xref: /openbmc/linux/mm/memory.c (revision 1d54134d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/mm_inline.h>
45 #include <linux/sched/mm.h>
46 #include <linux/sched/coredump.h>
47 #include <linux/sched/numa_balancing.h>
48 #include <linux/sched/task.h>
49 #include <linux/hugetlb.h>
50 #include <linux/mman.h>
51 #include <linux/swap.h>
52 #include <linux/highmem.h>
53 #include <linux/pagemap.h>
54 #include <linux/memremap.h>
55 #include <linux/kmsan.h>
56 #include <linux/ksm.h>
57 #include <linux/rmap.h>
58 #include <linux/export.h>
59 #include <linux/delayacct.h>
60 #include <linux/init.h>
61 #include <linux/pfn_t.h>
62 #include <linux/writeback.h>
63 #include <linux/memcontrol.h>
64 #include <linux/mmu_notifier.h>
65 #include <linux/swapops.h>
66 #include <linux/elf.h>
67 #include <linux/gfp.h>
68 #include <linux/migrate.h>
69 #include <linux/string.h>
70 #include <linux/memory-tiers.h>
71 #include <linux/debugfs.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/dax.h>
74 #include <linux/oom.h>
75 #include <linux/numa.h>
76 #include <linux/perf_event.h>
77 #include <linux/ptrace.h>
78 #include <linux/vmalloc.h>
79 #include <linux/sched/sysctl.h>
80 #include <linux/net_mm.h>
81 
82 #include <trace/events/kmem.h>
83 
84 #include <asm/io.h>
85 #include <asm/mmu_context.h>
86 #include <asm/pgalloc.h>
87 #include <linux/uaccess.h>
88 #include <asm/tlb.h>
89 #include <asm/tlbflush.h>
90 
91 #include "pgalloc-track.h"
92 #include "internal.h"
93 #include "swap.h"
94 
95 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97 #endif
98 
99 #ifndef CONFIG_NUMA
100 unsigned long max_mapnr;
101 EXPORT_SYMBOL(max_mapnr);
102 
103 struct page *mem_map;
104 EXPORT_SYMBOL(mem_map);
105 #endif
106 
107 static vm_fault_t do_fault(struct vm_fault *vmf);
108 static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109 static bool vmf_pte_changed(struct vm_fault *vmf);
110 
111 /*
112  * Return true if the original pte was a uffd-wp pte marker (so the pte was
113  * wr-protected).
114  */
115 static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116 {
117 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 		return false;
119 
120 	return pte_marker_uffd_wp(vmf->orig_pte);
121 }
122 
123 /*
124  * A number of key systems in x86 including ioremap() rely on the assumption
125  * that high_memory defines the upper bound on direct map memory, then end
126  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
127  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128  * and ZONE_HIGHMEM.
129  */
130 void *high_memory;
131 EXPORT_SYMBOL(high_memory);
132 
133 /*
134  * Randomize the address space (stacks, mmaps, brk, etc.).
135  *
136  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137  *   as ancient (libc5 based) binaries can segfault. )
138  */
139 int randomize_va_space __read_mostly =
140 #ifdef CONFIG_COMPAT_BRK
141 					1;
142 #else
143 					2;
144 #endif
145 
146 #ifndef arch_wants_old_prefaulted_pte
147 static inline bool arch_wants_old_prefaulted_pte(void)
148 {
149 	/*
150 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 	 * some architectures, even if it's performed in hardware. By
152 	 * default, "false" means prefaulted entries will be 'young'.
153 	 */
154 	return false;
155 }
156 #endif
157 
158 static int __init disable_randmaps(char *s)
159 {
160 	randomize_va_space = 0;
161 	return 1;
162 }
163 __setup("norandmaps", disable_randmaps);
164 
165 unsigned long zero_pfn __read_mostly;
166 EXPORT_SYMBOL(zero_pfn);
167 
168 unsigned long highest_memmap_pfn __read_mostly;
169 
170 /*
171  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172  */
173 static int __init init_zero_pfn(void)
174 {
175 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 	return 0;
177 }
178 early_initcall(init_zero_pfn);
179 
180 void mm_trace_rss_stat(struct mm_struct *mm, int member)
181 {
182 	trace_rss_stat(mm, member);
183 }
184 
185 /*
186  * Note: this doesn't free the actual pages themselves. That
187  * has been handled earlier when unmapping all the memory regions.
188  */
189 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 			   unsigned long addr)
191 {
192 	pgtable_t token = pmd_pgtable(*pmd);
193 	pmd_clear(pmd);
194 	pte_free_tlb(tlb, token, addr);
195 	mm_dec_nr_ptes(tlb->mm);
196 }
197 
198 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 				unsigned long addr, unsigned long end,
200 				unsigned long floor, unsigned long ceiling)
201 {
202 	pmd_t *pmd;
203 	unsigned long next;
204 	unsigned long start;
205 
206 	start = addr;
207 	pmd = pmd_offset(pud, addr);
208 	do {
209 		next = pmd_addr_end(addr, end);
210 		if (pmd_none_or_clear_bad(pmd))
211 			continue;
212 		free_pte_range(tlb, pmd, addr);
213 	} while (pmd++, addr = next, addr != end);
214 
215 	start &= PUD_MASK;
216 	if (start < floor)
217 		return;
218 	if (ceiling) {
219 		ceiling &= PUD_MASK;
220 		if (!ceiling)
221 			return;
222 	}
223 	if (end - 1 > ceiling - 1)
224 		return;
225 
226 	pmd = pmd_offset(pud, start);
227 	pud_clear(pud);
228 	pmd_free_tlb(tlb, pmd, start);
229 	mm_dec_nr_pmds(tlb->mm);
230 }
231 
232 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 				unsigned long addr, unsigned long end,
234 				unsigned long floor, unsigned long ceiling)
235 {
236 	pud_t *pud;
237 	unsigned long next;
238 	unsigned long start;
239 
240 	start = addr;
241 	pud = pud_offset(p4d, addr);
242 	do {
243 		next = pud_addr_end(addr, end);
244 		if (pud_none_or_clear_bad(pud))
245 			continue;
246 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 	} while (pud++, addr = next, addr != end);
248 
249 	start &= P4D_MASK;
250 	if (start < floor)
251 		return;
252 	if (ceiling) {
253 		ceiling &= P4D_MASK;
254 		if (!ceiling)
255 			return;
256 	}
257 	if (end - 1 > ceiling - 1)
258 		return;
259 
260 	pud = pud_offset(p4d, start);
261 	p4d_clear(p4d);
262 	pud_free_tlb(tlb, pud, start);
263 	mm_dec_nr_puds(tlb->mm);
264 }
265 
266 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 				unsigned long addr, unsigned long end,
268 				unsigned long floor, unsigned long ceiling)
269 {
270 	p4d_t *p4d;
271 	unsigned long next;
272 	unsigned long start;
273 
274 	start = addr;
275 	p4d = p4d_offset(pgd, addr);
276 	do {
277 		next = p4d_addr_end(addr, end);
278 		if (p4d_none_or_clear_bad(p4d))
279 			continue;
280 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 	} while (p4d++, addr = next, addr != end);
282 
283 	start &= PGDIR_MASK;
284 	if (start < floor)
285 		return;
286 	if (ceiling) {
287 		ceiling &= PGDIR_MASK;
288 		if (!ceiling)
289 			return;
290 	}
291 	if (end - 1 > ceiling - 1)
292 		return;
293 
294 	p4d = p4d_offset(pgd, start);
295 	pgd_clear(pgd);
296 	p4d_free_tlb(tlb, p4d, start);
297 }
298 
299 /*
300  * This function frees user-level page tables of a process.
301  */
302 void free_pgd_range(struct mmu_gather *tlb,
303 			unsigned long addr, unsigned long end,
304 			unsigned long floor, unsigned long ceiling)
305 {
306 	pgd_t *pgd;
307 	unsigned long next;
308 
309 	/*
310 	 * The next few lines have given us lots of grief...
311 	 *
312 	 * Why are we testing PMD* at this top level?  Because often
313 	 * there will be no work to do at all, and we'd prefer not to
314 	 * go all the way down to the bottom just to discover that.
315 	 *
316 	 * Why all these "- 1"s?  Because 0 represents both the bottom
317 	 * of the address space and the top of it (using -1 for the
318 	 * top wouldn't help much: the masks would do the wrong thing).
319 	 * The rule is that addr 0 and floor 0 refer to the bottom of
320 	 * the address space, but end 0 and ceiling 0 refer to the top
321 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 	 * that end 0 case should be mythical).
323 	 *
324 	 * Wherever addr is brought up or ceiling brought down, we must
325 	 * be careful to reject "the opposite 0" before it confuses the
326 	 * subsequent tests.  But what about where end is brought down
327 	 * by PMD_SIZE below? no, end can't go down to 0 there.
328 	 *
329 	 * Whereas we round start (addr) and ceiling down, by different
330 	 * masks at different levels, in order to test whether a table
331 	 * now has no other vmas using it, so can be freed, we don't
332 	 * bother to round floor or end up - the tests don't need that.
333 	 */
334 
335 	addr &= PMD_MASK;
336 	if (addr < floor) {
337 		addr += PMD_SIZE;
338 		if (!addr)
339 			return;
340 	}
341 	if (ceiling) {
342 		ceiling &= PMD_MASK;
343 		if (!ceiling)
344 			return;
345 	}
346 	if (end - 1 > ceiling - 1)
347 		end -= PMD_SIZE;
348 	if (addr > end - 1)
349 		return;
350 	/*
351 	 * We add page table cache pages with PAGE_SIZE,
352 	 * (see pte_free_tlb()), flush the tlb if we need
353 	 */
354 	tlb_change_page_size(tlb, PAGE_SIZE);
355 	pgd = pgd_offset(tlb->mm, addr);
356 	do {
357 		next = pgd_addr_end(addr, end);
358 		if (pgd_none_or_clear_bad(pgd))
359 			continue;
360 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 	} while (pgd++, addr = next, addr != end);
362 }
363 
364 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
365 		   struct vm_area_struct *vma, unsigned long floor,
366 		   unsigned long ceiling, bool mm_wr_locked)
367 {
368 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
369 
370 	do {
371 		unsigned long addr = vma->vm_start;
372 		struct vm_area_struct *next;
373 
374 		/*
375 		 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 		 * be 0.  This will underflow and is okay.
377 		 */
378 		next = mas_find(&mas, ceiling - 1);
379 
380 		/*
381 		 * Hide vma from rmap and truncate_pagecache before freeing
382 		 * pgtables
383 		 */
384 		if (mm_wr_locked)
385 			vma_start_write(vma);
386 		unlink_anon_vmas(vma);
387 		unlink_file_vma(vma);
388 
389 		if (is_vm_hugetlb_page(vma)) {
390 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 				floor, next ? next->vm_start : ceiling);
392 		} else {
393 			/*
394 			 * Optimization: gather nearby vmas into one call down
395 			 */
396 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397 			       && !is_vm_hugetlb_page(next)) {
398 				vma = next;
399 				next = mas_find(&mas, ceiling - 1);
400 				if (mm_wr_locked)
401 					vma_start_write(vma);
402 				unlink_anon_vmas(vma);
403 				unlink_file_vma(vma);
404 			}
405 			free_pgd_range(tlb, addr, vma->vm_end,
406 				floor, next ? next->vm_start : ceiling);
407 		}
408 		vma = next;
409 	} while (vma);
410 }
411 
412 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413 {
414 	spinlock_t *ptl = pmd_lock(mm, pmd);
415 
416 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
417 		mm_inc_nr_ptes(mm);
418 		/*
419 		 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 		 * visible before the pte is made visible to other CPUs by being
421 		 * put into page tables.
422 		 *
423 		 * The other side of the story is the pointer chasing in the page
424 		 * table walking code (when walking the page table without locking;
425 		 * ie. most of the time). Fortunately, these data accesses consist
426 		 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 		 * being the notable exception) will already guarantee loads are
428 		 * seen in-order. See the alpha page table accessors for the
429 		 * smp_rmb() barriers in page table walking code.
430 		 */
431 		smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 		pmd_populate(mm, pmd, *pte);
433 		*pte = NULL;
434 	}
435 	spin_unlock(ptl);
436 }
437 
438 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439 {
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	pmd_install(mm, pmd, &new);
445 	if (new)
446 		pte_free(mm, new);
447 	return 0;
448 }
449 
450 int __pte_alloc_kernel(pmd_t *pmd)
451 {
452 	pte_t *new = pte_alloc_one_kernel(&init_mm);
453 	if (!new)
454 		return -ENOMEM;
455 
456 	spin_lock(&init_mm.page_table_lock);
457 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
458 		smp_wmb(); /* See comment in pmd_install() */
459 		pmd_populate_kernel(&init_mm, pmd, new);
460 		new = NULL;
461 	}
462 	spin_unlock(&init_mm.page_table_lock);
463 	if (new)
464 		pte_free_kernel(&init_mm, new);
465 	return 0;
466 }
467 
468 static inline void init_rss_vec(int *rss)
469 {
470 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471 }
472 
473 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474 {
475 	int i;
476 
477 	if (current->mm == mm)
478 		sync_mm_rss(mm);
479 	for (i = 0; i < NR_MM_COUNTERS; i++)
480 		if (rss[i])
481 			add_mm_counter(mm, i, rss[i]);
482 }
483 
484 /*
485  * This function is called to print an error when a bad pte
486  * is found. For example, we might have a PFN-mapped pte in
487  * a region that doesn't allow it.
488  *
489  * The calling function must still handle the error.
490  */
491 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 			  pte_t pte, struct page *page)
493 {
494 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495 	p4d_t *p4d = p4d_offset(pgd, addr);
496 	pud_t *pud = pud_offset(p4d, addr);
497 	pmd_t *pmd = pmd_offset(pud, addr);
498 	struct address_space *mapping;
499 	pgoff_t index;
500 	static unsigned long resume;
501 	static unsigned long nr_shown;
502 	static unsigned long nr_unshown;
503 
504 	/*
505 	 * Allow a burst of 60 reports, then keep quiet for that minute;
506 	 * or allow a steady drip of one report per second.
507 	 */
508 	if (nr_shown == 60) {
509 		if (time_before(jiffies, resume)) {
510 			nr_unshown++;
511 			return;
512 		}
513 		if (nr_unshown) {
514 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515 				 nr_unshown);
516 			nr_unshown = 0;
517 		}
518 		nr_shown = 0;
519 	}
520 	if (nr_shown++ == 0)
521 		resume = jiffies + 60 * HZ;
522 
523 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 	index = linear_page_index(vma, addr);
525 
526 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
527 		 current->comm,
528 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
529 	if (page)
530 		dump_page(page, "bad pte");
531 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533 	pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
534 		 vma->vm_file,
535 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537 		 mapping ? mapping->a_ops->read_folio : NULL);
538 	dump_stack();
539 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540 }
541 
542 /*
543  * vm_normal_page -- This function gets the "struct page" associated with a pte.
544  *
545  * "Special" mappings do not wish to be associated with a "struct page" (either
546  * it doesn't exist, or it exists but they don't want to touch it). In this
547  * case, NULL is returned here. "Normal" mappings do have a struct page.
548  *
549  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550  * pte bit, in which case this function is trivial. Secondly, an architecture
551  * may not have a spare pte bit, which requires a more complicated scheme,
552  * described below.
553  *
554  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555  * special mapping (even if there are underlying and valid "struct pages").
556  * COWed pages of a VM_PFNMAP are always normal.
557  *
558  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561  * mapping will always honor the rule
562  *
563  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564  *
565  * And for normal mappings this is false.
566  *
567  * This restricts such mappings to be a linear translation from virtual address
568  * to pfn. To get around this restriction, we allow arbitrary mappings so long
569  * as the vma is not a COW mapping; in that case, we know that all ptes are
570  * special (because none can have been COWed).
571  *
572  *
573  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574  *
575  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576  * page" backing, however the difference is that _all_ pages with a struct
577  * page (that is, those where pfn_valid is true) are refcounted and considered
578  * normal pages by the VM. The disadvantage is that pages are refcounted
579  * (which can be slower and simply not an option for some PFNMAP users). The
580  * advantage is that we don't have to follow the strict linearity rule of
581  * PFNMAP mappings in order to support COWable mappings.
582  *
583  */
584 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 			    pte_t pte)
586 {
587 	unsigned long pfn = pte_pfn(pte);
588 
589 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590 		if (likely(!pte_special(pte)))
591 			goto check_pfn;
592 		if (vma->vm_ops && vma->vm_ops->find_special_page)
593 			return vma->vm_ops->find_special_page(vma, addr);
594 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 			return NULL;
596 		if (is_zero_pfn(pfn))
597 			return NULL;
598 		if (pte_devmap(pte))
599 		/*
600 		 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 		 * and will have refcounts incremented on their struct pages
602 		 * when they are inserted into PTEs, thus they are safe to
603 		 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 		 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 		 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 		 */
607 			return NULL;
608 
609 		print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 
633 check_pfn:
634 	if (unlikely(pfn > highest_memmap_pfn)) {
635 		print_bad_pte(vma, addr, pte, NULL);
636 		return NULL;
637 	}
638 
639 	/*
640 	 * NOTE! We still have PageReserved() pages in the page tables.
641 	 * eg. VDSO mappings can cause them to exist.
642 	 */
643 out:
644 	return pfn_to_page(pfn);
645 }
646 
647 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 			    pte_t pte)
649 {
650 	struct page *page = vm_normal_page(vma, addr, pte);
651 
652 	if (page)
653 		return page_folio(page);
654 	return NULL;
655 }
656 
657 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
658 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 				pmd_t pmd)
660 {
661 	unsigned long pfn = pmd_pfn(pmd);
662 
663 	/*
664 	 * There is no pmd_special() but there may be special pmds, e.g.
665 	 * in a direct-access (dax) mapping, so let's just replicate the
666 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
667 	 */
668 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 		if (vma->vm_flags & VM_MIXEDMAP) {
670 			if (!pfn_valid(pfn))
671 				return NULL;
672 			goto out;
673 		} else {
674 			unsigned long off;
675 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 			if (pfn == vma->vm_pgoff + off)
677 				return NULL;
678 			if (!is_cow_mapping(vma->vm_flags))
679 				return NULL;
680 		}
681 	}
682 
683 	if (pmd_devmap(pmd))
684 		return NULL;
685 	if (is_huge_zero_pmd(pmd))
686 		return NULL;
687 	if (unlikely(pfn > highest_memmap_pfn))
688 		return NULL;
689 
690 	/*
691 	 * NOTE! We still have PageReserved() pages in the page tables.
692 	 * eg. VDSO mappings can cause them to exist.
693 	 */
694 out:
695 	return pfn_to_page(pfn);
696 }
697 #endif
698 
699 static void restore_exclusive_pte(struct vm_area_struct *vma,
700 				  struct page *page, unsigned long address,
701 				  pte_t *ptep)
702 {
703 	pte_t orig_pte;
704 	pte_t pte;
705 	swp_entry_t entry;
706 
707 	orig_pte = ptep_get(ptep);
708 	pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
709 	if (pte_swp_soft_dirty(orig_pte))
710 		pte = pte_mksoft_dirty(pte);
711 
712 	entry = pte_to_swp_entry(orig_pte);
713 	if (pte_swp_uffd_wp(orig_pte))
714 		pte = pte_mkuffd_wp(pte);
715 	else if (is_writable_device_exclusive_entry(entry))
716 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
717 
718 	VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
719 
720 	/*
721 	 * No need to take a page reference as one was already
722 	 * created when the swap entry was made.
723 	 */
724 	if (PageAnon(page))
725 		page_add_anon_rmap(page, vma, address, RMAP_NONE);
726 	else
727 		/*
728 		 * Currently device exclusive access only supports anonymous
729 		 * memory so the entry shouldn't point to a filebacked page.
730 		 */
731 		WARN_ON_ONCE(1);
732 
733 	set_pte_at(vma->vm_mm, address, ptep, pte);
734 
735 	/*
736 	 * No need to invalidate - it was non-present before. However
737 	 * secondary CPUs may have mappings that need invalidating.
738 	 */
739 	update_mmu_cache(vma, address, ptep);
740 }
741 
742 /*
743  * Tries to restore an exclusive pte if the page lock can be acquired without
744  * sleeping.
745  */
746 static int
747 try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
748 			unsigned long addr)
749 {
750 	swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
751 	struct page *page = pfn_swap_entry_to_page(entry);
752 
753 	if (trylock_page(page)) {
754 		restore_exclusive_pte(vma, page, addr, src_pte);
755 		unlock_page(page);
756 		return 0;
757 	}
758 
759 	return -EBUSY;
760 }
761 
762 /*
763  * copy one vm_area from one task to the other. Assumes the page tables
764  * already present in the new task to be cleared in the whole range
765  * covered by this vma.
766  */
767 
768 static unsigned long
769 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
770 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
771 		struct vm_area_struct *src_vma, unsigned long addr, int *rss)
772 {
773 	unsigned long vm_flags = dst_vma->vm_flags;
774 	pte_t orig_pte = ptep_get(src_pte);
775 	pte_t pte = orig_pte;
776 	struct page *page;
777 	swp_entry_t entry = pte_to_swp_entry(orig_pte);
778 
779 	if (likely(!non_swap_entry(entry))) {
780 		if (swap_duplicate(entry) < 0)
781 			return -EIO;
782 
783 		/* make sure dst_mm is on swapoff's mmlist. */
784 		if (unlikely(list_empty(&dst_mm->mmlist))) {
785 			spin_lock(&mmlist_lock);
786 			if (list_empty(&dst_mm->mmlist))
787 				list_add(&dst_mm->mmlist,
788 						&src_mm->mmlist);
789 			spin_unlock(&mmlist_lock);
790 		}
791 		/* Mark the swap entry as shared. */
792 		if (pte_swp_exclusive(orig_pte)) {
793 			pte = pte_swp_clear_exclusive(orig_pte);
794 			set_pte_at(src_mm, addr, src_pte, pte);
795 		}
796 		rss[MM_SWAPENTS]++;
797 	} else if (is_migration_entry(entry)) {
798 		page = pfn_swap_entry_to_page(entry);
799 
800 		rss[mm_counter(page)]++;
801 
802 		if (!is_readable_migration_entry(entry) &&
803 				is_cow_mapping(vm_flags)) {
804 			/*
805 			 * COW mappings require pages in both parent and child
806 			 * to be set to read. A previously exclusive entry is
807 			 * now shared.
808 			 */
809 			entry = make_readable_migration_entry(
810 							swp_offset(entry));
811 			pte = swp_entry_to_pte(entry);
812 			if (pte_swp_soft_dirty(orig_pte))
813 				pte = pte_swp_mksoft_dirty(pte);
814 			if (pte_swp_uffd_wp(orig_pte))
815 				pte = pte_swp_mkuffd_wp(pte);
816 			set_pte_at(src_mm, addr, src_pte, pte);
817 		}
818 	} else if (is_device_private_entry(entry)) {
819 		page = pfn_swap_entry_to_page(entry);
820 
821 		/*
822 		 * Update rss count even for unaddressable pages, as
823 		 * they should treated just like normal pages in this
824 		 * respect.
825 		 *
826 		 * We will likely want to have some new rss counters
827 		 * for unaddressable pages, at some point. But for now
828 		 * keep things as they are.
829 		 */
830 		get_page(page);
831 		rss[mm_counter(page)]++;
832 		/* Cannot fail as these pages cannot get pinned. */
833 		BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
834 
835 		/*
836 		 * We do not preserve soft-dirty information, because so
837 		 * far, checkpoint/restore is the only feature that
838 		 * requires that. And checkpoint/restore does not work
839 		 * when a device driver is involved (you cannot easily
840 		 * save and restore device driver state).
841 		 */
842 		if (is_writable_device_private_entry(entry) &&
843 		    is_cow_mapping(vm_flags)) {
844 			entry = make_readable_device_private_entry(
845 							swp_offset(entry));
846 			pte = swp_entry_to_pte(entry);
847 			if (pte_swp_uffd_wp(orig_pte))
848 				pte = pte_swp_mkuffd_wp(pte);
849 			set_pte_at(src_mm, addr, src_pte, pte);
850 		}
851 	} else if (is_device_exclusive_entry(entry)) {
852 		/*
853 		 * Make device exclusive entries present by restoring the
854 		 * original entry then copying as for a present pte. Device
855 		 * exclusive entries currently only support private writable
856 		 * (ie. COW) mappings.
857 		 */
858 		VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
859 		if (try_restore_exclusive_pte(src_pte, src_vma, addr))
860 			return -EBUSY;
861 		return -ENOENT;
862 	} else if (is_pte_marker_entry(entry)) {
863 		if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
864 			set_pte_at(dst_mm, addr, dst_pte, pte);
865 		return 0;
866 	}
867 	if (!userfaultfd_wp(dst_vma))
868 		pte = pte_swp_clear_uffd_wp(pte);
869 	set_pte_at(dst_mm, addr, dst_pte, pte);
870 	return 0;
871 }
872 
873 /*
874  * Copy a present and normal page.
875  *
876  * NOTE! The usual case is that this isn't required;
877  * instead, the caller can just increase the page refcount
878  * and re-use the pte the traditional way.
879  *
880  * And if we need a pre-allocated page but don't yet have
881  * one, return a negative error to let the preallocation
882  * code know so that it can do so outside the page table
883  * lock.
884  */
885 static inline int
886 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888 		  struct folio **prealloc, struct page *page)
889 {
890 	struct folio *new_folio;
891 	pte_t pte;
892 
893 	new_folio = *prealloc;
894 	if (!new_folio)
895 		return -EAGAIN;
896 
897 	/*
898 	 * We have a prealloc page, all good!  Take it
899 	 * over and copy the page & arm it.
900 	 */
901 	*prealloc = NULL;
902 	copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 	__folio_mark_uptodate(new_folio);
904 	folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 	folio_add_lru_vma(new_folio, dst_vma);
906 	rss[MM_ANONPAGES]++;
907 
908 	/* All done, just insert the new page copy in the child */
909 	pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911 	if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912 		/* Uffd-wp needs to be delivered to dest pte as well */
913 		pte = pte_mkuffd_wp(pte);
914 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915 	return 0;
916 }
917 
918 /*
919  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
920  * is required to copy this pte.
921  */
922 static inline int
923 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925 		 struct folio **prealloc)
926 {
927 	struct mm_struct *src_mm = src_vma->vm_mm;
928 	unsigned long vm_flags = src_vma->vm_flags;
929 	pte_t pte = ptep_get(src_pte);
930 	struct page *page;
931 	struct folio *folio;
932 
933 	page = vm_normal_page(src_vma, addr, pte);
934 	if (page)
935 		folio = page_folio(page);
936 	if (page && folio_test_anon(folio)) {
937 		/*
938 		 * If this page may have been pinned by the parent process,
939 		 * copy the page immediately for the child so that we'll always
940 		 * guarantee the pinned page won't be randomly replaced in the
941 		 * future.
942 		 */
943 		folio_get(folio);
944 		if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945 			/* Page may be pinned, we have to copy. */
946 			folio_put(folio);
947 			return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 						 addr, rss, prealloc, page);
949 		}
950 		rss[MM_ANONPAGES]++;
951 	} else if (page) {
952 		folio_get(folio);
953 		page_dup_file_rmap(page, false);
954 		rss[mm_counter_file(page)]++;
955 	}
956 
957 	/*
958 	 * If it's a COW mapping, write protect it both
959 	 * in the parent and the child
960 	 */
961 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962 		ptep_set_wrprotect(src_mm, addr, src_pte);
963 		pte = pte_wrprotect(pte);
964 	}
965 	VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966 
967 	/*
968 	 * If it's a shared mapping, mark it clean in
969 	 * the child
970 	 */
971 	if (vm_flags & VM_SHARED)
972 		pte = pte_mkclean(pte);
973 	pte = pte_mkold(pte);
974 
975 	if (!userfaultfd_wp(dst_vma))
976 		pte = pte_clear_uffd_wp(pte);
977 
978 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979 	return 0;
980 }
981 
982 static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 		struct vm_area_struct *vma, unsigned long addr)
984 {
985 	struct folio *new_folio;
986 
987 	new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988 	if (!new_folio)
989 		return NULL;
990 
991 	if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 		folio_put(new_folio);
993 		return NULL;
994 	}
995 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
996 
997 	return new_folio;
998 }
999 
1000 static int
1001 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003 	       unsigned long end)
1004 {
1005 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 	struct mm_struct *src_mm = src_vma->vm_mm;
1007 	pte_t *orig_src_pte, *orig_dst_pte;
1008 	pte_t *src_pte, *dst_pte;
1009 	pte_t ptent;
1010 	spinlock_t *src_ptl, *dst_ptl;
1011 	int progress, ret = 0;
1012 	int rss[NR_MM_COUNTERS];
1013 	swp_entry_t entry = (swp_entry_t){0};
1014 	struct folio *prealloc = NULL;
1015 
1016 again:
1017 	progress = 0;
1018 	init_rss_vec(rss);
1019 
1020 	/*
1021 	 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 	 * error handling here, assume that exclusive mmap_lock on dst and src
1023 	 * protects anon from unexpected THP transitions; with shmem and file
1024 	 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 	 * (whereas vma_needs_copy() skips areas without anon_vma).  A rework
1026 	 * can remove such assumptions later, but this is good enough for now.
1027 	 */
1028 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029 	if (!dst_pte) {
1030 		ret = -ENOMEM;
1031 		goto out;
1032 	}
1033 	src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034 	if (!src_pte) {
1035 		pte_unmap_unlock(dst_pte, dst_ptl);
1036 		/* ret == 0 */
1037 		goto out;
1038 	}
1039 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 	orig_src_pte = src_pte;
1041 	orig_dst_pte = dst_pte;
1042 	arch_enter_lazy_mmu_mode();
1043 
1044 	do {
1045 		/*
1046 		 * We are holding two locks at this point - either of them
1047 		 * could generate latencies in another task on another CPU.
1048 		 */
1049 		if (progress >= 32) {
1050 			progress = 0;
1051 			if (need_resched() ||
1052 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053 				break;
1054 		}
1055 		ptent = ptep_get(src_pte);
1056 		if (pte_none(ptent)) {
1057 			progress++;
1058 			continue;
1059 		}
1060 		if (unlikely(!pte_present(ptent))) {
1061 			ret = copy_nonpresent_pte(dst_mm, src_mm,
1062 						  dst_pte, src_pte,
1063 						  dst_vma, src_vma,
1064 						  addr, rss);
1065 			if (ret == -EIO) {
1066 				entry = pte_to_swp_entry(ptep_get(src_pte));
1067 				break;
1068 			} else if (ret == -EBUSY) {
1069 				break;
1070 			} else if (!ret) {
1071 				progress += 8;
1072 				continue;
1073 			}
1074 
1075 			/*
1076 			 * Device exclusive entry restored, continue by copying
1077 			 * the now present pte.
1078 			 */
1079 			WARN_ON_ONCE(ret != -ENOENT);
1080 		}
1081 		/* copy_present_pte() will clear `*prealloc' if consumed */
1082 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 				       addr, rss, &prealloc);
1084 		/*
1085 		 * If we need a pre-allocated page for this pte, drop the
1086 		 * locks, allocate, and try again.
1087 		 */
1088 		if (unlikely(ret == -EAGAIN))
1089 			break;
1090 		if (unlikely(prealloc)) {
1091 			/*
1092 			 * pre-alloc page cannot be reused by next time so as
1093 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 			 * will allocate page according to address).  This
1095 			 * could only happen if one pinned pte changed.
1096 			 */
1097 			folio_put(prealloc);
1098 			prealloc = NULL;
1099 		}
1100 		progress += 8;
1101 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102 
1103 	arch_leave_lazy_mmu_mode();
1104 	pte_unmap_unlock(orig_src_pte, src_ptl);
1105 	add_mm_rss_vec(dst_mm, rss);
1106 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107 	cond_resched();
1108 
1109 	if (ret == -EIO) {
1110 		VM_WARN_ON_ONCE(!entry.val);
1111 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112 			ret = -ENOMEM;
1113 			goto out;
1114 		}
1115 		entry.val = 0;
1116 	} else if (ret == -EBUSY) {
1117 		goto out;
1118 	} else if (ret ==  -EAGAIN) {
1119 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120 		if (!prealloc)
1121 			return -ENOMEM;
1122 	} else if (ret) {
1123 		VM_WARN_ON_ONCE(1);
1124 	}
1125 
1126 	/* We've captured and resolved the error. Reset, try again. */
1127 	ret = 0;
1128 
1129 	if (addr != end)
1130 		goto again;
1131 out:
1132 	if (unlikely(prealloc))
1133 		folio_put(prealloc);
1134 	return ret;
1135 }
1136 
1137 static inline int
1138 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140 	       unsigned long end)
1141 {
1142 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 	struct mm_struct *src_mm = src_vma->vm_mm;
1144 	pmd_t *src_pmd, *dst_pmd;
1145 	unsigned long next;
1146 
1147 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148 	if (!dst_pmd)
1149 		return -ENOMEM;
1150 	src_pmd = pmd_offset(src_pud, addr);
1151 	do {
1152 		next = pmd_addr_end(addr, end);
1153 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 			|| pmd_devmap(*src_pmd)) {
1155 			int err;
1156 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157 			err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 					    addr, dst_vma, src_vma);
1159 			if (err == -ENOMEM)
1160 				return -ENOMEM;
1161 			if (!err)
1162 				continue;
1163 			/* fall through */
1164 		}
1165 		if (pmd_none_or_clear_bad(src_pmd))
1166 			continue;
1167 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168 				   addr, next))
1169 			return -ENOMEM;
1170 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171 	return 0;
1172 }
1173 
1174 static inline int
1175 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177 	       unsigned long end)
1178 {
1179 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 	struct mm_struct *src_mm = src_vma->vm_mm;
1181 	pud_t *src_pud, *dst_pud;
1182 	unsigned long next;
1183 
1184 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185 	if (!dst_pud)
1186 		return -ENOMEM;
1187 	src_pud = pud_offset(src_p4d, addr);
1188 	do {
1189 		next = pud_addr_end(addr, end);
1190 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191 			int err;
1192 
1193 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194 			err = copy_huge_pud(dst_mm, src_mm,
1195 					    dst_pud, src_pud, addr, src_vma);
1196 			if (err == -ENOMEM)
1197 				return -ENOMEM;
1198 			if (!err)
1199 				continue;
1200 			/* fall through */
1201 		}
1202 		if (pud_none_or_clear_bad(src_pud))
1203 			continue;
1204 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205 				   addr, next))
1206 			return -ENOMEM;
1207 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1208 	return 0;
1209 }
1210 
1211 static inline int
1212 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214 	       unsigned long end)
1215 {
1216 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1217 	p4d_t *src_p4d, *dst_p4d;
1218 	unsigned long next;
1219 
1220 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221 	if (!dst_p4d)
1222 		return -ENOMEM;
1223 	src_p4d = p4d_offset(src_pgd, addr);
1224 	do {
1225 		next = p4d_addr_end(addr, end);
1226 		if (p4d_none_or_clear_bad(src_p4d))
1227 			continue;
1228 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229 				   addr, next))
1230 			return -ENOMEM;
1231 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232 	return 0;
1233 }
1234 
1235 /*
1236  * Return true if the vma needs to copy the pgtable during this fork().  Return
1237  * false when we can speed up fork() by allowing lazy page faults later until
1238  * when the child accesses the memory range.
1239  */
1240 static bool
1241 vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242 {
1243 	/*
1244 	 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 	 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 	 * contains uffd-wp protection information, that's something we can't
1247 	 * retrieve from page cache, and skip copying will lose those info.
1248 	 */
1249 	if (userfaultfd_wp(dst_vma))
1250 		return true;
1251 
1252 	if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253 		return true;
1254 
1255 	if (src_vma->anon_vma)
1256 		return true;
1257 
1258 	/*
1259 	 * Don't copy ptes where a page fault will fill them correctly.  Fork
1260 	 * becomes much lighter when there are big shared or private readonly
1261 	 * mappings. The tradeoff is that copy_page_range is more efficient
1262 	 * than faulting.
1263 	 */
1264 	return false;
1265 }
1266 
1267 int
1268 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269 {
1270 	pgd_t *src_pgd, *dst_pgd;
1271 	unsigned long next;
1272 	unsigned long addr = src_vma->vm_start;
1273 	unsigned long end = src_vma->vm_end;
1274 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 	struct mm_struct *src_mm = src_vma->vm_mm;
1276 	struct mmu_notifier_range range;
1277 	bool is_cow;
1278 	int ret;
1279 
1280 	if (!vma_needs_copy(dst_vma, src_vma))
1281 		return 0;
1282 
1283 	if (is_vm_hugetlb_page(src_vma))
1284 		return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285 
1286 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287 		/*
1288 		 * We do not free on error cases below as remove_vma
1289 		 * gets called on error from higher level routine
1290 		 */
1291 		ret = track_pfn_copy(src_vma);
1292 		if (ret)
1293 			return ret;
1294 	}
1295 
1296 	/*
1297 	 * We need to invalidate the secondary MMU mappings only when
1298 	 * there could be a permission downgrade on the ptes of the
1299 	 * parent mm. And a permission downgrade will only happen if
1300 	 * is_cow_mapping() returns true.
1301 	 */
1302 	is_cow = is_cow_mapping(src_vma->vm_flags);
1303 
1304 	if (is_cow) {
1305 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306 					0, src_mm, addr, end);
1307 		mmu_notifier_invalidate_range_start(&range);
1308 		/*
1309 		 * Disabling preemption is not needed for the write side, as
1310 		 * the read side doesn't spin, but goes to the mmap_lock.
1311 		 *
1312 		 * Use the raw variant of the seqcount_t write API to avoid
1313 		 * lockdep complaining about preemptibility.
1314 		 */
1315 		mmap_assert_write_locked(src_mm);
1316 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317 	}
1318 
1319 	ret = 0;
1320 	dst_pgd = pgd_offset(dst_mm, addr);
1321 	src_pgd = pgd_offset(src_mm, addr);
1322 	do {
1323 		next = pgd_addr_end(addr, end);
1324 		if (pgd_none_or_clear_bad(src_pgd))
1325 			continue;
1326 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327 					    addr, next))) {
1328 			untrack_pfn_clear(dst_vma);
1329 			ret = -ENOMEM;
1330 			break;
1331 		}
1332 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1333 
1334 	if (is_cow) {
1335 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1336 		mmu_notifier_invalidate_range_end(&range);
1337 	}
1338 	return ret;
1339 }
1340 
1341 /* Whether we should zap all COWed (private) pages too */
1342 static inline bool should_zap_cows(struct zap_details *details)
1343 {
1344 	/* By default, zap all pages */
1345 	if (!details)
1346 		return true;
1347 
1348 	/* Or, we zap COWed pages only if the caller wants to */
1349 	return details->even_cows;
1350 }
1351 
1352 /* Decides whether we should zap this page with the page pointer specified */
1353 static inline bool should_zap_page(struct zap_details *details, struct page *page)
1354 {
1355 	/* If we can make a decision without *page.. */
1356 	if (should_zap_cows(details))
1357 		return true;
1358 
1359 	/* E.g. the caller passes NULL for the case of a zero page */
1360 	if (!page)
1361 		return true;
1362 
1363 	/* Otherwise we should only zap non-anon pages */
1364 	return !PageAnon(page);
1365 }
1366 
1367 static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368 {
1369 	if (!details)
1370 		return false;
1371 
1372 	return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373 }
1374 
1375 /*
1376  * This function makes sure that we'll replace the none pte with an uffd-wp
1377  * swap special pte marker when necessary. Must be with the pgtable lock held.
1378  */
1379 static inline void
1380 zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381 			      unsigned long addr, pte_t *pte,
1382 			      struct zap_details *details, pte_t pteval)
1383 {
1384 	/* Zap on anonymous always means dropping everything */
1385 	if (vma_is_anonymous(vma))
1386 		return;
1387 
1388 	if (zap_drop_file_uffd_wp(details))
1389 		return;
1390 
1391 	pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392 }
1393 
1394 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395 				struct vm_area_struct *vma, pmd_t *pmd,
1396 				unsigned long addr, unsigned long end,
1397 				struct zap_details *details)
1398 {
1399 	struct mm_struct *mm = tlb->mm;
1400 	int force_flush = 0;
1401 	int rss[NR_MM_COUNTERS];
1402 	spinlock_t *ptl;
1403 	pte_t *start_pte;
1404 	pte_t *pte;
1405 	swp_entry_t entry;
1406 
1407 	tlb_change_page_size(tlb, PAGE_SIZE);
1408 	init_rss_vec(rss);
1409 	start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410 	if (!pte)
1411 		return addr;
1412 
1413 	flush_tlb_batched_pending(mm);
1414 	arch_enter_lazy_mmu_mode();
1415 	do {
1416 		pte_t ptent = ptep_get(pte);
1417 		struct page *page;
1418 
1419 		if (pte_none(ptent))
1420 			continue;
1421 
1422 		if (need_resched())
1423 			break;
1424 
1425 		if (pte_present(ptent)) {
1426 			unsigned int delay_rmap;
1427 
1428 			page = vm_normal_page(vma, addr, ptent);
1429 			if (unlikely(!should_zap_page(details, page)))
1430 				continue;
1431 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1432 							tlb->fullmm);
1433 			tlb_remove_tlb_entry(tlb, pte, addr);
1434 			zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1435 						      ptent);
1436 			if (unlikely(!page))
1437 				continue;
1438 
1439 			delay_rmap = 0;
1440 			if (!PageAnon(page)) {
1441 				if (pte_dirty(ptent)) {
1442 					set_page_dirty(page);
1443 					if (tlb_delay_rmap(tlb)) {
1444 						delay_rmap = 1;
1445 						force_flush = 1;
1446 					}
1447 				}
1448 				if (pte_young(ptent) && likely(vma_has_recency(vma)))
1449 					mark_page_accessed(page);
1450 			}
1451 			rss[mm_counter(page)]--;
1452 			if (!delay_rmap) {
1453 				page_remove_rmap(page, vma, false);
1454 				if (unlikely(page_mapcount(page) < 0))
1455 					print_bad_pte(vma, addr, ptent, page);
1456 			}
1457 			if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1458 				force_flush = 1;
1459 				addr += PAGE_SIZE;
1460 				break;
1461 			}
1462 			continue;
1463 		}
1464 
1465 		entry = pte_to_swp_entry(ptent);
1466 		if (is_device_private_entry(entry) ||
1467 		    is_device_exclusive_entry(entry)) {
1468 			page = pfn_swap_entry_to_page(entry);
1469 			if (unlikely(!should_zap_page(details, page)))
1470 				continue;
1471 			/*
1472 			 * Both device private/exclusive mappings should only
1473 			 * work with anonymous page so far, so we don't need to
1474 			 * consider uffd-wp bit when zap. For more information,
1475 			 * see zap_install_uffd_wp_if_needed().
1476 			 */
1477 			WARN_ON_ONCE(!vma_is_anonymous(vma));
1478 			rss[mm_counter(page)]--;
1479 			if (is_device_private_entry(entry))
1480 				page_remove_rmap(page, vma, false);
1481 			put_page(page);
1482 		} else if (!non_swap_entry(entry)) {
1483 			/* Genuine swap entry, hence a private anon page */
1484 			if (!should_zap_cows(details))
1485 				continue;
1486 			rss[MM_SWAPENTS]--;
1487 			if (unlikely(!free_swap_and_cache(entry)))
1488 				print_bad_pte(vma, addr, ptent, NULL);
1489 		} else if (is_migration_entry(entry)) {
1490 			page = pfn_swap_entry_to_page(entry);
1491 			if (!should_zap_page(details, page))
1492 				continue;
1493 			rss[mm_counter(page)]--;
1494 		} else if (pte_marker_entry_uffd_wp(entry)) {
1495 			/*
1496 			 * For anon: always drop the marker; for file: only
1497 			 * drop the marker if explicitly requested.
1498 			 */
1499 			if (!vma_is_anonymous(vma) &&
1500 			    !zap_drop_file_uffd_wp(details))
1501 				continue;
1502 		} else if (is_hwpoison_entry(entry) ||
1503 			   is_swapin_error_entry(entry)) {
1504 			if (!should_zap_cows(details))
1505 				continue;
1506 		} else {
1507 			/* We should have covered all the swap entry types */
1508 			WARN_ON_ONCE(1);
1509 		}
1510 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1511 		zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1512 	} while (pte++, addr += PAGE_SIZE, addr != end);
1513 
1514 	add_mm_rss_vec(mm, rss);
1515 	arch_leave_lazy_mmu_mode();
1516 
1517 	/* Do the actual TLB flush before dropping ptl */
1518 	if (force_flush) {
1519 		tlb_flush_mmu_tlbonly(tlb);
1520 		tlb_flush_rmaps(tlb, vma);
1521 	}
1522 	pte_unmap_unlock(start_pte, ptl);
1523 
1524 	/*
1525 	 * If we forced a TLB flush (either due to running out of
1526 	 * batch buffers or because we needed to flush dirty TLB
1527 	 * entries before releasing the ptl), free the batched
1528 	 * memory too. Come back again if we didn't do everything.
1529 	 */
1530 	if (force_flush)
1531 		tlb_flush_mmu(tlb);
1532 
1533 	return addr;
1534 }
1535 
1536 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1537 				struct vm_area_struct *vma, pud_t *pud,
1538 				unsigned long addr, unsigned long end,
1539 				struct zap_details *details)
1540 {
1541 	pmd_t *pmd;
1542 	unsigned long next;
1543 
1544 	pmd = pmd_offset(pud, addr);
1545 	do {
1546 		next = pmd_addr_end(addr, end);
1547 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1548 			if (next - addr != HPAGE_PMD_SIZE)
1549 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1550 			else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1551 				addr = next;
1552 				continue;
1553 			}
1554 			/* fall through */
1555 		} else if (details && details->single_folio &&
1556 			   folio_test_pmd_mappable(details->single_folio) &&
1557 			   next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1558 			spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1559 			/*
1560 			 * Take and drop THP pmd lock so that we cannot return
1561 			 * prematurely, while zap_huge_pmd() has cleared *pmd,
1562 			 * but not yet decremented compound_mapcount().
1563 			 */
1564 			spin_unlock(ptl);
1565 		}
1566 		if (pmd_none(*pmd)) {
1567 			addr = next;
1568 			continue;
1569 		}
1570 		addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1571 		if (addr != next)
1572 			pmd--;
1573 	} while (pmd++, cond_resched(), addr != end);
1574 
1575 	return addr;
1576 }
1577 
1578 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1579 				struct vm_area_struct *vma, p4d_t *p4d,
1580 				unsigned long addr, unsigned long end,
1581 				struct zap_details *details)
1582 {
1583 	pud_t *pud;
1584 	unsigned long next;
1585 
1586 	pud = pud_offset(p4d, addr);
1587 	do {
1588 		next = pud_addr_end(addr, end);
1589 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1590 			if (next - addr != HPAGE_PUD_SIZE) {
1591 				mmap_assert_locked(tlb->mm);
1592 				split_huge_pud(vma, pud, addr);
1593 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1594 				goto next;
1595 			/* fall through */
1596 		}
1597 		if (pud_none_or_clear_bad(pud))
1598 			continue;
1599 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1600 next:
1601 		cond_resched();
1602 	} while (pud++, addr = next, addr != end);
1603 
1604 	return addr;
1605 }
1606 
1607 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1608 				struct vm_area_struct *vma, pgd_t *pgd,
1609 				unsigned long addr, unsigned long end,
1610 				struct zap_details *details)
1611 {
1612 	p4d_t *p4d;
1613 	unsigned long next;
1614 
1615 	p4d = p4d_offset(pgd, addr);
1616 	do {
1617 		next = p4d_addr_end(addr, end);
1618 		if (p4d_none_or_clear_bad(p4d))
1619 			continue;
1620 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1621 	} while (p4d++, addr = next, addr != end);
1622 
1623 	return addr;
1624 }
1625 
1626 void unmap_page_range(struct mmu_gather *tlb,
1627 			     struct vm_area_struct *vma,
1628 			     unsigned long addr, unsigned long end,
1629 			     struct zap_details *details)
1630 {
1631 	pgd_t *pgd;
1632 	unsigned long next;
1633 
1634 	BUG_ON(addr >= end);
1635 	tlb_start_vma(tlb, vma);
1636 	pgd = pgd_offset(vma->vm_mm, addr);
1637 	do {
1638 		next = pgd_addr_end(addr, end);
1639 		if (pgd_none_or_clear_bad(pgd))
1640 			continue;
1641 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1642 	} while (pgd++, addr = next, addr != end);
1643 	tlb_end_vma(tlb, vma);
1644 }
1645 
1646 
1647 static void unmap_single_vma(struct mmu_gather *tlb,
1648 		struct vm_area_struct *vma, unsigned long start_addr,
1649 		unsigned long end_addr,
1650 		struct zap_details *details, bool mm_wr_locked)
1651 {
1652 	unsigned long start = max(vma->vm_start, start_addr);
1653 	unsigned long end;
1654 
1655 	if (start >= vma->vm_end)
1656 		return;
1657 	end = min(vma->vm_end, end_addr);
1658 	if (end <= vma->vm_start)
1659 		return;
1660 
1661 	if (vma->vm_file)
1662 		uprobe_munmap(vma, start, end);
1663 
1664 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1665 		untrack_pfn(vma, 0, 0, mm_wr_locked);
1666 
1667 	if (start != end) {
1668 		if (unlikely(is_vm_hugetlb_page(vma))) {
1669 			/*
1670 			 * It is undesirable to test vma->vm_file as it
1671 			 * should be non-null for valid hugetlb area.
1672 			 * However, vm_file will be NULL in the error
1673 			 * cleanup path of mmap_region. When
1674 			 * hugetlbfs ->mmap method fails,
1675 			 * mmap_region() nullifies vma->vm_file
1676 			 * before calling this function to clean up.
1677 			 * Since no pte has actually been setup, it is
1678 			 * safe to do nothing in this case.
1679 			 */
1680 			if (vma->vm_file) {
1681 				zap_flags_t zap_flags = details ?
1682 				    details->zap_flags : 0;
1683 				__unmap_hugepage_range_final(tlb, vma, start, end,
1684 							     NULL, zap_flags);
1685 			}
1686 		} else
1687 			unmap_page_range(tlb, vma, start, end, details);
1688 	}
1689 }
1690 
1691 /**
1692  * unmap_vmas - unmap a range of memory covered by a list of vma's
1693  * @tlb: address of the caller's struct mmu_gather
1694  * @mt: the maple tree
1695  * @vma: the starting vma
1696  * @start_addr: virtual address at which to start unmapping
1697  * @end_addr: virtual address at which to end unmapping
1698  *
1699  * Unmap all pages in the vma list.
1700  *
1701  * Only addresses between `start' and `end' will be unmapped.
1702  *
1703  * The VMA list must be sorted in ascending virtual address order.
1704  *
1705  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1706  * range after unmap_vmas() returns.  So the only responsibility here is to
1707  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1708  * drops the lock and schedules.
1709  */
1710 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1711 		struct vm_area_struct *vma, unsigned long start_addr,
1712 		unsigned long end_addr, bool mm_wr_locked)
1713 {
1714 	struct mmu_notifier_range range;
1715 	struct zap_details details = {
1716 		.zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1717 		/* Careful - we need to zap private pages too! */
1718 		.even_cows = true,
1719 	};
1720 	MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1721 
1722 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1723 				start_addr, end_addr);
1724 	mmu_notifier_invalidate_range_start(&range);
1725 	do {
1726 		unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1727 				 mm_wr_locked);
1728 	} while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1729 	mmu_notifier_invalidate_range_end(&range);
1730 }
1731 
1732 /**
1733  * zap_page_range_single - remove user pages in a given range
1734  * @vma: vm_area_struct holding the applicable pages
1735  * @address: starting address of pages to zap
1736  * @size: number of bytes to zap
1737  * @details: details of shared cache invalidation
1738  *
1739  * The range must fit into one VMA.
1740  */
1741 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1742 		unsigned long size, struct zap_details *details)
1743 {
1744 	const unsigned long end = address + size;
1745 	struct mmu_notifier_range range;
1746 	struct mmu_gather tlb;
1747 
1748 	lru_add_drain();
1749 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1750 				address, end);
1751 	if (is_vm_hugetlb_page(vma))
1752 		adjust_range_if_pmd_sharing_possible(vma, &range.start,
1753 						     &range.end);
1754 	tlb_gather_mmu(&tlb, vma->vm_mm);
1755 	update_hiwater_rss(vma->vm_mm);
1756 	mmu_notifier_invalidate_range_start(&range);
1757 	/*
1758 	 * unmap 'address-end' not 'range.start-range.end' as range
1759 	 * could have been expanded for hugetlb pmd sharing.
1760 	 */
1761 	unmap_single_vma(&tlb, vma, address, end, details, false);
1762 	mmu_notifier_invalidate_range_end(&range);
1763 	tlb_finish_mmu(&tlb);
1764 }
1765 
1766 /**
1767  * zap_vma_ptes - remove ptes mapping the vma
1768  * @vma: vm_area_struct holding ptes to be zapped
1769  * @address: starting address of pages to zap
1770  * @size: number of bytes to zap
1771  *
1772  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1773  *
1774  * The entire address range must be fully contained within the vma.
1775  *
1776  */
1777 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1778 		unsigned long size)
1779 {
1780 	if (!range_in_vma(vma, address, address + size) ||
1781 	    		!(vma->vm_flags & VM_PFNMAP))
1782 		return;
1783 
1784 	zap_page_range_single(vma, address, size, NULL);
1785 }
1786 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1787 
1788 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1789 {
1790 	pgd_t *pgd;
1791 	p4d_t *p4d;
1792 	pud_t *pud;
1793 	pmd_t *pmd;
1794 
1795 	pgd = pgd_offset(mm, addr);
1796 	p4d = p4d_alloc(mm, pgd, addr);
1797 	if (!p4d)
1798 		return NULL;
1799 	pud = pud_alloc(mm, p4d, addr);
1800 	if (!pud)
1801 		return NULL;
1802 	pmd = pmd_alloc(mm, pud, addr);
1803 	if (!pmd)
1804 		return NULL;
1805 
1806 	VM_BUG_ON(pmd_trans_huge(*pmd));
1807 	return pmd;
1808 }
1809 
1810 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1811 			spinlock_t **ptl)
1812 {
1813 	pmd_t *pmd = walk_to_pmd(mm, addr);
1814 
1815 	if (!pmd)
1816 		return NULL;
1817 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1818 }
1819 
1820 static int validate_page_before_insert(struct page *page)
1821 {
1822 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1823 		return -EINVAL;
1824 	flush_dcache_page(page);
1825 	return 0;
1826 }
1827 
1828 static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1829 			unsigned long addr, struct page *page, pgprot_t prot)
1830 {
1831 	if (!pte_none(ptep_get(pte)))
1832 		return -EBUSY;
1833 	/* Ok, finally just insert the thing.. */
1834 	get_page(page);
1835 	inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1836 	page_add_file_rmap(page, vma, false);
1837 	set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1838 	return 0;
1839 }
1840 
1841 /*
1842  * This is the old fallback for page remapping.
1843  *
1844  * For historical reasons, it only allows reserved pages. Only
1845  * old drivers should use this, and they needed to mark their
1846  * pages reserved for the old functions anyway.
1847  */
1848 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1849 			struct page *page, pgprot_t prot)
1850 {
1851 	int retval;
1852 	pte_t *pte;
1853 	spinlock_t *ptl;
1854 
1855 	retval = validate_page_before_insert(page);
1856 	if (retval)
1857 		goto out;
1858 	retval = -ENOMEM;
1859 	pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1860 	if (!pte)
1861 		goto out;
1862 	retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1863 	pte_unmap_unlock(pte, ptl);
1864 out:
1865 	return retval;
1866 }
1867 
1868 #ifdef pte_index
1869 static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1870 			unsigned long addr, struct page *page, pgprot_t prot)
1871 {
1872 	int err;
1873 
1874 	if (!page_count(page))
1875 		return -EINVAL;
1876 	err = validate_page_before_insert(page);
1877 	if (err)
1878 		return err;
1879 	return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1880 }
1881 
1882 /* insert_pages() amortizes the cost of spinlock operations
1883  * when inserting pages in a loop. Arch *must* define pte_index.
1884  */
1885 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1886 			struct page **pages, unsigned long *num, pgprot_t prot)
1887 {
1888 	pmd_t *pmd = NULL;
1889 	pte_t *start_pte, *pte;
1890 	spinlock_t *pte_lock;
1891 	struct mm_struct *const mm = vma->vm_mm;
1892 	unsigned long curr_page_idx = 0;
1893 	unsigned long remaining_pages_total = *num;
1894 	unsigned long pages_to_write_in_pmd;
1895 	int ret;
1896 more:
1897 	ret = -EFAULT;
1898 	pmd = walk_to_pmd(mm, addr);
1899 	if (!pmd)
1900 		goto out;
1901 
1902 	pages_to_write_in_pmd = min_t(unsigned long,
1903 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1904 
1905 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1906 	ret = -ENOMEM;
1907 	if (pte_alloc(mm, pmd))
1908 		goto out;
1909 
1910 	while (pages_to_write_in_pmd) {
1911 		int pte_idx = 0;
1912 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1913 
1914 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1915 		if (!start_pte) {
1916 			ret = -EFAULT;
1917 			goto out;
1918 		}
1919 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1920 			int err = insert_page_in_batch_locked(vma, pte,
1921 				addr, pages[curr_page_idx], prot);
1922 			if (unlikely(err)) {
1923 				pte_unmap_unlock(start_pte, pte_lock);
1924 				ret = err;
1925 				remaining_pages_total -= pte_idx;
1926 				goto out;
1927 			}
1928 			addr += PAGE_SIZE;
1929 			++curr_page_idx;
1930 		}
1931 		pte_unmap_unlock(start_pte, pte_lock);
1932 		pages_to_write_in_pmd -= batch_size;
1933 		remaining_pages_total -= batch_size;
1934 	}
1935 	if (remaining_pages_total)
1936 		goto more;
1937 	ret = 0;
1938 out:
1939 	*num = remaining_pages_total;
1940 	return ret;
1941 }
1942 #endif  /* ifdef pte_index */
1943 
1944 /**
1945  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1946  * @vma: user vma to map to
1947  * @addr: target start user address of these pages
1948  * @pages: source kernel pages
1949  * @num: in: number of pages to map. out: number of pages that were *not*
1950  * mapped. (0 means all pages were successfully mapped).
1951  *
1952  * Preferred over vm_insert_page() when inserting multiple pages.
1953  *
1954  * In case of error, we may have mapped a subset of the provided
1955  * pages. It is the caller's responsibility to account for this case.
1956  *
1957  * The same restrictions apply as in vm_insert_page().
1958  */
1959 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1960 			struct page **pages, unsigned long *num)
1961 {
1962 #ifdef pte_index
1963 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1964 
1965 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1966 		return -EFAULT;
1967 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1968 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1969 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1970 		vm_flags_set(vma, VM_MIXEDMAP);
1971 	}
1972 	/* Defer page refcount checking till we're about to map that page. */
1973 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1974 #else
1975 	unsigned long idx = 0, pgcount = *num;
1976 	int err = -EINVAL;
1977 
1978 	for (; idx < pgcount; ++idx) {
1979 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1980 		if (err)
1981 			break;
1982 	}
1983 	*num = pgcount - idx;
1984 	return err;
1985 #endif  /* ifdef pte_index */
1986 }
1987 EXPORT_SYMBOL(vm_insert_pages);
1988 
1989 /**
1990  * vm_insert_page - insert single page into user vma
1991  * @vma: user vma to map to
1992  * @addr: target user address of this page
1993  * @page: source kernel page
1994  *
1995  * This allows drivers to insert individual pages they've allocated
1996  * into a user vma.
1997  *
1998  * The page has to be a nice clean _individual_ kernel allocation.
1999  * If you allocate a compound page, you need to have marked it as
2000  * such (__GFP_COMP), or manually just split the page up yourself
2001  * (see split_page()).
2002  *
2003  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2004  * took an arbitrary page protection parameter. This doesn't allow
2005  * that. Your vma protection will have to be set up correctly, which
2006  * means that if you want a shared writable mapping, you'd better
2007  * ask for a shared writable mapping!
2008  *
2009  * The page does not need to be reserved.
2010  *
2011  * Usually this function is called from f_op->mmap() handler
2012  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2013  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2014  * function from other places, for example from page-fault handler.
2015  *
2016  * Return: %0 on success, negative error code otherwise.
2017  */
2018 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2019 			struct page *page)
2020 {
2021 	if (addr < vma->vm_start || addr >= vma->vm_end)
2022 		return -EFAULT;
2023 	if (!page_count(page))
2024 		return -EINVAL;
2025 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2026 		BUG_ON(mmap_read_trylock(vma->vm_mm));
2027 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2028 		vm_flags_set(vma, VM_MIXEDMAP);
2029 	}
2030 	return insert_page(vma, addr, page, vma->vm_page_prot);
2031 }
2032 EXPORT_SYMBOL(vm_insert_page);
2033 
2034 /*
2035  * __vm_map_pages - maps range of kernel pages into user vma
2036  * @vma: user vma to map to
2037  * @pages: pointer to array of source kernel pages
2038  * @num: number of pages in page array
2039  * @offset: user's requested vm_pgoff
2040  *
2041  * This allows drivers to map range of kernel pages into a user vma.
2042  *
2043  * Return: 0 on success and error code otherwise.
2044  */
2045 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2046 				unsigned long num, unsigned long offset)
2047 {
2048 	unsigned long count = vma_pages(vma);
2049 	unsigned long uaddr = vma->vm_start;
2050 	int ret, i;
2051 
2052 	/* Fail if the user requested offset is beyond the end of the object */
2053 	if (offset >= num)
2054 		return -ENXIO;
2055 
2056 	/* Fail if the user requested size exceeds available object size */
2057 	if (count > num - offset)
2058 		return -ENXIO;
2059 
2060 	for (i = 0; i < count; i++) {
2061 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2062 		if (ret < 0)
2063 			return ret;
2064 		uaddr += PAGE_SIZE;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 /**
2071  * vm_map_pages - maps range of kernel pages starts with non zero offset
2072  * @vma: user vma to map to
2073  * @pages: pointer to array of source kernel pages
2074  * @num: number of pages in page array
2075  *
2076  * Maps an object consisting of @num pages, catering for the user's
2077  * requested vm_pgoff
2078  *
2079  * If we fail to insert any page into the vma, the function will return
2080  * immediately leaving any previously inserted pages present.  Callers
2081  * from the mmap handler may immediately return the error as their caller
2082  * will destroy the vma, removing any successfully inserted pages. Other
2083  * callers should make their own arrangements for calling unmap_region().
2084  *
2085  * Context: Process context. Called by mmap handlers.
2086  * Return: 0 on success and error code otherwise.
2087  */
2088 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2089 				unsigned long num)
2090 {
2091 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2092 }
2093 EXPORT_SYMBOL(vm_map_pages);
2094 
2095 /**
2096  * vm_map_pages_zero - map range of kernel pages starts with zero offset
2097  * @vma: user vma to map to
2098  * @pages: pointer to array of source kernel pages
2099  * @num: number of pages in page array
2100  *
2101  * Similar to vm_map_pages(), except that it explicitly sets the offset
2102  * to 0. This function is intended for the drivers that did not consider
2103  * vm_pgoff.
2104  *
2105  * Context: Process context. Called by mmap handlers.
2106  * Return: 0 on success and error code otherwise.
2107  */
2108 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2109 				unsigned long num)
2110 {
2111 	return __vm_map_pages(vma, pages, num, 0);
2112 }
2113 EXPORT_SYMBOL(vm_map_pages_zero);
2114 
2115 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2116 			pfn_t pfn, pgprot_t prot, bool mkwrite)
2117 {
2118 	struct mm_struct *mm = vma->vm_mm;
2119 	pte_t *pte, entry;
2120 	spinlock_t *ptl;
2121 
2122 	pte = get_locked_pte(mm, addr, &ptl);
2123 	if (!pte)
2124 		return VM_FAULT_OOM;
2125 	entry = ptep_get(pte);
2126 	if (!pte_none(entry)) {
2127 		if (mkwrite) {
2128 			/*
2129 			 * For read faults on private mappings the PFN passed
2130 			 * in may not match the PFN we have mapped if the
2131 			 * mapped PFN is a writeable COW page.  In the mkwrite
2132 			 * case we are creating a writable PTE for a shared
2133 			 * mapping and we expect the PFNs to match. If they
2134 			 * don't match, we are likely racing with block
2135 			 * allocation and mapping invalidation so just skip the
2136 			 * update.
2137 			 */
2138 			if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2139 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2140 				goto out_unlock;
2141 			}
2142 			entry = pte_mkyoung(entry);
2143 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2144 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2145 				update_mmu_cache(vma, addr, pte);
2146 		}
2147 		goto out_unlock;
2148 	}
2149 
2150 	/* Ok, finally just insert the thing.. */
2151 	if (pfn_t_devmap(pfn))
2152 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2153 	else
2154 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2155 
2156 	if (mkwrite) {
2157 		entry = pte_mkyoung(entry);
2158 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2159 	}
2160 
2161 	set_pte_at(mm, addr, pte, entry);
2162 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2163 
2164 out_unlock:
2165 	pte_unmap_unlock(pte, ptl);
2166 	return VM_FAULT_NOPAGE;
2167 }
2168 
2169 /**
2170  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2171  * @vma: user vma to map to
2172  * @addr: target user address of this page
2173  * @pfn: source kernel pfn
2174  * @pgprot: pgprot flags for the inserted page
2175  *
2176  * This is exactly like vmf_insert_pfn(), except that it allows drivers
2177  * to override pgprot on a per-page basis.
2178  *
2179  * This only makes sense for IO mappings, and it makes no sense for
2180  * COW mappings.  In general, using multiple vmas is preferable;
2181  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2182  * impractical.
2183  *
2184  * pgprot typically only differs from @vma->vm_page_prot when drivers set
2185  * caching- and encryption bits different than those of @vma->vm_page_prot,
2186  * because the caching- or encryption mode may not be known at mmap() time.
2187  *
2188  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2189  * to set caching and encryption bits for those vmas (except for COW pages).
2190  * This is ensured by core vm only modifying these page table entries using
2191  * functions that don't touch caching- or encryption bits, using pte_modify()
2192  * if needed. (See for example mprotect()).
2193  *
2194  * Also when new page-table entries are created, this is only done using the
2195  * fault() callback, and never using the value of vma->vm_page_prot,
2196  * except for page-table entries that point to anonymous pages as the result
2197  * of COW.
2198  *
2199  * Context: Process context.  May allocate using %GFP_KERNEL.
2200  * Return: vm_fault_t value.
2201  */
2202 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2203 			unsigned long pfn, pgprot_t pgprot)
2204 {
2205 	/*
2206 	 * Technically, architectures with pte_special can avoid all these
2207 	 * restrictions (same for remap_pfn_range).  However we would like
2208 	 * consistency in testing and feature parity among all, so we should
2209 	 * try to keep these invariants in place for everybody.
2210 	 */
2211 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2212 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2213 						(VM_PFNMAP|VM_MIXEDMAP));
2214 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2215 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2216 
2217 	if (addr < vma->vm_start || addr >= vma->vm_end)
2218 		return VM_FAULT_SIGBUS;
2219 
2220 	if (!pfn_modify_allowed(pfn, pgprot))
2221 		return VM_FAULT_SIGBUS;
2222 
2223 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2224 
2225 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2226 			false);
2227 }
2228 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2229 
2230 /**
2231  * vmf_insert_pfn - insert single pfn into user vma
2232  * @vma: user vma to map to
2233  * @addr: target user address of this page
2234  * @pfn: source kernel pfn
2235  *
2236  * Similar to vm_insert_page, this allows drivers to insert individual pages
2237  * they've allocated into a user vma. Same comments apply.
2238  *
2239  * This function should only be called from a vm_ops->fault handler, and
2240  * in that case the handler should return the result of this function.
2241  *
2242  * vma cannot be a COW mapping.
2243  *
2244  * As this is called only for pages that do not currently exist, we
2245  * do not need to flush old virtual caches or the TLB.
2246  *
2247  * Context: Process context.  May allocate using %GFP_KERNEL.
2248  * Return: vm_fault_t value.
2249  */
2250 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2251 			unsigned long pfn)
2252 {
2253 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2254 }
2255 EXPORT_SYMBOL(vmf_insert_pfn);
2256 
2257 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2258 {
2259 	/* these checks mirror the abort conditions in vm_normal_page */
2260 	if (vma->vm_flags & VM_MIXEDMAP)
2261 		return true;
2262 	if (pfn_t_devmap(pfn))
2263 		return true;
2264 	if (pfn_t_special(pfn))
2265 		return true;
2266 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2267 		return true;
2268 	return false;
2269 }
2270 
2271 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2272 		unsigned long addr, pfn_t pfn, bool mkwrite)
2273 {
2274 	pgprot_t pgprot = vma->vm_page_prot;
2275 	int err;
2276 
2277 	BUG_ON(!vm_mixed_ok(vma, pfn));
2278 
2279 	if (addr < vma->vm_start || addr >= vma->vm_end)
2280 		return VM_FAULT_SIGBUS;
2281 
2282 	track_pfn_insert(vma, &pgprot, pfn);
2283 
2284 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2285 		return VM_FAULT_SIGBUS;
2286 
2287 	/*
2288 	 * If we don't have pte special, then we have to use the pfn_valid()
2289 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2290 	 * refcount the page if pfn_valid is true (hence insert_page rather
2291 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2292 	 * without pte special, it would there be refcounted as a normal page.
2293 	 */
2294 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2295 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2296 		struct page *page;
2297 
2298 		/*
2299 		 * At this point we are committed to insert_page()
2300 		 * regardless of whether the caller specified flags that
2301 		 * result in pfn_t_has_page() == false.
2302 		 */
2303 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2304 		err = insert_page(vma, addr, page, pgprot);
2305 	} else {
2306 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2307 	}
2308 
2309 	if (err == -ENOMEM)
2310 		return VM_FAULT_OOM;
2311 	if (err < 0 && err != -EBUSY)
2312 		return VM_FAULT_SIGBUS;
2313 
2314 	return VM_FAULT_NOPAGE;
2315 }
2316 
2317 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2318 		pfn_t pfn)
2319 {
2320 	return __vm_insert_mixed(vma, addr, pfn, false);
2321 }
2322 EXPORT_SYMBOL(vmf_insert_mixed);
2323 
2324 /*
2325  *  If the insertion of PTE failed because someone else already added a
2326  *  different entry in the mean time, we treat that as success as we assume
2327  *  the same entry was actually inserted.
2328  */
2329 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2330 		unsigned long addr, pfn_t pfn)
2331 {
2332 	return __vm_insert_mixed(vma, addr, pfn, true);
2333 }
2334 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2335 
2336 /*
2337  * maps a range of physical memory into the requested pages. the old
2338  * mappings are removed. any references to nonexistent pages results
2339  * in null mappings (currently treated as "copy-on-access")
2340  */
2341 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2342 			unsigned long addr, unsigned long end,
2343 			unsigned long pfn, pgprot_t prot)
2344 {
2345 	pte_t *pte, *mapped_pte;
2346 	spinlock_t *ptl;
2347 	int err = 0;
2348 
2349 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2350 	if (!pte)
2351 		return -ENOMEM;
2352 	arch_enter_lazy_mmu_mode();
2353 	do {
2354 		BUG_ON(!pte_none(ptep_get(pte)));
2355 		if (!pfn_modify_allowed(pfn, prot)) {
2356 			err = -EACCES;
2357 			break;
2358 		}
2359 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2360 		pfn++;
2361 	} while (pte++, addr += PAGE_SIZE, addr != end);
2362 	arch_leave_lazy_mmu_mode();
2363 	pte_unmap_unlock(mapped_pte, ptl);
2364 	return err;
2365 }
2366 
2367 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2368 			unsigned long addr, unsigned long end,
2369 			unsigned long pfn, pgprot_t prot)
2370 {
2371 	pmd_t *pmd;
2372 	unsigned long next;
2373 	int err;
2374 
2375 	pfn -= addr >> PAGE_SHIFT;
2376 	pmd = pmd_alloc(mm, pud, addr);
2377 	if (!pmd)
2378 		return -ENOMEM;
2379 	VM_BUG_ON(pmd_trans_huge(*pmd));
2380 	do {
2381 		next = pmd_addr_end(addr, end);
2382 		err = remap_pte_range(mm, pmd, addr, next,
2383 				pfn + (addr >> PAGE_SHIFT), prot);
2384 		if (err)
2385 			return err;
2386 	} while (pmd++, addr = next, addr != end);
2387 	return 0;
2388 }
2389 
2390 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2391 			unsigned long addr, unsigned long end,
2392 			unsigned long pfn, pgprot_t prot)
2393 {
2394 	pud_t *pud;
2395 	unsigned long next;
2396 	int err;
2397 
2398 	pfn -= addr >> PAGE_SHIFT;
2399 	pud = pud_alloc(mm, p4d, addr);
2400 	if (!pud)
2401 		return -ENOMEM;
2402 	do {
2403 		next = pud_addr_end(addr, end);
2404 		err = remap_pmd_range(mm, pud, addr, next,
2405 				pfn + (addr >> PAGE_SHIFT), prot);
2406 		if (err)
2407 			return err;
2408 	} while (pud++, addr = next, addr != end);
2409 	return 0;
2410 }
2411 
2412 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2413 			unsigned long addr, unsigned long end,
2414 			unsigned long pfn, pgprot_t prot)
2415 {
2416 	p4d_t *p4d;
2417 	unsigned long next;
2418 	int err;
2419 
2420 	pfn -= addr >> PAGE_SHIFT;
2421 	p4d = p4d_alloc(mm, pgd, addr);
2422 	if (!p4d)
2423 		return -ENOMEM;
2424 	do {
2425 		next = p4d_addr_end(addr, end);
2426 		err = remap_pud_range(mm, p4d, addr, next,
2427 				pfn + (addr >> PAGE_SHIFT), prot);
2428 		if (err)
2429 			return err;
2430 	} while (p4d++, addr = next, addr != end);
2431 	return 0;
2432 }
2433 
2434 /*
2435  * Variant of remap_pfn_range that does not call track_pfn_remap.  The caller
2436  * must have pre-validated the caching bits of the pgprot_t.
2437  */
2438 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2439 		unsigned long pfn, unsigned long size, pgprot_t prot)
2440 {
2441 	pgd_t *pgd;
2442 	unsigned long next;
2443 	unsigned long end = addr + PAGE_ALIGN(size);
2444 	struct mm_struct *mm = vma->vm_mm;
2445 	int err;
2446 
2447 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2448 		return -EINVAL;
2449 
2450 	/*
2451 	 * Physically remapped pages are special. Tell the
2452 	 * rest of the world about it:
2453 	 *   VM_IO tells people not to look at these pages
2454 	 *	(accesses can have side effects).
2455 	 *   VM_PFNMAP tells the core MM that the base pages are just
2456 	 *	raw PFN mappings, and do not have a "struct page" associated
2457 	 *	with them.
2458 	 *   VM_DONTEXPAND
2459 	 *      Disable vma merging and expanding with mremap().
2460 	 *   VM_DONTDUMP
2461 	 *      Omit vma from core dump, even when VM_IO turned off.
2462 	 *
2463 	 * There's a horrible special case to handle copy-on-write
2464 	 * behaviour that some programs depend on. We mark the "original"
2465 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2466 	 * See vm_normal_page() for details.
2467 	 */
2468 	if (is_cow_mapping(vma->vm_flags)) {
2469 		if (addr != vma->vm_start || end != vma->vm_end)
2470 			return -EINVAL;
2471 		vma->vm_pgoff = pfn;
2472 	}
2473 
2474 	vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2475 
2476 	BUG_ON(addr >= end);
2477 	pfn -= addr >> PAGE_SHIFT;
2478 	pgd = pgd_offset(mm, addr);
2479 	flush_cache_range(vma, addr, end);
2480 	do {
2481 		next = pgd_addr_end(addr, end);
2482 		err = remap_p4d_range(mm, pgd, addr, next,
2483 				pfn + (addr >> PAGE_SHIFT), prot);
2484 		if (err)
2485 			return err;
2486 	} while (pgd++, addr = next, addr != end);
2487 
2488 	return 0;
2489 }
2490 
2491 /**
2492  * remap_pfn_range - remap kernel memory to userspace
2493  * @vma: user vma to map to
2494  * @addr: target page aligned user address to start at
2495  * @pfn: page frame number of kernel physical memory address
2496  * @size: size of mapping area
2497  * @prot: page protection flags for this mapping
2498  *
2499  * Note: this is only safe if the mm semaphore is held when called.
2500  *
2501  * Return: %0 on success, negative error code otherwise.
2502  */
2503 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2504 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2505 {
2506 	int err;
2507 
2508 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2509 	if (err)
2510 		return -EINVAL;
2511 
2512 	err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2513 	if (err)
2514 		untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2515 	return err;
2516 }
2517 EXPORT_SYMBOL(remap_pfn_range);
2518 
2519 /**
2520  * vm_iomap_memory - remap memory to userspace
2521  * @vma: user vma to map to
2522  * @start: start of the physical memory to be mapped
2523  * @len: size of area
2524  *
2525  * This is a simplified io_remap_pfn_range() for common driver use. The
2526  * driver just needs to give us the physical memory range to be mapped,
2527  * we'll figure out the rest from the vma information.
2528  *
2529  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2530  * whatever write-combining details or similar.
2531  *
2532  * Return: %0 on success, negative error code otherwise.
2533  */
2534 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2535 {
2536 	unsigned long vm_len, pfn, pages;
2537 
2538 	/* Check that the physical memory area passed in looks valid */
2539 	if (start + len < start)
2540 		return -EINVAL;
2541 	/*
2542 	 * You *really* shouldn't map things that aren't page-aligned,
2543 	 * but we've historically allowed it because IO memory might
2544 	 * just have smaller alignment.
2545 	 */
2546 	len += start & ~PAGE_MASK;
2547 	pfn = start >> PAGE_SHIFT;
2548 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2549 	if (pfn + pages < pfn)
2550 		return -EINVAL;
2551 
2552 	/* We start the mapping 'vm_pgoff' pages into the area */
2553 	if (vma->vm_pgoff > pages)
2554 		return -EINVAL;
2555 	pfn += vma->vm_pgoff;
2556 	pages -= vma->vm_pgoff;
2557 
2558 	/* Can we fit all of the mapping? */
2559 	vm_len = vma->vm_end - vma->vm_start;
2560 	if (vm_len >> PAGE_SHIFT > pages)
2561 		return -EINVAL;
2562 
2563 	/* Ok, let it rip */
2564 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2565 }
2566 EXPORT_SYMBOL(vm_iomap_memory);
2567 
2568 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2569 				     unsigned long addr, unsigned long end,
2570 				     pte_fn_t fn, void *data, bool create,
2571 				     pgtbl_mod_mask *mask)
2572 {
2573 	pte_t *pte, *mapped_pte;
2574 	int err = 0;
2575 	spinlock_t *ptl;
2576 
2577 	if (create) {
2578 		mapped_pte = pte = (mm == &init_mm) ?
2579 			pte_alloc_kernel_track(pmd, addr, mask) :
2580 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2581 		if (!pte)
2582 			return -ENOMEM;
2583 	} else {
2584 		mapped_pte = pte = (mm == &init_mm) ?
2585 			pte_offset_kernel(pmd, addr) :
2586 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2587 		if (!pte)
2588 			return -EINVAL;
2589 	}
2590 
2591 	arch_enter_lazy_mmu_mode();
2592 
2593 	if (fn) {
2594 		do {
2595 			if (create || !pte_none(ptep_get(pte))) {
2596 				err = fn(pte++, addr, data);
2597 				if (err)
2598 					break;
2599 			}
2600 		} while (addr += PAGE_SIZE, addr != end);
2601 	}
2602 	*mask |= PGTBL_PTE_MODIFIED;
2603 
2604 	arch_leave_lazy_mmu_mode();
2605 
2606 	if (mm != &init_mm)
2607 		pte_unmap_unlock(mapped_pte, ptl);
2608 	return err;
2609 }
2610 
2611 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2612 				     unsigned long addr, unsigned long end,
2613 				     pte_fn_t fn, void *data, bool create,
2614 				     pgtbl_mod_mask *mask)
2615 {
2616 	pmd_t *pmd;
2617 	unsigned long next;
2618 	int err = 0;
2619 
2620 	BUG_ON(pud_huge(*pud));
2621 
2622 	if (create) {
2623 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2624 		if (!pmd)
2625 			return -ENOMEM;
2626 	} else {
2627 		pmd = pmd_offset(pud, addr);
2628 	}
2629 	do {
2630 		next = pmd_addr_end(addr, end);
2631 		if (pmd_none(*pmd) && !create)
2632 			continue;
2633 		if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2634 			return -EINVAL;
2635 		if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2636 			if (!create)
2637 				continue;
2638 			pmd_clear_bad(pmd);
2639 		}
2640 		err = apply_to_pte_range(mm, pmd, addr, next,
2641 					 fn, data, create, mask);
2642 		if (err)
2643 			break;
2644 	} while (pmd++, addr = next, addr != end);
2645 
2646 	return err;
2647 }
2648 
2649 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2650 				     unsigned long addr, unsigned long end,
2651 				     pte_fn_t fn, void *data, bool create,
2652 				     pgtbl_mod_mask *mask)
2653 {
2654 	pud_t *pud;
2655 	unsigned long next;
2656 	int err = 0;
2657 
2658 	if (create) {
2659 		pud = pud_alloc_track(mm, p4d, addr, mask);
2660 		if (!pud)
2661 			return -ENOMEM;
2662 	} else {
2663 		pud = pud_offset(p4d, addr);
2664 	}
2665 	do {
2666 		next = pud_addr_end(addr, end);
2667 		if (pud_none(*pud) && !create)
2668 			continue;
2669 		if (WARN_ON_ONCE(pud_leaf(*pud)))
2670 			return -EINVAL;
2671 		if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2672 			if (!create)
2673 				continue;
2674 			pud_clear_bad(pud);
2675 		}
2676 		err = apply_to_pmd_range(mm, pud, addr, next,
2677 					 fn, data, create, mask);
2678 		if (err)
2679 			break;
2680 	} while (pud++, addr = next, addr != end);
2681 
2682 	return err;
2683 }
2684 
2685 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2686 				     unsigned long addr, unsigned long end,
2687 				     pte_fn_t fn, void *data, bool create,
2688 				     pgtbl_mod_mask *mask)
2689 {
2690 	p4d_t *p4d;
2691 	unsigned long next;
2692 	int err = 0;
2693 
2694 	if (create) {
2695 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2696 		if (!p4d)
2697 			return -ENOMEM;
2698 	} else {
2699 		p4d = p4d_offset(pgd, addr);
2700 	}
2701 	do {
2702 		next = p4d_addr_end(addr, end);
2703 		if (p4d_none(*p4d) && !create)
2704 			continue;
2705 		if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2706 			return -EINVAL;
2707 		if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2708 			if (!create)
2709 				continue;
2710 			p4d_clear_bad(p4d);
2711 		}
2712 		err = apply_to_pud_range(mm, p4d, addr, next,
2713 					 fn, data, create, mask);
2714 		if (err)
2715 			break;
2716 	} while (p4d++, addr = next, addr != end);
2717 
2718 	return err;
2719 }
2720 
2721 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2722 				 unsigned long size, pte_fn_t fn,
2723 				 void *data, bool create)
2724 {
2725 	pgd_t *pgd;
2726 	unsigned long start = addr, next;
2727 	unsigned long end = addr + size;
2728 	pgtbl_mod_mask mask = 0;
2729 	int err = 0;
2730 
2731 	if (WARN_ON(addr >= end))
2732 		return -EINVAL;
2733 
2734 	pgd = pgd_offset(mm, addr);
2735 	do {
2736 		next = pgd_addr_end(addr, end);
2737 		if (pgd_none(*pgd) && !create)
2738 			continue;
2739 		if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2740 			return -EINVAL;
2741 		if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2742 			if (!create)
2743 				continue;
2744 			pgd_clear_bad(pgd);
2745 		}
2746 		err = apply_to_p4d_range(mm, pgd, addr, next,
2747 					 fn, data, create, &mask);
2748 		if (err)
2749 			break;
2750 	} while (pgd++, addr = next, addr != end);
2751 
2752 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2753 		arch_sync_kernel_mappings(start, start + size);
2754 
2755 	return err;
2756 }
2757 
2758 /*
2759  * Scan a region of virtual memory, filling in page tables as necessary
2760  * and calling a provided function on each leaf page table.
2761  */
2762 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2763 			unsigned long size, pte_fn_t fn, void *data)
2764 {
2765 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2766 }
2767 EXPORT_SYMBOL_GPL(apply_to_page_range);
2768 
2769 /*
2770  * Scan a region of virtual memory, calling a provided function on
2771  * each leaf page table where it exists.
2772  *
2773  * Unlike apply_to_page_range, this does _not_ fill in page tables
2774  * where they are absent.
2775  */
2776 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2777 				 unsigned long size, pte_fn_t fn, void *data)
2778 {
2779 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2780 }
2781 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2782 
2783 /*
2784  * handle_pte_fault chooses page fault handler according to an entry which was
2785  * read non-atomically.  Before making any commitment, on those architectures
2786  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2787  * parts, do_swap_page must check under lock before unmapping the pte and
2788  * proceeding (but do_wp_page is only called after already making such a check;
2789  * and do_anonymous_page can safely check later on).
2790  */
2791 static inline int pte_unmap_same(struct vm_fault *vmf)
2792 {
2793 	int same = 1;
2794 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2795 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2796 		spin_lock(vmf->ptl);
2797 		same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2798 		spin_unlock(vmf->ptl);
2799 	}
2800 #endif
2801 	pte_unmap(vmf->pte);
2802 	vmf->pte = NULL;
2803 	return same;
2804 }
2805 
2806 /*
2807  * Return:
2808  *	0:		copied succeeded
2809  *	-EHWPOISON:	copy failed due to hwpoison in source page
2810  *	-EAGAIN:	copied failed (some other reason)
2811  */
2812 static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2813 				      struct vm_fault *vmf)
2814 {
2815 	int ret;
2816 	void *kaddr;
2817 	void __user *uaddr;
2818 	struct vm_area_struct *vma = vmf->vma;
2819 	struct mm_struct *mm = vma->vm_mm;
2820 	unsigned long addr = vmf->address;
2821 
2822 	if (likely(src)) {
2823 		if (copy_mc_user_highpage(dst, src, addr, vma)) {
2824 			memory_failure_queue(page_to_pfn(src), 0);
2825 			return -EHWPOISON;
2826 		}
2827 		return 0;
2828 	}
2829 
2830 	/*
2831 	 * If the source page was a PFN mapping, we don't have
2832 	 * a "struct page" for it. We do a best-effort copy by
2833 	 * just copying from the original user address. If that
2834 	 * fails, we just zero-fill it. Live with it.
2835 	 */
2836 	kaddr = kmap_atomic(dst);
2837 	uaddr = (void __user *)(addr & PAGE_MASK);
2838 
2839 	/*
2840 	 * On architectures with software "accessed" bits, we would
2841 	 * take a double page fault, so mark it accessed here.
2842 	 */
2843 	vmf->pte = NULL;
2844 	if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2845 		pte_t entry;
2846 
2847 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2848 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2849 			/*
2850 			 * Other thread has already handled the fault
2851 			 * and update local tlb only
2852 			 */
2853 			if (vmf->pte)
2854 				update_mmu_tlb(vma, addr, vmf->pte);
2855 			ret = -EAGAIN;
2856 			goto pte_unlock;
2857 		}
2858 
2859 		entry = pte_mkyoung(vmf->orig_pte);
2860 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2861 			update_mmu_cache(vma, addr, vmf->pte);
2862 	}
2863 
2864 	/*
2865 	 * This really shouldn't fail, because the page is there
2866 	 * in the page tables. But it might just be unreadable,
2867 	 * in which case we just give up and fill the result with
2868 	 * zeroes.
2869 	 */
2870 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2871 		if (vmf->pte)
2872 			goto warn;
2873 
2874 		/* Re-validate under PTL if the page is still mapped */
2875 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2876 		if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2877 			/* The PTE changed under us, update local tlb */
2878 			if (vmf->pte)
2879 				update_mmu_tlb(vma, addr, vmf->pte);
2880 			ret = -EAGAIN;
2881 			goto pte_unlock;
2882 		}
2883 
2884 		/*
2885 		 * The same page can be mapped back since last copy attempt.
2886 		 * Try to copy again under PTL.
2887 		 */
2888 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2889 			/*
2890 			 * Give a warn in case there can be some obscure
2891 			 * use-case
2892 			 */
2893 warn:
2894 			WARN_ON_ONCE(1);
2895 			clear_page(kaddr);
2896 		}
2897 	}
2898 
2899 	ret = 0;
2900 
2901 pte_unlock:
2902 	if (vmf->pte)
2903 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2904 	kunmap_atomic(kaddr);
2905 	flush_dcache_page(dst);
2906 
2907 	return ret;
2908 }
2909 
2910 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2911 {
2912 	struct file *vm_file = vma->vm_file;
2913 
2914 	if (vm_file)
2915 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2916 
2917 	/*
2918 	 * Special mappings (e.g. VDSO) do not have any file so fake
2919 	 * a default GFP_KERNEL for them.
2920 	 */
2921 	return GFP_KERNEL;
2922 }
2923 
2924 /*
2925  * Notify the address space that the page is about to become writable so that
2926  * it can prohibit this or wait for the page to get into an appropriate state.
2927  *
2928  * We do this without the lock held, so that it can sleep if it needs to.
2929  */
2930 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2931 {
2932 	vm_fault_t ret;
2933 	struct page *page = vmf->page;
2934 	unsigned int old_flags = vmf->flags;
2935 
2936 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2937 
2938 	if (vmf->vma->vm_file &&
2939 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2940 		return VM_FAULT_SIGBUS;
2941 
2942 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2943 	/* Restore original flags so that caller is not surprised */
2944 	vmf->flags = old_flags;
2945 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2946 		return ret;
2947 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2948 		lock_page(page);
2949 		if (!page->mapping) {
2950 			unlock_page(page);
2951 			return 0; /* retry */
2952 		}
2953 		ret |= VM_FAULT_LOCKED;
2954 	} else
2955 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2956 	return ret;
2957 }
2958 
2959 /*
2960  * Handle dirtying of a page in shared file mapping on a write fault.
2961  *
2962  * The function expects the page to be locked and unlocks it.
2963  */
2964 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2965 {
2966 	struct vm_area_struct *vma = vmf->vma;
2967 	struct address_space *mapping;
2968 	struct page *page = vmf->page;
2969 	bool dirtied;
2970 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2971 
2972 	dirtied = set_page_dirty(page);
2973 	VM_BUG_ON_PAGE(PageAnon(page), page);
2974 	/*
2975 	 * Take a local copy of the address_space - page.mapping may be zeroed
2976 	 * by truncate after unlock_page().   The address_space itself remains
2977 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2978 	 * release semantics to prevent the compiler from undoing this copying.
2979 	 */
2980 	mapping = page_rmapping(page);
2981 	unlock_page(page);
2982 
2983 	if (!page_mkwrite)
2984 		file_update_time(vma->vm_file);
2985 
2986 	/*
2987 	 * Throttle page dirtying rate down to writeback speed.
2988 	 *
2989 	 * mapping may be NULL here because some device drivers do not
2990 	 * set page.mapping but still dirty their pages
2991 	 *
2992 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2993 	 * is pinning the mapping, as per above.
2994 	 */
2995 	if ((dirtied || page_mkwrite) && mapping) {
2996 		struct file *fpin;
2997 
2998 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2999 		balance_dirty_pages_ratelimited(mapping);
3000 		if (fpin) {
3001 			fput(fpin);
3002 			return VM_FAULT_COMPLETED;
3003 		}
3004 	}
3005 
3006 	return 0;
3007 }
3008 
3009 /*
3010  * Handle write page faults for pages that can be reused in the current vma
3011  *
3012  * This can happen either due to the mapping being with the VM_SHARED flag,
3013  * or due to us being the last reference standing to the page. In either
3014  * case, all we need to do here is to mark the page as writable and update
3015  * any related book-keeping.
3016  */
3017 static inline void wp_page_reuse(struct vm_fault *vmf)
3018 	__releases(vmf->ptl)
3019 {
3020 	struct vm_area_struct *vma = vmf->vma;
3021 	struct page *page = vmf->page;
3022 	pte_t entry;
3023 
3024 	VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3025 	VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3026 
3027 	/*
3028 	 * Clear the pages cpupid information as the existing
3029 	 * information potentially belongs to a now completely
3030 	 * unrelated process.
3031 	 */
3032 	if (page)
3033 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3034 
3035 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3036 	entry = pte_mkyoung(vmf->orig_pte);
3037 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3038 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3039 		update_mmu_cache(vma, vmf->address, vmf->pte);
3040 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3041 	count_vm_event(PGREUSE);
3042 }
3043 
3044 /*
3045  * Handle the case of a page which we actually need to copy to a new page,
3046  * either due to COW or unsharing.
3047  *
3048  * Called with mmap_lock locked and the old page referenced, but
3049  * without the ptl held.
3050  *
3051  * High level logic flow:
3052  *
3053  * - Allocate a page, copy the content of the old page to the new one.
3054  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3055  * - Take the PTL. If the pte changed, bail out and release the allocated page
3056  * - If the pte is still the way we remember it, update the page table and all
3057  *   relevant references. This includes dropping the reference the page-table
3058  *   held to the old page, as well as updating the rmap.
3059  * - In any case, unlock the PTL and drop the reference we took to the old page.
3060  */
3061 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3062 {
3063 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3064 	struct vm_area_struct *vma = vmf->vma;
3065 	struct mm_struct *mm = vma->vm_mm;
3066 	struct folio *old_folio = NULL;
3067 	struct folio *new_folio = NULL;
3068 	pte_t entry;
3069 	int page_copied = 0;
3070 	struct mmu_notifier_range range;
3071 	int ret;
3072 
3073 	delayacct_wpcopy_start();
3074 
3075 	if (vmf->page)
3076 		old_folio = page_folio(vmf->page);
3077 	if (unlikely(anon_vma_prepare(vma)))
3078 		goto oom;
3079 
3080 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3081 		new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3082 		if (!new_folio)
3083 			goto oom;
3084 	} else {
3085 		new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3086 				vmf->address, false);
3087 		if (!new_folio)
3088 			goto oom;
3089 
3090 		ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3091 		if (ret) {
3092 			/*
3093 			 * COW failed, if the fault was solved by other,
3094 			 * it's fine. If not, userspace would re-fault on
3095 			 * the same address and we will handle the fault
3096 			 * from the second attempt.
3097 			 * The -EHWPOISON case will not be retried.
3098 			 */
3099 			folio_put(new_folio);
3100 			if (old_folio)
3101 				folio_put(old_folio);
3102 
3103 			delayacct_wpcopy_end();
3104 			return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3105 		}
3106 		kmsan_copy_page_meta(&new_folio->page, vmf->page);
3107 	}
3108 
3109 	if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3110 		goto oom_free_new;
3111 	folio_throttle_swaprate(new_folio, GFP_KERNEL);
3112 
3113 	__folio_mark_uptodate(new_folio);
3114 
3115 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3116 				vmf->address & PAGE_MASK,
3117 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
3118 	mmu_notifier_invalidate_range_start(&range);
3119 
3120 	/*
3121 	 * Re-check the pte - we dropped the lock
3122 	 */
3123 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3124 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3125 		if (old_folio) {
3126 			if (!folio_test_anon(old_folio)) {
3127 				dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3128 				inc_mm_counter(mm, MM_ANONPAGES);
3129 			}
3130 		} else {
3131 			inc_mm_counter(mm, MM_ANONPAGES);
3132 		}
3133 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3134 		entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3135 		entry = pte_sw_mkyoung(entry);
3136 		if (unlikely(unshare)) {
3137 			if (pte_soft_dirty(vmf->orig_pte))
3138 				entry = pte_mksoft_dirty(entry);
3139 			if (pte_uffd_wp(vmf->orig_pte))
3140 				entry = pte_mkuffd_wp(entry);
3141 		} else {
3142 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3143 		}
3144 
3145 		/*
3146 		 * Clear the pte entry and flush it first, before updating the
3147 		 * pte with the new entry, to keep TLBs on different CPUs in
3148 		 * sync. This code used to set the new PTE then flush TLBs, but
3149 		 * that left a window where the new PTE could be loaded into
3150 		 * some TLBs while the old PTE remains in others.
3151 		 */
3152 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3153 		folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3154 		folio_add_lru_vma(new_folio, vma);
3155 		/*
3156 		 * We call the notify macro here because, when using secondary
3157 		 * mmu page tables (such as kvm shadow page tables), we want the
3158 		 * new page to be mapped directly into the secondary page table.
3159 		 */
3160 		BUG_ON(unshare && pte_write(entry));
3161 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3162 		update_mmu_cache(vma, vmf->address, vmf->pte);
3163 		if (old_folio) {
3164 			/*
3165 			 * Only after switching the pte to the new page may
3166 			 * we remove the mapcount here. Otherwise another
3167 			 * process may come and find the rmap count decremented
3168 			 * before the pte is switched to the new page, and
3169 			 * "reuse" the old page writing into it while our pte
3170 			 * here still points into it and can be read by other
3171 			 * threads.
3172 			 *
3173 			 * The critical issue is to order this
3174 			 * page_remove_rmap with the ptp_clear_flush above.
3175 			 * Those stores are ordered by (if nothing else,)
3176 			 * the barrier present in the atomic_add_negative
3177 			 * in page_remove_rmap.
3178 			 *
3179 			 * Then the TLB flush in ptep_clear_flush ensures that
3180 			 * no process can access the old page before the
3181 			 * decremented mapcount is visible. And the old page
3182 			 * cannot be reused until after the decremented
3183 			 * mapcount is visible. So transitively, TLBs to
3184 			 * old page will be flushed before it can be reused.
3185 			 */
3186 			page_remove_rmap(vmf->page, vma, false);
3187 		}
3188 
3189 		/* Free the old page.. */
3190 		new_folio = old_folio;
3191 		page_copied = 1;
3192 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3193 	} else if (vmf->pte) {
3194 		update_mmu_tlb(vma, vmf->address, vmf->pte);
3195 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3196 	}
3197 
3198 	/*
3199 	 * No need to double call mmu_notifier->invalidate_range() callback as
3200 	 * the above ptep_clear_flush_notify() did already call it.
3201 	 */
3202 	mmu_notifier_invalidate_range_only_end(&range);
3203 
3204 	if (new_folio)
3205 		folio_put(new_folio);
3206 	if (old_folio) {
3207 		if (page_copied)
3208 			free_swap_cache(&old_folio->page);
3209 		folio_put(old_folio);
3210 	}
3211 
3212 	delayacct_wpcopy_end();
3213 	return 0;
3214 oom_free_new:
3215 	folio_put(new_folio);
3216 oom:
3217 	if (old_folio)
3218 		folio_put(old_folio);
3219 
3220 	delayacct_wpcopy_end();
3221 	return VM_FAULT_OOM;
3222 }
3223 
3224 /**
3225  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3226  *			  writeable once the page is prepared
3227  *
3228  * @vmf: structure describing the fault
3229  *
3230  * This function handles all that is needed to finish a write page fault in a
3231  * shared mapping due to PTE being read-only once the mapped page is prepared.
3232  * It handles locking of PTE and modifying it.
3233  *
3234  * The function expects the page to be locked or other protection against
3235  * concurrent faults / writeback (such as DAX radix tree locks).
3236  *
3237  * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3238  * we acquired PTE lock.
3239  */
3240 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3241 {
3242 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3243 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3244 				       &vmf->ptl);
3245 	if (!vmf->pte)
3246 		return VM_FAULT_NOPAGE;
3247 	/*
3248 	 * We might have raced with another page fault while we released the
3249 	 * pte_offset_map_lock.
3250 	 */
3251 	if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3252 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3253 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3254 		return VM_FAULT_NOPAGE;
3255 	}
3256 	wp_page_reuse(vmf);
3257 	return 0;
3258 }
3259 
3260 /*
3261  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3262  * mapping
3263  */
3264 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3265 {
3266 	struct vm_area_struct *vma = vmf->vma;
3267 
3268 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3269 		vm_fault_t ret;
3270 
3271 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3272 		vmf->flags |= FAULT_FLAG_MKWRITE;
3273 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3274 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3275 			return ret;
3276 		return finish_mkwrite_fault(vmf);
3277 	}
3278 	wp_page_reuse(vmf);
3279 	return 0;
3280 }
3281 
3282 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3283 	__releases(vmf->ptl)
3284 {
3285 	struct vm_area_struct *vma = vmf->vma;
3286 	vm_fault_t ret = 0;
3287 
3288 	get_page(vmf->page);
3289 
3290 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3291 		vm_fault_t tmp;
3292 
3293 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3294 		tmp = do_page_mkwrite(vmf);
3295 		if (unlikely(!tmp || (tmp &
3296 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3297 			put_page(vmf->page);
3298 			return tmp;
3299 		}
3300 		tmp = finish_mkwrite_fault(vmf);
3301 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3302 			unlock_page(vmf->page);
3303 			put_page(vmf->page);
3304 			return tmp;
3305 		}
3306 	} else {
3307 		wp_page_reuse(vmf);
3308 		lock_page(vmf->page);
3309 	}
3310 	ret |= fault_dirty_shared_page(vmf);
3311 	put_page(vmf->page);
3312 
3313 	return ret;
3314 }
3315 
3316 /*
3317  * This routine handles present pages, when
3318  * * users try to write to a shared page (FAULT_FLAG_WRITE)
3319  * * GUP wants to take a R/O pin on a possibly shared anonymous page
3320  *   (FAULT_FLAG_UNSHARE)
3321  *
3322  * It is done by copying the page to a new address and decrementing the
3323  * shared-page counter for the old page.
3324  *
3325  * Note that this routine assumes that the protection checks have been
3326  * done by the caller (the low-level page fault routine in most cases).
3327  * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3328  * done any necessary COW.
3329  *
3330  * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3331  * though the page will change only once the write actually happens. This
3332  * avoids a few races, and potentially makes it more efficient.
3333  *
3334  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3335  * but allow concurrent faults), with pte both mapped and locked.
3336  * We return with mmap_lock still held, but pte unmapped and unlocked.
3337  */
3338 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3339 	__releases(vmf->ptl)
3340 {
3341 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3342 	struct vm_area_struct *vma = vmf->vma;
3343 	struct folio *folio = NULL;
3344 
3345 	if (likely(!unshare)) {
3346 		if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3347 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3348 			return handle_userfault(vmf, VM_UFFD_WP);
3349 		}
3350 
3351 		/*
3352 		 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3353 		 * is flushed in this case before copying.
3354 		 */
3355 		if (unlikely(userfaultfd_wp(vmf->vma) &&
3356 			     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3357 			flush_tlb_page(vmf->vma, vmf->address);
3358 	}
3359 
3360 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3361 
3362 	/*
3363 	 * Shared mapping: we are guaranteed to have VM_WRITE and
3364 	 * FAULT_FLAG_WRITE set at this point.
3365 	 */
3366 	if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3367 		/*
3368 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3369 		 * VM_PFNMAP VMA.
3370 		 *
3371 		 * We should not cow pages in a shared writeable mapping.
3372 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3373 		 */
3374 		if (!vmf->page)
3375 			return wp_pfn_shared(vmf);
3376 		return wp_page_shared(vmf);
3377 	}
3378 
3379 	if (vmf->page)
3380 		folio = page_folio(vmf->page);
3381 
3382 	/*
3383 	 * Private mapping: create an exclusive anonymous page copy if reuse
3384 	 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3385 	 */
3386 	if (folio && folio_test_anon(folio)) {
3387 		/*
3388 		 * If the page is exclusive to this process we must reuse the
3389 		 * page without further checks.
3390 		 */
3391 		if (PageAnonExclusive(vmf->page))
3392 			goto reuse;
3393 
3394 		/*
3395 		 * We have to verify under folio lock: these early checks are
3396 		 * just an optimization to avoid locking the folio and freeing
3397 		 * the swapcache if there is little hope that we can reuse.
3398 		 *
3399 		 * KSM doesn't necessarily raise the folio refcount.
3400 		 */
3401 		if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3402 			goto copy;
3403 		if (!folio_test_lru(folio))
3404 			/*
3405 			 * We cannot easily detect+handle references from
3406 			 * remote LRU caches or references to LRU folios.
3407 			 */
3408 			lru_add_drain();
3409 		if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3410 			goto copy;
3411 		if (!folio_trylock(folio))
3412 			goto copy;
3413 		if (folio_test_swapcache(folio))
3414 			folio_free_swap(folio);
3415 		if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3416 			folio_unlock(folio);
3417 			goto copy;
3418 		}
3419 		/*
3420 		 * Ok, we've got the only folio reference from our mapping
3421 		 * and the folio is locked, it's dark out, and we're wearing
3422 		 * sunglasses. Hit it.
3423 		 */
3424 		page_move_anon_rmap(vmf->page, vma);
3425 		folio_unlock(folio);
3426 reuse:
3427 		if (unlikely(unshare)) {
3428 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3429 			return 0;
3430 		}
3431 		wp_page_reuse(vmf);
3432 		return 0;
3433 	}
3434 copy:
3435 	/*
3436 	 * Ok, we need to copy. Oh, well..
3437 	 */
3438 	if (folio)
3439 		folio_get(folio);
3440 
3441 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3442 #ifdef CONFIG_KSM
3443 	if (folio && folio_test_ksm(folio))
3444 		count_vm_event(COW_KSM);
3445 #endif
3446 	return wp_page_copy(vmf);
3447 }
3448 
3449 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3450 		unsigned long start_addr, unsigned long end_addr,
3451 		struct zap_details *details)
3452 {
3453 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3454 }
3455 
3456 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3457 					    pgoff_t first_index,
3458 					    pgoff_t last_index,
3459 					    struct zap_details *details)
3460 {
3461 	struct vm_area_struct *vma;
3462 	pgoff_t vba, vea, zba, zea;
3463 
3464 	vma_interval_tree_foreach(vma, root, first_index, last_index) {
3465 		vba = vma->vm_pgoff;
3466 		vea = vba + vma_pages(vma) - 1;
3467 		zba = max(first_index, vba);
3468 		zea = min(last_index, vea);
3469 
3470 		unmap_mapping_range_vma(vma,
3471 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3472 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3473 				details);
3474 	}
3475 }
3476 
3477 /**
3478  * unmap_mapping_folio() - Unmap single folio from processes.
3479  * @folio: The locked folio to be unmapped.
3480  *
3481  * Unmap this folio from any userspace process which still has it mmaped.
3482  * Typically, for efficiency, the range of nearby pages has already been
3483  * unmapped by unmap_mapping_pages() or unmap_mapping_range().  But once
3484  * truncation or invalidation holds the lock on a folio, it may find that
3485  * the page has been remapped again: and then uses unmap_mapping_folio()
3486  * to unmap it finally.
3487  */
3488 void unmap_mapping_folio(struct folio *folio)
3489 {
3490 	struct address_space *mapping = folio->mapping;
3491 	struct zap_details details = { };
3492 	pgoff_t	first_index;
3493 	pgoff_t	last_index;
3494 
3495 	VM_BUG_ON(!folio_test_locked(folio));
3496 
3497 	first_index = folio->index;
3498 	last_index = folio->index + folio_nr_pages(folio) - 1;
3499 
3500 	details.even_cows = false;
3501 	details.single_folio = folio;
3502 	details.zap_flags = ZAP_FLAG_DROP_MARKER;
3503 
3504 	i_mmap_lock_read(mapping);
3505 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3506 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3507 					 last_index, &details);
3508 	i_mmap_unlock_read(mapping);
3509 }
3510 
3511 /**
3512  * unmap_mapping_pages() - Unmap pages from processes.
3513  * @mapping: The address space containing pages to be unmapped.
3514  * @start: Index of first page to be unmapped.
3515  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3516  * @even_cows: Whether to unmap even private COWed pages.
3517  *
3518  * Unmap the pages in this address space from any userspace process which
3519  * has them mmaped.  Generally, you want to remove COWed pages as well when
3520  * a file is being truncated, but not when invalidating pages from the page
3521  * cache.
3522  */
3523 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3524 		pgoff_t nr, bool even_cows)
3525 {
3526 	struct zap_details details = { };
3527 	pgoff_t	first_index = start;
3528 	pgoff_t	last_index = start + nr - 1;
3529 
3530 	details.even_cows = even_cows;
3531 	if (last_index < first_index)
3532 		last_index = ULONG_MAX;
3533 
3534 	i_mmap_lock_read(mapping);
3535 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3536 		unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3537 					 last_index, &details);
3538 	i_mmap_unlock_read(mapping);
3539 }
3540 EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3541 
3542 /**
3543  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3544  * address_space corresponding to the specified byte range in the underlying
3545  * file.
3546  *
3547  * @mapping: the address space containing mmaps to be unmapped.
3548  * @holebegin: byte in first page to unmap, relative to the start of
3549  * the underlying file.  This will be rounded down to a PAGE_SIZE
3550  * boundary.  Note that this is different from truncate_pagecache(), which
3551  * must keep the partial page.  In contrast, we must get rid of
3552  * partial pages.
3553  * @holelen: size of prospective hole in bytes.  This will be rounded
3554  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3555  * end of the file.
3556  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3557  * but 0 when invalidating pagecache, don't throw away private data.
3558  */
3559 void unmap_mapping_range(struct address_space *mapping,
3560 		loff_t const holebegin, loff_t const holelen, int even_cows)
3561 {
3562 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3563 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3564 
3565 	/* Check for overflow. */
3566 	if (sizeof(holelen) > sizeof(hlen)) {
3567 		long long holeend =
3568 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3569 		if (holeend & ~(long long)ULONG_MAX)
3570 			hlen = ULONG_MAX - hba + 1;
3571 	}
3572 
3573 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3574 }
3575 EXPORT_SYMBOL(unmap_mapping_range);
3576 
3577 /*
3578  * Restore a potential device exclusive pte to a working pte entry
3579  */
3580 static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3581 {
3582 	struct folio *folio = page_folio(vmf->page);
3583 	struct vm_area_struct *vma = vmf->vma;
3584 	struct mmu_notifier_range range;
3585 
3586 	/*
3587 	 * We need a reference to lock the folio because we don't hold
3588 	 * the PTL so a racing thread can remove the device-exclusive
3589 	 * entry and unmap it. If the folio is free the entry must
3590 	 * have been removed already. If it happens to have already
3591 	 * been re-allocated after being freed all we do is lock and
3592 	 * unlock it.
3593 	 */
3594 	if (!folio_try_get(folio))
3595 		return 0;
3596 
3597 	if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3598 		folio_put(folio);
3599 		return VM_FAULT_RETRY;
3600 	}
3601 	mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3602 				vma->vm_mm, vmf->address & PAGE_MASK,
3603 				(vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3604 	mmu_notifier_invalidate_range_start(&range);
3605 
3606 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3607 				&vmf->ptl);
3608 	if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3609 		restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3610 
3611 	if (vmf->pte)
3612 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3613 	folio_unlock(folio);
3614 	folio_put(folio);
3615 
3616 	mmu_notifier_invalidate_range_end(&range);
3617 	return 0;
3618 }
3619 
3620 static inline bool should_try_to_free_swap(struct folio *folio,
3621 					   struct vm_area_struct *vma,
3622 					   unsigned int fault_flags)
3623 {
3624 	if (!folio_test_swapcache(folio))
3625 		return false;
3626 	if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3627 	    folio_test_mlocked(folio))
3628 		return true;
3629 	/*
3630 	 * If we want to map a page that's in the swapcache writable, we
3631 	 * have to detect via the refcount if we're really the exclusive
3632 	 * user. Try freeing the swapcache to get rid of the swapcache
3633 	 * reference only in case it's likely that we'll be the exlusive user.
3634 	 */
3635 	return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3636 		folio_ref_count(folio) == 2;
3637 }
3638 
3639 static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3640 {
3641 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3642 				       vmf->address, &vmf->ptl);
3643 	if (!vmf->pte)
3644 		return 0;
3645 	/*
3646 	 * Be careful so that we will only recover a special uffd-wp pte into a
3647 	 * none pte.  Otherwise it means the pte could have changed, so retry.
3648 	 *
3649 	 * This should also cover the case where e.g. the pte changed
3650 	 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3651 	 * So is_pte_marker() check is not enough to safely drop the pte.
3652 	 */
3653 	if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3654 		pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3655 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3656 	return 0;
3657 }
3658 
3659 static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3660 {
3661 	if (vma_is_anonymous(vmf->vma))
3662 		return do_anonymous_page(vmf);
3663 	else
3664 		return do_fault(vmf);
3665 }
3666 
3667 /*
3668  * This is actually a page-missing access, but with uffd-wp special pte
3669  * installed.  It means this pte was wr-protected before being unmapped.
3670  */
3671 static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3672 {
3673 	/*
3674 	 * Just in case there're leftover special ptes even after the region
3675 	 * got unregistered - we can simply clear them.
3676 	 */
3677 	if (unlikely(!userfaultfd_wp(vmf->vma)))
3678 		return pte_marker_clear(vmf);
3679 
3680 	return do_pte_missing(vmf);
3681 }
3682 
3683 static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3684 {
3685 	swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3686 	unsigned long marker = pte_marker_get(entry);
3687 
3688 	/*
3689 	 * PTE markers should never be empty.  If anything weird happened,
3690 	 * the best thing to do is to kill the process along with its mm.
3691 	 */
3692 	if (WARN_ON_ONCE(!marker))
3693 		return VM_FAULT_SIGBUS;
3694 
3695 	/* Higher priority than uffd-wp when data corrupted */
3696 	if (marker & PTE_MARKER_SWAPIN_ERROR)
3697 		return VM_FAULT_SIGBUS;
3698 
3699 	if (pte_marker_entry_uffd_wp(entry))
3700 		return pte_marker_handle_uffd_wp(vmf);
3701 
3702 	/* This is an unknown pte marker */
3703 	return VM_FAULT_SIGBUS;
3704 }
3705 
3706 /*
3707  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3708  * but allow concurrent faults), and pte mapped but not yet locked.
3709  * We return with pte unmapped and unlocked.
3710  *
3711  * We return with the mmap_lock locked or unlocked in the same cases
3712  * as does filemap_fault().
3713  */
3714 vm_fault_t do_swap_page(struct vm_fault *vmf)
3715 {
3716 	struct vm_area_struct *vma = vmf->vma;
3717 	struct folio *swapcache, *folio = NULL;
3718 	struct page *page;
3719 	struct swap_info_struct *si = NULL;
3720 	rmap_t rmap_flags = RMAP_NONE;
3721 	bool exclusive = false;
3722 	swp_entry_t entry;
3723 	pte_t pte;
3724 	int locked;
3725 	vm_fault_t ret = 0;
3726 	void *shadow = NULL;
3727 
3728 	if (!pte_unmap_same(vmf))
3729 		goto out;
3730 
3731 	if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3732 		ret = VM_FAULT_RETRY;
3733 		goto out;
3734 	}
3735 
3736 	entry = pte_to_swp_entry(vmf->orig_pte);
3737 	if (unlikely(non_swap_entry(entry))) {
3738 		if (is_migration_entry(entry)) {
3739 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3740 					     vmf->address);
3741 		} else if (is_device_exclusive_entry(entry)) {
3742 			vmf->page = pfn_swap_entry_to_page(entry);
3743 			ret = remove_device_exclusive_entry(vmf);
3744 		} else if (is_device_private_entry(entry)) {
3745 			vmf->page = pfn_swap_entry_to_page(entry);
3746 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3747 					vmf->address, &vmf->ptl);
3748 			if (unlikely(!vmf->pte ||
3749 				     !pte_same(ptep_get(vmf->pte),
3750 							vmf->orig_pte)))
3751 				goto unlock;
3752 
3753 			/*
3754 			 * Get a page reference while we know the page can't be
3755 			 * freed.
3756 			 */
3757 			get_page(vmf->page);
3758 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3759 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3760 			put_page(vmf->page);
3761 		} else if (is_hwpoison_entry(entry)) {
3762 			ret = VM_FAULT_HWPOISON;
3763 		} else if (is_pte_marker_entry(entry)) {
3764 			ret = handle_pte_marker(vmf);
3765 		} else {
3766 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3767 			ret = VM_FAULT_SIGBUS;
3768 		}
3769 		goto out;
3770 	}
3771 
3772 	/* Prevent swapoff from happening to us. */
3773 	si = get_swap_device(entry);
3774 	if (unlikely(!si))
3775 		goto out;
3776 
3777 	folio = swap_cache_get_folio(entry, vma, vmf->address);
3778 	if (folio)
3779 		page = folio_file_page(folio, swp_offset(entry));
3780 	swapcache = folio;
3781 
3782 	if (!folio) {
3783 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3784 		    __swap_count(entry) == 1) {
3785 			/* skip swapcache */
3786 			folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3787 						vma, vmf->address, false);
3788 			page = &folio->page;
3789 			if (folio) {
3790 				__folio_set_locked(folio);
3791 				__folio_set_swapbacked(folio);
3792 
3793 				if (mem_cgroup_swapin_charge_folio(folio,
3794 							vma->vm_mm, GFP_KERNEL,
3795 							entry)) {
3796 					ret = VM_FAULT_OOM;
3797 					goto out_page;
3798 				}
3799 				mem_cgroup_swapin_uncharge_swap(entry);
3800 
3801 				shadow = get_shadow_from_swap_cache(entry);
3802 				if (shadow)
3803 					workingset_refault(folio, shadow);
3804 
3805 				folio_add_lru(folio);
3806 
3807 				/* To provide entry to swap_readpage() */
3808 				folio_set_swap_entry(folio, entry);
3809 				swap_readpage(page, true, NULL);
3810 				folio->private = NULL;
3811 			}
3812 		} else {
3813 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3814 						vmf);
3815 			if (page)
3816 				folio = page_folio(page);
3817 			swapcache = folio;
3818 		}
3819 
3820 		if (!folio) {
3821 			/*
3822 			 * Back out if somebody else faulted in this pte
3823 			 * while we released the pte lock.
3824 			 */
3825 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3826 					vmf->address, &vmf->ptl);
3827 			if (likely(vmf->pte &&
3828 				   pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3829 				ret = VM_FAULT_OOM;
3830 			goto unlock;
3831 		}
3832 
3833 		/* Had to read the page from swap area: Major fault */
3834 		ret = VM_FAULT_MAJOR;
3835 		count_vm_event(PGMAJFAULT);
3836 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3837 	} else if (PageHWPoison(page)) {
3838 		/*
3839 		 * hwpoisoned dirty swapcache pages are kept for killing
3840 		 * owner processes (which may be unknown at hwpoison time)
3841 		 */
3842 		ret = VM_FAULT_HWPOISON;
3843 		goto out_release;
3844 	}
3845 
3846 	locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3847 
3848 	if (!locked) {
3849 		ret |= VM_FAULT_RETRY;
3850 		goto out_release;
3851 	}
3852 
3853 	if (swapcache) {
3854 		/*
3855 		 * Make sure folio_free_swap() or swapoff did not release the
3856 		 * swapcache from under us.  The page pin, and pte_same test
3857 		 * below, are not enough to exclude that.  Even if it is still
3858 		 * swapcache, we need to check that the page's swap has not
3859 		 * changed.
3860 		 */
3861 		if (unlikely(!folio_test_swapcache(folio) ||
3862 			     page_private(page) != entry.val))
3863 			goto out_page;
3864 
3865 		/*
3866 		 * KSM sometimes has to copy on read faults, for example, if
3867 		 * page->index of !PageKSM() pages would be nonlinear inside the
3868 		 * anon VMA -- PageKSM() is lost on actual swapout.
3869 		 */
3870 		page = ksm_might_need_to_copy(page, vma, vmf->address);
3871 		if (unlikely(!page)) {
3872 			ret = VM_FAULT_OOM;
3873 			goto out_page;
3874 		} else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3875 			ret = VM_FAULT_HWPOISON;
3876 			goto out_page;
3877 		}
3878 		folio = page_folio(page);
3879 
3880 		/*
3881 		 * If we want to map a page that's in the swapcache writable, we
3882 		 * have to detect via the refcount if we're really the exclusive
3883 		 * owner. Try removing the extra reference from the local LRU
3884 		 * caches if required.
3885 		 */
3886 		if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3887 		    !folio_test_ksm(folio) && !folio_test_lru(folio))
3888 			lru_add_drain();
3889 	}
3890 
3891 	folio_throttle_swaprate(folio, GFP_KERNEL);
3892 
3893 	/*
3894 	 * Back out if somebody else already faulted in this pte.
3895 	 */
3896 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3897 			&vmf->ptl);
3898 	if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3899 		goto out_nomap;
3900 
3901 	if (unlikely(!folio_test_uptodate(folio))) {
3902 		ret = VM_FAULT_SIGBUS;
3903 		goto out_nomap;
3904 	}
3905 
3906 	/*
3907 	 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3908 	 * must never point at an anonymous page in the swapcache that is
3909 	 * PG_anon_exclusive. Sanity check that this holds and especially, that
3910 	 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3911 	 * check after taking the PT lock and making sure that nobody
3912 	 * concurrently faulted in this page and set PG_anon_exclusive.
3913 	 */
3914 	BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3915 	BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3916 
3917 	/*
3918 	 * Check under PT lock (to protect against concurrent fork() sharing
3919 	 * the swap entry concurrently) for certainly exclusive pages.
3920 	 */
3921 	if (!folio_test_ksm(folio)) {
3922 		exclusive = pte_swp_exclusive(vmf->orig_pte);
3923 		if (folio != swapcache) {
3924 			/*
3925 			 * We have a fresh page that is not exposed to the
3926 			 * swapcache -> certainly exclusive.
3927 			 */
3928 			exclusive = true;
3929 		} else if (exclusive && folio_test_writeback(folio) &&
3930 			  data_race(si->flags & SWP_STABLE_WRITES)) {
3931 			/*
3932 			 * This is tricky: not all swap backends support
3933 			 * concurrent page modifications while under writeback.
3934 			 *
3935 			 * So if we stumble over such a page in the swapcache
3936 			 * we must not set the page exclusive, otherwise we can
3937 			 * map it writable without further checks and modify it
3938 			 * while still under writeback.
3939 			 *
3940 			 * For these problematic swap backends, simply drop the
3941 			 * exclusive marker: this is perfectly fine as we start
3942 			 * writeback only if we fully unmapped the page and
3943 			 * there are no unexpected references on the page after
3944 			 * unmapping succeeded. After fully unmapped, no
3945 			 * further GUP references (FOLL_GET and FOLL_PIN) can
3946 			 * appear, so dropping the exclusive marker and mapping
3947 			 * it only R/O is fine.
3948 			 */
3949 			exclusive = false;
3950 		}
3951 	}
3952 
3953 	/*
3954 	 * Some architectures may have to restore extra metadata to the page
3955 	 * when reading from swap. This metadata may be indexed by swap entry
3956 	 * so this must be called before swap_free().
3957 	 */
3958 	arch_swap_restore(entry, folio);
3959 
3960 	/*
3961 	 * Remove the swap entry and conditionally try to free up the swapcache.
3962 	 * We're already holding a reference on the page but haven't mapped it
3963 	 * yet.
3964 	 */
3965 	swap_free(entry);
3966 	if (should_try_to_free_swap(folio, vma, vmf->flags))
3967 		folio_free_swap(folio);
3968 
3969 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3970 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3971 	pte = mk_pte(page, vma->vm_page_prot);
3972 
3973 	/*
3974 	 * Same logic as in do_wp_page(); however, optimize for pages that are
3975 	 * certainly not shared either because we just allocated them without
3976 	 * exposing them to the swapcache or because the swap entry indicates
3977 	 * exclusivity.
3978 	 */
3979 	if (!folio_test_ksm(folio) &&
3980 	    (exclusive || folio_ref_count(folio) == 1)) {
3981 		if (vmf->flags & FAULT_FLAG_WRITE) {
3982 			pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3983 			vmf->flags &= ~FAULT_FLAG_WRITE;
3984 		}
3985 		rmap_flags |= RMAP_EXCLUSIVE;
3986 	}
3987 	flush_icache_page(vma, page);
3988 	if (pte_swp_soft_dirty(vmf->orig_pte))
3989 		pte = pte_mksoft_dirty(pte);
3990 	if (pte_swp_uffd_wp(vmf->orig_pte))
3991 		pte = pte_mkuffd_wp(pte);
3992 	vmf->orig_pte = pte;
3993 
3994 	/* ksm created a completely new copy */
3995 	if (unlikely(folio != swapcache && swapcache)) {
3996 		page_add_new_anon_rmap(page, vma, vmf->address);
3997 		folio_add_lru_vma(folio, vma);
3998 	} else {
3999 		page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4000 	}
4001 
4002 	VM_BUG_ON(!folio_test_anon(folio) ||
4003 			(pte_write(pte) && !PageAnonExclusive(page)));
4004 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4005 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4006 
4007 	folio_unlock(folio);
4008 	if (folio != swapcache && swapcache) {
4009 		/*
4010 		 * Hold the lock to avoid the swap entry to be reused
4011 		 * until we take the PT lock for the pte_same() check
4012 		 * (to avoid false positives from pte_same). For
4013 		 * further safety release the lock after the swap_free
4014 		 * so that the swap count won't change under a
4015 		 * parallel locked swapcache.
4016 		 */
4017 		folio_unlock(swapcache);
4018 		folio_put(swapcache);
4019 	}
4020 
4021 	if (vmf->flags & FAULT_FLAG_WRITE) {
4022 		ret |= do_wp_page(vmf);
4023 		if (ret & VM_FAULT_ERROR)
4024 			ret &= VM_FAULT_ERROR;
4025 		goto out;
4026 	}
4027 
4028 	/* No need to invalidate - it was non-present before */
4029 	update_mmu_cache(vma, vmf->address, vmf->pte);
4030 unlock:
4031 	if (vmf->pte)
4032 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4033 out:
4034 	if (si)
4035 		put_swap_device(si);
4036 	return ret;
4037 out_nomap:
4038 	if (vmf->pte)
4039 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4040 out_page:
4041 	folio_unlock(folio);
4042 out_release:
4043 	folio_put(folio);
4044 	if (folio != swapcache && swapcache) {
4045 		folio_unlock(swapcache);
4046 		folio_put(swapcache);
4047 	}
4048 	if (si)
4049 		put_swap_device(si);
4050 	return ret;
4051 }
4052 
4053 /*
4054  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4055  * but allow concurrent faults), and pte mapped but not yet locked.
4056  * We return with mmap_lock still held, but pte unmapped and unlocked.
4057  */
4058 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4059 {
4060 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4061 	struct vm_area_struct *vma = vmf->vma;
4062 	struct folio *folio;
4063 	vm_fault_t ret = 0;
4064 	pte_t entry;
4065 
4066 	/* File mapping without ->vm_ops ? */
4067 	if (vma->vm_flags & VM_SHARED)
4068 		return VM_FAULT_SIGBUS;
4069 
4070 	/*
4071 	 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4072 	 * be distinguished from a transient failure of pte_offset_map().
4073 	 */
4074 	if (pte_alloc(vma->vm_mm, vmf->pmd))
4075 		return VM_FAULT_OOM;
4076 
4077 	/* Use the zero-page for reads */
4078 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4079 			!mm_forbids_zeropage(vma->vm_mm)) {
4080 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4081 						vma->vm_page_prot));
4082 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4083 				vmf->address, &vmf->ptl);
4084 		if (!vmf->pte)
4085 			goto unlock;
4086 		if (vmf_pte_changed(vmf)) {
4087 			update_mmu_tlb(vma, vmf->address, vmf->pte);
4088 			goto unlock;
4089 		}
4090 		ret = check_stable_address_space(vma->vm_mm);
4091 		if (ret)
4092 			goto unlock;
4093 		/* Deliver the page fault to userland, check inside PT lock */
4094 		if (userfaultfd_missing(vma)) {
4095 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4096 			return handle_userfault(vmf, VM_UFFD_MISSING);
4097 		}
4098 		goto setpte;
4099 	}
4100 
4101 	/* Allocate our own private page. */
4102 	if (unlikely(anon_vma_prepare(vma)))
4103 		goto oom;
4104 	folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4105 	if (!folio)
4106 		goto oom;
4107 
4108 	if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4109 		goto oom_free_page;
4110 	folio_throttle_swaprate(folio, GFP_KERNEL);
4111 
4112 	/*
4113 	 * The memory barrier inside __folio_mark_uptodate makes sure that
4114 	 * preceding stores to the page contents become visible before
4115 	 * the set_pte_at() write.
4116 	 */
4117 	__folio_mark_uptodate(folio);
4118 
4119 	entry = mk_pte(&folio->page, vma->vm_page_prot);
4120 	entry = pte_sw_mkyoung(entry);
4121 	if (vma->vm_flags & VM_WRITE)
4122 		entry = pte_mkwrite(pte_mkdirty(entry));
4123 
4124 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4125 			&vmf->ptl);
4126 	if (!vmf->pte)
4127 		goto release;
4128 	if (vmf_pte_changed(vmf)) {
4129 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4130 		goto release;
4131 	}
4132 
4133 	ret = check_stable_address_space(vma->vm_mm);
4134 	if (ret)
4135 		goto release;
4136 
4137 	/* Deliver the page fault to userland, check inside PT lock */
4138 	if (userfaultfd_missing(vma)) {
4139 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4140 		folio_put(folio);
4141 		return handle_userfault(vmf, VM_UFFD_MISSING);
4142 	}
4143 
4144 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4145 	folio_add_new_anon_rmap(folio, vma, vmf->address);
4146 	folio_add_lru_vma(folio, vma);
4147 setpte:
4148 	if (uffd_wp)
4149 		entry = pte_mkuffd_wp(entry);
4150 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4151 
4152 	/* No need to invalidate - it was non-present before */
4153 	update_mmu_cache(vma, vmf->address, vmf->pte);
4154 unlock:
4155 	if (vmf->pte)
4156 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4157 	return ret;
4158 release:
4159 	folio_put(folio);
4160 	goto unlock;
4161 oom_free_page:
4162 	folio_put(folio);
4163 oom:
4164 	return VM_FAULT_OOM;
4165 }
4166 
4167 /*
4168  * The mmap_lock must have been held on entry, and may have been
4169  * released depending on flags and vma->vm_ops->fault() return value.
4170  * See filemap_fault() and __lock_page_retry().
4171  */
4172 static vm_fault_t __do_fault(struct vm_fault *vmf)
4173 {
4174 	struct vm_area_struct *vma = vmf->vma;
4175 	vm_fault_t ret;
4176 
4177 	/*
4178 	 * Preallocate pte before we take page_lock because this might lead to
4179 	 * deadlocks for memcg reclaim which waits for pages under writeback:
4180 	 *				lock_page(A)
4181 	 *				SetPageWriteback(A)
4182 	 *				unlock_page(A)
4183 	 * lock_page(B)
4184 	 *				lock_page(B)
4185 	 * pte_alloc_one
4186 	 *   shrink_page_list
4187 	 *     wait_on_page_writeback(A)
4188 	 *				SetPageWriteback(B)
4189 	 *				unlock_page(B)
4190 	 *				# flush A, B to clear the writeback
4191 	 */
4192 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4193 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4194 		if (!vmf->prealloc_pte)
4195 			return VM_FAULT_OOM;
4196 	}
4197 
4198 	ret = vma->vm_ops->fault(vmf);
4199 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4200 			    VM_FAULT_DONE_COW)))
4201 		return ret;
4202 
4203 	if (unlikely(PageHWPoison(vmf->page))) {
4204 		struct page *page = vmf->page;
4205 		vm_fault_t poisonret = VM_FAULT_HWPOISON;
4206 		if (ret & VM_FAULT_LOCKED) {
4207 			if (page_mapped(page))
4208 				unmap_mapping_pages(page_mapping(page),
4209 						    page->index, 1, false);
4210 			/* Retry if a clean page was removed from the cache. */
4211 			if (invalidate_inode_page(page))
4212 				poisonret = VM_FAULT_NOPAGE;
4213 			unlock_page(page);
4214 		}
4215 		put_page(page);
4216 		vmf->page = NULL;
4217 		return poisonret;
4218 	}
4219 
4220 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
4221 		lock_page(vmf->page);
4222 	else
4223 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4224 
4225 	return ret;
4226 }
4227 
4228 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4229 static void deposit_prealloc_pte(struct vm_fault *vmf)
4230 {
4231 	struct vm_area_struct *vma = vmf->vma;
4232 
4233 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4234 	/*
4235 	 * We are going to consume the prealloc table,
4236 	 * count that as nr_ptes.
4237 	 */
4238 	mm_inc_nr_ptes(vma->vm_mm);
4239 	vmf->prealloc_pte = NULL;
4240 }
4241 
4242 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4243 {
4244 	struct vm_area_struct *vma = vmf->vma;
4245 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4246 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4247 	pmd_t entry;
4248 	int i;
4249 	vm_fault_t ret = VM_FAULT_FALLBACK;
4250 
4251 	if (!transhuge_vma_suitable(vma, haddr))
4252 		return ret;
4253 
4254 	page = compound_head(page);
4255 	if (compound_order(page) != HPAGE_PMD_ORDER)
4256 		return ret;
4257 
4258 	/*
4259 	 * Just backoff if any subpage of a THP is corrupted otherwise
4260 	 * the corrupted page may mapped by PMD silently to escape the
4261 	 * check.  This kind of THP just can be PTE mapped.  Access to
4262 	 * the corrupted subpage should trigger SIGBUS as expected.
4263 	 */
4264 	if (unlikely(PageHasHWPoisoned(page)))
4265 		return ret;
4266 
4267 	/*
4268 	 * Archs like ppc64 need additional space to store information
4269 	 * related to pte entry. Use the preallocated table for that.
4270 	 */
4271 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4272 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4273 		if (!vmf->prealloc_pte)
4274 			return VM_FAULT_OOM;
4275 	}
4276 
4277 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4278 	if (unlikely(!pmd_none(*vmf->pmd)))
4279 		goto out;
4280 
4281 	for (i = 0; i < HPAGE_PMD_NR; i++)
4282 		flush_icache_page(vma, page + i);
4283 
4284 	entry = mk_huge_pmd(page, vma->vm_page_prot);
4285 	if (write)
4286 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4287 
4288 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4289 	page_add_file_rmap(page, vma, true);
4290 
4291 	/*
4292 	 * deposit and withdraw with pmd lock held
4293 	 */
4294 	if (arch_needs_pgtable_deposit())
4295 		deposit_prealloc_pte(vmf);
4296 
4297 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4298 
4299 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4300 
4301 	/* fault is handled */
4302 	ret = 0;
4303 	count_vm_event(THP_FILE_MAPPED);
4304 out:
4305 	spin_unlock(vmf->ptl);
4306 	return ret;
4307 }
4308 #else
4309 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4310 {
4311 	return VM_FAULT_FALLBACK;
4312 }
4313 #endif
4314 
4315 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4316 {
4317 	struct vm_area_struct *vma = vmf->vma;
4318 	bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4319 	bool write = vmf->flags & FAULT_FLAG_WRITE;
4320 	bool prefault = vmf->address != addr;
4321 	pte_t entry;
4322 
4323 	flush_icache_page(vma, page);
4324 	entry = mk_pte(page, vma->vm_page_prot);
4325 
4326 	if (prefault && arch_wants_old_prefaulted_pte())
4327 		entry = pte_mkold(entry);
4328 	else
4329 		entry = pte_sw_mkyoung(entry);
4330 
4331 	if (write)
4332 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4333 	if (unlikely(uffd_wp))
4334 		entry = pte_mkuffd_wp(entry);
4335 	/* copy-on-write page */
4336 	if (write && !(vma->vm_flags & VM_SHARED)) {
4337 		inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4338 		page_add_new_anon_rmap(page, vma, addr);
4339 		lru_cache_add_inactive_or_unevictable(page, vma);
4340 	} else {
4341 		inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4342 		page_add_file_rmap(page, vma, false);
4343 	}
4344 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4345 }
4346 
4347 static bool vmf_pte_changed(struct vm_fault *vmf)
4348 {
4349 	if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4350 		return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4351 
4352 	return !pte_none(ptep_get(vmf->pte));
4353 }
4354 
4355 /**
4356  * finish_fault - finish page fault once we have prepared the page to fault
4357  *
4358  * @vmf: structure describing the fault
4359  *
4360  * This function handles all that is needed to finish a page fault once the
4361  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4362  * given page, adds reverse page mapping, handles memcg charges and LRU
4363  * addition.
4364  *
4365  * The function expects the page to be locked and on success it consumes a
4366  * reference of a page being mapped (for the PTE which maps it).
4367  *
4368  * Return: %0 on success, %VM_FAULT_ code in case of error.
4369  */
4370 vm_fault_t finish_fault(struct vm_fault *vmf)
4371 {
4372 	struct vm_area_struct *vma = vmf->vma;
4373 	struct page *page;
4374 	vm_fault_t ret;
4375 
4376 	/* Did we COW the page? */
4377 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4378 		page = vmf->cow_page;
4379 	else
4380 		page = vmf->page;
4381 
4382 	/*
4383 	 * check even for read faults because we might have lost our CoWed
4384 	 * page
4385 	 */
4386 	if (!(vma->vm_flags & VM_SHARED)) {
4387 		ret = check_stable_address_space(vma->vm_mm);
4388 		if (ret)
4389 			return ret;
4390 	}
4391 
4392 	if (pmd_none(*vmf->pmd)) {
4393 		if (PageTransCompound(page)) {
4394 			ret = do_set_pmd(vmf, page);
4395 			if (ret != VM_FAULT_FALLBACK)
4396 				return ret;
4397 		}
4398 
4399 		if (vmf->prealloc_pte)
4400 			pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4401 		else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4402 			return VM_FAULT_OOM;
4403 	}
4404 
4405 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4406 				      vmf->address, &vmf->ptl);
4407 	if (!vmf->pte)
4408 		return VM_FAULT_NOPAGE;
4409 
4410 	/* Re-check under ptl */
4411 	if (likely(!vmf_pte_changed(vmf))) {
4412 		do_set_pte(vmf, page, vmf->address);
4413 
4414 		/* no need to invalidate: a not-present page won't be cached */
4415 		update_mmu_cache(vma, vmf->address, vmf->pte);
4416 
4417 		ret = 0;
4418 	} else {
4419 		update_mmu_tlb(vma, vmf->address, vmf->pte);
4420 		ret = VM_FAULT_NOPAGE;
4421 	}
4422 
4423 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4424 	return ret;
4425 }
4426 
4427 static unsigned long fault_around_pages __read_mostly =
4428 	65536 >> PAGE_SHIFT;
4429 
4430 #ifdef CONFIG_DEBUG_FS
4431 static int fault_around_bytes_get(void *data, u64 *val)
4432 {
4433 	*val = fault_around_pages << PAGE_SHIFT;
4434 	return 0;
4435 }
4436 
4437 /*
4438  * fault_around_bytes must be rounded down to the nearest page order as it's
4439  * what do_fault_around() expects to see.
4440  */
4441 static int fault_around_bytes_set(void *data, u64 val)
4442 {
4443 	if (val / PAGE_SIZE > PTRS_PER_PTE)
4444 		return -EINVAL;
4445 
4446 	/*
4447 	 * The minimum value is 1 page, however this results in no fault-around
4448 	 * at all. See should_fault_around().
4449 	 */
4450 	fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4451 
4452 	return 0;
4453 }
4454 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4455 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4456 
4457 static int __init fault_around_debugfs(void)
4458 {
4459 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4460 				   &fault_around_bytes_fops);
4461 	return 0;
4462 }
4463 late_initcall(fault_around_debugfs);
4464 #endif
4465 
4466 /*
4467  * do_fault_around() tries to map few pages around the fault address. The hope
4468  * is that the pages will be needed soon and this will lower the number of
4469  * faults to handle.
4470  *
4471  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4472  * not ready to be mapped: not up-to-date, locked, etc.
4473  *
4474  * This function doesn't cross VMA or page table boundaries, in order to call
4475  * map_pages() and acquire a PTE lock only once.
4476  *
4477  * fault_around_pages defines how many pages we'll try to map.
4478  * do_fault_around() expects it to be set to a power of two less than or equal
4479  * to PTRS_PER_PTE.
4480  *
4481  * The virtual address of the area that we map is naturally aligned to
4482  * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4483  * (and therefore to page order).  This way it's easier to guarantee
4484  * that we don't cross page table boundaries.
4485  */
4486 static vm_fault_t do_fault_around(struct vm_fault *vmf)
4487 {
4488 	pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4489 	pgoff_t pte_off = pte_index(vmf->address);
4490 	/* The page offset of vmf->address within the VMA. */
4491 	pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4492 	pgoff_t from_pte, to_pte;
4493 	vm_fault_t ret;
4494 
4495 	/* The PTE offset of the start address, clamped to the VMA. */
4496 	from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4497 		       pte_off - min(pte_off, vma_off));
4498 
4499 	/* The PTE offset of the end address, clamped to the VMA and PTE. */
4500 	to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4501 		      pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4502 
4503 	if (pmd_none(*vmf->pmd)) {
4504 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4505 		if (!vmf->prealloc_pte)
4506 			return VM_FAULT_OOM;
4507 	}
4508 
4509 	rcu_read_lock();
4510 	ret = vmf->vma->vm_ops->map_pages(vmf,
4511 			vmf->pgoff + from_pte - pte_off,
4512 			vmf->pgoff + to_pte - pte_off);
4513 	rcu_read_unlock();
4514 
4515 	return ret;
4516 }
4517 
4518 /* Return true if we should do read fault-around, false otherwise */
4519 static inline bool should_fault_around(struct vm_fault *vmf)
4520 {
4521 	/* No ->map_pages?  No way to fault around... */
4522 	if (!vmf->vma->vm_ops->map_pages)
4523 		return false;
4524 
4525 	if (uffd_disable_fault_around(vmf->vma))
4526 		return false;
4527 
4528 	/* A single page implies no faulting 'around' at all. */
4529 	return fault_around_pages > 1;
4530 }
4531 
4532 static vm_fault_t do_read_fault(struct vm_fault *vmf)
4533 {
4534 	vm_fault_t ret = 0;
4535 
4536 	/*
4537 	 * Let's call ->map_pages() first and use ->fault() as fallback
4538 	 * if page by the offset is not ready to be mapped (cold cache or
4539 	 * something).
4540 	 */
4541 	if (should_fault_around(vmf)) {
4542 		ret = do_fault_around(vmf);
4543 		if (ret)
4544 			return ret;
4545 	}
4546 
4547 	ret = __do_fault(vmf);
4548 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4549 		return ret;
4550 
4551 	ret |= finish_fault(vmf);
4552 	unlock_page(vmf->page);
4553 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4554 		put_page(vmf->page);
4555 	return ret;
4556 }
4557 
4558 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4559 {
4560 	struct vm_area_struct *vma = vmf->vma;
4561 	vm_fault_t ret;
4562 
4563 	if (unlikely(anon_vma_prepare(vma)))
4564 		return VM_FAULT_OOM;
4565 
4566 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4567 	if (!vmf->cow_page)
4568 		return VM_FAULT_OOM;
4569 
4570 	if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4571 				GFP_KERNEL)) {
4572 		put_page(vmf->cow_page);
4573 		return VM_FAULT_OOM;
4574 	}
4575 	folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4576 
4577 	ret = __do_fault(vmf);
4578 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4579 		goto uncharge_out;
4580 	if (ret & VM_FAULT_DONE_COW)
4581 		return ret;
4582 
4583 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4584 	__SetPageUptodate(vmf->cow_page);
4585 
4586 	ret |= finish_fault(vmf);
4587 	unlock_page(vmf->page);
4588 	put_page(vmf->page);
4589 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4590 		goto uncharge_out;
4591 	return ret;
4592 uncharge_out:
4593 	put_page(vmf->cow_page);
4594 	return ret;
4595 }
4596 
4597 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4598 {
4599 	struct vm_area_struct *vma = vmf->vma;
4600 	vm_fault_t ret, tmp;
4601 
4602 	ret = __do_fault(vmf);
4603 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4604 		return ret;
4605 
4606 	/*
4607 	 * Check if the backing address space wants to know that the page is
4608 	 * about to become writable
4609 	 */
4610 	if (vma->vm_ops->page_mkwrite) {
4611 		unlock_page(vmf->page);
4612 		tmp = do_page_mkwrite(vmf);
4613 		if (unlikely(!tmp ||
4614 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4615 			put_page(vmf->page);
4616 			return tmp;
4617 		}
4618 	}
4619 
4620 	ret |= finish_fault(vmf);
4621 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4622 					VM_FAULT_RETRY))) {
4623 		unlock_page(vmf->page);
4624 		put_page(vmf->page);
4625 		return ret;
4626 	}
4627 
4628 	ret |= fault_dirty_shared_page(vmf);
4629 	return ret;
4630 }
4631 
4632 /*
4633  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4634  * but allow concurrent faults).
4635  * The mmap_lock may have been released depending on flags and our
4636  * return value.  See filemap_fault() and __folio_lock_or_retry().
4637  * If mmap_lock is released, vma may become invalid (for example
4638  * by other thread calling munmap()).
4639  */
4640 static vm_fault_t do_fault(struct vm_fault *vmf)
4641 {
4642 	struct vm_area_struct *vma = vmf->vma;
4643 	struct mm_struct *vm_mm = vma->vm_mm;
4644 	vm_fault_t ret;
4645 
4646 	/*
4647 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4648 	 */
4649 	if (!vma->vm_ops->fault) {
4650 		vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4651 					       vmf->address, &vmf->ptl);
4652 		if (unlikely(!vmf->pte))
4653 			ret = VM_FAULT_SIGBUS;
4654 		else {
4655 			/*
4656 			 * Make sure this is not a temporary clearing of pte
4657 			 * by holding ptl and checking again. A R/M/W update
4658 			 * of pte involves: take ptl, clearing the pte so that
4659 			 * we don't have concurrent modification by hardware
4660 			 * followed by an update.
4661 			 */
4662 			if (unlikely(pte_none(ptep_get(vmf->pte))))
4663 				ret = VM_FAULT_SIGBUS;
4664 			else
4665 				ret = VM_FAULT_NOPAGE;
4666 
4667 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4668 		}
4669 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4670 		ret = do_read_fault(vmf);
4671 	else if (!(vma->vm_flags & VM_SHARED))
4672 		ret = do_cow_fault(vmf);
4673 	else
4674 		ret = do_shared_fault(vmf);
4675 
4676 	/* preallocated pagetable is unused: free it */
4677 	if (vmf->prealloc_pte) {
4678 		pte_free(vm_mm, vmf->prealloc_pte);
4679 		vmf->prealloc_pte = NULL;
4680 	}
4681 	return ret;
4682 }
4683 
4684 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4685 		      unsigned long addr, int page_nid, int *flags)
4686 {
4687 	get_page(page);
4688 
4689 	/* Record the current PID acceesing VMA */
4690 	vma_set_access_pid_bit(vma);
4691 
4692 	count_vm_numa_event(NUMA_HINT_FAULTS);
4693 	if (page_nid == numa_node_id()) {
4694 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4695 		*flags |= TNF_FAULT_LOCAL;
4696 	}
4697 
4698 	return mpol_misplaced(page, vma, addr);
4699 }
4700 
4701 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4702 {
4703 	struct vm_area_struct *vma = vmf->vma;
4704 	struct page *page = NULL;
4705 	int page_nid = NUMA_NO_NODE;
4706 	bool writable = false;
4707 	int last_cpupid;
4708 	int target_nid;
4709 	pte_t pte, old_pte;
4710 	int flags = 0;
4711 
4712 	/*
4713 	 * The "pte" at this point cannot be used safely without
4714 	 * validation through pte_unmap_same(). It's of NUMA type but
4715 	 * the pfn may be screwed if the read is non atomic.
4716 	 */
4717 	spin_lock(vmf->ptl);
4718 	if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4719 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4720 		goto out;
4721 	}
4722 
4723 	/* Get the normal PTE  */
4724 	old_pte = ptep_get(vmf->pte);
4725 	pte = pte_modify(old_pte, vma->vm_page_prot);
4726 
4727 	/*
4728 	 * Detect now whether the PTE could be writable; this information
4729 	 * is only valid while holding the PT lock.
4730 	 */
4731 	writable = pte_write(pte);
4732 	if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4733 	    can_change_pte_writable(vma, vmf->address, pte))
4734 		writable = true;
4735 
4736 	page = vm_normal_page(vma, vmf->address, pte);
4737 	if (!page || is_zone_device_page(page))
4738 		goto out_map;
4739 
4740 	/* TODO: handle PTE-mapped THP */
4741 	if (PageCompound(page))
4742 		goto out_map;
4743 
4744 	/*
4745 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4746 	 * much anyway since they can be in shared cache state. This misses
4747 	 * the case where a mapping is writable but the process never writes
4748 	 * to it but pte_write gets cleared during protection updates and
4749 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4750 	 * background writeback, dirty balancing and application behaviour.
4751 	 */
4752 	if (!writable)
4753 		flags |= TNF_NO_GROUP;
4754 
4755 	/*
4756 	 * Flag if the page is shared between multiple address spaces. This
4757 	 * is later used when determining whether to group tasks together
4758 	 */
4759 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4760 		flags |= TNF_SHARED;
4761 
4762 	page_nid = page_to_nid(page);
4763 	/*
4764 	 * For memory tiering mode, cpupid of slow memory page is used
4765 	 * to record page access time.  So use default value.
4766 	 */
4767 	if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4768 	    !node_is_toptier(page_nid))
4769 		last_cpupid = (-1 & LAST_CPUPID_MASK);
4770 	else
4771 		last_cpupid = page_cpupid_last(page);
4772 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4773 			&flags);
4774 	if (target_nid == NUMA_NO_NODE) {
4775 		put_page(page);
4776 		goto out_map;
4777 	}
4778 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4779 	writable = false;
4780 
4781 	/* Migrate to the requested node */
4782 	if (migrate_misplaced_page(page, vma, target_nid)) {
4783 		page_nid = target_nid;
4784 		flags |= TNF_MIGRATED;
4785 	} else {
4786 		flags |= TNF_MIGRATE_FAIL;
4787 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4788 					       vmf->address, &vmf->ptl);
4789 		if (unlikely(!vmf->pte))
4790 			goto out;
4791 		if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4792 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4793 			goto out;
4794 		}
4795 		goto out_map;
4796 	}
4797 
4798 out:
4799 	if (page_nid != NUMA_NO_NODE)
4800 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4801 	return 0;
4802 out_map:
4803 	/*
4804 	 * Make it present again, depending on how arch implements
4805 	 * non-accessible ptes, some can allow access by kernel mode.
4806 	 */
4807 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4808 	pte = pte_modify(old_pte, vma->vm_page_prot);
4809 	pte = pte_mkyoung(pte);
4810 	if (writable)
4811 		pte = pte_mkwrite(pte);
4812 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4813 	update_mmu_cache(vma, vmf->address, vmf->pte);
4814 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4815 	goto out;
4816 }
4817 
4818 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4819 {
4820 	if (vma_is_anonymous(vmf->vma))
4821 		return do_huge_pmd_anonymous_page(vmf);
4822 	if (vmf->vma->vm_ops->huge_fault)
4823 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4824 	return VM_FAULT_FALLBACK;
4825 }
4826 
4827 /* `inline' is required to avoid gcc 4.1.2 build error */
4828 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4829 {
4830 	const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4831 	vm_fault_t ret;
4832 
4833 	if (vma_is_anonymous(vmf->vma)) {
4834 		if (likely(!unshare) &&
4835 		    userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4836 			return handle_userfault(vmf, VM_UFFD_WP);
4837 		return do_huge_pmd_wp_page(vmf);
4838 	}
4839 
4840 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4841 		if (vmf->vma->vm_ops->huge_fault) {
4842 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4843 			if (!(ret & VM_FAULT_FALLBACK))
4844 				return ret;
4845 		}
4846 	}
4847 
4848 	/* COW or write-notify handled on pte level: split pmd. */
4849 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4850 
4851 	return VM_FAULT_FALLBACK;
4852 }
4853 
4854 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4855 {
4856 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4857 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4858 	/* No support for anonymous transparent PUD pages yet */
4859 	if (vma_is_anonymous(vmf->vma))
4860 		return VM_FAULT_FALLBACK;
4861 	if (vmf->vma->vm_ops->huge_fault)
4862 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4863 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4864 	return VM_FAULT_FALLBACK;
4865 }
4866 
4867 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4868 {
4869 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4870 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4871 	vm_fault_t ret;
4872 
4873 	/* No support for anonymous transparent PUD pages yet */
4874 	if (vma_is_anonymous(vmf->vma))
4875 		goto split;
4876 	if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4877 		if (vmf->vma->vm_ops->huge_fault) {
4878 			ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4879 			if (!(ret & VM_FAULT_FALLBACK))
4880 				return ret;
4881 		}
4882 	}
4883 split:
4884 	/* COW or write-notify not handled on PUD level: split pud.*/
4885 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4886 #endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4887 	return VM_FAULT_FALLBACK;
4888 }
4889 
4890 /*
4891  * These routines also need to handle stuff like marking pages dirty
4892  * and/or accessed for architectures that don't do it in hardware (most
4893  * RISC architectures).  The early dirtying is also good on the i386.
4894  *
4895  * There is also a hook called "update_mmu_cache()" that architectures
4896  * with external mmu caches can use to update those (ie the Sparc or
4897  * PowerPC hashed page tables that act as extended TLBs).
4898  *
4899  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4900  * concurrent faults).
4901  *
4902  * The mmap_lock may have been released depending on flags and our return value.
4903  * See filemap_fault() and __folio_lock_or_retry().
4904  */
4905 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4906 {
4907 	pte_t entry;
4908 
4909 	if (unlikely(pmd_none(*vmf->pmd))) {
4910 		/*
4911 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4912 		 * want to allocate huge page, and if we expose page table
4913 		 * for an instant, it will be difficult to retract from
4914 		 * concurrent faults and from rmap lookups.
4915 		 */
4916 		vmf->pte = NULL;
4917 		vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4918 	} else {
4919 		/*
4920 		 * A regular pmd is established and it can't morph into a huge
4921 		 * pmd by anon khugepaged, since that takes mmap_lock in write
4922 		 * mode; but shmem or file collapse to THP could still morph
4923 		 * it into a huge pmd: just retry later if so.
4924 		 */
4925 		vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4926 						 vmf->address, &vmf->ptl);
4927 		if (unlikely(!vmf->pte))
4928 			return 0;
4929 		vmf->orig_pte = ptep_get_lockless(vmf->pte);
4930 		vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4931 
4932 		if (pte_none(vmf->orig_pte)) {
4933 			pte_unmap(vmf->pte);
4934 			vmf->pte = NULL;
4935 		}
4936 	}
4937 
4938 	if (!vmf->pte)
4939 		return do_pte_missing(vmf);
4940 
4941 	if (!pte_present(vmf->orig_pte))
4942 		return do_swap_page(vmf);
4943 
4944 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4945 		return do_numa_page(vmf);
4946 
4947 	spin_lock(vmf->ptl);
4948 	entry = vmf->orig_pte;
4949 	if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4950 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4951 		goto unlock;
4952 	}
4953 	if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4954 		if (!pte_write(entry))
4955 			return do_wp_page(vmf);
4956 		else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4957 			entry = pte_mkdirty(entry);
4958 	}
4959 	entry = pte_mkyoung(entry);
4960 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4961 				vmf->flags & FAULT_FLAG_WRITE)) {
4962 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4963 	} else {
4964 		/* Skip spurious TLB flush for retried page fault */
4965 		if (vmf->flags & FAULT_FLAG_TRIED)
4966 			goto unlock;
4967 		/*
4968 		 * This is needed only for protection faults but the arch code
4969 		 * is not yet telling us if this is a protection fault or not.
4970 		 * This still avoids useless tlb flushes for .text page faults
4971 		 * with threads.
4972 		 */
4973 		if (vmf->flags & FAULT_FLAG_WRITE)
4974 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4975 						     vmf->pte);
4976 	}
4977 unlock:
4978 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4979 	return 0;
4980 }
4981 
4982 /*
4983  * By the time we get here, we already hold the mm semaphore
4984  *
4985  * The mmap_lock may have been released depending on flags and our
4986  * return value.  See filemap_fault() and __folio_lock_or_retry().
4987  */
4988 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4989 		unsigned long address, unsigned int flags)
4990 {
4991 	struct vm_fault vmf = {
4992 		.vma = vma,
4993 		.address = address & PAGE_MASK,
4994 		.real_address = address,
4995 		.flags = flags,
4996 		.pgoff = linear_page_index(vma, address),
4997 		.gfp_mask = __get_fault_gfp_mask(vma),
4998 	};
4999 	struct mm_struct *mm = vma->vm_mm;
5000 	unsigned long vm_flags = vma->vm_flags;
5001 	pgd_t *pgd;
5002 	p4d_t *p4d;
5003 	vm_fault_t ret;
5004 
5005 	pgd = pgd_offset(mm, address);
5006 	p4d = p4d_alloc(mm, pgd, address);
5007 	if (!p4d)
5008 		return VM_FAULT_OOM;
5009 
5010 	vmf.pud = pud_alloc(mm, p4d, address);
5011 	if (!vmf.pud)
5012 		return VM_FAULT_OOM;
5013 retry_pud:
5014 	if (pud_none(*vmf.pud) &&
5015 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5016 		ret = create_huge_pud(&vmf);
5017 		if (!(ret & VM_FAULT_FALLBACK))
5018 			return ret;
5019 	} else {
5020 		pud_t orig_pud = *vmf.pud;
5021 
5022 		barrier();
5023 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5024 
5025 			/*
5026 			 * TODO once we support anonymous PUDs: NUMA case and
5027 			 * FAULT_FLAG_UNSHARE handling.
5028 			 */
5029 			if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5030 				ret = wp_huge_pud(&vmf, orig_pud);
5031 				if (!(ret & VM_FAULT_FALLBACK))
5032 					return ret;
5033 			} else {
5034 				huge_pud_set_accessed(&vmf, orig_pud);
5035 				return 0;
5036 			}
5037 		}
5038 	}
5039 
5040 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5041 	if (!vmf.pmd)
5042 		return VM_FAULT_OOM;
5043 
5044 	/* Huge pud page fault raced with pmd_alloc? */
5045 	if (pud_trans_unstable(vmf.pud))
5046 		goto retry_pud;
5047 
5048 	if (pmd_none(*vmf.pmd) &&
5049 	    hugepage_vma_check(vma, vm_flags, false, true, true)) {
5050 		ret = create_huge_pmd(&vmf);
5051 		if (!(ret & VM_FAULT_FALLBACK))
5052 			return ret;
5053 	} else {
5054 		vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5055 
5056 		if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5057 			VM_BUG_ON(thp_migration_supported() &&
5058 					  !is_pmd_migration_entry(vmf.orig_pmd));
5059 			if (is_pmd_migration_entry(vmf.orig_pmd))
5060 				pmd_migration_entry_wait(mm, vmf.pmd);
5061 			return 0;
5062 		}
5063 		if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5064 			if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5065 				return do_huge_pmd_numa_page(&vmf);
5066 
5067 			if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5068 			    !pmd_write(vmf.orig_pmd)) {
5069 				ret = wp_huge_pmd(&vmf);
5070 				if (!(ret & VM_FAULT_FALLBACK))
5071 					return ret;
5072 			} else {
5073 				huge_pmd_set_accessed(&vmf);
5074 				return 0;
5075 			}
5076 		}
5077 	}
5078 
5079 	return handle_pte_fault(&vmf);
5080 }
5081 
5082 /**
5083  * mm_account_fault - Do page fault accounting
5084  *
5085  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
5086  *        of perf event counters, but we'll still do the per-task accounting to
5087  *        the task who triggered this page fault.
5088  * @address: the faulted address.
5089  * @flags: the fault flags.
5090  * @ret: the fault retcode.
5091  *
5092  * This will take care of most of the page fault accounting.  Meanwhile, it
5093  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5094  * updates.  However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5095  * still be in per-arch page fault handlers at the entry of page fault.
5096  */
5097 static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5098 				    unsigned long address, unsigned int flags,
5099 				    vm_fault_t ret)
5100 {
5101 	bool major;
5102 
5103 	/* Incomplete faults will be accounted upon completion. */
5104 	if (ret & VM_FAULT_RETRY)
5105 		return;
5106 
5107 	/*
5108 	 * To preserve the behavior of older kernels, PGFAULT counters record
5109 	 * both successful and failed faults, as opposed to perf counters,
5110 	 * which ignore failed cases.
5111 	 */
5112 	count_vm_event(PGFAULT);
5113 	count_memcg_event_mm(mm, PGFAULT);
5114 
5115 	/*
5116 	 * Do not account for unsuccessful faults (e.g. when the address wasn't
5117 	 * valid).  That includes arch_vma_access_permitted() failing before
5118 	 * reaching here. So this is not a "this many hardware page faults"
5119 	 * counter.  We should use the hw profiling for that.
5120 	 */
5121 	if (ret & VM_FAULT_ERROR)
5122 		return;
5123 
5124 	/*
5125 	 * We define the fault as a major fault when the final successful fault
5126 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5127 	 * handle it immediately previously).
5128 	 */
5129 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5130 
5131 	if (major)
5132 		current->maj_flt++;
5133 	else
5134 		current->min_flt++;
5135 
5136 	/*
5137 	 * If the fault is done for GUP, regs will be NULL.  We only do the
5138 	 * accounting for the per thread fault counters who triggered the
5139 	 * fault, and we skip the perf event updates.
5140 	 */
5141 	if (!regs)
5142 		return;
5143 
5144 	if (major)
5145 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5146 	else
5147 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5148 }
5149 
5150 #ifdef CONFIG_LRU_GEN
5151 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5152 {
5153 	/* the LRU algorithm only applies to accesses with recency */
5154 	current->in_lru_fault = vma_has_recency(vma);
5155 }
5156 
5157 static void lru_gen_exit_fault(void)
5158 {
5159 	current->in_lru_fault = false;
5160 }
5161 #else
5162 static void lru_gen_enter_fault(struct vm_area_struct *vma)
5163 {
5164 }
5165 
5166 static void lru_gen_exit_fault(void)
5167 {
5168 }
5169 #endif /* CONFIG_LRU_GEN */
5170 
5171 static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5172 				       unsigned int *flags)
5173 {
5174 	if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5175 		if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5176 			return VM_FAULT_SIGSEGV;
5177 		/*
5178 		 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5179 		 * just treat it like an ordinary read-fault otherwise.
5180 		 */
5181 		if (!is_cow_mapping(vma->vm_flags))
5182 			*flags &= ~FAULT_FLAG_UNSHARE;
5183 	} else if (*flags & FAULT_FLAG_WRITE) {
5184 		/* Write faults on read-only mappings are impossible ... */
5185 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5186 			return VM_FAULT_SIGSEGV;
5187 		/* ... and FOLL_FORCE only applies to COW mappings. */
5188 		if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5189 				 !is_cow_mapping(vma->vm_flags)))
5190 			return VM_FAULT_SIGSEGV;
5191 	}
5192 	return 0;
5193 }
5194 
5195 /*
5196  * By the time we get here, we already hold the mm semaphore
5197  *
5198  * The mmap_lock may have been released depending on flags and our
5199  * return value.  See filemap_fault() and __folio_lock_or_retry().
5200  */
5201 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5202 			   unsigned int flags, struct pt_regs *regs)
5203 {
5204 	/* If the fault handler drops the mmap_lock, vma may be freed */
5205 	struct mm_struct *mm = vma->vm_mm;
5206 	vm_fault_t ret;
5207 
5208 	__set_current_state(TASK_RUNNING);
5209 
5210 	ret = sanitize_fault_flags(vma, &flags);
5211 	if (ret)
5212 		goto out;
5213 
5214 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5215 					    flags & FAULT_FLAG_INSTRUCTION,
5216 					    flags & FAULT_FLAG_REMOTE)) {
5217 		ret = VM_FAULT_SIGSEGV;
5218 		goto out;
5219 	}
5220 
5221 	/*
5222 	 * Enable the memcg OOM handling for faults triggered in user
5223 	 * space.  Kernel faults are handled more gracefully.
5224 	 */
5225 	if (flags & FAULT_FLAG_USER)
5226 		mem_cgroup_enter_user_fault();
5227 
5228 	lru_gen_enter_fault(vma);
5229 
5230 	if (unlikely(is_vm_hugetlb_page(vma)))
5231 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5232 	else
5233 		ret = __handle_mm_fault(vma, address, flags);
5234 
5235 	lru_gen_exit_fault();
5236 
5237 	if (flags & FAULT_FLAG_USER) {
5238 		mem_cgroup_exit_user_fault();
5239 		/*
5240 		 * The task may have entered a memcg OOM situation but
5241 		 * if the allocation error was handled gracefully (no
5242 		 * VM_FAULT_OOM), there is no need to kill anything.
5243 		 * Just clean up the OOM state peacefully.
5244 		 */
5245 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5246 			mem_cgroup_oom_synchronize(false);
5247 	}
5248 out:
5249 	mm_account_fault(mm, regs, address, flags, ret);
5250 
5251 	return ret;
5252 }
5253 EXPORT_SYMBOL_GPL(handle_mm_fault);
5254 
5255 #ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5256 #include <linux/extable.h>
5257 
5258 static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5259 {
5260 	/* Even if this succeeds, make it clear we *might* have slept */
5261 	if (likely(mmap_read_trylock(mm))) {
5262 		might_sleep();
5263 		return true;
5264 	}
5265 
5266 	if (regs && !user_mode(regs)) {
5267 		unsigned long ip = instruction_pointer(regs);
5268 		if (!search_exception_tables(ip))
5269 			return false;
5270 	}
5271 
5272 	return !mmap_read_lock_killable(mm);
5273 }
5274 
5275 static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5276 {
5277 	/*
5278 	 * We don't have this operation yet.
5279 	 *
5280 	 * It should be easy enough to do: it's basically a
5281 	 *    atomic_long_try_cmpxchg_acquire()
5282 	 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5283 	 * it also needs the proper lockdep magic etc.
5284 	 */
5285 	return false;
5286 }
5287 
5288 static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5289 {
5290 	mmap_read_unlock(mm);
5291 	if (regs && !user_mode(regs)) {
5292 		unsigned long ip = instruction_pointer(regs);
5293 		if (!search_exception_tables(ip))
5294 			return false;
5295 	}
5296 	return !mmap_write_lock_killable(mm);
5297 }
5298 
5299 /*
5300  * Helper for page fault handling.
5301  *
5302  * This is kind of equivalend to "mmap_read_lock()" followed
5303  * by "find_extend_vma()", except it's a lot more careful about
5304  * the locking (and will drop the lock on failure).
5305  *
5306  * For example, if we have a kernel bug that causes a page
5307  * fault, we don't want to just use mmap_read_lock() to get
5308  * the mm lock, because that would deadlock if the bug were
5309  * to happen while we're holding the mm lock for writing.
5310  *
5311  * So this checks the exception tables on kernel faults in
5312  * order to only do this all for instructions that are actually
5313  * expected to fault.
5314  *
5315  * We can also actually take the mm lock for writing if we
5316  * need to extend the vma, which helps the VM layer a lot.
5317  */
5318 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5319 			unsigned long addr, struct pt_regs *regs)
5320 {
5321 	struct vm_area_struct *vma;
5322 
5323 	if (!get_mmap_lock_carefully(mm, regs))
5324 		return NULL;
5325 
5326 	vma = find_vma(mm, addr);
5327 	if (likely(vma && (vma->vm_start <= addr)))
5328 		return vma;
5329 
5330 	/*
5331 	 * Well, dang. We might still be successful, but only
5332 	 * if we can extend a vma to do so.
5333 	 */
5334 	if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5335 		mmap_read_unlock(mm);
5336 		return NULL;
5337 	}
5338 
5339 	/*
5340 	 * We can try to upgrade the mmap lock atomically,
5341 	 * in which case we can continue to use the vma
5342 	 * we already looked up.
5343 	 *
5344 	 * Otherwise we'll have to drop the mmap lock and
5345 	 * re-take it, and also look up the vma again,
5346 	 * re-checking it.
5347 	 */
5348 	if (!mmap_upgrade_trylock(mm)) {
5349 		if (!upgrade_mmap_lock_carefully(mm, regs))
5350 			return NULL;
5351 
5352 		vma = find_vma(mm, addr);
5353 		if (!vma)
5354 			goto fail;
5355 		if (vma->vm_start <= addr)
5356 			goto success;
5357 		if (!(vma->vm_flags & VM_GROWSDOWN))
5358 			goto fail;
5359 	}
5360 
5361 	if (expand_stack_locked(vma, addr))
5362 		goto fail;
5363 
5364 success:
5365 	mmap_write_downgrade(mm);
5366 	return vma;
5367 
5368 fail:
5369 	mmap_write_unlock(mm);
5370 	return NULL;
5371 }
5372 #endif
5373 
5374 #ifdef CONFIG_PER_VMA_LOCK
5375 /*
5376  * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5377  * stable and not isolated. If the VMA is not found or is being modified the
5378  * function returns NULL.
5379  */
5380 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5381 					  unsigned long address)
5382 {
5383 	MA_STATE(mas, &mm->mm_mt, address, address);
5384 	struct vm_area_struct *vma;
5385 
5386 	rcu_read_lock();
5387 retry:
5388 	vma = mas_walk(&mas);
5389 	if (!vma)
5390 		goto inval;
5391 
5392 	/* Only anonymous and tcp vmas are supported for now */
5393 	if (!vma_is_anonymous(vma) && !vma_is_tcp(vma))
5394 		goto inval;
5395 
5396 	if (!vma_start_read(vma))
5397 		goto inval;
5398 
5399 	/*
5400 	 * find_mergeable_anon_vma uses adjacent vmas which are not locked.
5401 	 * This check must happen after vma_start_read(); otherwise, a
5402 	 * concurrent mremap() with MREMAP_DONTUNMAP could dissociate the VMA
5403 	 * from its anon_vma.
5404 	 */
5405 	if (unlikely(!vma->anon_vma && !vma_is_tcp(vma)))
5406 		goto inval_end_read;
5407 
5408 	/*
5409 	 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5410 	 * it for now and fall back to page fault handling under mmap_lock.
5411 	 */
5412 	if (userfaultfd_armed(vma))
5413 		goto inval_end_read;
5414 
5415 	/* Check since vm_start/vm_end might change before we lock the VMA */
5416 	if (unlikely(address < vma->vm_start || address >= vma->vm_end))
5417 		goto inval_end_read;
5418 
5419 	/* Check if the VMA got isolated after we found it */
5420 	if (vma->detached) {
5421 		vma_end_read(vma);
5422 		count_vm_vma_lock_event(VMA_LOCK_MISS);
5423 		/* The area was replaced with another one */
5424 		goto retry;
5425 	}
5426 
5427 	rcu_read_unlock();
5428 	return vma;
5429 
5430 inval_end_read:
5431 	vma_end_read(vma);
5432 inval:
5433 	rcu_read_unlock();
5434 	count_vm_vma_lock_event(VMA_LOCK_ABORT);
5435 	return NULL;
5436 }
5437 #endif /* CONFIG_PER_VMA_LOCK */
5438 
5439 #ifndef __PAGETABLE_P4D_FOLDED
5440 /*
5441  * Allocate p4d page table.
5442  * We've already handled the fast-path in-line.
5443  */
5444 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5445 {
5446 	p4d_t *new = p4d_alloc_one(mm, address);
5447 	if (!new)
5448 		return -ENOMEM;
5449 
5450 	spin_lock(&mm->page_table_lock);
5451 	if (pgd_present(*pgd)) {	/* Another has populated it */
5452 		p4d_free(mm, new);
5453 	} else {
5454 		smp_wmb(); /* See comment in pmd_install() */
5455 		pgd_populate(mm, pgd, new);
5456 	}
5457 	spin_unlock(&mm->page_table_lock);
5458 	return 0;
5459 }
5460 #endif /* __PAGETABLE_P4D_FOLDED */
5461 
5462 #ifndef __PAGETABLE_PUD_FOLDED
5463 /*
5464  * Allocate page upper directory.
5465  * We've already handled the fast-path in-line.
5466  */
5467 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5468 {
5469 	pud_t *new = pud_alloc_one(mm, address);
5470 	if (!new)
5471 		return -ENOMEM;
5472 
5473 	spin_lock(&mm->page_table_lock);
5474 	if (!p4d_present(*p4d)) {
5475 		mm_inc_nr_puds(mm);
5476 		smp_wmb(); /* See comment in pmd_install() */
5477 		p4d_populate(mm, p4d, new);
5478 	} else	/* Another has populated it */
5479 		pud_free(mm, new);
5480 	spin_unlock(&mm->page_table_lock);
5481 	return 0;
5482 }
5483 #endif /* __PAGETABLE_PUD_FOLDED */
5484 
5485 #ifndef __PAGETABLE_PMD_FOLDED
5486 /*
5487  * Allocate page middle directory.
5488  * We've already handled the fast-path in-line.
5489  */
5490 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5491 {
5492 	spinlock_t *ptl;
5493 	pmd_t *new = pmd_alloc_one(mm, address);
5494 	if (!new)
5495 		return -ENOMEM;
5496 
5497 	ptl = pud_lock(mm, pud);
5498 	if (!pud_present(*pud)) {
5499 		mm_inc_nr_pmds(mm);
5500 		smp_wmb(); /* See comment in pmd_install() */
5501 		pud_populate(mm, pud, new);
5502 	} else {	/* Another has populated it */
5503 		pmd_free(mm, new);
5504 	}
5505 	spin_unlock(ptl);
5506 	return 0;
5507 }
5508 #endif /* __PAGETABLE_PMD_FOLDED */
5509 
5510 /**
5511  * follow_pte - look up PTE at a user virtual address
5512  * @mm: the mm_struct of the target address space
5513  * @address: user virtual address
5514  * @ptepp: location to store found PTE
5515  * @ptlp: location to store the lock for the PTE
5516  *
5517  * On a successful return, the pointer to the PTE is stored in @ptepp;
5518  * the corresponding lock is taken and its location is stored in @ptlp.
5519  * The contents of the PTE are only stable until @ptlp is released;
5520  * any further use, if any, must be protected against invalidation
5521  * with MMU notifiers.
5522  *
5523  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
5524  * should be taken for read.
5525  *
5526  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
5527  * it is not a good general-purpose API.
5528  *
5529  * Return: zero on success, -ve otherwise.
5530  */
5531 int follow_pte(struct mm_struct *mm, unsigned long address,
5532 	       pte_t **ptepp, spinlock_t **ptlp)
5533 {
5534 	pgd_t *pgd;
5535 	p4d_t *p4d;
5536 	pud_t *pud;
5537 	pmd_t *pmd;
5538 	pte_t *ptep;
5539 
5540 	pgd = pgd_offset(mm, address);
5541 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5542 		goto out;
5543 
5544 	p4d = p4d_offset(pgd, address);
5545 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5546 		goto out;
5547 
5548 	pud = pud_offset(p4d, address);
5549 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5550 		goto out;
5551 
5552 	pmd = pmd_offset(pud, address);
5553 	VM_BUG_ON(pmd_trans_huge(*pmd));
5554 
5555 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5556 	if (!ptep)
5557 		goto out;
5558 	if (!pte_present(ptep_get(ptep)))
5559 		goto unlock;
5560 	*ptepp = ptep;
5561 	return 0;
5562 unlock:
5563 	pte_unmap_unlock(ptep, *ptlp);
5564 out:
5565 	return -EINVAL;
5566 }
5567 EXPORT_SYMBOL_GPL(follow_pte);
5568 
5569 /**
5570  * follow_pfn - look up PFN at a user virtual address
5571  * @vma: memory mapping
5572  * @address: user virtual address
5573  * @pfn: location to store found PFN
5574  *
5575  * Only IO mappings and raw PFN mappings are allowed.
5576  *
5577  * This function does not allow the caller to read the permissions
5578  * of the PTE.  Do not use it.
5579  *
5580  * Return: zero and the pfn at @pfn on success, -ve otherwise.
5581  */
5582 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5583 	unsigned long *pfn)
5584 {
5585 	int ret = -EINVAL;
5586 	spinlock_t *ptl;
5587 	pte_t *ptep;
5588 
5589 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5590 		return ret;
5591 
5592 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5593 	if (ret)
5594 		return ret;
5595 	*pfn = pte_pfn(ptep_get(ptep));
5596 	pte_unmap_unlock(ptep, ptl);
5597 	return 0;
5598 }
5599 EXPORT_SYMBOL(follow_pfn);
5600 
5601 #ifdef CONFIG_HAVE_IOREMAP_PROT
5602 int follow_phys(struct vm_area_struct *vma,
5603 		unsigned long address, unsigned int flags,
5604 		unsigned long *prot, resource_size_t *phys)
5605 {
5606 	int ret = -EINVAL;
5607 	pte_t *ptep, pte;
5608 	spinlock_t *ptl;
5609 
5610 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5611 		goto out;
5612 
5613 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5614 		goto out;
5615 	pte = ptep_get(ptep);
5616 
5617 	if ((flags & FOLL_WRITE) && !pte_write(pte))
5618 		goto unlock;
5619 
5620 	*prot = pgprot_val(pte_pgprot(pte));
5621 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5622 
5623 	ret = 0;
5624 unlock:
5625 	pte_unmap_unlock(ptep, ptl);
5626 out:
5627 	return ret;
5628 }
5629 
5630 /**
5631  * generic_access_phys - generic implementation for iomem mmap access
5632  * @vma: the vma to access
5633  * @addr: userspace address, not relative offset within @vma
5634  * @buf: buffer to read/write
5635  * @len: length of transfer
5636  * @write: set to FOLL_WRITE when writing, otherwise reading
5637  *
5638  * This is a generic implementation for &vm_operations_struct.access for an
5639  * iomem mapping. This callback is used by access_process_vm() when the @vma is
5640  * not page based.
5641  */
5642 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5643 			void *buf, int len, int write)
5644 {
5645 	resource_size_t phys_addr;
5646 	unsigned long prot = 0;
5647 	void __iomem *maddr;
5648 	pte_t *ptep, pte;
5649 	spinlock_t *ptl;
5650 	int offset = offset_in_page(addr);
5651 	int ret = -EINVAL;
5652 
5653 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5654 		return -EINVAL;
5655 
5656 retry:
5657 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5658 		return -EINVAL;
5659 	pte = ptep_get(ptep);
5660 	pte_unmap_unlock(ptep, ptl);
5661 
5662 	prot = pgprot_val(pte_pgprot(pte));
5663 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5664 
5665 	if ((write & FOLL_WRITE) && !pte_write(pte))
5666 		return -EINVAL;
5667 
5668 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5669 	if (!maddr)
5670 		return -ENOMEM;
5671 
5672 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5673 		goto out_unmap;
5674 
5675 	if (!pte_same(pte, ptep_get(ptep))) {
5676 		pte_unmap_unlock(ptep, ptl);
5677 		iounmap(maddr);
5678 
5679 		goto retry;
5680 	}
5681 
5682 	if (write)
5683 		memcpy_toio(maddr + offset, buf, len);
5684 	else
5685 		memcpy_fromio(buf, maddr + offset, len);
5686 	ret = len;
5687 	pte_unmap_unlock(ptep, ptl);
5688 out_unmap:
5689 	iounmap(maddr);
5690 
5691 	return ret;
5692 }
5693 EXPORT_SYMBOL_GPL(generic_access_phys);
5694 #endif
5695 
5696 /*
5697  * Access another process' address space as given in mm.
5698  */
5699 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5700 		       int len, unsigned int gup_flags)
5701 {
5702 	void *old_buf = buf;
5703 	int write = gup_flags & FOLL_WRITE;
5704 
5705 	if (mmap_read_lock_killable(mm))
5706 		return 0;
5707 
5708 	/* Avoid triggering the temporary warning in __get_user_pages */
5709 	if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5710 		return 0;
5711 
5712 	/* ignore errors, just check how much was successfully transferred */
5713 	while (len) {
5714 		int bytes, offset;
5715 		void *maddr;
5716 		struct vm_area_struct *vma = NULL;
5717 		struct page *page = get_user_page_vma_remote(mm, addr,
5718 							     gup_flags, &vma);
5719 
5720 		if (IS_ERR_OR_NULL(page)) {
5721 			/* We might need to expand the stack to access it */
5722 			vma = vma_lookup(mm, addr);
5723 			if (!vma) {
5724 				vma = expand_stack(mm, addr);
5725 
5726 				/* mmap_lock was dropped on failure */
5727 				if (!vma)
5728 					return buf - old_buf;
5729 
5730 				/* Try again if stack expansion worked */
5731 				continue;
5732 			}
5733 
5734 
5735 			/*
5736 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5737 			 * we can access using slightly different code.
5738 			 */
5739 			bytes = 0;
5740 #ifdef CONFIG_HAVE_IOREMAP_PROT
5741 			if (vma->vm_ops && vma->vm_ops->access)
5742 				bytes = vma->vm_ops->access(vma, addr, buf,
5743 							    len, write);
5744 #endif
5745 			if (bytes <= 0)
5746 				break;
5747 		} else {
5748 			bytes = len;
5749 			offset = addr & (PAGE_SIZE-1);
5750 			if (bytes > PAGE_SIZE-offset)
5751 				bytes = PAGE_SIZE-offset;
5752 
5753 			maddr = kmap(page);
5754 			if (write) {
5755 				copy_to_user_page(vma, page, addr,
5756 						  maddr + offset, buf, bytes);
5757 				set_page_dirty_lock(page);
5758 			} else {
5759 				copy_from_user_page(vma, page, addr,
5760 						    buf, maddr + offset, bytes);
5761 			}
5762 			kunmap(page);
5763 			put_page(page);
5764 		}
5765 		len -= bytes;
5766 		buf += bytes;
5767 		addr += bytes;
5768 	}
5769 	mmap_read_unlock(mm);
5770 
5771 	return buf - old_buf;
5772 }
5773 
5774 /**
5775  * access_remote_vm - access another process' address space
5776  * @mm:		the mm_struct of the target address space
5777  * @addr:	start address to access
5778  * @buf:	source or destination buffer
5779  * @len:	number of bytes to transfer
5780  * @gup_flags:	flags modifying lookup behaviour
5781  *
5782  * The caller must hold a reference on @mm.
5783  *
5784  * Return: number of bytes copied from source to destination.
5785  */
5786 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5787 		void *buf, int len, unsigned int gup_flags)
5788 {
5789 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
5790 }
5791 
5792 /*
5793  * Access another process' address space.
5794  * Source/target buffer must be kernel space,
5795  * Do not walk the page table directly, use get_user_pages
5796  */
5797 int access_process_vm(struct task_struct *tsk, unsigned long addr,
5798 		void *buf, int len, unsigned int gup_flags)
5799 {
5800 	struct mm_struct *mm;
5801 	int ret;
5802 
5803 	mm = get_task_mm(tsk);
5804 	if (!mm)
5805 		return 0;
5806 
5807 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5808 
5809 	mmput(mm);
5810 
5811 	return ret;
5812 }
5813 EXPORT_SYMBOL_GPL(access_process_vm);
5814 
5815 /*
5816  * Print the name of a VMA.
5817  */
5818 void print_vma_addr(char *prefix, unsigned long ip)
5819 {
5820 	struct mm_struct *mm = current->mm;
5821 	struct vm_area_struct *vma;
5822 
5823 	/*
5824 	 * we might be running from an atomic context so we cannot sleep
5825 	 */
5826 	if (!mmap_read_trylock(mm))
5827 		return;
5828 
5829 	vma = find_vma(mm, ip);
5830 	if (vma && vma->vm_file) {
5831 		struct file *f = vma->vm_file;
5832 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
5833 		if (buf) {
5834 			char *p;
5835 
5836 			p = file_path(f, buf, PAGE_SIZE);
5837 			if (IS_ERR(p))
5838 				p = "?";
5839 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5840 					vma->vm_start,
5841 					vma->vm_end - vma->vm_start);
5842 			free_page((unsigned long)buf);
5843 		}
5844 	}
5845 	mmap_read_unlock(mm);
5846 }
5847 
5848 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5849 void __might_fault(const char *file, int line)
5850 {
5851 	if (pagefault_disabled())
5852 		return;
5853 	__might_sleep(file, line);
5854 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5855 	if (current->mm)
5856 		might_lock_read(&current->mm->mmap_lock);
5857 #endif
5858 }
5859 EXPORT_SYMBOL(__might_fault);
5860 #endif
5861 
5862 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5863 /*
5864  * Process all subpages of the specified huge page with the specified
5865  * operation.  The target subpage will be processed last to keep its
5866  * cache lines hot.
5867  */
5868 static inline int process_huge_page(
5869 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5870 	int (*process_subpage)(unsigned long addr, int idx, void *arg),
5871 	void *arg)
5872 {
5873 	int i, n, base, l, ret;
5874 	unsigned long addr = addr_hint &
5875 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5876 
5877 	/* Process target subpage last to keep its cache lines hot */
5878 	might_sleep();
5879 	n = (addr_hint - addr) / PAGE_SIZE;
5880 	if (2 * n <= pages_per_huge_page) {
5881 		/* If target subpage in first half of huge page */
5882 		base = 0;
5883 		l = n;
5884 		/* Process subpages at the end of huge page */
5885 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5886 			cond_resched();
5887 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5888 			if (ret)
5889 				return ret;
5890 		}
5891 	} else {
5892 		/* If target subpage in second half of huge page */
5893 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5894 		l = pages_per_huge_page - n;
5895 		/* Process subpages at the begin of huge page */
5896 		for (i = 0; i < base; i++) {
5897 			cond_resched();
5898 			ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5899 			if (ret)
5900 				return ret;
5901 		}
5902 	}
5903 	/*
5904 	 * Process remaining subpages in left-right-left-right pattern
5905 	 * towards the target subpage
5906 	 */
5907 	for (i = 0; i < l; i++) {
5908 		int left_idx = base + i;
5909 		int right_idx = base + 2 * l - 1 - i;
5910 
5911 		cond_resched();
5912 		ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5913 		if (ret)
5914 			return ret;
5915 		cond_resched();
5916 		ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5917 		if (ret)
5918 			return ret;
5919 	}
5920 	return 0;
5921 }
5922 
5923 static void clear_gigantic_page(struct page *page,
5924 				unsigned long addr,
5925 				unsigned int pages_per_huge_page)
5926 {
5927 	int i;
5928 	struct page *p;
5929 
5930 	might_sleep();
5931 	for (i = 0; i < pages_per_huge_page; i++) {
5932 		p = nth_page(page, i);
5933 		cond_resched();
5934 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5935 	}
5936 }
5937 
5938 static int clear_subpage(unsigned long addr, int idx, void *arg)
5939 {
5940 	struct page *page = arg;
5941 
5942 	clear_user_highpage(page + idx, addr);
5943 	return 0;
5944 }
5945 
5946 void clear_huge_page(struct page *page,
5947 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5948 {
5949 	unsigned long addr = addr_hint &
5950 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5951 
5952 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5953 		clear_gigantic_page(page, addr, pages_per_huge_page);
5954 		return;
5955 	}
5956 
5957 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5958 }
5959 
5960 static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5961 				     unsigned long addr,
5962 				     struct vm_area_struct *vma,
5963 				     unsigned int pages_per_huge_page)
5964 {
5965 	int i;
5966 	struct page *dst_page;
5967 	struct page *src_page;
5968 
5969 	for (i = 0; i < pages_per_huge_page; i++) {
5970 		dst_page = folio_page(dst, i);
5971 		src_page = folio_page(src, i);
5972 
5973 		cond_resched();
5974 		if (copy_mc_user_highpage(dst_page, src_page,
5975 					  addr + i*PAGE_SIZE, vma)) {
5976 			memory_failure_queue(page_to_pfn(src_page), 0);
5977 			return -EHWPOISON;
5978 		}
5979 	}
5980 	return 0;
5981 }
5982 
5983 struct copy_subpage_arg {
5984 	struct page *dst;
5985 	struct page *src;
5986 	struct vm_area_struct *vma;
5987 };
5988 
5989 static int copy_subpage(unsigned long addr, int idx, void *arg)
5990 {
5991 	struct copy_subpage_arg *copy_arg = arg;
5992 
5993 	if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5994 				  addr, copy_arg->vma)) {
5995 		memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
5996 		return -EHWPOISON;
5997 	}
5998 	return 0;
5999 }
6000 
6001 int copy_user_large_folio(struct folio *dst, struct folio *src,
6002 			  unsigned long addr_hint, struct vm_area_struct *vma)
6003 {
6004 	unsigned int pages_per_huge_page = folio_nr_pages(dst);
6005 	unsigned long addr = addr_hint &
6006 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6007 	struct copy_subpage_arg arg = {
6008 		.dst = &dst->page,
6009 		.src = &src->page,
6010 		.vma = vma,
6011 	};
6012 
6013 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6014 		return copy_user_gigantic_page(dst, src, addr, vma,
6015 					       pages_per_huge_page);
6016 
6017 	return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6018 }
6019 
6020 long copy_folio_from_user(struct folio *dst_folio,
6021 			   const void __user *usr_src,
6022 			   bool allow_pagefault)
6023 {
6024 	void *kaddr;
6025 	unsigned long i, rc = 0;
6026 	unsigned int nr_pages = folio_nr_pages(dst_folio);
6027 	unsigned long ret_val = nr_pages * PAGE_SIZE;
6028 	struct page *subpage;
6029 
6030 	for (i = 0; i < nr_pages; i++) {
6031 		subpage = folio_page(dst_folio, i);
6032 		kaddr = kmap_local_page(subpage);
6033 		if (!allow_pagefault)
6034 			pagefault_disable();
6035 		rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6036 		if (!allow_pagefault)
6037 			pagefault_enable();
6038 		kunmap_local(kaddr);
6039 
6040 		ret_val -= (PAGE_SIZE - rc);
6041 		if (rc)
6042 			break;
6043 
6044 		flush_dcache_page(subpage);
6045 
6046 		cond_resched();
6047 	}
6048 	return ret_val;
6049 }
6050 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6051 
6052 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6053 
6054 static struct kmem_cache *page_ptl_cachep;
6055 
6056 void __init ptlock_cache_init(void)
6057 {
6058 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6059 			SLAB_PANIC, NULL);
6060 }
6061 
6062 bool ptlock_alloc(struct page *page)
6063 {
6064 	spinlock_t *ptl;
6065 
6066 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6067 	if (!ptl)
6068 		return false;
6069 	page->ptl = ptl;
6070 	return true;
6071 }
6072 
6073 void ptlock_free(struct page *page)
6074 {
6075 	kmem_cache_free(page_ptl_cachep, page->ptl);
6076 }
6077 #endif
6078