xref: /openbmc/linux/mm/memory.c (revision 24b1944f)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69 
70 #include "internal.h"
71 
72 #ifdef LAST_NID_NOT_IN_PAGE_FLAGS
73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_nid.
74 #endif
75 
76 #ifndef CONFIG_NEED_MULTIPLE_NODES
77 /* use the per-pgdat data instead for discontigmem - mbligh */
78 unsigned long max_mapnr;
79 struct page *mem_map;
80 
81 EXPORT_SYMBOL(max_mapnr);
82 EXPORT_SYMBOL(mem_map);
83 #endif
84 
85 unsigned long num_physpages;
86 /*
87  * A number of key systems in x86 including ioremap() rely on the assumption
88  * that high_memory defines the upper bound on direct map memory, then end
89  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
90  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
91  * and ZONE_HIGHMEM.
92  */
93 void * high_memory;
94 
95 EXPORT_SYMBOL(num_physpages);
96 EXPORT_SYMBOL(high_memory);
97 
98 /*
99  * Randomize the address space (stacks, mmaps, brk, etc.).
100  *
101  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102  *   as ancient (libc5 based) binaries can segfault. )
103  */
104 int randomize_va_space __read_mostly =
105 #ifdef CONFIG_COMPAT_BRK
106 					1;
107 #else
108 					2;
109 #endif
110 
111 static int __init disable_randmaps(char *s)
112 {
113 	randomize_va_space = 0;
114 	return 1;
115 }
116 __setup("norandmaps", disable_randmaps);
117 
118 unsigned long zero_pfn __read_mostly;
119 unsigned long highest_memmap_pfn __read_mostly;
120 
121 /*
122  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
123  */
124 static int __init init_zero_pfn(void)
125 {
126 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
127 	return 0;
128 }
129 core_initcall(init_zero_pfn);
130 
131 
132 #if defined(SPLIT_RSS_COUNTING)
133 
134 void sync_mm_rss(struct mm_struct *mm)
135 {
136 	int i;
137 
138 	for (i = 0; i < NR_MM_COUNTERS; i++) {
139 		if (current->rss_stat.count[i]) {
140 			add_mm_counter(mm, i, current->rss_stat.count[i]);
141 			current->rss_stat.count[i] = 0;
142 		}
143 	}
144 	current->rss_stat.events = 0;
145 }
146 
147 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
148 {
149 	struct task_struct *task = current;
150 
151 	if (likely(task->mm == mm))
152 		task->rss_stat.count[member] += val;
153 	else
154 		add_mm_counter(mm, member, val);
155 }
156 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
157 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
158 
159 /* sync counter once per 64 page faults */
160 #define TASK_RSS_EVENTS_THRESH	(64)
161 static void check_sync_rss_stat(struct task_struct *task)
162 {
163 	if (unlikely(task != current))
164 		return;
165 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
166 		sync_mm_rss(task->mm);
167 }
168 #else /* SPLIT_RSS_COUNTING */
169 
170 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
171 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
172 
173 static void check_sync_rss_stat(struct task_struct *task)
174 {
175 }
176 
177 #endif /* SPLIT_RSS_COUNTING */
178 
179 #ifdef HAVE_GENERIC_MMU_GATHER
180 
181 static int tlb_next_batch(struct mmu_gather *tlb)
182 {
183 	struct mmu_gather_batch *batch;
184 
185 	batch = tlb->active;
186 	if (batch->next) {
187 		tlb->active = batch->next;
188 		return 1;
189 	}
190 
191 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
192 		return 0;
193 
194 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
195 	if (!batch)
196 		return 0;
197 
198 	tlb->batch_count++;
199 	batch->next = NULL;
200 	batch->nr   = 0;
201 	batch->max  = MAX_GATHER_BATCH;
202 
203 	tlb->active->next = batch;
204 	tlb->active = batch;
205 
206 	return 1;
207 }
208 
209 /* tlb_gather_mmu
210  *	Called to initialize an (on-stack) mmu_gather structure for page-table
211  *	tear-down from @mm. The @fullmm argument is used when @mm is without
212  *	users and we're going to destroy the full address space (exit/execve).
213  */
214 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
215 {
216 	tlb->mm = mm;
217 
218 	tlb->fullmm     = fullmm;
219 	tlb->need_flush_all = 0;
220 	tlb->start	= -1UL;
221 	tlb->end	= 0;
222 	tlb->need_flush = 0;
223 	tlb->local.next = NULL;
224 	tlb->local.nr   = 0;
225 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
226 	tlb->active     = &tlb->local;
227 	tlb->batch_count = 0;
228 
229 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
230 	tlb->batch = NULL;
231 #endif
232 }
233 
234 void tlb_flush_mmu(struct mmu_gather *tlb)
235 {
236 	struct mmu_gather_batch *batch;
237 
238 	if (!tlb->need_flush)
239 		return;
240 	tlb->need_flush = 0;
241 	tlb_flush(tlb);
242 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
243 	tlb_table_flush(tlb);
244 #endif
245 
246 	for (batch = &tlb->local; batch; batch = batch->next) {
247 		free_pages_and_swap_cache(batch->pages, batch->nr);
248 		batch->nr = 0;
249 	}
250 	tlb->active = &tlb->local;
251 }
252 
253 /* tlb_finish_mmu
254  *	Called at the end of the shootdown operation to free up any resources
255  *	that were required.
256  */
257 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
258 {
259 	struct mmu_gather_batch *batch, *next;
260 
261 	tlb->start = start;
262 	tlb->end   = end;
263 	tlb_flush_mmu(tlb);
264 
265 	/* keep the page table cache within bounds */
266 	check_pgt_cache();
267 
268 	for (batch = tlb->local.next; batch; batch = next) {
269 		next = batch->next;
270 		free_pages((unsigned long)batch, 0);
271 	}
272 	tlb->local.next = NULL;
273 }
274 
275 /* __tlb_remove_page
276  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
277  *	handling the additional races in SMP caused by other CPUs caching valid
278  *	mappings in their TLBs. Returns the number of free page slots left.
279  *	When out of page slots we must call tlb_flush_mmu().
280  */
281 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
282 {
283 	struct mmu_gather_batch *batch;
284 
285 	VM_BUG_ON(!tlb->need_flush);
286 
287 	batch = tlb->active;
288 	batch->pages[batch->nr++] = page;
289 	if (batch->nr == batch->max) {
290 		if (!tlb_next_batch(tlb))
291 			return 0;
292 		batch = tlb->active;
293 	}
294 	VM_BUG_ON(batch->nr > batch->max);
295 
296 	return batch->max - batch->nr;
297 }
298 
299 #endif /* HAVE_GENERIC_MMU_GATHER */
300 
301 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
302 
303 /*
304  * See the comment near struct mmu_table_batch.
305  */
306 
307 static void tlb_remove_table_smp_sync(void *arg)
308 {
309 	/* Simply deliver the interrupt */
310 }
311 
312 static void tlb_remove_table_one(void *table)
313 {
314 	/*
315 	 * This isn't an RCU grace period and hence the page-tables cannot be
316 	 * assumed to be actually RCU-freed.
317 	 *
318 	 * It is however sufficient for software page-table walkers that rely on
319 	 * IRQ disabling. See the comment near struct mmu_table_batch.
320 	 */
321 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
322 	__tlb_remove_table(table);
323 }
324 
325 static void tlb_remove_table_rcu(struct rcu_head *head)
326 {
327 	struct mmu_table_batch *batch;
328 	int i;
329 
330 	batch = container_of(head, struct mmu_table_batch, rcu);
331 
332 	for (i = 0; i < batch->nr; i++)
333 		__tlb_remove_table(batch->tables[i]);
334 
335 	free_page((unsigned long)batch);
336 }
337 
338 void tlb_table_flush(struct mmu_gather *tlb)
339 {
340 	struct mmu_table_batch **batch = &tlb->batch;
341 
342 	if (*batch) {
343 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
344 		*batch = NULL;
345 	}
346 }
347 
348 void tlb_remove_table(struct mmu_gather *tlb, void *table)
349 {
350 	struct mmu_table_batch **batch = &tlb->batch;
351 
352 	tlb->need_flush = 1;
353 
354 	/*
355 	 * When there's less then two users of this mm there cannot be a
356 	 * concurrent page-table walk.
357 	 */
358 	if (atomic_read(&tlb->mm->mm_users) < 2) {
359 		__tlb_remove_table(table);
360 		return;
361 	}
362 
363 	if (*batch == NULL) {
364 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
365 		if (*batch == NULL) {
366 			tlb_remove_table_one(table);
367 			return;
368 		}
369 		(*batch)->nr = 0;
370 	}
371 	(*batch)->tables[(*batch)->nr++] = table;
372 	if ((*batch)->nr == MAX_TABLE_BATCH)
373 		tlb_table_flush(tlb);
374 }
375 
376 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
377 
378 /*
379  * If a p?d_bad entry is found while walking page tables, report
380  * the error, before resetting entry to p?d_none.  Usually (but
381  * very seldom) called out from the p?d_none_or_clear_bad macros.
382  */
383 
384 void pgd_clear_bad(pgd_t *pgd)
385 {
386 	pgd_ERROR(*pgd);
387 	pgd_clear(pgd);
388 }
389 
390 void pud_clear_bad(pud_t *pud)
391 {
392 	pud_ERROR(*pud);
393 	pud_clear(pud);
394 }
395 
396 void pmd_clear_bad(pmd_t *pmd)
397 {
398 	pmd_ERROR(*pmd);
399 	pmd_clear(pmd);
400 }
401 
402 /*
403  * Note: this doesn't free the actual pages themselves. That
404  * has been handled earlier when unmapping all the memory regions.
405  */
406 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
407 			   unsigned long addr)
408 {
409 	pgtable_t token = pmd_pgtable(*pmd);
410 	pmd_clear(pmd);
411 	pte_free_tlb(tlb, token, addr);
412 	tlb->mm->nr_ptes--;
413 }
414 
415 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
416 				unsigned long addr, unsigned long end,
417 				unsigned long floor, unsigned long ceiling)
418 {
419 	pmd_t *pmd;
420 	unsigned long next;
421 	unsigned long start;
422 
423 	start = addr;
424 	pmd = pmd_offset(pud, addr);
425 	do {
426 		next = pmd_addr_end(addr, end);
427 		if (pmd_none_or_clear_bad(pmd))
428 			continue;
429 		free_pte_range(tlb, pmd, addr);
430 	} while (pmd++, addr = next, addr != end);
431 
432 	start &= PUD_MASK;
433 	if (start < floor)
434 		return;
435 	if (ceiling) {
436 		ceiling &= PUD_MASK;
437 		if (!ceiling)
438 			return;
439 	}
440 	if (end - 1 > ceiling - 1)
441 		return;
442 
443 	pmd = pmd_offset(pud, start);
444 	pud_clear(pud);
445 	pmd_free_tlb(tlb, pmd, start);
446 }
447 
448 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
449 				unsigned long addr, unsigned long end,
450 				unsigned long floor, unsigned long ceiling)
451 {
452 	pud_t *pud;
453 	unsigned long next;
454 	unsigned long start;
455 
456 	start = addr;
457 	pud = pud_offset(pgd, addr);
458 	do {
459 		next = pud_addr_end(addr, end);
460 		if (pud_none_or_clear_bad(pud))
461 			continue;
462 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
463 	} while (pud++, addr = next, addr != end);
464 
465 	start &= PGDIR_MASK;
466 	if (start < floor)
467 		return;
468 	if (ceiling) {
469 		ceiling &= PGDIR_MASK;
470 		if (!ceiling)
471 			return;
472 	}
473 	if (end - 1 > ceiling - 1)
474 		return;
475 
476 	pud = pud_offset(pgd, start);
477 	pgd_clear(pgd);
478 	pud_free_tlb(tlb, pud, start);
479 }
480 
481 /*
482  * This function frees user-level page tables of a process.
483  *
484  * Must be called with pagetable lock held.
485  */
486 void free_pgd_range(struct mmu_gather *tlb,
487 			unsigned long addr, unsigned long end,
488 			unsigned long floor, unsigned long ceiling)
489 {
490 	pgd_t *pgd;
491 	unsigned long next;
492 
493 	/*
494 	 * The next few lines have given us lots of grief...
495 	 *
496 	 * Why are we testing PMD* at this top level?  Because often
497 	 * there will be no work to do at all, and we'd prefer not to
498 	 * go all the way down to the bottom just to discover that.
499 	 *
500 	 * Why all these "- 1"s?  Because 0 represents both the bottom
501 	 * of the address space and the top of it (using -1 for the
502 	 * top wouldn't help much: the masks would do the wrong thing).
503 	 * The rule is that addr 0 and floor 0 refer to the bottom of
504 	 * the address space, but end 0 and ceiling 0 refer to the top
505 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
506 	 * that end 0 case should be mythical).
507 	 *
508 	 * Wherever addr is brought up or ceiling brought down, we must
509 	 * be careful to reject "the opposite 0" before it confuses the
510 	 * subsequent tests.  But what about where end is brought down
511 	 * by PMD_SIZE below? no, end can't go down to 0 there.
512 	 *
513 	 * Whereas we round start (addr) and ceiling down, by different
514 	 * masks at different levels, in order to test whether a table
515 	 * now has no other vmas using it, so can be freed, we don't
516 	 * bother to round floor or end up - the tests don't need that.
517 	 */
518 
519 	addr &= PMD_MASK;
520 	if (addr < floor) {
521 		addr += PMD_SIZE;
522 		if (!addr)
523 			return;
524 	}
525 	if (ceiling) {
526 		ceiling &= PMD_MASK;
527 		if (!ceiling)
528 			return;
529 	}
530 	if (end - 1 > ceiling - 1)
531 		end -= PMD_SIZE;
532 	if (addr > end - 1)
533 		return;
534 
535 	pgd = pgd_offset(tlb->mm, addr);
536 	do {
537 		next = pgd_addr_end(addr, end);
538 		if (pgd_none_or_clear_bad(pgd))
539 			continue;
540 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
541 	} while (pgd++, addr = next, addr != end);
542 }
543 
544 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
545 		unsigned long floor, unsigned long ceiling)
546 {
547 	while (vma) {
548 		struct vm_area_struct *next = vma->vm_next;
549 		unsigned long addr = vma->vm_start;
550 
551 		/*
552 		 * Hide vma from rmap and truncate_pagecache before freeing
553 		 * pgtables
554 		 */
555 		unlink_anon_vmas(vma);
556 		unlink_file_vma(vma);
557 
558 		if (is_vm_hugetlb_page(vma)) {
559 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
560 				floor, next? next->vm_start: ceiling);
561 		} else {
562 			/*
563 			 * Optimization: gather nearby vmas into one call down
564 			 */
565 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
566 			       && !is_vm_hugetlb_page(next)) {
567 				vma = next;
568 				next = vma->vm_next;
569 				unlink_anon_vmas(vma);
570 				unlink_file_vma(vma);
571 			}
572 			free_pgd_range(tlb, addr, vma->vm_end,
573 				floor, next? next->vm_start: ceiling);
574 		}
575 		vma = next;
576 	}
577 }
578 
579 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
580 		pmd_t *pmd, unsigned long address)
581 {
582 	pgtable_t new = pte_alloc_one(mm, address);
583 	int wait_split_huge_page;
584 	if (!new)
585 		return -ENOMEM;
586 
587 	/*
588 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
589 	 * visible before the pte is made visible to other CPUs by being
590 	 * put into page tables.
591 	 *
592 	 * The other side of the story is the pointer chasing in the page
593 	 * table walking code (when walking the page table without locking;
594 	 * ie. most of the time). Fortunately, these data accesses consist
595 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
596 	 * being the notable exception) will already guarantee loads are
597 	 * seen in-order. See the alpha page table accessors for the
598 	 * smp_read_barrier_depends() barriers in page table walking code.
599 	 */
600 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
601 
602 	spin_lock(&mm->page_table_lock);
603 	wait_split_huge_page = 0;
604 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
605 		mm->nr_ptes++;
606 		pmd_populate(mm, pmd, new);
607 		new = NULL;
608 	} else if (unlikely(pmd_trans_splitting(*pmd)))
609 		wait_split_huge_page = 1;
610 	spin_unlock(&mm->page_table_lock);
611 	if (new)
612 		pte_free(mm, new);
613 	if (wait_split_huge_page)
614 		wait_split_huge_page(vma->anon_vma, pmd);
615 	return 0;
616 }
617 
618 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
619 {
620 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
621 	if (!new)
622 		return -ENOMEM;
623 
624 	smp_wmb(); /* See comment in __pte_alloc */
625 
626 	spin_lock(&init_mm.page_table_lock);
627 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
628 		pmd_populate_kernel(&init_mm, pmd, new);
629 		new = NULL;
630 	} else
631 		VM_BUG_ON(pmd_trans_splitting(*pmd));
632 	spin_unlock(&init_mm.page_table_lock);
633 	if (new)
634 		pte_free_kernel(&init_mm, new);
635 	return 0;
636 }
637 
638 static inline void init_rss_vec(int *rss)
639 {
640 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
641 }
642 
643 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
644 {
645 	int i;
646 
647 	if (current->mm == mm)
648 		sync_mm_rss(mm);
649 	for (i = 0; i < NR_MM_COUNTERS; i++)
650 		if (rss[i])
651 			add_mm_counter(mm, i, rss[i]);
652 }
653 
654 /*
655  * This function is called to print an error when a bad pte
656  * is found. For example, we might have a PFN-mapped pte in
657  * a region that doesn't allow it.
658  *
659  * The calling function must still handle the error.
660  */
661 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
662 			  pte_t pte, struct page *page)
663 {
664 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
665 	pud_t *pud = pud_offset(pgd, addr);
666 	pmd_t *pmd = pmd_offset(pud, addr);
667 	struct address_space *mapping;
668 	pgoff_t index;
669 	static unsigned long resume;
670 	static unsigned long nr_shown;
671 	static unsigned long nr_unshown;
672 
673 	/*
674 	 * Allow a burst of 60 reports, then keep quiet for that minute;
675 	 * or allow a steady drip of one report per second.
676 	 */
677 	if (nr_shown == 60) {
678 		if (time_before(jiffies, resume)) {
679 			nr_unshown++;
680 			return;
681 		}
682 		if (nr_unshown) {
683 			printk(KERN_ALERT
684 				"BUG: Bad page map: %lu messages suppressed\n",
685 				nr_unshown);
686 			nr_unshown = 0;
687 		}
688 		nr_shown = 0;
689 	}
690 	if (nr_shown++ == 0)
691 		resume = jiffies + 60 * HZ;
692 
693 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
694 	index = linear_page_index(vma, addr);
695 
696 	printk(KERN_ALERT
697 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
698 		current->comm,
699 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
700 	if (page)
701 		dump_page(page);
702 	printk(KERN_ALERT
703 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
704 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
705 	/*
706 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
707 	 */
708 	if (vma->vm_ops)
709 		printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
710 		       vma->vm_ops->fault);
711 	if (vma->vm_file && vma->vm_file->f_op)
712 		printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
713 		       vma->vm_file->f_op->mmap);
714 	dump_stack();
715 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
716 }
717 
718 static inline bool is_cow_mapping(vm_flags_t flags)
719 {
720 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
721 }
722 
723 /*
724  * vm_normal_page -- This function gets the "struct page" associated with a pte.
725  *
726  * "Special" mappings do not wish to be associated with a "struct page" (either
727  * it doesn't exist, or it exists but they don't want to touch it). In this
728  * case, NULL is returned here. "Normal" mappings do have a struct page.
729  *
730  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
731  * pte bit, in which case this function is trivial. Secondly, an architecture
732  * may not have a spare pte bit, which requires a more complicated scheme,
733  * described below.
734  *
735  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
736  * special mapping (even if there are underlying and valid "struct pages").
737  * COWed pages of a VM_PFNMAP are always normal.
738  *
739  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
740  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
741  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
742  * mapping will always honor the rule
743  *
744  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
745  *
746  * And for normal mappings this is false.
747  *
748  * This restricts such mappings to be a linear translation from virtual address
749  * to pfn. To get around this restriction, we allow arbitrary mappings so long
750  * as the vma is not a COW mapping; in that case, we know that all ptes are
751  * special (because none can have been COWed).
752  *
753  *
754  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
755  *
756  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
757  * page" backing, however the difference is that _all_ pages with a struct
758  * page (that is, those where pfn_valid is true) are refcounted and considered
759  * normal pages by the VM. The disadvantage is that pages are refcounted
760  * (which can be slower and simply not an option for some PFNMAP users). The
761  * advantage is that we don't have to follow the strict linearity rule of
762  * PFNMAP mappings in order to support COWable mappings.
763  *
764  */
765 #ifdef __HAVE_ARCH_PTE_SPECIAL
766 # define HAVE_PTE_SPECIAL 1
767 #else
768 # define HAVE_PTE_SPECIAL 0
769 #endif
770 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
771 				pte_t pte)
772 {
773 	unsigned long pfn = pte_pfn(pte);
774 
775 	if (HAVE_PTE_SPECIAL) {
776 		if (likely(!pte_special(pte)))
777 			goto check_pfn;
778 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
779 			return NULL;
780 		if (!is_zero_pfn(pfn))
781 			print_bad_pte(vma, addr, pte, NULL);
782 		return NULL;
783 	}
784 
785 	/* !HAVE_PTE_SPECIAL case follows: */
786 
787 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
788 		if (vma->vm_flags & VM_MIXEDMAP) {
789 			if (!pfn_valid(pfn))
790 				return NULL;
791 			goto out;
792 		} else {
793 			unsigned long off;
794 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
795 			if (pfn == vma->vm_pgoff + off)
796 				return NULL;
797 			if (!is_cow_mapping(vma->vm_flags))
798 				return NULL;
799 		}
800 	}
801 
802 	if (is_zero_pfn(pfn))
803 		return NULL;
804 check_pfn:
805 	if (unlikely(pfn > highest_memmap_pfn)) {
806 		print_bad_pte(vma, addr, pte, NULL);
807 		return NULL;
808 	}
809 
810 	/*
811 	 * NOTE! We still have PageReserved() pages in the page tables.
812 	 * eg. VDSO mappings can cause them to exist.
813 	 */
814 out:
815 	return pfn_to_page(pfn);
816 }
817 
818 /*
819  * copy one vm_area from one task to the other. Assumes the page tables
820  * already present in the new task to be cleared in the whole range
821  * covered by this vma.
822  */
823 
824 static inline unsigned long
825 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
826 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
827 		unsigned long addr, int *rss)
828 {
829 	unsigned long vm_flags = vma->vm_flags;
830 	pte_t pte = *src_pte;
831 	struct page *page;
832 
833 	/* pte contains position in swap or file, so copy. */
834 	if (unlikely(!pte_present(pte))) {
835 		if (!pte_file(pte)) {
836 			swp_entry_t entry = pte_to_swp_entry(pte);
837 
838 			if (swap_duplicate(entry) < 0)
839 				return entry.val;
840 
841 			/* make sure dst_mm is on swapoff's mmlist. */
842 			if (unlikely(list_empty(&dst_mm->mmlist))) {
843 				spin_lock(&mmlist_lock);
844 				if (list_empty(&dst_mm->mmlist))
845 					list_add(&dst_mm->mmlist,
846 						 &src_mm->mmlist);
847 				spin_unlock(&mmlist_lock);
848 			}
849 			if (likely(!non_swap_entry(entry)))
850 				rss[MM_SWAPENTS]++;
851 			else if (is_migration_entry(entry)) {
852 				page = migration_entry_to_page(entry);
853 
854 				if (PageAnon(page))
855 					rss[MM_ANONPAGES]++;
856 				else
857 					rss[MM_FILEPAGES]++;
858 
859 				if (is_write_migration_entry(entry) &&
860 				    is_cow_mapping(vm_flags)) {
861 					/*
862 					 * COW mappings require pages in both
863 					 * parent and child to be set to read.
864 					 */
865 					make_migration_entry_read(&entry);
866 					pte = swp_entry_to_pte(entry);
867 					set_pte_at(src_mm, addr, src_pte, pte);
868 				}
869 			}
870 		}
871 		goto out_set_pte;
872 	}
873 
874 	/*
875 	 * If it's a COW mapping, write protect it both
876 	 * in the parent and the child
877 	 */
878 	if (is_cow_mapping(vm_flags)) {
879 		ptep_set_wrprotect(src_mm, addr, src_pte);
880 		pte = pte_wrprotect(pte);
881 	}
882 
883 	/*
884 	 * If it's a shared mapping, mark it clean in
885 	 * the child
886 	 */
887 	if (vm_flags & VM_SHARED)
888 		pte = pte_mkclean(pte);
889 	pte = pte_mkold(pte);
890 
891 	page = vm_normal_page(vma, addr, pte);
892 	if (page) {
893 		get_page(page);
894 		page_dup_rmap(page);
895 		if (PageAnon(page))
896 			rss[MM_ANONPAGES]++;
897 		else
898 			rss[MM_FILEPAGES]++;
899 	}
900 
901 out_set_pte:
902 	set_pte_at(dst_mm, addr, dst_pte, pte);
903 	return 0;
904 }
905 
906 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
907 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
908 		   unsigned long addr, unsigned long end)
909 {
910 	pte_t *orig_src_pte, *orig_dst_pte;
911 	pte_t *src_pte, *dst_pte;
912 	spinlock_t *src_ptl, *dst_ptl;
913 	int progress = 0;
914 	int rss[NR_MM_COUNTERS];
915 	swp_entry_t entry = (swp_entry_t){0};
916 
917 again:
918 	init_rss_vec(rss);
919 
920 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
921 	if (!dst_pte)
922 		return -ENOMEM;
923 	src_pte = pte_offset_map(src_pmd, addr);
924 	src_ptl = pte_lockptr(src_mm, src_pmd);
925 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
926 	orig_src_pte = src_pte;
927 	orig_dst_pte = dst_pte;
928 	arch_enter_lazy_mmu_mode();
929 
930 	do {
931 		/*
932 		 * We are holding two locks at this point - either of them
933 		 * could generate latencies in another task on another CPU.
934 		 */
935 		if (progress >= 32) {
936 			progress = 0;
937 			if (need_resched() ||
938 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
939 				break;
940 		}
941 		if (pte_none(*src_pte)) {
942 			progress++;
943 			continue;
944 		}
945 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
946 							vma, addr, rss);
947 		if (entry.val)
948 			break;
949 		progress += 8;
950 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
951 
952 	arch_leave_lazy_mmu_mode();
953 	spin_unlock(src_ptl);
954 	pte_unmap(orig_src_pte);
955 	add_mm_rss_vec(dst_mm, rss);
956 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
957 	cond_resched();
958 
959 	if (entry.val) {
960 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
961 			return -ENOMEM;
962 		progress = 0;
963 	}
964 	if (addr != end)
965 		goto again;
966 	return 0;
967 }
968 
969 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
970 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
971 		unsigned long addr, unsigned long end)
972 {
973 	pmd_t *src_pmd, *dst_pmd;
974 	unsigned long next;
975 
976 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
977 	if (!dst_pmd)
978 		return -ENOMEM;
979 	src_pmd = pmd_offset(src_pud, addr);
980 	do {
981 		next = pmd_addr_end(addr, end);
982 		if (pmd_trans_huge(*src_pmd)) {
983 			int err;
984 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
985 			err = copy_huge_pmd(dst_mm, src_mm,
986 					    dst_pmd, src_pmd, addr, vma);
987 			if (err == -ENOMEM)
988 				return -ENOMEM;
989 			if (!err)
990 				continue;
991 			/* fall through */
992 		}
993 		if (pmd_none_or_clear_bad(src_pmd))
994 			continue;
995 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
996 						vma, addr, next))
997 			return -ENOMEM;
998 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
999 	return 0;
1000 }
1001 
1002 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1003 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1004 		unsigned long addr, unsigned long end)
1005 {
1006 	pud_t *src_pud, *dst_pud;
1007 	unsigned long next;
1008 
1009 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1010 	if (!dst_pud)
1011 		return -ENOMEM;
1012 	src_pud = pud_offset(src_pgd, addr);
1013 	do {
1014 		next = pud_addr_end(addr, end);
1015 		if (pud_none_or_clear_bad(src_pud))
1016 			continue;
1017 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1018 						vma, addr, next))
1019 			return -ENOMEM;
1020 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1021 	return 0;
1022 }
1023 
1024 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025 		struct vm_area_struct *vma)
1026 {
1027 	pgd_t *src_pgd, *dst_pgd;
1028 	unsigned long next;
1029 	unsigned long addr = vma->vm_start;
1030 	unsigned long end = vma->vm_end;
1031 	unsigned long mmun_start;	/* For mmu_notifiers */
1032 	unsigned long mmun_end;		/* For mmu_notifiers */
1033 	bool is_cow;
1034 	int ret;
1035 
1036 	/*
1037 	 * Don't copy ptes where a page fault will fill them correctly.
1038 	 * Fork becomes much lighter when there are big shared or private
1039 	 * readonly mappings. The tradeoff is that copy_page_range is more
1040 	 * efficient than faulting.
1041 	 */
1042 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1043 			       VM_PFNMAP | VM_MIXEDMAP))) {
1044 		if (!vma->anon_vma)
1045 			return 0;
1046 	}
1047 
1048 	if (is_vm_hugetlb_page(vma))
1049 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1050 
1051 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1052 		/*
1053 		 * We do not free on error cases below as remove_vma
1054 		 * gets called on error from higher level routine
1055 		 */
1056 		ret = track_pfn_copy(vma);
1057 		if (ret)
1058 			return ret;
1059 	}
1060 
1061 	/*
1062 	 * We need to invalidate the secondary MMU mappings only when
1063 	 * there could be a permission downgrade on the ptes of the
1064 	 * parent mm. And a permission downgrade will only happen if
1065 	 * is_cow_mapping() returns true.
1066 	 */
1067 	is_cow = is_cow_mapping(vma->vm_flags);
1068 	mmun_start = addr;
1069 	mmun_end   = end;
1070 	if (is_cow)
1071 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1072 						    mmun_end);
1073 
1074 	ret = 0;
1075 	dst_pgd = pgd_offset(dst_mm, addr);
1076 	src_pgd = pgd_offset(src_mm, addr);
1077 	do {
1078 		next = pgd_addr_end(addr, end);
1079 		if (pgd_none_or_clear_bad(src_pgd))
1080 			continue;
1081 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1082 					    vma, addr, next))) {
1083 			ret = -ENOMEM;
1084 			break;
1085 		}
1086 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1087 
1088 	if (is_cow)
1089 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1090 	return ret;
1091 }
1092 
1093 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1094 				struct vm_area_struct *vma, pmd_t *pmd,
1095 				unsigned long addr, unsigned long end,
1096 				struct zap_details *details)
1097 {
1098 	struct mm_struct *mm = tlb->mm;
1099 	int force_flush = 0;
1100 	int rss[NR_MM_COUNTERS];
1101 	spinlock_t *ptl;
1102 	pte_t *start_pte;
1103 	pte_t *pte;
1104 
1105 again:
1106 	init_rss_vec(rss);
1107 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1108 	pte = start_pte;
1109 	arch_enter_lazy_mmu_mode();
1110 	do {
1111 		pte_t ptent = *pte;
1112 		if (pte_none(ptent)) {
1113 			continue;
1114 		}
1115 
1116 		if (pte_present(ptent)) {
1117 			struct page *page;
1118 
1119 			page = vm_normal_page(vma, addr, ptent);
1120 			if (unlikely(details) && page) {
1121 				/*
1122 				 * unmap_shared_mapping_pages() wants to
1123 				 * invalidate cache without truncating:
1124 				 * unmap shared but keep private pages.
1125 				 */
1126 				if (details->check_mapping &&
1127 				    details->check_mapping != page->mapping)
1128 					continue;
1129 				/*
1130 				 * Each page->index must be checked when
1131 				 * invalidating or truncating nonlinear.
1132 				 */
1133 				if (details->nonlinear_vma &&
1134 				    (page->index < details->first_index ||
1135 				     page->index > details->last_index))
1136 					continue;
1137 			}
1138 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1139 							tlb->fullmm);
1140 			tlb_remove_tlb_entry(tlb, pte, addr);
1141 			if (unlikely(!page))
1142 				continue;
1143 			if (unlikely(details) && details->nonlinear_vma
1144 			    && linear_page_index(details->nonlinear_vma,
1145 						addr) != page->index)
1146 				set_pte_at(mm, addr, pte,
1147 					   pgoff_to_pte(page->index));
1148 			if (PageAnon(page))
1149 				rss[MM_ANONPAGES]--;
1150 			else {
1151 				if (pte_dirty(ptent))
1152 					set_page_dirty(page);
1153 				if (pte_young(ptent) &&
1154 				    likely(!VM_SequentialReadHint(vma)))
1155 					mark_page_accessed(page);
1156 				rss[MM_FILEPAGES]--;
1157 			}
1158 			page_remove_rmap(page);
1159 			if (unlikely(page_mapcount(page) < 0))
1160 				print_bad_pte(vma, addr, ptent, page);
1161 			force_flush = !__tlb_remove_page(tlb, page);
1162 			if (force_flush)
1163 				break;
1164 			continue;
1165 		}
1166 		/*
1167 		 * If details->check_mapping, we leave swap entries;
1168 		 * if details->nonlinear_vma, we leave file entries.
1169 		 */
1170 		if (unlikely(details))
1171 			continue;
1172 		if (pte_file(ptent)) {
1173 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1174 				print_bad_pte(vma, addr, ptent, NULL);
1175 		} else {
1176 			swp_entry_t entry = pte_to_swp_entry(ptent);
1177 
1178 			if (!non_swap_entry(entry))
1179 				rss[MM_SWAPENTS]--;
1180 			else if (is_migration_entry(entry)) {
1181 				struct page *page;
1182 
1183 				page = migration_entry_to_page(entry);
1184 
1185 				if (PageAnon(page))
1186 					rss[MM_ANONPAGES]--;
1187 				else
1188 					rss[MM_FILEPAGES]--;
1189 			}
1190 			if (unlikely(!free_swap_and_cache(entry)))
1191 				print_bad_pte(vma, addr, ptent, NULL);
1192 		}
1193 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1194 	} while (pte++, addr += PAGE_SIZE, addr != end);
1195 
1196 	add_mm_rss_vec(mm, rss);
1197 	arch_leave_lazy_mmu_mode();
1198 	pte_unmap_unlock(start_pte, ptl);
1199 
1200 	/*
1201 	 * mmu_gather ran out of room to batch pages, we break out of
1202 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1203 	 * and page-free while holding it.
1204 	 */
1205 	if (force_flush) {
1206 		force_flush = 0;
1207 
1208 #ifdef HAVE_GENERIC_MMU_GATHER
1209 		tlb->start = addr;
1210 		tlb->end = end;
1211 #endif
1212 		tlb_flush_mmu(tlb);
1213 		if (addr != end)
1214 			goto again;
1215 	}
1216 
1217 	return addr;
1218 }
1219 
1220 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1221 				struct vm_area_struct *vma, pud_t *pud,
1222 				unsigned long addr, unsigned long end,
1223 				struct zap_details *details)
1224 {
1225 	pmd_t *pmd;
1226 	unsigned long next;
1227 
1228 	pmd = pmd_offset(pud, addr);
1229 	do {
1230 		next = pmd_addr_end(addr, end);
1231 		if (pmd_trans_huge(*pmd)) {
1232 			if (next - addr != HPAGE_PMD_SIZE) {
1233 #ifdef CONFIG_DEBUG_VM
1234 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1235 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1236 						__func__, addr, end,
1237 						vma->vm_start,
1238 						vma->vm_end);
1239 					BUG();
1240 				}
1241 #endif
1242 				split_huge_page_pmd(vma, addr, pmd);
1243 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1244 				goto next;
1245 			/* fall through */
1246 		}
1247 		/*
1248 		 * Here there can be other concurrent MADV_DONTNEED or
1249 		 * trans huge page faults running, and if the pmd is
1250 		 * none or trans huge it can change under us. This is
1251 		 * because MADV_DONTNEED holds the mmap_sem in read
1252 		 * mode.
1253 		 */
1254 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1255 			goto next;
1256 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1257 next:
1258 		cond_resched();
1259 	} while (pmd++, addr = next, addr != end);
1260 
1261 	return addr;
1262 }
1263 
1264 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1265 				struct vm_area_struct *vma, pgd_t *pgd,
1266 				unsigned long addr, unsigned long end,
1267 				struct zap_details *details)
1268 {
1269 	pud_t *pud;
1270 	unsigned long next;
1271 
1272 	pud = pud_offset(pgd, addr);
1273 	do {
1274 		next = pud_addr_end(addr, end);
1275 		if (pud_none_or_clear_bad(pud))
1276 			continue;
1277 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1278 	} while (pud++, addr = next, addr != end);
1279 
1280 	return addr;
1281 }
1282 
1283 static void unmap_page_range(struct mmu_gather *tlb,
1284 			     struct vm_area_struct *vma,
1285 			     unsigned long addr, unsigned long end,
1286 			     struct zap_details *details)
1287 {
1288 	pgd_t *pgd;
1289 	unsigned long next;
1290 
1291 	if (details && !details->check_mapping && !details->nonlinear_vma)
1292 		details = NULL;
1293 
1294 	BUG_ON(addr >= end);
1295 	mem_cgroup_uncharge_start();
1296 	tlb_start_vma(tlb, vma);
1297 	pgd = pgd_offset(vma->vm_mm, addr);
1298 	do {
1299 		next = pgd_addr_end(addr, end);
1300 		if (pgd_none_or_clear_bad(pgd))
1301 			continue;
1302 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1303 	} while (pgd++, addr = next, addr != end);
1304 	tlb_end_vma(tlb, vma);
1305 	mem_cgroup_uncharge_end();
1306 }
1307 
1308 
1309 static void unmap_single_vma(struct mmu_gather *tlb,
1310 		struct vm_area_struct *vma, unsigned long start_addr,
1311 		unsigned long end_addr,
1312 		struct zap_details *details)
1313 {
1314 	unsigned long start = max(vma->vm_start, start_addr);
1315 	unsigned long end;
1316 
1317 	if (start >= vma->vm_end)
1318 		return;
1319 	end = min(vma->vm_end, end_addr);
1320 	if (end <= vma->vm_start)
1321 		return;
1322 
1323 	if (vma->vm_file)
1324 		uprobe_munmap(vma, start, end);
1325 
1326 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1327 		untrack_pfn(vma, 0, 0);
1328 
1329 	if (start != end) {
1330 		if (unlikely(is_vm_hugetlb_page(vma))) {
1331 			/*
1332 			 * It is undesirable to test vma->vm_file as it
1333 			 * should be non-null for valid hugetlb area.
1334 			 * However, vm_file will be NULL in the error
1335 			 * cleanup path of do_mmap_pgoff. When
1336 			 * hugetlbfs ->mmap method fails,
1337 			 * do_mmap_pgoff() nullifies vma->vm_file
1338 			 * before calling this function to clean up.
1339 			 * Since no pte has actually been setup, it is
1340 			 * safe to do nothing in this case.
1341 			 */
1342 			if (vma->vm_file) {
1343 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1344 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1345 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1346 			}
1347 		} else
1348 			unmap_page_range(tlb, vma, start, end, details);
1349 	}
1350 }
1351 
1352 /**
1353  * unmap_vmas - unmap a range of memory covered by a list of vma's
1354  * @tlb: address of the caller's struct mmu_gather
1355  * @vma: the starting vma
1356  * @start_addr: virtual address at which to start unmapping
1357  * @end_addr: virtual address at which to end unmapping
1358  *
1359  * Unmap all pages in the vma list.
1360  *
1361  * Only addresses between `start' and `end' will be unmapped.
1362  *
1363  * The VMA list must be sorted in ascending virtual address order.
1364  *
1365  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1366  * range after unmap_vmas() returns.  So the only responsibility here is to
1367  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1368  * drops the lock and schedules.
1369  */
1370 void unmap_vmas(struct mmu_gather *tlb,
1371 		struct vm_area_struct *vma, unsigned long start_addr,
1372 		unsigned long end_addr)
1373 {
1374 	struct mm_struct *mm = vma->vm_mm;
1375 
1376 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1377 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1378 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1379 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1380 }
1381 
1382 /**
1383  * zap_page_range - remove user pages in a given range
1384  * @vma: vm_area_struct holding the applicable pages
1385  * @start: starting address of pages to zap
1386  * @size: number of bytes to zap
1387  * @details: details of nonlinear truncation or shared cache invalidation
1388  *
1389  * Caller must protect the VMA list
1390  */
1391 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1392 		unsigned long size, struct zap_details *details)
1393 {
1394 	struct mm_struct *mm = vma->vm_mm;
1395 	struct mmu_gather tlb;
1396 	unsigned long end = start + size;
1397 
1398 	lru_add_drain();
1399 	tlb_gather_mmu(&tlb, mm, 0);
1400 	update_hiwater_rss(mm);
1401 	mmu_notifier_invalidate_range_start(mm, start, end);
1402 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1403 		unmap_single_vma(&tlb, vma, start, end, details);
1404 	mmu_notifier_invalidate_range_end(mm, start, end);
1405 	tlb_finish_mmu(&tlb, start, end);
1406 }
1407 
1408 /**
1409  * zap_page_range_single - remove user pages in a given range
1410  * @vma: vm_area_struct holding the applicable pages
1411  * @address: starting address of pages to zap
1412  * @size: number of bytes to zap
1413  * @details: details of nonlinear truncation or shared cache invalidation
1414  *
1415  * The range must fit into one VMA.
1416  */
1417 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1418 		unsigned long size, struct zap_details *details)
1419 {
1420 	struct mm_struct *mm = vma->vm_mm;
1421 	struct mmu_gather tlb;
1422 	unsigned long end = address + size;
1423 
1424 	lru_add_drain();
1425 	tlb_gather_mmu(&tlb, mm, 0);
1426 	update_hiwater_rss(mm);
1427 	mmu_notifier_invalidate_range_start(mm, address, end);
1428 	unmap_single_vma(&tlb, vma, address, end, details);
1429 	mmu_notifier_invalidate_range_end(mm, address, end);
1430 	tlb_finish_mmu(&tlb, address, end);
1431 }
1432 
1433 /**
1434  * zap_vma_ptes - remove ptes mapping the vma
1435  * @vma: vm_area_struct holding ptes to be zapped
1436  * @address: starting address of pages to zap
1437  * @size: number of bytes to zap
1438  *
1439  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1440  *
1441  * The entire address range must be fully contained within the vma.
1442  *
1443  * Returns 0 if successful.
1444  */
1445 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1446 		unsigned long size)
1447 {
1448 	if (address < vma->vm_start || address + size > vma->vm_end ||
1449 	    		!(vma->vm_flags & VM_PFNMAP))
1450 		return -1;
1451 	zap_page_range_single(vma, address, size, NULL);
1452 	return 0;
1453 }
1454 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1455 
1456 /**
1457  * follow_page_mask - look up a page descriptor from a user-virtual address
1458  * @vma: vm_area_struct mapping @address
1459  * @address: virtual address to look up
1460  * @flags: flags modifying lookup behaviour
1461  * @page_mask: on output, *page_mask is set according to the size of the page
1462  *
1463  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1464  *
1465  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1466  * an error pointer if there is a mapping to something not represented
1467  * by a page descriptor (see also vm_normal_page()).
1468  */
1469 struct page *follow_page_mask(struct vm_area_struct *vma,
1470 			      unsigned long address, unsigned int flags,
1471 			      unsigned int *page_mask)
1472 {
1473 	pgd_t *pgd;
1474 	pud_t *pud;
1475 	pmd_t *pmd;
1476 	pte_t *ptep, pte;
1477 	spinlock_t *ptl;
1478 	struct page *page;
1479 	struct mm_struct *mm = vma->vm_mm;
1480 
1481 	*page_mask = 0;
1482 
1483 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1484 	if (!IS_ERR(page)) {
1485 		BUG_ON(flags & FOLL_GET);
1486 		goto out;
1487 	}
1488 
1489 	page = NULL;
1490 	pgd = pgd_offset(mm, address);
1491 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1492 		goto no_page_table;
1493 
1494 	pud = pud_offset(pgd, address);
1495 	if (pud_none(*pud))
1496 		goto no_page_table;
1497 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1498 		BUG_ON(flags & FOLL_GET);
1499 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1500 		goto out;
1501 	}
1502 	if (unlikely(pud_bad(*pud)))
1503 		goto no_page_table;
1504 
1505 	pmd = pmd_offset(pud, address);
1506 	if (pmd_none(*pmd))
1507 		goto no_page_table;
1508 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1509 		BUG_ON(flags & FOLL_GET);
1510 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1511 		goto out;
1512 	}
1513 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1514 		goto no_page_table;
1515 	if (pmd_trans_huge(*pmd)) {
1516 		if (flags & FOLL_SPLIT) {
1517 			split_huge_page_pmd(vma, address, pmd);
1518 			goto split_fallthrough;
1519 		}
1520 		spin_lock(&mm->page_table_lock);
1521 		if (likely(pmd_trans_huge(*pmd))) {
1522 			if (unlikely(pmd_trans_splitting(*pmd))) {
1523 				spin_unlock(&mm->page_table_lock);
1524 				wait_split_huge_page(vma->anon_vma, pmd);
1525 			} else {
1526 				page = follow_trans_huge_pmd(vma, address,
1527 							     pmd, flags);
1528 				spin_unlock(&mm->page_table_lock);
1529 				*page_mask = HPAGE_PMD_NR - 1;
1530 				goto out;
1531 			}
1532 		} else
1533 			spin_unlock(&mm->page_table_lock);
1534 		/* fall through */
1535 	}
1536 split_fallthrough:
1537 	if (unlikely(pmd_bad(*pmd)))
1538 		goto no_page_table;
1539 
1540 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1541 
1542 	pte = *ptep;
1543 	if (!pte_present(pte)) {
1544 		swp_entry_t entry;
1545 		/*
1546 		 * KSM's break_ksm() relies upon recognizing a ksm page
1547 		 * even while it is being migrated, so for that case we
1548 		 * need migration_entry_wait().
1549 		 */
1550 		if (likely(!(flags & FOLL_MIGRATION)))
1551 			goto no_page;
1552 		if (pte_none(pte) || pte_file(pte))
1553 			goto no_page;
1554 		entry = pte_to_swp_entry(pte);
1555 		if (!is_migration_entry(entry))
1556 			goto no_page;
1557 		pte_unmap_unlock(ptep, ptl);
1558 		migration_entry_wait(mm, pmd, address);
1559 		goto split_fallthrough;
1560 	}
1561 	if ((flags & FOLL_NUMA) && pte_numa(pte))
1562 		goto no_page;
1563 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1564 		goto unlock;
1565 
1566 	page = vm_normal_page(vma, address, pte);
1567 	if (unlikely(!page)) {
1568 		if ((flags & FOLL_DUMP) ||
1569 		    !is_zero_pfn(pte_pfn(pte)))
1570 			goto bad_page;
1571 		page = pte_page(pte);
1572 	}
1573 
1574 	if (flags & FOLL_GET)
1575 		get_page_foll(page);
1576 	if (flags & FOLL_TOUCH) {
1577 		if ((flags & FOLL_WRITE) &&
1578 		    !pte_dirty(pte) && !PageDirty(page))
1579 			set_page_dirty(page);
1580 		/*
1581 		 * pte_mkyoung() would be more correct here, but atomic care
1582 		 * is needed to avoid losing the dirty bit: it is easier to use
1583 		 * mark_page_accessed().
1584 		 */
1585 		mark_page_accessed(page);
1586 	}
1587 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1588 		/*
1589 		 * The preliminary mapping check is mainly to avoid the
1590 		 * pointless overhead of lock_page on the ZERO_PAGE
1591 		 * which might bounce very badly if there is contention.
1592 		 *
1593 		 * If the page is already locked, we don't need to
1594 		 * handle it now - vmscan will handle it later if and
1595 		 * when it attempts to reclaim the page.
1596 		 */
1597 		if (page->mapping && trylock_page(page)) {
1598 			lru_add_drain();  /* push cached pages to LRU */
1599 			/*
1600 			 * Because we lock page here, and migration is
1601 			 * blocked by the pte's page reference, and we
1602 			 * know the page is still mapped, we don't even
1603 			 * need to check for file-cache page truncation.
1604 			 */
1605 			mlock_vma_page(page);
1606 			unlock_page(page);
1607 		}
1608 	}
1609 unlock:
1610 	pte_unmap_unlock(ptep, ptl);
1611 out:
1612 	return page;
1613 
1614 bad_page:
1615 	pte_unmap_unlock(ptep, ptl);
1616 	return ERR_PTR(-EFAULT);
1617 
1618 no_page:
1619 	pte_unmap_unlock(ptep, ptl);
1620 	if (!pte_none(pte))
1621 		return page;
1622 
1623 no_page_table:
1624 	/*
1625 	 * When core dumping an enormous anonymous area that nobody
1626 	 * has touched so far, we don't want to allocate unnecessary pages or
1627 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1628 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1629 	 * But we can only make this optimization where a hole would surely
1630 	 * be zero-filled if handle_mm_fault() actually did handle it.
1631 	 */
1632 	if ((flags & FOLL_DUMP) &&
1633 	    (!vma->vm_ops || !vma->vm_ops->fault))
1634 		return ERR_PTR(-EFAULT);
1635 	return page;
1636 }
1637 
1638 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1639 {
1640 	return stack_guard_page_start(vma, addr) ||
1641 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1642 }
1643 
1644 /**
1645  * __get_user_pages() - pin user pages in memory
1646  * @tsk:	task_struct of target task
1647  * @mm:		mm_struct of target mm
1648  * @start:	starting user address
1649  * @nr_pages:	number of pages from start to pin
1650  * @gup_flags:	flags modifying pin behaviour
1651  * @pages:	array that receives pointers to the pages pinned.
1652  *		Should be at least nr_pages long. Or NULL, if caller
1653  *		only intends to ensure the pages are faulted in.
1654  * @vmas:	array of pointers to vmas corresponding to each page.
1655  *		Or NULL if the caller does not require them.
1656  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1657  *
1658  * Returns number of pages pinned. This may be fewer than the number
1659  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1660  * were pinned, returns -errno. Each page returned must be released
1661  * with a put_page() call when it is finished with. vmas will only
1662  * remain valid while mmap_sem is held.
1663  *
1664  * Must be called with mmap_sem held for read or write.
1665  *
1666  * __get_user_pages walks a process's page tables and takes a reference to
1667  * each struct page that each user address corresponds to at a given
1668  * instant. That is, it takes the page that would be accessed if a user
1669  * thread accesses the given user virtual address at that instant.
1670  *
1671  * This does not guarantee that the page exists in the user mappings when
1672  * __get_user_pages returns, and there may even be a completely different
1673  * page there in some cases (eg. if mmapped pagecache has been invalidated
1674  * and subsequently re faulted). However it does guarantee that the page
1675  * won't be freed completely. And mostly callers simply care that the page
1676  * contains data that was valid *at some point in time*. Typically, an IO
1677  * or similar operation cannot guarantee anything stronger anyway because
1678  * locks can't be held over the syscall boundary.
1679  *
1680  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1681  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1682  * appropriate) must be called after the page is finished with, and
1683  * before put_page is called.
1684  *
1685  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1686  * or mmap_sem contention, and if waiting is needed to pin all pages,
1687  * *@nonblocking will be set to 0.
1688  *
1689  * In most cases, get_user_pages or get_user_pages_fast should be used
1690  * instead of __get_user_pages. __get_user_pages should be used only if
1691  * you need some special @gup_flags.
1692  */
1693 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1694 		unsigned long start, unsigned long nr_pages,
1695 		unsigned int gup_flags, struct page **pages,
1696 		struct vm_area_struct **vmas, int *nonblocking)
1697 {
1698 	long i;
1699 	unsigned long vm_flags;
1700 	unsigned int page_mask;
1701 
1702 	if (!nr_pages)
1703 		return 0;
1704 
1705 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1706 
1707 	/*
1708 	 * Require read or write permissions.
1709 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1710 	 */
1711 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1712 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1713 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1714 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1715 
1716 	/*
1717 	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1718 	 * would be called on PROT_NONE ranges. We must never invoke
1719 	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1720 	 * page faults would unprotect the PROT_NONE ranges if
1721 	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1722 	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1723 	 * FOLL_FORCE is set.
1724 	 */
1725 	if (!(gup_flags & FOLL_FORCE))
1726 		gup_flags |= FOLL_NUMA;
1727 
1728 	i = 0;
1729 
1730 	do {
1731 		struct vm_area_struct *vma;
1732 
1733 		vma = find_extend_vma(mm, start);
1734 		if (!vma && in_gate_area(mm, start)) {
1735 			unsigned long pg = start & PAGE_MASK;
1736 			pgd_t *pgd;
1737 			pud_t *pud;
1738 			pmd_t *pmd;
1739 			pte_t *pte;
1740 
1741 			/* user gate pages are read-only */
1742 			if (gup_flags & FOLL_WRITE)
1743 				return i ? : -EFAULT;
1744 			if (pg > TASK_SIZE)
1745 				pgd = pgd_offset_k(pg);
1746 			else
1747 				pgd = pgd_offset_gate(mm, pg);
1748 			BUG_ON(pgd_none(*pgd));
1749 			pud = pud_offset(pgd, pg);
1750 			BUG_ON(pud_none(*pud));
1751 			pmd = pmd_offset(pud, pg);
1752 			if (pmd_none(*pmd))
1753 				return i ? : -EFAULT;
1754 			VM_BUG_ON(pmd_trans_huge(*pmd));
1755 			pte = pte_offset_map(pmd, pg);
1756 			if (pte_none(*pte)) {
1757 				pte_unmap(pte);
1758 				return i ? : -EFAULT;
1759 			}
1760 			vma = get_gate_vma(mm);
1761 			if (pages) {
1762 				struct page *page;
1763 
1764 				page = vm_normal_page(vma, start, *pte);
1765 				if (!page) {
1766 					if (!(gup_flags & FOLL_DUMP) &&
1767 					     is_zero_pfn(pte_pfn(*pte)))
1768 						page = pte_page(*pte);
1769 					else {
1770 						pte_unmap(pte);
1771 						return i ? : -EFAULT;
1772 					}
1773 				}
1774 				pages[i] = page;
1775 				get_page(page);
1776 			}
1777 			pte_unmap(pte);
1778 			page_mask = 0;
1779 			goto next_page;
1780 		}
1781 
1782 		if (!vma ||
1783 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1784 		    !(vm_flags & vma->vm_flags))
1785 			return i ? : -EFAULT;
1786 
1787 		if (is_vm_hugetlb_page(vma)) {
1788 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1789 					&start, &nr_pages, i, gup_flags);
1790 			continue;
1791 		}
1792 
1793 		do {
1794 			struct page *page;
1795 			unsigned int foll_flags = gup_flags;
1796 			unsigned int page_increm;
1797 
1798 			/*
1799 			 * If we have a pending SIGKILL, don't keep faulting
1800 			 * pages and potentially allocating memory.
1801 			 */
1802 			if (unlikely(fatal_signal_pending(current)))
1803 				return i ? i : -ERESTARTSYS;
1804 
1805 			cond_resched();
1806 			while (!(page = follow_page_mask(vma, start,
1807 						foll_flags, &page_mask))) {
1808 				int ret;
1809 				unsigned int fault_flags = 0;
1810 
1811 				/* For mlock, just skip the stack guard page. */
1812 				if (foll_flags & FOLL_MLOCK) {
1813 					if (stack_guard_page(vma, start))
1814 						goto next_page;
1815 				}
1816 				if (foll_flags & FOLL_WRITE)
1817 					fault_flags |= FAULT_FLAG_WRITE;
1818 				if (nonblocking)
1819 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1820 				if (foll_flags & FOLL_NOWAIT)
1821 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1822 
1823 				ret = handle_mm_fault(mm, vma, start,
1824 							fault_flags);
1825 
1826 				if (ret & VM_FAULT_ERROR) {
1827 					if (ret & VM_FAULT_OOM)
1828 						return i ? i : -ENOMEM;
1829 					if (ret & (VM_FAULT_HWPOISON |
1830 						   VM_FAULT_HWPOISON_LARGE)) {
1831 						if (i)
1832 							return i;
1833 						else if (gup_flags & FOLL_HWPOISON)
1834 							return -EHWPOISON;
1835 						else
1836 							return -EFAULT;
1837 					}
1838 					if (ret & VM_FAULT_SIGBUS)
1839 						return i ? i : -EFAULT;
1840 					BUG();
1841 				}
1842 
1843 				if (tsk) {
1844 					if (ret & VM_FAULT_MAJOR)
1845 						tsk->maj_flt++;
1846 					else
1847 						tsk->min_flt++;
1848 				}
1849 
1850 				if (ret & VM_FAULT_RETRY) {
1851 					if (nonblocking)
1852 						*nonblocking = 0;
1853 					return i;
1854 				}
1855 
1856 				/*
1857 				 * The VM_FAULT_WRITE bit tells us that
1858 				 * do_wp_page has broken COW when necessary,
1859 				 * even if maybe_mkwrite decided not to set
1860 				 * pte_write. We can thus safely do subsequent
1861 				 * page lookups as if they were reads. But only
1862 				 * do so when looping for pte_write is futile:
1863 				 * in some cases userspace may also be wanting
1864 				 * to write to the gotten user page, which a
1865 				 * read fault here might prevent (a readonly
1866 				 * page might get reCOWed by userspace write).
1867 				 */
1868 				if ((ret & VM_FAULT_WRITE) &&
1869 				    !(vma->vm_flags & VM_WRITE))
1870 					foll_flags &= ~FOLL_WRITE;
1871 
1872 				cond_resched();
1873 			}
1874 			if (IS_ERR(page))
1875 				return i ? i : PTR_ERR(page);
1876 			if (pages) {
1877 				pages[i] = page;
1878 
1879 				flush_anon_page(vma, page, start);
1880 				flush_dcache_page(page);
1881 				page_mask = 0;
1882 			}
1883 next_page:
1884 			if (vmas) {
1885 				vmas[i] = vma;
1886 				page_mask = 0;
1887 			}
1888 			page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
1889 			if (page_increm > nr_pages)
1890 				page_increm = nr_pages;
1891 			i += page_increm;
1892 			start += page_increm * PAGE_SIZE;
1893 			nr_pages -= page_increm;
1894 		} while (nr_pages && start < vma->vm_end);
1895 	} while (nr_pages);
1896 	return i;
1897 }
1898 EXPORT_SYMBOL(__get_user_pages);
1899 
1900 /*
1901  * fixup_user_fault() - manually resolve a user page fault
1902  * @tsk:	the task_struct to use for page fault accounting, or
1903  *		NULL if faults are not to be recorded.
1904  * @mm:		mm_struct of target mm
1905  * @address:	user address
1906  * @fault_flags:flags to pass down to handle_mm_fault()
1907  *
1908  * This is meant to be called in the specific scenario where for locking reasons
1909  * we try to access user memory in atomic context (within a pagefault_disable()
1910  * section), this returns -EFAULT, and we want to resolve the user fault before
1911  * trying again.
1912  *
1913  * Typically this is meant to be used by the futex code.
1914  *
1915  * The main difference with get_user_pages() is that this function will
1916  * unconditionally call handle_mm_fault() which will in turn perform all the
1917  * necessary SW fixup of the dirty and young bits in the PTE, while
1918  * handle_mm_fault() only guarantees to update these in the struct page.
1919  *
1920  * This is important for some architectures where those bits also gate the
1921  * access permission to the page because they are maintained in software.  On
1922  * such architectures, gup() will not be enough to make a subsequent access
1923  * succeed.
1924  *
1925  * This should be called with the mm_sem held for read.
1926  */
1927 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1928 		     unsigned long address, unsigned int fault_flags)
1929 {
1930 	struct vm_area_struct *vma;
1931 	int ret;
1932 
1933 	vma = find_extend_vma(mm, address);
1934 	if (!vma || address < vma->vm_start)
1935 		return -EFAULT;
1936 
1937 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1938 	if (ret & VM_FAULT_ERROR) {
1939 		if (ret & VM_FAULT_OOM)
1940 			return -ENOMEM;
1941 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1942 			return -EHWPOISON;
1943 		if (ret & VM_FAULT_SIGBUS)
1944 			return -EFAULT;
1945 		BUG();
1946 	}
1947 	if (tsk) {
1948 		if (ret & VM_FAULT_MAJOR)
1949 			tsk->maj_flt++;
1950 		else
1951 			tsk->min_flt++;
1952 	}
1953 	return 0;
1954 }
1955 
1956 /*
1957  * get_user_pages() - pin user pages in memory
1958  * @tsk:	the task_struct to use for page fault accounting, or
1959  *		NULL if faults are not to be recorded.
1960  * @mm:		mm_struct of target mm
1961  * @start:	starting user address
1962  * @nr_pages:	number of pages from start to pin
1963  * @write:	whether pages will be written to by the caller
1964  * @force:	whether to force write access even if user mapping is
1965  *		readonly. This will result in the page being COWed even
1966  *		in MAP_SHARED mappings. You do not want this.
1967  * @pages:	array that receives pointers to the pages pinned.
1968  *		Should be at least nr_pages long. Or NULL, if caller
1969  *		only intends to ensure the pages are faulted in.
1970  * @vmas:	array of pointers to vmas corresponding to each page.
1971  *		Or NULL if the caller does not require them.
1972  *
1973  * Returns number of pages pinned. This may be fewer than the number
1974  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1975  * were pinned, returns -errno. Each page returned must be released
1976  * with a put_page() call when it is finished with. vmas will only
1977  * remain valid while mmap_sem is held.
1978  *
1979  * Must be called with mmap_sem held for read or write.
1980  *
1981  * get_user_pages walks a process's page tables and takes a reference to
1982  * each struct page that each user address corresponds to at a given
1983  * instant. That is, it takes the page that would be accessed if a user
1984  * thread accesses the given user virtual address at that instant.
1985  *
1986  * This does not guarantee that the page exists in the user mappings when
1987  * get_user_pages returns, and there may even be a completely different
1988  * page there in some cases (eg. if mmapped pagecache has been invalidated
1989  * and subsequently re faulted). However it does guarantee that the page
1990  * won't be freed completely. And mostly callers simply care that the page
1991  * contains data that was valid *at some point in time*. Typically, an IO
1992  * or similar operation cannot guarantee anything stronger anyway because
1993  * locks can't be held over the syscall boundary.
1994  *
1995  * If write=0, the page must not be written to. If the page is written to,
1996  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1997  * after the page is finished with, and before put_page is called.
1998  *
1999  * get_user_pages is typically used for fewer-copy IO operations, to get a
2000  * handle on the memory by some means other than accesses via the user virtual
2001  * addresses. The pages may be submitted for DMA to devices or accessed via
2002  * their kernel linear mapping (via the kmap APIs). Care should be taken to
2003  * use the correct cache flushing APIs.
2004  *
2005  * See also get_user_pages_fast, for performance critical applications.
2006  */
2007 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
2008 		unsigned long start, unsigned long nr_pages, int write,
2009 		int force, struct page **pages, struct vm_area_struct **vmas)
2010 {
2011 	int flags = FOLL_TOUCH;
2012 
2013 	if (pages)
2014 		flags |= FOLL_GET;
2015 	if (write)
2016 		flags |= FOLL_WRITE;
2017 	if (force)
2018 		flags |= FOLL_FORCE;
2019 
2020 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
2021 				NULL);
2022 }
2023 EXPORT_SYMBOL(get_user_pages);
2024 
2025 /**
2026  * get_dump_page() - pin user page in memory while writing it to core dump
2027  * @addr: user address
2028  *
2029  * Returns struct page pointer of user page pinned for dump,
2030  * to be freed afterwards by page_cache_release() or put_page().
2031  *
2032  * Returns NULL on any kind of failure - a hole must then be inserted into
2033  * the corefile, to preserve alignment with its headers; and also returns
2034  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2035  * allowing a hole to be left in the corefile to save diskspace.
2036  *
2037  * Called without mmap_sem, but after all other threads have been killed.
2038  */
2039 #ifdef CONFIG_ELF_CORE
2040 struct page *get_dump_page(unsigned long addr)
2041 {
2042 	struct vm_area_struct *vma;
2043 	struct page *page;
2044 
2045 	if (__get_user_pages(current, current->mm, addr, 1,
2046 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2047 			     NULL) < 1)
2048 		return NULL;
2049 	flush_cache_page(vma, addr, page_to_pfn(page));
2050 	return page;
2051 }
2052 #endif /* CONFIG_ELF_CORE */
2053 
2054 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2055 			spinlock_t **ptl)
2056 {
2057 	pgd_t * pgd = pgd_offset(mm, addr);
2058 	pud_t * pud = pud_alloc(mm, pgd, addr);
2059 	if (pud) {
2060 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2061 		if (pmd) {
2062 			VM_BUG_ON(pmd_trans_huge(*pmd));
2063 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2064 		}
2065 	}
2066 	return NULL;
2067 }
2068 
2069 /*
2070  * This is the old fallback for page remapping.
2071  *
2072  * For historical reasons, it only allows reserved pages. Only
2073  * old drivers should use this, and they needed to mark their
2074  * pages reserved for the old functions anyway.
2075  */
2076 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2077 			struct page *page, pgprot_t prot)
2078 {
2079 	struct mm_struct *mm = vma->vm_mm;
2080 	int retval;
2081 	pte_t *pte;
2082 	spinlock_t *ptl;
2083 
2084 	retval = -EINVAL;
2085 	if (PageAnon(page))
2086 		goto out;
2087 	retval = -ENOMEM;
2088 	flush_dcache_page(page);
2089 	pte = get_locked_pte(mm, addr, &ptl);
2090 	if (!pte)
2091 		goto out;
2092 	retval = -EBUSY;
2093 	if (!pte_none(*pte))
2094 		goto out_unlock;
2095 
2096 	/* Ok, finally just insert the thing.. */
2097 	get_page(page);
2098 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2099 	page_add_file_rmap(page);
2100 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2101 
2102 	retval = 0;
2103 	pte_unmap_unlock(pte, ptl);
2104 	return retval;
2105 out_unlock:
2106 	pte_unmap_unlock(pte, ptl);
2107 out:
2108 	return retval;
2109 }
2110 
2111 /**
2112  * vm_insert_page - insert single page into user vma
2113  * @vma: user vma to map to
2114  * @addr: target user address of this page
2115  * @page: source kernel page
2116  *
2117  * This allows drivers to insert individual pages they've allocated
2118  * into a user vma.
2119  *
2120  * The page has to be a nice clean _individual_ kernel allocation.
2121  * If you allocate a compound page, you need to have marked it as
2122  * such (__GFP_COMP), or manually just split the page up yourself
2123  * (see split_page()).
2124  *
2125  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2126  * took an arbitrary page protection parameter. This doesn't allow
2127  * that. Your vma protection will have to be set up correctly, which
2128  * means that if you want a shared writable mapping, you'd better
2129  * ask for a shared writable mapping!
2130  *
2131  * The page does not need to be reserved.
2132  *
2133  * Usually this function is called from f_op->mmap() handler
2134  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2135  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2136  * function from other places, for example from page-fault handler.
2137  */
2138 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2139 			struct page *page)
2140 {
2141 	if (addr < vma->vm_start || addr >= vma->vm_end)
2142 		return -EFAULT;
2143 	if (!page_count(page))
2144 		return -EINVAL;
2145 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2146 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2147 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2148 		vma->vm_flags |= VM_MIXEDMAP;
2149 	}
2150 	return insert_page(vma, addr, page, vma->vm_page_prot);
2151 }
2152 EXPORT_SYMBOL(vm_insert_page);
2153 
2154 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2155 			unsigned long pfn, pgprot_t prot)
2156 {
2157 	struct mm_struct *mm = vma->vm_mm;
2158 	int retval;
2159 	pte_t *pte, entry;
2160 	spinlock_t *ptl;
2161 
2162 	retval = -ENOMEM;
2163 	pte = get_locked_pte(mm, addr, &ptl);
2164 	if (!pte)
2165 		goto out;
2166 	retval = -EBUSY;
2167 	if (!pte_none(*pte))
2168 		goto out_unlock;
2169 
2170 	/* Ok, finally just insert the thing.. */
2171 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2172 	set_pte_at(mm, addr, pte, entry);
2173 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2174 
2175 	retval = 0;
2176 out_unlock:
2177 	pte_unmap_unlock(pte, ptl);
2178 out:
2179 	return retval;
2180 }
2181 
2182 /**
2183  * vm_insert_pfn - insert single pfn into user vma
2184  * @vma: user vma to map to
2185  * @addr: target user address of this page
2186  * @pfn: source kernel pfn
2187  *
2188  * Similar to vm_insert_page, this allows drivers to insert individual pages
2189  * they've allocated into a user vma. Same comments apply.
2190  *
2191  * This function should only be called from a vm_ops->fault handler, and
2192  * in that case the handler should return NULL.
2193  *
2194  * vma cannot be a COW mapping.
2195  *
2196  * As this is called only for pages that do not currently exist, we
2197  * do not need to flush old virtual caches or the TLB.
2198  */
2199 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2200 			unsigned long pfn)
2201 {
2202 	int ret;
2203 	pgprot_t pgprot = vma->vm_page_prot;
2204 	/*
2205 	 * Technically, architectures with pte_special can avoid all these
2206 	 * restrictions (same for remap_pfn_range).  However we would like
2207 	 * consistency in testing and feature parity among all, so we should
2208 	 * try to keep these invariants in place for everybody.
2209 	 */
2210 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2211 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2212 						(VM_PFNMAP|VM_MIXEDMAP));
2213 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2214 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2215 
2216 	if (addr < vma->vm_start || addr >= vma->vm_end)
2217 		return -EFAULT;
2218 	if (track_pfn_insert(vma, &pgprot, pfn))
2219 		return -EINVAL;
2220 
2221 	ret = insert_pfn(vma, addr, pfn, pgprot);
2222 
2223 	return ret;
2224 }
2225 EXPORT_SYMBOL(vm_insert_pfn);
2226 
2227 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2228 			unsigned long pfn)
2229 {
2230 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2231 
2232 	if (addr < vma->vm_start || addr >= vma->vm_end)
2233 		return -EFAULT;
2234 
2235 	/*
2236 	 * If we don't have pte special, then we have to use the pfn_valid()
2237 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2238 	 * refcount the page if pfn_valid is true (hence insert_page rather
2239 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2240 	 * without pte special, it would there be refcounted as a normal page.
2241 	 */
2242 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2243 		struct page *page;
2244 
2245 		page = pfn_to_page(pfn);
2246 		return insert_page(vma, addr, page, vma->vm_page_prot);
2247 	}
2248 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2249 }
2250 EXPORT_SYMBOL(vm_insert_mixed);
2251 
2252 /*
2253  * maps a range of physical memory into the requested pages. the old
2254  * mappings are removed. any references to nonexistent pages results
2255  * in null mappings (currently treated as "copy-on-access")
2256  */
2257 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2258 			unsigned long addr, unsigned long end,
2259 			unsigned long pfn, pgprot_t prot)
2260 {
2261 	pte_t *pte;
2262 	spinlock_t *ptl;
2263 
2264 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2265 	if (!pte)
2266 		return -ENOMEM;
2267 	arch_enter_lazy_mmu_mode();
2268 	do {
2269 		BUG_ON(!pte_none(*pte));
2270 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2271 		pfn++;
2272 	} while (pte++, addr += PAGE_SIZE, addr != end);
2273 	arch_leave_lazy_mmu_mode();
2274 	pte_unmap_unlock(pte - 1, ptl);
2275 	return 0;
2276 }
2277 
2278 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2279 			unsigned long addr, unsigned long end,
2280 			unsigned long pfn, pgprot_t prot)
2281 {
2282 	pmd_t *pmd;
2283 	unsigned long next;
2284 
2285 	pfn -= addr >> PAGE_SHIFT;
2286 	pmd = pmd_alloc(mm, pud, addr);
2287 	if (!pmd)
2288 		return -ENOMEM;
2289 	VM_BUG_ON(pmd_trans_huge(*pmd));
2290 	do {
2291 		next = pmd_addr_end(addr, end);
2292 		if (remap_pte_range(mm, pmd, addr, next,
2293 				pfn + (addr >> PAGE_SHIFT), prot))
2294 			return -ENOMEM;
2295 	} while (pmd++, addr = next, addr != end);
2296 	return 0;
2297 }
2298 
2299 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2300 			unsigned long addr, unsigned long end,
2301 			unsigned long pfn, pgprot_t prot)
2302 {
2303 	pud_t *pud;
2304 	unsigned long next;
2305 
2306 	pfn -= addr >> PAGE_SHIFT;
2307 	pud = pud_alloc(mm, pgd, addr);
2308 	if (!pud)
2309 		return -ENOMEM;
2310 	do {
2311 		next = pud_addr_end(addr, end);
2312 		if (remap_pmd_range(mm, pud, addr, next,
2313 				pfn + (addr >> PAGE_SHIFT), prot))
2314 			return -ENOMEM;
2315 	} while (pud++, addr = next, addr != end);
2316 	return 0;
2317 }
2318 
2319 /**
2320  * remap_pfn_range - remap kernel memory to userspace
2321  * @vma: user vma to map to
2322  * @addr: target user address to start at
2323  * @pfn: physical address of kernel memory
2324  * @size: size of map area
2325  * @prot: page protection flags for this mapping
2326  *
2327  *  Note: this is only safe if the mm semaphore is held when called.
2328  */
2329 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2330 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2331 {
2332 	pgd_t *pgd;
2333 	unsigned long next;
2334 	unsigned long end = addr + PAGE_ALIGN(size);
2335 	struct mm_struct *mm = vma->vm_mm;
2336 	int err;
2337 
2338 	/*
2339 	 * Physically remapped pages are special. Tell the
2340 	 * rest of the world about it:
2341 	 *   VM_IO tells people not to look at these pages
2342 	 *	(accesses can have side effects).
2343 	 *   VM_PFNMAP tells the core MM that the base pages are just
2344 	 *	raw PFN mappings, and do not have a "struct page" associated
2345 	 *	with them.
2346 	 *   VM_DONTEXPAND
2347 	 *      Disable vma merging and expanding with mremap().
2348 	 *   VM_DONTDUMP
2349 	 *      Omit vma from core dump, even when VM_IO turned off.
2350 	 *
2351 	 * There's a horrible special case to handle copy-on-write
2352 	 * behaviour that some programs depend on. We mark the "original"
2353 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2354 	 * See vm_normal_page() for details.
2355 	 */
2356 	if (is_cow_mapping(vma->vm_flags)) {
2357 		if (addr != vma->vm_start || end != vma->vm_end)
2358 			return -EINVAL;
2359 		vma->vm_pgoff = pfn;
2360 	}
2361 
2362 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2363 	if (err)
2364 		return -EINVAL;
2365 
2366 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2367 
2368 	BUG_ON(addr >= end);
2369 	pfn -= addr >> PAGE_SHIFT;
2370 	pgd = pgd_offset(mm, addr);
2371 	flush_cache_range(vma, addr, end);
2372 	do {
2373 		next = pgd_addr_end(addr, end);
2374 		err = remap_pud_range(mm, pgd, addr, next,
2375 				pfn + (addr >> PAGE_SHIFT), prot);
2376 		if (err)
2377 			break;
2378 	} while (pgd++, addr = next, addr != end);
2379 
2380 	if (err)
2381 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2382 
2383 	return err;
2384 }
2385 EXPORT_SYMBOL(remap_pfn_range);
2386 
2387 /**
2388  * vm_iomap_memory - remap memory to userspace
2389  * @vma: user vma to map to
2390  * @start: start of area
2391  * @len: size of area
2392  *
2393  * This is a simplified io_remap_pfn_range() for common driver use. The
2394  * driver just needs to give us the physical memory range to be mapped,
2395  * we'll figure out the rest from the vma information.
2396  *
2397  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2398  * whatever write-combining details or similar.
2399  */
2400 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2401 {
2402 	unsigned long vm_len, pfn, pages;
2403 
2404 	/* Check that the physical memory area passed in looks valid */
2405 	if (start + len < start)
2406 		return -EINVAL;
2407 	/*
2408 	 * You *really* shouldn't map things that aren't page-aligned,
2409 	 * but we've historically allowed it because IO memory might
2410 	 * just have smaller alignment.
2411 	 */
2412 	len += start & ~PAGE_MASK;
2413 	pfn = start >> PAGE_SHIFT;
2414 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2415 	if (pfn + pages < pfn)
2416 		return -EINVAL;
2417 
2418 	/* We start the mapping 'vm_pgoff' pages into the area */
2419 	if (vma->vm_pgoff > pages)
2420 		return -EINVAL;
2421 	pfn += vma->vm_pgoff;
2422 	pages -= vma->vm_pgoff;
2423 
2424 	/* Can we fit all of the mapping? */
2425 	vm_len = vma->vm_end - vma->vm_start;
2426 	if (vm_len >> PAGE_SHIFT > pages)
2427 		return -EINVAL;
2428 
2429 	/* Ok, let it rip */
2430 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2431 }
2432 EXPORT_SYMBOL(vm_iomap_memory);
2433 
2434 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2435 				     unsigned long addr, unsigned long end,
2436 				     pte_fn_t fn, void *data)
2437 {
2438 	pte_t *pte;
2439 	int err;
2440 	pgtable_t token;
2441 	spinlock_t *uninitialized_var(ptl);
2442 
2443 	pte = (mm == &init_mm) ?
2444 		pte_alloc_kernel(pmd, addr) :
2445 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2446 	if (!pte)
2447 		return -ENOMEM;
2448 
2449 	BUG_ON(pmd_huge(*pmd));
2450 
2451 	arch_enter_lazy_mmu_mode();
2452 
2453 	token = pmd_pgtable(*pmd);
2454 
2455 	do {
2456 		err = fn(pte++, token, addr, data);
2457 		if (err)
2458 			break;
2459 	} while (addr += PAGE_SIZE, addr != end);
2460 
2461 	arch_leave_lazy_mmu_mode();
2462 
2463 	if (mm != &init_mm)
2464 		pte_unmap_unlock(pte-1, ptl);
2465 	return err;
2466 }
2467 
2468 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2469 				     unsigned long addr, unsigned long end,
2470 				     pte_fn_t fn, void *data)
2471 {
2472 	pmd_t *pmd;
2473 	unsigned long next;
2474 	int err;
2475 
2476 	BUG_ON(pud_huge(*pud));
2477 
2478 	pmd = pmd_alloc(mm, pud, addr);
2479 	if (!pmd)
2480 		return -ENOMEM;
2481 	do {
2482 		next = pmd_addr_end(addr, end);
2483 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2484 		if (err)
2485 			break;
2486 	} while (pmd++, addr = next, addr != end);
2487 	return err;
2488 }
2489 
2490 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2491 				     unsigned long addr, unsigned long end,
2492 				     pte_fn_t fn, void *data)
2493 {
2494 	pud_t *pud;
2495 	unsigned long next;
2496 	int err;
2497 
2498 	pud = pud_alloc(mm, pgd, addr);
2499 	if (!pud)
2500 		return -ENOMEM;
2501 	do {
2502 		next = pud_addr_end(addr, end);
2503 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2504 		if (err)
2505 			break;
2506 	} while (pud++, addr = next, addr != end);
2507 	return err;
2508 }
2509 
2510 /*
2511  * Scan a region of virtual memory, filling in page tables as necessary
2512  * and calling a provided function on each leaf page table.
2513  */
2514 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2515 			unsigned long size, pte_fn_t fn, void *data)
2516 {
2517 	pgd_t *pgd;
2518 	unsigned long next;
2519 	unsigned long end = addr + size;
2520 	int err;
2521 
2522 	BUG_ON(addr >= end);
2523 	pgd = pgd_offset(mm, addr);
2524 	do {
2525 		next = pgd_addr_end(addr, end);
2526 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2527 		if (err)
2528 			break;
2529 	} while (pgd++, addr = next, addr != end);
2530 
2531 	return err;
2532 }
2533 EXPORT_SYMBOL_GPL(apply_to_page_range);
2534 
2535 /*
2536  * handle_pte_fault chooses page fault handler according to an entry
2537  * which was read non-atomically.  Before making any commitment, on
2538  * those architectures or configurations (e.g. i386 with PAE) which
2539  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2540  * must check under lock before unmapping the pte and proceeding
2541  * (but do_wp_page is only called after already making such a check;
2542  * and do_anonymous_page can safely check later on).
2543  */
2544 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2545 				pte_t *page_table, pte_t orig_pte)
2546 {
2547 	int same = 1;
2548 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2549 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2550 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2551 		spin_lock(ptl);
2552 		same = pte_same(*page_table, orig_pte);
2553 		spin_unlock(ptl);
2554 	}
2555 #endif
2556 	pte_unmap(page_table);
2557 	return same;
2558 }
2559 
2560 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2561 {
2562 	/*
2563 	 * If the source page was a PFN mapping, we don't have
2564 	 * a "struct page" for it. We do a best-effort copy by
2565 	 * just copying from the original user address. If that
2566 	 * fails, we just zero-fill it. Live with it.
2567 	 */
2568 	if (unlikely(!src)) {
2569 		void *kaddr = kmap_atomic(dst);
2570 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2571 
2572 		/*
2573 		 * This really shouldn't fail, because the page is there
2574 		 * in the page tables. But it might just be unreadable,
2575 		 * in which case we just give up and fill the result with
2576 		 * zeroes.
2577 		 */
2578 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2579 			clear_page(kaddr);
2580 		kunmap_atomic(kaddr);
2581 		flush_dcache_page(dst);
2582 	} else
2583 		copy_user_highpage(dst, src, va, vma);
2584 }
2585 
2586 /*
2587  * This routine handles present pages, when users try to write
2588  * to a shared page. It is done by copying the page to a new address
2589  * and decrementing the shared-page counter for the old page.
2590  *
2591  * Note that this routine assumes that the protection checks have been
2592  * done by the caller (the low-level page fault routine in most cases).
2593  * Thus we can safely just mark it writable once we've done any necessary
2594  * COW.
2595  *
2596  * We also mark the page dirty at this point even though the page will
2597  * change only once the write actually happens. This avoids a few races,
2598  * and potentially makes it more efficient.
2599  *
2600  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2601  * but allow concurrent faults), with pte both mapped and locked.
2602  * We return with mmap_sem still held, but pte unmapped and unlocked.
2603  */
2604 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2605 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2606 		spinlock_t *ptl, pte_t orig_pte)
2607 	__releases(ptl)
2608 {
2609 	struct page *old_page, *new_page = NULL;
2610 	pte_t entry;
2611 	int ret = 0;
2612 	int page_mkwrite = 0;
2613 	struct page *dirty_page = NULL;
2614 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2615 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2616 
2617 	old_page = vm_normal_page(vma, address, orig_pte);
2618 	if (!old_page) {
2619 		/*
2620 		 * VM_MIXEDMAP !pfn_valid() case
2621 		 *
2622 		 * We should not cow pages in a shared writeable mapping.
2623 		 * Just mark the pages writable as we can't do any dirty
2624 		 * accounting on raw pfn maps.
2625 		 */
2626 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2627 				     (VM_WRITE|VM_SHARED))
2628 			goto reuse;
2629 		goto gotten;
2630 	}
2631 
2632 	/*
2633 	 * Take out anonymous pages first, anonymous shared vmas are
2634 	 * not dirty accountable.
2635 	 */
2636 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2637 		if (!trylock_page(old_page)) {
2638 			page_cache_get(old_page);
2639 			pte_unmap_unlock(page_table, ptl);
2640 			lock_page(old_page);
2641 			page_table = pte_offset_map_lock(mm, pmd, address,
2642 							 &ptl);
2643 			if (!pte_same(*page_table, orig_pte)) {
2644 				unlock_page(old_page);
2645 				goto unlock;
2646 			}
2647 			page_cache_release(old_page);
2648 		}
2649 		if (reuse_swap_page(old_page)) {
2650 			/*
2651 			 * The page is all ours.  Move it to our anon_vma so
2652 			 * the rmap code will not search our parent or siblings.
2653 			 * Protected against the rmap code by the page lock.
2654 			 */
2655 			page_move_anon_rmap(old_page, vma, address);
2656 			unlock_page(old_page);
2657 			goto reuse;
2658 		}
2659 		unlock_page(old_page);
2660 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2661 					(VM_WRITE|VM_SHARED))) {
2662 		/*
2663 		 * Only catch write-faults on shared writable pages,
2664 		 * read-only shared pages can get COWed by
2665 		 * get_user_pages(.write=1, .force=1).
2666 		 */
2667 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2668 			struct vm_fault vmf;
2669 			int tmp;
2670 
2671 			vmf.virtual_address = (void __user *)(address &
2672 								PAGE_MASK);
2673 			vmf.pgoff = old_page->index;
2674 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2675 			vmf.page = old_page;
2676 
2677 			/*
2678 			 * Notify the address space that the page is about to
2679 			 * become writable so that it can prohibit this or wait
2680 			 * for the page to get into an appropriate state.
2681 			 *
2682 			 * We do this without the lock held, so that it can
2683 			 * sleep if it needs to.
2684 			 */
2685 			page_cache_get(old_page);
2686 			pte_unmap_unlock(page_table, ptl);
2687 
2688 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2689 			if (unlikely(tmp &
2690 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2691 				ret = tmp;
2692 				goto unwritable_page;
2693 			}
2694 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2695 				lock_page(old_page);
2696 				if (!old_page->mapping) {
2697 					ret = 0; /* retry the fault */
2698 					unlock_page(old_page);
2699 					goto unwritable_page;
2700 				}
2701 			} else
2702 				VM_BUG_ON(!PageLocked(old_page));
2703 
2704 			/*
2705 			 * Since we dropped the lock we need to revalidate
2706 			 * the PTE as someone else may have changed it.  If
2707 			 * they did, we just return, as we can count on the
2708 			 * MMU to tell us if they didn't also make it writable.
2709 			 */
2710 			page_table = pte_offset_map_lock(mm, pmd, address,
2711 							 &ptl);
2712 			if (!pte_same(*page_table, orig_pte)) {
2713 				unlock_page(old_page);
2714 				goto unlock;
2715 			}
2716 
2717 			page_mkwrite = 1;
2718 		}
2719 		dirty_page = old_page;
2720 		get_page(dirty_page);
2721 
2722 reuse:
2723 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2724 		entry = pte_mkyoung(orig_pte);
2725 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2726 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2727 			update_mmu_cache(vma, address, page_table);
2728 		pte_unmap_unlock(page_table, ptl);
2729 		ret |= VM_FAULT_WRITE;
2730 
2731 		if (!dirty_page)
2732 			return ret;
2733 
2734 		/*
2735 		 * Yes, Virginia, this is actually required to prevent a race
2736 		 * with clear_page_dirty_for_io() from clearing the page dirty
2737 		 * bit after it clear all dirty ptes, but before a racing
2738 		 * do_wp_page installs a dirty pte.
2739 		 *
2740 		 * __do_fault is protected similarly.
2741 		 */
2742 		if (!page_mkwrite) {
2743 			wait_on_page_locked(dirty_page);
2744 			set_page_dirty_balance(dirty_page, page_mkwrite);
2745 			/* file_update_time outside page_lock */
2746 			if (vma->vm_file)
2747 				file_update_time(vma->vm_file);
2748 		}
2749 		put_page(dirty_page);
2750 		if (page_mkwrite) {
2751 			struct address_space *mapping = dirty_page->mapping;
2752 
2753 			set_page_dirty(dirty_page);
2754 			unlock_page(dirty_page);
2755 			page_cache_release(dirty_page);
2756 			if (mapping)	{
2757 				/*
2758 				 * Some device drivers do not set page.mapping
2759 				 * but still dirty their pages
2760 				 */
2761 				balance_dirty_pages_ratelimited(mapping);
2762 			}
2763 		}
2764 
2765 		return ret;
2766 	}
2767 
2768 	/*
2769 	 * Ok, we need to copy. Oh, well..
2770 	 */
2771 	page_cache_get(old_page);
2772 gotten:
2773 	pte_unmap_unlock(page_table, ptl);
2774 
2775 	if (unlikely(anon_vma_prepare(vma)))
2776 		goto oom;
2777 
2778 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2779 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2780 		if (!new_page)
2781 			goto oom;
2782 	} else {
2783 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2784 		if (!new_page)
2785 			goto oom;
2786 		cow_user_page(new_page, old_page, address, vma);
2787 	}
2788 	__SetPageUptodate(new_page);
2789 
2790 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2791 		goto oom_free_new;
2792 
2793 	mmun_start  = address & PAGE_MASK;
2794 	mmun_end    = mmun_start + PAGE_SIZE;
2795 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2796 
2797 	/*
2798 	 * Re-check the pte - we dropped the lock
2799 	 */
2800 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2801 	if (likely(pte_same(*page_table, orig_pte))) {
2802 		if (old_page) {
2803 			if (!PageAnon(old_page)) {
2804 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2805 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2806 			}
2807 		} else
2808 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2809 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2810 		entry = mk_pte(new_page, vma->vm_page_prot);
2811 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2812 		/*
2813 		 * Clear the pte entry and flush it first, before updating the
2814 		 * pte with the new entry. This will avoid a race condition
2815 		 * seen in the presence of one thread doing SMC and another
2816 		 * thread doing COW.
2817 		 */
2818 		ptep_clear_flush(vma, address, page_table);
2819 		page_add_new_anon_rmap(new_page, vma, address);
2820 		/*
2821 		 * We call the notify macro here because, when using secondary
2822 		 * mmu page tables (such as kvm shadow page tables), we want the
2823 		 * new page to be mapped directly into the secondary page table.
2824 		 */
2825 		set_pte_at_notify(mm, address, page_table, entry);
2826 		update_mmu_cache(vma, address, page_table);
2827 		if (old_page) {
2828 			/*
2829 			 * Only after switching the pte to the new page may
2830 			 * we remove the mapcount here. Otherwise another
2831 			 * process may come and find the rmap count decremented
2832 			 * before the pte is switched to the new page, and
2833 			 * "reuse" the old page writing into it while our pte
2834 			 * here still points into it and can be read by other
2835 			 * threads.
2836 			 *
2837 			 * The critical issue is to order this
2838 			 * page_remove_rmap with the ptp_clear_flush above.
2839 			 * Those stores are ordered by (if nothing else,)
2840 			 * the barrier present in the atomic_add_negative
2841 			 * in page_remove_rmap.
2842 			 *
2843 			 * Then the TLB flush in ptep_clear_flush ensures that
2844 			 * no process can access the old page before the
2845 			 * decremented mapcount is visible. And the old page
2846 			 * cannot be reused until after the decremented
2847 			 * mapcount is visible. So transitively, TLBs to
2848 			 * old page will be flushed before it can be reused.
2849 			 */
2850 			page_remove_rmap(old_page);
2851 		}
2852 
2853 		/* Free the old page.. */
2854 		new_page = old_page;
2855 		ret |= VM_FAULT_WRITE;
2856 	} else
2857 		mem_cgroup_uncharge_page(new_page);
2858 
2859 	if (new_page)
2860 		page_cache_release(new_page);
2861 unlock:
2862 	pte_unmap_unlock(page_table, ptl);
2863 	if (mmun_end > mmun_start)
2864 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2865 	if (old_page) {
2866 		/*
2867 		 * Don't let another task, with possibly unlocked vma,
2868 		 * keep the mlocked page.
2869 		 */
2870 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2871 			lock_page(old_page);	/* LRU manipulation */
2872 			munlock_vma_page(old_page);
2873 			unlock_page(old_page);
2874 		}
2875 		page_cache_release(old_page);
2876 	}
2877 	return ret;
2878 oom_free_new:
2879 	page_cache_release(new_page);
2880 oom:
2881 	if (old_page)
2882 		page_cache_release(old_page);
2883 	return VM_FAULT_OOM;
2884 
2885 unwritable_page:
2886 	page_cache_release(old_page);
2887 	return ret;
2888 }
2889 
2890 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2891 		unsigned long start_addr, unsigned long end_addr,
2892 		struct zap_details *details)
2893 {
2894 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2895 }
2896 
2897 static inline void unmap_mapping_range_tree(struct rb_root *root,
2898 					    struct zap_details *details)
2899 {
2900 	struct vm_area_struct *vma;
2901 	pgoff_t vba, vea, zba, zea;
2902 
2903 	vma_interval_tree_foreach(vma, root,
2904 			details->first_index, details->last_index) {
2905 
2906 		vba = vma->vm_pgoff;
2907 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2908 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2909 		zba = details->first_index;
2910 		if (zba < vba)
2911 			zba = vba;
2912 		zea = details->last_index;
2913 		if (zea > vea)
2914 			zea = vea;
2915 
2916 		unmap_mapping_range_vma(vma,
2917 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2918 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2919 				details);
2920 	}
2921 }
2922 
2923 static inline void unmap_mapping_range_list(struct list_head *head,
2924 					    struct zap_details *details)
2925 {
2926 	struct vm_area_struct *vma;
2927 
2928 	/*
2929 	 * In nonlinear VMAs there is no correspondence between virtual address
2930 	 * offset and file offset.  So we must perform an exhaustive search
2931 	 * across *all* the pages in each nonlinear VMA, not just the pages
2932 	 * whose virtual address lies outside the file truncation point.
2933 	 */
2934 	list_for_each_entry(vma, head, shared.nonlinear) {
2935 		details->nonlinear_vma = vma;
2936 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2937 	}
2938 }
2939 
2940 /**
2941  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2942  * @mapping: the address space containing mmaps to be unmapped.
2943  * @holebegin: byte in first page to unmap, relative to the start of
2944  * the underlying file.  This will be rounded down to a PAGE_SIZE
2945  * boundary.  Note that this is different from truncate_pagecache(), which
2946  * must keep the partial page.  In contrast, we must get rid of
2947  * partial pages.
2948  * @holelen: size of prospective hole in bytes.  This will be rounded
2949  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2950  * end of the file.
2951  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2952  * but 0 when invalidating pagecache, don't throw away private data.
2953  */
2954 void unmap_mapping_range(struct address_space *mapping,
2955 		loff_t const holebegin, loff_t const holelen, int even_cows)
2956 {
2957 	struct zap_details details;
2958 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2959 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2960 
2961 	/* Check for overflow. */
2962 	if (sizeof(holelen) > sizeof(hlen)) {
2963 		long long holeend =
2964 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2965 		if (holeend & ~(long long)ULONG_MAX)
2966 			hlen = ULONG_MAX - hba + 1;
2967 	}
2968 
2969 	details.check_mapping = even_cows? NULL: mapping;
2970 	details.nonlinear_vma = NULL;
2971 	details.first_index = hba;
2972 	details.last_index = hba + hlen - 1;
2973 	if (details.last_index < details.first_index)
2974 		details.last_index = ULONG_MAX;
2975 
2976 
2977 	mutex_lock(&mapping->i_mmap_mutex);
2978 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2979 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2980 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2981 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2982 	mutex_unlock(&mapping->i_mmap_mutex);
2983 }
2984 EXPORT_SYMBOL(unmap_mapping_range);
2985 
2986 /*
2987  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2988  * but allow concurrent faults), and pte mapped but not yet locked.
2989  * We return with mmap_sem still held, but pte unmapped and unlocked.
2990  */
2991 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2992 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2993 		unsigned int flags, pte_t orig_pte)
2994 {
2995 	spinlock_t *ptl;
2996 	struct page *page, *swapcache;
2997 	swp_entry_t entry;
2998 	pte_t pte;
2999 	int locked;
3000 	struct mem_cgroup *ptr;
3001 	int exclusive = 0;
3002 	int ret = 0;
3003 
3004 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3005 		goto out;
3006 
3007 	entry = pte_to_swp_entry(orig_pte);
3008 	if (unlikely(non_swap_entry(entry))) {
3009 		if (is_migration_entry(entry)) {
3010 			migration_entry_wait(mm, pmd, address);
3011 		} else if (is_hwpoison_entry(entry)) {
3012 			ret = VM_FAULT_HWPOISON;
3013 		} else {
3014 			print_bad_pte(vma, address, orig_pte, NULL);
3015 			ret = VM_FAULT_SIGBUS;
3016 		}
3017 		goto out;
3018 	}
3019 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3020 	page = lookup_swap_cache(entry);
3021 	if (!page) {
3022 		page = swapin_readahead(entry,
3023 					GFP_HIGHUSER_MOVABLE, vma, address);
3024 		if (!page) {
3025 			/*
3026 			 * Back out if somebody else faulted in this pte
3027 			 * while we released the pte lock.
3028 			 */
3029 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3030 			if (likely(pte_same(*page_table, orig_pte)))
3031 				ret = VM_FAULT_OOM;
3032 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3033 			goto unlock;
3034 		}
3035 
3036 		/* Had to read the page from swap area: Major fault */
3037 		ret = VM_FAULT_MAJOR;
3038 		count_vm_event(PGMAJFAULT);
3039 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
3040 	} else if (PageHWPoison(page)) {
3041 		/*
3042 		 * hwpoisoned dirty swapcache pages are kept for killing
3043 		 * owner processes (which may be unknown at hwpoison time)
3044 		 */
3045 		ret = VM_FAULT_HWPOISON;
3046 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3047 		swapcache = page;
3048 		goto out_release;
3049 	}
3050 
3051 	swapcache = page;
3052 	locked = lock_page_or_retry(page, mm, flags);
3053 
3054 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3055 	if (!locked) {
3056 		ret |= VM_FAULT_RETRY;
3057 		goto out_release;
3058 	}
3059 
3060 	/*
3061 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3062 	 * release the swapcache from under us.  The page pin, and pte_same
3063 	 * test below, are not enough to exclude that.  Even if it is still
3064 	 * swapcache, we need to check that the page's swap has not changed.
3065 	 */
3066 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
3067 		goto out_page;
3068 
3069 	page = ksm_might_need_to_copy(page, vma, address);
3070 	if (unlikely(!page)) {
3071 		ret = VM_FAULT_OOM;
3072 		page = swapcache;
3073 		goto out_page;
3074 	}
3075 
3076 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3077 		ret = VM_FAULT_OOM;
3078 		goto out_page;
3079 	}
3080 
3081 	/*
3082 	 * Back out if somebody else already faulted in this pte.
3083 	 */
3084 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3085 	if (unlikely(!pte_same(*page_table, orig_pte)))
3086 		goto out_nomap;
3087 
3088 	if (unlikely(!PageUptodate(page))) {
3089 		ret = VM_FAULT_SIGBUS;
3090 		goto out_nomap;
3091 	}
3092 
3093 	/*
3094 	 * The page isn't present yet, go ahead with the fault.
3095 	 *
3096 	 * Be careful about the sequence of operations here.
3097 	 * To get its accounting right, reuse_swap_page() must be called
3098 	 * while the page is counted on swap but not yet in mapcount i.e.
3099 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3100 	 * must be called after the swap_free(), or it will never succeed.
3101 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3102 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3103 	 * in page->private. In this case, a record in swap_cgroup  is silently
3104 	 * discarded at swap_free().
3105 	 */
3106 
3107 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3108 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3109 	pte = mk_pte(page, vma->vm_page_prot);
3110 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3111 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3112 		flags &= ~FAULT_FLAG_WRITE;
3113 		ret |= VM_FAULT_WRITE;
3114 		exclusive = 1;
3115 	}
3116 	flush_icache_page(vma, page);
3117 	set_pte_at(mm, address, page_table, pte);
3118 	if (page == swapcache)
3119 		do_page_add_anon_rmap(page, vma, address, exclusive);
3120 	else /* ksm created a completely new copy */
3121 		page_add_new_anon_rmap(page, vma, address);
3122 	/* It's better to call commit-charge after rmap is established */
3123 	mem_cgroup_commit_charge_swapin(page, ptr);
3124 
3125 	swap_free(entry);
3126 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3127 		try_to_free_swap(page);
3128 	unlock_page(page);
3129 	if (page != swapcache) {
3130 		/*
3131 		 * Hold the lock to avoid the swap entry to be reused
3132 		 * until we take the PT lock for the pte_same() check
3133 		 * (to avoid false positives from pte_same). For
3134 		 * further safety release the lock after the swap_free
3135 		 * so that the swap count won't change under a
3136 		 * parallel locked swapcache.
3137 		 */
3138 		unlock_page(swapcache);
3139 		page_cache_release(swapcache);
3140 	}
3141 
3142 	if (flags & FAULT_FLAG_WRITE) {
3143 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3144 		if (ret & VM_FAULT_ERROR)
3145 			ret &= VM_FAULT_ERROR;
3146 		goto out;
3147 	}
3148 
3149 	/* No need to invalidate - it was non-present before */
3150 	update_mmu_cache(vma, address, page_table);
3151 unlock:
3152 	pte_unmap_unlock(page_table, ptl);
3153 out:
3154 	return ret;
3155 out_nomap:
3156 	mem_cgroup_cancel_charge_swapin(ptr);
3157 	pte_unmap_unlock(page_table, ptl);
3158 out_page:
3159 	unlock_page(page);
3160 out_release:
3161 	page_cache_release(page);
3162 	if (page != swapcache) {
3163 		unlock_page(swapcache);
3164 		page_cache_release(swapcache);
3165 	}
3166 	return ret;
3167 }
3168 
3169 /*
3170  * This is like a special single-page "expand_{down|up}wards()",
3171  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3172  * doesn't hit another vma.
3173  */
3174 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3175 {
3176 	address &= PAGE_MASK;
3177 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3178 		struct vm_area_struct *prev = vma->vm_prev;
3179 
3180 		/*
3181 		 * Is there a mapping abutting this one below?
3182 		 *
3183 		 * That's only ok if it's the same stack mapping
3184 		 * that has gotten split..
3185 		 */
3186 		if (prev && prev->vm_end == address)
3187 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3188 
3189 		expand_downwards(vma, address - PAGE_SIZE);
3190 	}
3191 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3192 		struct vm_area_struct *next = vma->vm_next;
3193 
3194 		/* As VM_GROWSDOWN but s/below/above/ */
3195 		if (next && next->vm_start == address + PAGE_SIZE)
3196 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3197 
3198 		expand_upwards(vma, address + PAGE_SIZE);
3199 	}
3200 	return 0;
3201 }
3202 
3203 /*
3204  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3205  * but allow concurrent faults), and pte mapped but not yet locked.
3206  * We return with mmap_sem still held, but pte unmapped and unlocked.
3207  */
3208 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3209 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3210 		unsigned int flags)
3211 {
3212 	struct page *page;
3213 	spinlock_t *ptl;
3214 	pte_t entry;
3215 
3216 	pte_unmap(page_table);
3217 
3218 	/* Check if we need to add a guard page to the stack */
3219 	if (check_stack_guard_page(vma, address) < 0)
3220 		return VM_FAULT_SIGBUS;
3221 
3222 	/* Use the zero-page for reads */
3223 	if (!(flags & FAULT_FLAG_WRITE)) {
3224 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3225 						vma->vm_page_prot));
3226 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3227 		if (!pte_none(*page_table))
3228 			goto unlock;
3229 		goto setpte;
3230 	}
3231 
3232 	/* Allocate our own private page. */
3233 	if (unlikely(anon_vma_prepare(vma)))
3234 		goto oom;
3235 	page = alloc_zeroed_user_highpage_movable(vma, address);
3236 	if (!page)
3237 		goto oom;
3238 	/*
3239 	 * The memory barrier inside __SetPageUptodate makes sure that
3240 	 * preceeding stores to the page contents become visible before
3241 	 * the set_pte_at() write.
3242 	 */
3243 	__SetPageUptodate(page);
3244 
3245 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3246 		goto oom_free_page;
3247 
3248 	entry = mk_pte(page, vma->vm_page_prot);
3249 	if (vma->vm_flags & VM_WRITE)
3250 		entry = pte_mkwrite(pte_mkdirty(entry));
3251 
3252 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3253 	if (!pte_none(*page_table))
3254 		goto release;
3255 
3256 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3257 	page_add_new_anon_rmap(page, vma, address);
3258 setpte:
3259 	set_pte_at(mm, address, page_table, entry);
3260 
3261 	/* No need to invalidate - it was non-present before */
3262 	update_mmu_cache(vma, address, page_table);
3263 unlock:
3264 	pte_unmap_unlock(page_table, ptl);
3265 	return 0;
3266 release:
3267 	mem_cgroup_uncharge_page(page);
3268 	page_cache_release(page);
3269 	goto unlock;
3270 oom_free_page:
3271 	page_cache_release(page);
3272 oom:
3273 	return VM_FAULT_OOM;
3274 }
3275 
3276 /*
3277  * __do_fault() tries to create a new page mapping. It aggressively
3278  * tries to share with existing pages, but makes a separate copy if
3279  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3280  * the next page fault.
3281  *
3282  * As this is called only for pages that do not currently exist, we
3283  * do not need to flush old virtual caches or the TLB.
3284  *
3285  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3286  * but allow concurrent faults), and pte neither mapped nor locked.
3287  * We return with mmap_sem still held, but pte unmapped and unlocked.
3288  */
3289 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3290 		unsigned long address, pmd_t *pmd,
3291 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3292 {
3293 	pte_t *page_table;
3294 	spinlock_t *ptl;
3295 	struct page *page;
3296 	struct page *cow_page;
3297 	pte_t entry;
3298 	int anon = 0;
3299 	struct page *dirty_page = NULL;
3300 	struct vm_fault vmf;
3301 	int ret;
3302 	int page_mkwrite = 0;
3303 
3304 	/*
3305 	 * If we do COW later, allocate page befor taking lock_page()
3306 	 * on the file cache page. This will reduce lock holding time.
3307 	 */
3308 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3309 
3310 		if (unlikely(anon_vma_prepare(vma)))
3311 			return VM_FAULT_OOM;
3312 
3313 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3314 		if (!cow_page)
3315 			return VM_FAULT_OOM;
3316 
3317 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3318 			page_cache_release(cow_page);
3319 			return VM_FAULT_OOM;
3320 		}
3321 	} else
3322 		cow_page = NULL;
3323 
3324 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3325 	vmf.pgoff = pgoff;
3326 	vmf.flags = flags;
3327 	vmf.page = NULL;
3328 
3329 	ret = vma->vm_ops->fault(vma, &vmf);
3330 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3331 			    VM_FAULT_RETRY)))
3332 		goto uncharge_out;
3333 
3334 	if (unlikely(PageHWPoison(vmf.page))) {
3335 		if (ret & VM_FAULT_LOCKED)
3336 			unlock_page(vmf.page);
3337 		ret = VM_FAULT_HWPOISON;
3338 		goto uncharge_out;
3339 	}
3340 
3341 	/*
3342 	 * For consistency in subsequent calls, make the faulted page always
3343 	 * locked.
3344 	 */
3345 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3346 		lock_page(vmf.page);
3347 	else
3348 		VM_BUG_ON(!PageLocked(vmf.page));
3349 
3350 	/*
3351 	 * Should we do an early C-O-W break?
3352 	 */
3353 	page = vmf.page;
3354 	if (flags & FAULT_FLAG_WRITE) {
3355 		if (!(vma->vm_flags & VM_SHARED)) {
3356 			page = cow_page;
3357 			anon = 1;
3358 			copy_user_highpage(page, vmf.page, address, vma);
3359 			__SetPageUptodate(page);
3360 		} else {
3361 			/*
3362 			 * If the page will be shareable, see if the backing
3363 			 * address space wants to know that the page is about
3364 			 * to become writable
3365 			 */
3366 			if (vma->vm_ops->page_mkwrite) {
3367 				int tmp;
3368 
3369 				unlock_page(page);
3370 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3371 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3372 				if (unlikely(tmp &
3373 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3374 					ret = tmp;
3375 					goto unwritable_page;
3376 				}
3377 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3378 					lock_page(page);
3379 					if (!page->mapping) {
3380 						ret = 0; /* retry the fault */
3381 						unlock_page(page);
3382 						goto unwritable_page;
3383 					}
3384 				} else
3385 					VM_BUG_ON(!PageLocked(page));
3386 				page_mkwrite = 1;
3387 			}
3388 		}
3389 
3390 	}
3391 
3392 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3393 
3394 	/*
3395 	 * This silly early PAGE_DIRTY setting removes a race
3396 	 * due to the bad i386 page protection. But it's valid
3397 	 * for other architectures too.
3398 	 *
3399 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3400 	 * an exclusive copy of the page, or this is a shared mapping,
3401 	 * so we can make it writable and dirty to avoid having to
3402 	 * handle that later.
3403 	 */
3404 	/* Only go through if we didn't race with anybody else... */
3405 	if (likely(pte_same(*page_table, orig_pte))) {
3406 		flush_icache_page(vma, page);
3407 		entry = mk_pte(page, vma->vm_page_prot);
3408 		if (flags & FAULT_FLAG_WRITE)
3409 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3410 		if (anon) {
3411 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3412 			page_add_new_anon_rmap(page, vma, address);
3413 		} else {
3414 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3415 			page_add_file_rmap(page);
3416 			if (flags & FAULT_FLAG_WRITE) {
3417 				dirty_page = page;
3418 				get_page(dirty_page);
3419 			}
3420 		}
3421 		set_pte_at(mm, address, page_table, entry);
3422 
3423 		/* no need to invalidate: a not-present page won't be cached */
3424 		update_mmu_cache(vma, address, page_table);
3425 	} else {
3426 		if (cow_page)
3427 			mem_cgroup_uncharge_page(cow_page);
3428 		if (anon)
3429 			page_cache_release(page);
3430 		else
3431 			anon = 1; /* no anon but release faulted_page */
3432 	}
3433 
3434 	pte_unmap_unlock(page_table, ptl);
3435 
3436 	if (dirty_page) {
3437 		struct address_space *mapping = page->mapping;
3438 		int dirtied = 0;
3439 
3440 		if (set_page_dirty(dirty_page))
3441 			dirtied = 1;
3442 		unlock_page(dirty_page);
3443 		put_page(dirty_page);
3444 		if ((dirtied || page_mkwrite) && mapping) {
3445 			/*
3446 			 * Some device drivers do not set page.mapping but still
3447 			 * dirty their pages
3448 			 */
3449 			balance_dirty_pages_ratelimited(mapping);
3450 		}
3451 
3452 		/* file_update_time outside page_lock */
3453 		if (vma->vm_file && !page_mkwrite)
3454 			file_update_time(vma->vm_file);
3455 	} else {
3456 		unlock_page(vmf.page);
3457 		if (anon)
3458 			page_cache_release(vmf.page);
3459 	}
3460 
3461 	return ret;
3462 
3463 unwritable_page:
3464 	page_cache_release(page);
3465 	return ret;
3466 uncharge_out:
3467 	/* fs's fault handler get error */
3468 	if (cow_page) {
3469 		mem_cgroup_uncharge_page(cow_page);
3470 		page_cache_release(cow_page);
3471 	}
3472 	return ret;
3473 }
3474 
3475 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3476 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3477 		unsigned int flags, pte_t orig_pte)
3478 {
3479 	pgoff_t pgoff = (((address & PAGE_MASK)
3480 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3481 
3482 	pte_unmap(page_table);
3483 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3484 }
3485 
3486 /*
3487  * Fault of a previously existing named mapping. Repopulate the pte
3488  * from the encoded file_pte if possible. This enables swappable
3489  * nonlinear vmas.
3490  *
3491  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3492  * but allow concurrent faults), and pte mapped but not yet locked.
3493  * We return with mmap_sem still held, but pte unmapped and unlocked.
3494  */
3495 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3496 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3497 		unsigned int flags, pte_t orig_pte)
3498 {
3499 	pgoff_t pgoff;
3500 
3501 	flags |= FAULT_FLAG_NONLINEAR;
3502 
3503 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3504 		return 0;
3505 
3506 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3507 		/*
3508 		 * Page table corrupted: show pte and kill process.
3509 		 */
3510 		print_bad_pte(vma, address, orig_pte, NULL);
3511 		return VM_FAULT_SIGBUS;
3512 	}
3513 
3514 	pgoff = pte_to_pgoff(orig_pte);
3515 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3516 }
3517 
3518 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3519 				unsigned long addr, int current_nid)
3520 {
3521 	get_page(page);
3522 
3523 	count_vm_numa_event(NUMA_HINT_FAULTS);
3524 	if (current_nid == numa_node_id())
3525 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3526 
3527 	return mpol_misplaced(page, vma, addr);
3528 }
3529 
3530 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3531 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3532 {
3533 	struct page *page = NULL;
3534 	spinlock_t *ptl;
3535 	int current_nid = -1;
3536 	int target_nid;
3537 	bool migrated = false;
3538 
3539 	/*
3540 	* The "pte" at this point cannot be used safely without
3541 	* validation through pte_unmap_same(). It's of NUMA type but
3542 	* the pfn may be screwed if the read is non atomic.
3543 	*
3544 	* ptep_modify_prot_start is not called as this is clearing
3545 	* the _PAGE_NUMA bit and it is not really expected that there
3546 	* would be concurrent hardware modifications to the PTE.
3547 	*/
3548 	ptl = pte_lockptr(mm, pmd);
3549 	spin_lock(ptl);
3550 	if (unlikely(!pte_same(*ptep, pte))) {
3551 		pte_unmap_unlock(ptep, ptl);
3552 		goto out;
3553 	}
3554 
3555 	pte = pte_mknonnuma(pte);
3556 	set_pte_at(mm, addr, ptep, pte);
3557 	update_mmu_cache(vma, addr, ptep);
3558 
3559 	page = vm_normal_page(vma, addr, pte);
3560 	if (!page) {
3561 		pte_unmap_unlock(ptep, ptl);
3562 		return 0;
3563 	}
3564 
3565 	current_nid = page_to_nid(page);
3566 	target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3567 	pte_unmap_unlock(ptep, ptl);
3568 	if (target_nid == -1) {
3569 		/*
3570 		 * Account for the fault against the current node if it not
3571 		 * being replaced regardless of where the page is located.
3572 		 */
3573 		current_nid = numa_node_id();
3574 		put_page(page);
3575 		goto out;
3576 	}
3577 
3578 	/* Migrate to the requested node */
3579 	migrated = migrate_misplaced_page(page, target_nid);
3580 	if (migrated)
3581 		current_nid = target_nid;
3582 
3583 out:
3584 	if (current_nid != -1)
3585 		task_numa_fault(current_nid, 1, migrated);
3586 	return 0;
3587 }
3588 
3589 /* NUMA hinting page fault entry point for regular pmds */
3590 #ifdef CONFIG_NUMA_BALANCING
3591 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3592 		     unsigned long addr, pmd_t *pmdp)
3593 {
3594 	pmd_t pmd;
3595 	pte_t *pte, *orig_pte;
3596 	unsigned long _addr = addr & PMD_MASK;
3597 	unsigned long offset;
3598 	spinlock_t *ptl;
3599 	bool numa = false;
3600 	int local_nid = numa_node_id();
3601 
3602 	spin_lock(&mm->page_table_lock);
3603 	pmd = *pmdp;
3604 	if (pmd_numa(pmd)) {
3605 		set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3606 		numa = true;
3607 	}
3608 	spin_unlock(&mm->page_table_lock);
3609 
3610 	if (!numa)
3611 		return 0;
3612 
3613 	/* we're in a page fault so some vma must be in the range */
3614 	BUG_ON(!vma);
3615 	BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3616 	offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3617 	VM_BUG_ON(offset >= PMD_SIZE);
3618 	orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3619 	pte += offset >> PAGE_SHIFT;
3620 	for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3621 		pte_t pteval = *pte;
3622 		struct page *page;
3623 		int curr_nid = local_nid;
3624 		int target_nid;
3625 		bool migrated;
3626 		if (!pte_present(pteval))
3627 			continue;
3628 		if (!pte_numa(pteval))
3629 			continue;
3630 		if (addr >= vma->vm_end) {
3631 			vma = find_vma(mm, addr);
3632 			/* there's a pte present so there must be a vma */
3633 			BUG_ON(!vma);
3634 			BUG_ON(addr < vma->vm_start);
3635 		}
3636 		if (pte_numa(pteval)) {
3637 			pteval = pte_mknonnuma(pteval);
3638 			set_pte_at(mm, addr, pte, pteval);
3639 		}
3640 		page = vm_normal_page(vma, addr, pteval);
3641 		if (unlikely(!page))
3642 			continue;
3643 		/* only check non-shared pages */
3644 		if (unlikely(page_mapcount(page) != 1))
3645 			continue;
3646 
3647 		/*
3648 		 * Note that the NUMA fault is later accounted to either
3649 		 * the node that is currently running or where the page is
3650 		 * migrated to.
3651 		 */
3652 		curr_nid = local_nid;
3653 		target_nid = numa_migrate_prep(page, vma, addr,
3654 					       page_to_nid(page));
3655 		if (target_nid == -1) {
3656 			put_page(page);
3657 			continue;
3658 		}
3659 
3660 		/* Migrate to the requested node */
3661 		pte_unmap_unlock(pte, ptl);
3662 		migrated = migrate_misplaced_page(page, target_nid);
3663 		if (migrated)
3664 			curr_nid = target_nid;
3665 		task_numa_fault(curr_nid, 1, migrated);
3666 
3667 		pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3668 	}
3669 	pte_unmap_unlock(orig_pte, ptl);
3670 
3671 	return 0;
3672 }
3673 #else
3674 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3675 		     unsigned long addr, pmd_t *pmdp)
3676 {
3677 	BUG();
3678 	return 0;
3679 }
3680 #endif /* CONFIG_NUMA_BALANCING */
3681 
3682 /*
3683  * These routines also need to handle stuff like marking pages dirty
3684  * and/or accessed for architectures that don't do it in hardware (most
3685  * RISC architectures).  The early dirtying is also good on the i386.
3686  *
3687  * There is also a hook called "update_mmu_cache()" that architectures
3688  * with external mmu caches can use to update those (ie the Sparc or
3689  * PowerPC hashed page tables that act as extended TLBs).
3690  *
3691  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3692  * but allow concurrent faults), and pte mapped but not yet locked.
3693  * We return with mmap_sem still held, but pte unmapped and unlocked.
3694  */
3695 int handle_pte_fault(struct mm_struct *mm,
3696 		     struct vm_area_struct *vma, unsigned long address,
3697 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3698 {
3699 	pte_t entry;
3700 	spinlock_t *ptl;
3701 
3702 	entry = *pte;
3703 	if (!pte_present(entry)) {
3704 		if (pte_none(entry)) {
3705 			if (vma->vm_ops) {
3706 				if (likely(vma->vm_ops->fault))
3707 					return do_linear_fault(mm, vma, address,
3708 						pte, pmd, flags, entry);
3709 			}
3710 			return do_anonymous_page(mm, vma, address,
3711 						 pte, pmd, flags);
3712 		}
3713 		if (pte_file(entry))
3714 			return do_nonlinear_fault(mm, vma, address,
3715 					pte, pmd, flags, entry);
3716 		return do_swap_page(mm, vma, address,
3717 					pte, pmd, flags, entry);
3718 	}
3719 
3720 	if (pte_numa(entry))
3721 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3722 
3723 	ptl = pte_lockptr(mm, pmd);
3724 	spin_lock(ptl);
3725 	if (unlikely(!pte_same(*pte, entry)))
3726 		goto unlock;
3727 	if (flags & FAULT_FLAG_WRITE) {
3728 		if (!pte_write(entry))
3729 			return do_wp_page(mm, vma, address,
3730 					pte, pmd, ptl, entry);
3731 		entry = pte_mkdirty(entry);
3732 	}
3733 	entry = pte_mkyoung(entry);
3734 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3735 		update_mmu_cache(vma, address, pte);
3736 	} else {
3737 		/*
3738 		 * This is needed only for protection faults but the arch code
3739 		 * is not yet telling us if this is a protection fault or not.
3740 		 * This still avoids useless tlb flushes for .text page faults
3741 		 * with threads.
3742 		 */
3743 		if (flags & FAULT_FLAG_WRITE)
3744 			flush_tlb_fix_spurious_fault(vma, address);
3745 	}
3746 unlock:
3747 	pte_unmap_unlock(pte, ptl);
3748 	return 0;
3749 }
3750 
3751 /*
3752  * By the time we get here, we already hold the mm semaphore
3753  */
3754 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3755 		unsigned long address, unsigned int flags)
3756 {
3757 	pgd_t *pgd;
3758 	pud_t *pud;
3759 	pmd_t *pmd;
3760 	pte_t *pte;
3761 
3762 	__set_current_state(TASK_RUNNING);
3763 
3764 	count_vm_event(PGFAULT);
3765 	mem_cgroup_count_vm_event(mm, PGFAULT);
3766 
3767 	/* do counter updates before entering really critical section. */
3768 	check_sync_rss_stat(current);
3769 
3770 	if (unlikely(is_vm_hugetlb_page(vma)))
3771 		return hugetlb_fault(mm, vma, address, flags);
3772 
3773 retry:
3774 	pgd = pgd_offset(mm, address);
3775 	pud = pud_alloc(mm, pgd, address);
3776 	if (!pud)
3777 		return VM_FAULT_OOM;
3778 	pmd = pmd_alloc(mm, pud, address);
3779 	if (!pmd)
3780 		return VM_FAULT_OOM;
3781 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3782 		if (!vma->vm_ops)
3783 			return do_huge_pmd_anonymous_page(mm, vma, address,
3784 							  pmd, flags);
3785 	} else {
3786 		pmd_t orig_pmd = *pmd;
3787 		int ret;
3788 
3789 		barrier();
3790 		if (pmd_trans_huge(orig_pmd)) {
3791 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3792 
3793 			/*
3794 			 * If the pmd is splitting, return and retry the
3795 			 * the fault.  Alternative: wait until the split
3796 			 * is done, and goto retry.
3797 			 */
3798 			if (pmd_trans_splitting(orig_pmd))
3799 				return 0;
3800 
3801 			if (pmd_numa(orig_pmd))
3802 				return do_huge_pmd_numa_page(mm, vma, address,
3803 							     orig_pmd, pmd);
3804 
3805 			if (dirty && !pmd_write(orig_pmd)) {
3806 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3807 							  orig_pmd);
3808 				/*
3809 				 * If COW results in an oom, the huge pmd will
3810 				 * have been split, so retry the fault on the
3811 				 * pte for a smaller charge.
3812 				 */
3813 				if (unlikely(ret & VM_FAULT_OOM))
3814 					goto retry;
3815 				return ret;
3816 			} else {
3817 				huge_pmd_set_accessed(mm, vma, address, pmd,
3818 						      orig_pmd, dirty);
3819 			}
3820 
3821 			return 0;
3822 		}
3823 	}
3824 
3825 	if (pmd_numa(*pmd))
3826 		return do_pmd_numa_page(mm, vma, address, pmd);
3827 
3828 	/*
3829 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3830 	 * run pte_offset_map on the pmd, if an huge pmd could
3831 	 * materialize from under us from a different thread.
3832 	 */
3833 	if (unlikely(pmd_none(*pmd)) &&
3834 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3835 		return VM_FAULT_OOM;
3836 	/* if an huge pmd materialized from under us just retry later */
3837 	if (unlikely(pmd_trans_huge(*pmd)))
3838 		return 0;
3839 	/*
3840 	 * A regular pmd is established and it can't morph into a huge pmd
3841 	 * from under us anymore at this point because we hold the mmap_sem
3842 	 * read mode and khugepaged takes it in write mode. So now it's
3843 	 * safe to run pte_offset_map().
3844 	 */
3845 	pte = pte_offset_map(pmd, address);
3846 
3847 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3848 }
3849 
3850 #ifndef __PAGETABLE_PUD_FOLDED
3851 /*
3852  * Allocate page upper directory.
3853  * We've already handled the fast-path in-line.
3854  */
3855 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3856 {
3857 	pud_t *new = pud_alloc_one(mm, address);
3858 	if (!new)
3859 		return -ENOMEM;
3860 
3861 	smp_wmb(); /* See comment in __pte_alloc */
3862 
3863 	spin_lock(&mm->page_table_lock);
3864 	if (pgd_present(*pgd))		/* Another has populated it */
3865 		pud_free(mm, new);
3866 	else
3867 		pgd_populate(mm, pgd, new);
3868 	spin_unlock(&mm->page_table_lock);
3869 	return 0;
3870 }
3871 #endif /* __PAGETABLE_PUD_FOLDED */
3872 
3873 #ifndef __PAGETABLE_PMD_FOLDED
3874 /*
3875  * Allocate page middle directory.
3876  * We've already handled the fast-path in-line.
3877  */
3878 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3879 {
3880 	pmd_t *new = pmd_alloc_one(mm, address);
3881 	if (!new)
3882 		return -ENOMEM;
3883 
3884 	smp_wmb(); /* See comment in __pte_alloc */
3885 
3886 	spin_lock(&mm->page_table_lock);
3887 #ifndef __ARCH_HAS_4LEVEL_HACK
3888 	if (pud_present(*pud))		/* Another has populated it */
3889 		pmd_free(mm, new);
3890 	else
3891 		pud_populate(mm, pud, new);
3892 #else
3893 	if (pgd_present(*pud))		/* Another has populated it */
3894 		pmd_free(mm, new);
3895 	else
3896 		pgd_populate(mm, pud, new);
3897 #endif /* __ARCH_HAS_4LEVEL_HACK */
3898 	spin_unlock(&mm->page_table_lock);
3899 	return 0;
3900 }
3901 #endif /* __PAGETABLE_PMD_FOLDED */
3902 
3903 #if !defined(__HAVE_ARCH_GATE_AREA)
3904 
3905 #if defined(AT_SYSINFO_EHDR)
3906 static struct vm_area_struct gate_vma;
3907 
3908 static int __init gate_vma_init(void)
3909 {
3910 	gate_vma.vm_mm = NULL;
3911 	gate_vma.vm_start = FIXADDR_USER_START;
3912 	gate_vma.vm_end = FIXADDR_USER_END;
3913 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3914 	gate_vma.vm_page_prot = __P101;
3915 
3916 	return 0;
3917 }
3918 __initcall(gate_vma_init);
3919 #endif
3920 
3921 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3922 {
3923 #ifdef AT_SYSINFO_EHDR
3924 	return &gate_vma;
3925 #else
3926 	return NULL;
3927 #endif
3928 }
3929 
3930 int in_gate_area_no_mm(unsigned long addr)
3931 {
3932 #ifdef AT_SYSINFO_EHDR
3933 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3934 		return 1;
3935 #endif
3936 	return 0;
3937 }
3938 
3939 #endif	/* __HAVE_ARCH_GATE_AREA */
3940 
3941 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3942 		pte_t **ptepp, spinlock_t **ptlp)
3943 {
3944 	pgd_t *pgd;
3945 	pud_t *pud;
3946 	pmd_t *pmd;
3947 	pte_t *ptep;
3948 
3949 	pgd = pgd_offset(mm, address);
3950 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3951 		goto out;
3952 
3953 	pud = pud_offset(pgd, address);
3954 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3955 		goto out;
3956 
3957 	pmd = pmd_offset(pud, address);
3958 	VM_BUG_ON(pmd_trans_huge(*pmd));
3959 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3960 		goto out;
3961 
3962 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3963 	if (pmd_huge(*pmd))
3964 		goto out;
3965 
3966 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3967 	if (!ptep)
3968 		goto out;
3969 	if (!pte_present(*ptep))
3970 		goto unlock;
3971 	*ptepp = ptep;
3972 	return 0;
3973 unlock:
3974 	pte_unmap_unlock(ptep, *ptlp);
3975 out:
3976 	return -EINVAL;
3977 }
3978 
3979 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3980 			     pte_t **ptepp, spinlock_t **ptlp)
3981 {
3982 	int res;
3983 
3984 	/* (void) is needed to make gcc happy */
3985 	(void) __cond_lock(*ptlp,
3986 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3987 	return res;
3988 }
3989 
3990 /**
3991  * follow_pfn - look up PFN at a user virtual address
3992  * @vma: memory mapping
3993  * @address: user virtual address
3994  * @pfn: location to store found PFN
3995  *
3996  * Only IO mappings and raw PFN mappings are allowed.
3997  *
3998  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3999  */
4000 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4001 	unsigned long *pfn)
4002 {
4003 	int ret = -EINVAL;
4004 	spinlock_t *ptl;
4005 	pte_t *ptep;
4006 
4007 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4008 		return ret;
4009 
4010 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4011 	if (ret)
4012 		return ret;
4013 	*pfn = pte_pfn(*ptep);
4014 	pte_unmap_unlock(ptep, ptl);
4015 	return 0;
4016 }
4017 EXPORT_SYMBOL(follow_pfn);
4018 
4019 #ifdef CONFIG_HAVE_IOREMAP_PROT
4020 int follow_phys(struct vm_area_struct *vma,
4021 		unsigned long address, unsigned int flags,
4022 		unsigned long *prot, resource_size_t *phys)
4023 {
4024 	int ret = -EINVAL;
4025 	pte_t *ptep, pte;
4026 	spinlock_t *ptl;
4027 
4028 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4029 		goto out;
4030 
4031 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4032 		goto out;
4033 	pte = *ptep;
4034 
4035 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4036 		goto unlock;
4037 
4038 	*prot = pgprot_val(pte_pgprot(pte));
4039 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4040 
4041 	ret = 0;
4042 unlock:
4043 	pte_unmap_unlock(ptep, ptl);
4044 out:
4045 	return ret;
4046 }
4047 
4048 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4049 			void *buf, int len, int write)
4050 {
4051 	resource_size_t phys_addr;
4052 	unsigned long prot = 0;
4053 	void __iomem *maddr;
4054 	int offset = addr & (PAGE_SIZE-1);
4055 
4056 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4057 		return -EINVAL;
4058 
4059 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
4060 	if (write)
4061 		memcpy_toio(maddr + offset, buf, len);
4062 	else
4063 		memcpy_fromio(buf, maddr + offset, len);
4064 	iounmap(maddr);
4065 
4066 	return len;
4067 }
4068 #endif
4069 
4070 /*
4071  * Access another process' address space as given in mm.  If non-NULL, use the
4072  * given task for page fault accounting.
4073  */
4074 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4075 		unsigned long addr, void *buf, int len, int write)
4076 {
4077 	struct vm_area_struct *vma;
4078 	void *old_buf = buf;
4079 
4080 	down_read(&mm->mmap_sem);
4081 	/* ignore errors, just check how much was successfully transferred */
4082 	while (len) {
4083 		int bytes, ret, offset;
4084 		void *maddr;
4085 		struct page *page = NULL;
4086 
4087 		ret = get_user_pages(tsk, mm, addr, 1,
4088 				write, 1, &page, &vma);
4089 		if (ret <= 0) {
4090 			/*
4091 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4092 			 * we can access using slightly different code.
4093 			 */
4094 #ifdef CONFIG_HAVE_IOREMAP_PROT
4095 			vma = find_vma(mm, addr);
4096 			if (!vma || vma->vm_start > addr)
4097 				break;
4098 			if (vma->vm_ops && vma->vm_ops->access)
4099 				ret = vma->vm_ops->access(vma, addr, buf,
4100 							  len, write);
4101 			if (ret <= 0)
4102 #endif
4103 				break;
4104 			bytes = ret;
4105 		} else {
4106 			bytes = len;
4107 			offset = addr & (PAGE_SIZE-1);
4108 			if (bytes > PAGE_SIZE-offset)
4109 				bytes = PAGE_SIZE-offset;
4110 
4111 			maddr = kmap(page);
4112 			if (write) {
4113 				copy_to_user_page(vma, page, addr,
4114 						  maddr + offset, buf, bytes);
4115 				set_page_dirty_lock(page);
4116 			} else {
4117 				copy_from_user_page(vma, page, addr,
4118 						    buf, maddr + offset, bytes);
4119 			}
4120 			kunmap(page);
4121 			page_cache_release(page);
4122 		}
4123 		len -= bytes;
4124 		buf += bytes;
4125 		addr += bytes;
4126 	}
4127 	up_read(&mm->mmap_sem);
4128 
4129 	return buf - old_buf;
4130 }
4131 
4132 /**
4133  * access_remote_vm - access another process' address space
4134  * @mm:		the mm_struct of the target address space
4135  * @addr:	start address to access
4136  * @buf:	source or destination buffer
4137  * @len:	number of bytes to transfer
4138  * @write:	whether the access is a write
4139  *
4140  * The caller must hold a reference on @mm.
4141  */
4142 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4143 		void *buf, int len, int write)
4144 {
4145 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4146 }
4147 
4148 /*
4149  * Access another process' address space.
4150  * Source/target buffer must be kernel space,
4151  * Do not walk the page table directly, use get_user_pages
4152  */
4153 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4154 		void *buf, int len, int write)
4155 {
4156 	struct mm_struct *mm;
4157 	int ret;
4158 
4159 	mm = get_task_mm(tsk);
4160 	if (!mm)
4161 		return 0;
4162 
4163 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4164 	mmput(mm);
4165 
4166 	return ret;
4167 }
4168 
4169 /*
4170  * Print the name of a VMA.
4171  */
4172 void print_vma_addr(char *prefix, unsigned long ip)
4173 {
4174 	struct mm_struct *mm = current->mm;
4175 	struct vm_area_struct *vma;
4176 
4177 	/*
4178 	 * Do not print if we are in atomic
4179 	 * contexts (in exception stacks, etc.):
4180 	 */
4181 	if (preempt_count())
4182 		return;
4183 
4184 	down_read(&mm->mmap_sem);
4185 	vma = find_vma(mm, ip);
4186 	if (vma && vma->vm_file) {
4187 		struct file *f = vma->vm_file;
4188 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4189 		if (buf) {
4190 			char *p;
4191 
4192 			p = d_path(&f->f_path, buf, PAGE_SIZE);
4193 			if (IS_ERR(p))
4194 				p = "?";
4195 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4196 					vma->vm_start,
4197 					vma->vm_end - vma->vm_start);
4198 			free_page((unsigned long)buf);
4199 		}
4200 	}
4201 	up_read(&mm->mmap_sem);
4202 }
4203 
4204 #ifdef CONFIG_PROVE_LOCKING
4205 void might_fault(void)
4206 {
4207 	/*
4208 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4209 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4210 	 * get paged out, therefore we'll never actually fault, and the
4211 	 * below annotations will generate false positives.
4212 	 */
4213 	if (segment_eq(get_fs(), KERNEL_DS))
4214 		return;
4215 
4216 	might_sleep();
4217 	/*
4218 	 * it would be nicer only to annotate paths which are not under
4219 	 * pagefault_disable, however that requires a larger audit and
4220 	 * providing helpers like get_user_atomic.
4221 	 */
4222 	if (!in_atomic() && current->mm)
4223 		might_lock_read(&current->mm->mmap_sem);
4224 }
4225 EXPORT_SYMBOL(might_fault);
4226 #endif
4227 
4228 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4229 static void clear_gigantic_page(struct page *page,
4230 				unsigned long addr,
4231 				unsigned int pages_per_huge_page)
4232 {
4233 	int i;
4234 	struct page *p = page;
4235 
4236 	might_sleep();
4237 	for (i = 0; i < pages_per_huge_page;
4238 	     i++, p = mem_map_next(p, page, i)) {
4239 		cond_resched();
4240 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4241 	}
4242 }
4243 void clear_huge_page(struct page *page,
4244 		     unsigned long addr, unsigned int pages_per_huge_page)
4245 {
4246 	int i;
4247 
4248 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4249 		clear_gigantic_page(page, addr, pages_per_huge_page);
4250 		return;
4251 	}
4252 
4253 	might_sleep();
4254 	for (i = 0; i < pages_per_huge_page; i++) {
4255 		cond_resched();
4256 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4257 	}
4258 }
4259 
4260 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4261 				    unsigned long addr,
4262 				    struct vm_area_struct *vma,
4263 				    unsigned int pages_per_huge_page)
4264 {
4265 	int i;
4266 	struct page *dst_base = dst;
4267 	struct page *src_base = src;
4268 
4269 	for (i = 0; i < pages_per_huge_page; ) {
4270 		cond_resched();
4271 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4272 
4273 		i++;
4274 		dst = mem_map_next(dst, dst_base, i);
4275 		src = mem_map_next(src, src_base, i);
4276 	}
4277 }
4278 
4279 void copy_user_huge_page(struct page *dst, struct page *src,
4280 			 unsigned long addr, struct vm_area_struct *vma,
4281 			 unsigned int pages_per_huge_page)
4282 {
4283 	int i;
4284 
4285 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4286 		copy_user_gigantic_page(dst, src, addr, vma,
4287 					pages_per_huge_page);
4288 		return;
4289 	}
4290 
4291 	might_sleep();
4292 	for (i = 0; i < pages_per_huge_page; i++) {
4293 		cond_resched();
4294 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4295 	}
4296 }
4297 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4298