1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 #include <linux/dma-debug.h> 63 #include <linux/debugfs.h> 64 65 #include <asm/io.h> 66 #include <asm/pgalloc.h> 67 #include <asm/uaccess.h> 68 #include <asm/tlb.h> 69 #include <asm/tlbflush.h> 70 #include <asm/pgtable.h> 71 72 #include "internal.h" 73 74 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 75 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 76 #endif 77 78 #ifndef CONFIG_NEED_MULTIPLE_NODES 79 /* use the per-pgdat data instead for discontigmem - mbligh */ 80 unsigned long max_mapnr; 81 struct page *mem_map; 82 83 EXPORT_SYMBOL(max_mapnr); 84 EXPORT_SYMBOL(mem_map); 85 #endif 86 87 /* 88 * A number of key systems in x86 including ioremap() rely on the assumption 89 * that high_memory defines the upper bound on direct map memory, then end 90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 92 * and ZONE_HIGHMEM. 93 */ 94 void * high_memory; 95 96 EXPORT_SYMBOL(high_memory); 97 98 /* 99 * Randomize the address space (stacks, mmaps, brk, etc.). 100 * 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 102 * as ancient (libc5 based) binaries can segfault. ) 103 */ 104 int randomize_va_space __read_mostly = 105 #ifdef CONFIG_COMPAT_BRK 106 1; 107 #else 108 2; 109 #endif 110 111 static int __init disable_randmaps(char *s) 112 { 113 randomize_va_space = 0; 114 return 1; 115 } 116 __setup("norandmaps", disable_randmaps); 117 118 unsigned long zero_pfn __read_mostly; 119 unsigned long highest_memmap_pfn __read_mostly; 120 121 /* 122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 123 */ 124 static int __init init_zero_pfn(void) 125 { 126 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 127 return 0; 128 } 129 core_initcall(init_zero_pfn); 130 131 132 #if defined(SPLIT_RSS_COUNTING) 133 134 void sync_mm_rss(struct mm_struct *mm) 135 { 136 int i; 137 138 for (i = 0; i < NR_MM_COUNTERS; i++) { 139 if (current->rss_stat.count[i]) { 140 add_mm_counter(mm, i, current->rss_stat.count[i]); 141 current->rss_stat.count[i] = 0; 142 } 143 } 144 current->rss_stat.events = 0; 145 } 146 147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 148 { 149 struct task_struct *task = current; 150 151 if (likely(task->mm == mm)) 152 task->rss_stat.count[member] += val; 153 else 154 add_mm_counter(mm, member, val); 155 } 156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 158 159 /* sync counter once per 64 page faults */ 160 #define TASK_RSS_EVENTS_THRESH (64) 161 static void check_sync_rss_stat(struct task_struct *task) 162 { 163 if (unlikely(task != current)) 164 return; 165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 166 sync_mm_rss(task->mm); 167 } 168 #else /* SPLIT_RSS_COUNTING */ 169 170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 172 173 static void check_sync_rss_stat(struct task_struct *task) 174 { 175 } 176 177 #endif /* SPLIT_RSS_COUNTING */ 178 179 #ifdef HAVE_GENERIC_MMU_GATHER 180 181 static int tlb_next_batch(struct mmu_gather *tlb) 182 { 183 struct mmu_gather_batch *batch; 184 185 batch = tlb->active; 186 if (batch->next) { 187 tlb->active = batch->next; 188 return 1; 189 } 190 191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 192 return 0; 193 194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 195 if (!batch) 196 return 0; 197 198 tlb->batch_count++; 199 batch->next = NULL; 200 batch->nr = 0; 201 batch->max = MAX_GATHER_BATCH; 202 203 tlb->active->next = batch; 204 tlb->active = batch; 205 206 return 1; 207 } 208 209 /* tlb_gather_mmu 210 * Called to initialize an (on-stack) mmu_gather structure for page-table 211 * tear-down from @mm. The @fullmm argument is used when @mm is without 212 * users and we're going to destroy the full address space (exit/execve). 213 */ 214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 215 { 216 tlb->mm = mm; 217 218 /* Is it from 0 to ~0? */ 219 tlb->fullmm = !(start | (end+1)); 220 tlb->need_flush_all = 0; 221 tlb->start = start; 222 tlb->end = end; 223 tlb->need_flush = 0; 224 tlb->local.next = NULL; 225 tlb->local.nr = 0; 226 tlb->local.max = ARRAY_SIZE(tlb->__pages); 227 tlb->active = &tlb->local; 228 tlb->batch_count = 0; 229 230 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 231 tlb->batch = NULL; 232 #endif 233 } 234 235 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 236 { 237 tlb->need_flush = 0; 238 tlb_flush(tlb); 239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 240 tlb_table_flush(tlb); 241 #endif 242 } 243 244 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 245 { 246 struct mmu_gather_batch *batch; 247 248 for (batch = &tlb->local; batch; batch = batch->next) { 249 free_pages_and_swap_cache(batch->pages, batch->nr); 250 batch->nr = 0; 251 } 252 tlb->active = &tlb->local; 253 } 254 255 void tlb_flush_mmu(struct mmu_gather *tlb) 256 { 257 if (!tlb->need_flush) 258 return; 259 tlb_flush_mmu_tlbonly(tlb); 260 tlb_flush_mmu_free(tlb); 261 } 262 263 /* tlb_finish_mmu 264 * Called at the end of the shootdown operation to free up any resources 265 * that were required. 266 */ 267 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 268 { 269 struct mmu_gather_batch *batch, *next; 270 271 tlb_flush_mmu(tlb); 272 273 /* keep the page table cache within bounds */ 274 check_pgt_cache(); 275 276 for (batch = tlb->local.next; batch; batch = next) { 277 next = batch->next; 278 free_pages((unsigned long)batch, 0); 279 } 280 tlb->local.next = NULL; 281 } 282 283 /* __tlb_remove_page 284 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 285 * handling the additional races in SMP caused by other CPUs caching valid 286 * mappings in their TLBs. Returns the number of free page slots left. 287 * When out of page slots we must call tlb_flush_mmu(). 288 */ 289 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 290 { 291 struct mmu_gather_batch *batch; 292 293 VM_BUG_ON(!tlb->need_flush); 294 295 batch = tlb->active; 296 batch->pages[batch->nr++] = page; 297 if (batch->nr == batch->max) { 298 if (!tlb_next_batch(tlb)) 299 return 0; 300 batch = tlb->active; 301 } 302 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 303 304 return batch->max - batch->nr; 305 } 306 307 #endif /* HAVE_GENERIC_MMU_GATHER */ 308 309 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 310 311 /* 312 * See the comment near struct mmu_table_batch. 313 */ 314 315 static void tlb_remove_table_smp_sync(void *arg) 316 { 317 /* Simply deliver the interrupt */ 318 } 319 320 static void tlb_remove_table_one(void *table) 321 { 322 /* 323 * This isn't an RCU grace period and hence the page-tables cannot be 324 * assumed to be actually RCU-freed. 325 * 326 * It is however sufficient for software page-table walkers that rely on 327 * IRQ disabling. See the comment near struct mmu_table_batch. 328 */ 329 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 330 __tlb_remove_table(table); 331 } 332 333 static void tlb_remove_table_rcu(struct rcu_head *head) 334 { 335 struct mmu_table_batch *batch; 336 int i; 337 338 batch = container_of(head, struct mmu_table_batch, rcu); 339 340 for (i = 0; i < batch->nr; i++) 341 __tlb_remove_table(batch->tables[i]); 342 343 free_page((unsigned long)batch); 344 } 345 346 void tlb_table_flush(struct mmu_gather *tlb) 347 { 348 struct mmu_table_batch **batch = &tlb->batch; 349 350 if (*batch) { 351 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 352 *batch = NULL; 353 } 354 } 355 356 void tlb_remove_table(struct mmu_gather *tlb, void *table) 357 { 358 struct mmu_table_batch **batch = &tlb->batch; 359 360 tlb->need_flush = 1; 361 362 /* 363 * When there's less then two users of this mm there cannot be a 364 * concurrent page-table walk. 365 */ 366 if (atomic_read(&tlb->mm->mm_users) < 2) { 367 __tlb_remove_table(table); 368 return; 369 } 370 371 if (*batch == NULL) { 372 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 373 if (*batch == NULL) { 374 tlb_remove_table_one(table); 375 return; 376 } 377 (*batch)->nr = 0; 378 } 379 (*batch)->tables[(*batch)->nr++] = table; 380 if ((*batch)->nr == MAX_TABLE_BATCH) 381 tlb_table_flush(tlb); 382 } 383 384 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 385 386 /* 387 * Note: this doesn't free the actual pages themselves. That 388 * has been handled earlier when unmapping all the memory regions. 389 */ 390 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 391 unsigned long addr) 392 { 393 pgtable_t token = pmd_pgtable(*pmd); 394 pmd_clear(pmd); 395 pte_free_tlb(tlb, token, addr); 396 atomic_long_dec(&tlb->mm->nr_ptes); 397 } 398 399 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 400 unsigned long addr, unsigned long end, 401 unsigned long floor, unsigned long ceiling) 402 { 403 pmd_t *pmd; 404 unsigned long next; 405 unsigned long start; 406 407 start = addr; 408 pmd = pmd_offset(pud, addr); 409 do { 410 next = pmd_addr_end(addr, end); 411 if (pmd_none_or_clear_bad(pmd)) 412 continue; 413 free_pte_range(tlb, pmd, addr); 414 } while (pmd++, addr = next, addr != end); 415 416 start &= PUD_MASK; 417 if (start < floor) 418 return; 419 if (ceiling) { 420 ceiling &= PUD_MASK; 421 if (!ceiling) 422 return; 423 } 424 if (end - 1 > ceiling - 1) 425 return; 426 427 pmd = pmd_offset(pud, start); 428 pud_clear(pud); 429 pmd_free_tlb(tlb, pmd, start); 430 } 431 432 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 433 unsigned long addr, unsigned long end, 434 unsigned long floor, unsigned long ceiling) 435 { 436 pud_t *pud; 437 unsigned long next; 438 unsigned long start; 439 440 start = addr; 441 pud = pud_offset(pgd, addr); 442 do { 443 next = pud_addr_end(addr, end); 444 if (pud_none_or_clear_bad(pud)) 445 continue; 446 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 447 } while (pud++, addr = next, addr != end); 448 449 start &= PGDIR_MASK; 450 if (start < floor) 451 return; 452 if (ceiling) { 453 ceiling &= PGDIR_MASK; 454 if (!ceiling) 455 return; 456 } 457 if (end - 1 > ceiling - 1) 458 return; 459 460 pud = pud_offset(pgd, start); 461 pgd_clear(pgd); 462 pud_free_tlb(tlb, pud, start); 463 } 464 465 /* 466 * This function frees user-level page tables of a process. 467 */ 468 void free_pgd_range(struct mmu_gather *tlb, 469 unsigned long addr, unsigned long end, 470 unsigned long floor, unsigned long ceiling) 471 { 472 pgd_t *pgd; 473 unsigned long next; 474 475 /* 476 * The next few lines have given us lots of grief... 477 * 478 * Why are we testing PMD* at this top level? Because often 479 * there will be no work to do at all, and we'd prefer not to 480 * go all the way down to the bottom just to discover that. 481 * 482 * Why all these "- 1"s? Because 0 represents both the bottom 483 * of the address space and the top of it (using -1 for the 484 * top wouldn't help much: the masks would do the wrong thing). 485 * The rule is that addr 0 and floor 0 refer to the bottom of 486 * the address space, but end 0 and ceiling 0 refer to the top 487 * Comparisons need to use "end - 1" and "ceiling - 1" (though 488 * that end 0 case should be mythical). 489 * 490 * Wherever addr is brought up or ceiling brought down, we must 491 * be careful to reject "the opposite 0" before it confuses the 492 * subsequent tests. But what about where end is brought down 493 * by PMD_SIZE below? no, end can't go down to 0 there. 494 * 495 * Whereas we round start (addr) and ceiling down, by different 496 * masks at different levels, in order to test whether a table 497 * now has no other vmas using it, so can be freed, we don't 498 * bother to round floor or end up - the tests don't need that. 499 */ 500 501 addr &= PMD_MASK; 502 if (addr < floor) { 503 addr += PMD_SIZE; 504 if (!addr) 505 return; 506 } 507 if (ceiling) { 508 ceiling &= PMD_MASK; 509 if (!ceiling) 510 return; 511 } 512 if (end - 1 > ceiling - 1) 513 end -= PMD_SIZE; 514 if (addr > end - 1) 515 return; 516 517 pgd = pgd_offset(tlb->mm, addr); 518 do { 519 next = pgd_addr_end(addr, end); 520 if (pgd_none_or_clear_bad(pgd)) 521 continue; 522 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 523 } while (pgd++, addr = next, addr != end); 524 } 525 526 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 527 unsigned long floor, unsigned long ceiling) 528 { 529 while (vma) { 530 struct vm_area_struct *next = vma->vm_next; 531 unsigned long addr = vma->vm_start; 532 533 /* 534 * Hide vma from rmap and truncate_pagecache before freeing 535 * pgtables 536 */ 537 unlink_anon_vmas(vma); 538 unlink_file_vma(vma); 539 540 if (is_vm_hugetlb_page(vma)) { 541 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 542 floor, next? next->vm_start: ceiling); 543 } else { 544 /* 545 * Optimization: gather nearby vmas into one call down 546 */ 547 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 548 && !is_vm_hugetlb_page(next)) { 549 vma = next; 550 next = vma->vm_next; 551 unlink_anon_vmas(vma); 552 unlink_file_vma(vma); 553 } 554 free_pgd_range(tlb, addr, vma->vm_end, 555 floor, next? next->vm_start: ceiling); 556 } 557 vma = next; 558 } 559 } 560 561 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 562 pmd_t *pmd, unsigned long address) 563 { 564 spinlock_t *ptl; 565 pgtable_t new = pte_alloc_one(mm, address); 566 int wait_split_huge_page; 567 if (!new) 568 return -ENOMEM; 569 570 /* 571 * Ensure all pte setup (eg. pte page lock and page clearing) are 572 * visible before the pte is made visible to other CPUs by being 573 * put into page tables. 574 * 575 * The other side of the story is the pointer chasing in the page 576 * table walking code (when walking the page table without locking; 577 * ie. most of the time). Fortunately, these data accesses consist 578 * of a chain of data-dependent loads, meaning most CPUs (alpha 579 * being the notable exception) will already guarantee loads are 580 * seen in-order. See the alpha page table accessors for the 581 * smp_read_barrier_depends() barriers in page table walking code. 582 */ 583 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 584 585 ptl = pmd_lock(mm, pmd); 586 wait_split_huge_page = 0; 587 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 588 atomic_long_inc(&mm->nr_ptes); 589 pmd_populate(mm, pmd, new); 590 new = NULL; 591 } else if (unlikely(pmd_trans_splitting(*pmd))) 592 wait_split_huge_page = 1; 593 spin_unlock(ptl); 594 if (new) 595 pte_free(mm, new); 596 if (wait_split_huge_page) 597 wait_split_huge_page(vma->anon_vma, pmd); 598 return 0; 599 } 600 601 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 602 { 603 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 604 if (!new) 605 return -ENOMEM; 606 607 smp_wmb(); /* See comment in __pte_alloc */ 608 609 spin_lock(&init_mm.page_table_lock); 610 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 611 pmd_populate_kernel(&init_mm, pmd, new); 612 new = NULL; 613 } else 614 VM_BUG_ON(pmd_trans_splitting(*pmd)); 615 spin_unlock(&init_mm.page_table_lock); 616 if (new) 617 pte_free_kernel(&init_mm, new); 618 return 0; 619 } 620 621 static inline void init_rss_vec(int *rss) 622 { 623 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 624 } 625 626 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 627 { 628 int i; 629 630 if (current->mm == mm) 631 sync_mm_rss(mm); 632 for (i = 0; i < NR_MM_COUNTERS; i++) 633 if (rss[i]) 634 add_mm_counter(mm, i, rss[i]); 635 } 636 637 /* 638 * This function is called to print an error when a bad pte 639 * is found. For example, we might have a PFN-mapped pte in 640 * a region that doesn't allow it. 641 * 642 * The calling function must still handle the error. 643 */ 644 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 645 pte_t pte, struct page *page) 646 { 647 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 648 pud_t *pud = pud_offset(pgd, addr); 649 pmd_t *pmd = pmd_offset(pud, addr); 650 struct address_space *mapping; 651 pgoff_t index; 652 static unsigned long resume; 653 static unsigned long nr_shown; 654 static unsigned long nr_unshown; 655 656 /* 657 * Allow a burst of 60 reports, then keep quiet for that minute; 658 * or allow a steady drip of one report per second. 659 */ 660 if (nr_shown == 60) { 661 if (time_before(jiffies, resume)) { 662 nr_unshown++; 663 return; 664 } 665 if (nr_unshown) { 666 printk(KERN_ALERT 667 "BUG: Bad page map: %lu messages suppressed\n", 668 nr_unshown); 669 nr_unshown = 0; 670 } 671 nr_shown = 0; 672 } 673 if (nr_shown++ == 0) 674 resume = jiffies + 60 * HZ; 675 676 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 677 index = linear_page_index(vma, addr); 678 679 printk(KERN_ALERT 680 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 681 current->comm, 682 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 683 if (page) 684 dump_page(page, "bad pte"); 685 printk(KERN_ALERT 686 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 687 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 688 /* 689 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 690 */ 691 if (vma->vm_ops) 692 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 693 vma->vm_ops->fault); 694 if (vma->vm_file) 695 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 696 vma->vm_file->f_op->mmap); 697 dump_stack(); 698 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 699 } 700 701 /* 702 * vm_normal_page -- This function gets the "struct page" associated with a pte. 703 * 704 * "Special" mappings do not wish to be associated with a "struct page" (either 705 * it doesn't exist, or it exists but they don't want to touch it). In this 706 * case, NULL is returned here. "Normal" mappings do have a struct page. 707 * 708 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 709 * pte bit, in which case this function is trivial. Secondly, an architecture 710 * may not have a spare pte bit, which requires a more complicated scheme, 711 * described below. 712 * 713 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 714 * special mapping (even if there are underlying and valid "struct pages"). 715 * COWed pages of a VM_PFNMAP are always normal. 716 * 717 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 718 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 719 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 720 * mapping will always honor the rule 721 * 722 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 723 * 724 * And for normal mappings this is false. 725 * 726 * This restricts such mappings to be a linear translation from virtual address 727 * to pfn. To get around this restriction, we allow arbitrary mappings so long 728 * as the vma is not a COW mapping; in that case, we know that all ptes are 729 * special (because none can have been COWed). 730 * 731 * 732 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 733 * 734 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 735 * page" backing, however the difference is that _all_ pages with a struct 736 * page (that is, those where pfn_valid is true) are refcounted and considered 737 * normal pages by the VM. The disadvantage is that pages are refcounted 738 * (which can be slower and simply not an option for some PFNMAP users). The 739 * advantage is that we don't have to follow the strict linearity rule of 740 * PFNMAP mappings in order to support COWable mappings. 741 * 742 */ 743 #ifdef __HAVE_ARCH_PTE_SPECIAL 744 # define HAVE_PTE_SPECIAL 1 745 #else 746 # define HAVE_PTE_SPECIAL 0 747 #endif 748 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 749 pte_t pte) 750 { 751 unsigned long pfn = pte_pfn(pte); 752 753 if (HAVE_PTE_SPECIAL) { 754 if (likely(!pte_special(pte) || pte_numa(pte))) 755 goto check_pfn; 756 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 757 return NULL; 758 if (!is_zero_pfn(pfn)) 759 print_bad_pte(vma, addr, pte, NULL); 760 return NULL; 761 } 762 763 /* !HAVE_PTE_SPECIAL case follows: */ 764 765 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 766 if (vma->vm_flags & VM_MIXEDMAP) { 767 if (!pfn_valid(pfn)) 768 return NULL; 769 goto out; 770 } else { 771 unsigned long off; 772 off = (addr - vma->vm_start) >> PAGE_SHIFT; 773 if (pfn == vma->vm_pgoff + off) 774 return NULL; 775 if (!is_cow_mapping(vma->vm_flags)) 776 return NULL; 777 } 778 } 779 780 check_pfn: 781 if (unlikely(pfn > highest_memmap_pfn)) { 782 print_bad_pte(vma, addr, pte, NULL); 783 return NULL; 784 } 785 786 if (is_zero_pfn(pfn)) 787 return NULL; 788 789 /* 790 * NOTE! We still have PageReserved() pages in the page tables. 791 * eg. VDSO mappings can cause them to exist. 792 */ 793 out: 794 return pfn_to_page(pfn); 795 } 796 797 /* 798 * copy one vm_area from one task to the other. Assumes the page tables 799 * already present in the new task to be cleared in the whole range 800 * covered by this vma. 801 */ 802 803 static inline unsigned long 804 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 805 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 806 unsigned long addr, int *rss) 807 { 808 unsigned long vm_flags = vma->vm_flags; 809 pte_t pte = *src_pte; 810 struct page *page; 811 812 /* pte contains position in swap or file, so copy. */ 813 if (unlikely(!pte_present(pte))) { 814 if (!pte_file(pte)) { 815 swp_entry_t entry = pte_to_swp_entry(pte); 816 817 if (swap_duplicate(entry) < 0) 818 return entry.val; 819 820 /* make sure dst_mm is on swapoff's mmlist. */ 821 if (unlikely(list_empty(&dst_mm->mmlist))) { 822 spin_lock(&mmlist_lock); 823 if (list_empty(&dst_mm->mmlist)) 824 list_add(&dst_mm->mmlist, 825 &src_mm->mmlist); 826 spin_unlock(&mmlist_lock); 827 } 828 if (likely(!non_swap_entry(entry))) 829 rss[MM_SWAPENTS]++; 830 else if (is_migration_entry(entry)) { 831 page = migration_entry_to_page(entry); 832 833 if (PageAnon(page)) 834 rss[MM_ANONPAGES]++; 835 else 836 rss[MM_FILEPAGES]++; 837 838 if (is_write_migration_entry(entry) && 839 is_cow_mapping(vm_flags)) { 840 /* 841 * COW mappings require pages in both 842 * parent and child to be set to read. 843 */ 844 make_migration_entry_read(&entry); 845 pte = swp_entry_to_pte(entry); 846 if (pte_swp_soft_dirty(*src_pte)) 847 pte = pte_swp_mksoft_dirty(pte); 848 set_pte_at(src_mm, addr, src_pte, pte); 849 } 850 } 851 } 852 goto out_set_pte; 853 } 854 855 /* 856 * If it's a COW mapping, write protect it both 857 * in the parent and the child 858 */ 859 if (is_cow_mapping(vm_flags)) { 860 ptep_set_wrprotect(src_mm, addr, src_pte); 861 pte = pte_wrprotect(pte); 862 } 863 864 /* 865 * If it's a shared mapping, mark it clean in 866 * the child 867 */ 868 if (vm_flags & VM_SHARED) 869 pte = pte_mkclean(pte); 870 pte = pte_mkold(pte); 871 872 page = vm_normal_page(vma, addr, pte); 873 if (page) { 874 get_page(page); 875 page_dup_rmap(page); 876 if (PageAnon(page)) 877 rss[MM_ANONPAGES]++; 878 else 879 rss[MM_FILEPAGES]++; 880 } 881 882 out_set_pte: 883 set_pte_at(dst_mm, addr, dst_pte, pte); 884 return 0; 885 } 886 887 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 888 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 889 unsigned long addr, unsigned long end) 890 { 891 pte_t *orig_src_pte, *orig_dst_pte; 892 pte_t *src_pte, *dst_pte; 893 spinlock_t *src_ptl, *dst_ptl; 894 int progress = 0; 895 int rss[NR_MM_COUNTERS]; 896 swp_entry_t entry = (swp_entry_t){0}; 897 898 again: 899 init_rss_vec(rss); 900 901 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 902 if (!dst_pte) 903 return -ENOMEM; 904 src_pte = pte_offset_map(src_pmd, addr); 905 src_ptl = pte_lockptr(src_mm, src_pmd); 906 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 907 orig_src_pte = src_pte; 908 orig_dst_pte = dst_pte; 909 arch_enter_lazy_mmu_mode(); 910 911 do { 912 /* 913 * We are holding two locks at this point - either of them 914 * could generate latencies in another task on another CPU. 915 */ 916 if (progress >= 32) { 917 progress = 0; 918 if (need_resched() || 919 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 920 break; 921 } 922 if (pte_none(*src_pte)) { 923 progress++; 924 continue; 925 } 926 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 927 vma, addr, rss); 928 if (entry.val) 929 break; 930 progress += 8; 931 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 932 933 arch_leave_lazy_mmu_mode(); 934 spin_unlock(src_ptl); 935 pte_unmap(orig_src_pte); 936 add_mm_rss_vec(dst_mm, rss); 937 pte_unmap_unlock(orig_dst_pte, dst_ptl); 938 cond_resched(); 939 940 if (entry.val) { 941 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 942 return -ENOMEM; 943 progress = 0; 944 } 945 if (addr != end) 946 goto again; 947 return 0; 948 } 949 950 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 951 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 952 unsigned long addr, unsigned long end) 953 { 954 pmd_t *src_pmd, *dst_pmd; 955 unsigned long next; 956 957 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 958 if (!dst_pmd) 959 return -ENOMEM; 960 src_pmd = pmd_offset(src_pud, addr); 961 do { 962 next = pmd_addr_end(addr, end); 963 if (pmd_trans_huge(*src_pmd)) { 964 int err; 965 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 966 err = copy_huge_pmd(dst_mm, src_mm, 967 dst_pmd, src_pmd, addr, vma); 968 if (err == -ENOMEM) 969 return -ENOMEM; 970 if (!err) 971 continue; 972 /* fall through */ 973 } 974 if (pmd_none_or_clear_bad(src_pmd)) 975 continue; 976 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 977 vma, addr, next)) 978 return -ENOMEM; 979 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 980 return 0; 981 } 982 983 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 984 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 985 unsigned long addr, unsigned long end) 986 { 987 pud_t *src_pud, *dst_pud; 988 unsigned long next; 989 990 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 991 if (!dst_pud) 992 return -ENOMEM; 993 src_pud = pud_offset(src_pgd, addr); 994 do { 995 next = pud_addr_end(addr, end); 996 if (pud_none_or_clear_bad(src_pud)) 997 continue; 998 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 999 vma, addr, next)) 1000 return -ENOMEM; 1001 } while (dst_pud++, src_pud++, addr = next, addr != end); 1002 return 0; 1003 } 1004 1005 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1006 struct vm_area_struct *vma) 1007 { 1008 pgd_t *src_pgd, *dst_pgd; 1009 unsigned long next; 1010 unsigned long addr = vma->vm_start; 1011 unsigned long end = vma->vm_end; 1012 unsigned long mmun_start; /* For mmu_notifiers */ 1013 unsigned long mmun_end; /* For mmu_notifiers */ 1014 bool is_cow; 1015 int ret; 1016 1017 /* 1018 * Don't copy ptes where a page fault will fill them correctly. 1019 * Fork becomes much lighter when there are big shared or private 1020 * readonly mappings. The tradeoff is that copy_page_range is more 1021 * efficient than faulting. 1022 */ 1023 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1024 VM_PFNMAP | VM_MIXEDMAP))) { 1025 if (!vma->anon_vma) 1026 return 0; 1027 } 1028 1029 if (is_vm_hugetlb_page(vma)) 1030 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1031 1032 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1033 /* 1034 * We do not free on error cases below as remove_vma 1035 * gets called on error from higher level routine 1036 */ 1037 ret = track_pfn_copy(vma); 1038 if (ret) 1039 return ret; 1040 } 1041 1042 /* 1043 * We need to invalidate the secondary MMU mappings only when 1044 * there could be a permission downgrade on the ptes of the 1045 * parent mm. And a permission downgrade will only happen if 1046 * is_cow_mapping() returns true. 1047 */ 1048 is_cow = is_cow_mapping(vma->vm_flags); 1049 mmun_start = addr; 1050 mmun_end = end; 1051 if (is_cow) 1052 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1053 mmun_end); 1054 1055 ret = 0; 1056 dst_pgd = pgd_offset(dst_mm, addr); 1057 src_pgd = pgd_offset(src_mm, addr); 1058 do { 1059 next = pgd_addr_end(addr, end); 1060 if (pgd_none_or_clear_bad(src_pgd)) 1061 continue; 1062 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1063 vma, addr, next))) { 1064 ret = -ENOMEM; 1065 break; 1066 } 1067 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1068 1069 if (is_cow) 1070 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1071 return ret; 1072 } 1073 1074 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1075 struct vm_area_struct *vma, pmd_t *pmd, 1076 unsigned long addr, unsigned long end, 1077 struct zap_details *details) 1078 { 1079 struct mm_struct *mm = tlb->mm; 1080 int force_flush = 0; 1081 int rss[NR_MM_COUNTERS]; 1082 spinlock_t *ptl; 1083 pte_t *start_pte; 1084 pte_t *pte; 1085 1086 again: 1087 init_rss_vec(rss); 1088 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1089 pte = start_pte; 1090 arch_enter_lazy_mmu_mode(); 1091 do { 1092 pte_t ptent = *pte; 1093 if (pte_none(ptent)) { 1094 continue; 1095 } 1096 1097 if (pte_present(ptent)) { 1098 struct page *page; 1099 1100 page = vm_normal_page(vma, addr, ptent); 1101 if (unlikely(details) && page) { 1102 /* 1103 * unmap_shared_mapping_pages() wants to 1104 * invalidate cache without truncating: 1105 * unmap shared but keep private pages. 1106 */ 1107 if (details->check_mapping && 1108 details->check_mapping != page->mapping) 1109 continue; 1110 /* 1111 * Each page->index must be checked when 1112 * invalidating or truncating nonlinear. 1113 */ 1114 if (details->nonlinear_vma && 1115 (page->index < details->first_index || 1116 page->index > details->last_index)) 1117 continue; 1118 } 1119 ptent = ptep_get_and_clear_full(mm, addr, pte, 1120 tlb->fullmm); 1121 tlb_remove_tlb_entry(tlb, pte, addr); 1122 if (unlikely(!page)) 1123 continue; 1124 if (unlikely(details) && details->nonlinear_vma 1125 && linear_page_index(details->nonlinear_vma, 1126 addr) != page->index) { 1127 pte_t ptfile = pgoff_to_pte(page->index); 1128 if (pte_soft_dirty(ptent)) 1129 pte_file_mksoft_dirty(ptfile); 1130 set_pte_at(mm, addr, pte, ptfile); 1131 } 1132 if (PageAnon(page)) 1133 rss[MM_ANONPAGES]--; 1134 else { 1135 if (pte_dirty(ptent)) { 1136 force_flush = 1; 1137 set_page_dirty(page); 1138 } 1139 if (pte_young(ptent) && 1140 likely(!(vma->vm_flags & VM_SEQ_READ))) 1141 mark_page_accessed(page); 1142 rss[MM_FILEPAGES]--; 1143 } 1144 page_remove_rmap(page); 1145 if (unlikely(page_mapcount(page) < 0)) 1146 print_bad_pte(vma, addr, ptent, page); 1147 if (unlikely(!__tlb_remove_page(tlb, page))) { 1148 force_flush = 1; 1149 break; 1150 } 1151 continue; 1152 } 1153 /* 1154 * If details->check_mapping, we leave swap entries; 1155 * if details->nonlinear_vma, we leave file entries. 1156 */ 1157 if (unlikely(details)) 1158 continue; 1159 if (pte_file(ptent)) { 1160 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1161 print_bad_pte(vma, addr, ptent, NULL); 1162 } else { 1163 swp_entry_t entry = pte_to_swp_entry(ptent); 1164 1165 if (!non_swap_entry(entry)) 1166 rss[MM_SWAPENTS]--; 1167 else if (is_migration_entry(entry)) { 1168 struct page *page; 1169 1170 page = migration_entry_to_page(entry); 1171 1172 if (PageAnon(page)) 1173 rss[MM_ANONPAGES]--; 1174 else 1175 rss[MM_FILEPAGES]--; 1176 } 1177 if (unlikely(!free_swap_and_cache(entry))) 1178 print_bad_pte(vma, addr, ptent, NULL); 1179 } 1180 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1181 } while (pte++, addr += PAGE_SIZE, addr != end); 1182 1183 add_mm_rss_vec(mm, rss); 1184 arch_leave_lazy_mmu_mode(); 1185 1186 /* Do the actual TLB flush before dropping ptl */ 1187 if (force_flush) { 1188 unsigned long old_end; 1189 1190 /* 1191 * Flush the TLB just for the previous segment, 1192 * then update the range to be the remaining 1193 * TLB range. 1194 */ 1195 old_end = tlb->end; 1196 tlb->end = addr; 1197 tlb_flush_mmu_tlbonly(tlb); 1198 tlb->start = addr; 1199 tlb->end = old_end; 1200 } 1201 pte_unmap_unlock(start_pte, ptl); 1202 1203 /* 1204 * If we forced a TLB flush (either due to running out of 1205 * batch buffers or because we needed to flush dirty TLB 1206 * entries before releasing the ptl), free the batched 1207 * memory too. Restart if we didn't do everything. 1208 */ 1209 if (force_flush) { 1210 force_flush = 0; 1211 tlb_flush_mmu_free(tlb); 1212 1213 if (addr != end) 1214 goto again; 1215 } 1216 1217 return addr; 1218 } 1219 1220 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1221 struct vm_area_struct *vma, pud_t *pud, 1222 unsigned long addr, unsigned long end, 1223 struct zap_details *details) 1224 { 1225 pmd_t *pmd; 1226 unsigned long next; 1227 1228 pmd = pmd_offset(pud, addr); 1229 do { 1230 next = pmd_addr_end(addr, end); 1231 if (pmd_trans_huge(*pmd)) { 1232 if (next - addr != HPAGE_PMD_SIZE) { 1233 #ifdef CONFIG_DEBUG_VM 1234 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1235 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1236 __func__, addr, end, 1237 vma->vm_start, 1238 vma->vm_end); 1239 BUG(); 1240 } 1241 #endif 1242 split_huge_page_pmd(vma, addr, pmd); 1243 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1244 goto next; 1245 /* fall through */ 1246 } 1247 /* 1248 * Here there can be other concurrent MADV_DONTNEED or 1249 * trans huge page faults running, and if the pmd is 1250 * none or trans huge it can change under us. This is 1251 * because MADV_DONTNEED holds the mmap_sem in read 1252 * mode. 1253 */ 1254 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1255 goto next; 1256 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1257 next: 1258 cond_resched(); 1259 } while (pmd++, addr = next, addr != end); 1260 1261 return addr; 1262 } 1263 1264 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1265 struct vm_area_struct *vma, pgd_t *pgd, 1266 unsigned long addr, unsigned long end, 1267 struct zap_details *details) 1268 { 1269 pud_t *pud; 1270 unsigned long next; 1271 1272 pud = pud_offset(pgd, addr); 1273 do { 1274 next = pud_addr_end(addr, end); 1275 if (pud_none_or_clear_bad(pud)) 1276 continue; 1277 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1278 } while (pud++, addr = next, addr != end); 1279 1280 return addr; 1281 } 1282 1283 static void unmap_page_range(struct mmu_gather *tlb, 1284 struct vm_area_struct *vma, 1285 unsigned long addr, unsigned long end, 1286 struct zap_details *details) 1287 { 1288 pgd_t *pgd; 1289 unsigned long next; 1290 1291 if (details && !details->check_mapping && !details->nonlinear_vma) 1292 details = NULL; 1293 1294 BUG_ON(addr >= end); 1295 tlb_start_vma(tlb, vma); 1296 pgd = pgd_offset(vma->vm_mm, addr); 1297 do { 1298 next = pgd_addr_end(addr, end); 1299 if (pgd_none_or_clear_bad(pgd)) 1300 continue; 1301 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1302 } while (pgd++, addr = next, addr != end); 1303 tlb_end_vma(tlb, vma); 1304 } 1305 1306 1307 static void unmap_single_vma(struct mmu_gather *tlb, 1308 struct vm_area_struct *vma, unsigned long start_addr, 1309 unsigned long end_addr, 1310 struct zap_details *details) 1311 { 1312 unsigned long start = max(vma->vm_start, start_addr); 1313 unsigned long end; 1314 1315 if (start >= vma->vm_end) 1316 return; 1317 end = min(vma->vm_end, end_addr); 1318 if (end <= vma->vm_start) 1319 return; 1320 1321 if (vma->vm_file) 1322 uprobe_munmap(vma, start, end); 1323 1324 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1325 untrack_pfn(vma, 0, 0); 1326 1327 if (start != end) { 1328 if (unlikely(is_vm_hugetlb_page(vma))) { 1329 /* 1330 * It is undesirable to test vma->vm_file as it 1331 * should be non-null for valid hugetlb area. 1332 * However, vm_file will be NULL in the error 1333 * cleanup path of mmap_region. When 1334 * hugetlbfs ->mmap method fails, 1335 * mmap_region() nullifies vma->vm_file 1336 * before calling this function to clean up. 1337 * Since no pte has actually been setup, it is 1338 * safe to do nothing in this case. 1339 */ 1340 if (vma->vm_file) { 1341 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1342 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1343 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1344 } 1345 } else 1346 unmap_page_range(tlb, vma, start, end, details); 1347 } 1348 } 1349 1350 /** 1351 * unmap_vmas - unmap a range of memory covered by a list of vma's 1352 * @tlb: address of the caller's struct mmu_gather 1353 * @vma: the starting vma 1354 * @start_addr: virtual address at which to start unmapping 1355 * @end_addr: virtual address at which to end unmapping 1356 * 1357 * Unmap all pages in the vma list. 1358 * 1359 * Only addresses between `start' and `end' will be unmapped. 1360 * 1361 * The VMA list must be sorted in ascending virtual address order. 1362 * 1363 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1364 * range after unmap_vmas() returns. So the only responsibility here is to 1365 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1366 * drops the lock and schedules. 1367 */ 1368 void unmap_vmas(struct mmu_gather *tlb, 1369 struct vm_area_struct *vma, unsigned long start_addr, 1370 unsigned long end_addr) 1371 { 1372 struct mm_struct *mm = vma->vm_mm; 1373 1374 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1375 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1376 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1377 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1378 } 1379 1380 /** 1381 * zap_page_range - remove user pages in a given range 1382 * @vma: vm_area_struct holding the applicable pages 1383 * @start: starting address of pages to zap 1384 * @size: number of bytes to zap 1385 * @details: details of nonlinear truncation or shared cache invalidation 1386 * 1387 * Caller must protect the VMA list 1388 */ 1389 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1390 unsigned long size, struct zap_details *details) 1391 { 1392 struct mm_struct *mm = vma->vm_mm; 1393 struct mmu_gather tlb; 1394 unsigned long end = start + size; 1395 1396 lru_add_drain(); 1397 tlb_gather_mmu(&tlb, mm, start, end); 1398 update_hiwater_rss(mm); 1399 mmu_notifier_invalidate_range_start(mm, start, end); 1400 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1401 unmap_single_vma(&tlb, vma, start, end, details); 1402 mmu_notifier_invalidate_range_end(mm, start, end); 1403 tlb_finish_mmu(&tlb, start, end); 1404 } 1405 1406 /** 1407 * zap_page_range_single - remove user pages in a given range 1408 * @vma: vm_area_struct holding the applicable pages 1409 * @address: starting address of pages to zap 1410 * @size: number of bytes to zap 1411 * @details: details of nonlinear truncation or shared cache invalidation 1412 * 1413 * The range must fit into one VMA. 1414 */ 1415 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1416 unsigned long size, struct zap_details *details) 1417 { 1418 struct mm_struct *mm = vma->vm_mm; 1419 struct mmu_gather tlb; 1420 unsigned long end = address + size; 1421 1422 lru_add_drain(); 1423 tlb_gather_mmu(&tlb, mm, address, end); 1424 update_hiwater_rss(mm); 1425 mmu_notifier_invalidate_range_start(mm, address, end); 1426 unmap_single_vma(&tlb, vma, address, end, details); 1427 mmu_notifier_invalidate_range_end(mm, address, end); 1428 tlb_finish_mmu(&tlb, address, end); 1429 } 1430 1431 /** 1432 * zap_vma_ptes - remove ptes mapping the vma 1433 * @vma: vm_area_struct holding ptes to be zapped 1434 * @address: starting address of pages to zap 1435 * @size: number of bytes to zap 1436 * 1437 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1438 * 1439 * The entire address range must be fully contained within the vma. 1440 * 1441 * Returns 0 if successful. 1442 */ 1443 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1444 unsigned long size) 1445 { 1446 if (address < vma->vm_start || address + size > vma->vm_end || 1447 !(vma->vm_flags & VM_PFNMAP)) 1448 return -1; 1449 zap_page_range_single(vma, address, size, NULL); 1450 return 0; 1451 } 1452 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1453 1454 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1455 spinlock_t **ptl) 1456 { 1457 pgd_t * pgd = pgd_offset(mm, addr); 1458 pud_t * pud = pud_alloc(mm, pgd, addr); 1459 if (pud) { 1460 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1461 if (pmd) { 1462 VM_BUG_ON(pmd_trans_huge(*pmd)); 1463 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1464 } 1465 } 1466 return NULL; 1467 } 1468 1469 /* 1470 * This is the old fallback for page remapping. 1471 * 1472 * For historical reasons, it only allows reserved pages. Only 1473 * old drivers should use this, and they needed to mark their 1474 * pages reserved for the old functions anyway. 1475 */ 1476 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1477 struct page *page, pgprot_t prot) 1478 { 1479 struct mm_struct *mm = vma->vm_mm; 1480 int retval; 1481 pte_t *pte; 1482 spinlock_t *ptl; 1483 1484 retval = -EINVAL; 1485 if (PageAnon(page)) 1486 goto out; 1487 retval = -ENOMEM; 1488 flush_dcache_page(page); 1489 pte = get_locked_pte(mm, addr, &ptl); 1490 if (!pte) 1491 goto out; 1492 retval = -EBUSY; 1493 if (!pte_none(*pte)) 1494 goto out_unlock; 1495 1496 /* Ok, finally just insert the thing.. */ 1497 get_page(page); 1498 inc_mm_counter_fast(mm, MM_FILEPAGES); 1499 page_add_file_rmap(page); 1500 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1501 1502 retval = 0; 1503 pte_unmap_unlock(pte, ptl); 1504 return retval; 1505 out_unlock: 1506 pte_unmap_unlock(pte, ptl); 1507 out: 1508 return retval; 1509 } 1510 1511 /** 1512 * vm_insert_page - insert single page into user vma 1513 * @vma: user vma to map to 1514 * @addr: target user address of this page 1515 * @page: source kernel page 1516 * 1517 * This allows drivers to insert individual pages they've allocated 1518 * into a user vma. 1519 * 1520 * The page has to be a nice clean _individual_ kernel allocation. 1521 * If you allocate a compound page, you need to have marked it as 1522 * such (__GFP_COMP), or manually just split the page up yourself 1523 * (see split_page()). 1524 * 1525 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1526 * took an arbitrary page protection parameter. This doesn't allow 1527 * that. Your vma protection will have to be set up correctly, which 1528 * means that if you want a shared writable mapping, you'd better 1529 * ask for a shared writable mapping! 1530 * 1531 * The page does not need to be reserved. 1532 * 1533 * Usually this function is called from f_op->mmap() handler 1534 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1535 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1536 * function from other places, for example from page-fault handler. 1537 */ 1538 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1539 struct page *page) 1540 { 1541 if (addr < vma->vm_start || addr >= vma->vm_end) 1542 return -EFAULT; 1543 if (!page_count(page)) 1544 return -EINVAL; 1545 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1546 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1547 BUG_ON(vma->vm_flags & VM_PFNMAP); 1548 vma->vm_flags |= VM_MIXEDMAP; 1549 } 1550 return insert_page(vma, addr, page, vma->vm_page_prot); 1551 } 1552 EXPORT_SYMBOL(vm_insert_page); 1553 1554 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1555 unsigned long pfn, pgprot_t prot) 1556 { 1557 struct mm_struct *mm = vma->vm_mm; 1558 int retval; 1559 pte_t *pte, entry; 1560 spinlock_t *ptl; 1561 1562 retval = -ENOMEM; 1563 pte = get_locked_pte(mm, addr, &ptl); 1564 if (!pte) 1565 goto out; 1566 retval = -EBUSY; 1567 if (!pte_none(*pte)) 1568 goto out_unlock; 1569 1570 /* Ok, finally just insert the thing.. */ 1571 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1572 set_pte_at(mm, addr, pte, entry); 1573 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1574 1575 retval = 0; 1576 out_unlock: 1577 pte_unmap_unlock(pte, ptl); 1578 out: 1579 return retval; 1580 } 1581 1582 /** 1583 * vm_insert_pfn - insert single pfn into user vma 1584 * @vma: user vma to map to 1585 * @addr: target user address of this page 1586 * @pfn: source kernel pfn 1587 * 1588 * Similar to vm_insert_page, this allows drivers to insert individual pages 1589 * they've allocated into a user vma. Same comments apply. 1590 * 1591 * This function should only be called from a vm_ops->fault handler, and 1592 * in that case the handler should return NULL. 1593 * 1594 * vma cannot be a COW mapping. 1595 * 1596 * As this is called only for pages that do not currently exist, we 1597 * do not need to flush old virtual caches or the TLB. 1598 */ 1599 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1600 unsigned long pfn) 1601 { 1602 int ret; 1603 pgprot_t pgprot = vma->vm_page_prot; 1604 /* 1605 * Technically, architectures with pte_special can avoid all these 1606 * restrictions (same for remap_pfn_range). However we would like 1607 * consistency in testing and feature parity among all, so we should 1608 * try to keep these invariants in place for everybody. 1609 */ 1610 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1611 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1612 (VM_PFNMAP|VM_MIXEDMAP)); 1613 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1614 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1615 1616 if (addr < vma->vm_start || addr >= vma->vm_end) 1617 return -EFAULT; 1618 if (track_pfn_insert(vma, &pgprot, pfn)) 1619 return -EINVAL; 1620 1621 ret = insert_pfn(vma, addr, pfn, pgprot); 1622 1623 return ret; 1624 } 1625 EXPORT_SYMBOL(vm_insert_pfn); 1626 1627 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1628 unsigned long pfn) 1629 { 1630 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1631 1632 if (addr < vma->vm_start || addr >= vma->vm_end) 1633 return -EFAULT; 1634 1635 /* 1636 * If we don't have pte special, then we have to use the pfn_valid() 1637 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1638 * refcount the page if pfn_valid is true (hence insert_page rather 1639 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1640 * without pte special, it would there be refcounted as a normal page. 1641 */ 1642 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1643 struct page *page; 1644 1645 page = pfn_to_page(pfn); 1646 return insert_page(vma, addr, page, vma->vm_page_prot); 1647 } 1648 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1649 } 1650 EXPORT_SYMBOL(vm_insert_mixed); 1651 1652 /* 1653 * maps a range of physical memory into the requested pages. the old 1654 * mappings are removed. any references to nonexistent pages results 1655 * in null mappings (currently treated as "copy-on-access") 1656 */ 1657 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1658 unsigned long addr, unsigned long end, 1659 unsigned long pfn, pgprot_t prot) 1660 { 1661 pte_t *pte; 1662 spinlock_t *ptl; 1663 1664 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1665 if (!pte) 1666 return -ENOMEM; 1667 arch_enter_lazy_mmu_mode(); 1668 do { 1669 BUG_ON(!pte_none(*pte)); 1670 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1671 pfn++; 1672 } while (pte++, addr += PAGE_SIZE, addr != end); 1673 arch_leave_lazy_mmu_mode(); 1674 pte_unmap_unlock(pte - 1, ptl); 1675 return 0; 1676 } 1677 1678 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1679 unsigned long addr, unsigned long end, 1680 unsigned long pfn, pgprot_t prot) 1681 { 1682 pmd_t *pmd; 1683 unsigned long next; 1684 1685 pfn -= addr >> PAGE_SHIFT; 1686 pmd = pmd_alloc(mm, pud, addr); 1687 if (!pmd) 1688 return -ENOMEM; 1689 VM_BUG_ON(pmd_trans_huge(*pmd)); 1690 do { 1691 next = pmd_addr_end(addr, end); 1692 if (remap_pte_range(mm, pmd, addr, next, 1693 pfn + (addr >> PAGE_SHIFT), prot)) 1694 return -ENOMEM; 1695 } while (pmd++, addr = next, addr != end); 1696 return 0; 1697 } 1698 1699 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1700 unsigned long addr, unsigned long end, 1701 unsigned long pfn, pgprot_t prot) 1702 { 1703 pud_t *pud; 1704 unsigned long next; 1705 1706 pfn -= addr >> PAGE_SHIFT; 1707 pud = pud_alloc(mm, pgd, addr); 1708 if (!pud) 1709 return -ENOMEM; 1710 do { 1711 next = pud_addr_end(addr, end); 1712 if (remap_pmd_range(mm, pud, addr, next, 1713 pfn + (addr >> PAGE_SHIFT), prot)) 1714 return -ENOMEM; 1715 } while (pud++, addr = next, addr != end); 1716 return 0; 1717 } 1718 1719 /** 1720 * remap_pfn_range - remap kernel memory to userspace 1721 * @vma: user vma to map to 1722 * @addr: target user address to start at 1723 * @pfn: physical address of kernel memory 1724 * @size: size of map area 1725 * @prot: page protection flags for this mapping 1726 * 1727 * Note: this is only safe if the mm semaphore is held when called. 1728 */ 1729 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1730 unsigned long pfn, unsigned long size, pgprot_t prot) 1731 { 1732 pgd_t *pgd; 1733 unsigned long next; 1734 unsigned long end = addr + PAGE_ALIGN(size); 1735 struct mm_struct *mm = vma->vm_mm; 1736 int err; 1737 1738 /* 1739 * Physically remapped pages are special. Tell the 1740 * rest of the world about it: 1741 * VM_IO tells people not to look at these pages 1742 * (accesses can have side effects). 1743 * VM_PFNMAP tells the core MM that the base pages are just 1744 * raw PFN mappings, and do not have a "struct page" associated 1745 * with them. 1746 * VM_DONTEXPAND 1747 * Disable vma merging and expanding with mremap(). 1748 * VM_DONTDUMP 1749 * Omit vma from core dump, even when VM_IO turned off. 1750 * 1751 * There's a horrible special case to handle copy-on-write 1752 * behaviour that some programs depend on. We mark the "original" 1753 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1754 * See vm_normal_page() for details. 1755 */ 1756 if (is_cow_mapping(vma->vm_flags)) { 1757 if (addr != vma->vm_start || end != vma->vm_end) 1758 return -EINVAL; 1759 vma->vm_pgoff = pfn; 1760 } 1761 1762 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 1763 if (err) 1764 return -EINVAL; 1765 1766 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1767 1768 BUG_ON(addr >= end); 1769 pfn -= addr >> PAGE_SHIFT; 1770 pgd = pgd_offset(mm, addr); 1771 flush_cache_range(vma, addr, end); 1772 do { 1773 next = pgd_addr_end(addr, end); 1774 err = remap_pud_range(mm, pgd, addr, next, 1775 pfn + (addr >> PAGE_SHIFT), prot); 1776 if (err) 1777 break; 1778 } while (pgd++, addr = next, addr != end); 1779 1780 if (err) 1781 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 1782 1783 return err; 1784 } 1785 EXPORT_SYMBOL(remap_pfn_range); 1786 1787 /** 1788 * vm_iomap_memory - remap memory to userspace 1789 * @vma: user vma to map to 1790 * @start: start of area 1791 * @len: size of area 1792 * 1793 * This is a simplified io_remap_pfn_range() for common driver use. The 1794 * driver just needs to give us the physical memory range to be mapped, 1795 * we'll figure out the rest from the vma information. 1796 * 1797 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1798 * whatever write-combining details or similar. 1799 */ 1800 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1801 { 1802 unsigned long vm_len, pfn, pages; 1803 1804 /* Check that the physical memory area passed in looks valid */ 1805 if (start + len < start) 1806 return -EINVAL; 1807 /* 1808 * You *really* shouldn't map things that aren't page-aligned, 1809 * but we've historically allowed it because IO memory might 1810 * just have smaller alignment. 1811 */ 1812 len += start & ~PAGE_MASK; 1813 pfn = start >> PAGE_SHIFT; 1814 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1815 if (pfn + pages < pfn) 1816 return -EINVAL; 1817 1818 /* We start the mapping 'vm_pgoff' pages into the area */ 1819 if (vma->vm_pgoff > pages) 1820 return -EINVAL; 1821 pfn += vma->vm_pgoff; 1822 pages -= vma->vm_pgoff; 1823 1824 /* Can we fit all of the mapping? */ 1825 vm_len = vma->vm_end - vma->vm_start; 1826 if (vm_len >> PAGE_SHIFT > pages) 1827 return -EINVAL; 1828 1829 /* Ok, let it rip */ 1830 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1831 } 1832 EXPORT_SYMBOL(vm_iomap_memory); 1833 1834 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1835 unsigned long addr, unsigned long end, 1836 pte_fn_t fn, void *data) 1837 { 1838 pte_t *pte; 1839 int err; 1840 pgtable_t token; 1841 spinlock_t *uninitialized_var(ptl); 1842 1843 pte = (mm == &init_mm) ? 1844 pte_alloc_kernel(pmd, addr) : 1845 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1846 if (!pte) 1847 return -ENOMEM; 1848 1849 BUG_ON(pmd_huge(*pmd)); 1850 1851 arch_enter_lazy_mmu_mode(); 1852 1853 token = pmd_pgtable(*pmd); 1854 1855 do { 1856 err = fn(pte++, token, addr, data); 1857 if (err) 1858 break; 1859 } while (addr += PAGE_SIZE, addr != end); 1860 1861 arch_leave_lazy_mmu_mode(); 1862 1863 if (mm != &init_mm) 1864 pte_unmap_unlock(pte-1, ptl); 1865 return err; 1866 } 1867 1868 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1869 unsigned long addr, unsigned long end, 1870 pte_fn_t fn, void *data) 1871 { 1872 pmd_t *pmd; 1873 unsigned long next; 1874 int err; 1875 1876 BUG_ON(pud_huge(*pud)); 1877 1878 pmd = pmd_alloc(mm, pud, addr); 1879 if (!pmd) 1880 return -ENOMEM; 1881 do { 1882 next = pmd_addr_end(addr, end); 1883 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1884 if (err) 1885 break; 1886 } while (pmd++, addr = next, addr != end); 1887 return err; 1888 } 1889 1890 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1891 unsigned long addr, unsigned long end, 1892 pte_fn_t fn, void *data) 1893 { 1894 pud_t *pud; 1895 unsigned long next; 1896 int err; 1897 1898 pud = pud_alloc(mm, pgd, addr); 1899 if (!pud) 1900 return -ENOMEM; 1901 do { 1902 next = pud_addr_end(addr, end); 1903 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1904 if (err) 1905 break; 1906 } while (pud++, addr = next, addr != end); 1907 return err; 1908 } 1909 1910 /* 1911 * Scan a region of virtual memory, filling in page tables as necessary 1912 * and calling a provided function on each leaf page table. 1913 */ 1914 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1915 unsigned long size, pte_fn_t fn, void *data) 1916 { 1917 pgd_t *pgd; 1918 unsigned long next; 1919 unsigned long end = addr + size; 1920 int err; 1921 1922 BUG_ON(addr >= end); 1923 pgd = pgd_offset(mm, addr); 1924 do { 1925 next = pgd_addr_end(addr, end); 1926 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1927 if (err) 1928 break; 1929 } while (pgd++, addr = next, addr != end); 1930 1931 return err; 1932 } 1933 EXPORT_SYMBOL_GPL(apply_to_page_range); 1934 1935 /* 1936 * handle_pte_fault chooses page fault handler according to an entry 1937 * which was read non-atomically. Before making any commitment, on 1938 * those architectures or configurations (e.g. i386 with PAE) which 1939 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 1940 * must check under lock before unmapping the pte and proceeding 1941 * (but do_wp_page is only called after already making such a check; 1942 * and do_anonymous_page can safely check later on). 1943 */ 1944 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1945 pte_t *page_table, pte_t orig_pte) 1946 { 1947 int same = 1; 1948 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1949 if (sizeof(pte_t) > sizeof(unsigned long)) { 1950 spinlock_t *ptl = pte_lockptr(mm, pmd); 1951 spin_lock(ptl); 1952 same = pte_same(*page_table, orig_pte); 1953 spin_unlock(ptl); 1954 } 1955 #endif 1956 pte_unmap(page_table); 1957 return same; 1958 } 1959 1960 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1961 { 1962 debug_dma_assert_idle(src); 1963 1964 /* 1965 * If the source page was a PFN mapping, we don't have 1966 * a "struct page" for it. We do a best-effort copy by 1967 * just copying from the original user address. If that 1968 * fails, we just zero-fill it. Live with it. 1969 */ 1970 if (unlikely(!src)) { 1971 void *kaddr = kmap_atomic(dst); 1972 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1973 1974 /* 1975 * This really shouldn't fail, because the page is there 1976 * in the page tables. But it might just be unreadable, 1977 * in which case we just give up and fill the result with 1978 * zeroes. 1979 */ 1980 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1981 clear_page(kaddr); 1982 kunmap_atomic(kaddr); 1983 flush_dcache_page(dst); 1984 } else 1985 copy_user_highpage(dst, src, va, vma); 1986 } 1987 1988 /* 1989 * Notify the address space that the page is about to become writable so that 1990 * it can prohibit this or wait for the page to get into an appropriate state. 1991 * 1992 * We do this without the lock held, so that it can sleep if it needs to. 1993 */ 1994 static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page, 1995 unsigned long address) 1996 { 1997 struct vm_fault vmf; 1998 int ret; 1999 2000 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2001 vmf.pgoff = page->index; 2002 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2003 vmf.page = page; 2004 2005 ret = vma->vm_ops->page_mkwrite(vma, &vmf); 2006 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2007 return ret; 2008 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2009 lock_page(page); 2010 if (!page->mapping) { 2011 unlock_page(page); 2012 return 0; /* retry */ 2013 } 2014 ret |= VM_FAULT_LOCKED; 2015 } else 2016 VM_BUG_ON_PAGE(!PageLocked(page), page); 2017 return ret; 2018 } 2019 2020 /* 2021 * This routine handles present pages, when users try to write 2022 * to a shared page. It is done by copying the page to a new address 2023 * and decrementing the shared-page counter for the old page. 2024 * 2025 * Note that this routine assumes that the protection checks have been 2026 * done by the caller (the low-level page fault routine in most cases). 2027 * Thus we can safely just mark it writable once we've done any necessary 2028 * COW. 2029 * 2030 * We also mark the page dirty at this point even though the page will 2031 * change only once the write actually happens. This avoids a few races, 2032 * and potentially makes it more efficient. 2033 * 2034 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2035 * but allow concurrent faults), with pte both mapped and locked. 2036 * We return with mmap_sem still held, but pte unmapped and unlocked. 2037 */ 2038 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2039 unsigned long address, pte_t *page_table, pmd_t *pmd, 2040 spinlock_t *ptl, pte_t orig_pte) 2041 __releases(ptl) 2042 { 2043 struct page *old_page, *new_page = NULL; 2044 pte_t entry; 2045 int ret = 0; 2046 int page_mkwrite = 0; 2047 struct page *dirty_page = NULL; 2048 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2049 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2050 struct mem_cgroup *memcg; 2051 2052 old_page = vm_normal_page(vma, address, orig_pte); 2053 if (!old_page) { 2054 /* 2055 * VM_MIXEDMAP !pfn_valid() case 2056 * 2057 * We should not cow pages in a shared writeable mapping. 2058 * Just mark the pages writable as we can't do any dirty 2059 * accounting on raw pfn maps. 2060 */ 2061 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2062 (VM_WRITE|VM_SHARED)) 2063 goto reuse; 2064 goto gotten; 2065 } 2066 2067 /* 2068 * Take out anonymous pages first, anonymous shared vmas are 2069 * not dirty accountable. 2070 */ 2071 if (PageAnon(old_page) && !PageKsm(old_page)) { 2072 if (!trylock_page(old_page)) { 2073 page_cache_get(old_page); 2074 pte_unmap_unlock(page_table, ptl); 2075 lock_page(old_page); 2076 page_table = pte_offset_map_lock(mm, pmd, address, 2077 &ptl); 2078 if (!pte_same(*page_table, orig_pte)) { 2079 unlock_page(old_page); 2080 goto unlock; 2081 } 2082 page_cache_release(old_page); 2083 } 2084 if (reuse_swap_page(old_page)) { 2085 /* 2086 * The page is all ours. Move it to our anon_vma so 2087 * the rmap code will not search our parent or siblings. 2088 * Protected against the rmap code by the page lock. 2089 */ 2090 page_move_anon_rmap(old_page, vma, address); 2091 unlock_page(old_page); 2092 goto reuse; 2093 } 2094 unlock_page(old_page); 2095 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2096 (VM_WRITE|VM_SHARED))) { 2097 /* 2098 * Only catch write-faults on shared writable pages, 2099 * read-only shared pages can get COWed by 2100 * get_user_pages(.write=1, .force=1). 2101 */ 2102 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2103 int tmp; 2104 page_cache_get(old_page); 2105 pte_unmap_unlock(page_table, ptl); 2106 tmp = do_page_mkwrite(vma, old_page, address); 2107 if (unlikely(!tmp || (tmp & 2108 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2109 page_cache_release(old_page); 2110 return tmp; 2111 } 2112 /* 2113 * Since we dropped the lock we need to revalidate 2114 * the PTE as someone else may have changed it. If 2115 * they did, we just return, as we can count on the 2116 * MMU to tell us if they didn't also make it writable. 2117 */ 2118 page_table = pte_offset_map_lock(mm, pmd, address, 2119 &ptl); 2120 if (!pte_same(*page_table, orig_pte)) { 2121 unlock_page(old_page); 2122 goto unlock; 2123 } 2124 2125 page_mkwrite = 1; 2126 } 2127 dirty_page = old_page; 2128 get_page(dirty_page); 2129 2130 reuse: 2131 /* 2132 * Clear the pages cpupid information as the existing 2133 * information potentially belongs to a now completely 2134 * unrelated process. 2135 */ 2136 if (old_page) 2137 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1); 2138 2139 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2140 entry = pte_mkyoung(orig_pte); 2141 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2142 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2143 update_mmu_cache(vma, address, page_table); 2144 pte_unmap_unlock(page_table, ptl); 2145 ret |= VM_FAULT_WRITE; 2146 2147 if (!dirty_page) 2148 return ret; 2149 2150 /* 2151 * Yes, Virginia, this is actually required to prevent a race 2152 * with clear_page_dirty_for_io() from clearing the page dirty 2153 * bit after it clear all dirty ptes, but before a racing 2154 * do_wp_page installs a dirty pte. 2155 * 2156 * do_shared_fault is protected similarly. 2157 */ 2158 if (!page_mkwrite) { 2159 wait_on_page_locked(dirty_page); 2160 set_page_dirty_balance(dirty_page); 2161 /* file_update_time outside page_lock */ 2162 if (vma->vm_file) 2163 file_update_time(vma->vm_file); 2164 } 2165 put_page(dirty_page); 2166 if (page_mkwrite) { 2167 struct address_space *mapping = dirty_page->mapping; 2168 2169 set_page_dirty(dirty_page); 2170 unlock_page(dirty_page); 2171 page_cache_release(dirty_page); 2172 if (mapping) { 2173 /* 2174 * Some device drivers do not set page.mapping 2175 * but still dirty their pages 2176 */ 2177 balance_dirty_pages_ratelimited(mapping); 2178 } 2179 } 2180 2181 return ret; 2182 } 2183 2184 /* 2185 * Ok, we need to copy. Oh, well.. 2186 */ 2187 page_cache_get(old_page); 2188 gotten: 2189 pte_unmap_unlock(page_table, ptl); 2190 2191 if (unlikely(anon_vma_prepare(vma))) 2192 goto oom; 2193 2194 if (is_zero_pfn(pte_pfn(orig_pte))) { 2195 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2196 if (!new_page) 2197 goto oom; 2198 } else { 2199 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2200 if (!new_page) 2201 goto oom; 2202 cow_user_page(new_page, old_page, address, vma); 2203 } 2204 __SetPageUptodate(new_page); 2205 2206 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) 2207 goto oom_free_new; 2208 2209 mmun_start = address & PAGE_MASK; 2210 mmun_end = mmun_start + PAGE_SIZE; 2211 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2212 2213 /* 2214 * Re-check the pte - we dropped the lock 2215 */ 2216 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2217 if (likely(pte_same(*page_table, orig_pte))) { 2218 if (old_page) { 2219 if (!PageAnon(old_page)) { 2220 dec_mm_counter_fast(mm, MM_FILEPAGES); 2221 inc_mm_counter_fast(mm, MM_ANONPAGES); 2222 } 2223 } else 2224 inc_mm_counter_fast(mm, MM_ANONPAGES); 2225 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2226 entry = mk_pte(new_page, vma->vm_page_prot); 2227 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2228 /* 2229 * Clear the pte entry and flush it first, before updating the 2230 * pte with the new entry. This will avoid a race condition 2231 * seen in the presence of one thread doing SMC and another 2232 * thread doing COW. 2233 */ 2234 ptep_clear_flush(vma, address, page_table); 2235 page_add_new_anon_rmap(new_page, vma, address); 2236 mem_cgroup_commit_charge(new_page, memcg, false); 2237 lru_cache_add_active_or_unevictable(new_page, vma); 2238 /* 2239 * We call the notify macro here because, when using secondary 2240 * mmu page tables (such as kvm shadow page tables), we want the 2241 * new page to be mapped directly into the secondary page table. 2242 */ 2243 set_pte_at_notify(mm, address, page_table, entry); 2244 update_mmu_cache(vma, address, page_table); 2245 if (old_page) { 2246 /* 2247 * Only after switching the pte to the new page may 2248 * we remove the mapcount here. Otherwise another 2249 * process may come and find the rmap count decremented 2250 * before the pte is switched to the new page, and 2251 * "reuse" the old page writing into it while our pte 2252 * here still points into it and can be read by other 2253 * threads. 2254 * 2255 * The critical issue is to order this 2256 * page_remove_rmap with the ptp_clear_flush above. 2257 * Those stores are ordered by (if nothing else,) 2258 * the barrier present in the atomic_add_negative 2259 * in page_remove_rmap. 2260 * 2261 * Then the TLB flush in ptep_clear_flush ensures that 2262 * no process can access the old page before the 2263 * decremented mapcount is visible. And the old page 2264 * cannot be reused until after the decremented 2265 * mapcount is visible. So transitively, TLBs to 2266 * old page will be flushed before it can be reused. 2267 */ 2268 page_remove_rmap(old_page); 2269 } 2270 2271 /* Free the old page.. */ 2272 new_page = old_page; 2273 ret |= VM_FAULT_WRITE; 2274 } else 2275 mem_cgroup_cancel_charge(new_page, memcg); 2276 2277 if (new_page) 2278 page_cache_release(new_page); 2279 unlock: 2280 pte_unmap_unlock(page_table, ptl); 2281 if (mmun_end > mmun_start) 2282 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2283 if (old_page) { 2284 /* 2285 * Don't let another task, with possibly unlocked vma, 2286 * keep the mlocked page. 2287 */ 2288 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2289 lock_page(old_page); /* LRU manipulation */ 2290 munlock_vma_page(old_page); 2291 unlock_page(old_page); 2292 } 2293 page_cache_release(old_page); 2294 } 2295 return ret; 2296 oom_free_new: 2297 page_cache_release(new_page); 2298 oom: 2299 if (old_page) 2300 page_cache_release(old_page); 2301 return VM_FAULT_OOM; 2302 } 2303 2304 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2305 unsigned long start_addr, unsigned long end_addr, 2306 struct zap_details *details) 2307 { 2308 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2309 } 2310 2311 static inline void unmap_mapping_range_tree(struct rb_root *root, 2312 struct zap_details *details) 2313 { 2314 struct vm_area_struct *vma; 2315 pgoff_t vba, vea, zba, zea; 2316 2317 vma_interval_tree_foreach(vma, root, 2318 details->first_index, details->last_index) { 2319 2320 vba = vma->vm_pgoff; 2321 vea = vba + vma_pages(vma) - 1; 2322 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2323 zba = details->first_index; 2324 if (zba < vba) 2325 zba = vba; 2326 zea = details->last_index; 2327 if (zea > vea) 2328 zea = vea; 2329 2330 unmap_mapping_range_vma(vma, 2331 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2332 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2333 details); 2334 } 2335 } 2336 2337 static inline void unmap_mapping_range_list(struct list_head *head, 2338 struct zap_details *details) 2339 { 2340 struct vm_area_struct *vma; 2341 2342 /* 2343 * In nonlinear VMAs there is no correspondence between virtual address 2344 * offset and file offset. So we must perform an exhaustive search 2345 * across *all* the pages in each nonlinear VMA, not just the pages 2346 * whose virtual address lies outside the file truncation point. 2347 */ 2348 list_for_each_entry(vma, head, shared.nonlinear) { 2349 details->nonlinear_vma = vma; 2350 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2351 } 2352 } 2353 2354 /** 2355 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2356 * @mapping: the address space containing mmaps to be unmapped. 2357 * @holebegin: byte in first page to unmap, relative to the start of 2358 * the underlying file. This will be rounded down to a PAGE_SIZE 2359 * boundary. Note that this is different from truncate_pagecache(), which 2360 * must keep the partial page. In contrast, we must get rid of 2361 * partial pages. 2362 * @holelen: size of prospective hole in bytes. This will be rounded 2363 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2364 * end of the file. 2365 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2366 * but 0 when invalidating pagecache, don't throw away private data. 2367 */ 2368 void unmap_mapping_range(struct address_space *mapping, 2369 loff_t const holebegin, loff_t const holelen, int even_cows) 2370 { 2371 struct zap_details details; 2372 pgoff_t hba = holebegin >> PAGE_SHIFT; 2373 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2374 2375 /* Check for overflow. */ 2376 if (sizeof(holelen) > sizeof(hlen)) { 2377 long long holeend = 2378 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2379 if (holeend & ~(long long)ULONG_MAX) 2380 hlen = ULONG_MAX - hba + 1; 2381 } 2382 2383 details.check_mapping = even_cows? NULL: mapping; 2384 details.nonlinear_vma = NULL; 2385 details.first_index = hba; 2386 details.last_index = hba + hlen - 1; 2387 if (details.last_index < details.first_index) 2388 details.last_index = ULONG_MAX; 2389 2390 2391 mutex_lock(&mapping->i_mmap_mutex); 2392 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2393 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2394 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2395 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2396 mutex_unlock(&mapping->i_mmap_mutex); 2397 } 2398 EXPORT_SYMBOL(unmap_mapping_range); 2399 2400 /* 2401 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2402 * but allow concurrent faults), and pte mapped but not yet locked. 2403 * We return with pte unmapped and unlocked. 2404 * 2405 * We return with the mmap_sem locked or unlocked in the same cases 2406 * as does filemap_fault(). 2407 */ 2408 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2409 unsigned long address, pte_t *page_table, pmd_t *pmd, 2410 unsigned int flags, pte_t orig_pte) 2411 { 2412 spinlock_t *ptl; 2413 struct page *page, *swapcache; 2414 struct mem_cgroup *memcg; 2415 swp_entry_t entry; 2416 pte_t pte; 2417 int locked; 2418 int exclusive = 0; 2419 int ret = 0; 2420 2421 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2422 goto out; 2423 2424 entry = pte_to_swp_entry(orig_pte); 2425 if (unlikely(non_swap_entry(entry))) { 2426 if (is_migration_entry(entry)) { 2427 migration_entry_wait(mm, pmd, address); 2428 } else if (is_hwpoison_entry(entry)) { 2429 ret = VM_FAULT_HWPOISON; 2430 } else { 2431 print_bad_pte(vma, address, orig_pte, NULL); 2432 ret = VM_FAULT_SIGBUS; 2433 } 2434 goto out; 2435 } 2436 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2437 page = lookup_swap_cache(entry); 2438 if (!page) { 2439 page = swapin_readahead(entry, 2440 GFP_HIGHUSER_MOVABLE, vma, address); 2441 if (!page) { 2442 /* 2443 * Back out if somebody else faulted in this pte 2444 * while we released the pte lock. 2445 */ 2446 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2447 if (likely(pte_same(*page_table, orig_pte))) 2448 ret = VM_FAULT_OOM; 2449 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2450 goto unlock; 2451 } 2452 2453 /* Had to read the page from swap area: Major fault */ 2454 ret = VM_FAULT_MAJOR; 2455 count_vm_event(PGMAJFAULT); 2456 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 2457 } else if (PageHWPoison(page)) { 2458 /* 2459 * hwpoisoned dirty swapcache pages are kept for killing 2460 * owner processes (which may be unknown at hwpoison time) 2461 */ 2462 ret = VM_FAULT_HWPOISON; 2463 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2464 swapcache = page; 2465 goto out_release; 2466 } 2467 2468 swapcache = page; 2469 locked = lock_page_or_retry(page, mm, flags); 2470 2471 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2472 if (!locked) { 2473 ret |= VM_FAULT_RETRY; 2474 goto out_release; 2475 } 2476 2477 /* 2478 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2479 * release the swapcache from under us. The page pin, and pte_same 2480 * test below, are not enough to exclude that. Even if it is still 2481 * swapcache, we need to check that the page's swap has not changed. 2482 */ 2483 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 2484 goto out_page; 2485 2486 page = ksm_might_need_to_copy(page, vma, address); 2487 if (unlikely(!page)) { 2488 ret = VM_FAULT_OOM; 2489 page = swapcache; 2490 goto out_page; 2491 } 2492 2493 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) { 2494 ret = VM_FAULT_OOM; 2495 goto out_page; 2496 } 2497 2498 /* 2499 * Back out if somebody else already faulted in this pte. 2500 */ 2501 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2502 if (unlikely(!pte_same(*page_table, orig_pte))) 2503 goto out_nomap; 2504 2505 if (unlikely(!PageUptodate(page))) { 2506 ret = VM_FAULT_SIGBUS; 2507 goto out_nomap; 2508 } 2509 2510 /* 2511 * The page isn't present yet, go ahead with the fault. 2512 * 2513 * Be careful about the sequence of operations here. 2514 * To get its accounting right, reuse_swap_page() must be called 2515 * while the page is counted on swap but not yet in mapcount i.e. 2516 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2517 * must be called after the swap_free(), or it will never succeed. 2518 */ 2519 2520 inc_mm_counter_fast(mm, MM_ANONPAGES); 2521 dec_mm_counter_fast(mm, MM_SWAPENTS); 2522 pte = mk_pte(page, vma->vm_page_prot); 2523 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2524 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2525 flags &= ~FAULT_FLAG_WRITE; 2526 ret |= VM_FAULT_WRITE; 2527 exclusive = 1; 2528 } 2529 flush_icache_page(vma, page); 2530 if (pte_swp_soft_dirty(orig_pte)) 2531 pte = pte_mksoft_dirty(pte); 2532 set_pte_at(mm, address, page_table, pte); 2533 if (page == swapcache) { 2534 do_page_add_anon_rmap(page, vma, address, exclusive); 2535 mem_cgroup_commit_charge(page, memcg, true); 2536 } else { /* ksm created a completely new copy */ 2537 page_add_new_anon_rmap(page, vma, address); 2538 mem_cgroup_commit_charge(page, memcg, false); 2539 lru_cache_add_active_or_unevictable(page, vma); 2540 } 2541 2542 swap_free(entry); 2543 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2544 try_to_free_swap(page); 2545 unlock_page(page); 2546 if (page != swapcache) { 2547 /* 2548 * Hold the lock to avoid the swap entry to be reused 2549 * until we take the PT lock for the pte_same() check 2550 * (to avoid false positives from pte_same). For 2551 * further safety release the lock after the swap_free 2552 * so that the swap count won't change under a 2553 * parallel locked swapcache. 2554 */ 2555 unlock_page(swapcache); 2556 page_cache_release(swapcache); 2557 } 2558 2559 if (flags & FAULT_FLAG_WRITE) { 2560 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2561 if (ret & VM_FAULT_ERROR) 2562 ret &= VM_FAULT_ERROR; 2563 goto out; 2564 } 2565 2566 /* No need to invalidate - it was non-present before */ 2567 update_mmu_cache(vma, address, page_table); 2568 unlock: 2569 pte_unmap_unlock(page_table, ptl); 2570 out: 2571 return ret; 2572 out_nomap: 2573 mem_cgroup_cancel_charge(page, memcg); 2574 pte_unmap_unlock(page_table, ptl); 2575 out_page: 2576 unlock_page(page); 2577 out_release: 2578 page_cache_release(page); 2579 if (page != swapcache) { 2580 unlock_page(swapcache); 2581 page_cache_release(swapcache); 2582 } 2583 return ret; 2584 } 2585 2586 /* 2587 * This is like a special single-page "expand_{down|up}wards()", 2588 * except we must first make sure that 'address{-|+}PAGE_SIZE' 2589 * doesn't hit another vma. 2590 */ 2591 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 2592 { 2593 address &= PAGE_MASK; 2594 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 2595 struct vm_area_struct *prev = vma->vm_prev; 2596 2597 /* 2598 * Is there a mapping abutting this one below? 2599 * 2600 * That's only ok if it's the same stack mapping 2601 * that has gotten split.. 2602 */ 2603 if (prev && prev->vm_end == address) 2604 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 2605 2606 expand_downwards(vma, address - PAGE_SIZE); 2607 } 2608 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 2609 struct vm_area_struct *next = vma->vm_next; 2610 2611 /* As VM_GROWSDOWN but s/below/above/ */ 2612 if (next && next->vm_start == address + PAGE_SIZE) 2613 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 2614 2615 expand_upwards(vma, address + PAGE_SIZE); 2616 } 2617 return 0; 2618 } 2619 2620 /* 2621 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2622 * but allow concurrent faults), and pte mapped but not yet locked. 2623 * We return with mmap_sem still held, but pte unmapped and unlocked. 2624 */ 2625 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2626 unsigned long address, pte_t *page_table, pmd_t *pmd, 2627 unsigned int flags) 2628 { 2629 struct mem_cgroup *memcg; 2630 struct page *page; 2631 spinlock_t *ptl; 2632 pte_t entry; 2633 2634 pte_unmap(page_table); 2635 2636 /* Check if we need to add a guard page to the stack */ 2637 if (check_stack_guard_page(vma, address) < 0) 2638 return VM_FAULT_SIGBUS; 2639 2640 /* Use the zero-page for reads */ 2641 if (!(flags & FAULT_FLAG_WRITE)) { 2642 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 2643 vma->vm_page_prot)); 2644 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2645 if (!pte_none(*page_table)) 2646 goto unlock; 2647 goto setpte; 2648 } 2649 2650 /* Allocate our own private page. */ 2651 if (unlikely(anon_vma_prepare(vma))) 2652 goto oom; 2653 page = alloc_zeroed_user_highpage_movable(vma, address); 2654 if (!page) 2655 goto oom; 2656 /* 2657 * The memory barrier inside __SetPageUptodate makes sure that 2658 * preceeding stores to the page contents become visible before 2659 * the set_pte_at() write. 2660 */ 2661 __SetPageUptodate(page); 2662 2663 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) 2664 goto oom_free_page; 2665 2666 entry = mk_pte(page, vma->vm_page_prot); 2667 if (vma->vm_flags & VM_WRITE) 2668 entry = pte_mkwrite(pte_mkdirty(entry)); 2669 2670 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2671 if (!pte_none(*page_table)) 2672 goto release; 2673 2674 inc_mm_counter_fast(mm, MM_ANONPAGES); 2675 page_add_new_anon_rmap(page, vma, address); 2676 mem_cgroup_commit_charge(page, memcg, false); 2677 lru_cache_add_active_or_unevictable(page, vma); 2678 setpte: 2679 set_pte_at(mm, address, page_table, entry); 2680 2681 /* No need to invalidate - it was non-present before */ 2682 update_mmu_cache(vma, address, page_table); 2683 unlock: 2684 pte_unmap_unlock(page_table, ptl); 2685 return 0; 2686 release: 2687 mem_cgroup_cancel_charge(page, memcg); 2688 page_cache_release(page); 2689 goto unlock; 2690 oom_free_page: 2691 page_cache_release(page); 2692 oom: 2693 return VM_FAULT_OOM; 2694 } 2695 2696 /* 2697 * The mmap_sem must have been held on entry, and may have been 2698 * released depending on flags and vma->vm_ops->fault() return value. 2699 * See filemap_fault() and __lock_page_retry(). 2700 */ 2701 static int __do_fault(struct vm_area_struct *vma, unsigned long address, 2702 pgoff_t pgoff, unsigned int flags, struct page **page) 2703 { 2704 struct vm_fault vmf; 2705 int ret; 2706 2707 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2708 vmf.pgoff = pgoff; 2709 vmf.flags = flags; 2710 vmf.page = NULL; 2711 2712 ret = vma->vm_ops->fault(vma, &vmf); 2713 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2714 return ret; 2715 2716 if (unlikely(PageHWPoison(vmf.page))) { 2717 if (ret & VM_FAULT_LOCKED) 2718 unlock_page(vmf.page); 2719 page_cache_release(vmf.page); 2720 return VM_FAULT_HWPOISON; 2721 } 2722 2723 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2724 lock_page(vmf.page); 2725 else 2726 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page); 2727 2728 *page = vmf.page; 2729 return ret; 2730 } 2731 2732 /** 2733 * do_set_pte - setup new PTE entry for given page and add reverse page mapping. 2734 * 2735 * @vma: virtual memory area 2736 * @address: user virtual address 2737 * @page: page to map 2738 * @pte: pointer to target page table entry 2739 * @write: true, if new entry is writable 2740 * @anon: true, if it's anonymous page 2741 * 2742 * Caller must hold page table lock relevant for @pte. 2743 * 2744 * Target users are page handler itself and implementations of 2745 * vm_ops->map_pages. 2746 */ 2747 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 2748 struct page *page, pte_t *pte, bool write, bool anon) 2749 { 2750 pte_t entry; 2751 2752 flush_icache_page(vma, page); 2753 entry = mk_pte(page, vma->vm_page_prot); 2754 if (write) 2755 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2756 else if (pte_file(*pte) && pte_file_soft_dirty(*pte)) 2757 entry = pte_mksoft_dirty(entry); 2758 if (anon) { 2759 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2760 page_add_new_anon_rmap(page, vma, address); 2761 } else { 2762 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES); 2763 page_add_file_rmap(page); 2764 } 2765 set_pte_at(vma->vm_mm, address, pte, entry); 2766 2767 /* no need to invalidate: a not-present page won't be cached */ 2768 update_mmu_cache(vma, address, pte); 2769 } 2770 2771 static unsigned long fault_around_bytes __read_mostly = 2772 rounddown_pow_of_two(65536); 2773 2774 #ifdef CONFIG_DEBUG_FS 2775 static int fault_around_bytes_get(void *data, u64 *val) 2776 { 2777 *val = fault_around_bytes; 2778 return 0; 2779 } 2780 2781 /* 2782 * fault_around_pages() and fault_around_mask() expects fault_around_bytes 2783 * rounded down to nearest page order. It's what do_fault_around() expects to 2784 * see. 2785 */ 2786 static int fault_around_bytes_set(void *data, u64 val) 2787 { 2788 if (val / PAGE_SIZE > PTRS_PER_PTE) 2789 return -EINVAL; 2790 if (val > PAGE_SIZE) 2791 fault_around_bytes = rounddown_pow_of_two(val); 2792 else 2793 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 2794 return 0; 2795 } 2796 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops, 2797 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 2798 2799 static int __init fault_around_debugfs(void) 2800 { 2801 void *ret; 2802 2803 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL, 2804 &fault_around_bytes_fops); 2805 if (!ret) 2806 pr_warn("Failed to create fault_around_bytes in debugfs"); 2807 return 0; 2808 } 2809 late_initcall(fault_around_debugfs); 2810 #endif 2811 2812 /* 2813 * do_fault_around() tries to map few pages around the fault address. The hope 2814 * is that the pages will be needed soon and this will lower the number of 2815 * faults to handle. 2816 * 2817 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 2818 * not ready to be mapped: not up-to-date, locked, etc. 2819 * 2820 * This function is called with the page table lock taken. In the split ptlock 2821 * case the page table lock only protects only those entries which belong to 2822 * the page table corresponding to the fault address. 2823 * 2824 * This function doesn't cross the VMA boundaries, in order to call map_pages() 2825 * only once. 2826 * 2827 * fault_around_pages() defines how many pages we'll try to map. 2828 * do_fault_around() expects it to return a power of two less than or equal to 2829 * PTRS_PER_PTE. 2830 * 2831 * The virtual address of the area that we map is naturally aligned to the 2832 * fault_around_pages() value (and therefore to page order). This way it's 2833 * easier to guarantee that we don't cross page table boundaries. 2834 */ 2835 static void do_fault_around(struct vm_area_struct *vma, unsigned long address, 2836 pte_t *pte, pgoff_t pgoff, unsigned int flags) 2837 { 2838 unsigned long start_addr, nr_pages, mask; 2839 pgoff_t max_pgoff; 2840 struct vm_fault vmf; 2841 int off; 2842 2843 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT; 2844 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 2845 2846 start_addr = max(address & mask, vma->vm_start); 2847 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 2848 pte -= off; 2849 pgoff -= off; 2850 2851 /* 2852 * max_pgoff is either end of page table or end of vma 2853 * or fault_around_pages() from pgoff, depending what is nearest. 2854 */ 2855 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 2856 PTRS_PER_PTE - 1; 2857 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1, 2858 pgoff + nr_pages - 1); 2859 2860 /* Check if it makes any sense to call ->map_pages */ 2861 while (!pte_none(*pte)) { 2862 if (++pgoff > max_pgoff) 2863 return; 2864 start_addr += PAGE_SIZE; 2865 if (start_addr >= vma->vm_end) 2866 return; 2867 pte++; 2868 } 2869 2870 vmf.virtual_address = (void __user *) start_addr; 2871 vmf.pte = pte; 2872 vmf.pgoff = pgoff; 2873 vmf.max_pgoff = max_pgoff; 2874 vmf.flags = flags; 2875 vma->vm_ops->map_pages(vma, &vmf); 2876 } 2877 2878 static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2879 unsigned long address, pmd_t *pmd, 2880 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2881 { 2882 struct page *fault_page; 2883 spinlock_t *ptl; 2884 pte_t *pte; 2885 int ret = 0; 2886 2887 /* 2888 * Let's call ->map_pages() first and use ->fault() as fallback 2889 * if page by the offset is not ready to be mapped (cold cache or 2890 * something). 2891 */ 2892 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) && 2893 fault_around_bytes >> PAGE_SHIFT > 1) { 2894 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2895 do_fault_around(vma, address, pte, pgoff, flags); 2896 if (!pte_same(*pte, orig_pte)) 2897 goto unlock_out; 2898 pte_unmap_unlock(pte, ptl); 2899 } 2900 2901 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2902 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2903 return ret; 2904 2905 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2906 if (unlikely(!pte_same(*pte, orig_pte))) { 2907 pte_unmap_unlock(pte, ptl); 2908 unlock_page(fault_page); 2909 page_cache_release(fault_page); 2910 return ret; 2911 } 2912 do_set_pte(vma, address, fault_page, pte, false, false); 2913 unlock_page(fault_page); 2914 unlock_out: 2915 pte_unmap_unlock(pte, ptl); 2916 return ret; 2917 } 2918 2919 static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2920 unsigned long address, pmd_t *pmd, 2921 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2922 { 2923 struct page *fault_page, *new_page; 2924 struct mem_cgroup *memcg; 2925 spinlock_t *ptl; 2926 pte_t *pte; 2927 int ret; 2928 2929 if (unlikely(anon_vma_prepare(vma))) 2930 return VM_FAULT_OOM; 2931 2932 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2933 if (!new_page) 2934 return VM_FAULT_OOM; 2935 2936 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) { 2937 page_cache_release(new_page); 2938 return VM_FAULT_OOM; 2939 } 2940 2941 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2942 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2943 goto uncharge_out; 2944 2945 copy_user_highpage(new_page, fault_page, address, vma); 2946 __SetPageUptodate(new_page); 2947 2948 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2949 if (unlikely(!pte_same(*pte, orig_pte))) { 2950 pte_unmap_unlock(pte, ptl); 2951 unlock_page(fault_page); 2952 page_cache_release(fault_page); 2953 goto uncharge_out; 2954 } 2955 do_set_pte(vma, address, new_page, pte, true, true); 2956 mem_cgroup_commit_charge(new_page, memcg, false); 2957 lru_cache_add_active_or_unevictable(new_page, vma); 2958 pte_unmap_unlock(pte, ptl); 2959 unlock_page(fault_page); 2960 page_cache_release(fault_page); 2961 return ret; 2962 uncharge_out: 2963 mem_cgroup_cancel_charge(new_page, memcg); 2964 page_cache_release(new_page); 2965 return ret; 2966 } 2967 2968 static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2969 unsigned long address, pmd_t *pmd, 2970 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2971 { 2972 struct page *fault_page; 2973 struct address_space *mapping; 2974 spinlock_t *ptl; 2975 pte_t *pte; 2976 int dirtied = 0; 2977 int ret, tmp; 2978 2979 ret = __do_fault(vma, address, pgoff, flags, &fault_page); 2980 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 2981 return ret; 2982 2983 /* 2984 * Check if the backing address space wants to know that the page is 2985 * about to become writable 2986 */ 2987 if (vma->vm_ops->page_mkwrite) { 2988 unlock_page(fault_page); 2989 tmp = do_page_mkwrite(vma, fault_page, address); 2990 if (unlikely(!tmp || 2991 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2992 page_cache_release(fault_page); 2993 return tmp; 2994 } 2995 } 2996 2997 pte = pte_offset_map_lock(mm, pmd, address, &ptl); 2998 if (unlikely(!pte_same(*pte, orig_pte))) { 2999 pte_unmap_unlock(pte, ptl); 3000 unlock_page(fault_page); 3001 page_cache_release(fault_page); 3002 return ret; 3003 } 3004 do_set_pte(vma, address, fault_page, pte, true, false); 3005 pte_unmap_unlock(pte, ptl); 3006 3007 if (set_page_dirty(fault_page)) 3008 dirtied = 1; 3009 mapping = fault_page->mapping; 3010 unlock_page(fault_page); 3011 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) { 3012 /* 3013 * Some device drivers do not set page.mapping but still 3014 * dirty their pages 3015 */ 3016 balance_dirty_pages_ratelimited(mapping); 3017 } 3018 3019 /* file_update_time outside page_lock */ 3020 if (vma->vm_file && !vma->vm_ops->page_mkwrite) 3021 file_update_time(vma->vm_file); 3022 3023 return ret; 3024 } 3025 3026 /* 3027 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3028 * but allow concurrent faults). 3029 * The mmap_sem may have been released depending on flags and our 3030 * return value. See filemap_fault() and __lock_page_or_retry(). 3031 */ 3032 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3033 unsigned long address, pte_t *page_table, pmd_t *pmd, 3034 unsigned int flags, pte_t orig_pte) 3035 { 3036 pgoff_t pgoff = (((address & PAGE_MASK) 3037 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3038 3039 pte_unmap(page_table); 3040 if (!(flags & FAULT_FLAG_WRITE)) 3041 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3042 orig_pte); 3043 if (!(vma->vm_flags & VM_SHARED)) 3044 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3045 orig_pte); 3046 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3047 } 3048 3049 /* 3050 * Fault of a previously existing named mapping. Repopulate the pte 3051 * from the encoded file_pte if possible. This enables swappable 3052 * nonlinear vmas. 3053 * 3054 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3055 * but allow concurrent faults), and pte mapped but not yet locked. 3056 * We return with pte unmapped and unlocked. 3057 * The mmap_sem may have been released depending on flags and our 3058 * return value. See filemap_fault() and __lock_page_or_retry(). 3059 */ 3060 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3061 unsigned long address, pte_t *page_table, pmd_t *pmd, 3062 unsigned int flags, pte_t orig_pte) 3063 { 3064 pgoff_t pgoff; 3065 3066 flags |= FAULT_FLAG_NONLINEAR; 3067 3068 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3069 return 0; 3070 3071 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3072 /* 3073 * Page table corrupted: show pte and kill process. 3074 */ 3075 print_bad_pte(vma, address, orig_pte, NULL); 3076 return VM_FAULT_SIGBUS; 3077 } 3078 3079 pgoff = pte_to_pgoff(orig_pte); 3080 if (!(flags & FAULT_FLAG_WRITE)) 3081 return do_read_fault(mm, vma, address, pmd, pgoff, flags, 3082 orig_pte); 3083 if (!(vma->vm_flags & VM_SHARED)) 3084 return do_cow_fault(mm, vma, address, pmd, pgoff, flags, 3085 orig_pte); 3086 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3087 } 3088 3089 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3090 unsigned long addr, int page_nid, 3091 int *flags) 3092 { 3093 get_page(page); 3094 3095 count_vm_numa_event(NUMA_HINT_FAULTS); 3096 if (page_nid == numa_node_id()) { 3097 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3098 *flags |= TNF_FAULT_LOCAL; 3099 } 3100 3101 return mpol_misplaced(page, vma, addr); 3102 } 3103 3104 static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3105 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3106 { 3107 struct page *page = NULL; 3108 spinlock_t *ptl; 3109 int page_nid = -1; 3110 int last_cpupid; 3111 int target_nid; 3112 bool migrated = false; 3113 int flags = 0; 3114 3115 /* 3116 * The "pte" at this point cannot be used safely without 3117 * validation through pte_unmap_same(). It's of NUMA type but 3118 * the pfn may be screwed if the read is non atomic. 3119 * 3120 * ptep_modify_prot_start is not called as this is clearing 3121 * the _PAGE_NUMA bit and it is not really expected that there 3122 * would be concurrent hardware modifications to the PTE. 3123 */ 3124 ptl = pte_lockptr(mm, pmd); 3125 spin_lock(ptl); 3126 if (unlikely(!pte_same(*ptep, pte))) { 3127 pte_unmap_unlock(ptep, ptl); 3128 goto out; 3129 } 3130 3131 pte = pte_mknonnuma(pte); 3132 set_pte_at(mm, addr, ptep, pte); 3133 update_mmu_cache(vma, addr, ptep); 3134 3135 page = vm_normal_page(vma, addr, pte); 3136 if (!page) { 3137 pte_unmap_unlock(ptep, ptl); 3138 return 0; 3139 } 3140 BUG_ON(is_zero_pfn(page_to_pfn(page))); 3141 3142 /* 3143 * Avoid grouping on DSO/COW pages in specific and RO pages 3144 * in general, RO pages shouldn't hurt as much anyway since 3145 * they can be in shared cache state. 3146 */ 3147 if (!pte_write(pte)) 3148 flags |= TNF_NO_GROUP; 3149 3150 /* 3151 * Flag if the page is shared between multiple address spaces. This 3152 * is later used when determining whether to group tasks together 3153 */ 3154 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3155 flags |= TNF_SHARED; 3156 3157 last_cpupid = page_cpupid_last(page); 3158 page_nid = page_to_nid(page); 3159 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3160 pte_unmap_unlock(ptep, ptl); 3161 if (target_nid == -1) { 3162 put_page(page); 3163 goto out; 3164 } 3165 3166 /* Migrate to the requested node */ 3167 migrated = migrate_misplaced_page(page, vma, target_nid); 3168 if (migrated) { 3169 page_nid = target_nid; 3170 flags |= TNF_MIGRATED; 3171 } 3172 3173 out: 3174 if (page_nid != -1) 3175 task_numa_fault(last_cpupid, page_nid, 1, flags); 3176 return 0; 3177 } 3178 3179 /* 3180 * These routines also need to handle stuff like marking pages dirty 3181 * and/or accessed for architectures that don't do it in hardware (most 3182 * RISC architectures). The early dirtying is also good on the i386. 3183 * 3184 * There is also a hook called "update_mmu_cache()" that architectures 3185 * with external mmu caches can use to update those (ie the Sparc or 3186 * PowerPC hashed page tables that act as extended TLBs). 3187 * 3188 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3189 * but allow concurrent faults), and pte mapped but not yet locked. 3190 * We return with pte unmapped and unlocked. 3191 * 3192 * The mmap_sem may have been released depending on flags and our 3193 * return value. See filemap_fault() and __lock_page_or_retry(). 3194 */ 3195 static int handle_pte_fault(struct mm_struct *mm, 3196 struct vm_area_struct *vma, unsigned long address, 3197 pte_t *pte, pmd_t *pmd, unsigned int flags) 3198 { 3199 pte_t entry; 3200 spinlock_t *ptl; 3201 3202 entry = ACCESS_ONCE(*pte); 3203 if (!pte_present(entry)) { 3204 if (pte_none(entry)) { 3205 if (vma->vm_ops) { 3206 if (likely(vma->vm_ops->fault)) 3207 return do_linear_fault(mm, vma, address, 3208 pte, pmd, flags, entry); 3209 } 3210 return do_anonymous_page(mm, vma, address, 3211 pte, pmd, flags); 3212 } 3213 if (pte_file(entry)) 3214 return do_nonlinear_fault(mm, vma, address, 3215 pte, pmd, flags, entry); 3216 return do_swap_page(mm, vma, address, 3217 pte, pmd, flags, entry); 3218 } 3219 3220 if (pte_numa(entry)) 3221 return do_numa_page(mm, vma, address, entry, pte, pmd); 3222 3223 ptl = pte_lockptr(mm, pmd); 3224 spin_lock(ptl); 3225 if (unlikely(!pte_same(*pte, entry))) 3226 goto unlock; 3227 if (flags & FAULT_FLAG_WRITE) { 3228 if (!pte_write(entry)) 3229 return do_wp_page(mm, vma, address, 3230 pte, pmd, ptl, entry); 3231 entry = pte_mkdirty(entry); 3232 } 3233 entry = pte_mkyoung(entry); 3234 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3235 update_mmu_cache(vma, address, pte); 3236 } else { 3237 /* 3238 * This is needed only for protection faults but the arch code 3239 * is not yet telling us if this is a protection fault or not. 3240 * This still avoids useless tlb flushes for .text page faults 3241 * with threads. 3242 */ 3243 if (flags & FAULT_FLAG_WRITE) 3244 flush_tlb_fix_spurious_fault(vma, address); 3245 } 3246 unlock: 3247 pte_unmap_unlock(pte, ptl); 3248 return 0; 3249 } 3250 3251 /* 3252 * By the time we get here, we already hold the mm semaphore 3253 * 3254 * The mmap_sem may have been released depending on flags and our 3255 * return value. See filemap_fault() and __lock_page_or_retry(). 3256 */ 3257 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3258 unsigned long address, unsigned int flags) 3259 { 3260 pgd_t *pgd; 3261 pud_t *pud; 3262 pmd_t *pmd; 3263 pte_t *pte; 3264 3265 if (unlikely(is_vm_hugetlb_page(vma))) 3266 return hugetlb_fault(mm, vma, address, flags); 3267 3268 pgd = pgd_offset(mm, address); 3269 pud = pud_alloc(mm, pgd, address); 3270 if (!pud) 3271 return VM_FAULT_OOM; 3272 pmd = pmd_alloc(mm, pud, address); 3273 if (!pmd) 3274 return VM_FAULT_OOM; 3275 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3276 int ret = VM_FAULT_FALLBACK; 3277 if (!vma->vm_ops) 3278 ret = do_huge_pmd_anonymous_page(mm, vma, address, 3279 pmd, flags); 3280 if (!(ret & VM_FAULT_FALLBACK)) 3281 return ret; 3282 } else { 3283 pmd_t orig_pmd = *pmd; 3284 int ret; 3285 3286 barrier(); 3287 if (pmd_trans_huge(orig_pmd)) { 3288 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3289 3290 /* 3291 * If the pmd is splitting, return and retry the 3292 * the fault. Alternative: wait until the split 3293 * is done, and goto retry. 3294 */ 3295 if (pmd_trans_splitting(orig_pmd)) 3296 return 0; 3297 3298 if (pmd_numa(orig_pmd)) 3299 return do_huge_pmd_numa_page(mm, vma, address, 3300 orig_pmd, pmd); 3301 3302 if (dirty && !pmd_write(orig_pmd)) { 3303 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3304 orig_pmd); 3305 if (!(ret & VM_FAULT_FALLBACK)) 3306 return ret; 3307 } else { 3308 huge_pmd_set_accessed(mm, vma, address, pmd, 3309 orig_pmd, dirty); 3310 return 0; 3311 } 3312 } 3313 } 3314 3315 /* 3316 * Use __pte_alloc instead of pte_alloc_map, because we can't 3317 * run pte_offset_map on the pmd, if an huge pmd could 3318 * materialize from under us from a different thread. 3319 */ 3320 if (unlikely(pmd_none(*pmd)) && 3321 unlikely(__pte_alloc(mm, vma, pmd, address))) 3322 return VM_FAULT_OOM; 3323 /* if an huge pmd materialized from under us just retry later */ 3324 if (unlikely(pmd_trans_huge(*pmd))) 3325 return 0; 3326 /* 3327 * A regular pmd is established and it can't morph into a huge pmd 3328 * from under us anymore at this point because we hold the mmap_sem 3329 * read mode and khugepaged takes it in write mode. So now it's 3330 * safe to run pte_offset_map(). 3331 */ 3332 pte = pte_offset_map(pmd, address); 3333 3334 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3335 } 3336 3337 /* 3338 * By the time we get here, we already hold the mm semaphore 3339 * 3340 * The mmap_sem may have been released depending on flags and our 3341 * return value. See filemap_fault() and __lock_page_or_retry(). 3342 */ 3343 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3344 unsigned long address, unsigned int flags) 3345 { 3346 int ret; 3347 3348 __set_current_state(TASK_RUNNING); 3349 3350 count_vm_event(PGFAULT); 3351 mem_cgroup_count_vm_event(mm, PGFAULT); 3352 3353 /* do counter updates before entering really critical section. */ 3354 check_sync_rss_stat(current); 3355 3356 /* 3357 * Enable the memcg OOM handling for faults triggered in user 3358 * space. Kernel faults are handled more gracefully. 3359 */ 3360 if (flags & FAULT_FLAG_USER) 3361 mem_cgroup_oom_enable(); 3362 3363 ret = __handle_mm_fault(mm, vma, address, flags); 3364 3365 if (flags & FAULT_FLAG_USER) { 3366 mem_cgroup_oom_disable(); 3367 /* 3368 * The task may have entered a memcg OOM situation but 3369 * if the allocation error was handled gracefully (no 3370 * VM_FAULT_OOM), there is no need to kill anything. 3371 * Just clean up the OOM state peacefully. 3372 */ 3373 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3374 mem_cgroup_oom_synchronize(false); 3375 } 3376 3377 return ret; 3378 } 3379 3380 #ifndef __PAGETABLE_PUD_FOLDED 3381 /* 3382 * Allocate page upper directory. 3383 * We've already handled the fast-path in-line. 3384 */ 3385 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3386 { 3387 pud_t *new = pud_alloc_one(mm, address); 3388 if (!new) 3389 return -ENOMEM; 3390 3391 smp_wmb(); /* See comment in __pte_alloc */ 3392 3393 spin_lock(&mm->page_table_lock); 3394 if (pgd_present(*pgd)) /* Another has populated it */ 3395 pud_free(mm, new); 3396 else 3397 pgd_populate(mm, pgd, new); 3398 spin_unlock(&mm->page_table_lock); 3399 return 0; 3400 } 3401 #endif /* __PAGETABLE_PUD_FOLDED */ 3402 3403 #ifndef __PAGETABLE_PMD_FOLDED 3404 /* 3405 * Allocate page middle directory. 3406 * We've already handled the fast-path in-line. 3407 */ 3408 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3409 { 3410 pmd_t *new = pmd_alloc_one(mm, address); 3411 if (!new) 3412 return -ENOMEM; 3413 3414 smp_wmb(); /* See comment in __pte_alloc */ 3415 3416 spin_lock(&mm->page_table_lock); 3417 #ifndef __ARCH_HAS_4LEVEL_HACK 3418 if (pud_present(*pud)) /* Another has populated it */ 3419 pmd_free(mm, new); 3420 else 3421 pud_populate(mm, pud, new); 3422 #else 3423 if (pgd_present(*pud)) /* Another has populated it */ 3424 pmd_free(mm, new); 3425 else 3426 pgd_populate(mm, pud, new); 3427 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3428 spin_unlock(&mm->page_table_lock); 3429 return 0; 3430 } 3431 #endif /* __PAGETABLE_PMD_FOLDED */ 3432 3433 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3434 pte_t **ptepp, spinlock_t **ptlp) 3435 { 3436 pgd_t *pgd; 3437 pud_t *pud; 3438 pmd_t *pmd; 3439 pte_t *ptep; 3440 3441 pgd = pgd_offset(mm, address); 3442 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3443 goto out; 3444 3445 pud = pud_offset(pgd, address); 3446 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3447 goto out; 3448 3449 pmd = pmd_offset(pud, address); 3450 VM_BUG_ON(pmd_trans_huge(*pmd)); 3451 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3452 goto out; 3453 3454 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3455 if (pmd_huge(*pmd)) 3456 goto out; 3457 3458 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3459 if (!ptep) 3460 goto out; 3461 if (!pte_present(*ptep)) 3462 goto unlock; 3463 *ptepp = ptep; 3464 return 0; 3465 unlock: 3466 pte_unmap_unlock(ptep, *ptlp); 3467 out: 3468 return -EINVAL; 3469 } 3470 3471 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3472 pte_t **ptepp, spinlock_t **ptlp) 3473 { 3474 int res; 3475 3476 /* (void) is needed to make gcc happy */ 3477 (void) __cond_lock(*ptlp, 3478 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3479 return res; 3480 } 3481 3482 /** 3483 * follow_pfn - look up PFN at a user virtual address 3484 * @vma: memory mapping 3485 * @address: user virtual address 3486 * @pfn: location to store found PFN 3487 * 3488 * Only IO mappings and raw PFN mappings are allowed. 3489 * 3490 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3491 */ 3492 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3493 unsigned long *pfn) 3494 { 3495 int ret = -EINVAL; 3496 spinlock_t *ptl; 3497 pte_t *ptep; 3498 3499 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3500 return ret; 3501 3502 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3503 if (ret) 3504 return ret; 3505 *pfn = pte_pfn(*ptep); 3506 pte_unmap_unlock(ptep, ptl); 3507 return 0; 3508 } 3509 EXPORT_SYMBOL(follow_pfn); 3510 3511 #ifdef CONFIG_HAVE_IOREMAP_PROT 3512 int follow_phys(struct vm_area_struct *vma, 3513 unsigned long address, unsigned int flags, 3514 unsigned long *prot, resource_size_t *phys) 3515 { 3516 int ret = -EINVAL; 3517 pte_t *ptep, pte; 3518 spinlock_t *ptl; 3519 3520 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3521 goto out; 3522 3523 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3524 goto out; 3525 pte = *ptep; 3526 3527 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3528 goto unlock; 3529 3530 *prot = pgprot_val(pte_pgprot(pte)); 3531 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3532 3533 ret = 0; 3534 unlock: 3535 pte_unmap_unlock(ptep, ptl); 3536 out: 3537 return ret; 3538 } 3539 3540 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3541 void *buf, int len, int write) 3542 { 3543 resource_size_t phys_addr; 3544 unsigned long prot = 0; 3545 void __iomem *maddr; 3546 int offset = addr & (PAGE_SIZE-1); 3547 3548 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3549 return -EINVAL; 3550 3551 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3552 if (write) 3553 memcpy_toio(maddr + offset, buf, len); 3554 else 3555 memcpy_fromio(buf, maddr + offset, len); 3556 iounmap(maddr); 3557 3558 return len; 3559 } 3560 EXPORT_SYMBOL_GPL(generic_access_phys); 3561 #endif 3562 3563 /* 3564 * Access another process' address space as given in mm. If non-NULL, use the 3565 * given task for page fault accounting. 3566 */ 3567 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 3568 unsigned long addr, void *buf, int len, int write) 3569 { 3570 struct vm_area_struct *vma; 3571 void *old_buf = buf; 3572 3573 down_read(&mm->mmap_sem); 3574 /* ignore errors, just check how much was successfully transferred */ 3575 while (len) { 3576 int bytes, ret, offset; 3577 void *maddr; 3578 struct page *page = NULL; 3579 3580 ret = get_user_pages(tsk, mm, addr, 1, 3581 write, 1, &page, &vma); 3582 if (ret <= 0) { 3583 #ifndef CONFIG_HAVE_IOREMAP_PROT 3584 break; 3585 #else 3586 /* 3587 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3588 * we can access using slightly different code. 3589 */ 3590 vma = find_vma(mm, addr); 3591 if (!vma || vma->vm_start > addr) 3592 break; 3593 if (vma->vm_ops && vma->vm_ops->access) 3594 ret = vma->vm_ops->access(vma, addr, buf, 3595 len, write); 3596 if (ret <= 0) 3597 break; 3598 bytes = ret; 3599 #endif 3600 } else { 3601 bytes = len; 3602 offset = addr & (PAGE_SIZE-1); 3603 if (bytes > PAGE_SIZE-offset) 3604 bytes = PAGE_SIZE-offset; 3605 3606 maddr = kmap(page); 3607 if (write) { 3608 copy_to_user_page(vma, page, addr, 3609 maddr + offset, buf, bytes); 3610 set_page_dirty_lock(page); 3611 } else { 3612 copy_from_user_page(vma, page, addr, 3613 buf, maddr + offset, bytes); 3614 } 3615 kunmap(page); 3616 page_cache_release(page); 3617 } 3618 len -= bytes; 3619 buf += bytes; 3620 addr += bytes; 3621 } 3622 up_read(&mm->mmap_sem); 3623 3624 return buf - old_buf; 3625 } 3626 3627 /** 3628 * access_remote_vm - access another process' address space 3629 * @mm: the mm_struct of the target address space 3630 * @addr: start address to access 3631 * @buf: source or destination buffer 3632 * @len: number of bytes to transfer 3633 * @write: whether the access is a write 3634 * 3635 * The caller must hold a reference on @mm. 3636 */ 3637 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 3638 void *buf, int len, int write) 3639 { 3640 return __access_remote_vm(NULL, mm, addr, buf, len, write); 3641 } 3642 3643 /* 3644 * Access another process' address space. 3645 * Source/target buffer must be kernel space, 3646 * Do not walk the page table directly, use get_user_pages 3647 */ 3648 int access_process_vm(struct task_struct *tsk, unsigned long addr, 3649 void *buf, int len, int write) 3650 { 3651 struct mm_struct *mm; 3652 int ret; 3653 3654 mm = get_task_mm(tsk); 3655 if (!mm) 3656 return 0; 3657 3658 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 3659 mmput(mm); 3660 3661 return ret; 3662 } 3663 3664 /* 3665 * Print the name of a VMA. 3666 */ 3667 void print_vma_addr(char *prefix, unsigned long ip) 3668 { 3669 struct mm_struct *mm = current->mm; 3670 struct vm_area_struct *vma; 3671 3672 /* 3673 * Do not print if we are in atomic 3674 * contexts (in exception stacks, etc.): 3675 */ 3676 if (preempt_count()) 3677 return; 3678 3679 down_read(&mm->mmap_sem); 3680 vma = find_vma(mm, ip); 3681 if (vma && vma->vm_file) { 3682 struct file *f = vma->vm_file; 3683 char *buf = (char *)__get_free_page(GFP_KERNEL); 3684 if (buf) { 3685 char *p; 3686 3687 p = d_path(&f->f_path, buf, PAGE_SIZE); 3688 if (IS_ERR(p)) 3689 p = "?"; 3690 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 3691 vma->vm_start, 3692 vma->vm_end - vma->vm_start); 3693 free_page((unsigned long)buf); 3694 } 3695 } 3696 up_read(&mm->mmap_sem); 3697 } 3698 3699 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 3700 void might_fault(void) 3701 { 3702 /* 3703 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3704 * holding the mmap_sem, this is safe because kernel memory doesn't 3705 * get paged out, therefore we'll never actually fault, and the 3706 * below annotations will generate false positives. 3707 */ 3708 if (segment_eq(get_fs(), KERNEL_DS)) 3709 return; 3710 3711 /* 3712 * it would be nicer only to annotate paths which are not under 3713 * pagefault_disable, however that requires a larger audit and 3714 * providing helpers like get_user_atomic. 3715 */ 3716 if (in_atomic()) 3717 return; 3718 3719 __might_sleep(__FILE__, __LINE__, 0); 3720 3721 if (current->mm) 3722 might_lock_read(¤t->mm->mmap_sem); 3723 } 3724 EXPORT_SYMBOL(might_fault); 3725 #endif 3726 3727 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3728 static void clear_gigantic_page(struct page *page, 3729 unsigned long addr, 3730 unsigned int pages_per_huge_page) 3731 { 3732 int i; 3733 struct page *p = page; 3734 3735 might_sleep(); 3736 for (i = 0; i < pages_per_huge_page; 3737 i++, p = mem_map_next(p, page, i)) { 3738 cond_resched(); 3739 clear_user_highpage(p, addr + i * PAGE_SIZE); 3740 } 3741 } 3742 void clear_huge_page(struct page *page, 3743 unsigned long addr, unsigned int pages_per_huge_page) 3744 { 3745 int i; 3746 3747 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3748 clear_gigantic_page(page, addr, pages_per_huge_page); 3749 return; 3750 } 3751 3752 might_sleep(); 3753 for (i = 0; i < pages_per_huge_page; i++) { 3754 cond_resched(); 3755 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 3756 } 3757 } 3758 3759 static void copy_user_gigantic_page(struct page *dst, struct page *src, 3760 unsigned long addr, 3761 struct vm_area_struct *vma, 3762 unsigned int pages_per_huge_page) 3763 { 3764 int i; 3765 struct page *dst_base = dst; 3766 struct page *src_base = src; 3767 3768 for (i = 0; i < pages_per_huge_page; ) { 3769 cond_resched(); 3770 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 3771 3772 i++; 3773 dst = mem_map_next(dst, dst_base, i); 3774 src = mem_map_next(src, src_base, i); 3775 } 3776 } 3777 3778 void copy_user_huge_page(struct page *dst, struct page *src, 3779 unsigned long addr, struct vm_area_struct *vma, 3780 unsigned int pages_per_huge_page) 3781 { 3782 int i; 3783 3784 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 3785 copy_user_gigantic_page(dst, src, addr, vma, 3786 pages_per_huge_page); 3787 return; 3788 } 3789 3790 might_sleep(); 3791 for (i = 0; i < pages_per_huge_page; i++) { 3792 cond_resched(); 3793 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 3794 } 3795 } 3796 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3797 3798 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 3799 3800 static struct kmem_cache *page_ptl_cachep; 3801 3802 void __init ptlock_cache_init(void) 3803 { 3804 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 3805 SLAB_PANIC, NULL); 3806 } 3807 3808 bool ptlock_alloc(struct page *page) 3809 { 3810 spinlock_t *ptl; 3811 3812 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 3813 if (!ptl) 3814 return false; 3815 page->ptl = ptl; 3816 return true; 3817 } 3818 3819 void ptlock_free(struct page *page) 3820 { 3821 kmem_cache_free(page_ptl_cachep, page->ptl); 3822 } 3823 #endif 3824