xref: /openbmc/linux/mm/memory.c (revision 31b90347)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69 
70 #include "internal.h"
71 
72 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
74 #endif
75 
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80 
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84 
85 /*
86  * A number of key systems in x86 including ioremap() rely on the assumption
87  * that high_memory defines the upper bound on direct map memory, then end
88  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
89  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
90  * and ZONE_HIGHMEM.
91  */
92 void * high_memory;
93 
94 EXPORT_SYMBOL(high_memory);
95 
96 /*
97  * Randomize the address space (stacks, mmaps, brk, etc.).
98  *
99  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
100  *   as ancient (libc5 based) binaries can segfault. )
101  */
102 int randomize_va_space __read_mostly =
103 #ifdef CONFIG_COMPAT_BRK
104 					1;
105 #else
106 					2;
107 #endif
108 
109 static int __init disable_randmaps(char *s)
110 {
111 	randomize_va_space = 0;
112 	return 1;
113 }
114 __setup("norandmaps", disable_randmaps);
115 
116 unsigned long zero_pfn __read_mostly;
117 unsigned long highest_memmap_pfn __read_mostly;
118 
119 /*
120  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
121  */
122 static int __init init_zero_pfn(void)
123 {
124 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
125 	return 0;
126 }
127 core_initcall(init_zero_pfn);
128 
129 
130 #if defined(SPLIT_RSS_COUNTING)
131 
132 void sync_mm_rss(struct mm_struct *mm)
133 {
134 	int i;
135 
136 	for (i = 0; i < NR_MM_COUNTERS; i++) {
137 		if (current->rss_stat.count[i]) {
138 			add_mm_counter(mm, i, current->rss_stat.count[i]);
139 			current->rss_stat.count[i] = 0;
140 		}
141 	}
142 	current->rss_stat.events = 0;
143 }
144 
145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
146 {
147 	struct task_struct *task = current;
148 
149 	if (likely(task->mm == mm))
150 		task->rss_stat.count[member] += val;
151 	else
152 		add_mm_counter(mm, member, val);
153 }
154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
156 
157 /* sync counter once per 64 page faults */
158 #define TASK_RSS_EVENTS_THRESH	(64)
159 static void check_sync_rss_stat(struct task_struct *task)
160 {
161 	if (unlikely(task != current))
162 		return;
163 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
164 		sync_mm_rss(task->mm);
165 }
166 #else /* SPLIT_RSS_COUNTING */
167 
168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
170 
171 static void check_sync_rss_stat(struct task_struct *task)
172 {
173 }
174 
175 #endif /* SPLIT_RSS_COUNTING */
176 
177 #ifdef HAVE_GENERIC_MMU_GATHER
178 
179 static int tlb_next_batch(struct mmu_gather *tlb)
180 {
181 	struct mmu_gather_batch *batch;
182 
183 	batch = tlb->active;
184 	if (batch->next) {
185 		tlb->active = batch->next;
186 		return 1;
187 	}
188 
189 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
190 		return 0;
191 
192 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
193 	if (!batch)
194 		return 0;
195 
196 	tlb->batch_count++;
197 	batch->next = NULL;
198 	batch->nr   = 0;
199 	batch->max  = MAX_GATHER_BATCH;
200 
201 	tlb->active->next = batch;
202 	tlb->active = batch;
203 
204 	return 1;
205 }
206 
207 /* tlb_gather_mmu
208  *	Called to initialize an (on-stack) mmu_gather structure for page-table
209  *	tear-down from @mm. The @fullmm argument is used when @mm is without
210  *	users and we're going to destroy the full address space (exit/execve).
211  */
212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
213 {
214 	tlb->mm = mm;
215 
216 	/* Is it from 0 to ~0? */
217 	tlb->fullmm     = !(start | (end+1));
218 	tlb->need_flush_all = 0;
219 	tlb->start	= start;
220 	tlb->end	= end;
221 	tlb->need_flush = 0;
222 	tlb->local.next = NULL;
223 	tlb->local.nr   = 0;
224 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
225 	tlb->active     = &tlb->local;
226 	tlb->batch_count = 0;
227 
228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
229 	tlb->batch = NULL;
230 #endif
231 }
232 
233 void tlb_flush_mmu(struct mmu_gather *tlb)
234 {
235 	struct mmu_gather_batch *batch;
236 
237 	if (!tlb->need_flush)
238 		return;
239 	tlb->need_flush = 0;
240 	tlb_flush(tlb);
241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 	tlb_table_flush(tlb);
243 #endif
244 
245 	for (batch = &tlb->local; batch; batch = batch->next) {
246 		free_pages_and_swap_cache(batch->pages, batch->nr);
247 		batch->nr = 0;
248 	}
249 	tlb->active = &tlb->local;
250 }
251 
252 /* tlb_finish_mmu
253  *	Called at the end of the shootdown operation to free up any resources
254  *	that were required.
255  */
256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
257 {
258 	struct mmu_gather_batch *batch, *next;
259 
260 	tlb_flush_mmu(tlb);
261 
262 	/* keep the page table cache within bounds */
263 	check_pgt_cache();
264 
265 	for (batch = tlb->local.next; batch; batch = next) {
266 		next = batch->next;
267 		free_pages((unsigned long)batch, 0);
268 	}
269 	tlb->local.next = NULL;
270 }
271 
272 /* __tlb_remove_page
273  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
274  *	handling the additional races in SMP caused by other CPUs caching valid
275  *	mappings in their TLBs. Returns the number of free page slots left.
276  *	When out of page slots we must call tlb_flush_mmu().
277  */
278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
279 {
280 	struct mmu_gather_batch *batch;
281 
282 	VM_BUG_ON(!tlb->need_flush);
283 
284 	batch = tlb->active;
285 	batch->pages[batch->nr++] = page;
286 	if (batch->nr == batch->max) {
287 		if (!tlb_next_batch(tlb))
288 			return 0;
289 		batch = tlb->active;
290 	}
291 	VM_BUG_ON(batch->nr > batch->max);
292 
293 	return batch->max - batch->nr;
294 }
295 
296 #endif /* HAVE_GENERIC_MMU_GATHER */
297 
298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
299 
300 /*
301  * See the comment near struct mmu_table_batch.
302  */
303 
304 static void tlb_remove_table_smp_sync(void *arg)
305 {
306 	/* Simply deliver the interrupt */
307 }
308 
309 static void tlb_remove_table_one(void *table)
310 {
311 	/*
312 	 * This isn't an RCU grace period and hence the page-tables cannot be
313 	 * assumed to be actually RCU-freed.
314 	 *
315 	 * It is however sufficient for software page-table walkers that rely on
316 	 * IRQ disabling. See the comment near struct mmu_table_batch.
317 	 */
318 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
319 	__tlb_remove_table(table);
320 }
321 
322 static void tlb_remove_table_rcu(struct rcu_head *head)
323 {
324 	struct mmu_table_batch *batch;
325 	int i;
326 
327 	batch = container_of(head, struct mmu_table_batch, rcu);
328 
329 	for (i = 0; i < batch->nr; i++)
330 		__tlb_remove_table(batch->tables[i]);
331 
332 	free_page((unsigned long)batch);
333 }
334 
335 void tlb_table_flush(struct mmu_gather *tlb)
336 {
337 	struct mmu_table_batch **batch = &tlb->batch;
338 
339 	if (*batch) {
340 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
341 		*batch = NULL;
342 	}
343 }
344 
345 void tlb_remove_table(struct mmu_gather *tlb, void *table)
346 {
347 	struct mmu_table_batch **batch = &tlb->batch;
348 
349 	tlb->need_flush = 1;
350 
351 	/*
352 	 * When there's less then two users of this mm there cannot be a
353 	 * concurrent page-table walk.
354 	 */
355 	if (atomic_read(&tlb->mm->mm_users) < 2) {
356 		__tlb_remove_table(table);
357 		return;
358 	}
359 
360 	if (*batch == NULL) {
361 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
362 		if (*batch == NULL) {
363 			tlb_remove_table_one(table);
364 			return;
365 		}
366 		(*batch)->nr = 0;
367 	}
368 	(*batch)->tables[(*batch)->nr++] = table;
369 	if ((*batch)->nr == MAX_TABLE_BATCH)
370 		tlb_table_flush(tlb);
371 }
372 
373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
374 
375 /*
376  * Note: this doesn't free the actual pages themselves. That
377  * has been handled earlier when unmapping all the memory regions.
378  */
379 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
380 			   unsigned long addr)
381 {
382 	pgtable_t token = pmd_pgtable(*pmd);
383 	pmd_clear(pmd);
384 	pte_free_tlb(tlb, token, addr);
385 	atomic_long_dec(&tlb->mm->nr_ptes);
386 }
387 
388 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
389 				unsigned long addr, unsigned long end,
390 				unsigned long floor, unsigned long ceiling)
391 {
392 	pmd_t *pmd;
393 	unsigned long next;
394 	unsigned long start;
395 
396 	start = addr;
397 	pmd = pmd_offset(pud, addr);
398 	do {
399 		next = pmd_addr_end(addr, end);
400 		if (pmd_none_or_clear_bad(pmd))
401 			continue;
402 		free_pte_range(tlb, pmd, addr);
403 	} while (pmd++, addr = next, addr != end);
404 
405 	start &= PUD_MASK;
406 	if (start < floor)
407 		return;
408 	if (ceiling) {
409 		ceiling &= PUD_MASK;
410 		if (!ceiling)
411 			return;
412 	}
413 	if (end - 1 > ceiling - 1)
414 		return;
415 
416 	pmd = pmd_offset(pud, start);
417 	pud_clear(pud);
418 	pmd_free_tlb(tlb, pmd, start);
419 }
420 
421 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
422 				unsigned long addr, unsigned long end,
423 				unsigned long floor, unsigned long ceiling)
424 {
425 	pud_t *pud;
426 	unsigned long next;
427 	unsigned long start;
428 
429 	start = addr;
430 	pud = pud_offset(pgd, addr);
431 	do {
432 		next = pud_addr_end(addr, end);
433 		if (pud_none_or_clear_bad(pud))
434 			continue;
435 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
436 	} while (pud++, addr = next, addr != end);
437 
438 	start &= PGDIR_MASK;
439 	if (start < floor)
440 		return;
441 	if (ceiling) {
442 		ceiling &= PGDIR_MASK;
443 		if (!ceiling)
444 			return;
445 	}
446 	if (end - 1 > ceiling - 1)
447 		return;
448 
449 	pud = pud_offset(pgd, start);
450 	pgd_clear(pgd);
451 	pud_free_tlb(tlb, pud, start);
452 }
453 
454 /*
455  * This function frees user-level page tables of a process.
456  */
457 void free_pgd_range(struct mmu_gather *tlb,
458 			unsigned long addr, unsigned long end,
459 			unsigned long floor, unsigned long ceiling)
460 {
461 	pgd_t *pgd;
462 	unsigned long next;
463 
464 	/*
465 	 * The next few lines have given us lots of grief...
466 	 *
467 	 * Why are we testing PMD* at this top level?  Because often
468 	 * there will be no work to do at all, and we'd prefer not to
469 	 * go all the way down to the bottom just to discover that.
470 	 *
471 	 * Why all these "- 1"s?  Because 0 represents both the bottom
472 	 * of the address space and the top of it (using -1 for the
473 	 * top wouldn't help much: the masks would do the wrong thing).
474 	 * The rule is that addr 0 and floor 0 refer to the bottom of
475 	 * the address space, but end 0 and ceiling 0 refer to the top
476 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
477 	 * that end 0 case should be mythical).
478 	 *
479 	 * Wherever addr is brought up or ceiling brought down, we must
480 	 * be careful to reject "the opposite 0" before it confuses the
481 	 * subsequent tests.  But what about where end is brought down
482 	 * by PMD_SIZE below? no, end can't go down to 0 there.
483 	 *
484 	 * Whereas we round start (addr) and ceiling down, by different
485 	 * masks at different levels, in order to test whether a table
486 	 * now has no other vmas using it, so can be freed, we don't
487 	 * bother to round floor or end up - the tests don't need that.
488 	 */
489 
490 	addr &= PMD_MASK;
491 	if (addr < floor) {
492 		addr += PMD_SIZE;
493 		if (!addr)
494 			return;
495 	}
496 	if (ceiling) {
497 		ceiling &= PMD_MASK;
498 		if (!ceiling)
499 			return;
500 	}
501 	if (end - 1 > ceiling - 1)
502 		end -= PMD_SIZE;
503 	if (addr > end - 1)
504 		return;
505 
506 	pgd = pgd_offset(tlb->mm, addr);
507 	do {
508 		next = pgd_addr_end(addr, end);
509 		if (pgd_none_or_clear_bad(pgd))
510 			continue;
511 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
512 	} while (pgd++, addr = next, addr != end);
513 }
514 
515 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
516 		unsigned long floor, unsigned long ceiling)
517 {
518 	while (vma) {
519 		struct vm_area_struct *next = vma->vm_next;
520 		unsigned long addr = vma->vm_start;
521 
522 		/*
523 		 * Hide vma from rmap and truncate_pagecache before freeing
524 		 * pgtables
525 		 */
526 		unlink_anon_vmas(vma);
527 		unlink_file_vma(vma);
528 
529 		if (is_vm_hugetlb_page(vma)) {
530 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
531 				floor, next? next->vm_start: ceiling);
532 		} else {
533 			/*
534 			 * Optimization: gather nearby vmas into one call down
535 			 */
536 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
537 			       && !is_vm_hugetlb_page(next)) {
538 				vma = next;
539 				next = vma->vm_next;
540 				unlink_anon_vmas(vma);
541 				unlink_file_vma(vma);
542 			}
543 			free_pgd_range(tlb, addr, vma->vm_end,
544 				floor, next? next->vm_start: ceiling);
545 		}
546 		vma = next;
547 	}
548 }
549 
550 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
551 		pmd_t *pmd, unsigned long address)
552 {
553 	spinlock_t *ptl;
554 	pgtable_t new = pte_alloc_one(mm, address);
555 	int wait_split_huge_page;
556 	if (!new)
557 		return -ENOMEM;
558 
559 	/*
560 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
561 	 * visible before the pte is made visible to other CPUs by being
562 	 * put into page tables.
563 	 *
564 	 * The other side of the story is the pointer chasing in the page
565 	 * table walking code (when walking the page table without locking;
566 	 * ie. most of the time). Fortunately, these data accesses consist
567 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
568 	 * being the notable exception) will already guarantee loads are
569 	 * seen in-order. See the alpha page table accessors for the
570 	 * smp_read_barrier_depends() barriers in page table walking code.
571 	 */
572 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
573 
574 	ptl = pmd_lock(mm, pmd);
575 	wait_split_huge_page = 0;
576 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
577 		atomic_long_inc(&mm->nr_ptes);
578 		pmd_populate(mm, pmd, new);
579 		new = NULL;
580 	} else if (unlikely(pmd_trans_splitting(*pmd)))
581 		wait_split_huge_page = 1;
582 	spin_unlock(ptl);
583 	if (new)
584 		pte_free(mm, new);
585 	if (wait_split_huge_page)
586 		wait_split_huge_page(vma->anon_vma, pmd);
587 	return 0;
588 }
589 
590 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
591 {
592 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
593 	if (!new)
594 		return -ENOMEM;
595 
596 	smp_wmb(); /* See comment in __pte_alloc */
597 
598 	spin_lock(&init_mm.page_table_lock);
599 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
600 		pmd_populate_kernel(&init_mm, pmd, new);
601 		new = NULL;
602 	} else
603 		VM_BUG_ON(pmd_trans_splitting(*pmd));
604 	spin_unlock(&init_mm.page_table_lock);
605 	if (new)
606 		pte_free_kernel(&init_mm, new);
607 	return 0;
608 }
609 
610 static inline void init_rss_vec(int *rss)
611 {
612 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
613 }
614 
615 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
616 {
617 	int i;
618 
619 	if (current->mm == mm)
620 		sync_mm_rss(mm);
621 	for (i = 0; i < NR_MM_COUNTERS; i++)
622 		if (rss[i])
623 			add_mm_counter(mm, i, rss[i]);
624 }
625 
626 /*
627  * This function is called to print an error when a bad pte
628  * is found. For example, we might have a PFN-mapped pte in
629  * a region that doesn't allow it.
630  *
631  * The calling function must still handle the error.
632  */
633 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
634 			  pte_t pte, struct page *page)
635 {
636 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
637 	pud_t *pud = pud_offset(pgd, addr);
638 	pmd_t *pmd = pmd_offset(pud, addr);
639 	struct address_space *mapping;
640 	pgoff_t index;
641 	static unsigned long resume;
642 	static unsigned long nr_shown;
643 	static unsigned long nr_unshown;
644 
645 	/*
646 	 * Allow a burst of 60 reports, then keep quiet for that minute;
647 	 * or allow a steady drip of one report per second.
648 	 */
649 	if (nr_shown == 60) {
650 		if (time_before(jiffies, resume)) {
651 			nr_unshown++;
652 			return;
653 		}
654 		if (nr_unshown) {
655 			printk(KERN_ALERT
656 				"BUG: Bad page map: %lu messages suppressed\n",
657 				nr_unshown);
658 			nr_unshown = 0;
659 		}
660 		nr_shown = 0;
661 	}
662 	if (nr_shown++ == 0)
663 		resume = jiffies + 60 * HZ;
664 
665 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
666 	index = linear_page_index(vma, addr);
667 
668 	printk(KERN_ALERT
669 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
670 		current->comm,
671 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
672 	if (page)
673 		dump_page(page);
674 	printk(KERN_ALERT
675 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
676 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
677 	/*
678 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
679 	 */
680 	if (vma->vm_ops)
681 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
682 		       vma->vm_ops->fault);
683 	if (vma->vm_file)
684 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
685 		       vma->vm_file->f_op->mmap);
686 	dump_stack();
687 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
688 }
689 
690 static inline bool is_cow_mapping(vm_flags_t flags)
691 {
692 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
693 }
694 
695 /*
696  * vm_normal_page -- This function gets the "struct page" associated with a pte.
697  *
698  * "Special" mappings do not wish to be associated with a "struct page" (either
699  * it doesn't exist, or it exists but they don't want to touch it). In this
700  * case, NULL is returned here. "Normal" mappings do have a struct page.
701  *
702  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
703  * pte bit, in which case this function is trivial. Secondly, an architecture
704  * may not have a spare pte bit, which requires a more complicated scheme,
705  * described below.
706  *
707  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
708  * special mapping (even if there are underlying and valid "struct pages").
709  * COWed pages of a VM_PFNMAP are always normal.
710  *
711  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
712  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
713  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
714  * mapping will always honor the rule
715  *
716  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
717  *
718  * And for normal mappings this is false.
719  *
720  * This restricts such mappings to be a linear translation from virtual address
721  * to pfn. To get around this restriction, we allow arbitrary mappings so long
722  * as the vma is not a COW mapping; in that case, we know that all ptes are
723  * special (because none can have been COWed).
724  *
725  *
726  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
727  *
728  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
729  * page" backing, however the difference is that _all_ pages with a struct
730  * page (that is, those where pfn_valid is true) are refcounted and considered
731  * normal pages by the VM. The disadvantage is that pages are refcounted
732  * (which can be slower and simply not an option for some PFNMAP users). The
733  * advantage is that we don't have to follow the strict linearity rule of
734  * PFNMAP mappings in order to support COWable mappings.
735  *
736  */
737 #ifdef __HAVE_ARCH_PTE_SPECIAL
738 # define HAVE_PTE_SPECIAL 1
739 #else
740 # define HAVE_PTE_SPECIAL 0
741 #endif
742 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
743 				pte_t pte)
744 {
745 	unsigned long pfn = pte_pfn(pte);
746 
747 	if (HAVE_PTE_SPECIAL) {
748 		if (likely(!pte_special(pte)))
749 			goto check_pfn;
750 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
751 			return NULL;
752 		if (!is_zero_pfn(pfn))
753 			print_bad_pte(vma, addr, pte, NULL);
754 		return NULL;
755 	}
756 
757 	/* !HAVE_PTE_SPECIAL case follows: */
758 
759 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
760 		if (vma->vm_flags & VM_MIXEDMAP) {
761 			if (!pfn_valid(pfn))
762 				return NULL;
763 			goto out;
764 		} else {
765 			unsigned long off;
766 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
767 			if (pfn == vma->vm_pgoff + off)
768 				return NULL;
769 			if (!is_cow_mapping(vma->vm_flags))
770 				return NULL;
771 		}
772 	}
773 
774 	if (is_zero_pfn(pfn))
775 		return NULL;
776 check_pfn:
777 	if (unlikely(pfn > highest_memmap_pfn)) {
778 		print_bad_pte(vma, addr, pte, NULL);
779 		return NULL;
780 	}
781 
782 	/*
783 	 * NOTE! We still have PageReserved() pages in the page tables.
784 	 * eg. VDSO mappings can cause them to exist.
785 	 */
786 out:
787 	return pfn_to_page(pfn);
788 }
789 
790 /*
791  * copy one vm_area from one task to the other. Assumes the page tables
792  * already present in the new task to be cleared in the whole range
793  * covered by this vma.
794  */
795 
796 static inline unsigned long
797 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
798 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
799 		unsigned long addr, int *rss)
800 {
801 	unsigned long vm_flags = vma->vm_flags;
802 	pte_t pte = *src_pte;
803 	struct page *page;
804 
805 	/* pte contains position in swap or file, so copy. */
806 	if (unlikely(!pte_present(pte))) {
807 		if (!pte_file(pte)) {
808 			swp_entry_t entry = pte_to_swp_entry(pte);
809 
810 			if (swap_duplicate(entry) < 0)
811 				return entry.val;
812 
813 			/* make sure dst_mm is on swapoff's mmlist. */
814 			if (unlikely(list_empty(&dst_mm->mmlist))) {
815 				spin_lock(&mmlist_lock);
816 				if (list_empty(&dst_mm->mmlist))
817 					list_add(&dst_mm->mmlist,
818 						 &src_mm->mmlist);
819 				spin_unlock(&mmlist_lock);
820 			}
821 			if (likely(!non_swap_entry(entry)))
822 				rss[MM_SWAPENTS]++;
823 			else if (is_migration_entry(entry)) {
824 				page = migration_entry_to_page(entry);
825 
826 				if (PageAnon(page))
827 					rss[MM_ANONPAGES]++;
828 				else
829 					rss[MM_FILEPAGES]++;
830 
831 				if (is_write_migration_entry(entry) &&
832 				    is_cow_mapping(vm_flags)) {
833 					/*
834 					 * COW mappings require pages in both
835 					 * parent and child to be set to read.
836 					 */
837 					make_migration_entry_read(&entry);
838 					pte = swp_entry_to_pte(entry);
839 					if (pte_swp_soft_dirty(*src_pte))
840 						pte = pte_swp_mksoft_dirty(pte);
841 					set_pte_at(src_mm, addr, src_pte, pte);
842 				}
843 			}
844 		}
845 		goto out_set_pte;
846 	}
847 
848 	/*
849 	 * If it's a COW mapping, write protect it both
850 	 * in the parent and the child
851 	 */
852 	if (is_cow_mapping(vm_flags)) {
853 		ptep_set_wrprotect(src_mm, addr, src_pte);
854 		pte = pte_wrprotect(pte);
855 	}
856 
857 	/*
858 	 * If it's a shared mapping, mark it clean in
859 	 * the child
860 	 */
861 	if (vm_flags & VM_SHARED)
862 		pte = pte_mkclean(pte);
863 	pte = pte_mkold(pte);
864 
865 	page = vm_normal_page(vma, addr, pte);
866 	if (page) {
867 		get_page(page);
868 		page_dup_rmap(page);
869 		if (PageAnon(page))
870 			rss[MM_ANONPAGES]++;
871 		else
872 			rss[MM_FILEPAGES]++;
873 	}
874 
875 out_set_pte:
876 	set_pte_at(dst_mm, addr, dst_pte, pte);
877 	return 0;
878 }
879 
880 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
881 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
882 		   unsigned long addr, unsigned long end)
883 {
884 	pte_t *orig_src_pte, *orig_dst_pte;
885 	pte_t *src_pte, *dst_pte;
886 	spinlock_t *src_ptl, *dst_ptl;
887 	int progress = 0;
888 	int rss[NR_MM_COUNTERS];
889 	swp_entry_t entry = (swp_entry_t){0};
890 
891 again:
892 	init_rss_vec(rss);
893 
894 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
895 	if (!dst_pte)
896 		return -ENOMEM;
897 	src_pte = pte_offset_map(src_pmd, addr);
898 	src_ptl = pte_lockptr(src_mm, src_pmd);
899 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
900 	orig_src_pte = src_pte;
901 	orig_dst_pte = dst_pte;
902 	arch_enter_lazy_mmu_mode();
903 
904 	do {
905 		/*
906 		 * We are holding two locks at this point - either of them
907 		 * could generate latencies in another task on another CPU.
908 		 */
909 		if (progress >= 32) {
910 			progress = 0;
911 			if (need_resched() ||
912 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
913 				break;
914 		}
915 		if (pte_none(*src_pte)) {
916 			progress++;
917 			continue;
918 		}
919 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
920 							vma, addr, rss);
921 		if (entry.val)
922 			break;
923 		progress += 8;
924 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
925 
926 	arch_leave_lazy_mmu_mode();
927 	spin_unlock(src_ptl);
928 	pte_unmap(orig_src_pte);
929 	add_mm_rss_vec(dst_mm, rss);
930 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
931 	cond_resched();
932 
933 	if (entry.val) {
934 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
935 			return -ENOMEM;
936 		progress = 0;
937 	}
938 	if (addr != end)
939 		goto again;
940 	return 0;
941 }
942 
943 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
944 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
945 		unsigned long addr, unsigned long end)
946 {
947 	pmd_t *src_pmd, *dst_pmd;
948 	unsigned long next;
949 
950 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
951 	if (!dst_pmd)
952 		return -ENOMEM;
953 	src_pmd = pmd_offset(src_pud, addr);
954 	do {
955 		next = pmd_addr_end(addr, end);
956 		if (pmd_trans_huge(*src_pmd)) {
957 			int err;
958 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
959 			err = copy_huge_pmd(dst_mm, src_mm,
960 					    dst_pmd, src_pmd, addr, vma);
961 			if (err == -ENOMEM)
962 				return -ENOMEM;
963 			if (!err)
964 				continue;
965 			/* fall through */
966 		}
967 		if (pmd_none_or_clear_bad(src_pmd))
968 			continue;
969 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
970 						vma, addr, next))
971 			return -ENOMEM;
972 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
973 	return 0;
974 }
975 
976 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
977 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
978 		unsigned long addr, unsigned long end)
979 {
980 	pud_t *src_pud, *dst_pud;
981 	unsigned long next;
982 
983 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
984 	if (!dst_pud)
985 		return -ENOMEM;
986 	src_pud = pud_offset(src_pgd, addr);
987 	do {
988 		next = pud_addr_end(addr, end);
989 		if (pud_none_or_clear_bad(src_pud))
990 			continue;
991 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
992 						vma, addr, next))
993 			return -ENOMEM;
994 	} while (dst_pud++, src_pud++, addr = next, addr != end);
995 	return 0;
996 }
997 
998 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
999 		struct vm_area_struct *vma)
1000 {
1001 	pgd_t *src_pgd, *dst_pgd;
1002 	unsigned long next;
1003 	unsigned long addr = vma->vm_start;
1004 	unsigned long end = vma->vm_end;
1005 	unsigned long mmun_start;	/* For mmu_notifiers */
1006 	unsigned long mmun_end;		/* For mmu_notifiers */
1007 	bool is_cow;
1008 	int ret;
1009 
1010 	/*
1011 	 * Don't copy ptes where a page fault will fill them correctly.
1012 	 * Fork becomes much lighter when there are big shared or private
1013 	 * readonly mappings. The tradeoff is that copy_page_range is more
1014 	 * efficient than faulting.
1015 	 */
1016 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1017 			       VM_PFNMAP | VM_MIXEDMAP))) {
1018 		if (!vma->anon_vma)
1019 			return 0;
1020 	}
1021 
1022 	if (is_vm_hugetlb_page(vma))
1023 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1024 
1025 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1026 		/*
1027 		 * We do not free on error cases below as remove_vma
1028 		 * gets called on error from higher level routine
1029 		 */
1030 		ret = track_pfn_copy(vma);
1031 		if (ret)
1032 			return ret;
1033 	}
1034 
1035 	/*
1036 	 * We need to invalidate the secondary MMU mappings only when
1037 	 * there could be a permission downgrade on the ptes of the
1038 	 * parent mm. And a permission downgrade will only happen if
1039 	 * is_cow_mapping() returns true.
1040 	 */
1041 	is_cow = is_cow_mapping(vma->vm_flags);
1042 	mmun_start = addr;
1043 	mmun_end   = end;
1044 	if (is_cow)
1045 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1046 						    mmun_end);
1047 
1048 	ret = 0;
1049 	dst_pgd = pgd_offset(dst_mm, addr);
1050 	src_pgd = pgd_offset(src_mm, addr);
1051 	do {
1052 		next = pgd_addr_end(addr, end);
1053 		if (pgd_none_or_clear_bad(src_pgd))
1054 			continue;
1055 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1056 					    vma, addr, next))) {
1057 			ret = -ENOMEM;
1058 			break;
1059 		}
1060 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1061 
1062 	if (is_cow)
1063 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1064 	return ret;
1065 }
1066 
1067 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1068 				struct vm_area_struct *vma, pmd_t *pmd,
1069 				unsigned long addr, unsigned long end,
1070 				struct zap_details *details)
1071 {
1072 	struct mm_struct *mm = tlb->mm;
1073 	int force_flush = 0;
1074 	int rss[NR_MM_COUNTERS];
1075 	spinlock_t *ptl;
1076 	pte_t *start_pte;
1077 	pte_t *pte;
1078 
1079 again:
1080 	init_rss_vec(rss);
1081 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1082 	pte = start_pte;
1083 	arch_enter_lazy_mmu_mode();
1084 	do {
1085 		pte_t ptent = *pte;
1086 		if (pte_none(ptent)) {
1087 			continue;
1088 		}
1089 
1090 		if (pte_present(ptent)) {
1091 			struct page *page;
1092 
1093 			page = vm_normal_page(vma, addr, ptent);
1094 			if (unlikely(details) && page) {
1095 				/*
1096 				 * unmap_shared_mapping_pages() wants to
1097 				 * invalidate cache without truncating:
1098 				 * unmap shared but keep private pages.
1099 				 */
1100 				if (details->check_mapping &&
1101 				    details->check_mapping != page->mapping)
1102 					continue;
1103 				/*
1104 				 * Each page->index must be checked when
1105 				 * invalidating or truncating nonlinear.
1106 				 */
1107 				if (details->nonlinear_vma &&
1108 				    (page->index < details->first_index ||
1109 				     page->index > details->last_index))
1110 					continue;
1111 			}
1112 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1113 							tlb->fullmm);
1114 			tlb_remove_tlb_entry(tlb, pte, addr);
1115 			if (unlikely(!page))
1116 				continue;
1117 			if (unlikely(details) && details->nonlinear_vma
1118 			    && linear_page_index(details->nonlinear_vma,
1119 						addr) != page->index) {
1120 				pte_t ptfile = pgoff_to_pte(page->index);
1121 				if (pte_soft_dirty(ptent))
1122 					pte_file_mksoft_dirty(ptfile);
1123 				set_pte_at(mm, addr, pte, ptfile);
1124 			}
1125 			if (PageAnon(page))
1126 				rss[MM_ANONPAGES]--;
1127 			else {
1128 				if (pte_dirty(ptent))
1129 					set_page_dirty(page);
1130 				if (pte_young(ptent) &&
1131 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1132 					mark_page_accessed(page);
1133 				rss[MM_FILEPAGES]--;
1134 			}
1135 			page_remove_rmap(page);
1136 			if (unlikely(page_mapcount(page) < 0))
1137 				print_bad_pte(vma, addr, ptent, page);
1138 			force_flush = !__tlb_remove_page(tlb, page);
1139 			if (force_flush)
1140 				break;
1141 			continue;
1142 		}
1143 		/*
1144 		 * If details->check_mapping, we leave swap entries;
1145 		 * if details->nonlinear_vma, we leave file entries.
1146 		 */
1147 		if (unlikely(details))
1148 			continue;
1149 		if (pte_file(ptent)) {
1150 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1151 				print_bad_pte(vma, addr, ptent, NULL);
1152 		} else {
1153 			swp_entry_t entry = pte_to_swp_entry(ptent);
1154 
1155 			if (!non_swap_entry(entry))
1156 				rss[MM_SWAPENTS]--;
1157 			else if (is_migration_entry(entry)) {
1158 				struct page *page;
1159 
1160 				page = migration_entry_to_page(entry);
1161 
1162 				if (PageAnon(page))
1163 					rss[MM_ANONPAGES]--;
1164 				else
1165 					rss[MM_FILEPAGES]--;
1166 			}
1167 			if (unlikely(!free_swap_and_cache(entry)))
1168 				print_bad_pte(vma, addr, ptent, NULL);
1169 		}
1170 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1171 	} while (pte++, addr += PAGE_SIZE, addr != end);
1172 
1173 	add_mm_rss_vec(mm, rss);
1174 	arch_leave_lazy_mmu_mode();
1175 	pte_unmap_unlock(start_pte, ptl);
1176 
1177 	/*
1178 	 * mmu_gather ran out of room to batch pages, we break out of
1179 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1180 	 * and page-free while holding it.
1181 	 */
1182 	if (force_flush) {
1183 		unsigned long old_end;
1184 
1185 		force_flush = 0;
1186 
1187 		/*
1188 		 * Flush the TLB just for the previous segment,
1189 		 * then update the range to be the remaining
1190 		 * TLB range.
1191 		 */
1192 		old_end = tlb->end;
1193 		tlb->end = addr;
1194 
1195 		tlb_flush_mmu(tlb);
1196 
1197 		tlb->start = addr;
1198 		tlb->end = old_end;
1199 
1200 		if (addr != end)
1201 			goto again;
1202 	}
1203 
1204 	return addr;
1205 }
1206 
1207 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1208 				struct vm_area_struct *vma, pud_t *pud,
1209 				unsigned long addr, unsigned long end,
1210 				struct zap_details *details)
1211 {
1212 	pmd_t *pmd;
1213 	unsigned long next;
1214 
1215 	pmd = pmd_offset(pud, addr);
1216 	do {
1217 		next = pmd_addr_end(addr, end);
1218 		if (pmd_trans_huge(*pmd)) {
1219 			if (next - addr != HPAGE_PMD_SIZE) {
1220 #ifdef CONFIG_DEBUG_VM
1221 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1222 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1223 						__func__, addr, end,
1224 						vma->vm_start,
1225 						vma->vm_end);
1226 					BUG();
1227 				}
1228 #endif
1229 				split_huge_page_pmd(vma, addr, pmd);
1230 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1231 				goto next;
1232 			/* fall through */
1233 		}
1234 		/*
1235 		 * Here there can be other concurrent MADV_DONTNEED or
1236 		 * trans huge page faults running, and if the pmd is
1237 		 * none or trans huge it can change under us. This is
1238 		 * because MADV_DONTNEED holds the mmap_sem in read
1239 		 * mode.
1240 		 */
1241 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1242 			goto next;
1243 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1244 next:
1245 		cond_resched();
1246 	} while (pmd++, addr = next, addr != end);
1247 
1248 	return addr;
1249 }
1250 
1251 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1252 				struct vm_area_struct *vma, pgd_t *pgd,
1253 				unsigned long addr, unsigned long end,
1254 				struct zap_details *details)
1255 {
1256 	pud_t *pud;
1257 	unsigned long next;
1258 
1259 	pud = pud_offset(pgd, addr);
1260 	do {
1261 		next = pud_addr_end(addr, end);
1262 		if (pud_none_or_clear_bad(pud))
1263 			continue;
1264 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1265 	} while (pud++, addr = next, addr != end);
1266 
1267 	return addr;
1268 }
1269 
1270 static void unmap_page_range(struct mmu_gather *tlb,
1271 			     struct vm_area_struct *vma,
1272 			     unsigned long addr, unsigned long end,
1273 			     struct zap_details *details)
1274 {
1275 	pgd_t *pgd;
1276 	unsigned long next;
1277 
1278 	if (details && !details->check_mapping && !details->nonlinear_vma)
1279 		details = NULL;
1280 
1281 	BUG_ON(addr >= end);
1282 	mem_cgroup_uncharge_start();
1283 	tlb_start_vma(tlb, vma);
1284 	pgd = pgd_offset(vma->vm_mm, addr);
1285 	do {
1286 		next = pgd_addr_end(addr, end);
1287 		if (pgd_none_or_clear_bad(pgd))
1288 			continue;
1289 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1290 	} while (pgd++, addr = next, addr != end);
1291 	tlb_end_vma(tlb, vma);
1292 	mem_cgroup_uncharge_end();
1293 }
1294 
1295 
1296 static void unmap_single_vma(struct mmu_gather *tlb,
1297 		struct vm_area_struct *vma, unsigned long start_addr,
1298 		unsigned long end_addr,
1299 		struct zap_details *details)
1300 {
1301 	unsigned long start = max(vma->vm_start, start_addr);
1302 	unsigned long end;
1303 
1304 	if (start >= vma->vm_end)
1305 		return;
1306 	end = min(vma->vm_end, end_addr);
1307 	if (end <= vma->vm_start)
1308 		return;
1309 
1310 	if (vma->vm_file)
1311 		uprobe_munmap(vma, start, end);
1312 
1313 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1314 		untrack_pfn(vma, 0, 0);
1315 
1316 	if (start != end) {
1317 		if (unlikely(is_vm_hugetlb_page(vma))) {
1318 			/*
1319 			 * It is undesirable to test vma->vm_file as it
1320 			 * should be non-null for valid hugetlb area.
1321 			 * However, vm_file will be NULL in the error
1322 			 * cleanup path of do_mmap_pgoff. When
1323 			 * hugetlbfs ->mmap method fails,
1324 			 * do_mmap_pgoff() nullifies vma->vm_file
1325 			 * before calling this function to clean up.
1326 			 * Since no pte has actually been setup, it is
1327 			 * safe to do nothing in this case.
1328 			 */
1329 			if (vma->vm_file) {
1330 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1331 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1332 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1333 			}
1334 		} else
1335 			unmap_page_range(tlb, vma, start, end, details);
1336 	}
1337 }
1338 
1339 /**
1340  * unmap_vmas - unmap a range of memory covered by a list of vma's
1341  * @tlb: address of the caller's struct mmu_gather
1342  * @vma: the starting vma
1343  * @start_addr: virtual address at which to start unmapping
1344  * @end_addr: virtual address at which to end unmapping
1345  *
1346  * Unmap all pages in the vma list.
1347  *
1348  * Only addresses between `start' and `end' will be unmapped.
1349  *
1350  * The VMA list must be sorted in ascending virtual address order.
1351  *
1352  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1353  * range after unmap_vmas() returns.  So the only responsibility here is to
1354  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1355  * drops the lock and schedules.
1356  */
1357 void unmap_vmas(struct mmu_gather *tlb,
1358 		struct vm_area_struct *vma, unsigned long start_addr,
1359 		unsigned long end_addr)
1360 {
1361 	struct mm_struct *mm = vma->vm_mm;
1362 
1363 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1364 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1365 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1366 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1367 }
1368 
1369 /**
1370  * zap_page_range - remove user pages in a given range
1371  * @vma: vm_area_struct holding the applicable pages
1372  * @start: starting address of pages to zap
1373  * @size: number of bytes to zap
1374  * @details: details of nonlinear truncation or shared cache invalidation
1375  *
1376  * Caller must protect the VMA list
1377  */
1378 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1379 		unsigned long size, struct zap_details *details)
1380 {
1381 	struct mm_struct *mm = vma->vm_mm;
1382 	struct mmu_gather tlb;
1383 	unsigned long end = start + size;
1384 
1385 	lru_add_drain();
1386 	tlb_gather_mmu(&tlb, mm, start, end);
1387 	update_hiwater_rss(mm);
1388 	mmu_notifier_invalidate_range_start(mm, start, end);
1389 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1390 		unmap_single_vma(&tlb, vma, start, end, details);
1391 	mmu_notifier_invalidate_range_end(mm, start, end);
1392 	tlb_finish_mmu(&tlb, start, end);
1393 }
1394 
1395 /**
1396  * zap_page_range_single - remove user pages in a given range
1397  * @vma: vm_area_struct holding the applicable pages
1398  * @address: starting address of pages to zap
1399  * @size: number of bytes to zap
1400  * @details: details of nonlinear truncation or shared cache invalidation
1401  *
1402  * The range must fit into one VMA.
1403  */
1404 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1405 		unsigned long size, struct zap_details *details)
1406 {
1407 	struct mm_struct *mm = vma->vm_mm;
1408 	struct mmu_gather tlb;
1409 	unsigned long end = address + size;
1410 
1411 	lru_add_drain();
1412 	tlb_gather_mmu(&tlb, mm, address, end);
1413 	update_hiwater_rss(mm);
1414 	mmu_notifier_invalidate_range_start(mm, address, end);
1415 	unmap_single_vma(&tlb, vma, address, end, details);
1416 	mmu_notifier_invalidate_range_end(mm, address, end);
1417 	tlb_finish_mmu(&tlb, address, end);
1418 }
1419 
1420 /**
1421  * zap_vma_ptes - remove ptes mapping the vma
1422  * @vma: vm_area_struct holding ptes to be zapped
1423  * @address: starting address of pages to zap
1424  * @size: number of bytes to zap
1425  *
1426  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1427  *
1428  * The entire address range must be fully contained within the vma.
1429  *
1430  * Returns 0 if successful.
1431  */
1432 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1433 		unsigned long size)
1434 {
1435 	if (address < vma->vm_start || address + size > vma->vm_end ||
1436 	    		!(vma->vm_flags & VM_PFNMAP))
1437 		return -1;
1438 	zap_page_range_single(vma, address, size, NULL);
1439 	return 0;
1440 }
1441 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1442 
1443 /**
1444  * follow_page_mask - look up a page descriptor from a user-virtual address
1445  * @vma: vm_area_struct mapping @address
1446  * @address: virtual address to look up
1447  * @flags: flags modifying lookup behaviour
1448  * @page_mask: on output, *page_mask is set according to the size of the page
1449  *
1450  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1451  *
1452  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1453  * an error pointer if there is a mapping to something not represented
1454  * by a page descriptor (see also vm_normal_page()).
1455  */
1456 struct page *follow_page_mask(struct vm_area_struct *vma,
1457 			      unsigned long address, unsigned int flags,
1458 			      unsigned int *page_mask)
1459 {
1460 	pgd_t *pgd;
1461 	pud_t *pud;
1462 	pmd_t *pmd;
1463 	pte_t *ptep, pte;
1464 	spinlock_t *ptl;
1465 	struct page *page;
1466 	struct mm_struct *mm = vma->vm_mm;
1467 
1468 	*page_mask = 0;
1469 
1470 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1471 	if (!IS_ERR(page)) {
1472 		BUG_ON(flags & FOLL_GET);
1473 		goto out;
1474 	}
1475 
1476 	page = NULL;
1477 	pgd = pgd_offset(mm, address);
1478 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1479 		goto no_page_table;
1480 
1481 	pud = pud_offset(pgd, address);
1482 	if (pud_none(*pud))
1483 		goto no_page_table;
1484 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1485 		if (flags & FOLL_GET)
1486 			goto out;
1487 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1488 		goto out;
1489 	}
1490 	if (unlikely(pud_bad(*pud)))
1491 		goto no_page_table;
1492 
1493 	pmd = pmd_offset(pud, address);
1494 	if (pmd_none(*pmd))
1495 		goto no_page_table;
1496 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1497 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1498 		if (flags & FOLL_GET) {
1499 			/*
1500 			 * Refcount on tail pages are not well-defined and
1501 			 * shouldn't be taken. The caller should handle a NULL
1502 			 * return when trying to follow tail pages.
1503 			 */
1504 			if (PageHead(page))
1505 				get_page(page);
1506 			else {
1507 				page = NULL;
1508 				goto out;
1509 			}
1510 		}
1511 		goto out;
1512 	}
1513 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1514 		goto no_page_table;
1515 	if (pmd_trans_huge(*pmd)) {
1516 		if (flags & FOLL_SPLIT) {
1517 			split_huge_page_pmd(vma, address, pmd);
1518 			goto split_fallthrough;
1519 		}
1520 		ptl = pmd_lock(mm, pmd);
1521 		if (likely(pmd_trans_huge(*pmd))) {
1522 			if (unlikely(pmd_trans_splitting(*pmd))) {
1523 				spin_unlock(ptl);
1524 				wait_split_huge_page(vma->anon_vma, pmd);
1525 			} else {
1526 				page = follow_trans_huge_pmd(vma, address,
1527 							     pmd, flags);
1528 				spin_unlock(ptl);
1529 				*page_mask = HPAGE_PMD_NR - 1;
1530 				goto out;
1531 			}
1532 		} else
1533 			spin_unlock(ptl);
1534 		/* fall through */
1535 	}
1536 split_fallthrough:
1537 	if (unlikely(pmd_bad(*pmd)))
1538 		goto no_page_table;
1539 
1540 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1541 
1542 	pte = *ptep;
1543 	if (!pte_present(pte)) {
1544 		swp_entry_t entry;
1545 		/*
1546 		 * KSM's break_ksm() relies upon recognizing a ksm page
1547 		 * even while it is being migrated, so for that case we
1548 		 * need migration_entry_wait().
1549 		 */
1550 		if (likely(!(flags & FOLL_MIGRATION)))
1551 			goto no_page;
1552 		if (pte_none(pte) || pte_file(pte))
1553 			goto no_page;
1554 		entry = pte_to_swp_entry(pte);
1555 		if (!is_migration_entry(entry))
1556 			goto no_page;
1557 		pte_unmap_unlock(ptep, ptl);
1558 		migration_entry_wait(mm, pmd, address);
1559 		goto split_fallthrough;
1560 	}
1561 	if ((flags & FOLL_NUMA) && pte_numa(pte))
1562 		goto no_page;
1563 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1564 		goto unlock;
1565 
1566 	page = vm_normal_page(vma, address, pte);
1567 	if (unlikely(!page)) {
1568 		if ((flags & FOLL_DUMP) ||
1569 		    !is_zero_pfn(pte_pfn(pte)))
1570 			goto bad_page;
1571 		page = pte_page(pte);
1572 	}
1573 
1574 	if (flags & FOLL_GET)
1575 		get_page_foll(page);
1576 	if (flags & FOLL_TOUCH) {
1577 		if ((flags & FOLL_WRITE) &&
1578 		    !pte_dirty(pte) && !PageDirty(page))
1579 			set_page_dirty(page);
1580 		/*
1581 		 * pte_mkyoung() would be more correct here, but atomic care
1582 		 * is needed to avoid losing the dirty bit: it is easier to use
1583 		 * mark_page_accessed().
1584 		 */
1585 		mark_page_accessed(page);
1586 	}
1587 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1588 		/*
1589 		 * The preliminary mapping check is mainly to avoid the
1590 		 * pointless overhead of lock_page on the ZERO_PAGE
1591 		 * which might bounce very badly if there is contention.
1592 		 *
1593 		 * If the page is already locked, we don't need to
1594 		 * handle it now - vmscan will handle it later if and
1595 		 * when it attempts to reclaim the page.
1596 		 */
1597 		if (page->mapping && trylock_page(page)) {
1598 			lru_add_drain();  /* push cached pages to LRU */
1599 			/*
1600 			 * Because we lock page here, and migration is
1601 			 * blocked by the pte's page reference, and we
1602 			 * know the page is still mapped, we don't even
1603 			 * need to check for file-cache page truncation.
1604 			 */
1605 			mlock_vma_page(page);
1606 			unlock_page(page);
1607 		}
1608 	}
1609 unlock:
1610 	pte_unmap_unlock(ptep, ptl);
1611 out:
1612 	return page;
1613 
1614 bad_page:
1615 	pte_unmap_unlock(ptep, ptl);
1616 	return ERR_PTR(-EFAULT);
1617 
1618 no_page:
1619 	pte_unmap_unlock(ptep, ptl);
1620 	if (!pte_none(pte))
1621 		return page;
1622 
1623 no_page_table:
1624 	/*
1625 	 * When core dumping an enormous anonymous area that nobody
1626 	 * has touched so far, we don't want to allocate unnecessary pages or
1627 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1628 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1629 	 * But we can only make this optimization where a hole would surely
1630 	 * be zero-filled if handle_mm_fault() actually did handle it.
1631 	 */
1632 	if ((flags & FOLL_DUMP) &&
1633 	    (!vma->vm_ops || !vma->vm_ops->fault))
1634 		return ERR_PTR(-EFAULT);
1635 	return page;
1636 }
1637 
1638 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1639 {
1640 	return stack_guard_page_start(vma, addr) ||
1641 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1642 }
1643 
1644 /**
1645  * __get_user_pages() - pin user pages in memory
1646  * @tsk:	task_struct of target task
1647  * @mm:		mm_struct of target mm
1648  * @start:	starting user address
1649  * @nr_pages:	number of pages from start to pin
1650  * @gup_flags:	flags modifying pin behaviour
1651  * @pages:	array that receives pointers to the pages pinned.
1652  *		Should be at least nr_pages long. Or NULL, if caller
1653  *		only intends to ensure the pages are faulted in.
1654  * @vmas:	array of pointers to vmas corresponding to each page.
1655  *		Or NULL if the caller does not require them.
1656  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1657  *
1658  * Returns number of pages pinned. This may be fewer than the number
1659  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1660  * were pinned, returns -errno. Each page returned must be released
1661  * with a put_page() call when it is finished with. vmas will only
1662  * remain valid while mmap_sem is held.
1663  *
1664  * Must be called with mmap_sem held for read or write.
1665  *
1666  * __get_user_pages walks a process's page tables and takes a reference to
1667  * each struct page that each user address corresponds to at a given
1668  * instant. That is, it takes the page that would be accessed if a user
1669  * thread accesses the given user virtual address at that instant.
1670  *
1671  * This does not guarantee that the page exists in the user mappings when
1672  * __get_user_pages returns, and there may even be a completely different
1673  * page there in some cases (eg. if mmapped pagecache has been invalidated
1674  * and subsequently re faulted). However it does guarantee that the page
1675  * won't be freed completely. And mostly callers simply care that the page
1676  * contains data that was valid *at some point in time*. Typically, an IO
1677  * or similar operation cannot guarantee anything stronger anyway because
1678  * locks can't be held over the syscall boundary.
1679  *
1680  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1681  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1682  * appropriate) must be called after the page is finished with, and
1683  * before put_page is called.
1684  *
1685  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1686  * or mmap_sem contention, and if waiting is needed to pin all pages,
1687  * *@nonblocking will be set to 0.
1688  *
1689  * In most cases, get_user_pages or get_user_pages_fast should be used
1690  * instead of __get_user_pages. __get_user_pages should be used only if
1691  * you need some special @gup_flags.
1692  */
1693 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1694 		unsigned long start, unsigned long nr_pages,
1695 		unsigned int gup_flags, struct page **pages,
1696 		struct vm_area_struct **vmas, int *nonblocking)
1697 {
1698 	long i;
1699 	unsigned long vm_flags;
1700 	unsigned int page_mask;
1701 
1702 	if (!nr_pages)
1703 		return 0;
1704 
1705 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1706 
1707 	/*
1708 	 * Require read or write permissions.
1709 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1710 	 */
1711 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1712 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1713 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1714 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1715 
1716 	/*
1717 	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1718 	 * would be called on PROT_NONE ranges. We must never invoke
1719 	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1720 	 * page faults would unprotect the PROT_NONE ranges if
1721 	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1722 	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1723 	 * FOLL_FORCE is set.
1724 	 */
1725 	if (!(gup_flags & FOLL_FORCE))
1726 		gup_flags |= FOLL_NUMA;
1727 
1728 	i = 0;
1729 
1730 	do {
1731 		struct vm_area_struct *vma;
1732 
1733 		vma = find_extend_vma(mm, start);
1734 		if (!vma && in_gate_area(mm, start)) {
1735 			unsigned long pg = start & PAGE_MASK;
1736 			pgd_t *pgd;
1737 			pud_t *pud;
1738 			pmd_t *pmd;
1739 			pte_t *pte;
1740 
1741 			/* user gate pages are read-only */
1742 			if (gup_flags & FOLL_WRITE)
1743 				return i ? : -EFAULT;
1744 			if (pg > TASK_SIZE)
1745 				pgd = pgd_offset_k(pg);
1746 			else
1747 				pgd = pgd_offset_gate(mm, pg);
1748 			BUG_ON(pgd_none(*pgd));
1749 			pud = pud_offset(pgd, pg);
1750 			BUG_ON(pud_none(*pud));
1751 			pmd = pmd_offset(pud, pg);
1752 			if (pmd_none(*pmd))
1753 				return i ? : -EFAULT;
1754 			VM_BUG_ON(pmd_trans_huge(*pmd));
1755 			pte = pte_offset_map(pmd, pg);
1756 			if (pte_none(*pte)) {
1757 				pte_unmap(pte);
1758 				return i ? : -EFAULT;
1759 			}
1760 			vma = get_gate_vma(mm);
1761 			if (pages) {
1762 				struct page *page;
1763 
1764 				page = vm_normal_page(vma, start, *pte);
1765 				if (!page) {
1766 					if (!(gup_flags & FOLL_DUMP) &&
1767 					     is_zero_pfn(pte_pfn(*pte)))
1768 						page = pte_page(*pte);
1769 					else {
1770 						pte_unmap(pte);
1771 						return i ? : -EFAULT;
1772 					}
1773 				}
1774 				pages[i] = page;
1775 				get_page(page);
1776 			}
1777 			pte_unmap(pte);
1778 			page_mask = 0;
1779 			goto next_page;
1780 		}
1781 
1782 		if (!vma ||
1783 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1784 		    !(vm_flags & vma->vm_flags))
1785 			return i ? : -EFAULT;
1786 
1787 		if (is_vm_hugetlb_page(vma)) {
1788 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1789 					&start, &nr_pages, i, gup_flags);
1790 			continue;
1791 		}
1792 
1793 		do {
1794 			struct page *page;
1795 			unsigned int foll_flags = gup_flags;
1796 			unsigned int page_increm;
1797 
1798 			/*
1799 			 * If we have a pending SIGKILL, don't keep faulting
1800 			 * pages and potentially allocating memory.
1801 			 */
1802 			if (unlikely(fatal_signal_pending(current)))
1803 				return i ? i : -ERESTARTSYS;
1804 
1805 			cond_resched();
1806 			while (!(page = follow_page_mask(vma, start,
1807 						foll_flags, &page_mask))) {
1808 				int ret;
1809 				unsigned int fault_flags = 0;
1810 
1811 				/* For mlock, just skip the stack guard page. */
1812 				if (foll_flags & FOLL_MLOCK) {
1813 					if (stack_guard_page(vma, start))
1814 						goto next_page;
1815 				}
1816 				if (foll_flags & FOLL_WRITE)
1817 					fault_flags |= FAULT_FLAG_WRITE;
1818 				if (nonblocking)
1819 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1820 				if (foll_flags & FOLL_NOWAIT)
1821 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1822 
1823 				ret = handle_mm_fault(mm, vma, start,
1824 							fault_flags);
1825 
1826 				if (ret & VM_FAULT_ERROR) {
1827 					if (ret & VM_FAULT_OOM)
1828 						return i ? i : -ENOMEM;
1829 					if (ret & (VM_FAULT_HWPOISON |
1830 						   VM_FAULT_HWPOISON_LARGE)) {
1831 						if (i)
1832 							return i;
1833 						else if (gup_flags & FOLL_HWPOISON)
1834 							return -EHWPOISON;
1835 						else
1836 							return -EFAULT;
1837 					}
1838 					if (ret & VM_FAULT_SIGBUS)
1839 						return i ? i : -EFAULT;
1840 					BUG();
1841 				}
1842 
1843 				if (tsk) {
1844 					if (ret & VM_FAULT_MAJOR)
1845 						tsk->maj_flt++;
1846 					else
1847 						tsk->min_flt++;
1848 				}
1849 
1850 				if (ret & VM_FAULT_RETRY) {
1851 					if (nonblocking)
1852 						*nonblocking = 0;
1853 					return i;
1854 				}
1855 
1856 				/*
1857 				 * The VM_FAULT_WRITE bit tells us that
1858 				 * do_wp_page has broken COW when necessary,
1859 				 * even if maybe_mkwrite decided not to set
1860 				 * pte_write. We can thus safely do subsequent
1861 				 * page lookups as if they were reads. But only
1862 				 * do so when looping for pte_write is futile:
1863 				 * in some cases userspace may also be wanting
1864 				 * to write to the gotten user page, which a
1865 				 * read fault here might prevent (a readonly
1866 				 * page might get reCOWed by userspace write).
1867 				 */
1868 				if ((ret & VM_FAULT_WRITE) &&
1869 				    !(vma->vm_flags & VM_WRITE))
1870 					foll_flags &= ~FOLL_WRITE;
1871 
1872 				cond_resched();
1873 			}
1874 			if (IS_ERR(page))
1875 				return i ? i : PTR_ERR(page);
1876 			if (pages) {
1877 				pages[i] = page;
1878 
1879 				flush_anon_page(vma, page, start);
1880 				flush_dcache_page(page);
1881 				page_mask = 0;
1882 			}
1883 next_page:
1884 			if (vmas) {
1885 				vmas[i] = vma;
1886 				page_mask = 0;
1887 			}
1888 			page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1889 			if (page_increm > nr_pages)
1890 				page_increm = nr_pages;
1891 			i += page_increm;
1892 			start += page_increm * PAGE_SIZE;
1893 			nr_pages -= page_increm;
1894 		} while (nr_pages && start < vma->vm_end);
1895 	} while (nr_pages);
1896 	return i;
1897 }
1898 EXPORT_SYMBOL(__get_user_pages);
1899 
1900 /*
1901  * fixup_user_fault() - manually resolve a user page fault
1902  * @tsk:	the task_struct to use for page fault accounting, or
1903  *		NULL if faults are not to be recorded.
1904  * @mm:		mm_struct of target mm
1905  * @address:	user address
1906  * @fault_flags:flags to pass down to handle_mm_fault()
1907  *
1908  * This is meant to be called in the specific scenario where for locking reasons
1909  * we try to access user memory in atomic context (within a pagefault_disable()
1910  * section), this returns -EFAULT, and we want to resolve the user fault before
1911  * trying again.
1912  *
1913  * Typically this is meant to be used by the futex code.
1914  *
1915  * The main difference with get_user_pages() is that this function will
1916  * unconditionally call handle_mm_fault() which will in turn perform all the
1917  * necessary SW fixup of the dirty and young bits in the PTE, while
1918  * handle_mm_fault() only guarantees to update these in the struct page.
1919  *
1920  * This is important for some architectures where those bits also gate the
1921  * access permission to the page because they are maintained in software.  On
1922  * such architectures, gup() will not be enough to make a subsequent access
1923  * succeed.
1924  *
1925  * This should be called with the mm_sem held for read.
1926  */
1927 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1928 		     unsigned long address, unsigned int fault_flags)
1929 {
1930 	struct vm_area_struct *vma;
1931 	int ret;
1932 
1933 	vma = find_extend_vma(mm, address);
1934 	if (!vma || address < vma->vm_start)
1935 		return -EFAULT;
1936 
1937 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1938 	if (ret & VM_FAULT_ERROR) {
1939 		if (ret & VM_FAULT_OOM)
1940 			return -ENOMEM;
1941 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1942 			return -EHWPOISON;
1943 		if (ret & VM_FAULT_SIGBUS)
1944 			return -EFAULT;
1945 		BUG();
1946 	}
1947 	if (tsk) {
1948 		if (ret & VM_FAULT_MAJOR)
1949 			tsk->maj_flt++;
1950 		else
1951 			tsk->min_flt++;
1952 	}
1953 	return 0;
1954 }
1955 
1956 /*
1957  * get_user_pages() - pin user pages in memory
1958  * @tsk:	the task_struct to use for page fault accounting, or
1959  *		NULL if faults are not to be recorded.
1960  * @mm:		mm_struct of target mm
1961  * @start:	starting user address
1962  * @nr_pages:	number of pages from start to pin
1963  * @write:	whether pages will be written to by the caller
1964  * @force:	whether to force write access even if user mapping is
1965  *		readonly. This will result in the page being COWed even
1966  *		in MAP_SHARED mappings. You do not want this.
1967  * @pages:	array that receives pointers to the pages pinned.
1968  *		Should be at least nr_pages long. Or NULL, if caller
1969  *		only intends to ensure the pages are faulted in.
1970  * @vmas:	array of pointers to vmas corresponding to each page.
1971  *		Or NULL if the caller does not require them.
1972  *
1973  * Returns number of pages pinned. This may be fewer than the number
1974  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1975  * were pinned, returns -errno. Each page returned must be released
1976  * with a put_page() call when it is finished with. vmas will only
1977  * remain valid while mmap_sem is held.
1978  *
1979  * Must be called with mmap_sem held for read or write.
1980  *
1981  * get_user_pages walks a process's page tables and takes a reference to
1982  * each struct page that each user address corresponds to at a given
1983  * instant. That is, it takes the page that would be accessed if a user
1984  * thread accesses the given user virtual address at that instant.
1985  *
1986  * This does not guarantee that the page exists in the user mappings when
1987  * get_user_pages returns, and there may even be a completely different
1988  * page there in some cases (eg. if mmapped pagecache has been invalidated
1989  * and subsequently re faulted). However it does guarantee that the page
1990  * won't be freed completely. And mostly callers simply care that the page
1991  * contains data that was valid *at some point in time*. Typically, an IO
1992  * or similar operation cannot guarantee anything stronger anyway because
1993  * locks can't be held over the syscall boundary.
1994  *
1995  * If write=0, the page must not be written to. If the page is written to,
1996  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1997  * after the page is finished with, and before put_page is called.
1998  *
1999  * get_user_pages is typically used for fewer-copy IO operations, to get a
2000  * handle on the memory by some means other than accesses via the user virtual
2001  * addresses. The pages may be submitted for DMA to devices or accessed via
2002  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2003  * use the correct cache flushing APIs.
2004  *
2005  * See also get_user_pages_fast, for performance critical applications.
2006  */
2007 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2008 		unsigned long start, unsigned long nr_pages, int write,
2009 		int force, struct page **pages, struct vm_area_struct **vmas)
2010 {
2011 	int flags = FOLL_TOUCH;
2012 
2013 	if (pages)
2014 		flags |= FOLL_GET;
2015 	if (write)
2016 		flags |= FOLL_WRITE;
2017 	if (force)
2018 		flags |= FOLL_FORCE;
2019 
2020 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2021 				NULL);
2022 }
2023 EXPORT_SYMBOL(get_user_pages);
2024 
2025 /**
2026  * get_dump_page() - pin user page in memory while writing it to core dump
2027  * @addr: user address
2028  *
2029  * Returns struct page pointer of user page pinned for dump,
2030  * to be freed afterwards by page_cache_release() or put_page().
2031  *
2032  * Returns NULL on any kind of failure - a hole must then be inserted into
2033  * the corefile, to preserve alignment with its headers; and also returns
2034  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2035  * allowing a hole to be left in the corefile to save diskspace.
2036  *
2037  * Called without mmap_sem, but after all other threads have been killed.
2038  */
2039 #ifdef CONFIG_ELF_CORE
2040 struct page *get_dump_page(unsigned long addr)
2041 {
2042 	struct vm_area_struct *vma;
2043 	struct page *page;
2044 
2045 	if (__get_user_pages(current, current->mm, addr, 1,
2046 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2047 			     NULL) < 1)
2048 		return NULL;
2049 	flush_cache_page(vma, addr, page_to_pfn(page));
2050 	return page;
2051 }
2052 #endif /* CONFIG_ELF_CORE */
2053 
2054 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2055 			spinlock_t **ptl)
2056 {
2057 	pgd_t * pgd = pgd_offset(mm, addr);
2058 	pud_t * pud = pud_alloc(mm, pgd, addr);
2059 	if (pud) {
2060 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2061 		if (pmd) {
2062 			VM_BUG_ON(pmd_trans_huge(*pmd));
2063 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2064 		}
2065 	}
2066 	return NULL;
2067 }
2068 
2069 /*
2070  * This is the old fallback for page remapping.
2071  *
2072  * For historical reasons, it only allows reserved pages. Only
2073  * old drivers should use this, and they needed to mark their
2074  * pages reserved for the old functions anyway.
2075  */
2076 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2077 			struct page *page, pgprot_t prot)
2078 {
2079 	struct mm_struct *mm = vma->vm_mm;
2080 	int retval;
2081 	pte_t *pte;
2082 	spinlock_t *ptl;
2083 
2084 	retval = -EINVAL;
2085 	if (PageAnon(page))
2086 		goto out;
2087 	retval = -ENOMEM;
2088 	flush_dcache_page(page);
2089 	pte = get_locked_pte(mm, addr, &ptl);
2090 	if (!pte)
2091 		goto out;
2092 	retval = -EBUSY;
2093 	if (!pte_none(*pte))
2094 		goto out_unlock;
2095 
2096 	/* Ok, finally just insert the thing.. */
2097 	get_page(page);
2098 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2099 	page_add_file_rmap(page);
2100 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2101 
2102 	retval = 0;
2103 	pte_unmap_unlock(pte, ptl);
2104 	return retval;
2105 out_unlock:
2106 	pte_unmap_unlock(pte, ptl);
2107 out:
2108 	return retval;
2109 }
2110 
2111 /**
2112  * vm_insert_page - insert single page into user vma
2113  * @vma: user vma to map to
2114  * @addr: target user address of this page
2115  * @page: source kernel page
2116  *
2117  * This allows drivers to insert individual pages they've allocated
2118  * into a user vma.
2119  *
2120  * The page has to be a nice clean _individual_ kernel allocation.
2121  * If you allocate a compound page, you need to have marked it as
2122  * such (__GFP_COMP), or manually just split the page up yourself
2123  * (see split_page()).
2124  *
2125  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2126  * took an arbitrary page protection parameter. This doesn't allow
2127  * that. Your vma protection will have to be set up correctly, which
2128  * means that if you want a shared writable mapping, you'd better
2129  * ask for a shared writable mapping!
2130  *
2131  * The page does not need to be reserved.
2132  *
2133  * Usually this function is called from f_op->mmap() handler
2134  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2135  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2136  * function from other places, for example from page-fault handler.
2137  */
2138 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2139 			struct page *page)
2140 {
2141 	if (addr < vma->vm_start || addr >= vma->vm_end)
2142 		return -EFAULT;
2143 	if (!page_count(page))
2144 		return -EINVAL;
2145 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2146 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2147 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2148 		vma->vm_flags |= VM_MIXEDMAP;
2149 	}
2150 	return insert_page(vma, addr, page, vma->vm_page_prot);
2151 }
2152 EXPORT_SYMBOL(vm_insert_page);
2153 
2154 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2155 			unsigned long pfn, pgprot_t prot)
2156 {
2157 	struct mm_struct *mm = vma->vm_mm;
2158 	int retval;
2159 	pte_t *pte, entry;
2160 	spinlock_t *ptl;
2161 
2162 	retval = -ENOMEM;
2163 	pte = get_locked_pte(mm, addr, &ptl);
2164 	if (!pte)
2165 		goto out;
2166 	retval = -EBUSY;
2167 	if (!pte_none(*pte))
2168 		goto out_unlock;
2169 
2170 	/* Ok, finally just insert the thing.. */
2171 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2172 	set_pte_at(mm, addr, pte, entry);
2173 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2174 
2175 	retval = 0;
2176 out_unlock:
2177 	pte_unmap_unlock(pte, ptl);
2178 out:
2179 	return retval;
2180 }
2181 
2182 /**
2183  * vm_insert_pfn - insert single pfn into user vma
2184  * @vma: user vma to map to
2185  * @addr: target user address of this page
2186  * @pfn: source kernel pfn
2187  *
2188  * Similar to vm_insert_page, this allows drivers to insert individual pages
2189  * they've allocated into a user vma. Same comments apply.
2190  *
2191  * This function should only be called from a vm_ops->fault handler, and
2192  * in that case the handler should return NULL.
2193  *
2194  * vma cannot be a COW mapping.
2195  *
2196  * As this is called only for pages that do not currently exist, we
2197  * do not need to flush old virtual caches or the TLB.
2198  */
2199 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2200 			unsigned long pfn)
2201 {
2202 	int ret;
2203 	pgprot_t pgprot = vma->vm_page_prot;
2204 	/*
2205 	 * Technically, architectures with pte_special can avoid all these
2206 	 * restrictions (same for remap_pfn_range).  However we would like
2207 	 * consistency in testing and feature parity among all, so we should
2208 	 * try to keep these invariants in place for everybody.
2209 	 */
2210 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2211 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2212 						(VM_PFNMAP|VM_MIXEDMAP));
2213 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2214 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2215 
2216 	if (addr < vma->vm_start || addr >= vma->vm_end)
2217 		return -EFAULT;
2218 	if (track_pfn_insert(vma, &pgprot, pfn))
2219 		return -EINVAL;
2220 
2221 	ret = insert_pfn(vma, addr, pfn, pgprot);
2222 
2223 	return ret;
2224 }
2225 EXPORT_SYMBOL(vm_insert_pfn);
2226 
2227 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2228 			unsigned long pfn)
2229 {
2230 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2231 
2232 	if (addr < vma->vm_start || addr >= vma->vm_end)
2233 		return -EFAULT;
2234 
2235 	/*
2236 	 * If we don't have pte special, then we have to use the pfn_valid()
2237 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2238 	 * refcount the page if pfn_valid is true (hence insert_page rather
2239 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2240 	 * without pte special, it would there be refcounted as a normal page.
2241 	 */
2242 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2243 		struct page *page;
2244 
2245 		page = pfn_to_page(pfn);
2246 		return insert_page(vma, addr, page, vma->vm_page_prot);
2247 	}
2248 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2249 }
2250 EXPORT_SYMBOL(vm_insert_mixed);
2251 
2252 /*
2253  * maps a range of physical memory into the requested pages. the old
2254  * mappings are removed. any references to nonexistent pages results
2255  * in null mappings (currently treated as "copy-on-access")
2256  */
2257 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2258 			unsigned long addr, unsigned long end,
2259 			unsigned long pfn, pgprot_t prot)
2260 {
2261 	pte_t *pte;
2262 	spinlock_t *ptl;
2263 
2264 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2265 	if (!pte)
2266 		return -ENOMEM;
2267 	arch_enter_lazy_mmu_mode();
2268 	do {
2269 		BUG_ON(!pte_none(*pte));
2270 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2271 		pfn++;
2272 	} while (pte++, addr += PAGE_SIZE, addr != end);
2273 	arch_leave_lazy_mmu_mode();
2274 	pte_unmap_unlock(pte - 1, ptl);
2275 	return 0;
2276 }
2277 
2278 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2279 			unsigned long addr, unsigned long end,
2280 			unsigned long pfn, pgprot_t prot)
2281 {
2282 	pmd_t *pmd;
2283 	unsigned long next;
2284 
2285 	pfn -= addr >> PAGE_SHIFT;
2286 	pmd = pmd_alloc(mm, pud, addr);
2287 	if (!pmd)
2288 		return -ENOMEM;
2289 	VM_BUG_ON(pmd_trans_huge(*pmd));
2290 	do {
2291 		next = pmd_addr_end(addr, end);
2292 		if (remap_pte_range(mm, pmd, addr, next,
2293 				pfn + (addr >> PAGE_SHIFT), prot))
2294 			return -ENOMEM;
2295 	} while (pmd++, addr = next, addr != end);
2296 	return 0;
2297 }
2298 
2299 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2300 			unsigned long addr, unsigned long end,
2301 			unsigned long pfn, pgprot_t prot)
2302 {
2303 	pud_t *pud;
2304 	unsigned long next;
2305 
2306 	pfn -= addr >> PAGE_SHIFT;
2307 	pud = pud_alloc(mm, pgd, addr);
2308 	if (!pud)
2309 		return -ENOMEM;
2310 	do {
2311 		next = pud_addr_end(addr, end);
2312 		if (remap_pmd_range(mm, pud, addr, next,
2313 				pfn + (addr >> PAGE_SHIFT), prot))
2314 			return -ENOMEM;
2315 	} while (pud++, addr = next, addr != end);
2316 	return 0;
2317 }
2318 
2319 /**
2320  * remap_pfn_range - remap kernel memory to userspace
2321  * @vma: user vma to map to
2322  * @addr: target user address to start at
2323  * @pfn: physical address of kernel memory
2324  * @size: size of map area
2325  * @prot: page protection flags for this mapping
2326  *
2327  *  Note: this is only safe if the mm semaphore is held when called.
2328  */
2329 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2330 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2331 {
2332 	pgd_t *pgd;
2333 	unsigned long next;
2334 	unsigned long end = addr + PAGE_ALIGN(size);
2335 	struct mm_struct *mm = vma->vm_mm;
2336 	int err;
2337 
2338 	/*
2339 	 * Physically remapped pages are special. Tell the
2340 	 * rest of the world about it:
2341 	 *   VM_IO tells people not to look at these pages
2342 	 *	(accesses can have side effects).
2343 	 *   VM_PFNMAP tells the core MM that the base pages are just
2344 	 *	raw PFN mappings, and do not have a "struct page" associated
2345 	 *	with them.
2346 	 *   VM_DONTEXPAND
2347 	 *      Disable vma merging and expanding with mremap().
2348 	 *   VM_DONTDUMP
2349 	 *      Omit vma from core dump, even when VM_IO turned off.
2350 	 *
2351 	 * There's a horrible special case to handle copy-on-write
2352 	 * behaviour that some programs depend on. We mark the "original"
2353 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2354 	 * See vm_normal_page() for details.
2355 	 */
2356 	if (is_cow_mapping(vma->vm_flags)) {
2357 		if (addr != vma->vm_start || end != vma->vm_end)
2358 			return -EINVAL;
2359 		vma->vm_pgoff = pfn;
2360 	}
2361 
2362 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2363 	if (err)
2364 		return -EINVAL;
2365 
2366 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2367 
2368 	BUG_ON(addr >= end);
2369 	pfn -= addr >> PAGE_SHIFT;
2370 	pgd = pgd_offset(mm, addr);
2371 	flush_cache_range(vma, addr, end);
2372 	do {
2373 		next = pgd_addr_end(addr, end);
2374 		err = remap_pud_range(mm, pgd, addr, next,
2375 				pfn + (addr >> PAGE_SHIFT), prot);
2376 		if (err)
2377 			break;
2378 	} while (pgd++, addr = next, addr != end);
2379 
2380 	if (err)
2381 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2382 
2383 	return err;
2384 }
2385 EXPORT_SYMBOL(remap_pfn_range);
2386 
2387 /**
2388  * vm_iomap_memory - remap memory to userspace
2389  * @vma: user vma to map to
2390  * @start: start of area
2391  * @len: size of area
2392  *
2393  * This is a simplified io_remap_pfn_range() for common driver use. The
2394  * driver just needs to give us the physical memory range to be mapped,
2395  * we'll figure out the rest from the vma information.
2396  *
2397  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2398  * whatever write-combining details or similar.
2399  */
2400 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2401 {
2402 	unsigned long vm_len, pfn, pages;
2403 
2404 	/* Check that the physical memory area passed in looks valid */
2405 	if (start + len < start)
2406 		return -EINVAL;
2407 	/*
2408 	 * You *really* shouldn't map things that aren't page-aligned,
2409 	 * but we've historically allowed it because IO memory might
2410 	 * just have smaller alignment.
2411 	 */
2412 	len += start & ~PAGE_MASK;
2413 	pfn = start >> PAGE_SHIFT;
2414 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2415 	if (pfn + pages < pfn)
2416 		return -EINVAL;
2417 
2418 	/* We start the mapping 'vm_pgoff' pages into the area */
2419 	if (vma->vm_pgoff > pages)
2420 		return -EINVAL;
2421 	pfn += vma->vm_pgoff;
2422 	pages -= vma->vm_pgoff;
2423 
2424 	/* Can we fit all of the mapping? */
2425 	vm_len = vma->vm_end - vma->vm_start;
2426 	if (vm_len >> PAGE_SHIFT > pages)
2427 		return -EINVAL;
2428 
2429 	/* Ok, let it rip */
2430 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2431 }
2432 EXPORT_SYMBOL(vm_iomap_memory);
2433 
2434 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2435 				     unsigned long addr, unsigned long end,
2436 				     pte_fn_t fn, void *data)
2437 {
2438 	pte_t *pte;
2439 	int err;
2440 	pgtable_t token;
2441 	spinlock_t *uninitialized_var(ptl);
2442 
2443 	pte = (mm == &init_mm) ?
2444 		pte_alloc_kernel(pmd, addr) :
2445 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2446 	if (!pte)
2447 		return -ENOMEM;
2448 
2449 	BUG_ON(pmd_huge(*pmd));
2450 
2451 	arch_enter_lazy_mmu_mode();
2452 
2453 	token = pmd_pgtable(*pmd);
2454 
2455 	do {
2456 		err = fn(pte++, token, addr, data);
2457 		if (err)
2458 			break;
2459 	} while (addr += PAGE_SIZE, addr != end);
2460 
2461 	arch_leave_lazy_mmu_mode();
2462 
2463 	if (mm != &init_mm)
2464 		pte_unmap_unlock(pte-1, ptl);
2465 	return err;
2466 }
2467 
2468 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2469 				     unsigned long addr, unsigned long end,
2470 				     pte_fn_t fn, void *data)
2471 {
2472 	pmd_t *pmd;
2473 	unsigned long next;
2474 	int err;
2475 
2476 	BUG_ON(pud_huge(*pud));
2477 
2478 	pmd = pmd_alloc(mm, pud, addr);
2479 	if (!pmd)
2480 		return -ENOMEM;
2481 	do {
2482 		next = pmd_addr_end(addr, end);
2483 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2484 		if (err)
2485 			break;
2486 	} while (pmd++, addr = next, addr != end);
2487 	return err;
2488 }
2489 
2490 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2491 				     unsigned long addr, unsigned long end,
2492 				     pte_fn_t fn, void *data)
2493 {
2494 	pud_t *pud;
2495 	unsigned long next;
2496 	int err;
2497 
2498 	pud = pud_alloc(mm, pgd, addr);
2499 	if (!pud)
2500 		return -ENOMEM;
2501 	do {
2502 		next = pud_addr_end(addr, end);
2503 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2504 		if (err)
2505 			break;
2506 	} while (pud++, addr = next, addr != end);
2507 	return err;
2508 }
2509 
2510 /*
2511  * Scan a region of virtual memory, filling in page tables as necessary
2512  * and calling a provided function on each leaf page table.
2513  */
2514 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2515 			unsigned long size, pte_fn_t fn, void *data)
2516 {
2517 	pgd_t *pgd;
2518 	unsigned long next;
2519 	unsigned long end = addr + size;
2520 	int err;
2521 
2522 	BUG_ON(addr >= end);
2523 	pgd = pgd_offset(mm, addr);
2524 	do {
2525 		next = pgd_addr_end(addr, end);
2526 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2527 		if (err)
2528 			break;
2529 	} while (pgd++, addr = next, addr != end);
2530 
2531 	return err;
2532 }
2533 EXPORT_SYMBOL_GPL(apply_to_page_range);
2534 
2535 /*
2536  * handle_pte_fault chooses page fault handler according to an entry
2537  * which was read non-atomically.  Before making any commitment, on
2538  * those architectures or configurations (e.g. i386 with PAE) which
2539  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2540  * must check under lock before unmapping the pte and proceeding
2541  * (but do_wp_page is only called after already making such a check;
2542  * and do_anonymous_page can safely check later on).
2543  */
2544 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2545 				pte_t *page_table, pte_t orig_pte)
2546 {
2547 	int same = 1;
2548 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2549 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2550 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2551 		spin_lock(ptl);
2552 		same = pte_same(*page_table, orig_pte);
2553 		spin_unlock(ptl);
2554 	}
2555 #endif
2556 	pte_unmap(page_table);
2557 	return same;
2558 }
2559 
2560 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2561 {
2562 	/*
2563 	 * If the source page was a PFN mapping, we don't have
2564 	 * a "struct page" for it. We do a best-effort copy by
2565 	 * just copying from the original user address. If that
2566 	 * fails, we just zero-fill it. Live with it.
2567 	 */
2568 	if (unlikely(!src)) {
2569 		void *kaddr = kmap_atomic(dst);
2570 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2571 
2572 		/*
2573 		 * This really shouldn't fail, because the page is there
2574 		 * in the page tables. But it might just be unreadable,
2575 		 * in which case we just give up and fill the result with
2576 		 * zeroes.
2577 		 */
2578 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2579 			clear_page(kaddr);
2580 		kunmap_atomic(kaddr);
2581 		flush_dcache_page(dst);
2582 	} else
2583 		copy_user_highpage(dst, src, va, vma);
2584 }
2585 
2586 /*
2587  * This routine handles present pages, when users try to write
2588  * to a shared page. It is done by copying the page to a new address
2589  * and decrementing the shared-page counter for the old page.
2590  *
2591  * Note that this routine assumes that the protection checks have been
2592  * done by the caller (the low-level page fault routine in most cases).
2593  * Thus we can safely just mark it writable once we've done any necessary
2594  * COW.
2595  *
2596  * We also mark the page dirty at this point even though the page will
2597  * change only once the write actually happens. This avoids a few races,
2598  * and potentially makes it more efficient.
2599  *
2600  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2601  * but allow concurrent faults), with pte both mapped and locked.
2602  * We return with mmap_sem still held, but pte unmapped and unlocked.
2603  */
2604 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2605 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2606 		spinlock_t *ptl, pte_t orig_pte)
2607 	__releases(ptl)
2608 {
2609 	struct page *old_page, *new_page = NULL;
2610 	pte_t entry;
2611 	int ret = 0;
2612 	int page_mkwrite = 0;
2613 	struct page *dirty_page = NULL;
2614 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2615 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2616 
2617 	old_page = vm_normal_page(vma, address, orig_pte);
2618 	if (!old_page) {
2619 		/*
2620 		 * VM_MIXEDMAP !pfn_valid() case
2621 		 *
2622 		 * We should not cow pages in a shared writeable mapping.
2623 		 * Just mark the pages writable as we can't do any dirty
2624 		 * accounting on raw pfn maps.
2625 		 */
2626 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2627 				     (VM_WRITE|VM_SHARED))
2628 			goto reuse;
2629 		goto gotten;
2630 	}
2631 
2632 	/*
2633 	 * Take out anonymous pages first, anonymous shared vmas are
2634 	 * not dirty accountable.
2635 	 */
2636 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2637 		if (!trylock_page(old_page)) {
2638 			page_cache_get(old_page);
2639 			pte_unmap_unlock(page_table, ptl);
2640 			lock_page(old_page);
2641 			page_table = pte_offset_map_lock(mm, pmd, address,
2642 							 &ptl);
2643 			if (!pte_same(*page_table, orig_pte)) {
2644 				unlock_page(old_page);
2645 				goto unlock;
2646 			}
2647 			page_cache_release(old_page);
2648 		}
2649 		if (reuse_swap_page(old_page)) {
2650 			/*
2651 			 * The page is all ours.  Move it to our anon_vma so
2652 			 * the rmap code will not search our parent or siblings.
2653 			 * Protected against the rmap code by the page lock.
2654 			 */
2655 			page_move_anon_rmap(old_page, vma, address);
2656 			unlock_page(old_page);
2657 			goto reuse;
2658 		}
2659 		unlock_page(old_page);
2660 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2661 					(VM_WRITE|VM_SHARED))) {
2662 		/*
2663 		 * Only catch write-faults on shared writable pages,
2664 		 * read-only shared pages can get COWed by
2665 		 * get_user_pages(.write=1, .force=1).
2666 		 */
2667 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2668 			struct vm_fault vmf;
2669 			int tmp;
2670 
2671 			vmf.virtual_address = (void __user *)(address &
2672 								PAGE_MASK);
2673 			vmf.pgoff = old_page->index;
2674 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2675 			vmf.page = old_page;
2676 
2677 			/*
2678 			 * Notify the address space that the page is about to
2679 			 * become writable so that it can prohibit this or wait
2680 			 * for the page to get into an appropriate state.
2681 			 *
2682 			 * We do this without the lock held, so that it can
2683 			 * sleep if it needs to.
2684 			 */
2685 			page_cache_get(old_page);
2686 			pte_unmap_unlock(page_table, ptl);
2687 
2688 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2689 			if (unlikely(tmp &
2690 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2691 				ret = tmp;
2692 				goto unwritable_page;
2693 			}
2694 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2695 				lock_page(old_page);
2696 				if (!old_page->mapping) {
2697 					ret = 0; /* retry the fault */
2698 					unlock_page(old_page);
2699 					goto unwritable_page;
2700 				}
2701 			} else
2702 				VM_BUG_ON(!PageLocked(old_page));
2703 
2704 			/*
2705 			 * Since we dropped the lock we need to revalidate
2706 			 * the PTE as someone else may have changed it.  If
2707 			 * they did, we just return, as we can count on the
2708 			 * MMU to tell us if they didn't also make it writable.
2709 			 */
2710 			page_table = pte_offset_map_lock(mm, pmd, address,
2711 							 &ptl);
2712 			if (!pte_same(*page_table, orig_pte)) {
2713 				unlock_page(old_page);
2714 				goto unlock;
2715 			}
2716 
2717 			page_mkwrite = 1;
2718 		}
2719 		dirty_page = old_page;
2720 		get_page(dirty_page);
2721 
2722 reuse:
2723 		/*
2724 		 * Clear the pages cpupid information as the existing
2725 		 * information potentially belongs to a now completely
2726 		 * unrelated process.
2727 		 */
2728 		if (old_page)
2729 			page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2730 
2731 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2732 		entry = pte_mkyoung(orig_pte);
2733 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2734 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2735 			update_mmu_cache(vma, address, page_table);
2736 		pte_unmap_unlock(page_table, ptl);
2737 		ret |= VM_FAULT_WRITE;
2738 
2739 		if (!dirty_page)
2740 			return ret;
2741 
2742 		/*
2743 		 * Yes, Virginia, this is actually required to prevent a race
2744 		 * with clear_page_dirty_for_io() from clearing the page dirty
2745 		 * bit after it clear all dirty ptes, but before a racing
2746 		 * do_wp_page installs a dirty pte.
2747 		 *
2748 		 * __do_fault is protected similarly.
2749 		 */
2750 		if (!page_mkwrite) {
2751 			wait_on_page_locked(dirty_page);
2752 			set_page_dirty_balance(dirty_page, page_mkwrite);
2753 			/* file_update_time outside page_lock */
2754 			if (vma->vm_file)
2755 				file_update_time(vma->vm_file);
2756 		}
2757 		put_page(dirty_page);
2758 		if (page_mkwrite) {
2759 			struct address_space *mapping = dirty_page->mapping;
2760 
2761 			set_page_dirty(dirty_page);
2762 			unlock_page(dirty_page);
2763 			page_cache_release(dirty_page);
2764 			if (mapping)	{
2765 				/*
2766 				 * Some device drivers do not set page.mapping
2767 				 * but still dirty their pages
2768 				 */
2769 				balance_dirty_pages_ratelimited(mapping);
2770 			}
2771 		}
2772 
2773 		return ret;
2774 	}
2775 
2776 	/*
2777 	 * Ok, we need to copy. Oh, well..
2778 	 */
2779 	page_cache_get(old_page);
2780 gotten:
2781 	pte_unmap_unlock(page_table, ptl);
2782 
2783 	if (unlikely(anon_vma_prepare(vma)))
2784 		goto oom;
2785 
2786 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2787 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2788 		if (!new_page)
2789 			goto oom;
2790 	} else {
2791 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2792 		if (!new_page)
2793 			goto oom;
2794 		cow_user_page(new_page, old_page, address, vma);
2795 	}
2796 	__SetPageUptodate(new_page);
2797 
2798 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2799 		goto oom_free_new;
2800 
2801 	mmun_start  = address & PAGE_MASK;
2802 	mmun_end    = mmun_start + PAGE_SIZE;
2803 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2804 
2805 	/*
2806 	 * Re-check the pte - we dropped the lock
2807 	 */
2808 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2809 	if (likely(pte_same(*page_table, orig_pte))) {
2810 		if (old_page) {
2811 			if (!PageAnon(old_page)) {
2812 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2813 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2814 			}
2815 		} else
2816 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2817 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2818 		entry = mk_pte(new_page, vma->vm_page_prot);
2819 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2820 		/*
2821 		 * Clear the pte entry and flush it first, before updating the
2822 		 * pte with the new entry. This will avoid a race condition
2823 		 * seen in the presence of one thread doing SMC and another
2824 		 * thread doing COW.
2825 		 */
2826 		ptep_clear_flush(vma, address, page_table);
2827 		page_add_new_anon_rmap(new_page, vma, address);
2828 		/*
2829 		 * We call the notify macro here because, when using secondary
2830 		 * mmu page tables (such as kvm shadow page tables), we want the
2831 		 * new page to be mapped directly into the secondary page table.
2832 		 */
2833 		set_pte_at_notify(mm, address, page_table, entry);
2834 		update_mmu_cache(vma, address, page_table);
2835 		if (old_page) {
2836 			/*
2837 			 * Only after switching the pte to the new page may
2838 			 * we remove the mapcount here. Otherwise another
2839 			 * process may come and find the rmap count decremented
2840 			 * before the pte is switched to the new page, and
2841 			 * "reuse" the old page writing into it while our pte
2842 			 * here still points into it and can be read by other
2843 			 * threads.
2844 			 *
2845 			 * The critical issue is to order this
2846 			 * page_remove_rmap with the ptp_clear_flush above.
2847 			 * Those stores are ordered by (if nothing else,)
2848 			 * the barrier present in the atomic_add_negative
2849 			 * in page_remove_rmap.
2850 			 *
2851 			 * Then the TLB flush in ptep_clear_flush ensures that
2852 			 * no process can access the old page before the
2853 			 * decremented mapcount is visible. And the old page
2854 			 * cannot be reused until after the decremented
2855 			 * mapcount is visible. So transitively, TLBs to
2856 			 * old page will be flushed before it can be reused.
2857 			 */
2858 			page_remove_rmap(old_page);
2859 		}
2860 
2861 		/* Free the old page.. */
2862 		new_page = old_page;
2863 		ret |= VM_FAULT_WRITE;
2864 	} else
2865 		mem_cgroup_uncharge_page(new_page);
2866 
2867 	if (new_page)
2868 		page_cache_release(new_page);
2869 unlock:
2870 	pte_unmap_unlock(page_table, ptl);
2871 	if (mmun_end > mmun_start)
2872 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2873 	if (old_page) {
2874 		/*
2875 		 * Don't let another task, with possibly unlocked vma,
2876 		 * keep the mlocked page.
2877 		 */
2878 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2879 			lock_page(old_page);	/* LRU manipulation */
2880 			munlock_vma_page(old_page);
2881 			unlock_page(old_page);
2882 		}
2883 		page_cache_release(old_page);
2884 	}
2885 	return ret;
2886 oom_free_new:
2887 	page_cache_release(new_page);
2888 oom:
2889 	if (old_page)
2890 		page_cache_release(old_page);
2891 	return VM_FAULT_OOM;
2892 
2893 unwritable_page:
2894 	page_cache_release(old_page);
2895 	return ret;
2896 }
2897 
2898 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2899 		unsigned long start_addr, unsigned long end_addr,
2900 		struct zap_details *details)
2901 {
2902 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2903 }
2904 
2905 static inline void unmap_mapping_range_tree(struct rb_root *root,
2906 					    struct zap_details *details)
2907 {
2908 	struct vm_area_struct *vma;
2909 	pgoff_t vba, vea, zba, zea;
2910 
2911 	vma_interval_tree_foreach(vma, root,
2912 			details->first_index, details->last_index) {
2913 
2914 		vba = vma->vm_pgoff;
2915 		vea = vba + vma_pages(vma) - 1;
2916 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2917 		zba = details->first_index;
2918 		if (zba < vba)
2919 			zba = vba;
2920 		zea = details->last_index;
2921 		if (zea > vea)
2922 			zea = vea;
2923 
2924 		unmap_mapping_range_vma(vma,
2925 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2926 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2927 				details);
2928 	}
2929 }
2930 
2931 static inline void unmap_mapping_range_list(struct list_head *head,
2932 					    struct zap_details *details)
2933 {
2934 	struct vm_area_struct *vma;
2935 
2936 	/*
2937 	 * In nonlinear VMAs there is no correspondence between virtual address
2938 	 * offset and file offset.  So we must perform an exhaustive search
2939 	 * across *all* the pages in each nonlinear VMA, not just the pages
2940 	 * whose virtual address lies outside the file truncation point.
2941 	 */
2942 	list_for_each_entry(vma, head, shared.nonlinear) {
2943 		details->nonlinear_vma = vma;
2944 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2945 	}
2946 }
2947 
2948 /**
2949  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2950  * @mapping: the address space containing mmaps to be unmapped.
2951  * @holebegin: byte in first page to unmap, relative to the start of
2952  * the underlying file.  This will be rounded down to a PAGE_SIZE
2953  * boundary.  Note that this is different from truncate_pagecache(), which
2954  * must keep the partial page.  In contrast, we must get rid of
2955  * partial pages.
2956  * @holelen: size of prospective hole in bytes.  This will be rounded
2957  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2958  * end of the file.
2959  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2960  * but 0 when invalidating pagecache, don't throw away private data.
2961  */
2962 void unmap_mapping_range(struct address_space *mapping,
2963 		loff_t const holebegin, loff_t const holelen, int even_cows)
2964 {
2965 	struct zap_details details;
2966 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2967 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2968 
2969 	/* Check for overflow. */
2970 	if (sizeof(holelen) > sizeof(hlen)) {
2971 		long long holeend =
2972 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2973 		if (holeend & ~(long long)ULONG_MAX)
2974 			hlen = ULONG_MAX - hba + 1;
2975 	}
2976 
2977 	details.check_mapping = even_cows? NULL: mapping;
2978 	details.nonlinear_vma = NULL;
2979 	details.first_index = hba;
2980 	details.last_index = hba + hlen - 1;
2981 	if (details.last_index < details.first_index)
2982 		details.last_index = ULONG_MAX;
2983 
2984 
2985 	mutex_lock(&mapping->i_mmap_mutex);
2986 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2987 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2988 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2989 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2990 	mutex_unlock(&mapping->i_mmap_mutex);
2991 }
2992 EXPORT_SYMBOL(unmap_mapping_range);
2993 
2994 /*
2995  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2996  * but allow concurrent faults), and pte mapped but not yet locked.
2997  * We return with mmap_sem still held, but pte unmapped and unlocked.
2998  */
2999 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
3000 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3001 		unsigned int flags, pte_t orig_pte)
3002 {
3003 	spinlock_t *ptl;
3004 	struct page *page, *swapcache;
3005 	swp_entry_t entry;
3006 	pte_t pte;
3007 	int locked;
3008 	struct mem_cgroup *ptr;
3009 	int exclusive = 0;
3010 	int ret = 0;
3011 
3012 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3013 		goto out;
3014 
3015 	entry = pte_to_swp_entry(orig_pte);
3016 	if (unlikely(non_swap_entry(entry))) {
3017 		if (is_migration_entry(entry)) {
3018 			migration_entry_wait(mm, pmd, address);
3019 		} else if (is_hwpoison_entry(entry)) {
3020 			ret = VM_FAULT_HWPOISON;
3021 		} else {
3022 			print_bad_pte(vma, address, orig_pte, NULL);
3023 			ret = VM_FAULT_SIGBUS;
3024 		}
3025 		goto out;
3026 	}
3027 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3028 	page = lookup_swap_cache(entry);
3029 	if (!page) {
3030 		page = swapin_readahead(entry,
3031 					GFP_HIGHUSER_MOVABLE, vma, address);
3032 		if (!page) {
3033 			/*
3034 			 * Back out if somebody else faulted in this pte
3035 			 * while we released the pte lock.
3036 			 */
3037 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3038 			if (likely(pte_same(*page_table, orig_pte)))
3039 				ret = VM_FAULT_OOM;
3040 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3041 			goto unlock;
3042 		}
3043 
3044 		/* Had to read the page from swap area: Major fault */
3045 		ret = VM_FAULT_MAJOR;
3046 		count_vm_event(PGMAJFAULT);
3047 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3048 	} else if (PageHWPoison(page)) {
3049 		/*
3050 		 * hwpoisoned dirty swapcache pages are kept for killing
3051 		 * owner processes (which may be unknown at hwpoison time)
3052 		 */
3053 		ret = VM_FAULT_HWPOISON;
3054 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3055 		swapcache = page;
3056 		goto out_release;
3057 	}
3058 
3059 	swapcache = page;
3060 	locked = lock_page_or_retry(page, mm, flags);
3061 
3062 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3063 	if (!locked) {
3064 		ret |= VM_FAULT_RETRY;
3065 		goto out_release;
3066 	}
3067 
3068 	/*
3069 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3070 	 * release the swapcache from under us.  The page pin, and pte_same
3071 	 * test below, are not enough to exclude that.  Even if it is still
3072 	 * swapcache, we need to check that the page's swap has not changed.
3073 	 */
3074 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3075 		goto out_page;
3076 
3077 	page = ksm_might_need_to_copy(page, vma, address);
3078 	if (unlikely(!page)) {
3079 		ret = VM_FAULT_OOM;
3080 		page = swapcache;
3081 		goto out_page;
3082 	}
3083 
3084 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3085 		ret = VM_FAULT_OOM;
3086 		goto out_page;
3087 	}
3088 
3089 	/*
3090 	 * Back out if somebody else already faulted in this pte.
3091 	 */
3092 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3093 	if (unlikely(!pte_same(*page_table, orig_pte)))
3094 		goto out_nomap;
3095 
3096 	if (unlikely(!PageUptodate(page))) {
3097 		ret = VM_FAULT_SIGBUS;
3098 		goto out_nomap;
3099 	}
3100 
3101 	/*
3102 	 * The page isn't present yet, go ahead with the fault.
3103 	 *
3104 	 * Be careful about the sequence of operations here.
3105 	 * To get its accounting right, reuse_swap_page() must be called
3106 	 * while the page is counted on swap but not yet in mapcount i.e.
3107 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3108 	 * must be called after the swap_free(), or it will never succeed.
3109 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3110 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3111 	 * in page->private. In this case, a record in swap_cgroup  is silently
3112 	 * discarded at swap_free().
3113 	 */
3114 
3115 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3116 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3117 	pte = mk_pte(page, vma->vm_page_prot);
3118 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3119 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3120 		flags &= ~FAULT_FLAG_WRITE;
3121 		ret |= VM_FAULT_WRITE;
3122 		exclusive = 1;
3123 	}
3124 	flush_icache_page(vma, page);
3125 	if (pte_swp_soft_dirty(orig_pte))
3126 		pte = pte_mksoft_dirty(pte);
3127 	set_pte_at(mm, address, page_table, pte);
3128 	if (page == swapcache)
3129 		do_page_add_anon_rmap(page, vma, address, exclusive);
3130 	else /* ksm created a completely new copy */
3131 		page_add_new_anon_rmap(page, vma, address);
3132 	/* It's better to call commit-charge after rmap is established */
3133 	mem_cgroup_commit_charge_swapin(page, ptr);
3134 
3135 	swap_free(entry);
3136 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3137 		try_to_free_swap(page);
3138 	unlock_page(page);
3139 	if (page != swapcache) {
3140 		/*
3141 		 * Hold the lock to avoid the swap entry to be reused
3142 		 * until we take the PT lock for the pte_same() check
3143 		 * (to avoid false positives from pte_same). For
3144 		 * further safety release the lock after the swap_free
3145 		 * so that the swap count won't change under a
3146 		 * parallel locked swapcache.
3147 		 */
3148 		unlock_page(swapcache);
3149 		page_cache_release(swapcache);
3150 	}
3151 
3152 	if (flags & FAULT_FLAG_WRITE) {
3153 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3154 		if (ret & VM_FAULT_ERROR)
3155 			ret &= VM_FAULT_ERROR;
3156 		goto out;
3157 	}
3158 
3159 	/* No need to invalidate - it was non-present before */
3160 	update_mmu_cache(vma, address, page_table);
3161 unlock:
3162 	pte_unmap_unlock(page_table, ptl);
3163 out:
3164 	return ret;
3165 out_nomap:
3166 	mem_cgroup_cancel_charge_swapin(ptr);
3167 	pte_unmap_unlock(page_table, ptl);
3168 out_page:
3169 	unlock_page(page);
3170 out_release:
3171 	page_cache_release(page);
3172 	if (page != swapcache) {
3173 		unlock_page(swapcache);
3174 		page_cache_release(swapcache);
3175 	}
3176 	return ret;
3177 }
3178 
3179 /*
3180  * This is like a special single-page "expand_{down|up}wards()",
3181  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3182  * doesn't hit another vma.
3183  */
3184 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3185 {
3186 	address &= PAGE_MASK;
3187 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3188 		struct vm_area_struct *prev = vma->vm_prev;
3189 
3190 		/*
3191 		 * Is there a mapping abutting this one below?
3192 		 *
3193 		 * That's only ok if it's the same stack mapping
3194 		 * that has gotten split..
3195 		 */
3196 		if (prev && prev->vm_end == address)
3197 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3198 
3199 		expand_downwards(vma, address - PAGE_SIZE);
3200 	}
3201 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3202 		struct vm_area_struct *next = vma->vm_next;
3203 
3204 		/* As VM_GROWSDOWN but s/below/above/ */
3205 		if (next && next->vm_start == address + PAGE_SIZE)
3206 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3207 
3208 		expand_upwards(vma, address + PAGE_SIZE);
3209 	}
3210 	return 0;
3211 }
3212 
3213 /*
3214  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3215  * but allow concurrent faults), and pte mapped but not yet locked.
3216  * We return with mmap_sem still held, but pte unmapped and unlocked.
3217  */
3218 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3219 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3220 		unsigned int flags)
3221 {
3222 	struct page *page;
3223 	spinlock_t *ptl;
3224 	pte_t entry;
3225 
3226 	pte_unmap(page_table);
3227 
3228 	/* Check if we need to add a guard page to the stack */
3229 	if (check_stack_guard_page(vma, address) < 0)
3230 		return VM_FAULT_SIGBUS;
3231 
3232 	/* Use the zero-page for reads */
3233 	if (!(flags & FAULT_FLAG_WRITE)) {
3234 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3235 						vma->vm_page_prot));
3236 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3237 		if (!pte_none(*page_table))
3238 			goto unlock;
3239 		goto setpte;
3240 	}
3241 
3242 	/* Allocate our own private page. */
3243 	if (unlikely(anon_vma_prepare(vma)))
3244 		goto oom;
3245 	page = alloc_zeroed_user_highpage_movable(vma, address);
3246 	if (!page)
3247 		goto oom;
3248 	/*
3249 	 * The memory barrier inside __SetPageUptodate makes sure that
3250 	 * preceeding stores to the page contents become visible before
3251 	 * the set_pte_at() write.
3252 	 */
3253 	__SetPageUptodate(page);
3254 
3255 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3256 		goto oom_free_page;
3257 
3258 	entry = mk_pte(page, vma->vm_page_prot);
3259 	if (vma->vm_flags & VM_WRITE)
3260 		entry = pte_mkwrite(pte_mkdirty(entry));
3261 
3262 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3263 	if (!pte_none(*page_table))
3264 		goto release;
3265 
3266 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3267 	page_add_new_anon_rmap(page, vma, address);
3268 setpte:
3269 	set_pte_at(mm, address, page_table, entry);
3270 
3271 	/* No need to invalidate - it was non-present before */
3272 	update_mmu_cache(vma, address, page_table);
3273 unlock:
3274 	pte_unmap_unlock(page_table, ptl);
3275 	return 0;
3276 release:
3277 	mem_cgroup_uncharge_page(page);
3278 	page_cache_release(page);
3279 	goto unlock;
3280 oom_free_page:
3281 	page_cache_release(page);
3282 oom:
3283 	return VM_FAULT_OOM;
3284 }
3285 
3286 /*
3287  * __do_fault() tries to create a new page mapping. It aggressively
3288  * tries to share with existing pages, but makes a separate copy if
3289  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3290  * the next page fault.
3291  *
3292  * As this is called only for pages that do not currently exist, we
3293  * do not need to flush old virtual caches or the TLB.
3294  *
3295  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3296  * but allow concurrent faults), and pte neither mapped nor locked.
3297  * We return with mmap_sem still held, but pte unmapped and unlocked.
3298  */
3299 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3300 		unsigned long address, pmd_t *pmd,
3301 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3302 {
3303 	pte_t *page_table;
3304 	spinlock_t *ptl;
3305 	struct page *page;
3306 	struct page *cow_page;
3307 	pte_t entry;
3308 	int anon = 0;
3309 	struct page *dirty_page = NULL;
3310 	struct vm_fault vmf;
3311 	int ret;
3312 	int page_mkwrite = 0;
3313 
3314 	/*
3315 	 * If we do COW later, allocate page befor taking lock_page()
3316 	 * on the file cache page. This will reduce lock holding time.
3317 	 */
3318 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3319 
3320 		if (unlikely(anon_vma_prepare(vma)))
3321 			return VM_FAULT_OOM;
3322 
3323 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3324 		if (!cow_page)
3325 			return VM_FAULT_OOM;
3326 
3327 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3328 			page_cache_release(cow_page);
3329 			return VM_FAULT_OOM;
3330 		}
3331 	} else
3332 		cow_page = NULL;
3333 
3334 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3335 	vmf.pgoff = pgoff;
3336 	vmf.flags = flags;
3337 	vmf.page = NULL;
3338 
3339 	ret = vma->vm_ops->fault(vma, &vmf);
3340 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3341 			    VM_FAULT_RETRY)))
3342 		goto uncharge_out;
3343 
3344 	if (unlikely(PageHWPoison(vmf.page))) {
3345 		if (ret & VM_FAULT_LOCKED)
3346 			unlock_page(vmf.page);
3347 		ret = VM_FAULT_HWPOISON;
3348 		goto uncharge_out;
3349 	}
3350 
3351 	/*
3352 	 * For consistency in subsequent calls, make the faulted page always
3353 	 * locked.
3354 	 */
3355 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3356 		lock_page(vmf.page);
3357 	else
3358 		VM_BUG_ON(!PageLocked(vmf.page));
3359 
3360 	/*
3361 	 * Should we do an early C-O-W break?
3362 	 */
3363 	page = vmf.page;
3364 	if (flags & FAULT_FLAG_WRITE) {
3365 		if (!(vma->vm_flags & VM_SHARED)) {
3366 			page = cow_page;
3367 			anon = 1;
3368 			copy_user_highpage(page, vmf.page, address, vma);
3369 			__SetPageUptodate(page);
3370 		} else {
3371 			/*
3372 			 * If the page will be shareable, see if the backing
3373 			 * address space wants to know that the page is about
3374 			 * to become writable
3375 			 */
3376 			if (vma->vm_ops->page_mkwrite) {
3377 				int tmp;
3378 
3379 				unlock_page(page);
3380 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3381 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3382 				if (unlikely(tmp &
3383 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3384 					ret = tmp;
3385 					goto unwritable_page;
3386 				}
3387 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3388 					lock_page(page);
3389 					if (!page->mapping) {
3390 						ret = 0; /* retry the fault */
3391 						unlock_page(page);
3392 						goto unwritable_page;
3393 					}
3394 				} else
3395 					VM_BUG_ON(!PageLocked(page));
3396 				page_mkwrite = 1;
3397 			}
3398 		}
3399 
3400 	}
3401 
3402 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3403 
3404 	/*
3405 	 * This silly early PAGE_DIRTY setting removes a race
3406 	 * due to the bad i386 page protection. But it's valid
3407 	 * for other architectures too.
3408 	 *
3409 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3410 	 * an exclusive copy of the page, or this is a shared mapping,
3411 	 * so we can make it writable and dirty to avoid having to
3412 	 * handle that later.
3413 	 */
3414 	/* Only go through if we didn't race with anybody else... */
3415 	if (likely(pte_same(*page_table, orig_pte))) {
3416 		flush_icache_page(vma, page);
3417 		entry = mk_pte(page, vma->vm_page_prot);
3418 		if (flags & FAULT_FLAG_WRITE)
3419 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3420 		else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte))
3421 			pte_mksoft_dirty(entry);
3422 		if (anon) {
3423 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3424 			page_add_new_anon_rmap(page, vma, address);
3425 		} else {
3426 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3427 			page_add_file_rmap(page);
3428 			if (flags & FAULT_FLAG_WRITE) {
3429 				dirty_page = page;
3430 				get_page(dirty_page);
3431 			}
3432 		}
3433 		set_pte_at(mm, address, page_table, entry);
3434 
3435 		/* no need to invalidate: a not-present page won't be cached */
3436 		update_mmu_cache(vma, address, page_table);
3437 	} else {
3438 		if (cow_page)
3439 			mem_cgroup_uncharge_page(cow_page);
3440 		if (anon)
3441 			page_cache_release(page);
3442 		else
3443 			anon = 1; /* no anon but release faulted_page */
3444 	}
3445 
3446 	pte_unmap_unlock(page_table, ptl);
3447 
3448 	if (dirty_page) {
3449 		struct address_space *mapping = page->mapping;
3450 		int dirtied = 0;
3451 
3452 		if (set_page_dirty(dirty_page))
3453 			dirtied = 1;
3454 		unlock_page(dirty_page);
3455 		put_page(dirty_page);
3456 		if ((dirtied || page_mkwrite) && mapping) {
3457 			/*
3458 			 * Some device drivers do not set page.mapping but still
3459 			 * dirty their pages
3460 			 */
3461 			balance_dirty_pages_ratelimited(mapping);
3462 		}
3463 
3464 		/* file_update_time outside page_lock */
3465 		if (vma->vm_file && !page_mkwrite)
3466 			file_update_time(vma->vm_file);
3467 	} else {
3468 		unlock_page(vmf.page);
3469 		if (anon)
3470 			page_cache_release(vmf.page);
3471 	}
3472 
3473 	return ret;
3474 
3475 unwritable_page:
3476 	page_cache_release(page);
3477 	return ret;
3478 uncharge_out:
3479 	/* fs's fault handler get error */
3480 	if (cow_page) {
3481 		mem_cgroup_uncharge_page(cow_page);
3482 		page_cache_release(cow_page);
3483 	}
3484 	return ret;
3485 }
3486 
3487 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3488 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3489 		unsigned int flags, pte_t orig_pte)
3490 {
3491 	pgoff_t pgoff = (((address & PAGE_MASK)
3492 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3493 
3494 	pte_unmap(page_table);
3495 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3496 }
3497 
3498 /*
3499  * Fault of a previously existing named mapping. Repopulate the pte
3500  * from the encoded file_pte if possible. This enables swappable
3501  * nonlinear vmas.
3502  *
3503  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3504  * but allow concurrent faults), and pte mapped but not yet locked.
3505  * We return with mmap_sem still held, but pte unmapped and unlocked.
3506  */
3507 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3508 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3509 		unsigned int flags, pte_t orig_pte)
3510 {
3511 	pgoff_t pgoff;
3512 
3513 	flags |= FAULT_FLAG_NONLINEAR;
3514 
3515 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3516 		return 0;
3517 
3518 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3519 		/*
3520 		 * Page table corrupted: show pte and kill process.
3521 		 */
3522 		print_bad_pte(vma, address, orig_pte, NULL);
3523 		return VM_FAULT_SIGBUS;
3524 	}
3525 
3526 	pgoff = pte_to_pgoff(orig_pte);
3527 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3528 }
3529 
3530 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3531 				unsigned long addr, int page_nid,
3532 				int *flags)
3533 {
3534 	get_page(page);
3535 
3536 	count_vm_numa_event(NUMA_HINT_FAULTS);
3537 	if (page_nid == numa_node_id()) {
3538 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3539 		*flags |= TNF_FAULT_LOCAL;
3540 	}
3541 
3542 	return mpol_misplaced(page, vma, addr);
3543 }
3544 
3545 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3546 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3547 {
3548 	struct page *page = NULL;
3549 	spinlock_t *ptl;
3550 	int page_nid = -1;
3551 	int last_cpupid;
3552 	int target_nid;
3553 	bool migrated = false;
3554 	int flags = 0;
3555 
3556 	/*
3557 	* The "pte" at this point cannot be used safely without
3558 	* validation through pte_unmap_same(). It's of NUMA type but
3559 	* the pfn may be screwed if the read is non atomic.
3560 	*
3561 	* ptep_modify_prot_start is not called as this is clearing
3562 	* the _PAGE_NUMA bit and it is not really expected that there
3563 	* would be concurrent hardware modifications to the PTE.
3564 	*/
3565 	ptl = pte_lockptr(mm, pmd);
3566 	spin_lock(ptl);
3567 	if (unlikely(!pte_same(*ptep, pte))) {
3568 		pte_unmap_unlock(ptep, ptl);
3569 		goto out;
3570 	}
3571 
3572 	pte = pte_mknonnuma(pte);
3573 	set_pte_at(mm, addr, ptep, pte);
3574 	update_mmu_cache(vma, addr, ptep);
3575 
3576 	page = vm_normal_page(vma, addr, pte);
3577 	if (!page) {
3578 		pte_unmap_unlock(ptep, ptl);
3579 		return 0;
3580 	}
3581 	BUG_ON(is_zero_pfn(page_to_pfn(page)));
3582 
3583 	/*
3584 	 * Avoid grouping on DSO/COW pages in specific and RO pages
3585 	 * in general, RO pages shouldn't hurt as much anyway since
3586 	 * they can be in shared cache state.
3587 	 */
3588 	if (!pte_write(pte))
3589 		flags |= TNF_NO_GROUP;
3590 
3591 	/*
3592 	 * Flag if the page is shared between multiple address spaces. This
3593 	 * is later used when determining whether to group tasks together
3594 	 */
3595 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3596 		flags |= TNF_SHARED;
3597 
3598 	last_cpupid = page_cpupid_last(page);
3599 	page_nid = page_to_nid(page);
3600 	target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
3601 	pte_unmap_unlock(ptep, ptl);
3602 	if (target_nid == -1) {
3603 		put_page(page);
3604 		goto out;
3605 	}
3606 
3607 	/* Migrate to the requested node */
3608 	migrated = migrate_misplaced_page(page, vma, target_nid);
3609 	if (migrated) {
3610 		page_nid = target_nid;
3611 		flags |= TNF_MIGRATED;
3612 	}
3613 
3614 out:
3615 	if (page_nid != -1)
3616 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3617 	return 0;
3618 }
3619 
3620 /*
3621  * These routines also need to handle stuff like marking pages dirty
3622  * and/or accessed for architectures that don't do it in hardware (most
3623  * RISC architectures).  The early dirtying is also good on the i386.
3624  *
3625  * There is also a hook called "update_mmu_cache()" that architectures
3626  * with external mmu caches can use to update those (ie the Sparc or
3627  * PowerPC hashed page tables that act as extended TLBs).
3628  *
3629  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3630  * but allow concurrent faults), and pte mapped but not yet locked.
3631  * We return with mmap_sem still held, but pte unmapped and unlocked.
3632  */
3633 static int handle_pte_fault(struct mm_struct *mm,
3634 		     struct vm_area_struct *vma, unsigned long address,
3635 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3636 {
3637 	pte_t entry;
3638 	spinlock_t *ptl;
3639 
3640 	entry = *pte;
3641 	if (!pte_present(entry)) {
3642 		if (pte_none(entry)) {
3643 			if (vma->vm_ops) {
3644 				if (likely(vma->vm_ops->fault))
3645 					return do_linear_fault(mm, vma, address,
3646 						pte, pmd, flags, entry);
3647 			}
3648 			return do_anonymous_page(mm, vma, address,
3649 						 pte, pmd, flags);
3650 		}
3651 		if (pte_file(entry))
3652 			return do_nonlinear_fault(mm, vma, address,
3653 					pte, pmd, flags, entry);
3654 		return do_swap_page(mm, vma, address,
3655 					pte, pmd, flags, entry);
3656 	}
3657 
3658 	if (pte_numa(entry))
3659 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3660 
3661 	ptl = pte_lockptr(mm, pmd);
3662 	spin_lock(ptl);
3663 	if (unlikely(!pte_same(*pte, entry)))
3664 		goto unlock;
3665 	if (flags & FAULT_FLAG_WRITE) {
3666 		if (!pte_write(entry))
3667 			return do_wp_page(mm, vma, address,
3668 					pte, pmd, ptl, entry);
3669 		entry = pte_mkdirty(entry);
3670 	}
3671 	entry = pte_mkyoung(entry);
3672 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3673 		update_mmu_cache(vma, address, pte);
3674 	} else {
3675 		/*
3676 		 * This is needed only for protection faults but the arch code
3677 		 * is not yet telling us if this is a protection fault or not.
3678 		 * This still avoids useless tlb flushes for .text page faults
3679 		 * with threads.
3680 		 */
3681 		if (flags & FAULT_FLAG_WRITE)
3682 			flush_tlb_fix_spurious_fault(vma, address);
3683 	}
3684 unlock:
3685 	pte_unmap_unlock(pte, ptl);
3686 	return 0;
3687 }
3688 
3689 /*
3690  * By the time we get here, we already hold the mm semaphore
3691  */
3692 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3693 			     unsigned long address, unsigned int flags)
3694 {
3695 	pgd_t *pgd;
3696 	pud_t *pud;
3697 	pmd_t *pmd;
3698 	pte_t *pte;
3699 
3700 	if (unlikely(is_vm_hugetlb_page(vma)))
3701 		return hugetlb_fault(mm, vma, address, flags);
3702 
3703 retry:
3704 	pgd = pgd_offset(mm, address);
3705 	pud = pud_alloc(mm, pgd, address);
3706 	if (!pud)
3707 		return VM_FAULT_OOM;
3708 	pmd = pmd_alloc(mm, pud, address);
3709 	if (!pmd)
3710 		return VM_FAULT_OOM;
3711 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3712 		int ret = VM_FAULT_FALLBACK;
3713 		if (!vma->vm_ops)
3714 			ret = do_huge_pmd_anonymous_page(mm, vma, address,
3715 					pmd, flags);
3716 		if (!(ret & VM_FAULT_FALLBACK))
3717 			return ret;
3718 	} else {
3719 		pmd_t orig_pmd = *pmd;
3720 		int ret;
3721 
3722 		barrier();
3723 		if (pmd_trans_huge(orig_pmd)) {
3724 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3725 
3726 			/*
3727 			 * If the pmd is splitting, return and retry the
3728 			 * the fault.  Alternative: wait until the split
3729 			 * is done, and goto retry.
3730 			 */
3731 			if (pmd_trans_splitting(orig_pmd))
3732 				return 0;
3733 
3734 			if (pmd_numa(orig_pmd))
3735 				return do_huge_pmd_numa_page(mm, vma, address,
3736 							     orig_pmd, pmd);
3737 
3738 			if (dirty && !pmd_write(orig_pmd)) {
3739 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3740 							  orig_pmd);
3741 				/*
3742 				 * If COW results in an oom, the huge pmd will
3743 				 * have been split, so retry the fault on the
3744 				 * pte for a smaller charge.
3745 				 */
3746 				if (unlikely(ret & VM_FAULT_OOM))
3747 					goto retry;
3748 				return ret;
3749 			} else {
3750 				huge_pmd_set_accessed(mm, vma, address, pmd,
3751 						      orig_pmd, dirty);
3752 			}
3753 
3754 			return 0;
3755 		}
3756 	}
3757 
3758 	/* THP should already have been handled */
3759 	BUG_ON(pmd_numa(*pmd));
3760 
3761 	/*
3762 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3763 	 * run pte_offset_map on the pmd, if an huge pmd could
3764 	 * materialize from under us from a different thread.
3765 	 */
3766 	if (unlikely(pmd_none(*pmd)) &&
3767 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3768 		return VM_FAULT_OOM;
3769 	/* if an huge pmd materialized from under us just retry later */
3770 	if (unlikely(pmd_trans_huge(*pmd)))
3771 		return 0;
3772 	/*
3773 	 * A regular pmd is established and it can't morph into a huge pmd
3774 	 * from under us anymore at this point because we hold the mmap_sem
3775 	 * read mode and khugepaged takes it in write mode. So now it's
3776 	 * safe to run pte_offset_map().
3777 	 */
3778 	pte = pte_offset_map(pmd, address);
3779 
3780 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3781 }
3782 
3783 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3784 		    unsigned long address, unsigned int flags)
3785 {
3786 	int ret;
3787 
3788 	__set_current_state(TASK_RUNNING);
3789 
3790 	count_vm_event(PGFAULT);
3791 	mem_cgroup_count_vm_event(mm, PGFAULT);
3792 
3793 	/* do counter updates before entering really critical section. */
3794 	check_sync_rss_stat(current);
3795 
3796 	/*
3797 	 * Enable the memcg OOM handling for faults triggered in user
3798 	 * space.  Kernel faults are handled more gracefully.
3799 	 */
3800 	if (flags & FAULT_FLAG_USER)
3801 		mem_cgroup_oom_enable();
3802 
3803 	ret = __handle_mm_fault(mm, vma, address, flags);
3804 
3805 	if (flags & FAULT_FLAG_USER) {
3806 		mem_cgroup_oom_disable();
3807                 /*
3808                  * The task may have entered a memcg OOM situation but
3809                  * if the allocation error was handled gracefully (no
3810                  * VM_FAULT_OOM), there is no need to kill anything.
3811                  * Just clean up the OOM state peacefully.
3812                  */
3813                 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3814                         mem_cgroup_oom_synchronize(false);
3815 	}
3816 
3817 	return ret;
3818 }
3819 
3820 #ifndef __PAGETABLE_PUD_FOLDED
3821 /*
3822  * Allocate page upper directory.
3823  * We've already handled the fast-path in-line.
3824  */
3825 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3826 {
3827 	pud_t *new = pud_alloc_one(mm, address);
3828 	if (!new)
3829 		return -ENOMEM;
3830 
3831 	smp_wmb(); /* See comment in __pte_alloc */
3832 
3833 	spin_lock(&mm->page_table_lock);
3834 	if (pgd_present(*pgd))		/* Another has populated it */
3835 		pud_free(mm, new);
3836 	else
3837 		pgd_populate(mm, pgd, new);
3838 	spin_unlock(&mm->page_table_lock);
3839 	return 0;
3840 }
3841 #endif /* __PAGETABLE_PUD_FOLDED */
3842 
3843 #ifndef __PAGETABLE_PMD_FOLDED
3844 /*
3845  * Allocate page middle directory.
3846  * We've already handled the fast-path in-line.
3847  */
3848 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3849 {
3850 	pmd_t *new = pmd_alloc_one(mm, address);
3851 	if (!new)
3852 		return -ENOMEM;
3853 
3854 	smp_wmb(); /* See comment in __pte_alloc */
3855 
3856 	spin_lock(&mm->page_table_lock);
3857 #ifndef __ARCH_HAS_4LEVEL_HACK
3858 	if (pud_present(*pud))		/* Another has populated it */
3859 		pmd_free(mm, new);
3860 	else
3861 		pud_populate(mm, pud, new);
3862 #else
3863 	if (pgd_present(*pud))		/* Another has populated it */
3864 		pmd_free(mm, new);
3865 	else
3866 		pgd_populate(mm, pud, new);
3867 #endif /* __ARCH_HAS_4LEVEL_HACK */
3868 	spin_unlock(&mm->page_table_lock);
3869 	return 0;
3870 }
3871 #endif /* __PAGETABLE_PMD_FOLDED */
3872 
3873 #if !defined(__HAVE_ARCH_GATE_AREA)
3874 
3875 #if defined(AT_SYSINFO_EHDR)
3876 static struct vm_area_struct gate_vma;
3877 
3878 static int __init gate_vma_init(void)
3879 {
3880 	gate_vma.vm_mm = NULL;
3881 	gate_vma.vm_start = FIXADDR_USER_START;
3882 	gate_vma.vm_end = FIXADDR_USER_END;
3883 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3884 	gate_vma.vm_page_prot = __P101;
3885 
3886 	return 0;
3887 }
3888 __initcall(gate_vma_init);
3889 #endif
3890 
3891 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3892 {
3893 #ifdef AT_SYSINFO_EHDR
3894 	return &gate_vma;
3895 #else
3896 	return NULL;
3897 #endif
3898 }
3899 
3900 int in_gate_area_no_mm(unsigned long addr)
3901 {
3902 #ifdef AT_SYSINFO_EHDR
3903 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3904 		return 1;
3905 #endif
3906 	return 0;
3907 }
3908 
3909 #endif	/* __HAVE_ARCH_GATE_AREA */
3910 
3911 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3912 		pte_t **ptepp, spinlock_t **ptlp)
3913 {
3914 	pgd_t *pgd;
3915 	pud_t *pud;
3916 	pmd_t *pmd;
3917 	pte_t *ptep;
3918 
3919 	pgd = pgd_offset(mm, address);
3920 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3921 		goto out;
3922 
3923 	pud = pud_offset(pgd, address);
3924 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3925 		goto out;
3926 
3927 	pmd = pmd_offset(pud, address);
3928 	VM_BUG_ON(pmd_trans_huge(*pmd));
3929 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3930 		goto out;
3931 
3932 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3933 	if (pmd_huge(*pmd))
3934 		goto out;
3935 
3936 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3937 	if (!ptep)
3938 		goto out;
3939 	if (!pte_present(*ptep))
3940 		goto unlock;
3941 	*ptepp = ptep;
3942 	return 0;
3943 unlock:
3944 	pte_unmap_unlock(ptep, *ptlp);
3945 out:
3946 	return -EINVAL;
3947 }
3948 
3949 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3950 			     pte_t **ptepp, spinlock_t **ptlp)
3951 {
3952 	int res;
3953 
3954 	/* (void) is needed to make gcc happy */
3955 	(void) __cond_lock(*ptlp,
3956 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3957 	return res;
3958 }
3959 
3960 /**
3961  * follow_pfn - look up PFN at a user virtual address
3962  * @vma: memory mapping
3963  * @address: user virtual address
3964  * @pfn: location to store found PFN
3965  *
3966  * Only IO mappings and raw PFN mappings are allowed.
3967  *
3968  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3969  */
3970 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3971 	unsigned long *pfn)
3972 {
3973 	int ret = -EINVAL;
3974 	spinlock_t *ptl;
3975 	pte_t *ptep;
3976 
3977 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3978 		return ret;
3979 
3980 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3981 	if (ret)
3982 		return ret;
3983 	*pfn = pte_pfn(*ptep);
3984 	pte_unmap_unlock(ptep, ptl);
3985 	return 0;
3986 }
3987 EXPORT_SYMBOL(follow_pfn);
3988 
3989 #ifdef CONFIG_HAVE_IOREMAP_PROT
3990 int follow_phys(struct vm_area_struct *vma,
3991 		unsigned long address, unsigned int flags,
3992 		unsigned long *prot, resource_size_t *phys)
3993 {
3994 	int ret = -EINVAL;
3995 	pte_t *ptep, pte;
3996 	spinlock_t *ptl;
3997 
3998 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3999 		goto out;
4000 
4001 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4002 		goto out;
4003 	pte = *ptep;
4004 
4005 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4006 		goto unlock;
4007 
4008 	*prot = pgprot_val(pte_pgprot(pte));
4009 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4010 
4011 	ret = 0;
4012 unlock:
4013 	pte_unmap_unlock(ptep, ptl);
4014 out:
4015 	return ret;
4016 }
4017 
4018 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4019 			void *buf, int len, int write)
4020 {
4021 	resource_size_t phys_addr;
4022 	unsigned long prot = 0;
4023 	void __iomem *maddr;
4024 	int offset = addr & (PAGE_SIZE-1);
4025 
4026 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4027 		return -EINVAL;
4028 
4029 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4030 	if (write)
4031 		memcpy_toio(maddr + offset, buf, len);
4032 	else
4033 		memcpy_fromio(buf, maddr + offset, len);
4034 	iounmap(maddr);
4035 
4036 	return len;
4037 }
4038 EXPORT_SYMBOL_GPL(generic_access_phys);
4039 #endif
4040 
4041 /*
4042  * Access another process' address space as given in mm.  If non-NULL, use the
4043  * given task for page fault accounting.
4044  */
4045 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4046 		unsigned long addr, void *buf, int len, int write)
4047 {
4048 	struct vm_area_struct *vma;
4049 	void *old_buf = buf;
4050 
4051 	down_read(&mm->mmap_sem);
4052 	/* ignore errors, just check how much was successfully transferred */
4053 	while (len) {
4054 		int bytes, ret, offset;
4055 		void *maddr;
4056 		struct page *page = NULL;
4057 
4058 		ret = get_user_pages(tsk, mm, addr, 1,
4059 				write, 1, &page, &vma);
4060 		if (ret <= 0) {
4061 			/*
4062 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4063 			 * we can access using slightly different code.
4064 			 */
4065 #ifdef CONFIG_HAVE_IOREMAP_PROT
4066 			vma = find_vma(mm, addr);
4067 			if (!vma || vma->vm_start > addr)
4068 				break;
4069 			if (vma->vm_ops && vma->vm_ops->access)
4070 				ret = vma->vm_ops->access(vma, addr, buf,
4071 							  len, write);
4072 			if (ret <= 0)
4073 #endif
4074 				break;
4075 			bytes = ret;
4076 		} else {
4077 			bytes = len;
4078 			offset = addr & (PAGE_SIZE-1);
4079 			if (bytes > PAGE_SIZE-offset)
4080 				bytes = PAGE_SIZE-offset;
4081 
4082 			maddr = kmap(page);
4083 			if (write) {
4084 				copy_to_user_page(vma, page, addr,
4085 						  maddr + offset, buf, bytes);
4086 				set_page_dirty_lock(page);
4087 			} else {
4088 				copy_from_user_page(vma, page, addr,
4089 						    buf, maddr + offset, bytes);
4090 			}
4091 			kunmap(page);
4092 			page_cache_release(page);
4093 		}
4094 		len -= bytes;
4095 		buf += bytes;
4096 		addr += bytes;
4097 	}
4098 	up_read(&mm->mmap_sem);
4099 
4100 	return buf - old_buf;
4101 }
4102 
4103 /**
4104  * access_remote_vm - access another process' address space
4105  * @mm:		the mm_struct of the target address space
4106  * @addr:	start address to access
4107  * @buf:	source or destination buffer
4108  * @len:	number of bytes to transfer
4109  * @write:	whether the access is a write
4110  *
4111  * The caller must hold a reference on @mm.
4112  */
4113 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4114 		void *buf, int len, int write)
4115 {
4116 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4117 }
4118 
4119 /*
4120  * Access another process' address space.
4121  * Source/target buffer must be kernel space,
4122  * Do not walk the page table directly, use get_user_pages
4123  */
4124 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4125 		void *buf, int len, int write)
4126 {
4127 	struct mm_struct *mm;
4128 	int ret;
4129 
4130 	mm = get_task_mm(tsk);
4131 	if (!mm)
4132 		return 0;
4133 
4134 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4135 	mmput(mm);
4136 
4137 	return ret;
4138 }
4139 
4140 /*
4141  * Print the name of a VMA.
4142  */
4143 void print_vma_addr(char *prefix, unsigned long ip)
4144 {
4145 	struct mm_struct *mm = current->mm;
4146 	struct vm_area_struct *vma;
4147 
4148 	/*
4149 	 * Do not print if we are in atomic
4150 	 * contexts (in exception stacks, etc.):
4151 	 */
4152 	if (preempt_count())
4153 		return;
4154 
4155 	down_read(&mm->mmap_sem);
4156 	vma = find_vma(mm, ip);
4157 	if (vma && vma->vm_file) {
4158 		struct file *f = vma->vm_file;
4159 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4160 		if (buf) {
4161 			char *p;
4162 
4163 			p = d_path(&f->f_path, buf, PAGE_SIZE);
4164 			if (IS_ERR(p))
4165 				p = "?";
4166 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4167 					vma->vm_start,
4168 					vma->vm_end - vma->vm_start);
4169 			free_page((unsigned long)buf);
4170 		}
4171 	}
4172 	up_read(&mm->mmap_sem);
4173 }
4174 
4175 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4176 void might_fault(void)
4177 {
4178 	/*
4179 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4180 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4181 	 * get paged out, therefore we'll never actually fault, and the
4182 	 * below annotations will generate false positives.
4183 	 */
4184 	if (segment_eq(get_fs(), KERNEL_DS))
4185 		return;
4186 
4187 	/*
4188 	 * it would be nicer only to annotate paths which are not under
4189 	 * pagefault_disable, however that requires a larger audit and
4190 	 * providing helpers like get_user_atomic.
4191 	 */
4192 	if (in_atomic())
4193 		return;
4194 
4195 	__might_sleep(__FILE__, __LINE__, 0);
4196 
4197 	if (current->mm)
4198 		might_lock_read(&current->mm->mmap_sem);
4199 }
4200 EXPORT_SYMBOL(might_fault);
4201 #endif
4202 
4203 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4204 static void clear_gigantic_page(struct page *page,
4205 				unsigned long addr,
4206 				unsigned int pages_per_huge_page)
4207 {
4208 	int i;
4209 	struct page *p = page;
4210 
4211 	might_sleep();
4212 	for (i = 0; i < pages_per_huge_page;
4213 	     i++, p = mem_map_next(p, page, i)) {
4214 		cond_resched();
4215 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4216 	}
4217 }
4218 void clear_huge_page(struct page *page,
4219 		     unsigned long addr, unsigned int pages_per_huge_page)
4220 {
4221 	int i;
4222 
4223 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4224 		clear_gigantic_page(page, addr, pages_per_huge_page);
4225 		return;
4226 	}
4227 
4228 	might_sleep();
4229 	for (i = 0; i < pages_per_huge_page; i++) {
4230 		cond_resched();
4231 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4232 	}
4233 }
4234 
4235 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4236 				    unsigned long addr,
4237 				    struct vm_area_struct *vma,
4238 				    unsigned int pages_per_huge_page)
4239 {
4240 	int i;
4241 	struct page *dst_base = dst;
4242 	struct page *src_base = src;
4243 
4244 	for (i = 0; i < pages_per_huge_page; ) {
4245 		cond_resched();
4246 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4247 
4248 		i++;
4249 		dst = mem_map_next(dst, dst_base, i);
4250 		src = mem_map_next(src, src_base, i);
4251 	}
4252 }
4253 
4254 void copy_user_huge_page(struct page *dst, struct page *src,
4255 			 unsigned long addr, struct vm_area_struct *vma,
4256 			 unsigned int pages_per_huge_page)
4257 {
4258 	int i;
4259 
4260 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4261 		copy_user_gigantic_page(dst, src, addr, vma,
4262 					pages_per_huge_page);
4263 		return;
4264 	}
4265 
4266 	might_sleep();
4267 	for (i = 0; i < pages_per_huge_page; i++) {
4268 		cond_resched();
4269 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4270 	}
4271 }
4272 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4273 
4274 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4275 bool ptlock_alloc(struct page *page)
4276 {
4277 	spinlock_t *ptl;
4278 
4279 	ptl = kmalloc(sizeof(spinlock_t), GFP_KERNEL);
4280 	if (!ptl)
4281 		return false;
4282 	page->ptl = ptl;
4283 	return true;
4284 }
4285 
4286 void ptlock_free(struct page *page)
4287 {
4288 	kfree(page->ptl);
4289 }
4290 #endif
4291