1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/memory.c 4 * 5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 6 */ 7 8 /* 9 * demand-loading started 01.12.91 - seems it is high on the list of 10 * things wanted, and it should be easy to implement. - Linus 11 */ 12 13 /* 14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 15 * pages started 02.12.91, seems to work. - Linus. 16 * 17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 18 * would have taken more than the 6M I have free, but it worked well as 19 * far as I could see. 20 * 21 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 22 */ 23 24 /* 25 * Real VM (paging to/from disk) started 18.12.91. Much more work and 26 * thought has to go into this. Oh, well.. 27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 28 * Found it. Everything seems to work now. 29 * 20.12.91 - Ok, making the swap-device changeable like the root. 30 */ 31 32 /* 33 * 05.04.94 - Multi-page memory management added for v1.1. 34 * Idea by Alex Bligh (alex@cconcepts.co.uk) 35 * 36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 37 * (Gerhard.Wichert@pdb.siemens.de) 38 * 39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 40 */ 41 42 #include <linux/kernel_stat.h> 43 #include <linux/mm.h> 44 #include <linux/mm_inline.h> 45 #include <linux/sched/mm.h> 46 #include <linux/sched/coredump.h> 47 #include <linux/sched/numa_balancing.h> 48 #include <linux/sched/task.h> 49 #include <linux/hugetlb.h> 50 #include <linux/mman.h> 51 #include <linux/swap.h> 52 #include <linux/highmem.h> 53 #include <linux/pagemap.h> 54 #include <linux/memremap.h> 55 #include <linux/kmsan.h> 56 #include <linux/ksm.h> 57 #include <linux/rmap.h> 58 #include <linux/export.h> 59 #include <linux/delayacct.h> 60 #include <linux/init.h> 61 #include <linux/pfn_t.h> 62 #include <linux/writeback.h> 63 #include <linux/memcontrol.h> 64 #include <linux/mmu_notifier.h> 65 #include <linux/swapops.h> 66 #include <linux/elf.h> 67 #include <linux/gfp.h> 68 #include <linux/migrate.h> 69 #include <linux/string.h> 70 #include <linux/memory-tiers.h> 71 #include <linux/debugfs.h> 72 #include <linux/userfaultfd_k.h> 73 #include <linux/dax.h> 74 #include <linux/oom.h> 75 #include <linux/numa.h> 76 #include <linux/perf_event.h> 77 #include <linux/ptrace.h> 78 #include <linux/vmalloc.h> 79 #include <linux/sched/sysctl.h> 80 81 #include <trace/events/kmem.h> 82 83 #include <asm/io.h> 84 #include <asm/mmu_context.h> 85 #include <asm/pgalloc.h> 86 #include <linux/uaccess.h> 87 #include <asm/tlb.h> 88 #include <asm/tlbflush.h> 89 90 #include "pgalloc-track.h" 91 #include "internal.h" 92 #include "swap.h" 93 94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 96 #endif 97 98 #ifndef CONFIG_NUMA 99 unsigned long max_mapnr; 100 EXPORT_SYMBOL(max_mapnr); 101 102 struct page *mem_map; 103 EXPORT_SYMBOL(mem_map); 104 #endif 105 106 static vm_fault_t do_fault(struct vm_fault *vmf); 107 108 /* 109 * A number of key systems in x86 including ioremap() rely on the assumption 110 * that high_memory defines the upper bound on direct map memory, then end 111 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 112 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 113 * and ZONE_HIGHMEM. 114 */ 115 void *high_memory; 116 EXPORT_SYMBOL(high_memory); 117 118 /* 119 * Randomize the address space (stacks, mmaps, brk, etc.). 120 * 121 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 122 * as ancient (libc5 based) binaries can segfault. ) 123 */ 124 int randomize_va_space __read_mostly = 125 #ifdef CONFIG_COMPAT_BRK 126 1; 127 #else 128 2; 129 #endif 130 131 #ifndef arch_wants_old_prefaulted_pte 132 static inline bool arch_wants_old_prefaulted_pte(void) 133 { 134 /* 135 * Transitioning a PTE from 'old' to 'young' can be expensive on 136 * some architectures, even if it's performed in hardware. By 137 * default, "false" means prefaulted entries will be 'young'. 138 */ 139 return false; 140 } 141 #endif 142 143 static int __init disable_randmaps(char *s) 144 { 145 randomize_va_space = 0; 146 return 1; 147 } 148 __setup("norandmaps", disable_randmaps); 149 150 unsigned long zero_pfn __read_mostly; 151 EXPORT_SYMBOL(zero_pfn); 152 153 unsigned long highest_memmap_pfn __read_mostly; 154 155 /* 156 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 157 */ 158 static int __init init_zero_pfn(void) 159 { 160 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 161 return 0; 162 } 163 early_initcall(init_zero_pfn); 164 165 void mm_trace_rss_stat(struct mm_struct *mm, int member) 166 { 167 trace_rss_stat(mm, member); 168 } 169 170 /* 171 * Note: this doesn't free the actual pages themselves. That 172 * has been handled earlier when unmapping all the memory regions. 173 */ 174 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 175 unsigned long addr) 176 { 177 pgtable_t token = pmd_pgtable(*pmd); 178 pmd_clear(pmd); 179 pte_free_tlb(tlb, token, addr); 180 mm_dec_nr_ptes(tlb->mm); 181 } 182 183 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 184 unsigned long addr, unsigned long end, 185 unsigned long floor, unsigned long ceiling) 186 { 187 pmd_t *pmd; 188 unsigned long next; 189 unsigned long start; 190 191 start = addr; 192 pmd = pmd_offset(pud, addr); 193 do { 194 next = pmd_addr_end(addr, end); 195 if (pmd_none_or_clear_bad(pmd)) 196 continue; 197 free_pte_range(tlb, pmd, addr); 198 } while (pmd++, addr = next, addr != end); 199 200 start &= PUD_MASK; 201 if (start < floor) 202 return; 203 if (ceiling) { 204 ceiling &= PUD_MASK; 205 if (!ceiling) 206 return; 207 } 208 if (end - 1 > ceiling - 1) 209 return; 210 211 pmd = pmd_offset(pud, start); 212 pud_clear(pud); 213 pmd_free_tlb(tlb, pmd, start); 214 mm_dec_nr_pmds(tlb->mm); 215 } 216 217 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 218 unsigned long addr, unsigned long end, 219 unsigned long floor, unsigned long ceiling) 220 { 221 pud_t *pud; 222 unsigned long next; 223 unsigned long start; 224 225 start = addr; 226 pud = pud_offset(p4d, addr); 227 do { 228 next = pud_addr_end(addr, end); 229 if (pud_none_or_clear_bad(pud)) 230 continue; 231 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 232 } while (pud++, addr = next, addr != end); 233 234 start &= P4D_MASK; 235 if (start < floor) 236 return; 237 if (ceiling) { 238 ceiling &= P4D_MASK; 239 if (!ceiling) 240 return; 241 } 242 if (end - 1 > ceiling - 1) 243 return; 244 245 pud = pud_offset(p4d, start); 246 p4d_clear(p4d); 247 pud_free_tlb(tlb, pud, start); 248 mm_dec_nr_puds(tlb->mm); 249 } 250 251 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 252 unsigned long addr, unsigned long end, 253 unsigned long floor, unsigned long ceiling) 254 { 255 p4d_t *p4d; 256 unsigned long next; 257 unsigned long start; 258 259 start = addr; 260 p4d = p4d_offset(pgd, addr); 261 do { 262 next = p4d_addr_end(addr, end); 263 if (p4d_none_or_clear_bad(p4d)) 264 continue; 265 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 266 } while (p4d++, addr = next, addr != end); 267 268 start &= PGDIR_MASK; 269 if (start < floor) 270 return; 271 if (ceiling) { 272 ceiling &= PGDIR_MASK; 273 if (!ceiling) 274 return; 275 } 276 if (end - 1 > ceiling - 1) 277 return; 278 279 p4d = p4d_offset(pgd, start); 280 pgd_clear(pgd); 281 p4d_free_tlb(tlb, p4d, start); 282 } 283 284 /* 285 * This function frees user-level page tables of a process. 286 */ 287 void free_pgd_range(struct mmu_gather *tlb, 288 unsigned long addr, unsigned long end, 289 unsigned long floor, unsigned long ceiling) 290 { 291 pgd_t *pgd; 292 unsigned long next; 293 294 /* 295 * The next few lines have given us lots of grief... 296 * 297 * Why are we testing PMD* at this top level? Because often 298 * there will be no work to do at all, and we'd prefer not to 299 * go all the way down to the bottom just to discover that. 300 * 301 * Why all these "- 1"s? Because 0 represents both the bottom 302 * of the address space and the top of it (using -1 for the 303 * top wouldn't help much: the masks would do the wrong thing). 304 * The rule is that addr 0 and floor 0 refer to the bottom of 305 * the address space, but end 0 and ceiling 0 refer to the top 306 * Comparisons need to use "end - 1" and "ceiling - 1" (though 307 * that end 0 case should be mythical). 308 * 309 * Wherever addr is brought up or ceiling brought down, we must 310 * be careful to reject "the opposite 0" before it confuses the 311 * subsequent tests. But what about where end is brought down 312 * by PMD_SIZE below? no, end can't go down to 0 there. 313 * 314 * Whereas we round start (addr) and ceiling down, by different 315 * masks at different levels, in order to test whether a table 316 * now has no other vmas using it, so can be freed, we don't 317 * bother to round floor or end up - the tests don't need that. 318 */ 319 320 addr &= PMD_MASK; 321 if (addr < floor) { 322 addr += PMD_SIZE; 323 if (!addr) 324 return; 325 } 326 if (ceiling) { 327 ceiling &= PMD_MASK; 328 if (!ceiling) 329 return; 330 } 331 if (end - 1 > ceiling - 1) 332 end -= PMD_SIZE; 333 if (addr > end - 1) 334 return; 335 /* 336 * We add page table cache pages with PAGE_SIZE, 337 * (see pte_free_tlb()), flush the tlb if we need 338 */ 339 tlb_change_page_size(tlb, PAGE_SIZE); 340 pgd = pgd_offset(tlb->mm, addr); 341 do { 342 next = pgd_addr_end(addr, end); 343 if (pgd_none_or_clear_bad(pgd)) 344 continue; 345 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 346 } while (pgd++, addr = next, addr != end); 347 } 348 349 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt, 350 struct vm_area_struct *vma, unsigned long floor, 351 unsigned long ceiling) 352 { 353 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 354 355 do { 356 unsigned long addr = vma->vm_start; 357 struct vm_area_struct *next; 358 359 /* 360 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may 361 * be 0. This will underflow and is okay. 362 */ 363 next = mas_find(&mas, ceiling - 1); 364 365 /* 366 * Hide vma from rmap and truncate_pagecache before freeing 367 * pgtables 368 */ 369 unlink_anon_vmas(vma); 370 unlink_file_vma(vma); 371 372 if (is_vm_hugetlb_page(vma)) { 373 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 374 floor, next ? next->vm_start : ceiling); 375 } else { 376 /* 377 * Optimization: gather nearby vmas into one call down 378 */ 379 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 380 && !is_vm_hugetlb_page(next)) { 381 vma = next; 382 next = mas_find(&mas, ceiling - 1); 383 unlink_anon_vmas(vma); 384 unlink_file_vma(vma); 385 } 386 free_pgd_range(tlb, addr, vma->vm_end, 387 floor, next ? next->vm_start : ceiling); 388 } 389 vma = next; 390 } while (vma); 391 } 392 393 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte) 394 { 395 spinlock_t *ptl = pmd_lock(mm, pmd); 396 397 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 398 mm_inc_nr_ptes(mm); 399 /* 400 * Ensure all pte setup (eg. pte page lock and page clearing) are 401 * visible before the pte is made visible to other CPUs by being 402 * put into page tables. 403 * 404 * The other side of the story is the pointer chasing in the page 405 * table walking code (when walking the page table without locking; 406 * ie. most of the time). Fortunately, these data accesses consist 407 * of a chain of data-dependent loads, meaning most CPUs (alpha 408 * being the notable exception) will already guarantee loads are 409 * seen in-order. See the alpha page table accessors for the 410 * smp_rmb() barriers in page table walking code. 411 */ 412 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 413 pmd_populate(mm, pmd, *pte); 414 *pte = NULL; 415 } 416 spin_unlock(ptl); 417 } 418 419 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 420 { 421 pgtable_t new = pte_alloc_one(mm); 422 if (!new) 423 return -ENOMEM; 424 425 pmd_install(mm, pmd, &new); 426 if (new) 427 pte_free(mm, new); 428 return 0; 429 } 430 431 int __pte_alloc_kernel(pmd_t *pmd) 432 { 433 pte_t *new = pte_alloc_one_kernel(&init_mm); 434 if (!new) 435 return -ENOMEM; 436 437 spin_lock(&init_mm.page_table_lock); 438 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 439 smp_wmb(); /* See comment in pmd_install() */ 440 pmd_populate_kernel(&init_mm, pmd, new); 441 new = NULL; 442 } 443 spin_unlock(&init_mm.page_table_lock); 444 if (new) 445 pte_free_kernel(&init_mm, new); 446 return 0; 447 } 448 449 static inline void init_rss_vec(int *rss) 450 { 451 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 452 } 453 454 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 455 { 456 int i; 457 458 if (current->mm == mm) 459 sync_mm_rss(mm); 460 for (i = 0; i < NR_MM_COUNTERS; i++) 461 if (rss[i]) 462 add_mm_counter(mm, i, rss[i]); 463 } 464 465 /* 466 * This function is called to print an error when a bad pte 467 * is found. For example, we might have a PFN-mapped pte in 468 * a region that doesn't allow it. 469 * 470 * The calling function must still handle the error. 471 */ 472 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 473 pte_t pte, struct page *page) 474 { 475 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 476 p4d_t *p4d = p4d_offset(pgd, addr); 477 pud_t *pud = pud_offset(p4d, addr); 478 pmd_t *pmd = pmd_offset(pud, addr); 479 struct address_space *mapping; 480 pgoff_t index; 481 static unsigned long resume; 482 static unsigned long nr_shown; 483 static unsigned long nr_unshown; 484 485 /* 486 * Allow a burst of 60 reports, then keep quiet for that minute; 487 * or allow a steady drip of one report per second. 488 */ 489 if (nr_shown == 60) { 490 if (time_before(jiffies, resume)) { 491 nr_unshown++; 492 return; 493 } 494 if (nr_unshown) { 495 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 496 nr_unshown); 497 nr_unshown = 0; 498 } 499 nr_shown = 0; 500 } 501 if (nr_shown++ == 0) 502 resume = jiffies + 60 * HZ; 503 504 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 505 index = linear_page_index(vma, addr); 506 507 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 508 current->comm, 509 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 510 if (page) 511 dump_page(page, "bad pte"); 512 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n", 513 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 514 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n", 515 vma->vm_file, 516 vma->vm_ops ? vma->vm_ops->fault : NULL, 517 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 518 mapping ? mapping->a_ops->read_folio : NULL); 519 dump_stack(); 520 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 521 } 522 523 /* 524 * vm_normal_page -- This function gets the "struct page" associated with a pte. 525 * 526 * "Special" mappings do not wish to be associated with a "struct page" (either 527 * it doesn't exist, or it exists but they don't want to touch it). In this 528 * case, NULL is returned here. "Normal" mappings do have a struct page. 529 * 530 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 531 * pte bit, in which case this function is trivial. Secondly, an architecture 532 * may not have a spare pte bit, which requires a more complicated scheme, 533 * described below. 534 * 535 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 536 * special mapping (even if there are underlying and valid "struct pages"). 537 * COWed pages of a VM_PFNMAP are always normal. 538 * 539 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 540 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 541 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 542 * mapping will always honor the rule 543 * 544 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 545 * 546 * And for normal mappings this is false. 547 * 548 * This restricts such mappings to be a linear translation from virtual address 549 * to pfn. To get around this restriction, we allow arbitrary mappings so long 550 * as the vma is not a COW mapping; in that case, we know that all ptes are 551 * special (because none can have been COWed). 552 * 553 * 554 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 555 * 556 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 557 * page" backing, however the difference is that _all_ pages with a struct 558 * page (that is, those where pfn_valid is true) are refcounted and considered 559 * normal pages by the VM. The disadvantage is that pages are refcounted 560 * (which can be slower and simply not an option for some PFNMAP users). The 561 * advantage is that we don't have to follow the strict linearity rule of 562 * PFNMAP mappings in order to support COWable mappings. 563 * 564 */ 565 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 566 pte_t pte) 567 { 568 unsigned long pfn = pte_pfn(pte); 569 570 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 571 if (likely(!pte_special(pte))) 572 goto check_pfn; 573 if (vma->vm_ops && vma->vm_ops->find_special_page) 574 return vma->vm_ops->find_special_page(vma, addr); 575 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 576 return NULL; 577 if (is_zero_pfn(pfn)) 578 return NULL; 579 if (pte_devmap(pte)) 580 /* 581 * NOTE: New users of ZONE_DEVICE will not set pte_devmap() 582 * and will have refcounts incremented on their struct pages 583 * when they are inserted into PTEs, thus they are safe to 584 * return here. Legacy ZONE_DEVICE pages that set pte_devmap() 585 * do not have refcounts. Example of legacy ZONE_DEVICE is 586 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers. 587 */ 588 return NULL; 589 590 print_bad_pte(vma, addr, pte, NULL); 591 return NULL; 592 } 593 594 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 595 596 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 597 if (vma->vm_flags & VM_MIXEDMAP) { 598 if (!pfn_valid(pfn)) 599 return NULL; 600 goto out; 601 } else { 602 unsigned long off; 603 off = (addr - vma->vm_start) >> PAGE_SHIFT; 604 if (pfn == vma->vm_pgoff + off) 605 return NULL; 606 if (!is_cow_mapping(vma->vm_flags)) 607 return NULL; 608 } 609 } 610 611 if (is_zero_pfn(pfn)) 612 return NULL; 613 614 check_pfn: 615 if (unlikely(pfn > highest_memmap_pfn)) { 616 print_bad_pte(vma, addr, pte, NULL); 617 return NULL; 618 } 619 620 /* 621 * NOTE! We still have PageReserved() pages in the page tables. 622 * eg. VDSO mappings can cause them to exist. 623 */ 624 out: 625 return pfn_to_page(pfn); 626 } 627 628 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 629 pte_t pte) 630 { 631 struct page *page = vm_normal_page(vma, addr, pte); 632 633 if (page) 634 return page_folio(page); 635 return NULL; 636 } 637 638 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 639 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 640 pmd_t pmd) 641 { 642 unsigned long pfn = pmd_pfn(pmd); 643 644 /* 645 * There is no pmd_special() but there may be special pmds, e.g. 646 * in a direct-access (dax) mapping, so let's just replicate the 647 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 648 */ 649 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 650 if (vma->vm_flags & VM_MIXEDMAP) { 651 if (!pfn_valid(pfn)) 652 return NULL; 653 goto out; 654 } else { 655 unsigned long off; 656 off = (addr - vma->vm_start) >> PAGE_SHIFT; 657 if (pfn == vma->vm_pgoff + off) 658 return NULL; 659 if (!is_cow_mapping(vma->vm_flags)) 660 return NULL; 661 } 662 } 663 664 if (pmd_devmap(pmd)) 665 return NULL; 666 if (is_huge_zero_pmd(pmd)) 667 return NULL; 668 if (unlikely(pfn > highest_memmap_pfn)) 669 return NULL; 670 671 /* 672 * NOTE! We still have PageReserved() pages in the page tables. 673 * eg. VDSO mappings can cause them to exist. 674 */ 675 out: 676 return pfn_to_page(pfn); 677 } 678 #endif 679 680 static void restore_exclusive_pte(struct vm_area_struct *vma, 681 struct page *page, unsigned long address, 682 pte_t *ptep) 683 { 684 pte_t pte; 685 swp_entry_t entry; 686 687 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot))); 688 if (pte_swp_soft_dirty(*ptep)) 689 pte = pte_mksoft_dirty(pte); 690 691 entry = pte_to_swp_entry(*ptep); 692 if (pte_swp_uffd_wp(*ptep)) 693 pte = pte_mkuffd_wp(pte); 694 else if (is_writable_device_exclusive_entry(entry)) 695 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 696 697 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page))); 698 699 /* 700 * No need to take a page reference as one was already 701 * created when the swap entry was made. 702 */ 703 if (PageAnon(page)) 704 page_add_anon_rmap(page, vma, address, RMAP_NONE); 705 else 706 /* 707 * Currently device exclusive access only supports anonymous 708 * memory so the entry shouldn't point to a filebacked page. 709 */ 710 WARN_ON_ONCE(1); 711 712 set_pte_at(vma->vm_mm, address, ptep, pte); 713 714 /* 715 * No need to invalidate - it was non-present before. However 716 * secondary CPUs may have mappings that need invalidating. 717 */ 718 update_mmu_cache(vma, address, ptep); 719 } 720 721 /* 722 * Tries to restore an exclusive pte if the page lock can be acquired without 723 * sleeping. 724 */ 725 static int 726 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma, 727 unsigned long addr) 728 { 729 swp_entry_t entry = pte_to_swp_entry(*src_pte); 730 struct page *page = pfn_swap_entry_to_page(entry); 731 732 if (trylock_page(page)) { 733 restore_exclusive_pte(vma, page, addr, src_pte); 734 unlock_page(page); 735 return 0; 736 } 737 738 return -EBUSY; 739 } 740 741 /* 742 * copy one vm_area from one task to the other. Assumes the page tables 743 * already present in the new task to be cleared in the whole range 744 * covered by this vma. 745 */ 746 747 static unsigned long 748 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 749 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma, 750 struct vm_area_struct *src_vma, unsigned long addr, int *rss) 751 { 752 unsigned long vm_flags = dst_vma->vm_flags; 753 pte_t pte = *src_pte; 754 struct page *page; 755 swp_entry_t entry = pte_to_swp_entry(pte); 756 757 if (likely(!non_swap_entry(entry))) { 758 if (swap_duplicate(entry) < 0) 759 return -EIO; 760 761 /* make sure dst_mm is on swapoff's mmlist. */ 762 if (unlikely(list_empty(&dst_mm->mmlist))) { 763 spin_lock(&mmlist_lock); 764 if (list_empty(&dst_mm->mmlist)) 765 list_add(&dst_mm->mmlist, 766 &src_mm->mmlist); 767 spin_unlock(&mmlist_lock); 768 } 769 /* Mark the swap entry as shared. */ 770 if (pte_swp_exclusive(*src_pte)) { 771 pte = pte_swp_clear_exclusive(*src_pte); 772 set_pte_at(src_mm, addr, src_pte, pte); 773 } 774 rss[MM_SWAPENTS]++; 775 } else if (is_migration_entry(entry)) { 776 page = pfn_swap_entry_to_page(entry); 777 778 rss[mm_counter(page)]++; 779 780 if (!is_readable_migration_entry(entry) && 781 is_cow_mapping(vm_flags)) { 782 /* 783 * COW mappings require pages in both parent and child 784 * to be set to read. A previously exclusive entry is 785 * now shared. 786 */ 787 entry = make_readable_migration_entry( 788 swp_offset(entry)); 789 pte = swp_entry_to_pte(entry); 790 if (pte_swp_soft_dirty(*src_pte)) 791 pte = pte_swp_mksoft_dirty(pte); 792 if (pte_swp_uffd_wp(*src_pte)) 793 pte = pte_swp_mkuffd_wp(pte); 794 set_pte_at(src_mm, addr, src_pte, pte); 795 } 796 } else if (is_device_private_entry(entry)) { 797 page = pfn_swap_entry_to_page(entry); 798 799 /* 800 * Update rss count even for unaddressable pages, as 801 * they should treated just like normal pages in this 802 * respect. 803 * 804 * We will likely want to have some new rss counters 805 * for unaddressable pages, at some point. But for now 806 * keep things as they are. 807 */ 808 get_page(page); 809 rss[mm_counter(page)]++; 810 /* Cannot fail as these pages cannot get pinned. */ 811 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma)); 812 813 /* 814 * We do not preserve soft-dirty information, because so 815 * far, checkpoint/restore is the only feature that 816 * requires that. And checkpoint/restore does not work 817 * when a device driver is involved (you cannot easily 818 * save and restore device driver state). 819 */ 820 if (is_writable_device_private_entry(entry) && 821 is_cow_mapping(vm_flags)) { 822 entry = make_readable_device_private_entry( 823 swp_offset(entry)); 824 pte = swp_entry_to_pte(entry); 825 if (pte_swp_uffd_wp(*src_pte)) 826 pte = pte_swp_mkuffd_wp(pte); 827 set_pte_at(src_mm, addr, src_pte, pte); 828 } 829 } else if (is_device_exclusive_entry(entry)) { 830 /* 831 * Make device exclusive entries present by restoring the 832 * original entry then copying as for a present pte. Device 833 * exclusive entries currently only support private writable 834 * (ie. COW) mappings. 835 */ 836 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags)); 837 if (try_restore_exclusive_pte(src_pte, src_vma, addr)) 838 return -EBUSY; 839 return -ENOENT; 840 } else if (is_pte_marker_entry(entry)) { 841 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma)) 842 set_pte_at(dst_mm, addr, dst_pte, pte); 843 return 0; 844 } 845 if (!userfaultfd_wp(dst_vma)) 846 pte = pte_swp_clear_uffd_wp(pte); 847 set_pte_at(dst_mm, addr, dst_pte, pte); 848 return 0; 849 } 850 851 /* 852 * Copy a present and normal page. 853 * 854 * NOTE! The usual case is that this isn't required; 855 * instead, the caller can just increase the page refcount 856 * and re-use the pte the traditional way. 857 * 858 * And if we need a pre-allocated page but don't yet have 859 * one, return a negative error to let the preallocation 860 * code know so that it can do so outside the page table 861 * lock. 862 */ 863 static inline int 864 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 865 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 866 struct folio **prealloc, struct page *page) 867 { 868 struct folio *new_folio; 869 pte_t pte; 870 871 new_folio = *prealloc; 872 if (!new_folio) 873 return -EAGAIN; 874 875 /* 876 * We have a prealloc page, all good! Take it 877 * over and copy the page & arm it. 878 */ 879 *prealloc = NULL; 880 copy_user_highpage(&new_folio->page, page, addr, src_vma); 881 __folio_mark_uptodate(new_folio); 882 folio_add_new_anon_rmap(new_folio, dst_vma, addr); 883 folio_add_lru_vma(new_folio, dst_vma); 884 rss[MM_ANONPAGES]++; 885 886 /* All done, just insert the new page copy in the child */ 887 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot); 888 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma); 889 if (userfaultfd_pte_wp(dst_vma, *src_pte)) 890 /* Uffd-wp needs to be delivered to dest pte as well */ 891 pte = pte_mkuffd_wp(pte); 892 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 893 return 0; 894 } 895 896 /* 897 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page 898 * is required to copy this pte. 899 */ 900 static inline int 901 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 902 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss, 903 struct folio **prealloc) 904 { 905 struct mm_struct *src_mm = src_vma->vm_mm; 906 unsigned long vm_flags = src_vma->vm_flags; 907 pte_t pte = *src_pte; 908 struct page *page; 909 struct folio *folio; 910 911 page = vm_normal_page(src_vma, addr, pte); 912 if (page) 913 folio = page_folio(page); 914 if (page && folio_test_anon(folio)) { 915 /* 916 * If this page may have been pinned by the parent process, 917 * copy the page immediately for the child so that we'll always 918 * guarantee the pinned page won't be randomly replaced in the 919 * future. 920 */ 921 folio_get(folio); 922 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) { 923 /* Page may be pinned, we have to copy. */ 924 folio_put(folio); 925 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte, 926 addr, rss, prealloc, page); 927 } 928 rss[MM_ANONPAGES]++; 929 } else if (page) { 930 folio_get(folio); 931 page_dup_file_rmap(page, false); 932 rss[mm_counter_file(page)]++; 933 } 934 935 /* 936 * If it's a COW mapping, write protect it both 937 * in the parent and the child 938 */ 939 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 940 ptep_set_wrprotect(src_mm, addr, src_pte); 941 pte = pte_wrprotect(pte); 942 } 943 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page)); 944 945 /* 946 * If it's a shared mapping, mark it clean in 947 * the child 948 */ 949 if (vm_flags & VM_SHARED) 950 pte = pte_mkclean(pte); 951 pte = pte_mkold(pte); 952 953 if (!userfaultfd_wp(dst_vma)) 954 pte = pte_clear_uffd_wp(pte); 955 956 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte); 957 return 0; 958 } 959 960 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm, 961 struct vm_area_struct *vma, unsigned long addr) 962 { 963 struct folio *new_folio; 964 965 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false); 966 if (!new_folio) 967 return NULL; 968 969 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) { 970 folio_put(new_folio); 971 return NULL; 972 } 973 cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL); 974 975 return new_folio; 976 } 977 978 static int 979 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 980 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr, 981 unsigned long end) 982 { 983 struct mm_struct *dst_mm = dst_vma->vm_mm; 984 struct mm_struct *src_mm = src_vma->vm_mm; 985 pte_t *orig_src_pte, *orig_dst_pte; 986 pte_t *src_pte, *dst_pte; 987 spinlock_t *src_ptl, *dst_ptl; 988 int progress, ret = 0; 989 int rss[NR_MM_COUNTERS]; 990 swp_entry_t entry = (swp_entry_t){0}; 991 struct folio *prealloc = NULL; 992 993 again: 994 progress = 0; 995 init_rss_vec(rss); 996 997 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 998 if (!dst_pte) { 999 ret = -ENOMEM; 1000 goto out; 1001 } 1002 src_pte = pte_offset_map(src_pmd, addr); 1003 src_ptl = pte_lockptr(src_mm, src_pmd); 1004 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1005 orig_src_pte = src_pte; 1006 orig_dst_pte = dst_pte; 1007 arch_enter_lazy_mmu_mode(); 1008 1009 do { 1010 /* 1011 * We are holding two locks at this point - either of them 1012 * could generate latencies in another task on another CPU. 1013 */ 1014 if (progress >= 32) { 1015 progress = 0; 1016 if (need_resched() || 1017 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1018 break; 1019 } 1020 if (pte_none(*src_pte)) { 1021 progress++; 1022 continue; 1023 } 1024 if (unlikely(!pte_present(*src_pte))) { 1025 ret = copy_nonpresent_pte(dst_mm, src_mm, 1026 dst_pte, src_pte, 1027 dst_vma, src_vma, 1028 addr, rss); 1029 if (ret == -EIO) { 1030 entry = pte_to_swp_entry(*src_pte); 1031 break; 1032 } else if (ret == -EBUSY) { 1033 break; 1034 } else if (!ret) { 1035 progress += 8; 1036 continue; 1037 } 1038 1039 /* 1040 * Device exclusive entry restored, continue by copying 1041 * the now present pte. 1042 */ 1043 WARN_ON_ONCE(ret != -ENOENT); 1044 } 1045 /* copy_present_pte() will clear `*prealloc' if consumed */ 1046 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte, 1047 addr, rss, &prealloc); 1048 /* 1049 * If we need a pre-allocated page for this pte, drop the 1050 * locks, allocate, and try again. 1051 */ 1052 if (unlikely(ret == -EAGAIN)) 1053 break; 1054 if (unlikely(prealloc)) { 1055 /* 1056 * pre-alloc page cannot be reused by next time so as 1057 * to strictly follow mempolicy (e.g., alloc_page_vma() 1058 * will allocate page according to address). This 1059 * could only happen if one pinned pte changed. 1060 */ 1061 folio_put(prealloc); 1062 prealloc = NULL; 1063 } 1064 progress += 8; 1065 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1066 1067 arch_leave_lazy_mmu_mode(); 1068 spin_unlock(src_ptl); 1069 pte_unmap(orig_src_pte); 1070 add_mm_rss_vec(dst_mm, rss); 1071 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1072 cond_resched(); 1073 1074 if (ret == -EIO) { 1075 VM_WARN_ON_ONCE(!entry.val); 1076 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) { 1077 ret = -ENOMEM; 1078 goto out; 1079 } 1080 entry.val = 0; 1081 } else if (ret == -EBUSY) { 1082 goto out; 1083 } else if (ret == -EAGAIN) { 1084 prealloc = page_copy_prealloc(src_mm, src_vma, addr); 1085 if (!prealloc) 1086 return -ENOMEM; 1087 } else if (ret) { 1088 VM_WARN_ON_ONCE(1); 1089 } 1090 1091 /* We've captured and resolved the error. Reset, try again. */ 1092 ret = 0; 1093 1094 if (addr != end) 1095 goto again; 1096 out: 1097 if (unlikely(prealloc)) 1098 folio_put(prealloc); 1099 return ret; 1100 } 1101 1102 static inline int 1103 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1104 pud_t *dst_pud, pud_t *src_pud, unsigned long addr, 1105 unsigned long end) 1106 { 1107 struct mm_struct *dst_mm = dst_vma->vm_mm; 1108 struct mm_struct *src_mm = src_vma->vm_mm; 1109 pmd_t *src_pmd, *dst_pmd; 1110 unsigned long next; 1111 1112 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1113 if (!dst_pmd) 1114 return -ENOMEM; 1115 src_pmd = pmd_offset(src_pud, addr); 1116 do { 1117 next = pmd_addr_end(addr, end); 1118 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1119 || pmd_devmap(*src_pmd)) { 1120 int err; 1121 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma); 1122 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd, 1123 addr, dst_vma, src_vma); 1124 if (err == -ENOMEM) 1125 return -ENOMEM; 1126 if (!err) 1127 continue; 1128 /* fall through */ 1129 } 1130 if (pmd_none_or_clear_bad(src_pmd)) 1131 continue; 1132 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd, 1133 addr, next)) 1134 return -ENOMEM; 1135 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1136 return 0; 1137 } 1138 1139 static inline int 1140 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1141 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr, 1142 unsigned long end) 1143 { 1144 struct mm_struct *dst_mm = dst_vma->vm_mm; 1145 struct mm_struct *src_mm = src_vma->vm_mm; 1146 pud_t *src_pud, *dst_pud; 1147 unsigned long next; 1148 1149 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1150 if (!dst_pud) 1151 return -ENOMEM; 1152 src_pud = pud_offset(src_p4d, addr); 1153 do { 1154 next = pud_addr_end(addr, end); 1155 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1156 int err; 1157 1158 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma); 1159 err = copy_huge_pud(dst_mm, src_mm, 1160 dst_pud, src_pud, addr, src_vma); 1161 if (err == -ENOMEM) 1162 return -ENOMEM; 1163 if (!err) 1164 continue; 1165 /* fall through */ 1166 } 1167 if (pud_none_or_clear_bad(src_pud)) 1168 continue; 1169 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud, 1170 addr, next)) 1171 return -ENOMEM; 1172 } while (dst_pud++, src_pud++, addr = next, addr != end); 1173 return 0; 1174 } 1175 1176 static inline int 1177 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma, 1178 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr, 1179 unsigned long end) 1180 { 1181 struct mm_struct *dst_mm = dst_vma->vm_mm; 1182 p4d_t *src_p4d, *dst_p4d; 1183 unsigned long next; 1184 1185 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1186 if (!dst_p4d) 1187 return -ENOMEM; 1188 src_p4d = p4d_offset(src_pgd, addr); 1189 do { 1190 next = p4d_addr_end(addr, end); 1191 if (p4d_none_or_clear_bad(src_p4d)) 1192 continue; 1193 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d, 1194 addr, next)) 1195 return -ENOMEM; 1196 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1197 return 0; 1198 } 1199 1200 /* 1201 * Return true if the vma needs to copy the pgtable during this fork(). Return 1202 * false when we can speed up fork() by allowing lazy page faults later until 1203 * when the child accesses the memory range. 1204 */ 1205 static bool 1206 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1207 { 1208 /* 1209 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's 1210 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable 1211 * contains uffd-wp protection information, that's something we can't 1212 * retrieve from page cache, and skip copying will lose those info. 1213 */ 1214 if (userfaultfd_wp(dst_vma)) 1215 return true; 1216 1217 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 1218 return true; 1219 1220 if (src_vma->anon_vma) 1221 return true; 1222 1223 /* 1224 * Don't copy ptes where a page fault will fill them correctly. Fork 1225 * becomes much lighter when there are big shared or private readonly 1226 * mappings. The tradeoff is that copy_page_range is more efficient 1227 * than faulting. 1228 */ 1229 return false; 1230 } 1231 1232 int 1233 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma) 1234 { 1235 pgd_t *src_pgd, *dst_pgd; 1236 unsigned long next; 1237 unsigned long addr = src_vma->vm_start; 1238 unsigned long end = src_vma->vm_end; 1239 struct mm_struct *dst_mm = dst_vma->vm_mm; 1240 struct mm_struct *src_mm = src_vma->vm_mm; 1241 struct mmu_notifier_range range; 1242 bool is_cow; 1243 int ret; 1244 1245 if (!vma_needs_copy(dst_vma, src_vma)) 1246 return 0; 1247 1248 if (is_vm_hugetlb_page(src_vma)) 1249 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma); 1250 1251 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) { 1252 /* 1253 * We do not free on error cases below as remove_vma 1254 * gets called on error from higher level routine 1255 */ 1256 ret = track_pfn_copy(src_vma); 1257 if (ret) 1258 return ret; 1259 } 1260 1261 /* 1262 * We need to invalidate the secondary MMU mappings only when 1263 * there could be a permission downgrade on the ptes of the 1264 * parent mm. And a permission downgrade will only happen if 1265 * is_cow_mapping() returns true. 1266 */ 1267 is_cow = is_cow_mapping(src_vma->vm_flags); 1268 1269 if (is_cow) { 1270 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE, 1271 0, src_mm, addr, end); 1272 mmu_notifier_invalidate_range_start(&range); 1273 /* 1274 * Disabling preemption is not needed for the write side, as 1275 * the read side doesn't spin, but goes to the mmap_lock. 1276 * 1277 * Use the raw variant of the seqcount_t write API to avoid 1278 * lockdep complaining about preemptibility. 1279 */ 1280 mmap_assert_write_locked(src_mm); 1281 raw_write_seqcount_begin(&src_mm->write_protect_seq); 1282 } 1283 1284 ret = 0; 1285 dst_pgd = pgd_offset(dst_mm, addr); 1286 src_pgd = pgd_offset(src_mm, addr); 1287 do { 1288 next = pgd_addr_end(addr, end); 1289 if (pgd_none_or_clear_bad(src_pgd)) 1290 continue; 1291 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd, 1292 addr, next))) { 1293 ret = -ENOMEM; 1294 break; 1295 } 1296 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1297 1298 if (is_cow) { 1299 raw_write_seqcount_end(&src_mm->write_protect_seq); 1300 mmu_notifier_invalidate_range_end(&range); 1301 } 1302 return ret; 1303 } 1304 1305 /* Whether we should zap all COWed (private) pages too */ 1306 static inline bool should_zap_cows(struct zap_details *details) 1307 { 1308 /* By default, zap all pages */ 1309 if (!details) 1310 return true; 1311 1312 /* Or, we zap COWed pages only if the caller wants to */ 1313 return details->even_cows; 1314 } 1315 1316 /* Decides whether we should zap this page with the page pointer specified */ 1317 static inline bool should_zap_page(struct zap_details *details, struct page *page) 1318 { 1319 /* If we can make a decision without *page.. */ 1320 if (should_zap_cows(details)) 1321 return true; 1322 1323 /* E.g. the caller passes NULL for the case of a zero page */ 1324 if (!page) 1325 return true; 1326 1327 /* Otherwise we should only zap non-anon pages */ 1328 return !PageAnon(page); 1329 } 1330 1331 static inline bool zap_drop_file_uffd_wp(struct zap_details *details) 1332 { 1333 if (!details) 1334 return false; 1335 1336 return details->zap_flags & ZAP_FLAG_DROP_MARKER; 1337 } 1338 1339 /* 1340 * This function makes sure that we'll replace the none pte with an uffd-wp 1341 * swap special pte marker when necessary. Must be with the pgtable lock held. 1342 */ 1343 static inline void 1344 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma, 1345 unsigned long addr, pte_t *pte, 1346 struct zap_details *details, pte_t pteval) 1347 { 1348 if (zap_drop_file_uffd_wp(details)) 1349 return; 1350 1351 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval); 1352 } 1353 1354 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1355 struct vm_area_struct *vma, pmd_t *pmd, 1356 unsigned long addr, unsigned long end, 1357 struct zap_details *details) 1358 { 1359 struct mm_struct *mm = tlb->mm; 1360 int force_flush = 0; 1361 int rss[NR_MM_COUNTERS]; 1362 spinlock_t *ptl; 1363 pte_t *start_pte; 1364 pte_t *pte; 1365 swp_entry_t entry; 1366 1367 tlb_change_page_size(tlb, PAGE_SIZE); 1368 again: 1369 init_rss_vec(rss); 1370 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1371 pte = start_pte; 1372 flush_tlb_batched_pending(mm); 1373 arch_enter_lazy_mmu_mode(); 1374 do { 1375 pte_t ptent = *pte; 1376 struct page *page; 1377 1378 if (pte_none(ptent)) 1379 continue; 1380 1381 if (need_resched()) 1382 break; 1383 1384 if (pte_present(ptent)) { 1385 unsigned int delay_rmap; 1386 1387 page = vm_normal_page(vma, addr, ptent); 1388 if (unlikely(!should_zap_page(details, page))) 1389 continue; 1390 ptent = ptep_get_and_clear_full(mm, addr, pte, 1391 tlb->fullmm); 1392 tlb_remove_tlb_entry(tlb, pte, addr); 1393 zap_install_uffd_wp_if_needed(vma, addr, pte, details, 1394 ptent); 1395 if (unlikely(!page)) 1396 continue; 1397 1398 delay_rmap = 0; 1399 if (!PageAnon(page)) { 1400 if (pte_dirty(ptent)) { 1401 set_page_dirty(page); 1402 if (tlb_delay_rmap(tlb)) { 1403 delay_rmap = 1; 1404 force_flush = 1; 1405 } 1406 } 1407 if (pte_young(ptent) && likely(vma_has_recency(vma))) 1408 mark_page_accessed(page); 1409 } 1410 rss[mm_counter(page)]--; 1411 if (!delay_rmap) { 1412 page_remove_rmap(page, vma, false); 1413 if (unlikely(page_mapcount(page) < 0)) 1414 print_bad_pte(vma, addr, ptent, page); 1415 } 1416 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) { 1417 force_flush = 1; 1418 addr += PAGE_SIZE; 1419 break; 1420 } 1421 continue; 1422 } 1423 1424 entry = pte_to_swp_entry(ptent); 1425 if (is_device_private_entry(entry) || 1426 is_device_exclusive_entry(entry)) { 1427 page = pfn_swap_entry_to_page(entry); 1428 if (unlikely(!should_zap_page(details, page))) 1429 continue; 1430 /* 1431 * Both device private/exclusive mappings should only 1432 * work with anonymous page so far, so we don't need to 1433 * consider uffd-wp bit when zap. For more information, 1434 * see zap_install_uffd_wp_if_needed(). 1435 */ 1436 WARN_ON_ONCE(!vma_is_anonymous(vma)); 1437 rss[mm_counter(page)]--; 1438 if (is_device_private_entry(entry)) 1439 page_remove_rmap(page, vma, false); 1440 put_page(page); 1441 } else if (!non_swap_entry(entry)) { 1442 /* Genuine swap entry, hence a private anon page */ 1443 if (!should_zap_cows(details)) 1444 continue; 1445 rss[MM_SWAPENTS]--; 1446 if (unlikely(!free_swap_and_cache(entry))) 1447 print_bad_pte(vma, addr, ptent, NULL); 1448 } else if (is_migration_entry(entry)) { 1449 page = pfn_swap_entry_to_page(entry); 1450 if (!should_zap_page(details, page)) 1451 continue; 1452 rss[mm_counter(page)]--; 1453 } else if (pte_marker_entry_uffd_wp(entry)) { 1454 /* Only drop the uffd-wp marker if explicitly requested */ 1455 if (!zap_drop_file_uffd_wp(details)) 1456 continue; 1457 } else if (is_hwpoison_entry(entry) || 1458 is_swapin_error_entry(entry)) { 1459 if (!should_zap_cows(details)) 1460 continue; 1461 } else { 1462 /* We should have covered all the swap entry types */ 1463 WARN_ON_ONCE(1); 1464 } 1465 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1466 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent); 1467 } while (pte++, addr += PAGE_SIZE, addr != end); 1468 1469 add_mm_rss_vec(mm, rss); 1470 arch_leave_lazy_mmu_mode(); 1471 1472 /* Do the actual TLB flush before dropping ptl */ 1473 if (force_flush) { 1474 tlb_flush_mmu_tlbonly(tlb); 1475 tlb_flush_rmaps(tlb, vma); 1476 } 1477 pte_unmap_unlock(start_pte, ptl); 1478 1479 /* 1480 * If we forced a TLB flush (either due to running out of 1481 * batch buffers or because we needed to flush dirty TLB 1482 * entries before releasing the ptl), free the batched 1483 * memory too. Restart if we didn't do everything. 1484 */ 1485 if (force_flush) { 1486 force_flush = 0; 1487 tlb_flush_mmu(tlb); 1488 } 1489 1490 if (addr != end) { 1491 cond_resched(); 1492 goto again; 1493 } 1494 1495 return addr; 1496 } 1497 1498 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1499 struct vm_area_struct *vma, pud_t *pud, 1500 unsigned long addr, unsigned long end, 1501 struct zap_details *details) 1502 { 1503 pmd_t *pmd; 1504 unsigned long next; 1505 1506 pmd = pmd_offset(pud, addr); 1507 do { 1508 next = pmd_addr_end(addr, end); 1509 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1510 if (next - addr != HPAGE_PMD_SIZE) 1511 __split_huge_pmd(vma, pmd, addr, false, NULL); 1512 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1513 goto next; 1514 /* fall through */ 1515 } else if (details && details->single_folio && 1516 folio_test_pmd_mappable(details->single_folio) && 1517 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) { 1518 spinlock_t *ptl = pmd_lock(tlb->mm, pmd); 1519 /* 1520 * Take and drop THP pmd lock so that we cannot return 1521 * prematurely, while zap_huge_pmd() has cleared *pmd, 1522 * but not yet decremented compound_mapcount(). 1523 */ 1524 spin_unlock(ptl); 1525 } 1526 1527 /* 1528 * Here there can be other concurrent MADV_DONTNEED or 1529 * trans huge page faults running, and if the pmd is 1530 * none or trans huge it can change under us. This is 1531 * because MADV_DONTNEED holds the mmap_lock in read 1532 * mode. 1533 */ 1534 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1535 goto next; 1536 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1537 next: 1538 cond_resched(); 1539 } while (pmd++, addr = next, addr != end); 1540 1541 return addr; 1542 } 1543 1544 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1545 struct vm_area_struct *vma, p4d_t *p4d, 1546 unsigned long addr, unsigned long end, 1547 struct zap_details *details) 1548 { 1549 pud_t *pud; 1550 unsigned long next; 1551 1552 pud = pud_offset(p4d, addr); 1553 do { 1554 next = pud_addr_end(addr, end); 1555 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1556 if (next - addr != HPAGE_PUD_SIZE) { 1557 mmap_assert_locked(tlb->mm); 1558 split_huge_pud(vma, pud, addr); 1559 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1560 goto next; 1561 /* fall through */ 1562 } 1563 if (pud_none_or_clear_bad(pud)) 1564 continue; 1565 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1566 next: 1567 cond_resched(); 1568 } while (pud++, addr = next, addr != end); 1569 1570 return addr; 1571 } 1572 1573 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1574 struct vm_area_struct *vma, pgd_t *pgd, 1575 unsigned long addr, unsigned long end, 1576 struct zap_details *details) 1577 { 1578 p4d_t *p4d; 1579 unsigned long next; 1580 1581 p4d = p4d_offset(pgd, addr); 1582 do { 1583 next = p4d_addr_end(addr, end); 1584 if (p4d_none_or_clear_bad(p4d)) 1585 continue; 1586 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1587 } while (p4d++, addr = next, addr != end); 1588 1589 return addr; 1590 } 1591 1592 void unmap_page_range(struct mmu_gather *tlb, 1593 struct vm_area_struct *vma, 1594 unsigned long addr, unsigned long end, 1595 struct zap_details *details) 1596 { 1597 pgd_t *pgd; 1598 unsigned long next; 1599 1600 BUG_ON(addr >= end); 1601 tlb_start_vma(tlb, vma); 1602 pgd = pgd_offset(vma->vm_mm, addr); 1603 do { 1604 next = pgd_addr_end(addr, end); 1605 if (pgd_none_or_clear_bad(pgd)) 1606 continue; 1607 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1608 } while (pgd++, addr = next, addr != end); 1609 tlb_end_vma(tlb, vma); 1610 } 1611 1612 1613 static void unmap_single_vma(struct mmu_gather *tlb, 1614 struct vm_area_struct *vma, unsigned long start_addr, 1615 unsigned long end_addr, 1616 struct zap_details *details, bool mm_wr_locked) 1617 { 1618 unsigned long start = max(vma->vm_start, start_addr); 1619 unsigned long end; 1620 1621 if (start >= vma->vm_end) 1622 return; 1623 end = min(vma->vm_end, end_addr); 1624 if (end <= vma->vm_start) 1625 return; 1626 1627 if (vma->vm_file) 1628 uprobe_munmap(vma, start, end); 1629 1630 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1631 untrack_pfn(vma, 0, 0, mm_wr_locked); 1632 1633 if (start != end) { 1634 if (unlikely(is_vm_hugetlb_page(vma))) { 1635 /* 1636 * It is undesirable to test vma->vm_file as it 1637 * should be non-null for valid hugetlb area. 1638 * However, vm_file will be NULL in the error 1639 * cleanup path of mmap_region. When 1640 * hugetlbfs ->mmap method fails, 1641 * mmap_region() nullifies vma->vm_file 1642 * before calling this function to clean up. 1643 * Since no pte has actually been setup, it is 1644 * safe to do nothing in this case. 1645 */ 1646 if (vma->vm_file) { 1647 zap_flags_t zap_flags = details ? 1648 details->zap_flags : 0; 1649 __unmap_hugepage_range_final(tlb, vma, start, end, 1650 NULL, zap_flags); 1651 } 1652 } else 1653 unmap_page_range(tlb, vma, start, end, details); 1654 } 1655 } 1656 1657 /** 1658 * unmap_vmas - unmap a range of memory covered by a list of vma's 1659 * @tlb: address of the caller's struct mmu_gather 1660 * @mt: the maple tree 1661 * @vma: the starting vma 1662 * @start_addr: virtual address at which to start unmapping 1663 * @end_addr: virtual address at which to end unmapping 1664 * 1665 * Unmap all pages in the vma list. 1666 * 1667 * Only addresses between `start' and `end' will be unmapped. 1668 * 1669 * The VMA list must be sorted in ascending virtual address order. 1670 * 1671 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1672 * range after unmap_vmas() returns. So the only responsibility here is to 1673 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1674 * drops the lock and schedules. 1675 */ 1676 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 1677 struct vm_area_struct *vma, unsigned long start_addr, 1678 unsigned long end_addr, bool mm_wr_locked) 1679 { 1680 struct mmu_notifier_range range; 1681 struct zap_details details = { 1682 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP, 1683 /* Careful - we need to zap private pages too! */ 1684 .even_cows = true, 1685 }; 1686 MA_STATE(mas, mt, vma->vm_end, vma->vm_end); 1687 1688 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm, 1689 start_addr, end_addr); 1690 mmu_notifier_invalidate_range_start(&range); 1691 do { 1692 unmap_single_vma(tlb, vma, start_addr, end_addr, &details, 1693 mm_wr_locked); 1694 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL); 1695 mmu_notifier_invalidate_range_end(&range); 1696 } 1697 1698 /** 1699 * zap_page_range_single - remove user pages in a given range 1700 * @vma: vm_area_struct holding the applicable pages 1701 * @address: starting address of pages to zap 1702 * @size: number of bytes to zap 1703 * @details: details of shared cache invalidation 1704 * 1705 * The range must fit into one VMA. 1706 */ 1707 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1708 unsigned long size, struct zap_details *details) 1709 { 1710 const unsigned long end = address + size; 1711 struct mmu_notifier_range range; 1712 struct mmu_gather tlb; 1713 1714 lru_add_drain(); 1715 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm, 1716 address, end); 1717 if (is_vm_hugetlb_page(vma)) 1718 adjust_range_if_pmd_sharing_possible(vma, &range.start, 1719 &range.end); 1720 tlb_gather_mmu(&tlb, vma->vm_mm); 1721 update_hiwater_rss(vma->vm_mm); 1722 mmu_notifier_invalidate_range_start(&range); 1723 /* 1724 * unmap 'address-end' not 'range.start-range.end' as range 1725 * could have been expanded for hugetlb pmd sharing. 1726 */ 1727 unmap_single_vma(&tlb, vma, address, end, details, false); 1728 mmu_notifier_invalidate_range_end(&range); 1729 tlb_finish_mmu(&tlb); 1730 } 1731 1732 /** 1733 * zap_vma_ptes - remove ptes mapping the vma 1734 * @vma: vm_area_struct holding ptes to be zapped 1735 * @address: starting address of pages to zap 1736 * @size: number of bytes to zap 1737 * 1738 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1739 * 1740 * The entire address range must be fully contained within the vma. 1741 * 1742 */ 1743 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1744 unsigned long size) 1745 { 1746 if (!range_in_vma(vma, address, address + size) || 1747 !(vma->vm_flags & VM_PFNMAP)) 1748 return; 1749 1750 zap_page_range_single(vma, address, size, NULL); 1751 } 1752 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1753 1754 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr) 1755 { 1756 pgd_t *pgd; 1757 p4d_t *p4d; 1758 pud_t *pud; 1759 pmd_t *pmd; 1760 1761 pgd = pgd_offset(mm, addr); 1762 p4d = p4d_alloc(mm, pgd, addr); 1763 if (!p4d) 1764 return NULL; 1765 pud = pud_alloc(mm, p4d, addr); 1766 if (!pud) 1767 return NULL; 1768 pmd = pmd_alloc(mm, pud, addr); 1769 if (!pmd) 1770 return NULL; 1771 1772 VM_BUG_ON(pmd_trans_huge(*pmd)); 1773 return pmd; 1774 } 1775 1776 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1777 spinlock_t **ptl) 1778 { 1779 pmd_t *pmd = walk_to_pmd(mm, addr); 1780 1781 if (!pmd) 1782 return NULL; 1783 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1784 } 1785 1786 static int validate_page_before_insert(struct page *page) 1787 { 1788 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1789 return -EINVAL; 1790 flush_dcache_page(page); 1791 return 0; 1792 } 1793 1794 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte, 1795 unsigned long addr, struct page *page, pgprot_t prot) 1796 { 1797 if (!pte_none(*pte)) 1798 return -EBUSY; 1799 /* Ok, finally just insert the thing.. */ 1800 get_page(page); 1801 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 1802 page_add_file_rmap(page, vma, false); 1803 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot)); 1804 return 0; 1805 } 1806 1807 /* 1808 * This is the old fallback for page remapping. 1809 * 1810 * For historical reasons, it only allows reserved pages. Only 1811 * old drivers should use this, and they needed to mark their 1812 * pages reserved for the old functions anyway. 1813 */ 1814 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1815 struct page *page, pgprot_t prot) 1816 { 1817 int retval; 1818 pte_t *pte; 1819 spinlock_t *ptl; 1820 1821 retval = validate_page_before_insert(page); 1822 if (retval) 1823 goto out; 1824 retval = -ENOMEM; 1825 pte = get_locked_pte(vma->vm_mm, addr, &ptl); 1826 if (!pte) 1827 goto out; 1828 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot); 1829 pte_unmap_unlock(pte, ptl); 1830 out: 1831 return retval; 1832 } 1833 1834 #ifdef pte_index 1835 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte, 1836 unsigned long addr, struct page *page, pgprot_t prot) 1837 { 1838 int err; 1839 1840 if (!page_count(page)) 1841 return -EINVAL; 1842 err = validate_page_before_insert(page); 1843 if (err) 1844 return err; 1845 return insert_page_into_pte_locked(vma, pte, addr, page, prot); 1846 } 1847 1848 /* insert_pages() amortizes the cost of spinlock operations 1849 * when inserting pages in a loop. Arch *must* define pte_index. 1850 */ 1851 static int insert_pages(struct vm_area_struct *vma, unsigned long addr, 1852 struct page **pages, unsigned long *num, pgprot_t prot) 1853 { 1854 pmd_t *pmd = NULL; 1855 pte_t *start_pte, *pte; 1856 spinlock_t *pte_lock; 1857 struct mm_struct *const mm = vma->vm_mm; 1858 unsigned long curr_page_idx = 0; 1859 unsigned long remaining_pages_total = *num; 1860 unsigned long pages_to_write_in_pmd; 1861 int ret; 1862 more: 1863 ret = -EFAULT; 1864 pmd = walk_to_pmd(mm, addr); 1865 if (!pmd) 1866 goto out; 1867 1868 pages_to_write_in_pmd = min_t(unsigned long, 1869 remaining_pages_total, PTRS_PER_PTE - pte_index(addr)); 1870 1871 /* Allocate the PTE if necessary; takes PMD lock once only. */ 1872 ret = -ENOMEM; 1873 if (pte_alloc(mm, pmd)) 1874 goto out; 1875 1876 while (pages_to_write_in_pmd) { 1877 int pte_idx = 0; 1878 const int batch_size = min_t(int, pages_to_write_in_pmd, 8); 1879 1880 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock); 1881 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) { 1882 int err = insert_page_in_batch_locked(vma, pte, 1883 addr, pages[curr_page_idx], prot); 1884 if (unlikely(err)) { 1885 pte_unmap_unlock(start_pte, pte_lock); 1886 ret = err; 1887 remaining_pages_total -= pte_idx; 1888 goto out; 1889 } 1890 addr += PAGE_SIZE; 1891 ++curr_page_idx; 1892 } 1893 pte_unmap_unlock(start_pte, pte_lock); 1894 pages_to_write_in_pmd -= batch_size; 1895 remaining_pages_total -= batch_size; 1896 } 1897 if (remaining_pages_total) 1898 goto more; 1899 ret = 0; 1900 out: 1901 *num = remaining_pages_total; 1902 return ret; 1903 } 1904 #endif /* ifdef pte_index */ 1905 1906 /** 1907 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock. 1908 * @vma: user vma to map to 1909 * @addr: target start user address of these pages 1910 * @pages: source kernel pages 1911 * @num: in: number of pages to map. out: number of pages that were *not* 1912 * mapped. (0 means all pages were successfully mapped). 1913 * 1914 * Preferred over vm_insert_page() when inserting multiple pages. 1915 * 1916 * In case of error, we may have mapped a subset of the provided 1917 * pages. It is the caller's responsibility to account for this case. 1918 * 1919 * The same restrictions apply as in vm_insert_page(). 1920 */ 1921 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 1922 struct page **pages, unsigned long *num) 1923 { 1924 #ifdef pte_index 1925 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1; 1926 1927 if (addr < vma->vm_start || end_addr >= vma->vm_end) 1928 return -EFAULT; 1929 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1930 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1931 BUG_ON(vma->vm_flags & VM_PFNMAP); 1932 vm_flags_set(vma, VM_MIXEDMAP); 1933 } 1934 /* Defer page refcount checking till we're about to map that page. */ 1935 return insert_pages(vma, addr, pages, num, vma->vm_page_prot); 1936 #else 1937 unsigned long idx = 0, pgcount = *num; 1938 int err = -EINVAL; 1939 1940 for (; idx < pgcount; ++idx) { 1941 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]); 1942 if (err) 1943 break; 1944 } 1945 *num = pgcount - idx; 1946 return err; 1947 #endif /* ifdef pte_index */ 1948 } 1949 EXPORT_SYMBOL(vm_insert_pages); 1950 1951 /** 1952 * vm_insert_page - insert single page into user vma 1953 * @vma: user vma to map to 1954 * @addr: target user address of this page 1955 * @page: source kernel page 1956 * 1957 * This allows drivers to insert individual pages they've allocated 1958 * into a user vma. 1959 * 1960 * The page has to be a nice clean _individual_ kernel allocation. 1961 * If you allocate a compound page, you need to have marked it as 1962 * such (__GFP_COMP), or manually just split the page up yourself 1963 * (see split_page()). 1964 * 1965 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1966 * took an arbitrary page protection parameter. This doesn't allow 1967 * that. Your vma protection will have to be set up correctly, which 1968 * means that if you want a shared writable mapping, you'd better 1969 * ask for a shared writable mapping! 1970 * 1971 * The page does not need to be reserved. 1972 * 1973 * Usually this function is called from f_op->mmap() handler 1974 * under mm->mmap_lock write-lock, so it can change vma->vm_flags. 1975 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1976 * function from other places, for example from page-fault handler. 1977 * 1978 * Return: %0 on success, negative error code otherwise. 1979 */ 1980 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1981 struct page *page) 1982 { 1983 if (addr < vma->vm_start || addr >= vma->vm_end) 1984 return -EFAULT; 1985 if (!page_count(page)) 1986 return -EINVAL; 1987 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1988 BUG_ON(mmap_read_trylock(vma->vm_mm)); 1989 BUG_ON(vma->vm_flags & VM_PFNMAP); 1990 vm_flags_set(vma, VM_MIXEDMAP); 1991 } 1992 return insert_page(vma, addr, page, vma->vm_page_prot); 1993 } 1994 EXPORT_SYMBOL(vm_insert_page); 1995 1996 /* 1997 * __vm_map_pages - maps range of kernel pages into user vma 1998 * @vma: user vma to map to 1999 * @pages: pointer to array of source kernel pages 2000 * @num: number of pages in page array 2001 * @offset: user's requested vm_pgoff 2002 * 2003 * This allows drivers to map range of kernel pages into a user vma. 2004 * 2005 * Return: 0 on success and error code otherwise. 2006 */ 2007 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2008 unsigned long num, unsigned long offset) 2009 { 2010 unsigned long count = vma_pages(vma); 2011 unsigned long uaddr = vma->vm_start; 2012 int ret, i; 2013 2014 /* Fail if the user requested offset is beyond the end of the object */ 2015 if (offset >= num) 2016 return -ENXIO; 2017 2018 /* Fail if the user requested size exceeds available object size */ 2019 if (count > num - offset) 2020 return -ENXIO; 2021 2022 for (i = 0; i < count; i++) { 2023 ret = vm_insert_page(vma, uaddr, pages[offset + i]); 2024 if (ret < 0) 2025 return ret; 2026 uaddr += PAGE_SIZE; 2027 } 2028 2029 return 0; 2030 } 2031 2032 /** 2033 * vm_map_pages - maps range of kernel pages starts with non zero offset 2034 * @vma: user vma to map to 2035 * @pages: pointer to array of source kernel pages 2036 * @num: number of pages in page array 2037 * 2038 * Maps an object consisting of @num pages, catering for the user's 2039 * requested vm_pgoff 2040 * 2041 * If we fail to insert any page into the vma, the function will return 2042 * immediately leaving any previously inserted pages present. Callers 2043 * from the mmap handler may immediately return the error as their caller 2044 * will destroy the vma, removing any successfully inserted pages. Other 2045 * callers should make their own arrangements for calling unmap_region(). 2046 * 2047 * Context: Process context. Called by mmap handlers. 2048 * Return: 0 on success and error code otherwise. 2049 */ 2050 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2051 unsigned long num) 2052 { 2053 return __vm_map_pages(vma, pages, num, vma->vm_pgoff); 2054 } 2055 EXPORT_SYMBOL(vm_map_pages); 2056 2057 /** 2058 * vm_map_pages_zero - map range of kernel pages starts with zero offset 2059 * @vma: user vma to map to 2060 * @pages: pointer to array of source kernel pages 2061 * @num: number of pages in page array 2062 * 2063 * Similar to vm_map_pages(), except that it explicitly sets the offset 2064 * to 0. This function is intended for the drivers that did not consider 2065 * vm_pgoff. 2066 * 2067 * Context: Process context. Called by mmap handlers. 2068 * Return: 0 on success and error code otherwise. 2069 */ 2070 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2071 unsigned long num) 2072 { 2073 return __vm_map_pages(vma, pages, num, 0); 2074 } 2075 EXPORT_SYMBOL(vm_map_pages_zero); 2076 2077 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2078 pfn_t pfn, pgprot_t prot, bool mkwrite) 2079 { 2080 struct mm_struct *mm = vma->vm_mm; 2081 pte_t *pte, entry; 2082 spinlock_t *ptl; 2083 2084 pte = get_locked_pte(mm, addr, &ptl); 2085 if (!pte) 2086 return VM_FAULT_OOM; 2087 if (!pte_none(*pte)) { 2088 if (mkwrite) { 2089 /* 2090 * For read faults on private mappings the PFN passed 2091 * in may not match the PFN we have mapped if the 2092 * mapped PFN is a writeable COW page. In the mkwrite 2093 * case we are creating a writable PTE for a shared 2094 * mapping and we expect the PFNs to match. If they 2095 * don't match, we are likely racing with block 2096 * allocation and mapping invalidation so just skip the 2097 * update. 2098 */ 2099 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 2100 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 2101 goto out_unlock; 2102 } 2103 entry = pte_mkyoung(*pte); 2104 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2105 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 2106 update_mmu_cache(vma, addr, pte); 2107 } 2108 goto out_unlock; 2109 } 2110 2111 /* Ok, finally just insert the thing.. */ 2112 if (pfn_t_devmap(pfn)) 2113 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 2114 else 2115 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 2116 2117 if (mkwrite) { 2118 entry = pte_mkyoung(entry); 2119 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2120 } 2121 2122 set_pte_at(mm, addr, pte, entry); 2123 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2124 2125 out_unlock: 2126 pte_unmap_unlock(pte, ptl); 2127 return VM_FAULT_NOPAGE; 2128 } 2129 2130 /** 2131 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 2132 * @vma: user vma to map to 2133 * @addr: target user address of this page 2134 * @pfn: source kernel pfn 2135 * @pgprot: pgprot flags for the inserted page 2136 * 2137 * This is exactly like vmf_insert_pfn(), except that it allows drivers 2138 * to override pgprot on a per-page basis. 2139 * 2140 * This only makes sense for IO mappings, and it makes no sense for 2141 * COW mappings. In general, using multiple vmas is preferable; 2142 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 2143 * impractical. 2144 * 2145 * See vmf_insert_mixed_prot() for a discussion of the implication of using 2146 * a value of @pgprot different from that of @vma->vm_page_prot. 2147 * 2148 * Context: Process context. May allocate using %GFP_KERNEL. 2149 * Return: vm_fault_t value. 2150 */ 2151 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2152 unsigned long pfn, pgprot_t pgprot) 2153 { 2154 /* 2155 * Technically, architectures with pte_special can avoid all these 2156 * restrictions (same for remap_pfn_range). However we would like 2157 * consistency in testing and feature parity among all, so we should 2158 * try to keep these invariants in place for everybody. 2159 */ 2160 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2161 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2162 (VM_PFNMAP|VM_MIXEDMAP)); 2163 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2164 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2165 2166 if (addr < vma->vm_start || addr >= vma->vm_end) 2167 return VM_FAULT_SIGBUS; 2168 2169 if (!pfn_modify_allowed(pfn, pgprot)) 2170 return VM_FAULT_SIGBUS; 2171 2172 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 2173 2174 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 2175 false); 2176 } 2177 EXPORT_SYMBOL(vmf_insert_pfn_prot); 2178 2179 /** 2180 * vmf_insert_pfn - insert single pfn into user vma 2181 * @vma: user vma to map to 2182 * @addr: target user address of this page 2183 * @pfn: source kernel pfn 2184 * 2185 * Similar to vm_insert_page, this allows drivers to insert individual pages 2186 * they've allocated into a user vma. Same comments apply. 2187 * 2188 * This function should only be called from a vm_ops->fault handler, and 2189 * in that case the handler should return the result of this function. 2190 * 2191 * vma cannot be a COW mapping. 2192 * 2193 * As this is called only for pages that do not currently exist, we 2194 * do not need to flush old virtual caches or the TLB. 2195 * 2196 * Context: Process context. May allocate using %GFP_KERNEL. 2197 * Return: vm_fault_t value. 2198 */ 2199 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2200 unsigned long pfn) 2201 { 2202 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 2203 } 2204 EXPORT_SYMBOL(vmf_insert_pfn); 2205 2206 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 2207 { 2208 /* these checks mirror the abort conditions in vm_normal_page */ 2209 if (vma->vm_flags & VM_MIXEDMAP) 2210 return true; 2211 if (pfn_t_devmap(pfn)) 2212 return true; 2213 if (pfn_t_special(pfn)) 2214 return true; 2215 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 2216 return true; 2217 return false; 2218 } 2219 2220 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 2221 unsigned long addr, pfn_t pfn, pgprot_t pgprot, 2222 bool mkwrite) 2223 { 2224 int err; 2225 2226 BUG_ON(!vm_mixed_ok(vma, pfn)); 2227 2228 if (addr < vma->vm_start || addr >= vma->vm_end) 2229 return VM_FAULT_SIGBUS; 2230 2231 track_pfn_insert(vma, &pgprot, pfn); 2232 2233 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 2234 return VM_FAULT_SIGBUS; 2235 2236 /* 2237 * If we don't have pte special, then we have to use the pfn_valid() 2238 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2239 * refcount the page if pfn_valid is true (hence insert_page rather 2240 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2241 * without pte special, it would there be refcounted as a normal page. 2242 */ 2243 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 2244 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 2245 struct page *page; 2246 2247 /* 2248 * At this point we are committed to insert_page() 2249 * regardless of whether the caller specified flags that 2250 * result in pfn_t_has_page() == false. 2251 */ 2252 page = pfn_to_page(pfn_t_to_pfn(pfn)); 2253 err = insert_page(vma, addr, page, pgprot); 2254 } else { 2255 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 2256 } 2257 2258 if (err == -ENOMEM) 2259 return VM_FAULT_OOM; 2260 if (err < 0 && err != -EBUSY) 2261 return VM_FAULT_SIGBUS; 2262 2263 return VM_FAULT_NOPAGE; 2264 } 2265 2266 /** 2267 * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot 2268 * @vma: user vma to map to 2269 * @addr: target user address of this page 2270 * @pfn: source kernel pfn 2271 * @pgprot: pgprot flags for the inserted page 2272 * 2273 * This is exactly like vmf_insert_mixed(), except that it allows drivers 2274 * to override pgprot on a per-page basis. 2275 * 2276 * Typically this function should be used by drivers to set caching- and 2277 * encryption bits different than those of @vma->vm_page_prot, because 2278 * the caching- or encryption mode may not be known at mmap() time. 2279 * This is ok as long as @vma->vm_page_prot is not used by the core vm 2280 * to set caching and encryption bits for those vmas (except for COW pages). 2281 * This is ensured by core vm only modifying these page table entries using 2282 * functions that don't touch caching- or encryption bits, using pte_modify() 2283 * if needed. (See for example mprotect()). 2284 * Also when new page-table entries are created, this is only done using the 2285 * fault() callback, and never using the value of vma->vm_page_prot, 2286 * except for page-table entries that point to anonymous pages as the result 2287 * of COW. 2288 * 2289 * Context: Process context. May allocate using %GFP_KERNEL. 2290 * Return: vm_fault_t value. 2291 */ 2292 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2293 pfn_t pfn, pgprot_t pgprot) 2294 { 2295 return __vm_insert_mixed(vma, addr, pfn, pgprot, false); 2296 } 2297 EXPORT_SYMBOL(vmf_insert_mixed_prot); 2298 2299 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2300 pfn_t pfn) 2301 { 2302 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false); 2303 } 2304 EXPORT_SYMBOL(vmf_insert_mixed); 2305 2306 /* 2307 * If the insertion of PTE failed because someone else already added a 2308 * different entry in the mean time, we treat that as success as we assume 2309 * the same entry was actually inserted. 2310 */ 2311 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2312 unsigned long addr, pfn_t pfn) 2313 { 2314 return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true); 2315 } 2316 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 2317 2318 /* 2319 * maps a range of physical memory into the requested pages. the old 2320 * mappings are removed. any references to nonexistent pages results 2321 * in null mappings (currently treated as "copy-on-access") 2322 */ 2323 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2324 unsigned long addr, unsigned long end, 2325 unsigned long pfn, pgprot_t prot) 2326 { 2327 pte_t *pte, *mapped_pte; 2328 spinlock_t *ptl; 2329 int err = 0; 2330 2331 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2332 if (!pte) 2333 return -ENOMEM; 2334 arch_enter_lazy_mmu_mode(); 2335 do { 2336 BUG_ON(!pte_none(*pte)); 2337 if (!pfn_modify_allowed(pfn, prot)) { 2338 err = -EACCES; 2339 break; 2340 } 2341 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2342 pfn++; 2343 } while (pte++, addr += PAGE_SIZE, addr != end); 2344 arch_leave_lazy_mmu_mode(); 2345 pte_unmap_unlock(mapped_pte, ptl); 2346 return err; 2347 } 2348 2349 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2350 unsigned long addr, unsigned long end, 2351 unsigned long pfn, pgprot_t prot) 2352 { 2353 pmd_t *pmd; 2354 unsigned long next; 2355 int err; 2356 2357 pfn -= addr >> PAGE_SHIFT; 2358 pmd = pmd_alloc(mm, pud, addr); 2359 if (!pmd) 2360 return -ENOMEM; 2361 VM_BUG_ON(pmd_trans_huge(*pmd)); 2362 do { 2363 next = pmd_addr_end(addr, end); 2364 err = remap_pte_range(mm, pmd, addr, next, 2365 pfn + (addr >> PAGE_SHIFT), prot); 2366 if (err) 2367 return err; 2368 } while (pmd++, addr = next, addr != end); 2369 return 0; 2370 } 2371 2372 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2373 unsigned long addr, unsigned long end, 2374 unsigned long pfn, pgprot_t prot) 2375 { 2376 pud_t *pud; 2377 unsigned long next; 2378 int err; 2379 2380 pfn -= addr >> PAGE_SHIFT; 2381 pud = pud_alloc(mm, p4d, addr); 2382 if (!pud) 2383 return -ENOMEM; 2384 do { 2385 next = pud_addr_end(addr, end); 2386 err = remap_pmd_range(mm, pud, addr, next, 2387 pfn + (addr >> PAGE_SHIFT), prot); 2388 if (err) 2389 return err; 2390 } while (pud++, addr = next, addr != end); 2391 return 0; 2392 } 2393 2394 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2395 unsigned long addr, unsigned long end, 2396 unsigned long pfn, pgprot_t prot) 2397 { 2398 p4d_t *p4d; 2399 unsigned long next; 2400 int err; 2401 2402 pfn -= addr >> PAGE_SHIFT; 2403 p4d = p4d_alloc(mm, pgd, addr); 2404 if (!p4d) 2405 return -ENOMEM; 2406 do { 2407 next = p4d_addr_end(addr, end); 2408 err = remap_pud_range(mm, p4d, addr, next, 2409 pfn + (addr >> PAGE_SHIFT), prot); 2410 if (err) 2411 return err; 2412 } while (p4d++, addr = next, addr != end); 2413 return 0; 2414 } 2415 2416 /* 2417 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller 2418 * must have pre-validated the caching bits of the pgprot_t. 2419 */ 2420 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2421 unsigned long pfn, unsigned long size, pgprot_t prot) 2422 { 2423 pgd_t *pgd; 2424 unsigned long next; 2425 unsigned long end = addr + PAGE_ALIGN(size); 2426 struct mm_struct *mm = vma->vm_mm; 2427 int err; 2428 2429 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr))) 2430 return -EINVAL; 2431 2432 /* 2433 * Physically remapped pages are special. Tell the 2434 * rest of the world about it: 2435 * VM_IO tells people not to look at these pages 2436 * (accesses can have side effects). 2437 * VM_PFNMAP tells the core MM that the base pages are just 2438 * raw PFN mappings, and do not have a "struct page" associated 2439 * with them. 2440 * VM_DONTEXPAND 2441 * Disable vma merging and expanding with mremap(). 2442 * VM_DONTDUMP 2443 * Omit vma from core dump, even when VM_IO turned off. 2444 * 2445 * There's a horrible special case to handle copy-on-write 2446 * behaviour that some programs depend on. We mark the "original" 2447 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2448 * See vm_normal_page() for details. 2449 */ 2450 if (is_cow_mapping(vma->vm_flags)) { 2451 if (addr != vma->vm_start || end != vma->vm_end) 2452 return -EINVAL; 2453 vma->vm_pgoff = pfn; 2454 } 2455 2456 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP); 2457 2458 BUG_ON(addr >= end); 2459 pfn -= addr >> PAGE_SHIFT; 2460 pgd = pgd_offset(mm, addr); 2461 flush_cache_range(vma, addr, end); 2462 do { 2463 next = pgd_addr_end(addr, end); 2464 err = remap_p4d_range(mm, pgd, addr, next, 2465 pfn + (addr >> PAGE_SHIFT), prot); 2466 if (err) 2467 return err; 2468 } while (pgd++, addr = next, addr != end); 2469 2470 return 0; 2471 } 2472 2473 /** 2474 * remap_pfn_range - remap kernel memory to userspace 2475 * @vma: user vma to map to 2476 * @addr: target page aligned user address to start at 2477 * @pfn: page frame number of kernel physical memory address 2478 * @size: size of mapping area 2479 * @prot: page protection flags for this mapping 2480 * 2481 * Note: this is only safe if the mm semaphore is held when called. 2482 * 2483 * Return: %0 on success, negative error code otherwise. 2484 */ 2485 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2486 unsigned long pfn, unsigned long size, pgprot_t prot) 2487 { 2488 int err; 2489 2490 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2491 if (err) 2492 return -EINVAL; 2493 2494 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot); 2495 if (err) 2496 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true); 2497 return err; 2498 } 2499 EXPORT_SYMBOL(remap_pfn_range); 2500 2501 /** 2502 * vm_iomap_memory - remap memory to userspace 2503 * @vma: user vma to map to 2504 * @start: start of the physical memory to be mapped 2505 * @len: size of area 2506 * 2507 * This is a simplified io_remap_pfn_range() for common driver use. The 2508 * driver just needs to give us the physical memory range to be mapped, 2509 * we'll figure out the rest from the vma information. 2510 * 2511 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2512 * whatever write-combining details or similar. 2513 * 2514 * Return: %0 on success, negative error code otherwise. 2515 */ 2516 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2517 { 2518 unsigned long vm_len, pfn, pages; 2519 2520 /* Check that the physical memory area passed in looks valid */ 2521 if (start + len < start) 2522 return -EINVAL; 2523 /* 2524 * You *really* shouldn't map things that aren't page-aligned, 2525 * but we've historically allowed it because IO memory might 2526 * just have smaller alignment. 2527 */ 2528 len += start & ~PAGE_MASK; 2529 pfn = start >> PAGE_SHIFT; 2530 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2531 if (pfn + pages < pfn) 2532 return -EINVAL; 2533 2534 /* We start the mapping 'vm_pgoff' pages into the area */ 2535 if (vma->vm_pgoff > pages) 2536 return -EINVAL; 2537 pfn += vma->vm_pgoff; 2538 pages -= vma->vm_pgoff; 2539 2540 /* Can we fit all of the mapping? */ 2541 vm_len = vma->vm_end - vma->vm_start; 2542 if (vm_len >> PAGE_SHIFT > pages) 2543 return -EINVAL; 2544 2545 /* Ok, let it rip */ 2546 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2547 } 2548 EXPORT_SYMBOL(vm_iomap_memory); 2549 2550 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2551 unsigned long addr, unsigned long end, 2552 pte_fn_t fn, void *data, bool create, 2553 pgtbl_mod_mask *mask) 2554 { 2555 pte_t *pte, *mapped_pte; 2556 int err = 0; 2557 spinlock_t *ptl; 2558 2559 if (create) { 2560 mapped_pte = pte = (mm == &init_mm) ? 2561 pte_alloc_kernel_track(pmd, addr, mask) : 2562 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2563 if (!pte) 2564 return -ENOMEM; 2565 } else { 2566 mapped_pte = pte = (mm == &init_mm) ? 2567 pte_offset_kernel(pmd, addr) : 2568 pte_offset_map_lock(mm, pmd, addr, &ptl); 2569 } 2570 2571 BUG_ON(pmd_huge(*pmd)); 2572 2573 arch_enter_lazy_mmu_mode(); 2574 2575 if (fn) { 2576 do { 2577 if (create || !pte_none(*pte)) { 2578 err = fn(pte++, addr, data); 2579 if (err) 2580 break; 2581 } 2582 } while (addr += PAGE_SIZE, addr != end); 2583 } 2584 *mask |= PGTBL_PTE_MODIFIED; 2585 2586 arch_leave_lazy_mmu_mode(); 2587 2588 if (mm != &init_mm) 2589 pte_unmap_unlock(mapped_pte, ptl); 2590 return err; 2591 } 2592 2593 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2594 unsigned long addr, unsigned long end, 2595 pte_fn_t fn, void *data, bool create, 2596 pgtbl_mod_mask *mask) 2597 { 2598 pmd_t *pmd; 2599 unsigned long next; 2600 int err = 0; 2601 2602 BUG_ON(pud_huge(*pud)); 2603 2604 if (create) { 2605 pmd = pmd_alloc_track(mm, pud, addr, mask); 2606 if (!pmd) 2607 return -ENOMEM; 2608 } else { 2609 pmd = pmd_offset(pud, addr); 2610 } 2611 do { 2612 next = pmd_addr_end(addr, end); 2613 if (pmd_none(*pmd) && !create) 2614 continue; 2615 if (WARN_ON_ONCE(pmd_leaf(*pmd))) 2616 return -EINVAL; 2617 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) { 2618 if (!create) 2619 continue; 2620 pmd_clear_bad(pmd); 2621 } 2622 err = apply_to_pte_range(mm, pmd, addr, next, 2623 fn, data, create, mask); 2624 if (err) 2625 break; 2626 } while (pmd++, addr = next, addr != end); 2627 2628 return err; 2629 } 2630 2631 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2632 unsigned long addr, unsigned long end, 2633 pte_fn_t fn, void *data, bool create, 2634 pgtbl_mod_mask *mask) 2635 { 2636 pud_t *pud; 2637 unsigned long next; 2638 int err = 0; 2639 2640 if (create) { 2641 pud = pud_alloc_track(mm, p4d, addr, mask); 2642 if (!pud) 2643 return -ENOMEM; 2644 } else { 2645 pud = pud_offset(p4d, addr); 2646 } 2647 do { 2648 next = pud_addr_end(addr, end); 2649 if (pud_none(*pud) && !create) 2650 continue; 2651 if (WARN_ON_ONCE(pud_leaf(*pud))) 2652 return -EINVAL; 2653 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) { 2654 if (!create) 2655 continue; 2656 pud_clear_bad(pud); 2657 } 2658 err = apply_to_pmd_range(mm, pud, addr, next, 2659 fn, data, create, mask); 2660 if (err) 2661 break; 2662 } while (pud++, addr = next, addr != end); 2663 2664 return err; 2665 } 2666 2667 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2668 unsigned long addr, unsigned long end, 2669 pte_fn_t fn, void *data, bool create, 2670 pgtbl_mod_mask *mask) 2671 { 2672 p4d_t *p4d; 2673 unsigned long next; 2674 int err = 0; 2675 2676 if (create) { 2677 p4d = p4d_alloc_track(mm, pgd, addr, mask); 2678 if (!p4d) 2679 return -ENOMEM; 2680 } else { 2681 p4d = p4d_offset(pgd, addr); 2682 } 2683 do { 2684 next = p4d_addr_end(addr, end); 2685 if (p4d_none(*p4d) && !create) 2686 continue; 2687 if (WARN_ON_ONCE(p4d_leaf(*p4d))) 2688 return -EINVAL; 2689 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) { 2690 if (!create) 2691 continue; 2692 p4d_clear_bad(p4d); 2693 } 2694 err = apply_to_pud_range(mm, p4d, addr, next, 2695 fn, data, create, mask); 2696 if (err) 2697 break; 2698 } while (p4d++, addr = next, addr != end); 2699 2700 return err; 2701 } 2702 2703 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2704 unsigned long size, pte_fn_t fn, 2705 void *data, bool create) 2706 { 2707 pgd_t *pgd; 2708 unsigned long start = addr, next; 2709 unsigned long end = addr + size; 2710 pgtbl_mod_mask mask = 0; 2711 int err = 0; 2712 2713 if (WARN_ON(addr >= end)) 2714 return -EINVAL; 2715 2716 pgd = pgd_offset(mm, addr); 2717 do { 2718 next = pgd_addr_end(addr, end); 2719 if (pgd_none(*pgd) && !create) 2720 continue; 2721 if (WARN_ON_ONCE(pgd_leaf(*pgd))) 2722 return -EINVAL; 2723 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) { 2724 if (!create) 2725 continue; 2726 pgd_clear_bad(pgd); 2727 } 2728 err = apply_to_p4d_range(mm, pgd, addr, next, 2729 fn, data, create, &mask); 2730 if (err) 2731 break; 2732 } while (pgd++, addr = next, addr != end); 2733 2734 if (mask & ARCH_PAGE_TABLE_SYNC_MASK) 2735 arch_sync_kernel_mappings(start, start + size); 2736 2737 return err; 2738 } 2739 2740 /* 2741 * Scan a region of virtual memory, filling in page tables as necessary 2742 * and calling a provided function on each leaf page table. 2743 */ 2744 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2745 unsigned long size, pte_fn_t fn, void *data) 2746 { 2747 return __apply_to_page_range(mm, addr, size, fn, data, true); 2748 } 2749 EXPORT_SYMBOL_GPL(apply_to_page_range); 2750 2751 /* 2752 * Scan a region of virtual memory, calling a provided function on 2753 * each leaf page table where it exists. 2754 * 2755 * Unlike apply_to_page_range, this does _not_ fill in page tables 2756 * where they are absent. 2757 */ 2758 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr, 2759 unsigned long size, pte_fn_t fn, void *data) 2760 { 2761 return __apply_to_page_range(mm, addr, size, fn, data, false); 2762 } 2763 EXPORT_SYMBOL_GPL(apply_to_existing_page_range); 2764 2765 /* 2766 * handle_pte_fault chooses page fault handler according to an entry which was 2767 * read non-atomically. Before making any commitment, on those architectures 2768 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2769 * parts, do_swap_page must check under lock before unmapping the pte and 2770 * proceeding (but do_wp_page is only called after already making such a check; 2771 * and do_anonymous_page can safely check later on). 2772 */ 2773 static inline int pte_unmap_same(struct vm_fault *vmf) 2774 { 2775 int same = 1; 2776 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION) 2777 if (sizeof(pte_t) > sizeof(unsigned long)) { 2778 spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 2779 spin_lock(ptl); 2780 same = pte_same(*vmf->pte, vmf->orig_pte); 2781 spin_unlock(ptl); 2782 } 2783 #endif 2784 pte_unmap(vmf->pte); 2785 vmf->pte = NULL; 2786 return same; 2787 } 2788 2789 /* 2790 * Return: 2791 * 0: copied succeeded 2792 * -EHWPOISON: copy failed due to hwpoison in source page 2793 * -EAGAIN: copied failed (some other reason) 2794 */ 2795 static inline int __wp_page_copy_user(struct page *dst, struct page *src, 2796 struct vm_fault *vmf) 2797 { 2798 int ret; 2799 void *kaddr; 2800 void __user *uaddr; 2801 bool locked = false; 2802 struct vm_area_struct *vma = vmf->vma; 2803 struct mm_struct *mm = vma->vm_mm; 2804 unsigned long addr = vmf->address; 2805 2806 if (likely(src)) { 2807 if (copy_mc_user_highpage(dst, src, addr, vma)) { 2808 memory_failure_queue(page_to_pfn(src), 0); 2809 return -EHWPOISON; 2810 } 2811 return 0; 2812 } 2813 2814 /* 2815 * If the source page was a PFN mapping, we don't have 2816 * a "struct page" for it. We do a best-effort copy by 2817 * just copying from the original user address. If that 2818 * fails, we just zero-fill it. Live with it. 2819 */ 2820 kaddr = kmap_atomic(dst); 2821 uaddr = (void __user *)(addr & PAGE_MASK); 2822 2823 /* 2824 * On architectures with software "accessed" bits, we would 2825 * take a double page fault, so mark it accessed here. 2826 */ 2827 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) { 2828 pte_t entry; 2829 2830 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2831 locked = true; 2832 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2833 /* 2834 * Other thread has already handled the fault 2835 * and update local tlb only 2836 */ 2837 update_mmu_tlb(vma, addr, vmf->pte); 2838 ret = -EAGAIN; 2839 goto pte_unlock; 2840 } 2841 2842 entry = pte_mkyoung(vmf->orig_pte); 2843 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0)) 2844 update_mmu_cache(vma, addr, vmf->pte); 2845 } 2846 2847 /* 2848 * This really shouldn't fail, because the page is there 2849 * in the page tables. But it might just be unreadable, 2850 * in which case we just give up and fill the result with 2851 * zeroes. 2852 */ 2853 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2854 if (locked) 2855 goto warn; 2856 2857 /* Re-validate under PTL if the page is still mapped */ 2858 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl); 2859 locked = true; 2860 if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2861 /* The PTE changed under us, update local tlb */ 2862 update_mmu_tlb(vma, addr, vmf->pte); 2863 ret = -EAGAIN; 2864 goto pte_unlock; 2865 } 2866 2867 /* 2868 * The same page can be mapped back since last copy attempt. 2869 * Try to copy again under PTL. 2870 */ 2871 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) { 2872 /* 2873 * Give a warn in case there can be some obscure 2874 * use-case 2875 */ 2876 warn: 2877 WARN_ON_ONCE(1); 2878 clear_page(kaddr); 2879 } 2880 } 2881 2882 ret = 0; 2883 2884 pte_unlock: 2885 if (locked) 2886 pte_unmap_unlock(vmf->pte, vmf->ptl); 2887 kunmap_atomic(kaddr); 2888 flush_dcache_page(dst); 2889 2890 return ret; 2891 } 2892 2893 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2894 { 2895 struct file *vm_file = vma->vm_file; 2896 2897 if (vm_file) 2898 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2899 2900 /* 2901 * Special mappings (e.g. VDSO) do not have any file so fake 2902 * a default GFP_KERNEL for them. 2903 */ 2904 return GFP_KERNEL; 2905 } 2906 2907 /* 2908 * Notify the address space that the page is about to become writable so that 2909 * it can prohibit this or wait for the page to get into an appropriate state. 2910 * 2911 * We do this without the lock held, so that it can sleep if it needs to. 2912 */ 2913 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2914 { 2915 vm_fault_t ret; 2916 struct page *page = vmf->page; 2917 unsigned int old_flags = vmf->flags; 2918 2919 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2920 2921 if (vmf->vma->vm_file && 2922 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host)) 2923 return VM_FAULT_SIGBUS; 2924 2925 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2926 /* Restore original flags so that caller is not surprised */ 2927 vmf->flags = old_flags; 2928 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2929 return ret; 2930 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2931 lock_page(page); 2932 if (!page->mapping) { 2933 unlock_page(page); 2934 return 0; /* retry */ 2935 } 2936 ret |= VM_FAULT_LOCKED; 2937 } else 2938 VM_BUG_ON_PAGE(!PageLocked(page), page); 2939 return ret; 2940 } 2941 2942 /* 2943 * Handle dirtying of a page in shared file mapping on a write fault. 2944 * 2945 * The function expects the page to be locked and unlocks it. 2946 */ 2947 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf) 2948 { 2949 struct vm_area_struct *vma = vmf->vma; 2950 struct address_space *mapping; 2951 struct page *page = vmf->page; 2952 bool dirtied; 2953 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2954 2955 dirtied = set_page_dirty(page); 2956 VM_BUG_ON_PAGE(PageAnon(page), page); 2957 /* 2958 * Take a local copy of the address_space - page.mapping may be zeroed 2959 * by truncate after unlock_page(). The address_space itself remains 2960 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2961 * release semantics to prevent the compiler from undoing this copying. 2962 */ 2963 mapping = page_rmapping(page); 2964 unlock_page(page); 2965 2966 if (!page_mkwrite) 2967 file_update_time(vma->vm_file); 2968 2969 /* 2970 * Throttle page dirtying rate down to writeback speed. 2971 * 2972 * mapping may be NULL here because some device drivers do not 2973 * set page.mapping but still dirty their pages 2974 * 2975 * Drop the mmap_lock before waiting on IO, if we can. The file 2976 * is pinning the mapping, as per above. 2977 */ 2978 if ((dirtied || page_mkwrite) && mapping) { 2979 struct file *fpin; 2980 2981 fpin = maybe_unlock_mmap_for_io(vmf, NULL); 2982 balance_dirty_pages_ratelimited(mapping); 2983 if (fpin) { 2984 fput(fpin); 2985 return VM_FAULT_COMPLETED; 2986 } 2987 } 2988 2989 return 0; 2990 } 2991 2992 /* 2993 * Handle write page faults for pages that can be reused in the current vma 2994 * 2995 * This can happen either due to the mapping being with the VM_SHARED flag, 2996 * or due to us being the last reference standing to the page. In either 2997 * case, all we need to do here is to mark the page as writable and update 2998 * any related book-keeping. 2999 */ 3000 static inline void wp_page_reuse(struct vm_fault *vmf) 3001 __releases(vmf->ptl) 3002 { 3003 struct vm_area_struct *vma = vmf->vma; 3004 struct page *page = vmf->page; 3005 pte_t entry; 3006 3007 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE)); 3008 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page)); 3009 3010 /* 3011 * Clear the pages cpupid information as the existing 3012 * information potentially belongs to a now completely 3013 * unrelated process. 3014 */ 3015 if (page) 3016 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 3017 3018 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3019 entry = pte_mkyoung(vmf->orig_pte); 3020 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3021 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 3022 update_mmu_cache(vma, vmf->address, vmf->pte); 3023 pte_unmap_unlock(vmf->pte, vmf->ptl); 3024 count_vm_event(PGREUSE); 3025 } 3026 3027 /* 3028 * Handle the case of a page which we actually need to copy to a new page, 3029 * either due to COW or unsharing. 3030 * 3031 * Called with mmap_lock locked and the old page referenced, but 3032 * without the ptl held. 3033 * 3034 * High level logic flow: 3035 * 3036 * - Allocate a page, copy the content of the old page to the new one. 3037 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 3038 * - Take the PTL. If the pte changed, bail out and release the allocated page 3039 * - If the pte is still the way we remember it, update the page table and all 3040 * relevant references. This includes dropping the reference the page-table 3041 * held to the old page, as well as updating the rmap. 3042 * - In any case, unlock the PTL and drop the reference we took to the old page. 3043 */ 3044 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 3045 { 3046 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3047 struct vm_area_struct *vma = vmf->vma; 3048 struct mm_struct *mm = vma->vm_mm; 3049 struct folio *old_folio = NULL; 3050 struct folio *new_folio = NULL; 3051 pte_t entry; 3052 int page_copied = 0; 3053 struct mmu_notifier_range range; 3054 int ret; 3055 3056 delayacct_wpcopy_start(); 3057 3058 if (vmf->page) 3059 old_folio = page_folio(vmf->page); 3060 if (unlikely(anon_vma_prepare(vma))) 3061 goto oom; 3062 3063 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 3064 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 3065 if (!new_folio) 3066 goto oom; 3067 } else { 3068 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, 3069 vmf->address, false); 3070 if (!new_folio) 3071 goto oom; 3072 3073 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf); 3074 if (ret) { 3075 /* 3076 * COW failed, if the fault was solved by other, 3077 * it's fine. If not, userspace would re-fault on 3078 * the same address and we will handle the fault 3079 * from the second attempt. 3080 * The -EHWPOISON case will not be retried. 3081 */ 3082 folio_put(new_folio); 3083 if (old_folio) 3084 folio_put(old_folio); 3085 3086 delayacct_wpcopy_end(); 3087 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0; 3088 } 3089 kmsan_copy_page_meta(&new_folio->page, vmf->page); 3090 } 3091 3092 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL)) 3093 goto oom_free_new; 3094 cgroup_throttle_swaprate(&new_folio->page, GFP_KERNEL); 3095 3096 __folio_mark_uptodate(new_folio); 3097 3098 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, 3099 vmf->address & PAGE_MASK, 3100 (vmf->address & PAGE_MASK) + PAGE_SIZE); 3101 mmu_notifier_invalidate_range_start(&range); 3102 3103 /* 3104 * Re-check the pte - we dropped the lock 3105 */ 3106 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 3107 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 3108 if (old_folio) { 3109 if (!folio_test_anon(old_folio)) { 3110 dec_mm_counter(mm, mm_counter_file(&old_folio->page)); 3111 inc_mm_counter(mm, MM_ANONPAGES); 3112 } 3113 } else { 3114 inc_mm_counter(mm, MM_ANONPAGES); 3115 } 3116 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 3117 entry = mk_pte(&new_folio->page, vma->vm_page_prot); 3118 entry = pte_sw_mkyoung(entry); 3119 if (unlikely(unshare)) { 3120 if (pte_soft_dirty(vmf->orig_pte)) 3121 entry = pte_mksoft_dirty(entry); 3122 if (pte_uffd_wp(vmf->orig_pte)) 3123 entry = pte_mkuffd_wp(entry); 3124 } else { 3125 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3126 } 3127 3128 /* 3129 * Clear the pte entry and flush it first, before updating the 3130 * pte with the new entry, to keep TLBs on different CPUs in 3131 * sync. This code used to set the new PTE then flush TLBs, but 3132 * that left a window where the new PTE could be loaded into 3133 * some TLBs while the old PTE remains in others. 3134 */ 3135 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 3136 folio_add_new_anon_rmap(new_folio, vma, vmf->address); 3137 folio_add_lru_vma(new_folio, vma); 3138 /* 3139 * We call the notify macro here because, when using secondary 3140 * mmu page tables (such as kvm shadow page tables), we want the 3141 * new page to be mapped directly into the secondary page table. 3142 */ 3143 BUG_ON(unshare && pte_write(entry)); 3144 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 3145 update_mmu_cache(vma, vmf->address, vmf->pte); 3146 if (old_folio) { 3147 /* 3148 * Only after switching the pte to the new page may 3149 * we remove the mapcount here. Otherwise another 3150 * process may come and find the rmap count decremented 3151 * before the pte is switched to the new page, and 3152 * "reuse" the old page writing into it while our pte 3153 * here still points into it and can be read by other 3154 * threads. 3155 * 3156 * The critical issue is to order this 3157 * page_remove_rmap with the ptp_clear_flush above. 3158 * Those stores are ordered by (if nothing else,) 3159 * the barrier present in the atomic_add_negative 3160 * in page_remove_rmap. 3161 * 3162 * Then the TLB flush in ptep_clear_flush ensures that 3163 * no process can access the old page before the 3164 * decremented mapcount is visible. And the old page 3165 * cannot be reused until after the decremented 3166 * mapcount is visible. So transitively, TLBs to 3167 * old page will be flushed before it can be reused. 3168 */ 3169 page_remove_rmap(vmf->page, vma, false); 3170 } 3171 3172 /* Free the old page.. */ 3173 new_folio = old_folio; 3174 page_copied = 1; 3175 } else { 3176 update_mmu_tlb(vma, vmf->address, vmf->pte); 3177 } 3178 3179 if (new_folio) 3180 folio_put(new_folio); 3181 3182 pte_unmap_unlock(vmf->pte, vmf->ptl); 3183 /* 3184 * No need to double call mmu_notifier->invalidate_range() callback as 3185 * the above ptep_clear_flush_notify() did already call it. 3186 */ 3187 mmu_notifier_invalidate_range_only_end(&range); 3188 if (old_folio) { 3189 if (page_copied) 3190 free_swap_cache(&old_folio->page); 3191 folio_put(old_folio); 3192 } 3193 3194 delayacct_wpcopy_end(); 3195 return 0; 3196 oom_free_new: 3197 folio_put(new_folio); 3198 oom: 3199 if (old_folio) 3200 folio_put(old_folio); 3201 3202 delayacct_wpcopy_end(); 3203 return VM_FAULT_OOM; 3204 } 3205 3206 /** 3207 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 3208 * writeable once the page is prepared 3209 * 3210 * @vmf: structure describing the fault 3211 * 3212 * This function handles all that is needed to finish a write page fault in a 3213 * shared mapping due to PTE being read-only once the mapped page is prepared. 3214 * It handles locking of PTE and modifying it. 3215 * 3216 * The function expects the page to be locked or other protection against 3217 * concurrent faults / writeback (such as DAX radix tree locks). 3218 * 3219 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before 3220 * we acquired PTE lock. 3221 */ 3222 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 3223 { 3224 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 3225 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 3226 &vmf->ptl); 3227 /* 3228 * We might have raced with another page fault while we released the 3229 * pte_offset_map_lock. 3230 */ 3231 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 3232 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 3233 pte_unmap_unlock(vmf->pte, vmf->ptl); 3234 return VM_FAULT_NOPAGE; 3235 } 3236 wp_page_reuse(vmf); 3237 return 0; 3238 } 3239 3240 /* 3241 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 3242 * mapping 3243 */ 3244 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 3245 { 3246 struct vm_area_struct *vma = vmf->vma; 3247 3248 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 3249 vm_fault_t ret; 3250 3251 pte_unmap_unlock(vmf->pte, vmf->ptl); 3252 vmf->flags |= FAULT_FLAG_MKWRITE; 3253 ret = vma->vm_ops->pfn_mkwrite(vmf); 3254 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 3255 return ret; 3256 return finish_mkwrite_fault(vmf); 3257 } 3258 wp_page_reuse(vmf); 3259 return 0; 3260 } 3261 3262 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 3263 __releases(vmf->ptl) 3264 { 3265 struct vm_area_struct *vma = vmf->vma; 3266 vm_fault_t ret = 0; 3267 3268 get_page(vmf->page); 3269 3270 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 3271 vm_fault_t tmp; 3272 3273 pte_unmap_unlock(vmf->pte, vmf->ptl); 3274 tmp = do_page_mkwrite(vmf); 3275 if (unlikely(!tmp || (tmp & 3276 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3277 put_page(vmf->page); 3278 return tmp; 3279 } 3280 tmp = finish_mkwrite_fault(vmf); 3281 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3282 unlock_page(vmf->page); 3283 put_page(vmf->page); 3284 return tmp; 3285 } 3286 } else { 3287 wp_page_reuse(vmf); 3288 lock_page(vmf->page); 3289 } 3290 ret |= fault_dirty_shared_page(vmf); 3291 put_page(vmf->page); 3292 3293 return ret; 3294 } 3295 3296 /* 3297 * This routine handles present pages, when 3298 * * users try to write to a shared page (FAULT_FLAG_WRITE) 3299 * * GUP wants to take a R/O pin on a possibly shared anonymous page 3300 * (FAULT_FLAG_UNSHARE) 3301 * 3302 * It is done by copying the page to a new address and decrementing the 3303 * shared-page counter for the old page. 3304 * 3305 * Note that this routine assumes that the protection checks have been 3306 * done by the caller (the low-level page fault routine in most cases). 3307 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've 3308 * done any necessary COW. 3309 * 3310 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even 3311 * though the page will change only once the write actually happens. This 3312 * avoids a few races, and potentially makes it more efficient. 3313 * 3314 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3315 * but allow concurrent faults), with pte both mapped and locked. 3316 * We return with mmap_lock still held, but pte unmapped and unlocked. 3317 */ 3318 static vm_fault_t do_wp_page(struct vm_fault *vmf) 3319 __releases(vmf->ptl) 3320 { 3321 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 3322 struct vm_area_struct *vma = vmf->vma; 3323 struct folio *folio = NULL; 3324 3325 if (likely(!unshare)) { 3326 if (userfaultfd_pte_wp(vma, *vmf->pte)) { 3327 pte_unmap_unlock(vmf->pte, vmf->ptl); 3328 return handle_userfault(vmf, VM_UFFD_WP); 3329 } 3330 3331 /* 3332 * Userfaultfd write-protect can defer flushes. Ensure the TLB 3333 * is flushed in this case before copying. 3334 */ 3335 if (unlikely(userfaultfd_wp(vmf->vma) && 3336 mm_tlb_flush_pending(vmf->vma->vm_mm))) 3337 flush_tlb_page(vmf->vma, vmf->address); 3338 } 3339 3340 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 3341 3342 /* 3343 * Shared mapping: we are guaranteed to have VM_WRITE and 3344 * FAULT_FLAG_WRITE set at this point. 3345 */ 3346 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 3347 /* 3348 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 3349 * VM_PFNMAP VMA. 3350 * 3351 * We should not cow pages in a shared writeable mapping. 3352 * Just mark the pages writable and/or call ops->pfn_mkwrite. 3353 */ 3354 if (!vmf->page) 3355 return wp_pfn_shared(vmf); 3356 return wp_page_shared(vmf); 3357 } 3358 3359 if (vmf->page) 3360 folio = page_folio(vmf->page); 3361 3362 /* 3363 * Private mapping: create an exclusive anonymous page copy if reuse 3364 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling. 3365 */ 3366 if (folio && folio_test_anon(folio)) { 3367 /* 3368 * If the page is exclusive to this process we must reuse the 3369 * page without further checks. 3370 */ 3371 if (PageAnonExclusive(vmf->page)) 3372 goto reuse; 3373 3374 /* 3375 * We have to verify under folio lock: these early checks are 3376 * just an optimization to avoid locking the folio and freeing 3377 * the swapcache if there is little hope that we can reuse. 3378 * 3379 * KSM doesn't necessarily raise the folio refcount. 3380 */ 3381 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3) 3382 goto copy; 3383 if (!folio_test_lru(folio)) 3384 /* 3385 * Note: We cannot easily detect+handle references from 3386 * remote LRU pagevecs or references to LRU folios. 3387 */ 3388 lru_add_drain(); 3389 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio)) 3390 goto copy; 3391 if (!folio_trylock(folio)) 3392 goto copy; 3393 if (folio_test_swapcache(folio)) 3394 folio_free_swap(folio); 3395 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) { 3396 folio_unlock(folio); 3397 goto copy; 3398 } 3399 /* 3400 * Ok, we've got the only folio reference from our mapping 3401 * and the folio is locked, it's dark out, and we're wearing 3402 * sunglasses. Hit it. 3403 */ 3404 page_move_anon_rmap(vmf->page, vma); 3405 folio_unlock(folio); 3406 reuse: 3407 if (unlikely(unshare)) { 3408 pte_unmap_unlock(vmf->pte, vmf->ptl); 3409 return 0; 3410 } 3411 wp_page_reuse(vmf); 3412 return 0; 3413 } 3414 copy: 3415 /* 3416 * Ok, we need to copy. Oh, well.. 3417 */ 3418 if (folio) 3419 folio_get(folio); 3420 3421 pte_unmap_unlock(vmf->pte, vmf->ptl); 3422 #ifdef CONFIG_KSM 3423 if (folio && folio_test_ksm(folio)) 3424 count_vm_event(COW_KSM); 3425 #endif 3426 return wp_page_copy(vmf); 3427 } 3428 3429 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 3430 unsigned long start_addr, unsigned long end_addr, 3431 struct zap_details *details) 3432 { 3433 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 3434 } 3435 3436 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 3437 pgoff_t first_index, 3438 pgoff_t last_index, 3439 struct zap_details *details) 3440 { 3441 struct vm_area_struct *vma; 3442 pgoff_t vba, vea, zba, zea; 3443 3444 vma_interval_tree_foreach(vma, root, first_index, last_index) { 3445 vba = vma->vm_pgoff; 3446 vea = vba + vma_pages(vma) - 1; 3447 zba = max(first_index, vba); 3448 zea = min(last_index, vea); 3449 3450 unmap_mapping_range_vma(vma, 3451 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 3452 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 3453 details); 3454 } 3455 } 3456 3457 /** 3458 * unmap_mapping_folio() - Unmap single folio from processes. 3459 * @folio: The locked folio to be unmapped. 3460 * 3461 * Unmap this folio from any userspace process which still has it mmaped. 3462 * Typically, for efficiency, the range of nearby pages has already been 3463 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once 3464 * truncation or invalidation holds the lock on a folio, it may find that 3465 * the page has been remapped again: and then uses unmap_mapping_folio() 3466 * to unmap it finally. 3467 */ 3468 void unmap_mapping_folio(struct folio *folio) 3469 { 3470 struct address_space *mapping = folio->mapping; 3471 struct zap_details details = { }; 3472 pgoff_t first_index; 3473 pgoff_t last_index; 3474 3475 VM_BUG_ON(!folio_test_locked(folio)); 3476 3477 first_index = folio->index; 3478 last_index = folio->index + folio_nr_pages(folio) - 1; 3479 3480 details.even_cows = false; 3481 details.single_folio = folio; 3482 details.zap_flags = ZAP_FLAG_DROP_MARKER; 3483 3484 i_mmap_lock_read(mapping); 3485 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3486 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3487 last_index, &details); 3488 i_mmap_unlock_read(mapping); 3489 } 3490 3491 /** 3492 * unmap_mapping_pages() - Unmap pages from processes. 3493 * @mapping: The address space containing pages to be unmapped. 3494 * @start: Index of first page to be unmapped. 3495 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 3496 * @even_cows: Whether to unmap even private COWed pages. 3497 * 3498 * Unmap the pages in this address space from any userspace process which 3499 * has them mmaped. Generally, you want to remove COWed pages as well when 3500 * a file is being truncated, but not when invalidating pages from the page 3501 * cache. 3502 */ 3503 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 3504 pgoff_t nr, bool even_cows) 3505 { 3506 struct zap_details details = { }; 3507 pgoff_t first_index = start; 3508 pgoff_t last_index = start + nr - 1; 3509 3510 details.even_cows = even_cows; 3511 if (last_index < first_index) 3512 last_index = ULONG_MAX; 3513 3514 i_mmap_lock_read(mapping); 3515 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 3516 unmap_mapping_range_tree(&mapping->i_mmap, first_index, 3517 last_index, &details); 3518 i_mmap_unlock_read(mapping); 3519 } 3520 EXPORT_SYMBOL_GPL(unmap_mapping_pages); 3521 3522 /** 3523 * unmap_mapping_range - unmap the portion of all mmaps in the specified 3524 * address_space corresponding to the specified byte range in the underlying 3525 * file. 3526 * 3527 * @mapping: the address space containing mmaps to be unmapped. 3528 * @holebegin: byte in first page to unmap, relative to the start of 3529 * the underlying file. This will be rounded down to a PAGE_SIZE 3530 * boundary. Note that this is different from truncate_pagecache(), which 3531 * must keep the partial page. In contrast, we must get rid of 3532 * partial pages. 3533 * @holelen: size of prospective hole in bytes. This will be rounded 3534 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 3535 * end of the file. 3536 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 3537 * but 0 when invalidating pagecache, don't throw away private data. 3538 */ 3539 void unmap_mapping_range(struct address_space *mapping, 3540 loff_t const holebegin, loff_t const holelen, int even_cows) 3541 { 3542 pgoff_t hba = holebegin >> PAGE_SHIFT; 3543 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3544 3545 /* Check for overflow. */ 3546 if (sizeof(holelen) > sizeof(hlen)) { 3547 long long holeend = 3548 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 3549 if (holeend & ~(long long)ULONG_MAX) 3550 hlen = ULONG_MAX - hba + 1; 3551 } 3552 3553 unmap_mapping_pages(mapping, hba, hlen, even_cows); 3554 } 3555 EXPORT_SYMBOL(unmap_mapping_range); 3556 3557 /* 3558 * Restore a potential device exclusive pte to a working pte entry 3559 */ 3560 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf) 3561 { 3562 struct folio *folio = page_folio(vmf->page); 3563 struct vm_area_struct *vma = vmf->vma; 3564 struct mmu_notifier_range range; 3565 3566 /* 3567 * We need a reference to lock the folio because we don't hold 3568 * the PTL so a racing thread can remove the device-exclusive 3569 * entry and unmap it. If the folio is free the entry must 3570 * have been removed already. If it happens to have already 3571 * been re-allocated after being freed all we do is lock and 3572 * unlock it. 3573 */ 3574 if (!folio_try_get(folio)) 3575 return 0; 3576 3577 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) { 3578 folio_put(folio); 3579 return VM_FAULT_RETRY; 3580 } 3581 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, 3582 vma->vm_mm, vmf->address & PAGE_MASK, 3583 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL); 3584 mmu_notifier_invalidate_range_start(&range); 3585 3586 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3587 &vmf->ptl); 3588 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3589 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte); 3590 3591 pte_unmap_unlock(vmf->pte, vmf->ptl); 3592 folio_unlock(folio); 3593 folio_put(folio); 3594 3595 mmu_notifier_invalidate_range_end(&range); 3596 return 0; 3597 } 3598 3599 static inline bool should_try_to_free_swap(struct folio *folio, 3600 struct vm_area_struct *vma, 3601 unsigned int fault_flags) 3602 { 3603 if (!folio_test_swapcache(folio)) 3604 return false; 3605 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) || 3606 folio_test_mlocked(folio)) 3607 return true; 3608 /* 3609 * If we want to map a page that's in the swapcache writable, we 3610 * have to detect via the refcount if we're really the exclusive 3611 * user. Try freeing the swapcache to get rid of the swapcache 3612 * reference only in case it's likely that we'll be the exlusive user. 3613 */ 3614 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) && 3615 folio_ref_count(folio) == 2; 3616 } 3617 3618 static vm_fault_t pte_marker_clear(struct vm_fault *vmf) 3619 { 3620 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, 3621 vmf->address, &vmf->ptl); 3622 /* 3623 * Be careful so that we will only recover a special uffd-wp pte into a 3624 * none pte. Otherwise it means the pte could have changed, so retry. 3625 * 3626 * This should also cover the case where e.g. the pte changed 3627 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR. 3628 * So is_pte_marker() check is not enough to safely drop the pte. 3629 */ 3630 if (pte_same(vmf->orig_pte, *vmf->pte)) 3631 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte); 3632 pte_unmap_unlock(vmf->pte, vmf->ptl); 3633 return 0; 3634 } 3635 3636 /* 3637 * This is actually a page-missing access, but with uffd-wp special pte 3638 * installed. It means this pte was wr-protected before being unmapped. 3639 */ 3640 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf) 3641 { 3642 /* 3643 * Just in case there're leftover special ptes even after the region 3644 * got unregistered - we can simply clear them. 3645 */ 3646 if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma))) 3647 return pte_marker_clear(vmf); 3648 3649 /* do_fault() can handle pte markers too like none pte */ 3650 return do_fault(vmf); 3651 } 3652 3653 static vm_fault_t handle_pte_marker(struct vm_fault *vmf) 3654 { 3655 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte); 3656 unsigned long marker = pte_marker_get(entry); 3657 3658 /* 3659 * PTE markers should never be empty. If anything weird happened, 3660 * the best thing to do is to kill the process along with its mm. 3661 */ 3662 if (WARN_ON_ONCE(!marker)) 3663 return VM_FAULT_SIGBUS; 3664 3665 /* Higher priority than uffd-wp when data corrupted */ 3666 if (marker & PTE_MARKER_SWAPIN_ERROR) 3667 return VM_FAULT_SIGBUS; 3668 3669 if (pte_marker_entry_uffd_wp(entry)) 3670 return pte_marker_handle_uffd_wp(vmf); 3671 3672 /* This is an unknown pte marker */ 3673 return VM_FAULT_SIGBUS; 3674 } 3675 3676 /* 3677 * We enter with non-exclusive mmap_lock (to exclude vma changes, 3678 * but allow concurrent faults), and pte mapped but not yet locked. 3679 * We return with pte unmapped and unlocked. 3680 * 3681 * We return with the mmap_lock locked or unlocked in the same cases 3682 * as does filemap_fault(). 3683 */ 3684 vm_fault_t do_swap_page(struct vm_fault *vmf) 3685 { 3686 struct vm_area_struct *vma = vmf->vma; 3687 struct folio *swapcache, *folio = NULL; 3688 struct page *page; 3689 struct swap_info_struct *si = NULL; 3690 rmap_t rmap_flags = RMAP_NONE; 3691 bool exclusive = false; 3692 swp_entry_t entry; 3693 pte_t pte; 3694 int locked; 3695 vm_fault_t ret = 0; 3696 void *shadow = NULL; 3697 3698 if (!pte_unmap_same(vmf)) 3699 goto out; 3700 3701 entry = pte_to_swp_entry(vmf->orig_pte); 3702 if (unlikely(non_swap_entry(entry))) { 3703 if (is_migration_entry(entry)) { 3704 migration_entry_wait(vma->vm_mm, vmf->pmd, 3705 vmf->address); 3706 } else if (is_device_exclusive_entry(entry)) { 3707 vmf->page = pfn_swap_entry_to_page(entry); 3708 ret = remove_device_exclusive_entry(vmf); 3709 } else if (is_device_private_entry(entry)) { 3710 vmf->page = pfn_swap_entry_to_page(entry); 3711 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3712 vmf->address, &vmf->ptl); 3713 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3714 spin_unlock(vmf->ptl); 3715 goto out; 3716 } 3717 3718 /* 3719 * Get a page reference while we know the page can't be 3720 * freed. 3721 */ 3722 get_page(vmf->page); 3723 pte_unmap_unlock(vmf->pte, vmf->ptl); 3724 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf); 3725 put_page(vmf->page); 3726 } else if (is_hwpoison_entry(entry)) { 3727 ret = VM_FAULT_HWPOISON; 3728 } else if (is_pte_marker_entry(entry)) { 3729 ret = handle_pte_marker(vmf); 3730 } else { 3731 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 3732 ret = VM_FAULT_SIGBUS; 3733 } 3734 goto out; 3735 } 3736 3737 /* Prevent swapoff from happening to us. */ 3738 si = get_swap_device(entry); 3739 if (unlikely(!si)) 3740 goto out; 3741 3742 folio = swap_cache_get_folio(entry, vma, vmf->address); 3743 if (folio) 3744 page = folio_file_page(folio, swp_offset(entry)); 3745 swapcache = folio; 3746 3747 if (!folio) { 3748 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) && 3749 __swap_count(entry) == 1) { 3750 /* skip swapcache */ 3751 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, 3752 vma, vmf->address, false); 3753 page = &folio->page; 3754 if (folio) { 3755 __folio_set_locked(folio); 3756 __folio_set_swapbacked(folio); 3757 3758 if (mem_cgroup_swapin_charge_folio(folio, 3759 vma->vm_mm, GFP_KERNEL, 3760 entry)) { 3761 ret = VM_FAULT_OOM; 3762 goto out_page; 3763 } 3764 mem_cgroup_swapin_uncharge_swap(entry); 3765 3766 shadow = get_shadow_from_swap_cache(entry); 3767 if (shadow) 3768 workingset_refault(folio, shadow); 3769 3770 folio_add_lru(folio); 3771 3772 /* To provide entry to swap_readpage() */ 3773 folio_set_swap_entry(folio, entry); 3774 swap_readpage(page, true, NULL); 3775 folio->private = NULL; 3776 } 3777 } else { 3778 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 3779 vmf); 3780 if (page) 3781 folio = page_folio(page); 3782 swapcache = folio; 3783 } 3784 3785 if (!folio) { 3786 /* 3787 * Back out if somebody else faulted in this pte 3788 * while we released the pte lock. 3789 */ 3790 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3791 vmf->address, &vmf->ptl); 3792 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 3793 ret = VM_FAULT_OOM; 3794 goto unlock; 3795 } 3796 3797 /* Had to read the page from swap area: Major fault */ 3798 ret = VM_FAULT_MAJOR; 3799 count_vm_event(PGMAJFAULT); 3800 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 3801 } else if (PageHWPoison(page)) { 3802 /* 3803 * hwpoisoned dirty swapcache pages are kept for killing 3804 * owner processes (which may be unknown at hwpoison time) 3805 */ 3806 ret = VM_FAULT_HWPOISON; 3807 goto out_release; 3808 } 3809 3810 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags); 3811 3812 if (!locked) { 3813 ret |= VM_FAULT_RETRY; 3814 goto out_release; 3815 } 3816 3817 if (swapcache) { 3818 /* 3819 * Make sure folio_free_swap() or swapoff did not release the 3820 * swapcache from under us. The page pin, and pte_same test 3821 * below, are not enough to exclude that. Even if it is still 3822 * swapcache, we need to check that the page's swap has not 3823 * changed. 3824 */ 3825 if (unlikely(!folio_test_swapcache(folio) || 3826 page_private(page) != entry.val)) 3827 goto out_page; 3828 3829 /* 3830 * KSM sometimes has to copy on read faults, for example, if 3831 * page->index of !PageKSM() pages would be nonlinear inside the 3832 * anon VMA -- PageKSM() is lost on actual swapout. 3833 */ 3834 page = ksm_might_need_to_copy(page, vma, vmf->address); 3835 if (unlikely(!page)) { 3836 ret = VM_FAULT_OOM; 3837 goto out_page; 3838 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) { 3839 ret = VM_FAULT_HWPOISON; 3840 goto out_page; 3841 } 3842 folio = page_folio(page); 3843 3844 /* 3845 * If we want to map a page that's in the swapcache writable, we 3846 * have to detect via the refcount if we're really the exclusive 3847 * owner. Try removing the extra reference from the local LRU 3848 * pagevecs if required. 3849 */ 3850 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache && 3851 !folio_test_ksm(folio) && !folio_test_lru(folio)) 3852 lru_add_drain(); 3853 } 3854 3855 cgroup_throttle_swaprate(page, GFP_KERNEL); 3856 3857 /* 3858 * Back out if somebody else already faulted in this pte. 3859 */ 3860 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3861 &vmf->ptl); 3862 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3863 goto out_nomap; 3864 3865 if (unlikely(!folio_test_uptodate(folio))) { 3866 ret = VM_FAULT_SIGBUS; 3867 goto out_nomap; 3868 } 3869 3870 /* 3871 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte 3872 * must never point at an anonymous page in the swapcache that is 3873 * PG_anon_exclusive. Sanity check that this holds and especially, that 3874 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity 3875 * check after taking the PT lock and making sure that nobody 3876 * concurrently faulted in this page and set PG_anon_exclusive. 3877 */ 3878 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio)); 3879 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page)); 3880 3881 /* 3882 * Check under PT lock (to protect against concurrent fork() sharing 3883 * the swap entry concurrently) for certainly exclusive pages. 3884 */ 3885 if (!folio_test_ksm(folio)) { 3886 exclusive = pte_swp_exclusive(vmf->orig_pte); 3887 if (folio != swapcache) { 3888 /* 3889 * We have a fresh page that is not exposed to the 3890 * swapcache -> certainly exclusive. 3891 */ 3892 exclusive = true; 3893 } else if (exclusive && folio_test_writeback(folio) && 3894 data_race(si->flags & SWP_STABLE_WRITES)) { 3895 /* 3896 * This is tricky: not all swap backends support 3897 * concurrent page modifications while under writeback. 3898 * 3899 * So if we stumble over such a page in the swapcache 3900 * we must not set the page exclusive, otherwise we can 3901 * map it writable without further checks and modify it 3902 * while still under writeback. 3903 * 3904 * For these problematic swap backends, simply drop the 3905 * exclusive marker: this is perfectly fine as we start 3906 * writeback only if we fully unmapped the page and 3907 * there are no unexpected references on the page after 3908 * unmapping succeeded. After fully unmapped, no 3909 * further GUP references (FOLL_GET and FOLL_PIN) can 3910 * appear, so dropping the exclusive marker and mapping 3911 * it only R/O is fine. 3912 */ 3913 exclusive = false; 3914 } 3915 } 3916 3917 /* 3918 * Remove the swap entry and conditionally try to free up the swapcache. 3919 * We're already holding a reference on the page but haven't mapped it 3920 * yet. 3921 */ 3922 swap_free(entry); 3923 if (should_try_to_free_swap(folio, vma, vmf->flags)) 3924 folio_free_swap(folio); 3925 3926 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 3927 dec_mm_counter(vma->vm_mm, MM_SWAPENTS); 3928 pte = mk_pte(page, vma->vm_page_prot); 3929 3930 /* 3931 * Same logic as in do_wp_page(); however, optimize for pages that are 3932 * certainly not shared either because we just allocated them without 3933 * exposing them to the swapcache or because the swap entry indicates 3934 * exclusivity. 3935 */ 3936 if (!folio_test_ksm(folio) && 3937 (exclusive || folio_ref_count(folio) == 1)) { 3938 if (vmf->flags & FAULT_FLAG_WRITE) { 3939 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3940 vmf->flags &= ~FAULT_FLAG_WRITE; 3941 } 3942 rmap_flags |= RMAP_EXCLUSIVE; 3943 } 3944 flush_icache_page(vma, page); 3945 if (pte_swp_soft_dirty(vmf->orig_pte)) 3946 pte = pte_mksoft_dirty(pte); 3947 if (pte_swp_uffd_wp(vmf->orig_pte)) 3948 pte = pte_mkuffd_wp(pte); 3949 vmf->orig_pte = pte; 3950 3951 /* ksm created a completely new copy */ 3952 if (unlikely(folio != swapcache && swapcache)) { 3953 page_add_new_anon_rmap(page, vma, vmf->address); 3954 folio_add_lru_vma(folio, vma); 3955 } else { 3956 page_add_anon_rmap(page, vma, vmf->address, rmap_flags); 3957 } 3958 3959 VM_BUG_ON(!folio_test_anon(folio) || 3960 (pte_write(pte) && !PageAnonExclusive(page))); 3961 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3962 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 3963 3964 folio_unlock(folio); 3965 if (folio != swapcache && swapcache) { 3966 /* 3967 * Hold the lock to avoid the swap entry to be reused 3968 * until we take the PT lock for the pte_same() check 3969 * (to avoid false positives from pte_same). For 3970 * further safety release the lock after the swap_free 3971 * so that the swap count won't change under a 3972 * parallel locked swapcache. 3973 */ 3974 folio_unlock(swapcache); 3975 folio_put(swapcache); 3976 } 3977 3978 if (vmf->flags & FAULT_FLAG_WRITE) { 3979 ret |= do_wp_page(vmf); 3980 if (ret & VM_FAULT_ERROR) 3981 ret &= VM_FAULT_ERROR; 3982 goto out; 3983 } 3984 3985 /* No need to invalidate - it was non-present before */ 3986 update_mmu_cache(vma, vmf->address, vmf->pte); 3987 unlock: 3988 pte_unmap_unlock(vmf->pte, vmf->ptl); 3989 out: 3990 if (si) 3991 put_swap_device(si); 3992 return ret; 3993 out_nomap: 3994 pte_unmap_unlock(vmf->pte, vmf->ptl); 3995 out_page: 3996 folio_unlock(folio); 3997 out_release: 3998 folio_put(folio); 3999 if (folio != swapcache && swapcache) { 4000 folio_unlock(swapcache); 4001 folio_put(swapcache); 4002 } 4003 if (si) 4004 put_swap_device(si); 4005 return ret; 4006 } 4007 4008 /* 4009 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4010 * but allow concurrent faults), and pte mapped but not yet locked. 4011 * We return with mmap_lock still held, but pte unmapped and unlocked. 4012 */ 4013 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 4014 { 4015 struct vm_area_struct *vma = vmf->vma; 4016 struct folio *folio; 4017 vm_fault_t ret = 0; 4018 pte_t entry; 4019 4020 /* File mapping without ->vm_ops ? */ 4021 if (vma->vm_flags & VM_SHARED) 4022 return VM_FAULT_SIGBUS; 4023 4024 /* 4025 * Use pte_alloc() instead of pte_alloc_map(). We can't run 4026 * pte_offset_map() on pmds where a huge pmd might be created 4027 * from a different thread. 4028 * 4029 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when 4030 * parallel threads are excluded by other means. 4031 * 4032 * Here we only have mmap_read_lock(mm). 4033 */ 4034 if (pte_alloc(vma->vm_mm, vmf->pmd)) 4035 return VM_FAULT_OOM; 4036 4037 /* See comment in handle_pte_fault() */ 4038 if (unlikely(pmd_trans_unstable(vmf->pmd))) 4039 return 0; 4040 4041 /* Use the zero-page for reads */ 4042 if (!(vmf->flags & FAULT_FLAG_WRITE) && 4043 !mm_forbids_zeropage(vma->vm_mm)) { 4044 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 4045 vma->vm_page_prot)); 4046 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4047 vmf->address, &vmf->ptl); 4048 if (!pte_none(*vmf->pte)) { 4049 update_mmu_tlb(vma, vmf->address, vmf->pte); 4050 goto unlock; 4051 } 4052 ret = check_stable_address_space(vma->vm_mm); 4053 if (ret) 4054 goto unlock; 4055 /* Deliver the page fault to userland, check inside PT lock */ 4056 if (userfaultfd_missing(vma)) { 4057 pte_unmap_unlock(vmf->pte, vmf->ptl); 4058 return handle_userfault(vmf, VM_UFFD_MISSING); 4059 } 4060 goto setpte; 4061 } 4062 4063 /* Allocate our own private page. */ 4064 if (unlikely(anon_vma_prepare(vma))) 4065 goto oom; 4066 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address); 4067 if (!folio) 4068 goto oom; 4069 4070 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL)) 4071 goto oom_free_page; 4072 cgroup_throttle_swaprate(&folio->page, GFP_KERNEL); 4073 4074 /* 4075 * The memory barrier inside __folio_mark_uptodate makes sure that 4076 * preceding stores to the page contents become visible before 4077 * the set_pte_at() write. 4078 */ 4079 __folio_mark_uptodate(folio); 4080 4081 entry = mk_pte(&folio->page, vma->vm_page_prot); 4082 entry = pte_sw_mkyoung(entry); 4083 if (vma->vm_flags & VM_WRITE) 4084 entry = pte_mkwrite(pte_mkdirty(entry)); 4085 4086 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 4087 &vmf->ptl); 4088 if (!pte_none(*vmf->pte)) { 4089 update_mmu_tlb(vma, vmf->address, vmf->pte); 4090 goto release; 4091 } 4092 4093 ret = check_stable_address_space(vma->vm_mm); 4094 if (ret) 4095 goto release; 4096 4097 /* Deliver the page fault to userland, check inside PT lock */ 4098 if (userfaultfd_missing(vma)) { 4099 pte_unmap_unlock(vmf->pte, vmf->ptl); 4100 folio_put(folio); 4101 return handle_userfault(vmf, VM_UFFD_MISSING); 4102 } 4103 4104 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4105 folio_add_new_anon_rmap(folio, vma, vmf->address); 4106 folio_add_lru_vma(folio, vma); 4107 setpte: 4108 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 4109 4110 /* No need to invalidate - it was non-present before */ 4111 update_mmu_cache(vma, vmf->address, vmf->pte); 4112 unlock: 4113 pte_unmap_unlock(vmf->pte, vmf->ptl); 4114 return ret; 4115 release: 4116 folio_put(folio); 4117 goto unlock; 4118 oom_free_page: 4119 folio_put(folio); 4120 oom: 4121 return VM_FAULT_OOM; 4122 } 4123 4124 /* 4125 * The mmap_lock must have been held on entry, and may have been 4126 * released depending on flags and vma->vm_ops->fault() return value. 4127 * See filemap_fault() and __lock_page_retry(). 4128 */ 4129 static vm_fault_t __do_fault(struct vm_fault *vmf) 4130 { 4131 struct vm_area_struct *vma = vmf->vma; 4132 vm_fault_t ret; 4133 4134 /* 4135 * Preallocate pte before we take page_lock because this might lead to 4136 * deadlocks for memcg reclaim which waits for pages under writeback: 4137 * lock_page(A) 4138 * SetPageWriteback(A) 4139 * unlock_page(A) 4140 * lock_page(B) 4141 * lock_page(B) 4142 * pte_alloc_one 4143 * shrink_page_list 4144 * wait_on_page_writeback(A) 4145 * SetPageWriteback(B) 4146 * unlock_page(B) 4147 * # flush A, B to clear the writeback 4148 */ 4149 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 4150 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4151 if (!vmf->prealloc_pte) 4152 return VM_FAULT_OOM; 4153 } 4154 4155 ret = vma->vm_ops->fault(vmf); 4156 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 4157 VM_FAULT_DONE_COW))) 4158 return ret; 4159 4160 if (unlikely(PageHWPoison(vmf->page))) { 4161 struct page *page = vmf->page; 4162 vm_fault_t poisonret = VM_FAULT_HWPOISON; 4163 if (ret & VM_FAULT_LOCKED) { 4164 if (page_mapped(page)) 4165 unmap_mapping_pages(page_mapping(page), 4166 page->index, 1, false); 4167 /* Retry if a clean page was removed from the cache. */ 4168 if (invalidate_inode_page(page)) 4169 poisonret = VM_FAULT_NOPAGE; 4170 unlock_page(page); 4171 } 4172 put_page(page); 4173 vmf->page = NULL; 4174 return poisonret; 4175 } 4176 4177 if (unlikely(!(ret & VM_FAULT_LOCKED))) 4178 lock_page(vmf->page); 4179 else 4180 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 4181 4182 return ret; 4183 } 4184 4185 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4186 static void deposit_prealloc_pte(struct vm_fault *vmf) 4187 { 4188 struct vm_area_struct *vma = vmf->vma; 4189 4190 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 4191 /* 4192 * We are going to consume the prealloc table, 4193 * count that as nr_ptes. 4194 */ 4195 mm_inc_nr_ptes(vma->vm_mm); 4196 vmf->prealloc_pte = NULL; 4197 } 4198 4199 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4200 { 4201 struct vm_area_struct *vma = vmf->vma; 4202 bool write = vmf->flags & FAULT_FLAG_WRITE; 4203 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 4204 pmd_t entry; 4205 int i; 4206 vm_fault_t ret = VM_FAULT_FALLBACK; 4207 4208 if (!transhuge_vma_suitable(vma, haddr)) 4209 return ret; 4210 4211 page = compound_head(page); 4212 if (compound_order(page) != HPAGE_PMD_ORDER) 4213 return ret; 4214 4215 /* 4216 * Just backoff if any subpage of a THP is corrupted otherwise 4217 * the corrupted page may mapped by PMD silently to escape the 4218 * check. This kind of THP just can be PTE mapped. Access to 4219 * the corrupted subpage should trigger SIGBUS as expected. 4220 */ 4221 if (unlikely(PageHasHWPoisoned(page))) 4222 return ret; 4223 4224 /* 4225 * Archs like ppc64 need additional space to store information 4226 * related to pte entry. Use the preallocated table for that. 4227 */ 4228 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 4229 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 4230 if (!vmf->prealloc_pte) 4231 return VM_FAULT_OOM; 4232 } 4233 4234 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 4235 if (unlikely(!pmd_none(*vmf->pmd))) 4236 goto out; 4237 4238 for (i = 0; i < HPAGE_PMD_NR; i++) 4239 flush_icache_page(vma, page + i); 4240 4241 entry = mk_huge_pmd(page, vma->vm_page_prot); 4242 if (write) 4243 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 4244 4245 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 4246 page_add_file_rmap(page, vma, true); 4247 4248 /* 4249 * deposit and withdraw with pmd lock held 4250 */ 4251 if (arch_needs_pgtable_deposit()) 4252 deposit_prealloc_pte(vmf); 4253 4254 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 4255 4256 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 4257 4258 /* fault is handled */ 4259 ret = 0; 4260 count_vm_event(THP_FILE_MAPPED); 4261 out: 4262 spin_unlock(vmf->ptl); 4263 return ret; 4264 } 4265 #else 4266 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 4267 { 4268 return VM_FAULT_FALLBACK; 4269 } 4270 #endif 4271 4272 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr) 4273 { 4274 struct vm_area_struct *vma = vmf->vma; 4275 bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte); 4276 bool write = vmf->flags & FAULT_FLAG_WRITE; 4277 bool prefault = vmf->address != addr; 4278 pte_t entry; 4279 4280 flush_icache_page(vma, page); 4281 entry = mk_pte(page, vma->vm_page_prot); 4282 4283 if (prefault && arch_wants_old_prefaulted_pte()) 4284 entry = pte_mkold(entry); 4285 else 4286 entry = pte_sw_mkyoung(entry); 4287 4288 if (write) 4289 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 4290 if (unlikely(uffd_wp)) 4291 entry = pte_mkuffd_wp(entry); 4292 /* copy-on-write page */ 4293 if (write && !(vma->vm_flags & VM_SHARED)) { 4294 inc_mm_counter(vma->vm_mm, MM_ANONPAGES); 4295 page_add_new_anon_rmap(page, vma, addr); 4296 lru_cache_add_inactive_or_unevictable(page, vma); 4297 } else { 4298 inc_mm_counter(vma->vm_mm, mm_counter_file(page)); 4299 page_add_file_rmap(page, vma, false); 4300 } 4301 set_pte_at(vma->vm_mm, addr, vmf->pte, entry); 4302 } 4303 4304 static bool vmf_pte_changed(struct vm_fault *vmf) 4305 { 4306 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID) 4307 return !pte_same(*vmf->pte, vmf->orig_pte); 4308 4309 return !pte_none(*vmf->pte); 4310 } 4311 4312 /** 4313 * finish_fault - finish page fault once we have prepared the page to fault 4314 * 4315 * @vmf: structure describing the fault 4316 * 4317 * This function handles all that is needed to finish a page fault once the 4318 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 4319 * given page, adds reverse page mapping, handles memcg charges and LRU 4320 * addition. 4321 * 4322 * The function expects the page to be locked and on success it consumes a 4323 * reference of a page being mapped (for the PTE which maps it). 4324 * 4325 * Return: %0 on success, %VM_FAULT_ code in case of error. 4326 */ 4327 vm_fault_t finish_fault(struct vm_fault *vmf) 4328 { 4329 struct vm_area_struct *vma = vmf->vma; 4330 struct page *page; 4331 vm_fault_t ret; 4332 4333 /* Did we COW the page? */ 4334 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) 4335 page = vmf->cow_page; 4336 else 4337 page = vmf->page; 4338 4339 /* 4340 * check even for read faults because we might have lost our CoWed 4341 * page 4342 */ 4343 if (!(vma->vm_flags & VM_SHARED)) { 4344 ret = check_stable_address_space(vma->vm_mm); 4345 if (ret) 4346 return ret; 4347 } 4348 4349 if (pmd_none(*vmf->pmd)) { 4350 if (PageTransCompound(page)) { 4351 ret = do_set_pmd(vmf, page); 4352 if (ret != VM_FAULT_FALLBACK) 4353 return ret; 4354 } 4355 4356 if (vmf->prealloc_pte) 4357 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte); 4358 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) 4359 return VM_FAULT_OOM; 4360 } 4361 4362 /* 4363 * See comment in handle_pte_fault() for how this scenario happens, we 4364 * need to return NOPAGE so that we drop this page. 4365 */ 4366 if (pmd_devmap_trans_unstable(vmf->pmd)) 4367 return VM_FAULT_NOPAGE; 4368 4369 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 4370 vmf->address, &vmf->ptl); 4371 4372 /* Re-check under ptl */ 4373 if (likely(!vmf_pte_changed(vmf))) { 4374 do_set_pte(vmf, page, vmf->address); 4375 4376 /* no need to invalidate: a not-present page won't be cached */ 4377 update_mmu_cache(vma, vmf->address, vmf->pte); 4378 4379 ret = 0; 4380 } else { 4381 update_mmu_tlb(vma, vmf->address, vmf->pte); 4382 ret = VM_FAULT_NOPAGE; 4383 } 4384 4385 pte_unmap_unlock(vmf->pte, vmf->ptl); 4386 return ret; 4387 } 4388 4389 static unsigned long fault_around_bytes __read_mostly = 4390 rounddown_pow_of_two(65536); 4391 4392 #ifdef CONFIG_DEBUG_FS 4393 static int fault_around_bytes_get(void *data, u64 *val) 4394 { 4395 *val = fault_around_bytes; 4396 return 0; 4397 } 4398 4399 /* 4400 * fault_around_bytes must be rounded down to the nearest page order as it's 4401 * what do_fault_around() expects to see. 4402 */ 4403 static int fault_around_bytes_set(void *data, u64 val) 4404 { 4405 if (val / PAGE_SIZE > PTRS_PER_PTE) 4406 return -EINVAL; 4407 if (val > PAGE_SIZE) 4408 fault_around_bytes = rounddown_pow_of_two(val); 4409 else 4410 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 4411 return 0; 4412 } 4413 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 4414 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 4415 4416 static int __init fault_around_debugfs(void) 4417 { 4418 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 4419 &fault_around_bytes_fops); 4420 return 0; 4421 } 4422 late_initcall(fault_around_debugfs); 4423 #endif 4424 4425 /* 4426 * do_fault_around() tries to map few pages around the fault address. The hope 4427 * is that the pages will be needed soon and this will lower the number of 4428 * faults to handle. 4429 * 4430 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 4431 * not ready to be mapped: not up-to-date, locked, etc. 4432 * 4433 * This function doesn't cross the VMA boundaries, in order to call map_pages() 4434 * only once. 4435 * 4436 * fault_around_bytes defines how many bytes we'll try to map. 4437 * do_fault_around() expects it to be set to a power of two less than or equal 4438 * to PTRS_PER_PTE. 4439 * 4440 * The virtual address of the area that we map is naturally aligned to 4441 * fault_around_bytes rounded down to the machine page size 4442 * (and therefore to page order). This way it's easier to guarantee 4443 * that we don't cross page table boundaries. 4444 */ 4445 static vm_fault_t do_fault_around(struct vm_fault *vmf) 4446 { 4447 unsigned long address = vmf->address, nr_pages, mask; 4448 pgoff_t start_pgoff = vmf->pgoff; 4449 pgoff_t end_pgoff; 4450 int off; 4451 4452 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 4453 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 4454 4455 address = max(address & mask, vmf->vma->vm_start); 4456 off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 4457 start_pgoff -= off; 4458 4459 /* 4460 * end_pgoff is either the end of the page table, the end of 4461 * the vma or nr_pages from start_pgoff, depending what is nearest. 4462 */ 4463 end_pgoff = start_pgoff - 4464 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 4465 PTRS_PER_PTE - 1; 4466 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 4467 start_pgoff + nr_pages - 1); 4468 4469 if (pmd_none(*vmf->pmd)) { 4470 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 4471 if (!vmf->prealloc_pte) 4472 return VM_FAULT_OOM; 4473 } 4474 4475 return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 4476 } 4477 4478 /* Return true if we should do read fault-around, false otherwise */ 4479 static inline bool should_fault_around(struct vm_fault *vmf) 4480 { 4481 /* No ->map_pages? No way to fault around... */ 4482 if (!vmf->vma->vm_ops->map_pages) 4483 return false; 4484 4485 if (uffd_disable_fault_around(vmf->vma)) 4486 return false; 4487 4488 return fault_around_bytes >> PAGE_SHIFT > 1; 4489 } 4490 4491 static vm_fault_t do_read_fault(struct vm_fault *vmf) 4492 { 4493 vm_fault_t ret = 0; 4494 4495 /* 4496 * Let's call ->map_pages() first and use ->fault() as fallback 4497 * if page by the offset is not ready to be mapped (cold cache or 4498 * something). 4499 */ 4500 if (should_fault_around(vmf)) { 4501 ret = do_fault_around(vmf); 4502 if (ret) 4503 return ret; 4504 } 4505 4506 ret = __do_fault(vmf); 4507 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4508 return ret; 4509 4510 ret |= finish_fault(vmf); 4511 unlock_page(vmf->page); 4512 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4513 put_page(vmf->page); 4514 return ret; 4515 } 4516 4517 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 4518 { 4519 struct vm_area_struct *vma = vmf->vma; 4520 vm_fault_t ret; 4521 4522 if (unlikely(anon_vma_prepare(vma))) 4523 return VM_FAULT_OOM; 4524 4525 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 4526 if (!vmf->cow_page) 4527 return VM_FAULT_OOM; 4528 4529 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm, 4530 GFP_KERNEL)) { 4531 put_page(vmf->cow_page); 4532 return VM_FAULT_OOM; 4533 } 4534 cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL); 4535 4536 ret = __do_fault(vmf); 4537 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4538 goto uncharge_out; 4539 if (ret & VM_FAULT_DONE_COW) 4540 return ret; 4541 4542 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 4543 __SetPageUptodate(vmf->cow_page); 4544 4545 ret |= finish_fault(vmf); 4546 unlock_page(vmf->page); 4547 put_page(vmf->page); 4548 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4549 goto uncharge_out; 4550 return ret; 4551 uncharge_out: 4552 put_page(vmf->cow_page); 4553 return ret; 4554 } 4555 4556 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 4557 { 4558 struct vm_area_struct *vma = vmf->vma; 4559 vm_fault_t ret, tmp; 4560 4561 ret = __do_fault(vmf); 4562 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 4563 return ret; 4564 4565 /* 4566 * Check if the backing address space wants to know that the page is 4567 * about to become writable 4568 */ 4569 if (vma->vm_ops->page_mkwrite) { 4570 unlock_page(vmf->page); 4571 tmp = do_page_mkwrite(vmf); 4572 if (unlikely(!tmp || 4573 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 4574 put_page(vmf->page); 4575 return tmp; 4576 } 4577 } 4578 4579 ret |= finish_fault(vmf); 4580 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 4581 VM_FAULT_RETRY))) { 4582 unlock_page(vmf->page); 4583 put_page(vmf->page); 4584 return ret; 4585 } 4586 4587 ret |= fault_dirty_shared_page(vmf); 4588 return ret; 4589 } 4590 4591 /* 4592 * We enter with non-exclusive mmap_lock (to exclude vma changes, 4593 * but allow concurrent faults). 4594 * The mmap_lock may have been released depending on flags and our 4595 * return value. See filemap_fault() and __folio_lock_or_retry(). 4596 * If mmap_lock is released, vma may become invalid (for example 4597 * by other thread calling munmap()). 4598 */ 4599 static vm_fault_t do_fault(struct vm_fault *vmf) 4600 { 4601 struct vm_area_struct *vma = vmf->vma; 4602 struct mm_struct *vm_mm = vma->vm_mm; 4603 vm_fault_t ret; 4604 4605 /* 4606 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 4607 */ 4608 if (!vma->vm_ops->fault) { 4609 /* 4610 * If we find a migration pmd entry or a none pmd entry, which 4611 * should never happen, return SIGBUS 4612 */ 4613 if (unlikely(!pmd_present(*vmf->pmd))) 4614 ret = VM_FAULT_SIGBUS; 4615 else { 4616 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 4617 vmf->pmd, 4618 vmf->address, 4619 &vmf->ptl); 4620 /* 4621 * Make sure this is not a temporary clearing of pte 4622 * by holding ptl and checking again. A R/M/W update 4623 * of pte involves: take ptl, clearing the pte so that 4624 * we don't have concurrent modification by hardware 4625 * followed by an update. 4626 */ 4627 if (unlikely(pte_none(*vmf->pte))) 4628 ret = VM_FAULT_SIGBUS; 4629 else 4630 ret = VM_FAULT_NOPAGE; 4631 4632 pte_unmap_unlock(vmf->pte, vmf->ptl); 4633 } 4634 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 4635 ret = do_read_fault(vmf); 4636 else if (!(vma->vm_flags & VM_SHARED)) 4637 ret = do_cow_fault(vmf); 4638 else 4639 ret = do_shared_fault(vmf); 4640 4641 /* preallocated pagetable is unused: free it */ 4642 if (vmf->prealloc_pte) { 4643 pte_free(vm_mm, vmf->prealloc_pte); 4644 vmf->prealloc_pte = NULL; 4645 } 4646 return ret; 4647 } 4648 4649 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 4650 unsigned long addr, int page_nid, int *flags) 4651 { 4652 get_page(page); 4653 4654 count_vm_numa_event(NUMA_HINT_FAULTS); 4655 if (page_nid == numa_node_id()) { 4656 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 4657 *flags |= TNF_FAULT_LOCAL; 4658 } 4659 4660 return mpol_misplaced(page, vma, addr); 4661 } 4662 4663 static vm_fault_t do_numa_page(struct vm_fault *vmf) 4664 { 4665 struct vm_area_struct *vma = vmf->vma; 4666 struct page *page = NULL; 4667 int page_nid = NUMA_NO_NODE; 4668 bool writable = false; 4669 int last_cpupid; 4670 int target_nid; 4671 pte_t pte, old_pte; 4672 int flags = 0; 4673 4674 /* 4675 * The "pte" at this point cannot be used safely without 4676 * validation through pte_unmap_same(). It's of NUMA type but 4677 * the pfn may be screwed if the read is non atomic. 4678 */ 4679 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 4680 spin_lock(vmf->ptl); 4681 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4682 pte_unmap_unlock(vmf->pte, vmf->ptl); 4683 goto out; 4684 } 4685 4686 /* Get the normal PTE */ 4687 old_pte = ptep_get(vmf->pte); 4688 pte = pte_modify(old_pte, vma->vm_page_prot); 4689 4690 /* 4691 * Detect now whether the PTE could be writable; this information 4692 * is only valid while holding the PT lock. 4693 */ 4694 writable = pte_write(pte); 4695 if (!writable && vma_wants_manual_pte_write_upgrade(vma) && 4696 can_change_pte_writable(vma, vmf->address, pte)) 4697 writable = true; 4698 4699 page = vm_normal_page(vma, vmf->address, pte); 4700 if (!page || is_zone_device_page(page)) 4701 goto out_map; 4702 4703 /* TODO: handle PTE-mapped THP */ 4704 if (PageCompound(page)) 4705 goto out_map; 4706 4707 /* 4708 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 4709 * much anyway since they can be in shared cache state. This misses 4710 * the case where a mapping is writable but the process never writes 4711 * to it but pte_write gets cleared during protection updates and 4712 * pte_dirty has unpredictable behaviour between PTE scan updates, 4713 * background writeback, dirty balancing and application behaviour. 4714 */ 4715 if (!writable) 4716 flags |= TNF_NO_GROUP; 4717 4718 /* 4719 * Flag if the page is shared between multiple address spaces. This 4720 * is later used when determining whether to group tasks together 4721 */ 4722 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 4723 flags |= TNF_SHARED; 4724 4725 page_nid = page_to_nid(page); 4726 /* 4727 * For memory tiering mode, cpupid of slow memory page is used 4728 * to record page access time. So use default value. 4729 */ 4730 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4731 !node_is_toptier(page_nid)) 4732 last_cpupid = (-1 & LAST_CPUPID_MASK); 4733 else 4734 last_cpupid = page_cpupid_last(page); 4735 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 4736 &flags); 4737 if (target_nid == NUMA_NO_NODE) { 4738 put_page(page); 4739 goto out_map; 4740 } 4741 pte_unmap_unlock(vmf->pte, vmf->ptl); 4742 writable = false; 4743 4744 /* Migrate to the requested node */ 4745 if (migrate_misplaced_page(page, vma, target_nid)) { 4746 page_nid = target_nid; 4747 flags |= TNF_MIGRATED; 4748 } else { 4749 flags |= TNF_MIGRATE_FAIL; 4750 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4751 spin_lock(vmf->ptl); 4752 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 4753 pte_unmap_unlock(vmf->pte, vmf->ptl); 4754 goto out; 4755 } 4756 goto out_map; 4757 } 4758 4759 out: 4760 if (page_nid != NUMA_NO_NODE) 4761 task_numa_fault(last_cpupid, page_nid, 1, flags); 4762 return 0; 4763 out_map: 4764 /* 4765 * Make it present again, depending on how arch implements 4766 * non-accessible ptes, some can allow access by kernel mode. 4767 */ 4768 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 4769 pte = pte_modify(old_pte, vma->vm_page_prot); 4770 pte = pte_mkyoung(pte); 4771 if (writable) 4772 pte = pte_mkwrite(pte); 4773 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 4774 update_mmu_cache(vma, vmf->address, vmf->pte); 4775 pte_unmap_unlock(vmf->pte, vmf->ptl); 4776 goto out; 4777 } 4778 4779 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 4780 { 4781 if (vma_is_anonymous(vmf->vma)) 4782 return do_huge_pmd_anonymous_page(vmf); 4783 if (vmf->vma->vm_ops->huge_fault) 4784 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4785 return VM_FAULT_FALLBACK; 4786 } 4787 4788 /* `inline' is required to avoid gcc 4.1.2 build error */ 4789 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf) 4790 { 4791 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE; 4792 vm_fault_t ret; 4793 4794 if (vma_is_anonymous(vmf->vma)) { 4795 if (likely(!unshare) && 4796 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd)) 4797 return handle_userfault(vmf, VM_UFFD_WP); 4798 return do_huge_pmd_wp_page(vmf); 4799 } 4800 4801 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4802 if (vmf->vma->vm_ops->huge_fault) { 4803 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 4804 if (!(ret & VM_FAULT_FALLBACK)) 4805 return ret; 4806 } 4807 } 4808 4809 /* COW or write-notify handled on pte level: split pmd. */ 4810 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 4811 4812 return VM_FAULT_FALLBACK; 4813 } 4814 4815 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 4816 { 4817 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4818 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4819 /* No support for anonymous transparent PUD pages yet */ 4820 if (vma_is_anonymous(vmf->vma)) 4821 return VM_FAULT_FALLBACK; 4822 if (vmf->vma->vm_ops->huge_fault) 4823 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4824 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 4825 return VM_FAULT_FALLBACK; 4826 } 4827 4828 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 4829 { 4830 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \ 4831 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD) 4832 vm_fault_t ret; 4833 4834 /* No support for anonymous transparent PUD pages yet */ 4835 if (vma_is_anonymous(vmf->vma)) 4836 goto split; 4837 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) { 4838 if (vmf->vma->vm_ops->huge_fault) { 4839 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 4840 if (!(ret & VM_FAULT_FALLBACK)) 4841 return ret; 4842 } 4843 } 4844 split: 4845 /* COW or write-notify not handled on PUD level: split pud.*/ 4846 __split_huge_pud(vmf->vma, vmf->pud, vmf->address); 4847 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */ 4848 return VM_FAULT_FALLBACK; 4849 } 4850 4851 /* 4852 * These routines also need to handle stuff like marking pages dirty 4853 * and/or accessed for architectures that don't do it in hardware (most 4854 * RISC architectures). The early dirtying is also good on the i386. 4855 * 4856 * There is also a hook called "update_mmu_cache()" that architectures 4857 * with external mmu caches can use to update those (ie the Sparc or 4858 * PowerPC hashed page tables that act as extended TLBs). 4859 * 4860 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow 4861 * concurrent faults). 4862 * 4863 * The mmap_lock may have been released depending on flags and our return value. 4864 * See filemap_fault() and __folio_lock_or_retry(). 4865 */ 4866 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 4867 { 4868 pte_t entry; 4869 4870 if (unlikely(pmd_none(*vmf->pmd))) { 4871 /* 4872 * Leave __pte_alloc() until later: because vm_ops->fault may 4873 * want to allocate huge page, and if we expose page table 4874 * for an instant, it will be difficult to retract from 4875 * concurrent faults and from rmap lookups. 4876 */ 4877 vmf->pte = NULL; 4878 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID; 4879 } else { 4880 /* 4881 * If a huge pmd materialized under us just retry later. Use 4882 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead 4883 * of pmd_trans_huge() to ensure the pmd didn't become 4884 * pmd_trans_huge under us and then back to pmd_none, as a 4885 * result of MADV_DONTNEED running immediately after a huge pmd 4886 * fault in a different thread of this mm, in turn leading to a 4887 * misleading pmd_trans_huge() retval. All we have to ensure is 4888 * that it is a regular pmd that we can walk with 4889 * pte_offset_map() and we can do that through an atomic read 4890 * in C, which is what pmd_trans_unstable() provides. 4891 */ 4892 if (pmd_devmap_trans_unstable(vmf->pmd)) 4893 return 0; 4894 /* 4895 * A regular pmd is established and it can't morph into a huge 4896 * pmd from under us anymore at this point because we hold the 4897 * mmap_lock read mode and khugepaged takes it in write mode. 4898 * So now it's safe to run pte_offset_map(). 4899 */ 4900 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 4901 vmf->orig_pte = *vmf->pte; 4902 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID; 4903 4904 /* 4905 * some architectures can have larger ptes than wordsize, 4906 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 4907 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 4908 * accesses. The code below just needs a consistent view 4909 * for the ifs and we later double check anyway with the 4910 * ptl lock held. So here a barrier will do. 4911 */ 4912 barrier(); 4913 if (pte_none(vmf->orig_pte)) { 4914 pte_unmap(vmf->pte); 4915 vmf->pte = NULL; 4916 } 4917 } 4918 4919 if (!vmf->pte) { 4920 if (vma_is_anonymous(vmf->vma)) 4921 return do_anonymous_page(vmf); 4922 else 4923 return do_fault(vmf); 4924 } 4925 4926 if (!pte_present(vmf->orig_pte)) 4927 return do_swap_page(vmf); 4928 4929 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 4930 return do_numa_page(vmf); 4931 4932 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 4933 spin_lock(vmf->ptl); 4934 entry = vmf->orig_pte; 4935 if (unlikely(!pte_same(*vmf->pte, entry))) { 4936 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte); 4937 goto unlock; 4938 } 4939 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) { 4940 if (!pte_write(entry)) 4941 return do_wp_page(vmf); 4942 else if (likely(vmf->flags & FAULT_FLAG_WRITE)) 4943 entry = pte_mkdirty(entry); 4944 } 4945 entry = pte_mkyoung(entry); 4946 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4947 vmf->flags & FAULT_FLAG_WRITE)) { 4948 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4949 } else { 4950 /* Skip spurious TLB flush for retried page fault */ 4951 if (vmf->flags & FAULT_FLAG_TRIED) 4952 goto unlock; 4953 /* 4954 * This is needed only for protection faults but the arch code 4955 * is not yet telling us if this is a protection fault or not. 4956 * This still avoids useless tlb flushes for .text page faults 4957 * with threads. 4958 */ 4959 if (vmf->flags & FAULT_FLAG_WRITE) 4960 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4961 } 4962 unlock: 4963 pte_unmap_unlock(vmf->pte, vmf->ptl); 4964 return 0; 4965 } 4966 4967 /* 4968 * By the time we get here, we already hold the mm semaphore 4969 * 4970 * The mmap_lock may have been released depending on flags and our 4971 * return value. See filemap_fault() and __folio_lock_or_retry(). 4972 */ 4973 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 4974 unsigned long address, unsigned int flags) 4975 { 4976 struct vm_fault vmf = { 4977 .vma = vma, 4978 .address = address & PAGE_MASK, 4979 .real_address = address, 4980 .flags = flags, 4981 .pgoff = linear_page_index(vma, address), 4982 .gfp_mask = __get_fault_gfp_mask(vma), 4983 }; 4984 struct mm_struct *mm = vma->vm_mm; 4985 unsigned long vm_flags = vma->vm_flags; 4986 pgd_t *pgd; 4987 p4d_t *p4d; 4988 vm_fault_t ret; 4989 4990 pgd = pgd_offset(mm, address); 4991 p4d = p4d_alloc(mm, pgd, address); 4992 if (!p4d) 4993 return VM_FAULT_OOM; 4994 4995 vmf.pud = pud_alloc(mm, p4d, address); 4996 if (!vmf.pud) 4997 return VM_FAULT_OOM; 4998 retry_pud: 4999 if (pud_none(*vmf.pud) && 5000 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5001 ret = create_huge_pud(&vmf); 5002 if (!(ret & VM_FAULT_FALLBACK)) 5003 return ret; 5004 } else { 5005 pud_t orig_pud = *vmf.pud; 5006 5007 barrier(); 5008 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 5009 5010 /* 5011 * TODO once we support anonymous PUDs: NUMA case and 5012 * FAULT_FLAG_UNSHARE handling. 5013 */ 5014 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) { 5015 ret = wp_huge_pud(&vmf, orig_pud); 5016 if (!(ret & VM_FAULT_FALLBACK)) 5017 return ret; 5018 } else { 5019 huge_pud_set_accessed(&vmf, orig_pud); 5020 return 0; 5021 } 5022 } 5023 } 5024 5025 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 5026 if (!vmf.pmd) 5027 return VM_FAULT_OOM; 5028 5029 /* Huge pud page fault raced with pmd_alloc? */ 5030 if (pud_trans_unstable(vmf.pud)) 5031 goto retry_pud; 5032 5033 if (pmd_none(*vmf.pmd) && 5034 hugepage_vma_check(vma, vm_flags, false, true, true)) { 5035 ret = create_huge_pmd(&vmf); 5036 if (!(ret & VM_FAULT_FALLBACK)) 5037 return ret; 5038 } else { 5039 vmf.orig_pmd = *vmf.pmd; 5040 5041 barrier(); 5042 if (unlikely(is_swap_pmd(vmf.orig_pmd))) { 5043 VM_BUG_ON(thp_migration_supported() && 5044 !is_pmd_migration_entry(vmf.orig_pmd)); 5045 if (is_pmd_migration_entry(vmf.orig_pmd)) 5046 pmd_migration_entry_wait(mm, vmf.pmd); 5047 return 0; 5048 } 5049 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) { 5050 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma)) 5051 return do_huge_pmd_numa_page(&vmf); 5052 5053 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) && 5054 !pmd_write(vmf.orig_pmd)) { 5055 ret = wp_huge_pmd(&vmf); 5056 if (!(ret & VM_FAULT_FALLBACK)) 5057 return ret; 5058 } else { 5059 huge_pmd_set_accessed(&vmf); 5060 return 0; 5061 } 5062 } 5063 } 5064 5065 return handle_pte_fault(&vmf); 5066 } 5067 5068 /** 5069 * mm_account_fault - Do page fault accounting 5070 * 5071 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting 5072 * of perf event counters, but we'll still do the per-task accounting to 5073 * the task who triggered this page fault. 5074 * @address: the faulted address. 5075 * @flags: the fault flags. 5076 * @ret: the fault retcode. 5077 * 5078 * This will take care of most of the page fault accounting. Meanwhile, it 5079 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter 5080 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should 5081 * still be in per-arch page fault handlers at the entry of page fault. 5082 */ 5083 static inline void mm_account_fault(struct pt_regs *regs, 5084 unsigned long address, unsigned int flags, 5085 vm_fault_t ret) 5086 { 5087 bool major; 5088 5089 /* 5090 * We don't do accounting for some specific faults: 5091 * 5092 * - Unsuccessful faults (e.g. when the address wasn't valid). That 5093 * includes arch_vma_access_permitted() failing before reaching here. 5094 * So this is not a "this many hardware page faults" counter. We 5095 * should use the hw profiling for that. 5096 * 5097 * - Incomplete faults (VM_FAULT_RETRY). They will only be counted 5098 * once they're completed. 5099 */ 5100 if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY)) 5101 return; 5102 5103 /* 5104 * We define the fault as a major fault when the final successful fault 5105 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't 5106 * handle it immediately previously). 5107 */ 5108 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED); 5109 5110 if (major) 5111 current->maj_flt++; 5112 else 5113 current->min_flt++; 5114 5115 /* 5116 * If the fault is done for GUP, regs will be NULL. We only do the 5117 * accounting for the per thread fault counters who triggered the 5118 * fault, and we skip the perf event updates. 5119 */ 5120 if (!regs) 5121 return; 5122 5123 if (major) 5124 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address); 5125 else 5126 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address); 5127 } 5128 5129 #ifdef CONFIG_LRU_GEN 5130 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5131 { 5132 /* the LRU algorithm only applies to accesses with recency */ 5133 current->in_lru_fault = vma_has_recency(vma); 5134 } 5135 5136 static void lru_gen_exit_fault(void) 5137 { 5138 current->in_lru_fault = false; 5139 } 5140 #else 5141 static void lru_gen_enter_fault(struct vm_area_struct *vma) 5142 { 5143 } 5144 5145 static void lru_gen_exit_fault(void) 5146 { 5147 } 5148 #endif /* CONFIG_LRU_GEN */ 5149 5150 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma, 5151 unsigned int *flags) 5152 { 5153 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) { 5154 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE)) 5155 return VM_FAULT_SIGSEGV; 5156 /* 5157 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's 5158 * just treat it like an ordinary read-fault otherwise. 5159 */ 5160 if (!is_cow_mapping(vma->vm_flags)) 5161 *flags &= ~FAULT_FLAG_UNSHARE; 5162 } else if (*flags & FAULT_FLAG_WRITE) { 5163 /* Write faults on read-only mappings are impossible ... */ 5164 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE))) 5165 return VM_FAULT_SIGSEGV; 5166 /* ... and FOLL_FORCE only applies to COW mappings. */ 5167 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) && 5168 !is_cow_mapping(vma->vm_flags))) 5169 return VM_FAULT_SIGSEGV; 5170 } 5171 return 0; 5172 } 5173 5174 /* 5175 * By the time we get here, we already hold the mm semaphore 5176 * 5177 * The mmap_lock may have been released depending on flags and our 5178 * return value. See filemap_fault() and __folio_lock_or_retry(). 5179 */ 5180 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 5181 unsigned int flags, struct pt_regs *regs) 5182 { 5183 vm_fault_t ret; 5184 5185 __set_current_state(TASK_RUNNING); 5186 5187 count_vm_event(PGFAULT); 5188 count_memcg_event_mm(vma->vm_mm, PGFAULT); 5189 5190 ret = sanitize_fault_flags(vma, &flags); 5191 if (ret) 5192 return ret; 5193 5194 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 5195 flags & FAULT_FLAG_INSTRUCTION, 5196 flags & FAULT_FLAG_REMOTE)) 5197 return VM_FAULT_SIGSEGV; 5198 5199 /* 5200 * Enable the memcg OOM handling for faults triggered in user 5201 * space. Kernel faults are handled more gracefully. 5202 */ 5203 if (flags & FAULT_FLAG_USER) 5204 mem_cgroup_enter_user_fault(); 5205 5206 lru_gen_enter_fault(vma); 5207 5208 if (unlikely(is_vm_hugetlb_page(vma))) 5209 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 5210 else 5211 ret = __handle_mm_fault(vma, address, flags); 5212 5213 lru_gen_exit_fault(); 5214 5215 if (flags & FAULT_FLAG_USER) { 5216 mem_cgroup_exit_user_fault(); 5217 /* 5218 * The task may have entered a memcg OOM situation but 5219 * if the allocation error was handled gracefully (no 5220 * VM_FAULT_OOM), there is no need to kill anything. 5221 * Just clean up the OOM state peacefully. 5222 */ 5223 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 5224 mem_cgroup_oom_synchronize(false); 5225 } 5226 5227 mm_account_fault(regs, address, flags, ret); 5228 5229 return ret; 5230 } 5231 EXPORT_SYMBOL_GPL(handle_mm_fault); 5232 5233 #ifndef __PAGETABLE_P4D_FOLDED 5234 /* 5235 * Allocate p4d page table. 5236 * We've already handled the fast-path in-line. 5237 */ 5238 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 5239 { 5240 p4d_t *new = p4d_alloc_one(mm, address); 5241 if (!new) 5242 return -ENOMEM; 5243 5244 spin_lock(&mm->page_table_lock); 5245 if (pgd_present(*pgd)) { /* Another has populated it */ 5246 p4d_free(mm, new); 5247 } else { 5248 smp_wmb(); /* See comment in pmd_install() */ 5249 pgd_populate(mm, pgd, new); 5250 } 5251 spin_unlock(&mm->page_table_lock); 5252 return 0; 5253 } 5254 #endif /* __PAGETABLE_P4D_FOLDED */ 5255 5256 #ifndef __PAGETABLE_PUD_FOLDED 5257 /* 5258 * Allocate page upper directory. 5259 * We've already handled the fast-path in-line. 5260 */ 5261 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 5262 { 5263 pud_t *new = pud_alloc_one(mm, address); 5264 if (!new) 5265 return -ENOMEM; 5266 5267 spin_lock(&mm->page_table_lock); 5268 if (!p4d_present(*p4d)) { 5269 mm_inc_nr_puds(mm); 5270 smp_wmb(); /* See comment in pmd_install() */ 5271 p4d_populate(mm, p4d, new); 5272 } else /* Another has populated it */ 5273 pud_free(mm, new); 5274 spin_unlock(&mm->page_table_lock); 5275 return 0; 5276 } 5277 #endif /* __PAGETABLE_PUD_FOLDED */ 5278 5279 #ifndef __PAGETABLE_PMD_FOLDED 5280 /* 5281 * Allocate page middle directory. 5282 * We've already handled the fast-path in-line. 5283 */ 5284 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 5285 { 5286 spinlock_t *ptl; 5287 pmd_t *new = pmd_alloc_one(mm, address); 5288 if (!new) 5289 return -ENOMEM; 5290 5291 ptl = pud_lock(mm, pud); 5292 if (!pud_present(*pud)) { 5293 mm_inc_nr_pmds(mm); 5294 smp_wmb(); /* See comment in pmd_install() */ 5295 pud_populate(mm, pud, new); 5296 } else { /* Another has populated it */ 5297 pmd_free(mm, new); 5298 } 5299 spin_unlock(ptl); 5300 return 0; 5301 } 5302 #endif /* __PAGETABLE_PMD_FOLDED */ 5303 5304 /** 5305 * follow_pte - look up PTE at a user virtual address 5306 * @mm: the mm_struct of the target address space 5307 * @address: user virtual address 5308 * @ptepp: location to store found PTE 5309 * @ptlp: location to store the lock for the PTE 5310 * 5311 * On a successful return, the pointer to the PTE is stored in @ptepp; 5312 * the corresponding lock is taken and its location is stored in @ptlp. 5313 * The contents of the PTE are only stable until @ptlp is released; 5314 * any further use, if any, must be protected against invalidation 5315 * with MMU notifiers. 5316 * 5317 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore 5318 * should be taken for read. 5319 * 5320 * KVM uses this function. While it is arguably less bad than ``follow_pfn``, 5321 * it is not a good general-purpose API. 5322 * 5323 * Return: zero on success, -ve otherwise. 5324 */ 5325 int follow_pte(struct mm_struct *mm, unsigned long address, 5326 pte_t **ptepp, spinlock_t **ptlp) 5327 { 5328 pgd_t *pgd; 5329 p4d_t *p4d; 5330 pud_t *pud; 5331 pmd_t *pmd; 5332 pte_t *ptep; 5333 5334 pgd = pgd_offset(mm, address); 5335 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 5336 goto out; 5337 5338 p4d = p4d_offset(pgd, address); 5339 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 5340 goto out; 5341 5342 pud = pud_offset(p4d, address); 5343 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 5344 goto out; 5345 5346 pmd = pmd_offset(pud, address); 5347 VM_BUG_ON(pmd_trans_huge(*pmd)); 5348 5349 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 5350 goto out; 5351 5352 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 5353 if (!pte_present(*ptep)) 5354 goto unlock; 5355 *ptepp = ptep; 5356 return 0; 5357 unlock: 5358 pte_unmap_unlock(ptep, *ptlp); 5359 out: 5360 return -EINVAL; 5361 } 5362 EXPORT_SYMBOL_GPL(follow_pte); 5363 5364 /** 5365 * follow_pfn - look up PFN at a user virtual address 5366 * @vma: memory mapping 5367 * @address: user virtual address 5368 * @pfn: location to store found PFN 5369 * 5370 * Only IO mappings and raw PFN mappings are allowed. 5371 * 5372 * This function does not allow the caller to read the permissions 5373 * of the PTE. Do not use it. 5374 * 5375 * Return: zero and the pfn at @pfn on success, -ve otherwise. 5376 */ 5377 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 5378 unsigned long *pfn) 5379 { 5380 int ret = -EINVAL; 5381 spinlock_t *ptl; 5382 pte_t *ptep; 5383 5384 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5385 return ret; 5386 5387 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 5388 if (ret) 5389 return ret; 5390 *pfn = pte_pfn(*ptep); 5391 pte_unmap_unlock(ptep, ptl); 5392 return 0; 5393 } 5394 EXPORT_SYMBOL(follow_pfn); 5395 5396 #ifdef CONFIG_HAVE_IOREMAP_PROT 5397 int follow_phys(struct vm_area_struct *vma, 5398 unsigned long address, unsigned int flags, 5399 unsigned long *prot, resource_size_t *phys) 5400 { 5401 int ret = -EINVAL; 5402 pte_t *ptep, pte; 5403 spinlock_t *ptl; 5404 5405 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5406 goto out; 5407 5408 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 5409 goto out; 5410 pte = *ptep; 5411 5412 if ((flags & FOLL_WRITE) && !pte_write(pte)) 5413 goto unlock; 5414 5415 *prot = pgprot_val(pte_pgprot(pte)); 5416 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5417 5418 ret = 0; 5419 unlock: 5420 pte_unmap_unlock(ptep, ptl); 5421 out: 5422 return ret; 5423 } 5424 5425 /** 5426 * generic_access_phys - generic implementation for iomem mmap access 5427 * @vma: the vma to access 5428 * @addr: userspace address, not relative offset within @vma 5429 * @buf: buffer to read/write 5430 * @len: length of transfer 5431 * @write: set to FOLL_WRITE when writing, otherwise reading 5432 * 5433 * This is a generic implementation for &vm_operations_struct.access for an 5434 * iomem mapping. This callback is used by access_process_vm() when the @vma is 5435 * not page based. 5436 */ 5437 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 5438 void *buf, int len, int write) 5439 { 5440 resource_size_t phys_addr; 5441 unsigned long prot = 0; 5442 void __iomem *maddr; 5443 pte_t *ptep, pte; 5444 spinlock_t *ptl; 5445 int offset = offset_in_page(addr); 5446 int ret = -EINVAL; 5447 5448 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 5449 return -EINVAL; 5450 5451 retry: 5452 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5453 return -EINVAL; 5454 pte = *ptep; 5455 pte_unmap_unlock(ptep, ptl); 5456 5457 prot = pgprot_val(pte_pgprot(pte)); 5458 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 5459 5460 if ((write & FOLL_WRITE) && !pte_write(pte)) 5461 return -EINVAL; 5462 5463 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 5464 if (!maddr) 5465 return -ENOMEM; 5466 5467 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl)) 5468 goto out_unmap; 5469 5470 if (!pte_same(pte, *ptep)) { 5471 pte_unmap_unlock(ptep, ptl); 5472 iounmap(maddr); 5473 5474 goto retry; 5475 } 5476 5477 if (write) 5478 memcpy_toio(maddr + offset, buf, len); 5479 else 5480 memcpy_fromio(buf, maddr + offset, len); 5481 ret = len; 5482 pte_unmap_unlock(ptep, ptl); 5483 out_unmap: 5484 iounmap(maddr); 5485 5486 return ret; 5487 } 5488 EXPORT_SYMBOL_GPL(generic_access_phys); 5489 #endif 5490 5491 /* 5492 * Access another process' address space as given in mm. 5493 */ 5494 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf, 5495 int len, unsigned int gup_flags) 5496 { 5497 struct vm_area_struct *vma; 5498 void *old_buf = buf; 5499 int write = gup_flags & FOLL_WRITE; 5500 5501 if (mmap_read_lock_killable(mm)) 5502 return 0; 5503 5504 /* ignore errors, just check how much was successfully transferred */ 5505 while (len) { 5506 int bytes, ret, offset; 5507 void *maddr; 5508 struct page *page = NULL; 5509 5510 ret = get_user_pages_remote(mm, addr, 1, 5511 gup_flags, &page, &vma, NULL); 5512 if (ret <= 0) { 5513 #ifndef CONFIG_HAVE_IOREMAP_PROT 5514 break; 5515 #else 5516 /* 5517 * Check if this is a VM_IO | VM_PFNMAP VMA, which 5518 * we can access using slightly different code. 5519 */ 5520 vma = vma_lookup(mm, addr); 5521 if (!vma) 5522 break; 5523 if (vma->vm_ops && vma->vm_ops->access) 5524 ret = vma->vm_ops->access(vma, addr, buf, 5525 len, write); 5526 if (ret <= 0) 5527 break; 5528 bytes = ret; 5529 #endif 5530 } else { 5531 bytes = len; 5532 offset = addr & (PAGE_SIZE-1); 5533 if (bytes > PAGE_SIZE-offset) 5534 bytes = PAGE_SIZE-offset; 5535 5536 maddr = kmap(page); 5537 if (write) { 5538 copy_to_user_page(vma, page, addr, 5539 maddr + offset, buf, bytes); 5540 set_page_dirty_lock(page); 5541 } else { 5542 copy_from_user_page(vma, page, addr, 5543 buf, maddr + offset, bytes); 5544 } 5545 kunmap(page); 5546 put_page(page); 5547 } 5548 len -= bytes; 5549 buf += bytes; 5550 addr += bytes; 5551 } 5552 mmap_read_unlock(mm); 5553 5554 return buf - old_buf; 5555 } 5556 5557 /** 5558 * access_remote_vm - access another process' address space 5559 * @mm: the mm_struct of the target address space 5560 * @addr: start address to access 5561 * @buf: source or destination buffer 5562 * @len: number of bytes to transfer 5563 * @gup_flags: flags modifying lookup behaviour 5564 * 5565 * The caller must hold a reference on @mm. 5566 * 5567 * Return: number of bytes copied from source to destination. 5568 */ 5569 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 5570 void *buf, int len, unsigned int gup_flags) 5571 { 5572 return __access_remote_vm(mm, addr, buf, len, gup_flags); 5573 } 5574 5575 /* 5576 * Access another process' address space. 5577 * Source/target buffer must be kernel space, 5578 * Do not walk the page table directly, use get_user_pages 5579 */ 5580 int access_process_vm(struct task_struct *tsk, unsigned long addr, 5581 void *buf, int len, unsigned int gup_flags) 5582 { 5583 struct mm_struct *mm; 5584 int ret; 5585 5586 mm = get_task_mm(tsk); 5587 if (!mm) 5588 return 0; 5589 5590 ret = __access_remote_vm(mm, addr, buf, len, gup_flags); 5591 5592 mmput(mm); 5593 5594 return ret; 5595 } 5596 EXPORT_SYMBOL_GPL(access_process_vm); 5597 5598 /* 5599 * Print the name of a VMA. 5600 */ 5601 void print_vma_addr(char *prefix, unsigned long ip) 5602 { 5603 struct mm_struct *mm = current->mm; 5604 struct vm_area_struct *vma; 5605 5606 /* 5607 * we might be running from an atomic context so we cannot sleep 5608 */ 5609 if (!mmap_read_trylock(mm)) 5610 return; 5611 5612 vma = find_vma(mm, ip); 5613 if (vma && vma->vm_file) { 5614 struct file *f = vma->vm_file; 5615 char *buf = (char *)__get_free_page(GFP_NOWAIT); 5616 if (buf) { 5617 char *p; 5618 5619 p = file_path(f, buf, PAGE_SIZE); 5620 if (IS_ERR(p)) 5621 p = "?"; 5622 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 5623 vma->vm_start, 5624 vma->vm_end - vma->vm_start); 5625 free_page((unsigned long)buf); 5626 } 5627 } 5628 mmap_read_unlock(mm); 5629 } 5630 5631 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5632 void __might_fault(const char *file, int line) 5633 { 5634 if (pagefault_disabled()) 5635 return; 5636 __might_sleep(file, line); 5637 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 5638 if (current->mm) 5639 might_lock_read(¤t->mm->mmap_lock); 5640 #endif 5641 } 5642 EXPORT_SYMBOL(__might_fault); 5643 #endif 5644 5645 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 5646 /* 5647 * Process all subpages of the specified huge page with the specified 5648 * operation. The target subpage will be processed last to keep its 5649 * cache lines hot. 5650 */ 5651 static inline void process_huge_page( 5652 unsigned long addr_hint, unsigned int pages_per_huge_page, 5653 void (*process_subpage)(unsigned long addr, int idx, void *arg), 5654 void *arg) 5655 { 5656 int i, n, base, l; 5657 unsigned long addr = addr_hint & 5658 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5659 5660 /* Process target subpage last to keep its cache lines hot */ 5661 might_sleep(); 5662 n = (addr_hint - addr) / PAGE_SIZE; 5663 if (2 * n <= pages_per_huge_page) { 5664 /* If target subpage in first half of huge page */ 5665 base = 0; 5666 l = n; 5667 /* Process subpages at the end of huge page */ 5668 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 5669 cond_resched(); 5670 process_subpage(addr + i * PAGE_SIZE, i, arg); 5671 } 5672 } else { 5673 /* If target subpage in second half of huge page */ 5674 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 5675 l = pages_per_huge_page - n; 5676 /* Process subpages at the begin of huge page */ 5677 for (i = 0; i < base; i++) { 5678 cond_resched(); 5679 process_subpage(addr + i * PAGE_SIZE, i, arg); 5680 } 5681 } 5682 /* 5683 * Process remaining subpages in left-right-left-right pattern 5684 * towards the target subpage 5685 */ 5686 for (i = 0; i < l; i++) { 5687 int left_idx = base + i; 5688 int right_idx = base + 2 * l - 1 - i; 5689 5690 cond_resched(); 5691 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 5692 cond_resched(); 5693 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 5694 } 5695 } 5696 5697 static void clear_gigantic_page(struct page *page, 5698 unsigned long addr, 5699 unsigned int pages_per_huge_page) 5700 { 5701 int i; 5702 struct page *p; 5703 5704 might_sleep(); 5705 for (i = 0; i < pages_per_huge_page; i++) { 5706 p = nth_page(page, i); 5707 cond_resched(); 5708 clear_user_highpage(p, addr + i * PAGE_SIZE); 5709 } 5710 } 5711 5712 static void clear_subpage(unsigned long addr, int idx, void *arg) 5713 { 5714 struct page *page = arg; 5715 5716 clear_user_highpage(page + idx, addr); 5717 } 5718 5719 void clear_huge_page(struct page *page, 5720 unsigned long addr_hint, unsigned int pages_per_huge_page) 5721 { 5722 unsigned long addr = addr_hint & 5723 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5724 5725 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5726 clear_gigantic_page(page, addr, pages_per_huge_page); 5727 return; 5728 } 5729 5730 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 5731 } 5732 5733 static void copy_user_gigantic_page(struct page *dst, struct page *src, 5734 unsigned long addr, 5735 struct vm_area_struct *vma, 5736 unsigned int pages_per_huge_page) 5737 { 5738 int i; 5739 struct page *dst_base = dst; 5740 struct page *src_base = src; 5741 5742 for (i = 0; i < pages_per_huge_page; i++) { 5743 dst = nth_page(dst_base, i); 5744 src = nth_page(src_base, i); 5745 5746 cond_resched(); 5747 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 5748 } 5749 } 5750 5751 struct copy_subpage_arg { 5752 struct page *dst; 5753 struct page *src; 5754 struct vm_area_struct *vma; 5755 }; 5756 5757 static void copy_subpage(unsigned long addr, int idx, void *arg) 5758 { 5759 struct copy_subpage_arg *copy_arg = arg; 5760 5761 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 5762 addr, copy_arg->vma); 5763 } 5764 5765 void copy_user_huge_page(struct page *dst, struct page *src, 5766 unsigned long addr_hint, struct vm_area_struct *vma, 5767 unsigned int pages_per_huge_page) 5768 { 5769 unsigned long addr = addr_hint & 5770 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 5771 struct copy_subpage_arg arg = { 5772 .dst = dst, 5773 .src = src, 5774 .vma = vma, 5775 }; 5776 5777 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 5778 copy_user_gigantic_page(dst, src, addr, vma, 5779 pages_per_huge_page); 5780 return; 5781 } 5782 5783 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 5784 } 5785 5786 long copy_huge_page_from_user(struct page *dst_page, 5787 const void __user *usr_src, 5788 unsigned int pages_per_huge_page, 5789 bool allow_pagefault) 5790 { 5791 void *page_kaddr; 5792 unsigned long i, rc = 0; 5793 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 5794 struct page *subpage; 5795 5796 for (i = 0; i < pages_per_huge_page; i++) { 5797 subpage = nth_page(dst_page, i); 5798 if (allow_pagefault) 5799 page_kaddr = kmap(subpage); 5800 else 5801 page_kaddr = kmap_atomic(subpage); 5802 rc = copy_from_user(page_kaddr, 5803 usr_src + i * PAGE_SIZE, PAGE_SIZE); 5804 if (allow_pagefault) 5805 kunmap(subpage); 5806 else 5807 kunmap_atomic(page_kaddr); 5808 5809 ret_val -= (PAGE_SIZE - rc); 5810 if (rc) 5811 break; 5812 5813 flush_dcache_page(subpage); 5814 5815 cond_resched(); 5816 } 5817 return ret_val; 5818 } 5819 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 5820 5821 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 5822 5823 static struct kmem_cache *page_ptl_cachep; 5824 5825 void __init ptlock_cache_init(void) 5826 { 5827 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 5828 SLAB_PANIC, NULL); 5829 } 5830 5831 bool ptlock_alloc(struct page *page) 5832 { 5833 spinlock_t *ptl; 5834 5835 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 5836 if (!ptl) 5837 return false; 5838 page->ptl = ptl; 5839 return true; 5840 } 5841 5842 void ptlock_free(struct page *page) 5843 { 5844 kmem_cache_free(page_ptl_cachep, page->ptl); 5845 } 5846 #endif 5847