xref: /openbmc/linux/mm/memory.c (revision 2da68a77)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 
108 /*
109  * A number of key systems in x86 including ioremap() rely on the assumption
110  * that high_memory defines the upper bound on direct map memory, then end
111  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
112  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
113  * and ZONE_HIGHMEM.
114  */
115 void *high_memory;
116 EXPORT_SYMBOL(high_memory);
117 
118 /*
119  * Randomize the address space (stacks, mmaps, brk, etc.).
120  *
121  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
122  *   as ancient (libc5 based) binaries can segfault. )
123  */
124 int randomize_va_space __read_mostly =
125 #ifdef CONFIG_COMPAT_BRK
126 					1;
127 #else
128 					2;
129 #endif
130 
131 #ifndef arch_wants_old_prefaulted_pte
132 static inline bool arch_wants_old_prefaulted_pte(void)
133 {
134 	/*
135 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
136 	 * some architectures, even if it's performed in hardware. By
137 	 * default, "false" means prefaulted entries will be 'young'.
138 	 */
139 	return false;
140 }
141 #endif
142 
143 static int __init disable_randmaps(char *s)
144 {
145 	randomize_va_space = 0;
146 	return 1;
147 }
148 __setup("norandmaps", disable_randmaps);
149 
150 unsigned long zero_pfn __read_mostly;
151 EXPORT_SYMBOL(zero_pfn);
152 
153 unsigned long highest_memmap_pfn __read_mostly;
154 
155 /*
156  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
157  */
158 static int __init init_zero_pfn(void)
159 {
160 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
161 	return 0;
162 }
163 early_initcall(init_zero_pfn);
164 
165 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
166 {
167 	trace_rss_stat(mm, member, count);
168 }
169 
170 #if defined(SPLIT_RSS_COUNTING)
171 
172 void sync_mm_rss(struct mm_struct *mm)
173 {
174 	int i;
175 
176 	for (i = 0; i < NR_MM_COUNTERS; i++) {
177 		if (current->rss_stat.count[i]) {
178 			add_mm_counter(mm, i, current->rss_stat.count[i]);
179 			current->rss_stat.count[i] = 0;
180 		}
181 	}
182 	current->rss_stat.events = 0;
183 }
184 
185 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
186 {
187 	struct task_struct *task = current;
188 
189 	if (likely(task->mm == mm))
190 		task->rss_stat.count[member] += val;
191 	else
192 		add_mm_counter(mm, member, val);
193 }
194 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
195 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
196 
197 /* sync counter once per 64 page faults */
198 #define TASK_RSS_EVENTS_THRESH	(64)
199 static void check_sync_rss_stat(struct task_struct *task)
200 {
201 	if (unlikely(task != current))
202 		return;
203 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
204 		sync_mm_rss(task->mm);
205 }
206 #else /* SPLIT_RSS_COUNTING */
207 
208 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
209 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
210 
211 static void check_sync_rss_stat(struct task_struct *task)
212 {
213 }
214 
215 #endif /* SPLIT_RSS_COUNTING */
216 
217 /*
218  * Note: this doesn't free the actual pages themselves. That
219  * has been handled earlier when unmapping all the memory regions.
220  */
221 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
222 			   unsigned long addr)
223 {
224 	pgtable_t token = pmd_pgtable(*pmd);
225 	pmd_clear(pmd);
226 	pte_free_tlb(tlb, token, addr);
227 	mm_dec_nr_ptes(tlb->mm);
228 }
229 
230 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
231 				unsigned long addr, unsigned long end,
232 				unsigned long floor, unsigned long ceiling)
233 {
234 	pmd_t *pmd;
235 	unsigned long next;
236 	unsigned long start;
237 
238 	start = addr;
239 	pmd = pmd_offset(pud, addr);
240 	do {
241 		next = pmd_addr_end(addr, end);
242 		if (pmd_none_or_clear_bad(pmd))
243 			continue;
244 		free_pte_range(tlb, pmd, addr);
245 	} while (pmd++, addr = next, addr != end);
246 
247 	start &= PUD_MASK;
248 	if (start < floor)
249 		return;
250 	if (ceiling) {
251 		ceiling &= PUD_MASK;
252 		if (!ceiling)
253 			return;
254 	}
255 	if (end - 1 > ceiling - 1)
256 		return;
257 
258 	pmd = pmd_offset(pud, start);
259 	pud_clear(pud);
260 	pmd_free_tlb(tlb, pmd, start);
261 	mm_dec_nr_pmds(tlb->mm);
262 }
263 
264 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
265 				unsigned long addr, unsigned long end,
266 				unsigned long floor, unsigned long ceiling)
267 {
268 	pud_t *pud;
269 	unsigned long next;
270 	unsigned long start;
271 
272 	start = addr;
273 	pud = pud_offset(p4d, addr);
274 	do {
275 		next = pud_addr_end(addr, end);
276 		if (pud_none_or_clear_bad(pud))
277 			continue;
278 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
279 	} while (pud++, addr = next, addr != end);
280 
281 	start &= P4D_MASK;
282 	if (start < floor)
283 		return;
284 	if (ceiling) {
285 		ceiling &= P4D_MASK;
286 		if (!ceiling)
287 			return;
288 	}
289 	if (end - 1 > ceiling - 1)
290 		return;
291 
292 	pud = pud_offset(p4d, start);
293 	p4d_clear(p4d);
294 	pud_free_tlb(tlb, pud, start);
295 	mm_dec_nr_puds(tlb->mm);
296 }
297 
298 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
299 				unsigned long addr, unsigned long end,
300 				unsigned long floor, unsigned long ceiling)
301 {
302 	p4d_t *p4d;
303 	unsigned long next;
304 	unsigned long start;
305 
306 	start = addr;
307 	p4d = p4d_offset(pgd, addr);
308 	do {
309 		next = p4d_addr_end(addr, end);
310 		if (p4d_none_or_clear_bad(p4d))
311 			continue;
312 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
313 	} while (p4d++, addr = next, addr != end);
314 
315 	start &= PGDIR_MASK;
316 	if (start < floor)
317 		return;
318 	if (ceiling) {
319 		ceiling &= PGDIR_MASK;
320 		if (!ceiling)
321 			return;
322 	}
323 	if (end - 1 > ceiling - 1)
324 		return;
325 
326 	p4d = p4d_offset(pgd, start);
327 	pgd_clear(pgd);
328 	p4d_free_tlb(tlb, p4d, start);
329 }
330 
331 /*
332  * This function frees user-level page tables of a process.
333  */
334 void free_pgd_range(struct mmu_gather *tlb,
335 			unsigned long addr, unsigned long end,
336 			unsigned long floor, unsigned long ceiling)
337 {
338 	pgd_t *pgd;
339 	unsigned long next;
340 
341 	/*
342 	 * The next few lines have given us lots of grief...
343 	 *
344 	 * Why are we testing PMD* at this top level?  Because often
345 	 * there will be no work to do at all, and we'd prefer not to
346 	 * go all the way down to the bottom just to discover that.
347 	 *
348 	 * Why all these "- 1"s?  Because 0 represents both the bottom
349 	 * of the address space and the top of it (using -1 for the
350 	 * top wouldn't help much: the masks would do the wrong thing).
351 	 * The rule is that addr 0 and floor 0 refer to the bottom of
352 	 * the address space, but end 0 and ceiling 0 refer to the top
353 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
354 	 * that end 0 case should be mythical).
355 	 *
356 	 * Wherever addr is brought up or ceiling brought down, we must
357 	 * be careful to reject "the opposite 0" before it confuses the
358 	 * subsequent tests.  But what about where end is brought down
359 	 * by PMD_SIZE below? no, end can't go down to 0 there.
360 	 *
361 	 * Whereas we round start (addr) and ceiling down, by different
362 	 * masks at different levels, in order to test whether a table
363 	 * now has no other vmas using it, so can be freed, we don't
364 	 * bother to round floor or end up - the tests don't need that.
365 	 */
366 
367 	addr &= PMD_MASK;
368 	if (addr < floor) {
369 		addr += PMD_SIZE;
370 		if (!addr)
371 			return;
372 	}
373 	if (ceiling) {
374 		ceiling &= PMD_MASK;
375 		if (!ceiling)
376 			return;
377 	}
378 	if (end - 1 > ceiling - 1)
379 		end -= PMD_SIZE;
380 	if (addr > end - 1)
381 		return;
382 	/*
383 	 * We add page table cache pages with PAGE_SIZE,
384 	 * (see pte_free_tlb()), flush the tlb if we need
385 	 */
386 	tlb_change_page_size(tlb, PAGE_SIZE);
387 	pgd = pgd_offset(tlb->mm, addr);
388 	do {
389 		next = pgd_addr_end(addr, end);
390 		if (pgd_none_or_clear_bad(pgd))
391 			continue;
392 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
393 	} while (pgd++, addr = next, addr != end);
394 }
395 
396 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
397 		   struct vm_area_struct *vma, unsigned long floor,
398 		   unsigned long ceiling)
399 {
400 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
401 
402 	do {
403 		unsigned long addr = vma->vm_start;
404 		struct vm_area_struct *next;
405 
406 		/*
407 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
408 		 * be 0.  This will underflow and is okay.
409 		 */
410 		next = mas_find(&mas, ceiling - 1);
411 
412 		/*
413 		 * Hide vma from rmap and truncate_pagecache before freeing
414 		 * pgtables
415 		 */
416 		unlink_anon_vmas(vma);
417 		unlink_file_vma(vma);
418 
419 		if (is_vm_hugetlb_page(vma)) {
420 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
421 				floor, next ? next->vm_start : ceiling);
422 		} else {
423 			/*
424 			 * Optimization: gather nearby vmas into one call down
425 			 */
426 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
427 			       && !is_vm_hugetlb_page(next)) {
428 				vma = next;
429 				next = mas_find(&mas, ceiling - 1);
430 				unlink_anon_vmas(vma);
431 				unlink_file_vma(vma);
432 			}
433 			free_pgd_range(tlb, addr, vma->vm_end,
434 				floor, next ? next->vm_start : ceiling);
435 		}
436 		vma = next;
437 	} while (vma);
438 }
439 
440 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
441 {
442 	spinlock_t *ptl = pmd_lock(mm, pmd);
443 
444 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
445 		mm_inc_nr_ptes(mm);
446 		/*
447 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
448 		 * visible before the pte is made visible to other CPUs by being
449 		 * put into page tables.
450 		 *
451 		 * The other side of the story is the pointer chasing in the page
452 		 * table walking code (when walking the page table without locking;
453 		 * ie. most of the time). Fortunately, these data accesses consist
454 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
455 		 * being the notable exception) will already guarantee loads are
456 		 * seen in-order. See the alpha page table accessors for the
457 		 * smp_rmb() barriers in page table walking code.
458 		 */
459 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
460 		pmd_populate(mm, pmd, *pte);
461 		*pte = NULL;
462 	}
463 	spin_unlock(ptl);
464 }
465 
466 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
467 {
468 	pgtable_t new = pte_alloc_one(mm);
469 	if (!new)
470 		return -ENOMEM;
471 
472 	pmd_install(mm, pmd, &new);
473 	if (new)
474 		pte_free(mm, new);
475 	return 0;
476 }
477 
478 int __pte_alloc_kernel(pmd_t *pmd)
479 {
480 	pte_t *new = pte_alloc_one_kernel(&init_mm);
481 	if (!new)
482 		return -ENOMEM;
483 
484 	spin_lock(&init_mm.page_table_lock);
485 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
486 		smp_wmb(); /* See comment in pmd_install() */
487 		pmd_populate_kernel(&init_mm, pmd, new);
488 		new = NULL;
489 	}
490 	spin_unlock(&init_mm.page_table_lock);
491 	if (new)
492 		pte_free_kernel(&init_mm, new);
493 	return 0;
494 }
495 
496 static inline void init_rss_vec(int *rss)
497 {
498 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
499 }
500 
501 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
502 {
503 	int i;
504 
505 	if (current->mm == mm)
506 		sync_mm_rss(mm);
507 	for (i = 0; i < NR_MM_COUNTERS; i++)
508 		if (rss[i])
509 			add_mm_counter(mm, i, rss[i]);
510 }
511 
512 /*
513  * This function is called to print an error when a bad pte
514  * is found. For example, we might have a PFN-mapped pte in
515  * a region that doesn't allow it.
516  *
517  * The calling function must still handle the error.
518  */
519 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
520 			  pte_t pte, struct page *page)
521 {
522 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
523 	p4d_t *p4d = p4d_offset(pgd, addr);
524 	pud_t *pud = pud_offset(p4d, addr);
525 	pmd_t *pmd = pmd_offset(pud, addr);
526 	struct address_space *mapping;
527 	pgoff_t index;
528 	static unsigned long resume;
529 	static unsigned long nr_shown;
530 	static unsigned long nr_unshown;
531 
532 	/*
533 	 * Allow a burst of 60 reports, then keep quiet for that minute;
534 	 * or allow a steady drip of one report per second.
535 	 */
536 	if (nr_shown == 60) {
537 		if (time_before(jiffies, resume)) {
538 			nr_unshown++;
539 			return;
540 		}
541 		if (nr_unshown) {
542 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
543 				 nr_unshown);
544 			nr_unshown = 0;
545 		}
546 		nr_shown = 0;
547 	}
548 	if (nr_shown++ == 0)
549 		resume = jiffies + 60 * HZ;
550 
551 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
552 	index = linear_page_index(vma, addr);
553 
554 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
555 		 current->comm,
556 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
557 	if (page)
558 		dump_page(page, "bad pte");
559 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
560 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
561 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
562 		 vma->vm_file,
563 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
564 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
565 		 mapping ? mapping->a_ops->read_folio : NULL);
566 	dump_stack();
567 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
568 }
569 
570 /*
571  * vm_normal_page -- This function gets the "struct page" associated with a pte.
572  *
573  * "Special" mappings do not wish to be associated with a "struct page" (either
574  * it doesn't exist, or it exists but they don't want to touch it). In this
575  * case, NULL is returned here. "Normal" mappings do have a struct page.
576  *
577  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
578  * pte bit, in which case this function is trivial. Secondly, an architecture
579  * may not have a spare pte bit, which requires a more complicated scheme,
580  * described below.
581  *
582  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
583  * special mapping (even if there are underlying and valid "struct pages").
584  * COWed pages of a VM_PFNMAP are always normal.
585  *
586  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
587  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
588  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
589  * mapping will always honor the rule
590  *
591  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
592  *
593  * And for normal mappings this is false.
594  *
595  * This restricts such mappings to be a linear translation from virtual address
596  * to pfn. To get around this restriction, we allow arbitrary mappings so long
597  * as the vma is not a COW mapping; in that case, we know that all ptes are
598  * special (because none can have been COWed).
599  *
600  *
601  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
602  *
603  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
604  * page" backing, however the difference is that _all_ pages with a struct
605  * page (that is, those where pfn_valid is true) are refcounted and considered
606  * normal pages by the VM. The disadvantage is that pages are refcounted
607  * (which can be slower and simply not an option for some PFNMAP users). The
608  * advantage is that we don't have to follow the strict linearity rule of
609  * PFNMAP mappings in order to support COWable mappings.
610  *
611  */
612 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
613 			    pte_t pte)
614 {
615 	unsigned long pfn = pte_pfn(pte);
616 
617 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
618 		if (likely(!pte_special(pte)))
619 			goto check_pfn;
620 		if (vma->vm_ops && vma->vm_ops->find_special_page)
621 			return vma->vm_ops->find_special_page(vma, addr);
622 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
623 			return NULL;
624 		if (is_zero_pfn(pfn))
625 			return NULL;
626 		if (pte_devmap(pte))
627 		/*
628 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
629 		 * and will have refcounts incremented on their struct pages
630 		 * when they are inserted into PTEs, thus they are safe to
631 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
632 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
633 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
634 		 */
635 			return NULL;
636 
637 		print_bad_pte(vma, addr, pte, NULL);
638 		return NULL;
639 	}
640 
641 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
642 
643 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
644 		if (vma->vm_flags & VM_MIXEDMAP) {
645 			if (!pfn_valid(pfn))
646 				return NULL;
647 			goto out;
648 		} else {
649 			unsigned long off;
650 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
651 			if (pfn == vma->vm_pgoff + off)
652 				return NULL;
653 			if (!is_cow_mapping(vma->vm_flags))
654 				return NULL;
655 		}
656 	}
657 
658 	if (is_zero_pfn(pfn))
659 		return NULL;
660 
661 check_pfn:
662 	if (unlikely(pfn > highest_memmap_pfn)) {
663 		print_bad_pte(vma, addr, pte, NULL);
664 		return NULL;
665 	}
666 
667 	/*
668 	 * NOTE! We still have PageReserved() pages in the page tables.
669 	 * eg. VDSO mappings can cause them to exist.
670 	 */
671 out:
672 	return pfn_to_page(pfn);
673 }
674 
675 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
676 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
677 				pmd_t pmd)
678 {
679 	unsigned long pfn = pmd_pfn(pmd);
680 
681 	/*
682 	 * There is no pmd_special() but there may be special pmds, e.g.
683 	 * in a direct-access (dax) mapping, so let's just replicate the
684 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
685 	 */
686 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
687 		if (vma->vm_flags & VM_MIXEDMAP) {
688 			if (!pfn_valid(pfn))
689 				return NULL;
690 			goto out;
691 		} else {
692 			unsigned long off;
693 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
694 			if (pfn == vma->vm_pgoff + off)
695 				return NULL;
696 			if (!is_cow_mapping(vma->vm_flags))
697 				return NULL;
698 		}
699 	}
700 
701 	if (pmd_devmap(pmd))
702 		return NULL;
703 	if (is_huge_zero_pmd(pmd))
704 		return NULL;
705 	if (unlikely(pfn > highest_memmap_pfn))
706 		return NULL;
707 
708 	/*
709 	 * NOTE! We still have PageReserved() pages in the page tables.
710 	 * eg. VDSO mappings can cause them to exist.
711 	 */
712 out:
713 	return pfn_to_page(pfn);
714 }
715 #endif
716 
717 static void restore_exclusive_pte(struct vm_area_struct *vma,
718 				  struct page *page, unsigned long address,
719 				  pte_t *ptep)
720 {
721 	pte_t pte;
722 	swp_entry_t entry;
723 
724 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
725 	if (pte_swp_soft_dirty(*ptep))
726 		pte = pte_mksoft_dirty(pte);
727 
728 	entry = pte_to_swp_entry(*ptep);
729 	if (pte_swp_uffd_wp(*ptep))
730 		pte = pte_mkuffd_wp(pte);
731 	else if (is_writable_device_exclusive_entry(entry))
732 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
733 
734 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
735 
736 	/*
737 	 * No need to take a page reference as one was already
738 	 * created when the swap entry was made.
739 	 */
740 	if (PageAnon(page))
741 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
742 	else
743 		/*
744 		 * Currently device exclusive access only supports anonymous
745 		 * memory so the entry shouldn't point to a filebacked page.
746 		 */
747 		WARN_ON_ONCE(1);
748 
749 	set_pte_at(vma->vm_mm, address, ptep, pte);
750 
751 	/*
752 	 * No need to invalidate - it was non-present before. However
753 	 * secondary CPUs may have mappings that need invalidating.
754 	 */
755 	update_mmu_cache(vma, address, ptep);
756 }
757 
758 /*
759  * Tries to restore an exclusive pte if the page lock can be acquired without
760  * sleeping.
761  */
762 static int
763 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
764 			unsigned long addr)
765 {
766 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
767 	struct page *page = pfn_swap_entry_to_page(entry);
768 
769 	if (trylock_page(page)) {
770 		restore_exclusive_pte(vma, page, addr, src_pte);
771 		unlock_page(page);
772 		return 0;
773 	}
774 
775 	return -EBUSY;
776 }
777 
778 /*
779  * copy one vm_area from one task to the other. Assumes the page tables
780  * already present in the new task to be cleared in the whole range
781  * covered by this vma.
782  */
783 
784 static unsigned long
785 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
786 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
787 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
788 {
789 	unsigned long vm_flags = dst_vma->vm_flags;
790 	pte_t pte = *src_pte;
791 	struct page *page;
792 	swp_entry_t entry = pte_to_swp_entry(pte);
793 
794 	if (likely(!non_swap_entry(entry))) {
795 		if (swap_duplicate(entry) < 0)
796 			return -EIO;
797 
798 		/* make sure dst_mm is on swapoff's mmlist. */
799 		if (unlikely(list_empty(&dst_mm->mmlist))) {
800 			spin_lock(&mmlist_lock);
801 			if (list_empty(&dst_mm->mmlist))
802 				list_add(&dst_mm->mmlist,
803 						&src_mm->mmlist);
804 			spin_unlock(&mmlist_lock);
805 		}
806 		/* Mark the swap entry as shared. */
807 		if (pte_swp_exclusive(*src_pte)) {
808 			pte = pte_swp_clear_exclusive(*src_pte);
809 			set_pte_at(src_mm, addr, src_pte, pte);
810 		}
811 		rss[MM_SWAPENTS]++;
812 	} else if (is_migration_entry(entry)) {
813 		page = pfn_swap_entry_to_page(entry);
814 
815 		rss[mm_counter(page)]++;
816 
817 		if (!is_readable_migration_entry(entry) &&
818 				is_cow_mapping(vm_flags)) {
819 			/*
820 			 * COW mappings require pages in both parent and child
821 			 * to be set to read. A previously exclusive entry is
822 			 * now shared.
823 			 */
824 			entry = make_readable_migration_entry(
825 							swp_offset(entry));
826 			pte = swp_entry_to_pte(entry);
827 			if (pte_swp_soft_dirty(*src_pte))
828 				pte = pte_swp_mksoft_dirty(pte);
829 			if (pte_swp_uffd_wp(*src_pte))
830 				pte = pte_swp_mkuffd_wp(pte);
831 			set_pte_at(src_mm, addr, src_pte, pte);
832 		}
833 	} else if (is_device_private_entry(entry)) {
834 		page = pfn_swap_entry_to_page(entry);
835 
836 		/*
837 		 * Update rss count even for unaddressable pages, as
838 		 * they should treated just like normal pages in this
839 		 * respect.
840 		 *
841 		 * We will likely want to have some new rss counters
842 		 * for unaddressable pages, at some point. But for now
843 		 * keep things as they are.
844 		 */
845 		get_page(page);
846 		rss[mm_counter(page)]++;
847 		/* Cannot fail as these pages cannot get pinned. */
848 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
849 
850 		/*
851 		 * We do not preserve soft-dirty information, because so
852 		 * far, checkpoint/restore is the only feature that
853 		 * requires that. And checkpoint/restore does not work
854 		 * when a device driver is involved (you cannot easily
855 		 * save and restore device driver state).
856 		 */
857 		if (is_writable_device_private_entry(entry) &&
858 		    is_cow_mapping(vm_flags)) {
859 			entry = make_readable_device_private_entry(
860 							swp_offset(entry));
861 			pte = swp_entry_to_pte(entry);
862 			if (pte_swp_uffd_wp(*src_pte))
863 				pte = pte_swp_mkuffd_wp(pte);
864 			set_pte_at(src_mm, addr, src_pte, pte);
865 		}
866 	} else if (is_device_exclusive_entry(entry)) {
867 		/*
868 		 * Make device exclusive entries present by restoring the
869 		 * original entry then copying as for a present pte. Device
870 		 * exclusive entries currently only support private writable
871 		 * (ie. COW) mappings.
872 		 */
873 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
874 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
875 			return -EBUSY;
876 		return -ENOENT;
877 	} else if (is_pte_marker_entry(entry)) {
878 		/*
879 		 * We're copying the pgtable should only because dst_vma has
880 		 * uffd-wp enabled, do sanity check.
881 		 */
882 		WARN_ON_ONCE(!userfaultfd_wp(dst_vma));
883 		set_pte_at(dst_mm, addr, dst_pte, pte);
884 		return 0;
885 	}
886 	if (!userfaultfd_wp(dst_vma))
887 		pte = pte_swp_clear_uffd_wp(pte);
888 	set_pte_at(dst_mm, addr, dst_pte, pte);
889 	return 0;
890 }
891 
892 /*
893  * Copy a present and normal page.
894  *
895  * NOTE! The usual case is that this isn't required;
896  * instead, the caller can just increase the page refcount
897  * and re-use the pte the traditional way.
898  *
899  * And if we need a pre-allocated page but don't yet have
900  * one, return a negative error to let the preallocation
901  * code know so that it can do so outside the page table
902  * lock.
903  */
904 static inline int
905 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
906 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
907 		  struct page **prealloc, struct page *page)
908 {
909 	struct page *new_page;
910 	pte_t pte;
911 
912 	new_page = *prealloc;
913 	if (!new_page)
914 		return -EAGAIN;
915 
916 	/*
917 	 * We have a prealloc page, all good!  Take it
918 	 * over and copy the page & arm it.
919 	 */
920 	*prealloc = NULL;
921 	copy_user_highpage(new_page, page, addr, src_vma);
922 	__SetPageUptodate(new_page);
923 	page_add_new_anon_rmap(new_page, dst_vma, addr);
924 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
925 	rss[mm_counter(new_page)]++;
926 
927 	/* All done, just insert the new page copy in the child */
928 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
929 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
930 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
931 		/* Uffd-wp needs to be delivered to dest pte as well */
932 		pte = pte_wrprotect(pte_mkuffd_wp(pte));
933 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
934 	return 0;
935 }
936 
937 /*
938  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
939  * is required to copy this pte.
940  */
941 static inline int
942 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
943 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
944 		 struct page **prealloc)
945 {
946 	struct mm_struct *src_mm = src_vma->vm_mm;
947 	unsigned long vm_flags = src_vma->vm_flags;
948 	pte_t pte = *src_pte;
949 	struct page *page;
950 
951 	page = vm_normal_page(src_vma, addr, pte);
952 	if (page && PageAnon(page)) {
953 		/*
954 		 * If this page may have been pinned by the parent process,
955 		 * copy the page immediately for the child so that we'll always
956 		 * guarantee the pinned page won't be randomly replaced in the
957 		 * future.
958 		 */
959 		get_page(page);
960 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
961 			/* Page maybe pinned, we have to copy. */
962 			put_page(page);
963 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
964 						 addr, rss, prealloc, page);
965 		}
966 		rss[mm_counter(page)]++;
967 	} else if (page) {
968 		get_page(page);
969 		page_dup_file_rmap(page, false);
970 		rss[mm_counter(page)]++;
971 	}
972 
973 	/*
974 	 * If it's a COW mapping, write protect it both
975 	 * in the parent and the child
976 	 */
977 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
978 		ptep_set_wrprotect(src_mm, addr, src_pte);
979 		pte = pte_wrprotect(pte);
980 	}
981 	VM_BUG_ON(page && PageAnon(page) && PageAnonExclusive(page));
982 
983 	/*
984 	 * If it's a shared mapping, mark it clean in
985 	 * the child
986 	 */
987 	if (vm_flags & VM_SHARED)
988 		pte = pte_mkclean(pte);
989 	pte = pte_mkold(pte);
990 
991 	if (!userfaultfd_wp(dst_vma))
992 		pte = pte_clear_uffd_wp(pte);
993 
994 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
995 	return 0;
996 }
997 
998 static inline struct page *
999 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
1000 		   unsigned long addr)
1001 {
1002 	struct page *new_page;
1003 
1004 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
1005 	if (!new_page)
1006 		return NULL;
1007 
1008 	if (mem_cgroup_charge(page_folio(new_page), src_mm, GFP_KERNEL)) {
1009 		put_page(new_page);
1010 		return NULL;
1011 	}
1012 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
1013 
1014 	return new_page;
1015 }
1016 
1017 static int
1018 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1019 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020 	       unsigned long end)
1021 {
1022 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1023 	struct mm_struct *src_mm = src_vma->vm_mm;
1024 	pte_t *orig_src_pte, *orig_dst_pte;
1025 	pte_t *src_pte, *dst_pte;
1026 	spinlock_t *src_ptl, *dst_ptl;
1027 	int progress, ret = 0;
1028 	int rss[NR_MM_COUNTERS];
1029 	swp_entry_t entry = (swp_entry_t){0};
1030 	struct page *prealloc = NULL;
1031 
1032 again:
1033 	progress = 0;
1034 	init_rss_vec(rss);
1035 
1036 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1037 	if (!dst_pte) {
1038 		ret = -ENOMEM;
1039 		goto out;
1040 	}
1041 	src_pte = pte_offset_map(src_pmd, addr);
1042 	src_ptl = pte_lockptr(src_mm, src_pmd);
1043 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1044 	orig_src_pte = src_pte;
1045 	orig_dst_pte = dst_pte;
1046 	arch_enter_lazy_mmu_mode();
1047 
1048 	do {
1049 		/*
1050 		 * We are holding two locks at this point - either of them
1051 		 * could generate latencies in another task on another CPU.
1052 		 */
1053 		if (progress >= 32) {
1054 			progress = 0;
1055 			if (need_resched() ||
1056 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1057 				break;
1058 		}
1059 		if (pte_none(*src_pte)) {
1060 			progress++;
1061 			continue;
1062 		}
1063 		if (unlikely(!pte_present(*src_pte))) {
1064 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1065 						  dst_pte, src_pte,
1066 						  dst_vma, src_vma,
1067 						  addr, rss);
1068 			if (ret == -EIO) {
1069 				entry = pte_to_swp_entry(*src_pte);
1070 				break;
1071 			} else if (ret == -EBUSY) {
1072 				break;
1073 			} else if (!ret) {
1074 				progress += 8;
1075 				continue;
1076 			}
1077 
1078 			/*
1079 			 * Device exclusive entry restored, continue by copying
1080 			 * the now present pte.
1081 			 */
1082 			WARN_ON_ONCE(ret != -ENOENT);
1083 		}
1084 		/* copy_present_pte() will clear `*prealloc' if consumed */
1085 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1086 				       addr, rss, &prealloc);
1087 		/*
1088 		 * If we need a pre-allocated page for this pte, drop the
1089 		 * locks, allocate, and try again.
1090 		 */
1091 		if (unlikely(ret == -EAGAIN))
1092 			break;
1093 		if (unlikely(prealloc)) {
1094 			/*
1095 			 * pre-alloc page cannot be reused by next time so as
1096 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1097 			 * will allocate page according to address).  This
1098 			 * could only happen if one pinned pte changed.
1099 			 */
1100 			put_page(prealloc);
1101 			prealloc = NULL;
1102 		}
1103 		progress += 8;
1104 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1105 
1106 	arch_leave_lazy_mmu_mode();
1107 	spin_unlock(src_ptl);
1108 	pte_unmap(orig_src_pte);
1109 	add_mm_rss_vec(dst_mm, rss);
1110 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1111 	cond_resched();
1112 
1113 	if (ret == -EIO) {
1114 		VM_WARN_ON_ONCE(!entry.val);
1115 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1116 			ret = -ENOMEM;
1117 			goto out;
1118 		}
1119 		entry.val = 0;
1120 	} else if (ret == -EBUSY) {
1121 		goto out;
1122 	} else if (ret ==  -EAGAIN) {
1123 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1124 		if (!prealloc)
1125 			return -ENOMEM;
1126 	} else if (ret) {
1127 		VM_WARN_ON_ONCE(1);
1128 	}
1129 
1130 	/* We've captured and resolved the error. Reset, try again. */
1131 	ret = 0;
1132 
1133 	if (addr != end)
1134 		goto again;
1135 out:
1136 	if (unlikely(prealloc))
1137 		put_page(prealloc);
1138 	return ret;
1139 }
1140 
1141 static inline int
1142 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1143 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1144 	       unsigned long end)
1145 {
1146 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1147 	struct mm_struct *src_mm = src_vma->vm_mm;
1148 	pmd_t *src_pmd, *dst_pmd;
1149 	unsigned long next;
1150 
1151 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1152 	if (!dst_pmd)
1153 		return -ENOMEM;
1154 	src_pmd = pmd_offset(src_pud, addr);
1155 	do {
1156 		next = pmd_addr_end(addr, end);
1157 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1158 			|| pmd_devmap(*src_pmd)) {
1159 			int err;
1160 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1161 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1162 					    addr, dst_vma, src_vma);
1163 			if (err == -ENOMEM)
1164 				return -ENOMEM;
1165 			if (!err)
1166 				continue;
1167 			/* fall through */
1168 		}
1169 		if (pmd_none_or_clear_bad(src_pmd))
1170 			continue;
1171 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1172 				   addr, next))
1173 			return -ENOMEM;
1174 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1175 	return 0;
1176 }
1177 
1178 static inline int
1179 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1180 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1181 	       unsigned long end)
1182 {
1183 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1184 	struct mm_struct *src_mm = src_vma->vm_mm;
1185 	pud_t *src_pud, *dst_pud;
1186 	unsigned long next;
1187 
1188 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1189 	if (!dst_pud)
1190 		return -ENOMEM;
1191 	src_pud = pud_offset(src_p4d, addr);
1192 	do {
1193 		next = pud_addr_end(addr, end);
1194 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1195 			int err;
1196 
1197 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1198 			err = copy_huge_pud(dst_mm, src_mm,
1199 					    dst_pud, src_pud, addr, src_vma);
1200 			if (err == -ENOMEM)
1201 				return -ENOMEM;
1202 			if (!err)
1203 				continue;
1204 			/* fall through */
1205 		}
1206 		if (pud_none_or_clear_bad(src_pud))
1207 			continue;
1208 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1209 				   addr, next))
1210 			return -ENOMEM;
1211 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1212 	return 0;
1213 }
1214 
1215 static inline int
1216 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1217 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1218 	       unsigned long end)
1219 {
1220 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1221 	p4d_t *src_p4d, *dst_p4d;
1222 	unsigned long next;
1223 
1224 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1225 	if (!dst_p4d)
1226 		return -ENOMEM;
1227 	src_p4d = p4d_offset(src_pgd, addr);
1228 	do {
1229 		next = p4d_addr_end(addr, end);
1230 		if (p4d_none_or_clear_bad(src_p4d))
1231 			continue;
1232 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1233 				   addr, next))
1234 			return -ENOMEM;
1235 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1236 	return 0;
1237 }
1238 
1239 /*
1240  * Return true if the vma needs to copy the pgtable during this fork().  Return
1241  * false when we can speed up fork() by allowing lazy page faults later until
1242  * when the child accesses the memory range.
1243  */
1244 static bool
1245 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1246 {
1247 	/*
1248 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1249 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1250 	 * contains uffd-wp protection information, that's something we can't
1251 	 * retrieve from page cache, and skip copying will lose those info.
1252 	 */
1253 	if (userfaultfd_wp(dst_vma))
1254 		return true;
1255 
1256 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1257 		return true;
1258 
1259 	if (src_vma->anon_vma)
1260 		return true;
1261 
1262 	/*
1263 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1264 	 * becomes much lighter when there are big shared or private readonly
1265 	 * mappings. The tradeoff is that copy_page_range is more efficient
1266 	 * than faulting.
1267 	 */
1268 	return false;
1269 }
1270 
1271 int
1272 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1273 {
1274 	pgd_t *src_pgd, *dst_pgd;
1275 	unsigned long next;
1276 	unsigned long addr = src_vma->vm_start;
1277 	unsigned long end = src_vma->vm_end;
1278 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1279 	struct mm_struct *src_mm = src_vma->vm_mm;
1280 	struct mmu_notifier_range range;
1281 	bool is_cow;
1282 	int ret;
1283 
1284 	if (!vma_needs_copy(dst_vma, src_vma))
1285 		return 0;
1286 
1287 	if (is_vm_hugetlb_page(src_vma))
1288 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1289 
1290 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1291 		/*
1292 		 * We do not free on error cases below as remove_vma
1293 		 * gets called on error from higher level routine
1294 		 */
1295 		ret = track_pfn_copy(src_vma);
1296 		if (ret)
1297 			return ret;
1298 	}
1299 
1300 	/*
1301 	 * We need to invalidate the secondary MMU mappings only when
1302 	 * there could be a permission downgrade on the ptes of the
1303 	 * parent mm. And a permission downgrade will only happen if
1304 	 * is_cow_mapping() returns true.
1305 	 */
1306 	is_cow = is_cow_mapping(src_vma->vm_flags);
1307 
1308 	if (is_cow) {
1309 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1310 					0, src_vma, src_mm, addr, end);
1311 		mmu_notifier_invalidate_range_start(&range);
1312 		/*
1313 		 * Disabling preemption is not needed for the write side, as
1314 		 * the read side doesn't spin, but goes to the mmap_lock.
1315 		 *
1316 		 * Use the raw variant of the seqcount_t write API to avoid
1317 		 * lockdep complaining about preemptibility.
1318 		 */
1319 		mmap_assert_write_locked(src_mm);
1320 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1321 	}
1322 
1323 	ret = 0;
1324 	dst_pgd = pgd_offset(dst_mm, addr);
1325 	src_pgd = pgd_offset(src_mm, addr);
1326 	do {
1327 		next = pgd_addr_end(addr, end);
1328 		if (pgd_none_or_clear_bad(src_pgd))
1329 			continue;
1330 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1331 					    addr, next))) {
1332 			ret = -ENOMEM;
1333 			break;
1334 		}
1335 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1336 
1337 	if (is_cow) {
1338 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1339 		mmu_notifier_invalidate_range_end(&range);
1340 	}
1341 	return ret;
1342 }
1343 
1344 /* Whether we should zap all COWed (private) pages too */
1345 static inline bool should_zap_cows(struct zap_details *details)
1346 {
1347 	/* By default, zap all pages */
1348 	if (!details)
1349 		return true;
1350 
1351 	/* Or, we zap COWed pages only if the caller wants to */
1352 	return details->even_cows;
1353 }
1354 
1355 /* Decides whether we should zap this page with the page pointer specified */
1356 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1357 {
1358 	/* If we can make a decision without *page.. */
1359 	if (should_zap_cows(details))
1360 		return true;
1361 
1362 	/* E.g. the caller passes NULL for the case of a zero page */
1363 	if (!page)
1364 		return true;
1365 
1366 	/* Otherwise we should only zap non-anon pages */
1367 	return !PageAnon(page);
1368 }
1369 
1370 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1371 {
1372 	if (!details)
1373 		return false;
1374 
1375 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1376 }
1377 
1378 /*
1379  * This function makes sure that we'll replace the none pte with an uffd-wp
1380  * swap special pte marker when necessary. Must be with the pgtable lock held.
1381  */
1382 static inline void
1383 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1384 			      unsigned long addr, pte_t *pte,
1385 			      struct zap_details *details, pte_t pteval)
1386 {
1387 #ifdef CONFIG_PTE_MARKER_UFFD_WP
1388 	if (zap_drop_file_uffd_wp(details))
1389 		return;
1390 
1391 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 #endif
1393 }
1394 
1395 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1396 				struct vm_area_struct *vma, pmd_t *pmd,
1397 				unsigned long addr, unsigned long end,
1398 				struct zap_details *details)
1399 {
1400 	struct mm_struct *mm = tlb->mm;
1401 	int force_flush = 0;
1402 	int rss[NR_MM_COUNTERS];
1403 	spinlock_t *ptl;
1404 	pte_t *start_pte;
1405 	pte_t *pte;
1406 	swp_entry_t entry;
1407 
1408 	tlb_change_page_size(tlb, PAGE_SIZE);
1409 again:
1410 	init_rss_vec(rss);
1411 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1412 	pte = start_pte;
1413 	flush_tlb_batched_pending(mm);
1414 	arch_enter_lazy_mmu_mode();
1415 	do {
1416 		pte_t ptent = *pte;
1417 		struct page *page;
1418 
1419 		if (pte_none(ptent))
1420 			continue;
1421 
1422 		if (need_resched())
1423 			break;
1424 
1425 		if (pte_present(ptent)) {
1426 			page = vm_normal_page(vma, addr, ptent);
1427 			if (unlikely(!should_zap_page(details, page)))
1428 				continue;
1429 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1430 							tlb->fullmm);
1431 			tlb_remove_tlb_entry(tlb, pte, addr);
1432 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1433 						      ptent);
1434 			if (unlikely(!page))
1435 				continue;
1436 
1437 			if (!PageAnon(page)) {
1438 				if (pte_dirty(ptent)) {
1439 					force_flush = 1;
1440 					set_page_dirty(page);
1441 				}
1442 				if (pte_young(ptent) &&
1443 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1444 					mark_page_accessed(page);
1445 			}
1446 			rss[mm_counter(page)]--;
1447 			page_remove_rmap(page, vma, false);
1448 			if (unlikely(page_mapcount(page) < 0))
1449 				print_bad_pte(vma, addr, ptent, page);
1450 			if (unlikely(__tlb_remove_page(tlb, page))) {
1451 				force_flush = 1;
1452 				addr += PAGE_SIZE;
1453 				break;
1454 			}
1455 			continue;
1456 		}
1457 
1458 		entry = pte_to_swp_entry(ptent);
1459 		if (is_device_private_entry(entry) ||
1460 		    is_device_exclusive_entry(entry)) {
1461 			page = pfn_swap_entry_to_page(entry);
1462 			if (unlikely(!should_zap_page(details, page)))
1463 				continue;
1464 			/*
1465 			 * Both device private/exclusive mappings should only
1466 			 * work with anonymous page so far, so we don't need to
1467 			 * consider uffd-wp bit when zap. For more information,
1468 			 * see zap_install_uffd_wp_if_needed().
1469 			 */
1470 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1471 			rss[mm_counter(page)]--;
1472 			if (is_device_private_entry(entry))
1473 				page_remove_rmap(page, vma, false);
1474 			put_page(page);
1475 		} else if (!non_swap_entry(entry)) {
1476 			/* Genuine swap entry, hence a private anon page */
1477 			if (!should_zap_cows(details))
1478 				continue;
1479 			rss[MM_SWAPENTS]--;
1480 			if (unlikely(!free_swap_and_cache(entry)))
1481 				print_bad_pte(vma, addr, ptent, NULL);
1482 		} else if (is_migration_entry(entry)) {
1483 			page = pfn_swap_entry_to_page(entry);
1484 			if (!should_zap_page(details, page))
1485 				continue;
1486 			rss[mm_counter(page)]--;
1487 		} else if (pte_marker_entry_uffd_wp(entry)) {
1488 			/* Only drop the uffd-wp marker if explicitly requested */
1489 			if (!zap_drop_file_uffd_wp(details))
1490 				continue;
1491 		} else if (is_hwpoison_entry(entry) ||
1492 			   is_swapin_error_entry(entry)) {
1493 			if (!should_zap_cows(details))
1494 				continue;
1495 		} else {
1496 			/* We should have covered all the swap entry types */
1497 			WARN_ON_ONCE(1);
1498 		}
1499 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1500 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1501 	} while (pte++, addr += PAGE_SIZE, addr != end);
1502 
1503 	add_mm_rss_vec(mm, rss);
1504 	arch_leave_lazy_mmu_mode();
1505 
1506 	/* Do the actual TLB flush before dropping ptl */
1507 	if (force_flush)
1508 		tlb_flush_mmu_tlbonly(tlb);
1509 	pte_unmap_unlock(start_pte, ptl);
1510 
1511 	/*
1512 	 * If we forced a TLB flush (either due to running out of
1513 	 * batch buffers or because we needed to flush dirty TLB
1514 	 * entries before releasing the ptl), free the batched
1515 	 * memory too. Restart if we didn't do everything.
1516 	 */
1517 	if (force_flush) {
1518 		force_flush = 0;
1519 		tlb_flush_mmu(tlb);
1520 	}
1521 
1522 	if (addr != end) {
1523 		cond_resched();
1524 		goto again;
1525 	}
1526 
1527 	return addr;
1528 }
1529 
1530 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1531 				struct vm_area_struct *vma, pud_t *pud,
1532 				unsigned long addr, unsigned long end,
1533 				struct zap_details *details)
1534 {
1535 	pmd_t *pmd;
1536 	unsigned long next;
1537 
1538 	pmd = pmd_offset(pud, addr);
1539 	do {
1540 		next = pmd_addr_end(addr, end);
1541 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1542 			if (next - addr != HPAGE_PMD_SIZE)
1543 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1544 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1545 				goto next;
1546 			/* fall through */
1547 		} else if (details && details->single_folio &&
1548 			   folio_test_pmd_mappable(details->single_folio) &&
1549 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1550 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1551 			/*
1552 			 * Take and drop THP pmd lock so that we cannot return
1553 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1554 			 * but not yet decremented compound_mapcount().
1555 			 */
1556 			spin_unlock(ptl);
1557 		}
1558 
1559 		/*
1560 		 * Here there can be other concurrent MADV_DONTNEED or
1561 		 * trans huge page faults running, and if the pmd is
1562 		 * none or trans huge it can change under us. This is
1563 		 * because MADV_DONTNEED holds the mmap_lock in read
1564 		 * mode.
1565 		 */
1566 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1567 			goto next;
1568 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1569 next:
1570 		cond_resched();
1571 	} while (pmd++, addr = next, addr != end);
1572 
1573 	return addr;
1574 }
1575 
1576 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1577 				struct vm_area_struct *vma, p4d_t *p4d,
1578 				unsigned long addr, unsigned long end,
1579 				struct zap_details *details)
1580 {
1581 	pud_t *pud;
1582 	unsigned long next;
1583 
1584 	pud = pud_offset(p4d, addr);
1585 	do {
1586 		next = pud_addr_end(addr, end);
1587 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1588 			if (next - addr != HPAGE_PUD_SIZE) {
1589 				mmap_assert_locked(tlb->mm);
1590 				split_huge_pud(vma, pud, addr);
1591 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1592 				goto next;
1593 			/* fall through */
1594 		}
1595 		if (pud_none_or_clear_bad(pud))
1596 			continue;
1597 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1598 next:
1599 		cond_resched();
1600 	} while (pud++, addr = next, addr != end);
1601 
1602 	return addr;
1603 }
1604 
1605 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1606 				struct vm_area_struct *vma, pgd_t *pgd,
1607 				unsigned long addr, unsigned long end,
1608 				struct zap_details *details)
1609 {
1610 	p4d_t *p4d;
1611 	unsigned long next;
1612 
1613 	p4d = p4d_offset(pgd, addr);
1614 	do {
1615 		next = p4d_addr_end(addr, end);
1616 		if (p4d_none_or_clear_bad(p4d))
1617 			continue;
1618 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1619 	} while (p4d++, addr = next, addr != end);
1620 
1621 	return addr;
1622 }
1623 
1624 void unmap_page_range(struct mmu_gather *tlb,
1625 			     struct vm_area_struct *vma,
1626 			     unsigned long addr, unsigned long end,
1627 			     struct zap_details *details)
1628 {
1629 	pgd_t *pgd;
1630 	unsigned long next;
1631 
1632 	BUG_ON(addr >= end);
1633 	tlb_start_vma(tlb, vma);
1634 	pgd = pgd_offset(vma->vm_mm, addr);
1635 	do {
1636 		next = pgd_addr_end(addr, end);
1637 		if (pgd_none_or_clear_bad(pgd))
1638 			continue;
1639 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1640 	} while (pgd++, addr = next, addr != end);
1641 	tlb_end_vma(tlb, vma);
1642 }
1643 
1644 
1645 static void unmap_single_vma(struct mmu_gather *tlb,
1646 		struct vm_area_struct *vma, unsigned long start_addr,
1647 		unsigned long end_addr,
1648 		struct zap_details *details)
1649 {
1650 	unsigned long start = max(vma->vm_start, start_addr);
1651 	unsigned long end;
1652 
1653 	if (start >= vma->vm_end)
1654 		return;
1655 	end = min(vma->vm_end, end_addr);
1656 	if (end <= vma->vm_start)
1657 		return;
1658 
1659 	if (vma->vm_file)
1660 		uprobe_munmap(vma, start, end);
1661 
1662 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1663 		untrack_pfn(vma, 0, 0);
1664 
1665 	if (start != end) {
1666 		if (unlikely(is_vm_hugetlb_page(vma))) {
1667 			/*
1668 			 * It is undesirable to test vma->vm_file as it
1669 			 * should be non-null for valid hugetlb area.
1670 			 * However, vm_file will be NULL in the error
1671 			 * cleanup path of mmap_region. When
1672 			 * hugetlbfs ->mmap method fails,
1673 			 * mmap_region() nullifies vma->vm_file
1674 			 * before calling this function to clean up.
1675 			 * Since no pte has actually been setup, it is
1676 			 * safe to do nothing in this case.
1677 			 */
1678 			if (vma->vm_file) {
1679 				zap_flags_t zap_flags = details ?
1680 				    details->zap_flags : 0;
1681 				__unmap_hugepage_range_final(tlb, vma, start, end,
1682 							     NULL, zap_flags);
1683 			}
1684 		} else
1685 			unmap_page_range(tlb, vma, start, end, details);
1686 	}
1687 }
1688 
1689 /**
1690  * unmap_vmas - unmap a range of memory covered by a list of vma's
1691  * @tlb: address of the caller's struct mmu_gather
1692  * @mt: the maple tree
1693  * @vma: the starting vma
1694  * @start_addr: virtual address at which to start unmapping
1695  * @end_addr: virtual address at which to end unmapping
1696  *
1697  * Unmap all pages in the vma list.
1698  *
1699  * Only addresses between `start' and `end' will be unmapped.
1700  *
1701  * The VMA list must be sorted in ascending virtual address order.
1702  *
1703  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1704  * range after unmap_vmas() returns.  So the only responsibility here is to
1705  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1706  * drops the lock and schedules.
1707  */
1708 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1709 		struct vm_area_struct *vma, unsigned long start_addr,
1710 		unsigned long end_addr)
1711 {
1712 	struct mmu_notifier_range range;
1713 	struct zap_details details = {
1714 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1715 		/* Careful - we need to zap private pages too! */
1716 		.even_cows = true,
1717 	};
1718 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1719 
1720 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1721 				start_addr, end_addr);
1722 	mmu_notifier_invalidate_range_start(&range);
1723 	do {
1724 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details);
1725 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1726 	mmu_notifier_invalidate_range_end(&range);
1727 }
1728 
1729 /**
1730  * zap_page_range - remove user pages in a given range
1731  * @vma: vm_area_struct holding the applicable pages
1732  * @start: starting address of pages to zap
1733  * @size: number of bytes to zap
1734  *
1735  * Caller must protect the VMA list
1736  */
1737 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1738 		unsigned long size)
1739 {
1740 	struct maple_tree *mt = &vma->vm_mm->mm_mt;
1741 	unsigned long end = start + size;
1742 	struct mmu_notifier_range range;
1743 	struct mmu_gather tlb;
1744 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1745 
1746 	lru_add_drain();
1747 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1748 				start, start + size);
1749 	tlb_gather_mmu(&tlb, vma->vm_mm);
1750 	update_hiwater_rss(vma->vm_mm);
1751 	mmu_notifier_invalidate_range_start(&range);
1752 	do {
1753 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1754 	} while ((vma = mas_find(&mas, end - 1)) != NULL);
1755 	mmu_notifier_invalidate_range_end(&range);
1756 	tlb_finish_mmu(&tlb);
1757 }
1758 
1759 /**
1760  * zap_page_range_single - remove user pages in a given range
1761  * @vma: vm_area_struct holding the applicable pages
1762  * @address: starting address of pages to zap
1763  * @size: number of bytes to zap
1764  * @details: details of shared cache invalidation
1765  *
1766  * The range must fit into one VMA.
1767  */
1768 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1769 		unsigned long size, struct zap_details *details)
1770 {
1771 	const unsigned long end = address + size;
1772 	struct mmu_notifier_range range;
1773 	struct mmu_gather tlb;
1774 
1775 	lru_add_drain();
1776 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1777 				address, end);
1778 	if (is_vm_hugetlb_page(vma))
1779 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1780 						     &range.end);
1781 	tlb_gather_mmu(&tlb, vma->vm_mm);
1782 	update_hiwater_rss(vma->vm_mm);
1783 	mmu_notifier_invalidate_range_start(&range);
1784 	/*
1785 	 * unmap 'address-end' not 'range.start-range.end' as range
1786 	 * could have been expanded for hugetlb pmd sharing.
1787 	 */
1788 	unmap_single_vma(&tlb, vma, address, end, details);
1789 	mmu_notifier_invalidate_range_end(&range);
1790 	tlb_finish_mmu(&tlb);
1791 }
1792 
1793 /**
1794  * zap_vma_ptes - remove ptes mapping the vma
1795  * @vma: vm_area_struct holding ptes to be zapped
1796  * @address: starting address of pages to zap
1797  * @size: number of bytes to zap
1798  *
1799  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1800  *
1801  * The entire address range must be fully contained within the vma.
1802  *
1803  */
1804 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1805 		unsigned long size)
1806 {
1807 	if (!range_in_vma(vma, address, address + size) ||
1808 	    		!(vma->vm_flags & VM_PFNMAP))
1809 		return;
1810 
1811 	zap_page_range_single(vma, address, size, NULL);
1812 }
1813 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1814 
1815 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1816 {
1817 	pgd_t *pgd;
1818 	p4d_t *p4d;
1819 	pud_t *pud;
1820 	pmd_t *pmd;
1821 
1822 	pgd = pgd_offset(mm, addr);
1823 	p4d = p4d_alloc(mm, pgd, addr);
1824 	if (!p4d)
1825 		return NULL;
1826 	pud = pud_alloc(mm, p4d, addr);
1827 	if (!pud)
1828 		return NULL;
1829 	pmd = pmd_alloc(mm, pud, addr);
1830 	if (!pmd)
1831 		return NULL;
1832 
1833 	VM_BUG_ON(pmd_trans_huge(*pmd));
1834 	return pmd;
1835 }
1836 
1837 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1838 			spinlock_t **ptl)
1839 {
1840 	pmd_t *pmd = walk_to_pmd(mm, addr);
1841 
1842 	if (!pmd)
1843 		return NULL;
1844 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1845 }
1846 
1847 static int validate_page_before_insert(struct page *page)
1848 {
1849 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1850 		return -EINVAL;
1851 	flush_dcache_page(page);
1852 	return 0;
1853 }
1854 
1855 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1856 			unsigned long addr, struct page *page, pgprot_t prot)
1857 {
1858 	if (!pte_none(*pte))
1859 		return -EBUSY;
1860 	/* Ok, finally just insert the thing.. */
1861 	get_page(page);
1862 	inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
1863 	page_add_file_rmap(page, vma, false);
1864 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1865 	return 0;
1866 }
1867 
1868 /*
1869  * This is the old fallback for page remapping.
1870  *
1871  * For historical reasons, it only allows reserved pages. Only
1872  * old drivers should use this, and they needed to mark their
1873  * pages reserved for the old functions anyway.
1874  */
1875 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1876 			struct page *page, pgprot_t prot)
1877 {
1878 	int retval;
1879 	pte_t *pte;
1880 	spinlock_t *ptl;
1881 
1882 	retval = validate_page_before_insert(page);
1883 	if (retval)
1884 		goto out;
1885 	retval = -ENOMEM;
1886 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1887 	if (!pte)
1888 		goto out;
1889 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1890 	pte_unmap_unlock(pte, ptl);
1891 out:
1892 	return retval;
1893 }
1894 
1895 #ifdef pte_index
1896 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1897 			unsigned long addr, struct page *page, pgprot_t prot)
1898 {
1899 	int err;
1900 
1901 	if (!page_count(page))
1902 		return -EINVAL;
1903 	err = validate_page_before_insert(page);
1904 	if (err)
1905 		return err;
1906 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1907 }
1908 
1909 /* insert_pages() amortizes the cost of spinlock operations
1910  * when inserting pages in a loop. Arch *must* define pte_index.
1911  */
1912 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1913 			struct page **pages, unsigned long *num, pgprot_t prot)
1914 {
1915 	pmd_t *pmd = NULL;
1916 	pte_t *start_pte, *pte;
1917 	spinlock_t *pte_lock;
1918 	struct mm_struct *const mm = vma->vm_mm;
1919 	unsigned long curr_page_idx = 0;
1920 	unsigned long remaining_pages_total = *num;
1921 	unsigned long pages_to_write_in_pmd;
1922 	int ret;
1923 more:
1924 	ret = -EFAULT;
1925 	pmd = walk_to_pmd(mm, addr);
1926 	if (!pmd)
1927 		goto out;
1928 
1929 	pages_to_write_in_pmd = min_t(unsigned long,
1930 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1931 
1932 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1933 	ret = -ENOMEM;
1934 	if (pte_alloc(mm, pmd))
1935 		goto out;
1936 
1937 	while (pages_to_write_in_pmd) {
1938 		int pte_idx = 0;
1939 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1940 
1941 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1942 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1943 			int err = insert_page_in_batch_locked(vma, pte,
1944 				addr, pages[curr_page_idx], prot);
1945 			if (unlikely(err)) {
1946 				pte_unmap_unlock(start_pte, pte_lock);
1947 				ret = err;
1948 				remaining_pages_total -= pte_idx;
1949 				goto out;
1950 			}
1951 			addr += PAGE_SIZE;
1952 			++curr_page_idx;
1953 		}
1954 		pte_unmap_unlock(start_pte, pte_lock);
1955 		pages_to_write_in_pmd -= batch_size;
1956 		remaining_pages_total -= batch_size;
1957 	}
1958 	if (remaining_pages_total)
1959 		goto more;
1960 	ret = 0;
1961 out:
1962 	*num = remaining_pages_total;
1963 	return ret;
1964 }
1965 #endif  /* ifdef pte_index */
1966 
1967 /**
1968  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1969  * @vma: user vma to map to
1970  * @addr: target start user address of these pages
1971  * @pages: source kernel pages
1972  * @num: in: number of pages to map. out: number of pages that were *not*
1973  * mapped. (0 means all pages were successfully mapped).
1974  *
1975  * Preferred over vm_insert_page() when inserting multiple pages.
1976  *
1977  * In case of error, we may have mapped a subset of the provided
1978  * pages. It is the caller's responsibility to account for this case.
1979  *
1980  * The same restrictions apply as in vm_insert_page().
1981  */
1982 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1983 			struct page **pages, unsigned long *num)
1984 {
1985 #ifdef pte_index
1986 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1987 
1988 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1989 		return -EFAULT;
1990 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1991 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1992 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1993 		vma->vm_flags |= VM_MIXEDMAP;
1994 	}
1995 	/* Defer page refcount checking till we're about to map that page. */
1996 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1997 #else
1998 	unsigned long idx = 0, pgcount = *num;
1999 	int err = -EINVAL;
2000 
2001 	for (; idx < pgcount; ++idx) {
2002 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
2003 		if (err)
2004 			break;
2005 	}
2006 	*num = pgcount - idx;
2007 	return err;
2008 #endif  /* ifdef pte_index */
2009 }
2010 EXPORT_SYMBOL(vm_insert_pages);
2011 
2012 /**
2013  * vm_insert_page - insert single page into user vma
2014  * @vma: user vma to map to
2015  * @addr: target user address of this page
2016  * @page: source kernel page
2017  *
2018  * This allows drivers to insert individual pages they've allocated
2019  * into a user vma.
2020  *
2021  * The page has to be a nice clean _individual_ kernel allocation.
2022  * If you allocate a compound page, you need to have marked it as
2023  * such (__GFP_COMP), or manually just split the page up yourself
2024  * (see split_page()).
2025  *
2026  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2027  * took an arbitrary page protection parameter. This doesn't allow
2028  * that. Your vma protection will have to be set up correctly, which
2029  * means that if you want a shared writable mapping, you'd better
2030  * ask for a shared writable mapping!
2031  *
2032  * The page does not need to be reserved.
2033  *
2034  * Usually this function is called from f_op->mmap() handler
2035  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2036  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2037  * function from other places, for example from page-fault handler.
2038  *
2039  * Return: %0 on success, negative error code otherwise.
2040  */
2041 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2042 			struct page *page)
2043 {
2044 	if (addr < vma->vm_start || addr >= vma->vm_end)
2045 		return -EFAULT;
2046 	if (!page_count(page))
2047 		return -EINVAL;
2048 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2049 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2050 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2051 		vma->vm_flags |= VM_MIXEDMAP;
2052 	}
2053 	return insert_page(vma, addr, page, vma->vm_page_prot);
2054 }
2055 EXPORT_SYMBOL(vm_insert_page);
2056 
2057 /*
2058  * __vm_map_pages - maps range of kernel pages into user vma
2059  * @vma: user vma to map to
2060  * @pages: pointer to array of source kernel pages
2061  * @num: number of pages in page array
2062  * @offset: user's requested vm_pgoff
2063  *
2064  * This allows drivers to map range of kernel pages into a user vma.
2065  *
2066  * Return: 0 on success and error code otherwise.
2067  */
2068 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2069 				unsigned long num, unsigned long offset)
2070 {
2071 	unsigned long count = vma_pages(vma);
2072 	unsigned long uaddr = vma->vm_start;
2073 	int ret, i;
2074 
2075 	/* Fail if the user requested offset is beyond the end of the object */
2076 	if (offset >= num)
2077 		return -ENXIO;
2078 
2079 	/* Fail if the user requested size exceeds available object size */
2080 	if (count > num - offset)
2081 		return -ENXIO;
2082 
2083 	for (i = 0; i < count; i++) {
2084 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2085 		if (ret < 0)
2086 			return ret;
2087 		uaddr += PAGE_SIZE;
2088 	}
2089 
2090 	return 0;
2091 }
2092 
2093 /**
2094  * vm_map_pages - maps range of kernel pages starts with non zero offset
2095  * @vma: user vma to map to
2096  * @pages: pointer to array of source kernel pages
2097  * @num: number of pages in page array
2098  *
2099  * Maps an object consisting of @num pages, catering for the user's
2100  * requested vm_pgoff
2101  *
2102  * If we fail to insert any page into the vma, the function will return
2103  * immediately leaving any previously inserted pages present.  Callers
2104  * from the mmap handler may immediately return the error as their caller
2105  * will destroy the vma, removing any successfully inserted pages. Other
2106  * callers should make their own arrangements for calling unmap_region().
2107  *
2108  * Context: Process context. Called by mmap handlers.
2109  * Return: 0 on success and error code otherwise.
2110  */
2111 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2112 				unsigned long num)
2113 {
2114 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2115 }
2116 EXPORT_SYMBOL(vm_map_pages);
2117 
2118 /**
2119  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2120  * @vma: user vma to map to
2121  * @pages: pointer to array of source kernel pages
2122  * @num: number of pages in page array
2123  *
2124  * Similar to vm_map_pages(), except that it explicitly sets the offset
2125  * to 0. This function is intended for the drivers that did not consider
2126  * vm_pgoff.
2127  *
2128  * Context: Process context. Called by mmap handlers.
2129  * Return: 0 on success and error code otherwise.
2130  */
2131 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2132 				unsigned long num)
2133 {
2134 	return __vm_map_pages(vma, pages, num, 0);
2135 }
2136 EXPORT_SYMBOL(vm_map_pages_zero);
2137 
2138 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2139 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2140 {
2141 	struct mm_struct *mm = vma->vm_mm;
2142 	pte_t *pte, entry;
2143 	spinlock_t *ptl;
2144 
2145 	pte = get_locked_pte(mm, addr, &ptl);
2146 	if (!pte)
2147 		return VM_FAULT_OOM;
2148 	if (!pte_none(*pte)) {
2149 		if (mkwrite) {
2150 			/*
2151 			 * For read faults on private mappings the PFN passed
2152 			 * in may not match the PFN we have mapped if the
2153 			 * mapped PFN is a writeable COW page.  In the mkwrite
2154 			 * case we are creating a writable PTE for a shared
2155 			 * mapping and we expect the PFNs to match. If they
2156 			 * don't match, we are likely racing with block
2157 			 * allocation and mapping invalidation so just skip the
2158 			 * update.
2159 			 */
2160 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2161 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2162 				goto out_unlock;
2163 			}
2164 			entry = pte_mkyoung(*pte);
2165 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2166 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2167 				update_mmu_cache(vma, addr, pte);
2168 		}
2169 		goto out_unlock;
2170 	}
2171 
2172 	/* Ok, finally just insert the thing.. */
2173 	if (pfn_t_devmap(pfn))
2174 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2175 	else
2176 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2177 
2178 	if (mkwrite) {
2179 		entry = pte_mkyoung(entry);
2180 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2181 	}
2182 
2183 	set_pte_at(mm, addr, pte, entry);
2184 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2185 
2186 out_unlock:
2187 	pte_unmap_unlock(pte, ptl);
2188 	return VM_FAULT_NOPAGE;
2189 }
2190 
2191 /**
2192  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2193  * @vma: user vma to map to
2194  * @addr: target user address of this page
2195  * @pfn: source kernel pfn
2196  * @pgprot: pgprot flags for the inserted page
2197  *
2198  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2199  * to override pgprot on a per-page basis.
2200  *
2201  * This only makes sense for IO mappings, and it makes no sense for
2202  * COW mappings.  In general, using multiple vmas is preferable;
2203  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2204  * impractical.
2205  *
2206  * See vmf_insert_mixed_prot() for a discussion of the implication of using
2207  * a value of @pgprot different from that of @vma->vm_page_prot.
2208  *
2209  * Context: Process context.  May allocate using %GFP_KERNEL.
2210  * Return: vm_fault_t value.
2211  */
2212 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2213 			unsigned long pfn, pgprot_t pgprot)
2214 {
2215 	/*
2216 	 * Technically, architectures with pte_special can avoid all these
2217 	 * restrictions (same for remap_pfn_range).  However we would like
2218 	 * consistency in testing and feature parity among all, so we should
2219 	 * try to keep these invariants in place for everybody.
2220 	 */
2221 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2222 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2223 						(VM_PFNMAP|VM_MIXEDMAP));
2224 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2225 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2226 
2227 	if (addr < vma->vm_start || addr >= vma->vm_end)
2228 		return VM_FAULT_SIGBUS;
2229 
2230 	if (!pfn_modify_allowed(pfn, pgprot))
2231 		return VM_FAULT_SIGBUS;
2232 
2233 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2234 
2235 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2236 			false);
2237 }
2238 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2239 
2240 /**
2241  * vmf_insert_pfn - insert single pfn into user vma
2242  * @vma: user vma to map to
2243  * @addr: target user address of this page
2244  * @pfn: source kernel pfn
2245  *
2246  * Similar to vm_insert_page, this allows drivers to insert individual pages
2247  * they've allocated into a user vma. Same comments apply.
2248  *
2249  * This function should only be called from a vm_ops->fault handler, and
2250  * in that case the handler should return the result of this function.
2251  *
2252  * vma cannot be a COW mapping.
2253  *
2254  * As this is called only for pages that do not currently exist, we
2255  * do not need to flush old virtual caches or the TLB.
2256  *
2257  * Context: Process context.  May allocate using %GFP_KERNEL.
2258  * Return: vm_fault_t value.
2259  */
2260 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2261 			unsigned long pfn)
2262 {
2263 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2264 }
2265 EXPORT_SYMBOL(vmf_insert_pfn);
2266 
2267 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2268 {
2269 	/* these checks mirror the abort conditions in vm_normal_page */
2270 	if (vma->vm_flags & VM_MIXEDMAP)
2271 		return true;
2272 	if (pfn_t_devmap(pfn))
2273 		return true;
2274 	if (pfn_t_special(pfn))
2275 		return true;
2276 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2277 		return true;
2278 	return false;
2279 }
2280 
2281 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2282 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2283 		bool mkwrite)
2284 {
2285 	int err;
2286 
2287 	BUG_ON(!vm_mixed_ok(vma, pfn));
2288 
2289 	if (addr < vma->vm_start || addr >= vma->vm_end)
2290 		return VM_FAULT_SIGBUS;
2291 
2292 	track_pfn_insert(vma, &pgprot, pfn);
2293 
2294 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2295 		return VM_FAULT_SIGBUS;
2296 
2297 	/*
2298 	 * If we don't have pte special, then we have to use the pfn_valid()
2299 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2300 	 * refcount the page if pfn_valid is true (hence insert_page rather
2301 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2302 	 * without pte special, it would there be refcounted as a normal page.
2303 	 */
2304 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2305 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2306 		struct page *page;
2307 
2308 		/*
2309 		 * At this point we are committed to insert_page()
2310 		 * regardless of whether the caller specified flags that
2311 		 * result in pfn_t_has_page() == false.
2312 		 */
2313 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2314 		err = insert_page(vma, addr, page, pgprot);
2315 	} else {
2316 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2317 	}
2318 
2319 	if (err == -ENOMEM)
2320 		return VM_FAULT_OOM;
2321 	if (err < 0 && err != -EBUSY)
2322 		return VM_FAULT_SIGBUS;
2323 
2324 	return VM_FAULT_NOPAGE;
2325 }
2326 
2327 /**
2328  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2329  * @vma: user vma to map to
2330  * @addr: target user address of this page
2331  * @pfn: source kernel pfn
2332  * @pgprot: pgprot flags for the inserted page
2333  *
2334  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2335  * to override pgprot on a per-page basis.
2336  *
2337  * Typically this function should be used by drivers to set caching- and
2338  * encryption bits different than those of @vma->vm_page_prot, because
2339  * the caching- or encryption mode may not be known at mmap() time.
2340  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2341  * to set caching and encryption bits for those vmas (except for COW pages).
2342  * This is ensured by core vm only modifying these page table entries using
2343  * functions that don't touch caching- or encryption bits, using pte_modify()
2344  * if needed. (See for example mprotect()).
2345  * Also when new page-table entries are created, this is only done using the
2346  * fault() callback, and never using the value of vma->vm_page_prot,
2347  * except for page-table entries that point to anonymous pages as the result
2348  * of COW.
2349  *
2350  * Context: Process context.  May allocate using %GFP_KERNEL.
2351  * Return: vm_fault_t value.
2352  */
2353 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2354 				 pfn_t pfn, pgprot_t pgprot)
2355 {
2356 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2357 }
2358 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2359 
2360 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2361 		pfn_t pfn)
2362 {
2363 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2364 }
2365 EXPORT_SYMBOL(vmf_insert_mixed);
2366 
2367 /*
2368  *  If the insertion of PTE failed because someone else already added a
2369  *  different entry in the mean time, we treat that as success as we assume
2370  *  the same entry was actually inserted.
2371  */
2372 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2373 		unsigned long addr, pfn_t pfn)
2374 {
2375 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2376 }
2377 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2378 
2379 /*
2380  * maps a range of physical memory into the requested pages. the old
2381  * mappings are removed. any references to nonexistent pages results
2382  * in null mappings (currently treated as "copy-on-access")
2383  */
2384 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2385 			unsigned long addr, unsigned long end,
2386 			unsigned long pfn, pgprot_t prot)
2387 {
2388 	pte_t *pte, *mapped_pte;
2389 	spinlock_t *ptl;
2390 	int err = 0;
2391 
2392 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2393 	if (!pte)
2394 		return -ENOMEM;
2395 	arch_enter_lazy_mmu_mode();
2396 	do {
2397 		BUG_ON(!pte_none(*pte));
2398 		if (!pfn_modify_allowed(pfn, prot)) {
2399 			err = -EACCES;
2400 			break;
2401 		}
2402 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2403 		pfn++;
2404 	} while (pte++, addr += PAGE_SIZE, addr != end);
2405 	arch_leave_lazy_mmu_mode();
2406 	pte_unmap_unlock(mapped_pte, ptl);
2407 	return err;
2408 }
2409 
2410 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2411 			unsigned long addr, unsigned long end,
2412 			unsigned long pfn, pgprot_t prot)
2413 {
2414 	pmd_t *pmd;
2415 	unsigned long next;
2416 	int err;
2417 
2418 	pfn -= addr >> PAGE_SHIFT;
2419 	pmd = pmd_alloc(mm, pud, addr);
2420 	if (!pmd)
2421 		return -ENOMEM;
2422 	VM_BUG_ON(pmd_trans_huge(*pmd));
2423 	do {
2424 		next = pmd_addr_end(addr, end);
2425 		err = remap_pte_range(mm, pmd, addr, next,
2426 				pfn + (addr >> PAGE_SHIFT), prot);
2427 		if (err)
2428 			return err;
2429 	} while (pmd++, addr = next, addr != end);
2430 	return 0;
2431 }
2432 
2433 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2434 			unsigned long addr, unsigned long end,
2435 			unsigned long pfn, pgprot_t prot)
2436 {
2437 	pud_t *pud;
2438 	unsigned long next;
2439 	int err;
2440 
2441 	pfn -= addr >> PAGE_SHIFT;
2442 	pud = pud_alloc(mm, p4d, addr);
2443 	if (!pud)
2444 		return -ENOMEM;
2445 	do {
2446 		next = pud_addr_end(addr, end);
2447 		err = remap_pmd_range(mm, pud, addr, next,
2448 				pfn + (addr >> PAGE_SHIFT), prot);
2449 		if (err)
2450 			return err;
2451 	} while (pud++, addr = next, addr != end);
2452 	return 0;
2453 }
2454 
2455 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2456 			unsigned long addr, unsigned long end,
2457 			unsigned long pfn, pgprot_t prot)
2458 {
2459 	p4d_t *p4d;
2460 	unsigned long next;
2461 	int err;
2462 
2463 	pfn -= addr >> PAGE_SHIFT;
2464 	p4d = p4d_alloc(mm, pgd, addr);
2465 	if (!p4d)
2466 		return -ENOMEM;
2467 	do {
2468 		next = p4d_addr_end(addr, end);
2469 		err = remap_pud_range(mm, p4d, addr, next,
2470 				pfn + (addr >> PAGE_SHIFT), prot);
2471 		if (err)
2472 			return err;
2473 	} while (p4d++, addr = next, addr != end);
2474 	return 0;
2475 }
2476 
2477 /*
2478  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2479  * must have pre-validated the caching bits of the pgprot_t.
2480  */
2481 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2482 		unsigned long pfn, unsigned long size, pgprot_t prot)
2483 {
2484 	pgd_t *pgd;
2485 	unsigned long next;
2486 	unsigned long end = addr + PAGE_ALIGN(size);
2487 	struct mm_struct *mm = vma->vm_mm;
2488 	int err;
2489 
2490 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2491 		return -EINVAL;
2492 
2493 	/*
2494 	 * Physically remapped pages are special. Tell the
2495 	 * rest of the world about it:
2496 	 *   VM_IO tells people not to look at these pages
2497 	 *	(accesses can have side effects).
2498 	 *   VM_PFNMAP tells the core MM that the base pages are just
2499 	 *	raw PFN mappings, and do not have a "struct page" associated
2500 	 *	with them.
2501 	 *   VM_DONTEXPAND
2502 	 *      Disable vma merging and expanding with mremap().
2503 	 *   VM_DONTDUMP
2504 	 *      Omit vma from core dump, even when VM_IO turned off.
2505 	 *
2506 	 * There's a horrible special case to handle copy-on-write
2507 	 * behaviour that some programs depend on. We mark the "original"
2508 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2509 	 * See vm_normal_page() for details.
2510 	 */
2511 	if (is_cow_mapping(vma->vm_flags)) {
2512 		if (addr != vma->vm_start || end != vma->vm_end)
2513 			return -EINVAL;
2514 		vma->vm_pgoff = pfn;
2515 	}
2516 
2517 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2518 
2519 	BUG_ON(addr >= end);
2520 	pfn -= addr >> PAGE_SHIFT;
2521 	pgd = pgd_offset(mm, addr);
2522 	flush_cache_range(vma, addr, end);
2523 	do {
2524 		next = pgd_addr_end(addr, end);
2525 		err = remap_p4d_range(mm, pgd, addr, next,
2526 				pfn + (addr >> PAGE_SHIFT), prot);
2527 		if (err)
2528 			return err;
2529 	} while (pgd++, addr = next, addr != end);
2530 
2531 	return 0;
2532 }
2533 
2534 /**
2535  * remap_pfn_range - remap kernel memory to userspace
2536  * @vma: user vma to map to
2537  * @addr: target page aligned user address to start at
2538  * @pfn: page frame number of kernel physical memory address
2539  * @size: size of mapping area
2540  * @prot: page protection flags for this mapping
2541  *
2542  * Note: this is only safe if the mm semaphore is held when called.
2543  *
2544  * Return: %0 on success, negative error code otherwise.
2545  */
2546 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2547 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2548 {
2549 	int err;
2550 
2551 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2552 	if (err)
2553 		return -EINVAL;
2554 
2555 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2556 	if (err)
2557 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2558 	return err;
2559 }
2560 EXPORT_SYMBOL(remap_pfn_range);
2561 
2562 /**
2563  * vm_iomap_memory - remap memory to userspace
2564  * @vma: user vma to map to
2565  * @start: start of the physical memory to be mapped
2566  * @len: size of area
2567  *
2568  * This is a simplified io_remap_pfn_range() for common driver use. The
2569  * driver just needs to give us the physical memory range to be mapped,
2570  * we'll figure out the rest from the vma information.
2571  *
2572  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2573  * whatever write-combining details or similar.
2574  *
2575  * Return: %0 on success, negative error code otherwise.
2576  */
2577 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2578 {
2579 	unsigned long vm_len, pfn, pages;
2580 
2581 	/* Check that the physical memory area passed in looks valid */
2582 	if (start + len < start)
2583 		return -EINVAL;
2584 	/*
2585 	 * You *really* shouldn't map things that aren't page-aligned,
2586 	 * but we've historically allowed it because IO memory might
2587 	 * just have smaller alignment.
2588 	 */
2589 	len += start & ~PAGE_MASK;
2590 	pfn = start >> PAGE_SHIFT;
2591 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2592 	if (pfn + pages < pfn)
2593 		return -EINVAL;
2594 
2595 	/* We start the mapping 'vm_pgoff' pages into the area */
2596 	if (vma->vm_pgoff > pages)
2597 		return -EINVAL;
2598 	pfn += vma->vm_pgoff;
2599 	pages -= vma->vm_pgoff;
2600 
2601 	/* Can we fit all of the mapping? */
2602 	vm_len = vma->vm_end - vma->vm_start;
2603 	if (vm_len >> PAGE_SHIFT > pages)
2604 		return -EINVAL;
2605 
2606 	/* Ok, let it rip */
2607 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2608 }
2609 EXPORT_SYMBOL(vm_iomap_memory);
2610 
2611 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2612 				     unsigned long addr, unsigned long end,
2613 				     pte_fn_t fn, void *data, bool create,
2614 				     pgtbl_mod_mask *mask)
2615 {
2616 	pte_t *pte, *mapped_pte;
2617 	int err = 0;
2618 	spinlock_t *ptl;
2619 
2620 	if (create) {
2621 		mapped_pte = pte = (mm == &init_mm) ?
2622 			pte_alloc_kernel_track(pmd, addr, mask) :
2623 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2624 		if (!pte)
2625 			return -ENOMEM;
2626 	} else {
2627 		mapped_pte = pte = (mm == &init_mm) ?
2628 			pte_offset_kernel(pmd, addr) :
2629 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2630 	}
2631 
2632 	BUG_ON(pmd_huge(*pmd));
2633 
2634 	arch_enter_lazy_mmu_mode();
2635 
2636 	if (fn) {
2637 		do {
2638 			if (create || !pte_none(*pte)) {
2639 				err = fn(pte++, addr, data);
2640 				if (err)
2641 					break;
2642 			}
2643 		} while (addr += PAGE_SIZE, addr != end);
2644 	}
2645 	*mask |= PGTBL_PTE_MODIFIED;
2646 
2647 	arch_leave_lazy_mmu_mode();
2648 
2649 	if (mm != &init_mm)
2650 		pte_unmap_unlock(mapped_pte, ptl);
2651 	return err;
2652 }
2653 
2654 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2655 				     unsigned long addr, unsigned long end,
2656 				     pte_fn_t fn, void *data, bool create,
2657 				     pgtbl_mod_mask *mask)
2658 {
2659 	pmd_t *pmd;
2660 	unsigned long next;
2661 	int err = 0;
2662 
2663 	BUG_ON(pud_huge(*pud));
2664 
2665 	if (create) {
2666 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2667 		if (!pmd)
2668 			return -ENOMEM;
2669 	} else {
2670 		pmd = pmd_offset(pud, addr);
2671 	}
2672 	do {
2673 		next = pmd_addr_end(addr, end);
2674 		if (pmd_none(*pmd) && !create)
2675 			continue;
2676 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2677 			return -EINVAL;
2678 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2679 			if (!create)
2680 				continue;
2681 			pmd_clear_bad(pmd);
2682 		}
2683 		err = apply_to_pte_range(mm, pmd, addr, next,
2684 					 fn, data, create, mask);
2685 		if (err)
2686 			break;
2687 	} while (pmd++, addr = next, addr != end);
2688 
2689 	return err;
2690 }
2691 
2692 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2693 				     unsigned long addr, unsigned long end,
2694 				     pte_fn_t fn, void *data, bool create,
2695 				     pgtbl_mod_mask *mask)
2696 {
2697 	pud_t *pud;
2698 	unsigned long next;
2699 	int err = 0;
2700 
2701 	if (create) {
2702 		pud = pud_alloc_track(mm, p4d, addr, mask);
2703 		if (!pud)
2704 			return -ENOMEM;
2705 	} else {
2706 		pud = pud_offset(p4d, addr);
2707 	}
2708 	do {
2709 		next = pud_addr_end(addr, end);
2710 		if (pud_none(*pud) && !create)
2711 			continue;
2712 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2713 			return -EINVAL;
2714 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2715 			if (!create)
2716 				continue;
2717 			pud_clear_bad(pud);
2718 		}
2719 		err = apply_to_pmd_range(mm, pud, addr, next,
2720 					 fn, data, create, mask);
2721 		if (err)
2722 			break;
2723 	} while (pud++, addr = next, addr != end);
2724 
2725 	return err;
2726 }
2727 
2728 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2729 				     unsigned long addr, unsigned long end,
2730 				     pte_fn_t fn, void *data, bool create,
2731 				     pgtbl_mod_mask *mask)
2732 {
2733 	p4d_t *p4d;
2734 	unsigned long next;
2735 	int err = 0;
2736 
2737 	if (create) {
2738 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2739 		if (!p4d)
2740 			return -ENOMEM;
2741 	} else {
2742 		p4d = p4d_offset(pgd, addr);
2743 	}
2744 	do {
2745 		next = p4d_addr_end(addr, end);
2746 		if (p4d_none(*p4d) && !create)
2747 			continue;
2748 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2749 			return -EINVAL;
2750 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2751 			if (!create)
2752 				continue;
2753 			p4d_clear_bad(p4d);
2754 		}
2755 		err = apply_to_pud_range(mm, p4d, addr, next,
2756 					 fn, data, create, mask);
2757 		if (err)
2758 			break;
2759 	} while (p4d++, addr = next, addr != end);
2760 
2761 	return err;
2762 }
2763 
2764 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2765 				 unsigned long size, pte_fn_t fn,
2766 				 void *data, bool create)
2767 {
2768 	pgd_t *pgd;
2769 	unsigned long start = addr, next;
2770 	unsigned long end = addr + size;
2771 	pgtbl_mod_mask mask = 0;
2772 	int err = 0;
2773 
2774 	if (WARN_ON(addr >= end))
2775 		return -EINVAL;
2776 
2777 	pgd = pgd_offset(mm, addr);
2778 	do {
2779 		next = pgd_addr_end(addr, end);
2780 		if (pgd_none(*pgd) && !create)
2781 			continue;
2782 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2783 			return -EINVAL;
2784 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2785 			if (!create)
2786 				continue;
2787 			pgd_clear_bad(pgd);
2788 		}
2789 		err = apply_to_p4d_range(mm, pgd, addr, next,
2790 					 fn, data, create, &mask);
2791 		if (err)
2792 			break;
2793 	} while (pgd++, addr = next, addr != end);
2794 
2795 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2796 		arch_sync_kernel_mappings(start, start + size);
2797 
2798 	return err;
2799 }
2800 
2801 /*
2802  * Scan a region of virtual memory, filling in page tables as necessary
2803  * and calling a provided function on each leaf page table.
2804  */
2805 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2806 			unsigned long size, pte_fn_t fn, void *data)
2807 {
2808 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2809 }
2810 EXPORT_SYMBOL_GPL(apply_to_page_range);
2811 
2812 /*
2813  * Scan a region of virtual memory, calling a provided function on
2814  * each leaf page table where it exists.
2815  *
2816  * Unlike apply_to_page_range, this does _not_ fill in page tables
2817  * where they are absent.
2818  */
2819 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2820 				 unsigned long size, pte_fn_t fn, void *data)
2821 {
2822 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2823 }
2824 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2825 
2826 /*
2827  * handle_pte_fault chooses page fault handler according to an entry which was
2828  * read non-atomically.  Before making any commitment, on those architectures
2829  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2830  * parts, do_swap_page must check under lock before unmapping the pte and
2831  * proceeding (but do_wp_page is only called after already making such a check;
2832  * and do_anonymous_page can safely check later on).
2833  */
2834 static inline int pte_unmap_same(struct vm_fault *vmf)
2835 {
2836 	int same = 1;
2837 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2838 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2839 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2840 		spin_lock(ptl);
2841 		same = pte_same(*vmf->pte, vmf->orig_pte);
2842 		spin_unlock(ptl);
2843 	}
2844 #endif
2845 	pte_unmap(vmf->pte);
2846 	vmf->pte = NULL;
2847 	return same;
2848 }
2849 
2850 static inline bool __wp_page_copy_user(struct page *dst, struct page *src,
2851 				       struct vm_fault *vmf)
2852 {
2853 	bool ret;
2854 	void *kaddr;
2855 	void __user *uaddr;
2856 	bool locked = false;
2857 	struct vm_area_struct *vma = vmf->vma;
2858 	struct mm_struct *mm = vma->vm_mm;
2859 	unsigned long addr = vmf->address;
2860 
2861 	if (likely(src)) {
2862 		copy_user_highpage(dst, src, addr, vma);
2863 		return true;
2864 	}
2865 
2866 	/*
2867 	 * If the source page was a PFN mapping, we don't have
2868 	 * a "struct page" for it. We do a best-effort copy by
2869 	 * just copying from the original user address. If that
2870 	 * fails, we just zero-fill it. Live with it.
2871 	 */
2872 	kaddr = kmap_atomic(dst);
2873 	uaddr = (void __user *)(addr & PAGE_MASK);
2874 
2875 	/*
2876 	 * On architectures with software "accessed" bits, we would
2877 	 * take a double page fault, so mark it accessed here.
2878 	 */
2879 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2880 		pte_t entry;
2881 
2882 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2883 		locked = true;
2884 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2885 			/*
2886 			 * Other thread has already handled the fault
2887 			 * and update local tlb only
2888 			 */
2889 			update_mmu_tlb(vma, addr, vmf->pte);
2890 			ret = false;
2891 			goto pte_unlock;
2892 		}
2893 
2894 		entry = pte_mkyoung(vmf->orig_pte);
2895 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2896 			update_mmu_cache(vma, addr, vmf->pte);
2897 	}
2898 
2899 	/*
2900 	 * This really shouldn't fail, because the page is there
2901 	 * in the page tables. But it might just be unreadable,
2902 	 * in which case we just give up and fill the result with
2903 	 * zeroes.
2904 	 */
2905 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2906 		if (locked)
2907 			goto warn;
2908 
2909 		/* Re-validate under PTL if the page is still mapped */
2910 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2911 		locked = true;
2912 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2913 			/* The PTE changed under us, update local tlb */
2914 			update_mmu_tlb(vma, addr, vmf->pte);
2915 			ret = false;
2916 			goto pte_unlock;
2917 		}
2918 
2919 		/*
2920 		 * The same page can be mapped back since last copy attempt.
2921 		 * Try to copy again under PTL.
2922 		 */
2923 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2924 			/*
2925 			 * Give a warn in case there can be some obscure
2926 			 * use-case
2927 			 */
2928 warn:
2929 			WARN_ON_ONCE(1);
2930 			clear_page(kaddr);
2931 		}
2932 	}
2933 
2934 	ret = true;
2935 
2936 pte_unlock:
2937 	if (locked)
2938 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2939 	kunmap_atomic(kaddr);
2940 	flush_dcache_page(dst);
2941 
2942 	return ret;
2943 }
2944 
2945 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2946 {
2947 	struct file *vm_file = vma->vm_file;
2948 
2949 	if (vm_file)
2950 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2951 
2952 	/*
2953 	 * Special mappings (e.g. VDSO) do not have any file so fake
2954 	 * a default GFP_KERNEL for them.
2955 	 */
2956 	return GFP_KERNEL;
2957 }
2958 
2959 /*
2960  * Notify the address space that the page is about to become writable so that
2961  * it can prohibit this or wait for the page to get into an appropriate state.
2962  *
2963  * We do this without the lock held, so that it can sleep if it needs to.
2964  */
2965 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2966 {
2967 	vm_fault_t ret;
2968 	struct page *page = vmf->page;
2969 	unsigned int old_flags = vmf->flags;
2970 
2971 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2972 
2973 	if (vmf->vma->vm_file &&
2974 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2975 		return VM_FAULT_SIGBUS;
2976 
2977 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2978 	/* Restore original flags so that caller is not surprised */
2979 	vmf->flags = old_flags;
2980 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2981 		return ret;
2982 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2983 		lock_page(page);
2984 		if (!page->mapping) {
2985 			unlock_page(page);
2986 			return 0; /* retry */
2987 		}
2988 		ret |= VM_FAULT_LOCKED;
2989 	} else
2990 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2991 	return ret;
2992 }
2993 
2994 /*
2995  * Handle dirtying of a page in shared file mapping on a write fault.
2996  *
2997  * The function expects the page to be locked and unlocks it.
2998  */
2999 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
3000 {
3001 	struct vm_area_struct *vma = vmf->vma;
3002 	struct address_space *mapping;
3003 	struct page *page = vmf->page;
3004 	bool dirtied;
3005 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
3006 
3007 	dirtied = set_page_dirty(page);
3008 	VM_BUG_ON_PAGE(PageAnon(page), page);
3009 	/*
3010 	 * Take a local copy of the address_space - page.mapping may be zeroed
3011 	 * by truncate after unlock_page().   The address_space itself remains
3012 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
3013 	 * release semantics to prevent the compiler from undoing this copying.
3014 	 */
3015 	mapping = page_rmapping(page);
3016 	unlock_page(page);
3017 
3018 	if (!page_mkwrite)
3019 		file_update_time(vma->vm_file);
3020 
3021 	/*
3022 	 * Throttle page dirtying rate down to writeback speed.
3023 	 *
3024 	 * mapping may be NULL here because some device drivers do not
3025 	 * set page.mapping but still dirty their pages
3026 	 *
3027 	 * Drop the mmap_lock before waiting on IO, if we can. The file
3028 	 * is pinning the mapping, as per above.
3029 	 */
3030 	if ((dirtied || page_mkwrite) && mapping) {
3031 		struct file *fpin;
3032 
3033 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
3034 		balance_dirty_pages_ratelimited(mapping);
3035 		if (fpin) {
3036 			fput(fpin);
3037 			return VM_FAULT_COMPLETED;
3038 		}
3039 	}
3040 
3041 	return 0;
3042 }
3043 
3044 /*
3045  * Handle write page faults for pages that can be reused in the current vma
3046  *
3047  * This can happen either due to the mapping being with the VM_SHARED flag,
3048  * or due to us being the last reference standing to the page. In either
3049  * case, all we need to do here is to mark the page as writable and update
3050  * any related book-keeping.
3051  */
3052 static inline void wp_page_reuse(struct vm_fault *vmf)
3053 	__releases(vmf->ptl)
3054 {
3055 	struct vm_area_struct *vma = vmf->vma;
3056 	struct page *page = vmf->page;
3057 	pte_t entry;
3058 
3059 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3060 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3061 
3062 	/*
3063 	 * Clear the pages cpupid information as the existing
3064 	 * information potentially belongs to a now completely
3065 	 * unrelated process.
3066 	 */
3067 	if (page)
3068 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3069 
3070 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3071 	entry = pte_mkyoung(vmf->orig_pte);
3072 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3073 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3074 		update_mmu_cache(vma, vmf->address, vmf->pte);
3075 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3076 	count_vm_event(PGREUSE);
3077 }
3078 
3079 /*
3080  * Handle the case of a page which we actually need to copy to a new page,
3081  * either due to COW or unsharing.
3082  *
3083  * Called with mmap_lock locked and the old page referenced, but
3084  * without the ptl held.
3085  *
3086  * High level logic flow:
3087  *
3088  * - Allocate a page, copy the content of the old page to the new one.
3089  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3090  * - Take the PTL. If the pte changed, bail out and release the allocated page
3091  * - If the pte is still the way we remember it, update the page table and all
3092  *   relevant references. This includes dropping the reference the page-table
3093  *   held to the old page, as well as updating the rmap.
3094  * - In any case, unlock the PTL and drop the reference we took to the old page.
3095  */
3096 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3097 {
3098 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3099 	struct vm_area_struct *vma = vmf->vma;
3100 	struct mm_struct *mm = vma->vm_mm;
3101 	struct page *old_page = vmf->page;
3102 	struct page *new_page = NULL;
3103 	pte_t entry;
3104 	int page_copied = 0;
3105 	struct mmu_notifier_range range;
3106 
3107 	delayacct_wpcopy_start();
3108 
3109 	if (unlikely(anon_vma_prepare(vma)))
3110 		goto oom;
3111 
3112 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3113 		new_page = alloc_zeroed_user_highpage_movable(vma,
3114 							      vmf->address);
3115 		if (!new_page)
3116 			goto oom;
3117 	} else {
3118 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3119 				vmf->address);
3120 		if (!new_page)
3121 			goto oom;
3122 
3123 		if (!__wp_page_copy_user(new_page, old_page, vmf)) {
3124 			/*
3125 			 * COW failed, if the fault was solved by other,
3126 			 * it's fine. If not, userspace would re-fault on
3127 			 * the same address and we will handle the fault
3128 			 * from the second attempt.
3129 			 */
3130 			put_page(new_page);
3131 			if (old_page)
3132 				put_page(old_page);
3133 
3134 			delayacct_wpcopy_end();
3135 			return 0;
3136 		}
3137 		kmsan_copy_page_meta(new_page, old_page);
3138 	}
3139 
3140 	if (mem_cgroup_charge(page_folio(new_page), mm, GFP_KERNEL))
3141 		goto oom_free_new;
3142 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
3143 
3144 	__SetPageUptodate(new_page);
3145 
3146 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
3147 				vmf->address & PAGE_MASK,
3148 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3149 	mmu_notifier_invalidate_range_start(&range);
3150 
3151 	/*
3152 	 * Re-check the pte - we dropped the lock
3153 	 */
3154 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3155 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3156 		if (old_page) {
3157 			if (!PageAnon(old_page)) {
3158 				dec_mm_counter_fast(mm,
3159 						mm_counter_file(old_page));
3160 				inc_mm_counter_fast(mm, MM_ANONPAGES);
3161 			}
3162 		} else {
3163 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3164 		}
3165 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3166 		entry = mk_pte(new_page, vma->vm_page_prot);
3167 		entry = pte_sw_mkyoung(entry);
3168 		if (unlikely(unshare)) {
3169 			if (pte_soft_dirty(vmf->orig_pte))
3170 				entry = pte_mksoft_dirty(entry);
3171 			if (pte_uffd_wp(vmf->orig_pte))
3172 				entry = pte_mkuffd_wp(entry);
3173 		} else {
3174 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3175 		}
3176 
3177 		/*
3178 		 * Clear the pte entry and flush it first, before updating the
3179 		 * pte with the new entry, to keep TLBs on different CPUs in
3180 		 * sync. This code used to set the new PTE then flush TLBs, but
3181 		 * that left a window where the new PTE could be loaded into
3182 		 * some TLBs while the old PTE remains in others.
3183 		 */
3184 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3185 		page_add_new_anon_rmap(new_page, vma, vmf->address);
3186 		lru_cache_add_inactive_or_unevictable(new_page, vma);
3187 		/*
3188 		 * We call the notify macro here because, when using secondary
3189 		 * mmu page tables (such as kvm shadow page tables), we want the
3190 		 * new page to be mapped directly into the secondary page table.
3191 		 */
3192 		BUG_ON(unshare && pte_write(entry));
3193 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3194 		update_mmu_cache(vma, vmf->address, vmf->pte);
3195 		if (old_page) {
3196 			/*
3197 			 * Only after switching the pte to the new page may
3198 			 * we remove the mapcount here. Otherwise another
3199 			 * process may come and find the rmap count decremented
3200 			 * before the pte is switched to the new page, and
3201 			 * "reuse" the old page writing into it while our pte
3202 			 * here still points into it and can be read by other
3203 			 * threads.
3204 			 *
3205 			 * The critical issue is to order this
3206 			 * page_remove_rmap with the ptp_clear_flush above.
3207 			 * Those stores are ordered by (if nothing else,)
3208 			 * the barrier present in the atomic_add_negative
3209 			 * in page_remove_rmap.
3210 			 *
3211 			 * Then the TLB flush in ptep_clear_flush ensures that
3212 			 * no process can access the old page before the
3213 			 * decremented mapcount is visible. And the old page
3214 			 * cannot be reused until after the decremented
3215 			 * mapcount is visible. So transitively, TLBs to
3216 			 * old page will be flushed before it can be reused.
3217 			 */
3218 			page_remove_rmap(old_page, vma, false);
3219 		}
3220 
3221 		/* Free the old page.. */
3222 		new_page = old_page;
3223 		page_copied = 1;
3224 	} else {
3225 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3226 	}
3227 
3228 	if (new_page)
3229 		put_page(new_page);
3230 
3231 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3232 	/*
3233 	 * No need to double call mmu_notifier->invalidate_range() callback as
3234 	 * the above ptep_clear_flush_notify() did already call it.
3235 	 */
3236 	mmu_notifier_invalidate_range_only_end(&range);
3237 	if (old_page) {
3238 		if (page_copied)
3239 			free_swap_cache(old_page);
3240 		put_page(old_page);
3241 	}
3242 
3243 	delayacct_wpcopy_end();
3244 	return (page_copied && !unshare) ? VM_FAULT_WRITE : 0;
3245 oom_free_new:
3246 	put_page(new_page);
3247 oom:
3248 	if (old_page)
3249 		put_page(old_page);
3250 
3251 	delayacct_wpcopy_end();
3252 	return VM_FAULT_OOM;
3253 }
3254 
3255 /**
3256  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3257  *			  writeable once the page is prepared
3258  *
3259  * @vmf: structure describing the fault
3260  *
3261  * This function handles all that is needed to finish a write page fault in a
3262  * shared mapping due to PTE being read-only once the mapped page is prepared.
3263  * It handles locking of PTE and modifying it.
3264  *
3265  * The function expects the page to be locked or other protection against
3266  * concurrent faults / writeback (such as DAX radix tree locks).
3267  *
3268  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3269  * we acquired PTE lock.
3270  */
3271 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3272 {
3273 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3274 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3275 				       &vmf->ptl);
3276 	/*
3277 	 * We might have raced with another page fault while we released the
3278 	 * pte_offset_map_lock.
3279 	 */
3280 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3281 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3282 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3283 		return VM_FAULT_NOPAGE;
3284 	}
3285 	wp_page_reuse(vmf);
3286 	return 0;
3287 }
3288 
3289 /*
3290  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3291  * mapping
3292  */
3293 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3294 {
3295 	struct vm_area_struct *vma = vmf->vma;
3296 
3297 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3298 		vm_fault_t ret;
3299 
3300 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3301 		vmf->flags |= FAULT_FLAG_MKWRITE;
3302 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3303 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3304 			return ret;
3305 		return finish_mkwrite_fault(vmf);
3306 	}
3307 	wp_page_reuse(vmf);
3308 	return VM_FAULT_WRITE;
3309 }
3310 
3311 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3312 	__releases(vmf->ptl)
3313 {
3314 	struct vm_area_struct *vma = vmf->vma;
3315 	vm_fault_t ret = VM_FAULT_WRITE;
3316 
3317 	get_page(vmf->page);
3318 
3319 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3320 		vm_fault_t tmp;
3321 
3322 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3323 		tmp = do_page_mkwrite(vmf);
3324 		if (unlikely(!tmp || (tmp &
3325 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3326 			put_page(vmf->page);
3327 			return tmp;
3328 		}
3329 		tmp = finish_mkwrite_fault(vmf);
3330 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3331 			unlock_page(vmf->page);
3332 			put_page(vmf->page);
3333 			return tmp;
3334 		}
3335 	} else {
3336 		wp_page_reuse(vmf);
3337 		lock_page(vmf->page);
3338 	}
3339 	ret |= fault_dirty_shared_page(vmf);
3340 	put_page(vmf->page);
3341 
3342 	return ret;
3343 }
3344 
3345 /*
3346  * This routine handles present pages, when
3347  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3348  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3349  *   (FAULT_FLAG_UNSHARE)
3350  *
3351  * It is done by copying the page to a new address and decrementing the
3352  * shared-page counter for the old page.
3353  *
3354  * Note that this routine assumes that the protection checks have been
3355  * done by the caller (the low-level page fault routine in most cases).
3356  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3357  * done any necessary COW.
3358  *
3359  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3360  * though the page will change only once the write actually happens. This
3361  * avoids a few races, and potentially makes it more efficient.
3362  *
3363  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3364  * but allow concurrent faults), with pte both mapped and locked.
3365  * We return with mmap_lock still held, but pte unmapped and unlocked.
3366  */
3367 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3368 	__releases(vmf->ptl)
3369 {
3370 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3371 	struct vm_area_struct *vma = vmf->vma;
3372 	struct folio *folio;
3373 
3374 	VM_BUG_ON(unshare && (vmf->flags & FAULT_FLAG_WRITE));
3375 	VM_BUG_ON(!unshare && !(vmf->flags & FAULT_FLAG_WRITE));
3376 
3377 	if (likely(!unshare)) {
3378 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3379 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3380 			return handle_userfault(vmf, VM_UFFD_WP);
3381 		}
3382 
3383 		/*
3384 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3385 		 * is flushed in this case before copying.
3386 		 */
3387 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3388 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3389 			flush_tlb_page(vmf->vma, vmf->address);
3390 	}
3391 
3392 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3393 	if (!vmf->page) {
3394 		if (unlikely(unshare)) {
3395 			/* No anonymous page -> nothing to do. */
3396 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3397 			return 0;
3398 		}
3399 
3400 		/*
3401 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3402 		 * VM_PFNMAP VMA.
3403 		 *
3404 		 * We should not cow pages in a shared writeable mapping.
3405 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3406 		 */
3407 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3408 				     (VM_WRITE|VM_SHARED))
3409 			return wp_pfn_shared(vmf);
3410 
3411 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3412 		return wp_page_copy(vmf);
3413 	}
3414 
3415 	/*
3416 	 * Take out anonymous pages first, anonymous shared vmas are
3417 	 * not dirty accountable.
3418 	 */
3419 	folio = page_folio(vmf->page);
3420 	if (folio_test_anon(folio)) {
3421 		/*
3422 		 * If the page is exclusive to this process we must reuse the
3423 		 * page without further checks.
3424 		 */
3425 		if (PageAnonExclusive(vmf->page))
3426 			goto reuse;
3427 
3428 		/*
3429 		 * We have to verify under folio lock: these early checks are
3430 		 * just an optimization to avoid locking the folio and freeing
3431 		 * the swapcache if there is little hope that we can reuse.
3432 		 *
3433 		 * KSM doesn't necessarily raise the folio refcount.
3434 		 */
3435 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3436 			goto copy;
3437 		if (!folio_test_lru(folio))
3438 			/*
3439 			 * Note: We cannot easily detect+handle references from
3440 			 * remote LRU pagevecs or references to LRU folios.
3441 			 */
3442 			lru_add_drain();
3443 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3444 			goto copy;
3445 		if (!folio_trylock(folio))
3446 			goto copy;
3447 		if (folio_test_swapcache(folio))
3448 			folio_free_swap(folio);
3449 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3450 			folio_unlock(folio);
3451 			goto copy;
3452 		}
3453 		/*
3454 		 * Ok, we've got the only folio reference from our mapping
3455 		 * and the folio is locked, it's dark out, and we're wearing
3456 		 * sunglasses. Hit it.
3457 		 */
3458 		page_move_anon_rmap(vmf->page, vma);
3459 		folio_unlock(folio);
3460 reuse:
3461 		if (unlikely(unshare)) {
3462 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3463 			return 0;
3464 		}
3465 		wp_page_reuse(vmf);
3466 		return VM_FAULT_WRITE;
3467 	} else if (unshare) {
3468 		/* No anonymous page -> nothing to do. */
3469 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3470 		return 0;
3471 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3472 					(VM_WRITE|VM_SHARED))) {
3473 		return wp_page_shared(vmf);
3474 	}
3475 copy:
3476 	/*
3477 	 * Ok, we need to copy. Oh, well..
3478 	 */
3479 	get_page(vmf->page);
3480 
3481 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3482 #ifdef CONFIG_KSM
3483 	if (PageKsm(vmf->page))
3484 		count_vm_event(COW_KSM);
3485 #endif
3486 	return wp_page_copy(vmf);
3487 }
3488 
3489 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3490 		unsigned long start_addr, unsigned long end_addr,
3491 		struct zap_details *details)
3492 {
3493 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3494 }
3495 
3496 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3497 					    pgoff_t first_index,
3498 					    pgoff_t last_index,
3499 					    struct zap_details *details)
3500 {
3501 	struct vm_area_struct *vma;
3502 	pgoff_t vba, vea, zba, zea;
3503 
3504 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3505 		vba = vma->vm_pgoff;
3506 		vea = vba + vma_pages(vma) - 1;
3507 		zba = max(first_index, vba);
3508 		zea = min(last_index, vea);
3509 
3510 		unmap_mapping_range_vma(vma,
3511 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3512 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3513 				details);
3514 	}
3515 }
3516 
3517 /**
3518  * unmap_mapping_folio() - Unmap single folio from processes.
3519  * @folio: The locked folio to be unmapped.
3520  *
3521  * Unmap this folio from any userspace process which still has it mmaped.
3522  * Typically, for efficiency, the range of nearby pages has already been
3523  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3524  * truncation or invalidation holds the lock on a folio, it may find that
3525  * the page has been remapped again: and then uses unmap_mapping_folio()
3526  * to unmap it finally.
3527  */
3528 void unmap_mapping_folio(struct folio *folio)
3529 {
3530 	struct address_space *mapping = folio->mapping;
3531 	struct zap_details details = { };
3532 	pgoff_t	first_index;
3533 	pgoff_t	last_index;
3534 
3535 	VM_BUG_ON(!folio_test_locked(folio));
3536 
3537 	first_index = folio->index;
3538 	last_index = folio->index + folio_nr_pages(folio) - 1;
3539 
3540 	details.even_cows = false;
3541 	details.single_folio = folio;
3542 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3543 
3544 	i_mmap_lock_read(mapping);
3545 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3546 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3547 					 last_index, &details);
3548 	i_mmap_unlock_read(mapping);
3549 }
3550 
3551 /**
3552  * unmap_mapping_pages() - Unmap pages from processes.
3553  * @mapping: The address space containing pages to be unmapped.
3554  * @start: Index of first page to be unmapped.
3555  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3556  * @even_cows: Whether to unmap even private COWed pages.
3557  *
3558  * Unmap the pages in this address space from any userspace process which
3559  * has them mmaped.  Generally, you want to remove COWed pages as well when
3560  * a file is being truncated, but not when invalidating pages from the page
3561  * cache.
3562  */
3563 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3564 		pgoff_t nr, bool even_cows)
3565 {
3566 	struct zap_details details = { };
3567 	pgoff_t	first_index = start;
3568 	pgoff_t	last_index = start + nr - 1;
3569 
3570 	details.even_cows = even_cows;
3571 	if (last_index < first_index)
3572 		last_index = ULONG_MAX;
3573 
3574 	i_mmap_lock_read(mapping);
3575 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3576 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3577 					 last_index, &details);
3578 	i_mmap_unlock_read(mapping);
3579 }
3580 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3581 
3582 /**
3583  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3584  * address_space corresponding to the specified byte range in the underlying
3585  * file.
3586  *
3587  * @mapping: the address space containing mmaps to be unmapped.
3588  * @holebegin: byte in first page to unmap, relative to the start of
3589  * the underlying file.  This will be rounded down to a PAGE_SIZE
3590  * boundary.  Note that this is different from truncate_pagecache(), which
3591  * must keep the partial page.  In contrast, we must get rid of
3592  * partial pages.
3593  * @holelen: size of prospective hole in bytes.  This will be rounded
3594  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3595  * end of the file.
3596  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3597  * but 0 when invalidating pagecache, don't throw away private data.
3598  */
3599 void unmap_mapping_range(struct address_space *mapping,
3600 		loff_t const holebegin, loff_t const holelen, int even_cows)
3601 {
3602 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3603 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3604 
3605 	/* Check for overflow. */
3606 	if (sizeof(holelen) > sizeof(hlen)) {
3607 		long long holeend =
3608 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3609 		if (holeend & ~(long long)ULONG_MAX)
3610 			hlen = ULONG_MAX - hba + 1;
3611 	}
3612 
3613 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3614 }
3615 EXPORT_SYMBOL(unmap_mapping_range);
3616 
3617 /*
3618  * Restore a potential device exclusive pte to a working pte entry
3619  */
3620 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3621 {
3622 	struct folio *folio = page_folio(vmf->page);
3623 	struct vm_area_struct *vma = vmf->vma;
3624 	struct mmu_notifier_range range;
3625 
3626 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags))
3627 		return VM_FAULT_RETRY;
3628 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0, vma,
3629 				vma->vm_mm, vmf->address & PAGE_MASK,
3630 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3631 	mmu_notifier_invalidate_range_start(&range);
3632 
3633 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3634 				&vmf->ptl);
3635 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3636 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3637 
3638 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3639 	folio_unlock(folio);
3640 
3641 	mmu_notifier_invalidate_range_end(&range);
3642 	return 0;
3643 }
3644 
3645 static inline bool should_try_to_free_swap(struct folio *folio,
3646 					   struct vm_area_struct *vma,
3647 					   unsigned int fault_flags)
3648 {
3649 	if (!folio_test_swapcache(folio))
3650 		return false;
3651 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3652 	    folio_test_mlocked(folio))
3653 		return true;
3654 	/*
3655 	 * If we want to map a page that's in the swapcache writable, we
3656 	 * have to detect via the refcount if we're really the exclusive
3657 	 * user. Try freeing the swapcache to get rid of the swapcache
3658 	 * reference only in case it's likely that we'll be the exlusive user.
3659 	 */
3660 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3661 		folio_ref_count(folio) == 2;
3662 }
3663 
3664 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3665 {
3666 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3667 				       vmf->address, &vmf->ptl);
3668 	/*
3669 	 * Be careful so that we will only recover a special uffd-wp pte into a
3670 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3671 	 */
3672 	if (is_pte_marker(*vmf->pte))
3673 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3674 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3675 	return 0;
3676 }
3677 
3678 /*
3679  * This is actually a page-missing access, but with uffd-wp special pte
3680  * installed.  It means this pte was wr-protected before being unmapped.
3681  */
3682 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3683 {
3684 	/*
3685 	 * Just in case there're leftover special ptes even after the region
3686 	 * got unregistered - we can simply clear them.  We can also do that
3687 	 * proactively when e.g. when we do UFFDIO_UNREGISTER upon some uffd-wp
3688 	 * ranges, but it should be more efficient to be done lazily here.
3689 	 */
3690 	if (unlikely(!userfaultfd_wp(vmf->vma) || vma_is_anonymous(vmf->vma)))
3691 		return pte_marker_clear(vmf);
3692 
3693 	/* do_fault() can handle pte markers too like none pte */
3694 	return do_fault(vmf);
3695 }
3696 
3697 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3698 {
3699 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3700 	unsigned long marker = pte_marker_get(entry);
3701 
3702 	/*
3703 	 * PTE markers should always be with file-backed memories, and the
3704 	 * marker should never be empty.  If anything weird happened, the best
3705 	 * thing to do is to kill the process along with its mm.
3706 	 */
3707 	if (WARN_ON_ONCE(vma_is_anonymous(vmf->vma) || !marker))
3708 		return VM_FAULT_SIGBUS;
3709 
3710 	if (pte_marker_entry_uffd_wp(entry))
3711 		return pte_marker_handle_uffd_wp(vmf);
3712 
3713 	/* This is an unknown pte marker */
3714 	return VM_FAULT_SIGBUS;
3715 }
3716 
3717 /*
3718  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3719  * but allow concurrent faults), and pte mapped but not yet locked.
3720  * We return with pte unmapped and unlocked.
3721  *
3722  * We return with the mmap_lock locked or unlocked in the same cases
3723  * as does filemap_fault().
3724  */
3725 vm_fault_t do_swap_page(struct vm_fault *vmf)
3726 {
3727 	struct vm_area_struct *vma = vmf->vma;
3728 	struct folio *swapcache, *folio = NULL;
3729 	struct page *page;
3730 	struct swap_info_struct *si = NULL;
3731 	rmap_t rmap_flags = RMAP_NONE;
3732 	bool exclusive = false;
3733 	swp_entry_t entry;
3734 	pte_t pte;
3735 	int locked;
3736 	vm_fault_t ret = 0;
3737 	void *shadow = NULL;
3738 
3739 	if (!pte_unmap_same(vmf))
3740 		goto out;
3741 
3742 	entry = pte_to_swp_entry(vmf->orig_pte);
3743 	if (unlikely(non_swap_entry(entry))) {
3744 		if (is_migration_entry(entry)) {
3745 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3746 					     vmf->address);
3747 		} else if (is_device_exclusive_entry(entry)) {
3748 			vmf->page = pfn_swap_entry_to_page(entry);
3749 			ret = remove_device_exclusive_entry(vmf);
3750 		} else if (is_device_private_entry(entry)) {
3751 			vmf->page = pfn_swap_entry_to_page(entry);
3752 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3753 					vmf->address, &vmf->ptl);
3754 			if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3755 				spin_unlock(vmf->ptl);
3756 				goto out;
3757 			}
3758 
3759 			/*
3760 			 * Get a page reference while we know the page can't be
3761 			 * freed.
3762 			 */
3763 			get_page(vmf->page);
3764 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3765 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3766 			put_page(vmf->page);
3767 		} else if (is_hwpoison_entry(entry)) {
3768 			ret = VM_FAULT_HWPOISON;
3769 		} else if (is_swapin_error_entry(entry)) {
3770 			ret = VM_FAULT_SIGBUS;
3771 		} else if (is_pte_marker_entry(entry)) {
3772 			ret = handle_pte_marker(vmf);
3773 		} else {
3774 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3775 			ret = VM_FAULT_SIGBUS;
3776 		}
3777 		goto out;
3778 	}
3779 
3780 	/* Prevent swapoff from happening to us. */
3781 	si = get_swap_device(entry);
3782 	if (unlikely(!si))
3783 		goto out;
3784 
3785 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3786 	if (folio)
3787 		page = folio_file_page(folio, swp_offset(entry));
3788 	swapcache = folio;
3789 
3790 	if (!folio) {
3791 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3792 		    __swap_count(entry) == 1) {
3793 			/* skip swapcache */
3794 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3795 						vma, vmf->address, false);
3796 			page = &folio->page;
3797 			if (folio) {
3798 				__folio_set_locked(folio);
3799 				__folio_set_swapbacked(folio);
3800 
3801 				if (mem_cgroup_swapin_charge_folio(folio,
3802 							vma->vm_mm, GFP_KERNEL,
3803 							entry)) {
3804 					ret = VM_FAULT_OOM;
3805 					goto out_page;
3806 				}
3807 				mem_cgroup_swapin_uncharge_swap(entry);
3808 
3809 				shadow = get_shadow_from_swap_cache(entry);
3810 				if (shadow)
3811 					workingset_refault(folio, shadow);
3812 
3813 				folio_add_lru(folio);
3814 
3815 				/* To provide entry to swap_readpage() */
3816 				folio_set_swap_entry(folio, entry);
3817 				swap_readpage(page, true, NULL);
3818 				folio->private = NULL;
3819 			}
3820 		} else {
3821 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3822 						vmf);
3823 			if (page)
3824 				folio = page_folio(page);
3825 			swapcache = folio;
3826 		}
3827 
3828 		if (!folio) {
3829 			/*
3830 			 * Back out if somebody else faulted in this pte
3831 			 * while we released the pte lock.
3832 			 */
3833 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3834 					vmf->address, &vmf->ptl);
3835 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3836 				ret = VM_FAULT_OOM;
3837 			goto unlock;
3838 		}
3839 
3840 		/* Had to read the page from swap area: Major fault */
3841 		ret = VM_FAULT_MAJOR;
3842 		count_vm_event(PGMAJFAULT);
3843 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3844 	} else if (PageHWPoison(page)) {
3845 		/*
3846 		 * hwpoisoned dirty swapcache pages are kept for killing
3847 		 * owner processes (which may be unknown at hwpoison time)
3848 		 */
3849 		ret = VM_FAULT_HWPOISON;
3850 		goto out_release;
3851 	}
3852 
3853 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3854 
3855 	if (!locked) {
3856 		ret |= VM_FAULT_RETRY;
3857 		goto out_release;
3858 	}
3859 
3860 	if (swapcache) {
3861 		/*
3862 		 * Make sure folio_free_swap() or swapoff did not release the
3863 		 * swapcache from under us.  The page pin, and pte_same test
3864 		 * below, are not enough to exclude that.  Even if it is still
3865 		 * swapcache, we need to check that the page's swap has not
3866 		 * changed.
3867 		 */
3868 		if (unlikely(!folio_test_swapcache(folio) ||
3869 			     page_private(page) != entry.val))
3870 			goto out_page;
3871 
3872 		/*
3873 		 * KSM sometimes has to copy on read faults, for example, if
3874 		 * page->index of !PageKSM() pages would be nonlinear inside the
3875 		 * anon VMA -- PageKSM() is lost on actual swapout.
3876 		 */
3877 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3878 		if (unlikely(!page)) {
3879 			ret = VM_FAULT_OOM;
3880 			goto out_page;
3881 		}
3882 		folio = page_folio(page);
3883 
3884 		/*
3885 		 * If we want to map a page that's in the swapcache writable, we
3886 		 * have to detect via the refcount if we're really the exclusive
3887 		 * owner. Try removing the extra reference from the local LRU
3888 		 * pagevecs if required.
3889 		 */
3890 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3891 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3892 			lru_add_drain();
3893 	}
3894 
3895 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3896 
3897 	/*
3898 	 * Back out if somebody else already faulted in this pte.
3899 	 */
3900 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3901 			&vmf->ptl);
3902 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3903 		goto out_nomap;
3904 
3905 	if (unlikely(!folio_test_uptodate(folio))) {
3906 		ret = VM_FAULT_SIGBUS;
3907 		goto out_nomap;
3908 	}
3909 
3910 	/*
3911 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3912 	 * must never point at an anonymous page in the swapcache that is
3913 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3914 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3915 	 * check after taking the PT lock and making sure that nobody
3916 	 * concurrently faulted in this page and set PG_anon_exclusive.
3917 	 */
3918 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3919 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3920 
3921 	/*
3922 	 * Check under PT lock (to protect against concurrent fork() sharing
3923 	 * the swap entry concurrently) for certainly exclusive pages.
3924 	 */
3925 	if (!folio_test_ksm(folio)) {
3926 		/*
3927 		 * Note that pte_swp_exclusive() == false for architectures
3928 		 * without __HAVE_ARCH_PTE_SWP_EXCLUSIVE.
3929 		 */
3930 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3931 		if (folio != swapcache) {
3932 			/*
3933 			 * We have a fresh page that is not exposed to the
3934 			 * swapcache -> certainly exclusive.
3935 			 */
3936 			exclusive = true;
3937 		} else if (exclusive && folio_test_writeback(folio) &&
3938 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3939 			/*
3940 			 * This is tricky: not all swap backends support
3941 			 * concurrent page modifications while under writeback.
3942 			 *
3943 			 * So if we stumble over such a page in the swapcache
3944 			 * we must not set the page exclusive, otherwise we can
3945 			 * map it writable without further checks and modify it
3946 			 * while still under writeback.
3947 			 *
3948 			 * For these problematic swap backends, simply drop the
3949 			 * exclusive marker: this is perfectly fine as we start
3950 			 * writeback only if we fully unmapped the page and
3951 			 * there are no unexpected references on the page after
3952 			 * unmapping succeeded. After fully unmapped, no
3953 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3954 			 * appear, so dropping the exclusive marker and mapping
3955 			 * it only R/O is fine.
3956 			 */
3957 			exclusive = false;
3958 		}
3959 	}
3960 
3961 	/*
3962 	 * Remove the swap entry and conditionally try to free up the swapcache.
3963 	 * We're already holding a reference on the page but haven't mapped it
3964 	 * yet.
3965 	 */
3966 	swap_free(entry);
3967 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3968 		folio_free_swap(folio);
3969 
3970 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3971 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3972 	pte = mk_pte(page, vma->vm_page_prot);
3973 
3974 	/*
3975 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3976 	 * certainly not shared either because we just allocated them without
3977 	 * exposing them to the swapcache or because the swap entry indicates
3978 	 * exclusivity.
3979 	 */
3980 	if (!folio_test_ksm(folio) &&
3981 	    (exclusive || folio_ref_count(folio) == 1)) {
3982 		if (vmf->flags & FAULT_FLAG_WRITE) {
3983 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3984 			vmf->flags &= ~FAULT_FLAG_WRITE;
3985 			ret |= VM_FAULT_WRITE;
3986 		}
3987 		rmap_flags |= RMAP_EXCLUSIVE;
3988 	}
3989 	flush_icache_page(vma, page);
3990 	if (pte_swp_soft_dirty(vmf->orig_pte))
3991 		pte = pte_mksoft_dirty(pte);
3992 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3993 		pte = pte_mkuffd_wp(pte);
3994 		pte = pte_wrprotect(pte);
3995 	}
3996 	vmf->orig_pte = pte;
3997 
3998 	/* ksm created a completely new copy */
3999 	if (unlikely(folio != swapcache && swapcache)) {
4000 		page_add_new_anon_rmap(page, vma, vmf->address);
4001 		folio_add_lru_vma(folio, vma);
4002 	} else {
4003 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4004 	}
4005 
4006 	VM_BUG_ON(!folio_test_anon(folio) ||
4007 			(pte_write(pte) && !PageAnonExclusive(page)));
4008 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4009 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4010 
4011 	folio_unlock(folio);
4012 	if (folio != swapcache && swapcache) {
4013 		/*
4014 		 * Hold the lock to avoid the swap entry to be reused
4015 		 * until we take the PT lock for the pte_same() check
4016 		 * (to avoid false positives from pte_same). For
4017 		 * further safety release the lock after the swap_free
4018 		 * so that the swap count won't change under a
4019 		 * parallel locked swapcache.
4020 		 */
4021 		folio_unlock(swapcache);
4022 		folio_put(swapcache);
4023 	}
4024 
4025 	if (vmf->flags & FAULT_FLAG_WRITE) {
4026 		ret |= do_wp_page(vmf);
4027 		if (ret & VM_FAULT_ERROR)
4028 			ret &= VM_FAULT_ERROR;
4029 		goto out;
4030 	}
4031 
4032 	/* No need to invalidate - it was non-present before */
4033 	update_mmu_cache(vma, vmf->address, vmf->pte);
4034 unlock:
4035 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4036 out:
4037 	if (si)
4038 		put_swap_device(si);
4039 	return ret;
4040 out_nomap:
4041 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4042 out_page:
4043 	folio_unlock(folio);
4044 out_release:
4045 	folio_put(folio);
4046 	if (folio != swapcache && swapcache) {
4047 		folio_unlock(swapcache);
4048 		folio_put(swapcache);
4049 	}
4050 	if (si)
4051 		put_swap_device(si);
4052 	return ret;
4053 }
4054 
4055 /*
4056  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4057  * but allow concurrent faults), and pte mapped but not yet locked.
4058  * We return with mmap_lock still held, but pte unmapped and unlocked.
4059  */
4060 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4061 {
4062 	struct vm_area_struct *vma = vmf->vma;
4063 	struct page *page;
4064 	vm_fault_t ret = 0;
4065 	pte_t entry;
4066 
4067 	/* File mapping without ->vm_ops ? */
4068 	if (vma->vm_flags & VM_SHARED)
4069 		return VM_FAULT_SIGBUS;
4070 
4071 	/*
4072 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4073 	 * pte_offset_map() on pmds where a huge pmd might be created
4074 	 * from a different thread.
4075 	 *
4076 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4077 	 * parallel threads are excluded by other means.
4078 	 *
4079 	 * Here we only have mmap_read_lock(mm).
4080 	 */
4081 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4082 		return VM_FAULT_OOM;
4083 
4084 	/* See comment in handle_pte_fault() */
4085 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4086 		return 0;
4087 
4088 	/* Use the zero-page for reads */
4089 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4090 			!mm_forbids_zeropage(vma->vm_mm)) {
4091 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4092 						vma->vm_page_prot));
4093 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4094 				vmf->address, &vmf->ptl);
4095 		if (!pte_none(*vmf->pte)) {
4096 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4097 			goto unlock;
4098 		}
4099 		ret = check_stable_address_space(vma->vm_mm);
4100 		if (ret)
4101 			goto unlock;
4102 		/* Deliver the page fault to userland, check inside PT lock */
4103 		if (userfaultfd_missing(vma)) {
4104 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4105 			return handle_userfault(vmf, VM_UFFD_MISSING);
4106 		}
4107 		goto setpte;
4108 	}
4109 
4110 	/* Allocate our own private page. */
4111 	if (unlikely(anon_vma_prepare(vma)))
4112 		goto oom;
4113 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
4114 	if (!page)
4115 		goto oom;
4116 
4117 	if (mem_cgroup_charge(page_folio(page), vma->vm_mm, GFP_KERNEL))
4118 		goto oom_free_page;
4119 	cgroup_throttle_swaprate(page, GFP_KERNEL);
4120 
4121 	/*
4122 	 * The memory barrier inside __SetPageUptodate makes sure that
4123 	 * preceding stores to the page contents become visible before
4124 	 * the set_pte_at() write.
4125 	 */
4126 	__SetPageUptodate(page);
4127 
4128 	entry = mk_pte(page, vma->vm_page_prot);
4129 	entry = pte_sw_mkyoung(entry);
4130 	if (vma->vm_flags & VM_WRITE)
4131 		entry = pte_mkwrite(pte_mkdirty(entry));
4132 
4133 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4134 			&vmf->ptl);
4135 	if (!pte_none(*vmf->pte)) {
4136 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4137 		goto release;
4138 	}
4139 
4140 	ret = check_stable_address_space(vma->vm_mm);
4141 	if (ret)
4142 		goto release;
4143 
4144 	/* Deliver the page fault to userland, check inside PT lock */
4145 	if (userfaultfd_missing(vma)) {
4146 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4147 		put_page(page);
4148 		return handle_userfault(vmf, VM_UFFD_MISSING);
4149 	}
4150 
4151 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4152 	page_add_new_anon_rmap(page, vma, vmf->address);
4153 	lru_cache_add_inactive_or_unevictable(page, vma);
4154 setpte:
4155 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4156 
4157 	/* No need to invalidate - it was non-present before */
4158 	update_mmu_cache(vma, vmf->address, vmf->pte);
4159 unlock:
4160 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4161 	return ret;
4162 release:
4163 	put_page(page);
4164 	goto unlock;
4165 oom_free_page:
4166 	put_page(page);
4167 oom:
4168 	return VM_FAULT_OOM;
4169 }
4170 
4171 /*
4172  * The mmap_lock must have been held on entry, and may have been
4173  * released depending on flags and vma->vm_ops->fault() return value.
4174  * See filemap_fault() and __lock_page_retry().
4175  */
4176 static vm_fault_t __do_fault(struct vm_fault *vmf)
4177 {
4178 	struct vm_area_struct *vma = vmf->vma;
4179 	vm_fault_t ret;
4180 
4181 	/*
4182 	 * Preallocate pte before we take page_lock because this might lead to
4183 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4184 	 *				lock_page(A)
4185 	 *				SetPageWriteback(A)
4186 	 *				unlock_page(A)
4187 	 * lock_page(B)
4188 	 *				lock_page(B)
4189 	 * pte_alloc_one
4190 	 *   shrink_page_list
4191 	 *     wait_on_page_writeback(A)
4192 	 *				SetPageWriteback(B)
4193 	 *				unlock_page(B)
4194 	 *				# flush A, B to clear the writeback
4195 	 */
4196 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4197 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4198 		if (!vmf->prealloc_pte)
4199 			return VM_FAULT_OOM;
4200 	}
4201 
4202 	ret = vma->vm_ops->fault(vmf);
4203 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4204 			    VM_FAULT_DONE_COW)))
4205 		return ret;
4206 
4207 	if (unlikely(PageHWPoison(vmf->page))) {
4208 		struct page *page = vmf->page;
4209 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4210 		if (ret & VM_FAULT_LOCKED) {
4211 			if (page_mapped(page))
4212 				unmap_mapping_pages(page_mapping(page),
4213 						    page->index, 1, false);
4214 			/* Retry if a clean page was removed from the cache. */
4215 			if (invalidate_inode_page(page))
4216 				poisonret = VM_FAULT_NOPAGE;
4217 			unlock_page(page);
4218 		}
4219 		put_page(page);
4220 		vmf->page = NULL;
4221 		return poisonret;
4222 	}
4223 
4224 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4225 		lock_page(vmf->page);
4226 	else
4227 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4228 
4229 	return ret;
4230 }
4231 
4232 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4233 static void deposit_prealloc_pte(struct vm_fault *vmf)
4234 {
4235 	struct vm_area_struct *vma = vmf->vma;
4236 
4237 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4238 	/*
4239 	 * We are going to consume the prealloc table,
4240 	 * count that as nr_ptes.
4241 	 */
4242 	mm_inc_nr_ptes(vma->vm_mm);
4243 	vmf->prealloc_pte = NULL;
4244 }
4245 
4246 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4247 {
4248 	struct vm_area_struct *vma = vmf->vma;
4249 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4250 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4251 	pmd_t entry;
4252 	int i;
4253 	vm_fault_t ret = VM_FAULT_FALLBACK;
4254 
4255 	if (!transhuge_vma_suitable(vma, haddr))
4256 		return ret;
4257 
4258 	page = compound_head(page);
4259 	if (compound_order(page) != HPAGE_PMD_ORDER)
4260 		return ret;
4261 
4262 	/*
4263 	 * Just backoff if any subpage of a THP is corrupted otherwise
4264 	 * the corrupted page may mapped by PMD silently to escape the
4265 	 * check.  This kind of THP just can be PTE mapped.  Access to
4266 	 * the corrupted subpage should trigger SIGBUS as expected.
4267 	 */
4268 	if (unlikely(PageHasHWPoisoned(page)))
4269 		return ret;
4270 
4271 	/*
4272 	 * Archs like ppc64 need additional space to store information
4273 	 * related to pte entry. Use the preallocated table for that.
4274 	 */
4275 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4276 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4277 		if (!vmf->prealloc_pte)
4278 			return VM_FAULT_OOM;
4279 	}
4280 
4281 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4282 	if (unlikely(!pmd_none(*vmf->pmd)))
4283 		goto out;
4284 
4285 	for (i = 0; i < HPAGE_PMD_NR; i++)
4286 		flush_icache_page(vma, page + i);
4287 
4288 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4289 	if (write)
4290 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4291 
4292 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4293 	page_add_file_rmap(page, vma, true);
4294 
4295 	/*
4296 	 * deposit and withdraw with pmd lock held
4297 	 */
4298 	if (arch_needs_pgtable_deposit())
4299 		deposit_prealloc_pte(vmf);
4300 
4301 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4302 
4303 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4304 
4305 	/* fault is handled */
4306 	ret = 0;
4307 	count_vm_event(THP_FILE_MAPPED);
4308 out:
4309 	spin_unlock(vmf->ptl);
4310 	return ret;
4311 }
4312 #else
4313 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4314 {
4315 	return VM_FAULT_FALLBACK;
4316 }
4317 #endif
4318 
4319 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4320 {
4321 	struct vm_area_struct *vma = vmf->vma;
4322 	bool uffd_wp = pte_marker_uffd_wp(vmf->orig_pte);
4323 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4324 	bool prefault = vmf->address != addr;
4325 	pte_t entry;
4326 
4327 	flush_icache_page(vma, page);
4328 	entry = mk_pte(page, vma->vm_page_prot);
4329 
4330 	if (prefault && arch_wants_old_prefaulted_pte())
4331 		entry = pte_mkold(entry);
4332 	else
4333 		entry = pte_sw_mkyoung(entry);
4334 
4335 	if (write)
4336 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4337 	if (unlikely(uffd_wp))
4338 		entry = pte_mkuffd_wp(pte_wrprotect(entry));
4339 	/* copy-on-write page */
4340 	if (write && !(vma->vm_flags & VM_SHARED)) {
4341 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
4342 		page_add_new_anon_rmap(page, vma, addr);
4343 		lru_cache_add_inactive_or_unevictable(page, vma);
4344 	} else {
4345 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
4346 		page_add_file_rmap(page, vma, false);
4347 	}
4348 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4349 }
4350 
4351 static bool vmf_pte_changed(struct vm_fault *vmf)
4352 {
4353 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4354 		return !pte_same(*vmf->pte, vmf->orig_pte);
4355 
4356 	return !pte_none(*vmf->pte);
4357 }
4358 
4359 /**
4360  * finish_fault - finish page fault once we have prepared the page to fault
4361  *
4362  * @vmf: structure describing the fault
4363  *
4364  * This function handles all that is needed to finish a page fault once the
4365  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4366  * given page, adds reverse page mapping, handles memcg charges and LRU
4367  * addition.
4368  *
4369  * The function expects the page to be locked and on success it consumes a
4370  * reference of a page being mapped (for the PTE which maps it).
4371  *
4372  * Return: %0 on success, %VM_FAULT_ code in case of error.
4373  */
4374 vm_fault_t finish_fault(struct vm_fault *vmf)
4375 {
4376 	struct vm_area_struct *vma = vmf->vma;
4377 	struct page *page;
4378 	vm_fault_t ret;
4379 
4380 	/* Did we COW the page? */
4381 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4382 		page = vmf->cow_page;
4383 	else
4384 		page = vmf->page;
4385 
4386 	/*
4387 	 * check even for read faults because we might have lost our CoWed
4388 	 * page
4389 	 */
4390 	if (!(vma->vm_flags & VM_SHARED)) {
4391 		ret = check_stable_address_space(vma->vm_mm);
4392 		if (ret)
4393 			return ret;
4394 	}
4395 
4396 	if (pmd_none(*vmf->pmd)) {
4397 		if (PageTransCompound(page)) {
4398 			ret = do_set_pmd(vmf, page);
4399 			if (ret != VM_FAULT_FALLBACK)
4400 				return ret;
4401 		}
4402 
4403 		if (vmf->prealloc_pte)
4404 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4405 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4406 			return VM_FAULT_OOM;
4407 	}
4408 
4409 	/*
4410 	 * See comment in handle_pte_fault() for how this scenario happens, we
4411 	 * need to return NOPAGE so that we drop this page.
4412 	 */
4413 	if (pmd_devmap_trans_unstable(vmf->pmd))
4414 		return VM_FAULT_NOPAGE;
4415 
4416 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4417 				      vmf->address, &vmf->ptl);
4418 
4419 	/* Re-check under ptl */
4420 	if (likely(!vmf_pte_changed(vmf))) {
4421 		do_set_pte(vmf, page, vmf->address);
4422 
4423 		/* no need to invalidate: a not-present page won't be cached */
4424 		update_mmu_cache(vma, vmf->address, vmf->pte);
4425 
4426 		ret = 0;
4427 	} else {
4428 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4429 		ret = VM_FAULT_NOPAGE;
4430 	}
4431 
4432 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4433 	return ret;
4434 }
4435 
4436 static unsigned long fault_around_bytes __read_mostly =
4437 	rounddown_pow_of_two(65536);
4438 
4439 #ifdef CONFIG_DEBUG_FS
4440 static int fault_around_bytes_get(void *data, u64 *val)
4441 {
4442 	*val = fault_around_bytes;
4443 	return 0;
4444 }
4445 
4446 /*
4447  * fault_around_bytes must be rounded down to the nearest page order as it's
4448  * what do_fault_around() expects to see.
4449  */
4450 static int fault_around_bytes_set(void *data, u64 val)
4451 {
4452 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4453 		return -EINVAL;
4454 	if (val > PAGE_SIZE)
4455 		fault_around_bytes = rounddown_pow_of_two(val);
4456 	else
4457 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
4458 	return 0;
4459 }
4460 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4461 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4462 
4463 static int __init fault_around_debugfs(void)
4464 {
4465 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4466 				   &fault_around_bytes_fops);
4467 	return 0;
4468 }
4469 late_initcall(fault_around_debugfs);
4470 #endif
4471 
4472 /*
4473  * do_fault_around() tries to map few pages around the fault address. The hope
4474  * is that the pages will be needed soon and this will lower the number of
4475  * faults to handle.
4476  *
4477  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4478  * not ready to be mapped: not up-to-date, locked, etc.
4479  *
4480  * This function doesn't cross the VMA boundaries, in order to call map_pages()
4481  * only once.
4482  *
4483  * fault_around_bytes defines how many bytes we'll try to map.
4484  * do_fault_around() expects it to be set to a power of two less than or equal
4485  * to PTRS_PER_PTE.
4486  *
4487  * The virtual address of the area that we map is naturally aligned to
4488  * fault_around_bytes rounded down to the machine page size
4489  * (and therefore to page order).  This way it's easier to guarantee
4490  * that we don't cross page table boundaries.
4491  */
4492 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4493 {
4494 	unsigned long address = vmf->address, nr_pages, mask;
4495 	pgoff_t start_pgoff = vmf->pgoff;
4496 	pgoff_t end_pgoff;
4497 	int off;
4498 
4499 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
4500 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
4501 
4502 	address = max(address & mask, vmf->vma->vm_start);
4503 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
4504 	start_pgoff -= off;
4505 
4506 	/*
4507 	 *  end_pgoff is either the end of the page table, the end of
4508 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
4509 	 */
4510 	end_pgoff = start_pgoff -
4511 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
4512 		PTRS_PER_PTE - 1;
4513 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
4514 			start_pgoff + nr_pages - 1);
4515 
4516 	if (pmd_none(*vmf->pmd)) {
4517 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4518 		if (!vmf->prealloc_pte)
4519 			return VM_FAULT_OOM;
4520 	}
4521 
4522 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
4523 }
4524 
4525 /* Return true if we should do read fault-around, false otherwise */
4526 static inline bool should_fault_around(struct vm_fault *vmf)
4527 {
4528 	/* No ->map_pages?  No way to fault around... */
4529 	if (!vmf->vma->vm_ops->map_pages)
4530 		return false;
4531 
4532 	if (uffd_disable_fault_around(vmf->vma))
4533 		return false;
4534 
4535 	return fault_around_bytes >> PAGE_SHIFT > 1;
4536 }
4537 
4538 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4539 {
4540 	vm_fault_t ret = 0;
4541 
4542 	/*
4543 	 * Let's call ->map_pages() first and use ->fault() as fallback
4544 	 * if page by the offset is not ready to be mapped (cold cache or
4545 	 * something).
4546 	 */
4547 	if (should_fault_around(vmf)) {
4548 		ret = do_fault_around(vmf);
4549 		if (ret)
4550 			return ret;
4551 	}
4552 
4553 	ret = __do_fault(vmf);
4554 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4555 		return ret;
4556 
4557 	ret |= finish_fault(vmf);
4558 	unlock_page(vmf->page);
4559 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4560 		put_page(vmf->page);
4561 	return ret;
4562 }
4563 
4564 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4565 {
4566 	struct vm_area_struct *vma = vmf->vma;
4567 	vm_fault_t ret;
4568 
4569 	if (unlikely(anon_vma_prepare(vma)))
4570 		return VM_FAULT_OOM;
4571 
4572 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4573 	if (!vmf->cow_page)
4574 		return VM_FAULT_OOM;
4575 
4576 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4577 				GFP_KERNEL)) {
4578 		put_page(vmf->cow_page);
4579 		return VM_FAULT_OOM;
4580 	}
4581 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
4582 
4583 	ret = __do_fault(vmf);
4584 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4585 		goto uncharge_out;
4586 	if (ret & VM_FAULT_DONE_COW)
4587 		return ret;
4588 
4589 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4590 	__SetPageUptodate(vmf->cow_page);
4591 
4592 	ret |= finish_fault(vmf);
4593 	unlock_page(vmf->page);
4594 	put_page(vmf->page);
4595 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4596 		goto uncharge_out;
4597 	return ret;
4598 uncharge_out:
4599 	put_page(vmf->cow_page);
4600 	return ret;
4601 }
4602 
4603 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4604 {
4605 	struct vm_area_struct *vma = vmf->vma;
4606 	vm_fault_t ret, tmp;
4607 
4608 	ret = __do_fault(vmf);
4609 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4610 		return ret;
4611 
4612 	/*
4613 	 * Check if the backing address space wants to know that the page is
4614 	 * about to become writable
4615 	 */
4616 	if (vma->vm_ops->page_mkwrite) {
4617 		unlock_page(vmf->page);
4618 		tmp = do_page_mkwrite(vmf);
4619 		if (unlikely(!tmp ||
4620 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4621 			put_page(vmf->page);
4622 			return tmp;
4623 		}
4624 	}
4625 
4626 	ret |= finish_fault(vmf);
4627 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4628 					VM_FAULT_RETRY))) {
4629 		unlock_page(vmf->page);
4630 		put_page(vmf->page);
4631 		return ret;
4632 	}
4633 
4634 	ret |= fault_dirty_shared_page(vmf);
4635 	return ret;
4636 }
4637 
4638 /*
4639  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4640  * but allow concurrent faults).
4641  * The mmap_lock may have been released depending on flags and our
4642  * return value.  See filemap_fault() and __folio_lock_or_retry().
4643  * If mmap_lock is released, vma may become invalid (for example
4644  * by other thread calling munmap()).
4645  */
4646 static vm_fault_t do_fault(struct vm_fault *vmf)
4647 {
4648 	struct vm_area_struct *vma = vmf->vma;
4649 	struct mm_struct *vm_mm = vma->vm_mm;
4650 	vm_fault_t ret;
4651 
4652 	/*
4653 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4654 	 */
4655 	if (!vma->vm_ops->fault) {
4656 		/*
4657 		 * If we find a migration pmd entry or a none pmd entry, which
4658 		 * should never happen, return SIGBUS
4659 		 */
4660 		if (unlikely(!pmd_present(*vmf->pmd)))
4661 			ret = VM_FAULT_SIGBUS;
4662 		else {
4663 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4664 						       vmf->pmd,
4665 						       vmf->address,
4666 						       &vmf->ptl);
4667 			/*
4668 			 * Make sure this is not a temporary clearing of pte
4669 			 * by holding ptl and checking again. A R/M/W update
4670 			 * of pte involves: take ptl, clearing the pte so that
4671 			 * we don't have concurrent modification by hardware
4672 			 * followed by an update.
4673 			 */
4674 			if (unlikely(pte_none(*vmf->pte)))
4675 				ret = VM_FAULT_SIGBUS;
4676 			else
4677 				ret = VM_FAULT_NOPAGE;
4678 
4679 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4680 		}
4681 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4682 		ret = do_read_fault(vmf);
4683 	else if (!(vma->vm_flags & VM_SHARED))
4684 		ret = do_cow_fault(vmf);
4685 	else
4686 		ret = do_shared_fault(vmf);
4687 
4688 	/* preallocated pagetable is unused: free it */
4689 	if (vmf->prealloc_pte) {
4690 		pte_free(vm_mm, vmf->prealloc_pte);
4691 		vmf->prealloc_pte = NULL;
4692 	}
4693 	return ret;
4694 }
4695 
4696 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4697 		      unsigned long addr, int page_nid, int *flags)
4698 {
4699 	get_page(page);
4700 
4701 	count_vm_numa_event(NUMA_HINT_FAULTS);
4702 	if (page_nid == numa_node_id()) {
4703 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4704 		*flags |= TNF_FAULT_LOCAL;
4705 	}
4706 
4707 	return mpol_misplaced(page, vma, addr);
4708 }
4709 
4710 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4711 {
4712 	struct vm_area_struct *vma = vmf->vma;
4713 	struct page *page = NULL;
4714 	int page_nid = NUMA_NO_NODE;
4715 	int last_cpupid;
4716 	int target_nid;
4717 	pte_t pte, old_pte;
4718 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4719 	int flags = 0;
4720 
4721 	/*
4722 	 * The "pte" at this point cannot be used safely without
4723 	 * validation through pte_unmap_same(). It's of NUMA type but
4724 	 * the pfn may be screwed if the read is non atomic.
4725 	 */
4726 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4727 	spin_lock(vmf->ptl);
4728 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4729 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4730 		goto out;
4731 	}
4732 
4733 	/* Get the normal PTE  */
4734 	old_pte = ptep_get(vmf->pte);
4735 	pte = pte_modify(old_pte, vma->vm_page_prot);
4736 
4737 	page = vm_normal_page(vma, vmf->address, pte);
4738 	if (!page || is_zone_device_page(page))
4739 		goto out_map;
4740 
4741 	/* TODO: handle PTE-mapped THP */
4742 	if (PageCompound(page))
4743 		goto out_map;
4744 
4745 	/*
4746 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4747 	 * much anyway since they can be in shared cache state. This misses
4748 	 * the case where a mapping is writable but the process never writes
4749 	 * to it but pte_write gets cleared during protection updates and
4750 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4751 	 * background writeback, dirty balancing and application behaviour.
4752 	 */
4753 	if (!was_writable)
4754 		flags |= TNF_NO_GROUP;
4755 
4756 	/*
4757 	 * Flag if the page is shared between multiple address spaces. This
4758 	 * is later used when determining whether to group tasks together
4759 	 */
4760 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4761 		flags |= TNF_SHARED;
4762 
4763 	page_nid = page_to_nid(page);
4764 	/*
4765 	 * For memory tiering mode, cpupid of slow memory page is used
4766 	 * to record page access time.  So use default value.
4767 	 */
4768 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4769 	    !node_is_toptier(page_nid))
4770 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4771 	else
4772 		last_cpupid = page_cpupid_last(page);
4773 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4774 			&flags);
4775 	if (target_nid == NUMA_NO_NODE) {
4776 		put_page(page);
4777 		goto out_map;
4778 	}
4779 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4780 
4781 	/* Migrate to the requested node */
4782 	if (migrate_misplaced_page(page, vma, target_nid)) {
4783 		page_nid = target_nid;
4784 		flags |= TNF_MIGRATED;
4785 	} else {
4786 		flags |= TNF_MIGRATE_FAIL;
4787 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4788 		spin_lock(vmf->ptl);
4789 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4790 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4791 			goto out;
4792 		}
4793 		goto out_map;
4794 	}
4795 
4796 out:
4797 	if (page_nid != NUMA_NO_NODE)
4798 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4799 	return 0;
4800 out_map:
4801 	/*
4802 	 * Make it present again, depending on how arch implements
4803 	 * non-accessible ptes, some can allow access by kernel mode.
4804 	 */
4805 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4806 	pte = pte_modify(old_pte, vma->vm_page_prot);
4807 	pte = pte_mkyoung(pte);
4808 	if (was_writable)
4809 		pte = pte_mkwrite(pte);
4810 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4811 	update_mmu_cache(vma, vmf->address, vmf->pte);
4812 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4813 	goto out;
4814 }
4815 
4816 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4817 {
4818 	if (vma_is_anonymous(vmf->vma))
4819 		return do_huge_pmd_anonymous_page(vmf);
4820 	if (vmf->vma->vm_ops->huge_fault)
4821 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4822 	return VM_FAULT_FALLBACK;
4823 }
4824 
4825 /* `inline' is required to avoid gcc 4.1.2 build error */
4826 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4827 {
4828 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4829 
4830 	if (vma_is_anonymous(vmf->vma)) {
4831 		if (likely(!unshare) &&
4832 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4833 			return handle_userfault(vmf, VM_UFFD_WP);
4834 		return do_huge_pmd_wp_page(vmf);
4835 	}
4836 	if (vmf->vma->vm_ops->huge_fault) {
4837 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4838 
4839 		if (!(ret & VM_FAULT_FALLBACK))
4840 			return ret;
4841 	}
4842 
4843 	/* COW or write-notify handled on pte level: split pmd. */
4844 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4845 
4846 	return VM_FAULT_FALLBACK;
4847 }
4848 
4849 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4850 {
4851 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4852 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4853 	/* No support for anonymous transparent PUD pages yet */
4854 	if (vma_is_anonymous(vmf->vma))
4855 		return VM_FAULT_FALLBACK;
4856 	if (vmf->vma->vm_ops->huge_fault)
4857 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4858 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4859 	return VM_FAULT_FALLBACK;
4860 }
4861 
4862 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4863 {
4864 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4865 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4866 	/* No support for anonymous transparent PUD pages yet */
4867 	if (vma_is_anonymous(vmf->vma))
4868 		goto split;
4869 	if (vmf->vma->vm_ops->huge_fault) {
4870 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4871 
4872 		if (!(ret & VM_FAULT_FALLBACK))
4873 			return ret;
4874 	}
4875 split:
4876 	/* COW or write-notify not handled on PUD level: split pud.*/
4877 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4878 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4879 	return VM_FAULT_FALLBACK;
4880 }
4881 
4882 /*
4883  * These routines also need to handle stuff like marking pages dirty
4884  * and/or accessed for architectures that don't do it in hardware (most
4885  * RISC architectures).  The early dirtying is also good on the i386.
4886  *
4887  * There is also a hook called "update_mmu_cache()" that architectures
4888  * with external mmu caches can use to update those (ie the Sparc or
4889  * PowerPC hashed page tables that act as extended TLBs).
4890  *
4891  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4892  * concurrent faults).
4893  *
4894  * The mmap_lock may have been released depending on flags and our return value.
4895  * See filemap_fault() and __folio_lock_or_retry().
4896  */
4897 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4898 {
4899 	pte_t entry;
4900 
4901 	if (unlikely(pmd_none(*vmf->pmd))) {
4902 		/*
4903 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4904 		 * want to allocate huge page, and if we expose page table
4905 		 * for an instant, it will be difficult to retract from
4906 		 * concurrent faults and from rmap lookups.
4907 		 */
4908 		vmf->pte = NULL;
4909 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4910 	} else {
4911 		/*
4912 		 * If a huge pmd materialized under us just retry later.  Use
4913 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4914 		 * of pmd_trans_huge() to ensure the pmd didn't become
4915 		 * pmd_trans_huge under us and then back to pmd_none, as a
4916 		 * result of MADV_DONTNEED running immediately after a huge pmd
4917 		 * fault in a different thread of this mm, in turn leading to a
4918 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4919 		 * that it is a regular pmd that we can walk with
4920 		 * pte_offset_map() and we can do that through an atomic read
4921 		 * in C, which is what pmd_trans_unstable() provides.
4922 		 */
4923 		if (pmd_devmap_trans_unstable(vmf->pmd))
4924 			return 0;
4925 		/*
4926 		 * A regular pmd is established and it can't morph into a huge
4927 		 * pmd from under us anymore at this point because we hold the
4928 		 * mmap_lock read mode and khugepaged takes it in write mode.
4929 		 * So now it's safe to run pte_offset_map().
4930 		 */
4931 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4932 		vmf->orig_pte = *vmf->pte;
4933 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4934 
4935 		/*
4936 		 * some architectures can have larger ptes than wordsize,
4937 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4938 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4939 		 * accesses.  The code below just needs a consistent view
4940 		 * for the ifs and we later double check anyway with the
4941 		 * ptl lock held. So here a barrier will do.
4942 		 */
4943 		barrier();
4944 		if (pte_none(vmf->orig_pte)) {
4945 			pte_unmap(vmf->pte);
4946 			vmf->pte = NULL;
4947 		}
4948 	}
4949 
4950 	if (!vmf->pte) {
4951 		if (vma_is_anonymous(vmf->vma))
4952 			return do_anonymous_page(vmf);
4953 		else
4954 			return do_fault(vmf);
4955 	}
4956 
4957 	if (!pte_present(vmf->orig_pte))
4958 		return do_swap_page(vmf);
4959 
4960 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4961 		return do_numa_page(vmf);
4962 
4963 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4964 	spin_lock(vmf->ptl);
4965 	entry = vmf->orig_pte;
4966 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4967 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4968 		goto unlock;
4969 	}
4970 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4971 		if (!pte_write(entry))
4972 			return do_wp_page(vmf);
4973 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4974 			entry = pte_mkdirty(entry);
4975 	}
4976 	entry = pte_mkyoung(entry);
4977 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4978 				vmf->flags & FAULT_FLAG_WRITE)) {
4979 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4980 	} else {
4981 		/* Skip spurious TLB flush for retried page fault */
4982 		if (vmf->flags & FAULT_FLAG_TRIED)
4983 			goto unlock;
4984 		/*
4985 		 * This is needed only for protection faults but the arch code
4986 		 * is not yet telling us if this is a protection fault or not.
4987 		 * This still avoids useless tlb flushes for .text page faults
4988 		 * with threads.
4989 		 */
4990 		if (vmf->flags & FAULT_FLAG_WRITE)
4991 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4992 	}
4993 unlock:
4994 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4995 	return 0;
4996 }
4997 
4998 /*
4999  * By the time we get here, we already hold the mm semaphore
5000  *
5001  * The mmap_lock may have been released depending on flags and our
5002  * return value.  See filemap_fault() and __folio_lock_or_retry().
5003  */
5004 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
5005 		unsigned long address, unsigned int flags)
5006 {
5007 	struct vm_fault vmf = {
5008 		.vma = vma,
5009 		.address = address & PAGE_MASK,
5010 		.real_address = address,
5011 		.flags = flags,
5012 		.pgoff = linear_page_index(vma, address),
5013 		.gfp_mask = __get_fault_gfp_mask(vma),
5014 	};
5015 	struct mm_struct *mm = vma->vm_mm;
5016 	unsigned long vm_flags = vma->vm_flags;
5017 	pgd_t *pgd;
5018 	p4d_t *p4d;
5019 	vm_fault_t ret;
5020 
5021 	pgd = pgd_offset(mm, address);
5022 	p4d = p4d_alloc(mm, pgd, address);
5023 	if (!p4d)
5024 		return VM_FAULT_OOM;
5025 
5026 	vmf.pud = pud_alloc(mm, p4d, address);
5027 	if (!vmf.pud)
5028 		return VM_FAULT_OOM;
5029 retry_pud:
5030 	if (pud_none(*vmf.pud) &&
5031 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5032 		ret = create_huge_pud(&vmf);
5033 		if (!(ret & VM_FAULT_FALLBACK))
5034 			return ret;
5035 	} else {
5036 		pud_t orig_pud = *vmf.pud;
5037 
5038 		barrier();
5039 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5040 
5041 			/*
5042 			 * TODO once we support anonymous PUDs: NUMA case and
5043 			 * FAULT_FLAG_UNSHARE handling.
5044 			 */
5045 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5046 				ret = wp_huge_pud(&vmf, orig_pud);
5047 				if (!(ret & VM_FAULT_FALLBACK))
5048 					return ret;
5049 			} else {
5050 				huge_pud_set_accessed(&vmf, orig_pud);
5051 				return 0;
5052 			}
5053 		}
5054 	}
5055 
5056 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5057 	if (!vmf.pmd)
5058 		return VM_FAULT_OOM;
5059 
5060 	/* Huge pud page fault raced with pmd_alloc? */
5061 	if (pud_trans_unstable(vmf.pud))
5062 		goto retry_pud;
5063 
5064 	if (pmd_none(*vmf.pmd) &&
5065 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5066 		ret = create_huge_pmd(&vmf);
5067 		if (!(ret & VM_FAULT_FALLBACK))
5068 			return ret;
5069 	} else {
5070 		vmf.orig_pmd = *vmf.pmd;
5071 
5072 		barrier();
5073 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5074 			VM_BUG_ON(thp_migration_supported() &&
5075 					  !is_pmd_migration_entry(vmf.orig_pmd));
5076 			if (is_pmd_migration_entry(vmf.orig_pmd))
5077 				pmd_migration_entry_wait(mm, vmf.pmd);
5078 			return 0;
5079 		}
5080 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5081 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5082 				return do_huge_pmd_numa_page(&vmf);
5083 
5084 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5085 			    !pmd_write(vmf.orig_pmd)) {
5086 				ret = wp_huge_pmd(&vmf);
5087 				if (!(ret & VM_FAULT_FALLBACK))
5088 					return ret;
5089 			} else {
5090 				huge_pmd_set_accessed(&vmf);
5091 				return 0;
5092 			}
5093 		}
5094 	}
5095 
5096 	return handle_pte_fault(&vmf);
5097 }
5098 
5099 /**
5100  * mm_account_fault - Do page fault accounting
5101  *
5102  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5103  *        of perf event counters, but we'll still do the per-task accounting to
5104  *        the task who triggered this page fault.
5105  * @address: the faulted address.
5106  * @flags: the fault flags.
5107  * @ret: the fault retcode.
5108  *
5109  * This will take care of most of the page fault accounting.  Meanwhile, it
5110  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5111  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5112  * still be in per-arch page fault handlers at the entry of page fault.
5113  */
5114 static inline void mm_account_fault(struct pt_regs *regs,
5115 				    unsigned long address, unsigned int flags,
5116 				    vm_fault_t ret)
5117 {
5118 	bool major;
5119 
5120 	/*
5121 	 * We don't do accounting for some specific faults:
5122 	 *
5123 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
5124 	 *   includes arch_vma_access_permitted() failing before reaching here.
5125 	 *   So this is not a "this many hardware page faults" counter.  We
5126 	 *   should use the hw profiling for that.
5127 	 *
5128 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
5129 	 *   once they're completed.
5130 	 */
5131 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
5132 		return;
5133 
5134 	/*
5135 	 * We define the fault as a major fault when the final successful fault
5136 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5137 	 * handle it immediately previously).
5138 	 */
5139 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5140 
5141 	if (major)
5142 		current->maj_flt++;
5143 	else
5144 		current->min_flt++;
5145 
5146 	/*
5147 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5148 	 * accounting for the per thread fault counters who triggered the
5149 	 * fault, and we skip the perf event updates.
5150 	 */
5151 	if (!regs)
5152 		return;
5153 
5154 	if (major)
5155 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5156 	else
5157 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5158 }
5159 
5160 #ifdef CONFIG_LRU_GEN
5161 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5162 {
5163 	/* the LRU algorithm doesn't apply to sequential or random reads */
5164 	current->in_lru_fault = !(vma->vm_flags & (VM_SEQ_READ | VM_RAND_READ));
5165 }
5166 
5167 static void lru_gen_exit_fault(void)
5168 {
5169 	current->in_lru_fault = false;
5170 }
5171 #else
5172 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5173 {
5174 }
5175 
5176 static void lru_gen_exit_fault(void)
5177 {
5178 }
5179 #endif /* CONFIG_LRU_GEN */
5180 
5181 /*
5182  * By the time we get here, we already hold the mm semaphore
5183  *
5184  * The mmap_lock may have been released depending on flags and our
5185  * return value.  See filemap_fault() and __folio_lock_or_retry().
5186  */
5187 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5188 			   unsigned int flags, struct pt_regs *regs)
5189 {
5190 	vm_fault_t ret;
5191 
5192 	__set_current_state(TASK_RUNNING);
5193 
5194 	count_vm_event(PGFAULT);
5195 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
5196 
5197 	/* do counter updates before entering really critical section. */
5198 	check_sync_rss_stat(current);
5199 
5200 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5201 					    flags & FAULT_FLAG_INSTRUCTION,
5202 					    flags & FAULT_FLAG_REMOTE))
5203 		return VM_FAULT_SIGSEGV;
5204 
5205 	/*
5206 	 * Enable the memcg OOM handling for faults triggered in user
5207 	 * space.  Kernel faults are handled more gracefully.
5208 	 */
5209 	if (flags & FAULT_FLAG_USER)
5210 		mem_cgroup_enter_user_fault();
5211 
5212 	lru_gen_enter_fault(vma);
5213 
5214 	if (unlikely(is_vm_hugetlb_page(vma)))
5215 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5216 	else
5217 		ret = __handle_mm_fault(vma, address, flags);
5218 
5219 	lru_gen_exit_fault();
5220 
5221 	if (flags & FAULT_FLAG_USER) {
5222 		mem_cgroup_exit_user_fault();
5223 		/*
5224 		 * The task may have entered a memcg OOM situation but
5225 		 * if the allocation error was handled gracefully (no
5226 		 * VM_FAULT_OOM), there is no need to kill anything.
5227 		 * Just clean up the OOM state peacefully.
5228 		 */
5229 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5230 			mem_cgroup_oom_synchronize(false);
5231 	}
5232 
5233 	mm_account_fault(regs, address, flags, ret);
5234 
5235 	return ret;
5236 }
5237 EXPORT_SYMBOL_GPL(handle_mm_fault);
5238 
5239 #ifndef __PAGETABLE_P4D_FOLDED
5240 /*
5241  * Allocate p4d page table.
5242  * We've already handled the fast-path in-line.
5243  */
5244 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5245 {
5246 	p4d_t *new = p4d_alloc_one(mm, address);
5247 	if (!new)
5248 		return -ENOMEM;
5249 
5250 	spin_lock(&mm->page_table_lock);
5251 	if (pgd_present(*pgd)) {	/* Another has populated it */
5252 		p4d_free(mm, new);
5253 	} else {
5254 		smp_wmb(); /* See comment in pmd_install() */
5255 		pgd_populate(mm, pgd, new);
5256 	}
5257 	spin_unlock(&mm->page_table_lock);
5258 	return 0;
5259 }
5260 #endif /* __PAGETABLE_P4D_FOLDED */
5261 
5262 #ifndef __PAGETABLE_PUD_FOLDED
5263 /*
5264  * Allocate page upper directory.
5265  * We've already handled the fast-path in-line.
5266  */
5267 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5268 {
5269 	pud_t *new = pud_alloc_one(mm, address);
5270 	if (!new)
5271 		return -ENOMEM;
5272 
5273 	spin_lock(&mm->page_table_lock);
5274 	if (!p4d_present(*p4d)) {
5275 		mm_inc_nr_puds(mm);
5276 		smp_wmb(); /* See comment in pmd_install() */
5277 		p4d_populate(mm, p4d, new);
5278 	} else	/* Another has populated it */
5279 		pud_free(mm, new);
5280 	spin_unlock(&mm->page_table_lock);
5281 	return 0;
5282 }
5283 #endif /* __PAGETABLE_PUD_FOLDED */
5284 
5285 #ifndef __PAGETABLE_PMD_FOLDED
5286 /*
5287  * Allocate page middle directory.
5288  * We've already handled the fast-path in-line.
5289  */
5290 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5291 {
5292 	spinlock_t *ptl;
5293 	pmd_t *new = pmd_alloc_one(mm, address);
5294 	if (!new)
5295 		return -ENOMEM;
5296 
5297 	ptl = pud_lock(mm, pud);
5298 	if (!pud_present(*pud)) {
5299 		mm_inc_nr_pmds(mm);
5300 		smp_wmb(); /* See comment in pmd_install() */
5301 		pud_populate(mm, pud, new);
5302 	} else {	/* Another has populated it */
5303 		pmd_free(mm, new);
5304 	}
5305 	spin_unlock(ptl);
5306 	return 0;
5307 }
5308 #endif /* __PAGETABLE_PMD_FOLDED */
5309 
5310 /**
5311  * follow_pte - look up PTE at a user virtual address
5312  * @mm: the mm_struct of the target address space
5313  * @address: user virtual address
5314  * @ptepp: location to store found PTE
5315  * @ptlp: location to store the lock for the PTE
5316  *
5317  * On a successful return, the pointer to the PTE is stored in @ptepp;
5318  * the corresponding lock is taken and its location is stored in @ptlp.
5319  * The contents of the PTE are only stable until @ptlp is released;
5320  * any further use, if any, must be protected against invalidation
5321  * with MMU notifiers.
5322  *
5323  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5324  * should be taken for read.
5325  *
5326  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5327  * it is not a good general-purpose API.
5328  *
5329  * Return: zero on success, -ve otherwise.
5330  */
5331 int follow_pte(struct mm_struct *mm, unsigned long address,
5332 	       pte_t **ptepp, spinlock_t **ptlp)
5333 {
5334 	pgd_t *pgd;
5335 	p4d_t *p4d;
5336 	pud_t *pud;
5337 	pmd_t *pmd;
5338 	pte_t *ptep;
5339 
5340 	pgd = pgd_offset(mm, address);
5341 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5342 		goto out;
5343 
5344 	p4d = p4d_offset(pgd, address);
5345 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5346 		goto out;
5347 
5348 	pud = pud_offset(p4d, address);
5349 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5350 		goto out;
5351 
5352 	pmd = pmd_offset(pud, address);
5353 	VM_BUG_ON(pmd_trans_huge(*pmd));
5354 
5355 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5356 		goto out;
5357 
5358 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5359 	if (!pte_present(*ptep))
5360 		goto unlock;
5361 	*ptepp = ptep;
5362 	return 0;
5363 unlock:
5364 	pte_unmap_unlock(ptep, *ptlp);
5365 out:
5366 	return -EINVAL;
5367 }
5368 EXPORT_SYMBOL_GPL(follow_pte);
5369 
5370 /**
5371  * follow_pfn - look up PFN at a user virtual address
5372  * @vma: memory mapping
5373  * @address: user virtual address
5374  * @pfn: location to store found PFN
5375  *
5376  * Only IO mappings and raw PFN mappings are allowed.
5377  *
5378  * This function does not allow the caller to read the permissions
5379  * of the PTE.  Do not use it.
5380  *
5381  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5382  */
5383 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5384 	unsigned long *pfn)
5385 {
5386 	int ret = -EINVAL;
5387 	spinlock_t *ptl;
5388 	pte_t *ptep;
5389 
5390 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5391 		return ret;
5392 
5393 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5394 	if (ret)
5395 		return ret;
5396 	*pfn = pte_pfn(*ptep);
5397 	pte_unmap_unlock(ptep, ptl);
5398 	return 0;
5399 }
5400 EXPORT_SYMBOL(follow_pfn);
5401 
5402 #ifdef CONFIG_HAVE_IOREMAP_PROT
5403 int follow_phys(struct vm_area_struct *vma,
5404 		unsigned long address, unsigned int flags,
5405 		unsigned long *prot, resource_size_t *phys)
5406 {
5407 	int ret = -EINVAL;
5408 	pte_t *ptep, pte;
5409 	spinlock_t *ptl;
5410 
5411 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5412 		goto out;
5413 
5414 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5415 		goto out;
5416 	pte = *ptep;
5417 
5418 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5419 		goto unlock;
5420 
5421 	*prot = pgprot_val(pte_pgprot(pte));
5422 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5423 
5424 	ret = 0;
5425 unlock:
5426 	pte_unmap_unlock(ptep, ptl);
5427 out:
5428 	return ret;
5429 }
5430 
5431 /**
5432  * generic_access_phys - generic implementation for iomem mmap access
5433  * @vma: the vma to access
5434  * @addr: userspace address, not relative offset within @vma
5435  * @buf: buffer to read/write
5436  * @len: length of transfer
5437  * @write: set to FOLL_WRITE when writing, otherwise reading
5438  *
5439  * This is a generic implementation for &vm_operations_struct.access for an
5440  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5441  * not page based.
5442  */
5443 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5444 			void *buf, int len, int write)
5445 {
5446 	resource_size_t phys_addr;
5447 	unsigned long prot = 0;
5448 	void __iomem *maddr;
5449 	pte_t *ptep, pte;
5450 	spinlock_t *ptl;
5451 	int offset = offset_in_page(addr);
5452 	int ret = -EINVAL;
5453 
5454 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5455 		return -EINVAL;
5456 
5457 retry:
5458 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5459 		return -EINVAL;
5460 	pte = *ptep;
5461 	pte_unmap_unlock(ptep, ptl);
5462 
5463 	prot = pgprot_val(pte_pgprot(pte));
5464 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5465 
5466 	if ((write & FOLL_WRITE) && !pte_write(pte))
5467 		return -EINVAL;
5468 
5469 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5470 	if (!maddr)
5471 		return -ENOMEM;
5472 
5473 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5474 		goto out_unmap;
5475 
5476 	if (!pte_same(pte, *ptep)) {
5477 		pte_unmap_unlock(ptep, ptl);
5478 		iounmap(maddr);
5479 
5480 		goto retry;
5481 	}
5482 
5483 	if (write)
5484 		memcpy_toio(maddr + offset, buf, len);
5485 	else
5486 		memcpy_fromio(buf, maddr + offset, len);
5487 	ret = len;
5488 	pte_unmap_unlock(ptep, ptl);
5489 out_unmap:
5490 	iounmap(maddr);
5491 
5492 	return ret;
5493 }
5494 EXPORT_SYMBOL_GPL(generic_access_phys);
5495 #endif
5496 
5497 /*
5498  * Access another process' address space as given in mm.
5499  */
5500 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5501 		       int len, unsigned int gup_flags)
5502 {
5503 	struct vm_area_struct *vma;
5504 	void *old_buf = buf;
5505 	int write = gup_flags & FOLL_WRITE;
5506 
5507 	if (mmap_read_lock_killable(mm))
5508 		return 0;
5509 
5510 	/* ignore errors, just check how much was successfully transferred */
5511 	while (len) {
5512 		int bytes, ret, offset;
5513 		void *maddr;
5514 		struct page *page = NULL;
5515 
5516 		ret = get_user_pages_remote(mm, addr, 1,
5517 				gup_flags, &page, &vma, NULL);
5518 		if (ret <= 0) {
5519 #ifndef CONFIG_HAVE_IOREMAP_PROT
5520 			break;
5521 #else
5522 			/*
5523 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5524 			 * we can access using slightly different code.
5525 			 */
5526 			vma = vma_lookup(mm, addr);
5527 			if (!vma)
5528 				break;
5529 			if (vma->vm_ops && vma->vm_ops->access)
5530 				ret = vma->vm_ops->access(vma, addr, buf,
5531 							  len, write);
5532 			if (ret <= 0)
5533 				break;
5534 			bytes = ret;
5535 #endif
5536 		} else {
5537 			bytes = len;
5538 			offset = addr & (PAGE_SIZE-1);
5539 			if (bytes > PAGE_SIZE-offset)
5540 				bytes = PAGE_SIZE-offset;
5541 
5542 			maddr = kmap(page);
5543 			if (write) {
5544 				copy_to_user_page(vma, page, addr,
5545 						  maddr + offset, buf, bytes);
5546 				set_page_dirty_lock(page);
5547 			} else {
5548 				copy_from_user_page(vma, page, addr,
5549 						    buf, maddr + offset, bytes);
5550 			}
5551 			kunmap(page);
5552 			put_page(page);
5553 		}
5554 		len -= bytes;
5555 		buf += bytes;
5556 		addr += bytes;
5557 	}
5558 	mmap_read_unlock(mm);
5559 
5560 	return buf - old_buf;
5561 }
5562 
5563 /**
5564  * access_remote_vm - access another process' address space
5565  * @mm:		the mm_struct of the target address space
5566  * @addr:	start address to access
5567  * @buf:	source or destination buffer
5568  * @len:	number of bytes to transfer
5569  * @gup_flags:	flags modifying lookup behaviour
5570  *
5571  * The caller must hold a reference on @mm.
5572  *
5573  * Return: number of bytes copied from source to destination.
5574  */
5575 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5576 		void *buf, int len, unsigned int gup_flags)
5577 {
5578 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5579 }
5580 
5581 /*
5582  * Access another process' address space.
5583  * Source/target buffer must be kernel space,
5584  * Do not walk the page table directly, use get_user_pages
5585  */
5586 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5587 		void *buf, int len, unsigned int gup_flags)
5588 {
5589 	struct mm_struct *mm;
5590 	int ret;
5591 
5592 	mm = get_task_mm(tsk);
5593 	if (!mm)
5594 		return 0;
5595 
5596 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5597 
5598 	mmput(mm);
5599 
5600 	return ret;
5601 }
5602 EXPORT_SYMBOL_GPL(access_process_vm);
5603 
5604 /*
5605  * Print the name of a VMA.
5606  */
5607 void print_vma_addr(char *prefix, unsigned long ip)
5608 {
5609 	struct mm_struct *mm = current->mm;
5610 	struct vm_area_struct *vma;
5611 
5612 	/*
5613 	 * we might be running from an atomic context so we cannot sleep
5614 	 */
5615 	if (!mmap_read_trylock(mm))
5616 		return;
5617 
5618 	vma = find_vma(mm, ip);
5619 	if (vma && vma->vm_file) {
5620 		struct file *f = vma->vm_file;
5621 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5622 		if (buf) {
5623 			char *p;
5624 
5625 			p = file_path(f, buf, PAGE_SIZE);
5626 			if (IS_ERR(p))
5627 				p = "?";
5628 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5629 					vma->vm_start,
5630 					vma->vm_end - vma->vm_start);
5631 			free_page((unsigned long)buf);
5632 		}
5633 	}
5634 	mmap_read_unlock(mm);
5635 }
5636 
5637 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5638 void __might_fault(const char *file, int line)
5639 {
5640 	if (pagefault_disabled())
5641 		return;
5642 	__might_sleep(file, line);
5643 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5644 	if (current->mm)
5645 		might_lock_read(&current->mm->mmap_lock);
5646 #endif
5647 }
5648 EXPORT_SYMBOL(__might_fault);
5649 #endif
5650 
5651 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5652 /*
5653  * Process all subpages of the specified huge page with the specified
5654  * operation.  The target subpage will be processed last to keep its
5655  * cache lines hot.
5656  */
5657 static inline void process_huge_page(
5658 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5659 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5660 	void *arg)
5661 {
5662 	int i, n, base, l;
5663 	unsigned long addr = addr_hint &
5664 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5665 
5666 	/* Process target subpage last to keep its cache lines hot */
5667 	might_sleep();
5668 	n = (addr_hint - addr) / PAGE_SIZE;
5669 	if (2 * n <= pages_per_huge_page) {
5670 		/* If target subpage in first half of huge page */
5671 		base = 0;
5672 		l = n;
5673 		/* Process subpages at the end of huge page */
5674 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5675 			cond_resched();
5676 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5677 		}
5678 	} else {
5679 		/* If target subpage in second half of huge page */
5680 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5681 		l = pages_per_huge_page - n;
5682 		/* Process subpages at the begin of huge page */
5683 		for (i = 0; i < base; i++) {
5684 			cond_resched();
5685 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5686 		}
5687 	}
5688 	/*
5689 	 * Process remaining subpages in left-right-left-right pattern
5690 	 * towards the target subpage
5691 	 */
5692 	for (i = 0; i < l; i++) {
5693 		int left_idx = base + i;
5694 		int right_idx = base + 2 * l - 1 - i;
5695 
5696 		cond_resched();
5697 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5698 		cond_resched();
5699 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5700 	}
5701 }
5702 
5703 static void clear_gigantic_page(struct page *page,
5704 				unsigned long addr,
5705 				unsigned int pages_per_huge_page)
5706 {
5707 	int i;
5708 	struct page *p;
5709 
5710 	might_sleep();
5711 	for (i = 0; i < pages_per_huge_page; i++) {
5712 		p = nth_page(page, i);
5713 		cond_resched();
5714 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5715 	}
5716 }
5717 
5718 static void clear_subpage(unsigned long addr, int idx, void *arg)
5719 {
5720 	struct page *page = arg;
5721 
5722 	clear_user_highpage(page + idx, addr);
5723 }
5724 
5725 void clear_huge_page(struct page *page,
5726 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5727 {
5728 	unsigned long addr = addr_hint &
5729 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5730 
5731 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5732 		clear_gigantic_page(page, addr, pages_per_huge_page);
5733 		return;
5734 	}
5735 
5736 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5737 }
5738 
5739 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5740 				    unsigned long addr,
5741 				    struct vm_area_struct *vma,
5742 				    unsigned int pages_per_huge_page)
5743 {
5744 	int i;
5745 	struct page *dst_base = dst;
5746 	struct page *src_base = src;
5747 
5748 	for (i = 0; i < pages_per_huge_page; i++) {
5749 		dst = nth_page(dst_base, i);
5750 		src = nth_page(src_base, i);
5751 
5752 		cond_resched();
5753 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5754 	}
5755 }
5756 
5757 struct copy_subpage_arg {
5758 	struct page *dst;
5759 	struct page *src;
5760 	struct vm_area_struct *vma;
5761 };
5762 
5763 static void copy_subpage(unsigned long addr, int idx, void *arg)
5764 {
5765 	struct copy_subpage_arg *copy_arg = arg;
5766 
5767 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5768 			   addr, copy_arg->vma);
5769 }
5770 
5771 void copy_user_huge_page(struct page *dst, struct page *src,
5772 			 unsigned long addr_hint, struct vm_area_struct *vma,
5773 			 unsigned int pages_per_huge_page)
5774 {
5775 	unsigned long addr = addr_hint &
5776 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5777 	struct copy_subpage_arg arg = {
5778 		.dst = dst,
5779 		.src = src,
5780 		.vma = vma,
5781 	};
5782 
5783 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5784 		copy_user_gigantic_page(dst, src, addr, vma,
5785 					pages_per_huge_page);
5786 		return;
5787 	}
5788 
5789 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5790 }
5791 
5792 long copy_huge_page_from_user(struct page *dst_page,
5793 				const void __user *usr_src,
5794 				unsigned int pages_per_huge_page,
5795 				bool allow_pagefault)
5796 {
5797 	void *page_kaddr;
5798 	unsigned long i, rc = 0;
5799 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5800 	struct page *subpage;
5801 
5802 	for (i = 0; i < pages_per_huge_page; i++) {
5803 		subpage = nth_page(dst_page, i);
5804 		if (allow_pagefault)
5805 			page_kaddr = kmap(subpage);
5806 		else
5807 			page_kaddr = kmap_atomic(subpage);
5808 		rc = copy_from_user(page_kaddr,
5809 				usr_src + i * PAGE_SIZE, PAGE_SIZE);
5810 		if (allow_pagefault)
5811 			kunmap(subpage);
5812 		else
5813 			kunmap_atomic(page_kaddr);
5814 
5815 		ret_val -= (PAGE_SIZE - rc);
5816 		if (rc)
5817 			break;
5818 
5819 		flush_dcache_page(subpage);
5820 
5821 		cond_resched();
5822 	}
5823 	return ret_val;
5824 }
5825 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5826 
5827 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5828 
5829 static struct kmem_cache *page_ptl_cachep;
5830 
5831 void __init ptlock_cache_init(void)
5832 {
5833 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5834 			SLAB_PANIC, NULL);
5835 }
5836 
5837 bool ptlock_alloc(struct page *page)
5838 {
5839 	spinlock_t *ptl;
5840 
5841 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5842 	if (!ptl)
5843 		return false;
5844 	page->ptl = ptl;
5845 	return true;
5846 }
5847 
5848 void ptlock_free(struct page *page)
5849 {
5850 	kmem_cache_free(page_ptl_cachep, page->ptl);
5851 }
5852 #endif
5853