xref: /openbmc/linux/mm/memory.c (revision 36bccb11)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 #include <linux/dma-debug.h>
63 #include <linux/debugfs.h>
64 
65 #include <asm/io.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/tlb.h>
69 #include <asm/tlbflush.h>
70 #include <asm/pgtable.h>
71 
72 #include "internal.h"
73 
74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
76 #endif
77 
78 #ifndef CONFIG_NEED_MULTIPLE_NODES
79 /* use the per-pgdat data instead for discontigmem - mbligh */
80 unsigned long max_mapnr;
81 struct page *mem_map;
82 
83 EXPORT_SYMBOL(max_mapnr);
84 EXPORT_SYMBOL(mem_map);
85 #endif
86 
87 /*
88  * A number of key systems in x86 including ioremap() rely on the assumption
89  * that high_memory defines the upper bound on direct map memory, then end
90  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
91  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92  * and ZONE_HIGHMEM.
93  */
94 void * high_memory;
95 
96 EXPORT_SYMBOL(high_memory);
97 
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 					1;
107 #else
108 					2;
109 #endif
110 
111 static int __init disable_randmaps(char *s)
112 {
113 	randomize_va_space = 0;
114 	return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117 
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120 
121 /*
122  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123  */
124 static int __init init_zero_pfn(void)
125 {
126 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 	return 0;
128 }
129 core_initcall(init_zero_pfn);
130 
131 
132 #if defined(SPLIT_RSS_COUNTING)
133 
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136 	int i;
137 
138 	for (i = 0; i < NR_MM_COUNTERS; i++) {
139 		if (current->rss_stat.count[i]) {
140 			add_mm_counter(mm, i, current->rss_stat.count[i]);
141 			current->rss_stat.count[i] = 0;
142 		}
143 	}
144 	current->rss_stat.events = 0;
145 }
146 
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149 	struct task_struct *task = current;
150 
151 	if (likely(task->mm == mm))
152 		task->rss_stat.count[member] += val;
153 	else
154 		add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158 
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH	(64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163 	if (unlikely(task != current))
164 		return;
165 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 		sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169 
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172 
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176 
177 #endif /* SPLIT_RSS_COUNTING */
178 
179 #ifdef HAVE_GENERIC_MMU_GATHER
180 
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183 	struct mmu_gather_batch *batch;
184 
185 	batch = tlb->active;
186 	if (batch->next) {
187 		tlb->active = batch->next;
188 		return 1;
189 	}
190 
191 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 		return 0;
193 
194 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 	if (!batch)
196 		return 0;
197 
198 	tlb->batch_count++;
199 	batch->next = NULL;
200 	batch->nr   = 0;
201 	batch->max  = MAX_GATHER_BATCH;
202 
203 	tlb->active->next = batch;
204 	tlb->active = batch;
205 
206 	return 1;
207 }
208 
209 /* tlb_gather_mmu
210  *	Called to initialize an (on-stack) mmu_gather structure for page-table
211  *	tear-down from @mm. The @fullmm argument is used when @mm is without
212  *	users and we're going to destroy the full address space (exit/execve).
213  */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
215 {
216 	tlb->mm = mm;
217 
218 	/* Is it from 0 to ~0? */
219 	tlb->fullmm     = !(start | (end+1));
220 	tlb->need_flush_all = 0;
221 	tlb->start	= start;
222 	tlb->end	= end;
223 	tlb->need_flush = 0;
224 	tlb->local.next = NULL;
225 	tlb->local.nr   = 0;
226 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
227 	tlb->active     = &tlb->local;
228 	tlb->batch_count = 0;
229 
230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
231 	tlb->batch = NULL;
232 #endif
233 }
234 
235 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
236 {
237 	tlb->need_flush = 0;
238 	tlb_flush(tlb);
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
240 	tlb_table_flush(tlb);
241 #endif
242 }
243 
244 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
245 {
246 	struct mmu_gather_batch *batch;
247 
248 	for (batch = &tlb->local; batch; batch = batch->next) {
249 		free_pages_and_swap_cache(batch->pages, batch->nr);
250 		batch->nr = 0;
251 	}
252 	tlb->active = &tlb->local;
253 }
254 
255 void tlb_flush_mmu(struct mmu_gather *tlb)
256 {
257 	if (!tlb->need_flush)
258 		return;
259 	tlb_flush_mmu_tlbonly(tlb);
260 	tlb_flush_mmu_free(tlb);
261 }
262 
263 /* tlb_finish_mmu
264  *	Called at the end of the shootdown operation to free up any resources
265  *	that were required.
266  */
267 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
268 {
269 	struct mmu_gather_batch *batch, *next;
270 
271 	tlb_flush_mmu(tlb);
272 
273 	/* keep the page table cache within bounds */
274 	check_pgt_cache();
275 
276 	for (batch = tlb->local.next; batch; batch = next) {
277 		next = batch->next;
278 		free_pages((unsigned long)batch, 0);
279 	}
280 	tlb->local.next = NULL;
281 }
282 
283 /* __tlb_remove_page
284  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
285  *	handling the additional races in SMP caused by other CPUs caching valid
286  *	mappings in their TLBs. Returns the number of free page slots left.
287  *	When out of page slots we must call tlb_flush_mmu().
288  */
289 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
290 {
291 	struct mmu_gather_batch *batch;
292 
293 	VM_BUG_ON(!tlb->need_flush);
294 
295 	batch = tlb->active;
296 	batch->pages[batch->nr++] = page;
297 	if (batch->nr == batch->max) {
298 		if (!tlb_next_batch(tlb))
299 			return 0;
300 		batch = tlb->active;
301 	}
302 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
303 
304 	return batch->max - batch->nr;
305 }
306 
307 #endif /* HAVE_GENERIC_MMU_GATHER */
308 
309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
310 
311 /*
312  * See the comment near struct mmu_table_batch.
313  */
314 
315 static void tlb_remove_table_smp_sync(void *arg)
316 {
317 	/* Simply deliver the interrupt */
318 }
319 
320 static void tlb_remove_table_one(void *table)
321 {
322 	/*
323 	 * This isn't an RCU grace period and hence the page-tables cannot be
324 	 * assumed to be actually RCU-freed.
325 	 *
326 	 * It is however sufficient for software page-table walkers that rely on
327 	 * IRQ disabling. See the comment near struct mmu_table_batch.
328 	 */
329 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
330 	__tlb_remove_table(table);
331 }
332 
333 static void tlb_remove_table_rcu(struct rcu_head *head)
334 {
335 	struct mmu_table_batch *batch;
336 	int i;
337 
338 	batch = container_of(head, struct mmu_table_batch, rcu);
339 
340 	for (i = 0; i < batch->nr; i++)
341 		__tlb_remove_table(batch->tables[i]);
342 
343 	free_page((unsigned long)batch);
344 }
345 
346 void tlb_table_flush(struct mmu_gather *tlb)
347 {
348 	struct mmu_table_batch **batch = &tlb->batch;
349 
350 	if (*batch) {
351 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
352 		*batch = NULL;
353 	}
354 }
355 
356 void tlb_remove_table(struct mmu_gather *tlb, void *table)
357 {
358 	struct mmu_table_batch **batch = &tlb->batch;
359 
360 	tlb->need_flush = 1;
361 
362 	/*
363 	 * When there's less then two users of this mm there cannot be a
364 	 * concurrent page-table walk.
365 	 */
366 	if (atomic_read(&tlb->mm->mm_users) < 2) {
367 		__tlb_remove_table(table);
368 		return;
369 	}
370 
371 	if (*batch == NULL) {
372 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
373 		if (*batch == NULL) {
374 			tlb_remove_table_one(table);
375 			return;
376 		}
377 		(*batch)->nr = 0;
378 	}
379 	(*batch)->tables[(*batch)->nr++] = table;
380 	if ((*batch)->nr == MAX_TABLE_BATCH)
381 		tlb_table_flush(tlb);
382 }
383 
384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
385 
386 /*
387  * Note: this doesn't free the actual pages themselves. That
388  * has been handled earlier when unmapping all the memory regions.
389  */
390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
391 			   unsigned long addr)
392 {
393 	pgtable_t token = pmd_pgtable(*pmd);
394 	pmd_clear(pmd);
395 	pte_free_tlb(tlb, token, addr);
396 	atomic_long_dec(&tlb->mm->nr_ptes);
397 }
398 
399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
400 				unsigned long addr, unsigned long end,
401 				unsigned long floor, unsigned long ceiling)
402 {
403 	pmd_t *pmd;
404 	unsigned long next;
405 	unsigned long start;
406 
407 	start = addr;
408 	pmd = pmd_offset(pud, addr);
409 	do {
410 		next = pmd_addr_end(addr, end);
411 		if (pmd_none_or_clear_bad(pmd))
412 			continue;
413 		free_pte_range(tlb, pmd, addr);
414 	} while (pmd++, addr = next, addr != end);
415 
416 	start &= PUD_MASK;
417 	if (start < floor)
418 		return;
419 	if (ceiling) {
420 		ceiling &= PUD_MASK;
421 		if (!ceiling)
422 			return;
423 	}
424 	if (end - 1 > ceiling - 1)
425 		return;
426 
427 	pmd = pmd_offset(pud, start);
428 	pud_clear(pud);
429 	pmd_free_tlb(tlb, pmd, start);
430 }
431 
432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
433 				unsigned long addr, unsigned long end,
434 				unsigned long floor, unsigned long ceiling)
435 {
436 	pud_t *pud;
437 	unsigned long next;
438 	unsigned long start;
439 
440 	start = addr;
441 	pud = pud_offset(pgd, addr);
442 	do {
443 		next = pud_addr_end(addr, end);
444 		if (pud_none_or_clear_bad(pud))
445 			continue;
446 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
447 	} while (pud++, addr = next, addr != end);
448 
449 	start &= PGDIR_MASK;
450 	if (start < floor)
451 		return;
452 	if (ceiling) {
453 		ceiling &= PGDIR_MASK;
454 		if (!ceiling)
455 			return;
456 	}
457 	if (end - 1 > ceiling - 1)
458 		return;
459 
460 	pud = pud_offset(pgd, start);
461 	pgd_clear(pgd);
462 	pud_free_tlb(tlb, pud, start);
463 }
464 
465 /*
466  * This function frees user-level page tables of a process.
467  */
468 void free_pgd_range(struct mmu_gather *tlb,
469 			unsigned long addr, unsigned long end,
470 			unsigned long floor, unsigned long ceiling)
471 {
472 	pgd_t *pgd;
473 	unsigned long next;
474 
475 	/*
476 	 * The next few lines have given us lots of grief...
477 	 *
478 	 * Why are we testing PMD* at this top level?  Because often
479 	 * there will be no work to do at all, and we'd prefer not to
480 	 * go all the way down to the bottom just to discover that.
481 	 *
482 	 * Why all these "- 1"s?  Because 0 represents both the bottom
483 	 * of the address space and the top of it (using -1 for the
484 	 * top wouldn't help much: the masks would do the wrong thing).
485 	 * The rule is that addr 0 and floor 0 refer to the bottom of
486 	 * the address space, but end 0 and ceiling 0 refer to the top
487 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
488 	 * that end 0 case should be mythical).
489 	 *
490 	 * Wherever addr is brought up or ceiling brought down, we must
491 	 * be careful to reject "the opposite 0" before it confuses the
492 	 * subsequent tests.  But what about where end is brought down
493 	 * by PMD_SIZE below? no, end can't go down to 0 there.
494 	 *
495 	 * Whereas we round start (addr) and ceiling down, by different
496 	 * masks at different levels, in order to test whether a table
497 	 * now has no other vmas using it, so can be freed, we don't
498 	 * bother to round floor or end up - the tests don't need that.
499 	 */
500 
501 	addr &= PMD_MASK;
502 	if (addr < floor) {
503 		addr += PMD_SIZE;
504 		if (!addr)
505 			return;
506 	}
507 	if (ceiling) {
508 		ceiling &= PMD_MASK;
509 		if (!ceiling)
510 			return;
511 	}
512 	if (end - 1 > ceiling - 1)
513 		end -= PMD_SIZE;
514 	if (addr > end - 1)
515 		return;
516 
517 	pgd = pgd_offset(tlb->mm, addr);
518 	do {
519 		next = pgd_addr_end(addr, end);
520 		if (pgd_none_or_clear_bad(pgd))
521 			continue;
522 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
523 	} while (pgd++, addr = next, addr != end);
524 }
525 
526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
527 		unsigned long floor, unsigned long ceiling)
528 {
529 	while (vma) {
530 		struct vm_area_struct *next = vma->vm_next;
531 		unsigned long addr = vma->vm_start;
532 
533 		/*
534 		 * Hide vma from rmap and truncate_pagecache before freeing
535 		 * pgtables
536 		 */
537 		unlink_anon_vmas(vma);
538 		unlink_file_vma(vma);
539 
540 		if (is_vm_hugetlb_page(vma)) {
541 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
542 				floor, next? next->vm_start: ceiling);
543 		} else {
544 			/*
545 			 * Optimization: gather nearby vmas into one call down
546 			 */
547 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
548 			       && !is_vm_hugetlb_page(next)) {
549 				vma = next;
550 				next = vma->vm_next;
551 				unlink_anon_vmas(vma);
552 				unlink_file_vma(vma);
553 			}
554 			free_pgd_range(tlb, addr, vma->vm_end,
555 				floor, next? next->vm_start: ceiling);
556 		}
557 		vma = next;
558 	}
559 }
560 
561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
562 		pmd_t *pmd, unsigned long address)
563 {
564 	spinlock_t *ptl;
565 	pgtable_t new = pte_alloc_one(mm, address);
566 	int wait_split_huge_page;
567 	if (!new)
568 		return -ENOMEM;
569 
570 	/*
571 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
572 	 * visible before the pte is made visible to other CPUs by being
573 	 * put into page tables.
574 	 *
575 	 * The other side of the story is the pointer chasing in the page
576 	 * table walking code (when walking the page table without locking;
577 	 * ie. most of the time). Fortunately, these data accesses consist
578 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
579 	 * being the notable exception) will already guarantee loads are
580 	 * seen in-order. See the alpha page table accessors for the
581 	 * smp_read_barrier_depends() barriers in page table walking code.
582 	 */
583 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
584 
585 	ptl = pmd_lock(mm, pmd);
586 	wait_split_huge_page = 0;
587 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
588 		atomic_long_inc(&mm->nr_ptes);
589 		pmd_populate(mm, pmd, new);
590 		new = NULL;
591 	} else if (unlikely(pmd_trans_splitting(*pmd)))
592 		wait_split_huge_page = 1;
593 	spin_unlock(ptl);
594 	if (new)
595 		pte_free(mm, new);
596 	if (wait_split_huge_page)
597 		wait_split_huge_page(vma->anon_vma, pmd);
598 	return 0;
599 }
600 
601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
602 {
603 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
604 	if (!new)
605 		return -ENOMEM;
606 
607 	smp_wmb(); /* See comment in __pte_alloc */
608 
609 	spin_lock(&init_mm.page_table_lock);
610 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
611 		pmd_populate_kernel(&init_mm, pmd, new);
612 		new = NULL;
613 	} else
614 		VM_BUG_ON(pmd_trans_splitting(*pmd));
615 	spin_unlock(&init_mm.page_table_lock);
616 	if (new)
617 		pte_free_kernel(&init_mm, new);
618 	return 0;
619 }
620 
621 static inline void init_rss_vec(int *rss)
622 {
623 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
624 }
625 
626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
627 {
628 	int i;
629 
630 	if (current->mm == mm)
631 		sync_mm_rss(mm);
632 	for (i = 0; i < NR_MM_COUNTERS; i++)
633 		if (rss[i])
634 			add_mm_counter(mm, i, rss[i]);
635 }
636 
637 /*
638  * This function is called to print an error when a bad pte
639  * is found. For example, we might have a PFN-mapped pte in
640  * a region that doesn't allow it.
641  *
642  * The calling function must still handle the error.
643  */
644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
645 			  pte_t pte, struct page *page)
646 {
647 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
648 	pud_t *pud = pud_offset(pgd, addr);
649 	pmd_t *pmd = pmd_offset(pud, addr);
650 	struct address_space *mapping;
651 	pgoff_t index;
652 	static unsigned long resume;
653 	static unsigned long nr_shown;
654 	static unsigned long nr_unshown;
655 
656 	/*
657 	 * Allow a burst of 60 reports, then keep quiet for that minute;
658 	 * or allow a steady drip of one report per second.
659 	 */
660 	if (nr_shown == 60) {
661 		if (time_before(jiffies, resume)) {
662 			nr_unshown++;
663 			return;
664 		}
665 		if (nr_unshown) {
666 			printk(KERN_ALERT
667 				"BUG: Bad page map: %lu messages suppressed\n",
668 				nr_unshown);
669 			nr_unshown = 0;
670 		}
671 		nr_shown = 0;
672 	}
673 	if (nr_shown++ == 0)
674 		resume = jiffies + 60 * HZ;
675 
676 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
677 	index = linear_page_index(vma, addr);
678 
679 	printk(KERN_ALERT
680 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
681 		current->comm,
682 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
683 	if (page)
684 		dump_page(page, "bad pte");
685 	printk(KERN_ALERT
686 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
687 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
688 	/*
689 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
690 	 */
691 	if (vma->vm_ops)
692 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
693 		       vma->vm_ops->fault);
694 	if (vma->vm_file)
695 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
696 		       vma->vm_file->f_op->mmap);
697 	dump_stack();
698 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
699 }
700 
701 static inline bool is_cow_mapping(vm_flags_t flags)
702 {
703 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
704 }
705 
706 /*
707  * vm_normal_page -- This function gets the "struct page" associated with a pte.
708  *
709  * "Special" mappings do not wish to be associated with a "struct page" (either
710  * it doesn't exist, or it exists but they don't want to touch it). In this
711  * case, NULL is returned here. "Normal" mappings do have a struct page.
712  *
713  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
714  * pte bit, in which case this function is trivial. Secondly, an architecture
715  * may not have a spare pte bit, which requires a more complicated scheme,
716  * described below.
717  *
718  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
719  * special mapping (even if there are underlying and valid "struct pages").
720  * COWed pages of a VM_PFNMAP are always normal.
721  *
722  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
723  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
724  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
725  * mapping will always honor the rule
726  *
727  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
728  *
729  * And for normal mappings this is false.
730  *
731  * This restricts such mappings to be a linear translation from virtual address
732  * to pfn. To get around this restriction, we allow arbitrary mappings so long
733  * as the vma is not a COW mapping; in that case, we know that all ptes are
734  * special (because none can have been COWed).
735  *
736  *
737  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
738  *
739  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
740  * page" backing, however the difference is that _all_ pages with a struct
741  * page (that is, those where pfn_valid is true) are refcounted and considered
742  * normal pages by the VM. The disadvantage is that pages are refcounted
743  * (which can be slower and simply not an option for some PFNMAP users). The
744  * advantage is that we don't have to follow the strict linearity rule of
745  * PFNMAP mappings in order to support COWable mappings.
746  *
747  */
748 #ifdef __HAVE_ARCH_PTE_SPECIAL
749 # define HAVE_PTE_SPECIAL 1
750 #else
751 # define HAVE_PTE_SPECIAL 0
752 #endif
753 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
754 				pte_t pte)
755 {
756 	unsigned long pfn = pte_pfn(pte);
757 
758 	if (HAVE_PTE_SPECIAL) {
759 		if (likely(!pte_special(pte)))
760 			goto check_pfn;
761 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
762 			return NULL;
763 		if (!is_zero_pfn(pfn))
764 			print_bad_pte(vma, addr, pte, NULL);
765 		return NULL;
766 	}
767 
768 	/* !HAVE_PTE_SPECIAL case follows: */
769 
770 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
771 		if (vma->vm_flags & VM_MIXEDMAP) {
772 			if (!pfn_valid(pfn))
773 				return NULL;
774 			goto out;
775 		} else {
776 			unsigned long off;
777 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
778 			if (pfn == vma->vm_pgoff + off)
779 				return NULL;
780 			if (!is_cow_mapping(vma->vm_flags))
781 				return NULL;
782 		}
783 	}
784 
785 	if (is_zero_pfn(pfn))
786 		return NULL;
787 check_pfn:
788 	if (unlikely(pfn > highest_memmap_pfn)) {
789 		print_bad_pte(vma, addr, pte, NULL);
790 		return NULL;
791 	}
792 
793 	/*
794 	 * NOTE! We still have PageReserved() pages in the page tables.
795 	 * eg. VDSO mappings can cause them to exist.
796 	 */
797 out:
798 	return pfn_to_page(pfn);
799 }
800 
801 /*
802  * copy one vm_area from one task to the other. Assumes the page tables
803  * already present in the new task to be cleared in the whole range
804  * covered by this vma.
805  */
806 
807 static inline unsigned long
808 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
809 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
810 		unsigned long addr, int *rss)
811 {
812 	unsigned long vm_flags = vma->vm_flags;
813 	pte_t pte = *src_pte;
814 	struct page *page;
815 
816 	/* pte contains position in swap or file, so copy. */
817 	if (unlikely(!pte_present(pte))) {
818 		if (!pte_file(pte)) {
819 			swp_entry_t entry = pte_to_swp_entry(pte);
820 
821 			if (swap_duplicate(entry) < 0)
822 				return entry.val;
823 
824 			/* make sure dst_mm is on swapoff's mmlist. */
825 			if (unlikely(list_empty(&dst_mm->mmlist))) {
826 				spin_lock(&mmlist_lock);
827 				if (list_empty(&dst_mm->mmlist))
828 					list_add(&dst_mm->mmlist,
829 						 &src_mm->mmlist);
830 				spin_unlock(&mmlist_lock);
831 			}
832 			if (likely(!non_swap_entry(entry)))
833 				rss[MM_SWAPENTS]++;
834 			else if (is_migration_entry(entry)) {
835 				page = migration_entry_to_page(entry);
836 
837 				if (PageAnon(page))
838 					rss[MM_ANONPAGES]++;
839 				else
840 					rss[MM_FILEPAGES]++;
841 
842 				if (is_write_migration_entry(entry) &&
843 				    is_cow_mapping(vm_flags)) {
844 					/*
845 					 * COW mappings require pages in both
846 					 * parent and child to be set to read.
847 					 */
848 					make_migration_entry_read(&entry);
849 					pte = swp_entry_to_pte(entry);
850 					if (pte_swp_soft_dirty(*src_pte))
851 						pte = pte_swp_mksoft_dirty(pte);
852 					set_pte_at(src_mm, addr, src_pte, pte);
853 				}
854 			}
855 		}
856 		goto out_set_pte;
857 	}
858 
859 	/*
860 	 * If it's a COW mapping, write protect it both
861 	 * in the parent and the child
862 	 */
863 	if (is_cow_mapping(vm_flags)) {
864 		ptep_set_wrprotect(src_mm, addr, src_pte);
865 		pte = pte_wrprotect(pte);
866 	}
867 
868 	/*
869 	 * If it's a shared mapping, mark it clean in
870 	 * the child
871 	 */
872 	if (vm_flags & VM_SHARED)
873 		pte = pte_mkclean(pte);
874 	pte = pte_mkold(pte);
875 
876 	page = vm_normal_page(vma, addr, pte);
877 	if (page) {
878 		get_page(page);
879 		page_dup_rmap(page);
880 		if (PageAnon(page))
881 			rss[MM_ANONPAGES]++;
882 		else
883 			rss[MM_FILEPAGES]++;
884 	}
885 
886 out_set_pte:
887 	set_pte_at(dst_mm, addr, dst_pte, pte);
888 	return 0;
889 }
890 
891 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
892 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
893 		   unsigned long addr, unsigned long end)
894 {
895 	pte_t *orig_src_pte, *orig_dst_pte;
896 	pte_t *src_pte, *dst_pte;
897 	spinlock_t *src_ptl, *dst_ptl;
898 	int progress = 0;
899 	int rss[NR_MM_COUNTERS];
900 	swp_entry_t entry = (swp_entry_t){0};
901 
902 again:
903 	init_rss_vec(rss);
904 
905 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
906 	if (!dst_pte)
907 		return -ENOMEM;
908 	src_pte = pte_offset_map(src_pmd, addr);
909 	src_ptl = pte_lockptr(src_mm, src_pmd);
910 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
911 	orig_src_pte = src_pte;
912 	orig_dst_pte = dst_pte;
913 	arch_enter_lazy_mmu_mode();
914 
915 	do {
916 		/*
917 		 * We are holding two locks at this point - either of them
918 		 * could generate latencies in another task on another CPU.
919 		 */
920 		if (progress >= 32) {
921 			progress = 0;
922 			if (need_resched() ||
923 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
924 				break;
925 		}
926 		if (pte_none(*src_pte)) {
927 			progress++;
928 			continue;
929 		}
930 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
931 							vma, addr, rss);
932 		if (entry.val)
933 			break;
934 		progress += 8;
935 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
936 
937 	arch_leave_lazy_mmu_mode();
938 	spin_unlock(src_ptl);
939 	pte_unmap(orig_src_pte);
940 	add_mm_rss_vec(dst_mm, rss);
941 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
942 	cond_resched();
943 
944 	if (entry.val) {
945 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
946 			return -ENOMEM;
947 		progress = 0;
948 	}
949 	if (addr != end)
950 		goto again;
951 	return 0;
952 }
953 
954 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
955 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
956 		unsigned long addr, unsigned long end)
957 {
958 	pmd_t *src_pmd, *dst_pmd;
959 	unsigned long next;
960 
961 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
962 	if (!dst_pmd)
963 		return -ENOMEM;
964 	src_pmd = pmd_offset(src_pud, addr);
965 	do {
966 		next = pmd_addr_end(addr, end);
967 		if (pmd_trans_huge(*src_pmd)) {
968 			int err;
969 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
970 			err = copy_huge_pmd(dst_mm, src_mm,
971 					    dst_pmd, src_pmd, addr, vma);
972 			if (err == -ENOMEM)
973 				return -ENOMEM;
974 			if (!err)
975 				continue;
976 			/* fall through */
977 		}
978 		if (pmd_none_or_clear_bad(src_pmd))
979 			continue;
980 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
981 						vma, addr, next))
982 			return -ENOMEM;
983 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
984 	return 0;
985 }
986 
987 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
988 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
989 		unsigned long addr, unsigned long end)
990 {
991 	pud_t *src_pud, *dst_pud;
992 	unsigned long next;
993 
994 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
995 	if (!dst_pud)
996 		return -ENOMEM;
997 	src_pud = pud_offset(src_pgd, addr);
998 	do {
999 		next = pud_addr_end(addr, end);
1000 		if (pud_none_or_clear_bad(src_pud))
1001 			continue;
1002 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1003 						vma, addr, next))
1004 			return -ENOMEM;
1005 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1006 	return 0;
1007 }
1008 
1009 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1010 		struct vm_area_struct *vma)
1011 {
1012 	pgd_t *src_pgd, *dst_pgd;
1013 	unsigned long next;
1014 	unsigned long addr = vma->vm_start;
1015 	unsigned long end = vma->vm_end;
1016 	unsigned long mmun_start;	/* For mmu_notifiers */
1017 	unsigned long mmun_end;		/* For mmu_notifiers */
1018 	bool is_cow;
1019 	int ret;
1020 
1021 	/*
1022 	 * Don't copy ptes where a page fault will fill them correctly.
1023 	 * Fork becomes much lighter when there are big shared or private
1024 	 * readonly mappings. The tradeoff is that copy_page_range is more
1025 	 * efficient than faulting.
1026 	 */
1027 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1028 			       VM_PFNMAP | VM_MIXEDMAP))) {
1029 		if (!vma->anon_vma)
1030 			return 0;
1031 	}
1032 
1033 	if (is_vm_hugetlb_page(vma))
1034 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1035 
1036 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1037 		/*
1038 		 * We do not free on error cases below as remove_vma
1039 		 * gets called on error from higher level routine
1040 		 */
1041 		ret = track_pfn_copy(vma);
1042 		if (ret)
1043 			return ret;
1044 	}
1045 
1046 	/*
1047 	 * We need to invalidate the secondary MMU mappings only when
1048 	 * there could be a permission downgrade on the ptes of the
1049 	 * parent mm. And a permission downgrade will only happen if
1050 	 * is_cow_mapping() returns true.
1051 	 */
1052 	is_cow = is_cow_mapping(vma->vm_flags);
1053 	mmun_start = addr;
1054 	mmun_end   = end;
1055 	if (is_cow)
1056 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1057 						    mmun_end);
1058 
1059 	ret = 0;
1060 	dst_pgd = pgd_offset(dst_mm, addr);
1061 	src_pgd = pgd_offset(src_mm, addr);
1062 	do {
1063 		next = pgd_addr_end(addr, end);
1064 		if (pgd_none_or_clear_bad(src_pgd))
1065 			continue;
1066 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1067 					    vma, addr, next))) {
1068 			ret = -ENOMEM;
1069 			break;
1070 		}
1071 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1072 
1073 	if (is_cow)
1074 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1075 	return ret;
1076 }
1077 
1078 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1079 				struct vm_area_struct *vma, pmd_t *pmd,
1080 				unsigned long addr, unsigned long end,
1081 				struct zap_details *details)
1082 {
1083 	struct mm_struct *mm = tlb->mm;
1084 	int force_flush = 0;
1085 	int rss[NR_MM_COUNTERS];
1086 	spinlock_t *ptl;
1087 	pte_t *start_pte;
1088 	pte_t *pte;
1089 
1090 again:
1091 	init_rss_vec(rss);
1092 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1093 	pte = start_pte;
1094 	arch_enter_lazy_mmu_mode();
1095 	do {
1096 		pte_t ptent = *pte;
1097 		if (pte_none(ptent)) {
1098 			continue;
1099 		}
1100 
1101 		if (pte_present(ptent)) {
1102 			struct page *page;
1103 
1104 			page = vm_normal_page(vma, addr, ptent);
1105 			if (unlikely(details) && page) {
1106 				/*
1107 				 * unmap_shared_mapping_pages() wants to
1108 				 * invalidate cache without truncating:
1109 				 * unmap shared but keep private pages.
1110 				 */
1111 				if (details->check_mapping &&
1112 				    details->check_mapping != page->mapping)
1113 					continue;
1114 				/*
1115 				 * Each page->index must be checked when
1116 				 * invalidating or truncating nonlinear.
1117 				 */
1118 				if (details->nonlinear_vma &&
1119 				    (page->index < details->first_index ||
1120 				     page->index > details->last_index))
1121 					continue;
1122 			}
1123 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1124 							tlb->fullmm);
1125 			tlb_remove_tlb_entry(tlb, pte, addr);
1126 			if (unlikely(!page))
1127 				continue;
1128 			if (unlikely(details) && details->nonlinear_vma
1129 			    && linear_page_index(details->nonlinear_vma,
1130 						addr) != page->index) {
1131 				pte_t ptfile = pgoff_to_pte(page->index);
1132 				if (pte_soft_dirty(ptent))
1133 					pte_file_mksoft_dirty(ptfile);
1134 				set_pte_at(mm, addr, pte, ptfile);
1135 			}
1136 			if (PageAnon(page))
1137 				rss[MM_ANONPAGES]--;
1138 			else {
1139 				if (pte_dirty(ptent)) {
1140 					force_flush = 1;
1141 					set_page_dirty(page);
1142 				}
1143 				if (pte_young(ptent) &&
1144 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1145 					mark_page_accessed(page);
1146 				rss[MM_FILEPAGES]--;
1147 			}
1148 			page_remove_rmap(page);
1149 			if (unlikely(page_mapcount(page) < 0))
1150 				print_bad_pte(vma, addr, ptent, page);
1151 			if (unlikely(!__tlb_remove_page(tlb, page))) {
1152 				force_flush = 1;
1153 				break;
1154 			}
1155 			continue;
1156 		}
1157 		/*
1158 		 * If details->check_mapping, we leave swap entries;
1159 		 * if details->nonlinear_vma, we leave file entries.
1160 		 */
1161 		if (unlikely(details))
1162 			continue;
1163 		if (pte_file(ptent)) {
1164 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1165 				print_bad_pte(vma, addr, ptent, NULL);
1166 		} else {
1167 			swp_entry_t entry = pte_to_swp_entry(ptent);
1168 
1169 			if (!non_swap_entry(entry))
1170 				rss[MM_SWAPENTS]--;
1171 			else if (is_migration_entry(entry)) {
1172 				struct page *page;
1173 
1174 				page = migration_entry_to_page(entry);
1175 
1176 				if (PageAnon(page))
1177 					rss[MM_ANONPAGES]--;
1178 				else
1179 					rss[MM_FILEPAGES]--;
1180 			}
1181 			if (unlikely(!free_swap_and_cache(entry)))
1182 				print_bad_pte(vma, addr, ptent, NULL);
1183 		}
1184 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1185 	} while (pte++, addr += PAGE_SIZE, addr != end);
1186 
1187 	add_mm_rss_vec(mm, rss);
1188 	arch_leave_lazy_mmu_mode();
1189 
1190 	/* Do the actual TLB flush before dropping ptl */
1191 	if (force_flush) {
1192 		unsigned long old_end;
1193 
1194 		/*
1195 		 * Flush the TLB just for the previous segment,
1196 		 * then update the range to be the remaining
1197 		 * TLB range.
1198 		 */
1199 		old_end = tlb->end;
1200 		tlb->end = addr;
1201 		tlb_flush_mmu_tlbonly(tlb);
1202 		tlb->start = addr;
1203 		tlb->end = old_end;
1204 	}
1205 	pte_unmap_unlock(start_pte, ptl);
1206 
1207 	/*
1208 	 * If we forced a TLB flush (either due to running out of
1209 	 * batch buffers or because we needed to flush dirty TLB
1210 	 * entries before releasing the ptl), free the batched
1211 	 * memory too. Restart if we didn't do everything.
1212 	 */
1213 	if (force_flush) {
1214 		force_flush = 0;
1215 		tlb_flush_mmu_free(tlb);
1216 
1217 		if (addr != end)
1218 			goto again;
1219 	}
1220 
1221 	return addr;
1222 }
1223 
1224 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1225 				struct vm_area_struct *vma, pud_t *pud,
1226 				unsigned long addr, unsigned long end,
1227 				struct zap_details *details)
1228 {
1229 	pmd_t *pmd;
1230 	unsigned long next;
1231 
1232 	pmd = pmd_offset(pud, addr);
1233 	do {
1234 		next = pmd_addr_end(addr, end);
1235 		if (pmd_trans_huge(*pmd)) {
1236 			if (next - addr != HPAGE_PMD_SIZE) {
1237 #ifdef CONFIG_DEBUG_VM
1238 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1239 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1240 						__func__, addr, end,
1241 						vma->vm_start,
1242 						vma->vm_end);
1243 					BUG();
1244 				}
1245 #endif
1246 				split_huge_page_pmd(vma, addr, pmd);
1247 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248 				goto next;
1249 			/* fall through */
1250 		}
1251 		/*
1252 		 * Here there can be other concurrent MADV_DONTNEED or
1253 		 * trans huge page faults running, and if the pmd is
1254 		 * none or trans huge it can change under us. This is
1255 		 * because MADV_DONTNEED holds the mmap_sem in read
1256 		 * mode.
1257 		 */
1258 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259 			goto next;
1260 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261 next:
1262 		cond_resched();
1263 	} while (pmd++, addr = next, addr != end);
1264 
1265 	return addr;
1266 }
1267 
1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269 				struct vm_area_struct *vma, pgd_t *pgd,
1270 				unsigned long addr, unsigned long end,
1271 				struct zap_details *details)
1272 {
1273 	pud_t *pud;
1274 	unsigned long next;
1275 
1276 	pud = pud_offset(pgd, addr);
1277 	do {
1278 		next = pud_addr_end(addr, end);
1279 		if (pud_none_or_clear_bad(pud))
1280 			continue;
1281 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1282 	} while (pud++, addr = next, addr != end);
1283 
1284 	return addr;
1285 }
1286 
1287 static void unmap_page_range(struct mmu_gather *tlb,
1288 			     struct vm_area_struct *vma,
1289 			     unsigned long addr, unsigned long end,
1290 			     struct zap_details *details)
1291 {
1292 	pgd_t *pgd;
1293 	unsigned long next;
1294 
1295 	if (details && !details->check_mapping && !details->nonlinear_vma)
1296 		details = NULL;
1297 
1298 	BUG_ON(addr >= end);
1299 	mem_cgroup_uncharge_start();
1300 	tlb_start_vma(tlb, vma);
1301 	pgd = pgd_offset(vma->vm_mm, addr);
1302 	do {
1303 		next = pgd_addr_end(addr, end);
1304 		if (pgd_none_or_clear_bad(pgd))
1305 			continue;
1306 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1307 	} while (pgd++, addr = next, addr != end);
1308 	tlb_end_vma(tlb, vma);
1309 	mem_cgroup_uncharge_end();
1310 }
1311 
1312 
1313 static void unmap_single_vma(struct mmu_gather *tlb,
1314 		struct vm_area_struct *vma, unsigned long start_addr,
1315 		unsigned long end_addr,
1316 		struct zap_details *details)
1317 {
1318 	unsigned long start = max(vma->vm_start, start_addr);
1319 	unsigned long end;
1320 
1321 	if (start >= vma->vm_end)
1322 		return;
1323 	end = min(vma->vm_end, end_addr);
1324 	if (end <= vma->vm_start)
1325 		return;
1326 
1327 	if (vma->vm_file)
1328 		uprobe_munmap(vma, start, end);
1329 
1330 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1331 		untrack_pfn(vma, 0, 0);
1332 
1333 	if (start != end) {
1334 		if (unlikely(is_vm_hugetlb_page(vma))) {
1335 			/*
1336 			 * It is undesirable to test vma->vm_file as it
1337 			 * should be non-null for valid hugetlb area.
1338 			 * However, vm_file will be NULL in the error
1339 			 * cleanup path of mmap_region. When
1340 			 * hugetlbfs ->mmap method fails,
1341 			 * mmap_region() nullifies vma->vm_file
1342 			 * before calling this function to clean up.
1343 			 * Since no pte has actually been setup, it is
1344 			 * safe to do nothing in this case.
1345 			 */
1346 			if (vma->vm_file) {
1347 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1348 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1349 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1350 			}
1351 		} else
1352 			unmap_page_range(tlb, vma, start, end, details);
1353 	}
1354 }
1355 
1356 /**
1357  * unmap_vmas - unmap a range of memory covered by a list of vma's
1358  * @tlb: address of the caller's struct mmu_gather
1359  * @vma: the starting vma
1360  * @start_addr: virtual address at which to start unmapping
1361  * @end_addr: virtual address at which to end unmapping
1362  *
1363  * Unmap all pages in the vma list.
1364  *
1365  * Only addresses between `start' and `end' will be unmapped.
1366  *
1367  * The VMA list must be sorted in ascending virtual address order.
1368  *
1369  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1370  * range after unmap_vmas() returns.  So the only responsibility here is to
1371  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1372  * drops the lock and schedules.
1373  */
1374 void unmap_vmas(struct mmu_gather *tlb,
1375 		struct vm_area_struct *vma, unsigned long start_addr,
1376 		unsigned long end_addr)
1377 {
1378 	struct mm_struct *mm = vma->vm_mm;
1379 
1380 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1381 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1382 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1383 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1384 }
1385 
1386 /**
1387  * zap_page_range - remove user pages in a given range
1388  * @vma: vm_area_struct holding the applicable pages
1389  * @start: starting address of pages to zap
1390  * @size: number of bytes to zap
1391  * @details: details of nonlinear truncation or shared cache invalidation
1392  *
1393  * Caller must protect the VMA list
1394  */
1395 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1396 		unsigned long size, struct zap_details *details)
1397 {
1398 	struct mm_struct *mm = vma->vm_mm;
1399 	struct mmu_gather tlb;
1400 	unsigned long end = start + size;
1401 
1402 	lru_add_drain();
1403 	tlb_gather_mmu(&tlb, mm, start, end);
1404 	update_hiwater_rss(mm);
1405 	mmu_notifier_invalidate_range_start(mm, start, end);
1406 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1407 		unmap_single_vma(&tlb, vma, start, end, details);
1408 	mmu_notifier_invalidate_range_end(mm, start, end);
1409 	tlb_finish_mmu(&tlb, start, end);
1410 }
1411 
1412 /**
1413  * zap_page_range_single - remove user pages in a given range
1414  * @vma: vm_area_struct holding the applicable pages
1415  * @address: starting address of pages to zap
1416  * @size: number of bytes to zap
1417  * @details: details of nonlinear truncation or shared cache invalidation
1418  *
1419  * The range must fit into one VMA.
1420  */
1421 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1422 		unsigned long size, struct zap_details *details)
1423 {
1424 	struct mm_struct *mm = vma->vm_mm;
1425 	struct mmu_gather tlb;
1426 	unsigned long end = address + size;
1427 
1428 	lru_add_drain();
1429 	tlb_gather_mmu(&tlb, mm, address, end);
1430 	update_hiwater_rss(mm);
1431 	mmu_notifier_invalidate_range_start(mm, address, end);
1432 	unmap_single_vma(&tlb, vma, address, end, details);
1433 	mmu_notifier_invalidate_range_end(mm, address, end);
1434 	tlb_finish_mmu(&tlb, address, end);
1435 }
1436 
1437 /**
1438  * zap_vma_ptes - remove ptes mapping the vma
1439  * @vma: vm_area_struct holding ptes to be zapped
1440  * @address: starting address of pages to zap
1441  * @size: number of bytes to zap
1442  *
1443  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1444  *
1445  * The entire address range must be fully contained within the vma.
1446  *
1447  * Returns 0 if successful.
1448  */
1449 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450 		unsigned long size)
1451 {
1452 	if (address < vma->vm_start || address + size > vma->vm_end ||
1453 	    		!(vma->vm_flags & VM_PFNMAP))
1454 		return -1;
1455 	zap_page_range_single(vma, address, size, NULL);
1456 	return 0;
1457 }
1458 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1459 
1460 /**
1461  * follow_page_mask - look up a page descriptor from a user-virtual address
1462  * @vma: vm_area_struct mapping @address
1463  * @address: virtual address to look up
1464  * @flags: flags modifying lookup behaviour
1465  * @page_mask: on output, *page_mask is set according to the size of the page
1466  *
1467  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1468  *
1469  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1470  * an error pointer if there is a mapping to something not represented
1471  * by a page descriptor (see also vm_normal_page()).
1472  */
1473 struct page *follow_page_mask(struct vm_area_struct *vma,
1474 			      unsigned long address, unsigned int flags,
1475 			      unsigned int *page_mask)
1476 {
1477 	pgd_t *pgd;
1478 	pud_t *pud;
1479 	pmd_t *pmd;
1480 	pte_t *ptep, pte;
1481 	spinlock_t *ptl;
1482 	struct page *page;
1483 	struct mm_struct *mm = vma->vm_mm;
1484 
1485 	*page_mask = 0;
1486 
1487 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1488 	if (!IS_ERR(page)) {
1489 		BUG_ON(flags & FOLL_GET);
1490 		goto out;
1491 	}
1492 
1493 	page = NULL;
1494 	pgd = pgd_offset(mm, address);
1495 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1496 		goto no_page_table;
1497 
1498 	pud = pud_offset(pgd, address);
1499 	if (pud_none(*pud))
1500 		goto no_page_table;
1501 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1502 		if (flags & FOLL_GET)
1503 			goto out;
1504 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1505 		goto out;
1506 	}
1507 	if (unlikely(pud_bad(*pud)))
1508 		goto no_page_table;
1509 
1510 	pmd = pmd_offset(pud, address);
1511 	if (pmd_none(*pmd))
1512 		goto no_page_table;
1513 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1514 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1515 		if (flags & FOLL_GET) {
1516 			/*
1517 			 * Refcount on tail pages are not well-defined and
1518 			 * shouldn't be taken. The caller should handle a NULL
1519 			 * return when trying to follow tail pages.
1520 			 */
1521 			if (PageHead(page))
1522 				get_page(page);
1523 			else {
1524 				page = NULL;
1525 				goto out;
1526 			}
1527 		}
1528 		goto out;
1529 	}
1530 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1531 		goto no_page_table;
1532 	if (pmd_trans_huge(*pmd)) {
1533 		if (flags & FOLL_SPLIT) {
1534 			split_huge_page_pmd(vma, address, pmd);
1535 			goto split_fallthrough;
1536 		}
1537 		ptl = pmd_lock(mm, pmd);
1538 		if (likely(pmd_trans_huge(*pmd))) {
1539 			if (unlikely(pmd_trans_splitting(*pmd))) {
1540 				spin_unlock(ptl);
1541 				wait_split_huge_page(vma->anon_vma, pmd);
1542 			} else {
1543 				page = follow_trans_huge_pmd(vma, address,
1544 							     pmd, flags);
1545 				spin_unlock(ptl);
1546 				*page_mask = HPAGE_PMD_NR - 1;
1547 				goto out;
1548 			}
1549 		} else
1550 			spin_unlock(ptl);
1551 		/* fall through */
1552 	}
1553 split_fallthrough:
1554 	if (unlikely(pmd_bad(*pmd)))
1555 		goto no_page_table;
1556 
1557 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1558 
1559 	pte = *ptep;
1560 	if (!pte_present(pte)) {
1561 		swp_entry_t entry;
1562 		/*
1563 		 * KSM's break_ksm() relies upon recognizing a ksm page
1564 		 * even while it is being migrated, so for that case we
1565 		 * need migration_entry_wait().
1566 		 */
1567 		if (likely(!(flags & FOLL_MIGRATION)))
1568 			goto no_page;
1569 		if (pte_none(pte) || pte_file(pte))
1570 			goto no_page;
1571 		entry = pte_to_swp_entry(pte);
1572 		if (!is_migration_entry(entry))
1573 			goto no_page;
1574 		pte_unmap_unlock(ptep, ptl);
1575 		migration_entry_wait(mm, pmd, address);
1576 		goto split_fallthrough;
1577 	}
1578 	if ((flags & FOLL_NUMA) && pte_numa(pte))
1579 		goto no_page;
1580 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1581 		goto unlock;
1582 
1583 	page = vm_normal_page(vma, address, pte);
1584 	if (unlikely(!page)) {
1585 		if ((flags & FOLL_DUMP) ||
1586 		    !is_zero_pfn(pte_pfn(pte)))
1587 			goto bad_page;
1588 		page = pte_page(pte);
1589 	}
1590 
1591 	if (flags & FOLL_GET)
1592 		get_page_foll(page);
1593 	if (flags & FOLL_TOUCH) {
1594 		if ((flags & FOLL_WRITE) &&
1595 		    !pte_dirty(pte) && !PageDirty(page))
1596 			set_page_dirty(page);
1597 		/*
1598 		 * pte_mkyoung() would be more correct here, but atomic care
1599 		 * is needed to avoid losing the dirty bit: it is easier to use
1600 		 * mark_page_accessed().
1601 		 */
1602 		mark_page_accessed(page);
1603 	}
1604 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1605 		/*
1606 		 * The preliminary mapping check is mainly to avoid the
1607 		 * pointless overhead of lock_page on the ZERO_PAGE
1608 		 * which might bounce very badly if there is contention.
1609 		 *
1610 		 * If the page is already locked, we don't need to
1611 		 * handle it now - vmscan will handle it later if and
1612 		 * when it attempts to reclaim the page.
1613 		 */
1614 		if (page->mapping && trylock_page(page)) {
1615 			lru_add_drain();  /* push cached pages to LRU */
1616 			/*
1617 			 * Because we lock page here, and migration is
1618 			 * blocked by the pte's page reference, and we
1619 			 * know the page is still mapped, we don't even
1620 			 * need to check for file-cache page truncation.
1621 			 */
1622 			mlock_vma_page(page);
1623 			unlock_page(page);
1624 		}
1625 	}
1626 unlock:
1627 	pte_unmap_unlock(ptep, ptl);
1628 out:
1629 	return page;
1630 
1631 bad_page:
1632 	pte_unmap_unlock(ptep, ptl);
1633 	return ERR_PTR(-EFAULT);
1634 
1635 no_page:
1636 	pte_unmap_unlock(ptep, ptl);
1637 	if (!pte_none(pte))
1638 		return page;
1639 
1640 no_page_table:
1641 	/*
1642 	 * When core dumping an enormous anonymous area that nobody
1643 	 * has touched so far, we don't want to allocate unnecessary pages or
1644 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1645 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1646 	 * But we can only make this optimization where a hole would surely
1647 	 * be zero-filled if handle_mm_fault() actually did handle it.
1648 	 */
1649 	if ((flags & FOLL_DUMP) &&
1650 	    (!vma->vm_ops || !vma->vm_ops->fault))
1651 		return ERR_PTR(-EFAULT);
1652 	return page;
1653 }
1654 
1655 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1656 {
1657 	return stack_guard_page_start(vma, addr) ||
1658 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1659 }
1660 
1661 /**
1662  * __get_user_pages() - pin user pages in memory
1663  * @tsk:	task_struct of target task
1664  * @mm:		mm_struct of target mm
1665  * @start:	starting user address
1666  * @nr_pages:	number of pages from start to pin
1667  * @gup_flags:	flags modifying pin behaviour
1668  * @pages:	array that receives pointers to the pages pinned.
1669  *		Should be at least nr_pages long. Or NULL, if caller
1670  *		only intends to ensure the pages are faulted in.
1671  * @vmas:	array of pointers to vmas corresponding to each page.
1672  *		Or NULL if the caller does not require them.
1673  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1674  *
1675  * Returns number of pages pinned. This may be fewer than the number
1676  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1677  * were pinned, returns -errno. Each page returned must be released
1678  * with a put_page() call when it is finished with. vmas will only
1679  * remain valid while mmap_sem is held.
1680  *
1681  * Must be called with mmap_sem held for read or write.
1682  *
1683  * __get_user_pages walks a process's page tables and takes a reference to
1684  * each struct page that each user address corresponds to at a given
1685  * instant. That is, it takes the page that would be accessed if a user
1686  * thread accesses the given user virtual address at that instant.
1687  *
1688  * This does not guarantee that the page exists in the user mappings when
1689  * __get_user_pages returns, and there may even be a completely different
1690  * page there in some cases (eg. if mmapped pagecache has been invalidated
1691  * and subsequently re faulted). However it does guarantee that the page
1692  * won't be freed completely. And mostly callers simply care that the page
1693  * contains data that was valid *at some point in time*. Typically, an IO
1694  * or similar operation cannot guarantee anything stronger anyway because
1695  * locks can't be held over the syscall boundary.
1696  *
1697  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1698  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1699  * appropriate) must be called after the page is finished with, and
1700  * before put_page is called.
1701  *
1702  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1703  * or mmap_sem contention, and if waiting is needed to pin all pages,
1704  * *@nonblocking will be set to 0.
1705  *
1706  * In most cases, get_user_pages or get_user_pages_fast should be used
1707  * instead of __get_user_pages. __get_user_pages should be used only if
1708  * you need some special @gup_flags.
1709  */
1710 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1711 		unsigned long start, unsigned long nr_pages,
1712 		unsigned int gup_flags, struct page **pages,
1713 		struct vm_area_struct **vmas, int *nonblocking)
1714 {
1715 	long i;
1716 	unsigned long vm_flags;
1717 	unsigned int page_mask;
1718 
1719 	if (!nr_pages)
1720 		return 0;
1721 
1722 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1723 
1724 	/*
1725 	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1726 	 * would be called on PROT_NONE ranges. We must never invoke
1727 	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1728 	 * page faults would unprotect the PROT_NONE ranges if
1729 	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1730 	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1731 	 * FOLL_FORCE is set.
1732 	 */
1733 	if (!(gup_flags & FOLL_FORCE))
1734 		gup_flags |= FOLL_NUMA;
1735 
1736 	i = 0;
1737 
1738 	do {
1739 		struct vm_area_struct *vma;
1740 
1741 		vma = find_extend_vma(mm, start);
1742 		if (!vma && in_gate_area(mm, start)) {
1743 			unsigned long pg = start & PAGE_MASK;
1744 			pgd_t *pgd;
1745 			pud_t *pud;
1746 			pmd_t *pmd;
1747 			pte_t *pte;
1748 
1749 			/* user gate pages are read-only */
1750 			if (gup_flags & FOLL_WRITE)
1751 				goto efault;
1752 			if (pg > TASK_SIZE)
1753 				pgd = pgd_offset_k(pg);
1754 			else
1755 				pgd = pgd_offset_gate(mm, pg);
1756 			BUG_ON(pgd_none(*pgd));
1757 			pud = pud_offset(pgd, pg);
1758 			BUG_ON(pud_none(*pud));
1759 			pmd = pmd_offset(pud, pg);
1760 			if (pmd_none(*pmd))
1761 				goto efault;
1762 			VM_BUG_ON(pmd_trans_huge(*pmd));
1763 			pte = pte_offset_map(pmd, pg);
1764 			if (pte_none(*pte)) {
1765 				pte_unmap(pte);
1766 				goto efault;
1767 			}
1768 			vma = get_gate_vma(mm);
1769 			if (pages) {
1770 				struct page *page;
1771 
1772 				page = vm_normal_page(vma, start, *pte);
1773 				if (!page) {
1774 					if (!(gup_flags & FOLL_DUMP) &&
1775 					     is_zero_pfn(pte_pfn(*pte)))
1776 						page = pte_page(*pte);
1777 					else {
1778 						pte_unmap(pte);
1779 						goto efault;
1780 					}
1781 				}
1782 				pages[i] = page;
1783 				get_page(page);
1784 			}
1785 			pte_unmap(pte);
1786 			page_mask = 0;
1787 			goto next_page;
1788 		}
1789 
1790 		if (!vma)
1791 			goto efault;
1792 		vm_flags = vma->vm_flags;
1793 		if (vm_flags & (VM_IO | VM_PFNMAP))
1794 			goto efault;
1795 
1796 		if (gup_flags & FOLL_WRITE) {
1797 			if (!(vm_flags & VM_WRITE)) {
1798 				if (!(gup_flags & FOLL_FORCE))
1799 					goto efault;
1800 				/*
1801 				 * We used to let the write,force case do COW
1802 				 * in a VM_MAYWRITE VM_SHARED !VM_WRITE vma, so
1803 				 * ptrace could set a breakpoint in a read-only
1804 				 * mapping of an executable, without corrupting
1805 				 * the file (yet only when that file had been
1806 				 * opened for writing!).  Anon pages in shared
1807 				 * mappings are surprising: now just reject it.
1808 				 */
1809 				if (!is_cow_mapping(vm_flags)) {
1810 					WARN_ON_ONCE(vm_flags & VM_MAYWRITE);
1811 					goto efault;
1812 				}
1813 			}
1814 		} else {
1815 			if (!(vm_flags & VM_READ)) {
1816 				if (!(gup_flags & FOLL_FORCE))
1817 					goto efault;
1818 				/*
1819 				 * Is there actually any vma we can reach here
1820 				 * which does not have VM_MAYREAD set?
1821 				 */
1822 				if (!(vm_flags & VM_MAYREAD))
1823 					goto efault;
1824 			}
1825 		}
1826 
1827 		if (is_vm_hugetlb_page(vma)) {
1828 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1829 					&start, &nr_pages, i, gup_flags);
1830 			continue;
1831 		}
1832 
1833 		do {
1834 			struct page *page;
1835 			unsigned int foll_flags = gup_flags;
1836 			unsigned int page_increm;
1837 
1838 			/*
1839 			 * If we have a pending SIGKILL, don't keep faulting
1840 			 * pages and potentially allocating memory.
1841 			 */
1842 			if (unlikely(fatal_signal_pending(current)))
1843 				return i ? i : -ERESTARTSYS;
1844 
1845 			cond_resched();
1846 			while (!(page = follow_page_mask(vma, start,
1847 						foll_flags, &page_mask))) {
1848 				int ret;
1849 				unsigned int fault_flags = 0;
1850 
1851 				/* For mlock, just skip the stack guard page. */
1852 				if (foll_flags & FOLL_MLOCK) {
1853 					if (stack_guard_page(vma, start))
1854 						goto next_page;
1855 				}
1856 				if (foll_flags & FOLL_WRITE)
1857 					fault_flags |= FAULT_FLAG_WRITE;
1858 				if (nonblocking)
1859 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1860 				if (foll_flags & FOLL_NOWAIT)
1861 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1862 
1863 				ret = handle_mm_fault(mm, vma, start,
1864 							fault_flags);
1865 
1866 				if (ret & VM_FAULT_ERROR) {
1867 					if (ret & VM_FAULT_OOM)
1868 						return i ? i : -ENOMEM;
1869 					if (ret & (VM_FAULT_HWPOISON |
1870 						   VM_FAULT_HWPOISON_LARGE)) {
1871 						if (i)
1872 							return i;
1873 						else if (gup_flags & FOLL_HWPOISON)
1874 							return -EHWPOISON;
1875 						else
1876 							return -EFAULT;
1877 					}
1878 					if (ret & VM_FAULT_SIGBUS)
1879 						goto efault;
1880 					BUG();
1881 				}
1882 
1883 				if (tsk) {
1884 					if (ret & VM_FAULT_MAJOR)
1885 						tsk->maj_flt++;
1886 					else
1887 						tsk->min_flt++;
1888 				}
1889 
1890 				if (ret & VM_FAULT_RETRY) {
1891 					if (nonblocking)
1892 						*nonblocking = 0;
1893 					return i;
1894 				}
1895 
1896 				/*
1897 				 * The VM_FAULT_WRITE bit tells us that
1898 				 * do_wp_page has broken COW when necessary,
1899 				 * even if maybe_mkwrite decided not to set
1900 				 * pte_write. We can thus safely do subsequent
1901 				 * page lookups as if they were reads. But only
1902 				 * do so when looping for pte_write is futile:
1903 				 * in some cases userspace may also be wanting
1904 				 * to write to the gotten user page, which a
1905 				 * read fault here might prevent (a readonly
1906 				 * page might get reCOWed by userspace write).
1907 				 */
1908 				if ((ret & VM_FAULT_WRITE) &&
1909 				    !(vma->vm_flags & VM_WRITE))
1910 					foll_flags &= ~FOLL_WRITE;
1911 
1912 				cond_resched();
1913 			}
1914 			if (IS_ERR(page))
1915 				return i ? i : PTR_ERR(page);
1916 			if (pages) {
1917 				pages[i] = page;
1918 
1919 				flush_anon_page(vma, page, start);
1920 				flush_dcache_page(page);
1921 				page_mask = 0;
1922 			}
1923 next_page:
1924 			if (vmas) {
1925 				vmas[i] = vma;
1926 				page_mask = 0;
1927 			}
1928 			page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1929 			if (page_increm > nr_pages)
1930 				page_increm = nr_pages;
1931 			i += page_increm;
1932 			start += page_increm * PAGE_SIZE;
1933 			nr_pages -= page_increm;
1934 		} while (nr_pages && start < vma->vm_end);
1935 	} while (nr_pages);
1936 	return i;
1937 efault:
1938 	return i ? : -EFAULT;
1939 }
1940 EXPORT_SYMBOL(__get_user_pages);
1941 
1942 /*
1943  * fixup_user_fault() - manually resolve a user page fault
1944  * @tsk:	the task_struct to use for page fault accounting, or
1945  *		NULL if faults are not to be recorded.
1946  * @mm:		mm_struct of target mm
1947  * @address:	user address
1948  * @fault_flags:flags to pass down to handle_mm_fault()
1949  *
1950  * This is meant to be called in the specific scenario where for locking reasons
1951  * we try to access user memory in atomic context (within a pagefault_disable()
1952  * section), this returns -EFAULT, and we want to resolve the user fault before
1953  * trying again.
1954  *
1955  * Typically this is meant to be used by the futex code.
1956  *
1957  * The main difference with get_user_pages() is that this function will
1958  * unconditionally call handle_mm_fault() which will in turn perform all the
1959  * necessary SW fixup of the dirty and young bits in the PTE, while
1960  * handle_mm_fault() only guarantees to update these in the struct page.
1961  *
1962  * This is important for some architectures where those bits also gate the
1963  * access permission to the page because they are maintained in software.  On
1964  * such architectures, gup() will not be enough to make a subsequent access
1965  * succeed.
1966  *
1967  * This should be called with the mm_sem held for read.
1968  */
1969 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1970 		     unsigned long address, unsigned int fault_flags)
1971 {
1972 	struct vm_area_struct *vma;
1973 	vm_flags_t vm_flags;
1974 	int ret;
1975 
1976 	vma = find_extend_vma(mm, address);
1977 	if (!vma || address < vma->vm_start)
1978 		return -EFAULT;
1979 
1980 	vm_flags = (fault_flags & FAULT_FLAG_WRITE) ? VM_WRITE : VM_READ;
1981 	if (!(vm_flags & vma->vm_flags))
1982 		return -EFAULT;
1983 
1984 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1985 	if (ret & VM_FAULT_ERROR) {
1986 		if (ret & VM_FAULT_OOM)
1987 			return -ENOMEM;
1988 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1989 			return -EHWPOISON;
1990 		if (ret & VM_FAULT_SIGBUS)
1991 			return -EFAULT;
1992 		BUG();
1993 	}
1994 	if (tsk) {
1995 		if (ret & VM_FAULT_MAJOR)
1996 			tsk->maj_flt++;
1997 		else
1998 			tsk->min_flt++;
1999 	}
2000 	return 0;
2001 }
2002 
2003 /*
2004  * get_user_pages() - pin user pages in memory
2005  * @tsk:	the task_struct to use for page fault accounting, or
2006  *		NULL if faults are not to be recorded.
2007  * @mm:		mm_struct of target mm
2008  * @start:	starting user address
2009  * @nr_pages:	number of pages from start to pin
2010  * @write:	whether pages will be written to by the caller
2011  * @force:	whether to force access even when user mapping is currently
2012  *		protected (but never forces write access to shared mapping).
2013  * @pages:	array that receives pointers to the pages pinned.
2014  *		Should be at least nr_pages long. Or NULL, if caller
2015  *		only intends to ensure the pages are faulted in.
2016  * @vmas:	array of pointers to vmas corresponding to each page.
2017  *		Or NULL if the caller does not require them.
2018  *
2019  * Returns number of pages pinned. This may be fewer than the number
2020  * requested. If nr_pages is 0 or negative, returns 0. If no pages
2021  * were pinned, returns -errno. Each page returned must be released
2022  * with a put_page() call when it is finished with. vmas will only
2023  * remain valid while mmap_sem is held.
2024  *
2025  * Must be called with mmap_sem held for read or write.
2026  *
2027  * get_user_pages walks a process's page tables and takes a reference to
2028  * each struct page that each user address corresponds to at a given
2029  * instant. That is, it takes the page that would be accessed if a user
2030  * thread accesses the given user virtual address at that instant.
2031  *
2032  * This does not guarantee that the page exists in the user mappings when
2033  * get_user_pages returns, and there may even be a completely different
2034  * page there in some cases (eg. if mmapped pagecache has been invalidated
2035  * and subsequently re faulted). However it does guarantee that the page
2036  * won't be freed completely. And mostly callers simply care that the page
2037  * contains data that was valid *at some point in time*. Typically, an IO
2038  * or similar operation cannot guarantee anything stronger anyway because
2039  * locks can't be held over the syscall boundary.
2040  *
2041  * If write=0, the page must not be written to. If the page is written to,
2042  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
2043  * after the page is finished with, and before put_page is called.
2044  *
2045  * get_user_pages is typically used for fewer-copy IO operations, to get a
2046  * handle on the memory by some means other than accesses via the user virtual
2047  * addresses. The pages may be submitted for DMA to devices or accessed via
2048  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2049  * use the correct cache flushing APIs.
2050  *
2051  * See also get_user_pages_fast, for performance critical applications.
2052  */
2053 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2054 		unsigned long start, unsigned long nr_pages, int write,
2055 		int force, struct page **pages, struct vm_area_struct **vmas)
2056 {
2057 	int flags = FOLL_TOUCH;
2058 
2059 	if (pages)
2060 		flags |= FOLL_GET;
2061 	if (write)
2062 		flags |= FOLL_WRITE;
2063 	if (force)
2064 		flags |= FOLL_FORCE;
2065 
2066 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2067 				NULL);
2068 }
2069 EXPORT_SYMBOL(get_user_pages);
2070 
2071 /**
2072  * get_dump_page() - pin user page in memory while writing it to core dump
2073  * @addr: user address
2074  *
2075  * Returns struct page pointer of user page pinned for dump,
2076  * to be freed afterwards by page_cache_release() or put_page().
2077  *
2078  * Returns NULL on any kind of failure - a hole must then be inserted into
2079  * the corefile, to preserve alignment with its headers; and also returns
2080  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2081  * allowing a hole to be left in the corefile to save diskspace.
2082  *
2083  * Called without mmap_sem, but after all other threads have been killed.
2084  */
2085 #ifdef CONFIG_ELF_CORE
2086 struct page *get_dump_page(unsigned long addr)
2087 {
2088 	struct vm_area_struct *vma;
2089 	struct page *page;
2090 
2091 	if (__get_user_pages(current, current->mm, addr, 1,
2092 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2093 			     NULL) < 1)
2094 		return NULL;
2095 	flush_cache_page(vma, addr, page_to_pfn(page));
2096 	return page;
2097 }
2098 #endif /* CONFIG_ELF_CORE */
2099 
2100 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2101 			spinlock_t **ptl)
2102 {
2103 	pgd_t * pgd = pgd_offset(mm, addr);
2104 	pud_t * pud = pud_alloc(mm, pgd, addr);
2105 	if (pud) {
2106 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2107 		if (pmd) {
2108 			VM_BUG_ON(pmd_trans_huge(*pmd));
2109 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2110 		}
2111 	}
2112 	return NULL;
2113 }
2114 
2115 /*
2116  * This is the old fallback for page remapping.
2117  *
2118  * For historical reasons, it only allows reserved pages. Only
2119  * old drivers should use this, and they needed to mark their
2120  * pages reserved for the old functions anyway.
2121  */
2122 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2123 			struct page *page, pgprot_t prot)
2124 {
2125 	struct mm_struct *mm = vma->vm_mm;
2126 	int retval;
2127 	pte_t *pte;
2128 	spinlock_t *ptl;
2129 
2130 	retval = -EINVAL;
2131 	if (PageAnon(page))
2132 		goto out;
2133 	retval = -ENOMEM;
2134 	flush_dcache_page(page);
2135 	pte = get_locked_pte(mm, addr, &ptl);
2136 	if (!pte)
2137 		goto out;
2138 	retval = -EBUSY;
2139 	if (!pte_none(*pte))
2140 		goto out_unlock;
2141 
2142 	/* Ok, finally just insert the thing.. */
2143 	get_page(page);
2144 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2145 	page_add_file_rmap(page);
2146 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2147 
2148 	retval = 0;
2149 	pte_unmap_unlock(pte, ptl);
2150 	return retval;
2151 out_unlock:
2152 	pte_unmap_unlock(pte, ptl);
2153 out:
2154 	return retval;
2155 }
2156 
2157 /**
2158  * vm_insert_page - insert single page into user vma
2159  * @vma: user vma to map to
2160  * @addr: target user address of this page
2161  * @page: source kernel page
2162  *
2163  * This allows drivers to insert individual pages they've allocated
2164  * into a user vma.
2165  *
2166  * The page has to be a nice clean _individual_ kernel allocation.
2167  * If you allocate a compound page, you need to have marked it as
2168  * such (__GFP_COMP), or manually just split the page up yourself
2169  * (see split_page()).
2170  *
2171  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2172  * took an arbitrary page protection parameter. This doesn't allow
2173  * that. Your vma protection will have to be set up correctly, which
2174  * means that if you want a shared writable mapping, you'd better
2175  * ask for a shared writable mapping!
2176  *
2177  * The page does not need to be reserved.
2178  *
2179  * Usually this function is called from f_op->mmap() handler
2180  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2181  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2182  * function from other places, for example from page-fault handler.
2183  */
2184 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2185 			struct page *page)
2186 {
2187 	if (addr < vma->vm_start || addr >= vma->vm_end)
2188 		return -EFAULT;
2189 	if (!page_count(page))
2190 		return -EINVAL;
2191 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2192 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2193 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2194 		vma->vm_flags |= VM_MIXEDMAP;
2195 	}
2196 	return insert_page(vma, addr, page, vma->vm_page_prot);
2197 }
2198 EXPORT_SYMBOL(vm_insert_page);
2199 
2200 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2201 			unsigned long pfn, pgprot_t prot)
2202 {
2203 	struct mm_struct *mm = vma->vm_mm;
2204 	int retval;
2205 	pte_t *pte, entry;
2206 	spinlock_t *ptl;
2207 
2208 	retval = -ENOMEM;
2209 	pte = get_locked_pte(mm, addr, &ptl);
2210 	if (!pte)
2211 		goto out;
2212 	retval = -EBUSY;
2213 	if (!pte_none(*pte))
2214 		goto out_unlock;
2215 
2216 	/* Ok, finally just insert the thing.. */
2217 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2218 	set_pte_at(mm, addr, pte, entry);
2219 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2220 
2221 	retval = 0;
2222 out_unlock:
2223 	pte_unmap_unlock(pte, ptl);
2224 out:
2225 	return retval;
2226 }
2227 
2228 /**
2229  * vm_insert_pfn - insert single pfn into user vma
2230  * @vma: user vma to map to
2231  * @addr: target user address of this page
2232  * @pfn: source kernel pfn
2233  *
2234  * Similar to vm_insert_page, this allows drivers to insert individual pages
2235  * they've allocated into a user vma. Same comments apply.
2236  *
2237  * This function should only be called from a vm_ops->fault handler, and
2238  * in that case the handler should return NULL.
2239  *
2240  * vma cannot be a COW mapping.
2241  *
2242  * As this is called only for pages that do not currently exist, we
2243  * do not need to flush old virtual caches or the TLB.
2244  */
2245 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2246 			unsigned long pfn)
2247 {
2248 	int ret;
2249 	pgprot_t pgprot = vma->vm_page_prot;
2250 	/*
2251 	 * Technically, architectures with pte_special can avoid all these
2252 	 * restrictions (same for remap_pfn_range).  However we would like
2253 	 * consistency in testing and feature parity among all, so we should
2254 	 * try to keep these invariants in place for everybody.
2255 	 */
2256 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2257 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2258 						(VM_PFNMAP|VM_MIXEDMAP));
2259 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2260 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2261 
2262 	if (addr < vma->vm_start || addr >= vma->vm_end)
2263 		return -EFAULT;
2264 	if (track_pfn_insert(vma, &pgprot, pfn))
2265 		return -EINVAL;
2266 
2267 	ret = insert_pfn(vma, addr, pfn, pgprot);
2268 
2269 	return ret;
2270 }
2271 EXPORT_SYMBOL(vm_insert_pfn);
2272 
2273 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2274 			unsigned long pfn)
2275 {
2276 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2277 
2278 	if (addr < vma->vm_start || addr >= vma->vm_end)
2279 		return -EFAULT;
2280 
2281 	/*
2282 	 * If we don't have pte special, then we have to use the pfn_valid()
2283 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2284 	 * refcount the page if pfn_valid is true (hence insert_page rather
2285 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2286 	 * without pte special, it would there be refcounted as a normal page.
2287 	 */
2288 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2289 		struct page *page;
2290 
2291 		page = pfn_to_page(pfn);
2292 		return insert_page(vma, addr, page, vma->vm_page_prot);
2293 	}
2294 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2295 }
2296 EXPORT_SYMBOL(vm_insert_mixed);
2297 
2298 /*
2299  * maps a range of physical memory into the requested pages. the old
2300  * mappings are removed. any references to nonexistent pages results
2301  * in null mappings (currently treated as "copy-on-access")
2302  */
2303 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2304 			unsigned long addr, unsigned long end,
2305 			unsigned long pfn, pgprot_t prot)
2306 {
2307 	pte_t *pte;
2308 	spinlock_t *ptl;
2309 
2310 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2311 	if (!pte)
2312 		return -ENOMEM;
2313 	arch_enter_lazy_mmu_mode();
2314 	do {
2315 		BUG_ON(!pte_none(*pte));
2316 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2317 		pfn++;
2318 	} while (pte++, addr += PAGE_SIZE, addr != end);
2319 	arch_leave_lazy_mmu_mode();
2320 	pte_unmap_unlock(pte - 1, ptl);
2321 	return 0;
2322 }
2323 
2324 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2325 			unsigned long addr, unsigned long end,
2326 			unsigned long pfn, pgprot_t prot)
2327 {
2328 	pmd_t *pmd;
2329 	unsigned long next;
2330 
2331 	pfn -= addr >> PAGE_SHIFT;
2332 	pmd = pmd_alloc(mm, pud, addr);
2333 	if (!pmd)
2334 		return -ENOMEM;
2335 	VM_BUG_ON(pmd_trans_huge(*pmd));
2336 	do {
2337 		next = pmd_addr_end(addr, end);
2338 		if (remap_pte_range(mm, pmd, addr, next,
2339 				pfn + (addr >> PAGE_SHIFT), prot))
2340 			return -ENOMEM;
2341 	} while (pmd++, addr = next, addr != end);
2342 	return 0;
2343 }
2344 
2345 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2346 			unsigned long addr, unsigned long end,
2347 			unsigned long pfn, pgprot_t prot)
2348 {
2349 	pud_t *pud;
2350 	unsigned long next;
2351 
2352 	pfn -= addr >> PAGE_SHIFT;
2353 	pud = pud_alloc(mm, pgd, addr);
2354 	if (!pud)
2355 		return -ENOMEM;
2356 	do {
2357 		next = pud_addr_end(addr, end);
2358 		if (remap_pmd_range(mm, pud, addr, next,
2359 				pfn + (addr >> PAGE_SHIFT), prot))
2360 			return -ENOMEM;
2361 	} while (pud++, addr = next, addr != end);
2362 	return 0;
2363 }
2364 
2365 /**
2366  * remap_pfn_range - remap kernel memory to userspace
2367  * @vma: user vma to map to
2368  * @addr: target user address to start at
2369  * @pfn: physical address of kernel memory
2370  * @size: size of map area
2371  * @prot: page protection flags for this mapping
2372  *
2373  *  Note: this is only safe if the mm semaphore is held when called.
2374  */
2375 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2376 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2377 {
2378 	pgd_t *pgd;
2379 	unsigned long next;
2380 	unsigned long end = addr + PAGE_ALIGN(size);
2381 	struct mm_struct *mm = vma->vm_mm;
2382 	int err;
2383 
2384 	/*
2385 	 * Physically remapped pages are special. Tell the
2386 	 * rest of the world about it:
2387 	 *   VM_IO tells people not to look at these pages
2388 	 *	(accesses can have side effects).
2389 	 *   VM_PFNMAP tells the core MM that the base pages are just
2390 	 *	raw PFN mappings, and do not have a "struct page" associated
2391 	 *	with them.
2392 	 *   VM_DONTEXPAND
2393 	 *      Disable vma merging and expanding with mremap().
2394 	 *   VM_DONTDUMP
2395 	 *      Omit vma from core dump, even when VM_IO turned off.
2396 	 *
2397 	 * There's a horrible special case to handle copy-on-write
2398 	 * behaviour that some programs depend on. We mark the "original"
2399 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2400 	 * See vm_normal_page() for details.
2401 	 */
2402 	if (is_cow_mapping(vma->vm_flags)) {
2403 		if (addr != vma->vm_start || end != vma->vm_end)
2404 			return -EINVAL;
2405 		vma->vm_pgoff = pfn;
2406 	}
2407 
2408 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2409 	if (err)
2410 		return -EINVAL;
2411 
2412 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2413 
2414 	BUG_ON(addr >= end);
2415 	pfn -= addr >> PAGE_SHIFT;
2416 	pgd = pgd_offset(mm, addr);
2417 	flush_cache_range(vma, addr, end);
2418 	do {
2419 		next = pgd_addr_end(addr, end);
2420 		err = remap_pud_range(mm, pgd, addr, next,
2421 				pfn + (addr >> PAGE_SHIFT), prot);
2422 		if (err)
2423 			break;
2424 	} while (pgd++, addr = next, addr != end);
2425 
2426 	if (err)
2427 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2428 
2429 	return err;
2430 }
2431 EXPORT_SYMBOL(remap_pfn_range);
2432 
2433 /**
2434  * vm_iomap_memory - remap memory to userspace
2435  * @vma: user vma to map to
2436  * @start: start of area
2437  * @len: size of area
2438  *
2439  * This is a simplified io_remap_pfn_range() for common driver use. The
2440  * driver just needs to give us the physical memory range to be mapped,
2441  * we'll figure out the rest from the vma information.
2442  *
2443  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2444  * whatever write-combining details or similar.
2445  */
2446 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2447 {
2448 	unsigned long vm_len, pfn, pages;
2449 
2450 	/* Check that the physical memory area passed in looks valid */
2451 	if (start + len < start)
2452 		return -EINVAL;
2453 	/*
2454 	 * You *really* shouldn't map things that aren't page-aligned,
2455 	 * but we've historically allowed it because IO memory might
2456 	 * just have smaller alignment.
2457 	 */
2458 	len += start & ~PAGE_MASK;
2459 	pfn = start >> PAGE_SHIFT;
2460 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2461 	if (pfn + pages < pfn)
2462 		return -EINVAL;
2463 
2464 	/* We start the mapping 'vm_pgoff' pages into the area */
2465 	if (vma->vm_pgoff > pages)
2466 		return -EINVAL;
2467 	pfn += vma->vm_pgoff;
2468 	pages -= vma->vm_pgoff;
2469 
2470 	/* Can we fit all of the mapping? */
2471 	vm_len = vma->vm_end - vma->vm_start;
2472 	if (vm_len >> PAGE_SHIFT > pages)
2473 		return -EINVAL;
2474 
2475 	/* Ok, let it rip */
2476 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2477 }
2478 EXPORT_SYMBOL(vm_iomap_memory);
2479 
2480 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2481 				     unsigned long addr, unsigned long end,
2482 				     pte_fn_t fn, void *data)
2483 {
2484 	pte_t *pte;
2485 	int err;
2486 	pgtable_t token;
2487 	spinlock_t *uninitialized_var(ptl);
2488 
2489 	pte = (mm == &init_mm) ?
2490 		pte_alloc_kernel(pmd, addr) :
2491 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2492 	if (!pte)
2493 		return -ENOMEM;
2494 
2495 	BUG_ON(pmd_huge(*pmd));
2496 
2497 	arch_enter_lazy_mmu_mode();
2498 
2499 	token = pmd_pgtable(*pmd);
2500 
2501 	do {
2502 		err = fn(pte++, token, addr, data);
2503 		if (err)
2504 			break;
2505 	} while (addr += PAGE_SIZE, addr != end);
2506 
2507 	arch_leave_lazy_mmu_mode();
2508 
2509 	if (mm != &init_mm)
2510 		pte_unmap_unlock(pte-1, ptl);
2511 	return err;
2512 }
2513 
2514 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2515 				     unsigned long addr, unsigned long end,
2516 				     pte_fn_t fn, void *data)
2517 {
2518 	pmd_t *pmd;
2519 	unsigned long next;
2520 	int err;
2521 
2522 	BUG_ON(pud_huge(*pud));
2523 
2524 	pmd = pmd_alloc(mm, pud, addr);
2525 	if (!pmd)
2526 		return -ENOMEM;
2527 	do {
2528 		next = pmd_addr_end(addr, end);
2529 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2530 		if (err)
2531 			break;
2532 	} while (pmd++, addr = next, addr != end);
2533 	return err;
2534 }
2535 
2536 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2537 				     unsigned long addr, unsigned long end,
2538 				     pte_fn_t fn, void *data)
2539 {
2540 	pud_t *pud;
2541 	unsigned long next;
2542 	int err;
2543 
2544 	pud = pud_alloc(mm, pgd, addr);
2545 	if (!pud)
2546 		return -ENOMEM;
2547 	do {
2548 		next = pud_addr_end(addr, end);
2549 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2550 		if (err)
2551 			break;
2552 	} while (pud++, addr = next, addr != end);
2553 	return err;
2554 }
2555 
2556 /*
2557  * Scan a region of virtual memory, filling in page tables as necessary
2558  * and calling a provided function on each leaf page table.
2559  */
2560 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2561 			unsigned long size, pte_fn_t fn, void *data)
2562 {
2563 	pgd_t *pgd;
2564 	unsigned long next;
2565 	unsigned long end = addr + size;
2566 	int err;
2567 
2568 	BUG_ON(addr >= end);
2569 	pgd = pgd_offset(mm, addr);
2570 	do {
2571 		next = pgd_addr_end(addr, end);
2572 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2573 		if (err)
2574 			break;
2575 	} while (pgd++, addr = next, addr != end);
2576 
2577 	return err;
2578 }
2579 EXPORT_SYMBOL_GPL(apply_to_page_range);
2580 
2581 /*
2582  * handle_pte_fault chooses page fault handler according to an entry
2583  * which was read non-atomically.  Before making any commitment, on
2584  * those architectures or configurations (e.g. i386 with PAE) which
2585  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2586  * must check under lock before unmapping the pte and proceeding
2587  * (but do_wp_page is only called after already making such a check;
2588  * and do_anonymous_page can safely check later on).
2589  */
2590 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2591 				pte_t *page_table, pte_t orig_pte)
2592 {
2593 	int same = 1;
2594 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2595 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2596 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2597 		spin_lock(ptl);
2598 		same = pte_same(*page_table, orig_pte);
2599 		spin_unlock(ptl);
2600 	}
2601 #endif
2602 	pte_unmap(page_table);
2603 	return same;
2604 }
2605 
2606 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2607 {
2608 	debug_dma_assert_idle(src);
2609 
2610 	/*
2611 	 * If the source page was a PFN mapping, we don't have
2612 	 * a "struct page" for it. We do a best-effort copy by
2613 	 * just copying from the original user address. If that
2614 	 * fails, we just zero-fill it. Live with it.
2615 	 */
2616 	if (unlikely(!src)) {
2617 		void *kaddr = kmap_atomic(dst);
2618 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2619 
2620 		/*
2621 		 * This really shouldn't fail, because the page is there
2622 		 * in the page tables. But it might just be unreadable,
2623 		 * in which case we just give up and fill the result with
2624 		 * zeroes.
2625 		 */
2626 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2627 			clear_page(kaddr);
2628 		kunmap_atomic(kaddr);
2629 		flush_dcache_page(dst);
2630 	} else
2631 		copy_user_highpage(dst, src, va, vma);
2632 }
2633 
2634 /*
2635  * Notify the address space that the page is about to become writable so that
2636  * it can prohibit this or wait for the page to get into an appropriate state.
2637  *
2638  * We do this without the lock held, so that it can sleep if it needs to.
2639  */
2640 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2641 	       unsigned long address)
2642 {
2643 	struct vm_fault vmf;
2644 	int ret;
2645 
2646 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2647 	vmf.pgoff = page->index;
2648 	vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2649 	vmf.page = page;
2650 
2651 	ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2652 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2653 		return ret;
2654 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2655 		lock_page(page);
2656 		if (!page->mapping) {
2657 			unlock_page(page);
2658 			return 0; /* retry */
2659 		}
2660 		ret |= VM_FAULT_LOCKED;
2661 	} else
2662 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2663 	return ret;
2664 }
2665 
2666 /*
2667  * This routine handles present pages, when users try to write
2668  * to a shared page. It is done by copying the page to a new address
2669  * and decrementing the shared-page counter for the old page.
2670  *
2671  * Note that this routine assumes that the protection checks have been
2672  * done by the caller (the low-level page fault routine in most cases).
2673  * Thus we can safely just mark it writable once we've done any necessary
2674  * COW.
2675  *
2676  * We also mark the page dirty at this point even though the page will
2677  * change only once the write actually happens. This avoids a few races,
2678  * and potentially makes it more efficient.
2679  *
2680  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2681  * but allow concurrent faults), with pte both mapped and locked.
2682  * We return with mmap_sem still held, but pte unmapped and unlocked.
2683  */
2684 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2685 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2686 		spinlock_t *ptl, pte_t orig_pte)
2687 	__releases(ptl)
2688 {
2689 	struct page *old_page, *new_page = NULL;
2690 	pte_t entry;
2691 	int ret = 0;
2692 	int page_mkwrite = 0;
2693 	struct page *dirty_page = NULL;
2694 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2695 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2696 
2697 	old_page = vm_normal_page(vma, address, orig_pte);
2698 	if (!old_page) {
2699 		/*
2700 		 * VM_MIXEDMAP !pfn_valid() case
2701 		 *
2702 		 * We should not cow pages in a shared writeable mapping.
2703 		 * Just mark the pages writable as we can't do any dirty
2704 		 * accounting on raw pfn maps.
2705 		 */
2706 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2707 				     (VM_WRITE|VM_SHARED))
2708 			goto reuse;
2709 		goto gotten;
2710 	}
2711 
2712 	/*
2713 	 * Take out anonymous pages first, anonymous shared vmas are
2714 	 * not dirty accountable.
2715 	 */
2716 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2717 		if (!trylock_page(old_page)) {
2718 			page_cache_get(old_page);
2719 			pte_unmap_unlock(page_table, ptl);
2720 			lock_page(old_page);
2721 			page_table = pte_offset_map_lock(mm, pmd, address,
2722 							 &ptl);
2723 			if (!pte_same(*page_table, orig_pte)) {
2724 				unlock_page(old_page);
2725 				goto unlock;
2726 			}
2727 			page_cache_release(old_page);
2728 		}
2729 		if (reuse_swap_page(old_page)) {
2730 			/*
2731 			 * The page is all ours.  Move it to our anon_vma so
2732 			 * the rmap code will not search our parent or siblings.
2733 			 * Protected against the rmap code by the page lock.
2734 			 */
2735 			page_move_anon_rmap(old_page, vma, address);
2736 			unlock_page(old_page);
2737 			goto reuse;
2738 		}
2739 		unlock_page(old_page);
2740 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2741 					(VM_WRITE|VM_SHARED))) {
2742 		/*
2743 		 * Only catch write-faults on shared writable pages,
2744 		 * read-only shared pages can get COWed by
2745 		 * get_user_pages(.write=1, .force=1).
2746 		 */
2747 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2748 			int tmp;
2749 			page_cache_get(old_page);
2750 			pte_unmap_unlock(page_table, ptl);
2751 			tmp = do_page_mkwrite(vma, old_page, address);
2752 			if (unlikely(!tmp || (tmp &
2753 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2754 				page_cache_release(old_page);
2755 				return tmp;
2756 			}
2757 			/*
2758 			 * Since we dropped the lock we need to revalidate
2759 			 * the PTE as someone else may have changed it.  If
2760 			 * they did, we just return, as we can count on the
2761 			 * MMU to tell us if they didn't also make it writable.
2762 			 */
2763 			page_table = pte_offset_map_lock(mm, pmd, address,
2764 							 &ptl);
2765 			if (!pte_same(*page_table, orig_pte)) {
2766 				unlock_page(old_page);
2767 				goto unlock;
2768 			}
2769 
2770 			page_mkwrite = 1;
2771 		}
2772 		dirty_page = old_page;
2773 		get_page(dirty_page);
2774 
2775 reuse:
2776 		/*
2777 		 * Clear the pages cpupid information as the existing
2778 		 * information potentially belongs to a now completely
2779 		 * unrelated process.
2780 		 */
2781 		if (old_page)
2782 			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2783 
2784 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2785 		entry = pte_mkyoung(orig_pte);
2786 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2787 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2788 			update_mmu_cache(vma, address, page_table);
2789 		pte_unmap_unlock(page_table, ptl);
2790 		ret |= VM_FAULT_WRITE;
2791 
2792 		if (!dirty_page)
2793 			return ret;
2794 
2795 		/*
2796 		 * Yes, Virginia, this is actually required to prevent a race
2797 		 * with clear_page_dirty_for_io() from clearing the page dirty
2798 		 * bit after it clear all dirty ptes, but before a racing
2799 		 * do_wp_page installs a dirty pte.
2800 		 *
2801 		 * do_shared_fault is protected similarly.
2802 		 */
2803 		if (!page_mkwrite) {
2804 			wait_on_page_locked(dirty_page);
2805 			set_page_dirty_balance(dirty_page);
2806 			/* file_update_time outside page_lock */
2807 			if (vma->vm_file)
2808 				file_update_time(vma->vm_file);
2809 		}
2810 		put_page(dirty_page);
2811 		if (page_mkwrite) {
2812 			struct address_space *mapping = dirty_page->mapping;
2813 
2814 			set_page_dirty(dirty_page);
2815 			unlock_page(dirty_page);
2816 			page_cache_release(dirty_page);
2817 			if (mapping)	{
2818 				/*
2819 				 * Some device drivers do not set page.mapping
2820 				 * but still dirty their pages
2821 				 */
2822 				balance_dirty_pages_ratelimited(mapping);
2823 			}
2824 		}
2825 
2826 		return ret;
2827 	}
2828 
2829 	/*
2830 	 * Ok, we need to copy. Oh, well..
2831 	 */
2832 	page_cache_get(old_page);
2833 gotten:
2834 	pte_unmap_unlock(page_table, ptl);
2835 
2836 	if (unlikely(anon_vma_prepare(vma)))
2837 		goto oom;
2838 
2839 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2840 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2841 		if (!new_page)
2842 			goto oom;
2843 	} else {
2844 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2845 		if (!new_page)
2846 			goto oom;
2847 		cow_user_page(new_page, old_page, address, vma);
2848 	}
2849 	__SetPageUptodate(new_page);
2850 
2851 	if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))
2852 		goto oom_free_new;
2853 
2854 	mmun_start  = address & PAGE_MASK;
2855 	mmun_end    = mmun_start + PAGE_SIZE;
2856 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2857 
2858 	/*
2859 	 * Re-check the pte - we dropped the lock
2860 	 */
2861 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2862 	if (likely(pte_same(*page_table, orig_pte))) {
2863 		if (old_page) {
2864 			if (!PageAnon(old_page)) {
2865 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2866 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2867 			}
2868 		} else
2869 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2870 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2871 		entry = mk_pte(new_page, vma->vm_page_prot);
2872 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2873 		/*
2874 		 * Clear the pte entry and flush it first, before updating the
2875 		 * pte with the new entry. This will avoid a race condition
2876 		 * seen in the presence of one thread doing SMC and another
2877 		 * thread doing COW.
2878 		 */
2879 		ptep_clear_flush(vma, address, page_table);
2880 		page_add_new_anon_rmap(new_page, vma, address);
2881 		/*
2882 		 * We call the notify macro here because, when using secondary
2883 		 * mmu page tables (such as kvm shadow page tables), we want the
2884 		 * new page to be mapped directly into the secondary page table.
2885 		 */
2886 		set_pte_at_notify(mm, address, page_table, entry);
2887 		update_mmu_cache(vma, address, page_table);
2888 		if (old_page) {
2889 			/*
2890 			 * Only after switching the pte to the new page may
2891 			 * we remove the mapcount here. Otherwise another
2892 			 * process may come and find the rmap count decremented
2893 			 * before the pte is switched to the new page, and
2894 			 * "reuse" the old page writing into it while our pte
2895 			 * here still points into it and can be read by other
2896 			 * threads.
2897 			 *
2898 			 * The critical issue is to order this
2899 			 * page_remove_rmap with the ptp_clear_flush above.
2900 			 * Those stores are ordered by (if nothing else,)
2901 			 * the barrier present in the atomic_add_negative
2902 			 * in page_remove_rmap.
2903 			 *
2904 			 * Then the TLB flush in ptep_clear_flush ensures that
2905 			 * no process can access the old page before the
2906 			 * decremented mapcount is visible. And the old page
2907 			 * cannot be reused until after the decremented
2908 			 * mapcount is visible. So transitively, TLBs to
2909 			 * old page will be flushed before it can be reused.
2910 			 */
2911 			page_remove_rmap(old_page);
2912 		}
2913 
2914 		/* Free the old page.. */
2915 		new_page = old_page;
2916 		ret |= VM_FAULT_WRITE;
2917 	} else
2918 		mem_cgroup_uncharge_page(new_page);
2919 
2920 	if (new_page)
2921 		page_cache_release(new_page);
2922 unlock:
2923 	pte_unmap_unlock(page_table, ptl);
2924 	if (mmun_end > mmun_start)
2925 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2926 	if (old_page) {
2927 		/*
2928 		 * Don't let another task, with possibly unlocked vma,
2929 		 * keep the mlocked page.
2930 		 */
2931 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2932 			lock_page(old_page);	/* LRU manipulation */
2933 			munlock_vma_page(old_page);
2934 			unlock_page(old_page);
2935 		}
2936 		page_cache_release(old_page);
2937 	}
2938 	return ret;
2939 oom_free_new:
2940 	page_cache_release(new_page);
2941 oom:
2942 	if (old_page)
2943 		page_cache_release(old_page);
2944 	return VM_FAULT_OOM;
2945 }
2946 
2947 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2948 		unsigned long start_addr, unsigned long end_addr,
2949 		struct zap_details *details)
2950 {
2951 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2952 }
2953 
2954 static inline void unmap_mapping_range_tree(struct rb_root *root,
2955 					    struct zap_details *details)
2956 {
2957 	struct vm_area_struct *vma;
2958 	pgoff_t vba, vea, zba, zea;
2959 
2960 	vma_interval_tree_foreach(vma, root,
2961 			details->first_index, details->last_index) {
2962 
2963 		vba = vma->vm_pgoff;
2964 		vea = vba + vma_pages(vma) - 1;
2965 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2966 		zba = details->first_index;
2967 		if (zba < vba)
2968 			zba = vba;
2969 		zea = details->last_index;
2970 		if (zea > vea)
2971 			zea = vea;
2972 
2973 		unmap_mapping_range_vma(vma,
2974 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2975 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2976 				details);
2977 	}
2978 }
2979 
2980 static inline void unmap_mapping_range_list(struct list_head *head,
2981 					    struct zap_details *details)
2982 {
2983 	struct vm_area_struct *vma;
2984 
2985 	/*
2986 	 * In nonlinear VMAs there is no correspondence between virtual address
2987 	 * offset and file offset.  So we must perform an exhaustive search
2988 	 * across *all* the pages in each nonlinear VMA, not just the pages
2989 	 * whose virtual address lies outside the file truncation point.
2990 	 */
2991 	list_for_each_entry(vma, head, shared.nonlinear) {
2992 		details->nonlinear_vma = vma;
2993 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2994 	}
2995 }
2996 
2997 /**
2998  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2999  * @mapping: the address space containing mmaps to be unmapped.
3000  * @holebegin: byte in first page to unmap, relative to the start of
3001  * the underlying file.  This will be rounded down to a PAGE_SIZE
3002  * boundary.  Note that this is different from truncate_pagecache(), which
3003  * must keep the partial page.  In contrast, we must get rid of
3004  * partial pages.
3005  * @holelen: size of prospective hole in bytes.  This will be rounded
3006  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3007  * end of the file.
3008  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3009  * but 0 when invalidating pagecache, don't throw away private data.
3010  */
3011 void unmap_mapping_range(struct address_space *mapping,
3012 		loff_t const holebegin, loff_t const holelen, int even_cows)
3013 {
3014 	struct zap_details details;
3015 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3016 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3017 
3018 	/* Check for overflow. */
3019 	if (sizeof(holelen) > sizeof(hlen)) {
3020 		long long holeend =
3021 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3022 		if (holeend & ~(long long)ULONG_MAX)
3023 			hlen = ULONG_MAX - hba + 1;
3024 	}
3025 
3026 	details.check_mapping = even_cows? NULL: mapping;
3027 	details.nonlinear_vma = NULL;
3028 	details.first_index = hba;
3029 	details.last_index = hba + hlen - 1;
3030 	if (details.last_index < details.first_index)
3031 		details.last_index = ULONG_MAX;
3032 
3033 
3034 	mutex_lock(&mapping->i_mmap_mutex);
3035 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
3036 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3037 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
3038 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3039 	mutex_unlock(&mapping->i_mmap_mutex);
3040 }
3041 EXPORT_SYMBOL(unmap_mapping_range);
3042 
3043 /*
3044  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3045  * but allow concurrent faults), and pte mapped but not yet locked.
3046  * We return with mmap_sem still held, but pte unmapped and unlocked.
3047  */
3048 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3049 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3050 		unsigned int flags, pte_t orig_pte)
3051 {
3052 	spinlock_t *ptl;
3053 	struct page *page, *swapcache;
3054 	swp_entry_t entry;
3055 	pte_t pte;
3056 	int locked;
3057 	struct mem_cgroup *ptr;
3058 	int exclusive = 0;
3059 	int ret = 0;
3060 
3061 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3062 		goto out;
3063 
3064 	entry = pte_to_swp_entry(orig_pte);
3065 	if (unlikely(non_swap_entry(entry))) {
3066 		if (is_migration_entry(entry)) {
3067 			migration_entry_wait(mm, pmd, address);
3068 		} else if (is_hwpoison_entry(entry)) {
3069 			ret = VM_FAULT_HWPOISON;
3070 		} else {
3071 			print_bad_pte(vma, address, orig_pte, NULL);
3072 			ret = VM_FAULT_SIGBUS;
3073 		}
3074 		goto out;
3075 	}
3076 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3077 	page = lookup_swap_cache(entry);
3078 	if (!page) {
3079 		page = swapin_readahead(entry,
3080 					GFP_HIGHUSER_MOVABLE, vma, address);
3081 		if (!page) {
3082 			/*
3083 			 * Back out if somebody else faulted in this pte
3084 			 * while we released the pte lock.
3085 			 */
3086 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3087 			if (likely(pte_same(*page_table, orig_pte)))
3088 				ret = VM_FAULT_OOM;
3089 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3090 			goto unlock;
3091 		}
3092 
3093 		/* Had to read the page from swap area: Major fault */
3094 		ret = VM_FAULT_MAJOR;
3095 		count_vm_event(PGMAJFAULT);
3096 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3097 	} else if (PageHWPoison(page)) {
3098 		/*
3099 		 * hwpoisoned dirty swapcache pages are kept for killing
3100 		 * owner processes (which may be unknown at hwpoison time)
3101 		 */
3102 		ret = VM_FAULT_HWPOISON;
3103 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3104 		swapcache = page;
3105 		goto out_release;
3106 	}
3107 
3108 	swapcache = page;
3109 	locked = lock_page_or_retry(page, mm, flags);
3110 
3111 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3112 	if (!locked) {
3113 		ret |= VM_FAULT_RETRY;
3114 		goto out_release;
3115 	}
3116 
3117 	/*
3118 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3119 	 * release the swapcache from under us.  The page pin, and pte_same
3120 	 * test below, are not enough to exclude that.  Even if it is still
3121 	 * swapcache, we need to check that the page's swap has not changed.
3122 	 */
3123 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3124 		goto out_page;
3125 
3126 	page = ksm_might_need_to_copy(page, vma, address);
3127 	if (unlikely(!page)) {
3128 		ret = VM_FAULT_OOM;
3129 		page = swapcache;
3130 		goto out_page;
3131 	}
3132 
3133 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3134 		ret = VM_FAULT_OOM;
3135 		goto out_page;
3136 	}
3137 
3138 	/*
3139 	 * Back out if somebody else already faulted in this pte.
3140 	 */
3141 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3142 	if (unlikely(!pte_same(*page_table, orig_pte)))
3143 		goto out_nomap;
3144 
3145 	if (unlikely(!PageUptodate(page))) {
3146 		ret = VM_FAULT_SIGBUS;
3147 		goto out_nomap;
3148 	}
3149 
3150 	/*
3151 	 * The page isn't present yet, go ahead with the fault.
3152 	 *
3153 	 * Be careful about the sequence of operations here.
3154 	 * To get its accounting right, reuse_swap_page() must be called
3155 	 * while the page is counted on swap but not yet in mapcount i.e.
3156 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3157 	 * must be called after the swap_free(), or it will never succeed.
3158 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3159 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3160 	 * in page->private. In this case, a record in swap_cgroup  is silently
3161 	 * discarded at swap_free().
3162 	 */
3163 
3164 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3165 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3166 	pte = mk_pte(page, vma->vm_page_prot);
3167 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3168 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3169 		flags &= ~FAULT_FLAG_WRITE;
3170 		ret |= VM_FAULT_WRITE;
3171 		exclusive = 1;
3172 	}
3173 	flush_icache_page(vma, page);
3174 	if (pte_swp_soft_dirty(orig_pte))
3175 		pte = pte_mksoft_dirty(pte);
3176 	set_pte_at(mm, address, page_table, pte);
3177 	if (page == swapcache)
3178 		do_page_add_anon_rmap(page, vma, address, exclusive);
3179 	else /* ksm created a completely new copy */
3180 		page_add_new_anon_rmap(page, vma, address);
3181 	/* It's better to call commit-charge after rmap is established */
3182 	mem_cgroup_commit_charge_swapin(page, ptr);
3183 
3184 	swap_free(entry);
3185 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3186 		try_to_free_swap(page);
3187 	unlock_page(page);
3188 	if (page != swapcache) {
3189 		/*
3190 		 * Hold the lock to avoid the swap entry to be reused
3191 		 * until we take the PT lock for the pte_same() check
3192 		 * (to avoid false positives from pte_same). For
3193 		 * further safety release the lock after the swap_free
3194 		 * so that the swap count won't change under a
3195 		 * parallel locked swapcache.
3196 		 */
3197 		unlock_page(swapcache);
3198 		page_cache_release(swapcache);
3199 	}
3200 
3201 	if (flags & FAULT_FLAG_WRITE) {
3202 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3203 		if (ret & VM_FAULT_ERROR)
3204 			ret &= VM_FAULT_ERROR;
3205 		goto out;
3206 	}
3207 
3208 	/* No need to invalidate - it was non-present before */
3209 	update_mmu_cache(vma, address, page_table);
3210 unlock:
3211 	pte_unmap_unlock(page_table, ptl);
3212 out:
3213 	return ret;
3214 out_nomap:
3215 	mem_cgroup_cancel_charge_swapin(ptr);
3216 	pte_unmap_unlock(page_table, ptl);
3217 out_page:
3218 	unlock_page(page);
3219 out_release:
3220 	page_cache_release(page);
3221 	if (page != swapcache) {
3222 		unlock_page(swapcache);
3223 		page_cache_release(swapcache);
3224 	}
3225 	return ret;
3226 }
3227 
3228 /*
3229  * This is like a special single-page "expand_{down|up}wards()",
3230  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3231  * doesn't hit another vma.
3232  */
3233 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3234 {
3235 	address &= PAGE_MASK;
3236 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3237 		struct vm_area_struct *prev = vma->vm_prev;
3238 
3239 		/*
3240 		 * Is there a mapping abutting this one below?
3241 		 *
3242 		 * That's only ok if it's the same stack mapping
3243 		 * that has gotten split..
3244 		 */
3245 		if (prev && prev->vm_end == address)
3246 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3247 
3248 		expand_downwards(vma, address - PAGE_SIZE);
3249 	}
3250 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3251 		struct vm_area_struct *next = vma->vm_next;
3252 
3253 		/* As VM_GROWSDOWN but s/below/above/ */
3254 		if (next && next->vm_start == address + PAGE_SIZE)
3255 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3256 
3257 		expand_upwards(vma, address + PAGE_SIZE);
3258 	}
3259 	return 0;
3260 }
3261 
3262 /*
3263  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3264  * but allow concurrent faults), and pte mapped but not yet locked.
3265  * We return with mmap_sem still held, but pte unmapped and unlocked.
3266  */
3267 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3268 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3269 		unsigned int flags)
3270 {
3271 	struct page *page;
3272 	spinlock_t *ptl;
3273 	pte_t entry;
3274 
3275 	pte_unmap(page_table);
3276 
3277 	/* Check if we need to add a guard page to the stack */
3278 	if (check_stack_guard_page(vma, address) < 0)
3279 		return VM_FAULT_SIGBUS;
3280 
3281 	/* Use the zero-page for reads */
3282 	if (!(flags & FAULT_FLAG_WRITE)) {
3283 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3284 						vma->vm_page_prot));
3285 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3286 		if (!pte_none(*page_table))
3287 			goto unlock;
3288 		goto setpte;
3289 	}
3290 
3291 	/* Allocate our own private page. */
3292 	if (unlikely(anon_vma_prepare(vma)))
3293 		goto oom;
3294 	page = alloc_zeroed_user_highpage_movable(vma, address);
3295 	if (!page)
3296 		goto oom;
3297 	/*
3298 	 * The memory barrier inside __SetPageUptodate makes sure that
3299 	 * preceeding stores to the page contents become visible before
3300 	 * the set_pte_at() write.
3301 	 */
3302 	__SetPageUptodate(page);
3303 
3304 	if (mem_cgroup_charge_anon(page, mm, GFP_KERNEL))
3305 		goto oom_free_page;
3306 
3307 	entry = mk_pte(page, vma->vm_page_prot);
3308 	if (vma->vm_flags & VM_WRITE)
3309 		entry = pte_mkwrite(pte_mkdirty(entry));
3310 
3311 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3312 	if (!pte_none(*page_table))
3313 		goto release;
3314 
3315 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3316 	page_add_new_anon_rmap(page, vma, address);
3317 setpte:
3318 	set_pte_at(mm, address, page_table, entry);
3319 
3320 	/* No need to invalidate - it was non-present before */
3321 	update_mmu_cache(vma, address, page_table);
3322 unlock:
3323 	pte_unmap_unlock(page_table, ptl);
3324 	return 0;
3325 release:
3326 	mem_cgroup_uncharge_page(page);
3327 	page_cache_release(page);
3328 	goto unlock;
3329 oom_free_page:
3330 	page_cache_release(page);
3331 oom:
3332 	return VM_FAULT_OOM;
3333 }
3334 
3335 static int __do_fault(struct vm_area_struct *vma, unsigned long address,
3336 		pgoff_t pgoff, unsigned int flags, struct page **page)
3337 {
3338 	struct vm_fault vmf;
3339 	int ret;
3340 
3341 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3342 	vmf.pgoff = pgoff;
3343 	vmf.flags = flags;
3344 	vmf.page = NULL;
3345 
3346 	ret = vma->vm_ops->fault(vma, &vmf);
3347 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3348 		return ret;
3349 
3350 	if (unlikely(PageHWPoison(vmf.page))) {
3351 		if (ret & VM_FAULT_LOCKED)
3352 			unlock_page(vmf.page);
3353 		page_cache_release(vmf.page);
3354 		return VM_FAULT_HWPOISON;
3355 	}
3356 
3357 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3358 		lock_page(vmf.page);
3359 	else
3360 		VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
3361 
3362 	*page = vmf.page;
3363 	return ret;
3364 }
3365 
3366 /**
3367  * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
3368  *
3369  * @vma: virtual memory area
3370  * @address: user virtual address
3371  * @page: page to map
3372  * @pte: pointer to target page table entry
3373  * @write: true, if new entry is writable
3374  * @anon: true, if it's anonymous page
3375  *
3376  * Caller must hold page table lock relevant for @pte.
3377  *
3378  * Target users are page handler itself and implementations of
3379  * vm_ops->map_pages.
3380  */
3381 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3382 		struct page *page, pte_t *pte, bool write, bool anon)
3383 {
3384 	pte_t entry;
3385 
3386 	flush_icache_page(vma, page);
3387 	entry = mk_pte(page, vma->vm_page_prot);
3388 	if (write)
3389 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3390 	else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
3391 		pte_mksoft_dirty(entry);
3392 	if (anon) {
3393 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3394 		page_add_new_anon_rmap(page, vma, address);
3395 	} else {
3396 		inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
3397 		page_add_file_rmap(page);
3398 	}
3399 	set_pte_at(vma->vm_mm, address, pte, entry);
3400 
3401 	/* no need to invalidate: a not-present page won't be cached */
3402 	update_mmu_cache(vma, address, pte);
3403 }
3404 
3405 #define FAULT_AROUND_ORDER 4
3406 
3407 #ifdef CONFIG_DEBUG_FS
3408 static unsigned int fault_around_order = FAULT_AROUND_ORDER;
3409 
3410 static int fault_around_order_get(void *data, u64 *val)
3411 {
3412 	*val = fault_around_order;
3413 	return 0;
3414 }
3415 
3416 static int fault_around_order_set(void *data, u64 val)
3417 {
3418 	BUILD_BUG_ON((1UL << FAULT_AROUND_ORDER) > PTRS_PER_PTE);
3419 	if (1UL << val > PTRS_PER_PTE)
3420 		return -EINVAL;
3421 	fault_around_order = val;
3422 	return 0;
3423 }
3424 DEFINE_SIMPLE_ATTRIBUTE(fault_around_order_fops,
3425 		fault_around_order_get, fault_around_order_set, "%llu\n");
3426 
3427 static int __init fault_around_debugfs(void)
3428 {
3429 	void *ret;
3430 
3431 	ret = debugfs_create_file("fault_around_order",	0644, NULL, NULL,
3432 			&fault_around_order_fops);
3433 	if (!ret)
3434 		pr_warn("Failed to create fault_around_order in debugfs");
3435 	return 0;
3436 }
3437 late_initcall(fault_around_debugfs);
3438 
3439 static inline unsigned long fault_around_pages(void)
3440 {
3441 	return 1UL << fault_around_order;
3442 }
3443 
3444 static inline unsigned long fault_around_mask(void)
3445 {
3446 	return ~((1UL << (PAGE_SHIFT + fault_around_order)) - 1);
3447 }
3448 #else
3449 static inline unsigned long fault_around_pages(void)
3450 {
3451 	unsigned long nr_pages;
3452 
3453 	nr_pages = 1UL << FAULT_AROUND_ORDER;
3454 	BUILD_BUG_ON(nr_pages > PTRS_PER_PTE);
3455 	return nr_pages;
3456 }
3457 
3458 static inline unsigned long fault_around_mask(void)
3459 {
3460 	return ~((1UL << (PAGE_SHIFT + FAULT_AROUND_ORDER)) - 1);
3461 }
3462 #endif
3463 
3464 static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
3465 		pte_t *pte, pgoff_t pgoff, unsigned int flags)
3466 {
3467 	unsigned long start_addr;
3468 	pgoff_t max_pgoff;
3469 	struct vm_fault vmf;
3470 	int off;
3471 
3472 	start_addr = max(address & fault_around_mask(), vma->vm_start);
3473 	off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3474 	pte -= off;
3475 	pgoff -= off;
3476 
3477 	/*
3478 	 *  max_pgoff is either end of page table or end of vma
3479 	 *  or fault_around_pages() from pgoff, depending what is neast.
3480 	 */
3481 	max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3482 		PTRS_PER_PTE - 1;
3483 	max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
3484 			pgoff + fault_around_pages() - 1);
3485 
3486 	/* Check if it makes any sense to call ->map_pages */
3487 	while (!pte_none(*pte)) {
3488 		if (++pgoff > max_pgoff)
3489 			return;
3490 		start_addr += PAGE_SIZE;
3491 		if (start_addr >= vma->vm_end)
3492 			return;
3493 		pte++;
3494 	}
3495 
3496 	vmf.virtual_address = (void __user *) start_addr;
3497 	vmf.pte = pte;
3498 	vmf.pgoff = pgoff;
3499 	vmf.max_pgoff = max_pgoff;
3500 	vmf.flags = flags;
3501 	vma->vm_ops->map_pages(vma, &vmf);
3502 }
3503 
3504 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3505 		unsigned long address, pmd_t *pmd,
3506 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3507 {
3508 	struct page *fault_page;
3509 	spinlock_t *ptl;
3510 	pte_t *pte;
3511 	int ret = 0;
3512 
3513 	/*
3514 	 * Let's call ->map_pages() first and use ->fault() as fallback
3515 	 * if page by the offset is not ready to be mapped (cold cache or
3516 	 * something).
3517 	 */
3518 	if (vma->vm_ops->map_pages) {
3519 		pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3520 		do_fault_around(vma, address, pte, pgoff, flags);
3521 		if (!pte_same(*pte, orig_pte))
3522 			goto unlock_out;
3523 		pte_unmap_unlock(pte, ptl);
3524 	}
3525 
3526 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3527 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3528 		return ret;
3529 
3530 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3531 	if (unlikely(!pte_same(*pte, orig_pte))) {
3532 		pte_unmap_unlock(pte, ptl);
3533 		unlock_page(fault_page);
3534 		page_cache_release(fault_page);
3535 		return ret;
3536 	}
3537 	do_set_pte(vma, address, fault_page, pte, false, false);
3538 	unlock_page(fault_page);
3539 unlock_out:
3540 	pte_unmap_unlock(pte, ptl);
3541 	return ret;
3542 }
3543 
3544 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3545 		unsigned long address, pmd_t *pmd,
3546 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3547 {
3548 	struct page *fault_page, *new_page;
3549 	spinlock_t *ptl;
3550 	pte_t *pte;
3551 	int ret;
3552 
3553 	if (unlikely(anon_vma_prepare(vma)))
3554 		return VM_FAULT_OOM;
3555 
3556 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3557 	if (!new_page)
3558 		return VM_FAULT_OOM;
3559 
3560 	if (mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)) {
3561 		page_cache_release(new_page);
3562 		return VM_FAULT_OOM;
3563 	}
3564 
3565 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3566 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3567 		goto uncharge_out;
3568 
3569 	copy_user_highpage(new_page, fault_page, address, vma);
3570 	__SetPageUptodate(new_page);
3571 
3572 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3573 	if (unlikely(!pte_same(*pte, orig_pte))) {
3574 		pte_unmap_unlock(pte, ptl);
3575 		unlock_page(fault_page);
3576 		page_cache_release(fault_page);
3577 		goto uncharge_out;
3578 	}
3579 	do_set_pte(vma, address, new_page, pte, true, true);
3580 	pte_unmap_unlock(pte, ptl);
3581 	unlock_page(fault_page);
3582 	page_cache_release(fault_page);
3583 	return ret;
3584 uncharge_out:
3585 	mem_cgroup_uncharge_page(new_page);
3586 	page_cache_release(new_page);
3587 	return ret;
3588 }
3589 
3590 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3591 		unsigned long address, pmd_t *pmd,
3592 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3593 {
3594 	struct page *fault_page;
3595 	struct address_space *mapping;
3596 	spinlock_t *ptl;
3597 	pte_t *pte;
3598 	int dirtied = 0;
3599 	int ret, tmp;
3600 
3601 	ret = __do_fault(vma, address, pgoff, flags, &fault_page);
3602 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3603 		return ret;
3604 
3605 	/*
3606 	 * Check if the backing address space wants to know that the page is
3607 	 * about to become writable
3608 	 */
3609 	if (vma->vm_ops->page_mkwrite) {
3610 		unlock_page(fault_page);
3611 		tmp = do_page_mkwrite(vma, fault_page, address);
3612 		if (unlikely(!tmp ||
3613 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3614 			page_cache_release(fault_page);
3615 			return tmp;
3616 		}
3617 	}
3618 
3619 	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3620 	if (unlikely(!pte_same(*pte, orig_pte))) {
3621 		pte_unmap_unlock(pte, ptl);
3622 		unlock_page(fault_page);
3623 		page_cache_release(fault_page);
3624 		return ret;
3625 	}
3626 	do_set_pte(vma, address, fault_page, pte, true, false);
3627 	pte_unmap_unlock(pte, ptl);
3628 
3629 	if (set_page_dirty(fault_page))
3630 		dirtied = 1;
3631 	mapping = fault_page->mapping;
3632 	unlock_page(fault_page);
3633 	if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3634 		/*
3635 		 * Some device drivers do not set page.mapping but still
3636 		 * dirty their pages
3637 		 */
3638 		balance_dirty_pages_ratelimited(mapping);
3639 	}
3640 
3641 	/* file_update_time outside page_lock */
3642 	if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3643 		file_update_time(vma->vm_file);
3644 
3645 	return ret;
3646 }
3647 
3648 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3649 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3650 		unsigned int flags, pte_t orig_pte)
3651 {
3652 	pgoff_t pgoff = (((address & PAGE_MASK)
3653 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3654 
3655 	pte_unmap(page_table);
3656 	if (!(flags & FAULT_FLAG_WRITE))
3657 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3658 				orig_pte);
3659 	if (!(vma->vm_flags & VM_SHARED))
3660 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3661 				orig_pte);
3662 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3663 }
3664 
3665 /*
3666  * Fault of a previously existing named mapping. Repopulate the pte
3667  * from the encoded file_pte if possible. This enables swappable
3668  * nonlinear vmas.
3669  *
3670  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3671  * but allow concurrent faults), and pte mapped but not yet locked.
3672  * We return with mmap_sem still held, but pte unmapped and unlocked.
3673  */
3674 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3675 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3676 		unsigned int flags, pte_t orig_pte)
3677 {
3678 	pgoff_t pgoff;
3679 
3680 	flags |= FAULT_FLAG_NONLINEAR;
3681 
3682 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3683 		return 0;
3684 
3685 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3686 		/*
3687 		 * Page table corrupted: show pte and kill process.
3688 		 */
3689 		print_bad_pte(vma, address, orig_pte, NULL);
3690 		return VM_FAULT_SIGBUS;
3691 	}
3692 
3693 	pgoff = pte_to_pgoff(orig_pte);
3694 	if (!(flags & FAULT_FLAG_WRITE))
3695 		return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3696 				orig_pte);
3697 	if (!(vma->vm_flags & VM_SHARED))
3698 		return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3699 				orig_pte);
3700 	return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3701 }
3702 
3703 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3704 				unsigned long addr, int page_nid,
3705 				int *flags)
3706 {
3707 	get_page(page);
3708 
3709 	count_vm_numa_event(NUMA_HINT_FAULTS);
3710 	if (page_nid == numa_node_id()) {
3711 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3712 		*flags |= TNF_FAULT_LOCAL;
3713 	}
3714 
3715 	return mpol_misplaced(page, vma, addr);
3716 }
3717 
3718 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3719 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3720 {
3721 	struct page *page = NULL;
3722 	spinlock_t *ptl;
3723 	int page_nid = -1;
3724 	int last_cpupid;
3725 	int target_nid;
3726 	bool migrated = false;
3727 	int flags = 0;
3728 
3729 	/*
3730 	* The "pte" at this point cannot be used safely without
3731 	* validation through pte_unmap_same(). It's of NUMA type but
3732 	* the pfn may be screwed if the read is non atomic.
3733 	*
3734 	* ptep_modify_prot_start is not called as this is clearing
3735 	* the _PAGE_NUMA bit and it is not really expected that there
3736 	* would be concurrent hardware modifications to the PTE.
3737 	*/
3738 	ptl = pte_lockptr(mm, pmd);
3739 	spin_lock(ptl);
3740 	if (unlikely(!pte_same(*ptep, pte))) {
3741 		pte_unmap_unlock(ptep, ptl);
3742 		goto out;
3743 	}
3744 
3745 	pte = pte_mknonnuma(pte);
3746 	set_pte_at(mm, addr, ptep, pte);
3747 	update_mmu_cache(vma, addr, ptep);
3748 
3749 	page = vm_normal_page(vma, addr, pte);
3750 	if (!page) {
3751 		pte_unmap_unlock(ptep, ptl);
3752 		return 0;
3753 	}
3754 	BUG_ON(is_zero_pfn(page_to_pfn(page)));
3755 
3756 	/*
3757 	 * Avoid grouping on DSO/COW pages in specific and RO pages
3758 	 * in general, RO pages shouldn't hurt as much anyway since
3759 	 * they can be in shared cache state.
3760 	 */
3761 	if (!pte_write(pte))
3762 		flags |= TNF_NO_GROUP;
3763 
3764 	/*
3765 	 * Flag if the page is shared between multiple address spaces. This
3766 	 * is later used when determining whether to group tasks together
3767 	 */
3768 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3769 		flags |= TNF_SHARED;
3770 
3771 	last_cpupid = page_cpupid_last(page);
3772 	page_nid = page_to_nid(page);
3773 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3774 	pte_unmap_unlock(ptep, ptl);
3775 	if (target_nid == -1) {
3776 		put_page(page);
3777 		goto out;
3778 	}
3779 
3780 	/* Migrate to the requested node */
3781 	migrated = migrate_misplaced_page(page, vma, target_nid);
3782 	if (migrated) {
3783 		page_nid = target_nid;
3784 		flags |= TNF_MIGRATED;
3785 	}
3786 
3787 out:
3788 	if (page_nid != -1)
3789 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3790 	return 0;
3791 }
3792 
3793 /*
3794  * These routines also need to handle stuff like marking pages dirty
3795  * and/or accessed for architectures that don't do it in hardware (most
3796  * RISC architectures).  The early dirtying is also good on the i386.
3797  *
3798  * There is also a hook called "update_mmu_cache()" that architectures
3799  * with external mmu caches can use to update those (ie the Sparc or
3800  * PowerPC hashed page tables that act as extended TLBs).
3801  *
3802  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3803  * but allow concurrent faults), and pte mapped but not yet locked.
3804  * We return with mmap_sem still held, but pte unmapped and unlocked.
3805  */
3806 static int handle_pte_fault(struct mm_struct *mm,
3807 		     struct vm_area_struct *vma, unsigned long address,
3808 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3809 {
3810 	pte_t entry;
3811 	spinlock_t *ptl;
3812 
3813 	entry = *pte;
3814 	if (!pte_present(entry)) {
3815 		if (pte_none(entry)) {
3816 			if (vma->vm_ops) {
3817 				if (likely(vma->vm_ops->fault))
3818 					return do_linear_fault(mm, vma, address,
3819 						pte, pmd, flags, entry);
3820 			}
3821 			return do_anonymous_page(mm, vma, address,
3822 						 pte, pmd, flags);
3823 		}
3824 		if (pte_file(entry))
3825 			return do_nonlinear_fault(mm, vma, address,
3826 					pte, pmd, flags, entry);
3827 		return do_swap_page(mm, vma, address,
3828 					pte, pmd, flags, entry);
3829 	}
3830 
3831 	if (pte_numa(entry))
3832 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3833 
3834 	ptl = pte_lockptr(mm, pmd);
3835 	spin_lock(ptl);
3836 	if (unlikely(!pte_same(*pte, entry)))
3837 		goto unlock;
3838 	if (flags & FAULT_FLAG_WRITE) {
3839 		if (!pte_write(entry))
3840 			return do_wp_page(mm, vma, address,
3841 					pte, pmd, ptl, entry);
3842 		entry = pte_mkdirty(entry);
3843 	}
3844 	entry = pte_mkyoung(entry);
3845 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3846 		update_mmu_cache(vma, address, pte);
3847 	} else {
3848 		/*
3849 		 * This is needed only for protection faults but the arch code
3850 		 * is not yet telling us if this is a protection fault or not.
3851 		 * This still avoids useless tlb flushes for .text page faults
3852 		 * with threads.
3853 		 */
3854 		if (flags & FAULT_FLAG_WRITE)
3855 			flush_tlb_fix_spurious_fault(vma, address);
3856 	}
3857 unlock:
3858 	pte_unmap_unlock(pte, ptl);
3859 	return 0;
3860 }
3861 
3862 /*
3863  * By the time we get here, we already hold the mm semaphore
3864  */
3865 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3866 			     unsigned long address, unsigned int flags)
3867 {
3868 	pgd_t *pgd;
3869 	pud_t *pud;
3870 	pmd_t *pmd;
3871 	pte_t *pte;
3872 
3873 	if (unlikely(is_vm_hugetlb_page(vma)))
3874 		return hugetlb_fault(mm, vma, address, flags);
3875 
3876 	pgd = pgd_offset(mm, address);
3877 	pud = pud_alloc(mm, pgd, address);
3878 	if (!pud)
3879 		return VM_FAULT_OOM;
3880 	pmd = pmd_alloc(mm, pud, address);
3881 	if (!pmd)
3882 		return VM_FAULT_OOM;
3883 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3884 		int ret = VM_FAULT_FALLBACK;
3885 		if (!vma->vm_ops)
3886 			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3887 					pmd, flags);
3888 		if (!(ret & VM_FAULT_FALLBACK))
3889 			return ret;
3890 	} else {
3891 		pmd_t orig_pmd = *pmd;
3892 		int ret;
3893 
3894 		barrier();
3895 		if (pmd_trans_huge(orig_pmd)) {
3896 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3897 
3898 			/*
3899 			 * If the pmd is splitting, return and retry the
3900 			 * the fault.  Alternative: wait until the split
3901 			 * is done, and goto retry.
3902 			 */
3903 			if (pmd_trans_splitting(orig_pmd))
3904 				return 0;
3905 
3906 			if (pmd_numa(orig_pmd))
3907 				return do_huge_pmd_numa_page(mm, vma, address,
3908 							     orig_pmd, pmd);
3909 
3910 			if (dirty && !pmd_write(orig_pmd)) {
3911 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3912 							  orig_pmd);
3913 				if (!(ret & VM_FAULT_FALLBACK))
3914 					return ret;
3915 			} else {
3916 				huge_pmd_set_accessed(mm, vma, address, pmd,
3917 						      orig_pmd, dirty);
3918 				return 0;
3919 			}
3920 		}
3921 	}
3922 
3923 	/* THP should already have been handled */
3924 	BUG_ON(pmd_numa(*pmd));
3925 
3926 	/*
3927 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3928 	 * run pte_offset_map on the pmd, if an huge pmd could
3929 	 * materialize from under us from a different thread.
3930 	 */
3931 	if (unlikely(pmd_none(*pmd)) &&
3932 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3933 		return VM_FAULT_OOM;
3934 	/* if an huge pmd materialized from under us just retry later */
3935 	if (unlikely(pmd_trans_huge(*pmd)))
3936 		return 0;
3937 	/*
3938 	 * A regular pmd is established and it can't morph into a huge pmd
3939 	 * from under us anymore at this point because we hold the mmap_sem
3940 	 * read mode and khugepaged takes it in write mode. So now it's
3941 	 * safe to run pte_offset_map().
3942 	 */
3943 	pte = pte_offset_map(pmd, address);
3944 
3945 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3946 }
3947 
3948 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3949 		    unsigned long address, unsigned int flags)
3950 {
3951 	int ret;
3952 
3953 	__set_current_state(TASK_RUNNING);
3954 
3955 	count_vm_event(PGFAULT);
3956 	mem_cgroup_count_vm_event(mm, PGFAULT);
3957 
3958 	/* do counter updates before entering really critical section. */
3959 	check_sync_rss_stat(current);
3960 
3961 	/*
3962 	 * Enable the memcg OOM handling for faults triggered in user
3963 	 * space.  Kernel faults are handled more gracefully.
3964 	 */
3965 	if (flags & FAULT_FLAG_USER)
3966 		mem_cgroup_oom_enable();
3967 
3968 	ret = __handle_mm_fault(mm, vma, address, flags);
3969 
3970 	if (flags & FAULT_FLAG_USER) {
3971 		mem_cgroup_oom_disable();
3972                 /*
3973                  * The task may have entered a memcg OOM situation but
3974                  * if the allocation error was handled gracefully (no
3975                  * VM_FAULT_OOM), there is no need to kill anything.
3976                  * Just clean up the OOM state peacefully.
3977                  */
3978                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3979                         mem_cgroup_oom_synchronize(false);
3980 	}
3981 
3982 	return ret;
3983 }
3984 
3985 #ifndef __PAGETABLE_PUD_FOLDED
3986 /*
3987  * Allocate page upper directory.
3988  * We've already handled the fast-path in-line.
3989  */
3990 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3991 {
3992 	pud_t *new = pud_alloc_one(mm, address);
3993 	if (!new)
3994 		return -ENOMEM;
3995 
3996 	smp_wmb(); /* See comment in __pte_alloc */
3997 
3998 	spin_lock(&mm->page_table_lock);
3999 	if (pgd_present(*pgd))		/* Another has populated it */
4000 		pud_free(mm, new);
4001 	else
4002 		pgd_populate(mm, pgd, new);
4003 	spin_unlock(&mm->page_table_lock);
4004 	return 0;
4005 }
4006 #endif /* __PAGETABLE_PUD_FOLDED */
4007 
4008 #ifndef __PAGETABLE_PMD_FOLDED
4009 /*
4010  * Allocate page middle directory.
4011  * We've already handled the fast-path in-line.
4012  */
4013 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4014 {
4015 	pmd_t *new = pmd_alloc_one(mm, address);
4016 	if (!new)
4017 		return -ENOMEM;
4018 
4019 	smp_wmb(); /* See comment in __pte_alloc */
4020 
4021 	spin_lock(&mm->page_table_lock);
4022 #ifndef __ARCH_HAS_4LEVEL_HACK
4023 	if (pud_present(*pud))		/* Another has populated it */
4024 		pmd_free(mm, new);
4025 	else
4026 		pud_populate(mm, pud, new);
4027 #else
4028 	if (pgd_present(*pud))		/* Another has populated it */
4029 		pmd_free(mm, new);
4030 	else
4031 		pgd_populate(mm, pud, new);
4032 #endif /* __ARCH_HAS_4LEVEL_HACK */
4033 	spin_unlock(&mm->page_table_lock);
4034 	return 0;
4035 }
4036 #endif /* __PAGETABLE_PMD_FOLDED */
4037 
4038 #if !defined(__HAVE_ARCH_GATE_AREA)
4039 
4040 #if defined(AT_SYSINFO_EHDR)
4041 static struct vm_area_struct gate_vma;
4042 
4043 static int __init gate_vma_init(void)
4044 {
4045 	gate_vma.vm_mm = NULL;
4046 	gate_vma.vm_start = FIXADDR_USER_START;
4047 	gate_vma.vm_end = FIXADDR_USER_END;
4048 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
4049 	gate_vma.vm_page_prot = __P101;
4050 
4051 	return 0;
4052 }
4053 __initcall(gate_vma_init);
4054 #endif
4055 
4056 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
4057 {
4058 #ifdef AT_SYSINFO_EHDR
4059 	return &gate_vma;
4060 #else
4061 	return NULL;
4062 #endif
4063 }
4064 
4065 int in_gate_area_no_mm(unsigned long addr)
4066 {
4067 #ifdef AT_SYSINFO_EHDR
4068 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
4069 		return 1;
4070 #endif
4071 	return 0;
4072 }
4073 
4074 #endif	/* __HAVE_ARCH_GATE_AREA */
4075 
4076 static int __follow_pte(struct mm_struct *mm, unsigned long address,
4077 		pte_t **ptepp, spinlock_t **ptlp)
4078 {
4079 	pgd_t *pgd;
4080 	pud_t *pud;
4081 	pmd_t *pmd;
4082 	pte_t *ptep;
4083 
4084 	pgd = pgd_offset(mm, address);
4085 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4086 		goto out;
4087 
4088 	pud = pud_offset(pgd, address);
4089 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4090 		goto out;
4091 
4092 	pmd = pmd_offset(pud, address);
4093 	VM_BUG_ON(pmd_trans_huge(*pmd));
4094 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4095 		goto out;
4096 
4097 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
4098 	if (pmd_huge(*pmd))
4099 		goto out;
4100 
4101 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4102 	if (!ptep)
4103 		goto out;
4104 	if (!pte_present(*ptep))
4105 		goto unlock;
4106 	*ptepp = ptep;
4107 	return 0;
4108 unlock:
4109 	pte_unmap_unlock(ptep, *ptlp);
4110 out:
4111 	return -EINVAL;
4112 }
4113 
4114 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4115 			     pte_t **ptepp, spinlock_t **ptlp)
4116 {
4117 	int res;
4118 
4119 	/* (void) is needed to make gcc happy */
4120 	(void) __cond_lock(*ptlp,
4121 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
4122 	return res;
4123 }
4124 
4125 /**
4126  * follow_pfn - look up PFN at a user virtual address
4127  * @vma: memory mapping
4128  * @address: user virtual address
4129  * @pfn: location to store found PFN
4130  *
4131  * Only IO mappings and raw PFN mappings are allowed.
4132  *
4133  * Returns zero and the pfn at @pfn on success, -ve otherwise.
4134  */
4135 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4136 	unsigned long *pfn)
4137 {
4138 	int ret = -EINVAL;
4139 	spinlock_t *ptl;
4140 	pte_t *ptep;
4141 
4142 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4143 		return ret;
4144 
4145 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4146 	if (ret)
4147 		return ret;
4148 	*pfn = pte_pfn(*ptep);
4149 	pte_unmap_unlock(ptep, ptl);
4150 	return 0;
4151 }
4152 EXPORT_SYMBOL(follow_pfn);
4153 
4154 #ifdef CONFIG_HAVE_IOREMAP_PROT
4155 int follow_phys(struct vm_area_struct *vma,
4156 		unsigned long address, unsigned int flags,
4157 		unsigned long *prot, resource_size_t *phys)
4158 {
4159 	int ret = -EINVAL;
4160 	pte_t *ptep, pte;
4161 	spinlock_t *ptl;
4162 
4163 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4164 		goto out;
4165 
4166 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4167 		goto out;
4168 	pte = *ptep;
4169 
4170 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4171 		goto unlock;
4172 
4173 	*prot = pgprot_val(pte_pgprot(pte));
4174 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4175 
4176 	ret = 0;
4177 unlock:
4178 	pte_unmap_unlock(ptep, ptl);
4179 out:
4180 	return ret;
4181 }
4182 
4183 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4184 			void *buf, int len, int write)
4185 {
4186 	resource_size_t phys_addr;
4187 	unsigned long prot = 0;
4188 	void __iomem *maddr;
4189 	int offset = addr & (PAGE_SIZE-1);
4190 
4191 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4192 		return -EINVAL;
4193 
4194 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4195 	if (write)
4196 		memcpy_toio(maddr + offset, buf, len);
4197 	else
4198 		memcpy_fromio(buf, maddr + offset, len);
4199 	iounmap(maddr);
4200 
4201 	return len;
4202 }
4203 EXPORT_SYMBOL_GPL(generic_access_phys);
4204 #endif
4205 
4206 /*
4207  * Access another process' address space as given in mm.  If non-NULL, use the
4208  * given task for page fault accounting.
4209  */
4210 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4211 		unsigned long addr, void *buf, int len, int write)
4212 {
4213 	struct vm_area_struct *vma;
4214 	void *old_buf = buf;
4215 
4216 	down_read(&mm->mmap_sem);
4217 	/* ignore errors, just check how much was successfully transferred */
4218 	while (len) {
4219 		int bytes, ret, offset;
4220 		void *maddr;
4221 		struct page *page = NULL;
4222 
4223 		ret = get_user_pages(tsk, mm, addr, 1,
4224 				write, 1, &page, &vma);
4225 		if (ret <= 0) {
4226 			/*
4227 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4228 			 * we can access using slightly different code.
4229 			 */
4230 #ifdef CONFIG_HAVE_IOREMAP_PROT
4231 			vma = find_vma(mm, addr);
4232 			if (!vma || vma->vm_start > addr)
4233 				break;
4234 			if (vma->vm_ops && vma->vm_ops->access)
4235 				ret = vma->vm_ops->access(vma, addr, buf,
4236 							  len, write);
4237 			if (ret <= 0)
4238 #endif
4239 				break;
4240 			bytes = ret;
4241 		} else {
4242 			bytes = len;
4243 			offset = addr & (PAGE_SIZE-1);
4244 			if (bytes > PAGE_SIZE-offset)
4245 				bytes = PAGE_SIZE-offset;
4246 
4247 			maddr = kmap(page);
4248 			if (write) {
4249 				copy_to_user_page(vma, page, addr,
4250 						  maddr + offset, buf, bytes);
4251 				set_page_dirty_lock(page);
4252 			} else {
4253 				copy_from_user_page(vma, page, addr,
4254 						    buf, maddr + offset, bytes);
4255 			}
4256 			kunmap(page);
4257 			page_cache_release(page);
4258 		}
4259 		len -= bytes;
4260 		buf += bytes;
4261 		addr += bytes;
4262 	}
4263 	up_read(&mm->mmap_sem);
4264 
4265 	return buf - old_buf;
4266 }
4267 
4268 /**
4269  * access_remote_vm - access another process' address space
4270  * @mm:		the mm_struct of the target address space
4271  * @addr:	start address to access
4272  * @buf:	source or destination buffer
4273  * @len:	number of bytes to transfer
4274  * @write:	whether the access is a write
4275  *
4276  * The caller must hold a reference on @mm.
4277  */
4278 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4279 		void *buf, int len, int write)
4280 {
4281 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4282 }
4283 
4284 /*
4285  * Access another process' address space.
4286  * Source/target buffer must be kernel space,
4287  * Do not walk the page table directly, use get_user_pages
4288  */
4289 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4290 		void *buf, int len, int write)
4291 {
4292 	struct mm_struct *mm;
4293 	int ret;
4294 
4295 	mm = get_task_mm(tsk);
4296 	if (!mm)
4297 		return 0;
4298 
4299 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4300 	mmput(mm);
4301 
4302 	return ret;
4303 }
4304 
4305 /*
4306  * Print the name of a VMA.
4307  */
4308 void print_vma_addr(char *prefix, unsigned long ip)
4309 {
4310 	struct mm_struct *mm = current->mm;
4311 	struct vm_area_struct *vma;
4312 
4313 	/*
4314 	 * Do not print if we are in atomic
4315 	 * contexts (in exception stacks, etc.):
4316 	 */
4317 	if (preempt_count())
4318 		return;
4319 
4320 	down_read(&mm->mmap_sem);
4321 	vma = find_vma(mm, ip);
4322 	if (vma && vma->vm_file) {
4323 		struct file *f = vma->vm_file;
4324 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4325 		if (buf) {
4326 			char *p;
4327 
4328 			p = d_path(&f->f_path, buf, PAGE_SIZE);
4329 			if (IS_ERR(p))
4330 				p = "?";
4331 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4332 					vma->vm_start,
4333 					vma->vm_end - vma->vm_start);
4334 			free_page((unsigned long)buf);
4335 		}
4336 	}
4337 	up_read(&mm->mmap_sem);
4338 }
4339 
4340 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4341 void might_fault(void)
4342 {
4343 	/*
4344 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4345 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4346 	 * get paged out, therefore we'll never actually fault, and the
4347 	 * below annotations will generate false positives.
4348 	 */
4349 	if (segment_eq(get_fs(), KERNEL_DS))
4350 		return;
4351 
4352 	/*
4353 	 * it would be nicer only to annotate paths which are not under
4354 	 * pagefault_disable, however that requires a larger audit and
4355 	 * providing helpers like get_user_atomic.
4356 	 */
4357 	if (in_atomic())
4358 		return;
4359 
4360 	__might_sleep(__FILE__, __LINE__, 0);
4361 
4362 	if (current->mm)
4363 		might_lock_read(&current->mm->mmap_sem);
4364 }
4365 EXPORT_SYMBOL(might_fault);
4366 #endif
4367 
4368 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4369 static void clear_gigantic_page(struct page *page,
4370 				unsigned long addr,
4371 				unsigned int pages_per_huge_page)
4372 {
4373 	int i;
4374 	struct page *p = page;
4375 
4376 	might_sleep();
4377 	for (i = 0; i < pages_per_huge_page;
4378 	     i++, p = mem_map_next(p, page, i)) {
4379 		cond_resched();
4380 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4381 	}
4382 }
4383 void clear_huge_page(struct page *page,
4384 		     unsigned long addr, unsigned int pages_per_huge_page)
4385 {
4386 	int i;
4387 
4388 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4389 		clear_gigantic_page(page, addr, pages_per_huge_page);
4390 		return;
4391 	}
4392 
4393 	might_sleep();
4394 	for (i = 0; i < pages_per_huge_page; i++) {
4395 		cond_resched();
4396 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4397 	}
4398 }
4399 
4400 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4401 				    unsigned long addr,
4402 				    struct vm_area_struct *vma,
4403 				    unsigned int pages_per_huge_page)
4404 {
4405 	int i;
4406 	struct page *dst_base = dst;
4407 	struct page *src_base = src;
4408 
4409 	for (i = 0; i < pages_per_huge_page; ) {
4410 		cond_resched();
4411 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4412 
4413 		i++;
4414 		dst = mem_map_next(dst, dst_base, i);
4415 		src = mem_map_next(src, src_base, i);
4416 	}
4417 }
4418 
4419 void copy_user_huge_page(struct page *dst, struct page *src,
4420 			 unsigned long addr, struct vm_area_struct *vma,
4421 			 unsigned int pages_per_huge_page)
4422 {
4423 	int i;
4424 
4425 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4426 		copy_user_gigantic_page(dst, src, addr, vma,
4427 					pages_per_huge_page);
4428 		return;
4429 	}
4430 
4431 	might_sleep();
4432 	for (i = 0; i < pages_per_huge_page; i++) {
4433 		cond_resched();
4434 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4435 	}
4436 }
4437 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4438 
4439 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4440 
4441 static struct kmem_cache *page_ptl_cachep;
4442 
4443 void __init ptlock_cache_init(void)
4444 {
4445 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4446 			SLAB_PANIC, NULL);
4447 }
4448 
4449 bool ptlock_alloc(struct page *page)
4450 {
4451 	spinlock_t *ptl;
4452 
4453 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4454 	if (!ptl)
4455 		return false;
4456 	page->ptl = ptl;
4457 	return true;
4458 }
4459 
4460 void ptlock_free(struct page *page)
4461 {
4462 	kmem_cache_free(page_ptl_cachep, page->ptl);
4463 }
4464 #endif
4465