1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 73 #include <asm/io.h> 74 #include <asm/mmu_context.h> 75 #include <asm/pgalloc.h> 76 #include <linux/uaccess.h> 77 #include <asm/tlb.h> 78 #include <asm/tlbflush.h> 79 #include <asm/pgtable.h> 80 81 #include "internal.h" 82 83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 85 #endif 86 87 #ifndef CONFIG_NEED_MULTIPLE_NODES 88 /* use the per-pgdat data instead for discontigmem - mbligh */ 89 unsigned long max_mapnr; 90 EXPORT_SYMBOL(max_mapnr); 91 92 struct page *mem_map; 93 EXPORT_SYMBOL(mem_map); 94 #endif 95 96 /* 97 * A number of key systems in x86 including ioremap() rely on the assumption 98 * that high_memory defines the upper bound on direct map memory, then end 99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 101 * and ZONE_HIGHMEM. 102 */ 103 void *high_memory; 104 EXPORT_SYMBOL(high_memory); 105 106 /* 107 * Randomize the address space (stacks, mmaps, brk, etc.). 108 * 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 110 * as ancient (libc5 based) binaries can segfault. ) 111 */ 112 int randomize_va_space __read_mostly = 113 #ifdef CONFIG_COMPAT_BRK 114 1; 115 #else 116 2; 117 #endif 118 119 static int __init disable_randmaps(char *s) 120 { 121 randomize_va_space = 0; 122 return 1; 123 } 124 __setup("norandmaps", disable_randmaps); 125 126 unsigned long zero_pfn __read_mostly; 127 EXPORT_SYMBOL(zero_pfn); 128 129 unsigned long highest_memmap_pfn __read_mostly; 130 131 /* 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 133 */ 134 static int __init init_zero_pfn(void) 135 { 136 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 137 return 0; 138 } 139 core_initcall(init_zero_pfn); 140 141 142 #if defined(SPLIT_RSS_COUNTING) 143 144 void sync_mm_rss(struct mm_struct *mm) 145 { 146 int i; 147 148 for (i = 0; i < NR_MM_COUNTERS; i++) { 149 if (current->rss_stat.count[i]) { 150 add_mm_counter(mm, i, current->rss_stat.count[i]); 151 current->rss_stat.count[i] = 0; 152 } 153 } 154 current->rss_stat.events = 0; 155 } 156 157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 158 { 159 struct task_struct *task = current; 160 161 if (likely(task->mm == mm)) 162 task->rss_stat.count[member] += val; 163 else 164 add_mm_counter(mm, member, val); 165 } 166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 168 169 /* sync counter once per 64 page faults */ 170 #define TASK_RSS_EVENTS_THRESH (64) 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 if (unlikely(task != current)) 174 return; 175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 176 sync_mm_rss(task->mm); 177 } 178 #else /* SPLIT_RSS_COUNTING */ 179 180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 182 183 static void check_sync_rss_stat(struct task_struct *task) 184 { 185 } 186 187 #endif /* SPLIT_RSS_COUNTING */ 188 189 /* 190 * Note: this doesn't free the actual pages themselves. That 191 * has been handled earlier when unmapping all the memory regions. 192 */ 193 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 194 unsigned long addr) 195 { 196 pgtable_t token = pmd_pgtable(*pmd); 197 pmd_clear(pmd); 198 pte_free_tlb(tlb, token, addr); 199 mm_dec_nr_ptes(tlb->mm); 200 } 201 202 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 203 unsigned long addr, unsigned long end, 204 unsigned long floor, unsigned long ceiling) 205 { 206 pmd_t *pmd; 207 unsigned long next; 208 unsigned long start; 209 210 start = addr; 211 pmd = pmd_offset(pud, addr); 212 do { 213 next = pmd_addr_end(addr, end); 214 if (pmd_none_or_clear_bad(pmd)) 215 continue; 216 free_pte_range(tlb, pmd, addr); 217 } while (pmd++, addr = next, addr != end); 218 219 start &= PUD_MASK; 220 if (start < floor) 221 return; 222 if (ceiling) { 223 ceiling &= PUD_MASK; 224 if (!ceiling) 225 return; 226 } 227 if (end - 1 > ceiling - 1) 228 return; 229 230 pmd = pmd_offset(pud, start); 231 pud_clear(pud); 232 pmd_free_tlb(tlb, pmd, start); 233 mm_dec_nr_pmds(tlb->mm); 234 } 235 236 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 237 unsigned long addr, unsigned long end, 238 unsigned long floor, unsigned long ceiling) 239 { 240 pud_t *pud; 241 unsigned long next; 242 unsigned long start; 243 244 start = addr; 245 pud = pud_offset(p4d, addr); 246 do { 247 next = pud_addr_end(addr, end); 248 if (pud_none_or_clear_bad(pud)) 249 continue; 250 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 251 } while (pud++, addr = next, addr != end); 252 253 start &= P4D_MASK; 254 if (start < floor) 255 return; 256 if (ceiling) { 257 ceiling &= P4D_MASK; 258 if (!ceiling) 259 return; 260 } 261 if (end - 1 > ceiling - 1) 262 return; 263 264 pud = pud_offset(p4d, start); 265 p4d_clear(p4d); 266 pud_free_tlb(tlb, pud, start); 267 mm_dec_nr_puds(tlb->mm); 268 } 269 270 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 271 unsigned long addr, unsigned long end, 272 unsigned long floor, unsigned long ceiling) 273 { 274 p4d_t *p4d; 275 unsigned long next; 276 unsigned long start; 277 278 start = addr; 279 p4d = p4d_offset(pgd, addr); 280 do { 281 next = p4d_addr_end(addr, end); 282 if (p4d_none_or_clear_bad(p4d)) 283 continue; 284 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 285 } while (p4d++, addr = next, addr != end); 286 287 start &= PGDIR_MASK; 288 if (start < floor) 289 return; 290 if (ceiling) { 291 ceiling &= PGDIR_MASK; 292 if (!ceiling) 293 return; 294 } 295 if (end - 1 > ceiling - 1) 296 return; 297 298 p4d = p4d_offset(pgd, start); 299 pgd_clear(pgd); 300 p4d_free_tlb(tlb, p4d, start); 301 } 302 303 /* 304 * This function frees user-level page tables of a process. 305 */ 306 void free_pgd_range(struct mmu_gather *tlb, 307 unsigned long addr, unsigned long end, 308 unsigned long floor, unsigned long ceiling) 309 { 310 pgd_t *pgd; 311 unsigned long next; 312 313 /* 314 * The next few lines have given us lots of grief... 315 * 316 * Why are we testing PMD* at this top level? Because often 317 * there will be no work to do at all, and we'd prefer not to 318 * go all the way down to the bottom just to discover that. 319 * 320 * Why all these "- 1"s? Because 0 represents both the bottom 321 * of the address space and the top of it (using -1 for the 322 * top wouldn't help much: the masks would do the wrong thing). 323 * The rule is that addr 0 and floor 0 refer to the bottom of 324 * the address space, but end 0 and ceiling 0 refer to the top 325 * Comparisons need to use "end - 1" and "ceiling - 1" (though 326 * that end 0 case should be mythical). 327 * 328 * Wherever addr is brought up or ceiling brought down, we must 329 * be careful to reject "the opposite 0" before it confuses the 330 * subsequent tests. But what about where end is brought down 331 * by PMD_SIZE below? no, end can't go down to 0 there. 332 * 333 * Whereas we round start (addr) and ceiling down, by different 334 * masks at different levels, in order to test whether a table 335 * now has no other vmas using it, so can be freed, we don't 336 * bother to round floor or end up - the tests don't need that. 337 */ 338 339 addr &= PMD_MASK; 340 if (addr < floor) { 341 addr += PMD_SIZE; 342 if (!addr) 343 return; 344 } 345 if (ceiling) { 346 ceiling &= PMD_MASK; 347 if (!ceiling) 348 return; 349 } 350 if (end - 1 > ceiling - 1) 351 end -= PMD_SIZE; 352 if (addr > end - 1) 353 return; 354 /* 355 * We add page table cache pages with PAGE_SIZE, 356 * (see pte_free_tlb()), flush the tlb if we need 357 */ 358 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 359 pgd = pgd_offset(tlb->mm, addr); 360 do { 361 next = pgd_addr_end(addr, end); 362 if (pgd_none_or_clear_bad(pgd)) 363 continue; 364 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 365 } while (pgd++, addr = next, addr != end); 366 } 367 368 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 369 unsigned long floor, unsigned long ceiling) 370 { 371 while (vma) { 372 struct vm_area_struct *next = vma->vm_next; 373 unsigned long addr = vma->vm_start; 374 375 /* 376 * Hide vma from rmap and truncate_pagecache before freeing 377 * pgtables 378 */ 379 unlink_anon_vmas(vma); 380 unlink_file_vma(vma); 381 382 if (is_vm_hugetlb_page(vma)) { 383 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 384 floor, next ? next->vm_start : ceiling); 385 } else { 386 /* 387 * Optimization: gather nearby vmas into one call down 388 */ 389 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 390 && !is_vm_hugetlb_page(next)) { 391 vma = next; 392 next = vma->vm_next; 393 unlink_anon_vmas(vma); 394 unlink_file_vma(vma); 395 } 396 free_pgd_range(tlb, addr, vma->vm_end, 397 floor, next ? next->vm_start : ceiling); 398 } 399 vma = next; 400 } 401 } 402 403 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 404 { 405 spinlock_t *ptl; 406 pgtable_t new = pte_alloc_one(mm, address); 407 if (!new) 408 return -ENOMEM; 409 410 /* 411 * Ensure all pte setup (eg. pte page lock and page clearing) are 412 * visible before the pte is made visible to other CPUs by being 413 * put into page tables. 414 * 415 * The other side of the story is the pointer chasing in the page 416 * table walking code (when walking the page table without locking; 417 * ie. most of the time). Fortunately, these data accesses consist 418 * of a chain of data-dependent loads, meaning most CPUs (alpha 419 * being the notable exception) will already guarantee loads are 420 * seen in-order. See the alpha page table accessors for the 421 * smp_read_barrier_depends() barriers in page table walking code. 422 */ 423 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 424 425 ptl = pmd_lock(mm, pmd); 426 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 427 mm_inc_nr_ptes(mm); 428 pmd_populate(mm, pmd, new); 429 new = NULL; 430 } 431 spin_unlock(ptl); 432 if (new) 433 pte_free(mm, new); 434 return 0; 435 } 436 437 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 438 { 439 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 440 if (!new) 441 return -ENOMEM; 442 443 smp_wmb(); /* See comment in __pte_alloc */ 444 445 spin_lock(&init_mm.page_table_lock); 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 447 pmd_populate_kernel(&init_mm, pmd, new); 448 new = NULL; 449 } 450 spin_unlock(&init_mm.page_table_lock); 451 if (new) 452 pte_free_kernel(&init_mm, new); 453 return 0; 454 } 455 456 static inline void init_rss_vec(int *rss) 457 { 458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 459 } 460 461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 462 { 463 int i; 464 465 if (current->mm == mm) 466 sync_mm_rss(mm); 467 for (i = 0; i < NR_MM_COUNTERS; i++) 468 if (rss[i]) 469 add_mm_counter(mm, i, rss[i]); 470 } 471 472 /* 473 * This function is called to print an error when a bad pte 474 * is found. For example, we might have a PFN-mapped pte in 475 * a region that doesn't allow it. 476 * 477 * The calling function must still handle the error. 478 */ 479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 480 pte_t pte, struct page *page) 481 { 482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 483 p4d_t *p4d = p4d_offset(pgd, addr); 484 pud_t *pud = pud_offset(p4d, addr); 485 pmd_t *pmd = pmd_offset(pud, addr); 486 struct address_space *mapping; 487 pgoff_t index; 488 static unsigned long resume; 489 static unsigned long nr_shown; 490 static unsigned long nr_unshown; 491 492 /* 493 * Allow a burst of 60 reports, then keep quiet for that minute; 494 * or allow a steady drip of one report per second. 495 */ 496 if (nr_shown == 60) { 497 if (time_before(jiffies, resume)) { 498 nr_unshown++; 499 return; 500 } 501 if (nr_unshown) { 502 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 503 nr_unshown); 504 nr_unshown = 0; 505 } 506 nr_shown = 0; 507 } 508 if (nr_shown++ == 0) 509 resume = jiffies + 60 * HZ; 510 511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 512 index = linear_page_index(vma, addr); 513 514 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 515 current->comm, 516 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 517 if (page) 518 dump_page(page, "bad pte"); 519 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 520 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 521 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 522 vma->vm_file, 523 vma->vm_ops ? vma->vm_ops->fault : NULL, 524 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 525 mapping ? mapping->a_ops->readpage : NULL); 526 dump_stack(); 527 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 528 } 529 530 /* 531 * vm_normal_page -- This function gets the "struct page" associated with a pte. 532 * 533 * "Special" mappings do not wish to be associated with a "struct page" (either 534 * it doesn't exist, or it exists but they don't want to touch it). In this 535 * case, NULL is returned here. "Normal" mappings do have a struct page. 536 * 537 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 538 * pte bit, in which case this function is trivial. Secondly, an architecture 539 * may not have a spare pte bit, which requires a more complicated scheme, 540 * described below. 541 * 542 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 543 * special mapping (even if there are underlying and valid "struct pages"). 544 * COWed pages of a VM_PFNMAP are always normal. 545 * 546 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 547 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 548 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 549 * mapping will always honor the rule 550 * 551 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 552 * 553 * And for normal mappings this is false. 554 * 555 * This restricts such mappings to be a linear translation from virtual address 556 * to pfn. To get around this restriction, we allow arbitrary mappings so long 557 * as the vma is not a COW mapping; in that case, we know that all ptes are 558 * special (because none can have been COWed). 559 * 560 * 561 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 562 * 563 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 564 * page" backing, however the difference is that _all_ pages with a struct 565 * page (that is, those where pfn_valid is true) are refcounted and considered 566 * normal pages by the VM. The disadvantage is that pages are refcounted 567 * (which can be slower and simply not an option for some PFNMAP users). The 568 * advantage is that we don't have to follow the strict linearity rule of 569 * PFNMAP mappings in order to support COWable mappings. 570 * 571 */ 572 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 573 pte_t pte, bool with_public_device) 574 { 575 unsigned long pfn = pte_pfn(pte); 576 577 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 578 if (likely(!pte_special(pte))) 579 goto check_pfn; 580 if (vma->vm_ops && vma->vm_ops->find_special_page) 581 return vma->vm_ops->find_special_page(vma, addr); 582 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 583 return NULL; 584 if (is_zero_pfn(pfn)) 585 return NULL; 586 587 /* 588 * Device public pages are special pages (they are ZONE_DEVICE 589 * pages but different from persistent memory). They behave 590 * allmost like normal pages. The difference is that they are 591 * not on the lru and thus should never be involve with any- 592 * thing that involve lru manipulation (mlock, numa balancing, 593 * ...). 594 * 595 * This is why we still want to return NULL for such page from 596 * vm_normal_page() so that we do not have to special case all 597 * call site of vm_normal_page(). 598 */ 599 if (likely(pfn <= highest_memmap_pfn)) { 600 struct page *page = pfn_to_page(pfn); 601 602 if (is_device_public_page(page)) { 603 if (with_public_device) 604 return page; 605 return NULL; 606 } 607 } 608 609 if (pte_devmap(pte)) 610 return NULL; 611 612 print_bad_pte(vma, addr, pte, NULL); 613 return NULL; 614 } 615 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 617 618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 619 if (vma->vm_flags & VM_MIXEDMAP) { 620 if (!pfn_valid(pfn)) 621 return NULL; 622 goto out; 623 } else { 624 unsigned long off; 625 off = (addr - vma->vm_start) >> PAGE_SHIFT; 626 if (pfn == vma->vm_pgoff + off) 627 return NULL; 628 if (!is_cow_mapping(vma->vm_flags)) 629 return NULL; 630 } 631 } 632 633 if (is_zero_pfn(pfn)) 634 return NULL; 635 636 check_pfn: 637 if (unlikely(pfn > highest_memmap_pfn)) { 638 print_bad_pte(vma, addr, pte, NULL); 639 return NULL; 640 } 641 642 /* 643 * NOTE! We still have PageReserved() pages in the page tables. 644 * eg. VDSO mappings can cause them to exist. 645 */ 646 out: 647 return pfn_to_page(pfn); 648 } 649 650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 652 pmd_t pmd) 653 { 654 unsigned long pfn = pmd_pfn(pmd); 655 656 /* 657 * There is no pmd_special() but there may be special pmds, e.g. 658 * in a direct-access (dax) mapping, so let's just replicate the 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 660 */ 661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 662 if (vma->vm_flags & VM_MIXEDMAP) { 663 if (!pfn_valid(pfn)) 664 return NULL; 665 goto out; 666 } else { 667 unsigned long off; 668 off = (addr - vma->vm_start) >> PAGE_SHIFT; 669 if (pfn == vma->vm_pgoff + off) 670 return NULL; 671 if (!is_cow_mapping(vma->vm_flags)) 672 return NULL; 673 } 674 } 675 676 if (pmd_devmap(pmd)) 677 return NULL; 678 if (is_zero_pfn(pfn)) 679 return NULL; 680 if (unlikely(pfn > highest_memmap_pfn)) 681 return NULL; 682 683 /* 684 * NOTE! We still have PageReserved() pages in the page tables. 685 * eg. VDSO mappings can cause them to exist. 686 */ 687 out: 688 return pfn_to_page(pfn); 689 } 690 #endif 691 692 /* 693 * copy one vm_area from one task to the other. Assumes the page tables 694 * already present in the new task to be cleared in the whole range 695 * covered by this vma. 696 */ 697 698 static inline unsigned long 699 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 701 unsigned long addr, int *rss) 702 { 703 unsigned long vm_flags = vma->vm_flags; 704 pte_t pte = *src_pte; 705 struct page *page; 706 707 /* pte contains position in swap or file, so copy. */ 708 if (unlikely(!pte_present(pte))) { 709 swp_entry_t entry = pte_to_swp_entry(pte); 710 711 if (likely(!non_swap_entry(entry))) { 712 if (swap_duplicate(entry) < 0) 713 return entry.val; 714 715 /* make sure dst_mm is on swapoff's mmlist. */ 716 if (unlikely(list_empty(&dst_mm->mmlist))) { 717 spin_lock(&mmlist_lock); 718 if (list_empty(&dst_mm->mmlist)) 719 list_add(&dst_mm->mmlist, 720 &src_mm->mmlist); 721 spin_unlock(&mmlist_lock); 722 } 723 rss[MM_SWAPENTS]++; 724 } else if (is_migration_entry(entry)) { 725 page = migration_entry_to_page(entry); 726 727 rss[mm_counter(page)]++; 728 729 if (is_write_migration_entry(entry) && 730 is_cow_mapping(vm_flags)) { 731 /* 732 * COW mappings require pages in both 733 * parent and child to be set to read. 734 */ 735 make_migration_entry_read(&entry); 736 pte = swp_entry_to_pte(entry); 737 if (pte_swp_soft_dirty(*src_pte)) 738 pte = pte_swp_mksoft_dirty(pte); 739 set_pte_at(src_mm, addr, src_pte, pte); 740 } 741 } else if (is_device_private_entry(entry)) { 742 page = device_private_entry_to_page(entry); 743 744 /* 745 * Update rss count even for unaddressable pages, as 746 * they should treated just like normal pages in this 747 * respect. 748 * 749 * We will likely want to have some new rss counters 750 * for unaddressable pages, at some point. But for now 751 * keep things as they are. 752 */ 753 get_page(page); 754 rss[mm_counter(page)]++; 755 page_dup_rmap(page, false); 756 757 /* 758 * We do not preserve soft-dirty information, because so 759 * far, checkpoint/restore is the only feature that 760 * requires that. And checkpoint/restore does not work 761 * when a device driver is involved (you cannot easily 762 * save and restore device driver state). 763 */ 764 if (is_write_device_private_entry(entry) && 765 is_cow_mapping(vm_flags)) { 766 make_device_private_entry_read(&entry); 767 pte = swp_entry_to_pte(entry); 768 set_pte_at(src_mm, addr, src_pte, pte); 769 } 770 } 771 goto out_set_pte; 772 } 773 774 /* 775 * If it's a COW mapping, write protect it both 776 * in the parent and the child 777 */ 778 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 779 ptep_set_wrprotect(src_mm, addr, src_pte); 780 pte = pte_wrprotect(pte); 781 } 782 783 /* 784 * If it's a shared mapping, mark it clean in 785 * the child 786 */ 787 if (vm_flags & VM_SHARED) 788 pte = pte_mkclean(pte); 789 pte = pte_mkold(pte); 790 791 page = vm_normal_page(vma, addr, pte); 792 if (page) { 793 get_page(page); 794 page_dup_rmap(page, false); 795 rss[mm_counter(page)]++; 796 } else if (pte_devmap(pte)) { 797 page = pte_page(pte); 798 799 /* 800 * Cache coherent device memory behave like regular page and 801 * not like persistent memory page. For more informations see 802 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 803 */ 804 if (is_device_public_page(page)) { 805 get_page(page); 806 page_dup_rmap(page, false); 807 rss[mm_counter(page)]++; 808 } 809 } 810 811 out_set_pte: 812 set_pte_at(dst_mm, addr, dst_pte, pte); 813 return 0; 814 } 815 816 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 817 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 818 unsigned long addr, unsigned long end) 819 { 820 pte_t *orig_src_pte, *orig_dst_pte; 821 pte_t *src_pte, *dst_pte; 822 spinlock_t *src_ptl, *dst_ptl; 823 int progress = 0; 824 int rss[NR_MM_COUNTERS]; 825 swp_entry_t entry = (swp_entry_t){0}; 826 827 again: 828 init_rss_vec(rss); 829 830 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 831 if (!dst_pte) 832 return -ENOMEM; 833 src_pte = pte_offset_map(src_pmd, addr); 834 src_ptl = pte_lockptr(src_mm, src_pmd); 835 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 836 orig_src_pte = src_pte; 837 orig_dst_pte = dst_pte; 838 arch_enter_lazy_mmu_mode(); 839 840 do { 841 /* 842 * We are holding two locks at this point - either of them 843 * could generate latencies in another task on another CPU. 844 */ 845 if (progress >= 32) { 846 progress = 0; 847 if (need_resched() || 848 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 849 break; 850 } 851 if (pte_none(*src_pte)) { 852 progress++; 853 continue; 854 } 855 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 856 vma, addr, rss); 857 if (entry.val) 858 break; 859 progress += 8; 860 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 861 862 arch_leave_lazy_mmu_mode(); 863 spin_unlock(src_ptl); 864 pte_unmap(orig_src_pte); 865 add_mm_rss_vec(dst_mm, rss); 866 pte_unmap_unlock(orig_dst_pte, dst_ptl); 867 cond_resched(); 868 869 if (entry.val) { 870 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 871 return -ENOMEM; 872 progress = 0; 873 } 874 if (addr != end) 875 goto again; 876 return 0; 877 } 878 879 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 880 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 881 unsigned long addr, unsigned long end) 882 { 883 pmd_t *src_pmd, *dst_pmd; 884 unsigned long next; 885 886 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 887 if (!dst_pmd) 888 return -ENOMEM; 889 src_pmd = pmd_offset(src_pud, addr); 890 do { 891 next = pmd_addr_end(addr, end); 892 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 893 || pmd_devmap(*src_pmd)) { 894 int err; 895 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 896 err = copy_huge_pmd(dst_mm, src_mm, 897 dst_pmd, src_pmd, addr, vma); 898 if (err == -ENOMEM) 899 return -ENOMEM; 900 if (!err) 901 continue; 902 /* fall through */ 903 } 904 if (pmd_none_or_clear_bad(src_pmd)) 905 continue; 906 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 907 vma, addr, next)) 908 return -ENOMEM; 909 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 910 return 0; 911 } 912 913 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 914 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 915 unsigned long addr, unsigned long end) 916 { 917 pud_t *src_pud, *dst_pud; 918 unsigned long next; 919 920 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 921 if (!dst_pud) 922 return -ENOMEM; 923 src_pud = pud_offset(src_p4d, addr); 924 do { 925 next = pud_addr_end(addr, end); 926 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 927 int err; 928 929 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 930 err = copy_huge_pud(dst_mm, src_mm, 931 dst_pud, src_pud, addr, vma); 932 if (err == -ENOMEM) 933 return -ENOMEM; 934 if (!err) 935 continue; 936 /* fall through */ 937 } 938 if (pud_none_or_clear_bad(src_pud)) 939 continue; 940 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 941 vma, addr, next)) 942 return -ENOMEM; 943 } while (dst_pud++, src_pud++, addr = next, addr != end); 944 return 0; 945 } 946 947 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 948 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 949 unsigned long addr, unsigned long end) 950 { 951 p4d_t *src_p4d, *dst_p4d; 952 unsigned long next; 953 954 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 955 if (!dst_p4d) 956 return -ENOMEM; 957 src_p4d = p4d_offset(src_pgd, addr); 958 do { 959 next = p4d_addr_end(addr, end); 960 if (p4d_none_or_clear_bad(src_p4d)) 961 continue; 962 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 963 vma, addr, next)) 964 return -ENOMEM; 965 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 966 return 0; 967 } 968 969 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 970 struct vm_area_struct *vma) 971 { 972 pgd_t *src_pgd, *dst_pgd; 973 unsigned long next; 974 unsigned long addr = vma->vm_start; 975 unsigned long end = vma->vm_end; 976 unsigned long mmun_start; /* For mmu_notifiers */ 977 unsigned long mmun_end; /* For mmu_notifiers */ 978 bool is_cow; 979 int ret; 980 981 /* 982 * Don't copy ptes where a page fault will fill them correctly. 983 * Fork becomes much lighter when there are big shared or private 984 * readonly mappings. The tradeoff is that copy_page_range is more 985 * efficient than faulting. 986 */ 987 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 988 !vma->anon_vma) 989 return 0; 990 991 if (is_vm_hugetlb_page(vma)) 992 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 993 994 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 995 /* 996 * We do not free on error cases below as remove_vma 997 * gets called on error from higher level routine 998 */ 999 ret = track_pfn_copy(vma); 1000 if (ret) 1001 return ret; 1002 } 1003 1004 /* 1005 * We need to invalidate the secondary MMU mappings only when 1006 * there could be a permission downgrade on the ptes of the 1007 * parent mm. And a permission downgrade will only happen if 1008 * is_cow_mapping() returns true. 1009 */ 1010 is_cow = is_cow_mapping(vma->vm_flags); 1011 mmun_start = addr; 1012 mmun_end = end; 1013 if (is_cow) 1014 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1015 mmun_end); 1016 1017 ret = 0; 1018 dst_pgd = pgd_offset(dst_mm, addr); 1019 src_pgd = pgd_offset(src_mm, addr); 1020 do { 1021 next = pgd_addr_end(addr, end); 1022 if (pgd_none_or_clear_bad(src_pgd)) 1023 continue; 1024 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1025 vma, addr, next))) { 1026 ret = -ENOMEM; 1027 break; 1028 } 1029 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1030 1031 if (is_cow) 1032 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1033 return ret; 1034 } 1035 1036 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1037 struct vm_area_struct *vma, pmd_t *pmd, 1038 unsigned long addr, unsigned long end, 1039 struct zap_details *details) 1040 { 1041 struct mm_struct *mm = tlb->mm; 1042 int force_flush = 0; 1043 int rss[NR_MM_COUNTERS]; 1044 spinlock_t *ptl; 1045 pte_t *start_pte; 1046 pte_t *pte; 1047 swp_entry_t entry; 1048 1049 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1050 again: 1051 init_rss_vec(rss); 1052 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1053 pte = start_pte; 1054 flush_tlb_batched_pending(mm); 1055 arch_enter_lazy_mmu_mode(); 1056 do { 1057 pte_t ptent = *pte; 1058 if (pte_none(ptent)) 1059 continue; 1060 1061 if (pte_present(ptent)) { 1062 struct page *page; 1063 1064 page = _vm_normal_page(vma, addr, ptent, true); 1065 if (unlikely(details) && page) { 1066 /* 1067 * unmap_shared_mapping_pages() wants to 1068 * invalidate cache without truncating: 1069 * unmap shared but keep private pages. 1070 */ 1071 if (details->check_mapping && 1072 details->check_mapping != page_rmapping(page)) 1073 continue; 1074 } 1075 ptent = ptep_get_and_clear_full(mm, addr, pte, 1076 tlb->fullmm); 1077 tlb_remove_tlb_entry(tlb, pte, addr); 1078 if (unlikely(!page)) 1079 continue; 1080 1081 if (!PageAnon(page)) { 1082 if (pte_dirty(ptent)) { 1083 force_flush = 1; 1084 set_page_dirty(page); 1085 } 1086 if (pte_young(ptent) && 1087 likely(!(vma->vm_flags & VM_SEQ_READ))) 1088 mark_page_accessed(page); 1089 } 1090 rss[mm_counter(page)]--; 1091 page_remove_rmap(page, false); 1092 if (unlikely(page_mapcount(page) < 0)) 1093 print_bad_pte(vma, addr, ptent, page); 1094 if (unlikely(__tlb_remove_page(tlb, page))) { 1095 force_flush = 1; 1096 addr += PAGE_SIZE; 1097 break; 1098 } 1099 continue; 1100 } 1101 1102 entry = pte_to_swp_entry(ptent); 1103 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1104 struct page *page = device_private_entry_to_page(entry); 1105 1106 if (unlikely(details && details->check_mapping)) { 1107 /* 1108 * unmap_shared_mapping_pages() wants to 1109 * invalidate cache without truncating: 1110 * unmap shared but keep private pages. 1111 */ 1112 if (details->check_mapping != 1113 page_rmapping(page)) 1114 continue; 1115 } 1116 1117 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1118 rss[mm_counter(page)]--; 1119 page_remove_rmap(page, false); 1120 put_page(page); 1121 continue; 1122 } 1123 1124 /* If details->check_mapping, we leave swap entries. */ 1125 if (unlikely(details)) 1126 continue; 1127 1128 entry = pte_to_swp_entry(ptent); 1129 if (!non_swap_entry(entry)) 1130 rss[MM_SWAPENTS]--; 1131 else if (is_migration_entry(entry)) { 1132 struct page *page; 1133 1134 page = migration_entry_to_page(entry); 1135 rss[mm_counter(page)]--; 1136 } 1137 if (unlikely(!free_swap_and_cache(entry))) 1138 print_bad_pte(vma, addr, ptent, NULL); 1139 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1140 } while (pte++, addr += PAGE_SIZE, addr != end); 1141 1142 add_mm_rss_vec(mm, rss); 1143 arch_leave_lazy_mmu_mode(); 1144 1145 /* Do the actual TLB flush before dropping ptl */ 1146 if (force_flush) 1147 tlb_flush_mmu_tlbonly(tlb); 1148 pte_unmap_unlock(start_pte, ptl); 1149 1150 /* 1151 * If we forced a TLB flush (either due to running out of 1152 * batch buffers or because we needed to flush dirty TLB 1153 * entries before releasing the ptl), free the batched 1154 * memory too. Restart if we didn't do everything. 1155 */ 1156 if (force_flush) { 1157 force_flush = 0; 1158 tlb_flush_mmu_free(tlb); 1159 if (addr != end) 1160 goto again; 1161 } 1162 1163 return addr; 1164 } 1165 1166 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1167 struct vm_area_struct *vma, pud_t *pud, 1168 unsigned long addr, unsigned long end, 1169 struct zap_details *details) 1170 { 1171 pmd_t *pmd; 1172 unsigned long next; 1173 1174 pmd = pmd_offset(pud, addr); 1175 do { 1176 next = pmd_addr_end(addr, end); 1177 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1178 if (next - addr != HPAGE_PMD_SIZE) 1179 __split_huge_pmd(vma, pmd, addr, false, NULL); 1180 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1181 goto next; 1182 /* fall through */ 1183 } 1184 /* 1185 * Here there can be other concurrent MADV_DONTNEED or 1186 * trans huge page faults running, and if the pmd is 1187 * none or trans huge it can change under us. This is 1188 * because MADV_DONTNEED holds the mmap_sem in read 1189 * mode. 1190 */ 1191 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1192 goto next; 1193 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1194 next: 1195 cond_resched(); 1196 } while (pmd++, addr = next, addr != end); 1197 1198 return addr; 1199 } 1200 1201 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1202 struct vm_area_struct *vma, p4d_t *p4d, 1203 unsigned long addr, unsigned long end, 1204 struct zap_details *details) 1205 { 1206 pud_t *pud; 1207 unsigned long next; 1208 1209 pud = pud_offset(p4d, addr); 1210 do { 1211 next = pud_addr_end(addr, end); 1212 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1213 if (next - addr != HPAGE_PUD_SIZE) { 1214 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1215 split_huge_pud(vma, pud, addr); 1216 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1217 goto next; 1218 /* fall through */ 1219 } 1220 if (pud_none_or_clear_bad(pud)) 1221 continue; 1222 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1223 next: 1224 cond_resched(); 1225 } while (pud++, addr = next, addr != end); 1226 1227 return addr; 1228 } 1229 1230 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1231 struct vm_area_struct *vma, pgd_t *pgd, 1232 unsigned long addr, unsigned long end, 1233 struct zap_details *details) 1234 { 1235 p4d_t *p4d; 1236 unsigned long next; 1237 1238 p4d = p4d_offset(pgd, addr); 1239 do { 1240 next = p4d_addr_end(addr, end); 1241 if (p4d_none_or_clear_bad(p4d)) 1242 continue; 1243 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1244 } while (p4d++, addr = next, addr != end); 1245 1246 return addr; 1247 } 1248 1249 void unmap_page_range(struct mmu_gather *tlb, 1250 struct vm_area_struct *vma, 1251 unsigned long addr, unsigned long end, 1252 struct zap_details *details) 1253 { 1254 pgd_t *pgd; 1255 unsigned long next; 1256 1257 BUG_ON(addr >= end); 1258 tlb_start_vma(tlb, vma); 1259 pgd = pgd_offset(vma->vm_mm, addr); 1260 do { 1261 next = pgd_addr_end(addr, end); 1262 if (pgd_none_or_clear_bad(pgd)) 1263 continue; 1264 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1265 } while (pgd++, addr = next, addr != end); 1266 tlb_end_vma(tlb, vma); 1267 } 1268 1269 1270 static void unmap_single_vma(struct mmu_gather *tlb, 1271 struct vm_area_struct *vma, unsigned long start_addr, 1272 unsigned long end_addr, 1273 struct zap_details *details) 1274 { 1275 unsigned long start = max(vma->vm_start, start_addr); 1276 unsigned long end; 1277 1278 if (start >= vma->vm_end) 1279 return; 1280 end = min(vma->vm_end, end_addr); 1281 if (end <= vma->vm_start) 1282 return; 1283 1284 if (vma->vm_file) 1285 uprobe_munmap(vma, start, end); 1286 1287 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1288 untrack_pfn(vma, 0, 0); 1289 1290 if (start != end) { 1291 if (unlikely(is_vm_hugetlb_page(vma))) { 1292 /* 1293 * It is undesirable to test vma->vm_file as it 1294 * should be non-null for valid hugetlb area. 1295 * However, vm_file will be NULL in the error 1296 * cleanup path of mmap_region. When 1297 * hugetlbfs ->mmap method fails, 1298 * mmap_region() nullifies vma->vm_file 1299 * before calling this function to clean up. 1300 * Since no pte has actually been setup, it is 1301 * safe to do nothing in this case. 1302 */ 1303 if (vma->vm_file) { 1304 i_mmap_lock_write(vma->vm_file->f_mapping); 1305 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1306 i_mmap_unlock_write(vma->vm_file->f_mapping); 1307 } 1308 } else 1309 unmap_page_range(tlb, vma, start, end, details); 1310 } 1311 } 1312 1313 /** 1314 * unmap_vmas - unmap a range of memory covered by a list of vma's 1315 * @tlb: address of the caller's struct mmu_gather 1316 * @vma: the starting vma 1317 * @start_addr: virtual address at which to start unmapping 1318 * @end_addr: virtual address at which to end unmapping 1319 * 1320 * Unmap all pages in the vma list. 1321 * 1322 * Only addresses between `start' and `end' will be unmapped. 1323 * 1324 * The VMA list must be sorted in ascending virtual address order. 1325 * 1326 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1327 * range after unmap_vmas() returns. So the only responsibility here is to 1328 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1329 * drops the lock and schedules. 1330 */ 1331 void unmap_vmas(struct mmu_gather *tlb, 1332 struct vm_area_struct *vma, unsigned long start_addr, 1333 unsigned long end_addr) 1334 { 1335 struct mm_struct *mm = vma->vm_mm; 1336 1337 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1338 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1339 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1340 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1341 } 1342 1343 /** 1344 * zap_page_range - remove user pages in a given range 1345 * @vma: vm_area_struct holding the applicable pages 1346 * @start: starting address of pages to zap 1347 * @size: number of bytes to zap 1348 * 1349 * Caller must protect the VMA list 1350 */ 1351 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1352 unsigned long size) 1353 { 1354 struct mm_struct *mm = vma->vm_mm; 1355 struct mmu_gather tlb; 1356 unsigned long end = start + size; 1357 1358 lru_add_drain(); 1359 tlb_gather_mmu(&tlb, mm, start, end); 1360 update_hiwater_rss(mm); 1361 mmu_notifier_invalidate_range_start(mm, start, end); 1362 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1363 unmap_single_vma(&tlb, vma, start, end, NULL); 1364 mmu_notifier_invalidate_range_end(mm, start, end); 1365 tlb_finish_mmu(&tlb, start, end); 1366 } 1367 1368 /** 1369 * zap_page_range_single - remove user pages in a given range 1370 * @vma: vm_area_struct holding the applicable pages 1371 * @address: starting address of pages to zap 1372 * @size: number of bytes to zap 1373 * @details: details of shared cache invalidation 1374 * 1375 * The range must fit into one VMA. 1376 */ 1377 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1378 unsigned long size, struct zap_details *details) 1379 { 1380 struct mm_struct *mm = vma->vm_mm; 1381 struct mmu_gather tlb; 1382 unsigned long end = address + size; 1383 1384 lru_add_drain(); 1385 tlb_gather_mmu(&tlb, mm, address, end); 1386 update_hiwater_rss(mm); 1387 mmu_notifier_invalidate_range_start(mm, address, end); 1388 unmap_single_vma(&tlb, vma, address, end, details); 1389 mmu_notifier_invalidate_range_end(mm, address, end); 1390 tlb_finish_mmu(&tlb, address, end); 1391 } 1392 1393 /** 1394 * zap_vma_ptes - remove ptes mapping the vma 1395 * @vma: vm_area_struct holding ptes to be zapped 1396 * @address: starting address of pages to zap 1397 * @size: number of bytes to zap 1398 * 1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1400 * 1401 * The entire address range must be fully contained within the vma. 1402 * 1403 */ 1404 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1405 unsigned long size) 1406 { 1407 if (address < vma->vm_start || address + size > vma->vm_end || 1408 !(vma->vm_flags & VM_PFNMAP)) 1409 return; 1410 1411 zap_page_range_single(vma, address, size, NULL); 1412 } 1413 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1414 1415 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1416 spinlock_t **ptl) 1417 { 1418 pgd_t *pgd; 1419 p4d_t *p4d; 1420 pud_t *pud; 1421 pmd_t *pmd; 1422 1423 pgd = pgd_offset(mm, addr); 1424 p4d = p4d_alloc(mm, pgd, addr); 1425 if (!p4d) 1426 return NULL; 1427 pud = pud_alloc(mm, p4d, addr); 1428 if (!pud) 1429 return NULL; 1430 pmd = pmd_alloc(mm, pud, addr); 1431 if (!pmd) 1432 return NULL; 1433 1434 VM_BUG_ON(pmd_trans_huge(*pmd)); 1435 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1436 } 1437 1438 /* 1439 * This is the old fallback for page remapping. 1440 * 1441 * For historical reasons, it only allows reserved pages. Only 1442 * old drivers should use this, and they needed to mark their 1443 * pages reserved for the old functions anyway. 1444 */ 1445 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1446 struct page *page, pgprot_t prot) 1447 { 1448 struct mm_struct *mm = vma->vm_mm; 1449 int retval; 1450 pte_t *pte; 1451 spinlock_t *ptl; 1452 1453 retval = -EINVAL; 1454 if (PageAnon(page)) 1455 goto out; 1456 retval = -ENOMEM; 1457 flush_dcache_page(page); 1458 pte = get_locked_pte(mm, addr, &ptl); 1459 if (!pte) 1460 goto out; 1461 retval = -EBUSY; 1462 if (!pte_none(*pte)) 1463 goto out_unlock; 1464 1465 /* Ok, finally just insert the thing.. */ 1466 get_page(page); 1467 inc_mm_counter_fast(mm, mm_counter_file(page)); 1468 page_add_file_rmap(page, false); 1469 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1470 1471 retval = 0; 1472 pte_unmap_unlock(pte, ptl); 1473 return retval; 1474 out_unlock: 1475 pte_unmap_unlock(pte, ptl); 1476 out: 1477 return retval; 1478 } 1479 1480 /** 1481 * vm_insert_page - insert single page into user vma 1482 * @vma: user vma to map to 1483 * @addr: target user address of this page 1484 * @page: source kernel page 1485 * 1486 * This allows drivers to insert individual pages they've allocated 1487 * into a user vma. 1488 * 1489 * The page has to be a nice clean _individual_ kernel allocation. 1490 * If you allocate a compound page, you need to have marked it as 1491 * such (__GFP_COMP), or manually just split the page up yourself 1492 * (see split_page()). 1493 * 1494 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1495 * took an arbitrary page protection parameter. This doesn't allow 1496 * that. Your vma protection will have to be set up correctly, which 1497 * means that if you want a shared writable mapping, you'd better 1498 * ask for a shared writable mapping! 1499 * 1500 * The page does not need to be reserved. 1501 * 1502 * Usually this function is called from f_op->mmap() handler 1503 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1504 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1505 * function from other places, for example from page-fault handler. 1506 */ 1507 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1508 struct page *page) 1509 { 1510 if (addr < vma->vm_start || addr >= vma->vm_end) 1511 return -EFAULT; 1512 if (!page_count(page)) 1513 return -EINVAL; 1514 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1515 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1516 BUG_ON(vma->vm_flags & VM_PFNMAP); 1517 vma->vm_flags |= VM_MIXEDMAP; 1518 } 1519 return insert_page(vma, addr, page, vma->vm_page_prot); 1520 } 1521 EXPORT_SYMBOL(vm_insert_page); 1522 1523 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1524 pfn_t pfn, pgprot_t prot, bool mkwrite) 1525 { 1526 struct mm_struct *mm = vma->vm_mm; 1527 pte_t *pte, entry; 1528 spinlock_t *ptl; 1529 1530 pte = get_locked_pte(mm, addr, &ptl); 1531 if (!pte) 1532 return VM_FAULT_OOM; 1533 if (!pte_none(*pte)) { 1534 if (mkwrite) { 1535 /* 1536 * For read faults on private mappings the PFN passed 1537 * in may not match the PFN we have mapped if the 1538 * mapped PFN is a writeable COW page. In the mkwrite 1539 * case we are creating a writable PTE for a shared 1540 * mapping and we expect the PFNs to match. 1541 */ 1542 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn))) 1543 goto out_unlock; 1544 entry = *pte; 1545 goto out_mkwrite; 1546 } else 1547 goto out_unlock; 1548 } 1549 1550 /* Ok, finally just insert the thing.. */ 1551 if (pfn_t_devmap(pfn)) 1552 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1553 else 1554 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1555 1556 out_mkwrite: 1557 if (mkwrite) { 1558 entry = pte_mkyoung(entry); 1559 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1560 } 1561 1562 set_pte_at(mm, addr, pte, entry); 1563 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1564 1565 out_unlock: 1566 pte_unmap_unlock(pte, ptl); 1567 return VM_FAULT_NOPAGE; 1568 } 1569 1570 /** 1571 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1572 * @vma: user vma to map to 1573 * @addr: target user address of this page 1574 * @pfn: source kernel pfn 1575 * @pgprot: pgprot flags for the inserted page 1576 * 1577 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1578 * to override pgprot on a per-page basis. 1579 * 1580 * This only makes sense for IO mappings, and it makes no sense for 1581 * COW mappings. In general, using multiple vmas is preferable; 1582 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1583 * impractical. 1584 * 1585 * Context: Process context. May allocate using %GFP_KERNEL. 1586 * Return: vm_fault_t value. 1587 */ 1588 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1589 unsigned long pfn, pgprot_t pgprot) 1590 { 1591 /* 1592 * Technically, architectures with pte_special can avoid all these 1593 * restrictions (same for remap_pfn_range). However we would like 1594 * consistency in testing and feature parity among all, so we should 1595 * try to keep these invariants in place for everybody. 1596 */ 1597 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1598 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1599 (VM_PFNMAP|VM_MIXEDMAP)); 1600 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1601 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1602 1603 if (addr < vma->vm_start || addr >= vma->vm_end) 1604 return VM_FAULT_SIGBUS; 1605 1606 if (!pfn_modify_allowed(pfn, pgprot)) 1607 return VM_FAULT_SIGBUS; 1608 1609 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1610 1611 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1612 false); 1613 } 1614 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1615 1616 /** 1617 * vmf_insert_pfn - insert single pfn into user vma 1618 * @vma: user vma to map to 1619 * @addr: target user address of this page 1620 * @pfn: source kernel pfn 1621 * 1622 * Similar to vm_insert_page, this allows drivers to insert individual pages 1623 * they've allocated into a user vma. Same comments apply. 1624 * 1625 * This function should only be called from a vm_ops->fault handler, and 1626 * in that case the handler should return the result of this function. 1627 * 1628 * vma cannot be a COW mapping. 1629 * 1630 * As this is called only for pages that do not currently exist, we 1631 * do not need to flush old virtual caches or the TLB. 1632 * 1633 * Context: Process context. May allocate using %GFP_KERNEL. 1634 * Return: vm_fault_t value. 1635 */ 1636 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1637 unsigned long pfn) 1638 { 1639 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1640 } 1641 EXPORT_SYMBOL(vmf_insert_pfn); 1642 1643 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1644 { 1645 /* these checks mirror the abort conditions in vm_normal_page */ 1646 if (vma->vm_flags & VM_MIXEDMAP) 1647 return true; 1648 if (pfn_t_devmap(pfn)) 1649 return true; 1650 if (pfn_t_special(pfn)) 1651 return true; 1652 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1653 return true; 1654 return false; 1655 } 1656 1657 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1658 unsigned long addr, pfn_t pfn, bool mkwrite) 1659 { 1660 pgprot_t pgprot = vma->vm_page_prot; 1661 int err; 1662 1663 BUG_ON(!vm_mixed_ok(vma, pfn)); 1664 1665 if (addr < vma->vm_start || addr >= vma->vm_end) 1666 return VM_FAULT_SIGBUS; 1667 1668 track_pfn_insert(vma, &pgprot, pfn); 1669 1670 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1671 return VM_FAULT_SIGBUS; 1672 1673 /* 1674 * If we don't have pte special, then we have to use the pfn_valid() 1675 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1676 * refcount the page if pfn_valid is true (hence insert_page rather 1677 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1678 * without pte special, it would there be refcounted as a normal page. 1679 */ 1680 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1681 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1682 struct page *page; 1683 1684 /* 1685 * At this point we are committed to insert_page() 1686 * regardless of whether the caller specified flags that 1687 * result in pfn_t_has_page() == false. 1688 */ 1689 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1690 err = insert_page(vma, addr, page, pgprot); 1691 } else { 1692 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1693 } 1694 1695 if (err == -ENOMEM) 1696 return VM_FAULT_OOM; 1697 if (err < 0 && err != -EBUSY) 1698 return VM_FAULT_SIGBUS; 1699 1700 return VM_FAULT_NOPAGE; 1701 } 1702 1703 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1704 pfn_t pfn) 1705 { 1706 return __vm_insert_mixed(vma, addr, pfn, false); 1707 } 1708 EXPORT_SYMBOL(vmf_insert_mixed); 1709 1710 /* 1711 * If the insertion of PTE failed because someone else already added a 1712 * different entry in the mean time, we treat that as success as we assume 1713 * the same entry was actually inserted. 1714 */ 1715 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1716 unsigned long addr, pfn_t pfn) 1717 { 1718 return __vm_insert_mixed(vma, addr, pfn, true); 1719 } 1720 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1721 1722 /* 1723 * maps a range of physical memory into the requested pages. the old 1724 * mappings are removed. any references to nonexistent pages results 1725 * in null mappings (currently treated as "copy-on-access") 1726 */ 1727 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1728 unsigned long addr, unsigned long end, 1729 unsigned long pfn, pgprot_t prot) 1730 { 1731 pte_t *pte; 1732 spinlock_t *ptl; 1733 int err = 0; 1734 1735 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1736 if (!pte) 1737 return -ENOMEM; 1738 arch_enter_lazy_mmu_mode(); 1739 do { 1740 BUG_ON(!pte_none(*pte)); 1741 if (!pfn_modify_allowed(pfn, prot)) { 1742 err = -EACCES; 1743 break; 1744 } 1745 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1746 pfn++; 1747 } while (pte++, addr += PAGE_SIZE, addr != end); 1748 arch_leave_lazy_mmu_mode(); 1749 pte_unmap_unlock(pte - 1, ptl); 1750 return err; 1751 } 1752 1753 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1754 unsigned long addr, unsigned long end, 1755 unsigned long pfn, pgprot_t prot) 1756 { 1757 pmd_t *pmd; 1758 unsigned long next; 1759 int err; 1760 1761 pfn -= addr >> PAGE_SHIFT; 1762 pmd = pmd_alloc(mm, pud, addr); 1763 if (!pmd) 1764 return -ENOMEM; 1765 VM_BUG_ON(pmd_trans_huge(*pmd)); 1766 do { 1767 next = pmd_addr_end(addr, end); 1768 err = remap_pte_range(mm, pmd, addr, next, 1769 pfn + (addr >> PAGE_SHIFT), prot); 1770 if (err) 1771 return err; 1772 } while (pmd++, addr = next, addr != end); 1773 return 0; 1774 } 1775 1776 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1777 unsigned long addr, unsigned long end, 1778 unsigned long pfn, pgprot_t prot) 1779 { 1780 pud_t *pud; 1781 unsigned long next; 1782 int err; 1783 1784 pfn -= addr >> PAGE_SHIFT; 1785 pud = pud_alloc(mm, p4d, addr); 1786 if (!pud) 1787 return -ENOMEM; 1788 do { 1789 next = pud_addr_end(addr, end); 1790 err = remap_pmd_range(mm, pud, addr, next, 1791 pfn + (addr >> PAGE_SHIFT), prot); 1792 if (err) 1793 return err; 1794 } while (pud++, addr = next, addr != end); 1795 return 0; 1796 } 1797 1798 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1799 unsigned long addr, unsigned long end, 1800 unsigned long pfn, pgprot_t prot) 1801 { 1802 p4d_t *p4d; 1803 unsigned long next; 1804 int err; 1805 1806 pfn -= addr >> PAGE_SHIFT; 1807 p4d = p4d_alloc(mm, pgd, addr); 1808 if (!p4d) 1809 return -ENOMEM; 1810 do { 1811 next = p4d_addr_end(addr, end); 1812 err = remap_pud_range(mm, p4d, addr, next, 1813 pfn + (addr >> PAGE_SHIFT), prot); 1814 if (err) 1815 return err; 1816 } while (p4d++, addr = next, addr != end); 1817 return 0; 1818 } 1819 1820 /** 1821 * remap_pfn_range - remap kernel memory to userspace 1822 * @vma: user vma to map to 1823 * @addr: target user address to start at 1824 * @pfn: physical address of kernel memory 1825 * @size: size of map area 1826 * @prot: page protection flags for this mapping 1827 * 1828 * Note: this is only safe if the mm semaphore is held when called. 1829 */ 1830 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1831 unsigned long pfn, unsigned long size, pgprot_t prot) 1832 { 1833 pgd_t *pgd; 1834 unsigned long next; 1835 unsigned long end = addr + PAGE_ALIGN(size); 1836 struct mm_struct *mm = vma->vm_mm; 1837 unsigned long remap_pfn = pfn; 1838 int err; 1839 1840 /* 1841 * Physically remapped pages are special. Tell the 1842 * rest of the world about it: 1843 * VM_IO tells people not to look at these pages 1844 * (accesses can have side effects). 1845 * VM_PFNMAP tells the core MM that the base pages are just 1846 * raw PFN mappings, and do not have a "struct page" associated 1847 * with them. 1848 * VM_DONTEXPAND 1849 * Disable vma merging and expanding with mremap(). 1850 * VM_DONTDUMP 1851 * Omit vma from core dump, even when VM_IO turned off. 1852 * 1853 * There's a horrible special case to handle copy-on-write 1854 * behaviour that some programs depend on. We mark the "original" 1855 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1856 * See vm_normal_page() for details. 1857 */ 1858 if (is_cow_mapping(vma->vm_flags)) { 1859 if (addr != vma->vm_start || end != vma->vm_end) 1860 return -EINVAL; 1861 vma->vm_pgoff = pfn; 1862 } 1863 1864 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1865 if (err) 1866 return -EINVAL; 1867 1868 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1869 1870 BUG_ON(addr >= end); 1871 pfn -= addr >> PAGE_SHIFT; 1872 pgd = pgd_offset(mm, addr); 1873 flush_cache_range(vma, addr, end); 1874 do { 1875 next = pgd_addr_end(addr, end); 1876 err = remap_p4d_range(mm, pgd, addr, next, 1877 pfn + (addr >> PAGE_SHIFT), prot); 1878 if (err) 1879 break; 1880 } while (pgd++, addr = next, addr != end); 1881 1882 if (err) 1883 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1884 1885 return err; 1886 } 1887 EXPORT_SYMBOL(remap_pfn_range); 1888 1889 /** 1890 * vm_iomap_memory - remap memory to userspace 1891 * @vma: user vma to map to 1892 * @start: start of area 1893 * @len: size of area 1894 * 1895 * This is a simplified io_remap_pfn_range() for common driver use. The 1896 * driver just needs to give us the physical memory range to be mapped, 1897 * we'll figure out the rest from the vma information. 1898 * 1899 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1900 * whatever write-combining details or similar. 1901 */ 1902 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1903 { 1904 unsigned long vm_len, pfn, pages; 1905 1906 /* Check that the physical memory area passed in looks valid */ 1907 if (start + len < start) 1908 return -EINVAL; 1909 /* 1910 * You *really* shouldn't map things that aren't page-aligned, 1911 * but we've historically allowed it because IO memory might 1912 * just have smaller alignment. 1913 */ 1914 len += start & ~PAGE_MASK; 1915 pfn = start >> PAGE_SHIFT; 1916 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1917 if (pfn + pages < pfn) 1918 return -EINVAL; 1919 1920 /* We start the mapping 'vm_pgoff' pages into the area */ 1921 if (vma->vm_pgoff > pages) 1922 return -EINVAL; 1923 pfn += vma->vm_pgoff; 1924 pages -= vma->vm_pgoff; 1925 1926 /* Can we fit all of the mapping? */ 1927 vm_len = vma->vm_end - vma->vm_start; 1928 if (vm_len >> PAGE_SHIFT > pages) 1929 return -EINVAL; 1930 1931 /* Ok, let it rip */ 1932 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1933 } 1934 EXPORT_SYMBOL(vm_iomap_memory); 1935 1936 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1937 unsigned long addr, unsigned long end, 1938 pte_fn_t fn, void *data) 1939 { 1940 pte_t *pte; 1941 int err; 1942 pgtable_t token; 1943 spinlock_t *uninitialized_var(ptl); 1944 1945 pte = (mm == &init_mm) ? 1946 pte_alloc_kernel(pmd, addr) : 1947 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1948 if (!pte) 1949 return -ENOMEM; 1950 1951 BUG_ON(pmd_huge(*pmd)); 1952 1953 arch_enter_lazy_mmu_mode(); 1954 1955 token = pmd_pgtable(*pmd); 1956 1957 do { 1958 err = fn(pte++, token, addr, data); 1959 if (err) 1960 break; 1961 } while (addr += PAGE_SIZE, addr != end); 1962 1963 arch_leave_lazy_mmu_mode(); 1964 1965 if (mm != &init_mm) 1966 pte_unmap_unlock(pte-1, ptl); 1967 return err; 1968 } 1969 1970 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1971 unsigned long addr, unsigned long end, 1972 pte_fn_t fn, void *data) 1973 { 1974 pmd_t *pmd; 1975 unsigned long next; 1976 int err; 1977 1978 BUG_ON(pud_huge(*pud)); 1979 1980 pmd = pmd_alloc(mm, pud, addr); 1981 if (!pmd) 1982 return -ENOMEM; 1983 do { 1984 next = pmd_addr_end(addr, end); 1985 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1986 if (err) 1987 break; 1988 } while (pmd++, addr = next, addr != end); 1989 return err; 1990 } 1991 1992 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 1993 unsigned long addr, unsigned long end, 1994 pte_fn_t fn, void *data) 1995 { 1996 pud_t *pud; 1997 unsigned long next; 1998 int err; 1999 2000 pud = pud_alloc(mm, p4d, addr); 2001 if (!pud) 2002 return -ENOMEM; 2003 do { 2004 next = pud_addr_end(addr, end); 2005 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2006 if (err) 2007 break; 2008 } while (pud++, addr = next, addr != end); 2009 return err; 2010 } 2011 2012 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2013 unsigned long addr, unsigned long end, 2014 pte_fn_t fn, void *data) 2015 { 2016 p4d_t *p4d; 2017 unsigned long next; 2018 int err; 2019 2020 p4d = p4d_alloc(mm, pgd, addr); 2021 if (!p4d) 2022 return -ENOMEM; 2023 do { 2024 next = p4d_addr_end(addr, end); 2025 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2026 if (err) 2027 break; 2028 } while (p4d++, addr = next, addr != end); 2029 return err; 2030 } 2031 2032 /* 2033 * Scan a region of virtual memory, filling in page tables as necessary 2034 * and calling a provided function on each leaf page table. 2035 */ 2036 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2037 unsigned long size, pte_fn_t fn, void *data) 2038 { 2039 pgd_t *pgd; 2040 unsigned long next; 2041 unsigned long end = addr + size; 2042 int err; 2043 2044 if (WARN_ON(addr >= end)) 2045 return -EINVAL; 2046 2047 pgd = pgd_offset(mm, addr); 2048 do { 2049 next = pgd_addr_end(addr, end); 2050 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2051 if (err) 2052 break; 2053 } while (pgd++, addr = next, addr != end); 2054 2055 return err; 2056 } 2057 EXPORT_SYMBOL_GPL(apply_to_page_range); 2058 2059 /* 2060 * handle_pte_fault chooses page fault handler according to an entry which was 2061 * read non-atomically. Before making any commitment, on those architectures 2062 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2063 * parts, do_swap_page must check under lock before unmapping the pte and 2064 * proceeding (but do_wp_page is only called after already making such a check; 2065 * and do_anonymous_page can safely check later on). 2066 */ 2067 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2068 pte_t *page_table, pte_t orig_pte) 2069 { 2070 int same = 1; 2071 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2072 if (sizeof(pte_t) > sizeof(unsigned long)) { 2073 spinlock_t *ptl = pte_lockptr(mm, pmd); 2074 spin_lock(ptl); 2075 same = pte_same(*page_table, orig_pte); 2076 spin_unlock(ptl); 2077 } 2078 #endif 2079 pte_unmap(page_table); 2080 return same; 2081 } 2082 2083 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2084 { 2085 debug_dma_assert_idle(src); 2086 2087 /* 2088 * If the source page was a PFN mapping, we don't have 2089 * a "struct page" for it. We do a best-effort copy by 2090 * just copying from the original user address. If that 2091 * fails, we just zero-fill it. Live with it. 2092 */ 2093 if (unlikely(!src)) { 2094 void *kaddr = kmap_atomic(dst); 2095 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2096 2097 /* 2098 * This really shouldn't fail, because the page is there 2099 * in the page tables. But it might just be unreadable, 2100 * in which case we just give up and fill the result with 2101 * zeroes. 2102 */ 2103 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2104 clear_page(kaddr); 2105 kunmap_atomic(kaddr); 2106 flush_dcache_page(dst); 2107 } else 2108 copy_user_highpage(dst, src, va, vma); 2109 } 2110 2111 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2112 { 2113 struct file *vm_file = vma->vm_file; 2114 2115 if (vm_file) 2116 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2117 2118 /* 2119 * Special mappings (e.g. VDSO) do not have any file so fake 2120 * a default GFP_KERNEL for them. 2121 */ 2122 return GFP_KERNEL; 2123 } 2124 2125 /* 2126 * Notify the address space that the page is about to become writable so that 2127 * it can prohibit this or wait for the page to get into an appropriate state. 2128 * 2129 * We do this without the lock held, so that it can sleep if it needs to. 2130 */ 2131 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2132 { 2133 vm_fault_t ret; 2134 struct page *page = vmf->page; 2135 unsigned int old_flags = vmf->flags; 2136 2137 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2138 2139 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2140 /* Restore original flags so that caller is not surprised */ 2141 vmf->flags = old_flags; 2142 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2143 return ret; 2144 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2145 lock_page(page); 2146 if (!page->mapping) { 2147 unlock_page(page); 2148 return 0; /* retry */ 2149 } 2150 ret |= VM_FAULT_LOCKED; 2151 } else 2152 VM_BUG_ON_PAGE(!PageLocked(page), page); 2153 return ret; 2154 } 2155 2156 /* 2157 * Handle dirtying of a page in shared file mapping on a write fault. 2158 * 2159 * The function expects the page to be locked and unlocks it. 2160 */ 2161 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2162 struct page *page) 2163 { 2164 struct address_space *mapping; 2165 bool dirtied; 2166 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2167 2168 dirtied = set_page_dirty(page); 2169 VM_BUG_ON_PAGE(PageAnon(page), page); 2170 /* 2171 * Take a local copy of the address_space - page.mapping may be zeroed 2172 * by truncate after unlock_page(). The address_space itself remains 2173 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2174 * release semantics to prevent the compiler from undoing this copying. 2175 */ 2176 mapping = page_rmapping(page); 2177 unlock_page(page); 2178 2179 if ((dirtied || page_mkwrite) && mapping) { 2180 /* 2181 * Some device drivers do not set page.mapping 2182 * but still dirty their pages 2183 */ 2184 balance_dirty_pages_ratelimited(mapping); 2185 } 2186 2187 if (!page_mkwrite) 2188 file_update_time(vma->vm_file); 2189 } 2190 2191 /* 2192 * Handle write page faults for pages that can be reused in the current vma 2193 * 2194 * This can happen either due to the mapping being with the VM_SHARED flag, 2195 * or due to us being the last reference standing to the page. In either 2196 * case, all we need to do here is to mark the page as writable and update 2197 * any related book-keeping. 2198 */ 2199 static inline void wp_page_reuse(struct vm_fault *vmf) 2200 __releases(vmf->ptl) 2201 { 2202 struct vm_area_struct *vma = vmf->vma; 2203 struct page *page = vmf->page; 2204 pte_t entry; 2205 /* 2206 * Clear the pages cpupid information as the existing 2207 * information potentially belongs to a now completely 2208 * unrelated process. 2209 */ 2210 if (page) 2211 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2212 2213 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2214 entry = pte_mkyoung(vmf->orig_pte); 2215 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2216 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2217 update_mmu_cache(vma, vmf->address, vmf->pte); 2218 pte_unmap_unlock(vmf->pte, vmf->ptl); 2219 } 2220 2221 /* 2222 * Handle the case of a page which we actually need to copy to a new page. 2223 * 2224 * Called with mmap_sem locked and the old page referenced, but 2225 * without the ptl held. 2226 * 2227 * High level logic flow: 2228 * 2229 * - Allocate a page, copy the content of the old page to the new one. 2230 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2231 * - Take the PTL. If the pte changed, bail out and release the allocated page 2232 * - If the pte is still the way we remember it, update the page table and all 2233 * relevant references. This includes dropping the reference the page-table 2234 * held to the old page, as well as updating the rmap. 2235 * - In any case, unlock the PTL and drop the reference we took to the old page. 2236 */ 2237 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2238 { 2239 struct vm_area_struct *vma = vmf->vma; 2240 struct mm_struct *mm = vma->vm_mm; 2241 struct page *old_page = vmf->page; 2242 struct page *new_page = NULL; 2243 pte_t entry; 2244 int page_copied = 0; 2245 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2246 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2247 struct mem_cgroup *memcg; 2248 2249 if (unlikely(anon_vma_prepare(vma))) 2250 goto oom; 2251 2252 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2253 new_page = alloc_zeroed_user_highpage_movable(vma, 2254 vmf->address); 2255 if (!new_page) 2256 goto oom; 2257 } else { 2258 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2259 vmf->address); 2260 if (!new_page) 2261 goto oom; 2262 cow_user_page(new_page, old_page, vmf->address, vma); 2263 } 2264 2265 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2266 goto oom_free_new; 2267 2268 __SetPageUptodate(new_page); 2269 2270 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2271 2272 /* 2273 * Re-check the pte - we dropped the lock 2274 */ 2275 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2276 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2277 if (old_page) { 2278 if (!PageAnon(old_page)) { 2279 dec_mm_counter_fast(mm, 2280 mm_counter_file(old_page)); 2281 inc_mm_counter_fast(mm, MM_ANONPAGES); 2282 } 2283 } else { 2284 inc_mm_counter_fast(mm, MM_ANONPAGES); 2285 } 2286 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2287 entry = mk_pte(new_page, vma->vm_page_prot); 2288 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2289 /* 2290 * Clear the pte entry and flush it first, before updating the 2291 * pte with the new entry. This will avoid a race condition 2292 * seen in the presence of one thread doing SMC and another 2293 * thread doing COW. 2294 */ 2295 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2296 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2297 mem_cgroup_commit_charge(new_page, memcg, false, false); 2298 lru_cache_add_active_or_unevictable(new_page, vma); 2299 /* 2300 * We call the notify macro here because, when using secondary 2301 * mmu page tables (such as kvm shadow page tables), we want the 2302 * new page to be mapped directly into the secondary page table. 2303 */ 2304 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2305 update_mmu_cache(vma, vmf->address, vmf->pte); 2306 if (old_page) { 2307 /* 2308 * Only after switching the pte to the new page may 2309 * we remove the mapcount here. Otherwise another 2310 * process may come and find the rmap count decremented 2311 * before the pte is switched to the new page, and 2312 * "reuse" the old page writing into it while our pte 2313 * here still points into it and can be read by other 2314 * threads. 2315 * 2316 * The critical issue is to order this 2317 * page_remove_rmap with the ptp_clear_flush above. 2318 * Those stores are ordered by (if nothing else,) 2319 * the barrier present in the atomic_add_negative 2320 * in page_remove_rmap. 2321 * 2322 * Then the TLB flush in ptep_clear_flush ensures that 2323 * no process can access the old page before the 2324 * decremented mapcount is visible. And the old page 2325 * cannot be reused until after the decremented 2326 * mapcount is visible. So transitively, TLBs to 2327 * old page will be flushed before it can be reused. 2328 */ 2329 page_remove_rmap(old_page, false); 2330 } 2331 2332 /* Free the old page.. */ 2333 new_page = old_page; 2334 page_copied = 1; 2335 } else { 2336 mem_cgroup_cancel_charge(new_page, memcg, false); 2337 } 2338 2339 if (new_page) 2340 put_page(new_page); 2341 2342 pte_unmap_unlock(vmf->pte, vmf->ptl); 2343 /* 2344 * No need to double call mmu_notifier->invalidate_range() callback as 2345 * the above ptep_clear_flush_notify() did already call it. 2346 */ 2347 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2348 if (old_page) { 2349 /* 2350 * Don't let another task, with possibly unlocked vma, 2351 * keep the mlocked page. 2352 */ 2353 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2354 lock_page(old_page); /* LRU manipulation */ 2355 if (PageMlocked(old_page)) 2356 munlock_vma_page(old_page); 2357 unlock_page(old_page); 2358 } 2359 put_page(old_page); 2360 } 2361 return page_copied ? VM_FAULT_WRITE : 0; 2362 oom_free_new: 2363 put_page(new_page); 2364 oom: 2365 if (old_page) 2366 put_page(old_page); 2367 return VM_FAULT_OOM; 2368 } 2369 2370 /** 2371 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2372 * writeable once the page is prepared 2373 * 2374 * @vmf: structure describing the fault 2375 * 2376 * This function handles all that is needed to finish a write page fault in a 2377 * shared mapping due to PTE being read-only once the mapped page is prepared. 2378 * It handles locking of PTE and modifying it. The function returns 2379 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2380 * lock. 2381 * 2382 * The function expects the page to be locked or other protection against 2383 * concurrent faults / writeback (such as DAX radix tree locks). 2384 */ 2385 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2386 { 2387 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2388 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2389 &vmf->ptl); 2390 /* 2391 * We might have raced with another page fault while we released the 2392 * pte_offset_map_lock. 2393 */ 2394 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2395 pte_unmap_unlock(vmf->pte, vmf->ptl); 2396 return VM_FAULT_NOPAGE; 2397 } 2398 wp_page_reuse(vmf); 2399 return 0; 2400 } 2401 2402 /* 2403 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2404 * mapping 2405 */ 2406 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2407 { 2408 struct vm_area_struct *vma = vmf->vma; 2409 2410 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2411 vm_fault_t ret; 2412 2413 pte_unmap_unlock(vmf->pte, vmf->ptl); 2414 vmf->flags |= FAULT_FLAG_MKWRITE; 2415 ret = vma->vm_ops->pfn_mkwrite(vmf); 2416 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2417 return ret; 2418 return finish_mkwrite_fault(vmf); 2419 } 2420 wp_page_reuse(vmf); 2421 return VM_FAULT_WRITE; 2422 } 2423 2424 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2425 __releases(vmf->ptl) 2426 { 2427 struct vm_area_struct *vma = vmf->vma; 2428 2429 get_page(vmf->page); 2430 2431 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2432 vm_fault_t tmp; 2433 2434 pte_unmap_unlock(vmf->pte, vmf->ptl); 2435 tmp = do_page_mkwrite(vmf); 2436 if (unlikely(!tmp || (tmp & 2437 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2438 put_page(vmf->page); 2439 return tmp; 2440 } 2441 tmp = finish_mkwrite_fault(vmf); 2442 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2443 unlock_page(vmf->page); 2444 put_page(vmf->page); 2445 return tmp; 2446 } 2447 } else { 2448 wp_page_reuse(vmf); 2449 lock_page(vmf->page); 2450 } 2451 fault_dirty_shared_page(vma, vmf->page); 2452 put_page(vmf->page); 2453 2454 return VM_FAULT_WRITE; 2455 } 2456 2457 /* 2458 * This routine handles present pages, when users try to write 2459 * to a shared page. It is done by copying the page to a new address 2460 * and decrementing the shared-page counter for the old page. 2461 * 2462 * Note that this routine assumes that the protection checks have been 2463 * done by the caller (the low-level page fault routine in most cases). 2464 * Thus we can safely just mark it writable once we've done any necessary 2465 * COW. 2466 * 2467 * We also mark the page dirty at this point even though the page will 2468 * change only once the write actually happens. This avoids a few races, 2469 * and potentially makes it more efficient. 2470 * 2471 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2472 * but allow concurrent faults), with pte both mapped and locked. 2473 * We return with mmap_sem still held, but pte unmapped and unlocked. 2474 */ 2475 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2476 __releases(vmf->ptl) 2477 { 2478 struct vm_area_struct *vma = vmf->vma; 2479 2480 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2481 if (!vmf->page) { 2482 /* 2483 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2484 * VM_PFNMAP VMA. 2485 * 2486 * We should not cow pages in a shared writeable mapping. 2487 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2488 */ 2489 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2490 (VM_WRITE|VM_SHARED)) 2491 return wp_pfn_shared(vmf); 2492 2493 pte_unmap_unlock(vmf->pte, vmf->ptl); 2494 return wp_page_copy(vmf); 2495 } 2496 2497 /* 2498 * Take out anonymous pages first, anonymous shared vmas are 2499 * not dirty accountable. 2500 */ 2501 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2502 int total_map_swapcount; 2503 if (!trylock_page(vmf->page)) { 2504 get_page(vmf->page); 2505 pte_unmap_unlock(vmf->pte, vmf->ptl); 2506 lock_page(vmf->page); 2507 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2508 vmf->address, &vmf->ptl); 2509 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2510 unlock_page(vmf->page); 2511 pte_unmap_unlock(vmf->pte, vmf->ptl); 2512 put_page(vmf->page); 2513 return 0; 2514 } 2515 put_page(vmf->page); 2516 } 2517 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2518 if (total_map_swapcount == 1) { 2519 /* 2520 * The page is all ours. Move it to 2521 * our anon_vma so the rmap code will 2522 * not search our parent or siblings. 2523 * Protected against the rmap code by 2524 * the page lock. 2525 */ 2526 page_move_anon_rmap(vmf->page, vma); 2527 } 2528 unlock_page(vmf->page); 2529 wp_page_reuse(vmf); 2530 return VM_FAULT_WRITE; 2531 } 2532 unlock_page(vmf->page); 2533 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2534 (VM_WRITE|VM_SHARED))) { 2535 return wp_page_shared(vmf); 2536 } 2537 2538 /* 2539 * Ok, we need to copy. Oh, well.. 2540 */ 2541 get_page(vmf->page); 2542 2543 pte_unmap_unlock(vmf->pte, vmf->ptl); 2544 return wp_page_copy(vmf); 2545 } 2546 2547 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2548 unsigned long start_addr, unsigned long end_addr, 2549 struct zap_details *details) 2550 { 2551 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2552 } 2553 2554 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2555 struct zap_details *details) 2556 { 2557 struct vm_area_struct *vma; 2558 pgoff_t vba, vea, zba, zea; 2559 2560 vma_interval_tree_foreach(vma, root, 2561 details->first_index, details->last_index) { 2562 2563 vba = vma->vm_pgoff; 2564 vea = vba + vma_pages(vma) - 1; 2565 zba = details->first_index; 2566 if (zba < vba) 2567 zba = vba; 2568 zea = details->last_index; 2569 if (zea > vea) 2570 zea = vea; 2571 2572 unmap_mapping_range_vma(vma, 2573 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2574 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2575 details); 2576 } 2577 } 2578 2579 /** 2580 * unmap_mapping_pages() - Unmap pages from processes. 2581 * @mapping: The address space containing pages to be unmapped. 2582 * @start: Index of first page to be unmapped. 2583 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2584 * @even_cows: Whether to unmap even private COWed pages. 2585 * 2586 * Unmap the pages in this address space from any userspace process which 2587 * has them mmaped. Generally, you want to remove COWed pages as well when 2588 * a file is being truncated, but not when invalidating pages from the page 2589 * cache. 2590 */ 2591 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2592 pgoff_t nr, bool even_cows) 2593 { 2594 struct zap_details details = { }; 2595 2596 details.check_mapping = even_cows ? NULL : mapping; 2597 details.first_index = start; 2598 details.last_index = start + nr - 1; 2599 if (details.last_index < details.first_index) 2600 details.last_index = ULONG_MAX; 2601 2602 i_mmap_lock_write(mapping); 2603 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2604 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2605 i_mmap_unlock_write(mapping); 2606 } 2607 2608 /** 2609 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2610 * address_space corresponding to the specified byte range in the underlying 2611 * file. 2612 * 2613 * @mapping: the address space containing mmaps to be unmapped. 2614 * @holebegin: byte in first page to unmap, relative to the start of 2615 * the underlying file. This will be rounded down to a PAGE_SIZE 2616 * boundary. Note that this is different from truncate_pagecache(), which 2617 * must keep the partial page. In contrast, we must get rid of 2618 * partial pages. 2619 * @holelen: size of prospective hole in bytes. This will be rounded 2620 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2621 * end of the file. 2622 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2623 * but 0 when invalidating pagecache, don't throw away private data. 2624 */ 2625 void unmap_mapping_range(struct address_space *mapping, 2626 loff_t const holebegin, loff_t const holelen, int even_cows) 2627 { 2628 pgoff_t hba = holebegin >> PAGE_SHIFT; 2629 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2630 2631 /* Check for overflow. */ 2632 if (sizeof(holelen) > sizeof(hlen)) { 2633 long long holeend = 2634 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2635 if (holeend & ~(long long)ULONG_MAX) 2636 hlen = ULONG_MAX - hba + 1; 2637 } 2638 2639 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2640 } 2641 EXPORT_SYMBOL(unmap_mapping_range); 2642 2643 /* 2644 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2645 * but allow concurrent faults), and pte mapped but not yet locked. 2646 * We return with pte unmapped and unlocked. 2647 * 2648 * We return with the mmap_sem locked or unlocked in the same cases 2649 * as does filemap_fault(). 2650 */ 2651 vm_fault_t do_swap_page(struct vm_fault *vmf) 2652 { 2653 struct vm_area_struct *vma = vmf->vma; 2654 struct page *page = NULL, *swapcache; 2655 struct mem_cgroup *memcg; 2656 swp_entry_t entry; 2657 pte_t pte; 2658 int locked; 2659 int exclusive = 0; 2660 vm_fault_t ret = 0; 2661 2662 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2663 goto out; 2664 2665 entry = pte_to_swp_entry(vmf->orig_pte); 2666 if (unlikely(non_swap_entry(entry))) { 2667 if (is_migration_entry(entry)) { 2668 migration_entry_wait(vma->vm_mm, vmf->pmd, 2669 vmf->address); 2670 } else if (is_device_private_entry(entry)) { 2671 /* 2672 * For un-addressable device memory we call the pgmap 2673 * fault handler callback. The callback must migrate 2674 * the page back to some CPU accessible page. 2675 */ 2676 ret = device_private_entry_fault(vma, vmf->address, entry, 2677 vmf->flags, vmf->pmd); 2678 } else if (is_hwpoison_entry(entry)) { 2679 ret = VM_FAULT_HWPOISON; 2680 } else { 2681 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2682 ret = VM_FAULT_SIGBUS; 2683 } 2684 goto out; 2685 } 2686 2687 2688 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2689 page = lookup_swap_cache(entry, vma, vmf->address); 2690 swapcache = page; 2691 2692 if (!page) { 2693 struct swap_info_struct *si = swp_swap_info(entry); 2694 2695 if (si->flags & SWP_SYNCHRONOUS_IO && 2696 __swap_count(si, entry) == 1) { 2697 /* skip swapcache */ 2698 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2699 vmf->address); 2700 if (page) { 2701 __SetPageLocked(page); 2702 __SetPageSwapBacked(page); 2703 set_page_private(page, entry.val); 2704 lru_cache_add_anon(page); 2705 swap_readpage(page, true); 2706 } 2707 } else { 2708 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2709 vmf); 2710 swapcache = page; 2711 } 2712 2713 if (!page) { 2714 /* 2715 * Back out if somebody else faulted in this pte 2716 * while we released the pte lock. 2717 */ 2718 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2719 vmf->address, &vmf->ptl); 2720 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2721 ret = VM_FAULT_OOM; 2722 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2723 goto unlock; 2724 } 2725 2726 /* Had to read the page from swap area: Major fault */ 2727 ret = VM_FAULT_MAJOR; 2728 count_vm_event(PGMAJFAULT); 2729 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2730 } else if (PageHWPoison(page)) { 2731 /* 2732 * hwpoisoned dirty swapcache pages are kept for killing 2733 * owner processes (which may be unknown at hwpoison time) 2734 */ 2735 ret = VM_FAULT_HWPOISON; 2736 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2737 goto out_release; 2738 } 2739 2740 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2741 2742 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2743 if (!locked) { 2744 ret |= VM_FAULT_RETRY; 2745 goto out_release; 2746 } 2747 2748 /* 2749 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2750 * release the swapcache from under us. The page pin, and pte_same 2751 * test below, are not enough to exclude that. Even if it is still 2752 * swapcache, we need to check that the page's swap has not changed. 2753 */ 2754 if (unlikely((!PageSwapCache(page) || 2755 page_private(page) != entry.val)) && swapcache) 2756 goto out_page; 2757 2758 page = ksm_might_need_to_copy(page, vma, vmf->address); 2759 if (unlikely(!page)) { 2760 ret = VM_FAULT_OOM; 2761 page = swapcache; 2762 goto out_page; 2763 } 2764 2765 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 2766 &memcg, false)) { 2767 ret = VM_FAULT_OOM; 2768 goto out_page; 2769 } 2770 2771 /* 2772 * Back out if somebody else already faulted in this pte. 2773 */ 2774 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2775 &vmf->ptl); 2776 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2777 goto out_nomap; 2778 2779 if (unlikely(!PageUptodate(page))) { 2780 ret = VM_FAULT_SIGBUS; 2781 goto out_nomap; 2782 } 2783 2784 /* 2785 * The page isn't present yet, go ahead with the fault. 2786 * 2787 * Be careful about the sequence of operations here. 2788 * To get its accounting right, reuse_swap_page() must be called 2789 * while the page is counted on swap but not yet in mapcount i.e. 2790 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2791 * must be called after the swap_free(), or it will never succeed. 2792 */ 2793 2794 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2795 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2796 pte = mk_pte(page, vma->vm_page_prot); 2797 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2798 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2799 vmf->flags &= ~FAULT_FLAG_WRITE; 2800 ret |= VM_FAULT_WRITE; 2801 exclusive = RMAP_EXCLUSIVE; 2802 } 2803 flush_icache_page(vma, page); 2804 if (pte_swp_soft_dirty(vmf->orig_pte)) 2805 pte = pte_mksoft_dirty(pte); 2806 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2807 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 2808 vmf->orig_pte = pte; 2809 2810 /* ksm created a completely new copy */ 2811 if (unlikely(page != swapcache && swapcache)) { 2812 page_add_new_anon_rmap(page, vma, vmf->address, false); 2813 mem_cgroup_commit_charge(page, memcg, false, false); 2814 lru_cache_add_active_or_unevictable(page, vma); 2815 } else { 2816 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2817 mem_cgroup_commit_charge(page, memcg, true, false); 2818 activate_page(page); 2819 } 2820 2821 swap_free(entry); 2822 if (mem_cgroup_swap_full(page) || 2823 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2824 try_to_free_swap(page); 2825 unlock_page(page); 2826 if (page != swapcache && swapcache) { 2827 /* 2828 * Hold the lock to avoid the swap entry to be reused 2829 * until we take the PT lock for the pte_same() check 2830 * (to avoid false positives from pte_same). For 2831 * further safety release the lock after the swap_free 2832 * so that the swap count won't change under a 2833 * parallel locked swapcache. 2834 */ 2835 unlock_page(swapcache); 2836 put_page(swapcache); 2837 } 2838 2839 if (vmf->flags & FAULT_FLAG_WRITE) { 2840 ret |= do_wp_page(vmf); 2841 if (ret & VM_FAULT_ERROR) 2842 ret &= VM_FAULT_ERROR; 2843 goto out; 2844 } 2845 2846 /* No need to invalidate - it was non-present before */ 2847 update_mmu_cache(vma, vmf->address, vmf->pte); 2848 unlock: 2849 pte_unmap_unlock(vmf->pte, vmf->ptl); 2850 out: 2851 return ret; 2852 out_nomap: 2853 mem_cgroup_cancel_charge(page, memcg, false); 2854 pte_unmap_unlock(vmf->pte, vmf->ptl); 2855 out_page: 2856 unlock_page(page); 2857 out_release: 2858 put_page(page); 2859 if (page != swapcache && swapcache) { 2860 unlock_page(swapcache); 2861 put_page(swapcache); 2862 } 2863 return ret; 2864 } 2865 2866 /* 2867 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2868 * but allow concurrent faults), and pte mapped but not yet locked. 2869 * We return with mmap_sem still held, but pte unmapped and unlocked. 2870 */ 2871 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 2872 { 2873 struct vm_area_struct *vma = vmf->vma; 2874 struct mem_cgroup *memcg; 2875 struct page *page; 2876 vm_fault_t ret = 0; 2877 pte_t entry; 2878 2879 /* File mapping without ->vm_ops ? */ 2880 if (vma->vm_flags & VM_SHARED) 2881 return VM_FAULT_SIGBUS; 2882 2883 /* 2884 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2885 * pte_offset_map() on pmds where a huge pmd might be created 2886 * from a different thread. 2887 * 2888 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2889 * parallel threads are excluded by other means. 2890 * 2891 * Here we only have down_read(mmap_sem). 2892 */ 2893 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 2894 return VM_FAULT_OOM; 2895 2896 /* See the comment in pte_alloc_one_map() */ 2897 if (unlikely(pmd_trans_unstable(vmf->pmd))) 2898 return 0; 2899 2900 /* Use the zero-page for reads */ 2901 if (!(vmf->flags & FAULT_FLAG_WRITE) && 2902 !mm_forbids_zeropage(vma->vm_mm)) { 2903 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 2904 vma->vm_page_prot)); 2905 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2906 vmf->address, &vmf->ptl); 2907 if (!pte_none(*vmf->pte)) 2908 goto unlock; 2909 ret = check_stable_address_space(vma->vm_mm); 2910 if (ret) 2911 goto unlock; 2912 /* Deliver the page fault to userland, check inside PT lock */ 2913 if (userfaultfd_missing(vma)) { 2914 pte_unmap_unlock(vmf->pte, vmf->ptl); 2915 return handle_userfault(vmf, VM_UFFD_MISSING); 2916 } 2917 goto setpte; 2918 } 2919 2920 /* Allocate our own private page. */ 2921 if (unlikely(anon_vma_prepare(vma))) 2922 goto oom; 2923 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 2924 if (!page) 2925 goto oom; 2926 2927 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 2928 false)) 2929 goto oom_free_page; 2930 2931 /* 2932 * The memory barrier inside __SetPageUptodate makes sure that 2933 * preceeding stores to the page contents become visible before 2934 * the set_pte_at() write. 2935 */ 2936 __SetPageUptodate(page); 2937 2938 entry = mk_pte(page, vma->vm_page_prot); 2939 if (vma->vm_flags & VM_WRITE) 2940 entry = pte_mkwrite(pte_mkdirty(entry)); 2941 2942 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2943 &vmf->ptl); 2944 if (!pte_none(*vmf->pte)) 2945 goto release; 2946 2947 ret = check_stable_address_space(vma->vm_mm); 2948 if (ret) 2949 goto release; 2950 2951 /* Deliver the page fault to userland, check inside PT lock */ 2952 if (userfaultfd_missing(vma)) { 2953 pte_unmap_unlock(vmf->pte, vmf->ptl); 2954 mem_cgroup_cancel_charge(page, memcg, false); 2955 put_page(page); 2956 return handle_userfault(vmf, VM_UFFD_MISSING); 2957 } 2958 2959 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2960 page_add_new_anon_rmap(page, vma, vmf->address, false); 2961 mem_cgroup_commit_charge(page, memcg, false, false); 2962 lru_cache_add_active_or_unevictable(page, vma); 2963 setpte: 2964 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 2965 2966 /* No need to invalidate - it was non-present before */ 2967 update_mmu_cache(vma, vmf->address, vmf->pte); 2968 unlock: 2969 pte_unmap_unlock(vmf->pte, vmf->ptl); 2970 return ret; 2971 release: 2972 mem_cgroup_cancel_charge(page, memcg, false); 2973 put_page(page); 2974 goto unlock; 2975 oom_free_page: 2976 put_page(page); 2977 oom: 2978 return VM_FAULT_OOM; 2979 } 2980 2981 /* 2982 * The mmap_sem must have been held on entry, and may have been 2983 * released depending on flags and vma->vm_ops->fault() return value. 2984 * See filemap_fault() and __lock_page_retry(). 2985 */ 2986 static vm_fault_t __do_fault(struct vm_fault *vmf) 2987 { 2988 struct vm_area_struct *vma = vmf->vma; 2989 vm_fault_t ret; 2990 2991 ret = vma->vm_ops->fault(vmf); 2992 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 2993 VM_FAULT_DONE_COW))) 2994 return ret; 2995 2996 if (unlikely(PageHWPoison(vmf->page))) { 2997 if (ret & VM_FAULT_LOCKED) 2998 unlock_page(vmf->page); 2999 put_page(vmf->page); 3000 vmf->page = NULL; 3001 return VM_FAULT_HWPOISON; 3002 } 3003 3004 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3005 lock_page(vmf->page); 3006 else 3007 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3008 3009 return ret; 3010 } 3011 3012 /* 3013 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3014 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3015 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3016 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3017 */ 3018 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3019 { 3020 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3021 } 3022 3023 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3024 { 3025 struct vm_area_struct *vma = vmf->vma; 3026 3027 if (!pmd_none(*vmf->pmd)) 3028 goto map_pte; 3029 if (vmf->prealloc_pte) { 3030 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3031 if (unlikely(!pmd_none(*vmf->pmd))) { 3032 spin_unlock(vmf->ptl); 3033 goto map_pte; 3034 } 3035 3036 mm_inc_nr_ptes(vma->vm_mm); 3037 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3038 spin_unlock(vmf->ptl); 3039 vmf->prealloc_pte = NULL; 3040 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 3041 return VM_FAULT_OOM; 3042 } 3043 map_pte: 3044 /* 3045 * If a huge pmd materialized under us just retry later. Use 3046 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3047 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3048 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3049 * running immediately after a huge pmd fault in a different thread of 3050 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3051 * All we have to ensure is that it is a regular pmd that we can walk 3052 * with pte_offset_map() and we can do that through an atomic read in 3053 * C, which is what pmd_trans_unstable() provides. 3054 */ 3055 if (pmd_devmap_trans_unstable(vmf->pmd)) 3056 return VM_FAULT_NOPAGE; 3057 3058 /* 3059 * At this point we know that our vmf->pmd points to a page of ptes 3060 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3061 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3062 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3063 * be valid and we will re-check to make sure the vmf->pte isn't 3064 * pte_none() under vmf->ptl protection when we return to 3065 * alloc_set_pte(). 3066 */ 3067 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3068 &vmf->ptl); 3069 return 0; 3070 } 3071 3072 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3073 3074 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3075 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3076 unsigned long haddr) 3077 { 3078 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3079 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3080 return false; 3081 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3082 return false; 3083 return true; 3084 } 3085 3086 static void deposit_prealloc_pte(struct vm_fault *vmf) 3087 { 3088 struct vm_area_struct *vma = vmf->vma; 3089 3090 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3091 /* 3092 * We are going to consume the prealloc table, 3093 * count that as nr_ptes. 3094 */ 3095 mm_inc_nr_ptes(vma->vm_mm); 3096 vmf->prealloc_pte = NULL; 3097 } 3098 3099 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3100 { 3101 struct vm_area_struct *vma = vmf->vma; 3102 bool write = vmf->flags & FAULT_FLAG_WRITE; 3103 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3104 pmd_t entry; 3105 int i; 3106 vm_fault_t ret; 3107 3108 if (!transhuge_vma_suitable(vma, haddr)) 3109 return VM_FAULT_FALLBACK; 3110 3111 ret = VM_FAULT_FALLBACK; 3112 page = compound_head(page); 3113 3114 /* 3115 * Archs like ppc64 need additonal space to store information 3116 * related to pte entry. Use the preallocated table for that. 3117 */ 3118 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3119 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 3120 if (!vmf->prealloc_pte) 3121 return VM_FAULT_OOM; 3122 smp_wmb(); /* See comment in __pte_alloc() */ 3123 } 3124 3125 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3126 if (unlikely(!pmd_none(*vmf->pmd))) 3127 goto out; 3128 3129 for (i = 0; i < HPAGE_PMD_NR; i++) 3130 flush_icache_page(vma, page + i); 3131 3132 entry = mk_huge_pmd(page, vma->vm_page_prot); 3133 if (write) 3134 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3135 3136 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3137 page_add_file_rmap(page, true); 3138 /* 3139 * deposit and withdraw with pmd lock held 3140 */ 3141 if (arch_needs_pgtable_deposit()) 3142 deposit_prealloc_pte(vmf); 3143 3144 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3145 3146 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3147 3148 /* fault is handled */ 3149 ret = 0; 3150 count_vm_event(THP_FILE_MAPPED); 3151 out: 3152 spin_unlock(vmf->ptl); 3153 return ret; 3154 } 3155 #else 3156 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3157 { 3158 BUILD_BUG(); 3159 return 0; 3160 } 3161 #endif 3162 3163 /** 3164 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3165 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3166 * 3167 * @vmf: fault environment 3168 * @memcg: memcg to charge page (only for private mappings) 3169 * @page: page to map 3170 * 3171 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3172 * return. 3173 * 3174 * Target users are page handler itself and implementations of 3175 * vm_ops->map_pages. 3176 */ 3177 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3178 struct page *page) 3179 { 3180 struct vm_area_struct *vma = vmf->vma; 3181 bool write = vmf->flags & FAULT_FLAG_WRITE; 3182 pte_t entry; 3183 vm_fault_t ret; 3184 3185 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3186 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3187 /* THP on COW? */ 3188 VM_BUG_ON_PAGE(memcg, page); 3189 3190 ret = do_set_pmd(vmf, page); 3191 if (ret != VM_FAULT_FALLBACK) 3192 return ret; 3193 } 3194 3195 if (!vmf->pte) { 3196 ret = pte_alloc_one_map(vmf); 3197 if (ret) 3198 return ret; 3199 } 3200 3201 /* Re-check under ptl */ 3202 if (unlikely(!pte_none(*vmf->pte))) 3203 return VM_FAULT_NOPAGE; 3204 3205 flush_icache_page(vma, page); 3206 entry = mk_pte(page, vma->vm_page_prot); 3207 if (write) 3208 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3209 /* copy-on-write page */ 3210 if (write && !(vma->vm_flags & VM_SHARED)) { 3211 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3212 page_add_new_anon_rmap(page, vma, vmf->address, false); 3213 mem_cgroup_commit_charge(page, memcg, false, false); 3214 lru_cache_add_active_or_unevictable(page, vma); 3215 } else { 3216 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3217 page_add_file_rmap(page, false); 3218 } 3219 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3220 3221 /* no need to invalidate: a not-present page won't be cached */ 3222 update_mmu_cache(vma, vmf->address, vmf->pte); 3223 3224 return 0; 3225 } 3226 3227 3228 /** 3229 * finish_fault - finish page fault once we have prepared the page to fault 3230 * 3231 * @vmf: structure describing the fault 3232 * 3233 * This function handles all that is needed to finish a page fault once the 3234 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3235 * given page, adds reverse page mapping, handles memcg charges and LRU 3236 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3237 * error. 3238 * 3239 * The function expects the page to be locked and on success it consumes a 3240 * reference of a page being mapped (for the PTE which maps it). 3241 */ 3242 vm_fault_t finish_fault(struct vm_fault *vmf) 3243 { 3244 struct page *page; 3245 vm_fault_t ret = 0; 3246 3247 /* Did we COW the page? */ 3248 if ((vmf->flags & FAULT_FLAG_WRITE) && 3249 !(vmf->vma->vm_flags & VM_SHARED)) 3250 page = vmf->cow_page; 3251 else 3252 page = vmf->page; 3253 3254 /* 3255 * check even for read faults because we might have lost our CoWed 3256 * page 3257 */ 3258 if (!(vmf->vma->vm_flags & VM_SHARED)) 3259 ret = check_stable_address_space(vmf->vma->vm_mm); 3260 if (!ret) 3261 ret = alloc_set_pte(vmf, vmf->memcg, page); 3262 if (vmf->pte) 3263 pte_unmap_unlock(vmf->pte, vmf->ptl); 3264 return ret; 3265 } 3266 3267 static unsigned long fault_around_bytes __read_mostly = 3268 rounddown_pow_of_two(65536); 3269 3270 #ifdef CONFIG_DEBUG_FS 3271 static int fault_around_bytes_get(void *data, u64 *val) 3272 { 3273 *val = fault_around_bytes; 3274 return 0; 3275 } 3276 3277 /* 3278 * fault_around_bytes must be rounded down to the nearest page order as it's 3279 * what do_fault_around() expects to see. 3280 */ 3281 static int fault_around_bytes_set(void *data, u64 val) 3282 { 3283 if (val / PAGE_SIZE > PTRS_PER_PTE) 3284 return -EINVAL; 3285 if (val > PAGE_SIZE) 3286 fault_around_bytes = rounddown_pow_of_two(val); 3287 else 3288 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3289 return 0; 3290 } 3291 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3292 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3293 3294 static int __init fault_around_debugfs(void) 3295 { 3296 void *ret; 3297 3298 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3299 &fault_around_bytes_fops); 3300 if (!ret) 3301 pr_warn("Failed to create fault_around_bytes in debugfs"); 3302 return 0; 3303 } 3304 late_initcall(fault_around_debugfs); 3305 #endif 3306 3307 /* 3308 * do_fault_around() tries to map few pages around the fault address. The hope 3309 * is that the pages will be needed soon and this will lower the number of 3310 * faults to handle. 3311 * 3312 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3313 * not ready to be mapped: not up-to-date, locked, etc. 3314 * 3315 * This function is called with the page table lock taken. In the split ptlock 3316 * case the page table lock only protects only those entries which belong to 3317 * the page table corresponding to the fault address. 3318 * 3319 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3320 * only once. 3321 * 3322 * fault_around_bytes defines how many bytes we'll try to map. 3323 * do_fault_around() expects it to be set to a power of two less than or equal 3324 * to PTRS_PER_PTE. 3325 * 3326 * The virtual address of the area that we map is naturally aligned to 3327 * fault_around_bytes rounded down to the machine page size 3328 * (and therefore to page order). This way it's easier to guarantee 3329 * that we don't cross page table boundaries. 3330 */ 3331 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3332 { 3333 unsigned long address = vmf->address, nr_pages, mask; 3334 pgoff_t start_pgoff = vmf->pgoff; 3335 pgoff_t end_pgoff; 3336 int off; 3337 vm_fault_t ret = 0; 3338 3339 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3340 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3341 3342 vmf->address = max(address & mask, vmf->vma->vm_start); 3343 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3344 start_pgoff -= off; 3345 3346 /* 3347 * end_pgoff is either the end of the page table, the end of 3348 * the vma or nr_pages from start_pgoff, depending what is nearest. 3349 */ 3350 end_pgoff = start_pgoff - 3351 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3352 PTRS_PER_PTE - 1; 3353 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3354 start_pgoff + nr_pages - 1); 3355 3356 if (pmd_none(*vmf->pmd)) { 3357 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3358 vmf->address); 3359 if (!vmf->prealloc_pte) 3360 goto out; 3361 smp_wmb(); /* See comment in __pte_alloc() */ 3362 } 3363 3364 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3365 3366 /* Huge page is mapped? Page fault is solved */ 3367 if (pmd_trans_huge(*vmf->pmd)) { 3368 ret = VM_FAULT_NOPAGE; 3369 goto out; 3370 } 3371 3372 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3373 if (!vmf->pte) 3374 goto out; 3375 3376 /* check if the page fault is solved */ 3377 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3378 if (!pte_none(*vmf->pte)) 3379 ret = VM_FAULT_NOPAGE; 3380 pte_unmap_unlock(vmf->pte, vmf->ptl); 3381 out: 3382 vmf->address = address; 3383 vmf->pte = NULL; 3384 return ret; 3385 } 3386 3387 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3388 { 3389 struct vm_area_struct *vma = vmf->vma; 3390 vm_fault_t ret = 0; 3391 3392 /* 3393 * Let's call ->map_pages() first and use ->fault() as fallback 3394 * if page by the offset is not ready to be mapped (cold cache or 3395 * something). 3396 */ 3397 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3398 ret = do_fault_around(vmf); 3399 if (ret) 3400 return ret; 3401 } 3402 3403 ret = __do_fault(vmf); 3404 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3405 return ret; 3406 3407 ret |= finish_fault(vmf); 3408 unlock_page(vmf->page); 3409 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3410 put_page(vmf->page); 3411 return ret; 3412 } 3413 3414 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3415 { 3416 struct vm_area_struct *vma = vmf->vma; 3417 vm_fault_t ret; 3418 3419 if (unlikely(anon_vma_prepare(vma))) 3420 return VM_FAULT_OOM; 3421 3422 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3423 if (!vmf->cow_page) 3424 return VM_FAULT_OOM; 3425 3426 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3427 &vmf->memcg, false)) { 3428 put_page(vmf->cow_page); 3429 return VM_FAULT_OOM; 3430 } 3431 3432 ret = __do_fault(vmf); 3433 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3434 goto uncharge_out; 3435 if (ret & VM_FAULT_DONE_COW) 3436 return ret; 3437 3438 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3439 __SetPageUptodate(vmf->cow_page); 3440 3441 ret |= finish_fault(vmf); 3442 unlock_page(vmf->page); 3443 put_page(vmf->page); 3444 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3445 goto uncharge_out; 3446 return ret; 3447 uncharge_out: 3448 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3449 put_page(vmf->cow_page); 3450 return ret; 3451 } 3452 3453 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3454 { 3455 struct vm_area_struct *vma = vmf->vma; 3456 vm_fault_t ret, tmp; 3457 3458 ret = __do_fault(vmf); 3459 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3460 return ret; 3461 3462 /* 3463 * Check if the backing address space wants to know that the page is 3464 * about to become writable 3465 */ 3466 if (vma->vm_ops->page_mkwrite) { 3467 unlock_page(vmf->page); 3468 tmp = do_page_mkwrite(vmf); 3469 if (unlikely(!tmp || 3470 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3471 put_page(vmf->page); 3472 return tmp; 3473 } 3474 } 3475 3476 ret |= finish_fault(vmf); 3477 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3478 VM_FAULT_RETRY))) { 3479 unlock_page(vmf->page); 3480 put_page(vmf->page); 3481 return ret; 3482 } 3483 3484 fault_dirty_shared_page(vma, vmf->page); 3485 return ret; 3486 } 3487 3488 /* 3489 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3490 * but allow concurrent faults). 3491 * The mmap_sem may have been released depending on flags and our 3492 * return value. See filemap_fault() and __lock_page_or_retry(). 3493 */ 3494 static vm_fault_t do_fault(struct vm_fault *vmf) 3495 { 3496 struct vm_area_struct *vma = vmf->vma; 3497 vm_fault_t ret; 3498 3499 /* 3500 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3501 */ 3502 if (!vma->vm_ops->fault) { 3503 /* 3504 * If we find a migration pmd entry or a none pmd entry, which 3505 * should never happen, return SIGBUS 3506 */ 3507 if (unlikely(!pmd_present(*vmf->pmd))) 3508 ret = VM_FAULT_SIGBUS; 3509 else { 3510 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3511 vmf->pmd, 3512 vmf->address, 3513 &vmf->ptl); 3514 /* 3515 * Make sure this is not a temporary clearing of pte 3516 * by holding ptl and checking again. A R/M/W update 3517 * of pte involves: take ptl, clearing the pte so that 3518 * we don't have concurrent modification by hardware 3519 * followed by an update. 3520 */ 3521 if (unlikely(pte_none(*vmf->pte))) 3522 ret = VM_FAULT_SIGBUS; 3523 else 3524 ret = VM_FAULT_NOPAGE; 3525 3526 pte_unmap_unlock(vmf->pte, vmf->ptl); 3527 } 3528 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3529 ret = do_read_fault(vmf); 3530 else if (!(vma->vm_flags & VM_SHARED)) 3531 ret = do_cow_fault(vmf); 3532 else 3533 ret = do_shared_fault(vmf); 3534 3535 /* preallocated pagetable is unused: free it */ 3536 if (vmf->prealloc_pte) { 3537 pte_free(vma->vm_mm, vmf->prealloc_pte); 3538 vmf->prealloc_pte = NULL; 3539 } 3540 return ret; 3541 } 3542 3543 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3544 unsigned long addr, int page_nid, 3545 int *flags) 3546 { 3547 get_page(page); 3548 3549 count_vm_numa_event(NUMA_HINT_FAULTS); 3550 if (page_nid == numa_node_id()) { 3551 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3552 *flags |= TNF_FAULT_LOCAL; 3553 } 3554 3555 return mpol_misplaced(page, vma, addr); 3556 } 3557 3558 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3559 { 3560 struct vm_area_struct *vma = vmf->vma; 3561 struct page *page = NULL; 3562 int page_nid = -1; 3563 int last_cpupid; 3564 int target_nid; 3565 bool migrated = false; 3566 pte_t pte; 3567 bool was_writable = pte_savedwrite(vmf->orig_pte); 3568 int flags = 0; 3569 3570 /* 3571 * The "pte" at this point cannot be used safely without 3572 * validation through pte_unmap_same(). It's of NUMA type but 3573 * the pfn may be screwed if the read is non atomic. 3574 */ 3575 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3576 spin_lock(vmf->ptl); 3577 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3578 pte_unmap_unlock(vmf->pte, vmf->ptl); 3579 goto out; 3580 } 3581 3582 /* 3583 * Make it present again, Depending on how arch implementes non 3584 * accessible ptes, some can allow access by kernel mode. 3585 */ 3586 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3587 pte = pte_modify(pte, vma->vm_page_prot); 3588 pte = pte_mkyoung(pte); 3589 if (was_writable) 3590 pte = pte_mkwrite(pte); 3591 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3592 update_mmu_cache(vma, vmf->address, vmf->pte); 3593 3594 page = vm_normal_page(vma, vmf->address, pte); 3595 if (!page) { 3596 pte_unmap_unlock(vmf->pte, vmf->ptl); 3597 return 0; 3598 } 3599 3600 /* TODO: handle PTE-mapped THP */ 3601 if (PageCompound(page)) { 3602 pte_unmap_unlock(vmf->pte, vmf->ptl); 3603 return 0; 3604 } 3605 3606 /* 3607 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3608 * much anyway since they can be in shared cache state. This misses 3609 * the case where a mapping is writable but the process never writes 3610 * to it but pte_write gets cleared during protection updates and 3611 * pte_dirty has unpredictable behaviour between PTE scan updates, 3612 * background writeback, dirty balancing and application behaviour. 3613 */ 3614 if (!pte_write(pte)) 3615 flags |= TNF_NO_GROUP; 3616 3617 /* 3618 * Flag if the page is shared between multiple address spaces. This 3619 * is later used when determining whether to group tasks together 3620 */ 3621 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3622 flags |= TNF_SHARED; 3623 3624 last_cpupid = page_cpupid_last(page); 3625 page_nid = page_to_nid(page); 3626 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3627 &flags); 3628 pte_unmap_unlock(vmf->pte, vmf->ptl); 3629 if (target_nid == -1) { 3630 put_page(page); 3631 goto out; 3632 } 3633 3634 /* Migrate to the requested node */ 3635 migrated = migrate_misplaced_page(page, vma, target_nid); 3636 if (migrated) { 3637 page_nid = target_nid; 3638 flags |= TNF_MIGRATED; 3639 } else 3640 flags |= TNF_MIGRATE_FAIL; 3641 3642 out: 3643 if (page_nid != -1) 3644 task_numa_fault(last_cpupid, page_nid, 1, flags); 3645 return 0; 3646 } 3647 3648 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3649 { 3650 if (vma_is_anonymous(vmf->vma)) 3651 return do_huge_pmd_anonymous_page(vmf); 3652 if (vmf->vma->vm_ops->huge_fault) 3653 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3654 return VM_FAULT_FALLBACK; 3655 } 3656 3657 /* `inline' is required to avoid gcc 4.1.2 build error */ 3658 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3659 { 3660 if (vma_is_anonymous(vmf->vma)) 3661 return do_huge_pmd_wp_page(vmf, orig_pmd); 3662 if (vmf->vma->vm_ops->huge_fault) 3663 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3664 3665 /* COW handled on pte level: split pmd */ 3666 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3667 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3668 3669 return VM_FAULT_FALLBACK; 3670 } 3671 3672 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3673 { 3674 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3675 } 3676 3677 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3678 { 3679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3680 /* No support for anonymous transparent PUD pages yet */ 3681 if (vma_is_anonymous(vmf->vma)) 3682 return VM_FAULT_FALLBACK; 3683 if (vmf->vma->vm_ops->huge_fault) 3684 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3685 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3686 return VM_FAULT_FALLBACK; 3687 } 3688 3689 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3690 { 3691 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3692 /* No support for anonymous transparent PUD pages yet */ 3693 if (vma_is_anonymous(vmf->vma)) 3694 return VM_FAULT_FALLBACK; 3695 if (vmf->vma->vm_ops->huge_fault) 3696 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3697 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3698 return VM_FAULT_FALLBACK; 3699 } 3700 3701 /* 3702 * These routines also need to handle stuff like marking pages dirty 3703 * and/or accessed for architectures that don't do it in hardware (most 3704 * RISC architectures). The early dirtying is also good on the i386. 3705 * 3706 * There is also a hook called "update_mmu_cache()" that architectures 3707 * with external mmu caches can use to update those (ie the Sparc or 3708 * PowerPC hashed page tables that act as extended TLBs). 3709 * 3710 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3711 * concurrent faults). 3712 * 3713 * The mmap_sem may have been released depending on flags and our return value. 3714 * See filemap_fault() and __lock_page_or_retry(). 3715 */ 3716 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3717 { 3718 pte_t entry; 3719 3720 if (unlikely(pmd_none(*vmf->pmd))) { 3721 /* 3722 * Leave __pte_alloc() until later: because vm_ops->fault may 3723 * want to allocate huge page, and if we expose page table 3724 * for an instant, it will be difficult to retract from 3725 * concurrent faults and from rmap lookups. 3726 */ 3727 vmf->pte = NULL; 3728 } else { 3729 /* See comment in pte_alloc_one_map() */ 3730 if (pmd_devmap_trans_unstable(vmf->pmd)) 3731 return 0; 3732 /* 3733 * A regular pmd is established and it can't morph into a huge 3734 * pmd from under us anymore at this point because we hold the 3735 * mmap_sem read mode and khugepaged takes it in write mode. 3736 * So now it's safe to run pte_offset_map(). 3737 */ 3738 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3739 vmf->orig_pte = *vmf->pte; 3740 3741 /* 3742 * some architectures can have larger ptes than wordsize, 3743 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3744 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3745 * accesses. The code below just needs a consistent view 3746 * for the ifs and we later double check anyway with the 3747 * ptl lock held. So here a barrier will do. 3748 */ 3749 barrier(); 3750 if (pte_none(vmf->orig_pte)) { 3751 pte_unmap(vmf->pte); 3752 vmf->pte = NULL; 3753 } 3754 } 3755 3756 if (!vmf->pte) { 3757 if (vma_is_anonymous(vmf->vma)) 3758 return do_anonymous_page(vmf); 3759 else 3760 return do_fault(vmf); 3761 } 3762 3763 if (!pte_present(vmf->orig_pte)) 3764 return do_swap_page(vmf); 3765 3766 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3767 return do_numa_page(vmf); 3768 3769 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3770 spin_lock(vmf->ptl); 3771 entry = vmf->orig_pte; 3772 if (unlikely(!pte_same(*vmf->pte, entry))) 3773 goto unlock; 3774 if (vmf->flags & FAULT_FLAG_WRITE) { 3775 if (!pte_write(entry)) 3776 return do_wp_page(vmf); 3777 entry = pte_mkdirty(entry); 3778 } 3779 entry = pte_mkyoung(entry); 3780 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3781 vmf->flags & FAULT_FLAG_WRITE)) { 3782 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3783 } else { 3784 /* 3785 * This is needed only for protection faults but the arch code 3786 * is not yet telling us if this is a protection fault or not. 3787 * This still avoids useless tlb flushes for .text page faults 3788 * with threads. 3789 */ 3790 if (vmf->flags & FAULT_FLAG_WRITE) 3791 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3792 } 3793 unlock: 3794 pte_unmap_unlock(vmf->pte, vmf->ptl); 3795 return 0; 3796 } 3797 3798 /* 3799 * By the time we get here, we already hold the mm semaphore 3800 * 3801 * The mmap_sem may have been released depending on flags and our 3802 * return value. See filemap_fault() and __lock_page_or_retry(). 3803 */ 3804 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 3805 unsigned long address, unsigned int flags) 3806 { 3807 struct vm_fault vmf = { 3808 .vma = vma, 3809 .address = address & PAGE_MASK, 3810 .flags = flags, 3811 .pgoff = linear_page_index(vma, address), 3812 .gfp_mask = __get_fault_gfp_mask(vma), 3813 }; 3814 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3815 struct mm_struct *mm = vma->vm_mm; 3816 pgd_t *pgd; 3817 p4d_t *p4d; 3818 vm_fault_t ret; 3819 3820 pgd = pgd_offset(mm, address); 3821 p4d = p4d_alloc(mm, pgd, address); 3822 if (!p4d) 3823 return VM_FAULT_OOM; 3824 3825 vmf.pud = pud_alloc(mm, p4d, address); 3826 if (!vmf.pud) 3827 return VM_FAULT_OOM; 3828 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 3829 ret = create_huge_pud(&vmf); 3830 if (!(ret & VM_FAULT_FALLBACK)) 3831 return ret; 3832 } else { 3833 pud_t orig_pud = *vmf.pud; 3834 3835 barrier(); 3836 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3837 3838 /* NUMA case for anonymous PUDs would go here */ 3839 3840 if (dirty && !pud_write(orig_pud)) { 3841 ret = wp_huge_pud(&vmf, orig_pud); 3842 if (!(ret & VM_FAULT_FALLBACK)) 3843 return ret; 3844 } else { 3845 huge_pud_set_accessed(&vmf, orig_pud); 3846 return 0; 3847 } 3848 } 3849 } 3850 3851 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3852 if (!vmf.pmd) 3853 return VM_FAULT_OOM; 3854 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 3855 ret = create_huge_pmd(&vmf); 3856 if (!(ret & VM_FAULT_FALLBACK)) 3857 return ret; 3858 } else { 3859 pmd_t orig_pmd = *vmf.pmd; 3860 3861 barrier(); 3862 if (unlikely(is_swap_pmd(orig_pmd))) { 3863 VM_BUG_ON(thp_migration_supported() && 3864 !is_pmd_migration_entry(orig_pmd)); 3865 if (is_pmd_migration_entry(orig_pmd)) 3866 pmd_migration_entry_wait(mm, vmf.pmd); 3867 return 0; 3868 } 3869 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3870 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3871 return do_huge_pmd_numa_page(&vmf, orig_pmd); 3872 3873 if (dirty && !pmd_write(orig_pmd)) { 3874 ret = wp_huge_pmd(&vmf, orig_pmd); 3875 if (!(ret & VM_FAULT_FALLBACK)) 3876 return ret; 3877 } else { 3878 huge_pmd_set_accessed(&vmf, orig_pmd); 3879 return 0; 3880 } 3881 } 3882 } 3883 3884 return handle_pte_fault(&vmf); 3885 } 3886 3887 /* 3888 * By the time we get here, we already hold the mm semaphore 3889 * 3890 * The mmap_sem may have been released depending on flags and our 3891 * return value. See filemap_fault() and __lock_page_or_retry(). 3892 */ 3893 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3894 unsigned int flags) 3895 { 3896 vm_fault_t ret; 3897 3898 __set_current_state(TASK_RUNNING); 3899 3900 count_vm_event(PGFAULT); 3901 count_memcg_event_mm(vma->vm_mm, PGFAULT); 3902 3903 /* do counter updates before entering really critical section. */ 3904 check_sync_rss_stat(current); 3905 3906 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3907 flags & FAULT_FLAG_INSTRUCTION, 3908 flags & FAULT_FLAG_REMOTE)) 3909 return VM_FAULT_SIGSEGV; 3910 3911 /* 3912 * Enable the memcg OOM handling for faults triggered in user 3913 * space. Kernel faults are handled more gracefully. 3914 */ 3915 if (flags & FAULT_FLAG_USER) 3916 mem_cgroup_enter_user_fault(); 3917 3918 if (unlikely(is_vm_hugetlb_page(vma))) 3919 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 3920 else 3921 ret = __handle_mm_fault(vma, address, flags); 3922 3923 if (flags & FAULT_FLAG_USER) { 3924 mem_cgroup_exit_user_fault(); 3925 /* 3926 * The task may have entered a memcg OOM situation but 3927 * if the allocation error was handled gracefully (no 3928 * VM_FAULT_OOM), there is no need to kill anything. 3929 * Just clean up the OOM state peacefully. 3930 */ 3931 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3932 mem_cgroup_oom_synchronize(false); 3933 } 3934 3935 return ret; 3936 } 3937 EXPORT_SYMBOL_GPL(handle_mm_fault); 3938 3939 #ifndef __PAGETABLE_P4D_FOLDED 3940 /* 3941 * Allocate p4d page table. 3942 * We've already handled the fast-path in-line. 3943 */ 3944 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3945 { 3946 p4d_t *new = p4d_alloc_one(mm, address); 3947 if (!new) 3948 return -ENOMEM; 3949 3950 smp_wmb(); /* See comment in __pte_alloc */ 3951 3952 spin_lock(&mm->page_table_lock); 3953 if (pgd_present(*pgd)) /* Another has populated it */ 3954 p4d_free(mm, new); 3955 else 3956 pgd_populate(mm, pgd, new); 3957 spin_unlock(&mm->page_table_lock); 3958 return 0; 3959 } 3960 #endif /* __PAGETABLE_P4D_FOLDED */ 3961 3962 #ifndef __PAGETABLE_PUD_FOLDED 3963 /* 3964 * Allocate page upper directory. 3965 * We've already handled the fast-path in-line. 3966 */ 3967 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 3968 { 3969 pud_t *new = pud_alloc_one(mm, address); 3970 if (!new) 3971 return -ENOMEM; 3972 3973 smp_wmb(); /* See comment in __pte_alloc */ 3974 3975 spin_lock(&mm->page_table_lock); 3976 #ifndef __ARCH_HAS_5LEVEL_HACK 3977 if (!p4d_present(*p4d)) { 3978 mm_inc_nr_puds(mm); 3979 p4d_populate(mm, p4d, new); 3980 } else /* Another has populated it */ 3981 pud_free(mm, new); 3982 #else 3983 if (!pgd_present(*p4d)) { 3984 mm_inc_nr_puds(mm); 3985 pgd_populate(mm, p4d, new); 3986 } else /* Another has populated it */ 3987 pud_free(mm, new); 3988 #endif /* __ARCH_HAS_5LEVEL_HACK */ 3989 spin_unlock(&mm->page_table_lock); 3990 return 0; 3991 } 3992 #endif /* __PAGETABLE_PUD_FOLDED */ 3993 3994 #ifndef __PAGETABLE_PMD_FOLDED 3995 /* 3996 * Allocate page middle directory. 3997 * We've already handled the fast-path in-line. 3998 */ 3999 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4000 { 4001 spinlock_t *ptl; 4002 pmd_t *new = pmd_alloc_one(mm, address); 4003 if (!new) 4004 return -ENOMEM; 4005 4006 smp_wmb(); /* See comment in __pte_alloc */ 4007 4008 ptl = pud_lock(mm, pud); 4009 #ifndef __ARCH_HAS_4LEVEL_HACK 4010 if (!pud_present(*pud)) { 4011 mm_inc_nr_pmds(mm); 4012 pud_populate(mm, pud, new); 4013 } else /* Another has populated it */ 4014 pmd_free(mm, new); 4015 #else 4016 if (!pgd_present(*pud)) { 4017 mm_inc_nr_pmds(mm); 4018 pgd_populate(mm, pud, new); 4019 } else /* Another has populated it */ 4020 pmd_free(mm, new); 4021 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4022 spin_unlock(ptl); 4023 return 0; 4024 } 4025 #endif /* __PAGETABLE_PMD_FOLDED */ 4026 4027 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4028 unsigned long *start, unsigned long *end, 4029 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4030 { 4031 pgd_t *pgd; 4032 p4d_t *p4d; 4033 pud_t *pud; 4034 pmd_t *pmd; 4035 pte_t *ptep; 4036 4037 pgd = pgd_offset(mm, address); 4038 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4039 goto out; 4040 4041 p4d = p4d_offset(pgd, address); 4042 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4043 goto out; 4044 4045 pud = pud_offset(p4d, address); 4046 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4047 goto out; 4048 4049 pmd = pmd_offset(pud, address); 4050 VM_BUG_ON(pmd_trans_huge(*pmd)); 4051 4052 if (pmd_huge(*pmd)) { 4053 if (!pmdpp) 4054 goto out; 4055 4056 if (start && end) { 4057 *start = address & PMD_MASK; 4058 *end = *start + PMD_SIZE; 4059 mmu_notifier_invalidate_range_start(mm, *start, *end); 4060 } 4061 *ptlp = pmd_lock(mm, pmd); 4062 if (pmd_huge(*pmd)) { 4063 *pmdpp = pmd; 4064 return 0; 4065 } 4066 spin_unlock(*ptlp); 4067 if (start && end) 4068 mmu_notifier_invalidate_range_end(mm, *start, *end); 4069 } 4070 4071 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4072 goto out; 4073 4074 if (start && end) { 4075 *start = address & PAGE_MASK; 4076 *end = *start + PAGE_SIZE; 4077 mmu_notifier_invalidate_range_start(mm, *start, *end); 4078 } 4079 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4080 if (!pte_present(*ptep)) 4081 goto unlock; 4082 *ptepp = ptep; 4083 return 0; 4084 unlock: 4085 pte_unmap_unlock(ptep, *ptlp); 4086 if (start && end) 4087 mmu_notifier_invalidate_range_end(mm, *start, *end); 4088 out: 4089 return -EINVAL; 4090 } 4091 4092 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4093 pte_t **ptepp, spinlock_t **ptlp) 4094 { 4095 int res; 4096 4097 /* (void) is needed to make gcc happy */ 4098 (void) __cond_lock(*ptlp, 4099 !(res = __follow_pte_pmd(mm, address, NULL, NULL, 4100 ptepp, NULL, ptlp))); 4101 return res; 4102 } 4103 4104 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4105 unsigned long *start, unsigned long *end, 4106 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4107 { 4108 int res; 4109 4110 /* (void) is needed to make gcc happy */ 4111 (void) __cond_lock(*ptlp, 4112 !(res = __follow_pte_pmd(mm, address, start, end, 4113 ptepp, pmdpp, ptlp))); 4114 return res; 4115 } 4116 EXPORT_SYMBOL(follow_pte_pmd); 4117 4118 /** 4119 * follow_pfn - look up PFN at a user virtual address 4120 * @vma: memory mapping 4121 * @address: user virtual address 4122 * @pfn: location to store found PFN 4123 * 4124 * Only IO mappings and raw PFN mappings are allowed. 4125 * 4126 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4127 */ 4128 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4129 unsigned long *pfn) 4130 { 4131 int ret = -EINVAL; 4132 spinlock_t *ptl; 4133 pte_t *ptep; 4134 4135 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4136 return ret; 4137 4138 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4139 if (ret) 4140 return ret; 4141 *pfn = pte_pfn(*ptep); 4142 pte_unmap_unlock(ptep, ptl); 4143 return 0; 4144 } 4145 EXPORT_SYMBOL(follow_pfn); 4146 4147 #ifdef CONFIG_HAVE_IOREMAP_PROT 4148 int follow_phys(struct vm_area_struct *vma, 4149 unsigned long address, unsigned int flags, 4150 unsigned long *prot, resource_size_t *phys) 4151 { 4152 int ret = -EINVAL; 4153 pte_t *ptep, pte; 4154 spinlock_t *ptl; 4155 4156 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4157 goto out; 4158 4159 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4160 goto out; 4161 pte = *ptep; 4162 4163 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4164 goto unlock; 4165 4166 *prot = pgprot_val(pte_pgprot(pte)); 4167 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4168 4169 ret = 0; 4170 unlock: 4171 pte_unmap_unlock(ptep, ptl); 4172 out: 4173 return ret; 4174 } 4175 4176 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4177 void *buf, int len, int write) 4178 { 4179 resource_size_t phys_addr; 4180 unsigned long prot = 0; 4181 void __iomem *maddr; 4182 int offset = addr & (PAGE_SIZE-1); 4183 4184 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4185 return -EINVAL; 4186 4187 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4188 if (!maddr) 4189 return -ENOMEM; 4190 4191 if (write) 4192 memcpy_toio(maddr + offset, buf, len); 4193 else 4194 memcpy_fromio(buf, maddr + offset, len); 4195 iounmap(maddr); 4196 4197 return len; 4198 } 4199 EXPORT_SYMBOL_GPL(generic_access_phys); 4200 #endif 4201 4202 /* 4203 * Access another process' address space as given in mm. If non-NULL, use the 4204 * given task for page fault accounting. 4205 */ 4206 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4207 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4208 { 4209 struct vm_area_struct *vma; 4210 void *old_buf = buf; 4211 int write = gup_flags & FOLL_WRITE; 4212 4213 down_read(&mm->mmap_sem); 4214 /* ignore errors, just check how much was successfully transferred */ 4215 while (len) { 4216 int bytes, ret, offset; 4217 void *maddr; 4218 struct page *page = NULL; 4219 4220 ret = get_user_pages_remote(tsk, mm, addr, 1, 4221 gup_flags, &page, &vma, NULL); 4222 if (ret <= 0) { 4223 #ifndef CONFIG_HAVE_IOREMAP_PROT 4224 break; 4225 #else 4226 /* 4227 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4228 * we can access using slightly different code. 4229 */ 4230 vma = find_vma(mm, addr); 4231 if (!vma || vma->vm_start > addr) 4232 break; 4233 if (vma->vm_ops && vma->vm_ops->access) 4234 ret = vma->vm_ops->access(vma, addr, buf, 4235 len, write); 4236 if (ret <= 0) 4237 break; 4238 bytes = ret; 4239 #endif 4240 } else { 4241 bytes = len; 4242 offset = addr & (PAGE_SIZE-1); 4243 if (bytes > PAGE_SIZE-offset) 4244 bytes = PAGE_SIZE-offset; 4245 4246 maddr = kmap(page); 4247 if (write) { 4248 copy_to_user_page(vma, page, addr, 4249 maddr + offset, buf, bytes); 4250 set_page_dirty_lock(page); 4251 } else { 4252 copy_from_user_page(vma, page, addr, 4253 buf, maddr + offset, bytes); 4254 } 4255 kunmap(page); 4256 put_page(page); 4257 } 4258 len -= bytes; 4259 buf += bytes; 4260 addr += bytes; 4261 } 4262 up_read(&mm->mmap_sem); 4263 4264 return buf - old_buf; 4265 } 4266 4267 /** 4268 * access_remote_vm - access another process' address space 4269 * @mm: the mm_struct of the target address space 4270 * @addr: start address to access 4271 * @buf: source or destination buffer 4272 * @len: number of bytes to transfer 4273 * @gup_flags: flags modifying lookup behaviour 4274 * 4275 * The caller must hold a reference on @mm. 4276 */ 4277 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4278 void *buf, int len, unsigned int gup_flags) 4279 { 4280 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4281 } 4282 4283 /* 4284 * Access another process' address space. 4285 * Source/target buffer must be kernel space, 4286 * Do not walk the page table directly, use get_user_pages 4287 */ 4288 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4289 void *buf, int len, unsigned int gup_flags) 4290 { 4291 struct mm_struct *mm; 4292 int ret; 4293 4294 mm = get_task_mm(tsk); 4295 if (!mm) 4296 return 0; 4297 4298 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4299 4300 mmput(mm); 4301 4302 return ret; 4303 } 4304 EXPORT_SYMBOL_GPL(access_process_vm); 4305 4306 /* 4307 * Print the name of a VMA. 4308 */ 4309 void print_vma_addr(char *prefix, unsigned long ip) 4310 { 4311 struct mm_struct *mm = current->mm; 4312 struct vm_area_struct *vma; 4313 4314 /* 4315 * we might be running from an atomic context so we cannot sleep 4316 */ 4317 if (!down_read_trylock(&mm->mmap_sem)) 4318 return; 4319 4320 vma = find_vma(mm, ip); 4321 if (vma && vma->vm_file) { 4322 struct file *f = vma->vm_file; 4323 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4324 if (buf) { 4325 char *p; 4326 4327 p = file_path(f, buf, PAGE_SIZE); 4328 if (IS_ERR(p)) 4329 p = "?"; 4330 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4331 vma->vm_start, 4332 vma->vm_end - vma->vm_start); 4333 free_page((unsigned long)buf); 4334 } 4335 } 4336 up_read(&mm->mmap_sem); 4337 } 4338 4339 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4340 void __might_fault(const char *file, int line) 4341 { 4342 /* 4343 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4344 * holding the mmap_sem, this is safe because kernel memory doesn't 4345 * get paged out, therefore we'll never actually fault, and the 4346 * below annotations will generate false positives. 4347 */ 4348 if (uaccess_kernel()) 4349 return; 4350 if (pagefault_disabled()) 4351 return; 4352 __might_sleep(file, line, 0); 4353 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4354 if (current->mm) 4355 might_lock_read(¤t->mm->mmap_sem); 4356 #endif 4357 } 4358 EXPORT_SYMBOL(__might_fault); 4359 #endif 4360 4361 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4362 /* 4363 * Process all subpages of the specified huge page with the specified 4364 * operation. The target subpage will be processed last to keep its 4365 * cache lines hot. 4366 */ 4367 static inline void process_huge_page( 4368 unsigned long addr_hint, unsigned int pages_per_huge_page, 4369 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4370 void *arg) 4371 { 4372 int i, n, base, l; 4373 unsigned long addr = addr_hint & 4374 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4375 4376 /* Process target subpage last to keep its cache lines hot */ 4377 might_sleep(); 4378 n = (addr_hint - addr) / PAGE_SIZE; 4379 if (2 * n <= pages_per_huge_page) { 4380 /* If target subpage in first half of huge page */ 4381 base = 0; 4382 l = n; 4383 /* Process subpages at the end of huge page */ 4384 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4385 cond_resched(); 4386 process_subpage(addr + i * PAGE_SIZE, i, arg); 4387 } 4388 } else { 4389 /* If target subpage in second half of huge page */ 4390 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4391 l = pages_per_huge_page - n; 4392 /* Process subpages at the begin of huge page */ 4393 for (i = 0; i < base; i++) { 4394 cond_resched(); 4395 process_subpage(addr + i * PAGE_SIZE, i, arg); 4396 } 4397 } 4398 /* 4399 * Process remaining subpages in left-right-left-right pattern 4400 * towards the target subpage 4401 */ 4402 for (i = 0; i < l; i++) { 4403 int left_idx = base + i; 4404 int right_idx = base + 2 * l - 1 - i; 4405 4406 cond_resched(); 4407 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4408 cond_resched(); 4409 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4410 } 4411 } 4412 4413 static void clear_gigantic_page(struct page *page, 4414 unsigned long addr, 4415 unsigned int pages_per_huge_page) 4416 { 4417 int i; 4418 struct page *p = page; 4419 4420 might_sleep(); 4421 for (i = 0; i < pages_per_huge_page; 4422 i++, p = mem_map_next(p, page, i)) { 4423 cond_resched(); 4424 clear_user_highpage(p, addr + i * PAGE_SIZE); 4425 } 4426 } 4427 4428 static void clear_subpage(unsigned long addr, int idx, void *arg) 4429 { 4430 struct page *page = arg; 4431 4432 clear_user_highpage(page + idx, addr); 4433 } 4434 4435 void clear_huge_page(struct page *page, 4436 unsigned long addr_hint, unsigned int pages_per_huge_page) 4437 { 4438 unsigned long addr = addr_hint & 4439 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4440 4441 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4442 clear_gigantic_page(page, addr, pages_per_huge_page); 4443 return; 4444 } 4445 4446 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4447 } 4448 4449 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4450 unsigned long addr, 4451 struct vm_area_struct *vma, 4452 unsigned int pages_per_huge_page) 4453 { 4454 int i; 4455 struct page *dst_base = dst; 4456 struct page *src_base = src; 4457 4458 for (i = 0; i < pages_per_huge_page; ) { 4459 cond_resched(); 4460 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4461 4462 i++; 4463 dst = mem_map_next(dst, dst_base, i); 4464 src = mem_map_next(src, src_base, i); 4465 } 4466 } 4467 4468 struct copy_subpage_arg { 4469 struct page *dst; 4470 struct page *src; 4471 struct vm_area_struct *vma; 4472 }; 4473 4474 static void copy_subpage(unsigned long addr, int idx, void *arg) 4475 { 4476 struct copy_subpage_arg *copy_arg = arg; 4477 4478 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4479 addr, copy_arg->vma); 4480 } 4481 4482 void copy_user_huge_page(struct page *dst, struct page *src, 4483 unsigned long addr_hint, struct vm_area_struct *vma, 4484 unsigned int pages_per_huge_page) 4485 { 4486 unsigned long addr = addr_hint & 4487 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4488 struct copy_subpage_arg arg = { 4489 .dst = dst, 4490 .src = src, 4491 .vma = vma, 4492 }; 4493 4494 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4495 copy_user_gigantic_page(dst, src, addr, vma, 4496 pages_per_huge_page); 4497 return; 4498 } 4499 4500 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4501 } 4502 4503 long copy_huge_page_from_user(struct page *dst_page, 4504 const void __user *usr_src, 4505 unsigned int pages_per_huge_page, 4506 bool allow_pagefault) 4507 { 4508 void *src = (void *)usr_src; 4509 void *page_kaddr; 4510 unsigned long i, rc = 0; 4511 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4512 4513 for (i = 0; i < pages_per_huge_page; i++) { 4514 if (allow_pagefault) 4515 page_kaddr = kmap(dst_page + i); 4516 else 4517 page_kaddr = kmap_atomic(dst_page + i); 4518 rc = copy_from_user(page_kaddr, 4519 (const void __user *)(src + i * PAGE_SIZE), 4520 PAGE_SIZE); 4521 if (allow_pagefault) 4522 kunmap(dst_page + i); 4523 else 4524 kunmap_atomic(page_kaddr); 4525 4526 ret_val -= (PAGE_SIZE - rc); 4527 if (rc) 4528 break; 4529 4530 cond_resched(); 4531 } 4532 return ret_val; 4533 } 4534 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4535 4536 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4537 4538 static struct kmem_cache *page_ptl_cachep; 4539 4540 void __init ptlock_cache_init(void) 4541 { 4542 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4543 SLAB_PANIC, NULL); 4544 } 4545 4546 bool ptlock_alloc(struct page *page) 4547 { 4548 spinlock_t *ptl; 4549 4550 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4551 if (!ptl) 4552 return false; 4553 page->ptl = ptl; 4554 return true; 4555 } 4556 4557 void ptlock_free(struct page *page) 4558 { 4559 kmem_cache_free(page_ptl_cachep, page->ptl); 4560 } 4561 #endif 4562