1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 #include <linux/numa.h> 73 74 #include <asm/io.h> 75 #include <asm/mmu_context.h> 76 #include <asm/pgalloc.h> 77 #include <linux/uaccess.h> 78 #include <asm/tlb.h> 79 #include <asm/tlbflush.h> 80 #include <asm/pgtable.h> 81 82 #include "internal.h" 83 84 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 85 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 86 #endif 87 88 #ifndef CONFIG_NEED_MULTIPLE_NODES 89 /* use the per-pgdat data instead for discontigmem - mbligh */ 90 unsigned long max_mapnr; 91 EXPORT_SYMBOL(max_mapnr); 92 93 struct page *mem_map; 94 EXPORT_SYMBOL(mem_map); 95 #endif 96 97 /* 98 * A number of key systems in x86 including ioremap() rely on the assumption 99 * that high_memory defines the upper bound on direct map memory, then end 100 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 101 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 102 * and ZONE_HIGHMEM. 103 */ 104 void *high_memory; 105 EXPORT_SYMBOL(high_memory); 106 107 /* 108 * Randomize the address space (stacks, mmaps, brk, etc.). 109 * 110 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 111 * as ancient (libc5 based) binaries can segfault. ) 112 */ 113 int randomize_va_space __read_mostly = 114 #ifdef CONFIG_COMPAT_BRK 115 1; 116 #else 117 2; 118 #endif 119 120 static int __init disable_randmaps(char *s) 121 { 122 randomize_va_space = 0; 123 return 1; 124 } 125 __setup("norandmaps", disable_randmaps); 126 127 unsigned long zero_pfn __read_mostly; 128 EXPORT_SYMBOL(zero_pfn); 129 130 unsigned long highest_memmap_pfn __read_mostly; 131 132 /* 133 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 134 */ 135 static int __init init_zero_pfn(void) 136 { 137 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 138 return 0; 139 } 140 core_initcall(init_zero_pfn); 141 142 143 #if defined(SPLIT_RSS_COUNTING) 144 145 void sync_mm_rss(struct mm_struct *mm) 146 { 147 int i; 148 149 for (i = 0; i < NR_MM_COUNTERS; i++) { 150 if (current->rss_stat.count[i]) { 151 add_mm_counter(mm, i, current->rss_stat.count[i]); 152 current->rss_stat.count[i] = 0; 153 } 154 } 155 current->rss_stat.events = 0; 156 } 157 158 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 159 { 160 struct task_struct *task = current; 161 162 if (likely(task->mm == mm)) 163 task->rss_stat.count[member] += val; 164 else 165 add_mm_counter(mm, member, val); 166 } 167 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 168 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 169 170 /* sync counter once per 64 page faults */ 171 #define TASK_RSS_EVENTS_THRESH (64) 172 static void check_sync_rss_stat(struct task_struct *task) 173 { 174 if (unlikely(task != current)) 175 return; 176 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 177 sync_mm_rss(task->mm); 178 } 179 #else /* SPLIT_RSS_COUNTING */ 180 181 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 182 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 183 184 static void check_sync_rss_stat(struct task_struct *task) 185 { 186 } 187 188 #endif /* SPLIT_RSS_COUNTING */ 189 190 /* 191 * Note: this doesn't free the actual pages themselves. That 192 * has been handled earlier when unmapping all the memory regions. 193 */ 194 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 195 unsigned long addr) 196 { 197 pgtable_t token = pmd_pgtable(*pmd); 198 pmd_clear(pmd); 199 pte_free_tlb(tlb, token, addr); 200 mm_dec_nr_ptes(tlb->mm); 201 } 202 203 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 204 unsigned long addr, unsigned long end, 205 unsigned long floor, unsigned long ceiling) 206 { 207 pmd_t *pmd; 208 unsigned long next; 209 unsigned long start; 210 211 start = addr; 212 pmd = pmd_offset(pud, addr); 213 do { 214 next = pmd_addr_end(addr, end); 215 if (pmd_none_or_clear_bad(pmd)) 216 continue; 217 free_pte_range(tlb, pmd, addr); 218 } while (pmd++, addr = next, addr != end); 219 220 start &= PUD_MASK; 221 if (start < floor) 222 return; 223 if (ceiling) { 224 ceiling &= PUD_MASK; 225 if (!ceiling) 226 return; 227 } 228 if (end - 1 > ceiling - 1) 229 return; 230 231 pmd = pmd_offset(pud, start); 232 pud_clear(pud); 233 pmd_free_tlb(tlb, pmd, start); 234 mm_dec_nr_pmds(tlb->mm); 235 } 236 237 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 238 unsigned long addr, unsigned long end, 239 unsigned long floor, unsigned long ceiling) 240 { 241 pud_t *pud; 242 unsigned long next; 243 unsigned long start; 244 245 start = addr; 246 pud = pud_offset(p4d, addr); 247 do { 248 next = pud_addr_end(addr, end); 249 if (pud_none_or_clear_bad(pud)) 250 continue; 251 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 252 } while (pud++, addr = next, addr != end); 253 254 start &= P4D_MASK; 255 if (start < floor) 256 return; 257 if (ceiling) { 258 ceiling &= P4D_MASK; 259 if (!ceiling) 260 return; 261 } 262 if (end - 1 > ceiling - 1) 263 return; 264 265 pud = pud_offset(p4d, start); 266 p4d_clear(p4d); 267 pud_free_tlb(tlb, pud, start); 268 mm_dec_nr_puds(tlb->mm); 269 } 270 271 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 272 unsigned long addr, unsigned long end, 273 unsigned long floor, unsigned long ceiling) 274 { 275 p4d_t *p4d; 276 unsigned long next; 277 unsigned long start; 278 279 start = addr; 280 p4d = p4d_offset(pgd, addr); 281 do { 282 next = p4d_addr_end(addr, end); 283 if (p4d_none_or_clear_bad(p4d)) 284 continue; 285 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 286 } while (p4d++, addr = next, addr != end); 287 288 start &= PGDIR_MASK; 289 if (start < floor) 290 return; 291 if (ceiling) { 292 ceiling &= PGDIR_MASK; 293 if (!ceiling) 294 return; 295 } 296 if (end - 1 > ceiling - 1) 297 return; 298 299 p4d = p4d_offset(pgd, start); 300 pgd_clear(pgd); 301 p4d_free_tlb(tlb, p4d, start); 302 } 303 304 /* 305 * This function frees user-level page tables of a process. 306 */ 307 void free_pgd_range(struct mmu_gather *tlb, 308 unsigned long addr, unsigned long end, 309 unsigned long floor, unsigned long ceiling) 310 { 311 pgd_t *pgd; 312 unsigned long next; 313 314 /* 315 * The next few lines have given us lots of grief... 316 * 317 * Why are we testing PMD* at this top level? Because often 318 * there will be no work to do at all, and we'd prefer not to 319 * go all the way down to the bottom just to discover that. 320 * 321 * Why all these "- 1"s? Because 0 represents both the bottom 322 * of the address space and the top of it (using -1 for the 323 * top wouldn't help much: the masks would do the wrong thing). 324 * The rule is that addr 0 and floor 0 refer to the bottom of 325 * the address space, but end 0 and ceiling 0 refer to the top 326 * Comparisons need to use "end - 1" and "ceiling - 1" (though 327 * that end 0 case should be mythical). 328 * 329 * Wherever addr is brought up or ceiling brought down, we must 330 * be careful to reject "the opposite 0" before it confuses the 331 * subsequent tests. But what about where end is brought down 332 * by PMD_SIZE below? no, end can't go down to 0 there. 333 * 334 * Whereas we round start (addr) and ceiling down, by different 335 * masks at different levels, in order to test whether a table 336 * now has no other vmas using it, so can be freed, we don't 337 * bother to round floor or end up - the tests don't need that. 338 */ 339 340 addr &= PMD_MASK; 341 if (addr < floor) { 342 addr += PMD_SIZE; 343 if (!addr) 344 return; 345 } 346 if (ceiling) { 347 ceiling &= PMD_MASK; 348 if (!ceiling) 349 return; 350 } 351 if (end - 1 > ceiling - 1) 352 end -= PMD_SIZE; 353 if (addr > end - 1) 354 return; 355 /* 356 * We add page table cache pages with PAGE_SIZE, 357 * (see pte_free_tlb()), flush the tlb if we need 358 */ 359 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 360 pgd = pgd_offset(tlb->mm, addr); 361 do { 362 next = pgd_addr_end(addr, end); 363 if (pgd_none_or_clear_bad(pgd)) 364 continue; 365 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 366 } while (pgd++, addr = next, addr != end); 367 } 368 369 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 370 unsigned long floor, unsigned long ceiling) 371 { 372 while (vma) { 373 struct vm_area_struct *next = vma->vm_next; 374 unsigned long addr = vma->vm_start; 375 376 /* 377 * Hide vma from rmap and truncate_pagecache before freeing 378 * pgtables 379 */ 380 unlink_anon_vmas(vma); 381 unlink_file_vma(vma); 382 383 if (is_vm_hugetlb_page(vma)) { 384 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 385 floor, next ? next->vm_start : ceiling); 386 } else { 387 /* 388 * Optimization: gather nearby vmas into one call down 389 */ 390 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 391 && !is_vm_hugetlb_page(next)) { 392 vma = next; 393 next = vma->vm_next; 394 unlink_anon_vmas(vma); 395 unlink_file_vma(vma); 396 } 397 free_pgd_range(tlb, addr, vma->vm_end, 398 floor, next ? next->vm_start : ceiling); 399 } 400 vma = next; 401 } 402 } 403 404 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 405 { 406 spinlock_t *ptl; 407 pgtable_t new = pte_alloc_one(mm); 408 if (!new) 409 return -ENOMEM; 410 411 /* 412 * Ensure all pte setup (eg. pte page lock and page clearing) are 413 * visible before the pte is made visible to other CPUs by being 414 * put into page tables. 415 * 416 * The other side of the story is the pointer chasing in the page 417 * table walking code (when walking the page table without locking; 418 * ie. most of the time). Fortunately, these data accesses consist 419 * of a chain of data-dependent loads, meaning most CPUs (alpha 420 * being the notable exception) will already guarantee loads are 421 * seen in-order. See the alpha page table accessors for the 422 * smp_read_barrier_depends() barriers in page table walking code. 423 */ 424 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 425 426 ptl = pmd_lock(mm, pmd); 427 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 428 mm_inc_nr_ptes(mm); 429 pmd_populate(mm, pmd, new); 430 new = NULL; 431 } 432 spin_unlock(ptl); 433 if (new) 434 pte_free(mm, new); 435 return 0; 436 } 437 438 int __pte_alloc_kernel(pmd_t *pmd) 439 { 440 pte_t *new = pte_alloc_one_kernel(&init_mm); 441 if (!new) 442 return -ENOMEM; 443 444 smp_wmb(); /* See comment in __pte_alloc */ 445 446 spin_lock(&init_mm.page_table_lock); 447 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 448 pmd_populate_kernel(&init_mm, pmd, new); 449 new = NULL; 450 } 451 spin_unlock(&init_mm.page_table_lock); 452 if (new) 453 pte_free_kernel(&init_mm, new); 454 return 0; 455 } 456 457 static inline void init_rss_vec(int *rss) 458 { 459 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 460 } 461 462 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 463 { 464 int i; 465 466 if (current->mm == mm) 467 sync_mm_rss(mm); 468 for (i = 0; i < NR_MM_COUNTERS; i++) 469 if (rss[i]) 470 add_mm_counter(mm, i, rss[i]); 471 } 472 473 /* 474 * This function is called to print an error when a bad pte 475 * is found. For example, we might have a PFN-mapped pte in 476 * a region that doesn't allow it. 477 * 478 * The calling function must still handle the error. 479 */ 480 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 481 pte_t pte, struct page *page) 482 { 483 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 484 p4d_t *p4d = p4d_offset(pgd, addr); 485 pud_t *pud = pud_offset(p4d, addr); 486 pmd_t *pmd = pmd_offset(pud, addr); 487 struct address_space *mapping; 488 pgoff_t index; 489 static unsigned long resume; 490 static unsigned long nr_shown; 491 static unsigned long nr_unshown; 492 493 /* 494 * Allow a burst of 60 reports, then keep quiet for that minute; 495 * or allow a steady drip of one report per second. 496 */ 497 if (nr_shown == 60) { 498 if (time_before(jiffies, resume)) { 499 nr_unshown++; 500 return; 501 } 502 if (nr_unshown) { 503 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 504 nr_unshown); 505 nr_unshown = 0; 506 } 507 nr_shown = 0; 508 } 509 if (nr_shown++ == 0) 510 resume = jiffies + 60 * HZ; 511 512 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 513 index = linear_page_index(vma, addr); 514 515 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 516 current->comm, 517 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 518 if (page) 519 dump_page(page, "bad pte"); 520 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 521 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 522 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 523 vma->vm_file, 524 vma->vm_ops ? vma->vm_ops->fault : NULL, 525 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 526 mapping ? mapping->a_ops->readpage : NULL); 527 dump_stack(); 528 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 529 } 530 531 /* 532 * vm_normal_page -- This function gets the "struct page" associated with a pte. 533 * 534 * "Special" mappings do not wish to be associated with a "struct page" (either 535 * it doesn't exist, or it exists but they don't want to touch it). In this 536 * case, NULL is returned here. "Normal" mappings do have a struct page. 537 * 538 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 539 * pte bit, in which case this function is trivial. Secondly, an architecture 540 * may not have a spare pte bit, which requires a more complicated scheme, 541 * described below. 542 * 543 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 544 * special mapping (even if there are underlying and valid "struct pages"). 545 * COWed pages of a VM_PFNMAP are always normal. 546 * 547 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 548 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 549 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 550 * mapping will always honor the rule 551 * 552 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 553 * 554 * And for normal mappings this is false. 555 * 556 * This restricts such mappings to be a linear translation from virtual address 557 * to pfn. To get around this restriction, we allow arbitrary mappings so long 558 * as the vma is not a COW mapping; in that case, we know that all ptes are 559 * special (because none can have been COWed). 560 * 561 * 562 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 563 * 564 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 565 * page" backing, however the difference is that _all_ pages with a struct 566 * page (that is, those where pfn_valid is true) are refcounted and considered 567 * normal pages by the VM. The disadvantage is that pages are refcounted 568 * (which can be slower and simply not an option for some PFNMAP users). The 569 * advantage is that we don't have to follow the strict linearity rule of 570 * PFNMAP mappings in order to support COWable mappings. 571 * 572 */ 573 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 574 pte_t pte, bool with_public_device) 575 { 576 unsigned long pfn = pte_pfn(pte); 577 578 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 579 if (likely(!pte_special(pte))) 580 goto check_pfn; 581 if (vma->vm_ops && vma->vm_ops->find_special_page) 582 return vma->vm_ops->find_special_page(vma, addr); 583 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 584 return NULL; 585 if (is_zero_pfn(pfn)) 586 return NULL; 587 588 /* 589 * Device public pages are special pages (they are ZONE_DEVICE 590 * pages but different from persistent memory). They behave 591 * allmost like normal pages. The difference is that they are 592 * not on the lru and thus should never be involve with any- 593 * thing that involve lru manipulation (mlock, numa balancing, 594 * ...). 595 * 596 * This is why we still want to return NULL for such page from 597 * vm_normal_page() so that we do not have to special case all 598 * call site of vm_normal_page(). 599 */ 600 if (likely(pfn <= highest_memmap_pfn)) { 601 struct page *page = pfn_to_page(pfn); 602 603 if (is_device_public_page(page)) { 604 if (with_public_device) 605 return page; 606 return NULL; 607 } 608 } 609 610 if (pte_devmap(pte)) 611 return NULL; 612 613 print_bad_pte(vma, addr, pte, NULL); 614 return NULL; 615 } 616 617 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 618 619 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 620 if (vma->vm_flags & VM_MIXEDMAP) { 621 if (!pfn_valid(pfn)) 622 return NULL; 623 goto out; 624 } else { 625 unsigned long off; 626 off = (addr - vma->vm_start) >> PAGE_SHIFT; 627 if (pfn == vma->vm_pgoff + off) 628 return NULL; 629 if (!is_cow_mapping(vma->vm_flags)) 630 return NULL; 631 } 632 } 633 634 if (is_zero_pfn(pfn)) 635 return NULL; 636 637 check_pfn: 638 if (unlikely(pfn > highest_memmap_pfn)) { 639 print_bad_pte(vma, addr, pte, NULL); 640 return NULL; 641 } 642 643 /* 644 * NOTE! We still have PageReserved() pages in the page tables. 645 * eg. VDSO mappings can cause them to exist. 646 */ 647 out: 648 return pfn_to_page(pfn); 649 } 650 651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 652 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 653 pmd_t pmd) 654 { 655 unsigned long pfn = pmd_pfn(pmd); 656 657 /* 658 * There is no pmd_special() but there may be special pmds, e.g. 659 * in a direct-access (dax) mapping, so let's just replicate the 660 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 661 */ 662 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 663 if (vma->vm_flags & VM_MIXEDMAP) { 664 if (!pfn_valid(pfn)) 665 return NULL; 666 goto out; 667 } else { 668 unsigned long off; 669 off = (addr - vma->vm_start) >> PAGE_SHIFT; 670 if (pfn == vma->vm_pgoff + off) 671 return NULL; 672 if (!is_cow_mapping(vma->vm_flags)) 673 return NULL; 674 } 675 } 676 677 if (pmd_devmap(pmd)) 678 return NULL; 679 if (is_zero_pfn(pfn)) 680 return NULL; 681 if (unlikely(pfn > highest_memmap_pfn)) 682 return NULL; 683 684 /* 685 * NOTE! We still have PageReserved() pages in the page tables. 686 * eg. VDSO mappings can cause them to exist. 687 */ 688 out: 689 return pfn_to_page(pfn); 690 } 691 #endif 692 693 /* 694 * copy one vm_area from one task to the other. Assumes the page tables 695 * already present in the new task to be cleared in the whole range 696 * covered by this vma. 697 */ 698 699 static inline unsigned long 700 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 701 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 702 unsigned long addr, int *rss) 703 { 704 unsigned long vm_flags = vma->vm_flags; 705 pte_t pte = *src_pte; 706 struct page *page; 707 708 /* pte contains position in swap or file, so copy. */ 709 if (unlikely(!pte_present(pte))) { 710 swp_entry_t entry = pte_to_swp_entry(pte); 711 712 if (likely(!non_swap_entry(entry))) { 713 if (swap_duplicate(entry) < 0) 714 return entry.val; 715 716 /* make sure dst_mm is on swapoff's mmlist. */ 717 if (unlikely(list_empty(&dst_mm->mmlist))) { 718 spin_lock(&mmlist_lock); 719 if (list_empty(&dst_mm->mmlist)) 720 list_add(&dst_mm->mmlist, 721 &src_mm->mmlist); 722 spin_unlock(&mmlist_lock); 723 } 724 rss[MM_SWAPENTS]++; 725 } else if (is_migration_entry(entry)) { 726 page = migration_entry_to_page(entry); 727 728 rss[mm_counter(page)]++; 729 730 if (is_write_migration_entry(entry) && 731 is_cow_mapping(vm_flags)) { 732 /* 733 * COW mappings require pages in both 734 * parent and child to be set to read. 735 */ 736 make_migration_entry_read(&entry); 737 pte = swp_entry_to_pte(entry); 738 if (pte_swp_soft_dirty(*src_pte)) 739 pte = pte_swp_mksoft_dirty(pte); 740 set_pte_at(src_mm, addr, src_pte, pte); 741 } 742 } else if (is_device_private_entry(entry)) { 743 page = device_private_entry_to_page(entry); 744 745 /* 746 * Update rss count even for unaddressable pages, as 747 * they should treated just like normal pages in this 748 * respect. 749 * 750 * We will likely want to have some new rss counters 751 * for unaddressable pages, at some point. But for now 752 * keep things as they are. 753 */ 754 get_page(page); 755 rss[mm_counter(page)]++; 756 page_dup_rmap(page, false); 757 758 /* 759 * We do not preserve soft-dirty information, because so 760 * far, checkpoint/restore is the only feature that 761 * requires that. And checkpoint/restore does not work 762 * when a device driver is involved (you cannot easily 763 * save and restore device driver state). 764 */ 765 if (is_write_device_private_entry(entry) && 766 is_cow_mapping(vm_flags)) { 767 make_device_private_entry_read(&entry); 768 pte = swp_entry_to_pte(entry); 769 set_pte_at(src_mm, addr, src_pte, pte); 770 } 771 } 772 goto out_set_pte; 773 } 774 775 /* 776 * If it's a COW mapping, write protect it both 777 * in the parent and the child 778 */ 779 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 780 ptep_set_wrprotect(src_mm, addr, src_pte); 781 pte = pte_wrprotect(pte); 782 } 783 784 /* 785 * If it's a shared mapping, mark it clean in 786 * the child 787 */ 788 if (vm_flags & VM_SHARED) 789 pte = pte_mkclean(pte); 790 pte = pte_mkold(pte); 791 792 page = vm_normal_page(vma, addr, pte); 793 if (page) { 794 get_page(page); 795 page_dup_rmap(page, false); 796 rss[mm_counter(page)]++; 797 } else if (pte_devmap(pte)) { 798 page = pte_page(pte); 799 800 /* 801 * Cache coherent device memory behave like regular page and 802 * not like persistent memory page. For more informations see 803 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 804 */ 805 if (is_device_public_page(page)) { 806 get_page(page); 807 page_dup_rmap(page, false); 808 rss[mm_counter(page)]++; 809 } 810 } 811 812 out_set_pte: 813 set_pte_at(dst_mm, addr, dst_pte, pte); 814 return 0; 815 } 816 817 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 818 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 819 unsigned long addr, unsigned long end) 820 { 821 pte_t *orig_src_pte, *orig_dst_pte; 822 pte_t *src_pte, *dst_pte; 823 spinlock_t *src_ptl, *dst_ptl; 824 int progress = 0; 825 int rss[NR_MM_COUNTERS]; 826 swp_entry_t entry = (swp_entry_t){0}; 827 828 again: 829 init_rss_vec(rss); 830 831 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 832 if (!dst_pte) 833 return -ENOMEM; 834 src_pte = pte_offset_map(src_pmd, addr); 835 src_ptl = pte_lockptr(src_mm, src_pmd); 836 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 837 orig_src_pte = src_pte; 838 orig_dst_pte = dst_pte; 839 arch_enter_lazy_mmu_mode(); 840 841 do { 842 /* 843 * We are holding two locks at this point - either of them 844 * could generate latencies in another task on another CPU. 845 */ 846 if (progress >= 32) { 847 progress = 0; 848 if (need_resched() || 849 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 850 break; 851 } 852 if (pte_none(*src_pte)) { 853 progress++; 854 continue; 855 } 856 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 857 vma, addr, rss); 858 if (entry.val) 859 break; 860 progress += 8; 861 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 862 863 arch_leave_lazy_mmu_mode(); 864 spin_unlock(src_ptl); 865 pte_unmap(orig_src_pte); 866 add_mm_rss_vec(dst_mm, rss); 867 pte_unmap_unlock(orig_dst_pte, dst_ptl); 868 cond_resched(); 869 870 if (entry.val) { 871 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 872 return -ENOMEM; 873 progress = 0; 874 } 875 if (addr != end) 876 goto again; 877 return 0; 878 } 879 880 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 881 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 882 unsigned long addr, unsigned long end) 883 { 884 pmd_t *src_pmd, *dst_pmd; 885 unsigned long next; 886 887 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 888 if (!dst_pmd) 889 return -ENOMEM; 890 src_pmd = pmd_offset(src_pud, addr); 891 do { 892 next = pmd_addr_end(addr, end); 893 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 894 || pmd_devmap(*src_pmd)) { 895 int err; 896 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 897 err = copy_huge_pmd(dst_mm, src_mm, 898 dst_pmd, src_pmd, addr, vma); 899 if (err == -ENOMEM) 900 return -ENOMEM; 901 if (!err) 902 continue; 903 /* fall through */ 904 } 905 if (pmd_none_or_clear_bad(src_pmd)) 906 continue; 907 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 908 vma, addr, next)) 909 return -ENOMEM; 910 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 911 return 0; 912 } 913 914 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 915 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 916 unsigned long addr, unsigned long end) 917 { 918 pud_t *src_pud, *dst_pud; 919 unsigned long next; 920 921 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 922 if (!dst_pud) 923 return -ENOMEM; 924 src_pud = pud_offset(src_p4d, addr); 925 do { 926 next = pud_addr_end(addr, end); 927 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 928 int err; 929 930 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 931 err = copy_huge_pud(dst_mm, src_mm, 932 dst_pud, src_pud, addr, vma); 933 if (err == -ENOMEM) 934 return -ENOMEM; 935 if (!err) 936 continue; 937 /* fall through */ 938 } 939 if (pud_none_or_clear_bad(src_pud)) 940 continue; 941 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 942 vma, addr, next)) 943 return -ENOMEM; 944 } while (dst_pud++, src_pud++, addr = next, addr != end); 945 return 0; 946 } 947 948 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 949 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 950 unsigned long addr, unsigned long end) 951 { 952 p4d_t *src_p4d, *dst_p4d; 953 unsigned long next; 954 955 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 956 if (!dst_p4d) 957 return -ENOMEM; 958 src_p4d = p4d_offset(src_pgd, addr); 959 do { 960 next = p4d_addr_end(addr, end); 961 if (p4d_none_or_clear_bad(src_p4d)) 962 continue; 963 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 964 vma, addr, next)) 965 return -ENOMEM; 966 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 967 return 0; 968 } 969 970 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 971 struct vm_area_struct *vma) 972 { 973 pgd_t *src_pgd, *dst_pgd; 974 unsigned long next; 975 unsigned long addr = vma->vm_start; 976 unsigned long end = vma->vm_end; 977 struct mmu_notifier_range range; 978 bool is_cow; 979 int ret; 980 981 /* 982 * Don't copy ptes where a page fault will fill them correctly. 983 * Fork becomes much lighter when there are big shared or private 984 * readonly mappings. The tradeoff is that copy_page_range is more 985 * efficient than faulting. 986 */ 987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 988 !vma->anon_vma) 989 return 0; 990 991 if (is_vm_hugetlb_page(vma)) 992 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 993 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 995 /* 996 * We do not free on error cases below as remove_vma 997 * gets called on error from higher level routine 998 */ 999 ret = track_pfn_copy(vma); 1000 if (ret) 1001 return ret; 1002 } 1003 1004 /* 1005 * We need to invalidate the secondary MMU mappings only when 1006 * there could be a permission downgrade on the ptes of the 1007 * parent mm. And a permission downgrade will only happen if 1008 * is_cow_mapping() returns true. 1009 */ 1010 is_cow = is_cow_mapping(vma->vm_flags); 1011 1012 if (is_cow) { 1013 mmu_notifier_range_init(&range, src_mm, addr, end); 1014 mmu_notifier_invalidate_range_start(&range); 1015 } 1016 1017 ret = 0; 1018 dst_pgd = pgd_offset(dst_mm, addr); 1019 src_pgd = pgd_offset(src_mm, addr); 1020 do { 1021 next = pgd_addr_end(addr, end); 1022 if (pgd_none_or_clear_bad(src_pgd)) 1023 continue; 1024 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1025 vma, addr, next))) { 1026 ret = -ENOMEM; 1027 break; 1028 } 1029 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1030 1031 if (is_cow) 1032 mmu_notifier_invalidate_range_end(&range); 1033 return ret; 1034 } 1035 1036 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1037 struct vm_area_struct *vma, pmd_t *pmd, 1038 unsigned long addr, unsigned long end, 1039 struct zap_details *details) 1040 { 1041 struct mm_struct *mm = tlb->mm; 1042 int force_flush = 0; 1043 int rss[NR_MM_COUNTERS]; 1044 spinlock_t *ptl; 1045 pte_t *start_pte; 1046 pte_t *pte; 1047 swp_entry_t entry; 1048 1049 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1050 again: 1051 init_rss_vec(rss); 1052 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1053 pte = start_pte; 1054 flush_tlb_batched_pending(mm); 1055 arch_enter_lazy_mmu_mode(); 1056 do { 1057 pte_t ptent = *pte; 1058 if (pte_none(ptent)) 1059 continue; 1060 1061 if (pte_present(ptent)) { 1062 struct page *page; 1063 1064 page = _vm_normal_page(vma, addr, ptent, true); 1065 if (unlikely(details) && page) { 1066 /* 1067 * unmap_shared_mapping_pages() wants to 1068 * invalidate cache without truncating: 1069 * unmap shared but keep private pages. 1070 */ 1071 if (details->check_mapping && 1072 details->check_mapping != page_rmapping(page)) 1073 continue; 1074 } 1075 ptent = ptep_get_and_clear_full(mm, addr, pte, 1076 tlb->fullmm); 1077 tlb_remove_tlb_entry(tlb, pte, addr); 1078 if (unlikely(!page)) 1079 continue; 1080 1081 if (!PageAnon(page)) { 1082 if (pte_dirty(ptent)) { 1083 force_flush = 1; 1084 set_page_dirty(page); 1085 } 1086 if (pte_young(ptent) && 1087 likely(!(vma->vm_flags & VM_SEQ_READ))) 1088 mark_page_accessed(page); 1089 } 1090 rss[mm_counter(page)]--; 1091 page_remove_rmap(page, false); 1092 if (unlikely(page_mapcount(page) < 0)) 1093 print_bad_pte(vma, addr, ptent, page); 1094 if (unlikely(__tlb_remove_page(tlb, page))) { 1095 force_flush = 1; 1096 addr += PAGE_SIZE; 1097 break; 1098 } 1099 continue; 1100 } 1101 1102 entry = pte_to_swp_entry(ptent); 1103 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1104 struct page *page = device_private_entry_to_page(entry); 1105 1106 if (unlikely(details && details->check_mapping)) { 1107 /* 1108 * unmap_shared_mapping_pages() wants to 1109 * invalidate cache without truncating: 1110 * unmap shared but keep private pages. 1111 */ 1112 if (details->check_mapping != 1113 page_rmapping(page)) 1114 continue; 1115 } 1116 1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1118 rss[mm_counter(page)]--; 1119 page_remove_rmap(page, false); 1120 put_page(page); 1121 continue; 1122 } 1123 1124 /* If details->check_mapping, we leave swap entries. */ 1125 if (unlikely(details)) 1126 continue; 1127 1128 entry = pte_to_swp_entry(ptent); 1129 if (!non_swap_entry(entry)) 1130 rss[MM_SWAPENTS]--; 1131 else if (is_migration_entry(entry)) { 1132 struct page *page; 1133 1134 page = migration_entry_to_page(entry); 1135 rss[mm_counter(page)]--; 1136 } 1137 if (unlikely(!free_swap_and_cache(entry))) 1138 print_bad_pte(vma, addr, ptent, NULL); 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1140 } while (pte++, addr += PAGE_SIZE, addr != end); 1141 1142 add_mm_rss_vec(mm, rss); 1143 arch_leave_lazy_mmu_mode(); 1144 1145 /* Do the actual TLB flush before dropping ptl */ 1146 if (force_flush) 1147 tlb_flush_mmu_tlbonly(tlb); 1148 pte_unmap_unlock(start_pte, ptl); 1149 1150 /* 1151 * If we forced a TLB flush (either due to running out of 1152 * batch buffers or because we needed to flush dirty TLB 1153 * entries before releasing the ptl), free the batched 1154 * memory too. Restart if we didn't do everything. 1155 */ 1156 if (force_flush) { 1157 force_flush = 0; 1158 tlb_flush_mmu_free(tlb); 1159 if (addr != end) 1160 goto again; 1161 } 1162 1163 return addr; 1164 } 1165 1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1167 struct vm_area_struct *vma, pud_t *pud, 1168 unsigned long addr, unsigned long end, 1169 struct zap_details *details) 1170 { 1171 pmd_t *pmd; 1172 unsigned long next; 1173 1174 pmd = pmd_offset(pud, addr); 1175 do { 1176 next = pmd_addr_end(addr, end); 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1178 if (next - addr != HPAGE_PMD_SIZE) 1179 __split_huge_pmd(vma, pmd, addr, false, NULL); 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1181 goto next; 1182 /* fall through */ 1183 } 1184 /* 1185 * Here there can be other concurrent MADV_DONTNEED or 1186 * trans huge page faults running, and if the pmd is 1187 * none or trans huge it can change under us. This is 1188 * because MADV_DONTNEED holds the mmap_sem in read 1189 * mode. 1190 */ 1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1192 goto next; 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1194 next: 1195 cond_resched(); 1196 } while (pmd++, addr = next, addr != end); 1197 1198 return addr; 1199 } 1200 1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1202 struct vm_area_struct *vma, p4d_t *p4d, 1203 unsigned long addr, unsigned long end, 1204 struct zap_details *details) 1205 { 1206 pud_t *pud; 1207 unsigned long next; 1208 1209 pud = pud_offset(p4d, addr); 1210 do { 1211 next = pud_addr_end(addr, end); 1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1213 if (next - addr != HPAGE_PUD_SIZE) { 1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1215 split_huge_pud(vma, pud, addr); 1216 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1217 goto next; 1218 /* fall through */ 1219 } 1220 if (pud_none_or_clear_bad(pud)) 1221 continue; 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1223 next: 1224 cond_resched(); 1225 } while (pud++, addr = next, addr != end); 1226 1227 return addr; 1228 } 1229 1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1231 struct vm_area_struct *vma, pgd_t *pgd, 1232 unsigned long addr, unsigned long end, 1233 struct zap_details *details) 1234 { 1235 p4d_t *p4d; 1236 unsigned long next; 1237 1238 p4d = p4d_offset(pgd, addr); 1239 do { 1240 next = p4d_addr_end(addr, end); 1241 if (p4d_none_or_clear_bad(p4d)) 1242 continue; 1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1244 } while (p4d++, addr = next, addr != end); 1245 1246 return addr; 1247 } 1248 1249 void unmap_page_range(struct mmu_gather *tlb, 1250 struct vm_area_struct *vma, 1251 unsigned long addr, unsigned long end, 1252 struct zap_details *details) 1253 { 1254 pgd_t *pgd; 1255 unsigned long next; 1256 1257 BUG_ON(addr >= end); 1258 tlb_start_vma(tlb, vma); 1259 pgd = pgd_offset(vma->vm_mm, addr); 1260 do { 1261 next = pgd_addr_end(addr, end); 1262 if (pgd_none_or_clear_bad(pgd)) 1263 continue; 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1265 } while (pgd++, addr = next, addr != end); 1266 tlb_end_vma(tlb, vma); 1267 } 1268 1269 1270 static void unmap_single_vma(struct mmu_gather *tlb, 1271 struct vm_area_struct *vma, unsigned long start_addr, 1272 unsigned long end_addr, 1273 struct zap_details *details) 1274 { 1275 unsigned long start = max(vma->vm_start, start_addr); 1276 unsigned long end; 1277 1278 if (start >= vma->vm_end) 1279 return; 1280 end = min(vma->vm_end, end_addr); 1281 if (end <= vma->vm_start) 1282 return; 1283 1284 if (vma->vm_file) 1285 uprobe_munmap(vma, start, end); 1286 1287 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1288 untrack_pfn(vma, 0, 0); 1289 1290 if (start != end) { 1291 if (unlikely(is_vm_hugetlb_page(vma))) { 1292 /* 1293 * It is undesirable to test vma->vm_file as it 1294 * should be non-null for valid hugetlb area. 1295 * However, vm_file will be NULL in the error 1296 * cleanup path of mmap_region. When 1297 * hugetlbfs ->mmap method fails, 1298 * mmap_region() nullifies vma->vm_file 1299 * before calling this function to clean up. 1300 * Since no pte has actually been setup, it is 1301 * safe to do nothing in this case. 1302 */ 1303 if (vma->vm_file) { 1304 i_mmap_lock_write(vma->vm_file->f_mapping); 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1306 i_mmap_unlock_write(vma->vm_file->f_mapping); 1307 } 1308 } else 1309 unmap_page_range(tlb, vma, start, end, details); 1310 } 1311 } 1312 1313 /** 1314 * unmap_vmas - unmap a range of memory covered by a list of vma's 1315 * @tlb: address of the caller's struct mmu_gather 1316 * @vma: the starting vma 1317 * @start_addr: virtual address at which to start unmapping 1318 * @end_addr: virtual address at which to end unmapping 1319 * 1320 * Unmap all pages in the vma list. 1321 * 1322 * Only addresses between `start' and `end' will be unmapped. 1323 * 1324 * The VMA list must be sorted in ascending virtual address order. 1325 * 1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1327 * range after unmap_vmas() returns. So the only responsibility here is to 1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1329 * drops the lock and schedules. 1330 */ 1331 void unmap_vmas(struct mmu_gather *tlb, 1332 struct vm_area_struct *vma, unsigned long start_addr, 1333 unsigned long end_addr) 1334 { 1335 struct mmu_notifier_range range; 1336 1337 mmu_notifier_range_init(&range, vma->vm_mm, start_addr, end_addr); 1338 mmu_notifier_invalidate_range_start(&range); 1339 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1340 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1341 mmu_notifier_invalidate_range_end(&range); 1342 } 1343 1344 /** 1345 * zap_page_range - remove user pages in a given range 1346 * @vma: vm_area_struct holding the applicable pages 1347 * @start: starting address of pages to zap 1348 * @size: number of bytes to zap 1349 * 1350 * Caller must protect the VMA list 1351 */ 1352 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1353 unsigned long size) 1354 { 1355 struct mmu_notifier_range range; 1356 struct mmu_gather tlb; 1357 1358 lru_add_drain(); 1359 mmu_notifier_range_init(&range, vma->vm_mm, start, start + size); 1360 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1361 update_hiwater_rss(vma->vm_mm); 1362 mmu_notifier_invalidate_range_start(&range); 1363 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1364 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1365 mmu_notifier_invalidate_range_end(&range); 1366 tlb_finish_mmu(&tlb, start, range.end); 1367 } 1368 1369 /** 1370 * zap_page_range_single - remove user pages in a given range 1371 * @vma: vm_area_struct holding the applicable pages 1372 * @address: starting address of pages to zap 1373 * @size: number of bytes to zap 1374 * @details: details of shared cache invalidation 1375 * 1376 * The range must fit into one VMA. 1377 */ 1378 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1379 unsigned long size, struct zap_details *details) 1380 { 1381 struct mmu_notifier_range range; 1382 struct mmu_gather tlb; 1383 1384 lru_add_drain(); 1385 mmu_notifier_range_init(&range, vma->vm_mm, address, address + size); 1386 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1387 update_hiwater_rss(vma->vm_mm); 1388 mmu_notifier_invalidate_range_start(&range); 1389 unmap_single_vma(&tlb, vma, address, range.end, details); 1390 mmu_notifier_invalidate_range_end(&range); 1391 tlb_finish_mmu(&tlb, address, range.end); 1392 } 1393 1394 /** 1395 * zap_vma_ptes - remove ptes mapping the vma 1396 * @vma: vm_area_struct holding ptes to be zapped 1397 * @address: starting address of pages to zap 1398 * @size: number of bytes to zap 1399 * 1400 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1401 * 1402 * The entire address range must be fully contained within the vma. 1403 * 1404 */ 1405 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1406 unsigned long size) 1407 { 1408 if (address < vma->vm_start || address + size > vma->vm_end || 1409 !(vma->vm_flags & VM_PFNMAP)) 1410 return; 1411 1412 zap_page_range_single(vma, address, size, NULL); 1413 } 1414 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1415 1416 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1417 spinlock_t **ptl) 1418 { 1419 pgd_t *pgd; 1420 p4d_t *p4d; 1421 pud_t *pud; 1422 pmd_t *pmd; 1423 1424 pgd = pgd_offset(mm, addr); 1425 p4d = p4d_alloc(mm, pgd, addr); 1426 if (!p4d) 1427 return NULL; 1428 pud = pud_alloc(mm, p4d, addr); 1429 if (!pud) 1430 return NULL; 1431 pmd = pmd_alloc(mm, pud, addr); 1432 if (!pmd) 1433 return NULL; 1434 1435 VM_BUG_ON(pmd_trans_huge(*pmd)); 1436 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1437 } 1438 1439 /* 1440 * This is the old fallback for page remapping. 1441 * 1442 * For historical reasons, it only allows reserved pages. Only 1443 * old drivers should use this, and they needed to mark their 1444 * pages reserved for the old functions anyway. 1445 */ 1446 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1447 struct page *page, pgprot_t prot) 1448 { 1449 struct mm_struct *mm = vma->vm_mm; 1450 int retval; 1451 pte_t *pte; 1452 spinlock_t *ptl; 1453 1454 retval = -EINVAL; 1455 if (PageAnon(page) || PageSlab(page) || page_has_type(page)) 1456 goto out; 1457 retval = -ENOMEM; 1458 flush_dcache_page(page); 1459 pte = get_locked_pte(mm, addr, &ptl); 1460 if (!pte) 1461 goto out; 1462 retval = -EBUSY; 1463 if (!pte_none(*pte)) 1464 goto out_unlock; 1465 1466 /* Ok, finally just insert the thing.. */ 1467 get_page(page); 1468 inc_mm_counter_fast(mm, mm_counter_file(page)); 1469 page_add_file_rmap(page, false); 1470 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1471 1472 retval = 0; 1473 pte_unmap_unlock(pte, ptl); 1474 return retval; 1475 out_unlock: 1476 pte_unmap_unlock(pte, ptl); 1477 out: 1478 return retval; 1479 } 1480 1481 /** 1482 * vm_insert_page - insert single page into user vma 1483 * @vma: user vma to map to 1484 * @addr: target user address of this page 1485 * @page: source kernel page 1486 * 1487 * This allows drivers to insert individual pages they've allocated 1488 * into a user vma. 1489 * 1490 * The page has to be a nice clean _individual_ kernel allocation. 1491 * If you allocate a compound page, you need to have marked it as 1492 * such (__GFP_COMP), or manually just split the page up yourself 1493 * (see split_page()). 1494 * 1495 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1496 * took an arbitrary page protection parameter. This doesn't allow 1497 * that. Your vma protection will have to be set up correctly, which 1498 * means that if you want a shared writable mapping, you'd better 1499 * ask for a shared writable mapping! 1500 * 1501 * The page does not need to be reserved. 1502 * 1503 * Usually this function is called from f_op->mmap() handler 1504 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1505 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1506 * function from other places, for example from page-fault handler. 1507 * 1508 * Return: %0 on success, negative error code otherwise. 1509 */ 1510 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1511 struct page *page) 1512 { 1513 if (addr < vma->vm_start || addr >= vma->vm_end) 1514 return -EFAULT; 1515 if (!page_count(page)) 1516 return -EINVAL; 1517 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1518 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1519 BUG_ON(vma->vm_flags & VM_PFNMAP); 1520 vma->vm_flags |= VM_MIXEDMAP; 1521 } 1522 return insert_page(vma, addr, page, vma->vm_page_prot); 1523 } 1524 EXPORT_SYMBOL(vm_insert_page); 1525 1526 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1527 pfn_t pfn, pgprot_t prot, bool mkwrite) 1528 { 1529 struct mm_struct *mm = vma->vm_mm; 1530 pte_t *pte, entry; 1531 spinlock_t *ptl; 1532 1533 pte = get_locked_pte(mm, addr, &ptl); 1534 if (!pte) 1535 return VM_FAULT_OOM; 1536 if (!pte_none(*pte)) { 1537 if (mkwrite) { 1538 /* 1539 * For read faults on private mappings the PFN passed 1540 * in may not match the PFN we have mapped if the 1541 * mapped PFN is a writeable COW page. In the mkwrite 1542 * case we are creating a writable PTE for a shared 1543 * mapping and we expect the PFNs to match. If they 1544 * don't match, we are likely racing with block 1545 * allocation and mapping invalidation so just skip the 1546 * update. 1547 */ 1548 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1549 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1550 goto out_unlock; 1551 } 1552 entry = pte_mkyoung(*pte); 1553 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1554 if (ptep_set_access_flags(vma, addr, pte, entry, 1)) 1555 update_mmu_cache(vma, addr, pte); 1556 } 1557 goto out_unlock; 1558 } 1559 1560 /* Ok, finally just insert the thing.. */ 1561 if (pfn_t_devmap(pfn)) 1562 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1563 else 1564 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1565 1566 if (mkwrite) { 1567 entry = pte_mkyoung(entry); 1568 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1569 } 1570 1571 set_pte_at(mm, addr, pte, entry); 1572 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1573 1574 out_unlock: 1575 pte_unmap_unlock(pte, ptl); 1576 return VM_FAULT_NOPAGE; 1577 } 1578 1579 /** 1580 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1581 * @vma: user vma to map to 1582 * @addr: target user address of this page 1583 * @pfn: source kernel pfn 1584 * @pgprot: pgprot flags for the inserted page 1585 * 1586 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1587 * to override pgprot on a per-page basis. 1588 * 1589 * This only makes sense for IO mappings, and it makes no sense for 1590 * COW mappings. In general, using multiple vmas is preferable; 1591 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1592 * impractical. 1593 * 1594 * Context: Process context. May allocate using %GFP_KERNEL. 1595 * Return: vm_fault_t value. 1596 */ 1597 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1598 unsigned long pfn, pgprot_t pgprot) 1599 { 1600 /* 1601 * Technically, architectures with pte_special can avoid all these 1602 * restrictions (same for remap_pfn_range). However we would like 1603 * consistency in testing and feature parity among all, so we should 1604 * try to keep these invariants in place for everybody. 1605 */ 1606 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1607 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1608 (VM_PFNMAP|VM_MIXEDMAP)); 1609 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1610 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1611 1612 if (addr < vma->vm_start || addr >= vma->vm_end) 1613 return VM_FAULT_SIGBUS; 1614 1615 if (!pfn_modify_allowed(pfn, pgprot)) 1616 return VM_FAULT_SIGBUS; 1617 1618 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1619 1620 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1621 false); 1622 } 1623 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1624 1625 /** 1626 * vmf_insert_pfn - insert single pfn into user vma 1627 * @vma: user vma to map to 1628 * @addr: target user address of this page 1629 * @pfn: source kernel pfn 1630 * 1631 * Similar to vm_insert_page, this allows drivers to insert individual pages 1632 * they've allocated into a user vma. Same comments apply. 1633 * 1634 * This function should only be called from a vm_ops->fault handler, and 1635 * in that case the handler should return the result of this function. 1636 * 1637 * vma cannot be a COW mapping. 1638 * 1639 * As this is called only for pages that do not currently exist, we 1640 * do not need to flush old virtual caches or the TLB. 1641 * 1642 * Context: Process context. May allocate using %GFP_KERNEL. 1643 * Return: vm_fault_t value. 1644 */ 1645 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1646 unsigned long pfn) 1647 { 1648 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1649 } 1650 EXPORT_SYMBOL(vmf_insert_pfn); 1651 1652 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1653 { 1654 /* these checks mirror the abort conditions in vm_normal_page */ 1655 if (vma->vm_flags & VM_MIXEDMAP) 1656 return true; 1657 if (pfn_t_devmap(pfn)) 1658 return true; 1659 if (pfn_t_special(pfn)) 1660 return true; 1661 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1662 return true; 1663 return false; 1664 } 1665 1666 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1667 unsigned long addr, pfn_t pfn, bool mkwrite) 1668 { 1669 pgprot_t pgprot = vma->vm_page_prot; 1670 int err; 1671 1672 BUG_ON(!vm_mixed_ok(vma, pfn)); 1673 1674 if (addr < vma->vm_start || addr >= vma->vm_end) 1675 return VM_FAULT_SIGBUS; 1676 1677 track_pfn_insert(vma, &pgprot, pfn); 1678 1679 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1680 return VM_FAULT_SIGBUS; 1681 1682 /* 1683 * If we don't have pte special, then we have to use the pfn_valid() 1684 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1685 * refcount the page if pfn_valid is true (hence insert_page rather 1686 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1687 * without pte special, it would there be refcounted as a normal page. 1688 */ 1689 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1690 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1691 struct page *page; 1692 1693 /* 1694 * At this point we are committed to insert_page() 1695 * regardless of whether the caller specified flags that 1696 * result in pfn_t_has_page() == false. 1697 */ 1698 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1699 err = insert_page(vma, addr, page, pgprot); 1700 } else { 1701 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1702 } 1703 1704 if (err == -ENOMEM) 1705 return VM_FAULT_OOM; 1706 if (err < 0 && err != -EBUSY) 1707 return VM_FAULT_SIGBUS; 1708 1709 return VM_FAULT_NOPAGE; 1710 } 1711 1712 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1713 pfn_t pfn) 1714 { 1715 return __vm_insert_mixed(vma, addr, pfn, false); 1716 } 1717 EXPORT_SYMBOL(vmf_insert_mixed); 1718 1719 /* 1720 * If the insertion of PTE failed because someone else already added a 1721 * different entry in the mean time, we treat that as success as we assume 1722 * the same entry was actually inserted. 1723 */ 1724 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1725 unsigned long addr, pfn_t pfn) 1726 { 1727 return __vm_insert_mixed(vma, addr, pfn, true); 1728 } 1729 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1730 1731 /* 1732 * maps a range of physical memory into the requested pages. the old 1733 * mappings are removed. any references to nonexistent pages results 1734 * in null mappings (currently treated as "copy-on-access") 1735 */ 1736 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1737 unsigned long addr, unsigned long end, 1738 unsigned long pfn, pgprot_t prot) 1739 { 1740 pte_t *pte; 1741 spinlock_t *ptl; 1742 int err = 0; 1743 1744 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1745 if (!pte) 1746 return -ENOMEM; 1747 arch_enter_lazy_mmu_mode(); 1748 do { 1749 BUG_ON(!pte_none(*pte)); 1750 if (!pfn_modify_allowed(pfn, prot)) { 1751 err = -EACCES; 1752 break; 1753 } 1754 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1755 pfn++; 1756 } while (pte++, addr += PAGE_SIZE, addr != end); 1757 arch_leave_lazy_mmu_mode(); 1758 pte_unmap_unlock(pte - 1, ptl); 1759 return err; 1760 } 1761 1762 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1763 unsigned long addr, unsigned long end, 1764 unsigned long pfn, pgprot_t prot) 1765 { 1766 pmd_t *pmd; 1767 unsigned long next; 1768 int err; 1769 1770 pfn -= addr >> PAGE_SHIFT; 1771 pmd = pmd_alloc(mm, pud, addr); 1772 if (!pmd) 1773 return -ENOMEM; 1774 VM_BUG_ON(pmd_trans_huge(*pmd)); 1775 do { 1776 next = pmd_addr_end(addr, end); 1777 err = remap_pte_range(mm, pmd, addr, next, 1778 pfn + (addr >> PAGE_SHIFT), prot); 1779 if (err) 1780 return err; 1781 } while (pmd++, addr = next, addr != end); 1782 return 0; 1783 } 1784 1785 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1786 unsigned long addr, unsigned long end, 1787 unsigned long pfn, pgprot_t prot) 1788 { 1789 pud_t *pud; 1790 unsigned long next; 1791 int err; 1792 1793 pfn -= addr >> PAGE_SHIFT; 1794 pud = pud_alloc(mm, p4d, addr); 1795 if (!pud) 1796 return -ENOMEM; 1797 do { 1798 next = pud_addr_end(addr, end); 1799 err = remap_pmd_range(mm, pud, addr, next, 1800 pfn + (addr >> PAGE_SHIFT), prot); 1801 if (err) 1802 return err; 1803 } while (pud++, addr = next, addr != end); 1804 return 0; 1805 } 1806 1807 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1808 unsigned long addr, unsigned long end, 1809 unsigned long pfn, pgprot_t prot) 1810 { 1811 p4d_t *p4d; 1812 unsigned long next; 1813 int err; 1814 1815 pfn -= addr >> PAGE_SHIFT; 1816 p4d = p4d_alloc(mm, pgd, addr); 1817 if (!p4d) 1818 return -ENOMEM; 1819 do { 1820 next = p4d_addr_end(addr, end); 1821 err = remap_pud_range(mm, p4d, addr, next, 1822 pfn + (addr >> PAGE_SHIFT), prot); 1823 if (err) 1824 return err; 1825 } while (p4d++, addr = next, addr != end); 1826 return 0; 1827 } 1828 1829 /** 1830 * remap_pfn_range - remap kernel memory to userspace 1831 * @vma: user vma to map to 1832 * @addr: target user address to start at 1833 * @pfn: physical address of kernel memory 1834 * @size: size of map area 1835 * @prot: page protection flags for this mapping 1836 * 1837 * Note: this is only safe if the mm semaphore is held when called. 1838 * 1839 * Return: %0 on success, negative error code otherwise. 1840 */ 1841 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1842 unsigned long pfn, unsigned long size, pgprot_t prot) 1843 { 1844 pgd_t *pgd; 1845 unsigned long next; 1846 unsigned long end = addr + PAGE_ALIGN(size); 1847 struct mm_struct *mm = vma->vm_mm; 1848 unsigned long remap_pfn = pfn; 1849 int err; 1850 1851 /* 1852 * Physically remapped pages are special. Tell the 1853 * rest of the world about it: 1854 * VM_IO tells people not to look at these pages 1855 * (accesses can have side effects). 1856 * VM_PFNMAP tells the core MM that the base pages are just 1857 * raw PFN mappings, and do not have a "struct page" associated 1858 * with them. 1859 * VM_DONTEXPAND 1860 * Disable vma merging and expanding with mremap(). 1861 * VM_DONTDUMP 1862 * Omit vma from core dump, even when VM_IO turned off. 1863 * 1864 * There's a horrible special case to handle copy-on-write 1865 * behaviour that some programs depend on. We mark the "original" 1866 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1867 * See vm_normal_page() for details. 1868 */ 1869 if (is_cow_mapping(vma->vm_flags)) { 1870 if (addr != vma->vm_start || end != vma->vm_end) 1871 return -EINVAL; 1872 vma->vm_pgoff = pfn; 1873 } 1874 1875 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1876 if (err) 1877 return -EINVAL; 1878 1879 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1880 1881 BUG_ON(addr >= end); 1882 pfn -= addr >> PAGE_SHIFT; 1883 pgd = pgd_offset(mm, addr); 1884 flush_cache_range(vma, addr, end); 1885 do { 1886 next = pgd_addr_end(addr, end); 1887 err = remap_p4d_range(mm, pgd, addr, next, 1888 pfn + (addr >> PAGE_SHIFT), prot); 1889 if (err) 1890 break; 1891 } while (pgd++, addr = next, addr != end); 1892 1893 if (err) 1894 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1895 1896 return err; 1897 } 1898 EXPORT_SYMBOL(remap_pfn_range); 1899 1900 /** 1901 * vm_iomap_memory - remap memory to userspace 1902 * @vma: user vma to map to 1903 * @start: start of area 1904 * @len: size of area 1905 * 1906 * This is a simplified io_remap_pfn_range() for common driver use. The 1907 * driver just needs to give us the physical memory range to be mapped, 1908 * we'll figure out the rest from the vma information. 1909 * 1910 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1911 * whatever write-combining details or similar. 1912 * 1913 * Return: %0 on success, negative error code otherwise. 1914 */ 1915 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1916 { 1917 unsigned long vm_len, pfn, pages; 1918 1919 /* Check that the physical memory area passed in looks valid */ 1920 if (start + len < start) 1921 return -EINVAL; 1922 /* 1923 * You *really* shouldn't map things that aren't page-aligned, 1924 * but we've historically allowed it because IO memory might 1925 * just have smaller alignment. 1926 */ 1927 len += start & ~PAGE_MASK; 1928 pfn = start >> PAGE_SHIFT; 1929 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1930 if (pfn + pages < pfn) 1931 return -EINVAL; 1932 1933 /* We start the mapping 'vm_pgoff' pages into the area */ 1934 if (vma->vm_pgoff > pages) 1935 return -EINVAL; 1936 pfn += vma->vm_pgoff; 1937 pages -= vma->vm_pgoff; 1938 1939 /* Can we fit all of the mapping? */ 1940 vm_len = vma->vm_end - vma->vm_start; 1941 if (vm_len >> PAGE_SHIFT > pages) 1942 return -EINVAL; 1943 1944 /* Ok, let it rip */ 1945 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1946 } 1947 EXPORT_SYMBOL(vm_iomap_memory); 1948 1949 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1950 unsigned long addr, unsigned long end, 1951 pte_fn_t fn, void *data) 1952 { 1953 pte_t *pte; 1954 int err; 1955 pgtable_t token; 1956 spinlock_t *uninitialized_var(ptl); 1957 1958 pte = (mm == &init_mm) ? 1959 pte_alloc_kernel(pmd, addr) : 1960 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1961 if (!pte) 1962 return -ENOMEM; 1963 1964 BUG_ON(pmd_huge(*pmd)); 1965 1966 arch_enter_lazy_mmu_mode(); 1967 1968 token = pmd_pgtable(*pmd); 1969 1970 do { 1971 err = fn(pte++, token, addr, data); 1972 if (err) 1973 break; 1974 } while (addr += PAGE_SIZE, addr != end); 1975 1976 arch_leave_lazy_mmu_mode(); 1977 1978 if (mm != &init_mm) 1979 pte_unmap_unlock(pte-1, ptl); 1980 return err; 1981 } 1982 1983 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1984 unsigned long addr, unsigned long end, 1985 pte_fn_t fn, void *data) 1986 { 1987 pmd_t *pmd; 1988 unsigned long next; 1989 int err; 1990 1991 BUG_ON(pud_huge(*pud)); 1992 1993 pmd = pmd_alloc(mm, pud, addr); 1994 if (!pmd) 1995 return -ENOMEM; 1996 do { 1997 next = pmd_addr_end(addr, end); 1998 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1999 if (err) 2000 break; 2001 } while (pmd++, addr = next, addr != end); 2002 return err; 2003 } 2004 2005 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2006 unsigned long addr, unsigned long end, 2007 pte_fn_t fn, void *data) 2008 { 2009 pud_t *pud; 2010 unsigned long next; 2011 int err; 2012 2013 pud = pud_alloc(mm, p4d, addr); 2014 if (!pud) 2015 return -ENOMEM; 2016 do { 2017 next = pud_addr_end(addr, end); 2018 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2019 if (err) 2020 break; 2021 } while (pud++, addr = next, addr != end); 2022 return err; 2023 } 2024 2025 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2026 unsigned long addr, unsigned long end, 2027 pte_fn_t fn, void *data) 2028 { 2029 p4d_t *p4d; 2030 unsigned long next; 2031 int err; 2032 2033 p4d = p4d_alloc(mm, pgd, addr); 2034 if (!p4d) 2035 return -ENOMEM; 2036 do { 2037 next = p4d_addr_end(addr, end); 2038 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2039 if (err) 2040 break; 2041 } while (p4d++, addr = next, addr != end); 2042 return err; 2043 } 2044 2045 /* 2046 * Scan a region of virtual memory, filling in page tables as necessary 2047 * and calling a provided function on each leaf page table. 2048 */ 2049 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2050 unsigned long size, pte_fn_t fn, void *data) 2051 { 2052 pgd_t *pgd; 2053 unsigned long next; 2054 unsigned long end = addr + size; 2055 int err; 2056 2057 if (WARN_ON(addr >= end)) 2058 return -EINVAL; 2059 2060 pgd = pgd_offset(mm, addr); 2061 do { 2062 next = pgd_addr_end(addr, end); 2063 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2064 if (err) 2065 break; 2066 } while (pgd++, addr = next, addr != end); 2067 2068 return err; 2069 } 2070 EXPORT_SYMBOL_GPL(apply_to_page_range); 2071 2072 /* 2073 * handle_pte_fault chooses page fault handler according to an entry which was 2074 * read non-atomically. Before making any commitment, on those architectures 2075 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2076 * parts, do_swap_page must check under lock before unmapping the pte and 2077 * proceeding (but do_wp_page is only called after already making such a check; 2078 * and do_anonymous_page can safely check later on). 2079 */ 2080 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2081 pte_t *page_table, pte_t orig_pte) 2082 { 2083 int same = 1; 2084 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2085 if (sizeof(pte_t) > sizeof(unsigned long)) { 2086 spinlock_t *ptl = pte_lockptr(mm, pmd); 2087 spin_lock(ptl); 2088 same = pte_same(*page_table, orig_pte); 2089 spin_unlock(ptl); 2090 } 2091 #endif 2092 pte_unmap(page_table); 2093 return same; 2094 } 2095 2096 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2097 { 2098 debug_dma_assert_idle(src); 2099 2100 /* 2101 * If the source page was a PFN mapping, we don't have 2102 * a "struct page" for it. We do a best-effort copy by 2103 * just copying from the original user address. If that 2104 * fails, we just zero-fill it. Live with it. 2105 */ 2106 if (unlikely(!src)) { 2107 void *kaddr = kmap_atomic(dst); 2108 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2109 2110 /* 2111 * This really shouldn't fail, because the page is there 2112 * in the page tables. But it might just be unreadable, 2113 * in which case we just give up and fill the result with 2114 * zeroes. 2115 */ 2116 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2117 clear_page(kaddr); 2118 kunmap_atomic(kaddr); 2119 flush_dcache_page(dst); 2120 } else 2121 copy_user_highpage(dst, src, va, vma); 2122 } 2123 2124 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2125 { 2126 struct file *vm_file = vma->vm_file; 2127 2128 if (vm_file) 2129 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2130 2131 /* 2132 * Special mappings (e.g. VDSO) do not have any file so fake 2133 * a default GFP_KERNEL for them. 2134 */ 2135 return GFP_KERNEL; 2136 } 2137 2138 /* 2139 * Notify the address space that the page is about to become writable so that 2140 * it can prohibit this or wait for the page to get into an appropriate state. 2141 * 2142 * We do this without the lock held, so that it can sleep if it needs to. 2143 */ 2144 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2145 { 2146 vm_fault_t ret; 2147 struct page *page = vmf->page; 2148 unsigned int old_flags = vmf->flags; 2149 2150 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2151 2152 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2153 /* Restore original flags so that caller is not surprised */ 2154 vmf->flags = old_flags; 2155 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2156 return ret; 2157 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2158 lock_page(page); 2159 if (!page->mapping) { 2160 unlock_page(page); 2161 return 0; /* retry */ 2162 } 2163 ret |= VM_FAULT_LOCKED; 2164 } else 2165 VM_BUG_ON_PAGE(!PageLocked(page), page); 2166 return ret; 2167 } 2168 2169 /* 2170 * Handle dirtying of a page in shared file mapping on a write fault. 2171 * 2172 * The function expects the page to be locked and unlocks it. 2173 */ 2174 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2175 struct page *page) 2176 { 2177 struct address_space *mapping; 2178 bool dirtied; 2179 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2180 2181 dirtied = set_page_dirty(page); 2182 VM_BUG_ON_PAGE(PageAnon(page), page); 2183 /* 2184 * Take a local copy of the address_space - page.mapping may be zeroed 2185 * by truncate after unlock_page(). The address_space itself remains 2186 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2187 * release semantics to prevent the compiler from undoing this copying. 2188 */ 2189 mapping = page_rmapping(page); 2190 unlock_page(page); 2191 2192 if ((dirtied || page_mkwrite) && mapping) { 2193 /* 2194 * Some device drivers do not set page.mapping 2195 * but still dirty their pages 2196 */ 2197 balance_dirty_pages_ratelimited(mapping); 2198 } 2199 2200 if (!page_mkwrite) 2201 file_update_time(vma->vm_file); 2202 } 2203 2204 /* 2205 * Handle write page faults for pages that can be reused in the current vma 2206 * 2207 * This can happen either due to the mapping being with the VM_SHARED flag, 2208 * or due to us being the last reference standing to the page. In either 2209 * case, all we need to do here is to mark the page as writable and update 2210 * any related book-keeping. 2211 */ 2212 static inline void wp_page_reuse(struct vm_fault *vmf) 2213 __releases(vmf->ptl) 2214 { 2215 struct vm_area_struct *vma = vmf->vma; 2216 struct page *page = vmf->page; 2217 pte_t entry; 2218 /* 2219 * Clear the pages cpupid information as the existing 2220 * information potentially belongs to a now completely 2221 * unrelated process. 2222 */ 2223 if (page) 2224 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2225 2226 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2227 entry = pte_mkyoung(vmf->orig_pte); 2228 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2229 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2230 update_mmu_cache(vma, vmf->address, vmf->pte); 2231 pte_unmap_unlock(vmf->pte, vmf->ptl); 2232 } 2233 2234 /* 2235 * Handle the case of a page which we actually need to copy to a new page. 2236 * 2237 * Called with mmap_sem locked and the old page referenced, but 2238 * without the ptl held. 2239 * 2240 * High level logic flow: 2241 * 2242 * - Allocate a page, copy the content of the old page to the new one. 2243 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2244 * - Take the PTL. If the pte changed, bail out and release the allocated page 2245 * - If the pte is still the way we remember it, update the page table and all 2246 * relevant references. This includes dropping the reference the page-table 2247 * held to the old page, as well as updating the rmap. 2248 * - In any case, unlock the PTL and drop the reference we took to the old page. 2249 */ 2250 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2251 { 2252 struct vm_area_struct *vma = vmf->vma; 2253 struct mm_struct *mm = vma->vm_mm; 2254 struct page *old_page = vmf->page; 2255 struct page *new_page = NULL; 2256 pte_t entry; 2257 int page_copied = 0; 2258 struct mem_cgroup *memcg; 2259 struct mmu_notifier_range range; 2260 2261 if (unlikely(anon_vma_prepare(vma))) 2262 goto oom; 2263 2264 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2265 new_page = alloc_zeroed_user_highpage_movable(vma, 2266 vmf->address); 2267 if (!new_page) 2268 goto oom; 2269 } else { 2270 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2271 vmf->address); 2272 if (!new_page) 2273 goto oom; 2274 cow_user_page(new_page, old_page, vmf->address, vma); 2275 } 2276 2277 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2278 goto oom_free_new; 2279 2280 __SetPageUptodate(new_page); 2281 2282 mmu_notifier_range_init(&range, mm, vmf->address & PAGE_MASK, 2283 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2284 mmu_notifier_invalidate_range_start(&range); 2285 2286 /* 2287 * Re-check the pte - we dropped the lock 2288 */ 2289 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2290 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2291 if (old_page) { 2292 if (!PageAnon(old_page)) { 2293 dec_mm_counter_fast(mm, 2294 mm_counter_file(old_page)); 2295 inc_mm_counter_fast(mm, MM_ANONPAGES); 2296 } 2297 } else { 2298 inc_mm_counter_fast(mm, MM_ANONPAGES); 2299 } 2300 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2301 entry = mk_pte(new_page, vma->vm_page_prot); 2302 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2303 /* 2304 * Clear the pte entry and flush it first, before updating the 2305 * pte with the new entry. This will avoid a race condition 2306 * seen in the presence of one thread doing SMC and another 2307 * thread doing COW. 2308 */ 2309 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2310 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2311 mem_cgroup_commit_charge(new_page, memcg, false, false); 2312 lru_cache_add_active_or_unevictable(new_page, vma); 2313 /* 2314 * We call the notify macro here because, when using secondary 2315 * mmu page tables (such as kvm shadow page tables), we want the 2316 * new page to be mapped directly into the secondary page table. 2317 */ 2318 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2319 update_mmu_cache(vma, vmf->address, vmf->pte); 2320 if (old_page) { 2321 /* 2322 * Only after switching the pte to the new page may 2323 * we remove the mapcount here. Otherwise another 2324 * process may come and find the rmap count decremented 2325 * before the pte is switched to the new page, and 2326 * "reuse" the old page writing into it while our pte 2327 * here still points into it and can be read by other 2328 * threads. 2329 * 2330 * The critical issue is to order this 2331 * page_remove_rmap with the ptp_clear_flush above. 2332 * Those stores are ordered by (if nothing else,) 2333 * the barrier present in the atomic_add_negative 2334 * in page_remove_rmap. 2335 * 2336 * Then the TLB flush in ptep_clear_flush ensures that 2337 * no process can access the old page before the 2338 * decremented mapcount is visible. And the old page 2339 * cannot be reused until after the decremented 2340 * mapcount is visible. So transitively, TLBs to 2341 * old page will be flushed before it can be reused. 2342 */ 2343 page_remove_rmap(old_page, false); 2344 } 2345 2346 /* Free the old page.. */ 2347 new_page = old_page; 2348 page_copied = 1; 2349 } else { 2350 mem_cgroup_cancel_charge(new_page, memcg, false); 2351 } 2352 2353 if (new_page) 2354 put_page(new_page); 2355 2356 pte_unmap_unlock(vmf->pte, vmf->ptl); 2357 /* 2358 * No need to double call mmu_notifier->invalidate_range() callback as 2359 * the above ptep_clear_flush_notify() did already call it. 2360 */ 2361 mmu_notifier_invalidate_range_only_end(&range); 2362 if (old_page) { 2363 /* 2364 * Don't let another task, with possibly unlocked vma, 2365 * keep the mlocked page. 2366 */ 2367 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2368 lock_page(old_page); /* LRU manipulation */ 2369 if (PageMlocked(old_page)) 2370 munlock_vma_page(old_page); 2371 unlock_page(old_page); 2372 } 2373 put_page(old_page); 2374 } 2375 return page_copied ? VM_FAULT_WRITE : 0; 2376 oom_free_new: 2377 put_page(new_page); 2378 oom: 2379 if (old_page) 2380 put_page(old_page); 2381 return VM_FAULT_OOM; 2382 } 2383 2384 /** 2385 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2386 * writeable once the page is prepared 2387 * 2388 * @vmf: structure describing the fault 2389 * 2390 * This function handles all that is needed to finish a write page fault in a 2391 * shared mapping due to PTE being read-only once the mapped page is prepared. 2392 * It handles locking of PTE and modifying it. 2393 * 2394 * The function expects the page to be locked or other protection against 2395 * concurrent faults / writeback (such as DAX radix tree locks). 2396 * 2397 * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before 2398 * we acquired PTE lock. 2399 */ 2400 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2401 { 2402 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2403 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2404 &vmf->ptl); 2405 /* 2406 * We might have raced with another page fault while we released the 2407 * pte_offset_map_lock. 2408 */ 2409 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2410 pte_unmap_unlock(vmf->pte, vmf->ptl); 2411 return VM_FAULT_NOPAGE; 2412 } 2413 wp_page_reuse(vmf); 2414 return 0; 2415 } 2416 2417 /* 2418 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2419 * mapping 2420 */ 2421 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2422 { 2423 struct vm_area_struct *vma = vmf->vma; 2424 2425 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2426 vm_fault_t ret; 2427 2428 pte_unmap_unlock(vmf->pte, vmf->ptl); 2429 vmf->flags |= FAULT_FLAG_MKWRITE; 2430 ret = vma->vm_ops->pfn_mkwrite(vmf); 2431 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2432 return ret; 2433 return finish_mkwrite_fault(vmf); 2434 } 2435 wp_page_reuse(vmf); 2436 return VM_FAULT_WRITE; 2437 } 2438 2439 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2440 __releases(vmf->ptl) 2441 { 2442 struct vm_area_struct *vma = vmf->vma; 2443 2444 get_page(vmf->page); 2445 2446 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2447 vm_fault_t tmp; 2448 2449 pte_unmap_unlock(vmf->pte, vmf->ptl); 2450 tmp = do_page_mkwrite(vmf); 2451 if (unlikely(!tmp || (tmp & 2452 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2453 put_page(vmf->page); 2454 return tmp; 2455 } 2456 tmp = finish_mkwrite_fault(vmf); 2457 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2458 unlock_page(vmf->page); 2459 put_page(vmf->page); 2460 return tmp; 2461 } 2462 } else { 2463 wp_page_reuse(vmf); 2464 lock_page(vmf->page); 2465 } 2466 fault_dirty_shared_page(vma, vmf->page); 2467 put_page(vmf->page); 2468 2469 return VM_FAULT_WRITE; 2470 } 2471 2472 /* 2473 * This routine handles present pages, when users try to write 2474 * to a shared page. It is done by copying the page to a new address 2475 * and decrementing the shared-page counter for the old page. 2476 * 2477 * Note that this routine assumes that the protection checks have been 2478 * done by the caller (the low-level page fault routine in most cases). 2479 * Thus we can safely just mark it writable once we've done any necessary 2480 * COW. 2481 * 2482 * We also mark the page dirty at this point even though the page will 2483 * change only once the write actually happens. This avoids a few races, 2484 * and potentially makes it more efficient. 2485 * 2486 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2487 * but allow concurrent faults), with pte both mapped and locked. 2488 * We return with mmap_sem still held, but pte unmapped and unlocked. 2489 */ 2490 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2491 __releases(vmf->ptl) 2492 { 2493 struct vm_area_struct *vma = vmf->vma; 2494 2495 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2496 if (!vmf->page) { 2497 /* 2498 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2499 * VM_PFNMAP VMA. 2500 * 2501 * We should not cow pages in a shared writeable mapping. 2502 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2503 */ 2504 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2505 (VM_WRITE|VM_SHARED)) 2506 return wp_pfn_shared(vmf); 2507 2508 pte_unmap_unlock(vmf->pte, vmf->ptl); 2509 return wp_page_copy(vmf); 2510 } 2511 2512 /* 2513 * Take out anonymous pages first, anonymous shared vmas are 2514 * not dirty accountable. 2515 */ 2516 if (PageAnon(vmf->page)) { 2517 int total_map_swapcount; 2518 if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) || 2519 page_count(vmf->page) != 1)) 2520 goto copy; 2521 if (!trylock_page(vmf->page)) { 2522 get_page(vmf->page); 2523 pte_unmap_unlock(vmf->pte, vmf->ptl); 2524 lock_page(vmf->page); 2525 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2526 vmf->address, &vmf->ptl); 2527 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2528 unlock_page(vmf->page); 2529 pte_unmap_unlock(vmf->pte, vmf->ptl); 2530 put_page(vmf->page); 2531 return 0; 2532 } 2533 put_page(vmf->page); 2534 } 2535 if (PageKsm(vmf->page)) { 2536 bool reused = reuse_ksm_page(vmf->page, vmf->vma, 2537 vmf->address); 2538 unlock_page(vmf->page); 2539 if (!reused) 2540 goto copy; 2541 wp_page_reuse(vmf); 2542 return VM_FAULT_WRITE; 2543 } 2544 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2545 if (total_map_swapcount == 1) { 2546 /* 2547 * The page is all ours. Move it to 2548 * our anon_vma so the rmap code will 2549 * not search our parent or siblings. 2550 * Protected against the rmap code by 2551 * the page lock. 2552 */ 2553 page_move_anon_rmap(vmf->page, vma); 2554 } 2555 unlock_page(vmf->page); 2556 wp_page_reuse(vmf); 2557 return VM_FAULT_WRITE; 2558 } 2559 unlock_page(vmf->page); 2560 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2561 (VM_WRITE|VM_SHARED))) { 2562 return wp_page_shared(vmf); 2563 } 2564 copy: 2565 /* 2566 * Ok, we need to copy. Oh, well.. 2567 */ 2568 get_page(vmf->page); 2569 2570 pte_unmap_unlock(vmf->pte, vmf->ptl); 2571 return wp_page_copy(vmf); 2572 } 2573 2574 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2575 unsigned long start_addr, unsigned long end_addr, 2576 struct zap_details *details) 2577 { 2578 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2579 } 2580 2581 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2582 struct zap_details *details) 2583 { 2584 struct vm_area_struct *vma; 2585 pgoff_t vba, vea, zba, zea; 2586 2587 vma_interval_tree_foreach(vma, root, 2588 details->first_index, details->last_index) { 2589 2590 vba = vma->vm_pgoff; 2591 vea = vba + vma_pages(vma) - 1; 2592 zba = details->first_index; 2593 if (zba < vba) 2594 zba = vba; 2595 zea = details->last_index; 2596 if (zea > vea) 2597 zea = vea; 2598 2599 unmap_mapping_range_vma(vma, 2600 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2601 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2602 details); 2603 } 2604 } 2605 2606 /** 2607 * unmap_mapping_pages() - Unmap pages from processes. 2608 * @mapping: The address space containing pages to be unmapped. 2609 * @start: Index of first page to be unmapped. 2610 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2611 * @even_cows: Whether to unmap even private COWed pages. 2612 * 2613 * Unmap the pages in this address space from any userspace process which 2614 * has them mmaped. Generally, you want to remove COWed pages as well when 2615 * a file is being truncated, but not when invalidating pages from the page 2616 * cache. 2617 */ 2618 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2619 pgoff_t nr, bool even_cows) 2620 { 2621 struct zap_details details = { }; 2622 2623 details.check_mapping = even_cows ? NULL : mapping; 2624 details.first_index = start; 2625 details.last_index = start + nr - 1; 2626 if (details.last_index < details.first_index) 2627 details.last_index = ULONG_MAX; 2628 2629 i_mmap_lock_write(mapping); 2630 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2631 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2632 i_mmap_unlock_write(mapping); 2633 } 2634 2635 /** 2636 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2637 * address_space corresponding to the specified byte range in the underlying 2638 * file. 2639 * 2640 * @mapping: the address space containing mmaps to be unmapped. 2641 * @holebegin: byte in first page to unmap, relative to the start of 2642 * the underlying file. This will be rounded down to a PAGE_SIZE 2643 * boundary. Note that this is different from truncate_pagecache(), which 2644 * must keep the partial page. In contrast, we must get rid of 2645 * partial pages. 2646 * @holelen: size of prospective hole in bytes. This will be rounded 2647 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2648 * end of the file. 2649 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2650 * but 0 when invalidating pagecache, don't throw away private data. 2651 */ 2652 void unmap_mapping_range(struct address_space *mapping, 2653 loff_t const holebegin, loff_t const holelen, int even_cows) 2654 { 2655 pgoff_t hba = holebegin >> PAGE_SHIFT; 2656 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2657 2658 /* Check for overflow. */ 2659 if (sizeof(holelen) > sizeof(hlen)) { 2660 long long holeend = 2661 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2662 if (holeend & ~(long long)ULONG_MAX) 2663 hlen = ULONG_MAX - hba + 1; 2664 } 2665 2666 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2667 } 2668 EXPORT_SYMBOL(unmap_mapping_range); 2669 2670 /* 2671 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2672 * but allow concurrent faults), and pte mapped but not yet locked. 2673 * We return with pte unmapped and unlocked. 2674 * 2675 * We return with the mmap_sem locked or unlocked in the same cases 2676 * as does filemap_fault(). 2677 */ 2678 vm_fault_t do_swap_page(struct vm_fault *vmf) 2679 { 2680 struct vm_area_struct *vma = vmf->vma; 2681 struct page *page = NULL, *swapcache; 2682 struct mem_cgroup *memcg; 2683 swp_entry_t entry; 2684 pte_t pte; 2685 int locked; 2686 int exclusive = 0; 2687 vm_fault_t ret = 0; 2688 2689 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2690 goto out; 2691 2692 entry = pte_to_swp_entry(vmf->orig_pte); 2693 if (unlikely(non_swap_entry(entry))) { 2694 if (is_migration_entry(entry)) { 2695 migration_entry_wait(vma->vm_mm, vmf->pmd, 2696 vmf->address); 2697 } else if (is_device_private_entry(entry)) { 2698 /* 2699 * For un-addressable device memory we call the pgmap 2700 * fault handler callback. The callback must migrate 2701 * the page back to some CPU accessible page. 2702 */ 2703 ret = device_private_entry_fault(vma, vmf->address, entry, 2704 vmf->flags, vmf->pmd); 2705 } else if (is_hwpoison_entry(entry)) { 2706 ret = VM_FAULT_HWPOISON; 2707 } else { 2708 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2709 ret = VM_FAULT_SIGBUS; 2710 } 2711 goto out; 2712 } 2713 2714 2715 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2716 page = lookup_swap_cache(entry, vma, vmf->address); 2717 swapcache = page; 2718 2719 if (!page) { 2720 struct swap_info_struct *si = swp_swap_info(entry); 2721 2722 if (si->flags & SWP_SYNCHRONOUS_IO && 2723 __swap_count(si, entry) == 1) { 2724 /* skip swapcache */ 2725 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2726 vmf->address); 2727 if (page) { 2728 __SetPageLocked(page); 2729 __SetPageSwapBacked(page); 2730 set_page_private(page, entry.val); 2731 lru_cache_add_anon(page); 2732 swap_readpage(page, true); 2733 } 2734 } else { 2735 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2736 vmf); 2737 swapcache = page; 2738 } 2739 2740 if (!page) { 2741 /* 2742 * Back out if somebody else faulted in this pte 2743 * while we released the pte lock. 2744 */ 2745 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2746 vmf->address, &vmf->ptl); 2747 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2748 ret = VM_FAULT_OOM; 2749 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2750 goto unlock; 2751 } 2752 2753 /* Had to read the page from swap area: Major fault */ 2754 ret = VM_FAULT_MAJOR; 2755 count_vm_event(PGMAJFAULT); 2756 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2757 } else if (PageHWPoison(page)) { 2758 /* 2759 * hwpoisoned dirty swapcache pages are kept for killing 2760 * owner processes (which may be unknown at hwpoison time) 2761 */ 2762 ret = VM_FAULT_HWPOISON; 2763 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2764 goto out_release; 2765 } 2766 2767 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2768 2769 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2770 if (!locked) { 2771 ret |= VM_FAULT_RETRY; 2772 goto out_release; 2773 } 2774 2775 /* 2776 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2777 * release the swapcache from under us. The page pin, and pte_same 2778 * test below, are not enough to exclude that. Even if it is still 2779 * swapcache, we need to check that the page's swap has not changed. 2780 */ 2781 if (unlikely((!PageSwapCache(page) || 2782 page_private(page) != entry.val)) && swapcache) 2783 goto out_page; 2784 2785 page = ksm_might_need_to_copy(page, vma, vmf->address); 2786 if (unlikely(!page)) { 2787 ret = VM_FAULT_OOM; 2788 page = swapcache; 2789 goto out_page; 2790 } 2791 2792 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 2793 &memcg, false)) { 2794 ret = VM_FAULT_OOM; 2795 goto out_page; 2796 } 2797 2798 /* 2799 * Back out if somebody else already faulted in this pte. 2800 */ 2801 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2802 &vmf->ptl); 2803 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2804 goto out_nomap; 2805 2806 if (unlikely(!PageUptodate(page))) { 2807 ret = VM_FAULT_SIGBUS; 2808 goto out_nomap; 2809 } 2810 2811 /* 2812 * The page isn't present yet, go ahead with the fault. 2813 * 2814 * Be careful about the sequence of operations here. 2815 * To get its accounting right, reuse_swap_page() must be called 2816 * while the page is counted on swap but not yet in mapcount i.e. 2817 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2818 * must be called after the swap_free(), or it will never succeed. 2819 */ 2820 2821 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2822 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2823 pte = mk_pte(page, vma->vm_page_prot); 2824 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2825 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2826 vmf->flags &= ~FAULT_FLAG_WRITE; 2827 ret |= VM_FAULT_WRITE; 2828 exclusive = RMAP_EXCLUSIVE; 2829 } 2830 flush_icache_page(vma, page); 2831 if (pte_swp_soft_dirty(vmf->orig_pte)) 2832 pte = pte_mksoft_dirty(pte); 2833 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2834 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 2835 vmf->orig_pte = pte; 2836 2837 /* ksm created a completely new copy */ 2838 if (unlikely(page != swapcache && swapcache)) { 2839 page_add_new_anon_rmap(page, vma, vmf->address, false); 2840 mem_cgroup_commit_charge(page, memcg, false, false); 2841 lru_cache_add_active_or_unevictable(page, vma); 2842 } else { 2843 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2844 mem_cgroup_commit_charge(page, memcg, true, false); 2845 activate_page(page); 2846 } 2847 2848 swap_free(entry); 2849 if (mem_cgroup_swap_full(page) || 2850 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2851 try_to_free_swap(page); 2852 unlock_page(page); 2853 if (page != swapcache && swapcache) { 2854 /* 2855 * Hold the lock to avoid the swap entry to be reused 2856 * until we take the PT lock for the pte_same() check 2857 * (to avoid false positives from pte_same). For 2858 * further safety release the lock after the swap_free 2859 * so that the swap count won't change under a 2860 * parallel locked swapcache. 2861 */ 2862 unlock_page(swapcache); 2863 put_page(swapcache); 2864 } 2865 2866 if (vmf->flags & FAULT_FLAG_WRITE) { 2867 ret |= do_wp_page(vmf); 2868 if (ret & VM_FAULT_ERROR) 2869 ret &= VM_FAULT_ERROR; 2870 goto out; 2871 } 2872 2873 /* No need to invalidate - it was non-present before */ 2874 update_mmu_cache(vma, vmf->address, vmf->pte); 2875 unlock: 2876 pte_unmap_unlock(vmf->pte, vmf->ptl); 2877 out: 2878 return ret; 2879 out_nomap: 2880 mem_cgroup_cancel_charge(page, memcg, false); 2881 pte_unmap_unlock(vmf->pte, vmf->ptl); 2882 out_page: 2883 unlock_page(page); 2884 out_release: 2885 put_page(page); 2886 if (page != swapcache && swapcache) { 2887 unlock_page(swapcache); 2888 put_page(swapcache); 2889 } 2890 return ret; 2891 } 2892 2893 /* 2894 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2895 * but allow concurrent faults), and pte mapped but not yet locked. 2896 * We return with mmap_sem still held, but pte unmapped and unlocked. 2897 */ 2898 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 2899 { 2900 struct vm_area_struct *vma = vmf->vma; 2901 struct mem_cgroup *memcg; 2902 struct page *page; 2903 vm_fault_t ret = 0; 2904 pte_t entry; 2905 2906 /* File mapping without ->vm_ops ? */ 2907 if (vma->vm_flags & VM_SHARED) 2908 return VM_FAULT_SIGBUS; 2909 2910 /* 2911 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2912 * pte_offset_map() on pmds where a huge pmd might be created 2913 * from a different thread. 2914 * 2915 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2916 * parallel threads are excluded by other means. 2917 * 2918 * Here we only have down_read(mmap_sem). 2919 */ 2920 if (pte_alloc(vma->vm_mm, vmf->pmd)) 2921 return VM_FAULT_OOM; 2922 2923 /* See the comment in pte_alloc_one_map() */ 2924 if (unlikely(pmd_trans_unstable(vmf->pmd))) 2925 return 0; 2926 2927 /* Use the zero-page for reads */ 2928 if (!(vmf->flags & FAULT_FLAG_WRITE) && 2929 !mm_forbids_zeropage(vma->vm_mm)) { 2930 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 2931 vma->vm_page_prot)); 2932 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2933 vmf->address, &vmf->ptl); 2934 if (!pte_none(*vmf->pte)) 2935 goto unlock; 2936 ret = check_stable_address_space(vma->vm_mm); 2937 if (ret) 2938 goto unlock; 2939 /* Deliver the page fault to userland, check inside PT lock */ 2940 if (userfaultfd_missing(vma)) { 2941 pte_unmap_unlock(vmf->pte, vmf->ptl); 2942 return handle_userfault(vmf, VM_UFFD_MISSING); 2943 } 2944 goto setpte; 2945 } 2946 2947 /* Allocate our own private page. */ 2948 if (unlikely(anon_vma_prepare(vma))) 2949 goto oom; 2950 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 2951 if (!page) 2952 goto oom; 2953 2954 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 2955 false)) 2956 goto oom_free_page; 2957 2958 /* 2959 * The memory barrier inside __SetPageUptodate makes sure that 2960 * preceeding stores to the page contents become visible before 2961 * the set_pte_at() write. 2962 */ 2963 __SetPageUptodate(page); 2964 2965 entry = mk_pte(page, vma->vm_page_prot); 2966 if (vma->vm_flags & VM_WRITE) 2967 entry = pte_mkwrite(pte_mkdirty(entry)); 2968 2969 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2970 &vmf->ptl); 2971 if (!pte_none(*vmf->pte)) 2972 goto release; 2973 2974 ret = check_stable_address_space(vma->vm_mm); 2975 if (ret) 2976 goto release; 2977 2978 /* Deliver the page fault to userland, check inside PT lock */ 2979 if (userfaultfd_missing(vma)) { 2980 pte_unmap_unlock(vmf->pte, vmf->ptl); 2981 mem_cgroup_cancel_charge(page, memcg, false); 2982 put_page(page); 2983 return handle_userfault(vmf, VM_UFFD_MISSING); 2984 } 2985 2986 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2987 page_add_new_anon_rmap(page, vma, vmf->address, false); 2988 mem_cgroup_commit_charge(page, memcg, false, false); 2989 lru_cache_add_active_or_unevictable(page, vma); 2990 setpte: 2991 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 2992 2993 /* No need to invalidate - it was non-present before */ 2994 update_mmu_cache(vma, vmf->address, vmf->pte); 2995 unlock: 2996 pte_unmap_unlock(vmf->pte, vmf->ptl); 2997 return ret; 2998 release: 2999 mem_cgroup_cancel_charge(page, memcg, false); 3000 put_page(page); 3001 goto unlock; 3002 oom_free_page: 3003 put_page(page); 3004 oom: 3005 return VM_FAULT_OOM; 3006 } 3007 3008 /* 3009 * The mmap_sem must have been held on entry, and may have been 3010 * released depending on flags and vma->vm_ops->fault() return value. 3011 * See filemap_fault() and __lock_page_retry(). 3012 */ 3013 static vm_fault_t __do_fault(struct vm_fault *vmf) 3014 { 3015 struct vm_area_struct *vma = vmf->vma; 3016 vm_fault_t ret; 3017 3018 /* 3019 * Preallocate pte before we take page_lock because this might lead to 3020 * deadlocks for memcg reclaim which waits for pages under writeback: 3021 * lock_page(A) 3022 * SetPageWriteback(A) 3023 * unlock_page(A) 3024 * lock_page(B) 3025 * lock_page(B) 3026 * pte_alloc_pne 3027 * shrink_page_list 3028 * wait_on_page_writeback(A) 3029 * SetPageWriteback(B) 3030 * unlock_page(B) 3031 * # flush A, B to clear the writeback 3032 */ 3033 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) { 3034 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3035 if (!vmf->prealloc_pte) 3036 return VM_FAULT_OOM; 3037 smp_wmb(); /* See comment in __pte_alloc() */ 3038 } 3039 3040 ret = vma->vm_ops->fault(vmf); 3041 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3042 VM_FAULT_DONE_COW))) 3043 return ret; 3044 3045 if (unlikely(PageHWPoison(vmf->page))) { 3046 if (ret & VM_FAULT_LOCKED) 3047 unlock_page(vmf->page); 3048 put_page(vmf->page); 3049 vmf->page = NULL; 3050 return VM_FAULT_HWPOISON; 3051 } 3052 3053 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3054 lock_page(vmf->page); 3055 else 3056 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3057 3058 return ret; 3059 } 3060 3061 /* 3062 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3063 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3064 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3065 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3066 */ 3067 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3068 { 3069 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3070 } 3071 3072 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3073 { 3074 struct vm_area_struct *vma = vmf->vma; 3075 3076 if (!pmd_none(*vmf->pmd)) 3077 goto map_pte; 3078 if (vmf->prealloc_pte) { 3079 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3080 if (unlikely(!pmd_none(*vmf->pmd))) { 3081 spin_unlock(vmf->ptl); 3082 goto map_pte; 3083 } 3084 3085 mm_inc_nr_ptes(vma->vm_mm); 3086 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3087 spin_unlock(vmf->ptl); 3088 vmf->prealloc_pte = NULL; 3089 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3090 return VM_FAULT_OOM; 3091 } 3092 map_pte: 3093 /* 3094 * If a huge pmd materialized under us just retry later. Use 3095 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3096 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3097 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3098 * running immediately after a huge pmd fault in a different thread of 3099 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3100 * All we have to ensure is that it is a regular pmd that we can walk 3101 * with pte_offset_map() and we can do that through an atomic read in 3102 * C, which is what pmd_trans_unstable() provides. 3103 */ 3104 if (pmd_devmap_trans_unstable(vmf->pmd)) 3105 return VM_FAULT_NOPAGE; 3106 3107 /* 3108 * At this point we know that our vmf->pmd points to a page of ptes 3109 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3110 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3111 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3112 * be valid and we will re-check to make sure the vmf->pte isn't 3113 * pte_none() under vmf->ptl protection when we return to 3114 * alloc_set_pte(). 3115 */ 3116 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3117 &vmf->ptl); 3118 return 0; 3119 } 3120 3121 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3122 3123 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3124 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3125 unsigned long haddr) 3126 { 3127 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3128 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3129 return false; 3130 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3131 return false; 3132 return true; 3133 } 3134 3135 static void deposit_prealloc_pte(struct vm_fault *vmf) 3136 { 3137 struct vm_area_struct *vma = vmf->vma; 3138 3139 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3140 /* 3141 * We are going to consume the prealloc table, 3142 * count that as nr_ptes. 3143 */ 3144 mm_inc_nr_ptes(vma->vm_mm); 3145 vmf->prealloc_pte = NULL; 3146 } 3147 3148 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3149 { 3150 struct vm_area_struct *vma = vmf->vma; 3151 bool write = vmf->flags & FAULT_FLAG_WRITE; 3152 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3153 pmd_t entry; 3154 int i; 3155 vm_fault_t ret; 3156 3157 if (!transhuge_vma_suitable(vma, haddr)) 3158 return VM_FAULT_FALLBACK; 3159 3160 ret = VM_FAULT_FALLBACK; 3161 page = compound_head(page); 3162 3163 /* 3164 * Archs like ppc64 need additonal space to store information 3165 * related to pte entry. Use the preallocated table for that. 3166 */ 3167 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3168 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3169 if (!vmf->prealloc_pte) 3170 return VM_FAULT_OOM; 3171 smp_wmb(); /* See comment in __pte_alloc() */ 3172 } 3173 3174 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3175 if (unlikely(!pmd_none(*vmf->pmd))) 3176 goto out; 3177 3178 for (i = 0; i < HPAGE_PMD_NR; i++) 3179 flush_icache_page(vma, page + i); 3180 3181 entry = mk_huge_pmd(page, vma->vm_page_prot); 3182 if (write) 3183 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3184 3185 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3186 page_add_file_rmap(page, true); 3187 /* 3188 * deposit and withdraw with pmd lock held 3189 */ 3190 if (arch_needs_pgtable_deposit()) 3191 deposit_prealloc_pte(vmf); 3192 3193 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3194 3195 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3196 3197 /* fault is handled */ 3198 ret = 0; 3199 count_vm_event(THP_FILE_MAPPED); 3200 out: 3201 spin_unlock(vmf->ptl); 3202 return ret; 3203 } 3204 #else 3205 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3206 { 3207 BUILD_BUG(); 3208 return 0; 3209 } 3210 #endif 3211 3212 /** 3213 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3214 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3215 * 3216 * @vmf: fault environment 3217 * @memcg: memcg to charge page (only for private mappings) 3218 * @page: page to map 3219 * 3220 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3221 * return. 3222 * 3223 * Target users are page handler itself and implementations of 3224 * vm_ops->map_pages. 3225 * 3226 * Return: %0 on success, %VM_FAULT_ code in case of error. 3227 */ 3228 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3229 struct page *page) 3230 { 3231 struct vm_area_struct *vma = vmf->vma; 3232 bool write = vmf->flags & FAULT_FLAG_WRITE; 3233 pte_t entry; 3234 vm_fault_t ret; 3235 3236 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3237 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3238 /* THP on COW? */ 3239 VM_BUG_ON_PAGE(memcg, page); 3240 3241 ret = do_set_pmd(vmf, page); 3242 if (ret != VM_FAULT_FALLBACK) 3243 return ret; 3244 } 3245 3246 if (!vmf->pte) { 3247 ret = pte_alloc_one_map(vmf); 3248 if (ret) 3249 return ret; 3250 } 3251 3252 /* Re-check under ptl */ 3253 if (unlikely(!pte_none(*vmf->pte))) 3254 return VM_FAULT_NOPAGE; 3255 3256 flush_icache_page(vma, page); 3257 entry = mk_pte(page, vma->vm_page_prot); 3258 if (write) 3259 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3260 /* copy-on-write page */ 3261 if (write && !(vma->vm_flags & VM_SHARED)) { 3262 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3263 page_add_new_anon_rmap(page, vma, vmf->address, false); 3264 mem_cgroup_commit_charge(page, memcg, false, false); 3265 lru_cache_add_active_or_unevictable(page, vma); 3266 } else { 3267 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3268 page_add_file_rmap(page, false); 3269 } 3270 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3271 3272 /* no need to invalidate: a not-present page won't be cached */ 3273 update_mmu_cache(vma, vmf->address, vmf->pte); 3274 3275 return 0; 3276 } 3277 3278 3279 /** 3280 * finish_fault - finish page fault once we have prepared the page to fault 3281 * 3282 * @vmf: structure describing the fault 3283 * 3284 * This function handles all that is needed to finish a page fault once the 3285 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3286 * given page, adds reverse page mapping, handles memcg charges and LRU 3287 * addition. 3288 * 3289 * The function expects the page to be locked and on success it consumes a 3290 * reference of a page being mapped (for the PTE which maps it). 3291 * 3292 * Return: %0 on success, %VM_FAULT_ code in case of error. 3293 */ 3294 vm_fault_t finish_fault(struct vm_fault *vmf) 3295 { 3296 struct page *page; 3297 vm_fault_t ret = 0; 3298 3299 /* Did we COW the page? */ 3300 if ((vmf->flags & FAULT_FLAG_WRITE) && 3301 !(vmf->vma->vm_flags & VM_SHARED)) 3302 page = vmf->cow_page; 3303 else 3304 page = vmf->page; 3305 3306 /* 3307 * check even for read faults because we might have lost our CoWed 3308 * page 3309 */ 3310 if (!(vmf->vma->vm_flags & VM_SHARED)) 3311 ret = check_stable_address_space(vmf->vma->vm_mm); 3312 if (!ret) 3313 ret = alloc_set_pte(vmf, vmf->memcg, page); 3314 if (vmf->pte) 3315 pte_unmap_unlock(vmf->pte, vmf->ptl); 3316 return ret; 3317 } 3318 3319 static unsigned long fault_around_bytes __read_mostly = 3320 rounddown_pow_of_two(65536); 3321 3322 #ifdef CONFIG_DEBUG_FS 3323 static int fault_around_bytes_get(void *data, u64 *val) 3324 { 3325 *val = fault_around_bytes; 3326 return 0; 3327 } 3328 3329 /* 3330 * fault_around_bytes must be rounded down to the nearest page order as it's 3331 * what do_fault_around() expects to see. 3332 */ 3333 static int fault_around_bytes_set(void *data, u64 val) 3334 { 3335 if (val / PAGE_SIZE > PTRS_PER_PTE) 3336 return -EINVAL; 3337 if (val > PAGE_SIZE) 3338 fault_around_bytes = rounddown_pow_of_two(val); 3339 else 3340 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3341 return 0; 3342 } 3343 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3344 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3345 3346 static int __init fault_around_debugfs(void) 3347 { 3348 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3349 &fault_around_bytes_fops); 3350 return 0; 3351 } 3352 late_initcall(fault_around_debugfs); 3353 #endif 3354 3355 /* 3356 * do_fault_around() tries to map few pages around the fault address. The hope 3357 * is that the pages will be needed soon and this will lower the number of 3358 * faults to handle. 3359 * 3360 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3361 * not ready to be mapped: not up-to-date, locked, etc. 3362 * 3363 * This function is called with the page table lock taken. In the split ptlock 3364 * case the page table lock only protects only those entries which belong to 3365 * the page table corresponding to the fault address. 3366 * 3367 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3368 * only once. 3369 * 3370 * fault_around_bytes defines how many bytes we'll try to map. 3371 * do_fault_around() expects it to be set to a power of two less than or equal 3372 * to PTRS_PER_PTE. 3373 * 3374 * The virtual address of the area that we map is naturally aligned to 3375 * fault_around_bytes rounded down to the machine page size 3376 * (and therefore to page order). This way it's easier to guarantee 3377 * that we don't cross page table boundaries. 3378 */ 3379 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3380 { 3381 unsigned long address = vmf->address, nr_pages, mask; 3382 pgoff_t start_pgoff = vmf->pgoff; 3383 pgoff_t end_pgoff; 3384 int off; 3385 vm_fault_t ret = 0; 3386 3387 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3388 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3389 3390 vmf->address = max(address & mask, vmf->vma->vm_start); 3391 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3392 start_pgoff -= off; 3393 3394 /* 3395 * end_pgoff is either the end of the page table, the end of 3396 * the vma or nr_pages from start_pgoff, depending what is nearest. 3397 */ 3398 end_pgoff = start_pgoff - 3399 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3400 PTRS_PER_PTE - 1; 3401 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3402 start_pgoff + nr_pages - 1); 3403 3404 if (pmd_none(*vmf->pmd)) { 3405 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3406 if (!vmf->prealloc_pte) 3407 goto out; 3408 smp_wmb(); /* See comment in __pte_alloc() */ 3409 } 3410 3411 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3412 3413 /* Huge page is mapped? Page fault is solved */ 3414 if (pmd_trans_huge(*vmf->pmd)) { 3415 ret = VM_FAULT_NOPAGE; 3416 goto out; 3417 } 3418 3419 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3420 if (!vmf->pte) 3421 goto out; 3422 3423 /* check if the page fault is solved */ 3424 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3425 if (!pte_none(*vmf->pte)) 3426 ret = VM_FAULT_NOPAGE; 3427 pte_unmap_unlock(vmf->pte, vmf->ptl); 3428 out: 3429 vmf->address = address; 3430 vmf->pte = NULL; 3431 return ret; 3432 } 3433 3434 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3435 { 3436 struct vm_area_struct *vma = vmf->vma; 3437 vm_fault_t ret = 0; 3438 3439 /* 3440 * Let's call ->map_pages() first and use ->fault() as fallback 3441 * if page by the offset is not ready to be mapped (cold cache or 3442 * something). 3443 */ 3444 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3445 ret = do_fault_around(vmf); 3446 if (ret) 3447 return ret; 3448 } 3449 3450 ret = __do_fault(vmf); 3451 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3452 return ret; 3453 3454 ret |= finish_fault(vmf); 3455 unlock_page(vmf->page); 3456 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3457 put_page(vmf->page); 3458 return ret; 3459 } 3460 3461 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3462 { 3463 struct vm_area_struct *vma = vmf->vma; 3464 vm_fault_t ret; 3465 3466 if (unlikely(anon_vma_prepare(vma))) 3467 return VM_FAULT_OOM; 3468 3469 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3470 if (!vmf->cow_page) 3471 return VM_FAULT_OOM; 3472 3473 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3474 &vmf->memcg, false)) { 3475 put_page(vmf->cow_page); 3476 return VM_FAULT_OOM; 3477 } 3478 3479 ret = __do_fault(vmf); 3480 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3481 goto uncharge_out; 3482 if (ret & VM_FAULT_DONE_COW) 3483 return ret; 3484 3485 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3486 __SetPageUptodate(vmf->cow_page); 3487 3488 ret |= finish_fault(vmf); 3489 unlock_page(vmf->page); 3490 put_page(vmf->page); 3491 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3492 goto uncharge_out; 3493 return ret; 3494 uncharge_out: 3495 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3496 put_page(vmf->cow_page); 3497 return ret; 3498 } 3499 3500 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3501 { 3502 struct vm_area_struct *vma = vmf->vma; 3503 vm_fault_t ret, tmp; 3504 3505 ret = __do_fault(vmf); 3506 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3507 return ret; 3508 3509 /* 3510 * Check if the backing address space wants to know that the page is 3511 * about to become writable 3512 */ 3513 if (vma->vm_ops->page_mkwrite) { 3514 unlock_page(vmf->page); 3515 tmp = do_page_mkwrite(vmf); 3516 if (unlikely(!tmp || 3517 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3518 put_page(vmf->page); 3519 return tmp; 3520 } 3521 } 3522 3523 ret |= finish_fault(vmf); 3524 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3525 VM_FAULT_RETRY))) { 3526 unlock_page(vmf->page); 3527 put_page(vmf->page); 3528 return ret; 3529 } 3530 3531 fault_dirty_shared_page(vma, vmf->page); 3532 return ret; 3533 } 3534 3535 /* 3536 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3537 * but allow concurrent faults). 3538 * The mmap_sem may have been released depending on flags and our 3539 * return value. See filemap_fault() and __lock_page_or_retry(). 3540 * If mmap_sem is released, vma may become invalid (for example 3541 * by other thread calling munmap()). 3542 */ 3543 static vm_fault_t do_fault(struct vm_fault *vmf) 3544 { 3545 struct vm_area_struct *vma = vmf->vma; 3546 struct mm_struct *vm_mm = vma->vm_mm; 3547 vm_fault_t ret; 3548 3549 /* 3550 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3551 */ 3552 if (!vma->vm_ops->fault) { 3553 /* 3554 * If we find a migration pmd entry or a none pmd entry, which 3555 * should never happen, return SIGBUS 3556 */ 3557 if (unlikely(!pmd_present(*vmf->pmd))) 3558 ret = VM_FAULT_SIGBUS; 3559 else { 3560 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3561 vmf->pmd, 3562 vmf->address, 3563 &vmf->ptl); 3564 /* 3565 * Make sure this is not a temporary clearing of pte 3566 * by holding ptl and checking again. A R/M/W update 3567 * of pte involves: take ptl, clearing the pte so that 3568 * we don't have concurrent modification by hardware 3569 * followed by an update. 3570 */ 3571 if (unlikely(pte_none(*vmf->pte))) 3572 ret = VM_FAULT_SIGBUS; 3573 else 3574 ret = VM_FAULT_NOPAGE; 3575 3576 pte_unmap_unlock(vmf->pte, vmf->ptl); 3577 } 3578 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3579 ret = do_read_fault(vmf); 3580 else if (!(vma->vm_flags & VM_SHARED)) 3581 ret = do_cow_fault(vmf); 3582 else 3583 ret = do_shared_fault(vmf); 3584 3585 /* preallocated pagetable is unused: free it */ 3586 if (vmf->prealloc_pte) { 3587 pte_free(vm_mm, vmf->prealloc_pte); 3588 vmf->prealloc_pte = NULL; 3589 } 3590 return ret; 3591 } 3592 3593 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3594 unsigned long addr, int page_nid, 3595 int *flags) 3596 { 3597 get_page(page); 3598 3599 count_vm_numa_event(NUMA_HINT_FAULTS); 3600 if (page_nid == numa_node_id()) { 3601 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3602 *flags |= TNF_FAULT_LOCAL; 3603 } 3604 3605 return mpol_misplaced(page, vma, addr); 3606 } 3607 3608 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3609 { 3610 struct vm_area_struct *vma = vmf->vma; 3611 struct page *page = NULL; 3612 int page_nid = NUMA_NO_NODE; 3613 int last_cpupid; 3614 int target_nid; 3615 bool migrated = false; 3616 pte_t pte, old_pte; 3617 bool was_writable = pte_savedwrite(vmf->orig_pte); 3618 int flags = 0; 3619 3620 /* 3621 * The "pte" at this point cannot be used safely without 3622 * validation through pte_unmap_same(). It's of NUMA type but 3623 * the pfn may be screwed if the read is non atomic. 3624 */ 3625 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3626 spin_lock(vmf->ptl); 3627 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3628 pte_unmap_unlock(vmf->pte, vmf->ptl); 3629 goto out; 3630 } 3631 3632 /* 3633 * Make it present again, Depending on how arch implementes non 3634 * accessible ptes, some can allow access by kernel mode. 3635 */ 3636 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte); 3637 pte = pte_modify(old_pte, vma->vm_page_prot); 3638 pte = pte_mkyoung(pte); 3639 if (was_writable) 3640 pte = pte_mkwrite(pte); 3641 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte); 3642 update_mmu_cache(vma, vmf->address, vmf->pte); 3643 3644 page = vm_normal_page(vma, vmf->address, pte); 3645 if (!page) { 3646 pte_unmap_unlock(vmf->pte, vmf->ptl); 3647 return 0; 3648 } 3649 3650 /* TODO: handle PTE-mapped THP */ 3651 if (PageCompound(page)) { 3652 pte_unmap_unlock(vmf->pte, vmf->ptl); 3653 return 0; 3654 } 3655 3656 /* 3657 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3658 * much anyway since they can be in shared cache state. This misses 3659 * the case where a mapping is writable but the process never writes 3660 * to it but pte_write gets cleared during protection updates and 3661 * pte_dirty has unpredictable behaviour between PTE scan updates, 3662 * background writeback, dirty balancing and application behaviour. 3663 */ 3664 if (!pte_write(pte)) 3665 flags |= TNF_NO_GROUP; 3666 3667 /* 3668 * Flag if the page is shared between multiple address spaces. This 3669 * is later used when determining whether to group tasks together 3670 */ 3671 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3672 flags |= TNF_SHARED; 3673 3674 last_cpupid = page_cpupid_last(page); 3675 page_nid = page_to_nid(page); 3676 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3677 &flags); 3678 pte_unmap_unlock(vmf->pte, vmf->ptl); 3679 if (target_nid == NUMA_NO_NODE) { 3680 put_page(page); 3681 goto out; 3682 } 3683 3684 /* Migrate to the requested node */ 3685 migrated = migrate_misplaced_page(page, vma, target_nid); 3686 if (migrated) { 3687 page_nid = target_nid; 3688 flags |= TNF_MIGRATED; 3689 } else 3690 flags |= TNF_MIGRATE_FAIL; 3691 3692 out: 3693 if (page_nid != NUMA_NO_NODE) 3694 task_numa_fault(last_cpupid, page_nid, 1, flags); 3695 return 0; 3696 } 3697 3698 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3699 { 3700 if (vma_is_anonymous(vmf->vma)) 3701 return do_huge_pmd_anonymous_page(vmf); 3702 if (vmf->vma->vm_ops->huge_fault) 3703 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3704 return VM_FAULT_FALLBACK; 3705 } 3706 3707 /* `inline' is required to avoid gcc 4.1.2 build error */ 3708 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3709 { 3710 if (vma_is_anonymous(vmf->vma)) 3711 return do_huge_pmd_wp_page(vmf, orig_pmd); 3712 if (vmf->vma->vm_ops->huge_fault) 3713 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3714 3715 /* COW handled on pte level: split pmd */ 3716 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3717 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3718 3719 return VM_FAULT_FALLBACK; 3720 } 3721 3722 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3723 { 3724 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3725 } 3726 3727 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3728 { 3729 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3730 /* No support for anonymous transparent PUD pages yet */ 3731 if (vma_is_anonymous(vmf->vma)) 3732 return VM_FAULT_FALLBACK; 3733 if (vmf->vma->vm_ops->huge_fault) 3734 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3735 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3736 return VM_FAULT_FALLBACK; 3737 } 3738 3739 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3740 { 3741 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3742 /* No support for anonymous transparent PUD pages yet */ 3743 if (vma_is_anonymous(vmf->vma)) 3744 return VM_FAULT_FALLBACK; 3745 if (vmf->vma->vm_ops->huge_fault) 3746 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3747 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3748 return VM_FAULT_FALLBACK; 3749 } 3750 3751 /* 3752 * These routines also need to handle stuff like marking pages dirty 3753 * and/or accessed for architectures that don't do it in hardware (most 3754 * RISC architectures). The early dirtying is also good on the i386. 3755 * 3756 * There is also a hook called "update_mmu_cache()" that architectures 3757 * with external mmu caches can use to update those (ie the Sparc or 3758 * PowerPC hashed page tables that act as extended TLBs). 3759 * 3760 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3761 * concurrent faults). 3762 * 3763 * The mmap_sem may have been released depending on flags and our return value. 3764 * See filemap_fault() and __lock_page_or_retry(). 3765 */ 3766 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3767 { 3768 pte_t entry; 3769 3770 if (unlikely(pmd_none(*vmf->pmd))) { 3771 /* 3772 * Leave __pte_alloc() until later: because vm_ops->fault may 3773 * want to allocate huge page, and if we expose page table 3774 * for an instant, it will be difficult to retract from 3775 * concurrent faults and from rmap lookups. 3776 */ 3777 vmf->pte = NULL; 3778 } else { 3779 /* See comment in pte_alloc_one_map() */ 3780 if (pmd_devmap_trans_unstable(vmf->pmd)) 3781 return 0; 3782 /* 3783 * A regular pmd is established and it can't morph into a huge 3784 * pmd from under us anymore at this point because we hold the 3785 * mmap_sem read mode and khugepaged takes it in write mode. 3786 * So now it's safe to run pte_offset_map(). 3787 */ 3788 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3789 vmf->orig_pte = *vmf->pte; 3790 3791 /* 3792 * some architectures can have larger ptes than wordsize, 3793 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3794 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3795 * accesses. The code below just needs a consistent view 3796 * for the ifs and we later double check anyway with the 3797 * ptl lock held. So here a barrier will do. 3798 */ 3799 barrier(); 3800 if (pte_none(vmf->orig_pte)) { 3801 pte_unmap(vmf->pte); 3802 vmf->pte = NULL; 3803 } 3804 } 3805 3806 if (!vmf->pte) { 3807 if (vma_is_anonymous(vmf->vma)) 3808 return do_anonymous_page(vmf); 3809 else 3810 return do_fault(vmf); 3811 } 3812 3813 if (!pte_present(vmf->orig_pte)) 3814 return do_swap_page(vmf); 3815 3816 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3817 return do_numa_page(vmf); 3818 3819 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3820 spin_lock(vmf->ptl); 3821 entry = vmf->orig_pte; 3822 if (unlikely(!pte_same(*vmf->pte, entry))) 3823 goto unlock; 3824 if (vmf->flags & FAULT_FLAG_WRITE) { 3825 if (!pte_write(entry)) 3826 return do_wp_page(vmf); 3827 entry = pte_mkdirty(entry); 3828 } 3829 entry = pte_mkyoung(entry); 3830 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3831 vmf->flags & FAULT_FLAG_WRITE)) { 3832 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3833 } else { 3834 /* 3835 * This is needed only for protection faults but the arch code 3836 * is not yet telling us if this is a protection fault or not. 3837 * This still avoids useless tlb flushes for .text page faults 3838 * with threads. 3839 */ 3840 if (vmf->flags & FAULT_FLAG_WRITE) 3841 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3842 } 3843 unlock: 3844 pte_unmap_unlock(vmf->pte, vmf->ptl); 3845 return 0; 3846 } 3847 3848 /* 3849 * By the time we get here, we already hold the mm semaphore 3850 * 3851 * The mmap_sem may have been released depending on flags and our 3852 * return value. See filemap_fault() and __lock_page_or_retry(). 3853 */ 3854 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 3855 unsigned long address, unsigned int flags) 3856 { 3857 struct vm_fault vmf = { 3858 .vma = vma, 3859 .address = address & PAGE_MASK, 3860 .flags = flags, 3861 .pgoff = linear_page_index(vma, address), 3862 .gfp_mask = __get_fault_gfp_mask(vma), 3863 }; 3864 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3865 struct mm_struct *mm = vma->vm_mm; 3866 pgd_t *pgd; 3867 p4d_t *p4d; 3868 vm_fault_t ret; 3869 3870 pgd = pgd_offset(mm, address); 3871 p4d = p4d_alloc(mm, pgd, address); 3872 if (!p4d) 3873 return VM_FAULT_OOM; 3874 3875 vmf.pud = pud_alloc(mm, p4d, address); 3876 if (!vmf.pud) 3877 return VM_FAULT_OOM; 3878 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 3879 ret = create_huge_pud(&vmf); 3880 if (!(ret & VM_FAULT_FALLBACK)) 3881 return ret; 3882 } else { 3883 pud_t orig_pud = *vmf.pud; 3884 3885 barrier(); 3886 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3887 3888 /* NUMA case for anonymous PUDs would go here */ 3889 3890 if (dirty && !pud_write(orig_pud)) { 3891 ret = wp_huge_pud(&vmf, orig_pud); 3892 if (!(ret & VM_FAULT_FALLBACK)) 3893 return ret; 3894 } else { 3895 huge_pud_set_accessed(&vmf, orig_pud); 3896 return 0; 3897 } 3898 } 3899 } 3900 3901 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3902 if (!vmf.pmd) 3903 return VM_FAULT_OOM; 3904 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 3905 ret = create_huge_pmd(&vmf); 3906 if (!(ret & VM_FAULT_FALLBACK)) 3907 return ret; 3908 } else { 3909 pmd_t orig_pmd = *vmf.pmd; 3910 3911 barrier(); 3912 if (unlikely(is_swap_pmd(orig_pmd))) { 3913 VM_BUG_ON(thp_migration_supported() && 3914 !is_pmd_migration_entry(orig_pmd)); 3915 if (is_pmd_migration_entry(orig_pmd)) 3916 pmd_migration_entry_wait(mm, vmf.pmd); 3917 return 0; 3918 } 3919 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3920 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3921 return do_huge_pmd_numa_page(&vmf, orig_pmd); 3922 3923 if (dirty && !pmd_write(orig_pmd)) { 3924 ret = wp_huge_pmd(&vmf, orig_pmd); 3925 if (!(ret & VM_FAULT_FALLBACK)) 3926 return ret; 3927 } else { 3928 huge_pmd_set_accessed(&vmf, orig_pmd); 3929 return 0; 3930 } 3931 } 3932 } 3933 3934 return handle_pte_fault(&vmf); 3935 } 3936 3937 /* 3938 * By the time we get here, we already hold the mm semaphore 3939 * 3940 * The mmap_sem may have been released depending on flags and our 3941 * return value. See filemap_fault() and __lock_page_or_retry(). 3942 */ 3943 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3944 unsigned int flags) 3945 { 3946 vm_fault_t ret; 3947 3948 __set_current_state(TASK_RUNNING); 3949 3950 count_vm_event(PGFAULT); 3951 count_memcg_event_mm(vma->vm_mm, PGFAULT); 3952 3953 /* do counter updates before entering really critical section. */ 3954 check_sync_rss_stat(current); 3955 3956 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3957 flags & FAULT_FLAG_INSTRUCTION, 3958 flags & FAULT_FLAG_REMOTE)) 3959 return VM_FAULT_SIGSEGV; 3960 3961 /* 3962 * Enable the memcg OOM handling for faults triggered in user 3963 * space. Kernel faults are handled more gracefully. 3964 */ 3965 if (flags & FAULT_FLAG_USER) 3966 mem_cgroup_enter_user_fault(); 3967 3968 if (unlikely(is_vm_hugetlb_page(vma))) 3969 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 3970 else 3971 ret = __handle_mm_fault(vma, address, flags); 3972 3973 if (flags & FAULT_FLAG_USER) { 3974 mem_cgroup_exit_user_fault(); 3975 /* 3976 * The task may have entered a memcg OOM situation but 3977 * if the allocation error was handled gracefully (no 3978 * VM_FAULT_OOM), there is no need to kill anything. 3979 * Just clean up the OOM state peacefully. 3980 */ 3981 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3982 mem_cgroup_oom_synchronize(false); 3983 } 3984 3985 return ret; 3986 } 3987 EXPORT_SYMBOL_GPL(handle_mm_fault); 3988 3989 #ifndef __PAGETABLE_P4D_FOLDED 3990 /* 3991 * Allocate p4d page table. 3992 * We've already handled the fast-path in-line. 3993 */ 3994 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3995 { 3996 p4d_t *new = p4d_alloc_one(mm, address); 3997 if (!new) 3998 return -ENOMEM; 3999 4000 smp_wmb(); /* See comment in __pte_alloc */ 4001 4002 spin_lock(&mm->page_table_lock); 4003 if (pgd_present(*pgd)) /* Another has populated it */ 4004 p4d_free(mm, new); 4005 else 4006 pgd_populate(mm, pgd, new); 4007 spin_unlock(&mm->page_table_lock); 4008 return 0; 4009 } 4010 #endif /* __PAGETABLE_P4D_FOLDED */ 4011 4012 #ifndef __PAGETABLE_PUD_FOLDED 4013 /* 4014 * Allocate page upper directory. 4015 * We've already handled the fast-path in-line. 4016 */ 4017 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4018 { 4019 pud_t *new = pud_alloc_one(mm, address); 4020 if (!new) 4021 return -ENOMEM; 4022 4023 smp_wmb(); /* See comment in __pte_alloc */ 4024 4025 spin_lock(&mm->page_table_lock); 4026 #ifndef __ARCH_HAS_5LEVEL_HACK 4027 if (!p4d_present(*p4d)) { 4028 mm_inc_nr_puds(mm); 4029 p4d_populate(mm, p4d, new); 4030 } else /* Another has populated it */ 4031 pud_free(mm, new); 4032 #else 4033 if (!pgd_present(*p4d)) { 4034 mm_inc_nr_puds(mm); 4035 pgd_populate(mm, p4d, new); 4036 } else /* Another has populated it */ 4037 pud_free(mm, new); 4038 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4039 spin_unlock(&mm->page_table_lock); 4040 return 0; 4041 } 4042 #endif /* __PAGETABLE_PUD_FOLDED */ 4043 4044 #ifndef __PAGETABLE_PMD_FOLDED 4045 /* 4046 * Allocate page middle directory. 4047 * We've already handled the fast-path in-line. 4048 */ 4049 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4050 { 4051 spinlock_t *ptl; 4052 pmd_t *new = pmd_alloc_one(mm, address); 4053 if (!new) 4054 return -ENOMEM; 4055 4056 smp_wmb(); /* See comment in __pte_alloc */ 4057 4058 ptl = pud_lock(mm, pud); 4059 #ifndef __ARCH_HAS_4LEVEL_HACK 4060 if (!pud_present(*pud)) { 4061 mm_inc_nr_pmds(mm); 4062 pud_populate(mm, pud, new); 4063 } else /* Another has populated it */ 4064 pmd_free(mm, new); 4065 #else 4066 if (!pgd_present(*pud)) { 4067 mm_inc_nr_pmds(mm); 4068 pgd_populate(mm, pud, new); 4069 } else /* Another has populated it */ 4070 pmd_free(mm, new); 4071 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4072 spin_unlock(ptl); 4073 return 0; 4074 } 4075 #endif /* __PAGETABLE_PMD_FOLDED */ 4076 4077 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4078 struct mmu_notifier_range *range, 4079 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4080 { 4081 pgd_t *pgd; 4082 p4d_t *p4d; 4083 pud_t *pud; 4084 pmd_t *pmd; 4085 pte_t *ptep; 4086 4087 pgd = pgd_offset(mm, address); 4088 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4089 goto out; 4090 4091 p4d = p4d_offset(pgd, address); 4092 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4093 goto out; 4094 4095 pud = pud_offset(p4d, address); 4096 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4097 goto out; 4098 4099 pmd = pmd_offset(pud, address); 4100 VM_BUG_ON(pmd_trans_huge(*pmd)); 4101 4102 if (pmd_huge(*pmd)) { 4103 if (!pmdpp) 4104 goto out; 4105 4106 if (range) { 4107 mmu_notifier_range_init(range, mm, address & PMD_MASK, 4108 (address & PMD_MASK) + PMD_SIZE); 4109 mmu_notifier_invalidate_range_start(range); 4110 } 4111 *ptlp = pmd_lock(mm, pmd); 4112 if (pmd_huge(*pmd)) { 4113 *pmdpp = pmd; 4114 return 0; 4115 } 4116 spin_unlock(*ptlp); 4117 if (range) 4118 mmu_notifier_invalidate_range_end(range); 4119 } 4120 4121 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4122 goto out; 4123 4124 if (range) { 4125 mmu_notifier_range_init(range, mm, address & PAGE_MASK, 4126 (address & PAGE_MASK) + PAGE_SIZE); 4127 mmu_notifier_invalidate_range_start(range); 4128 } 4129 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4130 if (!pte_present(*ptep)) 4131 goto unlock; 4132 *ptepp = ptep; 4133 return 0; 4134 unlock: 4135 pte_unmap_unlock(ptep, *ptlp); 4136 if (range) 4137 mmu_notifier_invalidate_range_end(range); 4138 out: 4139 return -EINVAL; 4140 } 4141 4142 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4143 pte_t **ptepp, spinlock_t **ptlp) 4144 { 4145 int res; 4146 4147 /* (void) is needed to make gcc happy */ 4148 (void) __cond_lock(*ptlp, 4149 !(res = __follow_pte_pmd(mm, address, NULL, 4150 ptepp, NULL, ptlp))); 4151 return res; 4152 } 4153 4154 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4155 struct mmu_notifier_range *range, 4156 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4157 { 4158 int res; 4159 4160 /* (void) is needed to make gcc happy */ 4161 (void) __cond_lock(*ptlp, 4162 !(res = __follow_pte_pmd(mm, address, range, 4163 ptepp, pmdpp, ptlp))); 4164 return res; 4165 } 4166 EXPORT_SYMBOL(follow_pte_pmd); 4167 4168 /** 4169 * follow_pfn - look up PFN at a user virtual address 4170 * @vma: memory mapping 4171 * @address: user virtual address 4172 * @pfn: location to store found PFN 4173 * 4174 * Only IO mappings and raw PFN mappings are allowed. 4175 * 4176 * Return: zero and the pfn at @pfn on success, -ve otherwise. 4177 */ 4178 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4179 unsigned long *pfn) 4180 { 4181 int ret = -EINVAL; 4182 spinlock_t *ptl; 4183 pte_t *ptep; 4184 4185 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4186 return ret; 4187 4188 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4189 if (ret) 4190 return ret; 4191 *pfn = pte_pfn(*ptep); 4192 pte_unmap_unlock(ptep, ptl); 4193 return 0; 4194 } 4195 EXPORT_SYMBOL(follow_pfn); 4196 4197 #ifdef CONFIG_HAVE_IOREMAP_PROT 4198 int follow_phys(struct vm_area_struct *vma, 4199 unsigned long address, unsigned int flags, 4200 unsigned long *prot, resource_size_t *phys) 4201 { 4202 int ret = -EINVAL; 4203 pte_t *ptep, pte; 4204 spinlock_t *ptl; 4205 4206 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4207 goto out; 4208 4209 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4210 goto out; 4211 pte = *ptep; 4212 4213 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4214 goto unlock; 4215 4216 *prot = pgprot_val(pte_pgprot(pte)); 4217 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4218 4219 ret = 0; 4220 unlock: 4221 pte_unmap_unlock(ptep, ptl); 4222 out: 4223 return ret; 4224 } 4225 4226 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4227 void *buf, int len, int write) 4228 { 4229 resource_size_t phys_addr; 4230 unsigned long prot = 0; 4231 void __iomem *maddr; 4232 int offset = addr & (PAGE_SIZE-1); 4233 4234 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4235 return -EINVAL; 4236 4237 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4238 if (!maddr) 4239 return -ENOMEM; 4240 4241 if (write) 4242 memcpy_toio(maddr + offset, buf, len); 4243 else 4244 memcpy_fromio(buf, maddr + offset, len); 4245 iounmap(maddr); 4246 4247 return len; 4248 } 4249 EXPORT_SYMBOL_GPL(generic_access_phys); 4250 #endif 4251 4252 /* 4253 * Access another process' address space as given in mm. If non-NULL, use the 4254 * given task for page fault accounting. 4255 */ 4256 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4257 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4258 { 4259 struct vm_area_struct *vma; 4260 void *old_buf = buf; 4261 int write = gup_flags & FOLL_WRITE; 4262 4263 down_read(&mm->mmap_sem); 4264 /* ignore errors, just check how much was successfully transferred */ 4265 while (len) { 4266 int bytes, ret, offset; 4267 void *maddr; 4268 struct page *page = NULL; 4269 4270 ret = get_user_pages_remote(tsk, mm, addr, 1, 4271 gup_flags, &page, &vma, NULL); 4272 if (ret <= 0) { 4273 #ifndef CONFIG_HAVE_IOREMAP_PROT 4274 break; 4275 #else 4276 /* 4277 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4278 * we can access using slightly different code. 4279 */ 4280 vma = find_vma(mm, addr); 4281 if (!vma || vma->vm_start > addr) 4282 break; 4283 if (vma->vm_ops && vma->vm_ops->access) 4284 ret = vma->vm_ops->access(vma, addr, buf, 4285 len, write); 4286 if (ret <= 0) 4287 break; 4288 bytes = ret; 4289 #endif 4290 } else { 4291 bytes = len; 4292 offset = addr & (PAGE_SIZE-1); 4293 if (bytes > PAGE_SIZE-offset) 4294 bytes = PAGE_SIZE-offset; 4295 4296 maddr = kmap(page); 4297 if (write) { 4298 copy_to_user_page(vma, page, addr, 4299 maddr + offset, buf, bytes); 4300 set_page_dirty_lock(page); 4301 } else { 4302 copy_from_user_page(vma, page, addr, 4303 buf, maddr + offset, bytes); 4304 } 4305 kunmap(page); 4306 put_page(page); 4307 } 4308 len -= bytes; 4309 buf += bytes; 4310 addr += bytes; 4311 } 4312 up_read(&mm->mmap_sem); 4313 4314 return buf - old_buf; 4315 } 4316 4317 /** 4318 * access_remote_vm - access another process' address space 4319 * @mm: the mm_struct of the target address space 4320 * @addr: start address to access 4321 * @buf: source or destination buffer 4322 * @len: number of bytes to transfer 4323 * @gup_flags: flags modifying lookup behaviour 4324 * 4325 * The caller must hold a reference on @mm. 4326 * 4327 * Return: number of bytes copied from source to destination. 4328 */ 4329 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4330 void *buf, int len, unsigned int gup_flags) 4331 { 4332 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4333 } 4334 4335 /* 4336 * Access another process' address space. 4337 * Source/target buffer must be kernel space, 4338 * Do not walk the page table directly, use get_user_pages 4339 */ 4340 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4341 void *buf, int len, unsigned int gup_flags) 4342 { 4343 struct mm_struct *mm; 4344 int ret; 4345 4346 mm = get_task_mm(tsk); 4347 if (!mm) 4348 return 0; 4349 4350 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4351 4352 mmput(mm); 4353 4354 return ret; 4355 } 4356 EXPORT_SYMBOL_GPL(access_process_vm); 4357 4358 /* 4359 * Print the name of a VMA. 4360 */ 4361 void print_vma_addr(char *prefix, unsigned long ip) 4362 { 4363 struct mm_struct *mm = current->mm; 4364 struct vm_area_struct *vma; 4365 4366 /* 4367 * we might be running from an atomic context so we cannot sleep 4368 */ 4369 if (!down_read_trylock(&mm->mmap_sem)) 4370 return; 4371 4372 vma = find_vma(mm, ip); 4373 if (vma && vma->vm_file) { 4374 struct file *f = vma->vm_file; 4375 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4376 if (buf) { 4377 char *p; 4378 4379 p = file_path(f, buf, PAGE_SIZE); 4380 if (IS_ERR(p)) 4381 p = "?"; 4382 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4383 vma->vm_start, 4384 vma->vm_end - vma->vm_start); 4385 free_page((unsigned long)buf); 4386 } 4387 } 4388 up_read(&mm->mmap_sem); 4389 } 4390 4391 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4392 void __might_fault(const char *file, int line) 4393 { 4394 /* 4395 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4396 * holding the mmap_sem, this is safe because kernel memory doesn't 4397 * get paged out, therefore we'll never actually fault, and the 4398 * below annotations will generate false positives. 4399 */ 4400 if (uaccess_kernel()) 4401 return; 4402 if (pagefault_disabled()) 4403 return; 4404 __might_sleep(file, line, 0); 4405 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4406 if (current->mm) 4407 might_lock_read(¤t->mm->mmap_sem); 4408 #endif 4409 } 4410 EXPORT_SYMBOL(__might_fault); 4411 #endif 4412 4413 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4414 /* 4415 * Process all subpages of the specified huge page with the specified 4416 * operation. The target subpage will be processed last to keep its 4417 * cache lines hot. 4418 */ 4419 static inline void process_huge_page( 4420 unsigned long addr_hint, unsigned int pages_per_huge_page, 4421 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4422 void *arg) 4423 { 4424 int i, n, base, l; 4425 unsigned long addr = addr_hint & 4426 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4427 4428 /* Process target subpage last to keep its cache lines hot */ 4429 might_sleep(); 4430 n = (addr_hint - addr) / PAGE_SIZE; 4431 if (2 * n <= pages_per_huge_page) { 4432 /* If target subpage in first half of huge page */ 4433 base = 0; 4434 l = n; 4435 /* Process subpages at the end of huge page */ 4436 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4437 cond_resched(); 4438 process_subpage(addr + i * PAGE_SIZE, i, arg); 4439 } 4440 } else { 4441 /* If target subpage in second half of huge page */ 4442 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4443 l = pages_per_huge_page - n; 4444 /* Process subpages at the begin of huge page */ 4445 for (i = 0; i < base; i++) { 4446 cond_resched(); 4447 process_subpage(addr + i * PAGE_SIZE, i, arg); 4448 } 4449 } 4450 /* 4451 * Process remaining subpages in left-right-left-right pattern 4452 * towards the target subpage 4453 */ 4454 for (i = 0; i < l; i++) { 4455 int left_idx = base + i; 4456 int right_idx = base + 2 * l - 1 - i; 4457 4458 cond_resched(); 4459 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4460 cond_resched(); 4461 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4462 } 4463 } 4464 4465 static void clear_gigantic_page(struct page *page, 4466 unsigned long addr, 4467 unsigned int pages_per_huge_page) 4468 { 4469 int i; 4470 struct page *p = page; 4471 4472 might_sleep(); 4473 for (i = 0; i < pages_per_huge_page; 4474 i++, p = mem_map_next(p, page, i)) { 4475 cond_resched(); 4476 clear_user_highpage(p, addr + i * PAGE_SIZE); 4477 } 4478 } 4479 4480 static void clear_subpage(unsigned long addr, int idx, void *arg) 4481 { 4482 struct page *page = arg; 4483 4484 clear_user_highpage(page + idx, addr); 4485 } 4486 4487 void clear_huge_page(struct page *page, 4488 unsigned long addr_hint, unsigned int pages_per_huge_page) 4489 { 4490 unsigned long addr = addr_hint & 4491 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4492 4493 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4494 clear_gigantic_page(page, addr, pages_per_huge_page); 4495 return; 4496 } 4497 4498 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4499 } 4500 4501 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4502 unsigned long addr, 4503 struct vm_area_struct *vma, 4504 unsigned int pages_per_huge_page) 4505 { 4506 int i; 4507 struct page *dst_base = dst; 4508 struct page *src_base = src; 4509 4510 for (i = 0; i < pages_per_huge_page; ) { 4511 cond_resched(); 4512 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4513 4514 i++; 4515 dst = mem_map_next(dst, dst_base, i); 4516 src = mem_map_next(src, src_base, i); 4517 } 4518 } 4519 4520 struct copy_subpage_arg { 4521 struct page *dst; 4522 struct page *src; 4523 struct vm_area_struct *vma; 4524 }; 4525 4526 static void copy_subpage(unsigned long addr, int idx, void *arg) 4527 { 4528 struct copy_subpage_arg *copy_arg = arg; 4529 4530 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4531 addr, copy_arg->vma); 4532 } 4533 4534 void copy_user_huge_page(struct page *dst, struct page *src, 4535 unsigned long addr_hint, struct vm_area_struct *vma, 4536 unsigned int pages_per_huge_page) 4537 { 4538 unsigned long addr = addr_hint & 4539 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4540 struct copy_subpage_arg arg = { 4541 .dst = dst, 4542 .src = src, 4543 .vma = vma, 4544 }; 4545 4546 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4547 copy_user_gigantic_page(dst, src, addr, vma, 4548 pages_per_huge_page); 4549 return; 4550 } 4551 4552 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4553 } 4554 4555 long copy_huge_page_from_user(struct page *dst_page, 4556 const void __user *usr_src, 4557 unsigned int pages_per_huge_page, 4558 bool allow_pagefault) 4559 { 4560 void *src = (void *)usr_src; 4561 void *page_kaddr; 4562 unsigned long i, rc = 0; 4563 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4564 4565 for (i = 0; i < pages_per_huge_page; i++) { 4566 if (allow_pagefault) 4567 page_kaddr = kmap(dst_page + i); 4568 else 4569 page_kaddr = kmap_atomic(dst_page + i); 4570 rc = copy_from_user(page_kaddr, 4571 (const void __user *)(src + i * PAGE_SIZE), 4572 PAGE_SIZE); 4573 if (allow_pagefault) 4574 kunmap(dst_page + i); 4575 else 4576 kunmap_atomic(page_kaddr); 4577 4578 ret_val -= (PAGE_SIZE - rc); 4579 if (rc) 4580 break; 4581 4582 cond_resched(); 4583 } 4584 return ret_val; 4585 } 4586 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4587 4588 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4589 4590 static struct kmem_cache *page_ptl_cachep; 4591 4592 void __init ptlock_cache_init(void) 4593 { 4594 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4595 SLAB_PANIC, NULL); 4596 } 4597 4598 bool ptlock_alloc(struct page *page) 4599 { 4600 spinlock_t *ptl; 4601 4602 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4603 if (!ptl) 4604 return false; 4605 page->ptl = ptl; 4606 return true; 4607 } 4608 4609 void ptlock_free(struct page *page) 4610 { 4611 kmem_cache_free(page_ptl_cachep, page->ptl); 4612 } 4613 #endif 4614