xref: /openbmc/linux/mm/memory.c (revision 3932b9ca)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71 
72 #include "internal.h"
73 
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77 
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82 
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86 
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95 
96 EXPORT_SYMBOL(high_memory);
97 
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 					1;
107 #else
108 					2;
109 #endif
110 
111 static int __init disable_randmaps(char *s)
112 {
113 	randomize_va_space = 0;
114 	return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117 
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120 
121 EXPORT_SYMBOL(zero_pfn);
122 
123 /*
124  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125  */
126 static int __init init_zero_pfn(void)
127 {
128 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 	return 0;
130 }
131 core_initcall(init_zero_pfn);
132 
133 
134 #if defined(SPLIT_RSS_COUNTING)
135 
136 void sync_mm_rss(struct mm_struct *mm)
137 {
138 	int i;
139 
140 	for (i = 0; i < NR_MM_COUNTERS; i++) {
141 		if (current->rss_stat.count[i]) {
142 			add_mm_counter(mm, i, current->rss_stat.count[i]);
143 			current->rss_stat.count[i] = 0;
144 		}
145 	}
146 	current->rss_stat.events = 0;
147 }
148 
149 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150 {
151 	struct task_struct *task = current;
152 
153 	if (likely(task->mm == mm))
154 		task->rss_stat.count[member] += val;
155 	else
156 		add_mm_counter(mm, member, val);
157 }
158 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160 
161 /* sync counter once per 64 page faults */
162 #define TASK_RSS_EVENTS_THRESH	(64)
163 static void check_sync_rss_stat(struct task_struct *task)
164 {
165 	if (unlikely(task != current))
166 		return;
167 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
168 		sync_mm_rss(task->mm);
169 }
170 #else /* SPLIT_RSS_COUNTING */
171 
172 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174 
175 static void check_sync_rss_stat(struct task_struct *task)
176 {
177 }
178 
179 #endif /* SPLIT_RSS_COUNTING */
180 
181 #ifdef HAVE_GENERIC_MMU_GATHER
182 
183 static int tlb_next_batch(struct mmu_gather *tlb)
184 {
185 	struct mmu_gather_batch *batch;
186 
187 	batch = tlb->active;
188 	if (batch->next) {
189 		tlb->active = batch->next;
190 		return 1;
191 	}
192 
193 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 		return 0;
195 
196 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 	if (!batch)
198 		return 0;
199 
200 	tlb->batch_count++;
201 	batch->next = NULL;
202 	batch->nr   = 0;
203 	batch->max  = MAX_GATHER_BATCH;
204 
205 	tlb->active->next = batch;
206 	tlb->active = batch;
207 
208 	return 1;
209 }
210 
211 /* tlb_gather_mmu
212  *	Called to initialize an (on-stack) mmu_gather structure for page-table
213  *	tear-down from @mm. The @fullmm argument is used when @mm is without
214  *	users and we're going to destroy the full address space (exit/execve).
215  */
216 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
217 {
218 	tlb->mm = mm;
219 
220 	/* Is it from 0 to ~0? */
221 	tlb->fullmm     = !(start | (end+1));
222 	tlb->need_flush_all = 0;
223 	tlb->start	= start;
224 	tlb->end	= end;
225 	tlb->need_flush = 0;
226 	tlb->local.next = NULL;
227 	tlb->local.nr   = 0;
228 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
229 	tlb->active     = &tlb->local;
230 	tlb->batch_count = 0;
231 
232 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 	tlb->batch = NULL;
234 #endif
235 }
236 
237 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
238 {
239 	tlb->need_flush = 0;
240 	tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 	tlb_table_flush(tlb);
243 #endif
244 }
245 
246 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
247 {
248 	struct mmu_gather_batch *batch;
249 
250 	for (batch = &tlb->local; batch; batch = batch->next) {
251 		free_pages_and_swap_cache(batch->pages, batch->nr);
252 		batch->nr = 0;
253 	}
254 	tlb->active = &tlb->local;
255 }
256 
257 void tlb_flush_mmu(struct mmu_gather *tlb)
258 {
259 	if (!tlb->need_flush)
260 		return;
261 	tlb_flush_mmu_tlbonly(tlb);
262 	tlb_flush_mmu_free(tlb);
263 }
264 
265 /* tlb_finish_mmu
266  *	Called at the end of the shootdown operation to free up any resources
267  *	that were required.
268  */
269 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
270 {
271 	struct mmu_gather_batch *batch, *next;
272 
273 	tlb_flush_mmu(tlb);
274 
275 	/* keep the page table cache within bounds */
276 	check_pgt_cache();
277 
278 	for (batch = tlb->local.next; batch; batch = next) {
279 		next = batch->next;
280 		free_pages((unsigned long)batch, 0);
281 	}
282 	tlb->local.next = NULL;
283 }
284 
285 /* __tlb_remove_page
286  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287  *	handling the additional races in SMP caused by other CPUs caching valid
288  *	mappings in their TLBs. Returns the number of free page slots left.
289  *	When out of page slots we must call tlb_flush_mmu().
290  */
291 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
292 {
293 	struct mmu_gather_batch *batch;
294 
295 	VM_BUG_ON(!tlb->need_flush);
296 
297 	batch = tlb->active;
298 	batch->pages[batch->nr++] = page;
299 	if (batch->nr == batch->max) {
300 		if (!tlb_next_batch(tlb))
301 			return 0;
302 		batch = tlb->active;
303 	}
304 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
305 
306 	return batch->max - batch->nr;
307 }
308 
309 #endif /* HAVE_GENERIC_MMU_GATHER */
310 
311 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
312 
313 /*
314  * See the comment near struct mmu_table_batch.
315  */
316 
317 static void tlb_remove_table_smp_sync(void *arg)
318 {
319 	/* Simply deliver the interrupt */
320 }
321 
322 static void tlb_remove_table_one(void *table)
323 {
324 	/*
325 	 * This isn't an RCU grace period and hence the page-tables cannot be
326 	 * assumed to be actually RCU-freed.
327 	 *
328 	 * It is however sufficient for software page-table walkers that rely on
329 	 * IRQ disabling. See the comment near struct mmu_table_batch.
330 	 */
331 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
332 	__tlb_remove_table(table);
333 }
334 
335 static void tlb_remove_table_rcu(struct rcu_head *head)
336 {
337 	struct mmu_table_batch *batch;
338 	int i;
339 
340 	batch = container_of(head, struct mmu_table_batch, rcu);
341 
342 	for (i = 0; i < batch->nr; i++)
343 		__tlb_remove_table(batch->tables[i]);
344 
345 	free_page((unsigned long)batch);
346 }
347 
348 void tlb_table_flush(struct mmu_gather *tlb)
349 {
350 	struct mmu_table_batch **batch = &tlb->batch;
351 
352 	if (*batch) {
353 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
354 		*batch = NULL;
355 	}
356 }
357 
358 void tlb_remove_table(struct mmu_gather *tlb, void *table)
359 {
360 	struct mmu_table_batch **batch = &tlb->batch;
361 
362 	tlb->need_flush = 1;
363 
364 	/*
365 	 * When there's less then two users of this mm there cannot be a
366 	 * concurrent page-table walk.
367 	 */
368 	if (atomic_read(&tlb->mm->mm_users) < 2) {
369 		__tlb_remove_table(table);
370 		return;
371 	}
372 
373 	if (*batch == NULL) {
374 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375 		if (*batch == NULL) {
376 			tlb_remove_table_one(table);
377 			return;
378 		}
379 		(*batch)->nr = 0;
380 	}
381 	(*batch)->tables[(*batch)->nr++] = table;
382 	if ((*batch)->nr == MAX_TABLE_BATCH)
383 		tlb_table_flush(tlb);
384 }
385 
386 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
387 
388 /*
389  * Note: this doesn't free the actual pages themselves. That
390  * has been handled earlier when unmapping all the memory regions.
391  */
392 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393 			   unsigned long addr)
394 {
395 	pgtable_t token = pmd_pgtable(*pmd);
396 	pmd_clear(pmd);
397 	pte_free_tlb(tlb, token, addr);
398 	atomic_long_dec(&tlb->mm->nr_ptes);
399 }
400 
401 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402 				unsigned long addr, unsigned long end,
403 				unsigned long floor, unsigned long ceiling)
404 {
405 	pmd_t *pmd;
406 	unsigned long next;
407 	unsigned long start;
408 
409 	start = addr;
410 	pmd = pmd_offset(pud, addr);
411 	do {
412 		next = pmd_addr_end(addr, end);
413 		if (pmd_none_or_clear_bad(pmd))
414 			continue;
415 		free_pte_range(tlb, pmd, addr);
416 	} while (pmd++, addr = next, addr != end);
417 
418 	start &= PUD_MASK;
419 	if (start < floor)
420 		return;
421 	if (ceiling) {
422 		ceiling &= PUD_MASK;
423 		if (!ceiling)
424 			return;
425 	}
426 	if (end - 1 > ceiling - 1)
427 		return;
428 
429 	pmd = pmd_offset(pud, start);
430 	pud_clear(pud);
431 	pmd_free_tlb(tlb, pmd, start);
432 }
433 
434 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435 				unsigned long addr, unsigned long end,
436 				unsigned long floor, unsigned long ceiling)
437 {
438 	pud_t *pud;
439 	unsigned long next;
440 	unsigned long start;
441 
442 	start = addr;
443 	pud = pud_offset(pgd, addr);
444 	do {
445 		next = pud_addr_end(addr, end);
446 		if (pud_none_or_clear_bad(pud))
447 			continue;
448 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
449 	} while (pud++, addr = next, addr != end);
450 
451 	start &= PGDIR_MASK;
452 	if (start < floor)
453 		return;
454 	if (ceiling) {
455 		ceiling &= PGDIR_MASK;
456 		if (!ceiling)
457 			return;
458 	}
459 	if (end - 1 > ceiling - 1)
460 		return;
461 
462 	pud = pud_offset(pgd, start);
463 	pgd_clear(pgd);
464 	pud_free_tlb(tlb, pud, start);
465 }
466 
467 /*
468  * This function frees user-level page tables of a process.
469  */
470 void free_pgd_range(struct mmu_gather *tlb,
471 			unsigned long addr, unsigned long end,
472 			unsigned long floor, unsigned long ceiling)
473 {
474 	pgd_t *pgd;
475 	unsigned long next;
476 
477 	/*
478 	 * The next few lines have given us lots of grief...
479 	 *
480 	 * Why are we testing PMD* at this top level?  Because often
481 	 * there will be no work to do at all, and we'd prefer not to
482 	 * go all the way down to the bottom just to discover that.
483 	 *
484 	 * Why all these "- 1"s?  Because 0 represents both the bottom
485 	 * of the address space and the top of it (using -1 for the
486 	 * top wouldn't help much: the masks would do the wrong thing).
487 	 * The rule is that addr 0 and floor 0 refer to the bottom of
488 	 * the address space, but end 0 and ceiling 0 refer to the top
489 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490 	 * that end 0 case should be mythical).
491 	 *
492 	 * Wherever addr is brought up or ceiling brought down, we must
493 	 * be careful to reject "the opposite 0" before it confuses the
494 	 * subsequent tests.  But what about where end is brought down
495 	 * by PMD_SIZE below? no, end can't go down to 0 there.
496 	 *
497 	 * Whereas we round start (addr) and ceiling down, by different
498 	 * masks at different levels, in order to test whether a table
499 	 * now has no other vmas using it, so can be freed, we don't
500 	 * bother to round floor or end up - the tests don't need that.
501 	 */
502 
503 	addr &= PMD_MASK;
504 	if (addr < floor) {
505 		addr += PMD_SIZE;
506 		if (!addr)
507 			return;
508 	}
509 	if (ceiling) {
510 		ceiling &= PMD_MASK;
511 		if (!ceiling)
512 			return;
513 	}
514 	if (end - 1 > ceiling - 1)
515 		end -= PMD_SIZE;
516 	if (addr > end - 1)
517 		return;
518 
519 	pgd = pgd_offset(tlb->mm, addr);
520 	do {
521 		next = pgd_addr_end(addr, end);
522 		if (pgd_none_or_clear_bad(pgd))
523 			continue;
524 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
525 	} while (pgd++, addr = next, addr != end);
526 }
527 
528 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
529 		unsigned long floor, unsigned long ceiling)
530 {
531 	while (vma) {
532 		struct vm_area_struct *next = vma->vm_next;
533 		unsigned long addr = vma->vm_start;
534 
535 		/*
536 		 * Hide vma from rmap and truncate_pagecache before freeing
537 		 * pgtables
538 		 */
539 		unlink_anon_vmas(vma);
540 		unlink_file_vma(vma);
541 
542 		if (is_vm_hugetlb_page(vma)) {
543 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
544 				floor, next? next->vm_start: ceiling);
545 		} else {
546 			/*
547 			 * Optimization: gather nearby vmas into one call down
548 			 */
549 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
550 			       && !is_vm_hugetlb_page(next)) {
551 				vma = next;
552 				next = vma->vm_next;
553 				unlink_anon_vmas(vma);
554 				unlink_file_vma(vma);
555 			}
556 			free_pgd_range(tlb, addr, vma->vm_end,
557 				floor, next? next->vm_start: ceiling);
558 		}
559 		vma = next;
560 	}
561 }
562 
563 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564 		pmd_t *pmd, unsigned long address)
565 {
566 	spinlock_t *ptl;
567 	pgtable_t new = pte_alloc_one(mm, address);
568 	int wait_split_huge_page;
569 	if (!new)
570 		return -ENOMEM;
571 
572 	/*
573 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 	 * visible before the pte is made visible to other CPUs by being
575 	 * put into page tables.
576 	 *
577 	 * The other side of the story is the pointer chasing in the page
578 	 * table walking code (when walking the page table without locking;
579 	 * ie. most of the time). Fortunately, these data accesses consist
580 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 	 * being the notable exception) will already guarantee loads are
582 	 * seen in-order. See the alpha page table accessors for the
583 	 * smp_read_barrier_depends() barriers in page table walking code.
584 	 */
585 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586 
587 	ptl = pmd_lock(mm, pmd);
588 	wait_split_huge_page = 0;
589 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
590 		atomic_long_inc(&mm->nr_ptes);
591 		pmd_populate(mm, pmd, new);
592 		new = NULL;
593 	} else if (unlikely(pmd_trans_splitting(*pmd)))
594 		wait_split_huge_page = 1;
595 	spin_unlock(ptl);
596 	if (new)
597 		pte_free(mm, new);
598 	if (wait_split_huge_page)
599 		wait_split_huge_page(vma->anon_vma, pmd);
600 	return 0;
601 }
602 
603 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
604 {
605 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606 	if (!new)
607 		return -ENOMEM;
608 
609 	smp_wmb(); /* See comment in __pte_alloc */
610 
611 	spin_lock(&init_mm.page_table_lock);
612 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
613 		pmd_populate_kernel(&init_mm, pmd, new);
614 		new = NULL;
615 	} else
616 		VM_BUG_ON(pmd_trans_splitting(*pmd));
617 	spin_unlock(&init_mm.page_table_lock);
618 	if (new)
619 		pte_free_kernel(&init_mm, new);
620 	return 0;
621 }
622 
623 static inline void init_rss_vec(int *rss)
624 {
625 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626 }
627 
628 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
629 {
630 	int i;
631 
632 	if (current->mm == mm)
633 		sync_mm_rss(mm);
634 	for (i = 0; i < NR_MM_COUNTERS; i++)
635 		if (rss[i])
636 			add_mm_counter(mm, i, rss[i]);
637 }
638 
639 /*
640  * This function is called to print an error when a bad pte
641  * is found. For example, we might have a PFN-mapped pte in
642  * a region that doesn't allow it.
643  *
644  * The calling function must still handle the error.
645  */
646 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647 			  pte_t pte, struct page *page)
648 {
649 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650 	pud_t *pud = pud_offset(pgd, addr);
651 	pmd_t *pmd = pmd_offset(pud, addr);
652 	struct address_space *mapping;
653 	pgoff_t index;
654 	static unsigned long resume;
655 	static unsigned long nr_shown;
656 	static unsigned long nr_unshown;
657 
658 	/*
659 	 * Allow a burst of 60 reports, then keep quiet for that minute;
660 	 * or allow a steady drip of one report per second.
661 	 */
662 	if (nr_shown == 60) {
663 		if (time_before(jiffies, resume)) {
664 			nr_unshown++;
665 			return;
666 		}
667 		if (nr_unshown) {
668 			printk(KERN_ALERT
669 				"BUG: Bad page map: %lu messages suppressed\n",
670 				nr_unshown);
671 			nr_unshown = 0;
672 		}
673 		nr_shown = 0;
674 	}
675 	if (nr_shown++ == 0)
676 		resume = jiffies + 60 * HZ;
677 
678 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679 	index = linear_page_index(vma, addr);
680 
681 	printk(KERN_ALERT
682 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
683 		current->comm,
684 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
685 	if (page)
686 		dump_page(page, "bad pte");
687 	printk(KERN_ALERT
688 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690 	/*
691 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 	 */
693 	if (vma->vm_ops)
694 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
695 		       vma->vm_ops->fault);
696 	if (vma->vm_file)
697 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
698 		       vma->vm_file->f_op->mmap);
699 	dump_stack();
700 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
701 }
702 
703 /*
704  * vm_normal_page -- This function gets the "struct page" associated with a pte.
705  *
706  * "Special" mappings do not wish to be associated with a "struct page" (either
707  * it doesn't exist, or it exists but they don't want to touch it). In this
708  * case, NULL is returned here. "Normal" mappings do have a struct page.
709  *
710  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711  * pte bit, in which case this function is trivial. Secondly, an architecture
712  * may not have a spare pte bit, which requires a more complicated scheme,
713  * described below.
714  *
715  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716  * special mapping (even if there are underlying and valid "struct pages").
717  * COWed pages of a VM_PFNMAP are always normal.
718  *
719  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
721  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722  * mapping will always honor the rule
723  *
724  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725  *
726  * And for normal mappings this is false.
727  *
728  * This restricts such mappings to be a linear translation from virtual address
729  * to pfn. To get around this restriction, we allow arbitrary mappings so long
730  * as the vma is not a COW mapping; in that case, we know that all ptes are
731  * special (because none can have been COWed).
732  *
733  *
734  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
735  *
736  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737  * page" backing, however the difference is that _all_ pages with a struct
738  * page (that is, those where pfn_valid is true) are refcounted and considered
739  * normal pages by the VM. The disadvantage is that pages are refcounted
740  * (which can be slower and simply not an option for some PFNMAP users). The
741  * advantage is that we don't have to follow the strict linearity rule of
742  * PFNMAP mappings in order to support COWable mappings.
743  *
744  */
745 #ifdef __HAVE_ARCH_PTE_SPECIAL
746 # define HAVE_PTE_SPECIAL 1
747 #else
748 # define HAVE_PTE_SPECIAL 0
749 #endif
750 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 				pte_t pte)
752 {
753 	unsigned long pfn = pte_pfn(pte);
754 
755 	if (HAVE_PTE_SPECIAL) {
756 		if (likely(!pte_special(pte)))
757 			goto check_pfn;
758 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
759 			return NULL;
760 		if (!is_zero_pfn(pfn))
761 			print_bad_pte(vma, addr, pte, NULL);
762 		return NULL;
763 	}
764 
765 	/* !HAVE_PTE_SPECIAL case follows: */
766 
767 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
768 		if (vma->vm_flags & VM_MIXEDMAP) {
769 			if (!pfn_valid(pfn))
770 				return NULL;
771 			goto out;
772 		} else {
773 			unsigned long off;
774 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
775 			if (pfn == vma->vm_pgoff + off)
776 				return NULL;
777 			if (!is_cow_mapping(vma->vm_flags))
778 				return NULL;
779 		}
780 	}
781 
782 	if (is_zero_pfn(pfn))
783 		return NULL;
784 check_pfn:
785 	if (unlikely(pfn > highest_memmap_pfn)) {
786 		print_bad_pte(vma, addr, pte, NULL);
787 		return NULL;
788 	}
789 
790 	/*
791 	 * NOTE! We still have PageReserved() pages in the page tables.
792 	 * eg. VDSO mappings can cause them to exist.
793 	 */
794 out:
795 	return pfn_to_page(pfn);
796 }
797 
798 /*
799  * copy one vm_area from one task to the other. Assumes the page tables
800  * already present in the new task to be cleared in the whole range
801  * covered by this vma.
802  */
803 
804 static inline unsigned long
805 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
806 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
807 		unsigned long addr, int *rss)
808 {
809 	unsigned long vm_flags = vma->vm_flags;
810 	pte_t pte = *src_pte;
811 	struct page *page;
812 
813 	/* pte contains position in swap or file, so copy. */
814 	if (unlikely(!pte_present(pte))) {
815 		if (!pte_file(pte)) {
816 			swp_entry_t entry = pte_to_swp_entry(pte);
817 
818 			if (swap_duplicate(entry) < 0)
819 				return entry.val;
820 
821 			/* make sure dst_mm is on swapoff's mmlist. */
822 			if (unlikely(list_empty(&dst_mm->mmlist))) {
823 				spin_lock(&mmlist_lock);
824 				if (list_empty(&dst_mm->mmlist))
825 					list_add(&dst_mm->mmlist,
826 						 &src_mm->mmlist);
827 				spin_unlock(&mmlist_lock);
828 			}
829 			if (likely(!non_swap_entry(entry)))
830 				rss[MM_SWAPENTS]++;
831 			else if (is_migration_entry(entry)) {
832 				page = migration_entry_to_page(entry);
833 
834 				if (PageAnon(page))
835 					rss[MM_ANONPAGES]++;
836 				else
837 					rss[MM_FILEPAGES]++;
838 
839 				if (is_write_migration_entry(entry) &&
840 				    is_cow_mapping(vm_flags)) {
841 					/*
842 					 * COW mappings require pages in both
843 					 * parent and child to be set to read.
844 					 */
845 					make_migration_entry_read(&entry);
846 					pte = swp_entry_to_pte(entry);
847 					if (pte_swp_soft_dirty(*src_pte))
848 						pte = pte_swp_mksoft_dirty(pte);
849 					set_pte_at(src_mm, addr, src_pte, pte);
850 				}
851 			}
852 		}
853 		goto out_set_pte;
854 	}
855 
856 	/*
857 	 * If it's a COW mapping, write protect it both
858 	 * in the parent and the child
859 	 */
860 	if (is_cow_mapping(vm_flags)) {
861 		ptep_set_wrprotect(src_mm, addr, src_pte);
862 		pte = pte_wrprotect(pte);
863 	}
864 
865 	/*
866 	 * If it's a shared mapping, mark it clean in
867 	 * the child
868 	 */
869 	if (vm_flags & VM_SHARED)
870 		pte = pte_mkclean(pte);
871 	pte = pte_mkold(pte);
872 
873 	page = vm_normal_page(vma, addr, pte);
874 	if (page) {
875 		get_page(page);
876 		page_dup_rmap(page);
877 		if (PageAnon(page))
878 			rss[MM_ANONPAGES]++;
879 		else
880 			rss[MM_FILEPAGES]++;
881 	}
882 
883 out_set_pte:
884 	set_pte_at(dst_mm, addr, dst_pte, pte);
885 	return 0;
886 }
887 
888 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
889 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
890 		   unsigned long addr, unsigned long end)
891 {
892 	pte_t *orig_src_pte, *orig_dst_pte;
893 	pte_t *src_pte, *dst_pte;
894 	spinlock_t *src_ptl, *dst_ptl;
895 	int progress = 0;
896 	int rss[NR_MM_COUNTERS];
897 	swp_entry_t entry = (swp_entry_t){0};
898 
899 again:
900 	init_rss_vec(rss);
901 
902 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
903 	if (!dst_pte)
904 		return -ENOMEM;
905 	src_pte = pte_offset_map(src_pmd, addr);
906 	src_ptl = pte_lockptr(src_mm, src_pmd);
907 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
908 	orig_src_pte = src_pte;
909 	orig_dst_pte = dst_pte;
910 	arch_enter_lazy_mmu_mode();
911 
912 	do {
913 		/*
914 		 * We are holding two locks at this point - either of them
915 		 * could generate latencies in another task on another CPU.
916 		 */
917 		if (progress >= 32) {
918 			progress = 0;
919 			if (need_resched() ||
920 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
921 				break;
922 		}
923 		if (pte_none(*src_pte)) {
924 			progress++;
925 			continue;
926 		}
927 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
928 							vma, addr, rss);
929 		if (entry.val)
930 			break;
931 		progress += 8;
932 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
933 
934 	arch_leave_lazy_mmu_mode();
935 	spin_unlock(src_ptl);
936 	pte_unmap(orig_src_pte);
937 	add_mm_rss_vec(dst_mm, rss);
938 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
939 	cond_resched();
940 
941 	if (entry.val) {
942 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
943 			return -ENOMEM;
944 		progress = 0;
945 	}
946 	if (addr != end)
947 		goto again;
948 	return 0;
949 }
950 
951 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
953 		unsigned long addr, unsigned long end)
954 {
955 	pmd_t *src_pmd, *dst_pmd;
956 	unsigned long next;
957 
958 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
959 	if (!dst_pmd)
960 		return -ENOMEM;
961 	src_pmd = pmd_offset(src_pud, addr);
962 	do {
963 		next = pmd_addr_end(addr, end);
964 		if (pmd_trans_huge(*src_pmd)) {
965 			int err;
966 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
967 			err = copy_huge_pmd(dst_mm, src_mm,
968 					    dst_pmd, src_pmd, addr, vma);
969 			if (err == -ENOMEM)
970 				return -ENOMEM;
971 			if (!err)
972 				continue;
973 			/* fall through */
974 		}
975 		if (pmd_none_or_clear_bad(src_pmd))
976 			continue;
977 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
978 						vma, addr, next))
979 			return -ENOMEM;
980 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
981 	return 0;
982 }
983 
984 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
985 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
986 		unsigned long addr, unsigned long end)
987 {
988 	pud_t *src_pud, *dst_pud;
989 	unsigned long next;
990 
991 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
992 	if (!dst_pud)
993 		return -ENOMEM;
994 	src_pud = pud_offset(src_pgd, addr);
995 	do {
996 		next = pud_addr_end(addr, end);
997 		if (pud_none_or_clear_bad(src_pud))
998 			continue;
999 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1000 						vma, addr, next))
1001 			return -ENOMEM;
1002 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1003 	return 0;
1004 }
1005 
1006 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 		struct vm_area_struct *vma)
1008 {
1009 	pgd_t *src_pgd, *dst_pgd;
1010 	unsigned long next;
1011 	unsigned long addr = vma->vm_start;
1012 	unsigned long end = vma->vm_end;
1013 	unsigned long mmun_start;	/* For mmu_notifiers */
1014 	unsigned long mmun_end;		/* For mmu_notifiers */
1015 	bool is_cow;
1016 	int ret;
1017 
1018 	/*
1019 	 * Don't copy ptes where a page fault will fill them correctly.
1020 	 * Fork becomes much lighter when there are big shared or private
1021 	 * readonly mappings. The tradeoff is that copy_page_range is more
1022 	 * efficient than faulting.
1023 	 */
1024 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1025 			       VM_PFNMAP | VM_MIXEDMAP))) {
1026 		if (!vma->anon_vma)
1027 			return 0;
1028 	}
1029 
1030 	if (is_vm_hugetlb_page(vma))
1031 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1032 
1033 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1034 		/*
1035 		 * We do not free on error cases below as remove_vma
1036 		 * gets called on error from higher level routine
1037 		 */
1038 		ret = track_pfn_copy(vma);
1039 		if (ret)
1040 			return ret;
1041 	}
1042 
1043 	/*
1044 	 * We need to invalidate the secondary MMU mappings only when
1045 	 * there could be a permission downgrade on the ptes of the
1046 	 * parent mm. And a permission downgrade will only happen if
1047 	 * is_cow_mapping() returns true.
1048 	 */
1049 	is_cow = is_cow_mapping(vma->vm_flags);
1050 	mmun_start = addr;
1051 	mmun_end   = end;
1052 	if (is_cow)
1053 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1054 						    mmun_end);
1055 
1056 	ret = 0;
1057 	dst_pgd = pgd_offset(dst_mm, addr);
1058 	src_pgd = pgd_offset(src_mm, addr);
1059 	do {
1060 		next = pgd_addr_end(addr, end);
1061 		if (pgd_none_or_clear_bad(src_pgd))
1062 			continue;
1063 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1064 					    vma, addr, next))) {
1065 			ret = -ENOMEM;
1066 			break;
1067 		}
1068 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1069 
1070 	if (is_cow)
1071 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1072 	return ret;
1073 }
1074 
1075 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1076 				struct vm_area_struct *vma, pmd_t *pmd,
1077 				unsigned long addr, unsigned long end,
1078 				struct zap_details *details)
1079 {
1080 	struct mm_struct *mm = tlb->mm;
1081 	int force_flush = 0;
1082 	int rss[NR_MM_COUNTERS];
1083 	spinlock_t *ptl;
1084 	pte_t *start_pte;
1085 	pte_t *pte;
1086 
1087 again:
1088 	init_rss_vec(rss);
1089 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1090 	pte = start_pte;
1091 	arch_enter_lazy_mmu_mode();
1092 	do {
1093 		pte_t ptent = *pte;
1094 		if (pte_none(ptent)) {
1095 			continue;
1096 		}
1097 
1098 		if (pte_present(ptent)) {
1099 			struct page *page;
1100 
1101 			page = vm_normal_page(vma, addr, ptent);
1102 			if (unlikely(details) && page) {
1103 				/*
1104 				 * unmap_shared_mapping_pages() wants to
1105 				 * invalidate cache without truncating:
1106 				 * unmap shared but keep private pages.
1107 				 */
1108 				if (details->check_mapping &&
1109 				    details->check_mapping != page->mapping)
1110 					continue;
1111 				/*
1112 				 * Each page->index must be checked when
1113 				 * invalidating or truncating nonlinear.
1114 				 */
1115 				if (details->nonlinear_vma &&
1116 				    (page->index < details->first_index ||
1117 				     page->index > details->last_index))
1118 					continue;
1119 			}
1120 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1121 							tlb->fullmm);
1122 			tlb_remove_tlb_entry(tlb, pte, addr);
1123 			if (unlikely(!page))
1124 				continue;
1125 			if (unlikely(details) && details->nonlinear_vma
1126 			    && linear_page_index(details->nonlinear_vma,
1127 						addr) != page->index) {
1128 				pte_t ptfile = pgoff_to_pte(page->index);
1129 				if (pte_soft_dirty(ptent))
1130 					ptfile = pte_file_mksoft_dirty(ptfile);
1131 				set_pte_at(mm, addr, pte, ptfile);
1132 			}
1133 			if (PageAnon(page))
1134 				rss[MM_ANONPAGES]--;
1135 			else {
1136 				if (pte_dirty(ptent)) {
1137 					force_flush = 1;
1138 					set_page_dirty(page);
1139 				}
1140 				if (pte_young(ptent) &&
1141 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1142 					mark_page_accessed(page);
1143 				rss[MM_FILEPAGES]--;
1144 			}
1145 			page_remove_rmap(page);
1146 			if (unlikely(page_mapcount(page) < 0))
1147 				print_bad_pte(vma, addr, ptent, page);
1148 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1149 				force_flush = 1;
1150 				break;
1151 			}
1152 			continue;
1153 		}
1154 		/*
1155 		 * If details->check_mapping, we leave swap entries;
1156 		 * if details->nonlinear_vma, we leave file entries.
1157 		 */
1158 		if (unlikely(details))
1159 			continue;
1160 		if (pte_file(ptent)) {
1161 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1162 				print_bad_pte(vma, addr, ptent, NULL);
1163 		} else {
1164 			swp_entry_t entry = pte_to_swp_entry(ptent);
1165 
1166 			if (!non_swap_entry(entry))
1167 				rss[MM_SWAPENTS]--;
1168 			else if (is_migration_entry(entry)) {
1169 				struct page *page;
1170 
1171 				page = migration_entry_to_page(entry);
1172 
1173 				if (PageAnon(page))
1174 					rss[MM_ANONPAGES]--;
1175 				else
1176 					rss[MM_FILEPAGES]--;
1177 			}
1178 			if (unlikely(!free_swap_and_cache(entry)))
1179 				print_bad_pte(vma, addr, ptent, NULL);
1180 		}
1181 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1182 	} while (pte++, addr += PAGE_SIZE, addr != end);
1183 
1184 	add_mm_rss_vec(mm, rss);
1185 	arch_leave_lazy_mmu_mode();
1186 
1187 	/* Do the actual TLB flush before dropping ptl */
1188 	if (force_flush) {
1189 		unsigned long old_end;
1190 
1191 		/*
1192 		 * Flush the TLB just for the previous segment,
1193 		 * then update the range to be the remaining
1194 		 * TLB range.
1195 		 */
1196 		old_end = tlb->end;
1197 		tlb->end = addr;
1198 		tlb_flush_mmu_tlbonly(tlb);
1199 		tlb->start = addr;
1200 		tlb->end = old_end;
1201 	}
1202 	pte_unmap_unlock(start_pte, ptl);
1203 
1204 	/*
1205 	 * If we forced a TLB flush (either due to running out of
1206 	 * batch buffers or because we needed to flush dirty TLB
1207 	 * entries before releasing the ptl), free the batched
1208 	 * memory too. Restart if we didn't do everything.
1209 	 */
1210 	if (force_flush) {
1211 		force_flush = 0;
1212 		tlb_flush_mmu_free(tlb);
1213 
1214 		if (addr != end)
1215 			goto again;
1216 	}
1217 
1218 	return addr;
1219 }
1220 
1221 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1222 				struct vm_area_struct *vma, pud_t *pud,
1223 				unsigned long addr, unsigned long end,
1224 				struct zap_details *details)
1225 {
1226 	pmd_t *pmd;
1227 	unsigned long next;
1228 
1229 	pmd = pmd_offset(pud, addr);
1230 	do {
1231 		next = pmd_addr_end(addr, end);
1232 		if (pmd_trans_huge(*pmd)) {
1233 			if (next - addr != HPAGE_PMD_SIZE) {
1234 #ifdef CONFIG_DEBUG_VM
1235 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1236 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1237 						__func__, addr, end,
1238 						vma->vm_start,
1239 						vma->vm_end);
1240 					BUG();
1241 				}
1242 #endif
1243 				split_huge_page_pmd(vma, addr, pmd);
1244 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1245 				goto next;
1246 			/* fall through */
1247 		}
1248 		/*
1249 		 * Here there can be other concurrent MADV_DONTNEED or
1250 		 * trans huge page faults running, and if the pmd is
1251 		 * none or trans huge it can change under us. This is
1252 		 * because MADV_DONTNEED holds the mmap_sem in read
1253 		 * mode.
1254 		 */
1255 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1256 			goto next;
1257 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1258 next:
1259 		cond_resched();
1260 	} while (pmd++, addr = next, addr != end);
1261 
1262 	return addr;
1263 }
1264 
1265 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1266 				struct vm_area_struct *vma, pgd_t *pgd,
1267 				unsigned long addr, unsigned long end,
1268 				struct zap_details *details)
1269 {
1270 	pud_t *pud;
1271 	unsigned long next;
1272 
1273 	pud = pud_offset(pgd, addr);
1274 	do {
1275 		next = pud_addr_end(addr, end);
1276 		if (pud_none_or_clear_bad(pud))
1277 			continue;
1278 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1279 	} while (pud++, addr = next, addr != end);
1280 
1281 	return addr;
1282 }
1283 
1284 static void unmap_page_range(struct mmu_gather *tlb,
1285 			     struct vm_area_struct *vma,
1286 			     unsigned long addr, unsigned long end,
1287 			     struct zap_details *details)
1288 {
1289 	pgd_t *pgd;
1290 	unsigned long next;
1291 
1292 	if (details && !details->check_mapping && !details->nonlinear_vma)
1293 		details = NULL;
1294 
1295 	BUG_ON(addr >= end);
1296 	tlb_start_vma(tlb, vma);
1297 	pgd = pgd_offset(vma->vm_mm, addr);
1298 	do {
1299 		next = pgd_addr_end(addr, end);
1300 		if (pgd_none_or_clear_bad(pgd))
1301 			continue;
1302 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1303 	} while (pgd++, addr = next, addr != end);
1304 	tlb_end_vma(tlb, vma);
1305 }
1306 
1307 
1308 static void unmap_single_vma(struct mmu_gather *tlb,
1309 		struct vm_area_struct *vma, unsigned long start_addr,
1310 		unsigned long end_addr,
1311 		struct zap_details *details)
1312 {
1313 	unsigned long start = max(vma->vm_start, start_addr);
1314 	unsigned long end;
1315 
1316 	if (start >= vma->vm_end)
1317 		return;
1318 	end = min(vma->vm_end, end_addr);
1319 	if (end <= vma->vm_start)
1320 		return;
1321 
1322 	if (vma->vm_file)
1323 		uprobe_munmap(vma, start, end);
1324 
1325 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1326 		untrack_pfn(vma, 0, 0);
1327 
1328 	if (start != end) {
1329 		if (unlikely(is_vm_hugetlb_page(vma))) {
1330 			/*
1331 			 * It is undesirable to test vma->vm_file as it
1332 			 * should be non-null for valid hugetlb area.
1333 			 * However, vm_file will be NULL in the error
1334 			 * cleanup path of mmap_region. When
1335 			 * hugetlbfs ->mmap method fails,
1336 			 * mmap_region() nullifies vma->vm_file
1337 			 * before calling this function to clean up.
1338 			 * Since no pte has actually been setup, it is
1339 			 * safe to do nothing in this case.
1340 			 */
1341 			if (vma->vm_file) {
1342 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1343 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1344 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1345 			}
1346 		} else
1347 			unmap_page_range(tlb, vma, start, end, details);
1348 	}
1349 }
1350 
1351 /**
1352  * unmap_vmas - unmap a range of memory covered by a list of vma's
1353  * @tlb: address of the caller's struct mmu_gather
1354  * @vma: the starting vma
1355  * @start_addr: virtual address at which to start unmapping
1356  * @end_addr: virtual address at which to end unmapping
1357  *
1358  * Unmap all pages in the vma list.
1359  *
1360  * Only addresses between `start' and `end' will be unmapped.
1361  *
1362  * The VMA list must be sorted in ascending virtual address order.
1363  *
1364  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1365  * range after unmap_vmas() returns.  So the only responsibility here is to
1366  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1367  * drops the lock and schedules.
1368  */
1369 void unmap_vmas(struct mmu_gather *tlb,
1370 		struct vm_area_struct *vma, unsigned long start_addr,
1371 		unsigned long end_addr)
1372 {
1373 	struct mm_struct *mm = vma->vm_mm;
1374 
1375 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1376 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1377 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1378 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1379 }
1380 
1381 /**
1382  * zap_page_range - remove user pages in a given range
1383  * @vma: vm_area_struct holding the applicable pages
1384  * @start: starting address of pages to zap
1385  * @size: number of bytes to zap
1386  * @details: details of nonlinear truncation or shared cache invalidation
1387  *
1388  * Caller must protect the VMA list
1389  */
1390 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1391 		unsigned long size, struct zap_details *details)
1392 {
1393 	struct mm_struct *mm = vma->vm_mm;
1394 	struct mmu_gather tlb;
1395 	unsigned long end = start + size;
1396 
1397 	lru_add_drain();
1398 	tlb_gather_mmu(&tlb, mm, start, end);
1399 	update_hiwater_rss(mm);
1400 	mmu_notifier_invalidate_range_start(mm, start, end);
1401 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1402 		unmap_single_vma(&tlb, vma, start, end, details);
1403 	mmu_notifier_invalidate_range_end(mm, start, end);
1404 	tlb_finish_mmu(&tlb, start, end);
1405 }
1406 
1407 /**
1408  * zap_page_range_single - remove user pages in a given range
1409  * @vma: vm_area_struct holding the applicable pages
1410  * @address: starting address of pages to zap
1411  * @size: number of bytes to zap
1412  * @details: details of nonlinear truncation or shared cache invalidation
1413  *
1414  * The range must fit into one VMA.
1415  */
1416 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1417 		unsigned long size, struct zap_details *details)
1418 {
1419 	struct mm_struct *mm = vma->vm_mm;
1420 	struct mmu_gather tlb;
1421 	unsigned long end = address + size;
1422 
1423 	lru_add_drain();
1424 	tlb_gather_mmu(&tlb, mm, address, end);
1425 	update_hiwater_rss(mm);
1426 	mmu_notifier_invalidate_range_start(mm, address, end);
1427 	unmap_single_vma(&tlb, vma, address, end, details);
1428 	mmu_notifier_invalidate_range_end(mm, address, end);
1429 	tlb_finish_mmu(&tlb, address, end);
1430 }
1431 
1432 /**
1433  * zap_vma_ptes - remove ptes mapping the vma
1434  * @vma: vm_area_struct holding ptes to be zapped
1435  * @address: starting address of pages to zap
1436  * @size: number of bytes to zap
1437  *
1438  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1439  *
1440  * The entire address range must be fully contained within the vma.
1441  *
1442  * Returns 0 if successful.
1443  */
1444 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1445 		unsigned long size)
1446 {
1447 	if (address < vma->vm_start || address + size > vma->vm_end ||
1448 	    		!(vma->vm_flags & VM_PFNMAP))
1449 		return -1;
1450 	zap_page_range_single(vma, address, size, NULL);
1451 	return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1454 
1455 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1456 			spinlock_t **ptl)
1457 {
1458 	pgd_t * pgd = pgd_offset(mm, addr);
1459 	pud_t * pud = pud_alloc(mm, pgd, addr);
1460 	if (pud) {
1461 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1462 		if (pmd) {
1463 			VM_BUG_ON(pmd_trans_huge(*pmd));
1464 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1465 		}
1466 	}
1467 	return NULL;
1468 }
1469 
1470 /*
1471  * This is the old fallback for page remapping.
1472  *
1473  * For historical reasons, it only allows reserved pages. Only
1474  * old drivers should use this, and they needed to mark their
1475  * pages reserved for the old functions anyway.
1476  */
1477 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1478 			struct page *page, pgprot_t prot)
1479 {
1480 	struct mm_struct *mm = vma->vm_mm;
1481 	int retval;
1482 	pte_t *pte;
1483 	spinlock_t *ptl;
1484 
1485 	retval = -EINVAL;
1486 	if (PageAnon(page))
1487 		goto out;
1488 	retval = -ENOMEM;
1489 	flush_dcache_page(page);
1490 	pte = get_locked_pte(mm, addr, &ptl);
1491 	if (!pte)
1492 		goto out;
1493 	retval = -EBUSY;
1494 	if (!pte_none(*pte))
1495 		goto out_unlock;
1496 
1497 	/* Ok, finally just insert the thing.. */
1498 	get_page(page);
1499 	inc_mm_counter_fast(mm, MM_FILEPAGES);
1500 	page_add_file_rmap(page);
1501 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1502 
1503 	retval = 0;
1504 	pte_unmap_unlock(pte, ptl);
1505 	return retval;
1506 out_unlock:
1507 	pte_unmap_unlock(pte, ptl);
1508 out:
1509 	return retval;
1510 }
1511 
1512 /**
1513  * vm_insert_page - insert single page into user vma
1514  * @vma: user vma to map to
1515  * @addr: target user address of this page
1516  * @page: source kernel page
1517  *
1518  * This allows drivers to insert individual pages they've allocated
1519  * into a user vma.
1520  *
1521  * The page has to be a nice clean _individual_ kernel allocation.
1522  * If you allocate a compound page, you need to have marked it as
1523  * such (__GFP_COMP), or manually just split the page up yourself
1524  * (see split_page()).
1525  *
1526  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1527  * took an arbitrary page protection parameter. This doesn't allow
1528  * that. Your vma protection will have to be set up correctly, which
1529  * means that if you want a shared writable mapping, you'd better
1530  * ask for a shared writable mapping!
1531  *
1532  * The page does not need to be reserved.
1533  *
1534  * Usually this function is called from f_op->mmap() handler
1535  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1536  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1537  * function from other places, for example from page-fault handler.
1538  */
1539 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1540 			struct page *page)
1541 {
1542 	if (addr < vma->vm_start || addr >= vma->vm_end)
1543 		return -EFAULT;
1544 	if (!page_count(page))
1545 		return -EINVAL;
1546 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1547 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1548 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1549 		vma->vm_flags |= VM_MIXEDMAP;
1550 	}
1551 	return insert_page(vma, addr, page, vma->vm_page_prot);
1552 }
1553 EXPORT_SYMBOL(vm_insert_page);
1554 
1555 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1556 			unsigned long pfn, pgprot_t prot)
1557 {
1558 	struct mm_struct *mm = vma->vm_mm;
1559 	int retval;
1560 	pte_t *pte, entry;
1561 	spinlock_t *ptl;
1562 
1563 	retval = -ENOMEM;
1564 	pte = get_locked_pte(mm, addr, &ptl);
1565 	if (!pte)
1566 		goto out;
1567 	retval = -EBUSY;
1568 	if (!pte_none(*pte))
1569 		goto out_unlock;
1570 
1571 	/* Ok, finally just insert the thing.. */
1572 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1573 	set_pte_at(mm, addr, pte, entry);
1574 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1575 
1576 	retval = 0;
1577 out_unlock:
1578 	pte_unmap_unlock(pte, ptl);
1579 out:
1580 	return retval;
1581 }
1582 
1583 /**
1584  * vm_insert_pfn - insert single pfn into user vma
1585  * @vma: user vma to map to
1586  * @addr: target user address of this page
1587  * @pfn: source kernel pfn
1588  *
1589  * Similar to vm_insert_page, this allows drivers to insert individual pages
1590  * they've allocated into a user vma. Same comments apply.
1591  *
1592  * This function should only be called from a vm_ops->fault handler, and
1593  * in that case the handler should return NULL.
1594  *
1595  * vma cannot be a COW mapping.
1596  *
1597  * As this is called only for pages that do not currently exist, we
1598  * do not need to flush old virtual caches or the TLB.
1599  */
1600 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1601 			unsigned long pfn)
1602 {
1603 	int ret;
1604 	pgprot_t pgprot = vma->vm_page_prot;
1605 	/*
1606 	 * Technically, architectures with pte_special can avoid all these
1607 	 * restrictions (same for remap_pfn_range).  However we would like
1608 	 * consistency in testing and feature parity among all, so we should
1609 	 * try to keep these invariants in place for everybody.
1610 	 */
1611 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1612 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1613 						(VM_PFNMAP|VM_MIXEDMAP));
1614 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1615 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1616 
1617 	if (addr < vma->vm_start || addr >= vma->vm_end)
1618 		return -EFAULT;
1619 	if (track_pfn_insert(vma, &pgprot, pfn))
1620 		return -EINVAL;
1621 
1622 	ret = insert_pfn(vma, addr, pfn, pgprot);
1623 
1624 	return ret;
1625 }
1626 EXPORT_SYMBOL(vm_insert_pfn);
1627 
1628 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1629 			unsigned long pfn)
1630 {
1631 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1632 
1633 	if (addr < vma->vm_start || addr >= vma->vm_end)
1634 		return -EFAULT;
1635 
1636 	/*
1637 	 * If we don't have pte special, then we have to use the pfn_valid()
1638 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1639 	 * refcount the page if pfn_valid is true (hence insert_page rather
1640 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1641 	 * without pte special, it would there be refcounted as a normal page.
1642 	 */
1643 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1644 		struct page *page;
1645 
1646 		page = pfn_to_page(pfn);
1647 		return insert_page(vma, addr, page, vma->vm_page_prot);
1648 	}
1649 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1650 }
1651 EXPORT_SYMBOL(vm_insert_mixed);
1652 
1653 /*
1654  * maps a range of physical memory into the requested pages. the old
1655  * mappings are removed. any references to nonexistent pages results
1656  * in null mappings (currently treated as "copy-on-access")
1657  */
1658 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1659 			unsigned long addr, unsigned long end,
1660 			unsigned long pfn, pgprot_t prot)
1661 {
1662 	pte_t *pte;
1663 	spinlock_t *ptl;
1664 
1665 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1666 	if (!pte)
1667 		return -ENOMEM;
1668 	arch_enter_lazy_mmu_mode();
1669 	do {
1670 		BUG_ON(!pte_none(*pte));
1671 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1672 		pfn++;
1673 	} while (pte++, addr += PAGE_SIZE, addr != end);
1674 	arch_leave_lazy_mmu_mode();
1675 	pte_unmap_unlock(pte - 1, ptl);
1676 	return 0;
1677 }
1678 
1679 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1680 			unsigned long addr, unsigned long end,
1681 			unsigned long pfn, pgprot_t prot)
1682 {
1683 	pmd_t *pmd;
1684 	unsigned long next;
1685 
1686 	pfn -= addr >> PAGE_SHIFT;
1687 	pmd = pmd_alloc(mm, pud, addr);
1688 	if (!pmd)
1689 		return -ENOMEM;
1690 	VM_BUG_ON(pmd_trans_huge(*pmd));
1691 	do {
1692 		next = pmd_addr_end(addr, end);
1693 		if (remap_pte_range(mm, pmd, addr, next,
1694 				pfn + (addr >> PAGE_SHIFT), prot))
1695 			return -ENOMEM;
1696 	} while (pmd++, addr = next, addr != end);
1697 	return 0;
1698 }
1699 
1700 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1701 			unsigned long addr, unsigned long end,
1702 			unsigned long pfn, pgprot_t prot)
1703 {
1704 	pud_t *pud;
1705 	unsigned long next;
1706 
1707 	pfn -= addr >> PAGE_SHIFT;
1708 	pud = pud_alloc(mm, pgd, addr);
1709 	if (!pud)
1710 		return -ENOMEM;
1711 	do {
1712 		next = pud_addr_end(addr, end);
1713 		if (remap_pmd_range(mm, pud, addr, next,
1714 				pfn + (addr >> PAGE_SHIFT), prot))
1715 			return -ENOMEM;
1716 	} while (pud++, addr = next, addr != end);
1717 	return 0;
1718 }
1719 
1720 /**
1721  * remap_pfn_range - remap kernel memory to userspace
1722  * @vma: user vma to map to
1723  * @addr: target user address to start at
1724  * @pfn: physical address of kernel memory
1725  * @size: size of map area
1726  * @prot: page protection flags for this mapping
1727  *
1728  *  Note: this is only safe if the mm semaphore is held when called.
1729  */
1730 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1731 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1732 {
1733 	pgd_t *pgd;
1734 	unsigned long next;
1735 	unsigned long end = addr + PAGE_ALIGN(size);
1736 	struct mm_struct *mm = vma->vm_mm;
1737 	int err;
1738 
1739 	/*
1740 	 * Physically remapped pages are special. Tell the
1741 	 * rest of the world about it:
1742 	 *   VM_IO tells people not to look at these pages
1743 	 *	(accesses can have side effects).
1744 	 *   VM_PFNMAP tells the core MM that the base pages are just
1745 	 *	raw PFN mappings, and do not have a "struct page" associated
1746 	 *	with them.
1747 	 *   VM_DONTEXPAND
1748 	 *      Disable vma merging and expanding with mremap().
1749 	 *   VM_DONTDUMP
1750 	 *      Omit vma from core dump, even when VM_IO turned off.
1751 	 *
1752 	 * There's a horrible special case to handle copy-on-write
1753 	 * behaviour that some programs depend on. We mark the "original"
1754 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1755 	 * See vm_normal_page() for details.
1756 	 */
1757 	if (is_cow_mapping(vma->vm_flags)) {
1758 		if (addr != vma->vm_start || end != vma->vm_end)
1759 			return -EINVAL;
1760 		vma->vm_pgoff = pfn;
1761 	}
1762 
1763 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1764 	if (err)
1765 		return -EINVAL;
1766 
1767 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1768 
1769 	BUG_ON(addr >= end);
1770 	pfn -= addr >> PAGE_SHIFT;
1771 	pgd = pgd_offset(mm, addr);
1772 	flush_cache_range(vma, addr, end);
1773 	do {
1774 		next = pgd_addr_end(addr, end);
1775 		err = remap_pud_range(mm, pgd, addr, next,
1776 				pfn + (addr >> PAGE_SHIFT), prot);
1777 		if (err)
1778 			break;
1779 	} while (pgd++, addr = next, addr != end);
1780 
1781 	if (err)
1782 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
1783 
1784 	return err;
1785 }
1786 EXPORT_SYMBOL(remap_pfn_range);
1787 
1788 /**
1789  * vm_iomap_memory - remap memory to userspace
1790  * @vma: user vma to map to
1791  * @start: start of area
1792  * @len: size of area
1793  *
1794  * This is a simplified io_remap_pfn_range() for common driver use. The
1795  * driver just needs to give us the physical memory range to be mapped,
1796  * we'll figure out the rest from the vma information.
1797  *
1798  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1799  * whatever write-combining details or similar.
1800  */
1801 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1802 {
1803 	unsigned long vm_len, pfn, pages;
1804 
1805 	/* Check that the physical memory area passed in looks valid */
1806 	if (start + len < start)
1807 		return -EINVAL;
1808 	/*
1809 	 * You *really* shouldn't map things that aren't page-aligned,
1810 	 * but we've historically allowed it because IO memory might
1811 	 * just have smaller alignment.
1812 	 */
1813 	len += start & ~PAGE_MASK;
1814 	pfn = start >> PAGE_SHIFT;
1815 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1816 	if (pfn + pages < pfn)
1817 		return -EINVAL;
1818 
1819 	/* We start the mapping 'vm_pgoff' pages into the area */
1820 	if (vma->vm_pgoff > pages)
1821 		return -EINVAL;
1822 	pfn += vma->vm_pgoff;
1823 	pages -= vma->vm_pgoff;
1824 
1825 	/* Can we fit all of the mapping? */
1826 	vm_len = vma->vm_end - vma->vm_start;
1827 	if (vm_len >> PAGE_SHIFT > pages)
1828 		return -EINVAL;
1829 
1830 	/* Ok, let it rip */
1831 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1832 }
1833 EXPORT_SYMBOL(vm_iomap_memory);
1834 
1835 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1836 				     unsigned long addr, unsigned long end,
1837 				     pte_fn_t fn, void *data)
1838 {
1839 	pte_t *pte;
1840 	int err;
1841 	pgtable_t token;
1842 	spinlock_t *uninitialized_var(ptl);
1843 
1844 	pte = (mm == &init_mm) ?
1845 		pte_alloc_kernel(pmd, addr) :
1846 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1847 	if (!pte)
1848 		return -ENOMEM;
1849 
1850 	BUG_ON(pmd_huge(*pmd));
1851 
1852 	arch_enter_lazy_mmu_mode();
1853 
1854 	token = pmd_pgtable(*pmd);
1855 
1856 	do {
1857 		err = fn(pte++, token, addr, data);
1858 		if (err)
1859 			break;
1860 	} while (addr += PAGE_SIZE, addr != end);
1861 
1862 	arch_leave_lazy_mmu_mode();
1863 
1864 	if (mm != &init_mm)
1865 		pte_unmap_unlock(pte-1, ptl);
1866 	return err;
1867 }
1868 
1869 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1870 				     unsigned long addr, unsigned long end,
1871 				     pte_fn_t fn, void *data)
1872 {
1873 	pmd_t *pmd;
1874 	unsigned long next;
1875 	int err;
1876 
1877 	BUG_ON(pud_huge(*pud));
1878 
1879 	pmd = pmd_alloc(mm, pud, addr);
1880 	if (!pmd)
1881 		return -ENOMEM;
1882 	do {
1883 		next = pmd_addr_end(addr, end);
1884 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1885 		if (err)
1886 			break;
1887 	} while (pmd++, addr = next, addr != end);
1888 	return err;
1889 }
1890 
1891 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1892 				     unsigned long addr, unsigned long end,
1893 				     pte_fn_t fn, void *data)
1894 {
1895 	pud_t *pud;
1896 	unsigned long next;
1897 	int err;
1898 
1899 	pud = pud_alloc(mm, pgd, addr);
1900 	if (!pud)
1901 		return -ENOMEM;
1902 	do {
1903 		next = pud_addr_end(addr, end);
1904 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1905 		if (err)
1906 			break;
1907 	} while (pud++, addr = next, addr != end);
1908 	return err;
1909 }
1910 
1911 /*
1912  * Scan a region of virtual memory, filling in page tables as necessary
1913  * and calling a provided function on each leaf page table.
1914  */
1915 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1916 			unsigned long size, pte_fn_t fn, void *data)
1917 {
1918 	pgd_t *pgd;
1919 	unsigned long next;
1920 	unsigned long end = addr + size;
1921 	int err;
1922 
1923 	BUG_ON(addr >= end);
1924 	pgd = pgd_offset(mm, addr);
1925 	do {
1926 		next = pgd_addr_end(addr, end);
1927 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1928 		if (err)
1929 			break;
1930 	} while (pgd++, addr = next, addr != end);
1931 
1932 	return err;
1933 }
1934 EXPORT_SYMBOL_GPL(apply_to_page_range);
1935 
1936 /*
1937  * handle_pte_fault chooses page fault handler according to an entry
1938  * which was read non-atomically.  Before making any commitment, on
1939  * those architectures or configurations (e.g. i386 with PAE) which
1940  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
1941  * must check under lock before unmapping the pte and proceeding
1942  * (but do_wp_page is only called after already making such a check;
1943  * and do_anonymous_page can safely check later on).
1944  */
1945 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1946 				pte_t *page_table, pte_t orig_pte)
1947 {
1948 	int same = 1;
1949 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1950 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1951 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1952 		spin_lock(ptl);
1953 		same = pte_same(*page_table, orig_pte);
1954 		spin_unlock(ptl);
1955 	}
1956 #endif
1957 	pte_unmap(page_table);
1958 	return same;
1959 }
1960 
1961 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1962 {
1963 	debug_dma_assert_idle(src);
1964 
1965 	/*
1966 	 * If the source page was a PFN mapping, we don't have
1967 	 * a "struct page" for it. We do a best-effort copy by
1968 	 * just copying from the original user address. If that
1969 	 * fails, we just zero-fill it. Live with it.
1970 	 */
1971 	if (unlikely(!src)) {
1972 		void *kaddr = kmap_atomic(dst);
1973 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1974 
1975 		/*
1976 		 * This really shouldn't fail, because the page is there
1977 		 * in the page tables. But it might just be unreadable,
1978 		 * in which case we just give up and fill the result with
1979 		 * zeroes.
1980 		 */
1981 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1982 			clear_page(kaddr);
1983 		kunmap_atomic(kaddr);
1984 		flush_dcache_page(dst);
1985 	} else
1986 		copy_user_highpage(dst, src, va, vma);
1987 }
1988 
1989 /*
1990  * Notify the address space that the page is about to become writable so that
1991  * it can prohibit this or wait for the page to get into an appropriate state.
1992  *
1993  * We do this without the lock held, so that it can sleep if it needs to.
1994  */
1995 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1996 	       unsigned long address)
1997 {
1998 	struct vm_fault vmf;
1999 	int ret;
2000 
2001 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2002 	vmf.pgoff = page->index;
2003 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2004 	vmf.page = page;
2005 
2006 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2007 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2008 		return ret;
2009 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2010 		lock_page(page);
2011 		if (!page->mapping) {
2012 			unlock_page(page);
2013 			return 0; /* retry */
2014 		}
2015 		ret |= VM_FAULT_LOCKED;
2016 	} else
2017 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2018 	return ret;
2019 }
2020 
2021 /*
2022  * This routine handles present pages, when users try to write
2023  * to a shared page. It is done by copying the page to a new address
2024  * and decrementing the shared-page counter for the old page.
2025  *
2026  * Note that this routine assumes that the protection checks have been
2027  * done by the caller (the low-level page fault routine in most cases).
2028  * Thus we can safely just mark it writable once we've done any necessary
2029  * COW.
2030  *
2031  * We also mark the page dirty at this point even though the page will
2032  * change only once the write actually happens. This avoids a few races,
2033  * and potentially makes it more efficient.
2034  *
2035  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2036  * but allow concurrent faults), with pte both mapped and locked.
2037  * We return with mmap_sem still held, but pte unmapped and unlocked.
2038  */
2039 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2040 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2041 		spinlock_t *ptl, pte_t orig_pte)
2042 	__releases(ptl)
2043 {
2044 	struct page *old_page, *new_page = NULL;
2045 	pte_t entry;
2046 	int ret = 0;
2047 	int page_mkwrite = 0;
2048 	struct page *dirty_page = NULL;
2049 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2050 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2051 	struct mem_cgroup *memcg;
2052 
2053 	old_page = vm_normal_page(vma, address, orig_pte);
2054 	if (!old_page) {
2055 		/*
2056 		 * VM_MIXEDMAP !pfn_valid() case
2057 		 *
2058 		 * We should not cow pages in a shared writeable mapping.
2059 		 * Just mark the pages writable as we can't do any dirty
2060 		 * accounting on raw pfn maps.
2061 		 */
2062 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2063 				     (VM_WRITE|VM_SHARED))
2064 			goto reuse;
2065 		goto gotten;
2066 	}
2067 
2068 	/*
2069 	 * Take out anonymous pages first, anonymous shared vmas are
2070 	 * not dirty accountable.
2071 	 */
2072 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2073 		if (!trylock_page(old_page)) {
2074 			page_cache_get(old_page);
2075 			pte_unmap_unlock(page_table, ptl);
2076 			lock_page(old_page);
2077 			page_table = pte_offset_map_lock(mm, pmd, address,
2078 							 &ptl);
2079 			if (!pte_same(*page_table, orig_pte)) {
2080 				unlock_page(old_page);
2081 				goto unlock;
2082 			}
2083 			page_cache_release(old_page);
2084 		}
2085 		if (reuse_swap_page(old_page)) {
2086 			/*
2087 			 * The page is all ours.  Move it to our anon_vma so
2088 			 * the rmap code will not search our parent or siblings.
2089 			 * Protected against the rmap code by the page lock.
2090 			 */
2091 			page_move_anon_rmap(old_page, vma, address);
2092 			unlock_page(old_page);
2093 			goto reuse;
2094 		}
2095 		unlock_page(old_page);
2096 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2097 					(VM_WRITE|VM_SHARED))) {
2098 		/*
2099 		 * Only catch write-faults on shared writable pages,
2100 		 * read-only shared pages can get COWed by
2101 		 * get_user_pages(.write=1, .force=1).
2102 		 */
2103 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2104 			int tmp;
2105 			page_cache_get(old_page);
2106 			pte_unmap_unlock(page_table, ptl);
2107 			tmp = do_page_mkwrite(vma, old_page, address);
2108 			if (unlikely(!tmp || (tmp &
2109 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2110 				page_cache_release(old_page);
2111 				return tmp;
2112 			}
2113 			/*
2114 			 * Since we dropped the lock we need to revalidate
2115 			 * the PTE as someone else may have changed it.  If
2116 			 * they did, we just return, as we can count on the
2117 			 * MMU to tell us if they didn't also make it writable.
2118 			 */
2119 			page_table = pte_offset_map_lock(mm, pmd, address,
2120 							 &ptl);
2121 			if (!pte_same(*page_table, orig_pte)) {
2122 				unlock_page(old_page);
2123 				goto unlock;
2124 			}
2125 
2126 			page_mkwrite = 1;
2127 		}
2128 		dirty_page = old_page;
2129 		get_page(dirty_page);
2130 
2131 reuse:
2132 		/*
2133 		 * Clear the pages cpupid information as the existing
2134 		 * information potentially belongs to a now completely
2135 		 * unrelated process.
2136 		 */
2137 		if (old_page)
2138 			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2139 
2140 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2141 		entry = pte_mkyoung(orig_pte);
2142 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2143 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2144 			update_mmu_cache(vma, address, page_table);
2145 		pte_unmap_unlock(page_table, ptl);
2146 		ret |= VM_FAULT_WRITE;
2147 
2148 		if (!dirty_page)
2149 			return ret;
2150 
2151 		/*
2152 		 * Yes, Virginia, this is actually required to prevent a race
2153 		 * with clear_page_dirty_for_io() from clearing the page dirty
2154 		 * bit after it clear all dirty ptes, but before a racing
2155 		 * do_wp_page installs a dirty pte.
2156 		 *
2157 		 * do_shared_fault is protected similarly.
2158 		 */
2159 		if (!page_mkwrite) {
2160 			wait_on_page_locked(dirty_page);
2161 			set_page_dirty_balance(dirty_page);
2162 			/* file_update_time outside page_lock */
2163 			if (vma->vm_file)
2164 				file_update_time(vma->vm_file);
2165 		}
2166 		put_page(dirty_page);
2167 		if (page_mkwrite) {
2168 			struct address_space *mapping = dirty_page->mapping;
2169 
2170 			set_page_dirty(dirty_page);
2171 			unlock_page(dirty_page);
2172 			page_cache_release(dirty_page);
2173 			if (mapping)	{
2174 				/*
2175 				 * Some device drivers do not set page.mapping
2176 				 * but still dirty their pages
2177 				 */
2178 				balance_dirty_pages_ratelimited(mapping);
2179 			}
2180 		}
2181 
2182 		return ret;
2183 	}
2184 
2185 	/*
2186 	 * Ok, we need to copy. Oh, well..
2187 	 */
2188 	page_cache_get(old_page);
2189 gotten:
2190 	pte_unmap_unlock(page_table, ptl);
2191 
2192 	if (unlikely(anon_vma_prepare(vma)))
2193 		goto oom;
2194 
2195 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2196 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2197 		if (!new_page)
2198 			goto oom;
2199 	} else {
2200 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2201 		if (!new_page)
2202 			goto oom;
2203 		cow_user_page(new_page, old_page, address, vma);
2204 	}
2205 	__SetPageUptodate(new_page);
2206 
2207 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
2208 		goto oom_free_new;
2209 
2210 	mmun_start  = address & PAGE_MASK;
2211 	mmun_end    = mmun_start + PAGE_SIZE;
2212 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2213 
2214 	/*
2215 	 * Re-check the pte - we dropped the lock
2216 	 */
2217 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2218 	if (likely(pte_same(*page_table, orig_pte))) {
2219 		if (old_page) {
2220 			if (!PageAnon(old_page)) {
2221 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2222 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2223 			}
2224 		} else
2225 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2226 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2227 		entry = mk_pte(new_page, vma->vm_page_prot);
2228 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2229 		/*
2230 		 * Clear the pte entry and flush it first, before updating the
2231 		 * pte with the new entry. This will avoid a race condition
2232 		 * seen in the presence of one thread doing SMC and another
2233 		 * thread doing COW.
2234 		 */
2235 		ptep_clear_flush(vma, address, page_table);
2236 		page_add_new_anon_rmap(new_page, vma, address);
2237 		mem_cgroup_commit_charge(new_page, memcg, false);
2238 		lru_cache_add_active_or_unevictable(new_page, vma);
2239 		/*
2240 		 * We call the notify macro here because, when using secondary
2241 		 * mmu page tables (such as kvm shadow page tables), we want the
2242 		 * new page to be mapped directly into the secondary page table.
2243 		 */
2244 		set_pte_at_notify(mm, address, page_table, entry);
2245 		update_mmu_cache(vma, address, page_table);
2246 		if (old_page) {
2247 			/*
2248 			 * Only after switching the pte to the new page may
2249 			 * we remove the mapcount here. Otherwise another
2250 			 * process may come and find the rmap count decremented
2251 			 * before the pte is switched to the new page, and
2252 			 * "reuse" the old page writing into it while our pte
2253 			 * here still points into it and can be read by other
2254 			 * threads.
2255 			 *
2256 			 * The critical issue is to order this
2257 			 * page_remove_rmap with the ptp_clear_flush above.
2258 			 * Those stores are ordered by (if nothing else,)
2259 			 * the barrier present in the atomic_add_negative
2260 			 * in page_remove_rmap.
2261 			 *
2262 			 * Then the TLB flush in ptep_clear_flush ensures that
2263 			 * no process can access the old page before the
2264 			 * decremented mapcount is visible. And the old page
2265 			 * cannot be reused until after the decremented
2266 			 * mapcount is visible. So transitively, TLBs to
2267 			 * old page will be flushed before it can be reused.
2268 			 */
2269 			page_remove_rmap(old_page);
2270 		}
2271 
2272 		/* Free the old page.. */
2273 		new_page = old_page;
2274 		ret |= VM_FAULT_WRITE;
2275 	} else
2276 		mem_cgroup_cancel_charge(new_page, memcg);
2277 
2278 	if (new_page)
2279 		page_cache_release(new_page);
2280 unlock:
2281 	pte_unmap_unlock(page_table, ptl);
2282 	if (mmun_end > mmun_start)
2283 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2284 	if (old_page) {
2285 		/*
2286 		 * Don't let another task, with possibly unlocked vma,
2287 		 * keep the mlocked page.
2288 		 */
2289 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2290 			lock_page(old_page);	/* LRU manipulation */
2291 			munlock_vma_page(old_page);
2292 			unlock_page(old_page);
2293 		}
2294 		page_cache_release(old_page);
2295 	}
2296 	return ret;
2297 oom_free_new:
2298 	page_cache_release(new_page);
2299 oom:
2300 	if (old_page)
2301 		page_cache_release(old_page);
2302 	return VM_FAULT_OOM;
2303 }
2304 
2305 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2306 		unsigned long start_addr, unsigned long end_addr,
2307 		struct zap_details *details)
2308 {
2309 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2310 }
2311 
2312 static inline void unmap_mapping_range_tree(struct rb_root *root,
2313 					    struct zap_details *details)
2314 {
2315 	struct vm_area_struct *vma;
2316 	pgoff_t vba, vea, zba, zea;
2317 
2318 	vma_interval_tree_foreach(vma, root,
2319 			details->first_index, details->last_index) {
2320 
2321 		vba = vma->vm_pgoff;
2322 		vea = vba + vma_pages(vma) - 1;
2323 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2324 		zba = details->first_index;
2325 		if (zba < vba)
2326 			zba = vba;
2327 		zea = details->last_index;
2328 		if (zea > vea)
2329 			zea = vea;
2330 
2331 		unmap_mapping_range_vma(vma,
2332 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2333 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2334 				details);
2335 	}
2336 }
2337 
2338 static inline void unmap_mapping_range_list(struct list_head *head,
2339 					    struct zap_details *details)
2340 {
2341 	struct vm_area_struct *vma;
2342 
2343 	/*
2344 	 * In nonlinear VMAs there is no correspondence between virtual address
2345 	 * offset and file offset.  So we must perform an exhaustive search
2346 	 * across *all* the pages in each nonlinear VMA, not just the pages
2347 	 * whose virtual address lies outside the file truncation point.
2348 	 */
2349 	list_for_each_entry(vma, head, shared.nonlinear) {
2350 		details->nonlinear_vma = vma;
2351 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2352 	}
2353 }
2354 
2355 /**
2356  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2357  * @mapping: the address space containing mmaps to be unmapped.
2358  * @holebegin: byte in first page to unmap, relative to the start of
2359  * the underlying file.  This will be rounded down to a PAGE_SIZE
2360  * boundary.  Note that this is different from truncate_pagecache(), which
2361  * must keep the partial page.  In contrast, we must get rid of
2362  * partial pages.
2363  * @holelen: size of prospective hole in bytes.  This will be rounded
2364  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2365  * end of the file.
2366  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2367  * but 0 when invalidating pagecache, don't throw away private data.
2368  */
2369 void unmap_mapping_range(struct address_space *mapping,
2370 		loff_t const holebegin, loff_t const holelen, int even_cows)
2371 {
2372 	struct zap_details details;
2373 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2374 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2375 
2376 	/* Check for overflow. */
2377 	if (sizeof(holelen) > sizeof(hlen)) {
2378 		long long holeend =
2379 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2380 		if (holeend & ~(long long)ULONG_MAX)
2381 			hlen = ULONG_MAX - hba + 1;
2382 	}
2383 
2384 	details.check_mapping = even_cows? NULL: mapping;
2385 	details.nonlinear_vma = NULL;
2386 	details.first_index = hba;
2387 	details.last_index = hba + hlen - 1;
2388 	if (details.last_index < details.first_index)
2389 		details.last_index = ULONG_MAX;
2390 
2391 
2392 	mutex_lock(&mapping->i_mmap_mutex);
2393 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2394 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2395 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2396 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2397 	mutex_unlock(&mapping->i_mmap_mutex);
2398 }
2399 EXPORT_SYMBOL(unmap_mapping_range);
2400 
2401 /*
2402  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2403  * but allow concurrent faults), and pte mapped but not yet locked.
2404  * We return with pte unmapped and unlocked.
2405  *
2406  * We return with the mmap_sem locked or unlocked in the same cases
2407  * as does filemap_fault().
2408  */
2409 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2410 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2411 		unsigned int flags, pte_t orig_pte)
2412 {
2413 	spinlock_t *ptl;
2414 	struct page *page, *swapcache;
2415 	struct mem_cgroup *memcg;
2416 	swp_entry_t entry;
2417 	pte_t pte;
2418 	int locked;
2419 	int exclusive = 0;
2420 	int ret = 0;
2421 
2422 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2423 		goto out;
2424 
2425 	entry = pte_to_swp_entry(orig_pte);
2426 	if (unlikely(non_swap_entry(entry))) {
2427 		if (is_migration_entry(entry)) {
2428 			migration_entry_wait(mm, pmd, address);
2429 		} else if (is_hwpoison_entry(entry)) {
2430 			ret = VM_FAULT_HWPOISON;
2431 		} else {
2432 			print_bad_pte(vma, address, orig_pte, NULL);
2433 			ret = VM_FAULT_SIGBUS;
2434 		}
2435 		goto out;
2436 	}
2437 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2438 	page = lookup_swap_cache(entry);
2439 	if (!page) {
2440 		page = swapin_readahead(entry,
2441 					GFP_HIGHUSER_MOVABLE, vma, address);
2442 		if (!page) {
2443 			/*
2444 			 * Back out if somebody else faulted in this pte
2445 			 * while we released the pte lock.
2446 			 */
2447 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2448 			if (likely(pte_same(*page_table, orig_pte)))
2449 				ret = VM_FAULT_OOM;
2450 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2451 			goto unlock;
2452 		}
2453 
2454 		/* Had to read the page from swap area: Major fault */
2455 		ret = VM_FAULT_MAJOR;
2456 		count_vm_event(PGMAJFAULT);
2457 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2458 	} else if (PageHWPoison(page)) {
2459 		/*
2460 		 * hwpoisoned dirty swapcache pages are kept for killing
2461 		 * owner processes (which may be unknown at hwpoison time)
2462 		 */
2463 		ret = VM_FAULT_HWPOISON;
2464 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2465 		swapcache = page;
2466 		goto out_release;
2467 	}
2468 
2469 	swapcache = page;
2470 	locked = lock_page_or_retry(page, mm, flags);
2471 
2472 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2473 	if (!locked) {
2474 		ret |= VM_FAULT_RETRY;
2475 		goto out_release;
2476 	}
2477 
2478 	/*
2479 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2480 	 * release the swapcache from under us.  The page pin, and pte_same
2481 	 * test below, are not enough to exclude that.  Even if it is still
2482 	 * swapcache, we need to check that the page's swap has not changed.
2483 	 */
2484 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2485 		goto out_page;
2486 
2487 	page = ksm_might_need_to_copy(page, vma, address);
2488 	if (unlikely(!page)) {
2489 		ret = VM_FAULT_OOM;
2490 		page = swapcache;
2491 		goto out_page;
2492 	}
2493 
2494 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
2495 		ret = VM_FAULT_OOM;
2496 		goto out_page;
2497 	}
2498 
2499 	/*
2500 	 * Back out if somebody else already faulted in this pte.
2501 	 */
2502 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2503 	if (unlikely(!pte_same(*page_table, orig_pte)))
2504 		goto out_nomap;
2505 
2506 	if (unlikely(!PageUptodate(page))) {
2507 		ret = VM_FAULT_SIGBUS;
2508 		goto out_nomap;
2509 	}
2510 
2511 	/*
2512 	 * The page isn't present yet, go ahead with the fault.
2513 	 *
2514 	 * Be careful about the sequence of operations here.
2515 	 * To get its accounting right, reuse_swap_page() must be called
2516 	 * while the page is counted on swap but not yet in mapcount i.e.
2517 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2518 	 * must be called after the swap_free(), or it will never succeed.
2519 	 */
2520 
2521 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2522 	dec_mm_counter_fast(mm, MM_SWAPENTS);
2523 	pte = mk_pte(page, vma->vm_page_prot);
2524 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2525 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2526 		flags &= ~FAULT_FLAG_WRITE;
2527 		ret |= VM_FAULT_WRITE;
2528 		exclusive = 1;
2529 	}
2530 	flush_icache_page(vma, page);
2531 	if (pte_swp_soft_dirty(orig_pte))
2532 		pte = pte_mksoft_dirty(pte);
2533 	set_pte_at(mm, address, page_table, pte);
2534 	if (page == swapcache) {
2535 		do_page_add_anon_rmap(page, vma, address, exclusive);
2536 		mem_cgroup_commit_charge(page, memcg, true);
2537 	} else { /* ksm created a completely new copy */
2538 		page_add_new_anon_rmap(page, vma, address);
2539 		mem_cgroup_commit_charge(page, memcg, false);
2540 		lru_cache_add_active_or_unevictable(page, vma);
2541 	}
2542 
2543 	swap_free(entry);
2544 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2545 		try_to_free_swap(page);
2546 	unlock_page(page);
2547 	if (page != swapcache) {
2548 		/*
2549 		 * Hold the lock to avoid the swap entry to be reused
2550 		 * until we take the PT lock for the pte_same() check
2551 		 * (to avoid false positives from pte_same). For
2552 		 * further safety release the lock after the swap_free
2553 		 * so that the swap count won't change under a
2554 		 * parallel locked swapcache.
2555 		 */
2556 		unlock_page(swapcache);
2557 		page_cache_release(swapcache);
2558 	}
2559 
2560 	if (flags & FAULT_FLAG_WRITE) {
2561 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2562 		if (ret & VM_FAULT_ERROR)
2563 			ret &= VM_FAULT_ERROR;
2564 		goto out;
2565 	}
2566 
2567 	/* No need to invalidate - it was non-present before */
2568 	update_mmu_cache(vma, address, page_table);
2569 unlock:
2570 	pte_unmap_unlock(page_table, ptl);
2571 out:
2572 	return ret;
2573 out_nomap:
2574 	mem_cgroup_cancel_charge(page, memcg);
2575 	pte_unmap_unlock(page_table, ptl);
2576 out_page:
2577 	unlock_page(page);
2578 out_release:
2579 	page_cache_release(page);
2580 	if (page != swapcache) {
2581 		unlock_page(swapcache);
2582 		page_cache_release(swapcache);
2583 	}
2584 	return ret;
2585 }
2586 
2587 /*
2588  * This is like a special single-page "expand_{down|up}wards()",
2589  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2590  * doesn't hit another vma.
2591  */
2592 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2593 {
2594 	address &= PAGE_MASK;
2595 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2596 		struct vm_area_struct *prev = vma->vm_prev;
2597 
2598 		/*
2599 		 * Is there a mapping abutting this one below?
2600 		 *
2601 		 * That's only ok if it's the same stack mapping
2602 		 * that has gotten split..
2603 		 */
2604 		if (prev && prev->vm_end == address)
2605 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2606 
2607 		expand_downwards(vma, address - PAGE_SIZE);
2608 	}
2609 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2610 		struct vm_area_struct *next = vma->vm_next;
2611 
2612 		/* As VM_GROWSDOWN but s/below/above/ */
2613 		if (next && next->vm_start == address + PAGE_SIZE)
2614 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2615 
2616 		expand_upwards(vma, address + PAGE_SIZE);
2617 	}
2618 	return 0;
2619 }
2620 
2621 /*
2622  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2623  * but allow concurrent faults), and pte mapped but not yet locked.
2624  * We return with mmap_sem still held, but pte unmapped and unlocked.
2625  */
2626 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2627 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2628 		unsigned int flags)
2629 {
2630 	struct mem_cgroup *memcg;
2631 	struct page *page;
2632 	spinlock_t *ptl;
2633 	pte_t entry;
2634 
2635 	pte_unmap(page_table);
2636 
2637 	/* Check if we need to add a guard page to the stack */
2638 	if (check_stack_guard_page(vma, address) < 0)
2639 		return VM_FAULT_SIGBUS;
2640 
2641 	/* Use the zero-page for reads */
2642 	if (!(flags & FAULT_FLAG_WRITE)) {
2643 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2644 						vma->vm_page_prot));
2645 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2646 		if (!pte_none(*page_table))
2647 			goto unlock;
2648 		goto setpte;
2649 	}
2650 
2651 	/* Allocate our own private page. */
2652 	if (unlikely(anon_vma_prepare(vma)))
2653 		goto oom;
2654 	page = alloc_zeroed_user_highpage_movable(vma, address);
2655 	if (!page)
2656 		goto oom;
2657 	/*
2658 	 * The memory barrier inside __SetPageUptodate makes sure that
2659 	 * preceeding stores to the page contents become visible before
2660 	 * the set_pte_at() write.
2661 	 */
2662 	__SetPageUptodate(page);
2663 
2664 	if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
2665 		goto oom_free_page;
2666 
2667 	entry = mk_pte(page, vma->vm_page_prot);
2668 	if (vma->vm_flags & VM_WRITE)
2669 		entry = pte_mkwrite(pte_mkdirty(entry));
2670 
2671 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2672 	if (!pte_none(*page_table))
2673 		goto release;
2674 
2675 	inc_mm_counter_fast(mm, MM_ANONPAGES);
2676 	page_add_new_anon_rmap(page, vma, address);
2677 	mem_cgroup_commit_charge(page, memcg, false);
2678 	lru_cache_add_active_or_unevictable(page, vma);
2679 setpte:
2680 	set_pte_at(mm, address, page_table, entry);
2681 
2682 	/* No need to invalidate - it was non-present before */
2683 	update_mmu_cache(vma, address, page_table);
2684 unlock:
2685 	pte_unmap_unlock(page_table, ptl);
2686 	return 0;
2687 release:
2688 	mem_cgroup_cancel_charge(page, memcg);
2689 	page_cache_release(page);
2690 	goto unlock;
2691 oom_free_page:
2692 	page_cache_release(page);
2693 oom:
2694 	return VM_FAULT_OOM;
2695 }
2696 
2697 /*
2698  * The mmap_sem must have been held on entry, and may have been
2699  * released depending on flags and vma->vm_ops->fault() return value.
2700  * See filemap_fault() and __lock_page_retry().
2701  */
2702 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2703 		pgoff_t pgoff, unsigned int flags, struct page **page)
2704 {
2705 	struct vm_fault vmf;
2706 	int ret;
2707 
2708 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2709 	vmf.pgoff = pgoff;
2710 	vmf.flags = flags;
2711 	vmf.page = NULL;
2712 
2713 	ret = vma->vm_ops->fault(vma, &vmf);
2714 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2715 		return ret;
2716 
2717 	if (unlikely(PageHWPoison(vmf.page))) {
2718 		if (ret & VM_FAULT_LOCKED)
2719 			unlock_page(vmf.page);
2720 		page_cache_release(vmf.page);
2721 		return VM_FAULT_HWPOISON;
2722 	}
2723 
2724 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2725 		lock_page(vmf.page);
2726 	else
2727 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2728 
2729 	*page = vmf.page;
2730 	return ret;
2731 }
2732 
2733 /**
2734  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2735  *
2736  * @vma: virtual memory area
2737  * @address: user virtual address
2738  * @page: page to map
2739  * @pte: pointer to target page table entry
2740  * @write: true, if new entry is writable
2741  * @anon: true, if it's anonymous page
2742  *
2743  * Caller must hold page table lock relevant for @pte.
2744  *
2745  * Target users are page handler itself and implementations of
2746  * vm_ops->map_pages.
2747  */
2748 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
2749 		struct page *page, pte_t *pte, bool write, bool anon)
2750 {
2751 	pte_t entry;
2752 
2753 	flush_icache_page(vma, page);
2754 	entry = mk_pte(page, vma->vm_page_prot);
2755 	if (write)
2756 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2757 	else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
2758 		entry = pte_mksoft_dirty(entry);
2759 	if (anon) {
2760 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2761 		page_add_new_anon_rmap(page, vma, address);
2762 	} else {
2763 		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2764 		page_add_file_rmap(page);
2765 	}
2766 	set_pte_at(vma->vm_mm, address, pte, entry);
2767 
2768 	/* no need to invalidate: a not-present page won't be cached */
2769 	update_mmu_cache(vma, address, pte);
2770 }
2771 
2772 static unsigned long fault_around_bytes __read_mostly =
2773 	rounddown_pow_of_two(65536);
2774 
2775 #ifdef CONFIG_DEBUG_FS
2776 static int fault_around_bytes_get(void *data, u64 *val)
2777 {
2778 	*val = fault_around_bytes;
2779 	return 0;
2780 }
2781 
2782 /*
2783  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2784  * rounded down to nearest page order. It's what do_fault_around() expects to
2785  * see.
2786  */
2787 static int fault_around_bytes_set(void *data, u64 val)
2788 {
2789 	if (val / PAGE_SIZE > PTRS_PER_PTE)
2790 		return -EINVAL;
2791 	if (val > PAGE_SIZE)
2792 		fault_around_bytes = rounddown_pow_of_two(val);
2793 	else
2794 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
2795 	return 0;
2796 }
2797 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2798 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
2799 
2800 static int __init fault_around_debugfs(void)
2801 {
2802 	void *ret;
2803 
2804 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2805 			&fault_around_bytes_fops);
2806 	if (!ret)
2807 		pr_warn("Failed to create fault_around_bytes in debugfs");
2808 	return 0;
2809 }
2810 late_initcall(fault_around_debugfs);
2811 #endif
2812 
2813 /*
2814  * do_fault_around() tries to map few pages around the fault address. The hope
2815  * is that the pages will be needed soon and this will lower the number of
2816  * faults to handle.
2817  *
2818  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2819  * not ready to be mapped: not up-to-date, locked, etc.
2820  *
2821  * This function is called with the page table lock taken. In the split ptlock
2822  * case the page table lock only protects only those entries which belong to
2823  * the page table corresponding to the fault address.
2824  *
2825  * This function doesn't cross the VMA boundaries, in order to call map_pages()
2826  * only once.
2827  *
2828  * fault_around_pages() defines how many pages we'll try to map.
2829  * do_fault_around() expects it to return a power of two less than or equal to
2830  * PTRS_PER_PTE.
2831  *
2832  * The virtual address of the area that we map is naturally aligned to the
2833  * fault_around_pages() value (and therefore to page order).  This way it's
2834  * easier to guarantee that we don't cross page table boundaries.
2835  */
2836 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2837 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
2838 {
2839 	unsigned long start_addr, nr_pages, mask;
2840 	pgoff_t max_pgoff;
2841 	struct vm_fault vmf;
2842 	int off;
2843 
2844 	nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2845 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2846 
2847 	start_addr = max(address & mask, vma->vm_start);
2848 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2849 	pte -= off;
2850 	pgoff -= off;
2851 
2852 	/*
2853 	 *  max_pgoff is either end of page table or end of vma
2854 	 *  or fault_around_pages() from pgoff, depending what is nearest.
2855 	 */
2856 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2857 		PTRS_PER_PTE - 1;
2858 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
2859 			pgoff + nr_pages - 1);
2860 
2861 	/* Check if it makes any sense to call ->map_pages */
2862 	while (!pte_none(*pte)) {
2863 		if (++pgoff > max_pgoff)
2864 			return;
2865 		start_addr += PAGE_SIZE;
2866 		if (start_addr >= vma->vm_end)
2867 			return;
2868 		pte++;
2869 	}
2870 
2871 	vmf.virtual_address = (void __user *) start_addr;
2872 	vmf.pte = pte;
2873 	vmf.pgoff = pgoff;
2874 	vmf.max_pgoff = max_pgoff;
2875 	vmf.flags = flags;
2876 	vma->vm_ops->map_pages(vma, &vmf);
2877 }
2878 
2879 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2880 		unsigned long address, pmd_t *pmd,
2881 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2882 {
2883 	struct page *fault_page;
2884 	spinlock_t *ptl;
2885 	pte_t *pte;
2886 	int ret = 0;
2887 
2888 	/*
2889 	 * Let's call ->map_pages() first and use ->fault() as fallback
2890 	 * if page by the offset is not ready to be mapped (cold cache or
2891 	 * something).
2892 	 */
2893 	if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
2894 	    fault_around_bytes >> PAGE_SHIFT > 1) {
2895 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2896 		do_fault_around(vma, address, pte, pgoff, flags);
2897 		if (!pte_same(*pte, orig_pte))
2898 			goto unlock_out;
2899 		pte_unmap_unlock(pte, ptl);
2900 	}
2901 
2902 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2903 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2904 		return ret;
2905 
2906 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2907 	if (unlikely(!pte_same(*pte, orig_pte))) {
2908 		pte_unmap_unlock(pte, ptl);
2909 		unlock_page(fault_page);
2910 		page_cache_release(fault_page);
2911 		return ret;
2912 	}
2913 	do_set_pte(vma, address, fault_page, pte, false, false);
2914 	unlock_page(fault_page);
2915 unlock_out:
2916 	pte_unmap_unlock(pte, ptl);
2917 	return ret;
2918 }
2919 
2920 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2921 		unsigned long address, pmd_t *pmd,
2922 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2923 {
2924 	struct page *fault_page, *new_page;
2925 	struct mem_cgroup *memcg;
2926 	spinlock_t *ptl;
2927 	pte_t *pte;
2928 	int ret;
2929 
2930 	if (unlikely(anon_vma_prepare(vma)))
2931 		return VM_FAULT_OOM;
2932 
2933 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2934 	if (!new_page)
2935 		return VM_FAULT_OOM;
2936 
2937 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
2938 		page_cache_release(new_page);
2939 		return VM_FAULT_OOM;
2940 	}
2941 
2942 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2943 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2944 		goto uncharge_out;
2945 
2946 	copy_user_highpage(new_page, fault_page, address, vma);
2947 	__SetPageUptodate(new_page);
2948 
2949 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2950 	if (unlikely(!pte_same(*pte, orig_pte))) {
2951 		pte_unmap_unlock(pte, ptl);
2952 		unlock_page(fault_page);
2953 		page_cache_release(fault_page);
2954 		goto uncharge_out;
2955 	}
2956 	do_set_pte(vma, address, new_page, pte, true, true);
2957 	mem_cgroup_commit_charge(new_page, memcg, false);
2958 	lru_cache_add_active_or_unevictable(new_page, vma);
2959 	pte_unmap_unlock(pte, ptl);
2960 	unlock_page(fault_page);
2961 	page_cache_release(fault_page);
2962 	return ret;
2963 uncharge_out:
2964 	mem_cgroup_cancel_charge(new_page, memcg);
2965 	page_cache_release(new_page);
2966 	return ret;
2967 }
2968 
2969 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2970 		unsigned long address, pmd_t *pmd,
2971 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2972 {
2973 	struct page *fault_page;
2974 	struct address_space *mapping;
2975 	spinlock_t *ptl;
2976 	pte_t *pte;
2977 	int dirtied = 0;
2978 	int ret, tmp;
2979 
2980 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2981 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2982 		return ret;
2983 
2984 	/*
2985 	 * Check if the backing address space wants to know that the page is
2986 	 * about to become writable
2987 	 */
2988 	if (vma->vm_ops->page_mkwrite) {
2989 		unlock_page(fault_page);
2990 		tmp = do_page_mkwrite(vma, fault_page, address);
2991 		if (unlikely(!tmp ||
2992 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2993 			page_cache_release(fault_page);
2994 			return tmp;
2995 		}
2996 	}
2997 
2998 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2999 	if (unlikely(!pte_same(*pte, orig_pte))) {
3000 		pte_unmap_unlock(pte, ptl);
3001 		unlock_page(fault_page);
3002 		page_cache_release(fault_page);
3003 		return ret;
3004 	}
3005 	do_set_pte(vma, address, fault_page, pte, true, false);
3006 	pte_unmap_unlock(pte, ptl);
3007 
3008 	if (set_page_dirty(fault_page))
3009 		dirtied = 1;
3010 	mapping = fault_page->mapping;
3011 	unlock_page(fault_page);
3012 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3013 		/*
3014 		 * Some device drivers do not set page.mapping but still
3015 		 * dirty their pages
3016 		 */
3017 		balance_dirty_pages_ratelimited(mapping);
3018 	}
3019 
3020 	/* file_update_time outside page_lock */
3021 	if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3022 		file_update_time(vma->vm_file);
3023 
3024 	return ret;
3025 }
3026 
3027 /*
3028  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3029  * but allow concurrent faults).
3030  * The mmap_sem may have been released depending on flags and our
3031  * return value.  See filemap_fault() and __lock_page_or_retry().
3032  */
3033 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3034 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3035 		unsigned int flags, pte_t orig_pte)
3036 {
3037 	pgoff_t pgoff = (((address & PAGE_MASK)
3038 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3039 
3040 	pte_unmap(page_table);
3041 	if (!(flags & FAULT_FLAG_WRITE))
3042 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3043 				orig_pte);
3044 	if (!(vma->vm_flags & VM_SHARED))
3045 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3046 				orig_pte);
3047 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3048 }
3049 
3050 /*
3051  * Fault of a previously existing named mapping. Repopulate the pte
3052  * from the encoded file_pte if possible. This enables swappable
3053  * nonlinear vmas.
3054  *
3055  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3056  * but allow concurrent faults), and pte mapped but not yet locked.
3057  * We return with pte unmapped and unlocked.
3058  * The mmap_sem may have been released depending on flags and our
3059  * return value.  See filemap_fault() and __lock_page_or_retry().
3060  */
3061 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3062 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3063 		unsigned int flags, pte_t orig_pte)
3064 {
3065 	pgoff_t pgoff;
3066 
3067 	flags |= FAULT_FLAG_NONLINEAR;
3068 
3069 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3070 		return 0;
3071 
3072 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3073 		/*
3074 		 * Page table corrupted: show pte and kill process.
3075 		 */
3076 		print_bad_pte(vma, address, orig_pte, NULL);
3077 		return VM_FAULT_SIGBUS;
3078 	}
3079 
3080 	pgoff = pte_to_pgoff(orig_pte);
3081 	if (!(flags & FAULT_FLAG_WRITE))
3082 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3083 				orig_pte);
3084 	if (!(vma->vm_flags & VM_SHARED))
3085 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3086 				orig_pte);
3087 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3088 }
3089 
3090 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3091 				unsigned long addr, int page_nid,
3092 				int *flags)
3093 {
3094 	get_page(page);
3095 
3096 	count_vm_numa_event(NUMA_HINT_FAULTS);
3097 	if (page_nid == numa_node_id()) {
3098 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3099 		*flags |= TNF_FAULT_LOCAL;
3100 	}
3101 
3102 	return mpol_misplaced(page, vma, addr);
3103 }
3104 
3105 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3106 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3107 {
3108 	struct page *page = NULL;
3109 	spinlock_t *ptl;
3110 	int page_nid = -1;
3111 	int last_cpupid;
3112 	int target_nid;
3113 	bool migrated = false;
3114 	int flags = 0;
3115 
3116 	/*
3117 	* The "pte" at this point cannot be used safely without
3118 	* validation through pte_unmap_same(). It's of NUMA type but
3119 	* the pfn may be screwed if the read is non atomic.
3120 	*
3121 	* ptep_modify_prot_start is not called as this is clearing
3122 	* the _PAGE_NUMA bit and it is not really expected that there
3123 	* would be concurrent hardware modifications to the PTE.
3124 	*/
3125 	ptl = pte_lockptr(mm, pmd);
3126 	spin_lock(ptl);
3127 	if (unlikely(!pte_same(*ptep, pte))) {
3128 		pte_unmap_unlock(ptep, ptl);
3129 		goto out;
3130 	}
3131 
3132 	pte = pte_mknonnuma(pte);
3133 	set_pte_at(mm, addr, ptep, pte);
3134 	update_mmu_cache(vma, addr, ptep);
3135 
3136 	page = vm_normal_page(vma, addr, pte);
3137 	if (!page) {
3138 		pte_unmap_unlock(ptep, ptl);
3139 		return 0;
3140 	}
3141 	BUG_ON(is_zero_pfn(page_to_pfn(page)));
3142 
3143 	/*
3144 	 * Avoid grouping on DSO/COW pages in specific and RO pages
3145 	 * in general, RO pages shouldn't hurt as much anyway since
3146 	 * they can be in shared cache state.
3147 	 */
3148 	if (!pte_write(pte))
3149 		flags |= TNF_NO_GROUP;
3150 
3151 	/*
3152 	 * Flag if the page is shared between multiple address spaces. This
3153 	 * is later used when determining whether to group tasks together
3154 	 */
3155 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3156 		flags |= TNF_SHARED;
3157 
3158 	last_cpupid = page_cpupid_last(page);
3159 	page_nid = page_to_nid(page);
3160 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3161 	pte_unmap_unlock(ptep, ptl);
3162 	if (target_nid == -1) {
3163 		put_page(page);
3164 		goto out;
3165 	}
3166 
3167 	/* Migrate to the requested node */
3168 	migrated = migrate_misplaced_page(page, vma, target_nid);
3169 	if (migrated) {
3170 		page_nid = target_nid;
3171 		flags |= TNF_MIGRATED;
3172 	}
3173 
3174 out:
3175 	if (page_nid != -1)
3176 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3177 	return 0;
3178 }
3179 
3180 /*
3181  * These routines also need to handle stuff like marking pages dirty
3182  * and/or accessed for architectures that don't do it in hardware (most
3183  * RISC architectures).  The early dirtying is also good on the i386.
3184  *
3185  * There is also a hook called "update_mmu_cache()" that architectures
3186  * with external mmu caches can use to update those (ie the Sparc or
3187  * PowerPC hashed page tables that act as extended TLBs).
3188  *
3189  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3190  * but allow concurrent faults), and pte mapped but not yet locked.
3191  * We return with pte unmapped and unlocked.
3192  *
3193  * The mmap_sem may have been released depending on flags and our
3194  * return value.  See filemap_fault() and __lock_page_or_retry().
3195  */
3196 static int handle_pte_fault(struct mm_struct *mm,
3197 		     struct vm_area_struct *vma, unsigned long address,
3198 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3199 {
3200 	pte_t entry;
3201 	spinlock_t *ptl;
3202 
3203 	entry = ACCESS_ONCE(*pte);
3204 	if (!pte_present(entry)) {
3205 		if (pte_none(entry)) {
3206 			if (vma->vm_ops) {
3207 				if (likely(vma->vm_ops->fault))
3208 					return do_linear_fault(mm, vma, address,
3209 						pte, pmd, flags, entry);
3210 			}
3211 			return do_anonymous_page(mm, vma, address,
3212 						 pte, pmd, flags);
3213 		}
3214 		if (pte_file(entry))
3215 			return do_nonlinear_fault(mm, vma, address,
3216 					pte, pmd, flags, entry);
3217 		return do_swap_page(mm, vma, address,
3218 					pte, pmd, flags, entry);
3219 	}
3220 
3221 	if (pte_numa(entry))
3222 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3223 
3224 	ptl = pte_lockptr(mm, pmd);
3225 	spin_lock(ptl);
3226 	if (unlikely(!pte_same(*pte, entry)))
3227 		goto unlock;
3228 	if (flags & FAULT_FLAG_WRITE) {
3229 		if (!pte_write(entry))
3230 			return do_wp_page(mm, vma, address,
3231 					pte, pmd, ptl, entry);
3232 		entry = pte_mkdirty(entry);
3233 	}
3234 	entry = pte_mkyoung(entry);
3235 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3236 		update_mmu_cache(vma, address, pte);
3237 	} else {
3238 		/*
3239 		 * This is needed only for protection faults but the arch code
3240 		 * is not yet telling us if this is a protection fault or not.
3241 		 * This still avoids useless tlb flushes for .text page faults
3242 		 * with threads.
3243 		 */
3244 		if (flags & FAULT_FLAG_WRITE)
3245 			flush_tlb_fix_spurious_fault(vma, address);
3246 	}
3247 unlock:
3248 	pte_unmap_unlock(pte, ptl);
3249 	return 0;
3250 }
3251 
3252 /*
3253  * By the time we get here, we already hold the mm semaphore
3254  *
3255  * The mmap_sem may have been released depending on flags and our
3256  * return value.  See filemap_fault() and __lock_page_or_retry().
3257  */
3258 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3259 			     unsigned long address, unsigned int flags)
3260 {
3261 	pgd_t *pgd;
3262 	pud_t *pud;
3263 	pmd_t *pmd;
3264 	pte_t *pte;
3265 
3266 	if (unlikely(is_vm_hugetlb_page(vma)))
3267 		return hugetlb_fault(mm, vma, address, flags);
3268 
3269 	pgd = pgd_offset(mm, address);
3270 	pud = pud_alloc(mm, pgd, address);
3271 	if (!pud)
3272 		return VM_FAULT_OOM;
3273 	pmd = pmd_alloc(mm, pud, address);
3274 	if (!pmd)
3275 		return VM_FAULT_OOM;
3276 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3277 		int ret = VM_FAULT_FALLBACK;
3278 		if (!vma->vm_ops)
3279 			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3280 					pmd, flags);
3281 		if (!(ret & VM_FAULT_FALLBACK))
3282 			return ret;
3283 	} else {
3284 		pmd_t orig_pmd = *pmd;
3285 		int ret;
3286 
3287 		barrier();
3288 		if (pmd_trans_huge(orig_pmd)) {
3289 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3290 
3291 			/*
3292 			 * If the pmd is splitting, return and retry the
3293 			 * the fault.  Alternative: wait until the split
3294 			 * is done, and goto retry.
3295 			 */
3296 			if (pmd_trans_splitting(orig_pmd))
3297 				return 0;
3298 
3299 			if (pmd_numa(orig_pmd))
3300 				return do_huge_pmd_numa_page(mm, vma, address,
3301 							     orig_pmd, pmd);
3302 
3303 			if (dirty && !pmd_write(orig_pmd)) {
3304 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3305 							  orig_pmd);
3306 				if (!(ret & VM_FAULT_FALLBACK))
3307 					return ret;
3308 			} else {
3309 				huge_pmd_set_accessed(mm, vma, address, pmd,
3310 						      orig_pmd, dirty);
3311 				return 0;
3312 			}
3313 		}
3314 	}
3315 
3316 	/*
3317 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3318 	 * run pte_offset_map on the pmd, if an huge pmd could
3319 	 * materialize from under us from a different thread.
3320 	 */
3321 	if (unlikely(pmd_none(*pmd)) &&
3322 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3323 		return VM_FAULT_OOM;
3324 	/* if an huge pmd materialized from under us just retry later */
3325 	if (unlikely(pmd_trans_huge(*pmd)))
3326 		return 0;
3327 	/*
3328 	 * A regular pmd is established and it can't morph into a huge pmd
3329 	 * from under us anymore at this point because we hold the mmap_sem
3330 	 * read mode and khugepaged takes it in write mode. So now it's
3331 	 * safe to run pte_offset_map().
3332 	 */
3333 	pte = pte_offset_map(pmd, address);
3334 
3335 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3336 }
3337 
3338 /*
3339  * By the time we get here, we already hold the mm semaphore
3340  *
3341  * The mmap_sem may have been released depending on flags and our
3342  * return value.  See filemap_fault() and __lock_page_or_retry().
3343  */
3344 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3345 		    unsigned long address, unsigned int flags)
3346 {
3347 	int ret;
3348 
3349 	__set_current_state(TASK_RUNNING);
3350 
3351 	count_vm_event(PGFAULT);
3352 	mem_cgroup_count_vm_event(mm, PGFAULT);
3353 
3354 	/* do counter updates before entering really critical section. */
3355 	check_sync_rss_stat(current);
3356 
3357 	/*
3358 	 * Enable the memcg OOM handling for faults triggered in user
3359 	 * space.  Kernel faults are handled more gracefully.
3360 	 */
3361 	if (flags & FAULT_FLAG_USER)
3362 		mem_cgroup_oom_enable();
3363 
3364 	ret = __handle_mm_fault(mm, vma, address, flags);
3365 
3366 	if (flags & FAULT_FLAG_USER) {
3367 		mem_cgroup_oom_disable();
3368                 /*
3369                  * The task may have entered a memcg OOM situation but
3370                  * if the allocation error was handled gracefully (no
3371                  * VM_FAULT_OOM), there is no need to kill anything.
3372                  * Just clean up the OOM state peacefully.
3373                  */
3374                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3375                         mem_cgroup_oom_synchronize(false);
3376 	}
3377 
3378 	return ret;
3379 }
3380 
3381 #ifndef __PAGETABLE_PUD_FOLDED
3382 /*
3383  * Allocate page upper directory.
3384  * We've already handled the fast-path in-line.
3385  */
3386 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3387 {
3388 	pud_t *new = pud_alloc_one(mm, address);
3389 	if (!new)
3390 		return -ENOMEM;
3391 
3392 	smp_wmb(); /* See comment in __pte_alloc */
3393 
3394 	spin_lock(&mm->page_table_lock);
3395 	if (pgd_present(*pgd))		/* Another has populated it */
3396 		pud_free(mm, new);
3397 	else
3398 		pgd_populate(mm, pgd, new);
3399 	spin_unlock(&mm->page_table_lock);
3400 	return 0;
3401 }
3402 #endif /* __PAGETABLE_PUD_FOLDED */
3403 
3404 #ifndef __PAGETABLE_PMD_FOLDED
3405 /*
3406  * Allocate page middle directory.
3407  * We've already handled the fast-path in-line.
3408  */
3409 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3410 {
3411 	pmd_t *new = pmd_alloc_one(mm, address);
3412 	if (!new)
3413 		return -ENOMEM;
3414 
3415 	smp_wmb(); /* See comment in __pte_alloc */
3416 
3417 	spin_lock(&mm->page_table_lock);
3418 #ifndef __ARCH_HAS_4LEVEL_HACK
3419 	if (pud_present(*pud))		/* Another has populated it */
3420 		pmd_free(mm, new);
3421 	else
3422 		pud_populate(mm, pud, new);
3423 #else
3424 	if (pgd_present(*pud))		/* Another has populated it */
3425 		pmd_free(mm, new);
3426 	else
3427 		pgd_populate(mm, pud, new);
3428 #endif /* __ARCH_HAS_4LEVEL_HACK */
3429 	spin_unlock(&mm->page_table_lock);
3430 	return 0;
3431 }
3432 #endif /* __PAGETABLE_PMD_FOLDED */
3433 
3434 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3435 		pte_t **ptepp, spinlock_t **ptlp)
3436 {
3437 	pgd_t *pgd;
3438 	pud_t *pud;
3439 	pmd_t *pmd;
3440 	pte_t *ptep;
3441 
3442 	pgd = pgd_offset(mm, address);
3443 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3444 		goto out;
3445 
3446 	pud = pud_offset(pgd, address);
3447 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3448 		goto out;
3449 
3450 	pmd = pmd_offset(pud, address);
3451 	VM_BUG_ON(pmd_trans_huge(*pmd));
3452 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3453 		goto out;
3454 
3455 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3456 	if (pmd_huge(*pmd))
3457 		goto out;
3458 
3459 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3460 	if (!ptep)
3461 		goto out;
3462 	if (!pte_present(*ptep))
3463 		goto unlock;
3464 	*ptepp = ptep;
3465 	return 0;
3466 unlock:
3467 	pte_unmap_unlock(ptep, *ptlp);
3468 out:
3469 	return -EINVAL;
3470 }
3471 
3472 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3473 			     pte_t **ptepp, spinlock_t **ptlp)
3474 {
3475 	int res;
3476 
3477 	/* (void) is needed to make gcc happy */
3478 	(void) __cond_lock(*ptlp,
3479 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3480 	return res;
3481 }
3482 
3483 /**
3484  * follow_pfn - look up PFN at a user virtual address
3485  * @vma: memory mapping
3486  * @address: user virtual address
3487  * @pfn: location to store found PFN
3488  *
3489  * Only IO mappings and raw PFN mappings are allowed.
3490  *
3491  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3492  */
3493 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3494 	unsigned long *pfn)
3495 {
3496 	int ret = -EINVAL;
3497 	spinlock_t *ptl;
3498 	pte_t *ptep;
3499 
3500 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3501 		return ret;
3502 
3503 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3504 	if (ret)
3505 		return ret;
3506 	*pfn = pte_pfn(*ptep);
3507 	pte_unmap_unlock(ptep, ptl);
3508 	return 0;
3509 }
3510 EXPORT_SYMBOL(follow_pfn);
3511 
3512 #ifdef CONFIG_HAVE_IOREMAP_PROT
3513 int follow_phys(struct vm_area_struct *vma,
3514 		unsigned long address, unsigned int flags,
3515 		unsigned long *prot, resource_size_t *phys)
3516 {
3517 	int ret = -EINVAL;
3518 	pte_t *ptep, pte;
3519 	spinlock_t *ptl;
3520 
3521 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3522 		goto out;
3523 
3524 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3525 		goto out;
3526 	pte = *ptep;
3527 
3528 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3529 		goto unlock;
3530 
3531 	*prot = pgprot_val(pte_pgprot(pte));
3532 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3533 
3534 	ret = 0;
3535 unlock:
3536 	pte_unmap_unlock(ptep, ptl);
3537 out:
3538 	return ret;
3539 }
3540 
3541 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3542 			void *buf, int len, int write)
3543 {
3544 	resource_size_t phys_addr;
3545 	unsigned long prot = 0;
3546 	void __iomem *maddr;
3547 	int offset = addr & (PAGE_SIZE-1);
3548 
3549 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3550 		return -EINVAL;
3551 
3552 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3553 	if (write)
3554 		memcpy_toio(maddr + offset, buf, len);
3555 	else
3556 		memcpy_fromio(buf, maddr + offset, len);
3557 	iounmap(maddr);
3558 
3559 	return len;
3560 }
3561 EXPORT_SYMBOL_GPL(generic_access_phys);
3562 #endif
3563 
3564 /*
3565  * Access another process' address space as given in mm.  If non-NULL, use the
3566  * given task for page fault accounting.
3567  */
3568 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3569 		unsigned long addr, void *buf, int len, int write)
3570 {
3571 	struct vm_area_struct *vma;
3572 	void *old_buf = buf;
3573 
3574 	down_read(&mm->mmap_sem);
3575 	/* ignore errors, just check how much was successfully transferred */
3576 	while (len) {
3577 		int bytes, ret, offset;
3578 		void *maddr;
3579 		struct page *page = NULL;
3580 
3581 		ret = get_user_pages(tsk, mm, addr, 1,
3582 				write, 1, &page, &vma);
3583 		if (ret <= 0) {
3584 #ifndef CONFIG_HAVE_IOREMAP_PROT
3585 			break;
3586 #else
3587 			/*
3588 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3589 			 * we can access using slightly different code.
3590 			 */
3591 			vma = find_vma(mm, addr);
3592 			if (!vma || vma->vm_start > addr)
3593 				break;
3594 			if (vma->vm_ops && vma->vm_ops->access)
3595 				ret = vma->vm_ops->access(vma, addr, buf,
3596 							  len, write);
3597 			if (ret <= 0)
3598 				break;
3599 			bytes = ret;
3600 #endif
3601 		} else {
3602 			bytes = len;
3603 			offset = addr & (PAGE_SIZE-1);
3604 			if (bytes > PAGE_SIZE-offset)
3605 				bytes = PAGE_SIZE-offset;
3606 
3607 			maddr = kmap(page);
3608 			if (write) {
3609 				copy_to_user_page(vma, page, addr,
3610 						  maddr + offset, buf, bytes);
3611 				set_page_dirty_lock(page);
3612 			} else {
3613 				copy_from_user_page(vma, page, addr,
3614 						    buf, maddr + offset, bytes);
3615 			}
3616 			kunmap(page);
3617 			page_cache_release(page);
3618 		}
3619 		len -= bytes;
3620 		buf += bytes;
3621 		addr += bytes;
3622 	}
3623 	up_read(&mm->mmap_sem);
3624 
3625 	return buf - old_buf;
3626 }
3627 
3628 /**
3629  * access_remote_vm - access another process' address space
3630  * @mm:		the mm_struct of the target address space
3631  * @addr:	start address to access
3632  * @buf:	source or destination buffer
3633  * @len:	number of bytes to transfer
3634  * @write:	whether the access is a write
3635  *
3636  * The caller must hold a reference on @mm.
3637  */
3638 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3639 		void *buf, int len, int write)
3640 {
3641 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
3642 }
3643 
3644 /*
3645  * Access another process' address space.
3646  * Source/target buffer must be kernel space,
3647  * Do not walk the page table directly, use get_user_pages
3648  */
3649 int access_process_vm(struct task_struct *tsk, unsigned long addr,
3650 		void *buf, int len, int write)
3651 {
3652 	struct mm_struct *mm;
3653 	int ret;
3654 
3655 	mm = get_task_mm(tsk);
3656 	if (!mm)
3657 		return 0;
3658 
3659 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3660 	mmput(mm);
3661 
3662 	return ret;
3663 }
3664 
3665 /*
3666  * Print the name of a VMA.
3667  */
3668 void print_vma_addr(char *prefix, unsigned long ip)
3669 {
3670 	struct mm_struct *mm = current->mm;
3671 	struct vm_area_struct *vma;
3672 
3673 	/*
3674 	 * Do not print if we are in atomic
3675 	 * contexts (in exception stacks, etc.):
3676 	 */
3677 	if (preempt_count())
3678 		return;
3679 
3680 	down_read(&mm->mmap_sem);
3681 	vma = find_vma(mm, ip);
3682 	if (vma && vma->vm_file) {
3683 		struct file *f = vma->vm_file;
3684 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3685 		if (buf) {
3686 			char *p;
3687 
3688 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3689 			if (IS_ERR(p))
3690 				p = "?";
3691 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
3692 					vma->vm_start,
3693 					vma->vm_end - vma->vm_start);
3694 			free_page((unsigned long)buf);
3695 		}
3696 	}
3697 	up_read(&mm->mmap_sem);
3698 }
3699 
3700 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3701 void might_fault(void)
3702 {
3703 	/*
3704 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3705 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3706 	 * get paged out, therefore we'll never actually fault, and the
3707 	 * below annotations will generate false positives.
3708 	 */
3709 	if (segment_eq(get_fs(), KERNEL_DS))
3710 		return;
3711 
3712 	/*
3713 	 * it would be nicer only to annotate paths which are not under
3714 	 * pagefault_disable, however that requires a larger audit and
3715 	 * providing helpers like get_user_atomic.
3716 	 */
3717 	if (in_atomic())
3718 		return;
3719 
3720 	__might_sleep(__FILE__, __LINE__, 0);
3721 
3722 	if (current->mm)
3723 		might_lock_read(&current->mm->mmap_sem);
3724 }
3725 EXPORT_SYMBOL(might_fault);
3726 #endif
3727 
3728 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3729 static void clear_gigantic_page(struct page *page,
3730 				unsigned long addr,
3731 				unsigned int pages_per_huge_page)
3732 {
3733 	int i;
3734 	struct page *p = page;
3735 
3736 	might_sleep();
3737 	for (i = 0; i < pages_per_huge_page;
3738 	     i++, p = mem_map_next(p, page, i)) {
3739 		cond_resched();
3740 		clear_user_highpage(p, addr + i * PAGE_SIZE);
3741 	}
3742 }
3743 void clear_huge_page(struct page *page,
3744 		     unsigned long addr, unsigned int pages_per_huge_page)
3745 {
3746 	int i;
3747 
3748 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3749 		clear_gigantic_page(page, addr, pages_per_huge_page);
3750 		return;
3751 	}
3752 
3753 	might_sleep();
3754 	for (i = 0; i < pages_per_huge_page; i++) {
3755 		cond_resched();
3756 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3757 	}
3758 }
3759 
3760 static void copy_user_gigantic_page(struct page *dst, struct page *src,
3761 				    unsigned long addr,
3762 				    struct vm_area_struct *vma,
3763 				    unsigned int pages_per_huge_page)
3764 {
3765 	int i;
3766 	struct page *dst_base = dst;
3767 	struct page *src_base = src;
3768 
3769 	for (i = 0; i < pages_per_huge_page; ) {
3770 		cond_resched();
3771 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3772 
3773 		i++;
3774 		dst = mem_map_next(dst, dst_base, i);
3775 		src = mem_map_next(src, src_base, i);
3776 	}
3777 }
3778 
3779 void copy_user_huge_page(struct page *dst, struct page *src,
3780 			 unsigned long addr, struct vm_area_struct *vma,
3781 			 unsigned int pages_per_huge_page)
3782 {
3783 	int i;
3784 
3785 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3786 		copy_user_gigantic_page(dst, src, addr, vma,
3787 					pages_per_huge_page);
3788 		return;
3789 	}
3790 
3791 	might_sleep();
3792 	for (i = 0; i < pages_per_huge_page; i++) {
3793 		cond_resched();
3794 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3795 	}
3796 }
3797 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3798 
3799 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
3800 
3801 static struct kmem_cache *page_ptl_cachep;
3802 
3803 void __init ptlock_cache_init(void)
3804 {
3805 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3806 			SLAB_PANIC, NULL);
3807 }
3808 
3809 bool ptlock_alloc(struct page *page)
3810 {
3811 	spinlock_t *ptl;
3812 
3813 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
3814 	if (!ptl)
3815 		return false;
3816 	page->ptl = ptl;
3817 	return true;
3818 }
3819 
3820 void ptlock_free(struct page *page)
3821 {
3822 	kmem_cache_free(page_ptl_cachep, page->ptl);
3823 }
3824 #endif
3825