xref: /openbmc/linux/mm/memory.c (revision 367b8112)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 
56 #include <asm/pgalloc.h>
57 #include <asm/uaccess.h>
58 #include <asm/tlb.h>
59 #include <asm/tlbflush.h>
60 #include <asm/pgtable.h>
61 
62 #include <linux/swapops.h>
63 #include <linux/elf.h>
64 
65 #include "internal.h"
66 
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71 
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75 
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85 
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88 
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 					1;
98 #else
99 					2;
100 #endif
101 
102 static int __init disable_randmaps(char *s)
103 {
104 	randomize_va_space = 0;
105 	return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108 
109 
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115 
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 	pgd_ERROR(*pgd);
119 	pgd_clear(pgd);
120 }
121 
122 void pud_clear_bad(pud_t *pud)
123 {
124 	pud_ERROR(*pud);
125 	pud_clear(pud);
126 }
127 
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 	pmd_ERROR(*pmd);
131 	pmd_clear(pmd);
132 }
133 
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 {
140 	pgtable_t token = pmd_pgtable(*pmd);
141 	pmd_clear(pmd);
142 	pte_free_tlb(tlb, token);
143 	tlb->mm->nr_ptes--;
144 }
145 
146 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 				unsigned long addr, unsigned long end,
148 				unsigned long floor, unsigned long ceiling)
149 {
150 	pmd_t *pmd;
151 	unsigned long next;
152 	unsigned long start;
153 
154 	start = addr;
155 	pmd = pmd_offset(pud, addr);
156 	do {
157 		next = pmd_addr_end(addr, end);
158 		if (pmd_none_or_clear_bad(pmd))
159 			continue;
160 		free_pte_range(tlb, pmd);
161 	} while (pmd++, addr = next, addr != end);
162 
163 	start &= PUD_MASK;
164 	if (start < floor)
165 		return;
166 	if (ceiling) {
167 		ceiling &= PUD_MASK;
168 		if (!ceiling)
169 			return;
170 	}
171 	if (end - 1 > ceiling - 1)
172 		return;
173 
174 	pmd = pmd_offset(pud, start);
175 	pud_clear(pud);
176 	pmd_free_tlb(tlb, pmd);
177 }
178 
179 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 				unsigned long addr, unsigned long end,
181 				unsigned long floor, unsigned long ceiling)
182 {
183 	pud_t *pud;
184 	unsigned long next;
185 	unsigned long start;
186 
187 	start = addr;
188 	pud = pud_offset(pgd, addr);
189 	do {
190 		next = pud_addr_end(addr, end);
191 		if (pud_none_or_clear_bad(pud))
192 			continue;
193 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
194 	} while (pud++, addr = next, addr != end);
195 
196 	start &= PGDIR_MASK;
197 	if (start < floor)
198 		return;
199 	if (ceiling) {
200 		ceiling &= PGDIR_MASK;
201 		if (!ceiling)
202 			return;
203 	}
204 	if (end - 1 > ceiling - 1)
205 		return;
206 
207 	pud = pud_offset(pgd, start);
208 	pgd_clear(pgd);
209 	pud_free_tlb(tlb, pud);
210 }
211 
212 /*
213  * This function frees user-level page tables of a process.
214  *
215  * Must be called with pagetable lock held.
216  */
217 void free_pgd_range(struct mmu_gather *tlb,
218 			unsigned long addr, unsigned long end,
219 			unsigned long floor, unsigned long ceiling)
220 {
221 	pgd_t *pgd;
222 	unsigned long next;
223 	unsigned long start;
224 
225 	/*
226 	 * The next few lines have given us lots of grief...
227 	 *
228 	 * Why are we testing PMD* at this top level?  Because often
229 	 * there will be no work to do at all, and we'd prefer not to
230 	 * go all the way down to the bottom just to discover that.
231 	 *
232 	 * Why all these "- 1"s?  Because 0 represents both the bottom
233 	 * of the address space and the top of it (using -1 for the
234 	 * top wouldn't help much: the masks would do the wrong thing).
235 	 * The rule is that addr 0 and floor 0 refer to the bottom of
236 	 * the address space, but end 0 and ceiling 0 refer to the top
237 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 	 * that end 0 case should be mythical).
239 	 *
240 	 * Wherever addr is brought up or ceiling brought down, we must
241 	 * be careful to reject "the opposite 0" before it confuses the
242 	 * subsequent tests.  But what about where end is brought down
243 	 * by PMD_SIZE below? no, end can't go down to 0 there.
244 	 *
245 	 * Whereas we round start (addr) and ceiling down, by different
246 	 * masks at different levels, in order to test whether a table
247 	 * now has no other vmas using it, so can be freed, we don't
248 	 * bother to round floor or end up - the tests don't need that.
249 	 */
250 
251 	addr &= PMD_MASK;
252 	if (addr < floor) {
253 		addr += PMD_SIZE;
254 		if (!addr)
255 			return;
256 	}
257 	if (ceiling) {
258 		ceiling &= PMD_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		end -= PMD_SIZE;
264 	if (addr > end - 1)
265 		return;
266 
267 	start = addr;
268 	pgd = pgd_offset(tlb->mm, addr);
269 	do {
270 		next = pgd_addr_end(addr, end);
271 		if (pgd_none_or_clear_bad(pgd))
272 			continue;
273 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
274 	} while (pgd++, addr = next, addr != end);
275 }
276 
277 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
278 		unsigned long floor, unsigned long ceiling)
279 {
280 	while (vma) {
281 		struct vm_area_struct *next = vma->vm_next;
282 		unsigned long addr = vma->vm_start;
283 
284 		/*
285 		 * Hide vma from rmap and vmtruncate before freeing pgtables
286 		 */
287 		anon_vma_unlink(vma);
288 		unlink_file_vma(vma);
289 
290 		if (is_vm_hugetlb_page(vma)) {
291 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
292 				floor, next? next->vm_start: ceiling);
293 		} else {
294 			/*
295 			 * Optimization: gather nearby vmas into one call down
296 			 */
297 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
298 			       && !is_vm_hugetlb_page(next)) {
299 				vma = next;
300 				next = vma->vm_next;
301 				anon_vma_unlink(vma);
302 				unlink_file_vma(vma);
303 			}
304 			free_pgd_range(tlb, addr, vma->vm_end,
305 				floor, next? next->vm_start: ceiling);
306 		}
307 		vma = next;
308 	}
309 }
310 
311 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 {
313 	pgtable_t new = pte_alloc_one(mm, address);
314 	if (!new)
315 		return -ENOMEM;
316 
317 	/*
318 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 	 * visible before the pte is made visible to other CPUs by being
320 	 * put into page tables.
321 	 *
322 	 * The other side of the story is the pointer chasing in the page
323 	 * table walking code (when walking the page table without locking;
324 	 * ie. most of the time). Fortunately, these data accesses consist
325 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 	 * being the notable exception) will already guarantee loads are
327 	 * seen in-order. See the alpha page table accessors for the
328 	 * smp_read_barrier_depends() barriers in page table walking code.
329 	 */
330 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331 
332 	spin_lock(&mm->page_table_lock);
333 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
334 		mm->nr_ptes++;
335 		pmd_populate(mm, pmd, new);
336 		new = NULL;
337 	}
338 	spin_unlock(&mm->page_table_lock);
339 	if (new)
340 		pte_free(mm, new);
341 	return 0;
342 }
343 
344 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 {
346 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 	if (!new)
348 		return -ENOMEM;
349 
350 	smp_wmb(); /* See comment in __pte_alloc */
351 
352 	spin_lock(&init_mm.page_table_lock);
353 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
354 		pmd_populate_kernel(&init_mm, pmd, new);
355 		new = NULL;
356 	}
357 	spin_unlock(&init_mm.page_table_lock);
358 	if (new)
359 		pte_free_kernel(&init_mm, new);
360 	return 0;
361 }
362 
363 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 {
365 	if (file_rss)
366 		add_mm_counter(mm, file_rss, file_rss);
367 	if (anon_rss)
368 		add_mm_counter(mm, anon_rss, anon_rss);
369 }
370 
371 /*
372  * This function is called to print an error when a bad pte
373  * is found. For example, we might have a PFN-mapped pte in
374  * a region that doesn't allow it.
375  *
376  * The calling function must still handle the error.
377  */
378 static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379 			  unsigned long vaddr)
380 {
381 	printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382 			"vm_flags = %lx, vaddr = %lx\n",
383 		(long long)pte_val(pte),
384 		(vma->vm_mm == current->mm ? current->comm : "???"),
385 		vma->vm_flags, vaddr);
386 	dump_stack();
387 }
388 
389 static inline int is_cow_mapping(unsigned int flags)
390 {
391 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
392 }
393 
394 /*
395  * vm_normal_page -- This function gets the "struct page" associated with a pte.
396  *
397  * "Special" mappings do not wish to be associated with a "struct page" (either
398  * it doesn't exist, or it exists but they don't want to touch it). In this
399  * case, NULL is returned here. "Normal" mappings do have a struct page.
400  *
401  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402  * pte bit, in which case this function is trivial. Secondly, an architecture
403  * may not have a spare pte bit, which requires a more complicated scheme,
404  * described below.
405  *
406  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407  * special mapping (even if there are underlying and valid "struct pages").
408  * COWed pages of a VM_PFNMAP are always normal.
409  *
410  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
412  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413  * mapping will always honor the rule
414  *
415  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416  *
417  * And for normal mappings this is false.
418  *
419  * This restricts such mappings to be a linear translation from virtual address
420  * to pfn. To get around this restriction, we allow arbitrary mappings so long
421  * as the vma is not a COW mapping; in that case, we know that all ptes are
422  * special (because none can have been COWed).
423  *
424  *
425  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
426  *
427  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428  * page" backing, however the difference is that _all_ pages with a struct
429  * page (that is, those where pfn_valid is true) are refcounted and considered
430  * normal pages by the VM. The disadvantage is that pages are refcounted
431  * (which can be slower and simply not an option for some PFNMAP users). The
432  * advantage is that we don't have to follow the strict linearity rule of
433  * PFNMAP mappings in order to support COWable mappings.
434  *
435  */
436 #ifdef __HAVE_ARCH_PTE_SPECIAL
437 # define HAVE_PTE_SPECIAL 1
438 #else
439 # define HAVE_PTE_SPECIAL 0
440 #endif
441 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442 				pte_t pte)
443 {
444 	unsigned long pfn;
445 
446 	if (HAVE_PTE_SPECIAL) {
447 		if (likely(!pte_special(pte))) {
448 			VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449 			return pte_page(pte);
450 		}
451 		VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452 		return NULL;
453 	}
454 
455 	/* !HAVE_PTE_SPECIAL case follows: */
456 
457 	pfn = pte_pfn(pte);
458 
459 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460 		if (vma->vm_flags & VM_MIXEDMAP) {
461 			if (!pfn_valid(pfn))
462 				return NULL;
463 			goto out;
464 		} else {
465 			unsigned long off;
466 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
467 			if (pfn == vma->vm_pgoff + off)
468 				return NULL;
469 			if (!is_cow_mapping(vma->vm_flags))
470 				return NULL;
471 		}
472 	}
473 
474 	VM_BUG_ON(!pfn_valid(pfn));
475 
476 	/*
477 	 * NOTE! We still have PageReserved() pages in the page tables.
478 	 *
479 	 * eg. VDSO mappings can cause them to exist.
480 	 */
481 out:
482 	return pfn_to_page(pfn);
483 }
484 
485 /*
486  * copy one vm_area from one task to the other. Assumes the page tables
487  * already present in the new task to be cleared in the whole range
488  * covered by this vma.
489  */
490 
491 static inline void
492 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
493 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
494 		unsigned long addr, int *rss)
495 {
496 	unsigned long vm_flags = vma->vm_flags;
497 	pte_t pte = *src_pte;
498 	struct page *page;
499 
500 	/* pte contains position in swap or file, so copy. */
501 	if (unlikely(!pte_present(pte))) {
502 		if (!pte_file(pte)) {
503 			swp_entry_t entry = pte_to_swp_entry(pte);
504 
505 			swap_duplicate(entry);
506 			/* make sure dst_mm is on swapoff's mmlist. */
507 			if (unlikely(list_empty(&dst_mm->mmlist))) {
508 				spin_lock(&mmlist_lock);
509 				if (list_empty(&dst_mm->mmlist))
510 					list_add(&dst_mm->mmlist,
511 						 &src_mm->mmlist);
512 				spin_unlock(&mmlist_lock);
513 			}
514 			if (is_write_migration_entry(entry) &&
515 					is_cow_mapping(vm_flags)) {
516 				/*
517 				 * COW mappings require pages in both parent
518 				 * and child to be set to read.
519 				 */
520 				make_migration_entry_read(&entry);
521 				pte = swp_entry_to_pte(entry);
522 				set_pte_at(src_mm, addr, src_pte, pte);
523 			}
524 		}
525 		goto out_set_pte;
526 	}
527 
528 	/*
529 	 * If it's a COW mapping, write protect it both
530 	 * in the parent and the child
531 	 */
532 	if (is_cow_mapping(vm_flags)) {
533 		ptep_set_wrprotect(src_mm, addr, src_pte);
534 		pte = pte_wrprotect(pte);
535 	}
536 
537 	/*
538 	 * If it's a shared mapping, mark it clean in
539 	 * the child
540 	 */
541 	if (vm_flags & VM_SHARED)
542 		pte = pte_mkclean(pte);
543 	pte = pte_mkold(pte);
544 
545 	page = vm_normal_page(vma, addr, pte);
546 	if (page) {
547 		get_page(page);
548 		page_dup_rmap(page, vma, addr);
549 		rss[!!PageAnon(page)]++;
550 	}
551 
552 out_set_pte:
553 	set_pte_at(dst_mm, addr, dst_pte, pte);
554 }
555 
556 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558 		unsigned long addr, unsigned long end)
559 {
560 	pte_t *src_pte, *dst_pte;
561 	spinlock_t *src_ptl, *dst_ptl;
562 	int progress = 0;
563 	int rss[2];
564 
565 again:
566 	rss[1] = rss[0] = 0;
567 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
568 	if (!dst_pte)
569 		return -ENOMEM;
570 	src_pte = pte_offset_map_nested(src_pmd, addr);
571 	src_ptl = pte_lockptr(src_mm, src_pmd);
572 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
573 	arch_enter_lazy_mmu_mode();
574 
575 	do {
576 		/*
577 		 * We are holding two locks at this point - either of them
578 		 * could generate latencies in another task on another CPU.
579 		 */
580 		if (progress >= 32) {
581 			progress = 0;
582 			if (need_resched() ||
583 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
584 				break;
585 		}
586 		if (pte_none(*src_pte)) {
587 			progress++;
588 			continue;
589 		}
590 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
591 		progress += 8;
592 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
593 
594 	arch_leave_lazy_mmu_mode();
595 	spin_unlock(src_ptl);
596 	pte_unmap_nested(src_pte - 1);
597 	add_mm_rss(dst_mm, rss[0], rss[1]);
598 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
599 	cond_resched();
600 	if (addr != end)
601 		goto again;
602 	return 0;
603 }
604 
605 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607 		unsigned long addr, unsigned long end)
608 {
609 	pmd_t *src_pmd, *dst_pmd;
610 	unsigned long next;
611 
612 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613 	if (!dst_pmd)
614 		return -ENOMEM;
615 	src_pmd = pmd_offset(src_pud, addr);
616 	do {
617 		next = pmd_addr_end(addr, end);
618 		if (pmd_none_or_clear_bad(src_pmd))
619 			continue;
620 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621 						vma, addr, next))
622 			return -ENOMEM;
623 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
624 	return 0;
625 }
626 
627 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629 		unsigned long addr, unsigned long end)
630 {
631 	pud_t *src_pud, *dst_pud;
632 	unsigned long next;
633 
634 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635 	if (!dst_pud)
636 		return -ENOMEM;
637 	src_pud = pud_offset(src_pgd, addr);
638 	do {
639 		next = pud_addr_end(addr, end);
640 		if (pud_none_or_clear_bad(src_pud))
641 			continue;
642 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643 						vma, addr, next))
644 			return -ENOMEM;
645 	} while (dst_pud++, src_pud++, addr = next, addr != end);
646 	return 0;
647 }
648 
649 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 		struct vm_area_struct *vma)
651 {
652 	pgd_t *src_pgd, *dst_pgd;
653 	unsigned long next;
654 	unsigned long addr = vma->vm_start;
655 	unsigned long end = vma->vm_end;
656 	int ret;
657 
658 	/*
659 	 * Don't copy ptes where a page fault will fill them correctly.
660 	 * Fork becomes much lighter when there are big shared or private
661 	 * readonly mappings. The tradeoff is that copy_page_range is more
662 	 * efficient than faulting.
663 	 */
664 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
665 		if (!vma->anon_vma)
666 			return 0;
667 	}
668 
669 	if (is_vm_hugetlb_page(vma))
670 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
671 
672 	/*
673 	 * We need to invalidate the secondary MMU mappings only when
674 	 * there could be a permission downgrade on the ptes of the
675 	 * parent mm. And a permission downgrade will only happen if
676 	 * is_cow_mapping() returns true.
677 	 */
678 	if (is_cow_mapping(vma->vm_flags))
679 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
680 
681 	ret = 0;
682 	dst_pgd = pgd_offset(dst_mm, addr);
683 	src_pgd = pgd_offset(src_mm, addr);
684 	do {
685 		next = pgd_addr_end(addr, end);
686 		if (pgd_none_or_clear_bad(src_pgd))
687 			continue;
688 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
689 					    vma, addr, next))) {
690 			ret = -ENOMEM;
691 			break;
692 		}
693 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
694 
695 	if (is_cow_mapping(vma->vm_flags))
696 		mmu_notifier_invalidate_range_end(src_mm,
697 						  vma->vm_start, end);
698 	return ret;
699 }
700 
701 static unsigned long zap_pte_range(struct mmu_gather *tlb,
702 				struct vm_area_struct *vma, pmd_t *pmd,
703 				unsigned long addr, unsigned long end,
704 				long *zap_work, struct zap_details *details)
705 {
706 	struct mm_struct *mm = tlb->mm;
707 	pte_t *pte;
708 	spinlock_t *ptl;
709 	int file_rss = 0;
710 	int anon_rss = 0;
711 
712 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
713 	arch_enter_lazy_mmu_mode();
714 	do {
715 		pte_t ptent = *pte;
716 		if (pte_none(ptent)) {
717 			(*zap_work)--;
718 			continue;
719 		}
720 
721 		(*zap_work) -= PAGE_SIZE;
722 
723 		if (pte_present(ptent)) {
724 			struct page *page;
725 
726 			page = vm_normal_page(vma, addr, ptent);
727 			if (unlikely(details) && page) {
728 				/*
729 				 * unmap_shared_mapping_pages() wants to
730 				 * invalidate cache without truncating:
731 				 * unmap shared but keep private pages.
732 				 */
733 				if (details->check_mapping &&
734 				    details->check_mapping != page->mapping)
735 					continue;
736 				/*
737 				 * Each page->index must be checked when
738 				 * invalidating or truncating nonlinear.
739 				 */
740 				if (details->nonlinear_vma &&
741 				    (page->index < details->first_index ||
742 				     page->index > details->last_index))
743 					continue;
744 			}
745 			ptent = ptep_get_and_clear_full(mm, addr, pte,
746 							tlb->fullmm);
747 			tlb_remove_tlb_entry(tlb, pte, addr);
748 			if (unlikely(!page))
749 				continue;
750 			if (unlikely(details) && details->nonlinear_vma
751 			    && linear_page_index(details->nonlinear_vma,
752 						addr) != page->index)
753 				set_pte_at(mm, addr, pte,
754 					   pgoff_to_pte(page->index));
755 			if (PageAnon(page))
756 				anon_rss--;
757 			else {
758 				if (pte_dirty(ptent))
759 					set_page_dirty(page);
760 				if (pte_young(ptent))
761 					SetPageReferenced(page);
762 				file_rss--;
763 			}
764 			page_remove_rmap(page, vma);
765 			tlb_remove_page(tlb, page);
766 			continue;
767 		}
768 		/*
769 		 * If details->check_mapping, we leave swap entries;
770 		 * if details->nonlinear_vma, we leave file entries.
771 		 */
772 		if (unlikely(details))
773 			continue;
774 		if (!pte_file(ptent))
775 			free_swap_and_cache(pte_to_swp_entry(ptent));
776 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
777 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
778 
779 	add_mm_rss(mm, file_rss, anon_rss);
780 	arch_leave_lazy_mmu_mode();
781 	pte_unmap_unlock(pte - 1, ptl);
782 
783 	return addr;
784 }
785 
786 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
787 				struct vm_area_struct *vma, pud_t *pud,
788 				unsigned long addr, unsigned long end,
789 				long *zap_work, struct zap_details *details)
790 {
791 	pmd_t *pmd;
792 	unsigned long next;
793 
794 	pmd = pmd_offset(pud, addr);
795 	do {
796 		next = pmd_addr_end(addr, end);
797 		if (pmd_none_or_clear_bad(pmd)) {
798 			(*zap_work)--;
799 			continue;
800 		}
801 		next = zap_pte_range(tlb, vma, pmd, addr, next,
802 						zap_work, details);
803 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
804 
805 	return addr;
806 }
807 
808 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
809 				struct vm_area_struct *vma, pgd_t *pgd,
810 				unsigned long addr, unsigned long end,
811 				long *zap_work, struct zap_details *details)
812 {
813 	pud_t *pud;
814 	unsigned long next;
815 
816 	pud = pud_offset(pgd, addr);
817 	do {
818 		next = pud_addr_end(addr, end);
819 		if (pud_none_or_clear_bad(pud)) {
820 			(*zap_work)--;
821 			continue;
822 		}
823 		next = zap_pmd_range(tlb, vma, pud, addr, next,
824 						zap_work, details);
825 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
826 
827 	return addr;
828 }
829 
830 static unsigned long unmap_page_range(struct mmu_gather *tlb,
831 				struct vm_area_struct *vma,
832 				unsigned long addr, unsigned long end,
833 				long *zap_work, struct zap_details *details)
834 {
835 	pgd_t *pgd;
836 	unsigned long next;
837 
838 	if (details && !details->check_mapping && !details->nonlinear_vma)
839 		details = NULL;
840 
841 	BUG_ON(addr >= end);
842 	tlb_start_vma(tlb, vma);
843 	pgd = pgd_offset(vma->vm_mm, addr);
844 	do {
845 		next = pgd_addr_end(addr, end);
846 		if (pgd_none_or_clear_bad(pgd)) {
847 			(*zap_work)--;
848 			continue;
849 		}
850 		next = zap_pud_range(tlb, vma, pgd, addr, next,
851 						zap_work, details);
852 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
853 	tlb_end_vma(tlb, vma);
854 
855 	return addr;
856 }
857 
858 #ifdef CONFIG_PREEMPT
859 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
860 #else
861 /* No preempt: go for improved straight-line efficiency */
862 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
863 #endif
864 
865 /**
866  * unmap_vmas - unmap a range of memory covered by a list of vma's
867  * @tlbp: address of the caller's struct mmu_gather
868  * @vma: the starting vma
869  * @start_addr: virtual address at which to start unmapping
870  * @end_addr: virtual address at which to end unmapping
871  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
872  * @details: details of nonlinear truncation or shared cache invalidation
873  *
874  * Returns the end address of the unmapping (restart addr if interrupted).
875  *
876  * Unmap all pages in the vma list.
877  *
878  * We aim to not hold locks for too long (for scheduling latency reasons).
879  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
880  * return the ending mmu_gather to the caller.
881  *
882  * Only addresses between `start' and `end' will be unmapped.
883  *
884  * The VMA list must be sorted in ascending virtual address order.
885  *
886  * unmap_vmas() assumes that the caller will flush the whole unmapped address
887  * range after unmap_vmas() returns.  So the only responsibility here is to
888  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
889  * drops the lock and schedules.
890  */
891 unsigned long unmap_vmas(struct mmu_gather **tlbp,
892 		struct vm_area_struct *vma, unsigned long start_addr,
893 		unsigned long end_addr, unsigned long *nr_accounted,
894 		struct zap_details *details)
895 {
896 	long zap_work = ZAP_BLOCK_SIZE;
897 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
898 	int tlb_start_valid = 0;
899 	unsigned long start = start_addr;
900 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
901 	int fullmm = (*tlbp)->fullmm;
902 	struct mm_struct *mm = vma->vm_mm;
903 
904 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
905 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
906 		unsigned long end;
907 
908 		start = max(vma->vm_start, start_addr);
909 		if (start >= vma->vm_end)
910 			continue;
911 		end = min(vma->vm_end, end_addr);
912 		if (end <= vma->vm_start)
913 			continue;
914 
915 		if (vma->vm_flags & VM_ACCOUNT)
916 			*nr_accounted += (end - start) >> PAGE_SHIFT;
917 
918 		while (start != end) {
919 			if (!tlb_start_valid) {
920 				tlb_start = start;
921 				tlb_start_valid = 1;
922 			}
923 
924 			if (unlikely(is_vm_hugetlb_page(vma))) {
925 				/*
926 				 * It is undesirable to test vma->vm_file as it
927 				 * should be non-null for valid hugetlb area.
928 				 * However, vm_file will be NULL in the error
929 				 * cleanup path of do_mmap_pgoff. When
930 				 * hugetlbfs ->mmap method fails,
931 				 * do_mmap_pgoff() nullifies vma->vm_file
932 				 * before calling this function to clean up.
933 				 * Since no pte has actually been setup, it is
934 				 * safe to do nothing in this case.
935 				 */
936 				if (vma->vm_file) {
937 					unmap_hugepage_range(vma, start, end, NULL);
938 					zap_work -= (end - start) /
939 					pages_per_huge_page(hstate_vma(vma));
940 				}
941 
942 				start = end;
943 			} else
944 				start = unmap_page_range(*tlbp, vma,
945 						start, end, &zap_work, details);
946 
947 			if (zap_work > 0) {
948 				BUG_ON(start != end);
949 				break;
950 			}
951 
952 			tlb_finish_mmu(*tlbp, tlb_start, start);
953 
954 			if (need_resched() ||
955 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
956 				if (i_mmap_lock) {
957 					*tlbp = NULL;
958 					goto out;
959 				}
960 				cond_resched();
961 			}
962 
963 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
964 			tlb_start_valid = 0;
965 			zap_work = ZAP_BLOCK_SIZE;
966 		}
967 	}
968 out:
969 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
970 	return start;	/* which is now the end (or restart) address */
971 }
972 
973 /**
974  * zap_page_range - remove user pages in a given range
975  * @vma: vm_area_struct holding the applicable pages
976  * @address: starting address of pages to zap
977  * @size: number of bytes to zap
978  * @details: details of nonlinear truncation or shared cache invalidation
979  */
980 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
981 		unsigned long size, struct zap_details *details)
982 {
983 	struct mm_struct *mm = vma->vm_mm;
984 	struct mmu_gather *tlb;
985 	unsigned long end = address + size;
986 	unsigned long nr_accounted = 0;
987 
988 	lru_add_drain();
989 	tlb = tlb_gather_mmu(mm, 0);
990 	update_hiwater_rss(mm);
991 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
992 	if (tlb)
993 		tlb_finish_mmu(tlb, address, end);
994 	return end;
995 }
996 
997 /**
998  * zap_vma_ptes - remove ptes mapping the vma
999  * @vma: vm_area_struct holding ptes to be zapped
1000  * @address: starting address of pages to zap
1001  * @size: number of bytes to zap
1002  *
1003  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1004  *
1005  * The entire address range must be fully contained within the vma.
1006  *
1007  * Returns 0 if successful.
1008  */
1009 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1010 		unsigned long size)
1011 {
1012 	if (address < vma->vm_start || address + size > vma->vm_end ||
1013 	    		!(vma->vm_flags & VM_PFNMAP))
1014 		return -1;
1015 	zap_page_range(vma, address, size, NULL);
1016 	return 0;
1017 }
1018 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1019 
1020 /*
1021  * Do a quick page-table lookup for a single page.
1022  */
1023 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1024 			unsigned int flags)
1025 {
1026 	pgd_t *pgd;
1027 	pud_t *pud;
1028 	pmd_t *pmd;
1029 	pte_t *ptep, pte;
1030 	spinlock_t *ptl;
1031 	struct page *page;
1032 	struct mm_struct *mm = vma->vm_mm;
1033 
1034 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1035 	if (!IS_ERR(page)) {
1036 		BUG_ON(flags & FOLL_GET);
1037 		goto out;
1038 	}
1039 
1040 	page = NULL;
1041 	pgd = pgd_offset(mm, address);
1042 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1043 		goto no_page_table;
1044 
1045 	pud = pud_offset(pgd, address);
1046 	if (pud_none(*pud))
1047 		goto no_page_table;
1048 	if (pud_huge(*pud)) {
1049 		BUG_ON(flags & FOLL_GET);
1050 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1051 		goto out;
1052 	}
1053 	if (unlikely(pud_bad(*pud)))
1054 		goto no_page_table;
1055 
1056 	pmd = pmd_offset(pud, address);
1057 	if (pmd_none(*pmd))
1058 		goto no_page_table;
1059 	if (pmd_huge(*pmd)) {
1060 		BUG_ON(flags & FOLL_GET);
1061 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1062 		goto out;
1063 	}
1064 	if (unlikely(pmd_bad(*pmd)))
1065 		goto no_page_table;
1066 
1067 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1068 
1069 	pte = *ptep;
1070 	if (!pte_present(pte))
1071 		goto no_page;
1072 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1073 		goto unlock;
1074 	page = vm_normal_page(vma, address, pte);
1075 	if (unlikely(!page))
1076 		goto bad_page;
1077 
1078 	if (flags & FOLL_GET)
1079 		get_page(page);
1080 	if (flags & FOLL_TOUCH) {
1081 		if ((flags & FOLL_WRITE) &&
1082 		    !pte_dirty(pte) && !PageDirty(page))
1083 			set_page_dirty(page);
1084 		mark_page_accessed(page);
1085 	}
1086 unlock:
1087 	pte_unmap_unlock(ptep, ptl);
1088 out:
1089 	return page;
1090 
1091 bad_page:
1092 	pte_unmap_unlock(ptep, ptl);
1093 	return ERR_PTR(-EFAULT);
1094 
1095 no_page:
1096 	pte_unmap_unlock(ptep, ptl);
1097 	if (!pte_none(pte))
1098 		return page;
1099 	/* Fall through to ZERO_PAGE handling */
1100 no_page_table:
1101 	/*
1102 	 * When core dumping an enormous anonymous area that nobody
1103 	 * has touched so far, we don't want to allocate page tables.
1104 	 */
1105 	if (flags & FOLL_ANON) {
1106 		page = ZERO_PAGE(0);
1107 		if (flags & FOLL_GET)
1108 			get_page(page);
1109 		BUG_ON(flags & FOLL_WRITE);
1110 	}
1111 	return page;
1112 }
1113 
1114 /* Can we do the FOLL_ANON optimization? */
1115 static inline int use_zero_page(struct vm_area_struct *vma)
1116 {
1117 	/*
1118 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1119 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1120 	 * we want to get the page from the page tables to make sure
1121 	 * that we serialize and update with any other user of that
1122 	 * mapping.
1123 	 */
1124 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1125 		return 0;
1126 	/*
1127 	 * And if we have a fault routine, it's not an anonymous region.
1128 	 */
1129 	return !vma->vm_ops || !vma->vm_ops->fault;
1130 }
1131 
1132 
1133 
1134 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1135 		     unsigned long start, int len, int flags,
1136 		struct page **pages, struct vm_area_struct **vmas)
1137 {
1138 	int i;
1139 	unsigned int vm_flags = 0;
1140 	int write = !!(flags & GUP_FLAGS_WRITE);
1141 	int force = !!(flags & GUP_FLAGS_FORCE);
1142 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1143 
1144 	if (len <= 0)
1145 		return 0;
1146 	/*
1147 	 * Require read or write permissions.
1148 	 * If 'force' is set, we only require the "MAY" flags.
1149 	 */
1150 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1151 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1152 	i = 0;
1153 
1154 	do {
1155 		struct vm_area_struct *vma;
1156 		unsigned int foll_flags;
1157 
1158 		vma = find_extend_vma(mm, start);
1159 		if (!vma && in_gate_area(tsk, start)) {
1160 			unsigned long pg = start & PAGE_MASK;
1161 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1162 			pgd_t *pgd;
1163 			pud_t *pud;
1164 			pmd_t *pmd;
1165 			pte_t *pte;
1166 
1167 			/* user gate pages are read-only */
1168 			if (!ignore && write)
1169 				return i ? : -EFAULT;
1170 			if (pg > TASK_SIZE)
1171 				pgd = pgd_offset_k(pg);
1172 			else
1173 				pgd = pgd_offset_gate(mm, pg);
1174 			BUG_ON(pgd_none(*pgd));
1175 			pud = pud_offset(pgd, pg);
1176 			BUG_ON(pud_none(*pud));
1177 			pmd = pmd_offset(pud, pg);
1178 			if (pmd_none(*pmd))
1179 				return i ? : -EFAULT;
1180 			pte = pte_offset_map(pmd, pg);
1181 			if (pte_none(*pte)) {
1182 				pte_unmap(pte);
1183 				return i ? : -EFAULT;
1184 			}
1185 			if (pages) {
1186 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1187 				pages[i] = page;
1188 				if (page)
1189 					get_page(page);
1190 			}
1191 			pte_unmap(pte);
1192 			if (vmas)
1193 				vmas[i] = gate_vma;
1194 			i++;
1195 			start += PAGE_SIZE;
1196 			len--;
1197 			continue;
1198 		}
1199 
1200 		if (!vma ||
1201 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1202 		    (!ignore && !(vm_flags & vma->vm_flags)))
1203 			return i ? : -EFAULT;
1204 
1205 		if (is_vm_hugetlb_page(vma)) {
1206 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1207 						&start, &len, i, write);
1208 			continue;
1209 		}
1210 
1211 		foll_flags = FOLL_TOUCH;
1212 		if (pages)
1213 			foll_flags |= FOLL_GET;
1214 		if (!write && use_zero_page(vma))
1215 			foll_flags |= FOLL_ANON;
1216 
1217 		do {
1218 			struct page *page;
1219 
1220 			/*
1221 			 * If tsk is ooming, cut off its access to large memory
1222 			 * allocations. It has a pending SIGKILL, but it can't
1223 			 * be processed until returning to user space.
1224 			 */
1225 			if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1226 				return i ? i : -ENOMEM;
1227 
1228 			if (write)
1229 				foll_flags |= FOLL_WRITE;
1230 
1231 			cond_resched();
1232 			while (!(page = follow_page(vma, start, foll_flags))) {
1233 				int ret;
1234 				ret = handle_mm_fault(mm, vma, start,
1235 						foll_flags & FOLL_WRITE);
1236 				if (ret & VM_FAULT_ERROR) {
1237 					if (ret & VM_FAULT_OOM)
1238 						return i ? i : -ENOMEM;
1239 					else if (ret & VM_FAULT_SIGBUS)
1240 						return i ? i : -EFAULT;
1241 					BUG();
1242 				}
1243 				if (ret & VM_FAULT_MAJOR)
1244 					tsk->maj_flt++;
1245 				else
1246 					tsk->min_flt++;
1247 
1248 				/*
1249 				 * The VM_FAULT_WRITE bit tells us that
1250 				 * do_wp_page has broken COW when necessary,
1251 				 * even if maybe_mkwrite decided not to set
1252 				 * pte_write. We can thus safely do subsequent
1253 				 * page lookups as if they were reads.
1254 				 */
1255 				if (ret & VM_FAULT_WRITE)
1256 					foll_flags &= ~FOLL_WRITE;
1257 
1258 				cond_resched();
1259 			}
1260 			if (IS_ERR(page))
1261 				return i ? i : PTR_ERR(page);
1262 			if (pages) {
1263 				pages[i] = page;
1264 
1265 				flush_anon_page(vma, page, start);
1266 				flush_dcache_page(page);
1267 			}
1268 			if (vmas)
1269 				vmas[i] = vma;
1270 			i++;
1271 			start += PAGE_SIZE;
1272 			len--;
1273 		} while (len && start < vma->vm_end);
1274 	} while (len);
1275 	return i;
1276 }
1277 
1278 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1279 		unsigned long start, int len, int write, int force,
1280 		struct page **pages, struct vm_area_struct **vmas)
1281 {
1282 	int flags = 0;
1283 
1284 	if (write)
1285 		flags |= GUP_FLAGS_WRITE;
1286 	if (force)
1287 		flags |= GUP_FLAGS_FORCE;
1288 
1289 	return __get_user_pages(tsk, mm,
1290 				start, len, flags,
1291 				pages, vmas);
1292 }
1293 
1294 EXPORT_SYMBOL(get_user_pages);
1295 
1296 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1297 			spinlock_t **ptl)
1298 {
1299 	pgd_t * pgd = pgd_offset(mm, addr);
1300 	pud_t * pud = pud_alloc(mm, pgd, addr);
1301 	if (pud) {
1302 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1303 		if (pmd)
1304 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1305 	}
1306 	return NULL;
1307 }
1308 
1309 /*
1310  * This is the old fallback for page remapping.
1311  *
1312  * For historical reasons, it only allows reserved pages. Only
1313  * old drivers should use this, and they needed to mark their
1314  * pages reserved for the old functions anyway.
1315  */
1316 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1317 			struct page *page, pgprot_t prot)
1318 {
1319 	struct mm_struct *mm = vma->vm_mm;
1320 	int retval;
1321 	pte_t *pte;
1322 	spinlock_t *ptl;
1323 
1324 	retval = -EINVAL;
1325 	if (PageAnon(page))
1326 		goto out;
1327 	retval = -ENOMEM;
1328 	flush_dcache_page(page);
1329 	pte = get_locked_pte(mm, addr, &ptl);
1330 	if (!pte)
1331 		goto out;
1332 	retval = -EBUSY;
1333 	if (!pte_none(*pte))
1334 		goto out_unlock;
1335 
1336 	/* Ok, finally just insert the thing.. */
1337 	get_page(page);
1338 	inc_mm_counter(mm, file_rss);
1339 	page_add_file_rmap(page);
1340 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1341 
1342 	retval = 0;
1343 	pte_unmap_unlock(pte, ptl);
1344 	return retval;
1345 out_unlock:
1346 	pte_unmap_unlock(pte, ptl);
1347 out:
1348 	return retval;
1349 }
1350 
1351 /**
1352  * vm_insert_page - insert single page into user vma
1353  * @vma: user vma to map to
1354  * @addr: target user address of this page
1355  * @page: source kernel page
1356  *
1357  * This allows drivers to insert individual pages they've allocated
1358  * into a user vma.
1359  *
1360  * The page has to be a nice clean _individual_ kernel allocation.
1361  * If you allocate a compound page, you need to have marked it as
1362  * such (__GFP_COMP), or manually just split the page up yourself
1363  * (see split_page()).
1364  *
1365  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1366  * took an arbitrary page protection parameter. This doesn't allow
1367  * that. Your vma protection will have to be set up correctly, which
1368  * means that if you want a shared writable mapping, you'd better
1369  * ask for a shared writable mapping!
1370  *
1371  * The page does not need to be reserved.
1372  */
1373 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1374 			struct page *page)
1375 {
1376 	if (addr < vma->vm_start || addr >= vma->vm_end)
1377 		return -EFAULT;
1378 	if (!page_count(page))
1379 		return -EINVAL;
1380 	vma->vm_flags |= VM_INSERTPAGE;
1381 	return insert_page(vma, addr, page, vma->vm_page_prot);
1382 }
1383 EXPORT_SYMBOL(vm_insert_page);
1384 
1385 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1386 			unsigned long pfn, pgprot_t prot)
1387 {
1388 	struct mm_struct *mm = vma->vm_mm;
1389 	int retval;
1390 	pte_t *pte, entry;
1391 	spinlock_t *ptl;
1392 
1393 	retval = -ENOMEM;
1394 	pte = get_locked_pte(mm, addr, &ptl);
1395 	if (!pte)
1396 		goto out;
1397 	retval = -EBUSY;
1398 	if (!pte_none(*pte))
1399 		goto out_unlock;
1400 
1401 	/* Ok, finally just insert the thing.. */
1402 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1403 	set_pte_at(mm, addr, pte, entry);
1404 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1405 
1406 	retval = 0;
1407 out_unlock:
1408 	pte_unmap_unlock(pte, ptl);
1409 out:
1410 	return retval;
1411 }
1412 
1413 /**
1414  * vm_insert_pfn - insert single pfn into user vma
1415  * @vma: user vma to map to
1416  * @addr: target user address of this page
1417  * @pfn: source kernel pfn
1418  *
1419  * Similar to vm_inert_page, this allows drivers to insert individual pages
1420  * they've allocated into a user vma. Same comments apply.
1421  *
1422  * This function should only be called from a vm_ops->fault handler, and
1423  * in that case the handler should return NULL.
1424  *
1425  * vma cannot be a COW mapping.
1426  *
1427  * As this is called only for pages that do not currently exist, we
1428  * do not need to flush old virtual caches or the TLB.
1429  */
1430 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1431 			unsigned long pfn)
1432 {
1433 	/*
1434 	 * Technically, architectures with pte_special can avoid all these
1435 	 * restrictions (same for remap_pfn_range).  However we would like
1436 	 * consistency in testing and feature parity among all, so we should
1437 	 * try to keep these invariants in place for everybody.
1438 	 */
1439 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1440 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1441 						(VM_PFNMAP|VM_MIXEDMAP));
1442 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1443 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1444 
1445 	if (addr < vma->vm_start || addr >= vma->vm_end)
1446 		return -EFAULT;
1447 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1448 }
1449 EXPORT_SYMBOL(vm_insert_pfn);
1450 
1451 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1452 			unsigned long pfn)
1453 {
1454 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1455 
1456 	if (addr < vma->vm_start || addr >= vma->vm_end)
1457 		return -EFAULT;
1458 
1459 	/*
1460 	 * If we don't have pte special, then we have to use the pfn_valid()
1461 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1462 	 * refcount the page if pfn_valid is true (hence insert_page rather
1463 	 * than insert_pfn).
1464 	 */
1465 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1466 		struct page *page;
1467 
1468 		page = pfn_to_page(pfn);
1469 		return insert_page(vma, addr, page, vma->vm_page_prot);
1470 	}
1471 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1472 }
1473 EXPORT_SYMBOL(vm_insert_mixed);
1474 
1475 /*
1476  * maps a range of physical memory into the requested pages. the old
1477  * mappings are removed. any references to nonexistent pages results
1478  * in null mappings (currently treated as "copy-on-access")
1479  */
1480 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1481 			unsigned long addr, unsigned long end,
1482 			unsigned long pfn, pgprot_t prot)
1483 {
1484 	pte_t *pte;
1485 	spinlock_t *ptl;
1486 
1487 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1488 	if (!pte)
1489 		return -ENOMEM;
1490 	arch_enter_lazy_mmu_mode();
1491 	do {
1492 		BUG_ON(!pte_none(*pte));
1493 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1494 		pfn++;
1495 	} while (pte++, addr += PAGE_SIZE, addr != end);
1496 	arch_leave_lazy_mmu_mode();
1497 	pte_unmap_unlock(pte - 1, ptl);
1498 	return 0;
1499 }
1500 
1501 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1502 			unsigned long addr, unsigned long end,
1503 			unsigned long pfn, pgprot_t prot)
1504 {
1505 	pmd_t *pmd;
1506 	unsigned long next;
1507 
1508 	pfn -= addr >> PAGE_SHIFT;
1509 	pmd = pmd_alloc(mm, pud, addr);
1510 	if (!pmd)
1511 		return -ENOMEM;
1512 	do {
1513 		next = pmd_addr_end(addr, end);
1514 		if (remap_pte_range(mm, pmd, addr, next,
1515 				pfn + (addr >> PAGE_SHIFT), prot))
1516 			return -ENOMEM;
1517 	} while (pmd++, addr = next, addr != end);
1518 	return 0;
1519 }
1520 
1521 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1522 			unsigned long addr, unsigned long end,
1523 			unsigned long pfn, pgprot_t prot)
1524 {
1525 	pud_t *pud;
1526 	unsigned long next;
1527 
1528 	pfn -= addr >> PAGE_SHIFT;
1529 	pud = pud_alloc(mm, pgd, addr);
1530 	if (!pud)
1531 		return -ENOMEM;
1532 	do {
1533 		next = pud_addr_end(addr, end);
1534 		if (remap_pmd_range(mm, pud, addr, next,
1535 				pfn + (addr >> PAGE_SHIFT), prot))
1536 			return -ENOMEM;
1537 	} while (pud++, addr = next, addr != end);
1538 	return 0;
1539 }
1540 
1541 /**
1542  * remap_pfn_range - remap kernel memory to userspace
1543  * @vma: user vma to map to
1544  * @addr: target user address to start at
1545  * @pfn: physical address of kernel memory
1546  * @size: size of map area
1547  * @prot: page protection flags for this mapping
1548  *
1549  *  Note: this is only safe if the mm semaphore is held when called.
1550  */
1551 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1552 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1553 {
1554 	pgd_t *pgd;
1555 	unsigned long next;
1556 	unsigned long end = addr + PAGE_ALIGN(size);
1557 	struct mm_struct *mm = vma->vm_mm;
1558 	int err;
1559 
1560 	/*
1561 	 * Physically remapped pages are special. Tell the
1562 	 * rest of the world about it:
1563 	 *   VM_IO tells people not to look at these pages
1564 	 *	(accesses can have side effects).
1565 	 *   VM_RESERVED is specified all over the place, because
1566 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1567 	 *	in 2.6 the LRU scan won't even find its pages, so this
1568 	 *	flag means no more than count its pages in reserved_vm,
1569 	 * 	and omit it from core dump, even when VM_IO turned off.
1570 	 *   VM_PFNMAP tells the core MM that the base pages are just
1571 	 *	raw PFN mappings, and do not have a "struct page" associated
1572 	 *	with them.
1573 	 *
1574 	 * There's a horrible special case to handle copy-on-write
1575 	 * behaviour that some programs depend on. We mark the "original"
1576 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1577 	 */
1578 	if (is_cow_mapping(vma->vm_flags)) {
1579 		if (addr != vma->vm_start || end != vma->vm_end)
1580 			return -EINVAL;
1581 		vma->vm_pgoff = pfn;
1582 	}
1583 
1584 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1585 
1586 	BUG_ON(addr >= end);
1587 	pfn -= addr >> PAGE_SHIFT;
1588 	pgd = pgd_offset(mm, addr);
1589 	flush_cache_range(vma, addr, end);
1590 	do {
1591 		next = pgd_addr_end(addr, end);
1592 		err = remap_pud_range(mm, pgd, addr, next,
1593 				pfn + (addr >> PAGE_SHIFT), prot);
1594 		if (err)
1595 			break;
1596 	} while (pgd++, addr = next, addr != end);
1597 	return err;
1598 }
1599 EXPORT_SYMBOL(remap_pfn_range);
1600 
1601 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1602 				     unsigned long addr, unsigned long end,
1603 				     pte_fn_t fn, void *data)
1604 {
1605 	pte_t *pte;
1606 	int err;
1607 	pgtable_t token;
1608 	spinlock_t *uninitialized_var(ptl);
1609 
1610 	pte = (mm == &init_mm) ?
1611 		pte_alloc_kernel(pmd, addr) :
1612 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1613 	if (!pte)
1614 		return -ENOMEM;
1615 
1616 	BUG_ON(pmd_huge(*pmd));
1617 
1618 	token = pmd_pgtable(*pmd);
1619 
1620 	do {
1621 		err = fn(pte, token, addr, data);
1622 		if (err)
1623 			break;
1624 	} while (pte++, addr += PAGE_SIZE, addr != end);
1625 
1626 	if (mm != &init_mm)
1627 		pte_unmap_unlock(pte-1, ptl);
1628 	return err;
1629 }
1630 
1631 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1632 				     unsigned long addr, unsigned long end,
1633 				     pte_fn_t fn, void *data)
1634 {
1635 	pmd_t *pmd;
1636 	unsigned long next;
1637 	int err;
1638 
1639 	BUG_ON(pud_huge(*pud));
1640 
1641 	pmd = pmd_alloc(mm, pud, addr);
1642 	if (!pmd)
1643 		return -ENOMEM;
1644 	do {
1645 		next = pmd_addr_end(addr, end);
1646 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1647 		if (err)
1648 			break;
1649 	} while (pmd++, addr = next, addr != end);
1650 	return err;
1651 }
1652 
1653 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1654 				     unsigned long addr, unsigned long end,
1655 				     pte_fn_t fn, void *data)
1656 {
1657 	pud_t *pud;
1658 	unsigned long next;
1659 	int err;
1660 
1661 	pud = pud_alloc(mm, pgd, addr);
1662 	if (!pud)
1663 		return -ENOMEM;
1664 	do {
1665 		next = pud_addr_end(addr, end);
1666 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1667 		if (err)
1668 			break;
1669 	} while (pud++, addr = next, addr != end);
1670 	return err;
1671 }
1672 
1673 /*
1674  * Scan a region of virtual memory, filling in page tables as necessary
1675  * and calling a provided function on each leaf page table.
1676  */
1677 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1678 			unsigned long size, pte_fn_t fn, void *data)
1679 {
1680 	pgd_t *pgd;
1681 	unsigned long next;
1682 	unsigned long start = addr, end = addr + size;
1683 	int err;
1684 
1685 	BUG_ON(addr >= end);
1686 	mmu_notifier_invalidate_range_start(mm, start, end);
1687 	pgd = pgd_offset(mm, addr);
1688 	do {
1689 		next = pgd_addr_end(addr, end);
1690 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1691 		if (err)
1692 			break;
1693 	} while (pgd++, addr = next, addr != end);
1694 	mmu_notifier_invalidate_range_end(mm, start, end);
1695 	return err;
1696 }
1697 EXPORT_SYMBOL_GPL(apply_to_page_range);
1698 
1699 /*
1700  * handle_pte_fault chooses page fault handler according to an entry
1701  * which was read non-atomically.  Before making any commitment, on
1702  * those architectures or configurations (e.g. i386 with PAE) which
1703  * might give a mix of unmatched parts, do_swap_page and do_file_page
1704  * must check under lock before unmapping the pte and proceeding
1705  * (but do_wp_page is only called after already making such a check;
1706  * and do_anonymous_page and do_no_page can safely check later on).
1707  */
1708 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1709 				pte_t *page_table, pte_t orig_pte)
1710 {
1711 	int same = 1;
1712 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1713 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1714 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1715 		spin_lock(ptl);
1716 		same = pte_same(*page_table, orig_pte);
1717 		spin_unlock(ptl);
1718 	}
1719 #endif
1720 	pte_unmap(page_table);
1721 	return same;
1722 }
1723 
1724 /*
1725  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1726  * servicing faults for write access.  In the normal case, do always want
1727  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1728  * that do not have writing enabled, when used by access_process_vm.
1729  */
1730 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1731 {
1732 	if (likely(vma->vm_flags & VM_WRITE))
1733 		pte = pte_mkwrite(pte);
1734 	return pte;
1735 }
1736 
1737 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1738 {
1739 	/*
1740 	 * If the source page was a PFN mapping, we don't have
1741 	 * a "struct page" for it. We do a best-effort copy by
1742 	 * just copying from the original user address. If that
1743 	 * fails, we just zero-fill it. Live with it.
1744 	 */
1745 	if (unlikely(!src)) {
1746 		void *kaddr = kmap_atomic(dst, KM_USER0);
1747 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1748 
1749 		/*
1750 		 * This really shouldn't fail, because the page is there
1751 		 * in the page tables. But it might just be unreadable,
1752 		 * in which case we just give up and fill the result with
1753 		 * zeroes.
1754 		 */
1755 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1756 			memset(kaddr, 0, PAGE_SIZE);
1757 		kunmap_atomic(kaddr, KM_USER0);
1758 		flush_dcache_page(dst);
1759 	} else
1760 		copy_user_highpage(dst, src, va, vma);
1761 }
1762 
1763 /*
1764  * This routine handles present pages, when users try to write
1765  * to a shared page. It is done by copying the page to a new address
1766  * and decrementing the shared-page counter for the old page.
1767  *
1768  * Note that this routine assumes that the protection checks have been
1769  * done by the caller (the low-level page fault routine in most cases).
1770  * Thus we can safely just mark it writable once we've done any necessary
1771  * COW.
1772  *
1773  * We also mark the page dirty at this point even though the page will
1774  * change only once the write actually happens. This avoids a few races,
1775  * and potentially makes it more efficient.
1776  *
1777  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1778  * but allow concurrent faults), with pte both mapped and locked.
1779  * We return with mmap_sem still held, but pte unmapped and unlocked.
1780  */
1781 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1782 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1783 		spinlock_t *ptl, pte_t orig_pte)
1784 {
1785 	struct page *old_page, *new_page;
1786 	pte_t entry;
1787 	int reuse = 0, ret = 0;
1788 	int page_mkwrite = 0;
1789 	struct page *dirty_page = NULL;
1790 
1791 	old_page = vm_normal_page(vma, address, orig_pte);
1792 	if (!old_page) {
1793 		/*
1794 		 * VM_MIXEDMAP !pfn_valid() case
1795 		 *
1796 		 * We should not cow pages in a shared writeable mapping.
1797 		 * Just mark the pages writable as we can't do any dirty
1798 		 * accounting on raw pfn maps.
1799 		 */
1800 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1801 				     (VM_WRITE|VM_SHARED))
1802 			goto reuse;
1803 		goto gotten;
1804 	}
1805 
1806 	/*
1807 	 * Take out anonymous pages first, anonymous shared vmas are
1808 	 * not dirty accountable.
1809 	 */
1810 	if (PageAnon(old_page)) {
1811 		if (trylock_page(old_page)) {
1812 			reuse = can_share_swap_page(old_page);
1813 			unlock_page(old_page);
1814 		}
1815 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1816 					(VM_WRITE|VM_SHARED))) {
1817 		/*
1818 		 * Only catch write-faults on shared writable pages,
1819 		 * read-only shared pages can get COWed by
1820 		 * get_user_pages(.write=1, .force=1).
1821 		 */
1822 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1823 			/*
1824 			 * Notify the address space that the page is about to
1825 			 * become writable so that it can prohibit this or wait
1826 			 * for the page to get into an appropriate state.
1827 			 *
1828 			 * We do this without the lock held, so that it can
1829 			 * sleep if it needs to.
1830 			 */
1831 			page_cache_get(old_page);
1832 			pte_unmap_unlock(page_table, ptl);
1833 
1834 			if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1835 				goto unwritable_page;
1836 
1837 			/*
1838 			 * Since we dropped the lock we need to revalidate
1839 			 * the PTE as someone else may have changed it.  If
1840 			 * they did, we just return, as we can count on the
1841 			 * MMU to tell us if they didn't also make it writable.
1842 			 */
1843 			page_table = pte_offset_map_lock(mm, pmd, address,
1844 							 &ptl);
1845 			page_cache_release(old_page);
1846 			if (!pte_same(*page_table, orig_pte))
1847 				goto unlock;
1848 
1849 			page_mkwrite = 1;
1850 		}
1851 		dirty_page = old_page;
1852 		get_page(dirty_page);
1853 		reuse = 1;
1854 	}
1855 
1856 	if (reuse) {
1857 reuse:
1858 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1859 		entry = pte_mkyoung(orig_pte);
1860 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1861 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
1862 			update_mmu_cache(vma, address, entry);
1863 		ret |= VM_FAULT_WRITE;
1864 		goto unlock;
1865 	}
1866 
1867 	/*
1868 	 * Ok, we need to copy. Oh, well..
1869 	 */
1870 	page_cache_get(old_page);
1871 gotten:
1872 	pte_unmap_unlock(page_table, ptl);
1873 
1874 	if (unlikely(anon_vma_prepare(vma)))
1875 		goto oom;
1876 	VM_BUG_ON(old_page == ZERO_PAGE(0));
1877 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1878 	if (!new_page)
1879 		goto oom;
1880 	/*
1881 	 * Don't let another task, with possibly unlocked vma,
1882 	 * keep the mlocked page.
1883 	 */
1884 	if (vma->vm_flags & VM_LOCKED) {
1885 		lock_page(old_page);	/* for LRU manipulation */
1886 		clear_page_mlock(old_page);
1887 		unlock_page(old_page);
1888 	}
1889 	cow_user_page(new_page, old_page, address, vma);
1890 	__SetPageUptodate(new_page);
1891 
1892 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1893 		goto oom_free_new;
1894 
1895 	/*
1896 	 * Re-check the pte - we dropped the lock
1897 	 */
1898 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1899 	if (likely(pte_same(*page_table, orig_pte))) {
1900 		if (old_page) {
1901 			if (!PageAnon(old_page)) {
1902 				dec_mm_counter(mm, file_rss);
1903 				inc_mm_counter(mm, anon_rss);
1904 			}
1905 		} else
1906 			inc_mm_counter(mm, anon_rss);
1907 		flush_cache_page(vma, address, pte_pfn(orig_pte));
1908 		entry = mk_pte(new_page, vma->vm_page_prot);
1909 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1910 		/*
1911 		 * Clear the pte entry and flush it first, before updating the
1912 		 * pte with the new entry. This will avoid a race condition
1913 		 * seen in the presence of one thread doing SMC and another
1914 		 * thread doing COW.
1915 		 */
1916 		ptep_clear_flush_notify(vma, address, page_table);
1917 		SetPageSwapBacked(new_page);
1918 		lru_cache_add_active_or_unevictable(new_page, vma);
1919 		page_add_new_anon_rmap(new_page, vma, address);
1920 
1921 //TODO:  is this safe?  do_anonymous_page() does it this way.
1922 		set_pte_at(mm, address, page_table, entry);
1923 		update_mmu_cache(vma, address, entry);
1924 		if (old_page) {
1925 			/*
1926 			 * Only after switching the pte to the new page may
1927 			 * we remove the mapcount here. Otherwise another
1928 			 * process may come and find the rmap count decremented
1929 			 * before the pte is switched to the new page, and
1930 			 * "reuse" the old page writing into it while our pte
1931 			 * here still points into it and can be read by other
1932 			 * threads.
1933 			 *
1934 			 * The critical issue is to order this
1935 			 * page_remove_rmap with the ptp_clear_flush above.
1936 			 * Those stores are ordered by (if nothing else,)
1937 			 * the barrier present in the atomic_add_negative
1938 			 * in page_remove_rmap.
1939 			 *
1940 			 * Then the TLB flush in ptep_clear_flush ensures that
1941 			 * no process can access the old page before the
1942 			 * decremented mapcount is visible. And the old page
1943 			 * cannot be reused until after the decremented
1944 			 * mapcount is visible. So transitively, TLBs to
1945 			 * old page will be flushed before it can be reused.
1946 			 */
1947 			page_remove_rmap(old_page, vma);
1948 		}
1949 
1950 		/* Free the old page.. */
1951 		new_page = old_page;
1952 		ret |= VM_FAULT_WRITE;
1953 	} else
1954 		mem_cgroup_uncharge_page(new_page);
1955 
1956 	if (new_page)
1957 		page_cache_release(new_page);
1958 	if (old_page)
1959 		page_cache_release(old_page);
1960 unlock:
1961 	pte_unmap_unlock(page_table, ptl);
1962 	if (dirty_page) {
1963 		if (vma->vm_file)
1964 			file_update_time(vma->vm_file);
1965 
1966 		/*
1967 		 * Yes, Virginia, this is actually required to prevent a race
1968 		 * with clear_page_dirty_for_io() from clearing the page dirty
1969 		 * bit after it clear all dirty ptes, but before a racing
1970 		 * do_wp_page installs a dirty pte.
1971 		 *
1972 		 * do_no_page is protected similarly.
1973 		 */
1974 		wait_on_page_locked(dirty_page);
1975 		set_page_dirty_balance(dirty_page, page_mkwrite);
1976 		put_page(dirty_page);
1977 	}
1978 	return ret;
1979 oom_free_new:
1980 	page_cache_release(new_page);
1981 oom:
1982 	if (old_page)
1983 		page_cache_release(old_page);
1984 	return VM_FAULT_OOM;
1985 
1986 unwritable_page:
1987 	page_cache_release(old_page);
1988 	return VM_FAULT_SIGBUS;
1989 }
1990 
1991 /*
1992  * Helper functions for unmap_mapping_range().
1993  *
1994  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1995  *
1996  * We have to restart searching the prio_tree whenever we drop the lock,
1997  * since the iterator is only valid while the lock is held, and anyway
1998  * a later vma might be split and reinserted earlier while lock dropped.
1999  *
2000  * The list of nonlinear vmas could be handled more efficiently, using
2001  * a placeholder, but handle it in the same way until a need is shown.
2002  * It is important to search the prio_tree before nonlinear list: a vma
2003  * may become nonlinear and be shifted from prio_tree to nonlinear list
2004  * while the lock is dropped; but never shifted from list to prio_tree.
2005  *
2006  * In order to make forward progress despite restarting the search,
2007  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2008  * quickly skip it next time around.  Since the prio_tree search only
2009  * shows us those vmas affected by unmapping the range in question, we
2010  * can't efficiently keep all vmas in step with mapping->truncate_count:
2011  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2012  * mapping->truncate_count and vma->vm_truncate_count are protected by
2013  * i_mmap_lock.
2014  *
2015  * In order to make forward progress despite repeatedly restarting some
2016  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2017  * and restart from that address when we reach that vma again.  It might
2018  * have been split or merged, shrunk or extended, but never shifted: so
2019  * restart_addr remains valid so long as it remains in the vma's range.
2020  * unmap_mapping_range forces truncate_count to leap over page-aligned
2021  * values so we can save vma's restart_addr in its truncate_count field.
2022  */
2023 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2024 
2025 static void reset_vma_truncate_counts(struct address_space *mapping)
2026 {
2027 	struct vm_area_struct *vma;
2028 	struct prio_tree_iter iter;
2029 
2030 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2031 		vma->vm_truncate_count = 0;
2032 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2033 		vma->vm_truncate_count = 0;
2034 }
2035 
2036 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2037 		unsigned long start_addr, unsigned long end_addr,
2038 		struct zap_details *details)
2039 {
2040 	unsigned long restart_addr;
2041 	int need_break;
2042 
2043 	/*
2044 	 * files that support invalidating or truncating portions of the
2045 	 * file from under mmaped areas must have their ->fault function
2046 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2047 	 * This provides synchronisation against concurrent unmapping here.
2048 	 */
2049 
2050 again:
2051 	restart_addr = vma->vm_truncate_count;
2052 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2053 		start_addr = restart_addr;
2054 		if (start_addr >= end_addr) {
2055 			/* Top of vma has been split off since last time */
2056 			vma->vm_truncate_count = details->truncate_count;
2057 			return 0;
2058 		}
2059 	}
2060 
2061 	restart_addr = zap_page_range(vma, start_addr,
2062 					end_addr - start_addr, details);
2063 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2064 
2065 	if (restart_addr >= end_addr) {
2066 		/* We have now completed this vma: mark it so */
2067 		vma->vm_truncate_count = details->truncate_count;
2068 		if (!need_break)
2069 			return 0;
2070 	} else {
2071 		/* Note restart_addr in vma's truncate_count field */
2072 		vma->vm_truncate_count = restart_addr;
2073 		if (!need_break)
2074 			goto again;
2075 	}
2076 
2077 	spin_unlock(details->i_mmap_lock);
2078 	cond_resched();
2079 	spin_lock(details->i_mmap_lock);
2080 	return -EINTR;
2081 }
2082 
2083 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2084 					    struct zap_details *details)
2085 {
2086 	struct vm_area_struct *vma;
2087 	struct prio_tree_iter iter;
2088 	pgoff_t vba, vea, zba, zea;
2089 
2090 restart:
2091 	vma_prio_tree_foreach(vma, &iter, root,
2092 			details->first_index, details->last_index) {
2093 		/* Skip quickly over those we have already dealt with */
2094 		if (vma->vm_truncate_count == details->truncate_count)
2095 			continue;
2096 
2097 		vba = vma->vm_pgoff;
2098 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2099 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2100 		zba = details->first_index;
2101 		if (zba < vba)
2102 			zba = vba;
2103 		zea = details->last_index;
2104 		if (zea > vea)
2105 			zea = vea;
2106 
2107 		if (unmap_mapping_range_vma(vma,
2108 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2109 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2110 				details) < 0)
2111 			goto restart;
2112 	}
2113 }
2114 
2115 static inline void unmap_mapping_range_list(struct list_head *head,
2116 					    struct zap_details *details)
2117 {
2118 	struct vm_area_struct *vma;
2119 
2120 	/*
2121 	 * In nonlinear VMAs there is no correspondence between virtual address
2122 	 * offset and file offset.  So we must perform an exhaustive search
2123 	 * across *all* the pages in each nonlinear VMA, not just the pages
2124 	 * whose virtual address lies outside the file truncation point.
2125 	 */
2126 restart:
2127 	list_for_each_entry(vma, head, shared.vm_set.list) {
2128 		/* Skip quickly over those we have already dealt with */
2129 		if (vma->vm_truncate_count == details->truncate_count)
2130 			continue;
2131 		details->nonlinear_vma = vma;
2132 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2133 					vma->vm_end, details) < 0)
2134 			goto restart;
2135 	}
2136 }
2137 
2138 /**
2139  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2140  * @mapping: the address space containing mmaps to be unmapped.
2141  * @holebegin: byte in first page to unmap, relative to the start of
2142  * the underlying file.  This will be rounded down to a PAGE_SIZE
2143  * boundary.  Note that this is different from vmtruncate(), which
2144  * must keep the partial page.  In contrast, we must get rid of
2145  * partial pages.
2146  * @holelen: size of prospective hole in bytes.  This will be rounded
2147  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2148  * end of the file.
2149  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2150  * but 0 when invalidating pagecache, don't throw away private data.
2151  */
2152 void unmap_mapping_range(struct address_space *mapping,
2153 		loff_t const holebegin, loff_t const holelen, int even_cows)
2154 {
2155 	struct zap_details details;
2156 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2157 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2158 
2159 	/* Check for overflow. */
2160 	if (sizeof(holelen) > sizeof(hlen)) {
2161 		long long holeend =
2162 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2163 		if (holeend & ~(long long)ULONG_MAX)
2164 			hlen = ULONG_MAX - hba + 1;
2165 	}
2166 
2167 	details.check_mapping = even_cows? NULL: mapping;
2168 	details.nonlinear_vma = NULL;
2169 	details.first_index = hba;
2170 	details.last_index = hba + hlen - 1;
2171 	if (details.last_index < details.first_index)
2172 		details.last_index = ULONG_MAX;
2173 	details.i_mmap_lock = &mapping->i_mmap_lock;
2174 
2175 	spin_lock(&mapping->i_mmap_lock);
2176 
2177 	/* Protect against endless unmapping loops */
2178 	mapping->truncate_count++;
2179 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2180 		if (mapping->truncate_count == 0)
2181 			reset_vma_truncate_counts(mapping);
2182 		mapping->truncate_count++;
2183 	}
2184 	details.truncate_count = mapping->truncate_count;
2185 
2186 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2187 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2188 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2189 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2190 	spin_unlock(&mapping->i_mmap_lock);
2191 }
2192 EXPORT_SYMBOL(unmap_mapping_range);
2193 
2194 /**
2195  * vmtruncate - unmap mappings "freed" by truncate() syscall
2196  * @inode: inode of the file used
2197  * @offset: file offset to start truncating
2198  *
2199  * NOTE! We have to be ready to update the memory sharing
2200  * between the file and the memory map for a potential last
2201  * incomplete page.  Ugly, but necessary.
2202  */
2203 int vmtruncate(struct inode * inode, loff_t offset)
2204 {
2205 	if (inode->i_size < offset) {
2206 		unsigned long limit;
2207 
2208 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2209 		if (limit != RLIM_INFINITY && offset > limit)
2210 			goto out_sig;
2211 		if (offset > inode->i_sb->s_maxbytes)
2212 			goto out_big;
2213 		i_size_write(inode, offset);
2214 	} else {
2215 		struct address_space *mapping = inode->i_mapping;
2216 
2217 		/*
2218 		 * truncation of in-use swapfiles is disallowed - it would
2219 		 * cause subsequent swapout to scribble on the now-freed
2220 		 * blocks.
2221 		 */
2222 		if (IS_SWAPFILE(inode))
2223 			return -ETXTBSY;
2224 		i_size_write(inode, offset);
2225 
2226 		/*
2227 		 * unmap_mapping_range is called twice, first simply for
2228 		 * efficiency so that truncate_inode_pages does fewer
2229 		 * single-page unmaps.  However after this first call, and
2230 		 * before truncate_inode_pages finishes, it is possible for
2231 		 * private pages to be COWed, which remain after
2232 		 * truncate_inode_pages finishes, hence the second
2233 		 * unmap_mapping_range call must be made for correctness.
2234 		 */
2235 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2236 		truncate_inode_pages(mapping, offset);
2237 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2238 	}
2239 
2240 	if (inode->i_op && inode->i_op->truncate)
2241 		inode->i_op->truncate(inode);
2242 	return 0;
2243 
2244 out_sig:
2245 	send_sig(SIGXFSZ, current, 0);
2246 out_big:
2247 	return -EFBIG;
2248 }
2249 EXPORT_SYMBOL(vmtruncate);
2250 
2251 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2252 {
2253 	struct address_space *mapping = inode->i_mapping;
2254 
2255 	/*
2256 	 * If the underlying filesystem is not going to provide
2257 	 * a way to truncate a range of blocks (punch a hole) -
2258 	 * we should return failure right now.
2259 	 */
2260 	if (!inode->i_op || !inode->i_op->truncate_range)
2261 		return -ENOSYS;
2262 
2263 	mutex_lock(&inode->i_mutex);
2264 	down_write(&inode->i_alloc_sem);
2265 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2266 	truncate_inode_pages_range(mapping, offset, end);
2267 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2268 	inode->i_op->truncate_range(inode, offset, end);
2269 	up_write(&inode->i_alloc_sem);
2270 	mutex_unlock(&inode->i_mutex);
2271 
2272 	return 0;
2273 }
2274 
2275 /*
2276  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2277  * but allow concurrent faults), and pte mapped but not yet locked.
2278  * We return with mmap_sem still held, but pte unmapped and unlocked.
2279  */
2280 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2281 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2282 		int write_access, pte_t orig_pte)
2283 {
2284 	spinlock_t *ptl;
2285 	struct page *page;
2286 	swp_entry_t entry;
2287 	pte_t pte;
2288 	int ret = 0;
2289 
2290 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2291 		goto out;
2292 
2293 	entry = pte_to_swp_entry(orig_pte);
2294 	if (is_migration_entry(entry)) {
2295 		migration_entry_wait(mm, pmd, address);
2296 		goto out;
2297 	}
2298 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2299 	page = lookup_swap_cache(entry);
2300 	if (!page) {
2301 		grab_swap_token(); /* Contend for token _before_ read-in */
2302 		page = swapin_readahead(entry,
2303 					GFP_HIGHUSER_MOVABLE, vma, address);
2304 		if (!page) {
2305 			/*
2306 			 * Back out if somebody else faulted in this pte
2307 			 * while we released the pte lock.
2308 			 */
2309 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2310 			if (likely(pte_same(*page_table, orig_pte)))
2311 				ret = VM_FAULT_OOM;
2312 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2313 			goto unlock;
2314 		}
2315 
2316 		/* Had to read the page from swap area: Major fault */
2317 		ret = VM_FAULT_MAJOR;
2318 		count_vm_event(PGMAJFAULT);
2319 	}
2320 
2321 	mark_page_accessed(page);
2322 
2323 	lock_page(page);
2324 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2325 
2326 	if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2327 		ret = VM_FAULT_OOM;
2328 		unlock_page(page);
2329 		goto out;
2330 	}
2331 
2332 	/*
2333 	 * Back out if somebody else already faulted in this pte.
2334 	 */
2335 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2336 	if (unlikely(!pte_same(*page_table, orig_pte)))
2337 		goto out_nomap;
2338 
2339 	if (unlikely(!PageUptodate(page))) {
2340 		ret = VM_FAULT_SIGBUS;
2341 		goto out_nomap;
2342 	}
2343 
2344 	/* The page isn't present yet, go ahead with the fault. */
2345 
2346 	inc_mm_counter(mm, anon_rss);
2347 	pte = mk_pte(page, vma->vm_page_prot);
2348 	if (write_access && can_share_swap_page(page)) {
2349 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2350 		write_access = 0;
2351 	}
2352 
2353 	flush_icache_page(vma, page);
2354 	set_pte_at(mm, address, page_table, pte);
2355 	page_add_anon_rmap(page, vma, address);
2356 
2357 	swap_free(entry);
2358 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2359 		remove_exclusive_swap_page(page);
2360 	unlock_page(page);
2361 
2362 	if (write_access) {
2363 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2364 		if (ret & VM_FAULT_ERROR)
2365 			ret &= VM_FAULT_ERROR;
2366 		goto out;
2367 	}
2368 
2369 	/* No need to invalidate - it was non-present before */
2370 	update_mmu_cache(vma, address, pte);
2371 unlock:
2372 	pte_unmap_unlock(page_table, ptl);
2373 out:
2374 	return ret;
2375 out_nomap:
2376 	mem_cgroup_uncharge_page(page);
2377 	pte_unmap_unlock(page_table, ptl);
2378 	unlock_page(page);
2379 	page_cache_release(page);
2380 	return ret;
2381 }
2382 
2383 /*
2384  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2385  * but allow concurrent faults), and pte mapped but not yet locked.
2386  * We return with mmap_sem still held, but pte unmapped and unlocked.
2387  */
2388 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2389 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2390 		int write_access)
2391 {
2392 	struct page *page;
2393 	spinlock_t *ptl;
2394 	pte_t entry;
2395 
2396 	/* Allocate our own private page. */
2397 	pte_unmap(page_table);
2398 
2399 	if (unlikely(anon_vma_prepare(vma)))
2400 		goto oom;
2401 	page = alloc_zeroed_user_highpage_movable(vma, address);
2402 	if (!page)
2403 		goto oom;
2404 	__SetPageUptodate(page);
2405 
2406 	if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2407 		goto oom_free_page;
2408 
2409 	entry = mk_pte(page, vma->vm_page_prot);
2410 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2411 
2412 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2413 	if (!pte_none(*page_table))
2414 		goto release;
2415 	inc_mm_counter(mm, anon_rss);
2416 	SetPageSwapBacked(page);
2417 	lru_cache_add_active_or_unevictable(page, vma);
2418 	page_add_new_anon_rmap(page, vma, address);
2419 	set_pte_at(mm, address, page_table, entry);
2420 
2421 	/* No need to invalidate - it was non-present before */
2422 	update_mmu_cache(vma, address, entry);
2423 unlock:
2424 	pte_unmap_unlock(page_table, ptl);
2425 	return 0;
2426 release:
2427 	mem_cgroup_uncharge_page(page);
2428 	page_cache_release(page);
2429 	goto unlock;
2430 oom_free_page:
2431 	page_cache_release(page);
2432 oom:
2433 	return VM_FAULT_OOM;
2434 }
2435 
2436 /*
2437  * __do_fault() tries to create a new page mapping. It aggressively
2438  * tries to share with existing pages, but makes a separate copy if
2439  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2440  * the next page fault.
2441  *
2442  * As this is called only for pages that do not currently exist, we
2443  * do not need to flush old virtual caches or the TLB.
2444  *
2445  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2446  * but allow concurrent faults), and pte neither mapped nor locked.
2447  * We return with mmap_sem still held, but pte unmapped and unlocked.
2448  */
2449 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2450 		unsigned long address, pmd_t *pmd,
2451 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2452 {
2453 	pte_t *page_table;
2454 	spinlock_t *ptl;
2455 	struct page *page;
2456 	pte_t entry;
2457 	int anon = 0;
2458 	int charged = 0;
2459 	struct page *dirty_page = NULL;
2460 	struct vm_fault vmf;
2461 	int ret;
2462 	int page_mkwrite = 0;
2463 
2464 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2465 	vmf.pgoff = pgoff;
2466 	vmf.flags = flags;
2467 	vmf.page = NULL;
2468 
2469 	ret = vma->vm_ops->fault(vma, &vmf);
2470 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2471 		return ret;
2472 
2473 	/*
2474 	 * For consistency in subsequent calls, make the faulted page always
2475 	 * locked.
2476 	 */
2477 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2478 		lock_page(vmf.page);
2479 	else
2480 		VM_BUG_ON(!PageLocked(vmf.page));
2481 
2482 	/*
2483 	 * Should we do an early C-O-W break?
2484 	 */
2485 	page = vmf.page;
2486 	if (flags & FAULT_FLAG_WRITE) {
2487 		if (!(vma->vm_flags & VM_SHARED)) {
2488 			anon = 1;
2489 			if (unlikely(anon_vma_prepare(vma))) {
2490 				ret = VM_FAULT_OOM;
2491 				goto out;
2492 			}
2493 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2494 						vma, address);
2495 			if (!page) {
2496 				ret = VM_FAULT_OOM;
2497 				goto out;
2498 			}
2499 			if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2500 				ret = VM_FAULT_OOM;
2501 				page_cache_release(page);
2502 				goto out;
2503 			}
2504 			charged = 1;
2505 			/*
2506 			 * Don't let another task, with possibly unlocked vma,
2507 			 * keep the mlocked page.
2508 			 */
2509 			if (vma->vm_flags & VM_LOCKED)
2510 				clear_page_mlock(vmf.page);
2511 			copy_user_highpage(page, vmf.page, address, vma);
2512 			__SetPageUptodate(page);
2513 		} else {
2514 			/*
2515 			 * If the page will be shareable, see if the backing
2516 			 * address space wants to know that the page is about
2517 			 * to become writable
2518 			 */
2519 			if (vma->vm_ops->page_mkwrite) {
2520 				unlock_page(page);
2521 				if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2522 					ret = VM_FAULT_SIGBUS;
2523 					anon = 1; /* no anon but release vmf.page */
2524 					goto out_unlocked;
2525 				}
2526 				lock_page(page);
2527 				/*
2528 				 * XXX: this is not quite right (racy vs
2529 				 * invalidate) to unlock and relock the page
2530 				 * like this, however a better fix requires
2531 				 * reworking page_mkwrite locking API, which
2532 				 * is better done later.
2533 				 */
2534 				if (!page->mapping) {
2535 					ret = 0;
2536 					anon = 1; /* no anon but release vmf.page */
2537 					goto out;
2538 				}
2539 				page_mkwrite = 1;
2540 			}
2541 		}
2542 
2543 	}
2544 
2545 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2546 
2547 	/*
2548 	 * This silly early PAGE_DIRTY setting removes a race
2549 	 * due to the bad i386 page protection. But it's valid
2550 	 * for other architectures too.
2551 	 *
2552 	 * Note that if write_access is true, we either now have
2553 	 * an exclusive copy of the page, or this is a shared mapping,
2554 	 * so we can make it writable and dirty to avoid having to
2555 	 * handle that later.
2556 	 */
2557 	/* Only go through if we didn't race with anybody else... */
2558 	if (likely(pte_same(*page_table, orig_pte))) {
2559 		flush_icache_page(vma, page);
2560 		entry = mk_pte(page, vma->vm_page_prot);
2561 		if (flags & FAULT_FLAG_WRITE)
2562 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2563 		if (anon) {
2564 			inc_mm_counter(mm, anon_rss);
2565 			SetPageSwapBacked(page);
2566 			lru_cache_add_active_or_unevictable(page, vma);
2567 			page_add_new_anon_rmap(page, vma, address);
2568 		} else {
2569 			inc_mm_counter(mm, file_rss);
2570 			page_add_file_rmap(page);
2571 			if (flags & FAULT_FLAG_WRITE) {
2572 				dirty_page = page;
2573 				get_page(dirty_page);
2574 			}
2575 		}
2576 //TODO:  is this safe?  do_anonymous_page() does it this way.
2577 		set_pte_at(mm, address, page_table, entry);
2578 
2579 		/* no need to invalidate: a not-present page won't be cached */
2580 		update_mmu_cache(vma, address, entry);
2581 	} else {
2582 		if (charged)
2583 			mem_cgroup_uncharge_page(page);
2584 		if (anon)
2585 			page_cache_release(page);
2586 		else
2587 			anon = 1; /* no anon but release faulted_page */
2588 	}
2589 
2590 	pte_unmap_unlock(page_table, ptl);
2591 
2592 out:
2593 	unlock_page(vmf.page);
2594 out_unlocked:
2595 	if (anon)
2596 		page_cache_release(vmf.page);
2597 	else if (dirty_page) {
2598 		if (vma->vm_file)
2599 			file_update_time(vma->vm_file);
2600 
2601 		set_page_dirty_balance(dirty_page, page_mkwrite);
2602 		put_page(dirty_page);
2603 	}
2604 
2605 	return ret;
2606 }
2607 
2608 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2609 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2610 		int write_access, pte_t orig_pte)
2611 {
2612 	pgoff_t pgoff = (((address & PAGE_MASK)
2613 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2614 	unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2615 
2616 	pte_unmap(page_table);
2617 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2618 }
2619 
2620 /*
2621  * Fault of a previously existing named mapping. Repopulate the pte
2622  * from the encoded file_pte if possible. This enables swappable
2623  * nonlinear vmas.
2624  *
2625  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2626  * but allow concurrent faults), and pte mapped but not yet locked.
2627  * We return with mmap_sem still held, but pte unmapped and unlocked.
2628  */
2629 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2630 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2631 		int write_access, pte_t orig_pte)
2632 {
2633 	unsigned int flags = FAULT_FLAG_NONLINEAR |
2634 				(write_access ? FAULT_FLAG_WRITE : 0);
2635 	pgoff_t pgoff;
2636 
2637 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2638 		return 0;
2639 
2640 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2641 			!(vma->vm_flags & VM_CAN_NONLINEAR))) {
2642 		/*
2643 		 * Page table corrupted: show pte and kill process.
2644 		 */
2645 		print_bad_pte(vma, orig_pte, address);
2646 		return VM_FAULT_OOM;
2647 	}
2648 
2649 	pgoff = pte_to_pgoff(orig_pte);
2650 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2651 }
2652 
2653 /*
2654  * These routines also need to handle stuff like marking pages dirty
2655  * and/or accessed for architectures that don't do it in hardware (most
2656  * RISC architectures).  The early dirtying is also good on the i386.
2657  *
2658  * There is also a hook called "update_mmu_cache()" that architectures
2659  * with external mmu caches can use to update those (ie the Sparc or
2660  * PowerPC hashed page tables that act as extended TLBs).
2661  *
2662  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2663  * but allow concurrent faults), and pte mapped but not yet locked.
2664  * We return with mmap_sem still held, but pte unmapped and unlocked.
2665  */
2666 static inline int handle_pte_fault(struct mm_struct *mm,
2667 		struct vm_area_struct *vma, unsigned long address,
2668 		pte_t *pte, pmd_t *pmd, int write_access)
2669 {
2670 	pte_t entry;
2671 	spinlock_t *ptl;
2672 
2673 	entry = *pte;
2674 	if (!pte_present(entry)) {
2675 		if (pte_none(entry)) {
2676 			if (vma->vm_ops) {
2677 				if (likely(vma->vm_ops->fault))
2678 					return do_linear_fault(mm, vma, address,
2679 						pte, pmd, write_access, entry);
2680 			}
2681 			return do_anonymous_page(mm, vma, address,
2682 						 pte, pmd, write_access);
2683 		}
2684 		if (pte_file(entry))
2685 			return do_nonlinear_fault(mm, vma, address,
2686 					pte, pmd, write_access, entry);
2687 		return do_swap_page(mm, vma, address,
2688 					pte, pmd, write_access, entry);
2689 	}
2690 
2691 	ptl = pte_lockptr(mm, pmd);
2692 	spin_lock(ptl);
2693 	if (unlikely(!pte_same(*pte, entry)))
2694 		goto unlock;
2695 	if (write_access) {
2696 		if (!pte_write(entry))
2697 			return do_wp_page(mm, vma, address,
2698 					pte, pmd, ptl, entry);
2699 		entry = pte_mkdirty(entry);
2700 	}
2701 	entry = pte_mkyoung(entry);
2702 	if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2703 		update_mmu_cache(vma, address, entry);
2704 	} else {
2705 		/*
2706 		 * This is needed only for protection faults but the arch code
2707 		 * is not yet telling us if this is a protection fault or not.
2708 		 * This still avoids useless tlb flushes for .text page faults
2709 		 * with threads.
2710 		 */
2711 		if (write_access)
2712 			flush_tlb_page(vma, address);
2713 	}
2714 unlock:
2715 	pte_unmap_unlock(pte, ptl);
2716 	return 0;
2717 }
2718 
2719 /*
2720  * By the time we get here, we already hold the mm semaphore
2721  */
2722 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2723 		unsigned long address, int write_access)
2724 {
2725 	pgd_t *pgd;
2726 	pud_t *pud;
2727 	pmd_t *pmd;
2728 	pte_t *pte;
2729 
2730 	__set_current_state(TASK_RUNNING);
2731 
2732 	count_vm_event(PGFAULT);
2733 
2734 	if (unlikely(is_vm_hugetlb_page(vma)))
2735 		return hugetlb_fault(mm, vma, address, write_access);
2736 
2737 	pgd = pgd_offset(mm, address);
2738 	pud = pud_alloc(mm, pgd, address);
2739 	if (!pud)
2740 		return VM_FAULT_OOM;
2741 	pmd = pmd_alloc(mm, pud, address);
2742 	if (!pmd)
2743 		return VM_FAULT_OOM;
2744 	pte = pte_alloc_map(mm, pmd, address);
2745 	if (!pte)
2746 		return VM_FAULT_OOM;
2747 
2748 	return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2749 }
2750 
2751 #ifndef __PAGETABLE_PUD_FOLDED
2752 /*
2753  * Allocate page upper directory.
2754  * We've already handled the fast-path in-line.
2755  */
2756 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2757 {
2758 	pud_t *new = pud_alloc_one(mm, address);
2759 	if (!new)
2760 		return -ENOMEM;
2761 
2762 	smp_wmb(); /* See comment in __pte_alloc */
2763 
2764 	spin_lock(&mm->page_table_lock);
2765 	if (pgd_present(*pgd))		/* Another has populated it */
2766 		pud_free(mm, new);
2767 	else
2768 		pgd_populate(mm, pgd, new);
2769 	spin_unlock(&mm->page_table_lock);
2770 	return 0;
2771 }
2772 #endif /* __PAGETABLE_PUD_FOLDED */
2773 
2774 #ifndef __PAGETABLE_PMD_FOLDED
2775 /*
2776  * Allocate page middle directory.
2777  * We've already handled the fast-path in-line.
2778  */
2779 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2780 {
2781 	pmd_t *new = pmd_alloc_one(mm, address);
2782 	if (!new)
2783 		return -ENOMEM;
2784 
2785 	smp_wmb(); /* See comment in __pte_alloc */
2786 
2787 	spin_lock(&mm->page_table_lock);
2788 #ifndef __ARCH_HAS_4LEVEL_HACK
2789 	if (pud_present(*pud))		/* Another has populated it */
2790 		pmd_free(mm, new);
2791 	else
2792 		pud_populate(mm, pud, new);
2793 #else
2794 	if (pgd_present(*pud))		/* Another has populated it */
2795 		pmd_free(mm, new);
2796 	else
2797 		pgd_populate(mm, pud, new);
2798 #endif /* __ARCH_HAS_4LEVEL_HACK */
2799 	spin_unlock(&mm->page_table_lock);
2800 	return 0;
2801 }
2802 #endif /* __PAGETABLE_PMD_FOLDED */
2803 
2804 int make_pages_present(unsigned long addr, unsigned long end)
2805 {
2806 	int ret, len, write;
2807 	struct vm_area_struct * vma;
2808 
2809 	vma = find_vma(current->mm, addr);
2810 	if (!vma)
2811 		return -ENOMEM;
2812 	write = (vma->vm_flags & VM_WRITE) != 0;
2813 	BUG_ON(addr >= end);
2814 	BUG_ON(end > vma->vm_end);
2815 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2816 	ret = get_user_pages(current, current->mm, addr,
2817 			len, write, 0, NULL, NULL);
2818 	if (ret < 0)
2819 		return ret;
2820 	return ret == len ? 0 : -EFAULT;
2821 }
2822 
2823 #if !defined(__HAVE_ARCH_GATE_AREA)
2824 
2825 #if defined(AT_SYSINFO_EHDR)
2826 static struct vm_area_struct gate_vma;
2827 
2828 static int __init gate_vma_init(void)
2829 {
2830 	gate_vma.vm_mm = NULL;
2831 	gate_vma.vm_start = FIXADDR_USER_START;
2832 	gate_vma.vm_end = FIXADDR_USER_END;
2833 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2834 	gate_vma.vm_page_prot = __P101;
2835 	/*
2836 	 * Make sure the vDSO gets into every core dump.
2837 	 * Dumping its contents makes post-mortem fully interpretable later
2838 	 * without matching up the same kernel and hardware config to see
2839 	 * what PC values meant.
2840 	 */
2841 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
2842 	return 0;
2843 }
2844 __initcall(gate_vma_init);
2845 #endif
2846 
2847 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2848 {
2849 #ifdef AT_SYSINFO_EHDR
2850 	return &gate_vma;
2851 #else
2852 	return NULL;
2853 #endif
2854 }
2855 
2856 int in_gate_area_no_task(unsigned long addr)
2857 {
2858 #ifdef AT_SYSINFO_EHDR
2859 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2860 		return 1;
2861 #endif
2862 	return 0;
2863 }
2864 
2865 #endif	/* __HAVE_ARCH_GATE_AREA */
2866 
2867 #ifdef CONFIG_HAVE_IOREMAP_PROT
2868 static resource_size_t follow_phys(struct vm_area_struct *vma,
2869 			unsigned long address, unsigned int flags,
2870 			unsigned long *prot)
2871 {
2872 	pgd_t *pgd;
2873 	pud_t *pud;
2874 	pmd_t *pmd;
2875 	pte_t *ptep, pte;
2876 	spinlock_t *ptl;
2877 	resource_size_t phys_addr = 0;
2878 	struct mm_struct *mm = vma->vm_mm;
2879 
2880 	VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2881 
2882 	pgd = pgd_offset(mm, address);
2883 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2884 		goto no_page_table;
2885 
2886 	pud = pud_offset(pgd, address);
2887 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2888 		goto no_page_table;
2889 
2890 	pmd = pmd_offset(pud, address);
2891 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2892 		goto no_page_table;
2893 
2894 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
2895 	if (pmd_huge(*pmd))
2896 		goto no_page_table;
2897 
2898 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2899 	if (!ptep)
2900 		goto out;
2901 
2902 	pte = *ptep;
2903 	if (!pte_present(pte))
2904 		goto unlock;
2905 	if ((flags & FOLL_WRITE) && !pte_write(pte))
2906 		goto unlock;
2907 	phys_addr = pte_pfn(pte);
2908 	phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2909 
2910 	*prot = pgprot_val(pte_pgprot(pte));
2911 
2912 unlock:
2913 	pte_unmap_unlock(ptep, ptl);
2914 out:
2915 	return phys_addr;
2916 no_page_table:
2917 	return 0;
2918 }
2919 
2920 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2921 			void *buf, int len, int write)
2922 {
2923 	resource_size_t phys_addr;
2924 	unsigned long prot = 0;
2925 	void *maddr;
2926 	int offset = addr & (PAGE_SIZE-1);
2927 
2928 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2929 		return -EINVAL;
2930 
2931 	phys_addr = follow_phys(vma, addr, write, &prot);
2932 
2933 	if (!phys_addr)
2934 		return -EINVAL;
2935 
2936 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2937 	if (write)
2938 		memcpy_toio(maddr + offset, buf, len);
2939 	else
2940 		memcpy_fromio(buf, maddr + offset, len);
2941 	iounmap(maddr);
2942 
2943 	return len;
2944 }
2945 #endif
2946 
2947 /*
2948  * Access another process' address space.
2949  * Source/target buffer must be kernel space,
2950  * Do not walk the page table directly, use get_user_pages
2951  */
2952 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2953 {
2954 	struct mm_struct *mm;
2955 	struct vm_area_struct *vma;
2956 	void *old_buf = buf;
2957 
2958 	mm = get_task_mm(tsk);
2959 	if (!mm)
2960 		return 0;
2961 
2962 	down_read(&mm->mmap_sem);
2963 	/* ignore errors, just check how much was successfully transferred */
2964 	while (len) {
2965 		int bytes, ret, offset;
2966 		void *maddr;
2967 		struct page *page = NULL;
2968 
2969 		ret = get_user_pages(tsk, mm, addr, 1,
2970 				write, 1, &page, &vma);
2971 		if (ret <= 0) {
2972 			/*
2973 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2974 			 * we can access using slightly different code.
2975 			 */
2976 #ifdef CONFIG_HAVE_IOREMAP_PROT
2977 			vma = find_vma(mm, addr);
2978 			if (!vma)
2979 				break;
2980 			if (vma->vm_ops && vma->vm_ops->access)
2981 				ret = vma->vm_ops->access(vma, addr, buf,
2982 							  len, write);
2983 			if (ret <= 0)
2984 #endif
2985 				break;
2986 			bytes = ret;
2987 		} else {
2988 			bytes = len;
2989 			offset = addr & (PAGE_SIZE-1);
2990 			if (bytes > PAGE_SIZE-offset)
2991 				bytes = PAGE_SIZE-offset;
2992 
2993 			maddr = kmap(page);
2994 			if (write) {
2995 				copy_to_user_page(vma, page, addr,
2996 						  maddr + offset, buf, bytes);
2997 				set_page_dirty_lock(page);
2998 			} else {
2999 				copy_from_user_page(vma, page, addr,
3000 						    buf, maddr + offset, bytes);
3001 			}
3002 			kunmap(page);
3003 			page_cache_release(page);
3004 		}
3005 		len -= bytes;
3006 		buf += bytes;
3007 		addr += bytes;
3008 	}
3009 	up_read(&mm->mmap_sem);
3010 	mmput(mm);
3011 
3012 	return buf - old_buf;
3013 }
3014 
3015 /*
3016  * Print the name of a VMA.
3017  */
3018 void print_vma_addr(char *prefix, unsigned long ip)
3019 {
3020 	struct mm_struct *mm = current->mm;
3021 	struct vm_area_struct *vma;
3022 
3023 	/*
3024 	 * Do not print if we are in atomic
3025 	 * contexts (in exception stacks, etc.):
3026 	 */
3027 	if (preempt_count())
3028 		return;
3029 
3030 	down_read(&mm->mmap_sem);
3031 	vma = find_vma(mm, ip);
3032 	if (vma && vma->vm_file) {
3033 		struct file *f = vma->vm_file;
3034 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3035 		if (buf) {
3036 			char *p, *s;
3037 
3038 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3039 			if (IS_ERR(p))
3040 				p = "?";
3041 			s = strrchr(p, '/');
3042 			if (s)
3043 				p = s+1;
3044 			printk("%s%s[%lx+%lx]", prefix, p,
3045 					vma->vm_start,
3046 					vma->vm_end - vma->vm_start);
3047 			free_page((unsigned long)buf);
3048 		}
3049 	}
3050 	up_read(&current->mm->mmap_sem);
3051 }
3052