xref: /openbmc/linux/mm/memory.c (revision 2fe60ec9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/ksm.h>
56 #include <linux/rmap.h>
57 #include <linux/export.h>
58 #include <linux/delayacct.h>
59 #include <linux/init.h>
60 #include <linux/pfn_t.h>
61 #include <linux/writeback.h>
62 #include <linux/memcontrol.h>
63 #include <linux/mmu_notifier.h>
64 #include <linux/swapops.h>
65 #include <linux/elf.h>
66 #include <linux/gfp.h>
67 #include <linux/migrate.h>
68 #include <linux/string.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 #include <linux/perf_event.h>
75 #include <linux/ptrace.h>
76 #include <linux/vmalloc.h>
77 
78 #include <trace/events/kmem.h>
79 
80 #include <asm/io.h>
81 #include <asm/mmu_context.h>
82 #include <asm/pgalloc.h>
83 #include <linux/uaccess.h>
84 #include <asm/tlb.h>
85 #include <asm/tlbflush.h>
86 
87 #include "pgalloc-track.h"
88 #include "internal.h"
89 #include "swap.h"
90 
91 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
92 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
93 #endif
94 
95 #ifndef CONFIG_NUMA
96 unsigned long max_mapnr;
97 EXPORT_SYMBOL(max_mapnr);
98 
99 struct page *mem_map;
100 EXPORT_SYMBOL(mem_map);
101 #endif
102 
103 /*
104  * A number of key systems in x86 including ioremap() rely on the assumption
105  * that high_memory defines the upper bound on direct map memory, then end
106  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
107  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
108  * and ZONE_HIGHMEM.
109  */
110 void *high_memory;
111 EXPORT_SYMBOL(high_memory);
112 
113 /*
114  * Randomize the address space (stacks, mmaps, brk, etc.).
115  *
116  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
117  *   as ancient (libc5 based) binaries can segfault. )
118  */
119 int randomize_va_space __read_mostly =
120 #ifdef CONFIG_COMPAT_BRK
121 					1;
122 #else
123 					2;
124 #endif
125 
126 #ifndef arch_faults_on_old_pte
127 static inline bool arch_faults_on_old_pte(void)
128 {
129 	/*
130 	 * Those arches which don't have hw access flag feature need to
131 	 * implement their own helper. By default, "true" means pagefault
132 	 * will be hit on old pte.
133 	 */
134 	return true;
135 }
136 #endif
137 
138 #ifndef arch_wants_old_prefaulted_pte
139 static inline bool arch_wants_old_prefaulted_pte(void)
140 {
141 	/*
142 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
143 	 * some architectures, even if it's performed in hardware. By
144 	 * default, "false" means prefaulted entries will be 'young'.
145 	 */
146 	return false;
147 }
148 #endif
149 
150 static int __init disable_randmaps(char *s)
151 {
152 	randomize_va_space = 0;
153 	return 1;
154 }
155 __setup("norandmaps", disable_randmaps);
156 
157 unsigned long zero_pfn __read_mostly;
158 EXPORT_SYMBOL(zero_pfn);
159 
160 unsigned long highest_memmap_pfn __read_mostly;
161 
162 /*
163  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
164  */
165 static int __init init_zero_pfn(void)
166 {
167 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
168 	return 0;
169 }
170 early_initcall(init_zero_pfn);
171 
172 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
173 {
174 	trace_rss_stat(mm, member, count);
175 }
176 
177 #if defined(SPLIT_RSS_COUNTING)
178 
179 void sync_mm_rss(struct mm_struct *mm)
180 {
181 	int i;
182 
183 	for (i = 0; i < NR_MM_COUNTERS; i++) {
184 		if (current->rss_stat.count[i]) {
185 			add_mm_counter(mm, i, current->rss_stat.count[i]);
186 			current->rss_stat.count[i] = 0;
187 		}
188 	}
189 	current->rss_stat.events = 0;
190 }
191 
192 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
193 {
194 	struct task_struct *task = current;
195 
196 	if (likely(task->mm == mm))
197 		task->rss_stat.count[member] += val;
198 	else
199 		add_mm_counter(mm, member, val);
200 }
201 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
202 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
203 
204 /* sync counter once per 64 page faults */
205 #define TASK_RSS_EVENTS_THRESH	(64)
206 static void check_sync_rss_stat(struct task_struct *task)
207 {
208 	if (unlikely(task != current))
209 		return;
210 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
211 		sync_mm_rss(task->mm);
212 }
213 #else /* SPLIT_RSS_COUNTING */
214 
215 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
216 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
217 
218 static void check_sync_rss_stat(struct task_struct *task)
219 {
220 }
221 
222 #endif /* SPLIT_RSS_COUNTING */
223 
224 /*
225  * Note: this doesn't free the actual pages themselves. That
226  * has been handled earlier when unmapping all the memory regions.
227  */
228 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
229 			   unsigned long addr)
230 {
231 	pgtable_t token = pmd_pgtable(*pmd);
232 	pmd_clear(pmd);
233 	pte_free_tlb(tlb, token, addr);
234 	mm_dec_nr_ptes(tlb->mm);
235 }
236 
237 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
238 				unsigned long addr, unsigned long end,
239 				unsigned long floor, unsigned long ceiling)
240 {
241 	pmd_t *pmd;
242 	unsigned long next;
243 	unsigned long start;
244 
245 	start = addr;
246 	pmd = pmd_offset(pud, addr);
247 	do {
248 		next = pmd_addr_end(addr, end);
249 		if (pmd_none_or_clear_bad(pmd))
250 			continue;
251 		free_pte_range(tlb, pmd, addr);
252 	} while (pmd++, addr = next, addr != end);
253 
254 	start &= PUD_MASK;
255 	if (start < floor)
256 		return;
257 	if (ceiling) {
258 		ceiling &= PUD_MASK;
259 		if (!ceiling)
260 			return;
261 	}
262 	if (end - 1 > ceiling - 1)
263 		return;
264 
265 	pmd = pmd_offset(pud, start);
266 	pud_clear(pud);
267 	pmd_free_tlb(tlb, pmd, start);
268 	mm_dec_nr_pmds(tlb->mm);
269 }
270 
271 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
272 				unsigned long addr, unsigned long end,
273 				unsigned long floor, unsigned long ceiling)
274 {
275 	pud_t *pud;
276 	unsigned long next;
277 	unsigned long start;
278 
279 	start = addr;
280 	pud = pud_offset(p4d, addr);
281 	do {
282 		next = pud_addr_end(addr, end);
283 		if (pud_none_or_clear_bad(pud))
284 			continue;
285 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
286 	} while (pud++, addr = next, addr != end);
287 
288 	start &= P4D_MASK;
289 	if (start < floor)
290 		return;
291 	if (ceiling) {
292 		ceiling &= P4D_MASK;
293 		if (!ceiling)
294 			return;
295 	}
296 	if (end - 1 > ceiling - 1)
297 		return;
298 
299 	pud = pud_offset(p4d, start);
300 	p4d_clear(p4d);
301 	pud_free_tlb(tlb, pud, start);
302 	mm_dec_nr_puds(tlb->mm);
303 }
304 
305 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
306 				unsigned long addr, unsigned long end,
307 				unsigned long floor, unsigned long ceiling)
308 {
309 	p4d_t *p4d;
310 	unsigned long next;
311 	unsigned long start;
312 
313 	start = addr;
314 	p4d = p4d_offset(pgd, addr);
315 	do {
316 		next = p4d_addr_end(addr, end);
317 		if (p4d_none_or_clear_bad(p4d))
318 			continue;
319 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
320 	} while (p4d++, addr = next, addr != end);
321 
322 	start &= PGDIR_MASK;
323 	if (start < floor)
324 		return;
325 	if (ceiling) {
326 		ceiling &= PGDIR_MASK;
327 		if (!ceiling)
328 			return;
329 	}
330 	if (end - 1 > ceiling - 1)
331 		return;
332 
333 	p4d = p4d_offset(pgd, start);
334 	pgd_clear(pgd);
335 	p4d_free_tlb(tlb, p4d, start);
336 }
337 
338 /*
339  * This function frees user-level page tables of a process.
340  */
341 void free_pgd_range(struct mmu_gather *tlb,
342 			unsigned long addr, unsigned long end,
343 			unsigned long floor, unsigned long ceiling)
344 {
345 	pgd_t *pgd;
346 	unsigned long next;
347 
348 	/*
349 	 * The next few lines have given us lots of grief...
350 	 *
351 	 * Why are we testing PMD* at this top level?  Because often
352 	 * there will be no work to do at all, and we'd prefer not to
353 	 * go all the way down to the bottom just to discover that.
354 	 *
355 	 * Why all these "- 1"s?  Because 0 represents both the bottom
356 	 * of the address space and the top of it (using -1 for the
357 	 * top wouldn't help much: the masks would do the wrong thing).
358 	 * The rule is that addr 0 and floor 0 refer to the bottom of
359 	 * the address space, but end 0 and ceiling 0 refer to the top
360 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
361 	 * that end 0 case should be mythical).
362 	 *
363 	 * Wherever addr is brought up or ceiling brought down, we must
364 	 * be careful to reject "the opposite 0" before it confuses the
365 	 * subsequent tests.  But what about where end is brought down
366 	 * by PMD_SIZE below? no, end can't go down to 0 there.
367 	 *
368 	 * Whereas we round start (addr) and ceiling down, by different
369 	 * masks at different levels, in order to test whether a table
370 	 * now has no other vmas using it, so can be freed, we don't
371 	 * bother to round floor or end up - the tests don't need that.
372 	 */
373 
374 	addr &= PMD_MASK;
375 	if (addr < floor) {
376 		addr += PMD_SIZE;
377 		if (!addr)
378 			return;
379 	}
380 	if (ceiling) {
381 		ceiling &= PMD_MASK;
382 		if (!ceiling)
383 			return;
384 	}
385 	if (end - 1 > ceiling - 1)
386 		end -= PMD_SIZE;
387 	if (addr > end - 1)
388 		return;
389 	/*
390 	 * We add page table cache pages with PAGE_SIZE,
391 	 * (see pte_free_tlb()), flush the tlb if we need
392 	 */
393 	tlb_change_page_size(tlb, PAGE_SIZE);
394 	pgd = pgd_offset(tlb->mm, addr);
395 	do {
396 		next = pgd_addr_end(addr, end);
397 		if (pgd_none_or_clear_bad(pgd))
398 			continue;
399 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
400 	} while (pgd++, addr = next, addr != end);
401 }
402 
403 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
404 		unsigned long floor, unsigned long ceiling)
405 {
406 	while (vma) {
407 		struct vm_area_struct *next = vma->vm_next;
408 		unsigned long addr = vma->vm_start;
409 
410 		/*
411 		 * Hide vma from rmap and truncate_pagecache before freeing
412 		 * pgtables
413 		 */
414 		unlink_anon_vmas(vma);
415 		unlink_file_vma(vma);
416 
417 		if (is_vm_hugetlb_page(vma)) {
418 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
419 				floor, next ? next->vm_start : ceiling);
420 		} else {
421 			/*
422 			 * Optimization: gather nearby vmas into one call down
423 			 */
424 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
425 			       && !is_vm_hugetlb_page(next)) {
426 				vma = next;
427 				next = vma->vm_next;
428 				unlink_anon_vmas(vma);
429 				unlink_file_vma(vma);
430 			}
431 			free_pgd_range(tlb, addr, vma->vm_end,
432 				floor, next ? next->vm_start : ceiling);
433 		}
434 		vma = next;
435 	}
436 }
437 
438 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
439 {
440 	spinlock_t *ptl = pmd_lock(mm, pmd);
441 
442 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
443 		mm_inc_nr_ptes(mm);
444 		/*
445 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
446 		 * visible before the pte is made visible to other CPUs by being
447 		 * put into page tables.
448 		 *
449 		 * The other side of the story is the pointer chasing in the page
450 		 * table walking code (when walking the page table without locking;
451 		 * ie. most of the time). Fortunately, these data accesses consist
452 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
453 		 * being the notable exception) will already guarantee loads are
454 		 * seen in-order. See the alpha page table accessors for the
455 		 * smp_rmb() barriers in page table walking code.
456 		 */
457 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458 		pmd_populate(mm, pmd, *pte);
459 		*pte = NULL;
460 	}
461 	spin_unlock(ptl);
462 }
463 
464 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
465 {
466 	pgtable_t new = pte_alloc_one(mm);
467 	if (!new)
468 		return -ENOMEM;
469 
470 	pmd_install(mm, pmd, &new);
471 	if (new)
472 		pte_free(mm, new);
473 	return 0;
474 }
475 
476 int __pte_alloc_kernel(pmd_t *pmd)
477 {
478 	pte_t *new = pte_alloc_one_kernel(&init_mm);
479 	if (!new)
480 		return -ENOMEM;
481 
482 	spin_lock(&init_mm.page_table_lock);
483 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
484 		smp_wmb(); /* See comment in pmd_install() */
485 		pmd_populate_kernel(&init_mm, pmd, new);
486 		new = NULL;
487 	}
488 	spin_unlock(&init_mm.page_table_lock);
489 	if (new)
490 		pte_free_kernel(&init_mm, new);
491 	return 0;
492 }
493 
494 static inline void init_rss_vec(int *rss)
495 {
496 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
497 }
498 
499 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
500 {
501 	int i;
502 
503 	if (current->mm == mm)
504 		sync_mm_rss(mm);
505 	for (i = 0; i < NR_MM_COUNTERS; i++)
506 		if (rss[i])
507 			add_mm_counter(mm, i, rss[i]);
508 }
509 
510 /*
511  * This function is called to print an error when a bad pte
512  * is found. For example, we might have a PFN-mapped pte in
513  * a region that doesn't allow it.
514  *
515  * The calling function must still handle the error.
516  */
517 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
518 			  pte_t pte, struct page *page)
519 {
520 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
521 	p4d_t *p4d = p4d_offset(pgd, addr);
522 	pud_t *pud = pud_offset(p4d, addr);
523 	pmd_t *pmd = pmd_offset(pud, addr);
524 	struct address_space *mapping;
525 	pgoff_t index;
526 	static unsigned long resume;
527 	static unsigned long nr_shown;
528 	static unsigned long nr_unshown;
529 
530 	/*
531 	 * Allow a burst of 60 reports, then keep quiet for that minute;
532 	 * or allow a steady drip of one report per second.
533 	 */
534 	if (nr_shown == 60) {
535 		if (time_before(jiffies, resume)) {
536 			nr_unshown++;
537 			return;
538 		}
539 		if (nr_unshown) {
540 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
541 				 nr_unshown);
542 			nr_unshown = 0;
543 		}
544 		nr_shown = 0;
545 	}
546 	if (nr_shown++ == 0)
547 		resume = jiffies + 60 * HZ;
548 
549 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
550 	index = linear_page_index(vma, addr);
551 
552 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
553 		 current->comm,
554 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
555 	if (page)
556 		dump_page(page, "bad pte");
557 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
558 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
559 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
560 		 vma->vm_file,
561 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
562 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
563 		 mapping ? mapping->a_ops->readpage : NULL);
564 	dump_stack();
565 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
566 }
567 
568 /*
569  * vm_normal_page -- This function gets the "struct page" associated with a pte.
570  *
571  * "Special" mappings do not wish to be associated with a "struct page" (either
572  * it doesn't exist, or it exists but they don't want to touch it). In this
573  * case, NULL is returned here. "Normal" mappings do have a struct page.
574  *
575  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
576  * pte bit, in which case this function is trivial. Secondly, an architecture
577  * may not have a spare pte bit, which requires a more complicated scheme,
578  * described below.
579  *
580  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
581  * special mapping (even if there are underlying and valid "struct pages").
582  * COWed pages of a VM_PFNMAP are always normal.
583  *
584  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
585  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
586  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
587  * mapping will always honor the rule
588  *
589  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
590  *
591  * And for normal mappings this is false.
592  *
593  * This restricts such mappings to be a linear translation from virtual address
594  * to pfn. To get around this restriction, we allow arbitrary mappings so long
595  * as the vma is not a COW mapping; in that case, we know that all ptes are
596  * special (because none can have been COWed).
597  *
598  *
599  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
600  *
601  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
602  * page" backing, however the difference is that _all_ pages with a struct
603  * page (that is, those where pfn_valid is true) are refcounted and considered
604  * normal pages by the VM. The disadvantage is that pages are refcounted
605  * (which can be slower and simply not an option for some PFNMAP users). The
606  * advantage is that we don't have to follow the strict linearity rule of
607  * PFNMAP mappings in order to support COWable mappings.
608  *
609  */
610 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
611 			    pte_t pte)
612 {
613 	unsigned long pfn = pte_pfn(pte);
614 
615 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
616 		if (likely(!pte_special(pte)))
617 			goto check_pfn;
618 		if (vma->vm_ops && vma->vm_ops->find_special_page)
619 			return vma->vm_ops->find_special_page(vma, addr);
620 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
621 			return NULL;
622 		if (is_zero_pfn(pfn))
623 			return NULL;
624 		if (pte_devmap(pte))
625 			return NULL;
626 
627 		print_bad_pte(vma, addr, pte, NULL);
628 		return NULL;
629 	}
630 
631 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
632 
633 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
634 		if (vma->vm_flags & VM_MIXEDMAP) {
635 			if (!pfn_valid(pfn))
636 				return NULL;
637 			goto out;
638 		} else {
639 			unsigned long off;
640 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
641 			if (pfn == vma->vm_pgoff + off)
642 				return NULL;
643 			if (!is_cow_mapping(vma->vm_flags))
644 				return NULL;
645 		}
646 	}
647 
648 	if (is_zero_pfn(pfn))
649 		return NULL;
650 
651 check_pfn:
652 	if (unlikely(pfn > highest_memmap_pfn)) {
653 		print_bad_pte(vma, addr, pte, NULL);
654 		return NULL;
655 	}
656 
657 	/*
658 	 * NOTE! We still have PageReserved() pages in the page tables.
659 	 * eg. VDSO mappings can cause them to exist.
660 	 */
661 out:
662 	return pfn_to_page(pfn);
663 }
664 
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
667 				pmd_t pmd)
668 {
669 	unsigned long pfn = pmd_pfn(pmd);
670 
671 	/*
672 	 * There is no pmd_special() but there may be special pmds, e.g.
673 	 * in a direct-access (dax) mapping, so let's just replicate the
674 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
675 	 */
676 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
677 		if (vma->vm_flags & VM_MIXEDMAP) {
678 			if (!pfn_valid(pfn))
679 				return NULL;
680 			goto out;
681 		} else {
682 			unsigned long off;
683 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
684 			if (pfn == vma->vm_pgoff + off)
685 				return NULL;
686 			if (!is_cow_mapping(vma->vm_flags))
687 				return NULL;
688 		}
689 	}
690 
691 	if (pmd_devmap(pmd))
692 		return NULL;
693 	if (is_huge_zero_pmd(pmd))
694 		return NULL;
695 	if (unlikely(pfn > highest_memmap_pfn))
696 		return NULL;
697 
698 	/*
699 	 * NOTE! We still have PageReserved() pages in the page tables.
700 	 * eg. VDSO mappings can cause them to exist.
701 	 */
702 out:
703 	return pfn_to_page(pfn);
704 }
705 #endif
706 
707 static void restore_exclusive_pte(struct vm_area_struct *vma,
708 				  struct page *page, unsigned long address,
709 				  pte_t *ptep)
710 {
711 	pte_t pte;
712 	swp_entry_t entry;
713 
714 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
715 	if (pte_swp_soft_dirty(*ptep))
716 		pte = pte_mksoft_dirty(pte);
717 
718 	entry = pte_to_swp_entry(*ptep);
719 	if (pte_swp_uffd_wp(*ptep))
720 		pte = pte_mkuffd_wp(pte);
721 	else if (is_writable_device_exclusive_entry(entry))
722 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
723 
724 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
725 
726 	/*
727 	 * No need to take a page reference as one was already
728 	 * created when the swap entry was made.
729 	 */
730 	if (PageAnon(page))
731 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
732 	else
733 		/*
734 		 * Currently device exclusive access only supports anonymous
735 		 * memory so the entry shouldn't point to a filebacked page.
736 		 */
737 		WARN_ON_ONCE(!PageAnon(page));
738 
739 	set_pte_at(vma->vm_mm, address, ptep, pte);
740 
741 	/*
742 	 * No need to invalidate - it was non-present before. However
743 	 * secondary CPUs may have mappings that need invalidating.
744 	 */
745 	update_mmu_cache(vma, address, ptep);
746 }
747 
748 /*
749  * Tries to restore an exclusive pte if the page lock can be acquired without
750  * sleeping.
751  */
752 static int
753 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
754 			unsigned long addr)
755 {
756 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
757 	struct page *page = pfn_swap_entry_to_page(entry);
758 
759 	if (trylock_page(page)) {
760 		restore_exclusive_pte(vma, page, addr, src_pte);
761 		unlock_page(page);
762 		return 0;
763 	}
764 
765 	return -EBUSY;
766 }
767 
768 /*
769  * copy one vm_area from one task to the other. Assumes the page tables
770  * already present in the new task to be cleared in the whole range
771  * covered by this vma.
772  */
773 
774 static unsigned long
775 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
776 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
777 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
778 {
779 	unsigned long vm_flags = dst_vma->vm_flags;
780 	pte_t pte = *src_pte;
781 	struct page *page;
782 	swp_entry_t entry = pte_to_swp_entry(pte);
783 
784 	if (likely(!non_swap_entry(entry))) {
785 		if (swap_duplicate(entry) < 0)
786 			return -EIO;
787 
788 		/* make sure dst_mm is on swapoff's mmlist. */
789 		if (unlikely(list_empty(&dst_mm->mmlist))) {
790 			spin_lock(&mmlist_lock);
791 			if (list_empty(&dst_mm->mmlist))
792 				list_add(&dst_mm->mmlist,
793 						&src_mm->mmlist);
794 			spin_unlock(&mmlist_lock);
795 		}
796 		/* Mark the swap entry as shared. */
797 		if (pte_swp_exclusive(*src_pte)) {
798 			pte = pte_swp_clear_exclusive(*src_pte);
799 			set_pte_at(src_mm, addr, src_pte, pte);
800 		}
801 		rss[MM_SWAPENTS]++;
802 	} else if (is_migration_entry(entry)) {
803 		page = pfn_swap_entry_to_page(entry);
804 
805 		rss[mm_counter(page)]++;
806 
807 		if (!is_readable_migration_entry(entry) &&
808 				is_cow_mapping(vm_flags)) {
809 			/*
810 			 * COW mappings require pages in both parent and child
811 			 * to be set to read. A previously exclusive entry is
812 			 * now shared.
813 			 */
814 			entry = make_readable_migration_entry(
815 							swp_offset(entry));
816 			pte = swp_entry_to_pte(entry);
817 			if (pte_swp_soft_dirty(*src_pte))
818 				pte = pte_swp_mksoft_dirty(pte);
819 			if (pte_swp_uffd_wp(*src_pte))
820 				pte = pte_swp_mkuffd_wp(pte);
821 			set_pte_at(src_mm, addr, src_pte, pte);
822 		}
823 	} else if (is_device_private_entry(entry)) {
824 		page = pfn_swap_entry_to_page(entry);
825 
826 		/*
827 		 * Update rss count even for unaddressable pages, as
828 		 * they should treated just like normal pages in this
829 		 * respect.
830 		 *
831 		 * We will likely want to have some new rss counters
832 		 * for unaddressable pages, at some point. But for now
833 		 * keep things as they are.
834 		 */
835 		get_page(page);
836 		rss[mm_counter(page)]++;
837 		/* Cannot fail as these pages cannot get pinned. */
838 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
839 
840 		/*
841 		 * We do not preserve soft-dirty information, because so
842 		 * far, checkpoint/restore is the only feature that
843 		 * requires that. And checkpoint/restore does not work
844 		 * when a device driver is involved (you cannot easily
845 		 * save and restore device driver state).
846 		 */
847 		if (is_writable_device_private_entry(entry) &&
848 		    is_cow_mapping(vm_flags)) {
849 			entry = make_readable_device_private_entry(
850 							swp_offset(entry));
851 			pte = swp_entry_to_pte(entry);
852 			if (pte_swp_uffd_wp(*src_pte))
853 				pte = pte_swp_mkuffd_wp(pte);
854 			set_pte_at(src_mm, addr, src_pte, pte);
855 		}
856 	} else if (is_device_exclusive_entry(entry)) {
857 		/*
858 		 * Make device exclusive entries present by restoring the
859 		 * original entry then copying as for a present pte. Device
860 		 * exclusive entries currently only support private writable
861 		 * (ie. COW) mappings.
862 		 */
863 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
864 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
865 			return -EBUSY;
866 		return -ENOENT;
867 	}
868 	if (!userfaultfd_wp(dst_vma))
869 		pte = pte_swp_clear_uffd_wp(pte);
870 	set_pte_at(dst_mm, addr, dst_pte, pte);
871 	return 0;
872 }
873 
874 /*
875  * Copy a present and normal page.
876  *
877  * NOTE! The usual case is that this isn't required;
878  * instead, the caller can just increase the page refcount
879  * and re-use the pte the traditional way.
880  *
881  * And if we need a pre-allocated page but don't yet have
882  * one, return a negative error to let the preallocation
883  * code know so that it can do so outside the page table
884  * lock.
885  */
886 static inline int
887 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
888 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
889 		  struct page **prealloc, struct page *page)
890 {
891 	struct page *new_page;
892 	pte_t pte;
893 
894 	new_page = *prealloc;
895 	if (!new_page)
896 		return -EAGAIN;
897 
898 	/*
899 	 * We have a prealloc page, all good!  Take it
900 	 * over and copy the page & arm it.
901 	 */
902 	*prealloc = NULL;
903 	copy_user_highpage(new_page, page, addr, src_vma);
904 	__SetPageUptodate(new_page);
905 	page_add_new_anon_rmap(new_page, dst_vma, addr);
906 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
907 	rss[mm_counter(new_page)]++;
908 
909 	/* All done, just insert the new page copy in the child */
910 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
911 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
912 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
913 		/* Uffd-wp needs to be delivered to dest pte as well */
914 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
915 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
916 	return 0;
917 }
918 
919 /*
920  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
921  * is required to copy this pte.
922  */
923 static inline int
924 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
925 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
926 		 struct page **prealloc)
927 {
928 	struct mm_struct *src_mm = src_vma->vm_mm;
929 	unsigned long vm_flags = src_vma->vm_flags;
930 	pte_t pte = *src_pte;
931 	struct page *page;
932 
933 	page = vm_normal_page(src_vma, addr, pte);
934 	if (page && PageAnon(page)) {
935 		/*
936 		 * If this page may have been pinned by the parent process,
937 		 * copy the page immediately for the child so that we'll always
938 		 * guarantee the pinned page won't be randomly replaced in the
939 		 * future.
940 		 */
941 		get_page(page);
942 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
943 			/* Page maybe pinned, we have to copy. */
944 			put_page(page);
945 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
946 						 addr, rss, prealloc, page);
947 		}
948 		rss[mm_counter(page)]++;
949 	} else if (page) {
950 		get_page(page);
951 		page_dup_file_rmap(page, false);
952 		rss[mm_counter(page)]++;
953 	}
954 
955 	/*
956 	 * If it's a COW mapping, write protect it both
957 	 * in the parent and the child
958 	 */
959 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
960 		ptep_set_wrprotect(src_mm, addr, src_pte);
961 		pte = pte_wrprotect(pte);
962 	}
963 	VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
964 
965 	/*
966 	 * If it's a shared mapping, mark it clean in
967 	 * the child
968 	 */
969 	if (vm_flags & VM_SHARED)
970 		pte = pte_mkclean(pte);
971 	pte = pte_mkold(pte);
972 
973 	if (!userfaultfd_wp(dst_vma))
974 		pte = pte_clear_uffd_wp(pte);
975 
976 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
977 	return 0;
978 }
979 
980 static inline struct page *
981 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
982 		   unsigned long addr)
983 {
984 	struct page *new_page;
985 
986 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
987 	if (!new_page)
988 		return NULL;
989 
990 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
991 		put_page(new_page);
992 		return NULL;
993 	}
994 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
995 
996 	return new_page;
997 }
998 
999 static int
1000 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1001 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1002 	       unsigned long end)
1003 {
1004 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1005 	struct mm_struct *src_mm = src_vma->vm_mm;
1006 	pte_t *orig_src_pte, *orig_dst_pte;
1007 	pte_t *src_pte, *dst_pte;
1008 	spinlock_t *src_ptl, *dst_ptl;
1009 	int progress, ret = 0;
1010 	int rss[NR_MM_COUNTERS];
1011 	swp_entry_t entry = (swp_entry_t){0};
1012 	struct page *prealloc = NULL;
1013 
1014 again:
1015 	progress = 0;
1016 	init_rss_vec(rss);
1017 
1018 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1019 	if (!dst_pte) {
1020 		ret = -ENOMEM;
1021 		goto out;
1022 	}
1023 	src_pte = pte_offset_map(src_pmd, addr);
1024 	src_ptl = pte_lockptr(src_mm, src_pmd);
1025 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1026 	orig_src_pte = src_pte;
1027 	orig_dst_pte = dst_pte;
1028 	arch_enter_lazy_mmu_mode();
1029 
1030 	do {
1031 		/*
1032 		 * We are holding two locks at this point - either of them
1033 		 * could generate latencies in another task on another CPU.
1034 		 */
1035 		if (progress >= 32) {
1036 			progress = 0;
1037 			if (need_resched() ||
1038 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1039 				break;
1040 		}
1041 		if (pte_none(*src_pte)) {
1042 			progress++;
1043 			continue;
1044 		}
1045 		if (unlikely(!pte_present(*src_pte))) {
1046 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1047 						  dst_pte, src_pte,
1048 						  dst_vma, src_vma,
1049 						  addr, rss);
1050 			if (ret == -EIO) {
1051 				entry = pte_to_swp_entry(*src_pte);
1052 				break;
1053 			} else if (ret == -EBUSY) {
1054 				break;
1055 			} else if (!ret) {
1056 				progress += 8;
1057 				continue;
1058 			}
1059 
1060 			/*
1061 			 * Device exclusive entry restored, continue by copying
1062 			 * the now present pte.
1063 			 */
1064 			WARN_ON_ONCE(ret != -ENOENT);
1065 		}
1066 		/* copy_present_pte() will clear `*prealloc' if consumed */
1067 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1068 				       addr, rss, &prealloc);
1069 		/*
1070 		 * If we need a pre-allocated page for this pte, drop the
1071 		 * locks, allocate, and try again.
1072 		 */
1073 		if (unlikely(ret == -EAGAIN))
1074 			break;
1075 		if (unlikely(prealloc)) {
1076 			/*
1077 			 * pre-alloc page cannot be reused by next time so as
1078 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1079 			 * will allocate page according to address).  This
1080 			 * could only happen if one pinned pte changed.
1081 			 */
1082 			put_page(prealloc);
1083 			prealloc = NULL;
1084 		}
1085 		progress += 8;
1086 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1087 
1088 	arch_leave_lazy_mmu_mode();
1089 	spin_unlock(src_ptl);
1090 	pte_unmap(orig_src_pte);
1091 	add_mm_rss_vec(dst_mm, rss);
1092 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1093 	cond_resched();
1094 
1095 	if (ret == -EIO) {
1096 		VM_WARN_ON_ONCE(!entry.val);
1097 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1098 			ret = -ENOMEM;
1099 			goto out;
1100 		}
1101 		entry.val = 0;
1102 	} else if (ret == -EBUSY) {
1103 		goto out;
1104 	} else if (ret ==  -EAGAIN) {
1105 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1106 		if (!prealloc)
1107 			return -ENOMEM;
1108 	} else if (ret) {
1109 		VM_WARN_ON_ONCE(1);
1110 	}
1111 
1112 	/* We've captured and resolved the error. Reset, try again. */
1113 	ret = 0;
1114 
1115 	if (addr != end)
1116 		goto again;
1117 out:
1118 	if (unlikely(prealloc))
1119 		put_page(prealloc);
1120 	return ret;
1121 }
1122 
1123 static inline int
1124 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1125 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1126 	       unsigned long end)
1127 {
1128 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1129 	struct mm_struct *src_mm = src_vma->vm_mm;
1130 	pmd_t *src_pmd, *dst_pmd;
1131 	unsigned long next;
1132 
1133 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1134 	if (!dst_pmd)
1135 		return -ENOMEM;
1136 	src_pmd = pmd_offset(src_pud, addr);
1137 	do {
1138 		next = pmd_addr_end(addr, end);
1139 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1140 			|| pmd_devmap(*src_pmd)) {
1141 			int err;
1142 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1143 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1144 					    addr, dst_vma, src_vma);
1145 			if (err == -ENOMEM)
1146 				return -ENOMEM;
1147 			if (!err)
1148 				continue;
1149 			/* fall through */
1150 		}
1151 		if (pmd_none_or_clear_bad(src_pmd))
1152 			continue;
1153 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1154 				   addr, next))
1155 			return -ENOMEM;
1156 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1157 	return 0;
1158 }
1159 
1160 static inline int
1161 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1162 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1163 	       unsigned long end)
1164 {
1165 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1166 	struct mm_struct *src_mm = src_vma->vm_mm;
1167 	pud_t *src_pud, *dst_pud;
1168 	unsigned long next;
1169 
1170 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1171 	if (!dst_pud)
1172 		return -ENOMEM;
1173 	src_pud = pud_offset(src_p4d, addr);
1174 	do {
1175 		next = pud_addr_end(addr, end);
1176 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1177 			int err;
1178 
1179 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1180 			err = copy_huge_pud(dst_mm, src_mm,
1181 					    dst_pud, src_pud, addr, src_vma);
1182 			if (err == -ENOMEM)
1183 				return -ENOMEM;
1184 			if (!err)
1185 				continue;
1186 			/* fall through */
1187 		}
1188 		if (pud_none_or_clear_bad(src_pud))
1189 			continue;
1190 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1191 				   addr, next))
1192 			return -ENOMEM;
1193 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1194 	return 0;
1195 }
1196 
1197 static inline int
1198 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1199 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1200 	       unsigned long end)
1201 {
1202 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1203 	p4d_t *src_p4d, *dst_p4d;
1204 	unsigned long next;
1205 
1206 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1207 	if (!dst_p4d)
1208 		return -ENOMEM;
1209 	src_p4d = p4d_offset(src_pgd, addr);
1210 	do {
1211 		next = p4d_addr_end(addr, end);
1212 		if (p4d_none_or_clear_bad(src_p4d))
1213 			continue;
1214 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1215 				   addr, next))
1216 			return -ENOMEM;
1217 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1218 	return 0;
1219 }
1220 
1221 int
1222 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1223 {
1224 	pgd_t *src_pgd, *dst_pgd;
1225 	unsigned long next;
1226 	unsigned long addr = src_vma->vm_start;
1227 	unsigned long end = src_vma->vm_end;
1228 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1229 	struct mm_struct *src_mm = src_vma->vm_mm;
1230 	struct mmu_notifier_range range;
1231 	bool is_cow;
1232 	int ret;
1233 
1234 	/*
1235 	 * Don't copy ptes where a page fault will fill them correctly.
1236 	 * Fork becomes much lighter when there are big shared or private
1237 	 * readonly mappings. The tradeoff is that copy_page_range is more
1238 	 * efficient than faulting.
1239 	 */
1240 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1241 	    !src_vma->anon_vma)
1242 		return 0;
1243 
1244 	if (is_vm_hugetlb_page(src_vma))
1245 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1246 
1247 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1248 		/*
1249 		 * We do not free on error cases below as remove_vma
1250 		 * gets called on error from higher level routine
1251 		 */
1252 		ret = track_pfn_copy(src_vma);
1253 		if (ret)
1254 			return ret;
1255 	}
1256 
1257 	/*
1258 	 * We need to invalidate the secondary MMU mappings only when
1259 	 * there could be a permission downgrade on the ptes of the
1260 	 * parent mm. And a permission downgrade will only happen if
1261 	 * is_cow_mapping() returns true.
1262 	 */
1263 	is_cow = is_cow_mapping(src_vma->vm_flags);
1264 
1265 	if (is_cow) {
1266 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1267 					0, src_vma, src_mm, addr, end);
1268 		mmu_notifier_invalidate_range_start(&range);
1269 		/*
1270 		 * Disabling preemption is not needed for the write side, as
1271 		 * the read side doesn't spin, but goes to the mmap_lock.
1272 		 *
1273 		 * Use the raw variant of the seqcount_t write API to avoid
1274 		 * lockdep complaining about preemptibility.
1275 		 */
1276 		mmap_assert_write_locked(src_mm);
1277 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1278 	}
1279 
1280 	ret = 0;
1281 	dst_pgd = pgd_offset(dst_mm, addr);
1282 	src_pgd = pgd_offset(src_mm, addr);
1283 	do {
1284 		next = pgd_addr_end(addr, end);
1285 		if (pgd_none_or_clear_bad(src_pgd))
1286 			continue;
1287 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1288 					    addr, next))) {
1289 			ret = -ENOMEM;
1290 			break;
1291 		}
1292 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1293 
1294 	if (is_cow) {
1295 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1296 		mmu_notifier_invalidate_range_end(&range);
1297 	}
1298 	return ret;
1299 }
1300 
1301 /*
1302  * Parameter block passed down to zap_pte_range in exceptional cases.
1303  */
1304 struct zap_details {
1305 	struct folio *single_folio;	/* Locked folio to be unmapped */
1306 	bool even_cows;			/* Zap COWed private pages too? */
1307 };
1308 
1309 /* Whether we should zap all COWed (private) pages too */
1310 static inline bool should_zap_cows(struct zap_details *details)
1311 {
1312 	/* By default, zap all pages */
1313 	if (!details)
1314 		return true;
1315 
1316 	/* Or, we zap COWed pages only if the caller wants to */
1317 	return details->even_cows;
1318 }
1319 
1320 /* Decides whether we should zap this page with the page pointer specified */
1321 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1322 {
1323 	/* If we can make a decision without *page.. */
1324 	if (should_zap_cows(details))
1325 		return true;
1326 
1327 	/* E.g. the caller passes NULL for the case of a zero page */
1328 	if (!page)
1329 		return true;
1330 
1331 	/* Otherwise we should only zap non-anon pages */
1332 	return !PageAnon(page);
1333 }
1334 
1335 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1336 				struct vm_area_struct *vma, pmd_t *pmd,
1337 				unsigned long addr, unsigned long end,
1338 				struct zap_details *details)
1339 {
1340 	struct mm_struct *mm = tlb->mm;
1341 	int force_flush = 0;
1342 	int rss[NR_MM_COUNTERS];
1343 	spinlock_t *ptl;
1344 	pte_t *start_pte;
1345 	pte_t *pte;
1346 	swp_entry_t entry;
1347 
1348 	tlb_change_page_size(tlb, PAGE_SIZE);
1349 again:
1350 	init_rss_vec(rss);
1351 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1352 	pte = start_pte;
1353 	flush_tlb_batched_pending(mm);
1354 	arch_enter_lazy_mmu_mode();
1355 	do {
1356 		pte_t ptent = *pte;
1357 		struct page *page;
1358 
1359 		if (pte_none(ptent))
1360 			continue;
1361 
1362 		if (need_resched())
1363 			break;
1364 
1365 		if (pte_present(ptent)) {
1366 			page = vm_normal_page(vma, addr, ptent);
1367 			if (unlikely(!should_zap_page(details, page)))
1368 				continue;
1369 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1370 							tlb->fullmm);
1371 			tlb_remove_tlb_entry(tlb, pte, addr);
1372 			if (unlikely(!page))
1373 				continue;
1374 
1375 			if (!PageAnon(page)) {
1376 				if (pte_dirty(ptent)) {
1377 					force_flush = 1;
1378 					set_page_dirty(page);
1379 				}
1380 				if (pte_young(ptent) &&
1381 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1382 					mark_page_accessed(page);
1383 			}
1384 			rss[mm_counter(page)]--;
1385 			page_remove_rmap(page, vma, false);
1386 			if (unlikely(page_mapcount(page) < 0))
1387 				print_bad_pte(vma, addr, ptent, page);
1388 			if (unlikely(__tlb_remove_page(tlb, page))) {
1389 				force_flush = 1;
1390 				addr += PAGE_SIZE;
1391 				break;
1392 			}
1393 			continue;
1394 		}
1395 
1396 		entry = pte_to_swp_entry(ptent);
1397 		if (is_device_private_entry(entry) ||
1398 		    is_device_exclusive_entry(entry)) {
1399 			page = pfn_swap_entry_to_page(entry);
1400 			if (unlikely(!should_zap_page(details, page)))
1401 				continue;
1402 			rss[mm_counter(page)]--;
1403 			if (is_device_private_entry(entry))
1404 				page_remove_rmap(page, vma, false);
1405 			put_page(page);
1406 		} else if (!non_swap_entry(entry)) {
1407 			/* Genuine swap entry, hence a private anon page */
1408 			if (!should_zap_cows(details))
1409 				continue;
1410 			rss[MM_SWAPENTS]--;
1411 			if (unlikely(!free_swap_and_cache(entry)))
1412 				print_bad_pte(vma, addr, ptent, NULL);
1413 		} else if (is_migration_entry(entry)) {
1414 			page = pfn_swap_entry_to_page(entry);
1415 			if (!should_zap_page(details, page))
1416 				continue;
1417 			rss[mm_counter(page)]--;
1418 		} else if (is_hwpoison_entry(entry)) {
1419 			if (!should_zap_cows(details))
1420 				continue;
1421 		} else {
1422 			/* We should have covered all the swap entry types */
1423 			WARN_ON_ONCE(1);
1424 		}
1425 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1426 	} while (pte++, addr += PAGE_SIZE, addr != end);
1427 
1428 	add_mm_rss_vec(mm, rss);
1429 	arch_leave_lazy_mmu_mode();
1430 
1431 	/* Do the actual TLB flush before dropping ptl */
1432 	if (force_flush)
1433 		tlb_flush_mmu_tlbonly(tlb);
1434 	pte_unmap_unlock(start_pte, ptl);
1435 
1436 	/*
1437 	 * If we forced a TLB flush (either due to running out of
1438 	 * batch buffers or because we needed to flush dirty TLB
1439 	 * entries before releasing the ptl), free the batched
1440 	 * memory too. Restart if we didn't do everything.
1441 	 */
1442 	if (force_flush) {
1443 		force_flush = 0;
1444 		tlb_flush_mmu(tlb);
1445 	}
1446 
1447 	if (addr != end) {
1448 		cond_resched();
1449 		goto again;
1450 	}
1451 
1452 	return addr;
1453 }
1454 
1455 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1456 				struct vm_area_struct *vma, pud_t *pud,
1457 				unsigned long addr, unsigned long end,
1458 				struct zap_details *details)
1459 {
1460 	pmd_t *pmd;
1461 	unsigned long next;
1462 
1463 	pmd = pmd_offset(pud, addr);
1464 	do {
1465 		next = pmd_addr_end(addr, end);
1466 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1467 			if (next - addr != HPAGE_PMD_SIZE)
1468 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1469 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1470 				goto next;
1471 			/* fall through */
1472 		} else if (details && details->single_folio &&
1473 			   folio_test_pmd_mappable(details->single_folio) &&
1474 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1475 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1476 			/*
1477 			 * Take and drop THP pmd lock so that we cannot return
1478 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1479 			 * but not yet decremented compound_mapcount().
1480 			 */
1481 			spin_unlock(ptl);
1482 		}
1483 
1484 		/*
1485 		 * Here there can be other concurrent MADV_DONTNEED or
1486 		 * trans huge page faults running, and if the pmd is
1487 		 * none or trans huge it can change under us. This is
1488 		 * because MADV_DONTNEED holds the mmap_lock in read
1489 		 * mode.
1490 		 */
1491 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1492 			goto next;
1493 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1494 next:
1495 		cond_resched();
1496 	} while (pmd++, addr = next, addr != end);
1497 
1498 	return addr;
1499 }
1500 
1501 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1502 				struct vm_area_struct *vma, p4d_t *p4d,
1503 				unsigned long addr, unsigned long end,
1504 				struct zap_details *details)
1505 {
1506 	pud_t *pud;
1507 	unsigned long next;
1508 
1509 	pud = pud_offset(p4d, addr);
1510 	do {
1511 		next = pud_addr_end(addr, end);
1512 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1513 			if (next - addr != HPAGE_PUD_SIZE) {
1514 				mmap_assert_locked(tlb->mm);
1515 				split_huge_pud(vma, pud, addr);
1516 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1517 				goto next;
1518 			/* fall through */
1519 		}
1520 		if (pud_none_or_clear_bad(pud))
1521 			continue;
1522 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1523 next:
1524 		cond_resched();
1525 	} while (pud++, addr = next, addr != end);
1526 
1527 	return addr;
1528 }
1529 
1530 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1531 				struct vm_area_struct *vma, pgd_t *pgd,
1532 				unsigned long addr, unsigned long end,
1533 				struct zap_details *details)
1534 {
1535 	p4d_t *p4d;
1536 	unsigned long next;
1537 
1538 	p4d = p4d_offset(pgd, addr);
1539 	do {
1540 		next = p4d_addr_end(addr, end);
1541 		if (p4d_none_or_clear_bad(p4d))
1542 			continue;
1543 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1544 	} while (p4d++, addr = next, addr != end);
1545 
1546 	return addr;
1547 }
1548 
1549 void unmap_page_range(struct mmu_gather *tlb,
1550 			     struct vm_area_struct *vma,
1551 			     unsigned long addr, unsigned long end,
1552 			     struct zap_details *details)
1553 {
1554 	pgd_t *pgd;
1555 	unsigned long next;
1556 
1557 	BUG_ON(addr >= end);
1558 	tlb_start_vma(tlb, vma);
1559 	pgd = pgd_offset(vma->vm_mm, addr);
1560 	do {
1561 		next = pgd_addr_end(addr, end);
1562 		if (pgd_none_or_clear_bad(pgd))
1563 			continue;
1564 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1565 	} while (pgd++, addr = next, addr != end);
1566 	tlb_end_vma(tlb, vma);
1567 }
1568 
1569 
1570 static void unmap_single_vma(struct mmu_gather *tlb,
1571 		struct vm_area_struct *vma, unsigned long start_addr,
1572 		unsigned long end_addr,
1573 		struct zap_details *details)
1574 {
1575 	unsigned long start = max(vma->vm_start, start_addr);
1576 	unsigned long end;
1577 
1578 	if (start >= vma->vm_end)
1579 		return;
1580 	end = min(vma->vm_end, end_addr);
1581 	if (end <= vma->vm_start)
1582 		return;
1583 
1584 	if (vma->vm_file)
1585 		uprobe_munmap(vma, start, end);
1586 
1587 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1588 		untrack_pfn(vma, 0, 0);
1589 
1590 	if (start != end) {
1591 		if (unlikely(is_vm_hugetlb_page(vma))) {
1592 			/*
1593 			 * It is undesirable to test vma->vm_file as it
1594 			 * should be non-null for valid hugetlb area.
1595 			 * However, vm_file will be NULL in the error
1596 			 * cleanup path of mmap_region. When
1597 			 * hugetlbfs ->mmap method fails,
1598 			 * mmap_region() nullifies vma->vm_file
1599 			 * before calling this function to clean up.
1600 			 * Since no pte has actually been setup, it is
1601 			 * safe to do nothing in this case.
1602 			 */
1603 			if (vma->vm_file) {
1604 				i_mmap_lock_write(vma->vm_file->f_mapping);
1605 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1606 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1607 			}
1608 		} else
1609 			unmap_page_range(tlb, vma, start, end, details);
1610 	}
1611 }
1612 
1613 /**
1614  * unmap_vmas - unmap a range of memory covered by a list of vma's
1615  * @tlb: address of the caller's struct mmu_gather
1616  * @vma: the starting vma
1617  * @start_addr: virtual address at which to start unmapping
1618  * @end_addr: virtual address at which to end unmapping
1619  *
1620  * Unmap all pages in the vma list.
1621  *
1622  * Only addresses between `start' and `end' will be unmapped.
1623  *
1624  * The VMA list must be sorted in ascending virtual address order.
1625  *
1626  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1627  * range after unmap_vmas() returns.  So the only responsibility here is to
1628  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1629  * drops the lock and schedules.
1630  */
1631 void unmap_vmas(struct mmu_gather *tlb,
1632 		struct vm_area_struct *vma, unsigned long start_addr,
1633 		unsigned long end_addr)
1634 {
1635 	struct mmu_notifier_range range;
1636 
1637 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1638 				start_addr, end_addr);
1639 	mmu_notifier_invalidate_range_start(&range);
1640 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1641 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1642 	mmu_notifier_invalidate_range_end(&range);
1643 }
1644 
1645 /**
1646  * zap_page_range - remove user pages in a given range
1647  * @vma: vm_area_struct holding the applicable pages
1648  * @start: starting address of pages to zap
1649  * @size: number of bytes to zap
1650  *
1651  * Caller must protect the VMA list
1652  */
1653 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1654 		unsigned long size)
1655 {
1656 	struct mmu_notifier_range range;
1657 	struct mmu_gather tlb;
1658 
1659 	lru_add_drain();
1660 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1661 				start, start + size);
1662 	tlb_gather_mmu(&tlb, vma->vm_mm);
1663 	update_hiwater_rss(vma->vm_mm);
1664 	mmu_notifier_invalidate_range_start(&range);
1665 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1666 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1667 	mmu_notifier_invalidate_range_end(&range);
1668 	tlb_finish_mmu(&tlb);
1669 }
1670 
1671 /**
1672  * zap_page_range_single - remove user pages in a given range
1673  * @vma: vm_area_struct holding the applicable pages
1674  * @address: starting address of pages to zap
1675  * @size: number of bytes to zap
1676  * @details: details of shared cache invalidation
1677  *
1678  * The range must fit into one VMA.
1679  */
1680 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1681 		unsigned long size, struct zap_details *details)
1682 {
1683 	struct mmu_notifier_range range;
1684 	struct mmu_gather tlb;
1685 
1686 	lru_add_drain();
1687 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1688 				address, address + size);
1689 	tlb_gather_mmu(&tlb, vma->vm_mm);
1690 	update_hiwater_rss(vma->vm_mm);
1691 	mmu_notifier_invalidate_range_start(&range);
1692 	unmap_single_vma(&tlb, vma, address, range.end, details);
1693 	mmu_notifier_invalidate_range_end(&range);
1694 	tlb_finish_mmu(&tlb);
1695 }
1696 
1697 /**
1698  * zap_vma_ptes - remove ptes mapping the vma
1699  * @vma: vm_area_struct holding ptes to be zapped
1700  * @address: starting address of pages to zap
1701  * @size: number of bytes to zap
1702  *
1703  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1704  *
1705  * The entire address range must be fully contained within the vma.
1706  *
1707  */
1708 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1709 		unsigned long size)
1710 {
1711 	if (!range_in_vma(vma, address, address + size) ||
1712 	    		!(vma->vm_flags & VM_PFNMAP))
1713 		return;
1714 
1715 	zap_page_range_single(vma, address, size, NULL);
1716 }
1717 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1718 
1719 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1720 {
1721 	pgd_t *pgd;
1722 	p4d_t *p4d;
1723 	pud_t *pud;
1724 	pmd_t *pmd;
1725 
1726 	pgd = pgd_offset(mm, addr);
1727 	p4d = p4d_alloc(mm, pgd, addr);
1728 	if (!p4d)
1729 		return NULL;
1730 	pud = pud_alloc(mm, p4d, addr);
1731 	if (!pud)
1732 		return NULL;
1733 	pmd = pmd_alloc(mm, pud, addr);
1734 	if (!pmd)
1735 		return NULL;
1736 
1737 	VM_BUG_ON(pmd_trans_huge(*pmd));
1738 	return pmd;
1739 }
1740 
1741 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1742 			spinlock_t **ptl)
1743 {
1744 	pmd_t *pmd = walk_to_pmd(mm, addr);
1745 
1746 	if (!pmd)
1747 		return NULL;
1748 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1749 }
1750 
1751 static int validate_page_before_insert(struct page *page)
1752 {
1753 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1754 		return -EINVAL;
1755 	flush_dcache_page(page);
1756 	return 0;
1757 }
1758 
1759 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1760 			unsigned long addr, struct page *page, pgprot_t prot)
1761 {
1762 	if (!pte_none(*pte))
1763 		return -EBUSY;
1764 	/* Ok, finally just insert the thing.. */
1765 	get_page(page);
1766 	inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1767 	page_add_file_rmap(page, vma, false);
1768 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1769 	return 0;
1770 }
1771 
1772 /*
1773  * This is the old fallback for page remapping.
1774  *
1775  * For historical reasons, it only allows reserved pages. Only
1776  * old drivers should use this, and they needed to mark their
1777  * pages reserved for the old functions anyway.
1778  */
1779 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1780 			struct page *page, pgprot_t prot)
1781 {
1782 	int retval;
1783 	pte_t *pte;
1784 	spinlock_t *ptl;
1785 
1786 	retval = validate_page_before_insert(page);
1787 	if (retval)
1788 		goto out;
1789 	retval = -ENOMEM;
1790 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1791 	if (!pte)
1792 		goto out;
1793 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1794 	pte_unmap_unlock(pte, ptl);
1795 out:
1796 	return retval;
1797 }
1798 
1799 #ifdef pte_index
1800 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1801 			unsigned long addr, struct page *page, pgprot_t prot)
1802 {
1803 	int err;
1804 
1805 	if (!page_count(page))
1806 		return -EINVAL;
1807 	err = validate_page_before_insert(page);
1808 	if (err)
1809 		return err;
1810 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1811 }
1812 
1813 /* insert_pages() amortizes the cost of spinlock operations
1814  * when inserting pages in a loop. Arch *must* define pte_index.
1815  */
1816 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1817 			struct page **pages, unsigned long *num, pgprot_t prot)
1818 {
1819 	pmd_t *pmd = NULL;
1820 	pte_t *start_pte, *pte;
1821 	spinlock_t *pte_lock;
1822 	struct mm_struct *const mm = vma->vm_mm;
1823 	unsigned long curr_page_idx = 0;
1824 	unsigned long remaining_pages_total = *num;
1825 	unsigned long pages_to_write_in_pmd;
1826 	int ret;
1827 more:
1828 	ret = -EFAULT;
1829 	pmd = walk_to_pmd(mm, addr);
1830 	if (!pmd)
1831 		goto out;
1832 
1833 	pages_to_write_in_pmd = min_t(unsigned long,
1834 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1835 
1836 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1837 	ret = -ENOMEM;
1838 	if (pte_alloc(mm, pmd))
1839 		goto out;
1840 
1841 	while (pages_to_write_in_pmd) {
1842 		int pte_idx = 0;
1843 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1844 
1845 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1846 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1847 			int err = insert_page_in_batch_locked(vma, pte,
1848 				addr, pages[curr_page_idx], prot);
1849 			if (unlikely(err)) {
1850 				pte_unmap_unlock(start_pte, pte_lock);
1851 				ret = err;
1852 				remaining_pages_total -= pte_idx;
1853 				goto out;
1854 			}
1855 			addr += PAGE_SIZE;
1856 			++curr_page_idx;
1857 		}
1858 		pte_unmap_unlock(start_pte, pte_lock);
1859 		pages_to_write_in_pmd -= batch_size;
1860 		remaining_pages_total -= batch_size;
1861 	}
1862 	if (remaining_pages_total)
1863 		goto more;
1864 	ret = 0;
1865 out:
1866 	*num = remaining_pages_total;
1867 	return ret;
1868 }
1869 #endif  /* ifdef pte_index */
1870 
1871 /**
1872  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1873  * @vma: user vma to map to
1874  * @addr: target start user address of these pages
1875  * @pages: source kernel pages
1876  * @num: in: number of pages to map. out: number of pages that were *not*
1877  * mapped. (0 means all pages were successfully mapped).
1878  *
1879  * Preferred over vm_insert_page() when inserting multiple pages.
1880  *
1881  * In case of error, we may have mapped a subset of the provided
1882  * pages. It is the caller's responsibility to account for this case.
1883  *
1884  * The same restrictions apply as in vm_insert_page().
1885  */
1886 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1887 			struct page **pages, unsigned long *num)
1888 {
1889 #ifdef pte_index
1890 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1891 
1892 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1893 		return -EFAULT;
1894 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1895 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1896 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1897 		vma->vm_flags |= VM_MIXEDMAP;
1898 	}
1899 	/* Defer page refcount checking till we're about to map that page. */
1900 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1901 #else
1902 	unsigned long idx = 0, pgcount = *num;
1903 	int err = -EINVAL;
1904 
1905 	for (; idx < pgcount; ++idx) {
1906 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1907 		if (err)
1908 			break;
1909 	}
1910 	*num = pgcount - idx;
1911 	return err;
1912 #endif  /* ifdef pte_index */
1913 }
1914 EXPORT_SYMBOL(vm_insert_pages);
1915 
1916 /**
1917  * vm_insert_page - insert single page into user vma
1918  * @vma: user vma to map to
1919  * @addr: target user address of this page
1920  * @page: source kernel page
1921  *
1922  * This allows drivers to insert individual pages they've allocated
1923  * into a user vma.
1924  *
1925  * The page has to be a nice clean _individual_ kernel allocation.
1926  * If you allocate a compound page, you need to have marked it as
1927  * such (__GFP_COMP), or manually just split the page up yourself
1928  * (see split_page()).
1929  *
1930  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1931  * took an arbitrary page protection parameter. This doesn't allow
1932  * that. Your vma protection will have to be set up correctly, which
1933  * means that if you want a shared writable mapping, you'd better
1934  * ask for a shared writable mapping!
1935  *
1936  * The page does not need to be reserved.
1937  *
1938  * Usually this function is called from f_op->mmap() handler
1939  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1940  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1941  * function from other places, for example from page-fault handler.
1942  *
1943  * Return: %0 on success, negative error code otherwise.
1944  */
1945 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1946 			struct page *page)
1947 {
1948 	if (addr < vma->vm_start || addr >= vma->vm_end)
1949 		return -EFAULT;
1950 	if (!page_count(page))
1951 		return -EINVAL;
1952 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1953 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1954 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1955 		vma->vm_flags |= VM_MIXEDMAP;
1956 	}
1957 	return insert_page(vma, addr, page, vma->vm_page_prot);
1958 }
1959 EXPORT_SYMBOL(vm_insert_page);
1960 
1961 /*
1962  * __vm_map_pages - maps range of kernel pages into user vma
1963  * @vma: user vma to map to
1964  * @pages: pointer to array of source kernel pages
1965  * @num: number of pages in page array
1966  * @offset: user's requested vm_pgoff
1967  *
1968  * This allows drivers to map range of kernel pages into a user vma.
1969  *
1970  * Return: 0 on success and error code otherwise.
1971  */
1972 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1973 				unsigned long num, unsigned long offset)
1974 {
1975 	unsigned long count = vma_pages(vma);
1976 	unsigned long uaddr = vma->vm_start;
1977 	int ret, i;
1978 
1979 	/* Fail if the user requested offset is beyond the end of the object */
1980 	if (offset >= num)
1981 		return -ENXIO;
1982 
1983 	/* Fail if the user requested size exceeds available object size */
1984 	if (count > num - offset)
1985 		return -ENXIO;
1986 
1987 	for (i = 0; i < count; i++) {
1988 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1989 		if (ret < 0)
1990 			return ret;
1991 		uaddr += PAGE_SIZE;
1992 	}
1993 
1994 	return 0;
1995 }
1996 
1997 /**
1998  * vm_map_pages - maps range of kernel pages starts with non zero offset
1999  * @vma: user vma to map to
2000  * @pages: pointer to array of source kernel pages
2001  * @num: number of pages in page array
2002  *
2003  * Maps an object consisting of @num pages, catering for the user's
2004  * requested vm_pgoff
2005  *
2006  * If we fail to insert any page into the vma, the function will return
2007  * immediately leaving any previously inserted pages present.  Callers
2008  * from the mmap handler may immediately return the error as their caller
2009  * will destroy the vma, removing any successfully inserted pages. Other
2010  * callers should make their own arrangements for calling unmap_region().
2011  *
2012  * Context: Process context. Called by mmap handlers.
2013  * Return: 0 on success and error code otherwise.
2014  */
2015 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2016 				unsigned long num)
2017 {
2018 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2019 }
2020 EXPORT_SYMBOL(vm_map_pages);
2021 
2022 /**
2023  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2024  * @vma: user vma to map to
2025  * @pages: pointer to array of source kernel pages
2026  * @num: number of pages in page array
2027  *
2028  * Similar to vm_map_pages(), except that it explicitly sets the offset
2029  * to 0. This function is intended for the drivers that did not consider
2030  * vm_pgoff.
2031  *
2032  * Context: Process context. Called by mmap handlers.
2033  * Return: 0 on success and error code otherwise.
2034  */
2035 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2036 				unsigned long num)
2037 {
2038 	return __vm_map_pages(vma, pages, num, 0);
2039 }
2040 EXPORT_SYMBOL(vm_map_pages_zero);
2041 
2042 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2043 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2044 {
2045 	struct mm_struct *mm = vma->vm_mm;
2046 	pte_t *pte, entry;
2047 	spinlock_t *ptl;
2048 
2049 	pte = get_locked_pte(mm, addr, &ptl);
2050 	if (!pte)
2051 		return VM_FAULT_OOM;
2052 	if (!pte_none(*pte)) {
2053 		if (mkwrite) {
2054 			/*
2055 			 * For read faults on private mappings the PFN passed
2056 			 * in may not match the PFN we have mapped if the
2057 			 * mapped PFN is a writeable COW page.  In the mkwrite
2058 			 * case we are creating a writable PTE for a shared
2059 			 * mapping and we expect the PFNs to match. If they
2060 			 * don't match, we are likely racing with block
2061 			 * allocation and mapping invalidation so just skip the
2062 			 * update.
2063 			 */
2064 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2065 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2066 				goto out_unlock;
2067 			}
2068 			entry = pte_mkyoung(*pte);
2069 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2070 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2071 				update_mmu_cache(vma, addr, pte);
2072 		}
2073 		goto out_unlock;
2074 	}
2075 
2076 	/* Ok, finally just insert the thing.. */
2077 	if (pfn_t_devmap(pfn))
2078 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2079 	else
2080 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2081 
2082 	if (mkwrite) {
2083 		entry = pte_mkyoung(entry);
2084 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2085 	}
2086 
2087 	set_pte_at(mm, addr, pte, entry);
2088 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2089 
2090 out_unlock:
2091 	pte_unmap_unlock(pte, ptl);
2092 	return VM_FAULT_NOPAGE;
2093 }
2094 
2095 /**
2096  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2097  * @vma: user vma to map to
2098  * @addr: target user address of this page
2099  * @pfn: source kernel pfn
2100  * @pgprot: pgprot flags for the inserted page
2101  *
2102  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2103  * to override pgprot on a per-page basis.
2104  *
2105  * This only makes sense for IO mappings, and it makes no sense for
2106  * COW mappings.  In general, using multiple vmas is preferable;
2107  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2108  * impractical.
2109  *
2110  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2111  * a value of @pgprot different from that of @vma->vm_page_prot.
2112  *
2113  * Context: Process context.  May allocate using %GFP_KERNEL.
2114  * Return: vm_fault_t value.
2115  */
2116 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2117 			unsigned long pfn, pgprot_t pgprot)
2118 {
2119 	/*
2120 	 * Technically, architectures with pte_special can avoid all these
2121 	 * restrictions (same for remap_pfn_range).  However we would like
2122 	 * consistency in testing and feature parity among all, so we should
2123 	 * try to keep these invariants in place for everybody.
2124 	 */
2125 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2126 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2127 						(VM_PFNMAP|VM_MIXEDMAP));
2128 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2129 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2130 
2131 	if (addr < vma->vm_start || addr >= vma->vm_end)
2132 		return VM_FAULT_SIGBUS;
2133 
2134 	if (!pfn_modify_allowed(pfn, pgprot))
2135 		return VM_FAULT_SIGBUS;
2136 
2137 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2138 
2139 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2140 			false);
2141 }
2142 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2143 
2144 /**
2145  * vmf_insert_pfn - insert single pfn into user vma
2146  * @vma: user vma to map to
2147  * @addr: target user address of this page
2148  * @pfn: source kernel pfn
2149  *
2150  * Similar to vm_insert_page, this allows drivers to insert individual pages
2151  * they've allocated into a user vma. Same comments apply.
2152  *
2153  * This function should only be called from a vm_ops->fault handler, and
2154  * in that case the handler should return the result of this function.
2155  *
2156  * vma cannot be a COW mapping.
2157  *
2158  * As this is called only for pages that do not currently exist, we
2159  * do not need to flush old virtual caches or the TLB.
2160  *
2161  * Context: Process context.  May allocate using %GFP_KERNEL.
2162  * Return: vm_fault_t value.
2163  */
2164 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2165 			unsigned long pfn)
2166 {
2167 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2168 }
2169 EXPORT_SYMBOL(vmf_insert_pfn);
2170 
2171 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2172 {
2173 	/* these checks mirror the abort conditions in vm_normal_page */
2174 	if (vma->vm_flags & VM_MIXEDMAP)
2175 		return true;
2176 	if (pfn_t_devmap(pfn))
2177 		return true;
2178 	if (pfn_t_special(pfn))
2179 		return true;
2180 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2181 		return true;
2182 	return false;
2183 }
2184 
2185 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2186 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2187 		bool mkwrite)
2188 {
2189 	int err;
2190 
2191 	BUG_ON(!vm_mixed_ok(vma, pfn));
2192 
2193 	if (addr < vma->vm_start || addr >= vma->vm_end)
2194 		return VM_FAULT_SIGBUS;
2195 
2196 	track_pfn_insert(vma, &pgprot, pfn);
2197 
2198 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2199 		return VM_FAULT_SIGBUS;
2200 
2201 	/*
2202 	 * If we don't have pte special, then we have to use the pfn_valid()
2203 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2204 	 * refcount the page if pfn_valid is true (hence insert_page rather
2205 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2206 	 * without pte special, it would there be refcounted as a normal page.
2207 	 */
2208 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2209 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2210 		struct page *page;
2211 
2212 		/*
2213 		 * At this point we are committed to insert_page()
2214 		 * regardless of whether the caller specified flags that
2215 		 * result in pfn_t_has_page() == false.
2216 		 */
2217 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2218 		err = insert_page(vma, addr, page, pgprot);
2219 	} else {
2220 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2221 	}
2222 
2223 	if (err == -ENOMEM)
2224 		return VM_FAULT_OOM;
2225 	if (err < 0 && err != -EBUSY)
2226 		return VM_FAULT_SIGBUS;
2227 
2228 	return VM_FAULT_NOPAGE;
2229 }
2230 
2231 /**
2232  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2233  * @vma: user vma to map to
2234  * @addr: target user address of this page
2235  * @pfn: source kernel pfn
2236  * @pgprot: pgprot flags for the inserted page
2237  *
2238  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2239  * to override pgprot on a per-page basis.
2240  *
2241  * Typically this function should be used by drivers to set caching- and
2242  * encryption bits different than those of @vma->vm_page_prot, because
2243  * the caching- or encryption mode may not be known at mmap() time.
2244  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2245  * to set caching and encryption bits for those vmas (except for COW pages).
2246  * This is ensured by core vm only modifying these page table entries using
2247  * functions that don't touch caching- or encryption bits, using pte_modify()
2248  * if needed. (See for example mprotect()).
2249  * Also when new page-table entries are created, this is only done using the
2250  * fault() callback, and never using the value of vma->vm_page_prot,
2251  * except for page-table entries that point to anonymous pages as the result
2252  * of COW.
2253  *
2254  * Context: Process context.  May allocate using %GFP_KERNEL.
2255  * Return: vm_fault_t value.
2256  */
2257 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2258 				 pfn_t pfn, pgprot_t pgprot)
2259 {
2260 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2261 }
2262 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2263 
2264 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2265 		pfn_t pfn)
2266 {
2267 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2268 }
2269 EXPORT_SYMBOL(vmf_insert_mixed);
2270 
2271 /*
2272  *  If the insertion of PTE failed because someone else already added a
2273  *  different entry in the mean time, we treat that as success as we assume
2274  *  the same entry was actually inserted.
2275  */
2276 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2277 		unsigned long addr, pfn_t pfn)
2278 {
2279 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2280 }
2281 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2282 
2283 /*
2284  * maps a range of physical memory into the requested pages. the old
2285  * mappings are removed. any references to nonexistent pages results
2286  * in null mappings (currently treated as "copy-on-access")
2287  */
2288 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2289 			unsigned long addr, unsigned long end,
2290 			unsigned long pfn, pgprot_t prot)
2291 {
2292 	pte_t *pte, *mapped_pte;
2293 	spinlock_t *ptl;
2294 	int err = 0;
2295 
2296 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2297 	if (!pte)
2298 		return -ENOMEM;
2299 	arch_enter_lazy_mmu_mode();
2300 	do {
2301 		BUG_ON(!pte_none(*pte));
2302 		if (!pfn_modify_allowed(pfn, prot)) {
2303 			err = -EACCES;
2304 			break;
2305 		}
2306 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2307 		pfn++;
2308 	} while (pte++, addr += PAGE_SIZE, addr != end);
2309 	arch_leave_lazy_mmu_mode();
2310 	pte_unmap_unlock(mapped_pte, ptl);
2311 	return err;
2312 }
2313 
2314 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2315 			unsigned long addr, unsigned long end,
2316 			unsigned long pfn, pgprot_t prot)
2317 {
2318 	pmd_t *pmd;
2319 	unsigned long next;
2320 	int err;
2321 
2322 	pfn -= addr >> PAGE_SHIFT;
2323 	pmd = pmd_alloc(mm, pud, addr);
2324 	if (!pmd)
2325 		return -ENOMEM;
2326 	VM_BUG_ON(pmd_trans_huge(*pmd));
2327 	do {
2328 		next = pmd_addr_end(addr, end);
2329 		err = remap_pte_range(mm, pmd, addr, next,
2330 				pfn + (addr >> PAGE_SHIFT), prot);
2331 		if (err)
2332 			return err;
2333 	} while (pmd++, addr = next, addr != end);
2334 	return 0;
2335 }
2336 
2337 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2338 			unsigned long addr, unsigned long end,
2339 			unsigned long pfn, pgprot_t prot)
2340 {
2341 	pud_t *pud;
2342 	unsigned long next;
2343 	int err;
2344 
2345 	pfn -= addr >> PAGE_SHIFT;
2346 	pud = pud_alloc(mm, p4d, addr);
2347 	if (!pud)
2348 		return -ENOMEM;
2349 	do {
2350 		next = pud_addr_end(addr, end);
2351 		err = remap_pmd_range(mm, pud, addr, next,
2352 				pfn + (addr >> PAGE_SHIFT), prot);
2353 		if (err)
2354 			return err;
2355 	} while (pud++, addr = next, addr != end);
2356 	return 0;
2357 }
2358 
2359 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2360 			unsigned long addr, unsigned long end,
2361 			unsigned long pfn, pgprot_t prot)
2362 {
2363 	p4d_t *p4d;
2364 	unsigned long next;
2365 	int err;
2366 
2367 	pfn -= addr >> PAGE_SHIFT;
2368 	p4d = p4d_alloc(mm, pgd, addr);
2369 	if (!p4d)
2370 		return -ENOMEM;
2371 	do {
2372 		next = p4d_addr_end(addr, end);
2373 		err = remap_pud_range(mm, p4d, addr, next,
2374 				pfn + (addr >> PAGE_SHIFT), prot);
2375 		if (err)
2376 			return err;
2377 	} while (p4d++, addr = next, addr != end);
2378 	return 0;
2379 }
2380 
2381 /*
2382  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2383  * must have pre-validated the caching bits of the pgprot_t.
2384  */
2385 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2386 		unsigned long pfn, unsigned long size, pgprot_t prot)
2387 {
2388 	pgd_t *pgd;
2389 	unsigned long next;
2390 	unsigned long end = addr + PAGE_ALIGN(size);
2391 	struct mm_struct *mm = vma->vm_mm;
2392 	int err;
2393 
2394 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2395 		return -EINVAL;
2396 
2397 	/*
2398 	 * Physically remapped pages are special. Tell the
2399 	 * rest of the world about it:
2400 	 *   VM_IO tells people not to look at these pages
2401 	 *	(accesses can have side effects).
2402 	 *   VM_PFNMAP tells the core MM that the base pages are just
2403 	 *	raw PFN mappings, and do not have a "struct page" associated
2404 	 *	with them.
2405 	 *   VM_DONTEXPAND
2406 	 *      Disable vma merging and expanding with mremap().
2407 	 *   VM_DONTDUMP
2408 	 *      Omit vma from core dump, even when VM_IO turned off.
2409 	 *
2410 	 * There's a horrible special case to handle copy-on-write
2411 	 * behaviour that some programs depend on. We mark the "original"
2412 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2413 	 * See vm_normal_page() for details.
2414 	 */
2415 	if (is_cow_mapping(vma->vm_flags)) {
2416 		if (addr != vma->vm_start || end != vma->vm_end)
2417 			return -EINVAL;
2418 		vma->vm_pgoff = pfn;
2419 	}
2420 
2421 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2422 
2423 	BUG_ON(addr >= end);
2424 	pfn -= addr >> PAGE_SHIFT;
2425 	pgd = pgd_offset(mm, addr);
2426 	flush_cache_range(vma, addr, end);
2427 	do {
2428 		next = pgd_addr_end(addr, end);
2429 		err = remap_p4d_range(mm, pgd, addr, next,
2430 				pfn + (addr >> PAGE_SHIFT), prot);
2431 		if (err)
2432 			return err;
2433 	} while (pgd++, addr = next, addr != end);
2434 
2435 	return 0;
2436 }
2437 
2438 /**
2439  * remap_pfn_range - remap kernel memory to userspace
2440  * @vma: user vma to map to
2441  * @addr: target page aligned user address to start at
2442  * @pfn: page frame number of kernel physical memory address
2443  * @size: size of mapping area
2444  * @prot: page protection flags for this mapping
2445  *
2446  * Note: this is only safe if the mm semaphore is held when called.
2447  *
2448  * Return: %0 on success, negative error code otherwise.
2449  */
2450 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2451 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2452 {
2453 	int err;
2454 
2455 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2456 	if (err)
2457 		return -EINVAL;
2458 
2459 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2460 	if (err)
2461 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2462 	return err;
2463 }
2464 EXPORT_SYMBOL(remap_pfn_range);
2465 
2466 /**
2467  * vm_iomap_memory - remap memory to userspace
2468  * @vma: user vma to map to
2469  * @start: start of the physical memory to be mapped
2470  * @len: size of area
2471  *
2472  * This is a simplified io_remap_pfn_range() for common driver use. The
2473  * driver just needs to give us the physical memory range to be mapped,
2474  * we'll figure out the rest from the vma information.
2475  *
2476  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2477  * whatever write-combining details or similar.
2478  *
2479  * Return: %0 on success, negative error code otherwise.
2480  */
2481 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2482 {
2483 	unsigned long vm_len, pfn, pages;
2484 
2485 	/* Check that the physical memory area passed in looks valid */
2486 	if (start + len < start)
2487 		return -EINVAL;
2488 	/*
2489 	 * You *really* shouldn't map things that aren't page-aligned,
2490 	 * but we've historically allowed it because IO memory might
2491 	 * just have smaller alignment.
2492 	 */
2493 	len += start & ~PAGE_MASK;
2494 	pfn = start >> PAGE_SHIFT;
2495 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2496 	if (pfn + pages < pfn)
2497 		return -EINVAL;
2498 
2499 	/* We start the mapping 'vm_pgoff' pages into the area */
2500 	if (vma->vm_pgoff > pages)
2501 		return -EINVAL;
2502 	pfn += vma->vm_pgoff;
2503 	pages -= vma->vm_pgoff;
2504 
2505 	/* Can we fit all of the mapping? */
2506 	vm_len = vma->vm_end - vma->vm_start;
2507 	if (vm_len >> PAGE_SHIFT > pages)
2508 		return -EINVAL;
2509 
2510 	/* Ok, let it rip */
2511 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2512 }
2513 EXPORT_SYMBOL(vm_iomap_memory);
2514 
2515 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2516 				     unsigned long addr, unsigned long end,
2517 				     pte_fn_t fn, void *data, bool create,
2518 				     pgtbl_mod_mask *mask)
2519 {
2520 	pte_t *pte, *mapped_pte;
2521 	int err = 0;
2522 	spinlock_t *ptl;
2523 
2524 	if (create) {
2525 		mapped_pte = pte = (mm == &init_mm) ?
2526 			pte_alloc_kernel_track(pmd, addr, mask) :
2527 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2528 		if (!pte)
2529 			return -ENOMEM;
2530 	} else {
2531 		mapped_pte = pte = (mm == &init_mm) ?
2532 			pte_offset_kernel(pmd, addr) :
2533 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2534 	}
2535 
2536 	BUG_ON(pmd_huge(*pmd));
2537 
2538 	arch_enter_lazy_mmu_mode();
2539 
2540 	if (fn) {
2541 		do {
2542 			if (create || !pte_none(*pte)) {
2543 				err = fn(pte++, addr, data);
2544 				if (err)
2545 					break;
2546 			}
2547 		} while (addr += PAGE_SIZE, addr != end);
2548 	}
2549 	*mask |= PGTBL_PTE_MODIFIED;
2550 
2551 	arch_leave_lazy_mmu_mode();
2552 
2553 	if (mm != &init_mm)
2554 		pte_unmap_unlock(mapped_pte, ptl);
2555 	return err;
2556 }
2557 
2558 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2559 				     unsigned long addr, unsigned long end,
2560 				     pte_fn_t fn, void *data, bool create,
2561 				     pgtbl_mod_mask *mask)
2562 {
2563 	pmd_t *pmd;
2564 	unsigned long next;
2565 	int err = 0;
2566 
2567 	BUG_ON(pud_huge(*pud));
2568 
2569 	if (create) {
2570 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2571 		if (!pmd)
2572 			return -ENOMEM;
2573 	} else {
2574 		pmd = pmd_offset(pud, addr);
2575 	}
2576 	do {
2577 		next = pmd_addr_end(addr, end);
2578 		if (pmd_none(*pmd) && !create)
2579 			continue;
2580 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2581 			return -EINVAL;
2582 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2583 			if (!create)
2584 				continue;
2585 			pmd_clear_bad(pmd);
2586 		}
2587 		err = apply_to_pte_range(mm, pmd, addr, next,
2588 					 fn, data, create, mask);
2589 		if (err)
2590 			break;
2591 	} while (pmd++, addr = next, addr != end);
2592 
2593 	return err;
2594 }
2595 
2596 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2597 				     unsigned long addr, unsigned long end,
2598 				     pte_fn_t fn, void *data, bool create,
2599 				     pgtbl_mod_mask *mask)
2600 {
2601 	pud_t *pud;
2602 	unsigned long next;
2603 	int err = 0;
2604 
2605 	if (create) {
2606 		pud = pud_alloc_track(mm, p4d, addr, mask);
2607 		if (!pud)
2608 			return -ENOMEM;
2609 	} else {
2610 		pud = pud_offset(p4d, addr);
2611 	}
2612 	do {
2613 		next = pud_addr_end(addr, end);
2614 		if (pud_none(*pud) && !create)
2615 			continue;
2616 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2617 			return -EINVAL;
2618 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2619 			if (!create)
2620 				continue;
2621 			pud_clear_bad(pud);
2622 		}
2623 		err = apply_to_pmd_range(mm, pud, addr, next,
2624 					 fn, data, create, mask);
2625 		if (err)
2626 			break;
2627 	} while (pud++, addr = next, addr != end);
2628 
2629 	return err;
2630 }
2631 
2632 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2633 				     unsigned long addr, unsigned long end,
2634 				     pte_fn_t fn, void *data, bool create,
2635 				     pgtbl_mod_mask *mask)
2636 {
2637 	p4d_t *p4d;
2638 	unsigned long next;
2639 	int err = 0;
2640 
2641 	if (create) {
2642 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2643 		if (!p4d)
2644 			return -ENOMEM;
2645 	} else {
2646 		p4d = p4d_offset(pgd, addr);
2647 	}
2648 	do {
2649 		next = p4d_addr_end(addr, end);
2650 		if (p4d_none(*p4d) && !create)
2651 			continue;
2652 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2653 			return -EINVAL;
2654 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2655 			if (!create)
2656 				continue;
2657 			p4d_clear_bad(p4d);
2658 		}
2659 		err = apply_to_pud_range(mm, p4d, addr, next,
2660 					 fn, data, create, mask);
2661 		if (err)
2662 			break;
2663 	} while (p4d++, addr = next, addr != end);
2664 
2665 	return err;
2666 }
2667 
2668 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2669 				 unsigned long size, pte_fn_t fn,
2670 				 void *data, bool create)
2671 {
2672 	pgd_t *pgd;
2673 	unsigned long start = addr, next;
2674 	unsigned long end = addr + size;
2675 	pgtbl_mod_mask mask = 0;
2676 	int err = 0;
2677 
2678 	if (WARN_ON(addr >= end))
2679 		return -EINVAL;
2680 
2681 	pgd = pgd_offset(mm, addr);
2682 	do {
2683 		next = pgd_addr_end(addr, end);
2684 		if (pgd_none(*pgd) && !create)
2685 			continue;
2686 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2687 			return -EINVAL;
2688 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2689 			if (!create)
2690 				continue;
2691 			pgd_clear_bad(pgd);
2692 		}
2693 		err = apply_to_p4d_range(mm, pgd, addr, next,
2694 					 fn, data, create, &mask);
2695 		if (err)
2696 			break;
2697 	} while (pgd++, addr = next, addr != end);
2698 
2699 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2700 		arch_sync_kernel_mappings(start, start + size);
2701 
2702 	return err;
2703 }
2704 
2705 /*
2706  * Scan a region of virtual memory, filling in page tables as necessary
2707  * and calling a provided function on each leaf page table.
2708  */
2709 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2710 			unsigned long size, pte_fn_t fn, void *data)
2711 {
2712 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2713 }
2714 EXPORT_SYMBOL_GPL(apply_to_page_range);
2715 
2716 /*
2717  * Scan a region of virtual memory, calling a provided function on
2718  * each leaf page table where it exists.
2719  *
2720  * Unlike apply_to_page_range, this does _not_ fill in page tables
2721  * where they are absent.
2722  */
2723 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2724 				 unsigned long size, pte_fn_t fn, void *data)
2725 {
2726 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2727 }
2728 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2729 
2730 /*
2731  * handle_pte_fault chooses page fault handler according to an entry which was
2732  * read non-atomically.  Before making any commitment, on those architectures
2733  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2734  * parts, do_swap_page must check under lock before unmapping the pte and
2735  * proceeding (but do_wp_page is only called after already making such a check;
2736  * and do_anonymous_page can safely check later on).
2737  */
2738 static inline int pte_unmap_same(struct vm_fault *vmf)
2739 {
2740 	int same = 1;
2741 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2742 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2743 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2744 		spin_lock(ptl);
2745 		same = pte_same(*vmf->pte, vmf->orig_pte);
2746 		spin_unlock(ptl);
2747 	}
2748 #endif
2749 	pte_unmap(vmf->pte);
2750 	vmf->pte = NULL;
2751 	return same;
2752 }
2753 
2754 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2755 				       struct vm_fault *vmf)
2756 {
2757 	bool ret;
2758 	void *kaddr;
2759 	void __user *uaddr;
2760 	bool locked = false;
2761 	struct vm_area_struct *vma = vmf->vma;
2762 	struct mm_struct *mm = vma->vm_mm;
2763 	unsigned long addr = vmf->address;
2764 
2765 	if (likely(src)) {
2766 		copy_user_highpage(dst, src, addr, vma);
2767 		return true;
2768 	}
2769 
2770 	/*
2771 	 * If the source page was a PFN mapping, we don't have
2772 	 * a "struct page" for it. We do a best-effort copy by
2773 	 * just copying from the original user address. If that
2774 	 * fails, we just zero-fill it. Live with it.
2775 	 */
2776 	kaddr = kmap_atomic(dst);
2777 	uaddr = (void __user *)(addr & PAGE_MASK);
2778 
2779 	/*
2780 	 * On architectures with software "accessed" bits, we would
2781 	 * take a double page fault, so mark it accessed here.
2782 	 */
2783 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2784 		pte_t entry;
2785 
2786 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2787 		locked = true;
2788 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2789 			/*
2790 			 * Other thread has already handled the fault
2791 			 * and update local tlb only
2792 			 */
2793 			update_mmu_tlb(vma, addr, vmf->pte);
2794 			ret = false;
2795 			goto pte_unlock;
2796 		}
2797 
2798 		entry = pte_mkyoung(vmf->orig_pte);
2799 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2800 			update_mmu_cache(vma, addr, vmf->pte);
2801 	}
2802 
2803 	/*
2804 	 * This really shouldn't fail, because the page is there
2805 	 * in the page tables. But it might just be unreadable,
2806 	 * in which case we just give up and fill the result with
2807 	 * zeroes.
2808 	 */
2809 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2810 		if (locked)
2811 			goto warn;
2812 
2813 		/* Re-validate under PTL if the page is still mapped */
2814 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2815 		locked = true;
2816 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2817 			/* The PTE changed under us, update local tlb */
2818 			update_mmu_tlb(vma, addr, vmf->pte);
2819 			ret = false;
2820 			goto pte_unlock;
2821 		}
2822 
2823 		/*
2824 		 * The same page can be mapped back since last copy attempt.
2825 		 * Try to copy again under PTL.
2826 		 */
2827 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2828 			/*
2829 			 * Give a warn in case there can be some obscure
2830 			 * use-case
2831 			 */
2832 warn:
2833 			WARN_ON_ONCE(1);
2834 			clear_page(kaddr);
2835 		}
2836 	}
2837 
2838 	ret = true;
2839 
2840 pte_unlock:
2841 	if (locked)
2842 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2843 	kunmap_atomic(kaddr);
2844 	flush_dcache_page(dst);
2845 
2846 	return ret;
2847 }
2848 
2849 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2850 {
2851 	struct file *vm_file = vma->vm_file;
2852 
2853 	if (vm_file)
2854 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2855 
2856 	/*
2857 	 * Special mappings (e.g. VDSO) do not have any file so fake
2858 	 * a default GFP_KERNEL for them.
2859 	 */
2860 	return GFP_KERNEL;
2861 }
2862 
2863 /*
2864  * Notify the address space that the page is about to become writable so that
2865  * it can prohibit this or wait for the page to get into an appropriate state.
2866  *
2867  * We do this without the lock held, so that it can sleep if it needs to.
2868  */
2869 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2870 {
2871 	vm_fault_t ret;
2872 	struct page *page = vmf->page;
2873 	unsigned int old_flags = vmf->flags;
2874 
2875 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2876 
2877 	if (vmf->vma->vm_file &&
2878 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2879 		return VM_FAULT_SIGBUS;
2880 
2881 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2882 	/* Restore original flags so that caller is not surprised */
2883 	vmf->flags = old_flags;
2884 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2885 		return ret;
2886 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2887 		lock_page(page);
2888 		if (!page->mapping) {
2889 			unlock_page(page);
2890 			return 0; /* retry */
2891 		}
2892 		ret |= VM_FAULT_LOCKED;
2893 	} else
2894 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2895 	return ret;
2896 }
2897 
2898 /*
2899  * Handle dirtying of a page in shared file mapping on a write fault.
2900  *
2901  * The function expects the page to be locked and unlocks it.
2902  */
2903 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2904 {
2905 	struct vm_area_struct *vma = vmf->vma;
2906 	struct address_space *mapping;
2907 	struct page *page = vmf->page;
2908 	bool dirtied;
2909 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2910 
2911 	dirtied = set_page_dirty(page);
2912 	VM_BUG_ON_PAGE(PageAnon(page), page);
2913 	/*
2914 	 * Take a local copy of the address_space - page.mapping may be zeroed
2915 	 * by truncate after unlock_page().   The address_space itself remains
2916 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2917 	 * release semantics to prevent the compiler from undoing this copying.
2918 	 */
2919 	mapping = page_rmapping(page);
2920 	unlock_page(page);
2921 
2922 	if (!page_mkwrite)
2923 		file_update_time(vma->vm_file);
2924 
2925 	/*
2926 	 * Throttle page dirtying rate down to writeback speed.
2927 	 *
2928 	 * mapping may be NULL here because some device drivers do not
2929 	 * set page.mapping but still dirty their pages
2930 	 *
2931 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2932 	 * is pinning the mapping, as per above.
2933 	 */
2934 	if ((dirtied || page_mkwrite) && mapping) {
2935 		struct file *fpin;
2936 
2937 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2938 		balance_dirty_pages_ratelimited(mapping);
2939 		if (fpin) {
2940 			fput(fpin);
2941 			return VM_FAULT_RETRY;
2942 		}
2943 	}
2944 
2945 	return 0;
2946 }
2947 
2948 /*
2949  * Handle write page faults for pages that can be reused in the current vma
2950  *
2951  * This can happen either due to the mapping being with the VM_SHARED flag,
2952  * or due to us being the last reference standing to the page. In either
2953  * case, all we need to do here is to mark the page as writable and update
2954  * any related book-keeping.
2955  */
2956 static inline void wp_page_reuse(struct vm_fault *vmf)
2957 	__releases(vmf->ptl)
2958 {
2959 	struct vm_area_struct *vma = vmf->vma;
2960 	struct page *page = vmf->page;
2961 	pte_t entry;
2962 
2963 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
2964 	VM_BUG_ON(PageAnon(page) && !PageAnonExclusive(page));
2965 
2966 	/*
2967 	 * Clear the pages cpupid information as the existing
2968 	 * information potentially belongs to a now completely
2969 	 * unrelated process.
2970 	 */
2971 	if (page)
2972 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2973 
2974 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2975 	entry = pte_mkyoung(vmf->orig_pte);
2976 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2977 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2978 		update_mmu_cache(vma, vmf->address, vmf->pte);
2979 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2980 	count_vm_event(PGREUSE);
2981 }
2982 
2983 /*
2984  * Handle the case of a page which we actually need to copy to a new page,
2985  * either due to COW or unsharing.
2986  *
2987  * Called with mmap_lock locked and the old page referenced, but
2988  * without the ptl held.
2989  *
2990  * High level logic flow:
2991  *
2992  * - Allocate a page, copy the content of the old page to the new one.
2993  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2994  * - Take the PTL. If the pte changed, bail out and release the allocated page
2995  * - If the pte is still the way we remember it, update the page table and all
2996  *   relevant references. This includes dropping the reference the page-table
2997  *   held to the old page, as well as updating the rmap.
2998  * - In any case, unlock the PTL and drop the reference we took to the old page.
2999  */
3000 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3001 {
3002 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3003 	struct vm_area_struct *vma = vmf->vma;
3004 	struct mm_struct *mm = vma->vm_mm;
3005 	struct page *old_page = vmf->page;
3006 	struct page *new_page = NULL;
3007 	pte_t entry;
3008 	int page_copied = 0;
3009 	struct mmu_notifier_range range;
3010 
3011 	if (unlikely(anon_vma_prepare(vma)))
3012 		goto oom;
3013 
3014 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3015 		new_page = alloc_zeroed_user_highpage_movable(vma,
3016 							      vmf->address);
3017 		if (!new_page)
3018 			goto oom;
3019 	} else {
3020 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3021 				vmf->address);
3022 		if (!new_page)
3023 			goto oom;
3024 
3025 		if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3026 			/*
3027 			 * COW failed, if the fault was solved by other,
3028 			 * it's fine. If not, userspace would re-fault on
3029 			 * the same address and we will handle the fault
3030 			 * from the second attempt.
3031 			 */
3032 			put_page(new_page);
3033 			if (old_page)
3034 				put_page(old_page);
3035 			return 0;
3036 		}
3037 	}
3038 
3039 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3040 		goto oom_free_new;
3041 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3042 
3043 	__SetPageUptodate(new_page);
3044 
3045 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3046 				vmf->address & PAGE_MASK,
3047 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3048 	mmu_notifier_invalidate_range_start(&range);
3049 
3050 	/*
3051 	 * Re-check the pte - we dropped the lock
3052 	 */
3053 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3054 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3055 		if (old_page) {
3056 			if (!PageAnon(old_page)) {
3057 				dec_mm_counter_fast(mm,
3058 						mm_counter_file(old_page));
3059 				inc_mm_counter_fast(mm, MM_ANONPAGES);
3060 			}
3061 		} else {
3062 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3063 		}
3064 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3065 		entry = mk_pte(new_page, vma->vm_page_prot);
3066 		entry = pte_sw_mkyoung(entry);
3067 		if (unlikely(unshare)) {
3068 			if (pte_soft_dirty(vmf->orig_pte))
3069 				entry = pte_mksoft_dirty(entry);
3070 			if (pte_uffd_wp(vmf->orig_pte))
3071 				entry = pte_mkuffd_wp(entry);
3072 		} else {
3073 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3074 		}
3075 
3076 		/*
3077 		 * Clear the pte entry and flush it first, before updating the
3078 		 * pte with the new entry, to keep TLBs on different CPUs in
3079 		 * sync. This code used to set the new PTE then flush TLBs, but
3080 		 * that left a window where the new PTE could be loaded into
3081 		 * some TLBs while the old PTE remains in others.
3082 		 */
3083 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3084 		page_add_new_anon_rmap(new_page, vma, vmf->address);
3085 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3086 		/*
3087 		 * We call the notify macro here because, when using secondary
3088 		 * mmu page tables (such as kvm shadow page tables), we want the
3089 		 * new page to be mapped directly into the secondary page table.
3090 		 */
3091 		BUG_ON(unshare && pte_write(entry));
3092 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3093 		update_mmu_cache(vma, vmf->address, vmf->pte);
3094 		if (old_page) {
3095 			/*
3096 			 * Only after switching the pte to the new page may
3097 			 * we remove the mapcount here. Otherwise another
3098 			 * process may come and find the rmap count decremented
3099 			 * before the pte is switched to the new page, and
3100 			 * "reuse" the old page writing into it while our pte
3101 			 * here still points into it and can be read by other
3102 			 * threads.
3103 			 *
3104 			 * The critical issue is to order this
3105 			 * page_remove_rmap with the ptp_clear_flush above.
3106 			 * Those stores are ordered by (if nothing else,)
3107 			 * the barrier present in the atomic_add_negative
3108 			 * in page_remove_rmap.
3109 			 *
3110 			 * Then the TLB flush in ptep_clear_flush ensures that
3111 			 * no process can access the old page before the
3112 			 * decremented mapcount is visible. And the old page
3113 			 * cannot be reused until after the decremented
3114 			 * mapcount is visible. So transitively, TLBs to
3115 			 * old page will be flushed before it can be reused.
3116 			 */
3117 			page_remove_rmap(old_page, vma, false);
3118 		}
3119 
3120 		/* Free the old page.. */
3121 		new_page = old_page;
3122 		page_copied = 1;
3123 	} else {
3124 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3125 	}
3126 
3127 	if (new_page)
3128 		put_page(new_page);
3129 
3130 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3131 	/*
3132 	 * No need to double call mmu_notifier->invalidate_range() callback as
3133 	 * the above ptep_clear_flush_notify() did already call it.
3134 	 */
3135 	mmu_notifier_invalidate_range_only_end(&range);
3136 	if (old_page) {
3137 		if (page_copied)
3138 			free_swap_cache(old_page);
3139 		put_page(old_page);
3140 	}
3141 	return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3142 oom_free_new:
3143 	put_page(new_page);
3144 oom:
3145 	if (old_page)
3146 		put_page(old_page);
3147 	return VM_FAULT_OOM;
3148 }
3149 
3150 /**
3151  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3152  *			  writeable once the page is prepared
3153  *
3154  * @vmf: structure describing the fault
3155  *
3156  * This function handles all that is needed to finish a write page fault in a
3157  * shared mapping due to PTE being read-only once the mapped page is prepared.
3158  * It handles locking of PTE and modifying it.
3159  *
3160  * The function expects the page to be locked or other protection against
3161  * concurrent faults / writeback (such as DAX radix tree locks).
3162  *
3163  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3164  * we acquired PTE lock.
3165  */
3166 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3167 {
3168 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3169 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3170 				       &vmf->ptl);
3171 	/*
3172 	 * We might have raced with another page fault while we released the
3173 	 * pte_offset_map_lock.
3174 	 */
3175 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3176 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3177 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3178 		return VM_FAULT_NOPAGE;
3179 	}
3180 	wp_page_reuse(vmf);
3181 	return 0;
3182 }
3183 
3184 /*
3185  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3186  * mapping
3187  */
3188 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3189 {
3190 	struct vm_area_struct *vma = vmf->vma;
3191 
3192 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3193 		vm_fault_t ret;
3194 
3195 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3196 		vmf->flags |= FAULT_FLAG_MKWRITE;
3197 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3198 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3199 			return ret;
3200 		return finish_mkwrite_fault(vmf);
3201 	}
3202 	wp_page_reuse(vmf);
3203 	return VM_FAULT_WRITE;
3204 }
3205 
3206 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3207 	__releases(vmf->ptl)
3208 {
3209 	struct vm_area_struct *vma = vmf->vma;
3210 	vm_fault_t ret = VM_FAULT_WRITE;
3211 
3212 	get_page(vmf->page);
3213 
3214 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3215 		vm_fault_t tmp;
3216 
3217 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3218 		tmp = do_page_mkwrite(vmf);
3219 		if (unlikely(!tmp || (tmp &
3220 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3221 			put_page(vmf->page);
3222 			return tmp;
3223 		}
3224 		tmp = finish_mkwrite_fault(vmf);
3225 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3226 			unlock_page(vmf->page);
3227 			put_page(vmf->page);
3228 			return tmp;
3229 		}
3230 	} else {
3231 		wp_page_reuse(vmf);
3232 		lock_page(vmf->page);
3233 	}
3234 	ret |= fault_dirty_shared_page(vmf);
3235 	put_page(vmf->page);
3236 
3237 	return ret;
3238 }
3239 
3240 /*
3241  * This routine handles present pages, when
3242  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3243  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3244  *   (FAULT_FLAG_UNSHARE)
3245  *
3246  * It is done by copying the page to a new address and decrementing the
3247  * shared-page counter for the old page.
3248  *
3249  * Note that this routine assumes that the protection checks have been
3250  * done by the caller (the low-level page fault routine in most cases).
3251  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3252  * done any necessary COW.
3253  *
3254  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3255  * though the page will change only once the write actually happens. This
3256  * avoids a few races, and potentially makes it more efficient.
3257  *
3258  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3259  * but allow concurrent faults), with pte both mapped and locked.
3260  * We return with mmap_lock still held, but pte unmapped and unlocked.
3261  */
3262 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3263 	__releases(vmf->ptl)
3264 {
3265 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3266 	struct vm_area_struct *vma = vmf->vma;
3267 
3268 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3269 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3270 
3271 	if (likely(!unshare)) {
3272 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3273 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3274 			return handle_userfault(vmf, VM_UFFD_WP);
3275 		}
3276 
3277 		/*
3278 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3279 		 * is flushed in this case before copying.
3280 		 */
3281 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3282 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3283 			flush_tlb_page(vmf->vma, vmf->address);
3284 	}
3285 
3286 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3287 	if (!vmf->page) {
3288 		if (unlikely(unshare)) {
3289 			/* No anonymous page -> nothing to do. */
3290 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3291 			return 0;
3292 		}
3293 
3294 		/*
3295 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3296 		 * VM_PFNMAP VMA.
3297 		 *
3298 		 * We should not cow pages in a shared writeable mapping.
3299 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3300 		 */
3301 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3302 				     (VM_WRITE|VM_SHARED))
3303 			return wp_pfn_shared(vmf);
3304 
3305 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3306 		return wp_page_copy(vmf);
3307 	}
3308 
3309 	/*
3310 	 * Take out anonymous pages first, anonymous shared vmas are
3311 	 * not dirty accountable.
3312 	 */
3313 	if (PageAnon(vmf->page)) {
3314 		struct page *page = vmf->page;
3315 
3316 		/*
3317 		 * If the page is exclusive to this process we must reuse the
3318 		 * page without further checks.
3319 		 */
3320 		if (PageAnonExclusive(page))
3321 			goto reuse;
3322 
3323 		/*
3324 		 * We have to verify under page lock: these early checks are
3325 		 * just an optimization to avoid locking the page and freeing
3326 		 * the swapcache if there is little hope that we can reuse.
3327 		 *
3328 		 * PageKsm() doesn't necessarily raise the page refcount.
3329 		 */
3330 		if (PageKsm(page) || page_count(page) > 3)
3331 			goto copy;
3332 		if (!PageLRU(page))
3333 			/*
3334 			 * Note: We cannot easily detect+handle references from
3335 			 * remote LRU pagevecs or references to PageLRU() pages.
3336 			 */
3337 			lru_add_drain();
3338 		if (page_count(page) > 1 + PageSwapCache(page))
3339 			goto copy;
3340 		if (!trylock_page(page))
3341 			goto copy;
3342 		if (PageSwapCache(page))
3343 			try_to_free_swap(page);
3344 		if (PageKsm(page) || page_count(page) != 1) {
3345 			unlock_page(page);
3346 			goto copy;
3347 		}
3348 		/*
3349 		 * Ok, we've got the only page reference from our mapping
3350 		 * and the page is locked, it's dark out, and we're wearing
3351 		 * sunglasses. Hit it.
3352 		 */
3353 		page_move_anon_rmap(page, vma);
3354 		unlock_page(page);
3355 reuse:
3356 		if (unlikely(unshare)) {
3357 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3358 			return 0;
3359 		}
3360 		wp_page_reuse(vmf);
3361 		return VM_FAULT_WRITE;
3362 	} else if (unshare) {
3363 		/* No anonymous page -> nothing to do. */
3364 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3365 		return 0;
3366 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3367 					(VM_WRITE|VM_SHARED))) {
3368 		return wp_page_shared(vmf);
3369 	}
3370 copy:
3371 	/*
3372 	 * Ok, we need to copy. Oh, well..
3373 	 */
3374 	get_page(vmf->page);
3375 
3376 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3377 #ifdef CONFIG_KSM
3378 	if (PageKsm(vmf->page))
3379 		count_vm_event(COW_KSM);
3380 #endif
3381 	return wp_page_copy(vmf);
3382 }
3383 
3384 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3385 		unsigned long start_addr, unsigned long end_addr,
3386 		struct zap_details *details)
3387 {
3388 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3389 }
3390 
3391 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3392 					    pgoff_t first_index,
3393 					    pgoff_t last_index,
3394 					    struct zap_details *details)
3395 {
3396 	struct vm_area_struct *vma;
3397 	pgoff_t vba, vea, zba, zea;
3398 
3399 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3400 		vba = vma->vm_pgoff;
3401 		vea = vba + vma_pages(vma) - 1;
3402 		zba = max(first_index, vba);
3403 		zea = min(last_index, vea);
3404 
3405 		unmap_mapping_range_vma(vma,
3406 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3407 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3408 				details);
3409 	}
3410 }
3411 
3412 /**
3413  * unmap_mapping_folio() - Unmap single folio from processes.
3414  * @folio: The locked folio to be unmapped.
3415  *
3416  * Unmap this folio from any userspace process which still has it mmaped.
3417  * Typically, for efficiency, the range of nearby pages has already been
3418  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3419  * truncation or invalidation holds the lock on a folio, it may find that
3420  * the page has been remapped again: and then uses unmap_mapping_folio()
3421  * to unmap it finally.
3422  */
3423 void unmap_mapping_folio(struct folio *folio)
3424 {
3425 	struct address_space *mapping = folio->mapping;
3426 	struct zap_details details = { };
3427 	pgoff_t	first_index;
3428 	pgoff_t	last_index;
3429 
3430 	VM_BUG_ON(!folio_test_locked(folio));
3431 
3432 	first_index = folio->index;
3433 	last_index = folio->index + folio_nr_pages(folio) - 1;
3434 
3435 	details.even_cows = false;
3436 	details.single_folio = folio;
3437 
3438 	i_mmap_lock_read(mapping);
3439 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3440 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3441 					 last_index, &details);
3442 	i_mmap_unlock_read(mapping);
3443 }
3444 
3445 /**
3446  * unmap_mapping_pages() - Unmap pages from processes.
3447  * @mapping: The address space containing pages to be unmapped.
3448  * @start: Index of first page to be unmapped.
3449  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3450  * @even_cows: Whether to unmap even private COWed pages.
3451  *
3452  * Unmap the pages in this address space from any userspace process which
3453  * has them mmaped.  Generally, you want to remove COWed pages as well when
3454  * a file is being truncated, but not when invalidating pages from the page
3455  * cache.
3456  */
3457 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3458 		pgoff_t nr, bool even_cows)
3459 {
3460 	struct zap_details details = { };
3461 	pgoff_t	first_index = start;
3462 	pgoff_t	last_index = start + nr - 1;
3463 
3464 	details.even_cows = even_cows;
3465 	if (last_index < first_index)
3466 		last_index = ULONG_MAX;
3467 
3468 	i_mmap_lock_read(mapping);
3469 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3470 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3471 					 last_index, &details);
3472 	i_mmap_unlock_read(mapping);
3473 }
3474 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3475 
3476 /**
3477  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3478  * address_space corresponding to the specified byte range in the underlying
3479  * file.
3480  *
3481  * @mapping: the address space containing mmaps to be unmapped.
3482  * @holebegin: byte in first page to unmap, relative to the start of
3483  * the underlying file.  This will be rounded down to a PAGE_SIZE
3484  * boundary.  Note that this is different from truncate_pagecache(), which
3485  * must keep the partial page.  In contrast, we must get rid of
3486  * partial pages.
3487  * @holelen: size of prospective hole in bytes.  This will be rounded
3488  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3489  * end of the file.
3490  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3491  * but 0 when invalidating pagecache, don't throw away private data.
3492  */
3493 void unmap_mapping_range(struct address_space *mapping,
3494 		loff_t const holebegin, loff_t const holelen, int even_cows)
3495 {
3496 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3497 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3498 
3499 	/* Check for overflow. */
3500 	if (sizeof(holelen) > sizeof(hlen)) {
3501 		long long holeend =
3502 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3503 		if (holeend & ~(long long)ULONG_MAX)
3504 			hlen = ULONG_MAX - hba + 1;
3505 	}
3506 
3507 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3508 }
3509 EXPORT_SYMBOL(unmap_mapping_range);
3510 
3511 /*
3512  * Restore a potential device exclusive pte to a working pte entry
3513  */
3514 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3515 {
3516 	struct page *page = vmf->page;
3517 	struct vm_area_struct *vma = vmf->vma;
3518 	struct mmu_notifier_range range;
3519 
3520 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags))
3521 		return VM_FAULT_RETRY;
3522 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3523 				vma->vm_mm, vmf->address & PAGE_MASK,
3524 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3525 	mmu_notifier_invalidate_range_start(&range);
3526 
3527 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3528 				&vmf->ptl);
3529 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3530 		restore_exclusive_pte(vma, page, vmf->address, vmf->pte);
3531 
3532 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3533 	unlock_page(page);
3534 
3535 	mmu_notifier_invalidate_range_end(&range);
3536 	return 0;
3537 }
3538 
3539 static inline bool should_try_to_free_swap(struct page *page,
3540 					   struct vm_area_struct *vma,
3541 					   unsigned int fault_flags)
3542 {
3543 	if (!PageSwapCache(page))
3544 		return false;
3545 	if (mem_cgroup_swap_full(page) || (vma->vm_flags & VM_LOCKED) ||
3546 	    PageMlocked(page))
3547 		return true;
3548 	/*
3549 	 * If we want to map a page that's in the swapcache writable, we
3550 	 * have to detect via the refcount if we're really the exclusive
3551 	 * user. Try freeing the swapcache to get rid of the swapcache
3552 	 * reference only in case it's likely that we'll be the exlusive user.
3553 	 */
3554 	return (fault_flags & FAULT_FLAG_WRITE) && !PageKsm(page) &&
3555 		page_count(page) == 2;
3556 }
3557 
3558 /*
3559  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3560  * but allow concurrent faults), and pte mapped but not yet locked.
3561  * We return with pte unmapped and unlocked.
3562  *
3563  * We return with the mmap_lock locked or unlocked in the same cases
3564  * as does filemap_fault().
3565  */
3566 vm_fault_t do_swap_page(struct vm_fault *vmf)
3567 {
3568 	struct vm_area_struct *vma = vmf->vma;
3569 	struct page *page = NULL, *swapcache;
3570 	struct swap_info_struct *si = NULL;
3571 	rmap_t rmap_flags = RMAP_NONE;
3572 	bool exclusive = false;
3573 	swp_entry_t entry;
3574 	pte_t pte;
3575 	int locked;
3576 	vm_fault_t ret = 0;
3577 	void *shadow = NULL;
3578 
3579 	if (!pte_unmap_same(vmf))
3580 		goto out;
3581 
3582 	entry = pte_to_swp_entry(vmf->orig_pte);
3583 	if (unlikely(non_swap_entry(entry))) {
3584 		if (is_migration_entry(entry)) {
3585 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3586 					     vmf->address);
3587 		} else if (is_device_exclusive_entry(entry)) {
3588 			vmf->page = pfn_swap_entry_to_page(entry);
3589 			ret = remove_device_exclusive_entry(vmf);
3590 		} else if (is_device_private_entry(entry)) {
3591 			vmf->page = pfn_swap_entry_to_page(entry);
3592 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3593 		} else if (is_hwpoison_entry(entry)) {
3594 			ret = VM_FAULT_HWPOISON;
3595 		} else {
3596 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3597 			ret = VM_FAULT_SIGBUS;
3598 		}
3599 		goto out;
3600 	}
3601 
3602 	/* Prevent swapoff from happening to us. */
3603 	si = get_swap_device(entry);
3604 	if (unlikely(!si))
3605 		goto out;
3606 
3607 	page = lookup_swap_cache(entry, vma, vmf->address);
3608 	swapcache = page;
3609 
3610 	if (!page) {
3611 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3612 		    __swap_count(entry) == 1) {
3613 			/* skip swapcache */
3614 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3615 							vmf->address);
3616 			if (page) {
3617 				__SetPageLocked(page);
3618 				__SetPageSwapBacked(page);
3619 
3620 				if (mem_cgroup_swapin_charge_page(page,
3621 					vma->vm_mm, GFP_KERNEL, entry)) {
3622 					ret = VM_FAULT_OOM;
3623 					goto out_page;
3624 				}
3625 				mem_cgroup_swapin_uncharge_swap(entry);
3626 
3627 				shadow = get_shadow_from_swap_cache(entry);
3628 				if (shadow)
3629 					workingset_refault(page_folio(page),
3630 								shadow);
3631 
3632 				lru_cache_add(page);
3633 
3634 				/* To provide entry to swap_readpage() */
3635 				set_page_private(page, entry.val);
3636 				swap_readpage(page, true, NULL);
3637 				set_page_private(page, 0);
3638 			}
3639 		} else {
3640 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3641 						vmf);
3642 			swapcache = page;
3643 		}
3644 
3645 		if (!page) {
3646 			/*
3647 			 * Back out if somebody else faulted in this pte
3648 			 * while we released the pte lock.
3649 			 */
3650 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3651 					vmf->address, &vmf->ptl);
3652 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3653 				ret = VM_FAULT_OOM;
3654 			goto unlock;
3655 		}
3656 
3657 		/* Had to read the page from swap area: Major fault */
3658 		ret = VM_FAULT_MAJOR;
3659 		count_vm_event(PGMAJFAULT);
3660 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3661 	} else if (PageHWPoison(page)) {
3662 		/*
3663 		 * hwpoisoned dirty swapcache pages are kept for killing
3664 		 * owner processes (which may be unknown at hwpoison time)
3665 		 */
3666 		ret = VM_FAULT_HWPOISON;
3667 		goto out_release;
3668 	}
3669 
3670 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3671 
3672 	if (!locked) {
3673 		ret |= VM_FAULT_RETRY;
3674 		goto out_release;
3675 	}
3676 
3677 	if (swapcache) {
3678 		/*
3679 		 * Make sure try_to_free_swap or swapoff did not release the
3680 		 * swapcache from under us.  The page pin, and pte_same test
3681 		 * below, are not enough to exclude that.  Even if it is still
3682 		 * swapcache, we need to check that the page's swap has not
3683 		 * changed.
3684 		 */
3685 		if (unlikely(!PageSwapCache(page) ||
3686 			     page_private(page) != entry.val))
3687 			goto out_page;
3688 
3689 		/*
3690 		 * KSM sometimes has to copy on read faults, for example, if
3691 		 * page->index of !PageKSM() pages would be nonlinear inside the
3692 		 * anon VMA -- PageKSM() is lost on actual swapout.
3693 		 */
3694 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3695 		if (unlikely(!page)) {
3696 			ret = VM_FAULT_OOM;
3697 			page = swapcache;
3698 			goto out_page;
3699 		}
3700 
3701 		/*
3702 		 * If we want to map a page that's in the swapcache writable, we
3703 		 * have to detect via the refcount if we're really the exclusive
3704 		 * owner. Try removing the extra reference from the local LRU
3705 		 * pagevecs if required.
3706 		 */
3707 		if ((vmf->flags & FAULT_FLAG_WRITE) && page == swapcache &&
3708 		    !PageKsm(page) && !PageLRU(page))
3709 			lru_add_drain();
3710 	}
3711 
3712 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3713 
3714 	/*
3715 	 * Back out if somebody else already faulted in this pte.
3716 	 */
3717 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3718 			&vmf->ptl);
3719 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3720 		goto out_nomap;
3721 
3722 	if (unlikely(!PageUptodate(page))) {
3723 		ret = VM_FAULT_SIGBUS;
3724 		goto out_nomap;
3725 	}
3726 
3727 	/*
3728 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3729 	 * must never point at an anonymous page in the swapcache that is
3730 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3731 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3732 	 * check after taking the PT lock and making sure that nobody
3733 	 * concurrently faulted in this page and set PG_anon_exclusive.
3734 	 */
3735 	BUG_ON(!PageAnon(page) && PageMappedToDisk(page));
3736 	BUG_ON(PageAnon(page) && PageAnonExclusive(page));
3737 
3738 	/*
3739 	 * Check under PT lock (to protect against concurrent fork() sharing
3740 	 * the swap entry concurrently) for certainly exclusive pages.
3741 	 */
3742 	if (!PageKsm(page)) {
3743 		/*
3744 		 * Note that pte_swp_exclusive() == false for architectures
3745 		 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3746 		 */
3747 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3748 		if (page != swapcache) {
3749 			/*
3750 			 * We have a fresh page that is not exposed to the
3751 			 * swapcache -> certainly exclusive.
3752 			 */
3753 			exclusive = true;
3754 		} else if (exclusive && PageWriteback(page) &&
3755 			  (swp_swap_info(entry)->flags & SWP_STABLE_WRITES)) {
3756 			/*
3757 			 * This is tricky: not all swap backends support
3758 			 * concurrent page modifications while under writeback.
3759 			 *
3760 			 * So if we stumble over such a page in the swapcache
3761 			 * we must not set the page exclusive, otherwise we can
3762 			 * map it writable without further checks and modify it
3763 			 * while still under writeback.
3764 			 *
3765 			 * For these problematic swap backends, simply drop the
3766 			 * exclusive marker: this is perfectly fine as we start
3767 			 * writeback only if we fully unmapped the page and
3768 			 * there are no unexpected references on the page after
3769 			 * unmapping succeeded. After fully unmapped, no
3770 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3771 			 * appear, so dropping the exclusive marker and mapping
3772 			 * it only R/O is fine.
3773 			 */
3774 			exclusive = false;
3775 		}
3776 	}
3777 
3778 	/*
3779 	 * Remove the swap entry and conditionally try to free up the swapcache.
3780 	 * We're already holding a reference on the page but haven't mapped it
3781 	 * yet.
3782 	 */
3783 	swap_free(entry);
3784 	if (should_try_to_free_swap(page, vma, vmf->flags))
3785 		try_to_free_swap(page);
3786 
3787 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3788 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3789 	pte = mk_pte(page, vma->vm_page_prot);
3790 
3791 	/*
3792 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3793 	 * certainly not shared either because we just allocated them without
3794 	 * exposing them to the swapcache or because the swap entry indicates
3795 	 * exclusivity.
3796 	 */
3797 	if (!PageKsm(page) && (exclusive || page_count(page) == 1)) {
3798 		if (vmf->flags & FAULT_FLAG_WRITE) {
3799 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3800 			vmf->flags &= ~FAULT_FLAG_WRITE;
3801 			ret |= VM_FAULT_WRITE;
3802 		}
3803 		rmap_flags |= RMAP_EXCLUSIVE;
3804 	}
3805 	flush_icache_page(vma, page);
3806 	if (pte_swp_soft_dirty(vmf->orig_pte))
3807 		pte = pte_mksoft_dirty(pte);
3808 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3809 		pte = pte_mkuffd_wp(pte);
3810 		pte = pte_wrprotect(pte);
3811 	}
3812 	vmf->orig_pte = pte;
3813 
3814 	/* ksm created a completely new copy */
3815 	if (unlikely(page != swapcache && swapcache)) {
3816 		page_add_new_anon_rmap(page, vma, vmf->address);
3817 		lru_cache_add_inactive_or_unevictable(page, vma);
3818 	} else {
3819 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3820 	}
3821 
3822 	VM_BUG_ON(!PageAnon(page) || (pte_write(pte) && !PageAnonExclusive(page)));
3823 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3824 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3825 
3826 	unlock_page(page);
3827 	if (page != swapcache && swapcache) {
3828 		/*
3829 		 * Hold the lock to avoid the swap entry to be reused
3830 		 * until we take the PT lock for the pte_same() check
3831 		 * (to avoid false positives from pte_same). For
3832 		 * further safety release the lock after the swap_free
3833 		 * so that the swap count won't change under a
3834 		 * parallel locked swapcache.
3835 		 */
3836 		unlock_page(swapcache);
3837 		put_page(swapcache);
3838 	}
3839 
3840 	if (vmf->flags & FAULT_FLAG_WRITE) {
3841 		ret |= do_wp_page(vmf);
3842 		if (ret & VM_FAULT_ERROR)
3843 			ret &= VM_FAULT_ERROR;
3844 		goto out;
3845 	}
3846 
3847 	/* No need to invalidate - it was non-present before */
3848 	update_mmu_cache(vma, vmf->address, vmf->pte);
3849 unlock:
3850 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3851 out:
3852 	if (si)
3853 		put_swap_device(si);
3854 	return ret;
3855 out_nomap:
3856 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3857 out_page:
3858 	unlock_page(page);
3859 out_release:
3860 	put_page(page);
3861 	if (page != swapcache && swapcache) {
3862 		unlock_page(swapcache);
3863 		put_page(swapcache);
3864 	}
3865 	if (si)
3866 		put_swap_device(si);
3867 	return ret;
3868 }
3869 
3870 /*
3871  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3872  * but allow concurrent faults), and pte mapped but not yet locked.
3873  * We return with mmap_lock still held, but pte unmapped and unlocked.
3874  */
3875 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3876 {
3877 	struct vm_area_struct *vma = vmf->vma;
3878 	struct page *page;
3879 	vm_fault_t ret = 0;
3880 	pte_t entry;
3881 
3882 	/* File mapping without ->vm_ops ? */
3883 	if (vma->vm_flags & VM_SHARED)
3884 		return VM_FAULT_SIGBUS;
3885 
3886 	/*
3887 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3888 	 * pte_offset_map() on pmds where a huge pmd might be created
3889 	 * from a different thread.
3890 	 *
3891 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3892 	 * parallel threads are excluded by other means.
3893 	 *
3894 	 * Here we only have mmap_read_lock(mm).
3895 	 */
3896 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3897 		return VM_FAULT_OOM;
3898 
3899 	/* See comment in handle_pte_fault() */
3900 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3901 		return 0;
3902 
3903 	/* Use the zero-page for reads */
3904 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3905 			!mm_forbids_zeropage(vma->vm_mm)) {
3906 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3907 						vma->vm_page_prot));
3908 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3909 				vmf->address, &vmf->ptl);
3910 		if (!pte_none(*vmf->pte)) {
3911 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3912 			goto unlock;
3913 		}
3914 		ret = check_stable_address_space(vma->vm_mm);
3915 		if (ret)
3916 			goto unlock;
3917 		/* Deliver the page fault to userland, check inside PT lock */
3918 		if (userfaultfd_missing(vma)) {
3919 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3920 			return handle_userfault(vmf, VM_UFFD_MISSING);
3921 		}
3922 		goto setpte;
3923 	}
3924 
3925 	/* Allocate our own private page. */
3926 	if (unlikely(anon_vma_prepare(vma)))
3927 		goto oom;
3928 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3929 	if (!page)
3930 		goto oom;
3931 
3932 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
3933 		goto oom_free_page;
3934 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3935 
3936 	/*
3937 	 * The memory barrier inside __SetPageUptodate makes sure that
3938 	 * preceding stores to the page contents become visible before
3939 	 * the set_pte_at() write.
3940 	 */
3941 	__SetPageUptodate(page);
3942 
3943 	entry = mk_pte(page, vma->vm_page_prot);
3944 	entry = pte_sw_mkyoung(entry);
3945 	if (vma->vm_flags & VM_WRITE)
3946 		entry = pte_mkwrite(pte_mkdirty(entry));
3947 
3948 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3949 			&vmf->ptl);
3950 	if (!pte_none(*vmf->pte)) {
3951 		update_mmu_cache(vma, vmf->address, vmf->pte);
3952 		goto release;
3953 	}
3954 
3955 	ret = check_stable_address_space(vma->vm_mm);
3956 	if (ret)
3957 		goto release;
3958 
3959 	/* Deliver the page fault to userland, check inside PT lock */
3960 	if (userfaultfd_missing(vma)) {
3961 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3962 		put_page(page);
3963 		return handle_userfault(vmf, VM_UFFD_MISSING);
3964 	}
3965 
3966 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3967 	page_add_new_anon_rmap(page, vma, vmf->address);
3968 	lru_cache_add_inactive_or_unevictable(page, vma);
3969 setpte:
3970 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3971 
3972 	/* No need to invalidate - it was non-present before */
3973 	update_mmu_cache(vma, vmf->address, vmf->pte);
3974 unlock:
3975 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3976 	return ret;
3977 release:
3978 	put_page(page);
3979 	goto unlock;
3980 oom_free_page:
3981 	put_page(page);
3982 oom:
3983 	return VM_FAULT_OOM;
3984 }
3985 
3986 /*
3987  * The mmap_lock must have been held on entry, and may have been
3988  * released depending on flags and vma->vm_ops->fault() return value.
3989  * See filemap_fault() and __lock_page_retry().
3990  */
3991 static vm_fault_t __do_fault(struct vm_fault *vmf)
3992 {
3993 	struct vm_area_struct *vma = vmf->vma;
3994 	vm_fault_t ret;
3995 
3996 	/*
3997 	 * Preallocate pte before we take page_lock because this might lead to
3998 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3999 	 *				lock_page(A)
4000 	 *				SetPageWriteback(A)
4001 	 *				unlock_page(A)
4002 	 * lock_page(B)
4003 	 *				lock_page(B)
4004 	 * pte_alloc_one
4005 	 *   shrink_page_list
4006 	 *     wait_on_page_writeback(A)
4007 	 *				SetPageWriteback(B)
4008 	 *				unlock_page(B)
4009 	 *				# flush A, B to clear the writeback
4010 	 */
4011 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4012 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4013 		if (!vmf->prealloc_pte)
4014 			return VM_FAULT_OOM;
4015 	}
4016 
4017 	ret = vma->vm_ops->fault(vmf);
4018 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4019 			    VM_FAULT_DONE_COW)))
4020 		return ret;
4021 
4022 	if (unlikely(PageHWPoison(vmf->page))) {
4023 		struct page *page = vmf->page;
4024 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4025 		if (ret & VM_FAULT_LOCKED) {
4026 			if (page_mapped(page))
4027 				unmap_mapping_pages(page_mapping(page),
4028 						    page->index, 1, false);
4029 			/* Retry if a clean page was removed from the cache. */
4030 			if (invalidate_inode_page(page))
4031 				poisonret = VM_FAULT_NOPAGE;
4032 			unlock_page(page);
4033 		}
4034 		put_page(page);
4035 		vmf->page = NULL;
4036 		return poisonret;
4037 	}
4038 
4039 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4040 		lock_page(vmf->page);
4041 	else
4042 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4043 
4044 	return ret;
4045 }
4046 
4047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4048 static void deposit_prealloc_pte(struct vm_fault *vmf)
4049 {
4050 	struct vm_area_struct *vma = vmf->vma;
4051 
4052 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4053 	/*
4054 	 * We are going to consume the prealloc table,
4055 	 * count that as nr_ptes.
4056 	 */
4057 	mm_inc_nr_ptes(vma->vm_mm);
4058 	vmf->prealloc_pte = NULL;
4059 }
4060 
4061 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4062 {
4063 	struct vm_area_struct *vma = vmf->vma;
4064 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4065 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4066 	pmd_t entry;
4067 	int i;
4068 	vm_fault_t ret = VM_FAULT_FALLBACK;
4069 
4070 	if (!transhuge_vma_suitable(vma, haddr))
4071 		return ret;
4072 
4073 	page = compound_head(page);
4074 	if (compound_order(page) != HPAGE_PMD_ORDER)
4075 		return ret;
4076 
4077 	/*
4078 	 * Just backoff if any subpage of a THP is corrupted otherwise
4079 	 * the corrupted page may mapped by PMD silently to escape the
4080 	 * check.  This kind of THP just can be PTE mapped.  Access to
4081 	 * the corrupted subpage should trigger SIGBUS as expected.
4082 	 */
4083 	if (unlikely(PageHasHWPoisoned(page)))
4084 		return ret;
4085 
4086 	/*
4087 	 * Archs like ppc64 need additional space to store information
4088 	 * related to pte entry. Use the preallocated table for that.
4089 	 */
4090 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4091 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4092 		if (!vmf->prealloc_pte)
4093 			return VM_FAULT_OOM;
4094 	}
4095 
4096 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4097 	if (unlikely(!pmd_none(*vmf->pmd)))
4098 		goto out;
4099 
4100 	for (i = 0; i < HPAGE_PMD_NR; i++)
4101 		flush_icache_page(vma, page + i);
4102 
4103 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4104 	if (write)
4105 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4106 
4107 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4108 	page_add_file_rmap(page, vma, true);
4109 
4110 	/*
4111 	 * deposit and withdraw with pmd lock held
4112 	 */
4113 	if (arch_needs_pgtable_deposit())
4114 		deposit_prealloc_pte(vmf);
4115 
4116 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4117 
4118 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4119 
4120 	/* fault is handled */
4121 	ret = 0;
4122 	count_vm_event(THP_FILE_MAPPED);
4123 out:
4124 	spin_unlock(vmf->ptl);
4125 	return ret;
4126 }
4127 #else
4128 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4129 {
4130 	return VM_FAULT_FALLBACK;
4131 }
4132 #endif
4133 
4134 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4135 {
4136 	struct vm_area_struct *vma = vmf->vma;
4137 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4138 	bool prefault = vmf->address != addr;
4139 	pte_t entry;
4140 
4141 	flush_icache_page(vma, page);
4142 	entry = mk_pte(page, vma->vm_page_prot);
4143 
4144 	if (prefault && arch_wants_old_prefaulted_pte())
4145 		entry = pte_mkold(entry);
4146 	else
4147 		entry = pte_sw_mkyoung(entry);
4148 
4149 	if (write)
4150 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4151 	/* copy-on-write page */
4152 	if (write && !(vma->vm_flags & VM_SHARED)) {
4153 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4154 		page_add_new_anon_rmap(page, vma, addr);
4155 		lru_cache_add_inactive_or_unevictable(page, vma);
4156 	} else {
4157 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4158 		page_add_file_rmap(page, vma, false);
4159 	}
4160 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4161 }
4162 
4163 /**
4164  * finish_fault - finish page fault once we have prepared the page to fault
4165  *
4166  * @vmf: structure describing the fault
4167  *
4168  * This function handles all that is needed to finish a page fault once the
4169  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4170  * given page, adds reverse page mapping, handles memcg charges and LRU
4171  * addition.
4172  *
4173  * The function expects the page to be locked and on success it consumes a
4174  * reference of a page being mapped (for the PTE which maps it).
4175  *
4176  * Return: %0 on success, %VM_FAULT_ code in case of error.
4177  */
4178 vm_fault_t finish_fault(struct vm_fault *vmf)
4179 {
4180 	struct vm_area_struct *vma = vmf->vma;
4181 	struct page *page;
4182 	vm_fault_t ret;
4183 
4184 	/* Did we COW the page? */
4185 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4186 		page = vmf->cow_page;
4187 	else
4188 		page = vmf->page;
4189 
4190 	/*
4191 	 * check even for read faults because we might have lost our CoWed
4192 	 * page
4193 	 */
4194 	if (!(vma->vm_flags & VM_SHARED)) {
4195 		ret = check_stable_address_space(vma->vm_mm);
4196 		if (ret)
4197 			return ret;
4198 	}
4199 
4200 	if (pmd_none(*vmf->pmd)) {
4201 		if (PageTransCompound(page)) {
4202 			ret = do_set_pmd(vmf, page);
4203 			if (ret != VM_FAULT_FALLBACK)
4204 				return ret;
4205 		}
4206 
4207 		if (vmf->prealloc_pte)
4208 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4209 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4210 			return VM_FAULT_OOM;
4211 	}
4212 
4213 	/* See comment in handle_pte_fault() */
4214 	if (pmd_devmap_trans_unstable(vmf->pmd))
4215 		return 0;
4216 
4217 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4218 				      vmf->address, &vmf->ptl);
4219 	ret = 0;
4220 	/* Re-check under ptl */
4221 	if (likely(pte_none(*vmf->pte)))
4222 		do_set_pte(vmf, page, vmf->address);
4223 	else
4224 		ret = VM_FAULT_NOPAGE;
4225 
4226 	update_mmu_tlb(vma, vmf->address, vmf->pte);
4227 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4228 	return ret;
4229 }
4230 
4231 static unsigned long fault_around_bytes __read_mostly =
4232 	rounddown_pow_of_two(65536);
4233 
4234 #ifdef CONFIG_DEBUG_FS
4235 static int fault_around_bytes_get(void *data, u64 *val)
4236 {
4237 	*val = fault_around_bytes;
4238 	return 0;
4239 }
4240 
4241 /*
4242  * fault_around_bytes must be rounded down to the nearest page order as it's
4243  * what do_fault_around() expects to see.
4244  */
4245 static int fault_around_bytes_set(void *data, u64 val)
4246 {
4247 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4248 		return -EINVAL;
4249 	if (val > PAGE_SIZE)
4250 		fault_around_bytes = rounddown_pow_of_two(val);
4251 	else
4252 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4253 	return 0;
4254 }
4255 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4256 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4257 
4258 static int __init fault_around_debugfs(void)
4259 {
4260 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4261 				   &fault_around_bytes_fops);
4262 	return 0;
4263 }
4264 late_initcall(fault_around_debugfs);
4265 #endif
4266 
4267 /*
4268  * do_fault_around() tries to map few pages around the fault address. The hope
4269  * is that the pages will be needed soon and this will lower the number of
4270  * faults to handle.
4271  *
4272  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4273  * not ready to be mapped: not up-to-date, locked, etc.
4274  *
4275  * This function is called with the page table lock taken. In the split ptlock
4276  * case the page table lock only protects only those entries which belong to
4277  * the page table corresponding to the fault address.
4278  *
4279  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4280  * only once.
4281  *
4282  * fault_around_bytes defines how many bytes we'll try to map.
4283  * do_fault_around() expects it to be set to a power of two less than or equal
4284  * to PTRS_PER_PTE.
4285  *
4286  * The virtual address of the area that we map is naturally aligned to
4287  * fault_around_bytes rounded down to the machine page size
4288  * (and therefore to page order).  This way it's easier to guarantee
4289  * that we don't cross page table boundaries.
4290  */
4291 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4292 {
4293 	unsigned long address = vmf->address, nr_pages, mask;
4294 	pgoff_t start_pgoff = vmf->pgoff;
4295 	pgoff_t end_pgoff;
4296 	int off;
4297 
4298 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4299 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4300 
4301 	address = max(address & mask, vmf->vma->vm_start);
4302 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4303 	start_pgoff -= off;
4304 
4305 	/*
4306 	 *  end_pgoff is either the end of the page table, the end of
4307 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4308 	 */
4309 	end_pgoff = start_pgoff -
4310 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4311 		PTRS_PER_PTE - 1;
4312 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4313 			start_pgoff + nr_pages - 1);
4314 
4315 	if (pmd_none(*vmf->pmd)) {
4316 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4317 		if (!vmf->prealloc_pte)
4318 			return VM_FAULT_OOM;
4319 	}
4320 
4321 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4322 }
4323 
4324 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4325 {
4326 	struct vm_area_struct *vma = vmf->vma;
4327 	vm_fault_t ret = 0;
4328 
4329 	/*
4330 	 * Let's call ->map_pages() first and use ->fault() as fallback
4331 	 * if page by the offset is not ready to be mapped (cold cache or
4332 	 * something).
4333 	 */
4334 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
4335 		if (likely(!userfaultfd_minor(vmf->vma))) {
4336 			ret = do_fault_around(vmf);
4337 			if (ret)
4338 				return ret;
4339 		}
4340 	}
4341 
4342 	ret = __do_fault(vmf);
4343 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4344 		return ret;
4345 
4346 	ret |= finish_fault(vmf);
4347 	unlock_page(vmf->page);
4348 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4349 		put_page(vmf->page);
4350 	return ret;
4351 }
4352 
4353 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4354 {
4355 	struct vm_area_struct *vma = vmf->vma;
4356 	vm_fault_t ret;
4357 
4358 	if (unlikely(anon_vma_prepare(vma)))
4359 		return VM_FAULT_OOM;
4360 
4361 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4362 	if (!vmf->cow_page)
4363 		return VM_FAULT_OOM;
4364 
4365 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4366 				GFP_KERNEL)) {
4367 		put_page(vmf->cow_page);
4368 		return VM_FAULT_OOM;
4369 	}
4370 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4371 
4372 	ret = __do_fault(vmf);
4373 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4374 		goto uncharge_out;
4375 	if (ret & VM_FAULT_DONE_COW)
4376 		return ret;
4377 
4378 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4379 	__SetPageUptodate(vmf->cow_page);
4380 
4381 	ret |= finish_fault(vmf);
4382 	unlock_page(vmf->page);
4383 	put_page(vmf->page);
4384 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4385 		goto uncharge_out;
4386 	return ret;
4387 uncharge_out:
4388 	put_page(vmf->cow_page);
4389 	return ret;
4390 }
4391 
4392 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4393 {
4394 	struct vm_area_struct *vma = vmf->vma;
4395 	vm_fault_t ret, tmp;
4396 
4397 	ret = __do_fault(vmf);
4398 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4399 		return ret;
4400 
4401 	/*
4402 	 * Check if the backing address space wants to know that the page is
4403 	 * about to become writable
4404 	 */
4405 	if (vma->vm_ops->page_mkwrite) {
4406 		unlock_page(vmf->page);
4407 		tmp = do_page_mkwrite(vmf);
4408 		if (unlikely(!tmp ||
4409 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4410 			put_page(vmf->page);
4411 			return tmp;
4412 		}
4413 	}
4414 
4415 	ret |= finish_fault(vmf);
4416 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4417 					VM_FAULT_RETRY))) {
4418 		unlock_page(vmf->page);
4419 		put_page(vmf->page);
4420 		return ret;
4421 	}
4422 
4423 	ret |= fault_dirty_shared_page(vmf);
4424 	return ret;
4425 }
4426 
4427 /*
4428  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4429  * but allow concurrent faults).
4430  * The mmap_lock may have been released depending on flags and our
4431  * return value.  See filemap_fault() and __folio_lock_or_retry().
4432  * If mmap_lock is released, vma may become invalid (for example
4433  * by other thread calling munmap()).
4434  */
4435 static vm_fault_t do_fault(struct vm_fault *vmf)
4436 {
4437 	struct vm_area_struct *vma = vmf->vma;
4438 	struct mm_struct *vm_mm = vma->vm_mm;
4439 	vm_fault_t ret;
4440 
4441 	/*
4442 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4443 	 */
4444 	if (!vma->vm_ops->fault) {
4445 		/*
4446 		 * If we find a migration pmd entry or a none pmd entry, which
4447 		 * should never happen, return SIGBUS
4448 		 */
4449 		if (unlikely(!pmd_present(*vmf->pmd)))
4450 			ret = VM_FAULT_SIGBUS;
4451 		else {
4452 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4453 						       vmf->pmd,
4454 						       vmf->address,
4455 						       &vmf->ptl);
4456 			/*
4457 			 * Make sure this is not a temporary clearing of pte
4458 			 * by holding ptl and checking again. A R/M/W update
4459 			 * of pte involves: take ptl, clearing the pte so that
4460 			 * we don't have concurrent modification by hardware
4461 			 * followed by an update.
4462 			 */
4463 			if (unlikely(pte_none(*vmf->pte)))
4464 				ret = VM_FAULT_SIGBUS;
4465 			else
4466 				ret = VM_FAULT_NOPAGE;
4467 
4468 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4469 		}
4470 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4471 		ret = do_read_fault(vmf);
4472 	else if (!(vma->vm_flags & VM_SHARED))
4473 		ret = do_cow_fault(vmf);
4474 	else
4475 		ret = do_shared_fault(vmf);
4476 
4477 	/* preallocated pagetable is unused: free it */
4478 	if (vmf->prealloc_pte) {
4479 		pte_free(vm_mm, vmf->prealloc_pte);
4480 		vmf->prealloc_pte = NULL;
4481 	}
4482 	return ret;
4483 }
4484 
4485 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4486 		      unsigned long addr, int page_nid, int *flags)
4487 {
4488 	get_page(page);
4489 
4490 	count_vm_numa_event(NUMA_HINT_FAULTS);
4491 	if (page_nid == numa_node_id()) {
4492 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4493 		*flags |= TNF_FAULT_LOCAL;
4494 	}
4495 
4496 	return mpol_misplaced(page, vma, addr);
4497 }
4498 
4499 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4500 {
4501 	struct vm_area_struct *vma = vmf->vma;
4502 	struct page *page = NULL;
4503 	int page_nid = NUMA_NO_NODE;
4504 	int last_cpupid;
4505 	int target_nid;
4506 	pte_t pte, old_pte;
4507 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4508 	int flags = 0;
4509 
4510 	/*
4511 	 * The "pte" at this point cannot be used safely without
4512 	 * validation through pte_unmap_same(). It's of NUMA type but
4513 	 * the pfn may be screwed if the read is non atomic.
4514 	 */
4515 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4516 	spin_lock(vmf->ptl);
4517 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4518 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4519 		goto out;
4520 	}
4521 
4522 	/* Get the normal PTE  */
4523 	old_pte = ptep_get(vmf->pte);
4524 	pte = pte_modify(old_pte, vma->vm_page_prot);
4525 
4526 	page = vm_normal_page(vma, vmf->address, pte);
4527 	if (!page)
4528 		goto out_map;
4529 
4530 	/* TODO: handle PTE-mapped THP */
4531 	if (PageCompound(page))
4532 		goto out_map;
4533 
4534 	/*
4535 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4536 	 * much anyway since they can be in shared cache state. This misses
4537 	 * the case where a mapping is writable but the process never writes
4538 	 * to it but pte_write gets cleared during protection updates and
4539 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4540 	 * background writeback, dirty balancing and application behaviour.
4541 	 */
4542 	if (!was_writable)
4543 		flags |= TNF_NO_GROUP;
4544 
4545 	/*
4546 	 * Flag if the page is shared between multiple address spaces. This
4547 	 * is later used when determining whether to group tasks together
4548 	 */
4549 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4550 		flags |= TNF_SHARED;
4551 
4552 	last_cpupid = page_cpupid_last(page);
4553 	page_nid = page_to_nid(page);
4554 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4555 			&flags);
4556 	if (target_nid == NUMA_NO_NODE) {
4557 		put_page(page);
4558 		goto out_map;
4559 	}
4560 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4561 
4562 	/* Migrate to the requested node */
4563 	if (migrate_misplaced_page(page, vma, target_nid)) {
4564 		page_nid = target_nid;
4565 		flags |= TNF_MIGRATED;
4566 	} else {
4567 		flags |= TNF_MIGRATE_FAIL;
4568 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4569 		spin_lock(vmf->ptl);
4570 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4571 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4572 			goto out;
4573 		}
4574 		goto out_map;
4575 	}
4576 
4577 out:
4578 	if (page_nid != NUMA_NO_NODE)
4579 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4580 	return 0;
4581 out_map:
4582 	/*
4583 	 * Make it present again, depending on how arch implements
4584 	 * non-accessible ptes, some can allow access by kernel mode.
4585 	 */
4586 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4587 	pte = pte_modify(old_pte, vma->vm_page_prot);
4588 	pte = pte_mkyoung(pte);
4589 	if (was_writable)
4590 		pte = pte_mkwrite(pte);
4591 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4592 	update_mmu_cache(vma, vmf->address, vmf->pte);
4593 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4594 	goto out;
4595 }
4596 
4597 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4598 {
4599 	if (vma_is_anonymous(vmf->vma))
4600 		return do_huge_pmd_anonymous_page(vmf);
4601 	if (vmf->vma->vm_ops->huge_fault)
4602 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4603 	return VM_FAULT_FALLBACK;
4604 }
4605 
4606 /* `inline' is required to avoid gcc 4.1.2 build error */
4607 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4608 {
4609 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4610 
4611 	if (vma_is_anonymous(vmf->vma)) {
4612 		if (likely(!unshare) &&
4613 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4614 			return handle_userfault(vmf, VM_UFFD_WP);
4615 		return do_huge_pmd_wp_page(vmf);
4616 	}
4617 	if (vmf->vma->vm_ops->huge_fault) {
4618 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4619 
4620 		if (!(ret & VM_FAULT_FALLBACK))
4621 			return ret;
4622 	}
4623 
4624 	/* COW or write-notify handled on pte level: split pmd. */
4625 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4626 
4627 	return VM_FAULT_FALLBACK;
4628 }
4629 
4630 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4631 {
4632 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4633 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4634 	/* No support for anonymous transparent PUD pages yet */
4635 	if (vma_is_anonymous(vmf->vma))
4636 		goto split;
4637 	if (vmf->vma->vm_ops->huge_fault) {
4638 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4639 
4640 		if (!(ret & VM_FAULT_FALLBACK))
4641 			return ret;
4642 	}
4643 split:
4644 	/* COW or write-notify not handled on PUD level: split pud.*/
4645 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4646 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4647 	return VM_FAULT_FALLBACK;
4648 }
4649 
4650 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4651 {
4652 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4653 	/* No support for anonymous transparent PUD pages yet */
4654 	if (vma_is_anonymous(vmf->vma))
4655 		return VM_FAULT_FALLBACK;
4656 	if (vmf->vma->vm_ops->huge_fault)
4657 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4658 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4659 	return VM_FAULT_FALLBACK;
4660 }
4661 
4662 /*
4663  * These routines also need to handle stuff like marking pages dirty
4664  * and/or accessed for architectures that don't do it in hardware (most
4665  * RISC architectures).  The early dirtying is also good on the i386.
4666  *
4667  * There is also a hook called "update_mmu_cache()" that architectures
4668  * with external mmu caches can use to update those (ie the Sparc or
4669  * PowerPC hashed page tables that act as extended TLBs).
4670  *
4671  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4672  * concurrent faults).
4673  *
4674  * The mmap_lock may have been released depending on flags and our return value.
4675  * See filemap_fault() and __folio_lock_or_retry().
4676  */
4677 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4678 {
4679 	pte_t entry;
4680 
4681 	if (unlikely(pmd_none(*vmf->pmd))) {
4682 		/*
4683 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4684 		 * want to allocate huge page, and if we expose page table
4685 		 * for an instant, it will be difficult to retract from
4686 		 * concurrent faults and from rmap lookups.
4687 		 */
4688 		vmf->pte = NULL;
4689 	} else {
4690 		/*
4691 		 * If a huge pmd materialized under us just retry later.  Use
4692 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4693 		 * of pmd_trans_huge() to ensure the pmd didn't become
4694 		 * pmd_trans_huge under us and then back to pmd_none, as a
4695 		 * result of MADV_DONTNEED running immediately after a huge pmd
4696 		 * fault in a different thread of this mm, in turn leading to a
4697 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4698 		 * that it is a regular pmd that we can walk with
4699 		 * pte_offset_map() and we can do that through an atomic read
4700 		 * in C, which is what pmd_trans_unstable() provides.
4701 		 */
4702 		if (pmd_devmap_trans_unstable(vmf->pmd))
4703 			return 0;
4704 		/*
4705 		 * A regular pmd is established and it can't morph into a huge
4706 		 * pmd from under us anymore at this point because we hold the
4707 		 * mmap_lock read mode and khugepaged takes it in write mode.
4708 		 * So now it's safe to run pte_offset_map().
4709 		 */
4710 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4711 		vmf->orig_pte = *vmf->pte;
4712 
4713 		/*
4714 		 * some architectures can have larger ptes than wordsize,
4715 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4716 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4717 		 * accesses.  The code below just needs a consistent view
4718 		 * for the ifs and we later double check anyway with the
4719 		 * ptl lock held. So here a barrier will do.
4720 		 */
4721 		barrier();
4722 		if (pte_none(vmf->orig_pte)) {
4723 			pte_unmap(vmf->pte);
4724 			vmf->pte = NULL;
4725 		}
4726 	}
4727 
4728 	if (!vmf->pte) {
4729 		if (vma_is_anonymous(vmf->vma))
4730 			return do_anonymous_page(vmf);
4731 		else
4732 			return do_fault(vmf);
4733 	}
4734 
4735 	if (!pte_present(vmf->orig_pte))
4736 		return do_swap_page(vmf);
4737 
4738 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4739 		return do_numa_page(vmf);
4740 
4741 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4742 	spin_lock(vmf->ptl);
4743 	entry = vmf->orig_pte;
4744 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4745 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4746 		goto unlock;
4747 	}
4748 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4749 		if (!pte_write(entry))
4750 			return do_wp_page(vmf);
4751 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4752 			entry = pte_mkdirty(entry);
4753 	}
4754 	entry = pte_mkyoung(entry);
4755 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4756 				vmf->flags & FAULT_FLAG_WRITE)) {
4757 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4758 	} else {
4759 		/* Skip spurious TLB flush for retried page fault */
4760 		if (vmf->flags & FAULT_FLAG_TRIED)
4761 			goto unlock;
4762 		/*
4763 		 * This is needed only for protection faults but the arch code
4764 		 * is not yet telling us if this is a protection fault or not.
4765 		 * This still avoids useless tlb flushes for .text page faults
4766 		 * with threads.
4767 		 */
4768 		if (vmf->flags & FAULT_FLAG_WRITE)
4769 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4770 	}
4771 unlock:
4772 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4773 	return 0;
4774 }
4775 
4776 /*
4777  * By the time we get here, we already hold the mm semaphore
4778  *
4779  * The mmap_lock may have been released depending on flags and our
4780  * return value.  See filemap_fault() and __folio_lock_or_retry().
4781  */
4782 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4783 		unsigned long address, unsigned int flags)
4784 {
4785 	struct vm_fault vmf = {
4786 		.vma = vma,
4787 		.address = address & PAGE_MASK,
4788 		.real_address = address,
4789 		.flags = flags,
4790 		.pgoff = linear_page_index(vma, address),
4791 		.gfp_mask = __get_fault_gfp_mask(vma),
4792 	};
4793 	struct mm_struct *mm = vma->vm_mm;
4794 	pgd_t *pgd;
4795 	p4d_t *p4d;
4796 	vm_fault_t ret;
4797 
4798 	pgd = pgd_offset(mm, address);
4799 	p4d = p4d_alloc(mm, pgd, address);
4800 	if (!p4d)
4801 		return VM_FAULT_OOM;
4802 
4803 	vmf.pud = pud_alloc(mm, p4d, address);
4804 	if (!vmf.pud)
4805 		return VM_FAULT_OOM;
4806 retry_pud:
4807 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4808 		ret = create_huge_pud(&vmf);
4809 		if (!(ret & VM_FAULT_FALLBACK))
4810 			return ret;
4811 	} else {
4812 		pud_t orig_pud = *vmf.pud;
4813 
4814 		barrier();
4815 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4816 
4817 			/*
4818 			 * TODO once we support anonymous PUDs: NUMA case and
4819 			 * FAULT_FLAG_UNSHARE handling.
4820 			 */
4821 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
4822 				ret = wp_huge_pud(&vmf, orig_pud);
4823 				if (!(ret & VM_FAULT_FALLBACK))
4824 					return ret;
4825 			} else {
4826 				huge_pud_set_accessed(&vmf, orig_pud);
4827 				return 0;
4828 			}
4829 		}
4830 	}
4831 
4832 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4833 	if (!vmf.pmd)
4834 		return VM_FAULT_OOM;
4835 
4836 	/* Huge pud page fault raced with pmd_alloc? */
4837 	if (pud_trans_unstable(vmf.pud))
4838 		goto retry_pud;
4839 
4840 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4841 		ret = create_huge_pmd(&vmf);
4842 		if (!(ret & VM_FAULT_FALLBACK))
4843 			return ret;
4844 	} else {
4845 		vmf.orig_pmd = *vmf.pmd;
4846 
4847 		barrier();
4848 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
4849 			VM_BUG_ON(thp_migration_supported() &&
4850 					  !is_pmd_migration_entry(vmf.orig_pmd));
4851 			if (is_pmd_migration_entry(vmf.orig_pmd))
4852 				pmd_migration_entry_wait(mm, vmf.pmd);
4853 			return 0;
4854 		}
4855 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
4856 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
4857 				return do_huge_pmd_numa_page(&vmf);
4858 
4859 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
4860 			    !pmd_write(vmf.orig_pmd)) {
4861 				ret = wp_huge_pmd(&vmf);
4862 				if (!(ret & VM_FAULT_FALLBACK))
4863 					return ret;
4864 			} else {
4865 				huge_pmd_set_accessed(&vmf);
4866 				return 0;
4867 			}
4868 		}
4869 	}
4870 
4871 	return handle_pte_fault(&vmf);
4872 }
4873 
4874 /**
4875  * mm_account_fault - Do page fault accounting
4876  *
4877  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4878  *        of perf event counters, but we'll still do the per-task accounting to
4879  *        the task who triggered this page fault.
4880  * @address: the faulted address.
4881  * @flags: the fault flags.
4882  * @ret: the fault retcode.
4883  *
4884  * This will take care of most of the page fault accounting.  Meanwhile, it
4885  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4886  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4887  * still be in per-arch page fault handlers at the entry of page fault.
4888  */
4889 static inline void mm_account_fault(struct pt_regs *regs,
4890 				    unsigned long address, unsigned int flags,
4891 				    vm_fault_t ret)
4892 {
4893 	bool major;
4894 
4895 	/*
4896 	 * We don't do accounting for some specific faults:
4897 	 *
4898 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4899 	 *   includes arch_vma_access_permitted() failing before reaching here.
4900 	 *   So this is not a "this many hardware page faults" counter.  We
4901 	 *   should use the hw profiling for that.
4902 	 *
4903 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4904 	 *   once they're completed.
4905 	 */
4906 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4907 		return;
4908 
4909 	/*
4910 	 * We define the fault as a major fault when the final successful fault
4911 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4912 	 * handle it immediately previously).
4913 	 */
4914 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4915 
4916 	if (major)
4917 		current->maj_flt++;
4918 	else
4919 		current->min_flt++;
4920 
4921 	/*
4922 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4923 	 * accounting for the per thread fault counters who triggered the
4924 	 * fault, and we skip the perf event updates.
4925 	 */
4926 	if (!regs)
4927 		return;
4928 
4929 	if (major)
4930 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4931 	else
4932 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4933 }
4934 
4935 /*
4936  * By the time we get here, we already hold the mm semaphore
4937  *
4938  * The mmap_lock may have been released depending on flags and our
4939  * return value.  See filemap_fault() and __folio_lock_or_retry().
4940  */
4941 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4942 			   unsigned int flags, struct pt_regs *regs)
4943 {
4944 	vm_fault_t ret;
4945 
4946 	__set_current_state(TASK_RUNNING);
4947 
4948 	count_vm_event(PGFAULT);
4949 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4950 
4951 	/* do counter updates before entering really critical section. */
4952 	check_sync_rss_stat(current);
4953 
4954 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4955 					    flags & FAULT_FLAG_INSTRUCTION,
4956 					    flags & FAULT_FLAG_REMOTE))
4957 		return VM_FAULT_SIGSEGV;
4958 
4959 	/*
4960 	 * Enable the memcg OOM handling for faults triggered in user
4961 	 * space.  Kernel faults are handled more gracefully.
4962 	 */
4963 	if (flags & FAULT_FLAG_USER)
4964 		mem_cgroup_enter_user_fault();
4965 
4966 	if (unlikely(is_vm_hugetlb_page(vma)))
4967 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4968 	else
4969 		ret = __handle_mm_fault(vma, address, flags);
4970 
4971 	if (flags & FAULT_FLAG_USER) {
4972 		mem_cgroup_exit_user_fault();
4973 		/*
4974 		 * The task may have entered a memcg OOM situation but
4975 		 * if the allocation error was handled gracefully (no
4976 		 * VM_FAULT_OOM), there is no need to kill anything.
4977 		 * Just clean up the OOM state peacefully.
4978 		 */
4979 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4980 			mem_cgroup_oom_synchronize(false);
4981 	}
4982 
4983 	mm_account_fault(regs, address, flags, ret);
4984 
4985 	return ret;
4986 }
4987 EXPORT_SYMBOL_GPL(handle_mm_fault);
4988 
4989 #ifndef __PAGETABLE_P4D_FOLDED
4990 /*
4991  * Allocate p4d page table.
4992  * We've already handled the fast-path in-line.
4993  */
4994 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4995 {
4996 	p4d_t *new = p4d_alloc_one(mm, address);
4997 	if (!new)
4998 		return -ENOMEM;
4999 
5000 	spin_lock(&mm->page_table_lock);
5001 	if (pgd_present(*pgd)) {	/* Another has populated it */
5002 		p4d_free(mm, new);
5003 	} else {
5004 		smp_wmb(); /* See comment in pmd_install() */
5005 		pgd_populate(mm, pgd, new);
5006 	}
5007 	spin_unlock(&mm->page_table_lock);
5008 	return 0;
5009 }
5010 #endif /* __PAGETABLE_P4D_FOLDED */
5011 
5012 #ifndef __PAGETABLE_PUD_FOLDED
5013 /*
5014  * Allocate page upper directory.
5015  * We've already handled the fast-path in-line.
5016  */
5017 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5018 {
5019 	pud_t *new = pud_alloc_one(mm, address);
5020 	if (!new)
5021 		return -ENOMEM;
5022 
5023 	spin_lock(&mm->page_table_lock);
5024 	if (!p4d_present(*p4d)) {
5025 		mm_inc_nr_puds(mm);
5026 		smp_wmb(); /* See comment in pmd_install() */
5027 		p4d_populate(mm, p4d, new);
5028 	} else	/* Another has populated it */
5029 		pud_free(mm, new);
5030 	spin_unlock(&mm->page_table_lock);
5031 	return 0;
5032 }
5033 #endif /* __PAGETABLE_PUD_FOLDED */
5034 
5035 #ifndef __PAGETABLE_PMD_FOLDED
5036 /*
5037  * Allocate page middle directory.
5038  * We've already handled the fast-path in-line.
5039  */
5040 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5041 {
5042 	spinlock_t *ptl;
5043 	pmd_t *new = pmd_alloc_one(mm, address);
5044 	if (!new)
5045 		return -ENOMEM;
5046 
5047 	ptl = pud_lock(mm, pud);
5048 	if (!pud_present(*pud)) {
5049 		mm_inc_nr_pmds(mm);
5050 		smp_wmb(); /* See comment in pmd_install() */
5051 		pud_populate(mm, pud, new);
5052 	} else {	/* Another has populated it */
5053 		pmd_free(mm, new);
5054 	}
5055 	spin_unlock(ptl);
5056 	return 0;
5057 }
5058 #endif /* __PAGETABLE_PMD_FOLDED */
5059 
5060 /**
5061  * follow_pte - look up PTE at a user virtual address
5062  * @mm: the mm_struct of the target address space
5063  * @address: user virtual address
5064  * @ptepp: location to store found PTE
5065  * @ptlp: location to store the lock for the PTE
5066  *
5067  * On a successful return, the pointer to the PTE is stored in @ptepp;
5068  * the corresponding lock is taken and its location is stored in @ptlp.
5069  * The contents of the PTE are only stable until @ptlp is released;
5070  * any further use, if any, must be protected against invalidation
5071  * with MMU notifiers.
5072  *
5073  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5074  * should be taken for read.
5075  *
5076  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5077  * it is not a good general-purpose API.
5078  *
5079  * Return: zero on success, -ve otherwise.
5080  */
5081 int follow_pte(struct mm_struct *mm, unsigned long address,
5082 	       pte_t **ptepp, spinlock_t **ptlp)
5083 {
5084 	pgd_t *pgd;
5085 	p4d_t *p4d;
5086 	pud_t *pud;
5087 	pmd_t *pmd;
5088 	pte_t *ptep;
5089 
5090 	pgd = pgd_offset(mm, address);
5091 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5092 		goto out;
5093 
5094 	p4d = p4d_offset(pgd, address);
5095 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5096 		goto out;
5097 
5098 	pud = pud_offset(p4d, address);
5099 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5100 		goto out;
5101 
5102 	pmd = pmd_offset(pud, address);
5103 	VM_BUG_ON(pmd_trans_huge(*pmd));
5104 
5105 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5106 		goto out;
5107 
5108 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5109 	if (!pte_present(*ptep))
5110 		goto unlock;
5111 	*ptepp = ptep;
5112 	return 0;
5113 unlock:
5114 	pte_unmap_unlock(ptep, *ptlp);
5115 out:
5116 	return -EINVAL;
5117 }
5118 EXPORT_SYMBOL_GPL(follow_pte);
5119 
5120 /**
5121  * follow_pfn - look up PFN at a user virtual address
5122  * @vma: memory mapping
5123  * @address: user virtual address
5124  * @pfn: location to store found PFN
5125  *
5126  * Only IO mappings and raw PFN mappings are allowed.
5127  *
5128  * This function does not allow the caller to read the permissions
5129  * of the PTE.  Do not use it.
5130  *
5131  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5132  */
5133 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5134 	unsigned long *pfn)
5135 {
5136 	int ret = -EINVAL;
5137 	spinlock_t *ptl;
5138 	pte_t *ptep;
5139 
5140 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5141 		return ret;
5142 
5143 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5144 	if (ret)
5145 		return ret;
5146 	*pfn = pte_pfn(*ptep);
5147 	pte_unmap_unlock(ptep, ptl);
5148 	return 0;
5149 }
5150 EXPORT_SYMBOL(follow_pfn);
5151 
5152 #ifdef CONFIG_HAVE_IOREMAP_PROT
5153 int follow_phys(struct vm_area_struct *vma,
5154 		unsigned long address, unsigned int flags,
5155 		unsigned long *prot, resource_size_t *phys)
5156 {
5157 	int ret = -EINVAL;
5158 	pte_t *ptep, pte;
5159 	spinlock_t *ptl;
5160 
5161 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5162 		goto out;
5163 
5164 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5165 		goto out;
5166 	pte = *ptep;
5167 
5168 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5169 		goto unlock;
5170 
5171 	*prot = pgprot_val(pte_pgprot(pte));
5172 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5173 
5174 	ret = 0;
5175 unlock:
5176 	pte_unmap_unlock(ptep, ptl);
5177 out:
5178 	return ret;
5179 }
5180 
5181 /**
5182  * generic_access_phys - generic implementation for iomem mmap access
5183  * @vma: the vma to access
5184  * @addr: userspace address, not relative offset within @vma
5185  * @buf: buffer to read/write
5186  * @len: length of transfer
5187  * @write: set to FOLL_WRITE when writing, otherwise reading
5188  *
5189  * This is a generic implementation for &vm_operations_struct.access for an
5190  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5191  * not page based.
5192  */
5193 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5194 			void *buf, int len, int write)
5195 {
5196 	resource_size_t phys_addr;
5197 	unsigned long prot = 0;
5198 	void __iomem *maddr;
5199 	pte_t *ptep, pte;
5200 	spinlock_t *ptl;
5201 	int offset = offset_in_page(addr);
5202 	int ret = -EINVAL;
5203 
5204 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5205 		return -EINVAL;
5206 
5207 retry:
5208 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5209 		return -EINVAL;
5210 	pte = *ptep;
5211 	pte_unmap_unlock(ptep, ptl);
5212 
5213 	prot = pgprot_val(pte_pgprot(pte));
5214 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5215 
5216 	if ((write & FOLL_WRITE) && !pte_write(pte))
5217 		return -EINVAL;
5218 
5219 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5220 	if (!maddr)
5221 		return -ENOMEM;
5222 
5223 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5224 		goto out_unmap;
5225 
5226 	if (!pte_same(pte, *ptep)) {
5227 		pte_unmap_unlock(ptep, ptl);
5228 		iounmap(maddr);
5229 
5230 		goto retry;
5231 	}
5232 
5233 	if (write)
5234 		memcpy_toio(maddr + offset, buf, len);
5235 	else
5236 		memcpy_fromio(buf, maddr + offset, len);
5237 	ret = len;
5238 	pte_unmap_unlock(ptep, ptl);
5239 out_unmap:
5240 	iounmap(maddr);
5241 
5242 	return ret;
5243 }
5244 EXPORT_SYMBOL_GPL(generic_access_phys);
5245 #endif
5246 
5247 /*
5248  * Access another process' address space as given in mm.
5249  */
5250 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5251 		       int len, unsigned int gup_flags)
5252 {
5253 	struct vm_area_struct *vma;
5254 	void *old_buf = buf;
5255 	int write = gup_flags & FOLL_WRITE;
5256 
5257 	if (mmap_read_lock_killable(mm))
5258 		return 0;
5259 
5260 	/* ignore errors, just check how much was successfully transferred */
5261 	while (len) {
5262 		int bytes, ret, offset;
5263 		void *maddr;
5264 		struct page *page = NULL;
5265 
5266 		ret = get_user_pages_remote(mm, addr, 1,
5267 				gup_flags, &page, &vma, NULL);
5268 		if (ret <= 0) {
5269 #ifndef CONFIG_HAVE_IOREMAP_PROT
5270 			break;
5271 #else
5272 			/*
5273 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5274 			 * we can access using slightly different code.
5275 			 */
5276 			vma = vma_lookup(mm, addr);
5277 			if (!vma)
5278 				break;
5279 			if (vma->vm_ops && vma->vm_ops->access)
5280 				ret = vma->vm_ops->access(vma, addr, buf,
5281 							  len, write);
5282 			if (ret <= 0)
5283 				break;
5284 			bytes = ret;
5285 #endif
5286 		} else {
5287 			bytes = len;
5288 			offset = addr & (PAGE_SIZE-1);
5289 			if (bytes > PAGE_SIZE-offset)
5290 				bytes = PAGE_SIZE-offset;
5291 
5292 			maddr = kmap(page);
5293 			if (write) {
5294 				copy_to_user_page(vma, page, addr,
5295 						  maddr + offset, buf, bytes);
5296 				set_page_dirty_lock(page);
5297 			} else {
5298 				copy_from_user_page(vma, page, addr,
5299 						    buf, maddr + offset, bytes);
5300 			}
5301 			kunmap(page);
5302 			put_page(page);
5303 		}
5304 		len -= bytes;
5305 		buf += bytes;
5306 		addr += bytes;
5307 	}
5308 	mmap_read_unlock(mm);
5309 
5310 	return buf - old_buf;
5311 }
5312 
5313 /**
5314  * access_remote_vm - access another process' address space
5315  * @mm:		the mm_struct of the target address space
5316  * @addr:	start address to access
5317  * @buf:	source or destination buffer
5318  * @len:	number of bytes to transfer
5319  * @gup_flags:	flags modifying lookup behaviour
5320  *
5321  * The caller must hold a reference on @mm.
5322  *
5323  * Return: number of bytes copied from source to destination.
5324  */
5325 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5326 		void *buf, int len, unsigned int gup_flags)
5327 {
5328 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5329 }
5330 
5331 /*
5332  * Access another process' address space.
5333  * Source/target buffer must be kernel space,
5334  * Do not walk the page table directly, use get_user_pages
5335  */
5336 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5337 		void *buf, int len, unsigned int gup_flags)
5338 {
5339 	struct mm_struct *mm;
5340 	int ret;
5341 
5342 	mm = get_task_mm(tsk);
5343 	if (!mm)
5344 		return 0;
5345 
5346 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5347 
5348 	mmput(mm);
5349 
5350 	return ret;
5351 }
5352 EXPORT_SYMBOL_GPL(access_process_vm);
5353 
5354 /*
5355  * Print the name of a VMA.
5356  */
5357 void print_vma_addr(char *prefix, unsigned long ip)
5358 {
5359 	struct mm_struct *mm = current->mm;
5360 	struct vm_area_struct *vma;
5361 
5362 	/*
5363 	 * we might be running from an atomic context so we cannot sleep
5364 	 */
5365 	if (!mmap_read_trylock(mm))
5366 		return;
5367 
5368 	vma = find_vma(mm, ip);
5369 	if (vma && vma->vm_file) {
5370 		struct file *f = vma->vm_file;
5371 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5372 		if (buf) {
5373 			char *p;
5374 
5375 			p = file_path(f, buf, PAGE_SIZE);
5376 			if (IS_ERR(p))
5377 				p = "?";
5378 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5379 					vma->vm_start,
5380 					vma->vm_end - vma->vm_start);
5381 			free_page((unsigned long)buf);
5382 		}
5383 	}
5384 	mmap_read_unlock(mm);
5385 }
5386 
5387 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5388 void __might_fault(const char *file, int line)
5389 {
5390 	if (pagefault_disabled())
5391 		return;
5392 	__might_sleep(file, line);
5393 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5394 	if (current->mm)
5395 		might_lock_read(&current->mm->mmap_lock);
5396 #endif
5397 }
5398 EXPORT_SYMBOL(__might_fault);
5399 #endif
5400 
5401 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5402 /*
5403  * Process all subpages of the specified huge page with the specified
5404  * operation.  The target subpage will be processed last to keep its
5405  * cache lines hot.
5406  */
5407 static inline void process_huge_page(
5408 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5409 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5410 	void *arg)
5411 {
5412 	int i, n, base, l;
5413 	unsigned long addr = addr_hint &
5414 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5415 
5416 	/* Process target subpage last to keep its cache lines hot */
5417 	might_sleep();
5418 	n = (addr_hint - addr) / PAGE_SIZE;
5419 	if (2 * n <= pages_per_huge_page) {
5420 		/* If target subpage in first half of huge page */
5421 		base = 0;
5422 		l = n;
5423 		/* Process subpages at the end of huge page */
5424 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5425 			cond_resched();
5426 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5427 		}
5428 	} else {
5429 		/* If target subpage in second half of huge page */
5430 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5431 		l = pages_per_huge_page - n;
5432 		/* Process subpages at the begin of huge page */
5433 		for (i = 0; i < base; i++) {
5434 			cond_resched();
5435 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5436 		}
5437 	}
5438 	/*
5439 	 * Process remaining subpages in left-right-left-right pattern
5440 	 * towards the target subpage
5441 	 */
5442 	for (i = 0; i < l; i++) {
5443 		int left_idx = base + i;
5444 		int right_idx = base + 2 * l - 1 - i;
5445 
5446 		cond_resched();
5447 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5448 		cond_resched();
5449 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5450 	}
5451 }
5452 
5453 static void clear_gigantic_page(struct page *page,
5454 				unsigned long addr,
5455 				unsigned int pages_per_huge_page)
5456 {
5457 	int i;
5458 	struct page *p = page;
5459 
5460 	might_sleep();
5461 	for (i = 0; i < pages_per_huge_page;
5462 	     i++, p = mem_map_next(p, page, i)) {
5463 		cond_resched();
5464 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5465 	}
5466 }
5467 
5468 static void clear_subpage(unsigned long addr, int idx, void *arg)
5469 {
5470 	struct page *page = arg;
5471 
5472 	clear_user_highpage(page + idx, addr);
5473 }
5474 
5475 void clear_huge_page(struct page *page,
5476 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5477 {
5478 	unsigned long addr = addr_hint &
5479 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5480 
5481 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5482 		clear_gigantic_page(page, addr, pages_per_huge_page);
5483 		return;
5484 	}
5485 
5486 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5487 }
5488 
5489 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5490 				    unsigned long addr,
5491 				    struct vm_area_struct *vma,
5492 				    unsigned int pages_per_huge_page)
5493 {
5494 	int i;
5495 	struct page *dst_base = dst;
5496 	struct page *src_base = src;
5497 
5498 	for (i = 0; i < pages_per_huge_page; ) {
5499 		cond_resched();
5500 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5501 
5502 		i++;
5503 		dst = mem_map_next(dst, dst_base, i);
5504 		src = mem_map_next(src, src_base, i);
5505 	}
5506 }
5507 
5508 struct copy_subpage_arg {
5509 	struct page *dst;
5510 	struct page *src;
5511 	struct vm_area_struct *vma;
5512 };
5513 
5514 static void copy_subpage(unsigned long addr, int idx, void *arg)
5515 {
5516 	struct copy_subpage_arg *copy_arg = arg;
5517 
5518 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5519 			   addr, copy_arg->vma);
5520 }
5521 
5522 void copy_user_huge_page(struct page *dst, struct page *src,
5523 			 unsigned long addr_hint, struct vm_area_struct *vma,
5524 			 unsigned int pages_per_huge_page)
5525 {
5526 	unsigned long addr = addr_hint &
5527 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5528 	struct copy_subpage_arg arg = {
5529 		.dst = dst,
5530 		.src = src,
5531 		.vma = vma,
5532 	};
5533 
5534 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5535 		copy_user_gigantic_page(dst, src, addr, vma,
5536 					pages_per_huge_page);
5537 		return;
5538 	}
5539 
5540 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5541 }
5542 
5543 long copy_huge_page_from_user(struct page *dst_page,
5544 				const void __user *usr_src,
5545 				unsigned int pages_per_huge_page,
5546 				bool allow_pagefault)
5547 {
5548 	void *page_kaddr;
5549 	unsigned long i, rc = 0;
5550 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5551 	struct page *subpage = dst_page;
5552 
5553 	for (i = 0; i < pages_per_huge_page;
5554 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5555 		if (allow_pagefault)
5556 			page_kaddr = kmap(subpage);
5557 		else
5558 			page_kaddr = kmap_atomic(subpage);
5559 		rc = copy_from_user(page_kaddr,
5560 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5561 		if (allow_pagefault)
5562 			kunmap(subpage);
5563 		else
5564 			kunmap_atomic(page_kaddr);
5565 
5566 		ret_val -= (PAGE_SIZE - rc);
5567 		if (rc)
5568 			break;
5569 
5570 		flush_dcache_page(subpage);
5571 
5572 		cond_resched();
5573 	}
5574 	return ret_val;
5575 }
5576 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5577 
5578 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5579 
5580 static struct kmem_cache *page_ptl_cachep;
5581 
5582 void __init ptlock_cache_init(void)
5583 {
5584 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5585 			SLAB_PANIC, NULL);
5586 }
5587 
5588 bool ptlock_alloc(struct page *page)
5589 {
5590 	spinlock_t *ptl;
5591 
5592 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5593 	if (!ptl)
5594 		return false;
5595 	page->ptl = ptl;
5596 	return true;
5597 }
5598 
5599 void ptlock_free(struct page *page)
5600 {
5601 	kmem_cache_free(page_ptl_cachep, page->ptl);
5602 }
5603 #endif
5604