1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/module.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 61 #include <asm/io.h> 62 #include <asm/pgalloc.h> 63 #include <asm/uaccess.h> 64 #include <asm/tlb.h> 65 #include <asm/tlbflush.h> 66 #include <asm/pgtable.h> 67 68 #include "internal.h" 69 70 #ifndef CONFIG_NEED_MULTIPLE_NODES 71 /* use the per-pgdat data instead for discontigmem - mbligh */ 72 unsigned long max_mapnr; 73 struct page *mem_map; 74 75 EXPORT_SYMBOL(max_mapnr); 76 EXPORT_SYMBOL(mem_map); 77 #endif 78 79 unsigned long num_physpages; 80 /* 81 * A number of key systems in x86 including ioremap() rely on the assumption 82 * that high_memory defines the upper bound on direct map memory, then end 83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 85 * and ZONE_HIGHMEM. 86 */ 87 void * high_memory; 88 89 EXPORT_SYMBOL(num_physpages); 90 EXPORT_SYMBOL(high_memory); 91 92 /* 93 * Randomize the address space (stacks, mmaps, brk, etc.). 94 * 95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 96 * as ancient (libc5 based) binaries can segfault. ) 97 */ 98 int randomize_va_space __read_mostly = 99 #ifdef CONFIG_COMPAT_BRK 100 1; 101 #else 102 2; 103 #endif 104 105 static int __init disable_randmaps(char *s) 106 { 107 randomize_va_space = 0; 108 return 1; 109 } 110 __setup("norandmaps", disable_randmaps); 111 112 unsigned long zero_pfn __read_mostly; 113 unsigned long highest_memmap_pfn __read_mostly; 114 115 /* 116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 117 */ 118 static int __init init_zero_pfn(void) 119 { 120 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 121 return 0; 122 } 123 core_initcall(init_zero_pfn); 124 125 126 #if defined(SPLIT_RSS_COUNTING) 127 128 static void __sync_task_rss_stat(struct task_struct *task, struct mm_struct *mm) 129 { 130 int i; 131 132 for (i = 0; i < NR_MM_COUNTERS; i++) { 133 if (task->rss_stat.count[i]) { 134 add_mm_counter(mm, i, task->rss_stat.count[i]); 135 task->rss_stat.count[i] = 0; 136 } 137 } 138 task->rss_stat.events = 0; 139 } 140 141 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 142 { 143 struct task_struct *task = current; 144 145 if (likely(task->mm == mm)) 146 task->rss_stat.count[member] += val; 147 else 148 add_mm_counter(mm, member, val); 149 } 150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 152 153 /* sync counter once per 64 page faults */ 154 #define TASK_RSS_EVENTS_THRESH (64) 155 static void check_sync_rss_stat(struct task_struct *task) 156 { 157 if (unlikely(task != current)) 158 return; 159 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 160 __sync_task_rss_stat(task, task->mm); 161 } 162 163 unsigned long get_mm_counter(struct mm_struct *mm, int member) 164 { 165 long val = 0; 166 167 /* 168 * Don't use task->mm here...for avoiding to use task_get_mm().. 169 * The caller must guarantee task->mm is not invalid. 170 */ 171 val = atomic_long_read(&mm->rss_stat.count[member]); 172 /* 173 * counter is updated in asynchronous manner and may go to minus. 174 * But it's never be expected number for users. 175 */ 176 if (val < 0) 177 return 0; 178 return (unsigned long)val; 179 } 180 181 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 182 { 183 __sync_task_rss_stat(task, mm); 184 } 185 #else 186 187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 189 190 static void check_sync_rss_stat(struct task_struct *task) 191 { 192 } 193 194 #endif 195 196 /* 197 * If a p?d_bad entry is found while walking page tables, report 198 * the error, before resetting entry to p?d_none. Usually (but 199 * very seldom) called out from the p?d_none_or_clear_bad macros. 200 */ 201 202 void pgd_clear_bad(pgd_t *pgd) 203 { 204 pgd_ERROR(*pgd); 205 pgd_clear(pgd); 206 } 207 208 void pud_clear_bad(pud_t *pud) 209 { 210 pud_ERROR(*pud); 211 pud_clear(pud); 212 } 213 214 void pmd_clear_bad(pmd_t *pmd) 215 { 216 pmd_ERROR(*pmd); 217 pmd_clear(pmd); 218 } 219 220 /* 221 * Note: this doesn't free the actual pages themselves. That 222 * has been handled earlier when unmapping all the memory regions. 223 */ 224 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 225 unsigned long addr) 226 { 227 pgtable_t token = pmd_pgtable(*pmd); 228 pmd_clear(pmd); 229 pte_free_tlb(tlb, token, addr); 230 tlb->mm->nr_ptes--; 231 } 232 233 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 234 unsigned long addr, unsigned long end, 235 unsigned long floor, unsigned long ceiling) 236 { 237 pmd_t *pmd; 238 unsigned long next; 239 unsigned long start; 240 241 start = addr; 242 pmd = pmd_offset(pud, addr); 243 do { 244 next = pmd_addr_end(addr, end); 245 if (pmd_none_or_clear_bad(pmd)) 246 continue; 247 free_pte_range(tlb, pmd, addr); 248 } while (pmd++, addr = next, addr != end); 249 250 start &= PUD_MASK; 251 if (start < floor) 252 return; 253 if (ceiling) { 254 ceiling &= PUD_MASK; 255 if (!ceiling) 256 return; 257 } 258 if (end - 1 > ceiling - 1) 259 return; 260 261 pmd = pmd_offset(pud, start); 262 pud_clear(pud); 263 pmd_free_tlb(tlb, pmd, start); 264 } 265 266 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 267 unsigned long addr, unsigned long end, 268 unsigned long floor, unsigned long ceiling) 269 { 270 pud_t *pud; 271 unsigned long next; 272 unsigned long start; 273 274 start = addr; 275 pud = pud_offset(pgd, addr); 276 do { 277 next = pud_addr_end(addr, end); 278 if (pud_none_or_clear_bad(pud)) 279 continue; 280 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 281 } while (pud++, addr = next, addr != end); 282 283 start &= PGDIR_MASK; 284 if (start < floor) 285 return; 286 if (ceiling) { 287 ceiling &= PGDIR_MASK; 288 if (!ceiling) 289 return; 290 } 291 if (end - 1 > ceiling - 1) 292 return; 293 294 pud = pud_offset(pgd, start); 295 pgd_clear(pgd); 296 pud_free_tlb(tlb, pud, start); 297 } 298 299 /* 300 * This function frees user-level page tables of a process. 301 * 302 * Must be called with pagetable lock held. 303 */ 304 void free_pgd_range(struct mmu_gather *tlb, 305 unsigned long addr, unsigned long end, 306 unsigned long floor, unsigned long ceiling) 307 { 308 pgd_t *pgd; 309 unsigned long next; 310 311 /* 312 * The next few lines have given us lots of grief... 313 * 314 * Why are we testing PMD* at this top level? Because often 315 * there will be no work to do at all, and we'd prefer not to 316 * go all the way down to the bottom just to discover that. 317 * 318 * Why all these "- 1"s? Because 0 represents both the bottom 319 * of the address space and the top of it (using -1 for the 320 * top wouldn't help much: the masks would do the wrong thing). 321 * The rule is that addr 0 and floor 0 refer to the bottom of 322 * the address space, but end 0 and ceiling 0 refer to the top 323 * Comparisons need to use "end - 1" and "ceiling - 1" (though 324 * that end 0 case should be mythical). 325 * 326 * Wherever addr is brought up or ceiling brought down, we must 327 * be careful to reject "the opposite 0" before it confuses the 328 * subsequent tests. But what about where end is brought down 329 * by PMD_SIZE below? no, end can't go down to 0 there. 330 * 331 * Whereas we round start (addr) and ceiling down, by different 332 * masks at different levels, in order to test whether a table 333 * now has no other vmas using it, so can be freed, we don't 334 * bother to round floor or end up - the tests don't need that. 335 */ 336 337 addr &= PMD_MASK; 338 if (addr < floor) { 339 addr += PMD_SIZE; 340 if (!addr) 341 return; 342 } 343 if (ceiling) { 344 ceiling &= PMD_MASK; 345 if (!ceiling) 346 return; 347 } 348 if (end - 1 > ceiling - 1) 349 end -= PMD_SIZE; 350 if (addr > end - 1) 351 return; 352 353 pgd = pgd_offset(tlb->mm, addr); 354 do { 355 next = pgd_addr_end(addr, end); 356 if (pgd_none_or_clear_bad(pgd)) 357 continue; 358 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 359 } while (pgd++, addr = next, addr != end); 360 } 361 362 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 363 unsigned long floor, unsigned long ceiling) 364 { 365 while (vma) { 366 struct vm_area_struct *next = vma->vm_next; 367 unsigned long addr = vma->vm_start; 368 369 /* 370 * Hide vma from rmap and truncate_pagecache before freeing 371 * pgtables 372 */ 373 unlink_anon_vmas(vma); 374 unlink_file_vma(vma); 375 376 if (is_vm_hugetlb_page(vma)) { 377 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 378 floor, next? next->vm_start: ceiling); 379 } else { 380 /* 381 * Optimization: gather nearby vmas into one call down 382 */ 383 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 384 && !is_vm_hugetlb_page(next)) { 385 vma = next; 386 next = vma->vm_next; 387 unlink_anon_vmas(vma); 388 unlink_file_vma(vma); 389 } 390 free_pgd_range(tlb, addr, vma->vm_end, 391 floor, next? next->vm_start: ceiling); 392 } 393 vma = next; 394 } 395 } 396 397 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 398 pmd_t *pmd, unsigned long address) 399 { 400 pgtable_t new = pte_alloc_one(mm, address); 401 int wait_split_huge_page; 402 if (!new) 403 return -ENOMEM; 404 405 /* 406 * Ensure all pte setup (eg. pte page lock and page clearing) are 407 * visible before the pte is made visible to other CPUs by being 408 * put into page tables. 409 * 410 * The other side of the story is the pointer chasing in the page 411 * table walking code (when walking the page table without locking; 412 * ie. most of the time). Fortunately, these data accesses consist 413 * of a chain of data-dependent loads, meaning most CPUs (alpha 414 * being the notable exception) will already guarantee loads are 415 * seen in-order. See the alpha page table accessors for the 416 * smp_read_barrier_depends() barriers in page table walking code. 417 */ 418 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 419 420 spin_lock(&mm->page_table_lock); 421 wait_split_huge_page = 0; 422 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 423 mm->nr_ptes++; 424 pmd_populate(mm, pmd, new); 425 new = NULL; 426 } else if (unlikely(pmd_trans_splitting(*pmd))) 427 wait_split_huge_page = 1; 428 spin_unlock(&mm->page_table_lock); 429 if (new) 430 pte_free(mm, new); 431 if (wait_split_huge_page) 432 wait_split_huge_page(vma->anon_vma, pmd); 433 return 0; 434 } 435 436 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 437 { 438 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 439 if (!new) 440 return -ENOMEM; 441 442 smp_wmb(); /* See comment in __pte_alloc */ 443 444 spin_lock(&init_mm.page_table_lock); 445 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 446 pmd_populate_kernel(&init_mm, pmd, new); 447 new = NULL; 448 } else 449 VM_BUG_ON(pmd_trans_splitting(*pmd)); 450 spin_unlock(&init_mm.page_table_lock); 451 if (new) 452 pte_free_kernel(&init_mm, new); 453 return 0; 454 } 455 456 static inline void init_rss_vec(int *rss) 457 { 458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 459 } 460 461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 462 { 463 int i; 464 465 if (current->mm == mm) 466 sync_mm_rss(current, mm); 467 for (i = 0; i < NR_MM_COUNTERS; i++) 468 if (rss[i]) 469 add_mm_counter(mm, i, rss[i]); 470 } 471 472 /* 473 * This function is called to print an error when a bad pte 474 * is found. For example, we might have a PFN-mapped pte in 475 * a region that doesn't allow it. 476 * 477 * The calling function must still handle the error. 478 */ 479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 480 pte_t pte, struct page *page) 481 { 482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 483 pud_t *pud = pud_offset(pgd, addr); 484 pmd_t *pmd = pmd_offset(pud, addr); 485 struct address_space *mapping; 486 pgoff_t index; 487 static unsigned long resume; 488 static unsigned long nr_shown; 489 static unsigned long nr_unshown; 490 491 /* 492 * Allow a burst of 60 reports, then keep quiet for that minute; 493 * or allow a steady drip of one report per second. 494 */ 495 if (nr_shown == 60) { 496 if (time_before(jiffies, resume)) { 497 nr_unshown++; 498 return; 499 } 500 if (nr_unshown) { 501 printk(KERN_ALERT 502 "BUG: Bad page map: %lu messages suppressed\n", 503 nr_unshown); 504 nr_unshown = 0; 505 } 506 nr_shown = 0; 507 } 508 if (nr_shown++ == 0) 509 resume = jiffies + 60 * HZ; 510 511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 512 index = linear_page_index(vma, addr); 513 514 printk(KERN_ALERT 515 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 516 current->comm, 517 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 518 if (page) 519 dump_page(page); 520 printk(KERN_ALERT 521 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 522 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 523 /* 524 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 525 */ 526 if (vma->vm_ops) 527 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 528 (unsigned long)vma->vm_ops->fault); 529 if (vma->vm_file && vma->vm_file->f_op) 530 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 531 (unsigned long)vma->vm_file->f_op->mmap); 532 dump_stack(); 533 add_taint(TAINT_BAD_PAGE); 534 } 535 536 static inline int is_cow_mapping(unsigned int flags) 537 { 538 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 539 } 540 541 #ifndef is_zero_pfn 542 static inline int is_zero_pfn(unsigned long pfn) 543 { 544 return pfn == zero_pfn; 545 } 546 #endif 547 548 #ifndef my_zero_pfn 549 static inline unsigned long my_zero_pfn(unsigned long addr) 550 { 551 return zero_pfn; 552 } 553 #endif 554 555 /* 556 * vm_normal_page -- This function gets the "struct page" associated with a pte. 557 * 558 * "Special" mappings do not wish to be associated with a "struct page" (either 559 * it doesn't exist, or it exists but they don't want to touch it). In this 560 * case, NULL is returned here. "Normal" mappings do have a struct page. 561 * 562 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 563 * pte bit, in which case this function is trivial. Secondly, an architecture 564 * may not have a spare pte bit, which requires a more complicated scheme, 565 * described below. 566 * 567 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 568 * special mapping (even if there are underlying and valid "struct pages"). 569 * COWed pages of a VM_PFNMAP are always normal. 570 * 571 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 572 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 573 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 574 * mapping will always honor the rule 575 * 576 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 577 * 578 * And for normal mappings this is false. 579 * 580 * This restricts such mappings to be a linear translation from virtual address 581 * to pfn. To get around this restriction, we allow arbitrary mappings so long 582 * as the vma is not a COW mapping; in that case, we know that all ptes are 583 * special (because none can have been COWed). 584 * 585 * 586 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 587 * 588 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 589 * page" backing, however the difference is that _all_ pages with a struct 590 * page (that is, those where pfn_valid is true) are refcounted and considered 591 * normal pages by the VM. The disadvantage is that pages are refcounted 592 * (which can be slower and simply not an option for some PFNMAP users). The 593 * advantage is that we don't have to follow the strict linearity rule of 594 * PFNMAP mappings in order to support COWable mappings. 595 * 596 */ 597 #ifdef __HAVE_ARCH_PTE_SPECIAL 598 # define HAVE_PTE_SPECIAL 1 599 #else 600 # define HAVE_PTE_SPECIAL 0 601 #endif 602 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 603 pte_t pte) 604 { 605 unsigned long pfn = pte_pfn(pte); 606 607 if (HAVE_PTE_SPECIAL) { 608 if (likely(!pte_special(pte))) 609 goto check_pfn; 610 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 611 return NULL; 612 if (!is_zero_pfn(pfn)) 613 print_bad_pte(vma, addr, pte, NULL); 614 return NULL; 615 } 616 617 /* !HAVE_PTE_SPECIAL case follows: */ 618 619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 620 if (vma->vm_flags & VM_MIXEDMAP) { 621 if (!pfn_valid(pfn)) 622 return NULL; 623 goto out; 624 } else { 625 unsigned long off; 626 off = (addr - vma->vm_start) >> PAGE_SHIFT; 627 if (pfn == vma->vm_pgoff + off) 628 return NULL; 629 if (!is_cow_mapping(vma->vm_flags)) 630 return NULL; 631 } 632 } 633 634 if (is_zero_pfn(pfn)) 635 return NULL; 636 check_pfn: 637 if (unlikely(pfn > highest_memmap_pfn)) { 638 print_bad_pte(vma, addr, pte, NULL); 639 return NULL; 640 } 641 642 /* 643 * NOTE! We still have PageReserved() pages in the page tables. 644 * eg. VDSO mappings can cause them to exist. 645 */ 646 out: 647 return pfn_to_page(pfn); 648 } 649 650 /* 651 * copy one vm_area from one task to the other. Assumes the page tables 652 * already present in the new task to be cleared in the whole range 653 * covered by this vma. 654 */ 655 656 static inline unsigned long 657 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 658 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 659 unsigned long addr, int *rss) 660 { 661 unsigned long vm_flags = vma->vm_flags; 662 pte_t pte = *src_pte; 663 struct page *page; 664 665 /* pte contains position in swap or file, so copy. */ 666 if (unlikely(!pte_present(pte))) { 667 if (!pte_file(pte)) { 668 swp_entry_t entry = pte_to_swp_entry(pte); 669 670 if (swap_duplicate(entry) < 0) 671 return entry.val; 672 673 /* make sure dst_mm is on swapoff's mmlist. */ 674 if (unlikely(list_empty(&dst_mm->mmlist))) { 675 spin_lock(&mmlist_lock); 676 if (list_empty(&dst_mm->mmlist)) 677 list_add(&dst_mm->mmlist, 678 &src_mm->mmlist); 679 spin_unlock(&mmlist_lock); 680 } 681 if (likely(!non_swap_entry(entry))) 682 rss[MM_SWAPENTS]++; 683 else if (is_write_migration_entry(entry) && 684 is_cow_mapping(vm_flags)) { 685 /* 686 * COW mappings require pages in both parent 687 * and child to be set to read. 688 */ 689 make_migration_entry_read(&entry); 690 pte = swp_entry_to_pte(entry); 691 set_pte_at(src_mm, addr, src_pte, pte); 692 } 693 } 694 goto out_set_pte; 695 } 696 697 /* 698 * If it's a COW mapping, write protect it both 699 * in the parent and the child 700 */ 701 if (is_cow_mapping(vm_flags)) { 702 ptep_set_wrprotect(src_mm, addr, src_pte); 703 pte = pte_wrprotect(pte); 704 } 705 706 /* 707 * If it's a shared mapping, mark it clean in 708 * the child 709 */ 710 if (vm_flags & VM_SHARED) 711 pte = pte_mkclean(pte); 712 pte = pte_mkold(pte); 713 714 page = vm_normal_page(vma, addr, pte); 715 if (page) { 716 get_page(page); 717 page_dup_rmap(page); 718 if (PageAnon(page)) 719 rss[MM_ANONPAGES]++; 720 else 721 rss[MM_FILEPAGES]++; 722 } 723 724 out_set_pte: 725 set_pte_at(dst_mm, addr, dst_pte, pte); 726 return 0; 727 } 728 729 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 730 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 731 unsigned long addr, unsigned long end) 732 { 733 pte_t *orig_src_pte, *orig_dst_pte; 734 pte_t *src_pte, *dst_pte; 735 spinlock_t *src_ptl, *dst_ptl; 736 int progress = 0; 737 int rss[NR_MM_COUNTERS]; 738 swp_entry_t entry = (swp_entry_t){0}; 739 740 again: 741 init_rss_vec(rss); 742 743 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 744 if (!dst_pte) 745 return -ENOMEM; 746 src_pte = pte_offset_map(src_pmd, addr); 747 src_ptl = pte_lockptr(src_mm, src_pmd); 748 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 749 orig_src_pte = src_pte; 750 orig_dst_pte = dst_pte; 751 arch_enter_lazy_mmu_mode(); 752 753 do { 754 /* 755 * We are holding two locks at this point - either of them 756 * could generate latencies in another task on another CPU. 757 */ 758 if (progress >= 32) { 759 progress = 0; 760 if (need_resched() || 761 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 762 break; 763 } 764 if (pte_none(*src_pte)) { 765 progress++; 766 continue; 767 } 768 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 769 vma, addr, rss); 770 if (entry.val) 771 break; 772 progress += 8; 773 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 774 775 arch_leave_lazy_mmu_mode(); 776 spin_unlock(src_ptl); 777 pte_unmap(orig_src_pte); 778 add_mm_rss_vec(dst_mm, rss); 779 pte_unmap_unlock(orig_dst_pte, dst_ptl); 780 cond_resched(); 781 782 if (entry.val) { 783 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 784 return -ENOMEM; 785 progress = 0; 786 } 787 if (addr != end) 788 goto again; 789 return 0; 790 } 791 792 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 793 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 794 unsigned long addr, unsigned long end) 795 { 796 pmd_t *src_pmd, *dst_pmd; 797 unsigned long next; 798 799 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 800 if (!dst_pmd) 801 return -ENOMEM; 802 src_pmd = pmd_offset(src_pud, addr); 803 do { 804 next = pmd_addr_end(addr, end); 805 if (pmd_trans_huge(*src_pmd)) { 806 int err; 807 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 808 err = copy_huge_pmd(dst_mm, src_mm, 809 dst_pmd, src_pmd, addr, vma); 810 if (err == -ENOMEM) 811 return -ENOMEM; 812 if (!err) 813 continue; 814 /* fall through */ 815 } 816 if (pmd_none_or_clear_bad(src_pmd)) 817 continue; 818 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 819 vma, addr, next)) 820 return -ENOMEM; 821 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 822 return 0; 823 } 824 825 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 826 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 827 unsigned long addr, unsigned long end) 828 { 829 pud_t *src_pud, *dst_pud; 830 unsigned long next; 831 832 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 833 if (!dst_pud) 834 return -ENOMEM; 835 src_pud = pud_offset(src_pgd, addr); 836 do { 837 next = pud_addr_end(addr, end); 838 if (pud_none_or_clear_bad(src_pud)) 839 continue; 840 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 841 vma, addr, next)) 842 return -ENOMEM; 843 } while (dst_pud++, src_pud++, addr = next, addr != end); 844 return 0; 845 } 846 847 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 848 struct vm_area_struct *vma) 849 { 850 pgd_t *src_pgd, *dst_pgd; 851 unsigned long next; 852 unsigned long addr = vma->vm_start; 853 unsigned long end = vma->vm_end; 854 int ret; 855 856 /* 857 * Don't copy ptes where a page fault will fill them correctly. 858 * Fork becomes much lighter when there are big shared or private 859 * readonly mappings. The tradeoff is that copy_page_range is more 860 * efficient than faulting. 861 */ 862 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 863 if (!vma->anon_vma) 864 return 0; 865 } 866 867 if (is_vm_hugetlb_page(vma)) 868 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 869 870 if (unlikely(is_pfn_mapping(vma))) { 871 /* 872 * We do not free on error cases below as remove_vma 873 * gets called on error from higher level routine 874 */ 875 ret = track_pfn_vma_copy(vma); 876 if (ret) 877 return ret; 878 } 879 880 /* 881 * We need to invalidate the secondary MMU mappings only when 882 * there could be a permission downgrade on the ptes of the 883 * parent mm. And a permission downgrade will only happen if 884 * is_cow_mapping() returns true. 885 */ 886 if (is_cow_mapping(vma->vm_flags)) 887 mmu_notifier_invalidate_range_start(src_mm, addr, end); 888 889 ret = 0; 890 dst_pgd = pgd_offset(dst_mm, addr); 891 src_pgd = pgd_offset(src_mm, addr); 892 do { 893 next = pgd_addr_end(addr, end); 894 if (pgd_none_or_clear_bad(src_pgd)) 895 continue; 896 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 897 vma, addr, next))) { 898 ret = -ENOMEM; 899 break; 900 } 901 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 902 903 if (is_cow_mapping(vma->vm_flags)) 904 mmu_notifier_invalidate_range_end(src_mm, 905 vma->vm_start, end); 906 return ret; 907 } 908 909 static unsigned long zap_pte_range(struct mmu_gather *tlb, 910 struct vm_area_struct *vma, pmd_t *pmd, 911 unsigned long addr, unsigned long end, 912 long *zap_work, struct zap_details *details) 913 { 914 struct mm_struct *mm = tlb->mm; 915 pte_t *pte; 916 spinlock_t *ptl; 917 int rss[NR_MM_COUNTERS]; 918 919 init_rss_vec(rss); 920 921 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 922 arch_enter_lazy_mmu_mode(); 923 do { 924 pte_t ptent = *pte; 925 if (pte_none(ptent)) { 926 (*zap_work)--; 927 continue; 928 } 929 930 (*zap_work) -= PAGE_SIZE; 931 932 if (pte_present(ptent)) { 933 struct page *page; 934 935 page = vm_normal_page(vma, addr, ptent); 936 if (unlikely(details) && page) { 937 /* 938 * unmap_shared_mapping_pages() wants to 939 * invalidate cache without truncating: 940 * unmap shared but keep private pages. 941 */ 942 if (details->check_mapping && 943 details->check_mapping != page->mapping) 944 continue; 945 /* 946 * Each page->index must be checked when 947 * invalidating or truncating nonlinear. 948 */ 949 if (details->nonlinear_vma && 950 (page->index < details->first_index || 951 page->index > details->last_index)) 952 continue; 953 } 954 ptent = ptep_get_and_clear_full(mm, addr, pte, 955 tlb->fullmm); 956 tlb_remove_tlb_entry(tlb, pte, addr); 957 if (unlikely(!page)) 958 continue; 959 if (unlikely(details) && details->nonlinear_vma 960 && linear_page_index(details->nonlinear_vma, 961 addr) != page->index) 962 set_pte_at(mm, addr, pte, 963 pgoff_to_pte(page->index)); 964 if (PageAnon(page)) 965 rss[MM_ANONPAGES]--; 966 else { 967 if (pte_dirty(ptent)) 968 set_page_dirty(page); 969 if (pte_young(ptent) && 970 likely(!VM_SequentialReadHint(vma))) 971 mark_page_accessed(page); 972 rss[MM_FILEPAGES]--; 973 } 974 page_remove_rmap(page); 975 if (unlikely(page_mapcount(page) < 0)) 976 print_bad_pte(vma, addr, ptent, page); 977 tlb_remove_page(tlb, page); 978 continue; 979 } 980 /* 981 * If details->check_mapping, we leave swap entries; 982 * if details->nonlinear_vma, we leave file entries. 983 */ 984 if (unlikely(details)) 985 continue; 986 if (pte_file(ptent)) { 987 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 988 print_bad_pte(vma, addr, ptent, NULL); 989 } else { 990 swp_entry_t entry = pte_to_swp_entry(ptent); 991 992 if (!non_swap_entry(entry)) 993 rss[MM_SWAPENTS]--; 994 if (unlikely(!free_swap_and_cache(entry))) 995 print_bad_pte(vma, addr, ptent, NULL); 996 } 997 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 998 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 999 1000 add_mm_rss_vec(mm, rss); 1001 arch_leave_lazy_mmu_mode(); 1002 pte_unmap_unlock(pte - 1, ptl); 1003 1004 return addr; 1005 } 1006 1007 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1008 struct vm_area_struct *vma, pud_t *pud, 1009 unsigned long addr, unsigned long end, 1010 long *zap_work, struct zap_details *details) 1011 { 1012 pmd_t *pmd; 1013 unsigned long next; 1014 1015 pmd = pmd_offset(pud, addr); 1016 do { 1017 next = pmd_addr_end(addr, end); 1018 if (pmd_trans_huge(*pmd)) { 1019 if (next-addr != HPAGE_PMD_SIZE) { 1020 VM_BUG_ON(!rwsem_is_locked(&tlb->mm->mmap_sem)); 1021 split_huge_page_pmd(vma->vm_mm, pmd); 1022 } else if (zap_huge_pmd(tlb, vma, pmd)) { 1023 (*zap_work)--; 1024 continue; 1025 } 1026 /* fall through */ 1027 } 1028 if (pmd_none_or_clear_bad(pmd)) { 1029 (*zap_work)--; 1030 continue; 1031 } 1032 next = zap_pte_range(tlb, vma, pmd, addr, next, 1033 zap_work, details); 1034 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 1035 1036 return addr; 1037 } 1038 1039 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1040 struct vm_area_struct *vma, pgd_t *pgd, 1041 unsigned long addr, unsigned long end, 1042 long *zap_work, struct zap_details *details) 1043 { 1044 pud_t *pud; 1045 unsigned long next; 1046 1047 pud = pud_offset(pgd, addr); 1048 do { 1049 next = pud_addr_end(addr, end); 1050 if (pud_none_or_clear_bad(pud)) { 1051 (*zap_work)--; 1052 continue; 1053 } 1054 next = zap_pmd_range(tlb, vma, pud, addr, next, 1055 zap_work, details); 1056 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 1057 1058 return addr; 1059 } 1060 1061 static unsigned long unmap_page_range(struct mmu_gather *tlb, 1062 struct vm_area_struct *vma, 1063 unsigned long addr, unsigned long end, 1064 long *zap_work, struct zap_details *details) 1065 { 1066 pgd_t *pgd; 1067 unsigned long next; 1068 1069 if (details && !details->check_mapping && !details->nonlinear_vma) 1070 details = NULL; 1071 1072 BUG_ON(addr >= end); 1073 mem_cgroup_uncharge_start(); 1074 tlb_start_vma(tlb, vma); 1075 pgd = pgd_offset(vma->vm_mm, addr); 1076 do { 1077 next = pgd_addr_end(addr, end); 1078 if (pgd_none_or_clear_bad(pgd)) { 1079 (*zap_work)--; 1080 continue; 1081 } 1082 next = zap_pud_range(tlb, vma, pgd, addr, next, 1083 zap_work, details); 1084 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 1085 tlb_end_vma(tlb, vma); 1086 mem_cgroup_uncharge_end(); 1087 1088 return addr; 1089 } 1090 1091 #ifdef CONFIG_PREEMPT 1092 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 1093 #else 1094 /* No preempt: go for improved straight-line efficiency */ 1095 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 1096 #endif 1097 1098 /** 1099 * unmap_vmas - unmap a range of memory covered by a list of vma's 1100 * @tlbp: address of the caller's struct mmu_gather 1101 * @vma: the starting vma 1102 * @start_addr: virtual address at which to start unmapping 1103 * @end_addr: virtual address at which to end unmapping 1104 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 1105 * @details: details of nonlinear truncation or shared cache invalidation 1106 * 1107 * Returns the end address of the unmapping (restart addr if interrupted). 1108 * 1109 * Unmap all pages in the vma list. 1110 * 1111 * We aim to not hold locks for too long (for scheduling latency reasons). 1112 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 1113 * return the ending mmu_gather to the caller. 1114 * 1115 * Only addresses between `start' and `end' will be unmapped. 1116 * 1117 * The VMA list must be sorted in ascending virtual address order. 1118 * 1119 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1120 * range after unmap_vmas() returns. So the only responsibility here is to 1121 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1122 * drops the lock and schedules. 1123 */ 1124 unsigned long unmap_vmas(struct mmu_gather **tlbp, 1125 struct vm_area_struct *vma, unsigned long start_addr, 1126 unsigned long end_addr, unsigned long *nr_accounted, 1127 struct zap_details *details) 1128 { 1129 long zap_work = ZAP_BLOCK_SIZE; 1130 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 1131 int tlb_start_valid = 0; 1132 unsigned long start = start_addr; 1133 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 1134 int fullmm = (*tlbp)->fullmm; 1135 struct mm_struct *mm = vma->vm_mm; 1136 1137 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1138 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 1139 unsigned long end; 1140 1141 start = max(vma->vm_start, start_addr); 1142 if (start >= vma->vm_end) 1143 continue; 1144 end = min(vma->vm_end, end_addr); 1145 if (end <= vma->vm_start) 1146 continue; 1147 1148 if (vma->vm_flags & VM_ACCOUNT) 1149 *nr_accounted += (end - start) >> PAGE_SHIFT; 1150 1151 if (unlikely(is_pfn_mapping(vma))) 1152 untrack_pfn_vma(vma, 0, 0); 1153 1154 while (start != end) { 1155 if (!tlb_start_valid) { 1156 tlb_start = start; 1157 tlb_start_valid = 1; 1158 } 1159 1160 if (unlikely(is_vm_hugetlb_page(vma))) { 1161 /* 1162 * It is undesirable to test vma->vm_file as it 1163 * should be non-null for valid hugetlb area. 1164 * However, vm_file will be NULL in the error 1165 * cleanup path of do_mmap_pgoff. When 1166 * hugetlbfs ->mmap method fails, 1167 * do_mmap_pgoff() nullifies vma->vm_file 1168 * before calling this function to clean up. 1169 * Since no pte has actually been setup, it is 1170 * safe to do nothing in this case. 1171 */ 1172 if (vma->vm_file) { 1173 unmap_hugepage_range(vma, start, end, NULL); 1174 zap_work -= (end - start) / 1175 pages_per_huge_page(hstate_vma(vma)); 1176 } 1177 1178 start = end; 1179 } else 1180 start = unmap_page_range(*tlbp, vma, 1181 start, end, &zap_work, details); 1182 1183 if (zap_work > 0) { 1184 BUG_ON(start != end); 1185 break; 1186 } 1187 1188 tlb_finish_mmu(*tlbp, tlb_start, start); 1189 1190 if (need_resched() || 1191 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1192 if (i_mmap_lock) { 1193 *tlbp = NULL; 1194 goto out; 1195 } 1196 cond_resched(); 1197 } 1198 1199 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1200 tlb_start_valid = 0; 1201 zap_work = ZAP_BLOCK_SIZE; 1202 } 1203 } 1204 out: 1205 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1206 return start; /* which is now the end (or restart) address */ 1207 } 1208 1209 /** 1210 * zap_page_range - remove user pages in a given range 1211 * @vma: vm_area_struct holding the applicable pages 1212 * @address: starting address of pages to zap 1213 * @size: number of bytes to zap 1214 * @details: details of nonlinear truncation or shared cache invalidation 1215 */ 1216 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1217 unsigned long size, struct zap_details *details) 1218 { 1219 struct mm_struct *mm = vma->vm_mm; 1220 struct mmu_gather *tlb; 1221 unsigned long end = address + size; 1222 unsigned long nr_accounted = 0; 1223 1224 lru_add_drain(); 1225 tlb = tlb_gather_mmu(mm, 0); 1226 update_hiwater_rss(mm); 1227 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1228 if (tlb) 1229 tlb_finish_mmu(tlb, address, end); 1230 return end; 1231 } 1232 1233 /** 1234 * zap_vma_ptes - remove ptes mapping the vma 1235 * @vma: vm_area_struct holding ptes to be zapped 1236 * @address: starting address of pages to zap 1237 * @size: number of bytes to zap 1238 * 1239 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1240 * 1241 * The entire address range must be fully contained within the vma. 1242 * 1243 * Returns 0 if successful. 1244 */ 1245 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1246 unsigned long size) 1247 { 1248 if (address < vma->vm_start || address + size > vma->vm_end || 1249 !(vma->vm_flags & VM_PFNMAP)) 1250 return -1; 1251 zap_page_range(vma, address, size, NULL); 1252 return 0; 1253 } 1254 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1255 1256 /** 1257 * follow_page - look up a page descriptor from a user-virtual address 1258 * @vma: vm_area_struct mapping @address 1259 * @address: virtual address to look up 1260 * @flags: flags modifying lookup behaviour 1261 * 1262 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1263 * 1264 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1265 * an error pointer if there is a mapping to something not represented 1266 * by a page descriptor (see also vm_normal_page()). 1267 */ 1268 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1269 unsigned int flags) 1270 { 1271 pgd_t *pgd; 1272 pud_t *pud; 1273 pmd_t *pmd; 1274 pte_t *ptep, pte; 1275 spinlock_t *ptl; 1276 struct page *page; 1277 struct mm_struct *mm = vma->vm_mm; 1278 1279 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1280 if (!IS_ERR(page)) { 1281 BUG_ON(flags & FOLL_GET); 1282 goto out; 1283 } 1284 1285 page = NULL; 1286 pgd = pgd_offset(mm, address); 1287 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1288 goto no_page_table; 1289 1290 pud = pud_offset(pgd, address); 1291 if (pud_none(*pud)) 1292 goto no_page_table; 1293 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1294 BUG_ON(flags & FOLL_GET); 1295 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1296 goto out; 1297 } 1298 if (unlikely(pud_bad(*pud))) 1299 goto no_page_table; 1300 1301 pmd = pmd_offset(pud, address); 1302 if (pmd_none(*pmd)) 1303 goto no_page_table; 1304 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1305 BUG_ON(flags & FOLL_GET); 1306 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1307 goto out; 1308 } 1309 if (pmd_trans_huge(*pmd)) { 1310 if (flags & FOLL_SPLIT) { 1311 split_huge_page_pmd(mm, pmd); 1312 goto split_fallthrough; 1313 } 1314 spin_lock(&mm->page_table_lock); 1315 if (likely(pmd_trans_huge(*pmd))) { 1316 if (unlikely(pmd_trans_splitting(*pmd))) { 1317 spin_unlock(&mm->page_table_lock); 1318 wait_split_huge_page(vma->anon_vma, pmd); 1319 } else { 1320 page = follow_trans_huge_pmd(mm, address, 1321 pmd, flags); 1322 spin_unlock(&mm->page_table_lock); 1323 goto out; 1324 } 1325 } else 1326 spin_unlock(&mm->page_table_lock); 1327 /* fall through */ 1328 } 1329 split_fallthrough: 1330 if (unlikely(pmd_bad(*pmd))) 1331 goto no_page_table; 1332 1333 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1334 1335 pte = *ptep; 1336 if (!pte_present(pte)) 1337 goto no_page; 1338 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1339 goto unlock; 1340 1341 page = vm_normal_page(vma, address, pte); 1342 if (unlikely(!page)) { 1343 if ((flags & FOLL_DUMP) || 1344 !is_zero_pfn(pte_pfn(pte))) 1345 goto bad_page; 1346 page = pte_page(pte); 1347 } 1348 1349 if (flags & FOLL_GET) 1350 get_page(page); 1351 if (flags & FOLL_TOUCH) { 1352 if ((flags & FOLL_WRITE) && 1353 !pte_dirty(pte) && !PageDirty(page)) 1354 set_page_dirty(page); 1355 /* 1356 * pte_mkyoung() would be more correct here, but atomic care 1357 * is needed to avoid losing the dirty bit: it is easier to use 1358 * mark_page_accessed(). 1359 */ 1360 mark_page_accessed(page); 1361 } 1362 if (flags & FOLL_MLOCK) { 1363 /* 1364 * The preliminary mapping check is mainly to avoid the 1365 * pointless overhead of lock_page on the ZERO_PAGE 1366 * which might bounce very badly if there is contention. 1367 * 1368 * If the page is already locked, we don't need to 1369 * handle it now - vmscan will handle it later if and 1370 * when it attempts to reclaim the page. 1371 */ 1372 if (page->mapping && trylock_page(page)) { 1373 lru_add_drain(); /* push cached pages to LRU */ 1374 /* 1375 * Because we lock page here and migration is 1376 * blocked by the pte's page reference, we need 1377 * only check for file-cache page truncation. 1378 */ 1379 if (page->mapping) 1380 mlock_vma_page(page); 1381 unlock_page(page); 1382 } 1383 } 1384 unlock: 1385 pte_unmap_unlock(ptep, ptl); 1386 out: 1387 return page; 1388 1389 bad_page: 1390 pte_unmap_unlock(ptep, ptl); 1391 return ERR_PTR(-EFAULT); 1392 1393 no_page: 1394 pte_unmap_unlock(ptep, ptl); 1395 if (!pte_none(pte)) 1396 return page; 1397 1398 no_page_table: 1399 /* 1400 * When core dumping an enormous anonymous area that nobody 1401 * has touched so far, we don't want to allocate unnecessary pages or 1402 * page tables. Return error instead of NULL to skip handle_mm_fault, 1403 * then get_dump_page() will return NULL to leave a hole in the dump. 1404 * But we can only make this optimization where a hole would surely 1405 * be zero-filled if handle_mm_fault() actually did handle it. 1406 */ 1407 if ((flags & FOLL_DUMP) && 1408 (!vma->vm_ops || !vma->vm_ops->fault)) 1409 return ERR_PTR(-EFAULT); 1410 return page; 1411 } 1412 1413 /** 1414 * __get_user_pages() - pin user pages in memory 1415 * @tsk: task_struct of target task 1416 * @mm: mm_struct of target mm 1417 * @start: starting user address 1418 * @nr_pages: number of pages from start to pin 1419 * @gup_flags: flags modifying pin behaviour 1420 * @pages: array that receives pointers to the pages pinned. 1421 * Should be at least nr_pages long. Or NULL, if caller 1422 * only intends to ensure the pages are faulted in. 1423 * @vmas: array of pointers to vmas corresponding to each page. 1424 * Or NULL if the caller does not require them. 1425 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1426 * 1427 * Returns number of pages pinned. This may be fewer than the number 1428 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1429 * were pinned, returns -errno. Each page returned must be released 1430 * with a put_page() call when it is finished with. vmas will only 1431 * remain valid while mmap_sem is held. 1432 * 1433 * Must be called with mmap_sem held for read or write. 1434 * 1435 * __get_user_pages walks a process's page tables and takes a reference to 1436 * each struct page that each user address corresponds to at a given 1437 * instant. That is, it takes the page that would be accessed if a user 1438 * thread accesses the given user virtual address at that instant. 1439 * 1440 * This does not guarantee that the page exists in the user mappings when 1441 * __get_user_pages returns, and there may even be a completely different 1442 * page there in some cases (eg. if mmapped pagecache has been invalidated 1443 * and subsequently re faulted). However it does guarantee that the page 1444 * won't be freed completely. And mostly callers simply care that the page 1445 * contains data that was valid *at some point in time*. Typically, an IO 1446 * or similar operation cannot guarantee anything stronger anyway because 1447 * locks can't be held over the syscall boundary. 1448 * 1449 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1450 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1451 * appropriate) must be called after the page is finished with, and 1452 * before put_page is called. 1453 * 1454 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1455 * or mmap_sem contention, and if waiting is needed to pin all pages, 1456 * *@nonblocking will be set to 0. 1457 * 1458 * In most cases, get_user_pages or get_user_pages_fast should be used 1459 * instead of __get_user_pages. __get_user_pages should be used only if 1460 * you need some special @gup_flags. 1461 */ 1462 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1463 unsigned long start, int nr_pages, unsigned int gup_flags, 1464 struct page **pages, struct vm_area_struct **vmas, 1465 int *nonblocking) 1466 { 1467 int i; 1468 unsigned long vm_flags; 1469 1470 if (nr_pages <= 0) 1471 return 0; 1472 1473 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1474 1475 /* 1476 * Require read or write permissions. 1477 * If FOLL_FORCE is set, we only require the "MAY" flags. 1478 */ 1479 vm_flags = (gup_flags & FOLL_WRITE) ? 1480 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1481 vm_flags &= (gup_flags & FOLL_FORCE) ? 1482 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1483 i = 0; 1484 1485 do { 1486 struct vm_area_struct *vma; 1487 1488 vma = find_extend_vma(mm, start); 1489 if (!vma && in_gate_area(tsk, start)) { 1490 unsigned long pg = start & PAGE_MASK; 1491 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1492 pgd_t *pgd; 1493 pud_t *pud; 1494 pmd_t *pmd; 1495 pte_t *pte; 1496 1497 /* user gate pages are read-only */ 1498 if (gup_flags & FOLL_WRITE) 1499 return i ? : -EFAULT; 1500 if (pg > TASK_SIZE) 1501 pgd = pgd_offset_k(pg); 1502 else 1503 pgd = pgd_offset_gate(mm, pg); 1504 BUG_ON(pgd_none(*pgd)); 1505 pud = pud_offset(pgd, pg); 1506 BUG_ON(pud_none(*pud)); 1507 pmd = pmd_offset(pud, pg); 1508 if (pmd_none(*pmd)) 1509 return i ? : -EFAULT; 1510 VM_BUG_ON(pmd_trans_huge(*pmd)); 1511 pte = pte_offset_map(pmd, pg); 1512 if (pte_none(*pte)) { 1513 pte_unmap(pte); 1514 return i ? : -EFAULT; 1515 } 1516 if (pages) { 1517 struct page *page; 1518 1519 page = vm_normal_page(gate_vma, start, *pte); 1520 if (!page) { 1521 if (!(gup_flags & FOLL_DUMP) && 1522 is_zero_pfn(pte_pfn(*pte))) 1523 page = pte_page(*pte); 1524 else { 1525 pte_unmap(pte); 1526 return i ? : -EFAULT; 1527 } 1528 } 1529 pages[i] = page; 1530 get_page(page); 1531 } 1532 pte_unmap(pte); 1533 if (vmas) 1534 vmas[i] = gate_vma; 1535 i++; 1536 start += PAGE_SIZE; 1537 nr_pages--; 1538 continue; 1539 } 1540 1541 if (!vma || 1542 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1543 !(vm_flags & vma->vm_flags)) 1544 return i ? : -EFAULT; 1545 1546 if (is_vm_hugetlb_page(vma)) { 1547 i = follow_hugetlb_page(mm, vma, pages, vmas, 1548 &start, &nr_pages, i, gup_flags); 1549 continue; 1550 } 1551 1552 do { 1553 struct page *page; 1554 unsigned int foll_flags = gup_flags; 1555 1556 /* 1557 * If we have a pending SIGKILL, don't keep faulting 1558 * pages and potentially allocating memory. 1559 */ 1560 if (unlikely(fatal_signal_pending(current))) 1561 return i ? i : -ERESTARTSYS; 1562 1563 cond_resched(); 1564 while (!(page = follow_page(vma, start, foll_flags))) { 1565 int ret; 1566 unsigned int fault_flags = 0; 1567 1568 if (foll_flags & FOLL_WRITE) 1569 fault_flags |= FAULT_FLAG_WRITE; 1570 if (nonblocking) 1571 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1572 if (foll_flags & FOLL_NOWAIT) 1573 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1574 1575 ret = handle_mm_fault(mm, vma, start, 1576 fault_flags); 1577 1578 if (ret & VM_FAULT_ERROR) { 1579 if (ret & VM_FAULT_OOM) 1580 return i ? i : -ENOMEM; 1581 if (ret & (VM_FAULT_HWPOISON | 1582 VM_FAULT_HWPOISON_LARGE)) { 1583 if (i) 1584 return i; 1585 else if (gup_flags & FOLL_HWPOISON) 1586 return -EHWPOISON; 1587 else 1588 return -EFAULT; 1589 } 1590 if (ret & VM_FAULT_SIGBUS) 1591 return i ? i : -EFAULT; 1592 BUG(); 1593 } 1594 if (ret & VM_FAULT_MAJOR) 1595 tsk->maj_flt++; 1596 else 1597 tsk->min_flt++; 1598 1599 if (ret & VM_FAULT_RETRY) { 1600 if (nonblocking) 1601 *nonblocking = 0; 1602 return i; 1603 } 1604 1605 /* 1606 * The VM_FAULT_WRITE bit tells us that 1607 * do_wp_page has broken COW when necessary, 1608 * even if maybe_mkwrite decided not to set 1609 * pte_write. We can thus safely do subsequent 1610 * page lookups as if they were reads. But only 1611 * do so when looping for pte_write is futile: 1612 * in some cases userspace may also be wanting 1613 * to write to the gotten user page, which a 1614 * read fault here might prevent (a readonly 1615 * page might get reCOWed by userspace write). 1616 */ 1617 if ((ret & VM_FAULT_WRITE) && 1618 !(vma->vm_flags & VM_WRITE)) 1619 foll_flags &= ~FOLL_WRITE; 1620 1621 cond_resched(); 1622 } 1623 if (IS_ERR(page)) 1624 return i ? i : PTR_ERR(page); 1625 if (pages) { 1626 pages[i] = page; 1627 1628 flush_anon_page(vma, page, start); 1629 flush_dcache_page(page); 1630 } 1631 if (vmas) 1632 vmas[i] = vma; 1633 i++; 1634 start += PAGE_SIZE; 1635 nr_pages--; 1636 } while (nr_pages && start < vma->vm_end); 1637 } while (nr_pages); 1638 return i; 1639 } 1640 EXPORT_SYMBOL(__get_user_pages); 1641 1642 /** 1643 * get_user_pages() - pin user pages in memory 1644 * @tsk: task_struct of target task 1645 * @mm: mm_struct of target mm 1646 * @start: starting user address 1647 * @nr_pages: number of pages from start to pin 1648 * @write: whether pages will be written to by the caller 1649 * @force: whether to force write access even if user mapping is 1650 * readonly. This will result in the page being COWed even 1651 * in MAP_SHARED mappings. You do not want this. 1652 * @pages: array that receives pointers to the pages pinned. 1653 * Should be at least nr_pages long. Or NULL, if caller 1654 * only intends to ensure the pages are faulted in. 1655 * @vmas: array of pointers to vmas corresponding to each page. 1656 * Or NULL if the caller does not require them. 1657 * 1658 * Returns number of pages pinned. This may be fewer than the number 1659 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1660 * were pinned, returns -errno. Each page returned must be released 1661 * with a put_page() call when it is finished with. vmas will only 1662 * remain valid while mmap_sem is held. 1663 * 1664 * Must be called with mmap_sem held for read or write. 1665 * 1666 * get_user_pages walks a process's page tables and takes a reference to 1667 * each struct page that each user address corresponds to at a given 1668 * instant. That is, it takes the page that would be accessed if a user 1669 * thread accesses the given user virtual address at that instant. 1670 * 1671 * This does not guarantee that the page exists in the user mappings when 1672 * get_user_pages returns, and there may even be a completely different 1673 * page there in some cases (eg. if mmapped pagecache has been invalidated 1674 * and subsequently re faulted). However it does guarantee that the page 1675 * won't be freed completely. And mostly callers simply care that the page 1676 * contains data that was valid *at some point in time*. Typically, an IO 1677 * or similar operation cannot guarantee anything stronger anyway because 1678 * locks can't be held over the syscall boundary. 1679 * 1680 * If write=0, the page must not be written to. If the page is written to, 1681 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1682 * after the page is finished with, and before put_page is called. 1683 * 1684 * get_user_pages is typically used for fewer-copy IO operations, to get a 1685 * handle on the memory by some means other than accesses via the user virtual 1686 * addresses. The pages may be submitted for DMA to devices or accessed via 1687 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1688 * use the correct cache flushing APIs. 1689 * 1690 * See also get_user_pages_fast, for performance critical applications. 1691 */ 1692 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1693 unsigned long start, int nr_pages, int write, int force, 1694 struct page **pages, struct vm_area_struct **vmas) 1695 { 1696 int flags = FOLL_TOUCH; 1697 1698 if (pages) 1699 flags |= FOLL_GET; 1700 if (write) 1701 flags |= FOLL_WRITE; 1702 if (force) 1703 flags |= FOLL_FORCE; 1704 1705 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 1706 NULL); 1707 } 1708 EXPORT_SYMBOL(get_user_pages); 1709 1710 /** 1711 * get_dump_page() - pin user page in memory while writing it to core dump 1712 * @addr: user address 1713 * 1714 * Returns struct page pointer of user page pinned for dump, 1715 * to be freed afterwards by page_cache_release() or put_page(). 1716 * 1717 * Returns NULL on any kind of failure - a hole must then be inserted into 1718 * the corefile, to preserve alignment with its headers; and also returns 1719 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 1720 * allowing a hole to be left in the corefile to save diskspace. 1721 * 1722 * Called without mmap_sem, but after all other threads have been killed. 1723 */ 1724 #ifdef CONFIG_ELF_CORE 1725 struct page *get_dump_page(unsigned long addr) 1726 { 1727 struct vm_area_struct *vma; 1728 struct page *page; 1729 1730 if (__get_user_pages(current, current->mm, addr, 1, 1731 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 1732 NULL) < 1) 1733 return NULL; 1734 flush_cache_page(vma, addr, page_to_pfn(page)); 1735 return page; 1736 } 1737 #endif /* CONFIG_ELF_CORE */ 1738 1739 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1740 spinlock_t **ptl) 1741 { 1742 pgd_t * pgd = pgd_offset(mm, addr); 1743 pud_t * pud = pud_alloc(mm, pgd, addr); 1744 if (pud) { 1745 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1746 if (pmd) { 1747 VM_BUG_ON(pmd_trans_huge(*pmd)); 1748 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1749 } 1750 } 1751 return NULL; 1752 } 1753 1754 /* 1755 * This is the old fallback for page remapping. 1756 * 1757 * For historical reasons, it only allows reserved pages. Only 1758 * old drivers should use this, and they needed to mark their 1759 * pages reserved for the old functions anyway. 1760 */ 1761 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1762 struct page *page, pgprot_t prot) 1763 { 1764 struct mm_struct *mm = vma->vm_mm; 1765 int retval; 1766 pte_t *pte; 1767 spinlock_t *ptl; 1768 1769 retval = -EINVAL; 1770 if (PageAnon(page)) 1771 goto out; 1772 retval = -ENOMEM; 1773 flush_dcache_page(page); 1774 pte = get_locked_pte(mm, addr, &ptl); 1775 if (!pte) 1776 goto out; 1777 retval = -EBUSY; 1778 if (!pte_none(*pte)) 1779 goto out_unlock; 1780 1781 /* Ok, finally just insert the thing.. */ 1782 get_page(page); 1783 inc_mm_counter_fast(mm, MM_FILEPAGES); 1784 page_add_file_rmap(page); 1785 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1786 1787 retval = 0; 1788 pte_unmap_unlock(pte, ptl); 1789 return retval; 1790 out_unlock: 1791 pte_unmap_unlock(pte, ptl); 1792 out: 1793 return retval; 1794 } 1795 1796 /** 1797 * vm_insert_page - insert single page into user vma 1798 * @vma: user vma to map to 1799 * @addr: target user address of this page 1800 * @page: source kernel page 1801 * 1802 * This allows drivers to insert individual pages they've allocated 1803 * into a user vma. 1804 * 1805 * The page has to be a nice clean _individual_ kernel allocation. 1806 * If you allocate a compound page, you need to have marked it as 1807 * such (__GFP_COMP), or manually just split the page up yourself 1808 * (see split_page()). 1809 * 1810 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1811 * took an arbitrary page protection parameter. This doesn't allow 1812 * that. Your vma protection will have to be set up correctly, which 1813 * means that if you want a shared writable mapping, you'd better 1814 * ask for a shared writable mapping! 1815 * 1816 * The page does not need to be reserved. 1817 */ 1818 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1819 struct page *page) 1820 { 1821 if (addr < vma->vm_start || addr >= vma->vm_end) 1822 return -EFAULT; 1823 if (!page_count(page)) 1824 return -EINVAL; 1825 vma->vm_flags |= VM_INSERTPAGE; 1826 return insert_page(vma, addr, page, vma->vm_page_prot); 1827 } 1828 EXPORT_SYMBOL(vm_insert_page); 1829 1830 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1831 unsigned long pfn, pgprot_t prot) 1832 { 1833 struct mm_struct *mm = vma->vm_mm; 1834 int retval; 1835 pte_t *pte, entry; 1836 spinlock_t *ptl; 1837 1838 retval = -ENOMEM; 1839 pte = get_locked_pte(mm, addr, &ptl); 1840 if (!pte) 1841 goto out; 1842 retval = -EBUSY; 1843 if (!pte_none(*pte)) 1844 goto out_unlock; 1845 1846 /* Ok, finally just insert the thing.. */ 1847 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1848 set_pte_at(mm, addr, pte, entry); 1849 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1850 1851 retval = 0; 1852 out_unlock: 1853 pte_unmap_unlock(pte, ptl); 1854 out: 1855 return retval; 1856 } 1857 1858 /** 1859 * vm_insert_pfn - insert single pfn into user vma 1860 * @vma: user vma to map to 1861 * @addr: target user address of this page 1862 * @pfn: source kernel pfn 1863 * 1864 * Similar to vm_inert_page, this allows drivers to insert individual pages 1865 * they've allocated into a user vma. Same comments apply. 1866 * 1867 * This function should only be called from a vm_ops->fault handler, and 1868 * in that case the handler should return NULL. 1869 * 1870 * vma cannot be a COW mapping. 1871 * 1872 * As this is called only for pages that do not currently exist, we 1873 * do not need to flush old virtual caches or the TLB. 1874 */ 1875 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1876 unsigned long pfn) 1877 { 1878 int ret; 1879 pgprot_t pgprot = vma->vm_page_prot; 1880 /* 1881 * Technically, architectures with pte_special can avoid all these 1882 * restrictions (same for remap_pfn_range). However we would like 1883 * consistency in testing and feature parity among all, so we should 1884 * try to keep these invariants in place for everybody. 1885 */ 1886 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1887 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1888 (VM_PFNMAP|VM_MIXEDMAP)); 1889 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1890 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1891 1892 if (addr < vma->vm_start || addr >= vma->vm_end) 1893 return -EFAULT; 1894 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1895 return -EINVAL; 1896 1897 ret = insert_pfn(vma, addr, pfn, pgprot); 1898 1899 if (ret) 1900 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1901 1902 return ret; 1903 } 1904 EXPORT_SYMBOL(vm_insert_pfn); 1905 1906 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1907 unsigned long pfn) 1908 { 1909 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1910 1911 if (addr < vma->vm_start || addr >= vma->vm_end) 1912 return -EFAULT; 1913 1914 /* 1915 * If we don't have pte special, then we have to use the pfn_valid() 1916 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1917 * refcount the page if pfn_valid is true (hence insert_page rather 1918 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1919 * without pte special, it would there be refcounted as a normal page. 1920 */ 1921 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1922 struct page *page; 1923 1924 page = pfn_to_page(pfn); 1925 return insert_page(vma, addr, page, vma->vm_page_prot); 1926 } 1927 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1928 } 1929 EXPORT_SYMBOL(vm_insert_mixed); 1930 1931 /* 1932 * maps a range of physical memory into the requested pages. the old 1933 * mappings are removed. any references to nonexistent pages results 1934 * in null mappings (currently treated as "copy-on-access") 1935 */ 1936 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1937 unsigned long addr, unsigned long end, 1938 unsigned long pfn, pgprot_t prot) 1939 { 1940 pte_t *pte; 1941 spinlock_t *ptl; 1942 1943 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1944 if (!pte) 1945 return -ENOMEM; 1946 arch_enter_lazy_mmu_mode(); 1947 do { 1948 BUG_ON(!pte_none(*pte)); 1949 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1950 pfn++; 1951 } while (pte++, addr += PAGE_SIZE, addr != end); 1952 arch_leave_lazy_mmu_mode(); 1953 pte_unmap_unlock(pte - 1, ptl); 1954 return 0; 1955 } 1956 1957 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1958 unsigned long addr, unsigned long end, 1959 unsigned long pfn, pgprot_t prot) 1960 { 1961 pmd_t *pmd; 1962 unsigned long next; 1963 1964 pfn -= addr >> PAGE_SHIFT; 1965 pmd = pmd_alloc(mm, pud, addr); 1966 if (!pmd) 1967 return -ENOMEM; 1968 VM_BUG_ON(pmd_trans_huge(*pmd)); 1969 do { 1970 next = pmd_addr_end(addr, end); 1971 if (remap_pte_range(mm, pmd, addr, next, 1972 pfn + (addr >> PAGE_SHIFT), prot)) 1973 return -ENOMEM; 1974 } while (pmd++, addr = next, addr != end); 1975 return 0; 1976 } 1977 1978 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1979 unsigned long addr, unsigned long end, 1980 unsigned long pfn, pgprot_t prot) 1981 { 1982 pud_t *pud; 1983 unsigned long next; 1984 1985 pfn -= addr >> PAGE_SHIFT; 1986 pud = pud_alloc(mm, pgd, addr); 1987 if (!pud) 1988 return -ENOMEM; 1989 do { 1990 next = pud_addr_end(addr, end); 1991 if (remap_pmd_range(mm, pud, addr, next, 1992 pfn + (addr >> PAGE_SHIFT), prot)) 1993 return -ENOMEM; 1994 } while (pud++, addr = next, addr != end); 1995 return 0; 1996 } 1997 1998 /** 1999 * remap_pfn_range - remap kernel memory to userspace 2000 * @vma: user vma to map to 2001 * @addr: target user address to start at 2002 * @pfn: physical address of kernel memory 2003 * @size: size of map area 2004 * @prot: page protection flags for this mapping 2005 * 2006 * Note: this is only safe if the mm semaphore is held when called. 2007 */ 2008 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2009 unsigned long pfn, unsigned long size, pgprot_t prot) 2010 { 2011 pgd_t *pgd; 2012 unsigned long next; 2013 unsigned long end = addr + PAGE_ALIGN(size); 2014 struct mm_struct *mm = vma->vm_mm; 2015 int err; 2016 2017 /* 2018 * Physically remapped pages are special. Tell the 2019 * rest of the world about it: 2020 * VM_IO tells people not to look at these pages 2021 * (accesses can have side effects). 2022 * VM_RESERVED is specified all over the place, because 2023 * in 2.4 it kept swapout's vma scan off this vma; but 2024 * in 2.6 the LRU scan won't even find its pages, so this 2025 * flag means no more than count its pages in reserved_vm, 2026 * and omit it from core dump, even when VM_IO turned off. 2027 * VM_PFNMAP tells the core MM that the base pages are just 2028 * raw PFN mappings, and do not have a "struct page" associated 2029 * with them. 2030 * 2031 * There's a horrible special case to handle copy-on-write 2032 * behaviour that some programs depend on. We mark the "original" 2033 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2034 */ 2035 if (addr == vma->vm_start && end == vma->vm_end) { 2036 vma->vm_pgoff = pfn; 2037 vma->vm_flags |= VM_PFN_AT_MMAP; 2038 } else if (is_cow_mapping(vma->vm_flags)) 2039 return -EINVAL; 2040 2041 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 2042 2043 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 2044 if (err) { 2045 /* 2046 * To indicate that track_pfn related cleanup is not 2047 * needed from higher level routine calling unmap_vmas 2048 */ 2049 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 2050 vma->vm_flags &= ~VM_PFN_AT_MMAP; 2051 return -EINVAL; 2052 } 2053 2054 BUG_ON(addr >= end); 2055 pfn -= addr >> PAGE_SHIFT; 2056 pgd = pgd_offset(mm, addr); 2057 flush_cache_range(vma, addr, end); 2058 do { 2059 next = pgd_addr_end(addr, end); 2060 err = remap_pud_range(mm, pgd, addr, next, 2061 pfn + (addr >> PAGE_SHIFT), prot); 2062 if (err) 2063 break; 2064 } while (pgd++, addr = next, addr != end); 2065 2066 if (err) 2067 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 2068 2069 return err; 2070 } 2071 EXPORT_SYMBOL(remap_pfn_range); 2072 2073 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2074 unsigned long addr, unsigned long end, 2075 pte_fn_t fn, void *data) 2076 { 2077 pte_t *pte; 2078 int err; 2079 pgtable_t token; 2080 spinlock_t *uninitialized_var(ptl); 2081 2082 pte = (mm == &init_mm) ? 2083 pte_alloc_kernel(pmd, addr) : 2084 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2085 if (!pte) 2086 return -ENOMEM; 2087 2088 BUG_ON(pmd_huge(*pmd)); 2089 2090 arch_enter_lazy_mmu_mode(); 2091 2092 token = pmd_pgtable(*pmd); 2093 2094 do { 2095 err = fn(pte++, token, addr, data); 2096 if (err) 2097 break; 2098 } while (addr += PAGE_SIZE, addr != end); 2099 2100 arch_leave_lazy_mmu_mode(); 2101 2102 if (mm != &init_mm) 2103 pte_unmap_unlock(pte-1, ptl); 2104 return err; 2105 } 2106 2107 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2108 unsigned long addr, unsigned long end, 2109 pte_fn_t fn, void *data) 2110 { 2111 pmd_t *pmd; 2112 unsigned long next; 2113 int err; 2114 2115 BUG_ON(pud_huge(*pud)); 2116 2117 pmd = pmd_alloc(mm, pud, addr); 2118 if (!pmd) 2119 return -ENOMEM; 2120 do { 2121 next = pmd_addr_end(addr, end); 2122 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2123 if (err) 2124 break; 2125 } while (pmd++, addr = next, addr != end); 2126 return err; 2127 } 2128 2129 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2130 unsigned long addr, unsigned long end, 2131 pte_fn_t fn, void *data) 2132 { 2133 pud_t *pud; 2134 unsigned long next; 2135 int err; 2136 2137 pud = pud_alloc(mm, pgd, addr); 2138 if (!pud) 2139 return -ENOMEM; 2140 do { 2141 next = pud_addr_end(addr, end); 2142 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2143 if (err) 2144 break; 2145 } while (pud++, addr = next, addr != end); 2146 return err; 2147 } 2148 2149 /* 2150 * Scan a region of virtual memory, filling in page tables as necessary 2151 * and calling a provided function on each leaf page table. 2152 */ 2153 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2154 unsigned long size, pte_fn_t fn, void *data) 2155 { 2156 pgd_t *pgd; 2157 unsigned long next; 2158 unsigned long end = addr + size; 2159 int err; 2160 2161 BUG_ON(addr >= end); 2162 pgd = pgd_offset(mm, addr); 2163 do { 2164 next = pgd_addr_end(addr, end); 2165 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2166 if (err) 2167 break; 2168 } while (pgd++, addr = next, addr != end); 2169 2170 return err; 2171 } 2172 EXPORT_SYMBOL_GPL(apply_to_page_range); 2173 2174 /* 2175 * handle_pte_fault chooses page fault handler according to an entry 2176 * which was read non-atomically. Before making any commitment, on 2177 * those architectures or configurations (e.g. i386 with PAE) which 2178 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2179 * must check under lock before unmapping the pte and proceeding 2180 * (but do_wp_page is only called after already making such a check; 2181 * and do_anonymous_page can safely check later on). 2182 */ 2183 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2184 pte_t *page_table, pte_t orig_pte) 2185 { 2186 int same = 1; 2187 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2188 if (sizeof(pte_t) > sizeof(unsigned long)) { 2189 spinlock_t *ptl = pte_lockptr(mm, pmd); 2190 spin_lock(ptl); 2191 same = pte_same(*page_table, orig_pte); 2192 spin_unlock(ptl); 2193 } 2194 #endif 2195 pte_unmap(page_table); 2196 return same; 2197 } 2198 2199 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2200 { 2201 /* 2202 * If the source page was a PFN mapping, we don't have 2203 * a "struct page" for it. We do a best-effort copy by 2204 * just copying from the original user address. If that 2205 * fails, we just zero-fill it. Live with it. 2206 */ 2207 if (unlikely(!src)) { 2208 void *kaddr = kmap_atomic(dst, KM_USER0); 2209 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2210 2211 /* 2212 * This really shouldn't fail, because the page is there 2213 * in the page tables. But it might just be unreadable, 2214 * in which case we just give up and fill the result with 2215 * zeroes. 2216 */ 2217 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2218 clear_page(kaddr); 2219 kunmap_atomic(kaddr, KM_USER0); 2220 flush_dcache_page(dst); 2221 } else 2222 copy_user_highpage(dst, src, va, vma); 2223 } 2224 2225 /* 2226 * This routine handles present pages, when users try to write 2227 * to a shared page. It is done by copying the page to a new address 2228 * and decrementing the shared-page counter for the old page. 2229 * 2230 * Note that this routine assumes that the protection checks have been 2231 * done by the caller (the low-level page fault routine in most cases). 2232 * Thus we can safely just mark it writable once we've done any necessary 2233 * COW. 2234 * 2235 * We also mark the page dirty at this point even though the page will 2236 * change only once the write actually happens. This avoids a few races, 2237 * and potentially makes it more efficient. 2238 * 2239 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2240 * but allow concurrent faults), with pte both mapped and locked. 2241 * We return with mmap_sem still held, but pte unmapped and unlocked. 2242 */ 2243 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2244 unsigned long address, pte_t *page_table, pmd_t *pmd, 2245 spinlock_t *ptl, pte_t orig_pte) 2246 __releases(ptl) 2247 { 2248 struct page *old_page, *new_page; 2249 pte_t entry; 2250 int ret = 0; 2251 int page_mkwrite = 0; 2252 struct page *dirty_page = NULL; 2253 2254 old_page = vm_normal_page(vma, address, orig_pte); 2255 if (!old_page) { 2256 /* 2257 * VM_MIXEDMAP !pfn_valid() case 2258 * 2259 * We should not cow pages in a shared writeable mapping. 2260 * Just mark the pages writable as we can't do any dirty 2261 * accounting on raw pfn maps. 2262 */ 2263 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2264 (VM_WRITE|VM_SHARED)) 2265 goto reuse; 2266 goto gotten; 2267 } 2268 2269 /* 2270 * Take out anonymous pages first, anonymous shared vmas are 2271 * not dirty accountable. 2272 */ 2273 if (PageAnon(old_page) && !PageKsm(old_page)) { 2274 if (!trylock_page(old_page)) { 2275 page_cache_get(old_page); 2276 pte_unmap_unlock(page_table, ptl); 2277 lock_page(old_page); 2278 page_table = pte_offset_map_lock(mm, pmd, address, 2279 &ptl); 2280 if (!pte_same(*page_table, orig_pte)) { 2281 unlock_page(old_page); 2282 goto unlock; 2283 } 2284 page_cache_release(old_page); 2285 } 2286 if (reuse_swap_page(old_page)) { 2287 /* 2288 * The page is all ours. Move it to our anon_vma so 2289 * the rmap code will not search our parent or siblings. 2290 * Protected against the rmap code by the page lock. 2291 */ 2292 page_move_anon_rmap(old_page, vma, address); 2293 unlock_page(old_page); 2294 goto reuse; 2295 } 2296 unlock_page(old_page); 2297 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2298 (VM_WRITE|VM_SHARED))) { 2299 /* 2300 * Only catch write-faults on shared writable pages, 2301 * read-only shared pages can get COWed by 2302 * get_user_pages(.write=1, .force=1). 2303 */ 2304 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2305 struct vm_fault vmf; 2306 int tmp; 2307 2308 vmf.virtual_address = (void __user *)(address & 2309 PAGE_MASK); 2310 vmf.pgoff = old_page->index; 2311 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2312 vmf.page = old_page; 2313 2314 /* 2315 * Notify the address space that the page is about to 2316 * become writable so that it can prohibit this or wait 2317 * for the page to get into an appropriate state. 2318 * 2319 * We do this without the lock held, so that it can 2320 * sleep if it needs to. 2321 */ 2322 page_cache_get(old_page); 2323 pte_unmap_unlock(page_table, ptl); 2324 2325 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2326 if (unlikely(tmp & 2327 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2328 ret = tmp; 2329 goto unwritable_page; 2330 } 2331 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2332 lock_page(old_page); 2333 if (!old_page->mapping) { 2334 ret = 0; /* retry the fault */ 2335 unlock_page(old_page); 2336 goto unwritable_page; 2337 } 2338 } else 2339 VM_BUG_ON(!PageLocked(old_page)); 2340 2341 /* 2342 * Since we dropped the lock we need to revalidate 2343 * the PTE as someone else may have changed it. If 2344 * they did, we just return, as we can count on the 2345 * MMU to tell us if they didn't also make it writable. 2346 */ 2347 page_table = pte_offset_map_lock(mm, pmd, address, 2348 &ptl); 2349 if (!pte_same(*page_table, orig_pte)) { 2350 unlock_page(old_page); 2351 goto unlock; 2352 } 2353 2354 page_mkwrite = 1; 2355 } 2356 dirty_page = old_page; 2357 get_page(dirty_page); 2358 2359 reuse: 2360 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2361 entry = pte_mkyoung(orig_pte); 2362 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2363 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2364 update_mmu_cache(vma, address, page_table); 2365 pte_unmap_unlock(page_table, ptl); 2366 ret |= VM_FAULT_WRITE; 2367 2368 if (!dirty_page) 2369 return ret; 2370 2371 /* 2372 * Yes, Virginia, this is actually required to prevent a race 2373 * with clear_page_dirty_for_io() from clearing the page dirty 2374 * bit after it clear all dirty ptes, but before a racing 2375 * do_wp_page installs a dirty pte. 2376 * 2377 * __do_fault is protected similarly. 2378 */ 2379 if (!page_mkwrite) { 2380 wait_on_page_locked(dirty_page); 2381 set_page_dirty_balance(dirty_page, page_mkwrite); 2382 } 2383 put_page(dirty_page); 2384 if (page_mkwrite) { 2385 struct address_space *mapping = dirty_page->mapping; 2386 2387 set_page_dirty(dirty_page); 2388 unlock_page(dirty_page); 2389 page_cache_release(dirty_page); 2390 if (mapping) { 2391 /* 2392 * Some device drivers do not set page.mapping 2393 * but still dirty their pages 2394 */ 2395 balance_dirty_pages_ratelimited(mapping); 2396 } 2397 } 2398 2399 /* file_update_time outside page_lock */ 2400 if (vma->vm_file) 2401 file_update_time(vma->vm_file); 2402 2403 return ret; 2404 } 2405 2406 /* 2407 * Ok, we need to copy. Oh, well.. 2408 */ 2409 page_cache_get(old_page); 2410 gotten: 2411 pte_unmap_unlock(page_table, ptl); 2412 2413 if (unlikely(anon_vma_prepare(vma))) 2414 goto oom; 2415 2416 if (is_zero_pfn(pte_pfn(orig_pte))) { 2417 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2418 if (!new_page) 2419 goto oom; 2420 } else { 2421 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2422 if (!new_page) 2423 goto oom; 2424 cow_user_page(new_page, old_page, address, vma); 2425 } 2426 __SetPageUptodate(new_page); 2427 2428 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2429 goto oom_free_new; 2430 2431 /* 2432 * Re-check the pte - we dropped the lock 2433 */ 2434 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2435 if (likely(pte_same(*page_table, orig_pte))) { 2436 if (old_page) { 2437 if (!PageAnon(old_page)) { 2438 dec_mm_counter_fast(mm, MM_FILEPAGES); 2439 inc_mm_counter_fast(mm, MM_ANONPAGES); 2440 } 2441 } else 2442 inc_mm_counter_fast(mm, MM_ANONPAGES); 2443 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2444 entry = mk_pte(new_page, vma->vm_page_prot); 2445 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2446 /* 2447 * Clear the pte entry and flush it first, before updating the 2448 * pte with the new entry. This will avoid a race condition 2449 * seen in the presence of one thread doing SMC and another 2450 * thread doing COW. 2451 */ 2452 ptep_clear_flush(vma, address, page_table); 2453 page_add_new_anon_rmap(new_page, vma, address); 2454 /* 2455 * We call the notify macro here because, when using secondary 2456 * mmu page tables (such as kvm shadow page tables), we want the 2457 * new page to be mapped directly into the secondary page table. 2458 */ 2459 set_pte_at_notify(mm, address, page_table, entry); 2460 update_mmu_cache(vma, address, page_table); 2461 if (old_page) { 2462 /* 2463 * Only after switching the pte to the new page may 2464 * we remove the mapcount here. Otherwise another 2465 * process may come and find the rmap count decremented 2466 * before the pte is switched to the new page, and 2467 * "reuse" the old page writing into it while our pte 2468 * here still points into it and can be read by other 2469 * threads. 2470 * 2471 * The critical issue is to order this 2472 * page_remove_rmap with the ptp_clear_flush above. 2473 * Those stores are ordered by (if nothing else,) 2474 * the barrier present in the atomic_add_negative 2475 * in page_remove_rmap. 2476 * 2477 * Then the TLB flush in ptep_clear_flush ensures that 2478 * no process can access the old page before the 2479 * decremented mapcount is visible. And the old page 2480 * cannot be reused until after the decremented 2481 * mapcount is visible. So transitively, TLBs to 2482 * old page will be flushed before it can be reused. 2483 */ 2484 page_remove_rmap(old_page); 2485 } 2486 2487 /* Free the old page.. */ 2488 new_page = old_page; 2489 ret |= VM_FAULT_WRITE; 2490 } else 2491 mem_cgroup_uncharge_page(new_page); 2492 2493 if (new_page) 2494 page_cache_release(new_page); 2495 unlock: 2496 pte_unmap_unlock(page_table, ptl); 2497 if (old_page) { 2498 /* 2499 * Don't let another task, with possibly unlocked vma, 2500 * keep the mlocked page. 2501 */ 2502 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2503 lock_page(old_page); /* LRU manipulation */ 2504 munlock_vma_page(old_page); 2505 unlock_page(old_page); 2506 } 2507 page_cache_release(old_page); 2508 } 2509 return ret; 2510 oom_free_new: 2511 page_cache_release(new_page); 2512 oom: 2513 if (old_page) { 2514 if (page_mkwrite) { 2515 unlock_page(old_page); 2516 page_cache_release(old_page); 2517 } 2518 page_cache_release(old_page); 2519 } 2520 return VM_FAULT_OOM; 2521 2522 unwritable_page: 2523 page_cache_release(old_page); 2524 return ret; 2525 } 2526 2527 /* 2528 * Helper functions for unmap_mapping_range(). 2529 * 2530 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2531 * 2532 * We have to restart searching the prio_tree whenever we drop the lock, 2533 * since the iterator is only valid while the lock is held, and anyway 2534 * a later vma might be split and reinserted earlier while lock dropped. 2535 * 2536 * The list of nonlinear vmas could be handled more efficiently, using 2537 * a placeholder, but handle it in the same way until a need is shown. 2538 * It is important to search the prio_tree before nonlinear list: a vma 2539 * may become nonlinear and be shifted from prio_tree to nonlinear list 2540 * while the lock is dropped; but never shifted from list to prio_tree. 2541 * 2542 * In order to make forward progress despite restarting the search, 2543 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2544 * quickly skip it next time around. Since the prio_tree search only 2545 * shows us those vmas affected by unmapping the range in question, we 2546 * can't efficiently keep all vmas in step with mapping->truncate_count: 2547 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2548 * mapping->truncate_count and vma->vm_truncate_count are protected by 2549 * i_mmap_lock. 2550 * 2551 * In order to make forward progress despite repeatedly restarting some 2552 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2553 * and restart from that address when we reach that vma again. It might 2554 * have been split or merged, shrunk or extended, but never shifted: so 2555 * restart_addr remains valid so long as it remains in the vma's range. 2556 * unmap_mapping_range forces truncate_count to leap over page-aligned 2557 * values so we can save vma's restart_addr in its truncate_count field. 2558 */ 2559 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2560 2561 static void reset_vma_truncate_counts(struct address_space *mapping) 2562 { 2563 struct vm_area_struct *vma; 2564 struct prio_tree_iter iter; 2565 2566 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2567 vma->vm_truncate_count = 0; 2568 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2569 vma->vm_truncate_count = 0; 2570 } 2571 2572 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2573 unsigned long start_addr, unsigned long end_addr, 2574 struct zap_details *details) 2575 { 2576 unsigned long restart_addr; 2577 int need_break; 2578 2579 /* 2580 * files that support invalidating or truncating portions of the 2581 * file from under mmaped areas must have their ->fault function 2582 * return a locked page (and set VM_FAULT_LOCKED in the return). 2583 * This provides synchronisation against concurrent unmapping here. 2584 */ 2585 2586 again: 2587 restart_addr = vma->vm_truncate_count; 2588 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2589 start_addr = restart_addr; 2590 if (start_addr >= end_addr) { 2591 /* Top of vma has been split off since last time */ 2592 vma->vm_truncate_count = details->truncate_count; 2593 return 0; 2594 } 2595 } 2596 2597 restart_addr = zap_page_range(vma, start_addr, 2598 end_addr - start_addr, details); 2599 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2600 2601 if (restart_addr >= end_addr) { 2602 /* We have now completed this vma: mark it so */ 2603 vma->vm_truncate_count = details->truncate_count; 2604 if (!need_break) 2605 return 0; 2606 } else { 2607 /* Note restart_addr in vma's truncate_count field */ 2608 vma->vm_truncate_count = restart_addr; 2609 if (!need_break) 2610 goto again; 2611 } 2612 2613 spin_unlock(details->i_mmap_lock); 2614 cond_resched(); 2615 spin_lock(details->i_mmap_lock); 2616 return -EINTR; 2617 } 2618 2619 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2620 struct zap_details *details) 2621 { 2622 struct vm_area_struct *vma; 2623 struct prio_tree_iter iter; 2624 pgoff_t vba, vea, zba, zea; 2625 2626 restart: 2627 vma_prio_tree_foreach(vma, &iter, root, 2628 details->first_index, details->last_index) { 2629 /* Skip quickly over those we have already dealt with */ 2630 if (vma->vm_truncate_count == details->truncate_count) 2631 continue; 2632 2633 vba = vma->vm_pgoff; 2634 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2635 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2636 zba = details->first_index; 2637 if (zba < vba) 2638 zba = vba; 2639 zea = details->last_index; 2640 if (zea > vea) 2641 zea = vea; 2642 2643 if (unmap_mapping_range_vma(vma, 2644 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2645 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2646 details) < 0) 2647 goto restart; 2648 } 2649 } 2650 2651 static inline void unmap_mapping_range_list(struct list_head *head, 2652 struct zap_details *details) 2653 { 2654 struct vm_area_struct *vma; 2655 2656 /* 2657 * In nonlinear VMAs there is no correspondence between virtual address 2658 * offset and file offset. So we must perform an exhaustive search 2659 * across *all* the pages in each nonlinear VMA, not just the pages 2660 * whose virtual address lies outside the file truncation point. 2661 */ 2662 restart: 2663 list_for_each_entry(vma, head, shared.vm_set.list) { 2664 /* Skip quickly over those we have already dealt with */ 2665 if (vma->vm_truncate_count == details->truncate_count) 2666 continue; 2667 details->nonlinear_vma = vma; 2668 if (unmap_mapping_range_vma(vma, vma->vm_start, 2669 vma->vm_end, details) < 0) 2670 goto restart; 2671 } 2672 } 2673 2674 /** 2675 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2676 * @mapping: the address space containing mmaps to be unmapped. 2677 * @holebegin: byte in first page to unmap, relative to the start of 2678 * the underlying file. This will be rounded down to a PAGE_SIZE 2679 * boundary. Note that this is different from truncate_pagecache(), which 2680 * must keep the partial page. In contrast, we must get rid of 2681 * partial pages. 2682 * @holelen: size of prospective hole in bytes. This will be rounded 2683 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2684 * end of the file. 2685 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2686 * but 0 when invalidating pagecache, don't throw away private data. 2687 */ 2688 void unmap_mapping_range(struct address_space *mapping, 2689 loff_t const holebegin, loff_t const holelen, int even_cows) 2690 { 2691 struct zap_details details; 2692 pgoff_t hba = holebegin >> PAGE_SHIFT; 2693 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2694 2695 /* Check for overflow. */ 2696 if (sizeof(holelen) > sizeof(hlen)) { 2697 long long holeend = 2698 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2699 if (holeend & ~(long long)ULONG_MAX) 2700 hlen = ULONG_MAX - hba + 1; 2701 } 2702 2703 details.check_mapping = even_cows? NULL: mapping; 2704 details.nonlinear_vma = NULL; 2705 details.first_index = hba; 2706 details.last_index = hba + hlen - 1; 2707 if (details.last_index < details.first_index) 2708 details.last_index = ULONG_MAX; 2709 details.i_mmap_lock = &mapping->i_mmap_lock; 2710 2711 mutex_lock(&mapping->unmap_mutex); 2712 spin_lock(&mapping->i_mmap_lock); 2713 2714 /* Protect against endless unmapping loops */ 2715 mapping->truncate_count++; 2716 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2717 if (mapping->truncate_count == 0) 2718 reset_vma_truncate_counts(mapping); 2719 mapping->truncate_count++; 2720 } 2721 details.truncate_count = mapping->truncate_count; 2722 2723 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2724 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2725 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2726 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2727 spin_unlock(&mapping->i_mmap_lock); 2728 mutex_unlock(&mapping->unmap_mutex); 2729 } 2730 EXPORT_SYMBOL(unmap_mapping_range); 2731 2732 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2733 { 2734 struct address_space *mapping = inode->i_mapping; 2735 2736 /* 2737 * If the underlying filesystem is not going to provide 2738 * a way to truncate a range of blocks (punch a hole) - 2739 * we should return failure right now. 2740 */ 2741 if (!inode->i_op->truncate_range) 2742 return -ENOSYS; 2743 2744 mutex_lock(&inode->i_mutex); 2745 down_write(&inode->i_alloc_sem); 2746 unmap_mapping_range(mapping, offset, (end - offset), 1); 2747 truncate_inode_pages_range(mapping, offset, end); 2748 unmap_mapping_range(mapping, offset, (end - offset), 1); 2749 inode->i_op->truncate_range(inode, offset, end); 2750 up_write(&inode->i_alloc_sem); 2751 mutex_unlock(&inode->i_mutex); 2752 2753 return 0; 2754 } 2755 2756 /* 2757 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2758 * but allow concurrent faults), and pte mapped but not yet locked. 2759 * We return with mmap_sem still held, but pte unmapped and unlocked. 2760 */ 2761 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2762 unsigned long address, pte_t *page_table, pmd_t *pmd, 2763 unsigned int flags, pte_t orig_pte) 2764 { 2765 spinlock_t *ptl; 2766 struct page *page, *swapcache = NULL; 2767 swp_entry_t entry; 2768 pte_t pte; 2769 int locked; 2770 struct mem_cgroup *ptr = NULL; 2771 int exclusive = 0; 2772 int ret = 0; 2773 2774 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2775 goto out; 2776 2777 entry = pte_to_swp_entry(orig_pte); 2778 if (unlikely(non_swap_entry(entry))) { 2779 if (is_migration_entry(entry)) { 2780 migration_entry_wait(mm, pmd, address); 2781 } else if (is_hwpoison_entry(entry)) { 2782 ret = VM_FAULT_HWPOISON; 2783 } else { 2784 print_bad_pte(vma, address, orig_pte, NULL); 2785 ret = VM_FAULT_SIGBUS; 2786 } 2787 goto out; 2788 } 2789 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2790 page = lookup_swap_cache(entry); 2791 if (!page) { 2792 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2793 page = swapin_readahead(entry, 2794 GFP_HIGHUSER_MOVABLE, vma, address); 2795 if (!page) { 2796 /* 2797 * Back out if somebody else faulted in this pte 2798 * while we released the pte lock. 2799 */ 2800 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2801 if (likely(pte_same(*page_table, orig_pte))) 2802 ret = VM_FAULT_OOM; 2803 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2804 goto unlock; 2805 } 2806 2807 /* Had to read the page from swap area: Major fault */ 2808 ret = VM_FAULT_MAJOR; 2809 count_vm_event(PGMAJFAULT); 2810 } else if (PageHWPoison(page)) { 2811 /* 2812 * hwpoisoned dirty swapcache pages are kept for killing 2813 * owner processes (which may be unknown at hwpoison time) 2814 */ 2815 ret = VM_FAULT_HWPOISON; 2816 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2817 goto out_release; 2818 } 2819 2820 locked = lock_page_or_retry(page, mm, flags); 2821 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2822 if (!locked) { 2823 ret |= VM_FAULT_RETRY; 2824 goto out_release; 2825 } 2826 2827 /* 2828 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2829 * release the swapcache from under us. The page pin, and pte_same 2830 * test below, are not enough to exclude that. Even if it is still 2831 * swapcache, we need to check that the page's swap has not changed. 2832 */ 2833 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2834 goto out_page; 2835 2836 if (ksm_might_need_to_copy(page, vma, address)) { 2837 swapcache = page; 2838 page = ksm_does_need_to_copy(page, vma, address); 2839 2840 if (unlikely(!page)) { 2841 ret = VM_FAULT_OOM; 2842 page = swapcache; 2843 swapcache = NULL; 2844 goto out_page; 2845 } 2846 } 2847 2848 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2849 ret = VM_FAULT_OOM; 2850 goto out_page; 2851 } 2852 2853 /* 2854 * Back out if somebody else already faulted in this pte. 2855 */ 2856 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2857 if (unlikely(!pte_same(*page_table, orig_pte))) 2858 goto out_nomap; 2859 2860 if (unlikely(!PageUptodate(page))) { 2861 ret = VM_FAULT_SIGBUS; 2862 goto out_nomap; 2863 } 2864 2865 /* 2866 * The page isn't present yet, go ahead with the fault. 2867 * 2868 * Be careful about the sequence of operations here. 2869 * To get its accounting right, reuse_swap_page() must be called 2870 * while the page is counted on swap but not yet in mapcount i.e. 2871 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2872 * must be called after the swap_free(), or it will never succeed. 2873 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2874 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2875 * in page->private. In this case, a record in swap_cgroup is silently 2876 * discarded at swap_free(). 2877 */ 2878 2879 inc_mm_counter_fast(mm, MM_ANONPAGES); 2880 dec_mm_counter_fast(mm, MM_SWAPENTS); 2881 pte = mk_pte(page, vma->vm_page_prot); 2882 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2883 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2884 flags &= ~FAULT_FLAG_WRITE; 2885 ret |= VM_FAULT_WRITE; 2886 exclusive = 1; 2887 } 2888 flush_icache_page(vma, page); 2889 set_pte_at(mm, address, page_table, pte); 2890 do_page_add_anon_rmap(page, vma, address, exclusive); 2891 /* It's better to call commit-charge after rmap is established */ 2892 mem_cgroup_commit_charge_swapin(page, ptr); 2893 2894 swap_free(entry); 2895 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2896 try_to_free_swap(page); 2897 unlock_page(page); 2898 if (swapcache) { 2899 /* 2900 * Hold the lock to avoid the swap entry to be reused 2901 * until we take the PT lock for the pte_same() check 2902 * (to avoid false positives from pte_same). For 2903 * further safety release the lock after the swap_free 2904 * so that the swap count won't change under a 2905 * parallel locked swapcache. 2906 */ 2907 unlock_page(swapcache); 2908 page_cache_release(swapcache); 2909 } 2910 2911 if (flags & FAULT_FLAG_WRITE) { 2912 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2913 if (ret & VM_FAULT_ERROR) 2914 ret &= VM_FAULT_ERROR; 2915 goto out; 2916 } 2917 2918 /* No need to invalidate - it was non-present before */ 2919 update_mmu_cache(vma, address, page_table); 2920 unlock: 2921 pte_unmap_unlock(page_table, ptl); 2922 out: 2923 return ret; 2924 out_nomap: 2925 mem_cgroup_cancel_charge_swapin(ptr); 2926 pte_unmap_unlock(page_table, ptl); 2927 out_page: 2928 unlock_page(page); 2929 out_release: 2930 page_cache_release(page); 2931 if (swapcache) { 2932 unlock_page(swapcache); 2933 page_cache_release(swapcache); 2934 } 2935 return ret; 2936 } 2937 2938 /* 2939 * This is like a special single-page "expand_{down|up}wards()", 2940 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2941 * doesn't hit another vma. 2942 */ 2943 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2944 { 2945 address &= PAGE_MASK; 2946 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2947 struct vm_area_struct *prev = vma->vm_prev; 2948 2949 /* 2950 * Is there a mapping abutting this one below? 2951 * 2952 * That's only ok if it's the same stack mapping 2953 * that has gotten split.. 2954 */ 2955 if (prev && prev->vm_end == address) 2956 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2957 2958 expand_stack(vma, address - PAGE_SIZE); 2959 } 2960 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2961 struct vm_area_struct *next = vma->vm_next; 2962 2963 /* As VM_GROWSDOWN but s/below/above/ */ 2964 if (next && next->vm_start == address + PAGE_SIZE) 2965 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2966 2967 expand_upwards(vma, address + PAGE_SIZE); 2968 } 2969 return 0; 2970 } 2971 2972 /* 2973 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2974 * but allow concurrent faults), and pte mapped but not yet locked. 2975 * We return with mmap_sem still held, but pte unmapped and unlocked. 2976 */ 2977 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2978 unsigned long address, pte_t *page_table, pmd_t *pmd, 2979 unsigned int flags) 2980 { 2981 struct page *page; 2982 spinlock_t *ptl; 2983 pte_t entry; 2984 2985 pte_unmap(page_table); 2986 2987 /* Check if we need to add a guard page to the stack */ 2988 if (check_stack_guard_page(vma, address) < 0) 2989 return VM_FAULT_SIGBUS; 2990 2991 /* Use the zero-page for reads */ 2992 if (!(flags & FAULT_FLAG_WRITE)) { 2993 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2994 vma->vm_page_prot)); 2995 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2996 if (!pte_none(*page_table)) 2997 goto unlock; 2998 goto setpte; 2999 } 3000 3001 /* Allocate our own private page. */ 3002 if (unlikely(anon_vma_prepare(vma))) 3003 goto oom; 3004 page = alloc_zeroed_user_highpage_movable(vma, address); 3005 if (!page) 3006 goto oom; 3007 __SetPageUptodate(page); 3008 3009 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3010 goto oom_free_page; 3011 3012 entry = mk_pte(page, vma->vm_page_prot); 3013 if (vma->vm_flags & VM_WRITE) 3014 entry = pte_mkwrite(pte_mkdirty(entry)); 3015 3016 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3017 if (!pte_none(*page_table)) 3018 goto release; 3019 3020 inc_mm_counter_fast(mm, MM_ANONPAGES); 3021 page_add_new_anon_rmap(page, vma, address); 3022 setpte: 3023 set_pte_at(mm, address, page_table, entry); 3024 3025 /* No need to invalidate - it was non-present before */ 3026 update_mmu_cache(vma, address, page_table); 3027 unlock: 3028 pte_unmap_unlock(page_table, ptl); 3029 return 0; 3030 release: 3031 mem_cgroup_uncharge_page(page); 3032 page_cache_release(page); 3033 goto unlock; 3034 oom_free_page: 3035 page_cache_release(page); 3036 oom: 3037 return VM_FAULT_OOM; 3038 } 3039 3040 /* 3041 * __do_fault() tries to create a new page mapping. It aggressively 3042 * tries to share with existing pages, but makes a separate copy if 3043 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3044 * the next page fault. 3045 * 3046 * As this is called only for pages that do not currently exist, we 3047 * do not need to flush old virtual caches or the TLB. 3048 * 3049 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3050 * but allow concurrent faults), and pte neither mapped nor locked. 3051 * We return with mmap_sem still held, but pte unmapped and unlocked. 3052 */ 3053 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3054 unsigned long address, pmd_t *pmd, 3055 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3056 { 3057 pte_t *page_table; 3058 spinlock_t *ptl; 3059 struct page *page; 3060 pte_t entry; 3061 int anon = 0; 3062 int charged = 0; 3063 struct page *dirty_page = NULL; 3064 struct vm_fault vmf; 3065 int ret; 3066 int page_mkwrite = 0; 3067 3068 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3069 vmf.pgoff = pgoff; 3070 vmf.flags = flags; 3071 vmf.page = NULL; 3072 3073 ret = vma->vm_ops->fault(vma, &vmf); 3074 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3075 VM_FAULT_RETRY))) 3076 return ret; 3077 3078 if (unlikely(PageHWPoison(vmf.page))) { 3079 if (ret & VM_FAULT_LOCKED) 3080 unlock_page(vmf.page); 3081 return VM_FAULT_HWPOISON; 3082 } 3083 3084 /* 3085 * For consistency in subsequent calls, make the faulted page always 3086 * locked. 3087 */ 3088 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3089 lock_page(vmf.page); 3090 else 3091 VM_BUG_ON(!PageLocked(vmf.page)); 3092 3093 /* 3094 * Should we do an early C-O-W break? 3095 */ 3096 page = vmf.page; 3097 if (flags & FAULT_FLAG_WRITE) { 3098 if (!(vma->vm_flags & VM_SHARED)) { 3099 anon = 1; 3100 if (unlikely(anon_vma_prepare(vma))) { 3101 ret = VM_FAULT_OOM; 3102 goto out; 3103 } 3104 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 3105 vma, address); 3106 if (!page) { 3107 ret = VM_FAULT_OOM; 3108 goto out; 3109 } 3110 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 3111 ret = VM_FAULT_OOM; 3112 page_cache_release(page); 3113 goto out; 3114 } 3115 charged = 1; 3116 copy_user_highpage(page, vmf.page, address, vma); 3117 __SetPageUptodate(page); 3118 } else { 3119 /* 3120 * If the page will be shareable, see if the backing 3121 * address space wants to know that the page is about 3122 * to become writable 3123 */ 3124 if (vma->vm_ops->page_mkwrite) { 3125 int tmp; 3126 3127 unlock_page(page); 3128 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3129 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3130 if (unlikely(tmp & 3131 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3132 ret = tmp; 3133 goto unwritable_page; 3134 } 3135 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3136 lock_page(page); 3137 if (!page->mapping) { 3138 ret = 0; /* retry the fault */ 3139 unlock_page(page); 3140 goto unwritable_page; 3141 } 3142 } else 3143 VM_BUG_ON(!PageLocked(page)); 3144 page_mkwrite = 1; 3145 } 3146 } 3147 3148 } 3149 3150 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3151 3152 /* 3153 * This silly early PAGE_DIRTY setting removes a race 3154 * due to the bad i386 page protection. But it's valid 3155 * for other architectures too. 3156 * 3157 * Note that if FAULT_FLAG_WRITE is set, we either now have 3158 * an exclusive copy of the page, or this is a shared mapping, 3159 * so we can make it writable and dirty to avoid having to 3160 * handle that later. 3161 */ 3162 /* Only go through if we didn't race with anybody else... */ 3163 if (likely(pte_same(*page_table, orig_pte))) { 3164 flush_icache_page(vma, page); 3165 entry = mk_pte(page, vma->vm_page_prot); 3166 if (flags & FAULT_FLAG_WRITE) 3167 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3168 if (anon) { 3169 inc_mm_counter_fast(mm, MM_ANONPAGES); 3170 page_add_new_anon_rmap(page, vma, address); 3171 } else { 3172 inc_mm_counter_fast(mm, MM_FILEPAGES); 3173 page_add_file_rmap(page); 3174 if (flags & FAULT_FLAG_WRITE) { 3175 dirty_page = page; 3176 get_page(dirty_page); 3177 } 3178 } 3179 set_pte_at(mm, address, page_table, entry); 3180 3181 /* no need to invalidate: a not-present page won't be cached */ 3182 update_mmu_cache(vma, address, page_table); 3183 } else { 3184 if (charged) 3185 mem_cgroup_uncharge_page(page); 3186 if (anon) 3187 page_cache_release(page); 3188 else 3189 anon = 1; /* no anon but release faulted_page */ 3190 } 3191 3192 pte_unmap_unlock(page_table, ptl); 3193 3194 out: 3195 if (dirty_page) { 3196 struct address_space *mapping = page->mapping; 3197 3198 if (set_page_dirty(dirty_page)) 3199 page_mkwrite = 1; 3200 unlock_page(dirty_page); 3201 put_page(dirty_page); 3202 if (page_mkwrite && mapping) { 3203 /* 3204 * Some device drivers do not set page.mapping but still 3205 * dirty their pages 3206 */ 3207 balance_dirty_pages_ratelimited(mapping); 3208 } 3209 3210 /* file_update_time outside page_lock */ 3211 if (vma->vm_file) 3212 file_update_time(vma->vm_file); 3213 } else { 3214 unlock_page(vmf.page); 3215 if (anon) 3216 page_cache_release(vmf.page); 3217 } 3218 3219 return ret; 3220 3221 unwritable_page: 3222 page_cache_release(page); 3223 return ret; 3224 } 3225 3226 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3227 unsigned long address, pte_t *page_table, pmd_t *pmd, 3228 unsigned int flags, pte_t orig_pte) 3229 { 3230 pgoff_t pgoff = (((address & PAGE_MASK) 3231 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3232 3233 pte_unmap(page_table); 3234 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3235 } 3236 3237 /* 3238 * Fault of a previously existing named mapping. Repopulate the pte 3239 * from the encoded file_pte if possible. This enables swappable 3240 * nonlinear vmas. 3241 * 3242 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3243 * but allow concurrent faults), and pte mapped but not yet locked. 3244 * We return with mmap_sem still held, but pte unmapped and unlocked. 3245 */ 3246 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3247 unsigned long address, pte_t *page_table, pmd_t *pmd, 3248 unsigned int flags, pte_t orig_pte) 3249 { 3250 pgoff_t pgoff; 3251 3252 flags |= FAULT_FLAG_NONLINEAR; 3253 3254 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3255 return 0; 3256 3257 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3258 /* 3259 * Page table corrupted: show pte and kill process. 3260 */ 3261 print_bad_pte(vma, address, orig_pte, NULL); 3262 return VM_FAULT_SIGBUS; 3263 } 3264 3265 pgoff = pte_to_pgoff(orig_pte); 3266 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3267 } 3268 3269 /* 3270 * These routines also need to handle stuff like marking pages dirty 3271 * and/or accessed for architectures that don't do it in hardware (most 3272 * RISC architectures). The early dirtying is also good on the i386. 3273 * 3274 * There is also a hook called "update_mmu_cache()" that architectures 3275 * with external mmu caches can use to update those (ie the Sparc or 3276 * PowerPC hashed page tables that act as extended TLBs). 3277 * 3278 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3279 * but allow concurrent faults), and pte mapped but not yet locked. 3280 * We return with mmap_sem still held, but pte unmapped and unlocked. 3281 */ 3282 int handle_pte_fault(struct mm_struct *mm, 3283 struct vm_area_struct *vma, unsigned long address, 3284 pte_t *pte, pmd_t *pmd, unsigned int flags) 3285 { 3286 pte_t entry; 3287 spinlock_t *ptl; 3288 3289 entry = *pte; 3290 if (!pte_present(entry)) { 3291 if (pte_none(entry)) { 3292 if (vma->vm_ops) { 3293 if (likely(vma->vm_ops->fault)) 3294 return do_linear_fault(mm, vma, address, 3295 pte, pmd, flags, entry); 3296 } 3297 return do_anonymous_page(mm, vma, address, 3298 pte, pmd, flags); 3299 } 3300 if (pte_file(entry)) 3301 return do_nonlinear_fault(mm, vma, address, 3302 pte, pmd, flags, entry); 3303 return do_swap_page(mm, vma, address, 3304 pte, pmd, flags, entry); 3305 } 3306 3307 ptl = pte_lockptr(mm, pmd); 3308 spin_lock(ptl); 3309 if (unlikely(!pte_same(*pte, entry))) 3310 goto unlock; 3311 if (flags & FAULT_FLAG_WRITE) { 3312 if (!pte_write(entry)) 3313 return do_wp_page(mm, vma, address, 3314 pte, pmd, ptl, entry); 3315 entry = pte_mkdirty(entry); 3316 } 3317 entry = pte_mkyoung(entry); 3318 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3319 update_mmu_cache(vma, address, pte); 3320 } else { 3321 /* 3322 * This is needed only for protection faults but the arch code 3323 * is not yet telling us if this is a protection fault or not. 3324 * This still avoids useless tlb flushes for .text page faults 3325 * with threads. 3326 */ 3327 if (flags & FAULT_FLAG_WRITE) 3328 flush_tlb_fix_spurious_fault(vma, address); 3329 } 3330 unlock: 3331 pte_unmap_unlock(pte, ptl); 3332 return 0; 3333 } 3334 3335 /* 3336 * By the time we get here, we already hold the mm semaphore 3337 */ 3338 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3339 unsigned long address, unsigned int flags) 3340 { 3341 pgd_t *pgd; 3342 pud_t *pud; 3343 pmd_t *pmd; 3344 pte_t *pte; 3345 3346 __set_current_state(TASK_RUNNING); 3347 3348 count_vm_event(PGFAULT); 3349 3350 /* do counter updates before entering really critical section. */ 3351 check_sync_rss_stat(current); 3352 3353 if (unlikely(is_vm_hugetlb_page(vma))) 3354 return hugetlb_fault(mm, vma, address, flags); 3355 3356 pgd = pgd_offset(mm, address); 3357 pud = pud_alloc(mm, pgd, address); 3358 if (!pud) 3359 return VM_FAULT_OOM; 3360 pmd = pmd_alloc(mm, pud, address); 3361 if (!pmd) 3362 return VM_FAULT_OOM; 3363 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3364 if (!vma->vm_ops) 3365 return do_huge_pmd_anonymous_page(mm, vma, address, 3366 pmd, flags); 3367 } else { 3368 pmd_t orig_pmd = *pmd; 3369 barrier(); 3370 if (pmd_trans_huge(orig_pmd)) { 3371 if (flags & FAULT_FLAG_WRITE && 3372 !pmd_write(orig_pmd) && 3373 !pmd_trans_splitting(orig_pmd)) 3374 return do_huge_pmd_wp_page(mm, vma, address, 3375 pmd, orig_pmd); 3376 return 0; 3377 } 3378 } 3379 3380 /* 3381 * Use __pte_alloc instead of pte_alloc_map, because we can't 3382 * run pte_offset_map on the pmd, if an huge pmd could 3383 * materialize from under us from a different thread. 3384 */ 3385 if (unlikely(__pte_alloc(mm, vma, pmd, address))) 3386 return VM_FAULT_OOM; 3387 /* if an huge pmd materialized from under us just retry later */ 3388 if (unlikely(pmd_trans_huge(*pmd))) 3389 return 0; 3390 /* 3391 * A regular pmd is established and it can't morph into a huge pmd 3392 * from under us anymore at this point because we hold the mmap_sem 3393 * read mode and khugepaged takes it in write mode. So now it's 3394 * safe to run pte_offset_map(). 3395 */ 3396 pte = pte_offset_map(pmd, address); 3397 3398 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3399 } 3400 3401 #ifndef __PAGETABLE_PUD_FOLDED 3402 /* 3403 * Allocate page upper directory. 3404 * We've already handled the fast-path in-line. 3405 */ 3406 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3407 { 3408 pud_t *new = pud_alloc_one(mm, address); 3409 if (!new) 3410 return -ENOMEM; 3411 3412 smp_wmb(); /* See comment in __pte_alloc */ 3413 3414 spin_lock(&mm->page_table_lock); 3415 if (pgd_present(*pgd)) /* Another has populated it */ 3416 pud_free(mm, new); 3417 else 3418 pgd_populate(mm, pgd, new); 3419 spin_unlock(&mm->page_table_lock); 3420 return 0; 3421 } 3422 #endif /* __PAGETABLE_PUD_FOLDED */ 3423 3424 #ifndef __PAGETABLE_PMD_FOLDED 3425 /* 3426 * Allocate page middle directory. 3427 * We've already handled the fast-path in-line. 3428 */ 3429 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3430 { 3431 pmd_t *new = pmd_alloc_one(mm, address); 3432 if (!new) 3433 return -ENOMEM; 3434 3435 smp_wmb(); /* See comment in __pte_alloc */ 3436 3437 spin_lock(&mm->page_table_lock); 3438 #ifndef __ARCH_HAS_4LEVEL_HACK 3439 if (pud_present(*pud)) /* Another has populated it */ 3440 pmd_free(mm, new); 3441 else 3442 pud_populate(mm, pud, new); 3443 #else 3444 if (pgd_present(*pud)) /* Another has populated it */ 3445 pmd_free(mm, new); 3446 else 3447 pgd_populate(mm, pud, new); 3448 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3449 spin_unlock(&mm->page_table_lock); 3450 return 0; 3451 } 3452 #endif /* __PAGETABLE_PMD_FOLDED */ 3453 3454 int make_pages_present(unsigned long addr, unsigned long end) 3455 { 3456 int ret, len, write; 3457 struct vm_area_struct * vma; 3458 3459 vma = find_vma(current->mm, addr); 3460 if (!vma) 3461 return -ENOMEM; 3462 /* 3463 * We want to touch writable mappings with a write fault in order 3464 * to break COW, except for shared mappings because these don't COW 3465 * and we would not want to dirty them for nothing. 3466 */ 3467 write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE; 3468 BUG_ON(addr >= end); 3469 BUG_ON(end > vma->vm_end); 3470 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3471 ret = get_user_pages(current, current->mm, addr, 3472 len, write, 0, NULL, NULL); 3473 if (ret < 0) 3474 return ret; 3475 return ret == len ? 0 : -EFAULT; 3476 } 3477 3478 #if !defined(__HAVE_ARCH_GATE_AREA) 3479 3480 #if defined(AT_SYSINFO_EHDR) 3481 static struct vm_area_struct gate_vma; 3482 3483 static int __init gate_vma_init(void) 3484 { 3485 gate_vma.vm_mm = NULL; 3486 gate_vma.vm_start = FIXADDR_USER_START; 3487 gate_vma.vm_end = FIXADDR_USER_END; 3488 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3489 gate_vma.vm_page_prot = __P101; 3490 /* 3491 * Make sure the vDSO gets into every core dump. 3492 * Dumping its contents makes post-mortem fully interpretable later 3493 * without matching up the same kernel and hardware config to see 3494 * what PC values meant. 3495 */ 3496 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3497 return 0; 3498 } 3499 __initcall(gate_vma_init); 3500 #endif 3501 3502 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 3503 { 3504 #ifdef AT_SYSINFO_EHDR 3505 return &gate_vma; 3506 #else 3507 return NULL; 3508 #endif 3509 } 3510 3511 int in_gate_area_no_task(unsigned long addr) 3512 { 3513 #ifdef AT_SYSINFO_EHDR 3514 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3515 return 1; 3516 #endif 3517 return 0; 3518 } 3519 3520 #endif /* __HAVE_ARCH_GATE_AREA */ 3521 3522 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3523 pte_t **ptepp, spinlock_t **ptlp) 3524 { 3525 pgd_t *pgd; 3526 pud_t *pud; 3527 pmd_t *pmd; 3528 pte_t *ptep; 3529 3530 pgd = pgd_offset(mm, address); 3531 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3532 goto out; 3533 3534 pud = pud_offset(pgd, address); 3535 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3536 goto out; 3537 3538 pmd = pmd_offset(pud, address); 3539 VM_BUG_ON(pmd_trans_huge(*pmd)); 3540 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3541 goto out; 3542 3543 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3544 if (pmd_huge(*pmd)) 3545 goto out; 3546 3547 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3548 if (!ptep) 3549 goto out; 3550 if (!pte_present(*ptep)) 3551 goto unlock; 3552 *ptepp = ptep; 3553 return 0; 3554 unlock: 3555 pte_unmap_unlock(ptep, *ptlp); 3556 out: 3557 return -EINVAL; 3558 } 3559 3560 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3561 pte_t **ptepp, spinlock_t **ptlp) 3562 { 3563 int res; 3564 3565 /* (void) is needed to make gcc happy */ 3566 (void) __cond_lock(*ptlp, 3567 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3568 return res; 3569 } 3570 3571 /** 3572 * follow_pfn - look up PFN at a user virtual address 3573 * @vma: memory mapping 3574 * @address: user virtual address 3575 * @pfn: location to store found PFN 3576 * 3577 * Only IO mappings and raw PFN mappings are allowed. 3578 * 3579 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3580 */ 3581 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3582 unsigned long *pfn) 3583 { 3584 int ret = -EINVAL; 3585 spinlock_t *ptl; 3586 pte_t *ptep; 3587 3588 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3589 return ret; 3590 3591 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3592 if (ret) 3593 return ret; 3594 *pfn = pte_pfn(*ptep); 3595 pte_unmap_unlock(ptep, ptl); 3596 return 0; 3597 } 3598 EXPORT_SYMBOL(follow_pfn); 3599 3600 #ifdef CONFIG_HAVE_IOREMAP_PROT 3601 int follow_phys(struct vm_area_struct *vma, 3602 unsigned long address, unsigned int flags, 3603 unsigned long *prot, resource_size_t *phys) 3604 { 3605 int ret = -EINVAL; 3606 pte_t *ptep, pte; 3607 spinlock_t *ptl; 3608 3609 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3610 goto out; 3611 3612 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3613 goto out; 3614 pte = *ptep; 3615 3616 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3617 goto unlock; 3618 3619 *prot = pgprot_val(pte_pgprot(pte)); 3620 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3621 3622 ret = 0; 3623 unlock: 3624 pte_unmap_unlock(ptep, ptl); 3625 out: 3626 return ret; 3627 } 3628 3629 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3630 void *buf, int len, int write) 3631 { 3632 resource_size_t phys_addr; 3633 unsigned long prot = 0; 3634 void __iomem *maddr; 3635 int offset = addr & (PAGE_SIZE-1); 3636 3637 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3638 return -EINVAL; 3639 3640 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3641 if (write) 3642 memcpy_toio(maddr + offset, buf, len); 3643 else 3644 memcpy_fromio(buf, maddr + offset, len); 3645 iounmap(maddr); 3646 3647 return len; 3648 } 3649 #endif 3650 3651 /* 3652 * Access another process' address space. 3653 * Source/target buffer must be kernel space, 3654 * Do not walk the page table directly, use get_user_pages 3655 */ 3656 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3657 { 3658 struct mm_struct *mm; 3659 struct vm_area_struct *vma; 3660 void *old_buf = buf; 3661 3662 mm = get_task_mm(tsk); 3663 if (!mm) 3664 return 0; 3665 3666 down_read(&mm->mmap_sem); 3667 /* ignore errors, just check how much was successfully transferred */ 3668 while (len) { 3669 int bytes, ret, offset; 3670 void *maddr; 3671 struct page *page = NULL; 3672 3673 ret = get_user_pages(tsk, mm, addr, 1, 3674 write, 1, &page, &vma); 3675 if (ret <= 0) { 3676 /* 3677 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3678 * we can access using slightly different code. 3679 */ 3680 #ifdef CONFIG_HAVE_IOREMAP_PROT 3681 vma = find_vma(mm, addr); 3682 if (!vma) 3683 break; 3684 if (vma->vm_ops && vma->vm_ops->access) 3685 ret = vma->vm_ops->access(vma, addr, buf, 3686 len, write); 3687 if (ret <= 0) 3688 #endif 3689 break; 3690 bytes = ret; 3691 } else { 3692 bytes = len; 3693 offset = addr & (PAGE_SIZE-1); 3694 if (bytes > PAGE_SIZE-offset) 3695 bytes = PAGE_SIZE-offset; 3696 3697 maddr = kmap(page); 3698 if (write) { 3699 copy_to_user_page(vma, page, addr, 3700 maddr + offset, buf, bytes); 3701 set_page_dirty_lock(page); 3702 } else { 3703 copy_from_user_page(vma, page, addr, 3704 buf, maddr + offset, bytes); 3705 } 3706 kunmap(page); 3707 page_cache_release(page); 3708 } 3709 len -= bytes; 3710 buf += bytes; 3711 addr += bytes; 3712 } 3713 up_read(&mm->mmap_sem); 3714 mmput(mm); 3715 3716 return buf - old_buf; 3717 } 3718 3719 /* 3720 * Print the name of a VMA. 3721 */ 3722 void print_vma_addr(char *prefix, unsigned long ip) 3723 { 3724 struct mm_struct *mm = current->mm; 3725 struct vm_area_struct *vma; 3726 3727 /* 3728 * Do not print if we are in atomic 3729 * contexts (in exception stacks, etc.): 3730 */ 3731 if (preempt_count()) 3732 return; 3733 3734 down_read(&mm->mmap_sem); 3735 vma = find_vma(mm, ip); 3736 if (vma && vma->vm_file) { 3737 struct file *f = vma->vm_file; 3738 char *buf = (char *)__get_free_page(GFP_KERNEL); 3739 if (buf) { 3740 char *p, *s; 3741 3742 p = d_path(&f->f_path, buf, PAGE_SIZE); 3743 if (IS_ERR(p)) 3744 p = "?"; 3745 s = strrchr(p, '/'); 3746 if (s) 3747 p = s+1; 3748 printk("%s%s[%lx+%lx]", prefix, p, 3749 vma->vm_start, 3750 vma->vm_end - vma->vm_start); 3751 free_page((unsigned long)buf); 3752 } 3753 } 3754 up_read(¤t->mm->mmap_sem); 3755 } 3756 3757 #ifdef CONFIG_PROVE_LOCKING 3758 void might_fault(void) 3759 { 3760 /* 3761 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3762 * holding the mmap_sem, this is safe because kernel memory doesn't 3763 * get paged out, therefore we'll never actually fault, and the 3764 * below annotations will generate false positives. 3765 */ 3766 if (segment_eq(get_fs(), KERNEL_DS)) 3767 return; 3768 3769 might_sleep(); 3770 /* 3771 * it would be nicer only to annotate paths which are not under 3772 * pagefault_disable, however that requires a larger audit and 3773 * providing helpers like get_user_atomic. 3774 */ 3775 if (!in_atomic() && current->mm) 3776 might_lock_read(¤t->mm->mmap_sem); 3777 } 3778 EXPORT_SYMBOL(might_fault); 3779 #endif 3780 3781 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3782 static void clear_gigantic_page(struct page *page, 3783 unsigned long addr, 3784 unsigned int pages_per_huge_page) 3785 { 3786 int i; 3787 struct page *p = page; 3788 3789 might_sleep(); 3790 for (i = 0; i < pages_per_huge_page; 3791 i++, p = mem_map_next(p, page, i)) { 3792 cond_resched(); 3793 clear_user_highpage(p, addr + i * PAGE_SIZE); 3794 } 3795 } 3796 void clear_huge_page(struct page *page, 3797 unsigned long addr, unsigned int pages_per_huge_page) 3798 { 3799 int i; 3800 3801 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3802 clear_gigantic_page(page, addr, pages_per_huge_page); 3803 return; 3804 } 3805 3806 might_sleep(); 3807 for (i = 0; i < pages_per_huge_page; i++) { 3808 cond_resched(); 3809 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3810 } 3811 } 3812 3813 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3814 unsigned long addr, 3815 struct vm_area_struct *vma, 3816 unsigned int pages_per_huge_page) 3817 { 3818 int i; 3819 struct page *dst_base = dst; 3820 struct page *src_base = src; 3821 3822 for (i = 0; i < pages_per_huge_page; ) { 3823 cond_resched(); 3824 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3825 3826 i++; 3827 dst = mem_map_next(dst, dst_base, i); 3828 src = mem_map_next(src, src_base, i); 3829 } 3830 } 3831 3832 void copy_user_huge_page(struct page *dst, struct page *src, 3833 unsigned long addr, struct vm_area_struct *vma, 3834 unsigned int pages_per_huge_page) 3835 { 3836 int i; 3837 3838 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3839 copy_user_gigantic_page(dst, src, addr, vma, 3840 pages_per_huge_page); 3841 return; 3842 } 3843 3844 might_sleep(); 3845 for (i = 0; i < pages_per_huge_page; i++) { 3846 cond_resched(); 3847 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3848 } 3849 } 3850 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3851