1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 63 #include <asm/io.h> 64 #include <asm/pgalloc.h> 65 #include <asm/uaccess.h> 66 #include <asm/tlb.h> 67 #include <asm/tlbflush.h> 68 #include <asm/pgtable.h> 69 70 #include "internal.h" 71 72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS 73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid. 74 #endif 75 76 #ifndef CONFIG_NEED_MULTIPLE_NODES 77 /* use the per-pgdat data instead for discontigmem - mbligh */ 78 unsigned long max_mapnr; 79 struct page *mem_map; 80 81 EXPORT_SYMBOL(max_mapnr); 82 EXPORT_SYMBOL(mem_map); 83 #endif 84 85 unsigned long num_physpages; 86 /* 87 * A number of key systems in x86 including ioremap() rely on the assumption 88 * that high_memory defines the upper bound on direct map memory, then end 89 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 90 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 91 * and ZONE_HIGHMEM. 92 */ 93 void * high_memory; 94 95 EXPORT_SYMBOL(num_physpages); 96 EXPORT_SYMBOL(high_memory); 97 98 /* 99 * Randomize the address space (stacks, mmaps, brk, etc.). 100 * 101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 102 * as ancient (libc5 based) binaries can segfault. ) 103 */ 104 int randomize_va_space __read_mostly = 105 #ifdef CONFIG_COMPAT_BRK 106 1; 107 #else 108 2; 109 #endif 110 111 static int __init disable_randmaps(char *s) 112 { 113 randomize_va_space = 0; 114 return 1; 115 } 116 __setup("norandmaps", disable_randmaps); 117 118 unsigned long zero_pfn __read_mostly; 119 unsigned long highest_memmap_pfn __read_mostly; 120 121 /* 122 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 123 */ 124 static int __init init_zero_pfn(void) 125 { 126 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 127 return 0; 128 } 129 core_initcall(init_zero_pfn); 130 131 132 #if defined(SPLIT_RSS_COUNTING) 133 134 void sync_mm_rss(struct mm_struct *mm) 135 { 136 int i; 137 138 for (i = 0; i < NR_MM_COUNTERS; i++) { 139 if (current->rss_stat.count[i]) { 140 add_mm_counter(mm, i, current->rss_stat.count[i]); 141 current->rss_stat.count[i] = 0; 142 } 143 } 144 current->rss_stat.events = 0; 145 } 146 147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 148 { 149 struct task_struct *task = current; 150 151 if (likely(task->mm == mm)) 152 task->rss_stat.count[member] += val; 153 else 154 add_mm_counter(mm, member, val); 155 } 156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 158 159 /* sync counter once per 64 page faults */ 160 #define TASK_RSS_EVENTS_THRESH (64) 161 static void check_sync_rss_stat(struct task_struct *task) 162 { 163 if (unlikely(task != current)) 164 return; 165 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 166 sync_mm_rss(task->mm); 167 } 168 #else /* SPLIT_RSS_COUNTING */ 169 170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 172 173 static void check_sync_rss_stat(struct task_struct *task) 174 { 175 } 176 177 #endif /* SPLIT_RSS_COUNTING */ 178 179 #ifdef HAVE_GENERIC_MMU_GATHER 180 181 static int tlb_next_batch(struct mmu_gather *tlb) 182 { 183 struct mmu_gather_batch *batch; 184 185 batch = tlb->active; 186 if (batch->next) { 187 tlb->active = batch->next; 188 return 1; 189 } 190 191 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 192 return 0; 193 194 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 195 if (!batch) 196 return 0; 197 198 tlb->batch_count++; 199 batch->next = NULL; 200 batch->nr = 0; 201 batch->max = MAX_GATHER_BATCH; 202 203 tlb->active->next = batch; 204 tlb->active = batch; 205 206 return 1; 207 } 208 209 /* tlb_gather_mmu 210 * Called to initialize an (on-stack) mmu_gather structure for page-table 211 * tear-down from @mm. The @fullmm argument is used when @mm is without 212 * users and we're going to destroy the full address space (exit/execve). 213 */ 214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm) 215 { 216 tlb->mm = mm; 217 218 tlb->fullmm = fullmm; 219 tlb->need_flush_all = 0; 220 tlb->start = -1UL; 221 tlb->end = 0; 222 tlb->need_flush = 0; 223 tlb->local.next = NULL; 224 tlb->local.nr = 0; 225 tlb->local.max = ARRAY_SIZE(tlb->__pages); 226 tlb->active = &tlb->local; 227 tlb->batch_count = 0; 228 229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 230 tlb->batch = NULL; 231 #endif 232 } 233 234 void tlb_flush_mmu(struct mmu_gather *tlb) 235 { 236 struct mmu_gather_batch *batch; 237 238 if (!tlb->need_flush) 239 return; 240 tlb->need_flush = 0; 241 tlb_flush(tlb); 242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 243 tlb_table_flush(tlb); 244 #endif 245 246 for (batch = &tlb->local; batch; batch = batch->next) { 247 free_pages_and_swap_cache(batch->pages, batch->nr); 248 batch->nr = 0; 249 } 250 tlb->active = &tlb->local; 251 } 252 253 /* tlb_finish_mmu 254 * Called at the end of the shootdown operation to free up any resources 255 * that were required. 256 */ 257 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 258 { 259 struct mmu_gather_batch *batch, *next; 260 261 tlb->start = start; 262 tlb->end = end; 263 tlb_flush_mmu(tlb); 264 265 /* keep the page table cache within bounds */ 266 check_pgt_cache(); 267 268 for (batch = tlb->local.next; batch; batch = next) { 269 next = batch->next; 270 free_pages((unsigned long)batch, 0); 271 } 272 tlb->local.next = NULL; 273 } 274 275 /* __tlb_remove_page 276 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 277 * handling the additional races in SMP caused by other CPUs caching valid 278 * mappings in their TLBs. Returns the number of free page slots left. 279 * When out of page slots we must call tlb_flush_mmu(). 280 */ 281 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 282 { 283 struct mmu_gather_batch *batch; 284 285 VM_BUG_ON(!tlb->need_flush); 286 287 batch = tlb->active; 288 batch->pages[batch->nr++] = page; 289 if (batch->nr == batch->max) { 290 if (!tlb_next_batch(tlb)) 291 return 0; 292 batch = tlb->active; 293 } 294 VM_BUG_ON(batch->nr > batch->max); 295 296 return batch->max - batch->nr; 297 } 298 299 #endif /* HAVE_GENERIC_MMU_GATHER */ 300 301 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 302 303 /* 304 * See the comment near struct mmu_table_batch. 305 */ 306 307 static void tlb_remove_table_smp_sync(void *arg) 308 { 309 /* Simply deliver the interrupt */ 310 } 311 312 static void tlb_remove_table_one(void *table) 313 { 314 /* 315 * This isn't an RCU grace period and hence the page-tables cannot be 316 * assumed to be actually RCU-freed. 317 * 318 * It is however sufficient for software page-table walkers that rely on 319 * IRQ disabling. See the comment near struct mmu_table_batch. 320 */ 321 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 322 __tlb_remove_table(table); 323 } 324 325 static void tlb_remove_table_rcu(struct rcu_head *head) 326 { 327 struct mmu_table_batch *batch; 328 int i; 329 330 batch = container_of(head, struct mmu_table_batch, rcu); 331 332 for (i = 0; i < batch->nr; i++) 333 __tlb_remove_table(batch->tables[i]); 334 335 free_page((unsigned long)batch); 336 } 337 338 void tlb_table_flush(struct mmu_gather *tlb) 339 { 340 struct mmu_table_batch **batch = &tlb->batch; 341 342 if (*batch) { 343 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 344 *batch = NULL; 345 } 346 } 347 348 void tlb_remove_table(struct mmu_gather *tlb, void *table) 349 { 350 struct mmu_table_batch **batch = &tlb->batch; 351 352 tlb->need_flush = 1; 353 354 /* 355 * When there's less then two users of this mm there cannot be a 356 * concurrent page-table walk. 357 */ 358 if (atomic_read(&tlb->mm->mm_users) < 2) { 359 __tlb_remove_table(table); 360 return; 361 } 362 363 if (*batch == NULL) { 364 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 365 if (*batch == NULL) { 366 tlb_remove_table_one(table); 367 return; 368 } 369 (*batch)->nr = 0; 370 } 371 (*batch)->tables[(*batch)->nr++] = table; 372 if ((*batch)->nr == MAX_TABLE_BATCH) 373 tlb_table_flush(tlb); 374 } 375 376 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 377 378 /* 379 * If a p?d_bad entry is found while walking page tables, report 380 * the error, before resetting entry to p?d_none. Usually (but 381 * very seldom) called out from the p?d_none_or_clear_bad macros. 382 */ 383 384 void pgd_clear_bad(pgd_t *pgd) 385 { 386 pgd_ERROR(*pgd); 387 pgd_clear(pgd); 388 } 389 390 void pud_clear_bad(pud_t *pud) 391 { 392 pud_ERROR(*pud); 393 pud_clear(pud); 394 } 395 396 void pmd_clear_bad(pmd_t *pmd) 397 { 398 pmd_ERROR(*pmd); 399 pmd_clear(pmd); 400 } 401 402 /* 403 * Note: this doesn't free the actual pages themselves. That 404 * has been handled earlier when unmapping all the memory regions. 405 */ 406 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 407 unsigned long addr) 408 { 409 pgtable_t token = pmd_pgtable(*pmd); 410 pmd_clear(pmd); 411 pte_free_tlb(tlb, token, addr); 412 tlb->mm->nr_ptes--; 413 } 414 415 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 416 unsigned long addr, unsigned long end, 417 unsigned long floor, unsigned long ceiling) 418 { 419 pmd_t *pmd; 420 unsigned long next; 421 unsigned long start; 422 423 start = addr; 424 pmd = pmd_offset(pud, addr); 425 do { 426 next = pmd_addr_end(addr, end); 427 if (pmd_none_or_clear_bad(pmd)) 428 continue; 429 free_pte_range(tlb, pmd, addr); 430 } while (pmd++, addr = next, addr != end); 431 432 start &= PUD_MASK; 433 if (start < floor) 434 return; 435 if (ceiling) { 436 ceiling &= PUD_MASK; 437 if (!ceiling) 438 return; 439 } 440 if (end - 1 > ceiling - 1) 441 return; 442 443 pmd = pmd_offset(pud, start); 444 pud_clear(pud); 445 pmd_free_tlb(tlb, pmd, start); 446 } 447 448 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 449 unsigned long addr, unsigned long end, 450 unsigned long floor, unsigned long ceiling) 451 { 452 pud_t *pud; 453 unsigned long next; 454 unsigned long start; 455 456 start = addr; 457 pud = pud_offset(pgd, addr); 458 do { 459 next = pud_addr_end(addr, end); 460 if (pud_none_or_clear_bad(pud)) 461 continue; 462 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 463 } while (pud++, addr = next, addr != end); 464 465 start &= PGDIR_MASK; 466 if (start < floor) 467 return; 468 if (ceiling) { 469 ceiling &= PGDIR_MASK; 470 if (!ceiling) 471 return; 472 } 473 if (end - 1 > ceiling - 1) 474 return; 475 476 pud = pud_offset(pgd, start); 477 pgd_clear(pgd); 478 pud_free_tlb(tlb, pud, start); 479 } 480 481 /* 482 * This function frees user-level page tables of a process. 483 * 484 * Must be called with pagetable lock held. 485 */ 486 void free_pgd_range(struct mmu_gather *tlb, 487 unsigned long addr, unsigned long end, 488 unsigned long floor, unsigned long ceiling) 489 { 490 pgd_t *pgd; 491 unsigned long next; 492 493 /* 494 * The next few lines have given us lots of grief... 495 * 496 * Why are we testing PMD* at this top level? Because often 497 * there will be no work to do at all, and we'd prefer not to 498 * go all the way down to the bottom just to discover that. 499 * 500 * Why all these "- 1"s? Because 0 represents both the bottom 501 * of the address space and the top of it (using -1 for the 502 * top wouldn't help much: the masks would do the wrong thing). 503 * The rule is that addr 0 and floor 0 refer to the bottom of 504 * the address space, but end 0 and ceiling 0 refer to the top 505 * Comparisons need to use "end - 1" and "ceiling - 1" (though 506 * that end 0 case should be mythical). 507 * 508 * Wherever addr is brought up or ceiling brought down, we must 509 * be careful to reject "the opposite 0" before it confuses the 510 * subsequent tests. But what about where end is brought down 511 * by PMD_SIZE below? no, end can't go down to 0 there. 512 * 513 * Whereas we round start (addr) and ceiling down, by different 514 * masks at different levels, in order to test whether a table 515 * now has no other vmas using it, so can be freed, we don't 516 * bother to round floor or end up - the tests don't need that. 517 */ 518 519 addr &= PMD_MASK; 520 if (addr < floor) { 521 addr += PMD_SIZE; 522 if (!addr) 523 return; 524 } 525 if (ceiling) { 526 ceiling &= PMD_MASK; 527 if (!ceiling) 528 return; 529 } 530 if (end - 1 > ceiling - 1) 531 end -= PMD_SIZE; 532 if (addr > end - 1) 533 return; 534 535 pgd = pgd_offset(tlb->mm, addr); 536 do { 537 next = pgd_addr_end(addr, end); 538 if (pgd_none_or_clear_bad(pgd)) 539 continue; 540 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 541 } while (pgd++, addr = next, addr != end); 542 } 543 544 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 545 unsigned long floor, unsigned long ceiling) 546 { 547 while (vma) { 548 struct vm_area_struct *next = vma->vm_next; 549 unsigned long addr = vma->vm_start; 550 551 /* 552 * Hide vma from rmap and truncate_pagecache before freeing 553 * pgtables 554 */ 555 unlink_anon_vmas(vma); 556 unlink_file_vma(vma); 557 558 if (is_vm_hugetlb_page(vma)) { 559 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 560 floor, next? next->vm_start: ceiling); 561 } else { 562 /* 563 * Optimization: gather nearby vmas into one call down 564 */ 565 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 566 && !is_vm_hugetlb_page(next)) { 567 vma = next; 568 next = vma->vm_next; 569 unlink_anon_vmas(vma); 570 unlink_file_vma(vma); 571 } 572 free_pgd_range(tlb, addr, vma->vm_end, 573 floor, next? next->vm_start: ceiling); 574 } 575 vma = next; 576 } 577 } 578 579 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 580 pmd_t *pmd, unsigned long address) 581 { 582 pgtable_t new = pte_alloc_one(mm, address); 583 int wait_split_huge_page; 584 if (!new) 585 return -ENOMEM; 586 587 /* 588 * Ensure all pte setup (eg. pte page lock and page clearing) are 589 * visible before the pte is made visible to other CPUs by being 590 * put into page tables. 591 * 592 * The other side of the story is the pointer chasing in the page 593 * table walking code (when walking the page table without locking; 594 * ie. most of the time). Fortunately, these data accesses consist 595 * of a chain of data-dependent loads, meaning most CPUs (alpha 596 * being the notable exception) will already guarantee loads are 597 * seen in-order. See the alpha page table accessors for the 598 * smp_read_barrier_depends() barriers in page table walking code. 599 */ 600 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 601 602 spin_lock(&mm->page_table_lock); 603 wait_split_huge_page = 0; 604 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 605 mm->nr_ptes++; 606 pmd_populate(mm, pmd, new); 607 new = NULL; 608 } else if (unlikely(pmd_trans_splitting(*pmd))) 609 wait_split_huge_page = 1; 610 spin_unlock(&mm->page_table_lock); 611 if (new) 612 pte_free(mm, new); 613 if (wait_split_huge_page) 614 wait_split_huge_page(vma->anon_vma, pmd); 615 return 0; 616 } 617 618 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 619 { 620 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 621 if (!new) 622 return -ENOMEM; 623 624 smp_wmb(); /* See comment in __pte_alloc */ 625 626 spin_lock(&init_mm.page_table_lock); 627 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 628 pmd_populate_kernel(&init_mm, pmd, new); 629 new = NULL; 630 } else 631 VM_BUG_ON(pmd_trans_splitting(*pmd)); 632 spin_unlock(&init_mm.page_table_lock); 633 if (new) 634 pte_free_kernel(&init_mm, new); 635 return 0; 636 } 637 638 static inline void init_rss_vec(int *rss) 639 { 640 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 641 } 642 643 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 644 { 645 int i; 646 647 if (current->mm == mm) 648 sync_mm_rss(mm); 649 for (i = 0; i < NR_MM_COUNTERS; i++) 650 if (rss[i]) 651 add_mm_counter(mm, i, rss[i]); 652 } 653 654 /* 655 * This function is called to print an error when a bad pte 656 * is found. For example, we might have a PFN-mapped pte in 657 * a region that doesn't allow it. 658 * 659 * The calling function must still handle the error. 660 */ 661 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 662 pte_t pte, struct page *page) 663 { 664 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 665 pud_t *pud = pud_offset(pgd, addr); 666 pmd_t *pmd = pmd_offset(pud, addr); 667 struct address_space *mapping; 668 pgoff_t index; 669 static unsigned long resume; 670 static unsigned long nr_shown; 671 static unsigned long nr_unshown; 672 673 /* 674 * Allow a burst of 60 reports, then keep quiet for that minute; 675 * or allow a steady drip of one report per second. 676 */ 677 if (nr_shown == 60) { 678 if (time_before(jiffies, resume)) { 679 nr_unshown++; 680 return; 681 } 682 if (nr_unshown) { 683 printk(KERN_ALERT 684 "BUG: Bad page map: %lu messages suppressed\n", 685 nr_unshown); 686 nr_unshown = 0; 687 } 688 nr_shown = 0; 689 } 690 if (nr_shown++ == 0) 691 resume = jiffies + 60 * HZ; 692 693 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 694 index = linear_page_index(vma, addr); 695 696 printk(KERN_ALERT 697 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 698 current->comm, 699 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 700 if (page) 701 dump_page(page); 702 printk(KERN_ALERT 703 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 704 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 705 /* 706 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 707 */ 708 if (vma->vm_ops) 709 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 710 vma->vm_ops->fault); 711 if (vma->vm_file && vma->vm_file->f_op) 712 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 713 vma->vm_file->f_op->mmap); 714 dump_stack(); 715 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 716 } 717 718 static inline bool is_cow_mapping(vm_flags_t flags) 719 { 720 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 721 } 722 723 /* 724 * vm_normal_page -- This function gets the "struct page" associated with a pte. 725 * 726 * "Special" mappings do not wish to be associated with a "struct page" (either 727 * it doesn't exist, or it exists but they don't want to touch it). In this 728 * case, NULL is returned here. "Normal" mappings do have a struct page. 729 * 730 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 731 * pte bit, in which case this function is trivial. Secondly, an architecture 732 * may not have a spare pte bit, which requires a more complicated scheme, 733 * described below. 734 * 735 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 736 * special mapping (even if there are underlying and valid "struct pages"). 737 * COWed pages of a VM_PFNMAP are always normal. 738 * 739 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 740 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 741 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 742 * mapping will always honor the rule 743 * 744 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 745 * 746 * And for normal mappings this is false. 747 * 748 * This restricts such mappings to be a linear translation from virtual address 749 * to pfn. To get around this restriction, we allow arbitrary mappings so long 750 * as the vma is not a COW mapping; in that case, we know that all ptes are 751 * special (because none can have been COWed). 752 * 753 * 754 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 755 * 756 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 757 * page" backing, however the difference is that _all_ pages with a struct 758 * page (that is, those where pfn_valid is true) are refcounted and considered 759 * normal pages by the VM. The disadvantage is that pages are refcounted 760 * (which can be slower and simply not an option for some PFNMAP users). The 761 * advantage is that we don't have to follow the strict linearity rule of 762 * PFNMAP mappings in order to support COWable mappings. 763 * 764 */ 765 #ifdef __HAVE_ARCH_PTE_SPECIAL 766 # define HAVE_PTE_SPECIAL 1 767 #else 768 # define HAVE_PTE_SPECIAL 0 769 #endif 770 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 771 pte_t pte) 772 { 773 unsigned long pfn = pte_pfn(pte); 774 775 if (HAVE_PTE_SPECIAL) { 776 if (likely(!pte_special(pte))) 777 goto check_pfn; 778 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 779 return NULL; 780 if (!is_zero_pfn(pfn)) 781 print_bad_pte(vma, addr, pte, NULL); 782 return NULL; 783 } 784 785 /* !HAVE_PTE_SPECIAL case follows: */ 786 787 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 788 if (vma->vm_flags & VM_MIXEDMAP) { 789 if (!pfn_valid(pfn)) 790 return NULL; 791 goto out; 792 } else { 793 unsigned long off; 794 off = (addr - vma->vm_start) >> PAGE_SHIFT; 795 if (pfn == vma->vm_pgoff + off) 796 return NULL; 797 if (!is_cow_mapping(vma->vm_flags)) 798 return NULL; 799 } 800 } 801 802 if (is_zero_pfn(pfn)) 803 return NULL; 804 check_pfn: 805 if (unlikely(pfn > highest_memmap_pfn)) { 806 print_bad_pte(vma, addr, pte, NULL); 807 return NULL; 808 } 809 810 /* 811 * NOTE! We still have PageReserved() pages in the page tables. 812 * eg. VDSO mappings can cause them to exist. 813 */ 814 out: 815 return pfn_to_page(pfn); 816 } 817 818 /* 819 * copy one vm_area from one task to the other. Assumes the page tables 820 * already present in the new task to be cleared in the whole range 821 * covered by this vma. 822 */ 823 824 static inline unsigned long 825 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 826 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 827 unsigned long addr, int *rss) 828 { 829 unsigned long vm_flags = vma->vm_flags; 830 pte_t pte = *src_pte; 831 struct page *page; 832 833 /* pte contains position in swap or file, so copy. */ 834 if (unlikely(!pte_present(pte))) { 835 if (!pte_file(pte)) { 836 swp_entry_t entry = pte_to_swp_entry(pte); 837 838 if (swap_duplicate(entry) < 0) 839 return entry.val; 840 841 /* make sure dst_mm is on swapoff's mmlist. */ 842 if (unlikely(list_empty(&dst_mm->mmlist))) { 843 spin_lock(&mmlist_lock); 844 if (list_empty(&dst_mm->mmlist)) 845 list_add(&dst_mm->mmlist, 846 &src_mm->mmlist); 847 spin_unlock(&mmlist_lock); 848 } 849 if (likely(!non_swap_entry(entry))) 850 rss[MM_SWAPENTS]++; 851 else if (is_migration_entry(entry)) { 852 page = migration_entry_to_page(entry); 853 854 if (PageAnon(page)) 855 rss[MM_ANONPAGES]++; 856 else 857 rss[MM_FILEPAGES]++; 858 859 if (is_write_migration_entry(entry) && 860 is_cow_mapping(vm_flags)) { 861 /* 862 * COW mappings require pages in both 863 * parent and child to be set to read. 864 */ 865 make_migration_entry_read(&entry); 866 pte = swp_entry_to_pte(entry); 867 set_pte_at(src_mm, addr, src_pte, pte); 868 } 869 } 870 } 871 goto out_set_pte; 872 } 873 874 /* 875 * If it's a COW mapping, write protect it both 876 * in the parent and the child 877 */ 878 if (is_cow_mapping(vm_flags)) { 879 ptep_set_wrprotect(src_mm, addr, src_pte); 880 pte = pte_wrprotect(pte); 881 } 882 883 /* 884 * If it's a shared mapping, mark it clean in 885 * the child 886 */ 887 if (vm_flags & VM_SHARED) 888 pte = pte_mkclean(pte); 889 pte = pte_mkold(pte); 890 891 page = vm_normal_page(vma, addr, pte); 892 if (page) { 893 get_page(page); 894 page_dup_rmap(page); 895 if (PageAnon(page)) 896 rss[MM_ANONPAGES]++; 897 else 898 rss[MM_FILEPAGES]++; 899 } 900 901 out_set_pte: 902 set_pte_at(dst_mm, addr, dst_pte, pte); 903 return 0; 904 } 905 906 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 907 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 908 unsigned long addr, unsigned long end) 909 { 910 pte_t *orig_src_pte, *orig_dst_pte; 911 pte_t *src_pte, *dst_pte; 912 spinlock_t *src_ptl, *dst_ptl; 913 int progress = 0; 914 int rss[NR_MM_COUNTERS]; 915 swp_entry_t entry = (swp_entry_t){0}; 916 917 again: 918 init_rss_vec(rss); 919 920 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 921 if (!dst_pte) 922 return -ENOMEM; 923 src_pte = pte_offset_map(src_pmd, addr); 924 src_ptl = pte_lockptr(src_mm, src_pmd); 925 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 926 orig_src_pte = src_pte; 927 orig_dst_pte = dst_pte; 928 arch_enter_lazy_mmu_mode(); 929 930 do { 931 /* 932 * We are holding two locks at this point - either of them 933 * could generate latencies in another task on another CPU. 934 */ 935 if (progress >= 32) { 936 progress = 0; 937 if (need_resched() || 938 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 939 break; 940 } 941 if (pte_none(*src_pte)) { 942 progress++; 943 continue; 944 } 945 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 946 vma, addr, rss); 947 if (entry.val) 948 break; 949 progress += 8; 950 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 951 952 arch_leave_lazy_mmu_mode(); 953 spin_unlock(src_ptl); 954 pte_unmap(orig_src_pte); 955 add_mm_rss_vec(dst_mm, rss); 956 pte_unmap_unlock(orig_dst_pte, dst_ptl); 957 cond_resched(); 958 959 if (entry.val) { 960 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 961 return -ENOMEM; 962 progress = 0; 963 } 964 if (addr != end) 965 goto again; 966 return 0; 967 } 968 969 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 970 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 971 unsigned long addr, unsigned long end) 972 { 973 pmd_t *src_pmd, *dst_pmd; 974 unsigned long next; 975 976 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 977 if (!dst_pmd) 978 return -ENOMEM; 979 src_pmd = pmd_offset(src_pud, addr); 980 do { 981 next = pmd_addr_end(addr, end); 982 if (pmd_trans_huge(*src_pmd)) { 983 int err; 984 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 985 err = copy_huge_pmd(dst_mm, src_mm, 986 dst_pmd, src_pmd, addr, vma); 987 if (err == -ENOMEM) 988 return -ENOMEM; 989 if (!err) 990 continue; 991 /* fall through */ 992 } 993 if (pmd_none_or_clear_bad(src_pmd)) 994 continue; 995 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 996 vma, addr, next)) 997 return -ENOMEM; 998 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 999 return 0; 1000 } 1001 1002 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1003 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1004 unsigned long addr, unsigned long end) 1005 { 1006 pud_t *src_pud, *dst_pud; 1007 unsigned long next; 1008 1009 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 1010 if (!dst_pud) 1011 return -ENOMEM; 1012 src_pud = pud_offset(src_pgd, addr); 1013 do { 1014 next = pud_addr_end(addr, end); 1015 if (pud_none_or_clear_bad(src_pud)) 1016 continue; 1017 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1018 vma, addr, next)) 1019 return -ENOMEM; 1020 } while (dst_pud++, src_pud++, addr = next, addr != end); 1021 return 0; 1022 } 1023 1024 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1025 struct vm_area_struct *vma) 1026 { 1027 pgd_t *src_pgd, *dst_pgd; 1028 unsigned long next; 1029 unsigned long addr = vma->vm_start; 1030 unsigned long end = vma->vm_end; 1031 unsigned long mmun_start; /* For mmu_notifiers */ 1032 unsigned long mmun_end; /* For mmu_notifiers */ 1033 bool is_cow; 1034 int ret; 1035 1036 /* 1037 * Don't copy ptes where a page fault will fill them correctly. 1038 * Fork becomes much lighter when there are big shared or private 1039 * readonly mappings. The tradeoff is that copy_page_range is more 1040 * efficient than faulting. 1041 */ 1042 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1043 VM_PFNMAP | VM_MIXEDMAP))) { 1044 if (!vma->anon_vma) 1045 return 0; 1046 } 1047 1048 if (is_vm_hugetlb_page(vma)) 1049 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1050 1051 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1052 /* 1053 * We do not free on error cases below as remove_vma 1054 * gets called on error from higher level routine 1055 */ 1056 ret = track_pfn_copy(vma); 1057 if (ret) 1058 return ret; 1059 } 1060 1061 /* 1062 * We need to invalidate the secondary MMU mappings only when 1063 * there could be a permission downgrade on the ptes of the 1064 * parent mm. And a permission downgrade will only happen if 1065 * is_cow_mapping() returns true. 1066 */ 1067 is_cow = is_cow_mapping(vma->vm_flags); 1068 mmun_start = addr; 1069 mmun_end = end; 1070 if (is_cow) 1071 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1072 mmun_end); 1073 1074 ret = 0; 1075 dst_pgd = pgd_offset(dst_mm, addr); 1076 src_pgd = pgd_offset(src_mm, addr); 1077 do { 1078 next = pgd_addr_end(addr, end); 1079 if (pgd_none_or_clear_bad(src_pgd)) 1080 continue; 1081 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1082 vma, addr, next))) { 1083 ret = -ENOMEM; 1084 break; 1085 } 1086 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1087 1088 if (is_cow) 1089 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1090 return ret; 1091 } 1092 1093 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1094 struct vm_area_struct *vma, pmd_t *pmd, 1095 unsigned long addr, unsigned long end, 1096 struct zap_details *details) 1097 { 1098 struct mm_struct *mm = tlb->mm; 1099 int force_flush = 0; 1100 int rss[NR_MM_COUNTERS]; 1101 spinlock_t *ptl; 1102 pte_t *start_pte; 1103 pte_t *pte; 1104 1105 again: 1106 init_rss_vec(rss); 1107 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1108 pte = start_pte; 1109 arch_enter_lazy_mmu_mode(); 1110 do { 1111 pte_t ptent = *pte; 1112 if (pte_none(ptent)) { 1113 continue; 1114 } 1115 1116 if (pte_present(ptent)) { 1117 struct page *page; 1118 1119 page = vm_normal_page(vma, addr, ptent); 1120 if (unlikely(details) && page) { 1121 /* 1122 * unmap_shared_mapping_pages() wants to 1123 * invalidate cache without truncating: 1124 * unmap shared but keep private pages. 1125 */ 1126 if (details->check_mapping && 1127 details->check_mapping != page->mapping) 1128 continue; 1129 /* 1130 * Each page->index must be checked when 1131 * invalidating or truncating nonlinear. 1132 */ 1133 if (details->nonlinear_vma && 1134 (page->index < details->first_index || 1135 page->index > details->last_index)) 1136 continue; 1137 } 1138 ptent = ptep_get_and_clear_full(mm, addr, pte, 1139 tlb->fullmm); 1140 tlb_remove_tlb_entry(tlb, pte, addr); 1141 if (unlikely(!page)) 1142 continue; 1143 if (unlikely(details) && details->nonlinear_vma 1144 && linear_page_index(details->nonlinear_vma, 1145 addr) != page->index) 1146 set_pte_at(mm, addr, pte, 1147 pgoff_to_pte(page->index)); 1148 if (PageAnon(page)) 1149 rss[MM_ANONPAGES]--; 1150 else { 1151 if (pte_dirty(ptent)) 1152 set_page_dirty(page); 1153 if (pte_young(ptent) && 1154 likely(!VM_SequentialReadHint(vma))) 1155 mark_page_accessed(page); 1156 rss[MM_FILEPAGES]--; 1157 } 1158 page_remove_rmap(page); 1159 if (unlikely(page_mapcount(page) < 0)) 1160 print_bad_pte(vma, addr, ptent, page); 1161 force_flush = !__tlb_remove_page(tlb, page); 1162 if (force_flush) 1163 break; 1164 continue; 1165 } 1166 /* 1167 * If details->check_mapping, we leave swap entries; 1168 * if details->nonlinear_vma, we leave file entries. 1169 */ 1170 if (unlikely(details)) 1171 continue; 1172 if (pte_file(ptent)) { 1173 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1174 print_bad_pte(vma, addr, ptent, NULL); 1175 } else { 1176 swp_entry_t entry = pte_to_swp_entry(ptent); 1177 1178 if (!non_swap_entry(entry)) 1179 rss[MM_SWAPENTS]--; 1180 else if (is_migration_entry(entry)) { 1181 struct page *page; 1182 1183 page = migration_entry_to_page(entry); 1184 1185 if (PageAnon(page)) 1186 rss[MM_ANONPAGES]--; 1187 else 1188 rss[MM_FILEPAGES]--; 1189 } 1190 if (unlikely(!free_swap_and_cache(entry))) 1191 print_bad_pte(vma, addr, ptent, NULL); 1192 } 1193 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1194 } while (pte++, addr += PAGE_SIZE, addr != end); 1195 1196 add_mm_rss_vec(mm, rss); 1197 arch_leave_lazy_mmu_mode(); 1198 pte_unmap_unlock(start_pte, ptl); 1199 1200 /* 1201 * mmu_gather ran out of room to batch pages, we break out of 1202 * the PTE lock to avoid doing the potential expensive TLB invalidate 1203 * and page-free while holding it. 1204 */ 1205 if (force_flush) { 1206 force_flush = 0; 1207 1208 #ifdef HAVE_GENERIC_MMU_GATHER 1209 tlb->start = addr; 1210 tlb->end = end; 1211 #endif 1212 tlb_flush_mmu(tlb); 1213 if (addr != end) 1214 goto again; 1215 } 1216 1217 return addr; 1218 } 1219 1220 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1221 struct vm_area_struct *vma, pud_t *pud, 1222 unsigned long addr, unsigned long end, 1223 struct zap_details *details) 1224 { 1225 pmd_t *pmd; 1226 unsigned long next; 1227 1228 pmd = pmd_offset(pud, addr); 1229 do { 1230 next = pmd_addr_end(addr, end); 1231 if (pmd_trans_huge(*pmd)) { 1232 if (next - addr != HPAGE_PMD_SIZE) { 1233 #ifdef CONFIG_DEBUG_VM 1234 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1235 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1236 __func__, addr, end, 1237 vma->vm_start, 1238 vma->vm_end); 1239 BUG(); 1240 } 1241 #endif 1242 split_huge_page_pmd(vma, addr, pmd); 1243 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1244 goto next; 1245 /* fall through */ 1246 } 1247 /* 1248 * Here there can be other concurrent MADV_DONTNEED or 1249 * trans huge page faults running, and if the pmd is 1250 * none or trans huge it can change under us. This is 1251 * because MADV_DONTNEED holds the mmap_sem in read 1252 * mode. 1253 */ 1254 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1255 goto next; 1256 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1257 next: 1258 cond_resched(); 1259 } while (pmd++, addr = next, addr != end); 1260 1261 return addr; 1262 } 1263 1264 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1265 struct vm_area_struct *vma, pgd_t *pgd, 1266 unsigned long addr, unsigned long end, 1267 struct zap_details *details) 1268 { 1269 pud_t *pud; 1270 unsigned long next; 1271 1272 pud = pud_offset(pgd, addr); 1273 do { 1274 next = pud_addr_end(addr, end); 1275 if (pud_none_or_clear_bad(pud)) 1276 continue; 1277 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1278 } while (pud++, addr = next, addr != end); 1279 1280 return addr; 1281 } 1282 1283 static void unmap_page_range(struct mmu_gather *tlb, 1284 struct vm_area_struct *vma, 1285 unsigned long addr, unsigned long end, 1286 struct zap_details *details) 1287 { 1288 pgd_t *pgd; 1289 unsigned long next; 1290 1291 if (details && !details->check_mapping && !details->nonlinear_vma) 1292 details = NULL; 1293 1294 BUG_ON(addr >= end); 1295 mem_cgroup_uncharge_start(); 1296 tlb_start_vma(tlb, vma); 1297 pgd = pgd_offset(vma->vm_mm, addr); 1298 do { 1299 next = pgd_addr_end(addr, end); 1300 if (pgd_none_or_clear_bad(pgd)) 1301 continue; 1302 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1303 } while (pgd++, addr = next, addr != end); 1304 tlb_end_vma(tlb, vma); 1305 mem_cgroup_uncharge_end(); 1306 } 1307 1308 1309 static void unmap_single_vma(struct mmu_gather *tlb, 1310 struct vm_area_struct *vma, unsigned long start_addr, 1311 unsigned long end_addr, 1312 struct zap_details *details) 1313 { 1314 unsigned long start = max(vma->vm_start, start_addr); 1315 unsigned long end; 1316 1317 if (start >= vma->vm_end) 1318 return; 1319 end = min(vma->vm_end, end_addr); 1320 if (end <= vma->vm_start) 1321 return; 1322 1323 if (vma->vm_file) 1324 uprobe_munmap(vma, start, end); 1325 1326 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1327 untrack_pfn(vma, 0, 0); 1328 1329 if (start != end) { 1330 if (unlikely(is_vm_hugetlb_page(vma))) { 1331 /* 1332 * It is undesirable to test vma->vm_file as it 1333 * should be non-null for valid hugetlb area. 1334 * However, vm_file will be NULL in the error 1335 * cleanup path of do_mmap_pgoff. When 1336 * hugetlbfs ->mmap method fails, 1337 * do_mmap_pgoff() nullifies vma->vm_file 1338 * before calling this function to clean up. 1339 * Since no pte has actually been setup, it is 1340 * safe to do nothing in this case. 1341 */ 1342 if (vma->vm_file) { 1343 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1344 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1345 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1346 } 1347 } else 1348 unmap_page_range(tlb, vma, start, end, details); 1349 } 1350 } 1351 1352 /** 1353 * unmap_vmas - unmap a range of memory covered by a list of vma's 1354 * @tlb: address of the caller's struct mmu_gather 1355 * @vma: the starting vma 1356 * @start_addr: virtual address at which to start unmapping 1357 * @end_addr: virtual address at which to end unmapping 1358 * 1359 * Unmap all pages in the vma list. 1360 * 1361 * Only addresses between `start' and `end' will be unmapped. 1362 * 1363 * The VMA list must be sorted in ascending virtual address order. 1364 * 1365 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1366 * range after unmap_vmas() returns. So the only responsibility here is to 1367 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1368 * drops the lock and schedules. 1369 */ 1370 void unmap_vmas(struct mmu_gather *tlb, 1371 struct vm_area_struct *vma, unsigned long start_addr, 1372 unsigned long end_addr) 1373 { 1374 struct mm_struct *mm = vma->vm_mm; 1375 1376 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1377 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1378 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1379 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1380 } 1381 1382 /** 1383 * zap_page_range - remove user pages in a given range 1384 * @vma: vm_area_struct holding the applicable pages 1385 * @start: starting address of pages to zap 1386 * @size: number of bytes to zap 1387 * @details: details of nonlinear truncation or shared cache invalidation 1388 * 1389 * Caller must protect the VMA list 1390 */ 1391 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1392 unsigned long size, struct zap_details *details) 1393 { 1394 struct mm_struct *mm = vma->vm_mm; 1395 struct mmu_gather tlb; 1396 unsigned long end = start + size; 1397 1398 lru_add_drain(); 1399 tlb_gather_mmu(&tlb, mm, 0); 1400 update_hiwater_rss(mm); 1401 mmu_notifier_invalidate_range_start(mm, start, end); 1402 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1403 unmap_single_vma(&tlb, vma, start, end, details); 1404 mmu_notifier_invalidate_range_end(mm, start, end); 1405 tlb_finish_mmu(&tlb, start, end); 1406 } 1407 1408 /** 1409 * zap_page_range_single - remove user pages in a given range 1410 * @vma: vm_area_struct holding the applicable pages 1411 * @address: starting address of pages to zap 1412 * @size: number of bytes to zap 1413 * @details: details of nonlinear truncation or shared cache invalidation 1414 * 1415 * The range must fit into one VMA. 1416 */ 1417 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1418 unsigned long size, struct zap_details *details) 1419 { 1420 struct mm_struct *mm = vma->vm_mm; 1421 struct mmu_gather tlb; 1422 unsigned long end = address + size; 1423 1424 lru_add_drain(); 1425 tlb_gather_mmu(&tlb, mm, 0); 1426 update_hiwater_rss(mm); 1427 mmu_notifier_invalidate_range_start(mm, address, end); 1428 unmap_single_vma(&tlb, vma, address, end, details); 1429 mmu_notifier_invalidate_range_end(mm, address, end); 1430 tlb_finish_mmu(&tlb, address, end); 1431 } 1432 1433 /** 1434 * zap_vma_ptes - remove ptes mapping the vma 1435 * @vma: vm_area_struct holding ptes to be zapped 1436 * @address: starting address of pages to zap 1437 * @size: number of bytes to zap 1438 * 1439 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1440 * 1441 * The entire address range must be fully contained within the vma. 1442 * 1443 * Returns 0 if successful. 1444 */ 1445 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1446 unsigned long size) 1447 { 1448 if (address < vma->vm_start || address + size > vma->vm_end || 1449 !(vma->vm_flags & VM_PFNMAP)) 1450 return -1; 1451 zap_page_range_single(vma, address, size, NULL); 1452 return 0; 1453 } 1454 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1455 1456 /** 1457 * follow_page_mask - look up a page descriptor from a user-virtual address 1458 * @vma: vm_area_struct mapping @address 1459 * @address: virtual address to look up 1460 * @flags: flags modifying lookup behaviour 1461 * @page_mask: on output, *page_mask is set according to the size of the page 1462 * 1463 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1464 * 1465 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1466 * an error pointer if there is a mapping to something not represented 1467 * by a page descriptor (see also vm_normal_page()). 1468 */ 1469 struct page *follow_page_mask(struct vm_area_struct *vma, 1470 unsigned long address, unsigned int flags, 1471 unsigned int *page_mask) 1472 { 1473 pgd_t *pgd; 1474 pud_t *pud; 1475 pmd_t *pmd; 1476 pte_t *ptep, pte; 1477 spinlock_t *ptl; 1478 struct page *page; 1479 struct mm_struct *mm = vma->vm_mm; 1480 1481 *page_mask = 0; 1482 1483 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1484 if (!IS_ERR(page)) { 1485 BUG_ON(flags & FOLL_GET); 1486 goto out; 1487 } 1488 1489 page = NULL; 1490 pgd = pgd_offset(mm, address); 1491 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1492 goto no_page_table; 1493 1494 pud = pud_offset(pgd, address); 1495 if (pud_none(*pud)) 1496 goto no_page_table; 1497 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1498 BUG_ON(flags & FOLL_GET); 1499 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1500 goto out; 1501 } 1502 if (unlikely(pud_bad(*pud))) 1503 goto no_page_table; 1504 1505 pmd = pmd_offset(pud, address); 1506 if (pmd_none(*pmd)) 1507 goto no_page_table; 1508 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1509 BUG_ON(flags & FOLL_GET); 1510 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1511 goto out; 1512 } 1513 if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) 1514 goto no_page_table; 1515 if (pmd_trans_huge(*pmd)) { 1516 if (flags & FOLL_SPLIT) { 1517 split_huge_page_pmd(vma, address, pmd); 1518 goto split_fallthrough; 1519 } 1520 spin_lock(&mm->page_table_lock); 1521 if (likely(pmd_trans_huge(*pmd))) { 1522 if (unlikely(pmd_trans_splitting(*pmd))) { 1523 spin_unlock(&mm->page_table_lock); 1524 wait_split_huge_page(vma->anon_vma, pmd); 1525 } else { 1526 page = follow_trans_huge_pmd(vma, address, 1527 pmd, flags); 1528 spin_unlock(&mm->page_table_lock); 1529 *page_mask = HPAGE_PMD_NR - 1; 1530 goto out; 1531 } 1532 } else 1533 spin_unlock(&mm->page_table_lock); 1534 /* fall through */ 1535 } 1536 split_fallthrough: 1537 if (unlikely(pmd_bad(*pmd))) 1538 goto no_page_table; 1539 1540 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1541 1542 pte = *ptep; 1543 if (!pte_present(pte)) { 1544 swp_entry_t entry; 1545 /* 1546 * KSM's break_ksm() relies upon recognizing a ksm page 1547 * even while it is being migrated, so for that case we 1548 * need migration_entry_wait(). 1549 */ 1550 if (likely(!(flags & FOLL_MIGRATION))) 1551 goto no_page; 1552 if (pte_none(pte) || pte_file(pte)) 1553 goto no_page; 1554 entry = pte_to_swp_entry(pte); 1555 if (!is_migration_entry(entry)) 1556 goto no_page; 1557 pte_unmap_unlock(ptep, ptl); 1558 migration_entry_wait(mm, pmd, address); 1559 goto split_fallthrough; 1560 } 1561 if ((flags & FOLL_NUMA) && pte_numa(pte)) 1562 goto no_page; 1563 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1564 goto unlock; 1565 1566 page = vm_normal_page(vma, address, pte); 1567 if (unlikely(!page)) { 1568 if ((flags & FOLL_DUMP) || 1569 !is_zero_pfn(pte_pfn(pte))) 1570 goto bad_page; 1571 page = pte_page(pte); 1572 } 1573 1574 if (flags & FOLL_GET) 1575 get_page_foll(page); 1576 if (flags & FOLL_TOUCH) { 1577 if ((flags & FOLL_WRITE) && 1578 !pte_dirty(pte) && !PageDirty(page)) 1579 set_page_dirty(page); 1580 /* 1581 * pte_mkyoung() would be more correct here, but atomic care 1582 * is needed to avoid losing the dirty bit: it is easier to use 1583 * mark_page_accessed(). 1584 */ 1585 mark_page_accessed(page); 1586 } 1587 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1588 /* 1589 * The preliminary mapping check is mainly to avoid the 1590 * pointless overhead of lock_page on the ZERO_PAGE 1591 * which might bounce very badly if there is contention. 1592 * 1593 * If the page is already locked, we don't need to 1594 * handle it now - vmscan will handle it later if and 1595 * when it attempts to reclaim the page. 1596 */ 1597 if (page->mapping && trylock_page(page)) { 1598 lru_add_drain(); /* push cached pages to LRU */ 1599 /* 1600 * Because we lock page here, and migration is 1601 * blocked by the pte's page reference, and we 1602 * know the page is still mapped, we don't even 1603 * need to check for file-cache page truncation. 1604 */ 1605 mlock_vma_page(page); 1606 unlock_page(page); 1607 } 1608 } 1609 unlock: 1610 pte_unmap_unlock(ptep, ptl); 1611 out: 1612 return page; 1613 1614 bad_page: 1615 pte_unmap_unlock(ptep, ptl); 1616 return ERR_PTR(-EFAULT); 1617 1618 no_page: 1619 pte_unmap_unlock(ptep, ptl); 1620 if (!pte_none(pte)) 1621 return page; 1622 1623 no_page_table: 1624 /* 1625 * When core dumping an enormous anonymous area that nobody 1626 * has touched so far, we don't want to allocate unnecessary pages or 1627 * page tables. Return error instead of NULL to skip handle_mm_fault, 1628 * then get_dump_page() will return NULL to leave a hole in the dump. 1629 * But we can only make this optimization where a hole would surely 1630 * be zero-filled if handle_mm_fault() actually did handle it. 1631 */ 1632 if ((flags & FOLL_DUMP) && 1633 (!vma->vm_ops || !vma->vm_ops->fault)) 1634 return ERR_PTR(-EFAULT); 1635 return page; 1636 } 1637 1638 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1639 { 1640 return stack_guard_page_start(vma, addr) || 1641 stack_guard_page_end(vma, addr+PAGE_SIZE); 1642 } 1643 1644 /** 1645 * __get_user_pages() - pin user pages in memory 1646 * @tsk: task_struct of target task 1647 * @mm: mm_struct of target mm 1648 * @start: starting user address 1649 * @nr_pages: number of pages from start to pin 1650 * @gup_flags: flags modifying pin behaviour 1651 * @pages: array that receives pointers to the pages pinned. 1652 * Should be at least nr_pages long. Or NULL, if caller 1653 * only intends to ensure the pages are faulted in. 1654 * @vmas: array of pointers to vmas corresponding to each page. 1655 * Or NULL if the caller does not require them. 1656 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1657 * 1658 * Returns number of pages pinned. This may be fewer than the number 1659 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1660 * were pinned, returns -errno. Each page returned must be released 1661 * with a put_page() call when it is finished with. vmas will only 1662 * remain valid while mmap_sem is held. 1663 * 1664 * Must be called with mmap_sem held for read or write. 1665 * 1666 * __get_user_pages walks a process's page tables and takes a reference to 1667 * each struct page that each user address corresponds to at a given 1668 * instant. That is, it takes the page that would be accessed if a user 1669 * thread accesses the given user virtual address at that instant. 1670 * 1671 * This does not guarantee that the page exists in the user mappings when 1672 * __get_user_pages returns, and there may even be a completely different 1673 * page there in some cases (eg. if mmapped pagecache has been invalidated 1674 * and subsequently re faulted). However it does guarantee that the page 1675 * won't be freed completely. And mostly callers simply care that the page 1676 * contains data that was valid *at some point in time*. Typically, an IO 1677 * or similar operation cannot guarantee anything stronger anyway because 1678 * locks can't be held over the syscall boundary. 1679 * 1680 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1681 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1682 * appropriate) must be called after the page is finished with, and 1683 * before put_page is called. 1684 * 1685 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1686 * or mmap_sem contention, and if waiting is needed to pin all pages, 1687 * *@nonblocking will be set to 0. 1688 * 1689 * In most cases, get_user_pages or get_user_pages_fast should be used 1690 * instead of __get_user_pages. __get_user_pages should be used only if 1691 * you need some special @gup_flags. 1692 */ 1693 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1694 unsigned long start, unsigned long nr_pages, 1695 unsigned int gup_flags, struct page **pages, 1696 struct vm_area_struct **vmas, int *nonblocking) 1697 { 1698 long i; 1699 unsigned long vm_flags; 1700 unsigned int page_mask; 1701 1702 if (!nr_pages) 1703 return 0; 1704 1705 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1706 1707 /* 1708 * Require read or write permissions. 1709 * If FOLL_FORCE is set, we only require the "MAY" flags. 1710 */ 1711 vm_flags = (gup_flags & FOLL_WRITE) ? 1712 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1713 vm_flags &= (gup_flags & FOLL_FORCE) ? 1714 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1715 1716 /* 1717 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault 1718 * would be called on PROT_NONE ranges. We must never invoke 1719 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting 1720 * page faults would unprotect the PROT_NONE ranges if 1721 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd 1722 * bitflag. So to avoid that, don't set FOLL_NUMA if 1723 * FOLL_FORCE is set. 1724 */ 1725 if (!(gup_flags & FOLL_FORCE)) 1726 gup_flags |= FOLL_NUMA; 1727 1728 i = 0; 1729 1730 do { 1731 struct vm_area_struct *vma; 1732 1733 vma = find_extend_vma(mm, start); 1734 if (!vma && in_gate_area(mm, start)) { 1735 unsigned long pg = start & PAGE_MASK; 1736 pgd_t *pgd; 1737 pud_t *pud; 1738 pmd_t *pmd; 1739 pte_t *pte; 1740 1741 /* user gate pages are read-only */ 1742 if (gup_flags & FOLL_WRITE) 1743 return i ? : -EFAULT; 1744 if (pg > TASK_SIZE) 1745 pgd = pgd_offset_k(pg); 1746 else 1747 pgd = pgd_offset_gate(mm, pg); 1748 BUG_ON(pgd_none(*pgd)); 1749 pud = pud_offset(pgd, pg); 1750 BUG_ON(pud_none(*pud)); 1751 pmd = pmd_offset(pud, pg); 1752 if (pmd_none(*pmd)) 1753 return i ? : -EFAULT; 1754 VM_BUG_ON(pmd_trans_huge(*pmd)); 1755 pte = pte_offset_map(pmd, pg); 1756 if (pte_none(*pte)) { 1757 pte_unmap(pte); 1758 return i ? : -EFAULT; 1759 } 1760 vma = get_gate_vma(mm); 1761 if (pages) { 1762 struct page *page; 1763 1764 page = vm_normal_page(vma, start, *pte); 1765 if (!page) { 1766 if (!(gup_flags & FOLL_DUMP) && 1767 is_zero_pfn(pte_pfn(*pte))) 1768 page = pte_page(*pte); 1769 else { 1770 pte_unmap(pte); 1771 return i ? : -EFAULT; 1772 } 1773 } 1774 pages[i] = page; 1775 get_page(page); 1776 } 1777 pte_unmap(pte); 1778 page_mask = 0; 1779 goto next_page; 1780 } 1781 1782 if (!vma || 1783 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1784 !(vm_flags & vma->vm_flags)) 1785 return i ? : -EFAULT; 1786 1787 if (is_vm_hugetlb_page(vma)) { 1788 i = follow_hugetlb_page(mm, vma, pages, vmas, 1789 &start, &nr_pages, i, gup_flags); 1790 continue; 1791 } 1792 1793 do { 1794 struct page *page; 1795 unsigned int foll_flags = gup_flags; 1796 unsigned int page_increm; 1797 1798 /* 1799 * If we have a pending SIGKILL, don't keep faulting 1800 * pages and potentially allocating memory. 1801 */ 1802 if (unlikely(fatal_signal_pending(current))) 1803 return i ? i : -ERESTARTSYS; 1804 1805 cond_resched(); 1806 while (!(page = follow_page_mask(vma, start, 1807 foll_flags, &page_mask))) { 1808 int ret; 1809 unsigned int fault_flags = 0; 1810 1811 /* For mlock, just skip the stack guard page. */ 1812 if (foll_flags & FOLL_MLOCK) { 1813 if (stack_guard_page(vma, start)) 1814 goto next_page; 1815 } 1816 if (foll_flags & FOLL_WRITE) 1817 fault_flags |= FAULT_FLAG_WRITE; 1818 if (nonblocking) 1819 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1820 if (foll_flags & FOLL_NOWAIT) 1821 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1822 1823 ret = handle_mm_fault(mm, vma, start, 1824 fault_flags); 1825 1826 if (ret & VM_FAULT_ERROR) { 1827 if (ret & VM_FAULT_OOM) 1828 return i ? i : -ENOMEM; 1829 if (ret & (VM_FAULT_HWPOISON | 1830 VM_FAULT_HWPOISON_LARGE)) { 1831 if (i) 1832 return i; 1833 else if (gup_flags & FOLL_HWPOISON) 1834 return -EHWPOISON; 1835 else 1836 return -EFAULT; 1837 } 1838 if (ret & VM_FAULT_SIGBUS) 1839 return i ? i : -EFAULT; 1840 BUG(); 1841 } 1842 1843 if (tsk) { 1844 if (ret & VM_FAULT_MAJOR) 1845 tsk->maj_flt++; 1846 else 1847 tsk->min_flt++; 1848 } 1849 1850 if (ret & VM_FAULT_RETRY) { 1851 if (nonblocking) 1852 *nonblocking = 0; 1853 return i; 1854 } 1855 1856 /* 1857 * The VM_FAULT_WRITE bit tells us that 1858 * do_wp_page has broken COW when necessary, 1859 * even if maybe_mkwrite decided not to set 1860 * pte_write. We can thus safely do subsequent 1861 * page lookups as if they were reads. But only 1862 * do so when looping for pte_write is futile: 1863 * in some cases userspace may also be wanting 1864 * to write to the gotten user page, which a 1865 * read fault here might prevent (a readonly 1866 * page might get reCOWed by userspace write). 1867 */ 1868 if ((ret & VM_FAULT_WRITE) && 1869 !(vma->vm_flags & VM_WRITE)) 1870 foll_flags &= ~FOLL_WRITE; 1871 1872 cond_resched(); 1873 } 1874 if (IS_ERR(page)) 1875 return i ? i : PTR_ERR(page); 1876 if (pages) { 1877 pages[i] = page; 1878 1879 flush_anon_page(vma, page, start); 1880 flush_dcache_page(page); 1881 page_mask = 0; 1882 } 1883 next_page: 1884 if (vmas) { 1885 vmas[i] = vma; 1886 page_mask = 0; 1887 } 1888 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 1889 if (page_increm > nr_pages) 1890 page_increm = nr_pages; 1891 i += page_increm; 1892 start += page_increm * PAGE_SIZE; 1893 nr_pages -= page_increm; 1894 } while (nr_pages && start < vma->vm_end); 1895 } while (nr_pages); 1896 return i; 1897 } 1898 EXPORT_SYMBOL(__get_user_pages); 1899 1900 /* 1901 * fixup_user_fault() - manually resolve a user page fault 1902 * @tsk: the task_struct to use for page fault accounting, or 1903 * NULL if faults are not to be recorded. 1904 * @mm: mm_struct of target mm 1905 * @address: user address 1906 * @fault_flags:flags to pass down to handle_mm_fault() 1907 * 1908 * This is meant to be called in the specific scenario where for locking reasons 1909 * we try to access user memory in atomic context (within a pagefault_disable() 1910 * section), this returns -EFAULT, and we want to resolve the user fault before 1911 * trying again. 1912 * 1913 * Typically this is meant to be used by the futex code. 1914 * 1915 * The main difference with get_user_pages() is that this function will 1916 * unconditionally call handle_mm_fault() which will in turn perform all the 1917 * necessary SW fixup of the dirty and young bits in the PTE, while 1918 * handle_mm_fault() only guarantees to update these in the struct page. 1919 * 1920 * This is important for some architectures where those bits also gate the 1921 * access permission to the page because they are maintained in software. On 1922 * such architectures, gup() will not be enough to make a subsequent access 1923 * succeed. 1924 * 1925 * This should be called with the mm_sem held for read. 1926 */ 1927 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1928 unsigned long address, unsigned int fault_flags) 1929 { 1930 struct vm_area_struct *vma; 1931 int ret; 1932 1933 vma = find_extend_vma(mm, address); 1934 if (!vma || address < vma->vm_start) 1935 return -EFAULT; 1936 1937 ret = handle_mm_fault(mm, vma, address, fault_flags); 1938 if (ret & VM_FAULT_ERROR) { 1939 if (ret & VM_FAULT_OOM) 1940 return -ENOMEM; 1941 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1942 return -EHWPOISON; 1943 if (ret & VM_FAULT_SIGBUS) 1944 return -EFAULT; 1945 BUG(); 1946 } 1947 if (tsk) { 1948 if (ret & VM_FAULT_MAJOR) 1949 tsk->maj_flt++; 1950 else 1951 tsk->min_flt++; 1952 } 1953 return 0; 1954 } 1955 1956 /* 1957 * get_user_pages() - pin user pages in memory 1958 * @tsk: the task_struct to use for page fault accounting, or 1959 * NULL if faults are not to be recorded. 1960 * @mm: mm_struct of target mm 1961 * @start: starting user address 1962 * @nr_pages: number of pages from start to pin 1963 * @write: whether pages will be written to by the caller 1964 * @force: whether to force write access even if user mapping is 1965 * readonly. This will result in the page being COWed even 1966 * in MAP_SHARED mappings. You do not want this. 1967 * @pages: array that receives pointers to the pages pinned. 1968 * Should be at least nr_pages long. Or NULL, if caller 1969 * only intends to ensure the pages are faulted in. 1970 * @vmas: array of pointers to vmas corresponding to each page. 1971 * Or NULL if the caller does not require them. 1972 * 1973 * Returns number of pages pinned. This may be fewer than the number 1974 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1975 * were pinned, returns -errno. Each page returned must be released 1976 * with a put_page() call when it is finished with. vmas will only 1977 * remain valid while mmap_sem is held. 1978 * 1979 * Must be called with mmap_sem held for read or write. 1980 * 1981 * get_user_pages walks a process's page tables and takes a reference to 1982 * each struct page that each user address corresponds to at a given 1983 * instant. That is, it takes the page that would be accessed if a user 1984 * thread accesses the given user virtual address at that instant. 1985 * 1986 * This does not guarantee that the page exists in the user mappings when 1987 * get_user_pages returns, and there may even be a completely different 1988 * page there in some cases (eg. if mmapped pagecache has been invalidated 1989 * and subsequently re faulted). However it does guarantee that the page 1990 * won't be freed completely. And mostly callers simply care that the page 1991 * contains data that was valid *at some point in time*. Typically, an IO 1992 * or similar operation cannot guarantee anything stronger anyway because 1993 * locks can't be held over the syscall boundary. 1994 * 1995 * If write=0, the page must not be written to. If the page is written to, 1996 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1997 * after the page is finished with, and before put_page is called. 1998 * 1999 * get_user_pages is typically used for fewer-copy IO operations, to get a 2000 * handle on the memory by some means other than accesses via the user virtual 2001 * addresses. The pages may be submitted for DMA to devices or accessed via 2002 * their kernel linear mapping (via the kmap APIs). Care should be taken to 2003 * use the correct cache flushing APIs. 2004 * 2005 * See also get_user_pages_fast, for performance critical applications. 2006 */ 2007 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 2008 unsigned long start, unsigned long nr_pages, int write, 2009 int force, struct page **pages, struct vm_area_struct **vmas) 2010 { 2011 int flags = FOLL_TOUCH; 2012 2013 if (pages) 2014 flags |= FOLL_GET; 2015 if (write) 2016 flags |= FOLL_WRITE; 2017 if (force) 2018 flags |= FOLL_FORCE; 2019 2020 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 2021 NULL); 2022 } 2023 EXPORT_SYMBOL(get_user_pages); 2024 2025 /** 2026 * get_dump_page() - pin user page in memory while writing it to core dump 2027 * @addr: user address 2028 * 2029 * Returns struct page pointer of user page pinned for dump, 2030 * to be freed afterwards by page_cache_release() or put_page(). 2031 * 2032 * Returns NULL on any kind of failure - a hole must then be inserted into 2033 * the corefile, to preserve alignment with its headers; and also returns 2034 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2035 * allowing a hole to be left in the corefile to save diskspace. 2036 * 2037 * Called without mmap_sem, but after all other threads have been killed. 2038 */ 2039 #ifdef CONFIG_ELF_CORE 2040 struct page *get_dump_page(unsigned long addr) 2041 { 2042 struct vm_area_struct *vma; 2043 struct page *page; 2044 2045 if (__get_user_pages(current, current->mm, addr, 1, 2046 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 2047 NULL) < 1) 2048 return NULL; 2049 flush_cache_page(vma, addr, page_to_pfn(page)); 2050 return page; 2051 } 2052 #endif /* CONFIG_ELF_CORE */ 2053 2054 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2055 spinlock_t **ptl) 2056 { 2057 pgd_t * pgd = pgd_offset(mm, addr); 2058 pud_t * pud = pud_alloc(mm, pgd, addr); 2059 if (pud) { 2060 pmd_t * pmd = pmd_alloc(mm, pud, addr); 2061 if (pmd) { 2062 VM_BUG_ON(pmd_trans_huge(*pmd)); 2063 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2064 } 2065 } 2066 return NULL; 2067 } 2068 2069 /* 2070 * This is the old fallback for page remapping. 2071 * 2072 * For historical reasons, it only allows reserved pages. Only 2073 * old drivers should use this, and they needed to mark their 2074 * pages reserved for the old functions anyway. 2075 */ 2076 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2077 struct page *page, pgprot_t prot) 2078 { 2079 struct mm_struct *mm = vma->vm_mm; 2080 int retval; 2081 pte_t *pte; 2082 spinlock_t *ptl; 2083 2084 retval = -EINVAL; 2085 if (PageAnon(page)) 2086 goto out; 2087 retval = -ENOMEM; 2088 flush_dcache_page(page); 2089 pte = get_locked_pte(mm, addr, &ptl); 2090 if (!pte) 2091 goto out; 2092 retval = -EBUSY; 2093 if (!pte_none(*pte)) 2094 goto out_unlock; 2095 2096 /* Ok, finally just insert the thing.. */ 2097 get_page(page); 2098 inc_mm_counter_fast(mm, MM_FILEPAGES); 2099 page_add_file_rmap(page); 2100 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2101 2102 retval = 0; 2103 pte_unmap_unlock(pte, ptl); 2104 return retval; 2105 out_unlock: 2106 pte_unmap_unlock(pte, ptl); 2107 out: 2108 return retval; 2109 } 2110 2111 /** 2112 * vm_insert_page - insert single page into user vma 2113 * @vma: user vma to map to 2114 * @addr: target user address of this page 2115 * @page: source kernel page 2116 * 2117 * This allows drivers to insert individual pages they've allocated 2118 * into a user vma. 2119 * 2120 * The page has to be a nice clean _individual_ kernel allocation. 2121 * If you allocate a compound page, you need to have marked it as 2122 * such (__GFP_COMP), or manually just split the page up yourself 2123 * (see split_page()). 2124 * 2125 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2126 * took an arbitrary page protection parameter. This doesn't allow 2127 * that. Your vma protection will have to be set up correctly, which 2128 * means that if you want a shared writable mapping, you'd better 2129 * ask for a shared writable mapping! 2130 * 2131 * The page does not need to be reserved. 2132 * 2133 * Usually this function is called from f_op->mmap() handler 2134 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 2135 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2136 * function from other places, for example from page-fault handler. 2137 */ 2138 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2139 struct page *page) 2140 { 2141 if (addr < vma->vm_start || addr >= vma->vm_end) 2142 return -EFAULT; 2143 if (!page_count(page)) 2144 return -EINVAL; 2145 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2146 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 2147 BUG_ON(vma->vm_flags & VM_PFNMAP); 2148 vma->vm_flags |= VM_MIXEDMAP; 2149 } 2150 return insert_page(vma, addr, page, vma->vm_page_prot); 2151 } 2152 EXPORT_SYMBOL(vm_insert_page); 2153 2154 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2155 unsigned long pfn, pgprot_t prot) 2156 { 2157 struct mm_struct *mm = vma->vm_mm; 2158 int retval; 2159 pte_t *pte, entry; 2160 spinlock_t *ptl; 2161 2162 retval = -ENOMEM; 2163 pte = get_locked_pte(mm, addr, &ptl); 2164 if (!pte) 2165 goto out; 2166 retval = -EBUSY; 2167 if (!pte_none(*pte)) 2168 goto out_unlock; 2169 2170 /* Ok, finally just insert the thing.. */ 2171 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2172 set_pte_at(mm, addr, pte, entry); 2173 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2174 2175 retval = 0; 2176 out_unlock: 2177 pte_unmap_unlock(pte, ptl); 2178 out: 2179 return retval; 2180 } 2181 2182 /** 2183 * vm_insert_pfn - insert single pfn into user vma 2184 * @vma: user vma to map to 2185 * @addr: target user address of this page 2186 * @pfn: source kernel pfn 2187 * 2188 * Similar to vm_insert_page, this allows drivers to insert individual pages 2189 * they've allocated into a user vma. Same comments apply. 2190 * 2191 * This function should only be called from a vm_ops->fault handler, and 2192 * in that case the handler should return NULL. 2193 * 2194 * vma cannot be a COW mapping. 2195 * 2196 * As this is called only for pages that do not currently exist, we 2197 * do not need to flush old virtual caches or the TLB. 2198 */ 2199 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2200 unsigned long pfn) 2201 { 2202 int ret; 2203 pgprot_t pgprot = vma->vm_page_prot; 2204 /* 2205 * Technically, architectures with pte_special can avoid all these 2206 * restrictions (same for remap_pfn_range). However we would like 2207 * consistency in testing and feature parity among all, so we should 2208 * try to keep these invariants in place for everybody. 2209 */ 2210 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2211 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2212 (VM_PFNMAP|VM_MIXEDMAP)); 2213 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2214 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2215 2216 if (addr < vma->vm_start || addr >= vma->vm_end) 2217 return -EFAULT; 2218 if (track_pfn_insert(vma, &pgprot, pfn)) 2219 return -EINVAL; 2220 2221 ret = insert_pfn(vma, addr, pfn, pgprot); 2222 2223 return ret; 2224 } 2225 EXPORT_SYMBOL(vm_insert_pfn); 2226 2227 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2228 unsigned long pfn) 2229 { 2230 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2231 2232 if (addr < vma->vm_start || addr >= vma->vm_end) 2233 return -EFAULT; 2234 2235 /* 2236 * If we don't have pte special, then we have to use the pfn_valid() 2237 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2238 * refcount the page if pfn_valid is true (hence insert_page rather 2239 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2240 * without pte special, it would there be refcounted as a normal page. 2241 */ 2242 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2243 struct page *page; 2244 2245 page = pfn_to_page(pfn); 2246 return insert_page(vma, addr, page, vma->vm_page_prot); 2247 } 2248 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2249 } 2250 EXPORT_SYMBOL(vm_insert_mixed); 2251 2252 /* 2253 * maps a range of physical memory into the requested pages. the old 2254 * mappings are removed. any references to nonexistent pages results 2255 * in null mappings (currently treated as "copy-on-access") 2256 */ 2257 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2258 unsigned long addr, unsigned long end, 2259 unsigned long pfn, pgprot_t prot) 2260 { 2261 pte_t *pte; 2262 spinlock_t *ptl; 2263 2264 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2265 if (!pte) 2266 return -ENOMEM; 2267 arch_enter_lazy_mmu_mode(); 2268 do { 2269 BUG_ON(!pte_none(*pte)); 2270 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2271 pfn++; 2272 } while (pte++, addr += PAGE_SIZE, addr != end); 2273 arch_leave_lazy_mmu_mode(); 2274 pte_unmap_unlock(pte - 1, ptl); 2275 return 0; 2276 } 2277 2278 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2279 unsigned long addr, unsigned long end, 2280 unsigned long pfn, pgprot_t prot) 2281 { 2282 pmd_t *pmd; 2283 unsigned long next; 2284 2285 pfn -= addr >> PAGE_SHIFT; 2286 pmd = pmd_alloc(mm, pud, addr); 2287 if (!pmd) 2288 return -ENOMEM; 2289 VM_BUG_ON(pmd_trans_huge(*pmd)); 2290 do { 2291 next = pmd_addr_end(addr, end); 2292 if (remap_pte_range(mm, pmd, addr, next, 2293 pfn + (addr >> PAGE_SHIFT), prot)) 2294 return -ENOMEM; 2295 } while (pmd++, addr = next, addr != end); 2296 return 0; 2297 } 2298 2299 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2300 unsigned long addr, unsigned long end, 2301 unsigned long pfn, pgprot_t prot) 2302 { 2303 pud_t *pud; 2304 unsigned long next; 2305 2306 pfn -= addr >> PAGE_SHIFT; 2307 pud = pud_alloc(mm, pgd, addr); 2308 if (!pud) 2309 return -ENOMEM; 2310 do { 2311 next = pud_addr_end(addr, end); 2312 if (remap_pmd_range(mm, pud, addr, next, 2313 pfn + (addr >> PAGE_SHIFT), prot)) 2314 return -ENOMEM; 2315 } while (pud++, addr = next, addr != end); 2316 return 0; 2317 } 2318 2319 /** 2320 * remap_pfn_range - remap kernel memory to userspace 2321 * @vma: user vma to map to 2322 * @addr: target user address to start at 2323 * @pfn: physical address of kernel memory 2324 * @size: size of map area 2325 * @prot: page protection flags for this mapping 2326 * 2327 * Note: this is only safe if the mm semaphore is held when called. 2328 */ 2329 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2330 unsigned long pfn, unsigned long size, pgprot_t prot) 2331 { 2332 pgd_t *pgd; 2333 unsigned long next; 2334 unsigned long end = addr + PAGE_ALIGN(size); 2335 struct mm_struct *mm = vma->vm_mm; 2336 int err; 2337 2338 /* 2339 * Physically remapped pages are special. Tell the 2340 * rest of the world about it: 2341 * VM_IO tells people not to look at these pages 2342 * (accesses can have side effects). 2343 * VM_PFNMAP tells the core MM that the base pages are just 2344 * raw PFN mappings, and do not have a "struct page" associated 2345 * with them. 2346 * VM_DONTEXPAND 2347 * Disable vma merging and expanding with mremap(). 2348 * VM_DONTDUMP 2349 * Omit vma from core dump, even when VM_IO turned off. 2350 * 2351 * There's a horrible special case to handle copy-on-write 2352 * behaviour that some programs depend on. We mark the "original" 2353 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2354 * See vm_normal_page() for details. 2355 */ 2356 if (is_cow_mapping(vma->vm_flags)) { 2357 if (addr != vma->vm_start || end != vma->vm_end) 2358 return -EINVAL; 2359 vma->vm_pgoff = pfn; 2360 } 2361 2362 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2363 if (err) 2364 return -EINVAL; 2365 2366 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2367 2368 BUG_ON(addr >= end); 2369 pfn -= addr >> PAGE_SHIFT; 2370 pgd = pgd_offset(mm, addr); 2371 flush_cache_range(vma, addr, end); 2372 do { 2373 next = pgd_addr_end(addr, end); 2374 err = remap_pud_range(mm, pgd, addr, next, 2375 pfn + (addr >> PAGE_SHIFT), prot); 2376 if (err) 2377 break; 2378 } while (pgd++, addr = next, addr != end); 2379 2380 if (err) 2381 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2382 2383 return err; 2384 } 2385 EXPORT_SYMBOL(remap_pfn_range); 2386 2387 /** 2388 * vm_iomap_memory - remap memory to userspace 2389 * @vma: user vma to map to 2390 * @start: start of area 2391 * @len: size of area 2392 * 2393 * This is a simplified io_remap_pfn_range() for common driver use. The 2394 * driver just needs to give us the physical memory range to be mapped, 2395 * we'll figure out the rest from the vma information. 2396 * 2397 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2398 * whatever write-combining details or similar. 2399 */ 2400 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2401 { 2402 unsigned long vm_len, pfn, pages; 2403 2404 /* Check that the physical memory area passed in looks valid */ 2405 if (start + len < start) 2406 return -EINVAL; 2407 /* 2408 * You *really* shouldn't map things that aren't page-aligned, 2409 * but we've historically allowed it because IO memory might 2410 * just have smaller alignment. 2411 */ 2412 len += start & ~PAGE_MASK; 2413 pfn = start >> PAGE_SHIFT; 2414 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2415 if (pfn + pages < pfn) 2416 return -EINVAL; 2417 2418 /* We start the mapping 'vm_pgoff' pages into the area */ 2419 if (vma->vm_pgoff > pages) 2420 return -EINVAL; 2421 pfn += vma->vm_pgoff; 2422 pages -= vma->vm_pgoff; 2423 2424 /* Can we fit all of the mapping? */ 2425 vm_len = vma->vm_end - vma->vm_start; 2426 if (vm_len >> PAGE_SHIFT > pages) 2427 return -EINVAL; 2428 2429 /* Ok, let it rip */ 2430 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2431 } 2432 EXPORT_SYMBOL(vm_iomap_memory); 2433 2434 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2435 unsigned long addr, unsigned long end, 2436 pte_fn_t fn, void *data) 2437 { 2438 pte_t *pte; 2439 int err; 2440 pgtable_t token; 2441 spinlock_t *uninitialized_var(ptl); 2442 2443 pte = (mm == &init_mm) ? 2444 pte_alloc_kernel(pmd, addr) : 2445 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2446 if (!pte) 2447 return -ENOMEM; 2448 2449 BUG_ON(pmd_huge(*pmd)); 2450 2451 arch_enter_lazy_mmu_mode(); 2452 2453 token = pmd_pgtable(*pmd); 2454 2455 do { 2456 err = fn(pte++, token, addr, data); 2457 if (err) 2458 break; 2459 } while (addr += PAGE_SIZE, addr != end); 2460 2461 arch_leave_lazy_mmu_mode(); 2462 2463 if (mm != &init_mm) 2464 pte_unmap_unlock(pte-1, ptl); 2465 return err; 2466 } 2467 2468 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2469 unsigned long addr, unsigned long end, 2470 pte_fn_t fn, void *data) 2471 { 2472 pmd_t *pmd; 2473 unsigned long next; 2474 int err; 2475 2476 BUG_ON(pud_huge(*pud)); 2477 2478 pmd = pmd_alloc(mm, pud, addr); 2479 if (!pmd) 2480 return -ENOMEM; 2481 do { 2482 next = pmd_addr_end(addr, end); 2483 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2484 if (err) 2485 break; 2486 } while (pmd++, addr = next, addr != end); 2487 return err; 2488 } 2489 2490 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2491 unsigned long addr, unsigned long end, 2492 pte_fn_t fn, void *data) 2493 { 2494 pud_t *pud; 2495 unsigned long next; 2496 int err; 2497 2498 pud = pud_alloc(mm, pgd, addr); 2499 if (!pud) 2500 return -ENOMEM; 2501 do { 2502 next = pud_addr_end(addr, end); 2503 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2504 if (err) 2505 break; 2506 } while (pud++, addr = next, addr != end); 2507 return err; 2508 } 2509 2510 /* 2511 * Scan a region of virtual memory, filling in page tables as necessary 2512 * and calling a provided function on each leaf page table. 2513 */ 2514 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2515 unsigned long size, pte_fn_t fn, void *data) 2516 { 2517 pgd_t *pgd; 2518 unsigned long next; 2519 unsigned long end = addr + size; 2520 int err; 2521 2522 BUG_ON(addr >= end); 2523 pgd = pgd_offset(mm, addr); 2524 do { 2525 next = pgd_addr_end(addr, end); 2526 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2527 if (err) 2528 break; 2529 } while (pgd++, addr = next, addr != end); 2530 2531 return err; 2532 } 2533 EXPORT_SYMBOL_GPL(apply_to_page_range); 2534 2535 /* 2536 * handle_pte_fault chooses page fault handler according to an entry 2537 * which was read non-atomically. Before making any commitment, on 2538 * those architectures or configurations (e.g. i386 with PAE) which 2539 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2540 * must check under lock before unmapping the pte and proceeding 2541 * (but do_wp_page is only called after already making such a check; 2542 * and do_anonymous_page can safely check later on). 2543 */ 2544 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2545 pte_t *page_table, pte_t orig_pte) 2546 { 2547 int same = 1; 2548 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2549 if (sizeof(pte_t) > sizeof(unsigned long)) { 2550 spinlock_t *ptl = pte_lockptr(mm, pmd); 2551 spin_lock(ptl); 2552 same = pte_same(*page_table, orig_pte); 2553 spin_unlock(ptl); 2554 } 2555 #endif 2556 pte_unmap(page_table); 2557 return same; 2558 } 2559 2560 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2561 { 2562 /* 2563 * If the source page was a PFN mapping, we don't have 2564 * a "struct page" for it. We do a best-effort copy by 2565 * just copying from the original user address. If that 2566 * fails, we just zero-fill it. Live with it. 2567 */ 2568 if (unlikely(!src)) { 2569 void *kaddr = kmap_atomic(dst); 2570 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2571 2572 /* 2573 * This really shouldn't fail, because the page is there 2574 * in the page tables. But it might just be unreadable, 2575 * in which case we just give up and fill the result with 2576 * zeroes. 2577 */ 2578 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2579 clear_page(kaddr); 2580 kunmap_atomic(kaddr); 2581 flush_dcache_page(dst); 2582 } else 2583 copy_user_highpage(dst, src, va, vma); 2584 } 2585 2586 /* 2587 * This routine handles present pages, when users try to write 2588 * to a shared page. It is done by copying the page to a new address 2589 * and decrementing the shared-page counter for the old page. 2590 * 2591 * Note that this routine assumes that the protection checks have been 2592 * done by the caller (the low-level page fault routine in most cases). 2593 * Thus we can safely just mark it writable once we've done any necessary 2594 * COW. 2595 * 2596 * We also mark the page dirty at this point even though the page will 2597 * change only once the write actually happens. This avoids a few races, 2598 * and potentially makes it more efficient. 2599 * 2600 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2601 * but allow concurrent faults), with pte both mapped and locked. 2602 * We return with mmap_sem still held, but pte unmapped and unlocked. 2603 */ 2604 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2605 unsigned long address, pte_t *page_table, pmd_t *pmd, 2606 spinlock_t *ptl, pte_t orig_pte) 2607 __releases(ptl) 2608 { 2609 struct page *old_page, *new_page = NULL; 2610 pte_t entry; 2611 int ret = 0; 2612 int page_mkwrite = 0; 2613 struct page *dirty_page = NULL; 2614 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2615 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2616 2617 old_page = vm_normal_page(vma, address, orig_pte); 2618 if (!old_page) { 2619 /* 2620 * VM_MIXEDMAP !pfn_valid() case 2621 * 2622 * We should not cow pages in a shared writeable mapping. 2623 * Just mark the pages writable as we can't do any dirty 2624 * accounting on raw pfn maps. 2625 */ 2626 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2627 (VM_WRITE|VM_SHARED)) 2628 goto reuse; 2629 goto gotten; 2630 } 2631 2632 /* 2633 * Take out anonymous pages first, anonymous shared vmas are 2634 * not dirty accountable. 2635 */ 2636 if (PageAnon(old_page) && !PageKsm(old_page)) { 2637 if (!trylock_page(old_page)) { 2638 page_cache_get(old_page); 2639 pte_unmap_unlock(page_table, ptl); 2640 lock_page(old_page); 2641 page_table = pte_offset_map_lock(mm, pmd, address, 2642 &ptl); 2643 if (!pte_same(*page_table, orig_pte)) { 2644 unlock_page(old_page); 2645 goto unlock; 2646 } 2647 page_cache_release(old_page); 2648 } 2649 if (reuse_swap_page(old_page)) { 2650 /* 2651 * The page is all ours. Move it to our anon_vma so 2652 * the rmap code will not search our parent or siblings. 2653 * Protected against the rmap code by the page lock. 2654 */ 2655 page_move_anon_rmap(old_page, vma, address); 2656 unlock_page(old_page); 2657 goto reuse; 2658 } 2659 unlock_page(old_page); 2660 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2661 (VM_WRITE|VM_SHARED))) { 2662 /* 2663 * Only catch write-faults on shared writable pages, 2664 * read-only shared pages can get COWed by 2665 * get_user_pages(.write=1, .force=1). 2666 */ 2667 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2668 struct vm_fault vmf; 2669 int tmp; 2670 2671 vmf.virtual_address = (void __user *)(address & 2672 PAGE_MASK); 2673 vmf.pgoff = old_page->index; 2674 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2675 vmf.page = old_page; 2676 2677 /* 2678 * Notify the address space that the page is about to 2679 * become writable so that it can prohibit this or wait 2680 * for the page to get into an appropriate state. 2681 * 2682 * We do this without the lock held, so that it can 2683 * sleep if it needs to. 2684 */ 2685 page_cache_get(old_page); 2686 pte_unmap_unlock(page_table, ptl); 2687 2688 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2689 if (unlikely(tmp & 2690 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2691 ret = tmp; 2692 goto unwritable_page; 2693 } 2694 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2695 lock_page(old_page); 2696 if (!old_page->mapping) { 2697 ret = 0; /* retry the fault */ 2698 unlock_page(old_page); 2699 goto unwritable_page; 2700 } 2701 } else 2702 VM_BUG_ON(!PageLocked(old_page)); 2703 2704 /* 2705 * Since we dropped the lock we need to revalidate 2706 * the PTE as someone else may have changed it. If 2707 * they did, we just return, as we can count on the 2708 * MMU to tell us if they didn't also make it writable. 2709 */ 2710 page_table = pte_offset_map_lock(mm, pmd, address, 2711 &ptl); 2712 if (!pte_same(*page_table, orig_pte)) { 2713 unlock_page(old_page); 2714 goto unlock; 2715 } 2716 2717 page_mkwrite = 1; 2718 } 2719 dirty_page = old_page; 2720 get_page(dirty_page); 2721 2722 reuse: 2723 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2724 entry = pte_mkyoung(orig_pte); 2725 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2726 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2727 update_mmu_cache(vma, address, page_table); 2728 pte_unmap_unlock(page_table, ptl); 2729 ret |= VM_FAULT_WRITE; 2730 2731 if (!dirty_page) 2732 return ret; 2733 2734 /* 2735 * Yes, Virginia, this is actually required to prevent a race 2736 * with clear_page_dirty_for_io() from clearing the page dirty 2737 * bit after it clear all dirty ptes, but before a racing 2738 * do_wp_page installs a dirty pte. 2739 * 2740 * __do_fault is protected similarly. 2741 */ 2742 if (!page_mkwrite) { 2743 wait_on_page_locked(dirty_page); 2744 set_page_dirty_balance(dirty_page, page_mkwrite); 2745 /* file_update_time outside page_lock */ 2746 if (vma->vm_file) 2747 file_update_time(vma->vm_file); 2748 } 2749 put_page(dirty_page); 2750 if (page_mkwrite) { 2751 struct address_space *mapping = dirty_page->mapping; 2752 2753 set_page_dirty(dirty_page); 2754 unlock_page(dirty_page); 2755 page_cache_release(dirty_page); 2756 if (mapping) { 2757 /* 2758 * Some device drivers do not set page.mapping 2759 * but still dirty their pages 2760 */ 2761 balance_dirty_pages_ratelimited(mapping); 2762 } 2763 } 2764 2765 return ret; 2766 } 2767 2768 /* 2769 * Ok, we need to copy. Oh, well.. 2770 */ 2771 page_cache_get(old_page); 2772 gotten: 2773 pte_unmap_unlock(page_table, ptl); 2774 2775 if (unlikely(anon_vma_prepare(vma))) 2776 goto oom; 2777 2778 if (is_zero_pfn(pte_pfn(orig_pte))) { 2779 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2780 if (!new_page) 2781 goto oom; 2782 } else { 2783 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2784 if (!new_page) 2785 goto oom; 2786 cow_user_page(new_page, old_page, address, vma); 2787 } 2788 __SetPageUptodate(new_page); 2789 2790 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2791 goto oom_free_new; 2792 2793 mmun_start = address & PAGE_MASK; 2794 mmun_end = mmun_start + PAGE_SIZE; 2795 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2796 2797 /* 2798 * Re-check the pte - we dropped the lock 2799 */ 2800 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2801 if (likely(pte_same(*page_table, orig_pte))) { 2802 if (old_page) { 2803 if (!PageAnon(old_page)) { 2804 dec_mm_counter_fast(mm, MM_FILEPAGES); 2805 inc_mm_counter_fast(mm, MM_ANONPAGES); 2806 } 2807 } else 2808 inc_mm_counter_fast(mm, MM_ANONPAGES); 2809 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2810 entry = mk_pte(new_page, vma->vm_page_prot); 2811 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2812 /* 2813 * Clear the pte entry and flush it first, before updating the 2814 * pte with the new entry. This will avoid a race condition 2815 * seen in the presence of one thread doing SMC and another 2816 * thread doing COW. 2817 */ 2818 ptep_clear_flush(vma, address, page_table); 2819 page_add_new_anon_rmap(new_page, vma, address); 2820 /* 2821 * We call the notify macro here because, when using secondary 2822 * mmu page tables (such as kvm shadow page tables), we want the 2823 * new page to be mapped directly into the secondary page table. 2824 */ 2825 set_pte_at_notify(mm, address, page_table, entry); 2826 update_mmu_cache(vma, address, page_table); 2827 if (old_page) { 2828 /* 2829 * Only after switching the pte to the new page may 2830 * we remove the mapcount here. Otherwise another 2831 * process may come and find the rmap count decremented 2832 * before the pte is switched to the new page, and 2833 * "reuse" the old page writing into it while our pte 2834 * here still points into it and can be read by other 2835 * threads. 2836 * 2837 * The critical issue is to order this 2838 * page_remove_rmap with the ptp_clear_flush above. 2839 * Those stores are ordered by (if nothing else,) 2840 * the barrier present in the atomic_add_negative 2841 * in page_remove_rmap. 2842 * 2843 * Then the TLB flush in ptep_clear_flush ensures that 2844 * no process can access the old page before the 2845 * decremented mapcount is visible. And the old page 2846 * cannot be reused until after the decremented 2847 * mapcount is visible. So transitively, TLBs to 2848 * old page will be flushed before it can be reused. 2849 */ 2850 page_remove_rmap(old_page); 2851 } 2852 2853 /* Free the old page.. */ 2854 new_page = old_page; 2855 ret |= VM_FAULT_WRITE; 2856 } else 2857 mem_cgroup_uncharge_page(new_page); 2858 2859 if (new_page) 2860 page_cache_release(new_page); 2861 unlock: 2862 pte_unmap_unlock(page_table, ptl); 2863 if (mmun_end > mmun_start) 2864 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2865 if (old_page) { 2866 /* 2867 * Don't let another task, with possibly unlocked vma, 2868 * keep the mlocked page. 2869 */ 2870 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2871 lock_page(old_page); /* LRU manipulation */ 2872 munlock_vma_page(old_page); 2873 unlock_page(old_page); 2874 } 2875 page_cache_release(old_page); 2876 } 2877 return ret; 2878 oom_free_new: 2879 page_cache_release(new_page); 2880 oom: 2881 if (old_page) 2882 page_cache_release(old_page); 2883 return VM_FAULT_OOM; 2884 2885 unwritable_page: 2886 page_cache_release(old_page); 2887 return ret; 2888 } 2889 2890 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2891 unsigned long start_addr, unsigned long end_addr, 2892 struct zap_details *details) 2893 { 2894 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2895 } 2896 2897 static inline void unmap_mapping_range_tree(struct rb_root *root, 2898 struct zap_details *details) 2899 { 2900 struct vm_area_struct *vma; 2901 pgoff_t vba, vea, zba, zea; 2902 2903 vma_interval_tree_foreach(vma, root, 2904 details->first_index, details->last_index) { 2905 2906 vba = vma->vm_pgoff; 2907 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2908 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2909 zba = details->first_index; 2910 if (zba < vba) 2911 zba = vba; 2912 zea = details->last_index; 2913 if (zea > vea) 2914 zea = vea; 2915 2916 unmap_mapping_range_vma(vma, 2917 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2918 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2919 details); 2920 } 2921 } 2922 2923 static inline void unmap_mapping_range_list(struct list_head *head, 2924 struct zap_details *details) 2925 { 2926 struct vm_area_struct *vma; 2927 2928 /* 2929 * In nonlinear VMAs there is no correspondence between virtual address 2930 * offset and file offset. So we must perform an exhaustive search 2931 * across *all* the pages in each nonlinear VMA, not just the pages 2932 * whose virtual address lies outside the file truncation point. 2933 */ 2934 list_for_each_entry(vma, head, shared.nonlinear) { 2935 details->nonlinear_vma = vma; 2936 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2937 } 2938 } 2939 2940 /** 2941 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2942 * @mapping: the address space containing mmaps to be unmapped. 2943 * @holebegin: byte in first page to unmap, relative to the start of 2944 * the underlying file. This will be rounded down to a PAGE_SIZE 2945 * boundary. Note that this is different from truncate_pagecache(), which 2946 * must keep the partial page. In contrast, we must get rid of 2947 * partial pages. 2948 * @holelen: size of prospective hole in bytes. This will be rounded 2949 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2950 * end of the file. 2951 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2952 * but 0 when invalidating pagecache, don't throw away private data. 2953 */ 2954 void unmap_mapping_range(struct address_space *mapping, 2955 loff_t const holebegin, loff_t const holelen, int even_cows) 2956 { 2957 struct zap_details details; 2958 pgoff_t hba = holebegin >> PAGE_SHIFT; 2959 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2960 2961 /* Check for overflow. */ 2962 if (sizeof(holelen) > sizeof(hlen)) { 2963 long long holeend = 2964 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2965 if (holeend & ~(long long)ULONG_MAX) 2966 hlen = ULONG_MAX - hba + 1; 2967 } 2968 2969 details.check_mapping = even_cows? NULL: mapping; 2970 details.nonlinear_vma = NULL; 2971 details.first_index = hba; 2972 details.last_index = hba + hlen - 1; 2973 if (details.last_index < details.first_index) 2974 details.last_index = ULONG_MAX; 2975 2976 2977 mutex_lock(&mapping->i_mmap_mutex); 2978 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2979 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2980 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2981 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2982 mutex_unlock(&mapping->i_mmap_mutex); 2983 } 2984 EXPORT_SYMBOL(unmap_mapping_range); 2985 2986 /* 2987 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2988 * but allow concurrent faults), and pte mapped but not yet locked. 2989 * We return with mmap_sem still held, but pte unmapped and unlocked. 2990 */ 2991 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2992 unsigned long address, pte_t *page_table, pmd_t *pmd, 2993 unsigned int flags, pte_t orig_pte) 2994 { 2995 spinlock_t *ptl; 2996 struct page *page, *swapcache; 2997 swp_entry_t entry; 2998 pte_t pte; 2999 int locked; 3000 struct mem_cgroup *ptr; 3001 int exclusive = 0; 3002 int ret = 0; 3003 3004 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3005 goto out; 3006 3007 entry = pte_to_swp_entry(orig_pte); 3008 if (unlikely(non_swap_entry(entry))) { 3009 if (is_migration_entry(entry)) { 3010 migration_entry_wait(mm, pmd, address); 3011 } else if (is_hwpoison_entry(entry)) { 3012 ret = VM_FAULT_HWPOISON; 3013 } else { 3014 print_bad_pte(vma, address, orig_pte, NULL); 3015 ret = VM_FAULT_SIGBUS; 3016 } 3017 goto out; 3018 } 3019 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3020 page = lookup_swap_cache(entry); 3021 if (!page) { 3022 page = swapin_readahead(entry, 3023 GFP_HIGHUSER_MOVABLE, vma, address); 3024 if (!page) { 3025 /* 3026 * Back out if somebody else faulted in this pte 3027 * while we released the pte lock. 3028 */ 3029 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3030 if (likely(pte_same(*page_table, orig_pte))) 3031 ret = VM_FAULT_OOM; 3032 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3033 goto unlock; 3034 } 3035 3036 /* Had to read the page from swap area: Major fault */ 3037 ret = VM_FAULT_MAJOR; 3038 count_vm_event(PGMAJFAULT); 3039 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 3040 } else if (PageHWPoison(page)) { 3041 /* 3042 * hwpoisoned dirty swapcache pages are kept for killing 3043 * owner processes (which may be unknown at hwpoison time) 3044 */ 3045 ret = VM_FAULT_HWPOISON; 3046 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3047 swapcache = page; 3048 goto out_release; 3049 } 3050 3051 swapcache = page; 3052 locked = lock_page_or_retry(page, mm, flags); 3053 3054 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3055 if (!locked) { 3056 ret |= VM_FAULT_RETRY; 3057 goto out_release; 3058 } 3059 3060 /* 3061 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3062 * release the swapcache from under us. The page pin, and pte_same 3063 * test below, are not enough to exclude that. Even if it is still 3064 * swapcache, we need to check that the page's swap has not changed. 3065 */ 3066 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 3067 goto out_page; 3068 3069 page = ksm_might_need_to_copy(page, vma, address); 3070 if (unlikely(!page)) { 3071 ret = VM_FAULT_OOM; 3072 page = swapcache; 3073 goto out_page; 3074 } 3075 3076 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 3077 ret = VM_FAULT_OOM; 3078 goto out_page; 3079 } 3080 3081 /* 3082 * Back out if somebody else already faulted in this pte. 3083 */ 3084 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3085 if (unlikely(!pte_same(*page_table, orig_pte))) 3086 goto out_nomap; 3087 3088 if (unlikely(!PageUptodate(page))) { 3089 ret = VM_FAULT_SIGBUS; 3090 goto out_nomap; 3091 } 3092 3093 /* 3094 * The page isn't present yet, go ahead with the fault. 3095 * 3096 * Be careful about the sequence of operations here. 3097 * To get its accounting right, reuse_swap_page() must be called 3098 * while the page is counted on swap but not yet in mapcount i.e. 3099 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3100 * must be called after the swap_free(), or it will never succeed. 3101 * Because delete_from_swap_page() may be called by reuse_swap_page(), 3102 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 3103 * in page->private. In this case, a record in swap_cgroup is silently 3104 * discarded at swap_free(). 3105 */ 3106 3107 inc_mm_counter_fast(mm, MM_ANONPAGES); 3108 dec_mm_counter_fast(mm, MM_SWAPENTS); 3109 pte = mk_pte(page, vma->vm_page_prot); 3110 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 3111 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3112 flags &= ~FAULT_FLAG_WRITE; 3113 ret |= VM_FAULT_WRITE; 3114 exclusive = 1; 3115 } 3116 flush_icache_page(vma, page); 3117 set_pte_at(mm, address, page_table, pte); 3118 if (page == swapcache) 3119 do_page_add_anon_rmap(page, vma, address, exclusive); 3120 else /* ksm created a completely new copy */ 3121 page_add_new_anon_rmap(page, vma, address); 3122 /* It's better to call commit-charge after rmap is established */ 3123 mem_cgroup_commit_charge_swapin(page, ptr); 3124 3125 swap_free(entry); 3126 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3127 try_to_free_swap(page); 3128 unlock_page(page); 3129 if (page != swapcache) { 3130 /* 3131 * Hold the lock to avoid the swap entry to be reused 3132 * until we take the PT lock for the pte_same() check 3133 * (to avoid false positives from pte_same). For 3134 * further safety release the lock after the swap_free 3135 * so that the swap count won't change under a 3136 * parallel locked swapcache. 3137 */ 3138 unlock_page(swapcache); 3139 page_cache_release(swapcache); 3140 } 3141 3142 if (flags & FAULT_FLAG_WRITE) { 3143 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3144 if (ret & VM_FAULT_ERROR) 3145 ret &= VM_FAULT_ERROR; 3146 goto out; 3147 } 3148 3149 /* No need to invalidate - it was non-present before */ 3150 update_mmu_cache(vma, address, page_table); 3151 unlock: 3152 pte_unmap_unlock(page_table, ptl); 3153 out: 3154 return ret; 3155 out_nomap: 3156 mem_cgroup_cancel_charge_swapin(ptr); 3157 pte_unmap_unlock(page_table, ptl); 3158 out_page: 3159 unlock_page(page); 3160 out_release: 3161 page_cache_release(page); 3162 if (page != swapcache) { 3163 unlock_page(swapcache); 3164 page_cache_release(swapcache); 3165 } 3166 return ret; 3167 } 3168 3169 /* 3170 * This is like a special single-page "expand_{down|up}wards()", 3171 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3172 * doesn't hit another vma. 3173 */ 3174 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3175 { 3176 address &= PAGE_MASK; 3177 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3178 struct vm_area_struct *prev = vma->vm_prev; 3179 3180 /* 3181 * Is there a mapping abutting this one below? 3182 * 3183 * That's only ok if it's the same stack mapping 3184 * that has gotten split.. 3185 */ 3186 if (prev && prev->vm_end == address) 3187 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3188 3189 expand_downwards(vma, address - PAGE_SIZE); 3190 } 3191 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3192 struct vm_area_struct *next = vma->vm_next; 3193 3194 /* As VM_GROWSDOWN but s/below/above/ */ 3195 if (next && next->vm_start == address + PAGE_SIZE) 3196 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3197 3198 expand_upwards(vma, address + PAGE_SIZE); 3199 } 3200 return 0; 3201 } 3202 3203 /* 3204 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3205 * but allow concurrent faults), and pte mapped but not yet locked. 3206 * We return with mmap_sem still held, but pte unmapped and unlocked. 3207 */ 3208 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3209 unsigned long address, pte_t *page_table, pmd_t *pmd, 3210 unsigned int flags) 3211 { 3212 struct page *page; 3213 spinlock_t *ptl; 3214 pte_t entry; 3215 3216 pte_unmap(page_table); 3217 3218 /* Check if we need to add a guard page to the stack */ 3219 if (check_stack_guard_page(vma, address) < 0) 3220 return VM_FAULT_SIGBUS; 3221 3222 /* Use the zero-page for reads */ 3223 if (!(flags & FAULT_FLAG_WRITE)) { 3224 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3225 vma->vm_page_prot)); 3226 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3227 if (!pte_none(*page_table)) 3228 goto unlock; 3229 goto setpte; 3230 } 3231 3232 /* Allocate our own private page. */ 3233 if (unlikely(anon_vma_prepare(vma))) 3234 goto oom; 3235 page = alloc_zeroed_user_highpage_movable(vma, address); 3236 if (!page) 3237 goto oom; 3238 /* 3239 * The memory barrier inside __SetPageUptodate makes sure that 3240 * preceeding stores to the page contents become visible before 3241 * the set_pte_at() write. 3242 */ 3243 __SetPageUptodate(page); 3244 3245 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3246 goto oom_free_page; 3247 3248 entry = mk_pte(page, vma->vm_page_prot); 3249 if (vma->vm_flags & VM_WRITE) 3250 entry = pte_mkwrite(pte_mkdirty(entry)); 3251 3252 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3253 if (!pte_none(*page_table)) 3254 goto release; 3255 3256 inc_mm_counter_fast(mm, MM_ANONPAGES); 3257 page_add_new_anon_rmap(page, vma, address); 3258 setpte: 3259 set_pte_at(mm, address, page_table, entry); 3260 3261 /* No need to invalidate - it was non-present before */ 3262 update_mmu_cache(vma, address, page_table); 3263 unlock: 3264 pte_unmap_unlock(page_table, ptl); 3265 return 0; 3266 release: 3267 mem_cgroup_uncharge_page(page); 3268 page_cache_release(page); 3269 goto unlock; 3270 oom_free_page: 3271 page_cache_release(page); 3272 oom: 3273 return VM_FAULT_OOM; 3274 } 3275 3276 /* 3277 * __do_fault() tries to create a new page mapping. It aggressively 3278 * tries to share with existing pages, but makes a separate copy if 3279 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3280 * the next page fault. 3281 * 3282 * As this is called only for pages that do not currently exist, we 3283 * do not need to flush old virtual caches or the TLB. 3284 * 3285 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3286 * but allow concurrent faults), and pte neither mapped nor locked. 3287 * We return with mmap_sem still held, but pte unmapped and unlocked. 3288 */ 3289 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3290 unsigned long address, pmd_t *pmd, 3291 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3292 { 3293 pte_t *page_table; 3294 spinlock_t *ptl; 3295 struct page *page; 3296 struct page *cow_page; 3297 pte_t entry; 3298 int anon = 0; 3299 struct page *dirty_page = NULL; 3300 struct vm_fault vmf; 3301 int ret; 3302 int page_mkwrite = 0; 3303 3304 /* 3305 * If we do COW later, allocate page befor taking lock_page() 3306 * on the file cache page. This will reduce lock holding time. 3307 */ 3308 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3309 3310 if (unlikely(anon_vma_prepare(vma))) 3311 return VM_FAULT_OOM; 3312 3313 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3314 if (!cow_page) 3315 return VM_FAULT_OOM; 3316 3317 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { 3318 page_cache_release(cow_page); 3319 return VM_FAULT_OOM; 3320 } 3321 } else 3322 cow_page = NULL; 3323 3324 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3325 vmf.pgoff = pgoff; 3326 vmf.flags = flags; 3327 vmf.page = NULL; 3328 3329 ret = vma->vm_ops->fault(vma, &vmf); 3330 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3331 VM_FAULT_RETRY))) 3332 goto uncharge_out; 3333 3334 if (unlikely(PageHWPoison(vmf.page))) { 3335 if (ret & VM_FAULT_LOCKED) 3336 unlock_page(vmf.page); 3337 ret = VM_FAULT_HWPOISON; 3338 goto uncharge_out; 3339 } 3340 3341 /* 3342 * For consistency in subsequent calls, make the faulted page always 3343 * locked. 3344 */ 3345 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3346 lock_page(vmf.page); 3347 else 3348 VM_BUG_ON(!PageLocked(vmf.page)); 3349 3350 /* 3351 * Should we do an early C-O-W break? 3352 */ 3353 page = vmf.page; 3354 if (flags & FAULT_FLAG_WRITE) { 3355 if (!(vma->vm_flags & VM_SHARED)) { 3356 page = cow_page; 3357 anon = 1; 3358 copy_user_highpage(page, vmf.page, address, vma); 3359 __SetPageUptodate(page); 3360 } else { 3361 /* 3362 * If the page will be shareable, see if the backing 3363 * address space wants to know that the page is about 3364 * to become writable 3365 */ 3366 if (vma->vm_ops->page_mkwrite) { 3367 int tmp; 3368 3369 unlock_page(page); 3370 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3371 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3372 if (unlikely(tmp & 3373 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3374 ret = tmp; 3375 goto unwritable_page; 3376 } 3377 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3378 lock_page(page); 3379 if (!page->mapping) { 3380 ret = 0; /* retry the fault */ 3381 unlock_page(page); 3382 goto unwritable_page; 3383 } 3384 } else 3385 VM_BUG_ON(!PageLocked(page)); 3386 page_mkwrite = 1; 3387 } 3388 } 3389 3390 } 3391 3392 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3393 3394 /* 3395 * This silly early PAGE_DIRTY setting removes a race 3396 * due to the bad i386 page protection. But it's valid 3397 * for other architectures too. 3398 * 3399 * Note that if FAULT_FLAG_WRITE is set, we either now have 3400 * an exclusive copy of the page, or this is a shared mapping, 3401 * so we can make it writable and dirty to avoid having to 3402 * handle that later. 3403 */ 3404 /* Only go through if we didn't race with anybody else... */ 3405 if (likely(pte_same(*page_table, orig_pte))) { 3406 flush_icache_page(vma, page); 3407 entry = mk_pte(page, vma->vm_page_prot); 3408 if (flags & FAULT_FLAG_WRITE) 3409 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3410 if (anon) { 3411 inc_mm_counter_fast(mm, MM_ANONPAGES); 3412 page_add_new_anon_rmap(page, vma, address); 3413 } else { 3414 inc_mm_counter_fast(mm, MM_FILEPAGES); 3415 page_add_file_rmap(page); 3416 if (flags & FAULT_FLAG_WRITE) { 3417 dirty_page = page; 3418 get_page(dirty_page); 3419 } 3420 } 3421 set_pte_at(mm, address, page_table, entry); 3422 3423 /* no need to invalidate: a not-present page won't be cached */ 3424 update_mmu_cache(vma, address, page_table); 3425 } else { 3426 if (cow_page) 3427 mem_cgroup_uncharge_page(cow_page); 3428 if (anon) 3429 page_cache_release(page); 3430 else 3431 anon = 1; /* no anon but release faulted_page */ 3432 } 3433 3434 pte_unmap_unlock(page_table, ptl); 3435 3436 if (dirty_page) { 3437 struct address_space *mapping = page->mapping; 3438 int dirtied = 0; 3439 3440 if (set_page_dirty(dirty_page)) 3441 dirtied = 1; 3442 unlock_page(dirty_page); 3443 put_page(dirty_page); 3444 if ((dirtied || page_mkwrite) && mapping) { 3445 /* 3446 * Some device drivers do not set page.mapping but still 3447 * dirty their pages 3448 */ 3449 balance_dirty_pages_ratelimited(mapping); 3450 } 3451 3452 /* file_update_time outside page_lock */ 3453 if (vma->vm_file && !page_mkwrite) 3454 file_update_time(vma->vm_file); 3455 } else { 3456 unlock_page(vmf.page); 3457 if (anon) 3458 page_cache_release(vmf.page); 3459 } 3460 3461 return ret; 3462 3463 unwritable_page: 3464 page_cache_release(page); 3465 return ret; 3466 uncharge_out: 3467 /* fs's fault handler get error */ 3468 if (cow_page) { 3469 mem_cgroup_uncharge_page(cow_page); 3470 page_cache_release(cow_page); 3471 } 3472 return ret; 3473 } 3474 3475 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3476 unsigned long address, pte_t *page_table, pmd_t *pmd, 3477 unsigned int flags, pte_t orig_pte) 3478 { 3479 pgoff_t pgoff = (((address & PAGE_MASK) 3480 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3481 3482 pte_unmap(page_table); 3483 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3484 } 3485 3486 /* 3487 * Fault of a previously existing named mapping. Repopulate the pte 3488 * from the encoded file_pte if possible. This enables swappable 3489 * nonlinear vmas. 3490 * 3491 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3492 * but allow concurrent faults), and pte mapped but not yet locked. 3493 * We return with mmap_sem still held, but pte unmapped and unlocked. 3494 */ 3495 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3496 unsigned long address, pte_t *page_table, pmd_t *pmd, 3497 unsigned int flags, pte_t orig_pte) 3498 { 3499 pgoff_t pgoff; 3500 3501 flags |= FAULT_FLAG_NONLINEAR; 3502 3503 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3504 return 0; 3505 3506 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3507 /* 3508 * Page table corrupted: show pte and kill process. 3509 */ 3510 print_bad_pte(vma, address, orig_pte, NULL); 3511 return VM_FAULT_SIGBUS; 3512 } 3513 3514 pgoff = pte_to_pgoff(orig_pte); 3515 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3516 } 3517 3518 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3519 unsigned long addr, int current_nid) 3520 { 3521 get_page(page); 3522 3523 count_vm_numa_event(NUMA_HINT_FAULTS); 3524 if (current_nid == numa_node_id()) 3525 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3526 3527 return mpol_misplaced(page, vma, addr); 3528 } 3529 3530 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3531 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3532 { 3533 struct page *page = NULL; 3534 spinlock_t *ptl; 3535 int current_nid = -1; 3536 int target_nid; 3537 bool migrated = false; 3538 3539 /* 3540 * The "pte" at this point cannot be used safely without 3541 * validation through pte_unmap_same(). It's of NUMA type but 3542 * the pfn may be screwed if the read is non atomic. 3543 * 3544 * ptep_modify_prot_start is not called as this is clearing 3545 * the _PAGE_NUMA bit and it is not really expected that there 3546 * would be concurrent hardware modifications to the PTE. 3547 */ 3548 ptl = pte_lockptr(mm, pmd); 3549 spin_lock(ptl); 3550 if (unlikely(!pte_same(*ptep, pte))) { 3551 pte_unmap_unlock(ptep, ptl); 3552 goto out; 3553 } 3554 3555 pte = pte_mknonnuma(pte); 3556 set_pte_at(mm, addr, ptep, pte); 3557 update_mmu_cache(vma, addr, ptep); 3558 3559 page = vm_normal_page(vma, addr, pte); 3560 if (!page) { 3561 pte_unmap_unlock(ptep, ptl); 3562 return 0; 3563 } 3564 3565 current_nid = page_to_nid(page); 3566 target_nid = numa_migrate_prep(page, vma, addr, current_nid); 3567 pte_unmap_unlock(ptep, ptl); 3568 if (target_nid == -1) { 3569 /* 3570 * Account for the fault against the current node if it not 3571 * being replaced regardless of where the page is located. 3572 */ 3573 current_nid = numa_node_id(); 3574 put_page(page); 3575 goto out; 3576 } 3577 3578 /* Migrate to the requested node */ 3579 migrated = migrate_misplaced_page(page, target_nid); 3580 if (migrated) 3581 current_nid = target_nid; 3582 3583 out: 3584 if (current_nid != -1) 3585 task_numa_fault(current_nid, 1, migrated); 3586 return 0; 3587 } 3588 3589 /* NUMA hinting page fault entry point for regular pmds */ 3590 #ifdef CONFIG_NUMA_BALANCING 3591 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3592 unsigned long addr, pmd_t *pmdp) 3593 { 3594 pmd_t pmd; 3595 pte_t *pte, *orig_pte; 3596 unsigned long _addr = addr & PMD_MASK; 3597 unsigned long offset; 3598 spinlock_t *ptl; 3599 bool numa = false; 3600 int local_nid = numa_node_id(); 3601 3602 spin_lock(&mm->page_table_lock); 3603 pmd = *pmdp; 3604 if (pmd_numa(pmd)) { 3605 set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd)); 3606 numa = true; 3607 } 3608 spin_unlock(&mm->page_table_lock); 3609 3610 if (!numa) 3611 return 0; 3612 3613 /* we're in a page fault so some vma must be in the range */ 3614 BUG_ON(!vma); 3615 BUG_ON(vma->vm_start >= _addr + PMD_SIZE); 3616 offset = max(_addr, vma->vm_start) & ~PMD_MASK; 3617 VM_BUG_ON(offset >= PMD_SIZE); 3618 orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl); 3619 pte += offset >> PAGE_SHIFT; 3620 for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) { 3621 pte_t pteval = *pte; 3622 struct page *page; 3623 int curr_nid = local_nid; 3624 int target_nid; 3625 bool migrated; 3626 if (!pte_present(pteval)) 3627 continue; 3628 if (!pte_numa(pteval)) 3629 continue; 3630 if (addr >= vma->vm_end) { 3631 vma = find_vma(mm, addr); 3632 /* there's a pte present so there must be a vma */ 3633 BUG_ON(!vma); 3634 BUG_ON(addr < vma->vm_start); 3635 } 3636 if (pte_numa(pteval)) { 3637 pteval = pte_mknonnuma(pteval); 3638 set_pte_at(mm, addr, pte, pteval); 3639 } 3640 page = vm_normal_page(vma, addr, pteval); 3641 if (unlikely(!page)) 3642 continue; 3643 /* only check non-shared pages */ 3644 if (unlikely(page_mapcount(page) != 1)) 3645 continue; 3646 3647 /* 3648 * Note that the NUMA fault is later accounted to either 3649 * the node that is currently running or where the page is 3650 * migrated to. 3651 */ 3652 curr_nid = local_nid; 3653 target_nid = numa_migrate_prep(page, vma, addr, 3654 page_to_nid(page)); 3655 if (target_nid == -1) { 3656 put_page(page); 3657 continue; 3658 } 3659 3660 /* Migrate to the requested node */ 3661 pte_unmap_unlock(pte, ptl); 3662 migrated = migrate_misplaced_page(page, target_nid); 3663 if (migrated) 3664 curr_nid = target_nid; 3665 task_numa_fault(curr_nid, 1, migrated); 3666 3667 pte = pte_offset_map_lock(mm, pmdp, addr, &ptl); 3668 } 3669 pte_unmap_unlock(orig_pte, ptl); 3670 3671 return 0; 3672 } 3673 #else 3674 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3675 unsigned long addr, pmd_t *pmdp) 3676 { 3677 BUG(); 3678 return 0; 3679 } 3680 #endif /* CONFIG_NUMA_BALANCING */ 3681 3682 /* 3683 * These routines also need to handle stuff like marking pages dirty 3684 * and/or accessed for architectures that don't do it in hardware (most 3685 * RISC architectures). The early dirtying is also good on the i386. 3686 * 3687 * There is also a hook called "update_mmu_cache()" that architectures 3688 * with external mmu caches can use to update those (ie the Sparc or 3689 * PowerPC hashed page tables that act as extended TLBs). 3690 * 3691 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3692 * but allow concurrent faults), and pte mapped but not yet locked. 3693 * We return with mmap_sem still held, but pte unmapped and unlocked. 3694 */ 3695 int handle_pte_fault(struct mm_struct *mm, 3696 struct vm_area_struct *vma, unsigned long address, 3697 pte_t *pte, pmd_t *pmd, unsigned int flags) 3698 { 3699 pte_t entry; 3700 spinlock_t *ptl; 3701 3702 entry = *pte; 3703 if (!pte_present(entry)) { 3704 if (pte_none(entry)) { 3705 if (vma->vm_ops) { 3706 if (likely(vma->vm_ops->fault)) 3707 return do_linear_fault(mm, vma, address, 3708 pte, pmd, flags, entry); 3709 } 3710 return do_anonymous_page(mm, vma, address, 3711 pte, pmd, flags); 3712 } 3713 if (pte_file(entry)) 3714 return do_nonlinear_fault(mm, vma, address, 3715 pte, pmd, flags, entry); 3716 return do_swap_page(mm, vma, address, 3717 pte, pmd, flags, entry); 3718 } 3719 3720 if (pte_numa(entry)) 3721 return do_numa_page(mm, vma, address, entry, pte, pmd); 3722 3723 ptl = pte_lockptr(mm, pmd); 3724 spin_lock(ptl); 3725 if (unlikely(!pte_same(*pte, entry))) 3726 goto unlock; 3727 if (flags & FAULT_FLAG_WRITE) { 3728 if (!pte_write(entry)) 3729 return do_wp_page(mm, vma, address, 3730 pte, pmd, ptl, entry); 3731 entry = pte_mkdirty(entry); 3732 } 3733 entry = pte_mkyoung(entry); 3734 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3735 update_mmu_cache(vma, address, pte); 3736 } else { 3737 /* 3738 * This is needed only for protection faults but the arch code 3739 * is not yet telling us if this is a protection fault or not. 3740 * This still avoids useless tlb flushes for .text page faults 3741 * with threads. 3742 */ 3743 if (flags & FAULT_FLAG_WRITE) 3744 flush_tlb_fix_spurious_fault(vma, address); 3745 } 3746 unlock: 3747 pte_unmap_unlock(pte, ptl); 3748 return 0; 3749 } 3750 3751 /* 3752 * By the time we get here, we already hold the mm semaphore 3753 */ 3754 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3755 unsigned long address, unsigned int flags) 3756 { 3757 pgd_t *pgd; 3758 pud_t *pud; 3759 pmd_t *pmd; 3760 pte_t *pte; 3761 3762 __set_current_state(TASK_RUNNING); 3763 3764 count_vm_event(PGFAULT); 3765 mem_cgroup_count_vm_event(mm, PGFAULT); 3766 3767 /* do counter updates before entering really critical section. */ 3768 check_sync_rss_stat(current); 3769 3770 if (unlikely(is_vm_hugetlb_page(vma))) 3771 return hugetlb_fault(mm, vma, address, flags); 3772 3773 retry: 3774 pgd = pgd_offset(mm, address); 3775 pud = pud_alloc(mm, pgd, address); 3776 if (!pud) 3777 return VM_FAULT_OOM; 3778 pmd = pmd_alloc(mm, pud, address); 3779 if (!pmd) 3780 return VM_FAULT_OOM; 3781 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3782 if (!vma->vm_ops) 3783 return do_huge_pmd_anonymous_page(mm, vma, address, 3784 pmd, flags); 3785 } else { 3786 pmd_t orig_pmd = *pmd; 3787 int ret; 3788 3789 barrier(); 3790 if (pmd_trans_huge(orig_pmd)) { 3791 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3792 3793 /* 3794 * If the pmd is splitting, return and retry the 3795 * the fault. Alternative: wait until the split 3796 * is done, and goto retry. 3797 */ 3798 if (pmd_trans_splitting(orig_pmd)) 3799 return 0; 3800 3801 if (pmd_numa(orig_pmd)) 3802 return do_huge_pmd_numa_page(mm, vma, address, 3803 orig_pmd, pmd); 3804 3805 if (dirty && !pmd_write(orig_pmd)) { 3806 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3807 orig_pmd); 3808 /* 3809 * If COW results in an oom, the huge pmd will 3810 * have been split, so retry the fault on the 3811 * pte for a smaller charge. 3812 */ 3813 if (unlikely(ret & VM_FAULT_OOM)) 3814 goto retry; 3815 return ret; 3816 } else { 3817 huge_pmd_set_accessed(mm, vma, address, pmd, 3818 orig_pmd, dirty); 3819 } 3820 3821 return 0; 3822 } 3823 } 3824 3825 if (pmd_numa(*pmd)) 3826 return do_pmd_numa_page(mm, vma, address, pmd); 3827 3828 /* 3829 * Use __pte_alloc instead of pte_alloc_map, because we can't 3830 * run pte_offset_map on the pmd, if an huge pmd could 3831 * materialize from under us from a different thread. 3832 */ 3833 if (unlikely(pmd_none(*pmd)) && 3834 unlikely(__pte_alloc(mm, vma, pmd, address))) 3835 return VM_FAULT_OOM; 3836 /* if an huge pmd materialized from under us just retry later */ 3837 if (unlikely(pmd_trans_huge(*pmd))) 3838 return 0; 3839 /* 3840 * A regular pmd is established and it can't morph into a huge pmd 3841 * from under us anymore at this point because we hold the mmap_sem 3842 * read mode and khugepaged takes it in write mode. So now it's 3843 * safe to run pte_offset_map(). 3844 */ 3845 pte = pte_offset_map(pmd, address); 3846 3847 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3848 } 3849 3850 #ifndef __PAGETABLE_PUD_FOLDED 3851 /* 3852 * Allocate page upper directory. 3853 * We've already handled the fast-path in-line. 3854 */ 3855 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3856 { 3857 pud_t *new = pud_alloc_one(mm, address); 3858 if (!new) 3859 return -ENOMEM; 3860 3861 smp_wmb(); /* See comment in __pte_alloc */ 3862 3863 spin_lock(&mm->page_table_lock); 3864 if (pgd_present(*pgd)) /* Another has populated it */ 3865 pud_free(mm, new); 3866 else 3867 pgd_populate(mm, pgd, new); 3868 spin_unlock(&mm->page_table_lock); 3869 return 0; 3870 } 3871 #endif /* __PAGETABLE_PUD_FOLDED */ 3872 3873 #ifndef __PAGETABLE_PMD_FOLDED 3874 /* 3875 * Allocate page middle directory. 3876 * We've already handled the fast-path in-line. 3877 */ 3878 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3879 { 3880 pmd_t *new = pmd_alloc_one(mm, address); 3881 if (!new) 3882 return -ENOMEM; 3883 3884 smp_wmb(); /* See comment in __pte_alloc */ 3885 3886 spin_lock(&mm->page_table_lock); 3887 #ifndef __ARCH_HAS_4LEVEL_HACK 3888 if (pud_present(*pud)) /* Another has populated it */ 3889 pmd_free(mm, new); 3890 else 3891 pud_populate(mm, pud, new); 3892 #else 3893 if (pgd_present(*pud)) /* Another has populated it */ 3894 pmd_free(mm, new); 3895 else 3896 pgd_populate(mm, pud, new); 3897 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3898 spin_unlock(&mm->page_table_lock); 3899 return 0; 3900 } 3901 #endif /* __PAGETABLE_PMD_FOLDED */ 3902 3903 #if !defined(__HAVE_ARCH_GATE_AREA) 3904 3905 #if defined(AT_SYSINFO_EHDR) 3906 static struct vm_area_struct gate_vma; 3907 3908 static int __init gate_vma_init(void) 3909 { 3910 gate_vma.vm_mm = NULL; 3911 gate_vma.vm_start = FIXADDR_USER_START; 3912 gate_vma.vm_end = FIXADDR_USER_END; 3913 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3914 gate_vma.vm_page_prot = __P101; 3915 3916 return 0; 3917 } 3918 __initcall(gate_vma_init); 3919 #endif 3920 3921 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3922 { 3923 #ifdef AT_SYSINFO_EHDR 3924 return &gate_vma; 3925 #else 3926 return NULL; 3927 #endif 3928 } 3929 3930 int in_gate_area_no_mm(unsigned long addr) 3931 { 3932 #ifdef AT_SYSINFO_EHDR 3933 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3934 return 1; 3935 #endif 3936 return 0; 3937 } 3938 3939 #endif /* __HAVE_ARCH_GATE_AREA */ 3940 3941 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3942 pte_t **ptepp, spinlock_t **ptlp) 3943 { 3944 pgd_t *pgd; 3945 pud_t *pud; 3946 pmd_t *pmd; 3947 pte_t *ptep; 3948 3949 pgd = pgd_offset(mm, address); 3950 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3951 goto out; 3952 3953 pud = pud_offset(pgd, address); 3954 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3955 goto out; 3956 3957 pmd = pmd_offset(pud, address); 3958 VM_BUG_ON(pmd_trans_huge(*pmd)); 3959 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3960 goto out; 3961 3962 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3963 if (pmd_huge(*pmd)) 3964 goto out; 3965 3966 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3967 if (!ptep) 3968 goto out; 3969 if (!pte_present(*ptep)) 3970 goto unlock; 3971 *ptepp = ptep; 3972 return 0; 3973 unlock: 3974 pte_unmap_unlock(ptep, *ptlp); 3975 out: 3976 return -EINVAL; 3977 } 3978 3979 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3980 pte_t **ptepp, spinlock_t **ptlp) 3981 { 3982 int res; 3983 3984 /* (void) is needed to make gcc happy */ 3985 (void) __cond_lock(*ptlp, 3986 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3987 return res; 3988 } 3989 3990 /** 3991 * follow_pfn - look up PFN at a user virtual address 3992 * @vma: memory mapping 3993 * @address: user virtual address 3994 * @pfn: location to store found PFN 3995 * 3996 * Only IO mappings and raw PFN mappings are allowed. 3997 * 3998 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3999 */ 4000 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4001 unsigned long *pfn) 4002 { 4003 int ret = -EINVAL; 4004 spinlock_t *ptl; 4005 pte_t *ptep; 4006 4007 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4008 return ret; 4009 4010 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4011 if (ret) 4012 return ret; 4013 *pfn = pte_pfn(*ptep); 4014 pte_unmap_unlock(ptep, ptl); 4015 return 0; 4016 } 4017 EXPORT_SYMBOL(follow_pfn); 4018 4019 #ifdef CONFIG_HAVE_IOREMAP_PROT 4020 int follow_phys(struct vm_area_struct *vma, 4021 unsigned long address, unsigned int flags, 4022 unsigned long *prot, resource_size_t *phys) 4023 { 4024 int ret = -EINVAL; 4025 pte_t *ptep, pte; 4026 spinlock_t *ptl; 4027 4028 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4029 goto out; 4030 4031 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4032 goto out; 4033 pte = *ptep; 4034 4035 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4036 goto unlock; 4037 4038 *prot = pgprot_val(pte_pgprot(pte)); 4039 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4040 4041 ret = 0; 4042 unlock: 4043 pte_unmap_unlock(ptep, ptl); 4044 out: 4045 return ret; 4046 } 4047 4048 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4049 void *buf, int len, int write) 4050 { 4051 resource_size_t phys_addr; 4052 unsigned long prot = 0; 4053 void __iomem *maddr; 4054 int offset = addr & (PAGE_SIZE-1); 4055 4056 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4057 return -EINVAL; 4058 4059 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 4060 if (write) 4061 memcpy_toio(maddr + offset, buf, len); 4062 else 4063 memcpy_fromio(buf, maddr + offset, len); 4064 iounmap(maddr); 4065 4066 return len; 4067 } 4068 #endif 4069 4070 /* 4071 * Access another process' address space as given in mm. If non-NULL, use the 4072 * given task for page fault accounting. 4073 */ 4074 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4075 unsigned long addr, void *buf, int len, int write) 4076 { 4077 struct vm_area_struct *vma; 4078 void *old_buf = buf; 4079 4080 down_read(&mm->mmap_sem); 4081 /* ignore errors, just check how much was successfully transferred */ 4082 while (len) { 4083 int bytes, ret, offset; 4084 void *maddr; 4085 struct page *page = NULL; 4086 4087 ret = get_user_pages(tsk, mm, addr, 1, 4088 write, 1, &page, &vma); 4089 if (ret <= 0) { 4090 /* 4091 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4092 * we can access using slightly different code. 4093 */ 4094 #ifdef CONFIG_HAVE_IOREMAP_PROT 4095 vma = find_vma(mm, addr); 4096 if (!vma || vma->vm_start > addr) 4097 break; 4098 if (vma->vm_ops && vma->vm_ops->access) 4099 ret = vma->vm_ops->access(vma, addr, buf, 4100 len, write); 4101 if (ret <= 0) 4102 #endif 4103 break; 4104 bytes = ret; 4105 } else { 4106 bytes = len; 4107 offset = addr & (PAGE_SIZE-1); 4108 if (bytes > PAGE_SIZE-offset) 4109 bytes = PAGE_SIZE-offset; 4110 4111 maddr = kmap(page); 4112 if (write) { 4113 copy_to_user_page(vma, page, addr, 4114 maddr + offset, buf, bytes); 4115 set_page_dirty_lock(page); 4116 } else { 4117 copy_from_user_page(vma, page, addr, 4118 buf, maddr + offset, bytes); 4119 } 4120 kunmap(page); 4121 page_cache_release(page); 4122 } 4123 len -= bytes; 4124 buf += bytes; 4125 addr += bytes; 4126 } 4127 up_read(&mm->mmap_sem); 4128 4129 return buf - old_buf; 4130 } 4131 4132 /** 4133 * access_remote_vm - access another process' address space 4134 * @mm: the mm_struct of the target address space 4135 * @addr: start address to access 4136 * @buf: source or destination buffer 4137 * @len: number of bytes to transfer 4138 * @write: whether the access is a write 4139 * 4140 * The caller must hold a reference on @mm. 4141 */ 4142 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4143 void *buf, int len, int write) 4144 { 4145 return __access_remote_vm(NULL, mm, addr, buf, len, write); 4146 } 4147 4148 /* 4149 * Access another process' address space. 4150 * Source/target buffer must be kernel space, 4151 * Do not walk the page table directly, use get_user_pages 4152 */ 4153 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4154 void *buf, int len, int write) 4155 { 4156 struct mm_struct *mm; 4157 int ret; 4158 4159 mm = get_task_mm(tsk); 4160 if (!mm) 4161 return 0; 4162 4163 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 4164 mmput(mm); 4165 4166 return ret; 4167 } 4168 4169 /* 4170 * Print the name of a VMA. 4171 */ 4172 void print_vma_addr(char *prefix, unsigned long ip) 4173 { 4174 struct mm_struct *mm = current->mm; 4175 struct vm_area_struct *vma; 4176 4177 /* 4178 * Do not print if we are in atomic 4179 * contexts (in exception stacks, etc.): 4180 */ 4181 if (preempt_count()) 4182 return; 4183 4184 down_read(&mm->mmap_sem); 4185 vma = find_vma(mm, ip); 4186 if (vma && vma->vm_file) { 4187 struct file *f = vma->vm_file; 4188 char *buf = (char *)__get_free_page(GFP_KERNEL); 4189 if (buf) { 4190 char *p; 4191 4192 p = d_path(&f->f_path, buf, PAGE_SIZE); 4193 if (IS_ERR(p)) 4194 p = "?"; 4195 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4196 vma->vm_start, 4197 vma->vm_end - vma->vm_start); 4198 free_page((unsigned long)buf); 4199 } 4200 } 4201 up_read(&mm->mmap_sem); 4202 } 4203 4204 #ifdef CONFIG_PROVE_LOCKING 4205 void might_fault(void) 4206 { 4207 /* 4208 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4209 * holding the mmap_sem, this is safe because kernel memory doesn't 4210 * get paged out, therefore we'll never actually fault, and the 4211 * below annotations will generate false positives. 4212 */ 4213 if (segment_eq(get_fs(), KERNEL_DS)) 4214 return; 4215 4216 might_sleep(); 4217 /* 4218 * it would be nicer only to annotate paths which are not under 4219 * pagefault_disable, however that requires a larger audit and 4220 * providing helpers like get_user_atomic. 4221 */ 4222 if (!in_atomic() && current->mm) 4223 might_lock_read(¤t->mm->mmap_sem); 4224 } 4225 EXPORT_SYMBOL(might_fault); 4226 #endif 4227 4228 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4229 static void clear_gigantic_page(struct page *page, 4230 unsigned long addr, 4231 unsigned int pages_per_huge_page) 4232 { 4233 int i; 4234 struct page *p = page; 4235 4236 might_sleep(); 4237 for (i = 0; i < pages_per_huge_page; 4238 i++, p = mem_map_next(p, page, i)) { 4239 cond_resched(); 4240 clear_user_highpage(p, addr + i * PAGE_SIZE); 4241 } 4242 } 4243 void clear_huge_page(struct page *page, 4244 unsigned long addr, unsigned int pages_per_huge_page) 4245 { 4246 int i; 4247 4248 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4249 clear_gigantic_page(page, addr, pages_per_huge_page); 4250 return; 4251 } 4252 4253 might_sleep(); 4254 for (i = 0; i < pages_per_huge_page; i++) { 4255 cond_resched(); 4256 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4257 } 4258 } 4259 4260 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4261 unsigned long addr, 4262 struct vm_area_struct *vma, 4263 unsigned int pages_per_huge_page) 4264 { 4265 int i; 4266 struct page *dst_base = dst; 4267 struct page *src_base = src; 4268 4269 for (i = 0; i < pages_per_huge_page; ) { 4270 cond_resched(); 4271 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4272 4273 i++; 4274 dst = mem_map_next(dst, dst_base, i); 4275 src = mem_map_next(src, src_base, i); 4276 } 4277 } 4278 4279 void copy_user_huge_page(struct page *dst, struct page *src, 4280 unsigned long addr, struct vm_area_struct *vma, 4281 unsigned int pages_per_huge_page) 4282 { 4283 int i; 4284 4285 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4286 copy_user_gigantic_page(dst, src, addr, vma, 4287 pages_per_huge_page); 4288 return; 4289 } 4290 4291 might_sleep(); 4292 for (i = 0; i < pages_per_huge_page; i++) { 4293 cond_resched(); 4294 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4295 } 4296 } 4297 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4298