
4479 static inline bool should_fault_around(struct vm_fault *vmf)
4480 {
4481 	/* No ->map_pages?  No way to fault around... */
4482 	if (!vmf->vma->vm_ops->map_pages)
4483 		return false;
4484 
4485 	if (uffd_disable_fault_around(vmf->vma))
4486 		return false;
4487 
4488 	return fault_around_bytes >> PAGE_SHIFT > 1;
4489 }
4490 
4491 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4492 {
4493 	vm_fault_t ret = 0;
4494 
4495 	/*
4496 	 * Let's call ->map_pages() first and use ->fault() as fallback
4497 	 * if page by the offset is not ready to be mapped (cold cache or
4498 	 * something).
4499 	 */
4500 	if (should_fault_around(vmf)) {
4501 		ret = do_fault_around(vmf);
4502 		if (ret)
4503 			return ret;
4504 	}
4505 
4506 	ret = __do_fault(vmf);
4507 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4508 		return ret;
4509 
4510 	ret |= finish_fault(vmf);
4511 	unlock_page(vmf->page);
4512 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4513 		put_page(vmf->page);
4514 	return ret;
4515 }
4516 
4517 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4518 {
4519 	struct vm_area_struct *vma = vmf->vma;
4520 	vm_fault_t ret;
4521 
4522 	if (unlikely(anon_vma_prepare(vma)))
4523 		return VM_FAULT_OOM;
4524 
4525 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4526 	if (!vmf->cow_page)
4527 		return VM_FAULT_OOM;
4528 
4529 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4530 				GFP_KERNEL)) {
4531 		put_page(vmf->cow_page);
4532 		return VM_FAULT_OOM;
4533 	}
4534 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4535 
4536 	ret = __do_fault(vmf);
4537 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4538 		goto uncharge_out;
4539 	if (ret & VM_FAULT_DONE_COW)
4540 		return ret;
4541 
4542 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4543 	__SetPageUptodate(vmf->cow_page);
4544 
4545 	ret |= finish_fault(vmf);
4546 	unlock_page(vmf->page);
4547 	put_page(vmf->page);
4548 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4549 		goto uncharge_out;
4550 	return ret;
4551 uncharge_out:
4552 	put_page(vmf->cow_page);
4553 	return ret;
4554 }
4555 
4556 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4557 {
4558 	struct vm_area_struct *vma = vmf->vma;
4559 	vm_fault_t ret, tmp;
4560 
4561 	ret = __do_fault(vmf);
4562 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4563 		return ret;
4564 
4565 	/*
4566 	 * Check if the backing address space wants to know that the page is
4567 	 * about to become writable
4568 	 */
4569 	if (vma->vm_ops->page_mkwrite) {
4570 		unlock_page(vmf->page);
4571 		tmp = do_page_mkwrite(vmf);
4572 		if (unlikely(!tmp ||
4573 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4574 			put_page(vmf->page);
4575 			return tmp;
4576 		}
4577 	}
4578 
4579 	ret |= finish_fault(vmf);
4580 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4581 					VM_FAULT_RETRY))) {
4582 		unlock_page(vmf->page);
4583 		put_page(vmf->page);
4584 		return ret;
4585 	}
4586 
4587 	ret |= fault_dirty_shared_page(vmf);
4588 	return ret;
4589 }
4590 
4591 /*
4592  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4593  * but allow concurrent faults).
4594  * The mmap_lock may have been released depending on flags and our
4595  * return value.  See filemap_fault() and __folio_lock_or_retry().
4596  * If mmap_lock is released, vma may become invalid (for example
4597  * by other thread calling munmap()).
4598  */
4599 static vm_fault_t do_fault(struct vm_fault *vmf)
4600 {
4601 	struct vm_area_struct *vma = vmf->vma;
4602 	struct mm_struct *vm_mm = vma->vm_mm;
4603 	vm_fault_t ret;
4604 
4605 	/*
4606 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4607 	 */
4608 	if (!vma->vm_ops->fault) {
4609 		/*
4610 		 * If we find a migration pmd entry or a none pmd entry, which
4611 		 * should never happen, return SIGBUS
4612 		 */
4613 		if (unlikely(!pmd_present(*vmf->pmd)))
4614 			ret = VM_FAULT_SIGBUS;
4615 		else {
4616 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4617 						       vmf->pmd,
4618 						       vmf->address,
4619 						       &vmf->ptl);
4620 			/*
4621 			 * Make sure this is not a temporary clearing of pte
4622 			 * by holding ptl and checking again. A R/M/W update
4623 			 * of pte involves: take ptl, clearing the pte so that
4624 			 * we don't have concurrent modification by hardware
4625 			 * followed by an update.
4626 			 */
4627 			if (unlikely(pte_none(*vmf->pte)))
4628 				ret = VM_FAULT_SIGBUS;
4629 			else
4630 				ret = VM_FAULT_NOPAGE;
4631 
4632 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4633 		}
4634 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4635 		ret = do_read_fault(vmf);
4636 	else if (!(vma->vm_flags & VM_SHARED))
4637 		ret = do_cow_fault(vmf);
4638 	else
4639 		ret = do_shared_fault(vmf);
4640 
4641 	/* preallocated pagetable is unused: free it */
4642 	if (vmf->prealloc_pte) {
4643 		pte_free(vm_mm, vmf->prealloc_pte);
4644 		vmf->prealloc_pte = NULL;
4645 	}
4646 	return ret;
4647 }
4648 
4649 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4650 		      unsigned long addr, int page_nid, int *flags)
4651 {
4652 	get_page(page);
4653 
4654 	count_vm_numa_event(NUMA_HINT_FAULTS);
4655 	if (page_nid == numa_node_id()) {
4656 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4657 		*flags |= TNF_FAULT_LOCAL;
4658 	}
4659 
4660 	return mpol_misplaced(page, vma, addr);
4661 }
4662 
4663 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4664 {
4665 	struct vm_area_struct *vma = vmf->vma;
4666 	struct page *page = NULL;
4667 	int page_nid = NUMA_NO_NODE;
4668 	bool writable = false;
4669 	int last_cpupid;
4670 	int target_nid;
4671 	pte_t pte, old_pte;
4672 	int flags = 0;
4673 
4674 	/*
4675 	 * The "pte" at this point cannot be used safely without
4676 	 * validation through pte_unmap_same(). It's of NUMA type but
4677 	 * the pfn may be screwed if the read is non atomic.
4678 	 */
4679 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4680 	spin_lock(vmf->ptl);
4681 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4682 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4683 		goto out;
4684 	}
4685 
4686 	/* Get the normal PTE  */
4687 	old_pte = ptep_get(vmf->pte);
4688 	pte = pte_modify(old_pte, vma->vm_page_prot);
4689 
4690 	/*
4691 	 * Detect now whether the PTE could be writable; this information
4692 	 * is only valid while holding the PT lock.
4693 	 */
4694 	writable = pte_write(pte);
4695 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4696 	    can_change_pte_writable(vma, vmf->address, pte))
4697 		writable = true;
4698 
4699 	page = vm_normal_page(vma, vmf->address, pte);
4700 	if (!page || is_zone_device_page(page))
4701 		goto out_map;
4702 
4703 	/* TODO: handle PTE-mapped THP */
4704 	if (PageCompound(page))
4705 		goto out_map;
4706 
4707 	/*
4708 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4709 	 * much anyway since they can be in shared cache state. This misses
4710 	 * the case where a mapping is writable but the process never writes
4711 	 * to it but pte_write gets cleared during protection updates and
4712 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4713 	 * background writeback, dirty balancing and application behaviour.
4714 	 */
4715 	if (!writable)
4716 		flags |= TNF_NO_GROUP;
4717 
4718 	/*
4719 	 * Flag if the page is shared between multiple address spaces. This
4720 	 * is later used when determining whether to group tasks together
4721 	 */
4722 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4723 		flags |= TNF_SHARED;
4724 
4725 	page_nid = page_to_nid(page);
4726 	/*
4727 	 * For memory tiering mode, cpupid of slow memory page is used
4728 	 * to record page access time.  So use default value.
4729 	 */
4730 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4731 	    !node_is_toptier(page_nid))
4732 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4733 	else
4734 		last_cpupid = page_cpupid_last(page);
4735 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4736 			&flags);
4737 	if (target_nid == NUMA_NO_NODE) {
4738 		put_page(page);
4739 		goto out_map;
4740 	}
4741 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4742 	writable = false;
4743 
4744 	/* Migrate to the requested node */
4745 	if (migrate_misplaced_page(page, vma, target_nid)) {
4746 		page_nid = target_nid;
4747 		flags |= TNF_MIGRATED;
4748 	} else {
4749 		flags |= TNF_MIGRATE_FAIL;
4750 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4751 		spin_lock(vmf->ptl);
4752 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4753 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4754 			goto out;
4755 		}
4756 		goto out_map;
4757 	}
4758 
4759 out:
4760 	if (page_nid != NUMA_NO_NODE)
4761 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4762 	return 0;
4763 out_map:
4764 	/*
4765 	 * Make it present again, depending on how arch implements
4766 	 * non-accessible ptes, some can allow access by kernel mode.
4767 	 */
4768 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4769 	pte = pte_modify(old_pte, vma->vm_page_prot);
4770 	pte = pte_mkyoung(pte);
4771 	if (writable)
4772 		pte = pte_mkwrite(pte);
4773 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4774 	update_mmu_cache(vma, vmf->address, vmf->pte);
4775 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4776 	goto out;
4777 }
4778 
4779 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4780 {
4781 	if (vma_is_anonymous(vmf->vma))
4782 		return do_huge_pmd_anonymous_page(vmf);
4783 	if (vmf->vma->vm_ops->huge_fault)
4784 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4785 	return VM_FAULT_FALLBACK;
4786 }
4787 
4788 /* `inline' is required to avoid gcc 4.1.2 build error */
4789 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4790 {
4791 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4792 	vm_fault_t ret;
4793 
4794 	if (vma_is_anonymous(vmf->vma)) {
4795 		if (likely(!unshare) &&
4796 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4797 			return handle_userfault(vmf, VM_UFFD_WP);
4798 		return do_huge_pmd_wp_page(vmf);
4799 	}
4800 
4801 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4802 		if (vmf->vma->vm_ops->huge_fault) {
4803 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4804 			if (!(ret & VM_FAULT_FALLBACK))
4805 				return ret;
4806 		}
4807 	}
4808 
4809 	/* COW or write-notify handled on pte level: split pmd. */
4810 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4811 
4812 	return VM_FAULT_FALLBACK;
4813 }
4814 
4815 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4816 {
4817 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4818 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4819 	/* No support for anonymous transparent PUD pages yet */
4820 	if (vma_is_anonymous(vmf->vma))
4821 		return VM_FAULT_FALLBACK;
4822 	if (vmf->vma->vm_ops->huge_fault)
4823 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4824 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4825 	return VM_FAULT_FALLBACK;
4826 }
4827 
4828 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4829 {
4830 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4831 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4832 	vm_fault_t ret;
4833 
4834 	/* No support for anonymous transparent PUD pages yet */
4835 	if (vma_is_anonymous(vmf->vma))
4836 		goto split;
4837 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4838 		if (vmf->vma->vm_ops->huge_fault) {
4839 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4840 			if (!(ret & VM_FAULT_FALLBACK))
4841 				return ret;
4842 		}
4843 	}
4844 split:
4845 	/* COW or write-notify not handled on PUD level: split pud.*/
4846 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4847 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4848 	return VM_FAULT_FALLBACK;
4849 }
4850 
4851 /*
4852  * These routines also need to handle stuff like marking pages dirty
4853  * and/or accessed for architectures that don't do it in hardware (most
4854  * RISC architectures).  The early dirtying is also good on the i386.
4855  *
4856  * There is also a hook called "update_mmu_cache()" that architectures
4857  * with external mmu caches can use to update those (ie the Sparc or
4858  * PowerPC hashed page tables that act as extended TLBs).
4859  *
4860  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4861  * concurrent faults).
4862  *
4863  * The mmap_lock may have been released depending on flags and our return value.
4864  * See filemap_fault() and __folio_lock_or_retry().
4865  */
4866 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4867 {
4868 	pte_t entry;
4869 
4870 	if (unlikely(pmd_none(*vmf->pmd))) {
4871 		/*
4872 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4873 		 * want to allocate huge page, and if we expose page table
4874 		 * for an instant, it will be difficult to retract from
4875 		 * concurrent faults and from rmap lookups.
4876 		 */
4877 		vmf->pte = NULL;
4878 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4879 	} else {
4880 		/*
4881 		 * If a huge pmd materialized under us just retry later.  Use
4882 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4883 		 * of pmd_trans_huge() to ensure the pmd didn't become
4884 		 * pmd_trans_huge under us and then back to pmd_none, as a
4885 		 * result of MADV_DONTNEED running immediately after a huge pmd
4886 		 * fault in a different thread of this mm, in turn leading to a
4887 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4888 		 * that it is a regular pmd that we can walk with
4889 		 * pte_offset_map() and we can do that through an atomic read
4890 		 * in C, which is what pmd_trans_unstable() provides.
4891 		 */
4892 		if (pmd_devmap_trans_unstable(vmf->pmd))
4893 			return 0;
4894 		/*
4895 		 * A regular pmd is established and it can't morph into a huge
4896 		 * pmd from under us anymore at this point because we hold the
4897 		 * mmap_lock read mode and khugepaged takes it in write mode.
4898 		 * So now it's safe to run pte_offset_map().
4899 		 */
4900 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4901 		vmf->orig_pte = *vmf->pte;
4902 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4903 
4904 		/*
4905 		 * some architectures can have larger ptes than wordsize,
4906 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4907 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4908 		 * accesses.  The code below just needs a consistent view
4909 		 * for the ifs and we later double check anyway with the
4910 		 * ptl lock held. So here a barrier will do.
4911 		 */
4912 		barrier();
4913 		if (pte_none(vmf->orig_pte)) {
4914 			pte_unmap(vmf->pte);
4915 			vmf->pte = NULL;
4916 		}
4917 	}
4918 
4919 	if (!vmf->pte) {
4920 		if (vma_is_anonymous(vmf->vma))
4921 			return do_anonymous_page(vmf);
4922 		else
4923 			return do_fault(vmf);
4924 	}
4925 
4926 	if (!pte_present(vmf->orig_pte))
4927 		return do_swap_page(vmf);
4928 
4929 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4930 		return do_numa_page(vmf);
4931 
4932 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4933 	spin_lock(vmf->ptl);
4934 	entry = vmf->orig_pte;
4935 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4936 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4937 		goto unlock;
4938 	}
4939 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4940 		if (!pte_write(entry))
4941 			return do_wp_page(vmf);
4942 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4943 			entry = pte_mkdirty(entry);
4944 	}
4945 	entry = pte_mkyoung(entry);
4946 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4947 				vmf->flags & FAULT_FLAG_WRITE)) {
4948 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4949 	} else {
4950 		/* Skip spurious TLB flush for retried page fault */
4951 		if (vmf->flags & FAULT_FLAG_TRIED)
4952 			goto unlock;
4953 		/*
4954 		 * This is needed only for protection faults but the arch code
4955 		 * is not yet telling us if this is a protection fault or not.
4956 		 * This still avoids useless tlb flushes for .text page faults
4957 		 * with threads.
4958 		 */
4959 		if (vmf->flags & FAULT_FLAG_WRITE)
4960 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4961 	}
4962 unlock:
4963 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4964 	return 0;
4965 }
4966 
4967 /*
4968  * By the time we get here, we already hold the mm semaphore
4969  *
4970  * The mmap_lock may have been released depending on flags and our
4971  * return value.  See filemap_fault() and __folio_lock_or_retry().
4972  */
4973 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4974 		unsigned long address, unsigned int flags)
4975 {
4976 	struct vm_fault vmf = {
4977 		.vma = vma,
4978 		.address = address & PAGE_MASK,
4979 		.real_address = address,
4980 		.flags = flags,
4981 		.pgoff = linear_page_index(vma, address),
4982 		.gfp_mask = __get_fault_gfp_mask(vma),
4983 	};
4984 	struct mm_struct *mm = vma->vm_mm;
4985 	unsigned long vm_flags = vma->vm_flags;
4986 	pgd_t *pgd;
4987 	p4d_t *p4d;
4988 	vm_fault_t ret;
4989 
4990 	pgd = pgd_offset(mm, address);
4991 	p4d = p4d_alloc(mm, pgd, address);
4992 	if (!p4d)
4993 		return VM_FAULT_OOM;
4994 
4995 	vmf.pud = pud_alloc(mm, p4d, address);
4996 	if (!vmf.pud)
4997 		return VM_FAULT_OOM;
4998 retry_pud:
4999 	if (pud_none(*vmf.pud) &&
5000 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5001 		ret = create_huge_pud(&vmf);
5002 		if (!(ret & VM_FAULT_FALLBACK))
5003 			return ret;
5004 	} else {
5005 		pud_t orig_pud = *vmf.pud;
5006 
5007 		barrier();
5008 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5009 
5010 			/*
5011 			 * TODO once we support anonymous PUDs: NUMA case and
5012 			 * FAULT_FLAG_UNSHARE handling.
5013 			 */
5014 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5015 				ret = wp_huge_pud(&vmf, orig_pud);
5016 				if (!(ret & VM_FAULT_FALLBACK))
5017 					return ret;
5018 			} else {
5019 				huge_pud_set_accessed(&vmf, orig_pud);
5020 				return 0;
5021 			}
5022 		}
5023 	}
5024 
5025 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5026 	if (!vmf.pmd)
5027 		return VM_FAULT_OOM;
5028 
5029 	/* Huge pud page fault raced with pmd_alloc? */
5030 	if (pud_trans_unstable(vmf.pud))
5031 		goto retry_pud;
5032 
5033 	if (pmd_none(*vmf.pmd) &&
5034 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5035 		ret = create_huge_pmd(&vmf);
5036 		if (!(ret & VM_FAULT_FALLBACK))
5037 			return ret;
5038 	} else {
5039 		vmf.orig_pmd = *vmf.pmd;
5040 
5041 		barrier();
5042 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5043 			VM_BUG_ON(thp_migration_supported() &&
5044 					  !is_pmd_migration_entry(vmf.orig_pmd));
5045 			if (is_pmd_migration_entry(vmf.orig_pmd))
5046 				pmd_migration_entry_wait(mm, vmf.pmd);
5047 			return 0;
5048 		}
5049 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5050 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5051 				return do_huge_pmd_numa_page(&vmf);
5052 
5053 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5054 			    !pmd_write(vmf.orig_pmd)) {
5055 				ret = wp_huge_pmd(&vmf);
5056 				if (!(ret & VM_FAULT_FALLBACK))
5057 					return ret;
5058 			} else {
5059 				huge_pmd_set_accessed(&vmf);
5060 				return 0;
5061 			}
5062 		}
5063 	}
5064 
5065 	return handle_pte_fault(&vmf);
5066 }
5067 
5068 /**
5069  * mm_account_fault - Do page fault accounting
5070  *
5071  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5072  *        of perf event counters, but we'll still do the per-task accounting to
5073  *        the task who triggered this page fault.
5074  * @address: the faulted address.
5075  * @flags: the fault flags.
5076  * @ret: the fault retcode.
5077  *
5078  * This will take care of most of the page fault accounting.  Meanwhile, it
5079  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5080  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5081  * still be in per-arch page fault handlers at the entry of page fault.
5082  */
5083 static inline void mm_account_fault(struct pt_regs *regs,
5084 				    unsigned long address, unsigned int flags,
5085 				    vm_fault_t ret)
5086 {
5087 	bool major;
5088 
5089 	/*
5090 	 * We don't do accounting for some specific faults:
5091 	 *
5092 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5093 	 *   includes arch_vma_access_permitted() failing before reaching here.
5094 	 *   So this is not a "this many hardware page faults" counter.  We
5095 	 *   should use the hw profiling for that.
5096 	 *
5097 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5098 	 *   once they're completed.
5099 	 */
5100 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5101 		return;
5102 
5103 	/*
5104 	 * We define the fault as a major fault when the final successful fault
5105 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5106 	 * handle it immediately previously).
5107 	 */
5108 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5109 
5110 	if (major)
5111 		current->maj_flt++;
5112 	else
5113 		current->min_flt++;
5114 
5115 	/*
5116 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5117 	 * accounting for the per thread fault counters who triggered the
5118 	 * fault, and we skip the perf event updates.
5119 	 */
5120 	if (!regs)
5121 		return;
5122 
5123 	if (major)
5124 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5125 	else
5126 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5127 }
5128 
5129 #ifdef CONFIG_LRU_GEN
5130 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5131 {
5132 	/* the LRU algorithm only applies to accesses with recency */
5133 	current->in_lru_fault = vma_has_recency(vma);
5134 }
5135 
5136 static void lru_gen_exit_fault(void)
5137 {
5138 	current->in_lru_fault = false;
5139 }
5140 #else
5141 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5142 {
5143 }
5144 
5145 static void lru_gen_exit_fault(void)
5146 {
5147 }
5148 #endif /* CONFIG_LRU_GEN */
5149 
5150 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5151 				       unsigned int *flags)
5152 {
5153 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5154 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5155 			return VM_FAULT_SIGSEGV;
5156 		/*
5157 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5158 		 * just treat it like an ordinary read-fault otherwise.
5159 		 */
5160 		if (!is_cow_mapping(vma->vm_flags))
5161 			*flags &= ~FAULT_FLAG_UNSHARE;
5162 	} else if (*flags & FAULT_FLAG_WRITE) {
5163 		/* Write faults on read-only mappings are impossible ... */
5164 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5165 			return VM_FAULT_SIGSEGV;
5166 		/* ... and FOLL_FORCE only applies to COW mappings. */
5167 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5168 				 !is_cow_mapping(vma->vm_flags)))
5169 			return VM_FAULT_SIGSEGV;
5170 	}
5171 	return 0;
5172 }
5173 
5174 /*
5175  * By the time we get here, we already hold the mm semaphore
5176  *
5177  * The mmap_lock may have been released depending on flags and our
5178  * return value.  See filemap_fault() and __folio_lock_or_retry().
5179  */
5180 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5181 			   unsigned int flags, struct pt_regs *regs)
5182 {
5183 	vm_fault_t ret;
5184 
5185 	__set_current_state(TASK_RUNNING);
5186 
5187 	count_vm_event(PGFAULT);
5188 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
5189 
5190 	ret = sanitize_fault_flags(vma, &flags);
5191 	if (ret)
5192 		return ret;
5193 
5194 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5195 					    flags & FAULT_FLAG_INSTRUCTION,
5196 					    flags & FAULT_FLAG_REMOTE))
5197 		return VM_FAULT_SIGSEGV;
5198 
5199 	/*
5200 	 * Enable the memcg OOM handling for faults triggered in user
5201 	 * space.  Kernel faults are handled more gracefully.
5202 	 */
5203 	if (flags & FAULT_FLAG_USER)
5204 		mem_cgroup_enter_user_fault();
5205 
5206 	lru_gen_enter_fault(vma);
5207 
5208 	if (unlikely(is_vm_hugetlb_page(vma)))
5209 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5210 	else
5211 		ret = __handle_mm_fault(vma, address, flags);
5212 
5213 	lru_gen_exit_fault();
5214 
5215 	if (flags & FAULT_FLAG_USER) {
5216 		mem_cgroup_exit_user_fault();
5217 		/*
5218 		 * The task may have entered a memcg OOM situation but
5219 		 * if the allocation error was handled gracefully (no
5220 		 * VM_FAULT_OOM), there is no need to kill anything.
5221 		 * Just clean up the OOM state peacefully.
5222 		 */
5223 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5224 			mem_cgroup_oom_synchronize(false);
5225 	}
5226 
5227 	mm_account_fault(regs, address, flags, ret);
5228 
5229 	return ret;
5230 }
5231 EXPORT_SYMBOL_GPL(handle_mm_fault);
5232 
5233 #ifndef __PAGETABLE_P4D_FOLDED
5234 /*
5235  * Allocate p4d page table.
5236  * We've already handled the fast-path in-line.
5237  */
5238 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5239 {
5240 	p4d_t *new = p4d_alloc_one(mm, address);
5241 	if (!new)
5242 		return -ENOMEM;
5243 
5244 	spin_lock(&mm->page_table_lock);
5245 	if (pgd_present(*pgd)) {	/* Another has populated it */
5246 		p4d_free(mm, new);
5247 	} else {
5248 		smp_wmb(); /* See comment in pmd_install() */
5249 		pgd_populate(mm, pgd, new);
5250 	}
5251 	spin_unlock(&mm->page_table_lock);
5252 	return 0;
5253 }
5254 #endif /* __PAGETABLE_P4D_FOLDED */
5255 
5256 #ifndef __PAGETABLE_PUD_FOLDED
5257 /*
5258  * Allocate page upper directory.
5259  * We've already handled the fast-path in-line.
5260  */
5261 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5262 {
5263 	pud_t *new = pud_alloc_one(mm, address);
5264 	if (!new)
5265 		return -ENOMEM;
5266 
5267 	spin_lock(&mm->page_table_lock);
5268 	if (!p4d_present(*p4d)) {
5269 		mm_inc_nr_puds(mm);
5270 		smp_wmb(); /* See comment in pmd_install() */
5271 		p4d_populate(mm, p4d, new);
5272 	} else	/* Another has populated it */
5273 		pud_free(mm, new);
5274 	spin_unlock(&mm->page_table_lock);
5275 	return 0;
5276 }
5277 #endif /* __PAGETABLE_PUD_FOLDED */
5278 
5279 #ifndef __PAGETABLE_PMD_FOLDED
5280 /*
5281  * Allocate page middle directory.
5282  * We've already handled the fast-path in-line.
5283  */
5284 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5285 {
5286 	spinlock_t *ptl;
5287 	pmd_t *new = pmd_alloc_one(mm, address);
5288 	if (!new)
5289 		return -ENOMEM;
5290 
5291 	ptl = pud_lock(mm, pud);
5292 	if (!pud_present(*pud)) {
5293 		mm_inc_nr_pmds(mm);
5294 		smp_wmb(); /* See comment in pmd_install() */
5295 		pud_populate(mm, pud, new);
5296 	} else {	/* Another has populated it */
5297 		pmd_free(mm, new);
5298 	}
5299 	spin_unlock(ptl);
5300 	return 0;
5301 }
5302 #endif /* __PAGETABLE_PMD_FOLDED */
5303 
5304 /**
5305  * follow_pte - look up PTE at a user virtual address
5306  * @mm: the mm_struct of the target address space
5307  * @address: user virtual address
5308  * @ptepp: location to store found PTE
5309  * @ptlp: location to store the lock for the PTE
5310  *
5311  * On a successful return, the pointer to the PTE is stored in @ptepp;
5312  * the corresponding lock is taken and its location is stored in @ptlp.
5313  * The contents of the PTE are only stable until @ptlp is released;
5314  * any further use, if any, must be protected against invalidation
5315  * with MMU notifiers.
5316  *
5317  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5318  * should be taken for read.
5319  *
5320  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5321  * it is not a good general-purpose API.
5322  *
5323  * Return: zero on success, -ve otherwise.
5324  */
5325 int follow_pte(struct mm_struct *mm, unsigned long address,
5326 	       pte_t **ptepp, spinlock_t **ptlp)
5327 {
5328 	pgd_t *pgd;
5329 	p4d_t *p4d;
5330 	pud_t *pud;
5331 	pmd_t *pmd;
5332 	pte_t *ptep;
5333 
5334 	pgd = pgd_offset(mm, address);
5335 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5336 		goto out;
5337 
5338 	p4d = p4d_offset(pgd, address);
5339 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5340 		goto out;
5341 
5342 	pud = pud_offset(p4d, address);
5343 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5344 		goto out;
5345 
5346 	pmd = pmd_offset(pud, address);
5347 	VM_BUG_ON(pmd_trans_huge(*pmd));
5348 
5349 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5350 		goto out;
5351 
5352 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5353 	if (!pte_present(*ptep))
5354 		goto unlock;
5355 	*ptepp = ptep;
5356 	return 0;
5357 unlock:
5358 	pte_unmap_unlock(ptep, *ptlp);
5359 out:
5360 	return -EINVAL;
5361 }
5362 EXPORT_SYMBOL_GPL(follow_pte);
5363 
5364 /**
5365  * follow_pfn - look up PFN at a user virtual address
5366  * @vma: memory mapping
5367  * @address: user virtual address
5368  * @pfn: location to store found PFN
5369  *
5370  * Only IO mappings and raw PFN mappings are allowed.
5371  *
5372  * This function does not allow the caller to read the permissions
5373  * of the PTE.  Do not use it.
5374  *
5375  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5376  */
5377 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5378 	unsigned long *pfn)
5379 {
5380 	int ret = -EINVAL;
5381 	spinlock_t *ptl;
5382 	pte_t *ptep;
5383 
5384 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5385 		return ret;
5386 
5387 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5388 	if (ret)
5389 		return ret;
5390 	*pfn = pte_pfn(*ptep);
5391 	pte_unmap_unlock(ptep, ptl);
5392 	return 0;
5393 }
5394 EXPORT_SYMBOL(follow_pfn);
5395 
5396 #ifdef CONFIG_HAVE_IOREMAP_PROT
5397 int follow_phys(struct vm_area_struct *vma,
5398 		unsigned long address, unsigned int flags,
5399 		unsigned long *prot, resource_size_t *phys)
5400 {
5401 	int ret = -EINVAL;
5402 	pte_t *ptep, pte;
5403 	spinlock_t *ptl;
5404 
5405 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5406 		goto out;
5407 
5408 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5409 		goto out;
5410 	pte = *ptep;
5411 
5412 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5413 		goto unlock;
5414 
5415 	*prot = pgprot_val(pte_pgprot(pte));
5416 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5417 
5418 	ret = 0;
5419 unlock:
5420 	pte_unmap_unlock(ptep, ptl);
5421 out:
5422 	return ret;
5423 }
5424 
5425 /**
5426  * generic_access_phys - generic implementation for iomem mmap access
5427  * @vma: the vma to access
5428  * @addr: userspace address, not relative offset within @vma
5429  * @buf: buffer to read/write
5430  * @len: length of transfer
5431  * @write: set to FOLL_WRITE when writing, otherwise reading
5432  *
5433  * This is a generic implementation for &vm_operations_struct.access for an
5434  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5435  * not page based.
5436  */
5437 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5438 			void *buf, int len, int write)
5439 {
5440 	resource_size_t phys_addr;
5441 	unsigned long prot = 0;
5442 	void __iomem *maddr;
5443 	pte_t *ptep, pte;
5444 	spinlock_t *ptl;
5445 	int offset = offset_in_page(addr);
5446 	int ret = -EINVAL;
5447 
5448 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5449 		return -EINVAL;
5450 
5451 retry:
5452 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5453 		return -EINVAL;
5454 	pte = *ptep;
5455 	pte_unmap_unlock(ptep, ptl);
5456 
5457 	prot = pgprot_val(pte_pgprot(pte));
5458 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5459 
5460 	if ((write & FOLL_WRITE) && !pte_write(pte))
5461 		return -EINVAL;
5462 
5463 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5464 	if (!maddr)
5465 		return -ENOMEM;
5466 
5467 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5468 		goto out_unmap;
5469 
5470 	if (!pte_same(pte, *ptep)) {
5471 		pte_unmap_unlock(ptep, ptl);
5472 		iounmap(maddr);
5473 
5474 		goto retry;
5475 	}
5476 
5477 	if (write)
5478 		memcpy_toio(maddr + offset, buf, len);
5479 	else
5480 		memcpy_fromio(buf, maddr + offset, len);
5481 	ret = len;
5482 	pte_unmap_unlock(ptep, ptl);
5483 out_unmap:
5484 	iounmap(maddr);
5485 
5486 	return ret;
5487 }
5488 EXPORT_SYMBOL_GPL(generic_access_phys);
5489 #endif
5490 
5491 /*
5492  * Access another process' address space as given in mm.
5493  */
5494 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5495 		       int len, unsigned int gup_flags)
5496 {
5497 	struct vm_area_struct *vma;
5498 	void *old_buf = buf;
5499 	int write = gup_flags & FOLL_WRITE;
5500 
5501 	if (mmap_read_lock_killable(mm))
5502 		return 0;
5503 
5504 	/* ignore errors, just check how much was successfully transferred */
5505 	while (len) {
5506 		int bytes, ret, offset;
5507 		void *maddr;
5508 		struct page *page = NULL;
5509 
5510 		ret = get_user_pages_remote(mm, addr, 1,
5511 				gup_flags, &page, &vma, NULL);
5512 		if (ret <= 0) {
5513 #ifndef CONFIG_HAVE_IOREMAP_PROT
5514 			break;
5515 #else
5516 			/*
5517 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5518 			 * we can access using slightly different code.
5519 			 */
5520 			vma = vma_lookup(mm, addr);
5521 			if (!vma)
5522 				break;
5523 			if (vma->vm_ops && vma->vm_ops->access)
5524 				ret = vma->vm_ops->access(vma, addr, buf,
5525 							  len, write);
5526 			if (ret <= 0)
5527 				break;
5528 			bytes = ret;
5529 #endif
5530 		} else {
5531 			bytes = len;
5532 			offset = addr & (PAGE_SIZE-1);
5533 			if (bytes > PAGE_SIZE-offset)
5534 				bytes = PAGE_SIZE-offset;
5535 
5536 			maddr = kmap(page);
5537 			if (write) {
5538 				copy_to_user_page(vma, page, addr,
5539 						  maddr + offset, buf, bytes);
5540 				set_page_dirty_lock(page);
5541 			} else {
5542 				copy_from_user_page(vma, page, addr,
5543 						    buf, maddr + offset, bytes);
5544 			}
5545 			kunmap(page);
5546 			put_page(page);
5547 		}
5548 		len -= bytes;
5549 		buf += bytes;
5550 		addr += bytes;
5551 	}
5552 	mmap_read_unlock(mm);
5553 
5554 	return buf - old_buf;
5555 }
5556 
5557 /**
5558  * access_remote_vm - access another process' address space
5559  * @mm:		the mm_struct of the target address space
5560  * @addr:	start address to access
5561  * @buf:	source or destination buffer
5562  * @len:	number of bytes to transfer
5563  * @gup_flags:	flags modifying lookup behaviour
5564  *
5565  * The caller must hold a reference on @mm.
5566  *
5567  * Return: number of bytes copied from source to destination.
5568  */
5569 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5570 		void *buf, int len, unsigned int gup_flags)
5571 {
5572 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5573 }
5574 
5575 /*
5576  * Access another process' address space.
5577  * Source/target buffer must be kernel space,
5578  * Do not walk the page table directly, use get_user_pages
5579  */
5580 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5581 		void *buf, int len, unsigned int gup_flags)
5582 {
5583 	struct mm_struct *mm;
5584 	int ret;
5585 
5586 	mm = get_task_mm(tsk);
5587 	if (!mm)
5588 		return 0;
5589 
5590 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5591 
5592 	mmput(mm);
5593 
5594 	return ret;
5595 }
5596 EXPORT_SYMBOL_GPL(access_process_vm);
5597 
5598 /*
5599  * Print the name of a VMA.
5600  */
5601 void print_vma_addr(char *prefix, unsigned long ip)
5602 {
5603 	struct mm_struct *mm = current->mm;
5604 	struct vm_area_struct *vma;
5605 
5606 	/*
5607 	 * we might be running from an atomic context so we cannot sleep
5608 	 */
5609 	if (!mmap_read_trylock(mm))
5610 		return;
5611 
5612 	vma = find_vma(mm, ip);
5613 	if (vma && vma->vm_file) {
5614 		struct file *f = vma->vm_file;
5615 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5616 		if (buf) {
5617 			char *p;
5618 
5619 			p = file_path(f, buf, PAGE_SIZE);
5620 			if (IS_ERR(p))
5621 				p = "?";
5622 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5623 					vma->vm_start,
5624 					vma->vm_end - vma->vm_start);
5625 			free_page((unsigned long)buf);
5626 		}
5627 	}
5628 	mmap_read_unlock(mm);
5629 }
5630 
5631 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5632 void __might_fault(const char *file, int line)
5633 {
5634 	if (pagefault_disabled())
5635 		return;
5636 	__might_sleep(file, line);
5637 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5638 	if (current->mm)
5639 		might_lock_read(&current->mm->mmap_lock);
5640 #endif
5641 }
5642 EXPORT_SYMBOL(__might_fault);
5643 #endif
5644 
5645 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5646 /*
5647  * Process all subpages of the specified huge page with the specified
5648  * operation.  The target subpage will be processed last to keep its
5649  * cache lines hot.
5650  */
5651 static inline void process_huge_page(
5652 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5653 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5654 	void *arg)
5655 {
5656 	int i, n, base, l;
5657 	unsigned long addr = addr_hint &
5658 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5659 
5660 	/* Process target subpage last to keep its cache lines hot */
5661 	might_sleep();
5662 	n = (addr_hint - addr) / PAGE_SIZE;
5663 	if (2 * n <= pages_per_huge_page) {
5664 		/* If target subpage in first half of huge page */
5665 		base = 0;
5666 		l = n;
5667 		/* Process subpages at the end of huge page */
5668 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5669 			cond_resched();
5670 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5671 		}
5672 	} else {
5673 		/* If target subpage in second half of huge page */
5674 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5675 		l = pages_per_huge_page - n;
5676 		/* Process subpages at the begin of huge page */
5677 		for (i = 0; i < base; i++) {
5678 			cond_resched();
5679 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5680 		}
5681 	}
5682 	/*
5683 	 * Process remaining subpages in left-right-left-right pattern
5684 	 * towards the target subpage
5685 	 */
5686 	for (i = 0; i < l; i++) {
5687 		int left_idx = base + i;
5688 		int right_idx = base + 2 * l - 1 - i;
5689 
5690 		cond_resched();
5691 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5692 		cond_resched();
5693 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5694 	}
5695 }
5696 
5697 static void clear_gigantic_page(struct page *page,
5698 				unsigned long addr,
5699 				unsigned int pages_per_huge_page)
5700 {
5701 	int i;
5702 	struct page *p;
5703 
5704 	might_sleep();
5705 	for (i = 0; i < pages_per_huge_page; i++) {
5706 		p = nth_page(page, i);
5707 		cond_resched();
5708 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5709 	}
5710 }
5711 
5712 static void clear_subpage(unsigned long addr, int idx, void *arg)
5713 {
5714 	struct page *page = arg;
5715 
5716 	clear_user_highpage(page + idx, addr);
5717 }
5718 
5719 void clear_huge_page(struct page *page,
5720 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5721 {
5722 	unsigned long addr = addr_hint &
5723 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5724 
5725 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5726 		clear_gigantic_page(page, addr, pages_per_huge_page);
5727 		return;
5728 	}
5729 
5730 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5731 }
5732 
5733 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5734 				    unsigned long addr,
5735 				    struct vm_area_struct *vma,
5736 				    unsigned int pages_per_huge_page)
5737 {
5738 	int i;
5739 	struct page *dst_base = dst;
5740 	struct page *src_base = src;
5741 
5742 	for (i = 0; i < pages_per_huge_page; i++) {
5743 		dst = nth_page(dst_base, i);
5744 		src = nth_page(src_base, i);
5745 
5746 		cond_resched();
5747 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5748 	}
5749 }
5750 
5751 struct copy_subpage_arg {
5752 	struct page *dst;
5753 	struct page *src;
5754 	struct vm_area_struct *vma;
5755 };
5756 
5757 static void copy_subpage(unsigned long addr, int idx, void *arg)
5758 {
5759 	struct copy_subpage_arg *copy_arg = arg;
5760 
5761 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5762 			   addr, copy_arg->vma);
5763 }
5764 
5765 void copy_user_huge_page(struct page *dst, struct page *src,
5766 			 unsigned long addr_hint, struct vm_area_struct *vma,
5767 			 unsigned int pages_per_huge_page)
5768 {
5769 	unsigned long addr = addr_hint &
5770 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5771 	struct copy_subpage_arg arg = {
5772 		.dst = dst,
5773 		.src = src,
5774 		.vma = vma,
5775 	};
5776 
5777 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5778 		copy_user_gigantic_page(dst, src, addr, vma,
5779 					pages_per_huge_page);
5780 		return;
5781 	}
5782 
5783 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5784 }
5785 
5786 long copy_huge_page_from_user(struct page *dst_page,
5787 				const void __user *usr_src,
5788 				unsigned int pages_per_huge_page,
5789 				bool allow_pagefault)
5790 {
5791 	void *page_kaddr;
5792 	unsigned long i, rc = 0;
5793 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5794 	struct page *subpage;
5795 
5796 	for (i = 0; i < pages_per_huge_page; i++) {
5797 		subpage = nth_page(dst_page, i);
5798 		if (allow_pagefault)
5799 			page_kaddr = kmap(subpage);
5800 		else
5801 			page_kaddr = kmap_atomic(subpage);
5802 		rc = copy_from_user(page_kaddr,
5803 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5804 		if (allow_pagefault)
5805 			kunmap(subpage);
5806 		else
5807 			kunmap_atomic(page_kaddr);
5808 
5809 		ret_val -= (PAGE_SIZE - rc);
5810 		if (rc)
5811 			break;
5812 
5813 		flush_dcache_page(subpage);
5814 
5815 		cond_resched();
5816 	}
5817 	return ret_val;
5818 }
5819 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5820 
5821 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5822 
5823 static struct kmem_cache *page_ptl_cachep;
5824 
5825 void __init ptlock_cache_init(void)
5826 {
5827 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5828 			SLAB_PANIC, NULL);
5829 }
5830 
5831 bool ptlock_alloc(struct page *page)
5832 {
5833 	spinlock_t *ptl;
5834 
5835 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5836 	if (!ptl)
5837 		return false;
5838 	page->ptl = ptl;
5839 	return true;
5840 }
5841 
5842 void ptlock_free(struct page *page)
5843 {
5844 	kmem_cache_free(page_ptl_cachep, page->ptl);
5845 }
5846 #endif
5847