xref: /openbmc/linux/mm/memory.c (revision 234489ac)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 
81 #include <trace/events/kmem.h>
82 
83 #include <asm/io.h>
84 #include <asm/mmu_context.h>
85 #include <asm/pgalloc.h>
86 #include <linux/uaccess.h>
87 #include <asm/tlb.h>
88 #include <asm/tlbflush.h>
89 
90 #include "pgalloc-track.h"
91 #include "internal.h"
92 #include "swap.h"
93 
94 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
95 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
96 #endif
97 
98 #ifndef CONFIG_NUMA
99 unsigned long max_mapnr;
100 EXPORT_SYMBOL(max_mapnr);
101 
102 struct page *mem_map;
103 EXPORT_SYMBOL(mem_map);
104 #endif
105 
106 static vm_fault_t do_fault(struct vm_fault *vmf);
107 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
108 static bool vmf_pte_changed(struct vm_fault *vmf);
109 
110 /*
111  * Return true if the original pte was a uffd-wp pte marker (so the pte was
112  * wr-protected).
113  */
114 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
115 {
116 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
117 		return false;
118 
119 	return pte_marker_uffd_wp(vmf->orig_pte);
120 }
121 
122 /*
123  * A number of key systems in x86 including ioremap() rely on the assumption
124  * that high_memory defines the upper bound on direct map memory, then end
125  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
126  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
127  * and ZONE_HIGHMEM.
128  */
129 void *high_memory;
130 EXPORT_SYMBOL(high_memory);
131 
132 /*
133  * Randomize the address space (stacks, mmaps, brk, etc.).
134  *
135  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
136  *   as ancient (libc5 based) binaries can segfault. )
137  */
138 int randomize_va_space __read_mostly =
139 #ifdef CONFIG_COMPAT_BRK
140 					1;
141 #else
142 					2;
143 #endif
144 
145 #ifndef arch_wants_old_prefaulted_pte
146 static inline bool arch_wants_old_prefaulted_pte(void)
147 {
148 	/*
149 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
150 	 * some architectures, even if it's performed in hardware. By
151 	 * default, "false" means prefaulted entries will be 'young'.
152 	 */
153 	return false;
154 }
155 #endif
156 
157 static int __init disable_randmaps(char *s)
158 {
159 	randomize_va_space = 0;
160 	return 1;
161 }
162 __setup("norandmaps", disable_randmaps);
163 
164 unsigned long zero_pfn __read_mostly;
165 EXPORT_SYMBOL(zero_pfn);
166 
167 unsigned long highest_memmap_pfn __read_mostly;
168 
169 /*
170  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
171  */
172 static int __init init_zero_pfn(void)
173 {
174 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
175 	return 0;
176 }
177 early_initcall(init_zero_pfn);
178 
179 void mm_trace_rss_stat(struct mm_struct *mm, int member)
180 {
181 	trace_rss_stat(mm, member);
182 }
183 
184 /*
185  * Note: this doesn't free the actual pages themselves. That
186  * has been handled earlier when unmapping all the memory regions.
187  */
188 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
189 			   unsigned long addr)
190 {
191 	pgtable_t token = pmd_pgtable(*pmd);
192 	pmd_clear(pmd);
193 	pte_free_tlb(tlb, token, addr);
194 	mm_dec_nr_ptes(tlb->mm);
195 }
196 
197 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
198 				unsigned long addr, unsigned long end,
199 				unsigned long floor, unsigned long ceiling)
200 {
201 	pmd_t *pmd;
202 	unsigned long next;
203 	unsigned long start;
204 
205 	start = addr;
206 	pmd = pmd_offset(pud, addr);
207 	do {
208 		next = pmd_addr_end(addr, end);
209 		if (pmd_none_or_clear_bad(pmd))
210 			continue;
211 		free_pte_range(tlb, pmd, addr);
212 	} while (pmd++, addr = next, addr != end);
213 
214 	start &= PUD_MASK;
215 	if (start < floor)
216 		return;
217 	if (ceiling) {
218 		ceiling &= PUD_MASK;
219 		if (!ceiling)
220 			return;
221 	}
222 	if (end - 1 > ceiling - 1)
223 		return;
224 
225 	pmd = pmd_offset(pud, start);
226 	pud_clear(pud);
227 	pmd_free_tlb(tlb, pmd, start);
228 	mm_dec_nr_pmds(tlb->mm);
229 }
230 
231 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
232 				unsigned long addr, unsigned long end,
233 				unsigned long floor, unsigned long ceiling)
234 {
235 	pud_t *pud;
236 	unsigned long next;
237 	unsigned long start;
238 
239 	start = addr;
240 	pud = pud_offset(p4d, addr);
241 	do {
242 		next = pud_addr_end(addr, end);
243 		if (pud_none_or_clear_bad(pud))
244 			continue;
245 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
246 	} while (pud++, addr = next, addr != end);
247 
248 	start &= P4D_MASK;
249 	if (start < floor)
250 		return;
251 	if (ceiling) {
252 		ceiling &= P4D_MASK;
253 		if (!ceiling)
254 			return;
255 	}
256 	if (end - 1 > ceiling - 1)
257 		return;
258 
259 	pud = pud_offset(p4d, start);
260 	p4d_clear(p4d);
261 	pud_free_tlb(tlb, pud, start);
262 	mm_dec_nr_puds(tlb->mm);
263 }
264 
265 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
266 				unsigned long addr, unsigned long end,
267 				unsigned long floor, unsigned long ceiling)
268 {
269 	p4d_t *p4d;
270 	unsigned long next;
271 	unsigned long start;
272 
273 	start = addr;
274 	p4d = p4d_offset(pgd, addr);
275 	do {
276 		next = p4d_addr_end(addr, end);
277 		if (p4d_none_or_clear_bad(p4d))
278 			continue;
279 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
280 	} while (p4d++, addr = next, addr != end);
281 
282 	start &= PGDIR_MASK;
283 	if (start < floor)
284 		return;
285 	if (ceiling) {
286 		ceiling &= PGDIR_MASK;
287 		if (!ceiling)
288 			return;
289 	}
290 	if (end - 1 > ceiling - 1)
291 		return;
292 
293 	p4d = p4d_offset(pgd, start);
294 	pgd_clear(pgd);
295 	p4d_free_tlb(tlb, p4d, start);
296 }
297 
298 /*
299  * This function frees user-level page tables of a process.
300  */
301 void free_pgd_range(struct mmu_gather *tlb,
302 			unsigned long addr, unsigned long end,
303 			unsigned long floor, unsigned long ceiling)
304 {
305 	pgd_t *pgd;
306 	unsigned long next;
307 
308 	/*
309 	 * The next few lines have given us lots of grief...
310 	 *
311 	 * Why are we testing PMD* at this top level?  Because often
312 	 * there will be no work to do at all, and we'd prefer not to
313 	 * go all the way down to the bottom just to discover that.
314 	 *
315 	 * Why all these "- 1"s?  Because 0 represents both the bottom
316 	 * of the address space and the top of it (using -1 for the
317 	 * top wouldn't help much: the masks would do the wrong thing).
318 	 * The rule is that addr 0 and floor 0 refer to the bottom of
319 	 * the address space, but end 0 and ceiling 0 refer to the top
320 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
321 	 * that end 0 case should be mythical).
322 	 *
323 	 * Wherever addr is brought up or ceiling brought down, we must
324 	 * be careful to reject "the opposite 0" before it confuses the
325 	 * subsequent tests.  But what about where end is brought down
326 	 * by PMD_SIZE below? no, end can't go down to 0 there.
327 	 *
328 	 * Whereas we round start (addr) and ceiling down, by different
329 	 * masks at different levels, in order to test whether a table
330 	 * now has no other vmas using it, so can be freed, we don't
331 	 * bother to round floor or end up - the tests don't need that.
332 	 */
333 
334 	addr &= PMD_MASK;
335 	if (addr < floor) {
336 		addr += PMD_SIZE;
337 		if (!addr)
338 			return;
339 	}
340 	if (ceiling) {
341 		ceiling &= PMD_MASK;
342 		if (!ceiling)
343 			return;
344 	}
345 	if (end - 1 > ceiling - 1)
346 		end -= PMD_SIZE;
347 	if (addr > end - 1)
348 		return;
349 	/*
350 	 * We add page table cache pages with PAGE_SIZE,
351 	 * (see pte_free_tlb()), flush the tlb if we need
352 	 */
353 	tlb_change_page_size(tlb, PAGE_SIZE);
354 	pgd = pgd_offset(tlb->mm, addr);
355 	do {
356 		next = pgd_addr_end(addr, end);
357 		if (pgd_none_or_clear_bad(pgd))
358 			continue;
359 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
360 	} while (pgd++, addr = next, addr != end);
361 }
362 
363 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
364 		   struct vm_area_struct *vma, unsigned long floor,
365 		   unsigned long ceiling, bool mm_wr_locked)
366 {
367 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
368 
369 	do {
370 		unsigned long addr = vma->vm_start;
371 		struct vm_area_struct *next;
372 
373 		/*
374 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
375 		 * be 0.  This will underflow and is okay.
376 		 */
377 		next = mas_find(&mas, ceiling - 1);
378 
379 		/*
380 		 * Hide vma from rmap and truncate_pagecache before freeing
381 		 * pgtables
382 		 */
383 		if (mm_wr_locked)
384 			vma_start_write(vma);
385 		unlink_anon_vmas(vma);
386 		unlink_file_vma(vma);
387 
388 		if (is_vm_hugetlb_page(vma)) {
389 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
390 				floor, next ? next->vm_start : ceiling);
391 		} else {
392 			/*
393 			 * Optimization: gather nearby vmas into one call down
394 			 */
395 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
396 			       && !is_vm_hugetlb_page(next)) {
397 				vma = next;
398 				next = mas_find(&mas, ceiling - 1);
399 				if (mm_wr_locked)
400 					vma_start_write(vma);
401 				unlink_anon_vmas(vma);
402 				unlink_file_vma(vma);
403 			}
404 			free_pgd_range(tlb, addr, vma->vm_end,
405 				floor, next ? next->vm_start : ceiling);
406 		}
407 		vma = next;
408 	} while (vma);
409 }
410 
411 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
412 {
413 	spinlock_t *ptl = pmd_lock(mm, pmd);
414 
415 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
416 		mm_inc_nr_ptes(mm);
417 		/*
418 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
419 		 * visible before the pte is made visible to other CPUs by being
420 		 * put into page tables.
421 		 *
422 		 * The other side of the story is the pointer chasing in the page
423 		 * table walking code (when walking the page table without locking;
424 		 * ie. most of the time). Fortunately, these data accesses consist
425 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
426 		 * being the notable exception) will already guarantee loads are
427 		 * seen in-order. See the alpha page table accessors for the
428 		 * smp_rmb() barriers in page table walking code.
429 		 */
430 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
431 		pmd_populate(mm, pmd, *pte);
432 		*pte = NULL;
433 	}
434 	spin_unlock(ptl);
435 }
436 
437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439 	pgtable_t new = pte_alloc_one(mm);
440 	if (!new)
441 		return -ENOMEM;
442 
443 	pmd_install(mm, pmd, &new);
444 	if (new)
445 		pte_free(mm, new);
446 	return 0;
447 }
448 
449 int __pte_alloc_kernel(pmd_t *pmd)
450 {
451 	pte_t *new = pte_alloc_one_kernel(&init_mm);
452 	if (!new)
453 		return -ENOMEM;
454 
455 	spin_lock(&init_mm.page_table_lock);
456 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
457 		smp_wmb(); /* See comment in pmd_install() */
458 		pmd_populate_kernel(&init_mm, pmd, new);
459 		new = NULL;
460 	}
461 	spin_unlock(&init_mm.page_table_lock);
462 	if (new)
463 		pte_free_kernel(&init_mm, new);
464 	return 0;
465 }
466 
467 static inline void init_rss_vec(int *rss)
468 {
469 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
470 }
471 
472 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
473 {
474 	int i;
475 
476 	if (current->mm == mm)
477 		sync_mm_rss(mm);
478 	for (i = 0; i < NR_MM_COUNTERS; i++)
479 		if (rss[i])
480 			add_mm_counter(mm, i, rss[i]);
481 }
482 
483 /*
484  * This function is called to print an error when a bad pte
485  * is found. For example, we might have a PFN-mapped pte in
486  * a region that doesn't allow it.
487  *
488  * The calling function must still handle the error.
489  */
490 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
491 			  pte_t pte, struct page *page)
492 {
493 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
494 	p4d_t *p4d = p4d_offset(pgd, addr);
495 	pud_t *pud = pud_offset(p4d, addr);
496 	pmd_t *pmd = pmd_offset(pud, addr);
497 	struct address_space *mapping;
498 	pgoff_t index;
499 	static unsigned long resume;
500 	static unsigned long nr_shown;
501 	static unsigned long nr_unshown;
502 
503 	/*
504 	 * Allow a burst of 60 reports, then keep quiet for that minute;
505 	 * or allow a steady drip of one report per second.
506 	 */
507 	if (nr_shown == 60) {
508 		if (time_before(jiffies, resume)) {
509 			nr_unshown++;
510 			return;
511 		}
512 		if (nr_unshown) {
513 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
514 				 nr_unshown);
515 			nr_unshown = 0;
516 		}
517 		nr_shown = 0;
518 	}
519 	if (nr_shown++ == 0)
520 		resume = jiffies + 60 * HZ;
521 
522 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
523 	index = linear_page_index(vma, addr);
524 
525 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
526 		 current->comm,
527 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
528 	if (page)
529 		dump_page(page, "bad pte");
530 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
531 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
532 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
533 		 vma->vm_file,
534 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
535 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
536 		 mapping ? mapping->a_ops->read_folio : NULL);
537 	dump_stack();
538 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
539 }
540 
541 /*
542  * vm_normal_page -- This function gets the "struct page" associated with a pte.
543  *
544  * "Special" mappings do not wish to be associated with a "struct page" (either
545  * it doesn't exist, or it exists but they don't want to touch it). In this
546  * case, NULL is returned here. "Normal" mappings do have a struct page.
547  *
548  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
549  * pte bit, in which case this function is trivial. Secondly, an architecture
550  * may not have a spare pte bit, which requires a more complicated scheme,
551  * described below.
552  *
553  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
554  * special mapping (even if there are underlying and valid "struct pages").
555  * COWed pages of a VM_PFNMAP are always normal.
556  *
557  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
558  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
559  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
560  * mapping will always honor the rule
561  *
562  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
563  *
564  * And for normal mappings this is false.
565  *
566  * This restricts such mappings to be a linear translation from virtual address
567  * to pfn. To get around this restriction, we allow arbitrary mappings so long
568  * as the vma is not a COW mapping; in that case, we know that all ptes are
569  * special (because none can have been COWed).
570  *
571  *
572  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
573  *
574  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
575  * page" backing, however the difference is that _all_ pages with a struct
576  * page (that is, those where pfn_valid is true) are refcounted and considered
577  * normal pages by the VM. The disadvantage is that pages are refcounted
578  * (which can be slower and simply not an option for some PFNMAP users). The
579  * advantage is that we don't have to follow the strict linearity rule of
580  * PFNMAP mappings in order to support COWable mappings.
581  *
582  */
583 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
584 			    pte_t pte)
585 {
586 	unsigned long pfn = pte_pfn(pte);
587 
588 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
589 		if (likely(!pte_special(pte)))
590 			goto check_pfn;
591 		if (vma->vm_ops && vma->vm_ops->find_special_page)
592 			return vma->vm_ops->find_special_page(vma, addr);
593 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
594 			return NULL;
595 		if (is_zero_pfn(pfn))
596 			return NULL;
597 		if (pte_devmap(pte))
598 		/*
599 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
600 		 * and will have refcounts incremented on their struct pages
601 		 * when they are inserted into PTEs, thus they are safe to
602 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
603 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
604 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
605 		 */
606 			return NULL;
607 
608 		print_bad_pte(vma, addr, pte, NULL);
609 		return NULL;
610 	}
611 
612 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
613 
614 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
615 		if (vma->vm_flags & VM_MIXEDMAP) {
616 			if (!pfn_valid(pfn))
617 				return NULL;
618 			goto out;
619 		} else {
620 			unsigned long off;
621 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
622 			if (pfn == vma->vm_pgoff + off)
623 				return NULL;
624 			if (!is_cow_mapping(vma->vm_flags))
625 				return NULL;
626 		}
627 	}
628 
629 	if (is_zero_pfn(pfn))
630 		return NULL;
631 
632 check_pfn:
633 	if (unlikely(pfn > highest_memmap_pfn)) {
634 		print_bad_pte(vma, addr, pte, NULL);
635 		return NULL;
636 	}
637 
638 	/*
639 	 * NOTE! We still have PageReserved() pages in the page tables.
640 	 * eg. VDSO mappings can cause them to exist.
641 	 */
642 out:
643 	return pfn_to_page(pfn);
644 }
645 
646 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
647 			    pte_t pte)
648 {
649 	struct page *page = vm_normal_page(vma, addr, pte);
650 
651 	if (page)
652 		return page_folio(page);
653 	return NULL;
654 }
655 
656 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
657 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
658 				pmd_t pmd)
659 {
660 	unsigned long pfn = pmd_pfn(pmd);
661 
662 	/*
663 	 * There is no pmd_special() but there may be special pmds, e.g.
664 	 * in a direct-access (dax) mapping, so let's just replicate the
665 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
666 	 */
667 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
668 		if (vma->vm_flags & VM_MIXEDMAP) {
669 			if (!pfn_valid(pfn))
670 				return NULL;
671 			goto out;
672 		} else {
673 			unsigned long off;
674 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
675 			if (pfn == vma->vm_pgoff + off)
676 				return NULL;
677 			if (!is_cow_mapping(vma->vm_flags))
678 				return NULL;
679 		}
680 	}
681 
682 	if (pmd_devmap(pmd))
683 		return NULL;
684 	if (is_huge_zero_pmd(pmd))
685 		return NULL;
686 	if (unlikely(pfn > highest_memmap_pfn))
687 		return NULL;
688 
689 	/*
690 	 * NOTE! We still have PageReserved() pages in the page tables.
691 	 * eg. VDSO mappings can cause them to exist.
692 	 */
693 out:
694 	return pfn_to_page(pfn);
695 }
696 #endif
697 
698 static void restore_exclusive_pte(struct vm_area_struct *vma,
699 				  struct page *page, unsigned long address,
700 				  pte_t *ptep)
701 {
702 	pte_t pte;
703 	swp_entry_t entry;
704 
705 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
706 	if (pte_swp_soft_dirty(*ptep))
707 		pte = pte_mksoft_dirty(pte);
708 
709 	entry = pte_to_swp_entry(*ptep);
710 	if (pte_swp_uffd_wp(*ptep))
711 		pte = pte_mkuffd_wp(pte);
712 	else if (is_writable_device_exclusive_entry(entry))
713 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
714 
715 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
716 
717 	/*
718 	 * No need to take a page reference as one was already
719 	 * created when the swap entry was made.
720 	 */
721 	if (PageAnon(page))
722 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
723 	else
724 		/*
725 		 * Currently device exclusive access only supports anonymous
726 		 * memory so the entry shouldn't point to a filebacked page.
727 		 */
728 		WARN_ON_ONCE(1);
729 
730 	set_pte_at(vma->vm_mm, address, ptep, pte);
731 
732 	/*
733 	 * No need to invalidate - it was non-present before. However
734 	 * secondary CPUs may have mappings that need invalidating.
735 	 */
736 	update_mmu_cache(vma, address, ptep);
737 }
738 
739 /*
740  * Tries to restore an exclusive pte if the page lock can be acquired without
741  * sleeping.
742  */
743 static int
744 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
745 			unsigned long addr)
746 {
747 	swp_entry_t entry = pte_to_swp_entry(*src_pte);
748 	struct page *page = pfn_swap_entry_to_page(entry);
749 
750 	if (trylock_page(page)) {
751 		restore_exclusive_pte(vma, page, addr, src_pte);
752 		unlock_page(page);
753 		return 0;
754 	}
755 
756 	return -EBUSY;
757 }
758 
759 /*
760  * copy one vm_area from one task to the other. Assumes the page tables
761  * already present in the new task to be cleared in the whole range
762  * covered by this vma.
763  */
764 
765 static unsigned long
766 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
767 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
768 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
769 {
770 	unsigned long vm_flags = dst_vma->vm_flags;
771 	pte_t pte = *src_pte;
772 	struct page *page;
773 	swp_entry_t entry = pte_to_swp_entry(pte);
774 
775 	if (likely(!non_swap_entry(entry))) {
776 		if (swap_duplicate(entry) < 0)
777 			return -EIO;
778 
779 		/* make sure dst_mm is on swapoff's mmlist. */
780 		if (unlikely(list_empty(&dst_mm->mmlist))) {
781 			spin_lock(&mmlist_lock);
782 			if (list_empty(&dst_mm->mmlist))
783 				list_add(&dst_mm->mmlist,
784 						&src_mm->mmlist);
785 			spin_unlock(&mmlist_lock);
786 		}
787 		/* Mark the swap entry as shared. */
788 		if (pte_swp_exclusive(*src_pte)) {
789 			pte = pte_swp_clear_exclusive(*src_pte);
790 			set_pte_at(src_mm, addr, src_pte, pte);
791 		}
792 		rss[MM_SWAPENTS]++;
793 	} else if (is_migration_entry(entry)) {
794 		page = pfn_swap_entry_to_page(entry);
795 
796 		rss[mm_counter(page)]++;
797 
798 		if (!is_readable_migration_entry(entry) &&
799 				is_cow_mapping(vm_flags)) {
800 			/*
801 			 * COW mappings require pages in both parent and child
802 			 * to be set to read. A previously exclusive entry is
803 			 * now shared.
804 			 */
805 			entry = make_readable_migration_entry(
806 							swp_offset(entry));
807 			pte = swp_entry_to_pte(entry);
808 			if (pte_swp_soft_dirty(*src_pte))
809 				pte = pte_swp_mksoft_dirty(pte);
810 			if (pte_swp_uffd_wp(*src_pte))
811 				pte = pte_swp_mkuffd_wp(pte);
812 			set_pte_at(src_mm, addr, src_pte, pte);
813 		}
814 	} else if (is_device_private_entry(entry)) {
815 		page = pfn_swap_entry_to_page(entry);
816 
817 		/*
818 		 * Update rss count even for unaddressable pages, as
819 		 * they should treated just like normal pages in this
820 		 * respect.
821 		 *
822 		 * We will likely want to have some new rss counters
823 		 * for unaddressable pages, at some point. But for now
824 		 * keep things as they are.
825 		 */
826 		get_page(page);
827 		rss[mm_counter(page)]++;
828 		/* Cannot fail as these pages cannot get pinned. */
829 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
830 
831 		/*
832 		 * We do not preserve soft-dirty information, because so
833 		 * far, checkpoint/restore is the only feature that
834 		 * requires that. And checkpoint/restore does not work
835 		 * when a device driver is involved (you cannot easily
836 		 * save and restore device driver state).
837 		 */
838 		if (is_writable_device_private_entry(entry) &&
839 		    is_cow_mapping(vm_flags)) {
840 			entry = make_readable_device_private_entry(
841 							swp_offset(entry));
842 			pte = swp_entry_to_pte(entry);
843 			if (pte_swp_uffd_wp(*src_pte))
844 				pte = pte_swp_mkuffd_wp(pte);
845 			set_pte_at(src_mm, addr, src_pte, pte);
846 		}
847 	} else if (is_device_exclusive_entry(entry)) {
848 		/*
849 		 * Make device exclusive entries present by restoring the
850 		 * original entry then copying as for a present pte. Device
851 		 * exclusive entries currently only support private writable
852 		 * (ie. COW) mappings.
853 		 */
854 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
855 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
856 			return -EBUSY;
857 		return -ENOENT;
858 	} else if (is_pte_marker_entry(entry)) {
859 		if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
860 			set_pte_at(dst_mm, addr, dst_pte, pte);
861 		return 0;
862 	}
863 	if (!userfaultfd_wp(dst_vma))
864 		pte = pte_swp_clear_uffd_wp(pte);
865 	set_pte_at(dst_mm, addr, dst_pte, pte);
866 	return 0;
867 }
868 
869 /*
870  * Copy a present and normal page.
871  *
872  * NOTE! The usual case is that this isn't required;
873  * instead, the caller can just increase the page refcount
874  * and re-use the pte the traditional way.
875  *
876  * And if we need a pre-allocated page but don't yet have
877  * one, return a negative error to let the preallocation
878  * code know so that it can do so outside the page table
879  * lock.
880  */
881 static inline int
882 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
883 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
884 		  struct folio **prealloc, struct page *page)
885 {
886 	struct folio *new_folio;
887 	pte_t pte;
888 
889 	new_folio = *prealloc;
890 	if (!new_folio)
891 		return -EAGAIN;
892 
893 	/*
894 	 * We have a prealloc page, all good!  Take it
895 	 * over and copy the page & arm it.
896 	 */
897 	*prealloc = NULL;
898 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
899 	__folio_mark_uptodate(new_folio);
900 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
901 	folio_add_lru_vma(new_folio, dst_vma);
902 	rss[MM_ANONPAGES]++;
903 
904 	/* All done, just insert the new page copy in the child */
905 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
906 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
907 	if (userfaultfd_pte_wp(dst_vma, *src_pte))
908 		/* Uffd-wp needs to be delivered to dest pte as well */
909 		pte = pte_mkuffd_wp(pte);
910 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
911 	return 0;
912 }
913 
914 /*
915  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
916  * is required to copy this pte.
917  */
918 static inline int
919 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
920 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
921 		 struct folio **prealloc)
922 {
923 	struct mm_struct *src_mm = src_vma->vm_mm;
924 	unsigned long vm_flags = src_vma->vm_flags;
925 	pte_t pte = *src_pte;
926 	struct page *page;
927 	struct folio *folio;
928 
929 	page = vm_normal_page(src_vma, addr, pte);
930 	if (page)
931 		folio = page_folio(page);
932 	if (page && folio_test_anon(folio)) {
933 		/*
934 		 * If this page may have been pinned by the parent process,
935 		 * copy the page immediately for the child so that we'll always
936 		 * guarantee the pinned page won't be randomly replaced in the
937 		 * future.
938 		 */
939 		folio_get(folio);
940 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
941 			/* Page may be pinned, we have to copy. */
942 			folio_put(folio);
943 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
944 						 addr, rss, prealloc, page);
945 		}
946 		rss[MM_ANONPAGES]++;
947 	} else if (page) {
948 		folio_get(folio);
949 		page_dup_file_rmap(page, false);
950 		rss[mm_counter_file(page)]++;
951 	}
952 
953 	/*
954 	 * If it's a COW mapping, write protect it both
955 	 * in the parent and the child
956 	 */
957 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
958 		ptep_set_wrprotect(src_mm, addr, src_pte);
959 		pte = pte_wrprotect(pte);
960 	}
961 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
962 
963 	/*
964 	 * If it's a shared mapping, mark it clean in
965 	 * the child
966 	 */
967 	if (vm_flags & VM_SHARED)
968 		pte = pte_mkclean(pte);
969 	pte = pte_mkold(pte);
970 
971 	if (!userfaultfd_wp(dst_vma))
972 		pte = pte_clear_uffd_wp(pte);
973 
974 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
975 	return 0;
976 }
977 
978 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
979 		struct vm_area_struct *vma, unsigned long addr)
980 {
981 	struct folio *new_folio;
982 
983 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
984 	if (!new_folio)
985 		return NULL;
986 
987 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
988 		folio_put(new_folio);
989 		return NULL;
990 	}
991 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
992 
993 	return new_folio;
994 }
995 
996 static int
997 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
998 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
999 	       unsigned long end)
1000 {
1001 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1002 	struct mm_struct *src_mm = src_vma->vm_mm;
1003 	pte_t *orig_src_pte, *orig_dst_pte;
1004 	pte_t *src_pte, *dst_pte;
1005 	spinlock_t *src_ptl, *dst_ptl;
1006 	int progress, ret = 0;
1007 	int rss[NR_MM_COUNTERS];
1008 	swp_entry_t entry = (swp_entry_t){0};
1009 	struct folio *prealloc = NULL;
1010 
1011 again:
1012 	progress = 0;
1013 	init_rss_vec(rss);
1014 
1015 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1016 	if (!dst_pte) {
1017 		ret = -ENOMEM;
1018 		goto out;
1019 	}
1020 	src_pte = pte_offset_map(src_pmd, addr);
1021 	src_ptl = pte_lockptr(src_mm, src_pmd);
1022 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1023 	orig_src_pte = src_pte;
1024 	orig_dst_pte = dst_pte;
1025 	arch_enter_lazy_mmu_mode();
1026 
1027 	do {
1028 		/*
1029 		 * We are holding two locks at this point - either of them
1030 		 * could generate latencies in another task on another CPU.
1031 		 */
1032 		if (progress >= 32) {
1033 			progress = 0;
1034 			if (need_resched() ||
1035 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1036 				break;
1037 		}
1038 		if (pte_none(*src_pte)) {
1039 			progress++;
1040 			continue;
1041 		}
1042 		if (unlikely(!pte_present(*src_pte))) {
1043 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1044 						  dst_pte, src_pte,
1045 						  dst_vma, src_vma,
1046 						  addr, rss);
1047 			if (ret == -EIO) {
1048 				entry = pte_to_swp_entry(*src_pte);
1049 				break;
1050 			} else if (ret == -EBUSY) {
1051 				break;
1052 			} else if (!ret) {
1053 				progress += 8;
1054 				continue;
1055 			}
1056 
1057 			/*
1058 			 * Device exclusive entry restored, continue by copying
1059 			 * the now present pte.
1060 			 */
1061 			WARN_ON_ONCE(ret != -ENOENT);
1062 		}
1063 		/* copy_present_pte() will clear `*prealloc' if consumed */
1064 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1065 				       addr, rss, &prealloc);
1066 		/*
1067 		 * If we need a pre-allocated page for this pte, drop the
1068 		 * locks, allocate, and try again.
1069 		 */
1070 		if (unlikely(ret == -EAGAIN))
1071 			break;
1072 		if (unlikely(prealloc)) {
1073 			/*
1074 			 * pre-alloc page cannot be reused by next time so as
1075 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1076 			 * will allocate page according to address).  This
1077 			 * could only happen if one pinned pte changed.
1078 			 */
1079 			folio_put(prealloc);
1080 			prealloc = NULL;
1081 		}
1082 		progress += 8;
1083 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1084 
1085 	arch_leave_lazy_mmu_mode();
1086 	spin_unlock(src_ptl);
1087 	pte_unmap(orig_src_pte);
1088 	add_mm_rss_vec(dst_mm, rss);
1089 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1090 	cond_resched();
1091 
1092 	if (ret == -EIO) {
1093 		VM_WARN_ON_ONCE(!entry.val);
1094 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1095 			ret = -ENOMEM;
1096 			goto out;
1097 		}
1098 		entry.val = 0;
1099 	} else if (ret == -EBUSY) {
1100 		goto out;
1101 	} else if (ret ==  -EAGAIN) {
1102 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1103 		if (!prealloc)
1104 			return -ENOMEM;
1105 	} else if (ret) {
1106 		VM_WARN_ON_ONCE(1);
1107 	}
1108 
1109 	/* We've captured and resolved the error. Reset, try again. */
1110 	ret = 0;
1111 
1112 	if (addr != end)
1113 		goto again;
1114 out:
1115 	if (unlikely(prealloc))
1116 		folio_put(prealloc);
1117 	return ret;
1118 }
1119 
1120 static inline int
1121 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1122 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1123 	       unsigned long end)
1124 {
1125 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1126 	struct mm_struct *src_mm = src_vma->vm_mm;
1127 	pmd_t *src_pmd, *dst_pmd;
1128 	unsigned long next;
1129 
1130 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1131 	if (!dst_pmd)
1132 		return -ENOMEM;
1133 	src_pmd = pmd_offset(src_pud, addr);
1134 	do {
1135 		next = pmd_addr_end(addr, end);
1136 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1137 			|| pmd_devmap(*src_pmd)) {
1138 			int err;
1139 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1140 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1141 					    addr, dst_vma, src_vma);
1142 			if (err == -ENOMEM)
1143 				return -ENOMEM;
1144 			if (!err)
1145 				continue;
1146 			/* fall through */
1147 		}
1148 		if (pmd_none_or_clear_bad(src_pmd))
1149 			continue;
1150 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1151 				   addr, next))
1152 			return -ENOMEM;
1153 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1154 	return 0;
1155 }
1156 
1157 static inline int
1158 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1159 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1160 	       unsigned long end)
1161 {
1162 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1163 	struct mm_struct *src_mm = src_vma->vm_mm;
1164 	pud_t *src_pud, *dst_pud;
1165 	unsigned long next;
1166 
1167 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1168 	if (!dst_pud)
1169 		return -ENOMEM;
1170 	src_pud = pud_offset(src_p4d, addr);
1171 	do {
1172 		next = pud_addr_end(addr, end);
1173 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1174 			int err;
1175 
1176 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1177 			err = copy_huge_pud(dst_mm, src_mm,
1178 					    dst_pud, src_pud, addr, src_vma);
1179 			if (err == -ENOMEM)
1180 				return -ENOMEM;
1181 			if (!err)
1182 				continue;
1183 			/* fall through */
1184 		}
1185 		if (pud_none_or_clear_bad(src_pud))
1186 			continue;
1187 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1188 				   addr, next))
1189 			return -ENOMEM;
1190 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1191 	return 0;
1192 }
1193 
1194 static inline int
1195 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1196 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1197 	       unsigned long end)
1198 {
1199 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1200 	p4d_t *src_p4d, *dst_p4d;
1201 	unsigned long next;
1202 
1203 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1204 	if (!dst_p4d)
1205 		return -ENOMEM;
1206 	src_p4d = p4d_offset(src_pgd, addr);
1207 	do {
1208 		next = p4d_addr_end(addr, end);
1209 		if (p4d_none_or_clear_bad(src_p4d))
1210 			continue;
1211 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1212 				   addr, next))
1213 			return -ENOMEM;
1214 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1215 	return 0;
1216 }
1217 
1218 /*
1219  * Return true if the vma needs to copy the pgtable during this fork().  Return
1220  * false when we can speed up fork() by allowing lazy page faults later until
1221  * when the child accesses the memory range.
1222  */
1223 static bool
1224 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1225 {
1226 	/*
1227 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1228 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1229 	 * contains uffd-wp protection information, that's something we can't
1230 	 * retrieve from page cache, and skip copying will lose those info.
1231 	 */
1232 	if (userfaultfd_wp(dst_vma))
1233 		return true;
1234 
1235 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1236 		return true;
1237 
1238 	if (src_vma->anon_vma)
1239 		return true;
1240 
1241 	/*
1242 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1243 	 * becomes much lighter when there are big shared or private readonly
1244 	 * mappings. The tradeoff is that copy_page_range is more efficient
1245 	 * than faulting.
1246 	 */
1247 	return false;
1248 }
1249 
1250 int
1251 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1252 {
1253 	pgd_t *src_pgd, *dst_pgd;
1254 	unsigned long next;
1255 	unsigned long addr = src_vma->vm_start;
1256 	unsigned long end = src_vma->vm_end;
1257 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1258 	struct mm_struct *src_mm = src_vma->vm_mm;
1259 	struct mmu_notifier_range range;
1260 	bool is_cow;
1261 	int ret;
1262 
1263 	if (!vma_needs_copy(dst_vma, src_vma))
1264 		return 0;
1265 
1266 	if (is_vm_hugetlb_page(src_vma))
1267 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1268 
1269 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1270 		/*
1271 		 * We do not free on error cases below as remove_vma
1272 		 * gets called on error from higher level routine
1273 		 */
1274 		ret = track_pfn_copy(src_vma);
1275 		if (ret)
1276 			return ret;
1277 	}
1278 
1279 	/*
1280 	 * We need to invalidate the secondary MMU mappings only when
1281 	 * there could be a permission downgrade on the ptes of the
1282 	 * parent mm. And a permission downgrade will only happen if
1283 	 * is_cow_mapping() returns true.
1284 	 */
1285 	is_cow = is_cow_mapping(src_vma->vm_flags);
1286 
1287 	if (is_cow) {
1288 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1289 					0, src_mm, addr, end);
1290 		mmu_notifier_invalidate_range_start(&range);
1291 		/*
1292 		 * Disabling preemption is not needed for the write side, as
1293 		 * the read side doesn't spin, but goes to the mmap_lock.
1294 		 *
1295 		 * Use the raw variant of the seqcount_t write API to avoid
1296 		 * lockdep complaining about preemptibility.
1297 		 */
1298 		mmap_assert_write_locked(src_mm);
1299 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1300 	}
1301 
1302 	ret = 0;
1303 	dst_pgd = pgd_offset(dst_mm, addr);
1304 	src_pgd = pgd_offset(src_mm, addr);
1305 	do {
1306 		next = pgd_addr_end(addr, end);
1307 		if (pgd_none_or_clear_bad(src_pgd))
1308 			continue;
1309 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1310 					    addr, next))) {
1311 			untrack_pfn_clear(dst_vma);
1312 			ret = -ENOMEM;
1313 			break;
1314 		}
1315 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1316 
1317 	if (is_cow) {
1318 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1319 		mmu_notifier_invalidate_range_end(&range);
1320 	}
1321 	return ret;
1322 }
1323 
1324 /* Whether we should zap all COWed (private) pages too */
1325 static inline bool should_zap_cows(struct zap_details *details)
1326 {
1327 	/* By default, zap all pages */
1328 	if (!details)
1329 		return true;
1330 
1331 	/* Or, we zap COWed pages only if the caller wants to */
1332 	return details->even_cows;
1333 }
1334 
1335 /* Decides whether we should zap this page with the page pointer specified */
1336 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1337 {
1338 	/* If we can make a decision without *page.. */
1339 	if (should_zap_cows(details))
1340 		return true;
1341 
1342 	/* E.g. the caller passes NULL for the case of a zero page */
1343 	if (!page)
1344 		return true;
1345 
1346 	/* Otherwise we should only zap non-anon pages */
1347 	return !PageAnon(page);
1348 }
1349 
1350 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1351 {
1352 	if (!details)
1353 		return false;
1354 
1355 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1356 }
1357 
1358 /*
1359  * This function makes sure that we'll replace the none pte with an uffd-wp
1360  * swap special pte marker when necessary. Must be with the pgtable lock held.
1361  */
1362 static inline void
1363 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1364 			      unsigned long addr, pte_t *pte,
1365 			      struct zap_details *details, pte_t pteval)
1366 {
1367 	/* Zap on anonymous always means dropping everything */
1368 	if (vma_is_anonymous(vma))
1369 		return;
1370 
1371 	if (zap_drop_file_uffd_wp(details))
1372 		return;
1373 
1374 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1375 }
1376 
1377 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1378 				struct vm_area_struct *vma, pmd_t *pmd,
1379 				unsigned long addr, unsigned long end,
1380 				struct zap_details *details)
1381 {
1382 	struct mm_struct *mm = tlb->mm;
1383 	int force_flush = 0;
1384 	int rss[NR_MM_COUNTERS];
1385 	spinlock_t *ptl;
1386 	pte_t *start_pte;
1387 	pte_t *pte;
1388 	swp_entry_t entry;
1389 
1390 	tlb_change_page_size(tlb, PAGE_SIZE);
1391 again:
1392 	init_rss_vec(rss);
1393 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1394 	pte = start_pte;
1395 	flush_tlb_batched_pending(mm);
1396 	arch_enter_lazy_mmu_mode();
1397 	do {
1398 		pte_t ptent = *pte;
1399 		struct page *page;
1400 
1401 		if (pte_none(ptent))
1402 			continue;
1403 
1404 		if (need_resched())
1405 			break;
1406 
1407 		if (pte_present(ptent)) {
1408 			unsigned int delay_rmap;
1409 
1410 			page = vm_normal_page(vma, addr, ptent);
1411 			if (unlikely(!should_zap_page(details, page)))
1412 				continue;
1413 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1414 							tlb->fullmm);
1415 			tlb_remove_tlb_entry(tlb, pte, addr);
1416 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1417 						      ptent);
1418 			if (unlikely(!page))
1419 				continue;
1420 
1421 			delay_rmap = 0;
1422 			if (!PageAnon(page)) {
1423 				if (pte_dirty(ptent)) {
1424 					set_page_dirty(page);
1425 					if (tlb_delay_rmap(tlb)) {
1426 						delay_rmap = 1;
1427 						force_flush = 1;
1428 					}
1429 				}
1430 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1431 					mark_page_accessed(page);
1432 			}
1433 			rss[mm_counter(page)]--;
1434 			if (!delay_rmap) {
1435 				page_remove_rmap(page, vma, false);
1436 				if (unlikely(page_mapcount(page) < 0))
1437 					print_bad_pte(vma, addr, ptent, page);
1438 			}
1439 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1440 				force_flush = 1;
1441 				addr += PAGE_SIZE;
1442 				break;
1443 			}
1444 			continue;
1445 		}
1446 
1447 		entry = pte_to_swp_entry(ptent);
1448 		if (is_device_private_entry(entry) ||
1449 		    is_device_exclusive_entry(entry)) {
1450 			page = pfn_swap_entry_to_page(entry);
1451 			if (unlikely(!should_zap_page(details, page)))
1452 				continue;
1453 			/*
1454 			 * Both device private/exclusive mappings should only
1455 			 * work with anonymous page so far, so we don't need to
1456 			 * consider uffd-wp bit when zap. For more information,
1457 			 * see zap_install_uffd_wp_if_needed().
1458 			 */
1459 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1460 			rss[mm_counter(page)]--;
1461 			if (is_device_private_entry(entry))
1462 				page_remove_rmap(page, vma, false);
1463 			put_page(page);
1464 		} else if (!non_swap_entry(entry)) {
1465 			/* Genuine swap entry, hence a private anon page */
1466 			if (!should_zap_cows(details))
1467 				continue;
1468 			rss[MM_SWAPENTS]--;
1469 			if (unlikely(!free_swap_and_cache(entry)))
1470 				print_bad_pte(vma, addr, ptent, NULL);
1471 		} else if (is_migration_entry(entry)) {
1472 			page = pfn_swap_entry_to_page(entry);
1473 			if (!should_zap_page(details, page))
1474 				continue;
1475 			rss[mm_counter(page)]--;
1476 		} else if (pte_marker_entry_uffd_wp(entry)) {
1477 			/*
1478 			 * For anon: always drop the marker; for file: only
1479 			 * drop the marker if explicitly requested.
1480 			 */
1481 			if (!vma_is_anonymous(vma) &&
1482 			    !zap_drop_file_uffd_wp(details))
1483 				continue;
1484 		} else if (is_hwpoison_entry(entry) ||
1485 			   is_swapin_error_entry(entry)) {
1486 			if (!should_zap_cows(details))
1487 				continue;
1488 		} else {
1489 			/* We should have covered all the swap entry types */
1490 			WARN_ON_ONCE(1);
1491 		}
1492 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1493 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1494 	} while (pte++, addr += PAGE_SIZE, addr != end);
1495 
1496 	add_mm_rss_vec(mm, rss);
1497 	arch_leave_lazy_mmu_mode();
1498 
1499 	/* Do the actual TLB flush before dropping ptl */
1500 	if (force_flush) {
1501 		tlb_flush_mmu_tlbonly(tlb);
1502 		tlb_flush_rmaps(tlb, vma);
1503 	}
1504 	pte_unmap_unlock(start_pte, ptl);
1505 
1506 	/*
1507 	 * If we forced a TLB flush (either due to running out of
1508 	 * batch buffers or because we needed to flush dirty TLB
1509 	 * entries before releasing the ptl), free the batched
1510 	 * memory too. Restart if we didn't do everything.
1511 	 */
1512 	if (force_flush) {
1513 		force_flush = 0;
1514 		tlb_flush_mmu(tlb);
1515 	}
1516 
1517 	if (addr != end) {
1518 		cond_resched();
1519 		goto again;
1520 	}
1521 
1522 	return addr;
1523 }
1524 
1525 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1526 				struct vm_area_struct *vma, pud_t *pud,
1527 				unsigned long addr, unsigned long end,
1528 				struct zap_details *details)
1529 {
1530 	pmd_t *pmd;
1531 	unsigned long next;
1532 
1533 	pmd = pmd_offset(pud, addr);
1534 	do {
1535 		next = pmd_addr_end(addr, end);
1536 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1537 			if (next - addr != HPAGE_PMD_SIZE)
1538 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1539 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1540 				goto next;
1541 			/* fall through */
1542 		} else if (details && details->single_folio &&
1543 			   folio_test_pmd_mappable(details->single_folio) &&
1544 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1545 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1546 			/*
1547 			 * Take and drop THP pmd lock so that we cannot return
1548 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1549 			 * but not yet decremented compound_mapcount().
1550 			 */
1551 			spin_unlock(ptl);
1552 		}
1553 
1554 		/*
1555 		 * Here there can be other concurrent MADV_DONTNEED or
1556 		 * trans huge page faults running, and if the pmd is
1557 		 * none or trans huge it can change under us. This is
1558 		 * because MADV_DONTNEED holds the mmap_lock in read
1559 		 * mode.
1560 		 */
1561 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1562 			goto next;
1563 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1564 next:
1565 		cond_resched();
1566 	} while (pmd++, addr = next, addr != end);
1567 
1568 	return addr;
1569 }
1570 
1571 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1572 				struct vm_area_struct *vma, p4d_t *p4d,
1573 				unsigned long addr, unsigned long end,
1574 				struct zap_details *details)
1575 {
1576 	pud_t *pud;
1577 	unsigned long next;
1578 
1579 	pud = pud_offset(p4d, addr);
1580 	do {
1581 		next = pud_addr_end(addr, end);
1582 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1583 			if (next - addr != HPAGE_PUD_SIZE) {
1584 				mmap_assert_locked(tlb->mm);
1585 				split_huge_pud(vma, pud, addr);
1586 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1587 				goto next;
1588 			/* fall through */
1589 		}
1590 		if (pud_none_or_clear_bad(pud))
1591 			continue;
1592 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1593 next:
1594 		cond_resched();
1595 	} while (pud++, addr = next, addr != end);
1596 
1597 	return addr;
1598 }
1599 
1600 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1601 				struct vm_area_struct *vma, pgd_t *pgd,
1602 				unsigned long addr, unsigned long end,
1603 				struct zap_details *details)
1604 {
1605 	p4d_t *p4d;
1606 	unsigned long next;
1607 
1608 	p4d = p4d_offset(pgd, addr);
1609 	do {
1610 		next = p4d_addr_end(addr, end);
1611 		if (p4d_none_or_clear_bad(p4d))
1612 			continue;
1613 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1614 	} while (p4d++, addr = next, addr != end);
1615 
1616 	return addr;
1617 }
1618 
1619 void unmap_page_range(struct mmu_gather *tlb,
1620 			     struct vm_area_struct *vma,
1621 			     unsigned long addr, unsigned long end,
1622 			     struct zap_details *details)
1623 {
1624 	pgd_t *pgd;
1625 	unsigned long next;
1626 
1627 	BUG_ON(addr >= end);
1628 	tlb_start_vma(tlb, vma);
1629 	pgd = pgd_offset(vma->vm_mm, addr);
1630 	do {
1631 		next = pgd_addr_end(addr, end);
1632 		if (pgd_none_or_clear_bad(pgd))
1633 			continue;
1634 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1635 	} while (pgd++, addr = next, addr != end);
1636 	tlb_end_vma(tlb, vma);
1637 }
1638 
1639 
1640 static void unmap_single_vma(struct mmu_gather *tlb,
1641 		struct vm_area_struct *vma, unsigned long start_addr,
1642 		unsigned long end_addr,
1643 		struct zap_details *details, bool mm_wr_locked)
1644 {
1645 	unsigned long start = max(vma->vm_start, start_addr);
1646 	unsigned long end;
1647 
1648 	if (start >= vma->vm_end)
1649 		return;
1650 	end = min(vma->vm_end, end_addr);
1651 	if (end <= vma->vm_start)
1652 		return;
1653 
1654 	if (vma->vm_file)
1655 		uprobe_munmap(vma, start, end);
1656 
1657 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1658 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1659 
1660 	if (start != end) {
1661 		if (unlikely(is_vm_hugetlb_page(vma))) {
1662 			/*
1663 			 * It is undesirable to test vma->vm_file as it
1664 			 * should be non-null for valid hugetlb area.
1665 			 * However, vm_file will be NULL in the error
1666 			 * cleanup path of mmap_region. When
1667 			 * hugetlbfs ->mmap method fails,
1668 			 * mmap_region() nullifies vma->vm_file
1669 			 * before calling this function to clean up.
1670 			 * Since no pte has actually been setup, it is
1671 			 * safe to do nothing in this case.
1672 			 */
1673 			if (vma->vm_file) {
1674 				zap_flags_t zap_flags = details ?
1675 				    details->zap_flags : 0;
1676 				__unmap_hugepage_range_final(tlb, vma, start, end,
1677 							     NULL, zap_flags);
1678 			}
1679 		} else
1680 			unmap_page_range(tlb, vma, start, end, details);
1681 	}
1682 }
1683 
1684 /**
1685  * unmap_vmas - unmap a range of memory covered by a list of vma's
1686  * @tlb: address of the caller's struct mmu_gather
1687  * @mt: the maple tree
1688  * @vma: the starting vma
1689  * @start_addr: virtual address at which to start unmapping
1690  * @end_addr: virtual address at which to end unmapping
1691  *
1692  * Unmap all pages in the vma list.
1693  *
1694  * Only addresses between `start' and `end' will be unmapped.
1695  *
1696  * The VMA list must be sorted in ascending virtual address order.
1697  *
1698  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1699  * range after unmap_vmas() returns.  So the only responsibility here is to
1700  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1701  * drops the lock and schedules.
1702  */
1703 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1704 		struct vm_area_struct *vma, unsigned long start_addr,
1705 		unsigned long end_addr, bool mm_wr_locked)
1706 {
1707 	struct mmu_notifier_range range;
1708 	struct zap_details details = {
1709 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1710 		/* Careful - we need to zap private pages too! */
1711 		.even_cows = true,
1712 	};
1713 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1714 
1715 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1716 				start_addr, end_addr);
1717 	mmu_notifier_invalidate_range_start(&range);
1718 	do {
1719 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1720 				 mm_wr_locked);
1721 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1722 	mmu_notifier_invalidate_range_end(&range);
1723 }
1724 
1725 /**
1726  * zap_page_range_single - remove user pages in a given range
1727  * @vma: vm_area_struct holding the applicable pages
1728  * @address: starting address of pages to zap
1729  * @size: number of bytes to zap
1730  * @details: details of shared cache invalidation
1731  *
1732  * The range must fit into one VMA.
1733  */
1734 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1735 		unsigned long size, struct zap_details *details)
1736 {
1737 	const unsigned long end = address + size;
1738 	struct mmu_notifier_range range;
1739 	struct mmu_gather tlb;
1740 
1741 	lru_add_drain();
1742 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1743 				address, end);
1744 	if (is_vm_hugetlb_page(vma))
1745 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1746 						     &range.end);
1747 	tlb_gather_mmu(&tlb, vma->vm_mm);
1748 	update_hiwater_rss(vma->vm_mm);
1749 	mmu_notifier_invalidate_range_start(&range);
1750 	/*
1751 	 * unmap 'address-end' not 'range.start-range.end' as range
1752 	 * could have been expanded for hugetlb pmd sharing.
1753 	 */
1754 	unmap_single_vma(&tlb, vma, address, end, details, false);
1755 	mmu_notifier_invalidate_range_end(&range);
1756 	tlb_finish_mmu(&tlb);
1757 }
1758 
1759 /**
1760  * zap_vma_ptes - remove ptes mapping the vma
1761  * @vma: vm_area_struct holding ptes to be zapped
1762  * @address: starting address of pages to zap
1763  * @size: number of bytes to zap
1764  *
1765  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1766  *
1767  * The entire address range must be fully contained within the vma.
1768  *
1769  */
1770 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1771 		unsigned long size)
1772 {
1773 	if (!range_in_vma(vma, address, address + size) ||
1774 	    		!(vma->vm_flags & VM_PFNMAP))
1775 		return;
1776 
1777 	zap_page_range_single(vma, address, size, NULL);
1778 }
1779 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1780 
1781 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1782 {
1783 	pgd_t *pgd;
1784 	p4d_t *p4d;
1785 	pud_t *pud;
1786 	pmd_t *pmd;
1787 
1788 	pgd = pgd_offset(mm, addr);
1789 	p4d = p4d_alloc(mm, pgd, addr);
1790 	if (!p4d)
1791 		return NULL;
1792 	pud = pud_alloc(mm, p4d, addr);
1793 	if (!pud)
1794 		return NULL;
1795 	pmd = pmd_alloc(mm, pud, addr);
1796 	if (!pmd)
1797 		return NULL;
1798 
1799 	VM_BUG_ON(pmd_trans_huge(*pmd));
1800 	return pmd;
1801 }
1802 
1803 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1804 			spinlock_t **ptl)
1805 {
1806 	pmd_t *pmd = walk_to_pmd(mm, addr);
1807 
1808 	if (!pmd)
1809 		return NULL;
1810 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1811 }
1812 
1813 static int validate_page_before_insert(struct page *page)
1814 {
1815 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1816 		return -EINVAL;
1817 	flush_dcache_page(page);
1818 	return 0;
1819 }
1820 
1821 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1822 			unsigned long addr, struct page *page, pgprot_t prot)
1823 {
1824 	if (!pte_none(*pte))
1825 		return -EBUSY;
1826 	/* Ok, finally just insert the thing.. */
1827 	get_page(page);
1828 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1829 	page_add_file_rmap(page, vma, false);
1830 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1831 	return 0;
1832 }
1833 
1834 /*
1835  * This is the old fallback for page remapping.
1836  *
1837  * For historical reasons, it only allows reserved pages. Only
1838  * old drivers should use this, and they needed to mark their
1839  * pages reserved for the old functions anyway.
1840  */
1841 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1842 			struct page *page, pgprot_t prot)
1843 {
1844 	int retval;
1845 	pte_t *pte;
1846 	spinlock_t *ptl;
1847 
1848 	retval = validate_page_before_insert(page);
1849 	if (retval)
1850 		goto out;
1851 	retval = -ENOMEM;
1852 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1853 	if (!pte)
1854 		goto out;
1855 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1856 	pte_unmap_unlock(pte, ptl);
1857 out:
1858 	return retval;
1859 }
1860 
1861 #ifdef pte_index
1862 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1863 			unsigned long addr, struct page *page, pgprot_t prot)
1864 {
1865 	int err;
1866 
1867 	if (!page_count(page))
1868 		return -EINVAL;
1869 	err = validate_page_before_insert(page);
1870 	if (err)
1871 		return err;
1872 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1873 }
1874 
1875 /* insert_pages() amortizes the cost of spinlock operations
1876  * when inserting pages in a loop. Arch *must* define pte_index.
1877  */
1878 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1879 			struct page **pages, unsigned long *num, pgprot_t prot)
1880 {
1881 	pmd_t *pmd = NULL;
1882 	pte_t *start_pte, *pte;
1883 	spinlock_t *pte_lock;
1884 	struct mm_struct *const mm = vma->vm_mm;
1885 	unsigned long curr_page_idx = 0;
1886 	unsigned long remaining_pages_total = *num;
1887 	unsigned long pages_to_write_in_pmd;
1888 	int ret;
1889 more:
1890 	ret = -EFAULT;
1891 	pmd = walk_to_pmd(mm, addr);
1892 	if (!pmd)
1893 		goto out;
1894 
1895 	pages_to_write_in_pmd = min_t(unsigned long,
1896 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1897 
1898 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1899 	ret = -ENOMEM;
1900 	if (pte_alloc(mm, pmd))
1901 		goto out;
1902 
1903 	while (pages_to_write_in_pmd) {
1904 		int pte_idx = 0;
1905 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1906 
1907 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1908 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1909 			int err = insert_page_in_batch_locked(vma, pte,
1910 				addr, pages[curr_page_idx], prot);
1911 			if (unlikely(err)) {
1912 				pte_unmap_unlock(start_pte, pte_lock);
1913 				ret = err;
1914 				remaining_pages_total -= pte_idx;
1915 				goto out;
1916 			}
1917 			addr += PAGE_SIZE;
1918 			++curr_page_idx;
1919 		}
1920 		pte_unmap_unlock(start_pte, pte_lock);
1921 		pages_to_write_in_pmd -= batch_size;
1922 		remaining_pages_total -= batch_size;
1923 	}
1924 	if (remaining_pages_total)
1925 		goto more;
1926 	ret = 0;
1927 out:
1928 	*num = remaining_pages_total;
1929 	return ret;
1930 }
1931 #endif  /* ifdef pte_index */
1932 
1933 /**
1934  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1935  * @vma: user vma to map to
1936  * @addr: target start user address of these pages
1937  * @pages: source kernel pages
1938  * @num: in: number of pages to map. out: number of pages that were *not*
1939  * mapped. (0 means all pages were successfully mapped).
1940  *
1941  * Preferred over vm_insert_page() when inserting multiple pages.
1942  *
1943  * In case of error, we may have mapped a subset of the provided
1944  * pages. It is the caller's responsibility to account for this case.
1945  *
1946  * The same restrictions apply as in vm_insert_page().
1947  */
1948 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1949 			struct page **pages, unsigned long *num)
1950 {
1951 #ifdef pte_index
1952 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1953 
1954 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1955 		return -EFAULT;
1956 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1957 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1958 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1959 		vm_flags_set(vma, VM_MIXEDMAP);
1960 	}
1961 	/* Defer page refcount checking till we're about to map that page. */
1962 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1963 #else
1964 	unsigned long idx = 0, pgcount = *num;
1965 	int err = -EINVAL;
1966 
1967 	for (; idx < pgcount; ++idx) {
1968 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1969 		if (err)
1970 			break;
1971 	}
1972 	*num = pgcount - idx;
1973 	return err;
1974 #endif  /* ifdef pte_index */
1975 }
1976 EXPORT_SYMBOL(vm_insert_pages);
1977 
1978 /**
1979  * vm_insert_page - insert single page into user vma
1980  * @vma: user vma to map to
1981  * @addr: target user address of this page
1982  * @page: source kernel page
1983  *
1984  * This allows drivers to insert individual pages they've allocated
1985  * into a user vma.
1986  *
1987  * The page has to be a nice clean _individual_ kernel allocation.
1988  * If you allocate a compound page, you need to have marked it as
1989  * such (__GFP_COMP), or manually just split the page up yourself
1990  * (see split_page()).
1991  *
1992  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1993  * took an arbitrary page protection parameter. This doesn't allow
1994  * that. Your vma protection will have to be set up correctly, which
1995  * means that if you want a shared writable mapping, you'd better
1996  * ask for a shared writable mapping!
1997  *
1998  * The page does not need to be reserved.
1999  *
2000  * Usually this function is called from f_op->mmap() handler
2001  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2002  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2003  * function from other places, for example from page-fault handler.
2004  *
2005  * Return: %0 on success, negative error code otherwise.
2006  */
2007 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2008 			struct page *page)
2009 {
2010 	if (addr < vma->vm_start || addr >= vma->vm_end)
2011 		return -EFAULT;
2012 	if (!page_count(page))
2013 		return -EINVAL;
2014 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2015 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2016 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2017 		vm_flags_set(vma, VM_MIXEDMAP);
2018 	}
2019 	return insert_page(vma, addr, page, vma->vm_page_prot);
2020 }
2021 EXPORT_SYMBOL(vm_insert_page);
2022 
2023 /*
2024  * __vm_map_pages - maps range of kernel pages into user vma
2025  * @vma: user vma to map to
2026  * @pages: pointer to array of source kernel pages
2027  * @num: number of pages in page array
2028  * @offset: user's requested vm_pgoff
2029  *
2030  * This allows drivers to map range of kernel pages into a user vma.
2031  *
2032  * Return: 0 on success and error code otherwise.
2033  */
2034 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2035 				unsigned long num, unsigned long offset)
2036 {
2037 	unsigned long count = vma_pages(vma);
2038 	unsigned long uaddr = vma->vm_start;
2039 	int ret, i;
2040 
2041 	/* Fail if the user requested offset is beyond the end of the object */
2042 	if (offset >= num)
2043 		return -ENXIO;
2044 
2045 	/* Fail if the user requested size exceeds available object size */
2046 	if (count > num - offset)
2047 		return -ENXIO;
2048 
2049 	for (i = 0; i < count; i++) {
2050 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2051 		if (ret < 0)
2052 			return ret;
2053 		uaddr += PAGE_SIZE;
2054 	}
2055 
2056 	return 0;
2057 }
2058 
2059 /**
2060  * vm_map_pages - maps range of kernel pages starts with non zero offset
2061  * @vma: user vma to map to
2062  * @pages: pointer to array of source kernel pages
2063  * @num: number of pages in page array
2064  *
2065  * Maps an object consisting of @num pages, catering for the user's
2066  * requested vm_pgoff
2067  *
2068  * If we fail to insert any page into the vma, the function will return
2069  * immediately leaving any previously inserted pages present.  Callers
2070  * from the mmap handler may immediately return the error as their caller
2071  * will destroy the vma, removing any successfully inserted pages. Other
2072  * callers should make their own arrangements for calling unmap_region().
2073  *
2074  * Context: Process context. Called by mmap handlers.
2075  * Return: 0 on success and error code otherwise.
2076  */
2077 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2078 				unsigned long num)
2079 {
2080 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2081 }
2082 EXPORT_SYMBOL(vm_map_pages);
2083 
2084 /**
2085  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2086  * @vma: user vma to map to
2087  * @pages: pointer to array of source kernel pages
2088  * @num: number of pages in page array
2089  *
2090  * Similar to vm_map_pages(), except that it explicitly sets the offset
2091  * to 0. This function is intended for the drivers that did not consider
2092  * vm_pgoff.
2093  *
2094  * Context: Process context. Called by mmap handlers.
2095  * Return: 0 on success and error code otherwise.
2096  */
2097 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2098 				unsigned long num)
2099 {
2100 	return __vm_map_pages(vma, pages, num, 0);
2101 }
2102 EXPORT_SYMBOL(vm_map_pages_zero);
2103 
2104 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2105 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2106 {
2107 	struct mm_struct *mm = vma->vm_mm;
2108 	pte_t *pte, entry;
2109 	spinlock_t *ptl;
2110 
2111 	pte = get_locked_pte(mm, addr, &ptl);
2112 	if (!pte)
2113 		return VM_FAULT_OOM;
2114 	if (!pte_none(*pte)) {
2115 		if (mkwrite) {
2116 			/*
2117 			 * For read faults on private mappings the PFN passed
2118 			 * in may not match the PFN we have mapped if the
2119 			 * mapped PFN is a writeable COW page.  In the mkwrite
2120 			 * case we are creating a writable PTE for a shared
2121 			 * mapping and we expect the PFNs to match. If they
2122 			 * don't match, we are likely racing with block
2123 			 * allocation and mapping invalidation so just skip the
2124 			 * update.
2125 			 */
2126 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
2127 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
2128 				goto out_unlock;
2129 			}
2130 			entry = pte_mkyoung(*pte);
2131 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2132 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2133 				update_mmu_cache(vma, addr, pte);
2134 		}
2135 		goto out_unlock;
2136 	}
2137 
2138 	/* Ok, finally just insert the thing.. */
2139 	if (pfn_t_devmap(pfn))
2140 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2141 	else
2142 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2143 
2144 	if (mkwrite) {
2145 		entry = pte_mkyoung(entry);
2146 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2147 	}
2148 
2149 	set_pte_at(mm, addr, pte, entry);
2150 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2151 
2152 out_unlock:
2153 	pte_unmap_unlock(pte, ptl);
2154 	return VM_FAULT_NOPAGE;
2155 }
2156 
2157 /**
2158  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2159  * @vma: user vma to map to
2160  * @addr: target user address of this page
2161  * @pfn: source kernel pfn
2162  * @pgprot: pgprot flags for the inserted page
2163  *
2164  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2165  * to override pgprot on a per-page basis.
2166  *
2167  * This only makes sense for IO mappings, and it makes no sense for
2168  * COW mappings.  In general, using multiple vmas is preferable;
2169  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2170  * impractical.
2171  *
2172  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2173  * caching- and encryption bits different than those of @vma->vm_page_prot,
2174  * because the caching- or encryption mode may not be known at mmap() time.
2175  *
2176  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2177  * to set caching and encryption bits for those vmas (except for COW pages).
2178  * This is ensured by core vm only modifying these page table entries using
2179  * functions that don't touch caching- or encryption bits, using pte_modify()
2180  * if needed. (See for example mprotect()).
2181  *
2182  * Also when new page-table entries are created, this is only done using the
2183  * fault() callback, and never using the value of vma->vm_page_prot,
2184  * except for page-table entries that point to anonymous pages as the result
2185  * of COW.
2186  *
2187  * Context: Process context.  May allocate using %GFP_KERNEL.
2188  * Return: vm_fault_t value.
2189  */
2190 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2191 			unsigned long pfn, pgprot_t pgprot)
2192 {
2193 	/*
2194 	 * Technically, architectures with pte_special can avoid all these
2195 	 * restrictions (same for remap_pfn_range).  However we would like
2196 	 * consistency in testing and feature parity among all, so we should
2197 	 * try to keep these invariants in place for everybody.
2198 	 */
2199 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2200 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2201 						(VM_PFNMAP|VM_MIXEDMAP));
2202 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2203 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2204 
2205 	if (addr < vma->vm_start || addr >= vma->vm_end)
2206 		return VM_FAULT_SIGBUS;
2207 
2208 	if (!pfn_modify_allowed(pfn, pgprot))
2209 		return VM_FAULT_SIGBUS;
2210 
2211 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2212 
2213 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2214 			false);
2215 }
2216 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2217 
2218 /**
2219  * vmf_insert_pfn - insert single pfn into user vma
2220  * @vma: user vma to map to
2221  * @addr: target user address of this page
2222  * @pfn: source kernel pfn
2223  *
2224  * Similar to vm_insert_page, this allows drivers to insert individual pages
2225  * they've allocated into a user vma. Same comments apply.
2226  *
2227  * This function should only be called from a vm_ops->fault handler, and
2228  * in that case the handler should return the result of this function.
2229  *
2230  * vma cannot be a COW mapping.
2231  *
2232  * As this is called only for pages that do not currently exist, we
2233  * do not need to flush old virtual caches or the TLB.
2234  *
2235  * Context: Process context.  May allocate using %GFP_KERNEL.
2236  * Return: vm_fault_t value.
2237  */
2238 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2239 			unsigned long pfn)
2240 {
2241 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2242 }
2243 EXPORT_SYMBOL(vmf_insert_pfn);
2244 
2245 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2246 {
2247 	/* these checks mirror the abort conditions in vm_normal_page */
2248 	if (vma->vm_flags & VM_MIXEDMAP)
2249 		return true;
2250 	if (pfn_t_devmap(pfn))
2251 		return true;
2252 	if (pfn_t_special(pfn))
2253 		return true;
2254 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2255 		return true;
2256 	return false;
2257 }
2258 
2259 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2260 		unsigned long addr, pfn_t pfn, bool mkwrite)
2261 {
2262 	pgprot_t pgprot = vma->vm_page_prot;
2263 	int err;
2264 
2265 	BUG_ON(!vm_mixed_ok(vma, pfn));
2266 
2267 	if (addr < vma->vm_start || addr >= vma->vm_end)
2268 		return VM_FAULT_SIGBUS;
2269 
2270 	track_pfn_insert(vma, &pgprot, pfn);
2271 
2272 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2273 		return VM_FAULT_SIGBUS;
2274 
2275 	/*
2276 	 * If we don't have pte special, then we have to use the pfn_valid()
2277 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2278 	 * refcount the page if pfn_valid is true (hence insert_page rather
2279 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2280 	 * without pte special, it would there be refcounted as a normal page.
2281 	 */
2282 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2283 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2284 		struct page *page;
2285 
2286 		/*
2287 		 * At this point we are committed to insert_page()
2288 		 * regardless of whether the caller specified flags that
2289 		 * result in pfn_t_has_page() == false.
2290 		 */
2291 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2292 		err = insert_page(vma, addr, page, pgprot);
2293 	} else {
2294 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2295 	}
2296 
2297 	if (err == -ENOMEM)
2298 		return VM_FAULT_OOM;
2299 	if (err < 0 && err != -EBUSY)
2300 		return VM_FAULT_SIGBUS;
2301 
2302 	return VM_FAULT_NOPAGE;
2303 }
2304 
2305 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2306 		pfn_t pfn)
2307 {
2308 	return __vm_insert_mixed(vma, addr, pfn, false);
2309 }
2310 EXPORT_SYMBOL(vmf_insert_mixed);
2311 
2312 /*
2313  *  If the insertion of PTE failed because someone else already added a
2314  *  different entry in the mean time, we treat that as success as we assume
2315  *  the same entry was actually inserted.
2316  */
2317 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2318 		unsigned long addr, pfn_t pfn)
2319 {
2320 	return __vm_insert_mixed(vma, addr, pfn, true);
2321 }
2322 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2323 
2324 /*
2325  * maps a range of physical memory into the requested pages. the old
2326  * mappings are removed. any references to nonexistent pages results
2327  * in null mappings (currently treated as "copy-on-access")
2328  */
2329 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2330 			unsigned long addr, unsigned long end,
2331 			unsigned long pfn, pgprot_t prot)
2332 {
2333 	pte_t *pte, *mapped_pte;
2334 	spinlock_t *ptl;
2335 	int err = 0;
2336 
2337 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2338 	if (!pte)
2339 		return -ENOMEM;
2340 	arch_enter_lazy_mmu_mode();
2341 	do {
2342 		BUG_ON(!pte_none(*pte));
2343 		if (!pfn_modify_allowed(pfn, prot)) {
2344 			err = -EACCES;
2345 			break;
2346 		}
2347 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2348 		pfn++;
2349 	} while (pte++, addr += PAGE_SIZE, addr != end);
2350 	arch_leave_lazy_mmu_mode();
2351 	pte_unmap_unlock(mapped_pte, ptl);
2352 	return err;
2353 }
2354 
2355 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2356 			unsigned long addr, unsigned long end,
2357 			unsigned long pfn, pgprot_t prot)
2358 {
2359 	pmd_t *pmd;
2360 	unsigned long next;
2361 	int err;
2362 
2363 	pfn -= addr >> PAGE_SHIFT;
2364 	pmd = pmd_alloc(mm, pud, addr);
2365 	if (!pmd)
2366 		return -ENOMEM;
2367 	VM_BUG_ON(pmd_trans_huge(*pmd));
2368 	do {
2369 		next = pmd_addr_end(addr, end);
2370 		err = remap_pte_range(mm, pmd, addr, next,
2371 				pfn + (addr >> PAGE_SHIFT), prot);
2372 		if (err)
2373 			return err;
2374 	} while (pmd++, addr = next, addr != end);
2375 	return 0;
2376 }
2377 
2378 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2379 			unsigned long addr, unsigned long end,
2380 			unsigned long pfn, pgprot_t prot)
2381 {
2382 	pud_t *pud;
2383 	unsigned long next;
2384 	int err;
2385 
2386 	pfn -= addr >> PAGE_SHIFT;
2387 	pud = pud_alloc(mm, p4d, addr);
2388 	if (!pud)
2389 		return -ENOMEM;
2390 	do {
2391 		next = pud_addr_end(addr, end);
2392 		err = remap_pmd_range(mm, pud, addr, next,
2393 				pfn + (addr >> PAGE_SHIFT), prot);
2394 		if (err)
2395 			return err;
2396 	} while (pud++, addr = next, addr != end);
2397 	return 0;
2398 }
2399 
2400 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2401 			unsigned long addr, unsigned long end,
2402 			unsigned long pfn, pgprot_t prot)
2403 {
2404 	p4d_t *p4d;
2405 	unsigned long next;
2406 	int err;
2407 
2408 	pfn -= addr >> PAGE_SHIFT;
2409 	p4d = p4d_alloc(mm, pgd, addr);
2410 	if (!p4d)
2411 		return -ENOMEM;
2412 	do {
2413 		next = p4d_addr_end(addr, end);
2414 		err = remap_pud_range(mm, p4d, addr, next,
2415 				pfn + (addr >> PAGE_SHIFT), prot);
2416 		if (err)
2417 			return err;
2418 	} while (p4d++, addr = next, addr != end);
2419 	return 0;
2420 }
2421 
2422 /*
2423  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2424  * must have pre-validated the caching bits of the pgprot_t.
2425  */
2426 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2427 		unsigned long pfn, unsigned long size, pgprot_t prot)
2428 {
2429 	pgd_t *pgd;
2430 	unsigned long next;
2431 	unsigned long end = addr + PAGE_ALIGN(size);
2432 	struct mm_struct *mm = vma->vm_mm;
2433 	int err;
2434 
2435 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2436 		return -EINVAL;
2437 
2438 	/*
2439 	 * Physically remapped pages are special. Tell the
2440 	 * rest of the world about it:
2441 	 *   VM_IO tells people not to look at these pages
2442 	 *	(accesses can have side effects).
2443 	 *   VM_PFNMAP tells the core MM that the base pages are just
2444 	 *	raw PFN mappings, and do not have a "struct page" associated
2445 	 *	with them.
2446 	 *   VM_DONTEXPAND
2447 	 *      Disable vma merging and expanding with mremap().
2448 	 *   VM_DONTDUMP
2449 	 *      Omit vma from core dump, even when VM_IO turned off.
2450 	 *
2451 	 * There's a horrible special case to handle copy-on-write
2452 	 * behaviour that some programs depend on. We mark the "original"
2453 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2454 	 * See vm_normal_page() for details.
2455 	 */
2456 	if (is_cow_mapping(vma->vm_flags)) {
2457 		if (addr != vma->vm_start || end != vma->vm_end)
2458 			return -EINVAL;
2459 		vma->vm_pgoff = pfn;
2460 	}
2461 
2462 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2463 
2464 	BUG_ON(addr >= end);
2465 	pfn -= addr >> PAGE_SHIFT;
2466 	pgd = pgd_offset(mm, addr);
2467 	flush_cache_range(vma, addr, end);
2468 	do {
2469 		next = pgd_addr_end(addr, end);
2470 		err = remap_p4d_range(mm, pgd, addr, next,
2471 				pfn + (addr >> PAGE_SHIFT), prot);
2472 		if (err)
2473 			return err;
2474 	} while (pgd++, addr = next, addr != end);
2475 
2476 	return 0;
2477 }
2478 
2479 /**
2480  * remap_pfn_range - remap kernel memory to userspace
2481  * @vma: user vma to map to
2482  * @addr: target page aligned user address to start at
2483  * @pfn: page frame number of kernel physical memory address
2484  * @size: size of mapping area
2485  * @prot: page protection flags for this mapping
2486  *
2487  * Note: this is only safe if the mm semaphore is held when called.
2488  *
2489  * Return: %0 on success, negative error code otherwise.
2490  */
2491 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2492 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2493 {
2494 	int err;
2495 
2496 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2497 	if (err)
2498 		return -EINVAL;
2499 
2500 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2501 	if (err)
2502 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2503 	return err;
2504 }
2505 EXPORT_SYMBOL(remap_pfn_range);
2506 
2507 /**
2508  * vm_iomap_memory - remap memory to userspace
2509  * @vma: user vma to map to
2510  * @start: start of the physical memory to be mapped
2511  * @len: size of area
2512  *
2513  * This is a simplified io_remap_pfn_range() for common driver use. The
2514  * driver just needs to give us the physical memory range to be mapped,
2515  * we'll figure out the rest from the vma information.
2516  *
2517  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2518  * whatever write-combining details or similar.
2519  *
2520  * Return: %0 on success, negative error code otherwise.
2521  */
2522 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2523 {
2524 	unsigned long vm_len, pfn, pages;
2525 
2526 	/* Check that the physical memory area passed in looks valid */
2527 	if (start + len < start)
2528 		return -EINVAL;
2529 	/*
2530 	 * You *really* shouldn't map things that aren't page-aligned,
2531 	 * but we've historically allowed it because IO memory might
2532 	 * just have smaller alignment.
2533 	 */
2534 	len += start & ~PAGE_MASK;
2535 	pfn = start >> PAGE_SHIFT;
2536 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2537 	if (pfn + pages < pfn)
2538 		return -EINVAL;
2539 
2540 	/* We start the mapping 'vm_pgoff' pages into the area */
2541 	if (vma->vm_pgoff > pages)
2542 		return -EINVAL;
2543 	pfn += vma->vm_pgoff;
2544 	pages -= vma->vm_pgoff;
2545 
2546 	/* Can we fit all of the mapping? */
2547 	vm_len = vma->vm_end - vma->vm_start;
2548 	if (vm_len >> PAGE_SHIFT > pages)
2549 		return -EINVAL;
2550 
2551 	/* Ok, let it rip */
2552 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2553 }
2554 EXPORT_SYMBOL(vm_iomap_memory);
2555 
2556 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2557 				     unsigned long addr, unsigned long end,
2558 				     pte_fn_t fn, void *data, bool create,
2559 				     pgtbl_mod_mask *mask)
2560 {
2561 	pte_t *pte, *mapped_pte;
2562 	int err = 0;
2563 	spinlock_t *ptl;
2564 
2565 	if (create) {
2566 		mapped_pte = pte = (mm == &init_mm) ?
2567 			pte_alloc_kernel_track(pmd, addr, mask) :
2568 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2569 		if (!pte)
2570 			return -ENOMEM;
2571 	} else {
2572 		mapped_pte = pte = (mm == &init_mm) ?
2573 			pte_offset_kernel(pmd, addr) :
2574 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2575 	}
2576 
2577 	BUG_ON(pmd_huge(*pmd));
2578 
2579 	arch_enter_lazy_mmu_mode();
2580 
2581 	if (fn) {
2582 		do {
2583 			if (create || !pte_none(*pte)) {
2584 				err = fn(pte++, addr, data);
2585 				if (err)
2586 					break;
2587 			}
2588 		} while (addr += PAGE_SIZE, addr != end);
2589 	}
2590 	*mask |= PGTBL_PTE_MODIFIED;
2591 
2592 	arch_leave_lazy_mmu_mode();
2593 
2594 	if (mm != &init_mm)
2595 		pte_unmap_unlock(mapped_pte, ptl);
2596 	return err;
2597 }
2598 
2599 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2600 				     unsigned long addr, unsigned long end,
2601 				     pte_fn_t fn, void *data, bool create,
2602 				     pgtbl_mod_mask *mask)
2603 {
2604 	pmd_t *pmd;
2605 	unsigned long next;
2606 	int err = 0;
2607 
2608 	BUG_ON(pud_huge(*pud));
2609 
2610 	if (create) {
2611 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2612 		if (!pmd)
2613 			return -ENOMEM;
2614 	} else {
2615 		pmd = pmd_offset(pud, addr);
2616 	}
2617 	do {
2618 		next = pmd_addr_end(addr, end);
2619 		if (pmd_none(*pmd) && !create)
2620 			continue;
2621 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2622 			return -EINVAL;
2623 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2624 			if (!create)
2625 				continue;
2626 			pmd_clear_bad(pmd);
2627 		}
2628 		err = apply_to_pte_range(mm, pmd, addr, next,
2629 					 fn, data, create, mask);
2630 		if (err)
2631 			break;
2632 	} while (pmd++, addr = next, addr != end);
2633 
2634 	return err;
2635 }
2636 
2637 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2638 				     unsigned long addr, unsigned long end,
2639 				     pte_fn_t fn, void *data, bool create,
2640 				     pgtbl_mod_mask *mask)
2641 {
2642 	pud_t *pud;
2643 	unsigned long next;
2644 	int err = 0;
2645 
2646 	if (create) {
2647 		pud = pud_alloc_track(mm, p4d, addr, mask);
2648 		if (!pud)
2649 			return -ENOMEM;
2650 	} else {
2651 		pud = pud_offset(p4d, addr);
2652 	}
2653 	do {
2654 		next = pud_addr_end(addr, end);
2655 		if (pud_none(*pud) && !create)
2656 			continue;
2657 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2658 			return -EINVAL;
2659 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2660 			if (!create)
2661 				continue;
2662 			pud_clear_bad(pud);
2663 		}
2664 		err = apply_to_pmd_range(mm, pud, addr, next,
2665 					 fn, data, create, mask);
2666 		if (err)
2667 			break;
2668 	} while (pud++, addr = next, addr != end);
2669 
2670 	return err;
2671 }
2672 
2673 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2674 				     unsigned long addr, unsigned long end,
2675 				     pte_fn_t fn, void *data, bool create,
2676 				     pgtbl_mod_mask *mask)
2677 {
2678 	p4d_t *p4d;
2679 	unsigned long next;
2680 	int err = 0;
2681 
2682 	if (create) {
2683 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2684 		if (!p4d)
2685 			return -ENOMEM;
2686 	} else {
2687 		p4d = p4d_offset(pgd, addr);
2688 	}
2689 	do {
2690 		next = p4d_addr_end(addr, end);
2691 		if (p4d_none(*p4d) && !create)
2692 			continue;
2693 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2694 			return -EINVAL;
2695 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2696 			if (!create)
2697 				continue;
2698 			p4d_clear_bad(p4d);
2699 		}
2700 		err = apply_to_pud_range(mm, p4d, addr, next,
2701 					 fn, data, create, mask);
2702 		if (err)
2703 			break;
2704 	} while (p4d++, addr = next, addr != end);
2705 
2706 	return err;
2707 }
2708 
2709 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2710 				 unsigned long size, pte_fn_t fn,
2711 				 void *data, bool create)
2712 {
2713 	pgd_t *pgd;
2714 	unsigned long start = addr, next;
2715 	unsigned long end = addr + size;
2716 	pgtbl_mod_mask mask = 0;
2717 	int err = 0;
2718 
2719 	if (WARN_ON(addr >= end))
2720 		return -EINVAL;
2721 
2722 	pgd = pgd_offset(mm, addr);
2723 	do {
2724 		next = pgd_addr_end(addr, end);
2725 		if (pgd_none(*pgd) && !create)
2726 			continue;
2727 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2728 			return -EINVAL;
2729 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2730 			if (!create)
2731 				continue;
2732 			pgd_clear_bad(pgd);
2733 		}
2734 		err = apply_to_p4d_range(mm, pgd, addr, next,
2735 					 fn, data, create, &mask);
2736 		if (err)
2737 			break;
2738 	} while (pgd++, addr = next, addr != end);
2739 
2740 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2741 		arch_sync_kernel_mappings(start, start + size);
2742 
2743 	return err;
2744 }
2745 
2746 /*
2747  * Scan a region of virtual memory, filling in page tables as necessary
2748  * and calling a provided function on each leaf page table.
2749  */
2750 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2751 			unsigned long size, pte_fn_t fn, void *data)
2752 {
2753 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2754 }
2755 EXPORT_SYMBOL_GPL(apply_to_page_range);
2756 
2757 /*
2758  * Scan a region of virtual memory, calling a provided function on
2759  * each leaf page table where it exists.
2760  *
2761  * Unlike apply_to_page_range, this does _not_ fill in page tables
2762  * where they are absent.
2763  */
2764 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2765 				 unsigned long size, pte_fn_t fn, void *data)
2766 {
2767 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2768 }
2769 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2770 
2771 /*
2772  * handle_pte_fault chooses page fault handler according to an entry which was
2773  * read non-atomically.  Before making any commitment, on those architectures
2774  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2775  * parts, do_swap_page must check under lock before unmapping the pte and
2776  * proceeding (but do_wp_page is only called after already making such a check;
2777  * and do_anonymous_page can safely check later on).
2778  */
2779 static inline int pte_unmap_same(struct vm_fault *vmf)
2780 {
2781 	int same = 1;
2782 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2783 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2784 		spinlock_t *ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
2785 		spin_lock(ptl);
2786 		same = pte_same(*vmf->pte, vmf->orig_pte);
2787 		spin_unlock(ptl);
2788 	}
2789 #endif
2790 	pte_unmap(vmf->pte);
2791 	vmf->pte = NULL;
2792 	return same;
2793 }
2794 
2795 /*
2796  * Return:
2797  *	0:		copied succeeded
2798  *	-EHWPOISON:	copy failed due to hwpoison in source page
2799  *	-EAGAIN:	copied failed (some other reason)
2800  */
2801 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2802 				      struct vm_fault *vmf)
2803 {
2804 	int ret;
2805 	void *kaddr;
2806 	void __user *uaddr;
2807 	bool locked = false;
2808 	struct vm_area_struct *vma = vmf->vma;
2809 	struct mm_struct *mm = vma->vm_mm;
2810 	unsigned long addr = vmf->address;
2811 
2812 	if (likely(src)) {
2813 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2814 			memory_failure_queue(page_to_pfn(src), 0);
2815 			return -EHWPOISON;
2816 		}
2817 		return 0;
2818 	}
2819 
2820 	/*
2821 	 * If the source page was a PFN mapping, we don't have
2822 	 * a "struct page" for it. We do a best-effort copy by
2823 	 * just copying from the original user address. If that
2824 	 * fails, we just zero-fill it. Live with it.
2825 	 */
2826 	kaddr = kmap_atomic(dst);
2827 	uaddr = (void __user *)(addr & PAGE_MASK);
2828 
2829 	/*
2830 	 * On architectures with software "accessed" bits, we would
2831 	 * take a double page fault, so mark it accessed here.
2832 	 */
2833 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2834 		pte_t entry;
2835 
2836 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2837 		locked = true;
2838 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2839 			/*
2840 			 * Other thread has already handled the fault
2841 			 * and update local tlb only
2842 			 */
2843 			update_mmu_tlb(vma, addr, vmf->pte);
2844 			ret = -EAGAIN;
2845 			goto pte_unlock;
2846 		}
2847 
2848 		entry = pte_mkyoung(vmf->orig_pte);
2849 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2850 			update_mmu_cache(vma, addr, vmf->pte);
2851 	}
2852 
2853 	/*
2854 	 * This really shouldn't fail, because the page is there
2855 	 * in the page tables. But it might just be unreadable,
2856 	 * in which case we just give up and fill the result with
2857 	 * zeroes.
2858 	 */
2859 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2860 		if (locked)
2861 			goto warn;
2862 
2863 		/* Re-validate under PTL if the page is still mapped */
2864 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2865 		locked = true;
2866 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2867 			/* The PTE changed under us, update local tlb */
2868 			update_mmu_tlb(vma, addr, vmf->pte);
2869 			ret = -EAGAIN;
2870 			goto pte_unlock;
2871 		}
2872 
2873 		/*
2874 		 * The same page can be mapped back since last copy attempt.
2875 		 * Try to copy again under PTL.
2876 		 */
2877 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2878 			/*
2879 			 * Give a warn in case there can be some obscure
2880 			 * use-case
2881 			 */
2882 warn:
2883 			WARN_ON_ONCE(1);
2884 			clear_page(kaddr);
2885 		}
2886 	}
2887 
2888 	ret = 0;
2889 
2890 pte_unlock:
2891 	if (locked)
2892 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2893 	kunmap_atomic(kaddr);
2894 	flush_dcache_page(dst);
2895 
2896 	return ret;
2897 }
2898 
2899 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2900 {
2901 	struct file *vm_file = vma->vm_file;
2902 
2903 	if (vm_file)
2904 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2905 
2906 	/*
2907 	 * Special mappings (e.g. VDSO) do not have any file so fake
2908 	 * a default GFP_KERNEL for them.
2909 	 */
2910 	return GFP_KERNEL;
2911 }
2912 
2913 /*
2914  * Notify the address space that the page is about to become writable so that
2915  * it can prohibit this or wait for the page to get into an appropriate state.
2916  *
2917  * We do this without the lock held, so that it can sleep if it needs to.
2918  */
2919 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2920 {
2921 	vm_fault_t ret;
2922 	struct page *page = vmf->page;
2923 	unsigned int old_flags = vmf->flags;
2924 
2925 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2926 
2927 	if (vmf->vma->vm_file &&
2928 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2929 		return VM_FAULT_SIGBUS;
2930 
2931 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2932 	/* Restore original flags so that caller is not surprised */
2933 	vmf->flags = old_flags;
2934 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2935 		return ret;
2936 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2937 		lock_page(page);
2938 		if (!page->mapping) {
2939 			unlock_page(page);
2940 			return 0; /* retry */
2941 		}
2942 		ret |= VM_FAULT_LOCKED;
2943 	} else
2944 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2945 	return ret;
2946 }
2947 
2948 /*
2949  * Handle dirtying of a page in shared file mapping on a write fault.
2950  *
2951  * The function expects the page to be locked and unlocks it.
2952  */
2953 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2954 {
2955 	struct vm_area_struct *vma = vmf->vma;
2956 	struct address_space *mapping;
2957 	struct page *page = vmf->page;
2958 	bool dirtied;
2959 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2960 
2961 	dirtied = set_page_dirty(page);
2962 	VM_BUG_ON_PAGE(PageAnon(page), page);
2963 	/*
2964 	 * Take a local copy of the address_space - page.mapping may be zeroed
2965 	 * by truncate after unlock_page().   The address_space itself remains
2966 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2967 	 * release semantics to prevent the compiler from undoing this copying.
2968 	 */
2969 	mapping = page_rmapping(page);
2970 	unlock_page(page);
2971 
2972 	if (!page_mkwrite)
2973 		file_update_time(vma->vm_file);
2974 
2975 	/*
2976 	 * Throttle page dirtying rate down to writeback speed.
2977 	 *
2978 	 * mapping may be NULL here because some device drivers do not
2979 	 * set page.mapping but still dirty their pages
2980 	 *
2981 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2982 	 * is pinning the mapping, as per above.
2983 	 */
2984 	if ((dirtied || page_mkwrite) && mapping) {
2985 		struct file *fpin;
2986 
2987 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2988 		balance_dirty_pages_ratelimited(mapping);
2989 		if (fpin) {
2990 			fput(fpin);
2991 			return VM_FAULT_COMPLETED;
2992 		}
2993 	}
2994 
2995 	return 0;
2996 }
2997 
2998 /*
2999  * Handle write page faults for pages that can be reused in the current vma
3000  *
3001  * This can happen either due to the mapping being with the VM_SHARED flag,
3002  * or due to us being the last reference standing to the page. In either
3003  * case, all we need to do here is to mark the page as writable and update
3004  * any related book-keeping.
3005  */
3006 static inline void wp_page_reuse(struct vm_fault *vmf)
3007 	__releases(vmf->ptl)
3008 {
3009 	struct vm_area_struct *vma = vmf->vma;
3010 	struct page *page = vmf->page;
3011 	pte_t entry;
3012 
3013 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3014 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3015 
3016 	/*
3017 	 * Clear the pages cpupid information as the existing
3018 	 * information potentially belongs to a now completely
3019 	 * unrelated process.
3020 	 */
3021 	if (page)
3022 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3023 
3024 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3025 	entry = pte_mkyoung(vmf->orig_pte);
3026 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3027 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3028 		update_mmu_cache(vma, vmf->address, vmf->pte);
3029 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3030 	count_vm_event(PGREUSE);
3031 }
3032 
3033 /*
3034  * Handle the case of a page which we actually need to copy to a new page,
3035  * either due to COW or unsharing.
3036  *
3037  * Called with mmap_lock locked and the old page referenced, but
3038  * without the ptl held.
3039  *
3040  * High level logic flow:
3041  *
3042  * - Allocate a page, copy the content of the old page to the new one.
3043  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3044  * - Take the PTL. If the pte changed, bail out and release the allocated page
3045  * - If the pte is still the way we remember it, update the page table and all
3046  *   relevant references. This includes dropping the reference the page-table
3047  *   held to the old page, as well as updating the rmap.
3048  * - In any case, unlock the PTL and drop the reference we took to the old page.
3049  */
3050 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3051 {
3052 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3053 	struct vm_area_struct *vma = vmf->vma;
3054 	struct mm_struct *mm = vma->vm_mm;
3055 	struct folio *old_folio = NULL;
3056 	struct folio *new_folio = NULL;
3057 	pte_t entry;
3058 	int page_copied = 0;
3059 	struct mmu_notifier_range range;
3060 	int ret;
3061 
3062 	delayacct_wpcopy_start();
3063 
3064 	if (vmf->page)
3065 		old_folio = page_folio(vmf->page);
3066 	if (unlikely(anon_vma_prepare(vma)))
3067 		goto oom;
3068 
3069 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3070 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3071 		if (!new_folio)
3072 			goto oom;
3073 	} else {
3074 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3075 				vmf->address, false);
3076 		if (!new_folio)
3077 			goto oom;
3078 
3079 		ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3080 		if (ret) {
3081 			/*
3082 			 * COW failed, if the fault was solved by other,
3083 			 * it's fine. If not, userspace would re-fault on
3084 			 * the same address and we will handle the fault
3085 			 * from the second attempt.
3086 			 * The -EHWPOISON case will not be retried.
3087 			 */
3088 			folio_put(new_folio);
3089 			if (old_folio)
3090 				folio_put(old_folio);
3091 
3092 			delayacct_wpcopy_end();
3093 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3094 		}
3095 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3096 	}
3097 
3098 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3099 		goto oom_free_new;
3100 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3101 
3102 	__folio_mark_uptodate(new_folio);
3103 
3104 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3105 				vmf->address & PAGE_MASK,
3106 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3107 	mmu_notifier_invalidate_range_start(&range);
3108 
3109 	/*
3110 	 * Re-check the pte - we dropped the lock
3111 	 */
3112 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3113 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
3114 		if (old_folio) {
3115 			if (!folio_test_anon(old_folio)) {
3116 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3117 				inc_mm_counter(mm, MM_ANONPAGES);
3118 			}
3119 		} else {
3120 			inc_mm_counter(mm, MM_ANONPAGES);
3121 		}
3122 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3123 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3124 		entry = pte_sw_mkyoung(entry);
3125 		if (unlikely(unshare)) {
3126 			if (pte_soft_dirty(vmf->orig_pte))
3127 				entry = pte_mksoft_dirty(entry);
3128 			if (pte_uffd_wp(vmf->orig_pte))
3129 				entry = pte_mkuffd_wp(entry);
3130 		} else {
3131 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3132 		}
3133 
3134 		/*
3135 		 * Clear the pte entry and flush it first, before updating the
3136 		 * pte with the new entry, to keep TLBs on different CPUs in
3137 		 * sync. This code used to set the new PTE then flush TLBs, but
3138 		 * that left a window where the new PTE could be loaded into
3139 		 * some TLBs while the old PTE remains in others.
3140 		 */
3141 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3142 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3143 		folio_add_lru_vma(new_folio, vma);
3144 		/*
3145 		 * We call the notify macro here because, when using secondary
3146 		 * mmu page tables (such as kvm shadow page tables), we want the
3147 		 * new page to be mapped directly into the secondary page table.
3148 		 */
3149 		BUG_ON(unshare && pte_write(entry));
3150 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3151 		update_mmu_cache(vma, vmf->address, vmf->pte);
3152 		if (old_folio) {
3153 			/*
3154 			 * Only after switching the pte to the new page may
3155 			 * we remove the mapcount here. Otherwise another
3156 			 * process may come and find the rmap count decremented
3157 			 * before the pte is switched to the new page, and
3158 			 * "reuse" the old page writing into it while our pte
3159 			 * here still points into it and can be read by other
3160 			 * threads.
3161 			 *
3162 			 * The critical issue is to order this
3163 			 * page_remove_rmap with the ptp_clear_flush above.
3164 			 * Those stores are ordered by (if nothing else,)
3165 			 * the barrier present in the atomic_add_negative
3166 			 * in page_remove_rmap.
3167 			 *
3168 			 * Then the TLB flush in ptep_clear_flush ensures that
3169 			 * no process can access the old page before the
3170 			 * decremented mapcount is visible. And the old page
3171 			 * cannot be reused until after the decremented
3172 			 * mapcount is visible. So transitively, TLBs to
3173 			 * old page will be flushed before it can be reused.
3174 			 */
3175 			page_remove_rmap(vmf->page, vma, false);
3176 		}
3177 
3178 		/* Free the old page.. */
3179 		new_folio = old_folio;
3180 		page_copied = 1;
3181 	} else {
3182 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3183 	}
3184 
3185 	if (new_folio)
3186 		folio_put(new_folio);
3187 
3188 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3189 	/*
3190 	 * No need to double call mmu_notifier->invalidate_range() callback as
3191 	 * the above ptep_clear_flush_notify() did already call it.
3192 	 */
3193 	mmu_notifier_invalidate_range_only_end(&range);
3194 	if (old_folio) {
3195 		if (page_copied)
3196 			free_swap_cache(&old_folio->page);
3197 		folio_put(old_folio);
3198 	}
3199 
3200 	delayacct_wpcopy_end();
3201 	return 0;
3202 oom_free_new:
3203 	folio_put(new_folio);
3204 oom:
3205 	if (old_folio)
3206 		folio_put(old_folio);
3207 
3208 	delayacct_wpcopy_end();
3209 	return VM_FAULT_OOM;
3210 }
3211 
3212 /**
3213  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3214  *			  writeable once the page is prepared
3215  *
3216  * @vmf: structure describing the fault
3217  *
3218  * This function handles all that is needed to finish a write page fault in a
3219  * shared mapping due to PTE being read-only once the mapped page is prepared.
3220  * It handles locking of PTE and modifying it.
3221  *
3222  * The function expects the page to be locked or other protection against
3223  * concurrent faults / writeback (such as DAX radix tree locks).
3224  *
3225  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3226  * we acquired PTE lock.
3227  */
3228 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3229 {
3230 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3231 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3232 				       &vmf->ptl);
3233 	/*
3234 	 * We might have raced with another page fault while we released the
3235 	 * pte_offset_map_lock.
3236 	 */
3237 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3238 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3239 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3240 		return VM_FAULT_NOPAGE;
3241 	}
3242 	wp_page_reuse(vmf);
3243 	return 0;
3244 }
3245 
3246 /*
3247  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3248  * mapping
3249  */
3250 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3251 {
3252 	struct vm_area_struct *vma = vmf->vma;
3253 
3254 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3255 		vm_fault_t ret;
3256 
3257 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3258 		vmf->flags |= FAULT_FLAG_MKWRITE;
3259 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3260 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3261 			return ret;
3262 		return finish_mkwrite_fault(vmf);
3263 	}
3264 	wp_page_reuse(vmf);
3265 	return 0;
3266 }
3267 
3268 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3269 	__releases(vmf->ptl)
3270 {
3271 	struct vm_area_struct *vma = vmf->vma;
3272 	vm_fault_t ret = 0;
3273 
3274 	get_page(vmf->page);
3275 
3276 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3277 		vm_fault_t tmp;
3278 
3279 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3280 		tmp = do_page_mkwrite(vmf);
3281 		if (unlikely(!tmp || (tmp &
3282 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3283 			put_page(vmf->page);
3284 			return tmp;
3285 		}
3286 		tmp = finish_mkwrite_fault(vmf);
3287 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3288 			unlock_page(vmf->page);
3289 			put_page(vmf->page);
3290 			return tmp;
3291 		}
3292 	} else {
3293 		wp_page_reuse(vmf);
3294 		lock_page(vmf->page);
3295 	}
3296 	ret |= fault_dirty_shared_page(vmf);
3297 	put_page(vmf->page);
3298 
3299 	return ret;
3300 }
3301 
3302 /*
3303  * This routine handles present pages, when
3304  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3305  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3306  *   (FAULT_FLAG_UNSHARE)
3307  *
3308  * It is done by copying the page to a new address and decrementing the
3309  * shared-page counter for the old page.
3310  *
3311  * Note that this routine assumes that the protection checks have been
3312  * done by the caller (the low-level page fault routine in most cases).
3313  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3314  * done any necessary COW.
3315  *
3316  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3317  * though the page will change only once the write actually happens. This
3318  * avoids a few races, and potentially makes it more efficient.
3319  *
3320  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3321  * but allow concurrent faults), with pte both mapped and locked.
3322  * We return with mmap_lock still held, but pte unmapped and unlocked.
3323  */
3324 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3325 	__releases(vmf->ptl)
3326 {
3327 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3328 	struct vm_area_struct *vma = vmf->vma;
3329 	struct folio *folio = NULL;
3330 
3331 	if (likely(!unshare)) {
3332 		if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3333 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3334 			return handle_userfault(vmf, VM_UFFD_WP);
3335 		}
3336 
3337 		/*
3338 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3339 		 * is flushed in this case before copying.
3340 		 */
3341 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3342 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3343 			flush_tlb_page(vmf->vma, vmf->address);
3344 	}
3345 
3346 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3347 
3348 	/*
3349 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3350 	 * FAULT_FLAG_WRITE set at this point.
3351 	 */
3352 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3353 		/*
3354 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3355 		 * VM_PFNMAP VMA.
3356 		 *
3357 		 * We should not cow pages in a shared writeable mapping.
3358 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3359 		 */
3360 		if (!vmf->page)
3361 			return wp_pfn_shared(vmf);
3362 		return wp_page_shared(vmf);
3363 	}
3364 
3365 	if (vmf->page)
3366 		folio = page_folio(vmf->page);
3367 
3368 	/*
3369 	 * Private mapping: create an exclusive anonymous page copy if reuse
3370 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3371 	 */
3372 	if (folio && folio_test_anon(folio)) {
3373 		/*
3374 		 * If the page is exclusive to this process we must reuse the
3375 		 * page without further checks.
3376 		 */
3377 		if (PageAnonExclusive(vmf->page))
3378 			goto reuse;
3379 
3380 		/*
3381 		 * We have to verify under folio lock: these early checks are
3382 		 * just an optimization to avoid locking the folio and freeing
3383 		 * the swapcache if there is little hope that we can reuse.
3384 		 *
3385 		 * KSM doesn't necessarily raise the folio refcount.
3386 		 */
3387 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3388 			goto copy;
3389 		if (!folio_test_lru(folio))
3390 			/*
3391 			 * Note: We cannot easily detect+handle references from
3392 			 * remote LRU pagevecs or references to LRU folios.
3393 			 */
3394 			lru_add_drain();
3395 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3396 			goto copy;
3397 		if (!folio_trylock(folio))
3398 			goto copy;
3399 		if (folio_test_swapcache(folio))
3400 			folio_free_swap(folio);
3401 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3402 			folio_unlock(folio);
3403 			goto copy;
3404 		}
3405 		/*
3406 		 * Ok, we've got the only folio reference from our mapping
3407 		 * and the folio is locked, it's dark out, and we're wearing
3408 		 * sunglasses. Hit it.
3409 		 */
3410 		page_move_anon_rmap(vmf->page, vma);
3411 		folio_unlock(folio);
3412 reuse:
3413 		if (unlikely(unshare)) {
3414 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3415 			return 0;
3416 		}
3417 		wp_page_reuse(vmf);
3418 		return 0;
3419 	}
3420 copy:
3421 	/*
3422 	 * Ok, we need to copy. Oh, well..
3423 	 */
3424 	if (folio)
3425 		folio_get(folio);
3426 
3427 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3428 #ifdef CONFIG_KSM
3429 	if (folio && folio_test_ksm(folio))
3430 		count_vm_event(COW_KSM);
3431 #endif
3432 	return wp_page_copy(vmf);
3433 }
3434 
3435 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3436 		unsigned long start_addr, unsigned long end_addr,
3437 		struct zap_details *details)
3438 {
3439 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3440 }
3441 
3442 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3443 					    pgoff_t first_index,
3444 					    pgoff_t last_index,
3445 					    struct zap_details *details)
3446 {
3447 	struct vm_area_struct *vma;
3448 	pgoff_t vba, vea, zba, zea;
3449 
3450 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3451 		vba = vma->vm_pgoff;
3452 		vea = vba + vma_pages(vma) - 1;
3453 		zba = max(first_index, vba);
3454 		zea = min(last_index, vea);
3455 
3456 		unmap_mapping_range_vma(vma,
3457 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3458 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3459 				details);
3460 	}
3461 }
3462 
3463 /**
3464  * unmap_mapping_folio() - Unmap single folio from processes.
3465  * @folio: The locked folio to be unmapped.
3466  *
3467  * Unmap this folio from any userspace process which still has it mmaped.
3468  * Typically, for efficiency, the range of nearby pages has already been
3469  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3470  * truncation or invalidation holds the lock on a folio, it may find that
3471  * the page has been remapped again: and then uses unmap_mapping_folio()
3472  * to unmap it finally.
3473  */
3474 void unmap_mapping_folio(struct folio *folio)
3475 {
3476 	struct address_space *mapping = folio->mapping;
3477 	struct zap_details details = { };
3478 	pgoff_t	first_index;
3479 	pgoff_t	last_index;
3480 
3481 	VM_BUG_ON(!folio_test_locked(folio));
3482 
3483 	first_index = folio->index;
3484 	last_index = folio->index + folio_nr_pages(folio) - 1;
3485 
3486 	details.even_cows = false;
3487 	details.single_folio = folio;
3488 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3489 
3490 	i_mmap_lock_read(mapping);
3491 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3492 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3493 					 last_index, &details);
3494 	i_mmap_unlock_read(mapping);
3495 }
3496 
3497 /**
3498  * unmap_mapping_pages() - Unmap pages from processes.
3499  * @mapping: The address space containing pages to be unmapped.
3500  * @start: Index of first page to be unmapped.
3501  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3502  * @even_cows: Whether to unmap even private COWed pages.
3503  *
3504  * Unmap the pages in this address space from any userspace process which
3505  * has them mmaped.  Generally, you want to remove COWed pages as well when
3506  * a file is being truncated, but not when invalidating pages from the page
3507  * cache.
3508  */
3509 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3510 		pgoff_t nr, bool even_cows)
3511 {
3512 	struct zap_details details = { };
3513 	pgoff_t	first_index = start;
3514 	pgoff_t	last_index = start + nr - 1;
3515 
3516 	details.even_cows = even_cows;
3517 	if (last_index < first_index)
3518 		last_index = ULONG_MAX;
3519 
3520 	i_mmap_lock_read(mapping);
3521 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3522 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3523 					 last_index, &details);
3524 	i_mmap_unlock_read(mapping);
3525 }
3526 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3527 
3528 /**
3529  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3530  * address_space corresponding to the specified byte range in the underlying
3531  * file.
3532  *
3533  * @mapping: the address space containing mmaps to be unmapped.
3534  * @holebegin: byte in first page to unmap, relative to the start of
3535  * the underlying file.  This will be rounded down to a PAGE_SIZE
3536  * boundary.  Note that this is different from truncate_pagecache(), which
3537  * must keep the partial page.  In contrast, we must get rid of
3538  * partial pages.
3539  * @holelen: size of prospective hole in bytes.  This will be rounded
3540  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3541  * end of the file.
3542  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3543  * but 0 when invalidating pagecache, don't throw away private data.
3544  */
3545 void unmap_mapping_range(struct address_space *mapping,
3546 		loff_t const holebegin, loff_t const holelen, int even_cows)
3547 {
3548 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3549 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3550 
3551 	/* Check for overflow. */
3552 	if (sizeof(holelen) > sizeof(hlen)) {
3553 		long long holeend =
3554 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3555 		if (holeend & ~(long long)ULONG_MAX)
3556 			hlen = ULONG_MAX - hba + 1;
3557 	}
3558 
3559 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3560 }
3561 EXPORT_SYMBOL(unmap_mapping_range);
3562 
3563 /*
3564  * Restore a potential device exclusive pte to a working pte entry
3565  */
3566 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3567 {
3568 	struct folio *folio = page_folio(vmf->page);
3569 	struct vm_area_struct *vma = vmf->vma;
3570 	struct mmu_notifier_range range;
3571 
3572 	/*
3573 	 * We need a reference to lock the folio because we don't hold
3574 	 * the PTL so a racing thread can remove the device-exclusive
3575 	 * entry and unmap it. If the folio is free the entry must
3576 	 * have been removed already. If it happens to have already
3577 	 * been re-allocated after being freed all we do is lock and
3578 	 * unlock it.
3579 	 */
3580 	if (!folio_try_get(folio))
3581 		return 0;
3582 
3583 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3584 		folio_put(folio);
3585 		return VM_FAULT_RETRY;
3586 	}
3587 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3588 				vma->vm_mm, vmf->address & PAGE_MASK,
3589 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3590 	mmu_notifier_invalidate_range_start(&range);
3591 
3592 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3593 				&vmf->ptl);
3594 	if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3595 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3596 
3597 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3598 	folio_unlock(folio);
3599 	folio_put(folio);
3600 
3601 	mmu_notifier_invalidate_range_end(&range);
3602 	return 0;
3603 }
3604 
3605 static inline bool should_try_to_free_swap(struct folio *folio,
3606 					   struct vm_area_struct *vma,
3607 					   unsigned int fault_flags)
3608 {
3609 	if (!folio_test_swapcache(folio))
3610 		return false;
3611 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3612 	    folio_test_mlocked(folio))
3613 		return true;
3614 	/*
3615 	 * If we want to map a page that's in the swapcache writable, we
3616 	 * have to detect via the refcount if we're really the exclusive
3617 	 * user. Try freeing the swapcache to get rid of the swapcache
3618 	 * reference only in case it's likely that we'll be the exlusive user.
3619 	 */
3620 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3621 		folio_ref_count(folio) == 2;
3622 }
3623 
3624 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3625 {
3626 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3627 				       vmf->address, &vmf->ptl);
3628 	/*
3629 	 * Be careful so that we will only recover a special uffd-wp pte into a
3630 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3631 	 *
3632 	 * This should also cover the case where e.g. the pte changed
3633 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3634 	 * So is_pte_marker() check is not enough to safely drop the pte.
3635 	 */
3636 	if (pte_same(vmf->orig_pte, *vmf->pte))
3637 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3638 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3639 	return 0;
3640 }
3641 
3642 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3643 {
3644 	if (vma_is_anonymous(vmf->vma))
3645 		return do_anonymous_page(vmf);
3646 	else
3647 		return do_fault(vmf);
3648 }
3649 
3650 /*
3651  * This is actually a page-missing access, but with uffd-wp special pte
3652  * installed.  It means this pte was wr-protected before being unmapped.
3653  */
3654 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3655 {
3656 	/*
3657 	 * Just in case there're leftover special ptes even after the region
3658 	 * got unregistered - we can simply clear them.
3659 	 */
3660 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3661 		return pte_marker_clear(vmf);
3662 
3663 	return do_pte_missing(vmf);
3664 }
3665 
3666 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3667 {
3668 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3669 	unsigned long marker = pte_marker_get(entry);
3670 
3671 	/*
3672 	 * PTE markers should never be empty.  If anything weird happened,
3673 	 * the best thing to do is to kill the process along with its mm.
3674 	 */
3675 	if (WARN_ON_ONCE(!marker))
3676 		return VM_FAULT_SIGBUS;
3677 
3678 	/* Higher priority than uffd-wp when data corrupted */
3679 	if (marker & PTE_MARKER_SWAPIN_ERROR)
3680 		return VM_FAULT_SIGBUS;
3681 
3682 	if (pte_marker_entry_uffd_wp(entry))
3683 		return pte_marker_handle_uffd_wp(vmf);
3684 
3685 	/* This is an unknown pte marker */
3686 	return VM_FAULT_SIGBUS;
3687 }
3688 
3689 /*
3690  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3691  * but allow concurrent faults), and pte mapped but not yet locked.
3692  * We return with pte unmapped and unlocked.
3693  *
3694  * We return with the mmap_lock locked or unlocked in the same cases
3695  * as does filemap_fault().
3696  */
3697 vm_fault_t do_swap_page(struct vm_fault *vmf)
3698 {
3699 	struct vm_area_struct *vma = vmf->vma;
3700 	struct folio *swapcache, *folio = NULL;
3701 	struct page *page;
3702 	struct swap_info_struct *si = NULL;
3703 	rmap_t rmap_flags = RMAP_NONE;
3704 	bool exclusive = false;
3705 	swp_entry_t entry;
3706 	pte_t pte;
3707 	int locked;
3708 	vm_fault_t ret = 0;
3709 	void *shadow = NULL;
3710 
3711 	if (!pte_unmap_same(vmf))
3712 		goto out;
3713 
3714 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3715 		ret = VM_FAULT_RETRY;
3716 		goto out;
3717 	}
3718 
3719 	entry = pte_to_swp_entry(vmf->orig_pte);
3720 	if (unlikely(non_swap_entry(entry))) {
3721 		if (is_migration_entry(entry)) {
3722 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3723 					     vmf->address);
3724 		} else if (is_device_exclusive_entry(entry)) {
3725 			vmf->page = pfn_swap_entry_to_page(entry);
3726 			ret = remove_device_exclusive_entry(vmf);
3727 		} else if (is_device_private_entry(entry)) {
3728 			vmf->page = pfn_swap_entry_to_page(entry);
3729 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3730 					vmf->address, &vmf->ptl);
3731 			if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3732 				spin_unlock(vmf->ptl);
3733 				goto out;
3734 			}
3735 
3736 			/*
3737 			 * Get a page reference while we know the page can't be
3738 			 * freed.
3739 			 */
3740 			get_page(vmf->page);
3741 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3742 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3743 			put_page(vmf->page);
3744 		} else if (is_hwpoison_entry(entry)) {
3745 			ret = VM_FAULT_HWPOISON;
3746 		} else if (is_pte_marker_entry(entry)) {
3747 			ret = handle_pte_marker(vmf);
3748 		} else {
3749 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3750 			ret = VM_FAULT_SIGBUS;
3751 		}
3752 		goto out;
3753 	}
3754 
3755 	/* Prevent swapoff from happening to us. */
3756 	si = get_swap_device(entry);
3757 	if (unlikely(!si))
3758 		goto out;
3759 
3760 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3761 	if (folio)
3762 		page = folio_file_page(folio, swp_offset(entry));
3763 	swapcache = folio;
3764 
3765 	if (!folio) {
3766 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3767 		    __swap_count(entry) == 1) {
3768 			/* skip swapcache */
3769 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3770 						vma, vmf->address, false);
3771 			page = &folio->page;
3772 			if (folio) {
3773 				__folio_set_locked(folio);
3774 				__folio_set_swapbacked(folio);
3775 
3776 				if (mem_cgroup_swapin_charge_folio(folio,
3777 							vma->vm_mm, GFP_KERNEL,
3778 							entry)) {
3779 					ret = VM_FAULT_OOM;
3780 					goto out_page;
3781 				}
3782 				mem_cgroup_swapin_uncharge_swap(entry);
3783 
3784 				shadow = get_shadow_from_swap_cache(entry);
3785 				if (shadow)
3786 					workingset_refault(folio, shadow);
3787 
3788 				folio_add_lru(folio);
3789 
3790 				/* To provide entry to swap_readpage() */
3791 				folio_set_swap_entry(folio, entry);
3792 				swap_readpage(page, true, NULL);
3793 				folio->private = NULL;
3794 			}
3795 		} else {
3796 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3797 						vmf);
3798 			if (page)
3799 				folio = page_folio(page);
3800 			swapcache = folio;
3801 		}
3802 
3803 		if (!folio) {
3804 			/*
3805 			 * Back out if somebody else faulted in this pte
3806 			 * while we released the pte lock.
3807 			 */
3808 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3809 					vmf->address, &vmf->ptl);
3810 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3811 				ret = VM_FAULT_OOM;
3812 			goto unlock;
3813 		}
3814 
3815 		/* Had to read the page from swap area: Major fault */
3816 		ret = VM_FAULT_MAJOR;
3817 		count_vm_event(PGMAJFAULT);
3818 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3819 	} else if (PageHWPoison(page)) {
3820 		/*
3821 		 * hwpoisoned dirty swapcache pages are kept for killing
3822 		 * owner processes (which may be unknown at hwpoison time)
3823 		 */
3824 		ret = VM_FAULT_HWPOISON;
3825 		goto out_release;
3826 	}
3827 
3828 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3829 
3830 	if (!locked) {
3831 		ret |= VM_FAULT_RETRY;
3832 		goto out_release;
3833 	}
3834 
3835 	if (swapcache) {
3836 		/*
3837 		 * Make sure folio_free_swap() or swapoff did not release the
3838 		 * swapcache from under us.  The page pin, and pte_same test
3839 		 * below, are not enough to exclude that.  Even if it is still
3840 		 * swapcache, we need to check that the page's swap has not
3841 		 * changed.
3842 		 */
3843 		if (unlikely(!folio_test_swapcache(folio) ||
3844 			     page_private(page) != entry.val))
3845 			goto out_page;
3846 
3847 		/*
3848 		 * KSM sometimes has to copy on read faults, for example, if
3849 		 * page->index of !PageKSM() pages would be nonlinear inside the
3850 		 * anon VMA -- PageKSM() is lost on actual swapout.
3851 		 */
3852 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3853 		if (unlikely(!page)) {
3854 			ret = VM_FAULT_OOM;
3855 			goto out_page;
3856 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3857 			ret = VM_FAULT_HWPOISON;
3858 			goto out_page;
3859 		}
3860 		folio = page_folio(page);
3861 
3862 		/*
3863 		 * If we want to map a page that's in the swapcache writable, we
3864 		 * have to detect via the refcount if we're really the exclusive
3865 		 * owner. Try removing the extra reference from the local LRU
3866 		 * pagevecs if required.
3867 		 */
3868 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3869 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3870 			lru_add_drain();
3871 	}
3872 
3873 	folio_throttle_swaprate(folio, GFP_KERNEL);
3874 
3875 	/*
3876 	 * Back out if somebody else already faulted in this pte.
3877 	 */
3878 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3879 			&vmf->ptl);
3880 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3881 		goto out_nomap;
3882 
3883 	if (unlikely(!folio_test_uptodate(folio))) {
3884 		ret = VM_FAULT_SIGBUS;
3885 		goto out_nomap;
3886 	}
3887 
3888 	/*
3889 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3890 	 * must never point at an anonymous page in the swapcache that is
3891 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3892 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3893 	 * check after taking the PT lock and making sure that nobody
3894 	 * concurrently faulted in this page and set PG_anon_exclusive.
3895 	 */
3896 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3897 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3898 
3899 	/*
3900 	 * Check under PT lock (to protect against concurrent fork() sharing
3901 	 * the swap entry concurrently) for certainly exclusive pages.
3902 	 */
3903 	if (!folio_test_ksm(folio)) {
3904 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3905 		if (folio != swapcache) {
3906 			/*
3907 			 * We have a fresh page that is not exposed to the
3908 			 * swapcache -> certainly exclusive.
3909 			 */
3910 			exclusive = true;
3911 		} else if (exclusive && folio_test_writeback(folio) &&
3912 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3913 			/*
3914 			 * This is tricky: not all swap backends support
3915 			 * concurrent page modifications while under writeback.
3916 			 *
3917 			 * So if we stumble over such a page in the swapcache
3918 			 * we must not set the page exclusive, otherwise we can
3919 			 * map it writable without further checks and modify it
3920 			 * while still under writeback.
3921 			 *
3922 			 * For these problematic swap backends, simply drop the
3923 			 * exclusive marker: this is perfectly fine as we start
3924 			 * writeback only if we fully unmapped the page and
3925 			 * there are no unexpected references on the page after
3926 			 * unmapping succeeded. After fully unmapped, no
3927 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3928 			 * appear, so dropping the exclusive marker and mapping
3929 			 * it only R/O is fine.
3930 			 */
3931 			exclusive = false;
3932 		}
3933 	}
3934 
3935 	/*
3936 	 * Remove the swap entry and conditionally try to free up the swapcache.
3937 	 * We're already holding a reference on the page but haven't mapped it
3938 	 * yet.
3939 	 */
3940 	swap_free(entry);
3941 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3942 		folio_free_swap(folio);
3943 
3944 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3945 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3946 	pte = mk_pte(page, vma->vm_page_prot);
3947 
3948 	/*
3949 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3950 	 * certainly not shared either because we just allocated them without
3951 	 * exposing them to the swapcache or because the swap entry indicates
3952 	 * exclusivity.
3953 	 */
3954 	if (!folio_test_ksm(folio) &&
3955 	    (exclusive || folio_ref_count(folio) == 1)) {
3956 		if (vmf->flags & FAULT_FLAG_WRITE) {
3957 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3958 			vmf->flags &= ~FAULT_FLAG_WRITE;
3959 		}
3960 		rmap_flags |= RMAP_EXCLUSIVE;
3961 	}
3962 	flush_icache_page(vma, page);
3963 	if (pte_swp_soft_dirty(vmf->orig_pte))
3964 		pte = pte_mksoft_dirty(pte);
3965 	if (pte_swp_uffd_wp(vmf->orig_pte))
3966 		pte = pte_mkuffd_wp(pte);
3967 	vmf->orig_pte = pte;
3968 
3969 	/* ksm created a completely new copy */
3970 	if (unlikely(folio != swapcache && swapcache)) {
3971 		page_add_new_anon_rmap(page, vma, vmf->address);
3972 		folio_add_lru_vma(folio, vma);
3973 	} else {
3974 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
3975 	}
3976 
3977 	VM_BUG_ON(!folio_test_anon(folio) ||
3978 			(pte_write(pte) && !PageAnonExclusive(page)));
3979 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3980 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3981 
3982 	folio_unlock(folio);
3983 	if (folio != swapcache && swapcache) {
3984 		/*
3985 		 * Hold the lock to avoid the swap entry to be reused
3986 		 * until we take the PT lock for the pte_same() check
3987 		 * (to avoid false positives from pte_same). For
3988 		 * further safety release the lock after the swap_free
3989 		 * so that the swap count won't change under a
3990 		 * parallel locked swapcache.
3991 		 */
3992 		folio_unlock(swapcache);
3993 		folio_put(swapcache);
3994 	}
3995 
3996 	if (vmf->flags & FAULT_FLAG_WRITE) {
3997 		ret |= do_wp_page(vmf);
3998 		if (ret & VM_FAULT_ERROR)
3999 			ret &= VM_FAULT_ERROR;
4000 		goto out;
4001 	}
4002 
4003 	/* No need to invalidate - it was non-present before */
4004 	update_mmu_cache(vma, vmf->address, vmf->pte);
4005 unlock:
4006 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4007 out:
4008 	if (si)
4009 		put_swap_device(si);
4010 	return ret;
4011 out_nomap:
4012 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4013 out_page:
4014 	folio_unlock(folio);
4015 out_release:
4016 	folio_put(folio);
4017 	if (folio != swapcache && swapcache) {
4018 		folio_unlock(swapcache);
4019 		folio_put(swapcache);
4020 	}
4021 	if (si)
4022 		put_swap_device(si);
4023 	return ret;
4024 }
4025 
4026 /*
4027  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4028  * but allow concurrent faults), and pte mapped but not yet locked.
4029  * We return with mmap_lock still held, but pte unmapped and unlocked.
4030  */
4031 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4032 {
4033 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4034 	struct vm_area_struct *vma = vmf->vma;
4035 	struct folio *folio;
4036 	vm_fault_t ret = 0;
4037 	pte_t entry;
4038 
4039 	/* File mapping without ->vm_ops ? */
4040 	if (vma->vm_flags & VM_SHARED)
4041 		return VM_FAULT_SIGBUS;
4042 
4043 	/*
4044 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
4045 	 * pte_offset_map() on pmds where a huge pmd might be created
4046 	 * from a different thread.
4047 	 *
4048 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
4049 	 * parallel threads are excluded by other means.
4050 	 *
4051 	 * Here we only have mmap_read_lock(mm).
4052 	 */
4053 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4054 		return VM_FAULT_OOM;
4055 
4056 	/* See comment in handle_pte_fault() */
4057 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
4058 		return 0;
4059 
4060 	/* Use the zero-page for reads */
4061 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4062 			!mm_forbids_zeropage(vma->vm_mm)) {
4063 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4064 						vma->vm_page_prot));
4065 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4066 				vmf->address, &vmf->ptl);
4067 		if (vmf_pte_changed(vmf)) {
4068 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4069 			goto unlock;
4070 		}
4071 		ret = check_stable_address_space(vma->vm_mm);
4072 		if (ret)
4073 			goto unlock;
4074 		/* Deliver the page fault to userland, check inside PT lock */
4075 		if (userfaultfd_missing(vma)) {
4076 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4077 			return handle_userfault(vmf, VM_UFFD_MISSING);
4078 		}
4079 		goto setpte;
4080 	}
4081 
4082 	/* Allocate our own private page. */
4083 	if (unlikely(anon_vma_prepare(vma)))
4084 		goto oom;
4085 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4086 	if (!folio)
4087 		goto oom;
4088 
4089 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4090 		goto oom_free_page;
4091 	folio_throttle_swaprate(folio, GFP_KERNEL);
4092 
4093 	/*
4094 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4095 	 * preceding stores to the page contents become visible before
4096 	 * the set_pte_at() write.
4097 	 */
4098 	__folio_mark_uptodate(folio);
4099 
4100 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4101 	entry = pte_sw_mkyoung(entry);
4102 	if (vma->vm_flags & VM_WRITE)
4103 		entry = pte_mkwrite(pte_mkdirty(entry));
4104 
4105 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4106 			&vmf->ptl);
4107 	if (vmf_pte_changed(vmf)) {
4108 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4109 		goto release;
4110 	}
4111 
4112 	ret = check_stable_address_space(vma->vm_mm);
4113 	if (ret)
4114 		goto release;
4115 
4116 	/* Deliver the page fault to userland, check inside PT lock */
4117 	if (userfaultfd_missing(vma)) {
4118 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4119 		folio_put(folio);
4120 		return handle_userfault(vmf, VM_UFFD_MISSING);
4121 	}
4122 
4123 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4124 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4125 	folio_add_lru_vma(folio, vma);
4126 setpte:
4127 	if (uffd_wp)
4128 		entry = pte_mkuffd_wp(entry);
4129 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4130 
4131 	/* No need to invalidate - it was non-present before */
4132 	update_mmu_cache(vma, vmf->address, vmf->pte);
4133 unlock:
4134 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4135 	return ret;
4136 release:
4137 	folio_put(folio);
4138 	goto unlock;
4139 oom_free_page:
4140 	folio_put(folio);
4141 oom:
4142 	return VM_FAULT_OOM;
4143 }
4144 
4145 /*
4146  * The mmap_lock must have been held on entry, and may have been
4147  * released depending on flags and vma->vm_ops->fault() return value.
4148  * See filemap_fault() and __lock_page_retry().
4149  */
4150 static vm_fault_t __do_fault(struct vm_fault *vmf)
4151 {
4152 	struct vm_area_struct *vma = vmf->vma;
4153 	vm_fault_t ret;
4154 
4155 	/*
4156 	 * Preallocate pte before we take page_lock because this might lead to
4157 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4158 	 *				lock_page(A)
4159 	 *				SetPageWriteback(A)
4160 	 *				unlock_page(A)
4161 	 * lock_page(B)
4162 	 *				lock_page(B)
4163 	 * pte_alloc_one
4164 	 *   shrink_page_list
4165 	 *     wait_on_page_writeback(A)
4166 	 *				SetPageWriteback(B)
4167 	 *				unlock_page(B)
4168 	 *				# flush A, B to clear the writeback
4169 	 */
4170 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4171 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4172 		if (!vmf->prealloc_pte)
4173 			return VM_FAULT_OOM;
4174 	}
4175 
4176 	ret = vma->vm_ops->fault(vmf);
4177 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4178 			    VM_FAULT_DONE_COW)))
4179 		return ret;
4180 
4181 	if (unlikely(PageHWPoison(vmf->page))) {
4182 		struct page *page = vmf->page;
4183 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4184 		if (ret & VM_FAULT_LOCKED) {
4185 			if (page_mapped(page))
4186 				unmap_mapping_pages(page_mapping(page),
4187 						    page->index, 1, false);
4188 			/* Retry if a clean page was removed from the cache. */
4189 			if (invalidate_inode_page(page))
4190 				poisonret = VM_FAULT_NOPAGE;
4191 			unlock_page(page);
4192 		}
4193 		put_page(page);
4194 		vmf->page = NULL;
4195 		return poisonret;
4196 	}
4197 
4198 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4199 		lock_page(vmf->page);
4200 	else
4201 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4202 
4203 	return ret;
4204 }
4205 
4206 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4207 static void deposit_prealloc_pte(struct vm_fault *vmf)
4208 {
4209 	struct vm_area_struct *vma = vmf->vma;
4210 
4211 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4212 	/*
4213 	 * We are going to consume the prealloc table,
4214 	 * count that as nr_ptes.
4215 	 */
4216 	mm_inc_nr_ptes(vma->vm_mm);
4217 	vmf->prealloc_pte = NULL;
4218 }
4219 
4220 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4221 {
4222 	struct vm_area_struct *vma = vmf->vma;
4223 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4224 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4225 	pmd_t entry;
4226 	int i;
4227 	vm_fault_t ret = VM_FAULT_FALLBACK;
4228 
4229 	if (!transhuge_vma_suitable(vma, haddr))
4230 		return ret;
4231 
4232 	page = compound_head(page);
4233 	if (compound_order(page) != HPAGE_PMD_ORDER)
4234 		return ret;
4235 
4236 	/*
4237 	 * Just backoff if any subpage of a THP is corrupted otherwise
4238 	 * the corrupted page may mapped by PMD silently to escape the
4239 	 * check.  This kind of THP just can be PTE mapped.  Access to
4240 	 * the corrupted subpage should trigger SIGBUS as expected.
4241 	 */
4242 	if (unlikely(PageHasHWPoisoned(page)))
4243 		return ret;
4244 
4245 	/*
4246 	 * Archs like ppc64 need additional space to store information
4247 	 * related to pte entry. Use the preallocated table for that.
4248 	 */
4249 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4250 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4251 		if (!vmf->prealloc_pte)
4252 			return VM_FAULT_OOM;
4253 	}
4254 
4255 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4256 	if (unlikely(!pmd_none(*vmf->pmd)))
4257 		goto out;
4258 
4259 	for (i = 0; i < HPAGE_PMD_NR; i++)
4260 		flush_icache_page(vma, page + i);
4261 
4262 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4263 	if (write)
4264 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4265 
4266 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4267 	page_add_file_rmap(page, vma, true);
4268 
4269 	/*
4270 	 * deposit and withdraw with pmd lock held
4271 	 */
4272 	if (arch_needs_pgtable_deposit())
4273 		deposit_prealloc_pte(vmf);
4274 
4275 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4276 
4277 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4278 
4279 	/* fault is handled */
4280 	ret = 0;
4281 	count_vm_event(THP_FILE_MAPPED);
4282 out:
4283 	spin_unlock(vmf->ptl);
4284 	return ret;
4285 }
4286 #else
4287 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4288 {
4289 	return VM_FAULT_FALLBACK;
4290 }
4291 #endif
4292 
4293 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4294 {
4295 	struct vm_area_struct *vma = vmf->vma;
4296 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4297 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4298 	bool prefault = vmf->address != addr;
4299 	pte_t entry;
4300 
4301 	flush_icache_page(vma, page);
4302 	entry = mk_pte(page, vma->vm_page_prot);
4303 
4304 	if (prefault && arch_wants_old_prefaulted_pte())
4305 		entry = pte_mkold(entry);
4306 	else
4307 		entry = pte_sw_mkyoung(entry);
4308 
4309 	if (write)
4310 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4311 	if (unlikely(uffd_wp))
4312 		entry = pte_mkuffd_wp(entry);
4313 	/* copy-on-write page */
4314 	if (write && !(vma->vm_flags & VM_SHARED)) {
4315 		inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4316 		page_add_new_anon_rmap(page, vma, addr);
4317 		lru_cache_add_inactive_or_unevictable(page, vma);
4318 	} else {
4319 		inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4320 		page_add_file_rmap(page, vma, false);
4321 	}
4322 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4323 }
4324 
4325 static bool vmf_pte_changed(struct vm_fault *vmf)
4326 {
4327 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4328 		return !pte_same(*vmf->pte, vmf->orig_pte);
4329 
4330 	return !pte_none(*vmf->pte);
4331 }
4332 
4333 /**
4334  * finish_fault - finish page fault once we have prepared the page to fault
4335  *
4336  * @vmf: structure describing the fault
4337  *
4338  * This function handles all that is needed to finish a page fault once the
4339  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4340  * given page, adds reverse page mapping, handles memcg charges and LRU
4341  * addition.
4342  *
4343  * The function expects the page to be locked and on success it consumes a
4344  * reference of a page being mapped (for the PTE which maps it).
4345  *
4346  * Return: %0 on success, %VM_FAULT_ code in case of error.
4347  */
4348 vm_fault_t finish_fault(struct vm_fault *vmf)
4349 {
4350 	struct vm_area_struct *vma = vmf->vma;
4351 	struct page *page;
4352 	vm_fault_t ret;
4353 
4354 	/* Did we COW the page? */
4355 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4356 		page = vmf->cow_page;
4357 	else
4358 		page = vmf->page;
4359 
4360 	/*
4361 	 * check even for read faults because we might have lost our CoWed
4362 	 * page
4363 	 */
4364 	if (!(vma->vm_flags & VM_SHARED)) {
4365 		ret = check_stable_address_space(vma->vm_mm);
4366 		if (ret)
4367 			return ret;
4368 	}
4369 
4370 	if (pmd_none(*vmf->pmd)) {
4371 		if (PageTransCompound(page)) {
4372 			ret = do_set_pmd(vmf, page);
4373 			if (ret != VM_FAULT_FALLBACK)
4374 				return ret;
4375 		}
4376 
4377 		if (vmf->prealloc_pte)
4378 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4379 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4380 			return VM_FAULT_OOM;
4381 	}
4382 
4383 	/*
4384 	 * See comment in handle_pte_fault() for how this scenario happens, we
4385 	 * need to return NOPAGE so that we drop this page.
4386 	 */
4387 	if (pmd_devmap_trans_unstable(vmf->pmd))
4388 		return VM_FAULT_NOPAGE;
4389 
4390 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4391 				      vmf->address, &vmf->ptl);
4392 
4393 	/* Re-check under ptl */
4394 	if (likely(!vmf_pte_changed(vmf))) {
4395 		do_set_pte(vmf, page, vmf->address);
4396 
4397 		/* no need to invalidate: a not-present page won't be cached */
4398 		update_mmu_cache(vma, vmf->address, vmf->pte);
4399 
4400 		ret = 0;
4401 	} else {
4402 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4403 		ret = VM_FAULT_NOPAGE;
4404 	}
4405 
4406 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4407 	return ret;
4408 }
4409 
4410 static unsigned long fault_around_pages __read_mostly =
4411 	65536 >> PAGE_SHIFT;
4412 
4413 #ifdef CONFIG_DEBUG_FS
4414 static int fault_around_bytes_get(void *data, u64 *val)
4415 {
4416 	*val = fault_around_pages << PAGE_SHIFT;
4417 	return 0;
4418 }
4419 
4420 /*
4421  * fault_around_bytes must be rounded down to the nearest page order as it's
4422  * what do_fault_around() expects to see.
4423  */
4424 static int fault_around_bytes_set(void *data, u64 val)
4425 {
4426 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4427 		return -EINVAL;
4428 
4429 	/*
4430 	 * The minimum value is 1 page, however this results in no fault-around
4431 	 * at all. See should_fault_around().
4432 	 */
4433 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4434 
4435 	return 0;
4436 }
4437 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4438 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4439 
4440 static int __init fault_around_debugfs(void)
4441 {
4442 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4443 				   &fault_around_bytes_fops);
4444 	return 0;
4445 }
4446 late_initcall(fault_around_debugfs);
4447 #endif
4448 
4449 /*
4450  * do_fault_around() tries to map few pages around the fault address. The hope
4451  * is that the pages will be needed soon and this will lower the number of
4452  * faults to handle.
4453  *
4454  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4455  * not ready to be mapped: not up-to-date, locked, etc.
4456  *
4457  * This function doesn't cross VMA or page table boundaries, in order to call
4458  * map_pages() and acquire a PTE lock only once.
4459  *
4460  * fault_around_pages defines how many pages we'll try to map.
4461  * do_fault_around() expects it to be set to a power of two less than or equal
4462  * to PTRS_PER_PTE.
4463  *
4464  * The virtual address of the area that we map is naturally aligned to
4465  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4466  * (and therefore to page order).  This way it's easier to guarantee
4467  * that we don't cross page table boundaries.
4468  */
4469 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4470 {
4471 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4472 	pgoff_t pte_off = pte_index(vmf->address);
4473 	/* The page offset of vmf->address within the VMA. */
4474 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4475 	pgoff_t from_pte, to_pte;
4476 	vm_fault_t ret;
4477 
4478 	/* The PTE offset of the start address, clamped to the VMA. */
4479 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4480 		       pte_off - min(pte_off, vma_off));
4481 
4482 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4483 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4484 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4485 
4486 	if (pmd_none(*vmf->pmd)) {
4487 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4488 		if (!vmf->prealloc_pte)
4489 			return VM_FAULT_OOM;
4490 	}
4491 
4492 	rcu_read_lock();
4493 	ret = vmf->vma->vm_ops->map_pages(vmf,
4494 			vmf->pgoff + from_pte - pte_off,
4495 			vmf->pgoff + to_pte - pte_off);
4496 	rcu_read_unlock();
4497 
4498 	return ret;
4499 }
4500 
4501 /* Return true if we should do read fault-around, false otherwise */
4502 static inline bool should_fault_around(struct vm_fault *vmf)
4503 {
4504 	/* No ->map_pages?  No way to fault around... */
4505 	if (!vmf->vma->vm_ops->map_pages)
4506 		return false;
4507 
4508 	if (uffd_disable_fault_around(vmf->vma))
4509 		return false;
4510 
4511 	/* A single page implies no faulting 'around' at all. */
4512 	return fault_around_pages > 1;
4513 }
4514 
4515 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4516 {
4517 	vm_fault_t ret = 0;
4518 
4519 	/*
4520 	 * Let's call ->map_pages() first and use ->fault() as fallback
4521 	 * if page by the offset is not ready to be mapped (cold cache or
4522 	 * something).
4523 	 */
4524 	if (should_fault_around(vmf)) {
4525 		ret = do_fault_around(vmf);
4526 		if (ret)
4527 			return ret;
4528 	}
4529 
4530 	ret = __do_fault(vmf);
4531 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4532 		return ret;
4533 
4534 	ret |= finish_fault(vmf);
4535 	unlock_page(vmf->page);
4536 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4537 		put_page(vmf->page);
4538 	return ret;
4539 }
4540 
4541 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4542 {
4543 	struct vm_area_struct *vma = vmf->vma;
4544 	vm_fault_t ret;
4545 
4546 	if (unlikely(anon_vma_prepare(vma)))
4547 		return VM_FAULT_OOM;
4548 
4549 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4550 	if (!vmf->cow_page)
4551 		return VM_FAULT_OOM;
4552 
4553 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4554 				GFP_KERNEL)) {
4555 		put_page(vmf->cow_page);
4556 		return VM_FAULT_OOM;
4557 	}
4558 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4559 
4560 	ret = __do_fault(vmf);
4561 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4562 		goto uncharge_out;
4563 	if (ret & VM_FAULT_DONE_COW)
4564 		return ret;
4565 
4566 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4567 	__SetPageUptodate(vmf->cow_page);
4568 
4569 	ret |= finish_fault(vmf);
4570 	unlock_page(vmf->page);
4571 	put_page(vmf->page);
4572 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4573 		goto uncharge_out;
4574 	return ret;
4575 uncharge_out:
4576 	put_page(vmf->cow_page);
4577 	return ret;
4578 }
4579 
4580 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4581 {
4582 	struct vm_area_struct *vma = vmf->vma;
4583 	vm_fault_t ret, tmp;
4584 
4585 	ret = __do_fault(vmf);
4586 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4587 		return ret;
4588 
4589 	/*
4590 	 * Check if the backing address space wants to know that the page is
4591 	 * about to become writable
4592 	 */
4593 	if (vma->vm_ops->page_mkwrite) {
4594 		unlock_page(vmf->page);
4595 		tmp = do_page_mkwrite(vmf);
4596 		if (unlikely(!tmp ||
4597 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4598 			put_page(vmf->page);
4599 			return tmp;
4600 		}
4601 	}
4602 
4603 	ret |= finish_fault(vmf);
4604 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4605 					VM_FAULT_RETRY))) {
4606 		unlock_page(vmf->page);
4607 		put_page(vmf->page);
4608 		return ret;
4609 	}
4610 
4611 	ret |= fault_dirty_shared_page(vmf);
4612 	return ret;
4613 }
4614 
4615 /*
4616  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4617  * but allow concurrent faults).
4618  * The mmap_lock may have been released depending on flags and our
4619  * return value.  See filemap_fault() and __folio_lock_or_retry().
4620  * If mmap_lock is released, vma may become invalid (for example
4621  * by other thread calling munmap()).
4622  */
4623 static vm_fault_t do_fault(struct vm_fault *vmf)
4624 {
4625 	struct vm_area_struct *vma = vmf->vma;
4626 	struct mm_struct *vm_mm = vma->vm_mm;
4627 	vm_fault_t ret;
4628 
4629 	/*
4630 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4631 	 */
4632 	if (!vma->vm_ops->fault) {
4633 		/*
4634 		 * If we find a migration pmd entry or a none pmd entry, which
4635 		 * should never happen, return SIGBUS
4636 		 */
4637 		if (unlikely(!pmd_present(*vmf->pmd)))
4638 			ret = VM_FAULT_SIGBUS;
4639 		else {
4640 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4641 						       vmf->pmd,
4642 						       vmf->address,
4643 						       &vmf->ptl);
4644 			/*
4645 			 * Make sure this is not a temporary clearing of pte
4646 			 * by holding ptl and checking again. A R/M/W update
4647 			 * of pte involves: take ptl, clearing the pte so that
4648 			 * we don't have concurrent modification by hardware
4649 			 * followed by an update.
4650 			 */
4651 			if (unlikely(pte_none(*vmf->pte)))
4652 				ret = VM_FAULT_SIGBUS;
4653 			else
4654 				ret = VM_FAULT_NOPAGE;
4655 
4656 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4657 		}
4658 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4659 		ret = do_read_fault(vmf);
4660 	else if (!(vma->vm_flags & VM_SHARED))
4661 		ret = do_cow_fault(vmf);
4662 	else
4663 		ret = do_shared_fault(vmf);
4664 
4665 	/* preallocated pagetable is unused: free it */
4666 	if (vmf->prealloc_pte) {
4667 		pte_free(vm_mm, vmf->prealloc_pte);
4668 		vmf->prealloc_pte = NULL;
4669 	}
4670 	return ret;
4671 }
4672 
4673 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4674 		      unsigned long addr, int page_nid, int *flags)
4675 {
4676 	get_page(page);
4677 
4678 	/* Record the current PID acceesing VMA */
4679 	vma_set_access_pid_bit(vma);
4680 
4681 	count_vm_numa_event(NUMA_HINT_FAULTS);
4682 	if (page_nid == numa_node_id()) {
4683 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4684 		*flags |= TNF_FAULT_LOCAL;
4685 	}
4686 
4687 	return mpol_misplaced(page, vma, addr);
4688 }
4689 
4690 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4691 {
4692 	struct vm_area_struct *vma = vmf->vma;
4693 	struct page *page = NULL;
4694 	int page_nid = NUMA_NO_NODE;
4695 	bool writable = false;
4696 	int last_cpupid;
4697 	int target_nid;
4698 	pte_t pte, old_pte;
4699 	int flags = 0;
4700 
4701 	/*
4702 	 * The "pte" at this point cannot be used safely without
4703 	 * validation through pte_unmap_same(). It's of NUMA type but
4704 	 * the pfn may be screwed if the read is non atomic.
4705 	 */
4706 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4707 	spin_lock(vmf->ptl);
4708 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4709 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4710 		goto out;
4711 	}
4712 
4713 	/* Get the normal PTE  */
4714 	old_pte = ptep_get(vmf->pte);
4715 	pte = pte_modify(old_pte, vma->vm_page_prot);
4716 
4717 	/*
4718 	 * Detect now whether the PTE could be writable; this information
4719 	 * is only valid while holding the PT lock.
4720 	 */
4721 	writable = pte_write(pte);
4722 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4723 	    can_change_pte_writable(vma, vmf->address, pte))
4724 		writable = true;
4725 
4726 	page = vm_normal_page(vma, vmf->address, pte);
4727 	if (!page || is_zone_device_page(page))
4728 		goto out_map;
4729 
4730 	/* TODO: handle PTE-mapped THP */
4731 	if (PageCompound(page))
4732 		goto out_map;
4733 
4734 	/*
4735 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4736 	 * much anyway since they can be in shared cache state. This misses
4737 	 * the case where a mapping is writable but the process never writes
4738 	 * to it but pte_write gets cleared during protection updates and
4739 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4740 	 * background writeback, dirty balancing and application behaviour.
4741 	 */
4742 	if (!writable)
4743 		flags |= TNF_NO_GROUP;
4744 
4745 	/*
4746 	 * Flag if the page is shared between multiple address spaces. This
4747 	 * is later used when determining whether to group tasks together
4748 	 */
4749 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4750 		flags |= TNF_SHARED;
4751 
4752 	page_nid = page_to_nid(page);
4753 	/*
4754 	 * For memory tiering mode, cpupid of slow memory page is used
4755 	 * to record page access time.  So use default value.
4756 	 */
4757 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4758 	    !node_is_toptier(page_nid))
4759 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4760 	else
4761 		last_cpupid = page_cpupid_last(page);
4762 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4763 			&flags);
4764 	if (target_nid == NUMA_NO_NODE) {
4765 		put_page(page);
4766 		goto out_map;
4767 	}
4768 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4769 	writable = false;
4770 
4771 	/* Migrate to the requested node */
4772 	if (migrate_misplaced_page(page, vma, target_nid)) {
4773 		page_nid = target_nid;
4774 		flags |= TNF_MIGRATED;
4775 	} else {
4776 		flags |= TNF_MIGRATE_FAIL;
4777 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4778 		spin_lock(vmf->ptl);
4779 		if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4780 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4781 			goto out;
4782 		}
4783 		goto out_map;
4784 	}
4785 
4786 out:
4787 	if (page_nid != NUMA_NO_NODE)
4788 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4789 	return 0;
4790 out_map:
4791 	/*
4792 	 * Make it present again, depending on how arch implements
4793 	 * non-accessible ptes, some can allow access by kernel mode.
4794 	 */
4795 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4796 	pte = pte_modify(old_pte, vma->vm_page_prot);
4797 	pte = pte_mkyoung(pte);
4798 	if (writable)
4799 		pte = pte_mkwrite(pte);
4800 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4801 	update_mmu_cache(vma, vmf->address, vmf->pte);
4802 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4803 	goto out;
4804 }
4805 
4806 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4807 {
4808 	if (vma_is_anonymous(vmf->vma))
4809 		return do_huge_pmd_anonymous_page(vmf);
4810 	if (vmf->vma->vm_ops->huge_fault)
4811 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4812 	return VM_FAULT_FALLBACK;
4813 }
4814 
4815 /* `inline' is required to avoid gcc 4.1.2 build error */
4816 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4817 {
4818 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4819 	vm_fault_t ret;
4820 
4821 	if (vma_is_anonymous(vmf->vma)) {
4822 		if (likely(!unshare) &&
4823 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4824 			return handle_userfault(vmf, VM_UFFD_WP);
4825 		return do_huge_pmd_wp_page(vmf);
4826 	}
4827 
4828 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4829 		if (vmf->vma->vm_ops->huge_fault) {
4830 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4831 			if (!(ret & VM_FAULT_FALLBACK))
4832 				return ret;
4833 		}
4834 	}
4835 
4836 	/* COW or write-notify handled on pte level: split pmd. */
4837 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4838 
4839 	return VM_FAULT_FALLBACK;
4840 }
4841 
4842 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4843 {
4844 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4845 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4846 	/* No support for anonymous transparent PUD pages yet */
4847 	if (vma_is_anonymous(vmf->vma))
4848 		return VM_FAULT_FALLBACK;
4849 	if (vmf->vma->vm_ops->huge_fault)
4850 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4851 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4852 	return VM_FAULT_FALLBACK;
4853 }
4854 
4855 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4856 {
4857 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4858 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4859 	vm_fault_t ret;
4860 
4861 	/* No support for anonymous transparent PUD pages yet */
4862 	if (vma_is_anonymous(vmf->vma))
4863 		goto split;
4864 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4865 		if (vmf->vma->vm_ops->huge_fault) {
4866 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4867 			if (!(ret & VM_FAULT_FALLBACK))
4868 				return ret;
4869 		}
4870 	}
4871 split:
4872 	/* COW or write-notify not handled on PUD level: split pud.*/
4873 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4874 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4875 	return VM_FAULT_FALLBACK;
4876 }
4877 
4878 /*
4879  * These routines also need to handle stuff like marking pages dirty
4880  * and/or accessed for architectures that don't do it in hardware (most
4881  * RISC architectures).  The early dirtying is also good on the i386.
4882  *
4883  * There is also a hook called "update_mmu_cache()" that architectures
4884  * with external mmu caches can use to update those (ie the Sparc or
4885  * PowerPC hashed page tables that act as extended TLBs).
4886  *
4887  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4888  * concurrent faults).
4889  *
4890  * The mmap_lock may have been released depending on flags and our return value.
4891  * See filemap_fault() and __folio_lock_or_retry().
4892  */
4893 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4894 {
4895 	pte_t entry;
4896 
4897 	if (unlikely(pmd_none(*vmf->pmd))) {
4898 		/*
4899 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4900 		 * want to allocate huge page, and if we expose page table
4901 		 * for an instant, it will be difficult to retract from
4902 		 * concurrent faults and from rmap lookups.
4903 		 */
4904 		vmf->pte = NULL;
4905 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4906 	} else {
4907 		/*
4908 		 * If a huge pmd materialized under us just retry later.  Use
4909 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4910 		 * of pmd_trans_huge() to ensure the pmd didn't become
4911 		 * pmd_trans_huge under us and then back to pmd_none, as a
4912 		 * result of MADV_DONTNEED running immediately after a huge pmd
4913 		 * fault in a different thread of this mm, in turn leading to a
4914 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4915 		 * that it is a regular pmd that we can walk with
4916 		 * pte_offset_map() and we can do that through an atomic read
4917 		 * in C, which is what pmd_trans_unstable() provides.
4918 		 */
4919 		if (pmd_devmap_trans_unstable(vmf->pmd))
4920 			return 0;
4921 		/*
4922 		 * A regular pmd is established and it can't morph into a huge
4923 		 * pmd from under us anymore at this point because we hold the
4924 		 * mmap_lock read mode and khugepaged takes it in write mode.
4925 		 * So now it's safe to run pte_offset_map().
4926 		 */
4927 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4928 		vmf->orig_pte = *vmf->pte;
4929 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4930 
4931 		/*
4932 		 * some architectures can have larger ptes than wordsize,
4933 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4934 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4935 		 * accesses.  The code below just needs a consistent view
4936 		 * for the ifs and we later double check anyway with the
4937 		 * ptl lock held. So here a barrier will do.
4938 		 */
4939 		barrier();
4940 		if (pte_none(vmf->orig_pte)) {
4941 			pte_unmap(vmf->pte);
4942 			vmf->pte = NULL;
4943 		}
4944 	}
4945 
4946 	if (!vmf->pte)
4947 		return do_pte_missing(vmf);
4948 
4949 	if (!pte_present(vmf->orig_pte))
4950 		return do_swap_page(vmf);
4951 
4952 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4953 		return do_numa_page(vmf);
4954 
4955 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4956 	spin_lock(vmf->ptl);
4957 	entry = vmf->orig_pte;
4958 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4959 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4960 		goto unlock;
4961 	}
4962 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4963 		if (!pte_write(entry))
4964 			return do_wp_page(vmf);
4965 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4966 			entry = pte_mkdirty(entry);
4967 	}
4968 	entry = pte_mkyoung(entry);
4969 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4970 				vmf->flags & FAULT_FLAG_WRITE)) {
4971 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4972 	} else {
4973 		/* Skip spurious TLB flush for retried page fault */
4974 		if (vmf->flags & FAULT_FLAG_TRIED)
4975 			goto unlock;
4976 		/*
4977 		 * This is needed only for protection faults but the arch code
4978 		 * is not yet telling us if this is a protection fault or not.
4979 		 * This still avoids useless tlb flushes for .text page faults
4980 		 * with threads.
4981 		 */
4982 		if (vmf->flags & FAULT_FLAG_WRITE)
4983 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4984 						     vmf->pte);
4985 	}
4986 unlock:
4987 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4988 	return 0;
4989 }
4990 
4991 /*
4992  * By the time we get here, we already hold the mm semaphore
4993  *
4994  * The mmap_lock may have been released depending on flags and our
4995  * return value.  See filemap_fault() and __folio_lock_or_retry().
4996  */
4997 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4998 		unsigned long address, unsigned int flags)
4999 {
5000 	struct vm_fault vmf = {
5001 		.vma = vma,
5002 		.address = address & PAGE_MASK,
5003 		.real_address = address,
5004 		.flags = flags,
5005 		.pgoff = linear_page_index(vma, address),
5006 		.gfp_mask = __get_fault_gfp_mask(vma),
5007 	};
5008 	struct mm_struct *mm = vma->vm_mm;
5009 	unsigned long vm_flags = vma->vm_flags;
5010 	pgd_t *pgd;
5011 	p4d_t *p4d;
5012 	vm_fault_t ret;
5013 
5014 	pgd = pgd_offset(mm, address);
5015 	p4d = p4d_alloc(mm, pgd, address);
5016 	if (!p4d)
5017 		return VM_FAULT_OOM;
5018 
5019 	vmf.pud = pud_alloc(mm, p4d, address);
5020 	if (!vmf.pud)
5021 		return VM_FAULT_OOM;
5022 retry_pud:
5023 	if (pud_none(*vmf.pud) &&
5024 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5025 		ret = create_huge_pud(&vmf);
5026 		if (!(ret & VM_FAULT_FALLBACK))
5027 			return ret;
5028 	} else {
5029 		pud_t orig_pud = *vmf.pud;
5030 
5031 		barrier();
5032 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5033 
5034 			/*
5035 			 * TODO once we support anonymous PUDs: NUMA case and
5036 			 * FAULT_FLAG_UNSHARE handling.
5037 			 */
5038 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5039 				ret = wp_huge_pud(&vmf, orig_pud);
5040 				if (!(ret & VM_FAULT_FALLBACK))
5041 					return ret;
5042 			} else {
5043 				huge_pud_set_accessed(&vmf, orig_pud);
5044 				return 0;
5045 			}
5046 		}
5047 	}
5048 
5049 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5050 	if (!vmf.pmd)
5051 		return VM_FAULT_OOM;
5052 
5053 	/* Huge pud page fault raced with pmd_alloc? */
5054 	if (pud_trans_unstable(vmf.pud))
5055 		goto retry_pud;
5056 
5057 	if (pmd_none(*vmf.pmd) &&
5058 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5059 		ret = create_huge_pmd(&vmf);
5060 		if (!(ret & VM_FAULT_FALLBACK))
5061 			return ret;
5062 	} else {
5063 		vmf.orig_pmd = *vmf.pmd;
5064 
5065 		barrier();
5066 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5067 			VM_BUG_ON(thp_migration_supported() &&
5068 					  !is_pmd_migration_entry(vmf.orig_pmd));
5069 			if (is_pmd_migration_entry(vmf.orig_pmd))
5070 				pmd_migration_entry_wait(mm, vmf.pmd);
5071 			return 0;
5072 		}
5073 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5074 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5075 				return do_huge_pmd_numa_page(&vmf);
5076 
5077 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5078 			    !pmd_write(vmf.orig_pmd)) {
5079 				ret = wp_huge_pmd(&vmf);
5080 				if (!(ret & VM_FAULT_FALLBACK))
5081 					return ret;
5082 			} else {
5083 				huge_pmd_set_accessed(&vmf);
5084 				return 0;
5085 			}
5086 		}
5087 	}
5088 
5089 	return handle_pte_fault(&vmf);
5090 }
5091 
5092 /**
5093  * mm_account_fault - Do page fault accounting
5094  *
5095  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5096  *        of perf event counters, but we'll still do the per-task accounting to
5097  *        the task who triggered this page fault.
5098  * @address: the faulted address.
5099  * @flags: the fault flags.
5100  * @ret: the fault retcode.
5101  *
5102  * This will take care of most of the page fault accounting.  Meanwhile, it
5103  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5104  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5105  * still be in per-arch page fault handlers at the entry of page fault.
5106  */
5107 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5108 				    unsigned long address, unsigned int flags,
5109 				    vm_fault_t ret)
5110 {
5111 	bool major;
5112 
5113 	/* Incomplete faults will be accounted upon completion. */
5114 	if (ret & VM_FAULT_RETRY)
5115 		return;
5116 
5117 	/*
5118 	 * To preserve the behavior of older kernels, PGFAULT counters record
5119 	 * both successful and failed faults, as opposed to perf counters,
5120 	 * which ignore failed cases.
5121 	 */
5122 	count_vm_event(PGFAULT);
5123 	count_memcg_event_mm(mm, PGFAULT);
5124 
5125 	/*
5126 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5127 	 * valid).  That includes arch_vma_access_permitted() failing before
5128 	 * reaching here. So this is not a "this many hardware page faults"
5129 	 * counter.  We should use the hw profiling for that.
5130 	 */
5131 	if (ret & VM_FAULT_ERROR)
5132 		return;
5133 
5134 	/*
5135 	 * We define the fault as a major fault when the final successful fault
5136 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5137 	 * handle it immediately previously).
5138 	 */
5139 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5140 
5141 	if (major)
5142 		current->maj_flt++;
5143 	else
5144 		current->min_flt++;
5145 
5146 	/*
5147 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5148 	 * accounting for the per thread fault counters who triggered the
5149 	 * fault, and we skip the perf event updates.
5150 	 */
5151 	if (!regs)
5152 		return;
5153 
5154 	if (major)
5155 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5156 	else
5157 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5158 }
5159 
5160 #ifdef CONFIG_LRU_GEN
5161 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5162 {
5163 	/* the LRU algorithm only applies to accesses with recency */
5164 	current->in_lru_fault = vma_has_recency(vma);
5165 }
5166 
5167 static void lru_gen_exit_fault(void)
5168 {
5169 	current->in_lru_fault = false;
5170 }
5171 #else
5172 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5173 {
5174 }
5175 
5176 static void lru_gen_exit_fault(void)
5177 {
5178 }
5179 #endif /* CONFIG_LRU_GEN */
5180 
5181 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5182 				       unsigned int *flags)
5183 {
5184 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5185 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5186 			return VM_FAULT_SIGSEGV;
5187 		/*
5188 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5189 		 * just treat it like an ordinary read-fault otherwise.
5190 		 */
5191 		if (!is_cow_mapping(vma->vm_flags))
5192 			*flags &= ~FAULT_FLAG_UNSHARE;
5193 	} else if (*flags & FAULT_FLAG_WRITE) {
5194 		/* Write faults on read-only mappings are impossible ... */
5195 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5196 			return VM_FAULT_SIGSEGV;
5197 		/* ... and FOLL_FORCE only applies to COW mappings. */
5198 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5199 				 !is_cow_mapping(vma->vm_flags)))
5200 			return VM_FAULT_SIGSEGV;
5201 	}
5202 	return 0;
5203 }
5204 
5205 /*
5206  * By the time we get here, we already hold the mm semaphore
5207  *
5208  * The mmap_lock may have been released depending on flags and our
5209  * return value.  See filemap_fault() and __folio_lock_or_retry().
5210  */
5211 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5212 			   unsigned int flags, struct pt_regs *regs)
5213 {
5214 	/* If the fault handler drops the mmap_lock, vma may be freed */
5215 	struct mm_struct *mm = vma->vm_mm;
5216 	vm_fault_t ret;
5217 
5218 	__set_current_state(TASK_RUNNING);
5219 
5220 	ret = sanitize_fault_flags(vma, &flags);
5221 	if (ret)
5222 		goto out;
5223 
5224 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5225 					    flags & FAULT_FLAG_INSTRUCTION,
5226 					    flags & FAULT_FLAG_REMOTE)) {
5227 		ret = VM_FAULT_SIGSEGV;
5228 		goto out;
5229 	}
5230 
5231 	/*
5232 	 * Enable the memcg OOM handling for faults triggered in user
5233 	 * space.  Kernel faults are handled more gracefully.
5234 	 */
5235 	if (flags & FAULT_FLAG_USER)
5236 		mem_cgroup_enter_user_fault();
5237 
5238 	lru_gen_enter_fault(vma);
5239 
5240 	if (unlikely(is_vm_hugetlb_page(vma)))
5241 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5242 	else
5243 		ret = __handle_mm_fault(vma, address, flags);
5244 
5245 	lru_gen_exit_fault();
5246 
5247 	if (flags & FAULT_FLAG_USER) {
5248 		mem_cgroup_exit_user_fault();
5249 		/*
5250 		 * The task may have entered a memcg OOM situation but
5251 		 * if the allocation error was handled gracefully (no
5252 		 * VM_FAULT_OOM), there is no need to kill anything.
5253 		 * Just clean up the OOM state peacefully.
5254 		 */
5255 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5256 			mem_cgroup_oom_synchronize(false);
5257 	}
5258 out:
5259 	mm_account_fault(mm, regs, address, flags, ret);
5260 
5261 	return ret;
5262 }
5263 EXPORT_SYMBOL_GPL(handle_mm_fault);
5264 
5265 #ifdef CONFIG_PER_VMA_LOCK
5266 /*
5267  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5268  * stable and not isolated. If the VMA is not found or is being modified the
5269  * function returns NULL.
5270  */
5271 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5272 					  unsigned long address)
5273 {
5274 	MA_STATE(mas, &mm->mm_mt, address, address);
5275 	struct vm_area_struct *vma;
5276 
5277 	rcu_read_lock();
5278 retry:
5279 	vma = mas_walk(&mas);
5280 	if (!vma)
5281 		goto inval;
5282 
5283 	/* Only anonymous vmas are supported for now */
5284 	if (!vma_is_anonymous(vma))
5285 		goto inval;
5286 
5287 	/* find_mergeable_anon_vma uses adjacent vmas which are not locked */
5288 	if (!vma->anon_vma)
5289 		goto inval;
5290 
5291 	if (!vma_start_read(vma))
5292 		goto inval;
5293 
5294 	/*
5295 	 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5296 	 * it for now and fall back to page fault handling under mmap_lock.
5297 	 */
5298 	if (userfaultfd_armed(vma)) {
5299 		vma_end_read(vma);
5300 		goto inval;
5301 	}
5302 
5303 	/* Check since vm_start/vm_end might change before we lock the VMA */
5304 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
5305 		vma_end_read(vma);
5306 		goto inval;
5307 	}
5308 
5309 	/* Check if the VMA got isolated after we found it */
5310 	if (vma->detached) {
5311 		vma_end_read(vma);
5312 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5313 		/* The area was replaced with another one */
5314 		goto retry;
5315 	}
5316 
5317 	rcu_read_unlock();
5318 	return vma;
5319 inval:
5320 	rcu_read_unlock();
5321 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5322 	return NULL;
5323 }
5324 #endif /* CONFIG_PER_VMA_LOCK */
5325 
5326 #ifndef __PAGETABLE_P4D_FOLDED
5327 /*
5328  * Allocate p4d page table.
5329  * We've already handled the fast-path in-line.
5330  */
5331 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5332 {
5333 	p4d_t *new = p4d_alloc_one(mm, address);
5334 	if (!new)
5335 		return -ENOMEM;
5336 
5337 	spin_lock(&mm->page_table_lock);
5338 	if (pgd_present(*pgd)) {	/* Another has populated it */
5339 		p4d_free(mm, new);
5340 	} else {
5341 		smp_wmb(); /* See comment in pmd_install() */
5342 		pgd_populate(mm, pgd, new);
5343 	}
5344 	spin_unlock(&mm->page_table_lock);
5345 	return 0;
5346 }
5347 #endif /* __PAGETABLE_P4D_FOLDED */
5348 
5349 #ifndef __PAGETABLE_PUD_FOLDED
5350 /*
5351  * Allocate page upper directory.
5352  * We've already handled the fast-path in-line.
5353  */
5354 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5355 {
5356 	pud_t *new = pud_alloc_one(mm, address);
5357 	if (!new)
5358 		return -ENOMEM;
5359 
5360 	spin_lock(&mm->page_table_lock);
5361 	if (!p4d_present(*p4d)) {
5362 		mm_inc_nr_puds(mm);
5363 		smp_wmb(); /* See comment in pmd_install() */
5364 		p4d_populate(mm, p4d, new);
5365 	} else	/* Another has populated it */
5366 		pud_free(mm, new);
5367 	spin_unlock(&mm->page_table_lock);
5368 	return 0;
5369 }
5370 #endif /* __PAGETABLE_PUD_FOLDED */
5371 
5372 #ifndef __PAGETABLE_PMD_FOLDED
5373 /*
5374  * Allocate page middle directory.
5375  * We've already handled the fast-path in-line.
5376  */
5377 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5378 {
5379 	spinlock_t *ptl;
5380 	pmd_t *new = pmd_alloc_one(mm, address);
5381 	if (!new)
5382 		return -ENOMEM;
5383 
5384 	ptl = pud_lock(mm, pud);
5385 	if (!pud_present(*pud)) {
5386 		mm_inc_nr_pmds(mm);
5387 		smp_wmb(); /* See comment in pmd_install() */
5388 		pud_populate(mm, pud, new);
5389 	} else {	/* Another has populated it */
5390 		pmd_free(mm, new);
5391 	}
5392 	spin_unlock(ptl);
5393 	return 0;
5394 }
5395 #endif /* __PAGETABLE_PMD_FOLDED */
5396 
5397 /**
5398  * follow_pte - look up PTE at a user virtual address
5399  * @mm: the mm_struct of the target address space
5400  * @address: user virtual address
5401  * @ptepp: location to store found PTE
5402  * @ptlp: location to store the lock for the PTE
5403  *
5404  * On a successful return, the pointer to the PTE is stored in @ptepp;
5405  * the corresponding lock is taken and its location is stored in @ptlp.
5406  * The contents of the PTE are only stable until @ptlp is released;
5407  * any further use, if any, must be protected against invalidation
5408  * with MMU notifiers.
5409  *
5410  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5411  * should be taken for read.
5412  *
5413  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5414  * it is not a good general-purpose API.
5415  *
5416  * Return: zero on success, -ve otherwise.
5417  */
5418 int follow_pte(struct mm_struct *mm, unsigned long address,
5419 	       pte_t **ptepp, spinlock_t **ptlp)
5420 {
5421 	pgd_t *pgd;
5422 	p4d_t *p4d;
5423 	pud_t *pud;
5424 	pmd_t *pmd;
5425 	pte_t *ptep;
5426 
5427 	pgd = pgd_offset(mm, address);
5428 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5429 		goto out;
5430 
5431 	p4d = p4d_offset(pgd, address);
5432 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5433 		goto out;
5434 
5435 	pud = pud_offset(p4d, address);
5436 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5437 		goto out;
5438 
5439 	pmd = pmd_offset(pud, address);
5440 	VM_BUG_ON(pmd_trans_huge(*pmd));
5441 
5442 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
5443 		goto out;
5444 
5445 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5446 	if (!pte_present(*ptep))
5447 		goto unlock;
5448 	*ptepp = ptep;
5449 	return 0;
5450 unlock:
5451 	pte_unmap_unlock(ptep, *ptlp);
5452 out:
5453 	return -EINVAL;
5454 }
5455 EXPORT_SYMBOL_GPL(follow_pte);
5456 
5457 /**
5458  * follow_pfn - look up PFN at a user virtual address
5459  * @vma: memory mapping
5460  * @address: user virtual address
5461  * @pfn: location to store found PFN
5462  *
5463  * Only IO mappings and raw PFN mappings are allowed.
5464  *
5465  * This function does not allow the caller to read the permissions
5466  * of the PTE.  Do not use it.
5467  *
5468  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5469  */
5470 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5471 	unsigned long *pfn)
5472 {
5473 	int ret = -EINVAL;
5474 	spinlock_t *ptl;
5475 	pte_t *ptep;
5476 
5477 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5478 		return ret;
5479 
5480 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5481 	if (ret)
5482 		return ret;
5483 	*pfn = pte_pfn(*ptep);
5484 	pte_unmap_unlock(ptep, ptl);
5485 	return 0;
5486 }
5487 EXPORT_SYMBOL(follow_pfn);
5488 
5489 #ifdef CONFIG_HAVE_IOREMAP_PROT
5490 int follow_phys(struct vm_area_struct *vma,
5491 		unsigned long address, unsigned int flags,
5492 		unsigned long *prot, resource_size_t *phys)
5493 {
5494 	int ret = -EINVAL;
5495 	pte_t *ptep, pte;
5496 	spinlock_t *ptl;
5497 
5498 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5499 		goto out;
5500 
5501 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5502 		goto out;
5503 	pte = *ptep;
5504 
5505 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5506 		goto unlock;
5507 
5508 	*prot = pgprot_val(pte_pgprot(pte));
5509 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5510 
5511 	ret = 0;
5512 unlock:
5513 	pte_unmap_unlock(ptep, ptl);
5514 out:
5515 	return ret;
5516 }
5517 
5518 /**
5519  * generic_access_phys - generic implementation for iomem mmap access
5520  * @vma: the vma to access
5521  * @addr: userspace address, not relative offset within @vma
5522  * @buf: buffer to read/write
5523  * @len: length of transfer
5524  * @write: set to FOLL_WRITE when writing, otherwise reading
5525  *
5526  * This is a generic implementation for &vm_operations_struct.access for an
5527  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5528  * not page based.
5529  */
5530 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5531 			void *buf, int len, int write)
5532 {
5533 	resource_size_t phys_addr;
5534 	unsigned long prot = 0;
5535 	void __iomem *maddr;
5536 	pte_t *ptep, pte;
5537 	spinlock_t *ptl;
5538 	int offset = offset_in_page(addr);
5539 	int ret = -EINVAL;
5540 
5541 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5542 		return -EINVAL;
5543 
5544 retry:
5545 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5546 		return -EINVAL;
5547 	pte = *ptep;
5548 	pte_unmap_unlock(ptep, ptl);
5549 
5550 	prot = pgprot_val(pte_pgprot(pte));
5551 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5552 
5553 	if ((write & FOLL_WRITE) && !pte_write(pte))
5554 		return -EINVAL;
5555 
5556 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5557 	if (!maddr)
5558 		return -ENOMEM;
5559 
5560 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5561 		goto out_unmap;
5562 
5563 	if (!pte_same(pte, *ptep)) {
5564 		pte_unmap_unlock(ptep, ptl);
5565 		iounmap(maddr);
5566 
5567 		goto retry;
5568 	}
5569 
5570 	if (write)
5571 		memcpy_toio(maddr + offset, buf, len);
5572 	else
5573 		memcpy_fromio(buf, maddr + offset, len);
5574 	ret = len;
5575 	pte_unmap_unlock(ptep, ptl);
5576 out_unmap:
5577 	iounmap(maddr);
5578 
5579 	return ret;
5580 }
5581 EXPORT_SYMBOL_GPL(generic_access_phys);
5582 #endif
5583 
5584 /*
5585  * Access another process' address space as given in mm.
5586  */
5587 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5588 		       int len, unsigned int gup_flags)
5589 {
5590 	struct vm_area_struct *vma;
5591 	void *old_buf = buf;
5592 	int write = gup_flags & FOLL_WRITE;
5593 
5594 	if (mmap_read_lock_killable(mm))
5595 		return 0;
5596 
5597 	/* ignore errors, just check how much was successfully transferred */
5598 	while (len) {
5599 		int bytes, ret, offset;
5600 		void *maddr;
5601 		struct page *page = NULL;
5602 
5603 		ret = get_user_pages_remote(mm, addr, 1,
5604 				gup_flags, &page, &vma, NULL);
5605 		if (ret <= 0) {
5606 #ifndef CONFIG_HAVE_IOREMAP_PROT
5607 			break;
5608 #else
5609 			/*
5610 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5611 			 * we can access using slightly different code.
5612 			 */
5613 			vma = vma_lookup(mm, addr);
5614 			if (!vma)
5615 				break;
5616 			if (vma->vm_ops && vma->vm_ops->access)
5617 				ret = vma->vm_ops->access(vma, addr, buf,
5618 							  len, write);
5619 			if (ret <= 0)
5620 				break;
5621 			bytes = ret;
5622 #endif
5623 		} else {
5624 			bytes = len;
5625 			offset = addr & (PAGE_SIZE-1);
5626 			if (bytes > PAGE_SIZE-offset)
5627 				bytes = PAGE_SIZE-offset;
5628 
5629 			maddr = kmap(page);
5630 			if (write) {
5631 				copy_to_user_page(vma, page, addr,
5632 						  maddr + offset, buf, bytes);
5633 				set_page_dirty_lock(page);
5634 			} else {
5635 				copy_from_user_page(vma, page, addr,
5636 						    buf, maddr + offset, bytes);
5637 			}
5638 			kunmap(page);
5639 			put_page(page);
5640 		}
5641 		len -= bytes;
5642 		buf += bytes;
5643 		addr += bytes;
5644 	}
5645 	mmap_read_unlock(mm);
5646 
5647 	return buf - old_buf;
5648 }
5649 
5650 /**
5651  * access_remote_vm - access another process' address space
5652  * @mm:		the mm_struct of the target address space
5653  * @addr:	start address to access
5654  * @buf:	source or destination buffer
5655  * @len:	number of bytes to transfer
5656  * @gup_flags:	flags modifying lookup behaviour
5657  *
5658  * The caller must hold a reference on @mm.
5659  *
5660  * Return: number of bytes copied from source to destination.
5661  */
5662 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5663 		void *buf, int len, unsigned int gup_flags)
5664 {
5665 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5666 }
5667 
5668 /*
5669  * Access another process' address space.
5670  * Source/target buffer must be kernel space,
5671  * Do not walk the page table directly, use get_user_pages
5672  */
5673 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5674 		void *buf, int len, unsigned int gup_flags)
5675 {
5676 	struct mm_struct *mm;
5677 	int ret;
5678 
5679 	mm = get_task_mm(tsk);
5680 	if (!mm)
5681 		return 0;
5682 
5683 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5684 
5685 	mmput(mm);
5686 
5687 	return ret;
5688 }
5689 EXPORT_SYMBOL_GPL(access_process_vm);
5690 
5691 /*
5692  * Print the name of a VMA.
5693  */
5694 void print_vma_addr(char *prefix, unsigned long ip)
5695 {
5696 	struct mm_struct *mm = current->mm;
5697 	struct vm_area_struct *vma;
5698 
5699 	/*
5700 	 * we might be running from an atomic context so we cannot sleep
5701 	 */
5702 	if (!mmap_read_trylock(mm))
5703 		return;
5704 
5705 	vma = find_vma(mm, ip);
5706 	if (vma && vma->vm_file) {
5707 		struct file *f = vma->vm_file;
5708 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5709 		if (buf) {
5710 			char *p;
5711 
5712 			p = file_path(f, buf, PAGE_SIZE);
5713 			if (IS_ERR(p))
5714 				p = "?";
5715 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5716 					vma->vm_start,
5717 					vma->vm_end - vma->vm_start);
5718 			free_page((unsigned long)buf);
5719 		}
5720 	}
5721 	mmap_read_unlock(mm);
5722 }
5723 
5724 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5725 void __might_fault(const char *file, int line)
5726 {
5727 	if (pagefault_disabled())
5728 		return;
5729 	__might_sleep(file, line);
5730 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5731 	if (current->mm)
5732 		might_lock_read(&current->mm->mmap_lock);
5733 #endif
5734 }
5735 EXPORT_SYMBOL(__might_fault);
5736 #endif
5737 
5738 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5739 /*
5740  * Process all subpages of the specified huge page with the specified
5741  * operation.  The target subpage will be processed last to keep its
5742  * cache lines hot.
5743  */
5744 static inline int process_huge_page(
5745 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5746 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5747 	void *arg)
5748 {
5749 	int i, n, base, l, ret;
5750 	unsigned long addr = addr_hint &
5751 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5752 
5753 	/* Process target subpage last to keep its cache lines hot */
5754 	might_sleep();
5755 	n = (addr_hint - addr) / PAGE_SIZE;
5756 	if (2 * n <= pages_per_huge_page) {
5757 		/* If target subpage in first half of huge page */
5758 		base = 0;
5759 		l = n;
5760 		/* Process subpages at the end of huge page */
5761 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5762 			cond_resched();
5763 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5764 			if (ret)
5765 				return ret;
5766 		}
5767 	} else {
5768 		/* If target subpage in second half of huge page */
5769 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5770 		l = pages_per_huge_page - n;
5771 		/* Process subpages at the begin of huge page */
5772 		for (i = 0; i < base; i++) {
5773 			cond_resched();
5774 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5775 			if (ret)
5776 				return ret;
5777 		}
5778 	}
5779 	/*
5780 	 * Process remaining subpages in left-right-left-right pattern
5781 	 * towards the target subpage
5782 	 */
5783 	for (i = 0; i < l; i++) {
5784 		int left_idx = base + i;
5785 		int right_idx = base + 2 * l - 1 - i;
5786 
5787 		cond_resched();
5788 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5789 		if (ret)
5790 			return ret;
5791 		cond_resched();
5792 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5793 		if (ret)
5794 			return ret;
5795 	}
5796 	return 0;
5797 }
5798 
5799 static void clear_gigantic_page(struct page *page,
5800 				unsigned long addr,
5801 				unsigned int pages_per_huge_page)
5802 {
5803 	int i;
5804 	struct page *p;
5805 
5806 	might_sleep();
5807 	for (i = 0; i < pages_per_huge_page; i++) {
5808 		p = nth_page(page, i);
5809 		cond_resched();
5810 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5811 	}
5812 }
5813 
5814 static int clear_subpage(unsigned long addr, int idx, void *arg)
5815 {
5816 	struct page *page = arg;
5817 
5818 	clear_user_highpage(page + idx, addr);
5819 	return 0;
5820 }
5821 
5822 void clear_huge_page(struct page *page,
5823 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5824 {
5825 	unsigned long addr = addr_hint &
5826 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5827 
5828 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5829 		clear_gigantic_page(page, addr, pages_per_huge_page);
5830 		return;
5831 	}
5832 
5833 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5834 }
5835 
5836 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5837 				     unsigned long addr,
5838 				     struct vm_area_struct *vma,
5839 				     unsigned int pages_per_huge_page)
5840 {
5841 	int i;
5842 	struct page *dst_page;
5843 	struct page *src_page;
5844 
5845 	for (i = 0; i < pages_per_huge_page; i++) {
5846 		dst_page = folio_page(dst, i);
5847 		src_page = folio_page(src, i);
5848 
5849 		cond_resched();
5850 		if (copy_mc_user_highpage(dst_page, src_page,
5851 					  addr + i*PAGE_SIZE, vma)) {
5852 			memory_failure_queue(page_to_pfn(src_page), 0);
5853 			return -EHWPOISON;
5854 		}
5855 	}
5856 	return 0;
5857 }
5858 
5859 struct copy_subpage_arg {
5860 	struct page *dst;
5861 	struct page *src;
5862 	struct vm_area_struct *vma;
5863 };
5864 
5865 static int copy_subpage(unsigned long addr, int idx, void *arg)
5866 {
5867 	struct copy_subpage_arg *copy_arg = arg;
5868 
5869 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5870 				  addr, copy_arg->vma)) {
5871 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
5872 		return -EHWPOISON;
5873 	}
5874 	return 0;
5875 }
5876 
5877 int copy_user_large_folio(struct folio *dst, struct folio *src,
5878 			  unsigned long addr_hint, struct vm_area_struct *vma)
5879 {
5880 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
5881 	unsigned long addr = addr_hint &
5882 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5883 	struct copy_subpage_arg arg = {
5884 		.dst = &dst->page,
5885 		.src = &src->page,
5886 		.vma = vma,
5887 	};
5888 
5889 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
5890 		return copy_user_gigantic_page(dst, src, addr, vma,
5891 					       pages_per_huge_page);
5892 
5893 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5894 }
5895 
5896 long copy_folio_from_user(struct folio *dst_folio,
5897 			   const void __user *usr_src,
5898 			   bool allow_pagefault)
5899 {
5900 	void *kaddr;
5901 	unsigned long i, rc = 0;
5902 	unsigned int nr_pages = folio_nr_pages(dst_folio);
5903 	unsigned long ret_val = nr_pages * PAGE_SIZE;
5904 	struct page *subpage;
5905 
5906 	for (i = 0; i < nr_pages; i++) {
5907 		subpage = folio_page(dst_folio, i);
5908 		kaddr = kmap_local_page(subpage);
5909 		if (!allow_pagefault)
5910 			pagefault_disable();
5911 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
5912 		if (!allow_pagefault)
5913 			pagefault_enable();
5914 		kunmap_local(kaddr);
5915 
5916 		ret_val -= (PAGE_SIZE - rc);
5917 		if (rc)
5918 			break;
5919 
5920 		flush_dcache_page(subpage);
5921 
5922 		cond_resched();
5923 	}
5924 	return ret_val;
5925 }
5926 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5927 
5928 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5929 
5930 static struct kmem_cache *page_ptl_cachep;
5931 
5932 void __init ptlock_cache_init(void)
5933 {
5934 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5935 			SLAB_PANIC, NULL);
5936 }
5937 
5938 bool ptlock_alloc(struct page *page)
5939 {
5940 	spinlock_t *ptl;
5941 
5942 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5943 	if (!ptl)
5944 		return false;
5945 	page->ptl = ptl;
5946 	return true;
5947 }
5948 
5949 void ptlock_free(struct page *page)
5950 {
5951 	kmem_cache_free(page_ptl_cachep, page->ptl);
5952 }
5953 #endif
5954