xref: /openbmc/linux/mm/memory.c (revision 1a5aeeecd550ee4344cfba1791f1134739b16dc6)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
54 #include <linux/mmu_notifier.h>
55 #include <linux/kallsyms.h>
56 #include <linux/swapops.h>
57 #include <linux/elf.h>
58 
59 #include <asm/pgalloc.h>
60 #include <asm/uaccess.h>
61 #include <asm/tlb.h>
62 #include <asm/tlbflush.h>
63 #include <asm/pgtable.h>
64 
65 #include "internal.h"
66 
67 #ifndef CONFIG_NEED_MULTIPLE_NODES
68 /* use the per-pgdat data instead for discontigmem - mbligh */
69 unsigned long max_mapnr;
70 struct page *mem_map;
71 
72 EXPORT_SYMBOL(max_mapnr);
73 EXPORT_SYMBOL(mem_map);
74 #endif
75 
76 unsigned long num_physpages;
77 /*
78  * A number of key systems in x86 including ioremap() rely on the assumption
79  * that high_memory defines the upper bound on direct map memory, then end
80  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
81  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82  * and ZONE_HIGHMEM.
83  */
84 void * high_memory;
85 
86 EXPORT_SYMBOL(num_physpages);
87 EXPORT_SYMBOL(high_memory);
88 
89 /*
90  * Randomize the address space (stacks, mmaps, brk, etc.).
91  *
92  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93  *   as ancient (libc5 based) binaries can segfault. )
94  */
95 int randomize_va_space __read_mostly =
96 #ifdef CONFIG_COMPAT_BRK
97 					1;
98 #else
99 					2;
100 #endif
101 
102 static int __init disable_randmaps(char *s)
103 {
104 	randomize_va_space = 0;
105 	return 1;
106 }
107 __setup("norandmaps", disable_randmaps);
108 
109 
110 /*
111  * If a p?d_bad entry is found while walking page tables, report
112  * the error, before resetting entry to p?d_none.  Usually (but
113  * very seldom) called out from the p?d_none_or_clear_bad macros.
114  */
115 
116 void pgd_clear_bad(pgd_t *pgd)
117 {
118 	pgd_ERROR(*pgd);
119 	pgd_clear(pgd);
120 }
121 
122 void pud_clear_bad(pud_t *pud)
123 {
124 	pud_ERROR(*pud);
125 	pud_clear(pud);
126 }
127 
128 void pmd_clear_bad(pmd_t *pmd)
129 {
130 	pmd_ERROR(*pmd);
131 	pmd_clear(pmd);
132 }
133 
134 /*
135  * Note: this doesn't free the actual pages themselves. That
136  * has been handled earlier when unmapping all the memory regions.
137  */
138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
139 			   unsigned long addr)
140 {
141 	pgtable_t token = pmd_pgtable(*pmd);
142 	pmd_clear(pmd);
143 	pte_free_tlb(tlb, token, addr);
144 	tlb->mm->nr_ptes--;
145 }
146 
147 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
148 				unsigned long addr, unsigned long end,
149 				unsigned long floor, unsigned long ceiling)
150 {
151 	pmd_t *pmd;
152 	unsigned long next;
153 	unsigned long start;
154 
155 	start = addr;
156 	pmd = pmd_offset(pud, addr);
157 	do {
158 		next = pmd_addr_end(addr, end);
159 		if (pmd_none_or_clear_bad(pmd))
160 			continue;
161 		free_pte_range(tlb, pmd, addr);
162 	} while (pmd++, addr = next, addr != end);
163 
164 	start &= PUD_MASK;
165 	if (start < floor)
166 		return;
167 	if (ceiling) {
168 		ceiling &= PUD_MASK;
169 		if (!ceiling)
170 			return;
171 	}
172 	if (end - 1 > ceiling - 1)
173 		return;
174 
175 	pmd = pmd_offset(pud, start);
176 	pud_clear(pud);
177 	pmd_free_tlb(tlb, pmd, start);
178 }
179 
180 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
181 				unsigned long addr, unsigned long end,
182 				unsigned long floor, unsigned long ceiling)
183 {
184 	pud_t *pud;
185 	unsigned long next;
186 	unsigned long start;
187 
188 	start = addr;
189 	pud = pud_offset(pgd, addr);
190 	do {
191 		next = pud_addr_end(addr, end);
192 		if (pud_none_or_clear_bad(pud))
193 			continue;
194 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
195 	} while (pud++, addr = next, addr != end);
196 
197 	start &= PGDIR_MASK;
198 	if (start < floor)
199 		return;
200 	if (ceiling) {
201 		ceiling &= PGDIR_MASK;
202 		if (!ceiling)
203 			return;
204 	}
205 	if (end - 1 > ceiling - 1)
206 		return;
207 
208 	pud = pud_offset(pgd, start);
209 	pgd_clear(pgd);
210 	pud_free_tlb(tlb, pud, start);
211 }
212 
213 /*
214  * This function frees user-level page tables of a process.
215  *
216  * Must be called with pagetable lock held.
217  */
218 void free_pgd_range(struct mmu_gather *tlb,
219 			unsigned long addr, unsigned long end,
220 			unsigned long floor, unsigned long ceiling)
221 {
222 	pgd_t *pgd;
223 	unsigned long next;
224 	unsigned long start;
225 
226 	/*
227 	 * The next few lines have given us lots of grief...
228 	 *
229 	 * Why are we testing PMD* at this top level?  Because often
230 	 * there will be no work to do at all, and we'd prefer not to
231 	 * go all the way down to the bottom just to discover that.
232 	 *
233 	 * Why all these "- 1"s?  Because 0 represents both the bottom
234 	 * of the address space and the top of it (using -1 for the
235 	 * top wouldn't help much: the masks would do the wrong thing).
236 	 * The rule is that addr 0 and floor 0 refer to the bottom of
237 	 * the address space, but end 0 and ceiling 0 refer to the top
238 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
239 	 * that end 0 case should be mythical).
240 	 *
241 	 * Wherever addr is brought up or ceiling brought down, we must
242 	 * be careful to reject "the opposite 0" before it confuses the
243 	 * subsequent tests.  But what about where end is brought down
244 	 * by PMD_SIZE below? no, end can't go down to 0 there.
245 	 *
246 	 * Whereas we round start (addr) and ceiling down, by different
247 	 * masks at different levels, in order to test whether a table
248 	 * now has no other vmas using it, so can be freed, we don't
249 	 * bother to round floor or end up - the tests don't need that.
250 	 */
251 
252 	addr &= PMD_MASK;
253 	if (addr < floor) {
254 		addr += PMD_SIZE;
255 		if (!addr)
256 			return;
257 	}
258 	if (ceiling) {
259 		ceiling &= PMD_MASK;
260 		if (!ceiling)
261 			return;
262 	}
263 	if (end - 1 > ceiling - 1)
264 		end -= PMD_SIZE;
265 	if (addr > end - 1)
266 		return;
267 
268 	start = addr;
269 	pgd = pgd_offset(tlb->mm, addr);
270 	do {
271 		next = pgd_addr_end(addr, end);
272 		if (pgd_none_or_clear_bad(pgd))
273 			continue;
274 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
275 	} while (pgd++, addr = next, addr != end);
276 }
277 
278 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
279 		unsigned long floor, unsigned long ceiling)
280 {
281 	while (vma) {
282 		struct vm_area_struct *next = vma->vm_next;
283 		unsigned long addr = vma->vm_start;
284 
285 		/*
286 		 * Hide vma from rmap and vmtruncate before freeing pgtables
287 		 */
288 		anon_vma_unlink(vma);
289 		unlink_file_vma(vma);
290 
291 		if (is_vm_hugetlb_page(vma)) {
292 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
293 				floor, next? next->vm_start: ceiling);
294 		} else {
295 			/*
296 			 * Optimization: gather nearby vmas into one call down
297 			 */
298 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
299 			       && !is_vm_hugetlb_page(next)) {
300 				vma = next;
301 				next = vma->vm_next;
302 				anon_vma_unlink(vma);
303 				unlink_file_vma(vma);
304 			}
305 			free_pgd_range(tlb, addr, vma->vm_end,
306 				floor, next? next->vm_start: ceiling);
307 		}
308 		vma = next;
309 	}
310 }
311 
312 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
313 {
314 	pgtable_t new = pte_alloc_one(mm, address);
315 	if (!new)
316 		return -ENOMEM;
317 
318 	/*
319 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
320 	 * visible before the pte is made visible to other CPUs by being
321 	 * put into page tables.
322 	 *
323 	 * The other side of the story is the pointer chasing in the page
324 	 * table walking code (when walking the page table without locking;
325 	 * ie. most of the time). Fortunately, these data accesses consist
326 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
327 	 * being the notable exception) will already guarantee loads are
328 	 * seen in-order. See the alpha page table accessors for the
329 	 * smp_read_barrier_depends() barriers in page table walking code.
330 	 */
331 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
332 
333 	spin_lock(&mm->page_table_lock);
334 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
335 		mm->nr_ptes++;
336 		pmd_populate(mm, pmd, new);
337 		new = NULL;
338 	}
339 	spin_unlock(&mm->page_table_lock);
340 	if (new)
341 		pte_free(mm, new);
342 	return 0;
343 }
344 
345 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
346 {
347 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
348 	if (!new)
349 		return -ENOMEM;
350 
351 	smp_wmb(); /* See comment in __pte_alloc */
352 
353 	spin_lock(&init_mm.page_table_lock);
354 	if (!pmd_present(*pmd)) {	/* Has another populated it ? */
355 		pmd_populate_kernel(&init_mm, pmd, new);
356 		new = NULL;
357 	}
358 	spin_unlock(&init_mm.page_table_lock);
359 	if (new)
360 		pte_free_kernel(&init_mm, new);
361 	return 0;
362 }
363 
364 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
365 {
366 	if (file_rss)
367 		add_mm_counter(mm, file_rss, file_rss);
368 	if (anon_rss)
369 		add_mm_counter(mm, anon_rss, anon_rss);
370 }
371 
372 /*
373  * This function is called to print an error when a bad pte
374  * is found. For example, we might have a PFN-mapped pte in
375  * a region that doesn't allow it.
376  *
377  * The calling function must still handle the error.
378  */
379 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
380 			  pte_t pte, struct page *page)
381 {
382 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
383 	pud_t *pud = pud_offset(pgd, addr);
384 	pmd_t *pmd = pmd_offset(pud, addr);
385 	struct address_space *mapping;
386 	pgoff_t index;
387 	static unsigned long resume;
388 	static unsigned long nr_shown;
389 	static unsigned long nr_unshown;
390 
391 	/*
392 	 * Allow a burst of 60 reports, then keep quiet for that minute;
393 	 * or allow a steady drip of one report per second.
394 	 */
395 	if (nr_shown == 60) {
396 		if (time_before(jiffies, resume)) {
397 			nr_unshown++;
398 			return;
399 		}
400 		if (nr_unshown) {
401 			printk(KERN_ALERT
402 				"BUG: Bad page map: %lu messages suppressed\n",
403 				nr_unshown);
404 			nr_unshown = 0;
405 		}
406 		nr_shown = 0;
407 	}
408 	if (nr_shown++ == 0)
409 		resume = jiffies + 60 * HZ;
410 
411 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
412 	index = linear_page_index(vma, addr);
413 
414 	printk(KERN_ALERT
415 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
416 		current->comm,
417 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
418 	if (page) {
419 		printk(KERN_ALERT
420 		"page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
421 		page, (void *)page->flags, page_count(page),
422 		page_mapcount(page), page->mapping, page->index);
423 	}
424 	printk(KERN_ALERT
425 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
426 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
427 	/*
428 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
429 	 */
430 	if (vma->vm_ops)
431 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
432 				(unsigned long)vma->vm_ops->fault);
433 	if (vma->vm_file && vma->vm_file->f_op)
434 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
435 				(unsigned long)vma->vm_file->f_op->mmap);
436 	dump_stack();
437 	add_taint(TAINT_BAD_PAGE);
438 }
439 
440 static inline int is_cow_mapping(unsigned int flags)
441 {
442 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
443 }
444 
445 /*
446  * vm_normal_page -- This function gets the "struct page" associated with a pte.
447  *
448  * "Special" mappings do not wish to be associated with a "struct page" (either
449  * it doesn't exist, or it exists but they don't want to touch it). In this
450  * case, NULL is returned here. "Normal" mappings do have a struct page.
451  *
452  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
453  * pte bit, in which case this function is trivial. Secondly, an architecture
454  * may not have a spare pte bit, which requires a more complicated scheme,
455  * described below.
456  *
457  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
458  * special mapping (even if there are underlying and valid "struct pages").
459  * COWed pages of a VM_PFNMAP are always normal.
460  *
461  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
462  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
463  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
464  * mapping will always honor the rule
465  *
466  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
467  *
468  * And for normal mappings this is false.
469  *
470  * This restricts such mappings to be a linear translation from virtual address
471  * to pfn. To get around this restriction, we allow arbitrary mappings so long
472  * as the vma is not a COW mapping; in that case, we know that all ptes are
473  * special (because none can have been COWed).
474  *
475  *
476  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
477  *
478  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
479  * page" backing, however the difference is that _all_ pages with a struct
480  * page (that is, those where pfn_valid is true) are refcounted and considered
481  * normal pages by the VM. The disadvantage is that pages are refcounted
482  * (which can be slower and simply not an option for some PFNMAP users). The
483  * advantage is that we don't have to follow the strict linearity rule of
484  * PFNMAP mappings in order to support COWable mappings.
485  *
486  */
487 #ifdef __HAVE_ARCH_PTE_SPECIAL
488 # define HAVE_PTE_SPECIAL 1
489 #else
490 # define HAVE_PTE_SPECIAL 0
491 #endif
492 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
493 				pte_t pte)
494 {
495 	unsigned long pfn = pte_pfn(pte);
496 
497 	if (HAVE_PTE_SPECIAL) {
498 		if (likely(!pte_special(pte)))
499 			goto check_pfn;
500 		if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)))
501 			print_bad_pte(vma, addr, pte, NULL);
502 		return NULL;
503 	}
504 
505 	/* !HAVE_PTE_SPECIAL case follows: */
506 
507 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
508 		if (vma->vm_flags & VM_MIXEDMAP) {
509 			if (!pfn_valid(pfn))
510 				return NULL;
511 			goto out;
512 		} else {
513 			unsigned long off;
514 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
515 			if (pfn == vma->vm_pgoff + off)
516 				return NULL;
517 			if (!is_cow_mapping(vma->vm_flags))
518 				return NULL;
519 		}
520 	}
521 
522 check_pfn:
523 	if (unlikely(pfn > highest_memmap_pfn)) {
524 		print_bad_pte(vma, addr, pte, NULL);
525 		return NULL;
526 	}
527 
528 	/*
529 	 * NOTE! We still have PageReserved() pages in the page tables.
530 	 * eg. VDSO mappings can cause them to exist.
531 	 */
532 out:
533 	return pfn_to_page(pfn);
534 }
535 
536 /*
537  * copy one vm_area from one task to the other. Assumes the page tables
538  * already present in the new task to be cleared in the whole range
539  * covered by this vma.
540  */
541 
542 static inline void
543 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
544 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
545 		unsigned long addr, int *rss)
546 {
547 	unsigned long vm_flags = vma->vm_flags;
548 	pte_t pte = *src_pte;
549 	struct page *page;
550 
551 	/* pte contains position in swap or file, so copy. */
552 	if (unlikely(!pte_present(pte))) {
553 		if (!pte_file(pte)) {
554 			swp_entry_t entry = pte_to_swp_entry(pte);
555 
556 			swap_duplicate(entry);
557 			/* make sure dst_mm is on swapoff's mmlist. */
558 			if (unlikely(list_empty(&dst_mm->mmlist))) {
559 				spin_lock(&mmlist_lock);
560 				if (list_empty(&dst_mm->mmlist))
561 					list_add(&dst_mm->mmlist,
562 						 &src_mm->mmlist);
563 				spin_unlock(&mmlist_lock);
564 			}
565 			if (is_write_migration_entry(entry) &&
566 					is_cow_mapping(vm_flags)) {
567 				/*
568 				 * COW mappings require pages in both parent
569 				 * and child to be set to read.
570 				 */
571 				make_migration_entry_read(&entry);
572 				pte = swp_entry_to_pte(entry);
573 				set_pte_at(src_mm, addr, src_pte, pte);
574 			}
575 		}
576 		goto out_set_pte;
577 	}
578 
579 	/*
580 	 * If it's a COW mapping, write protect it both
581 	 * in the parent and the child
582 	 */
583 	if (is_cow_mapping(vm_flags)) {
584 		ptep_set_wrprotect(src_mm, addr, src_pte);
585 		pte = pte_wrprotect(pte);
586 	}
587 
588 	/*
589 	 * If it's a shared mapping, mark it clean in
590 	 * the child
591 	 */
592 	if (vm_flags & VM_SHARED)
593 		pte = pte_mkclean(pte);
594 	pte = pte_mkold(pte);
595 
596 	page = vm_normal_page(vma, addr, pte);
597 	if (page) {
598 		get_page(page);
599 		page_dup_rmap(page, vma, addr);
600 		rss[!!PageAnon(page)]++;
601 	}
602 
603 out_set_pte:
604 	set_pte_at(dst_mm, addr, dst_pte, pte);
605 }
606 
607 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
608 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
609 		unsigned long addr, unsigned long end)
610 {
611 	pte_t *src_pte, *dst_pte;
612 	spinlock_t *src_ptl, *dst_ptl;
613 	int progress = 0;
614 	int rss[2];
615 
616 again:
617 	rss[1] = rss[0] = 0;
618 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
619 	if (!dst_pte)
620 		return -ENOMEM;
621 	src_pte = pte_offset_map_nested(src_pmd, addr);
622 	src_ptl = pte_lockptr(src_mm, src_pmd);
623 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
624 	arch_enter_lazy_mmu_mode();
625 
626 	do {
627 		/*
628 		 * We are holding two locks at this point - either of them
629 		 * could generate latencies in another task on another CPU.
630 		 */
631 		if (progress >= 32) {
632 			progress = 0;
633 			if (need_resched() ||
634 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
635 				break;
636 		}
637 		if (pte_none(*src_pte)) {
638 			progress++;
639 			continue;
640 		}
641 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
642 		progress += 8;
643 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
644 
645 	arch_leave_lazy_mmu_mode();
646 	spin_unlock(src_ptl);
647 	pte_unmap_nested(src_pte - 1);
648 	add_mm_rss(dst_mm, rss[0], rss[1]);
649 	pte_unmap_unlock(dst_pte - 1, dst_ptl);
650 	cond_resched();
651 	if (addr != end)
652 		goto again;
653 	return 0;
654 }
655 
656 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
657 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
658 		unsigned long addr, unsigned long end)
659 {
660 	pmd_t *src_pmd, *dst_pmd;
661 	unsigned long next;
662 
663 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
664 	if (!dst_pmd)
665 		return -ENOMEM;
666 	src_pmd = pmd_offset(src_pud, addr);
667 	do {
668 		next = pmd_addr_end(addr, end);
669 		if (pmd_none_or_clear_bad(src_pmd))
670 			continue;
671 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
672 						vma, addr, next))
673 			return -ENOMEM;
674 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
675 	return 0;
676 }
677 
678 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
679 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
680 		unsigned long addr, unsigned long end)
681 {
682 	pud_t *src_pud, *dst_pud;
683 	unsigned long next;
684 
685 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
686 	if (!dst_pud)
687 		return -ENOMEM;
688 	src_pud = pud_offset(src_pgd, addr);
689 	do {
690 		next = pud_addr_end(addr, end);
691 		if (pud_none_or_clear_bad(src_pud))
692 			continue;
693 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
694 						vma, addr, next))
695 			return -ENOMEM;
696 	} while (dst_pud++, src_pud++, addr = next, addr != end);
697 	return 0;
698 }
699 
700 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
701 		struct vm_area_struct *vma)
702 {
703 	pgd_t *src_pgd, *dst_pgd;
704 	unsigned long next;
705 	unsigned long addr = vma->vm_start;
706 	unsigned long end = vma->vm_end;
707 	int ret;
708 
709 	/*
710 	 * Don't copy ptes where a page fault will fill them correctly.
711 	 * Fork becomes much lighter when there are big shared or private
712 	 * readonly mappings. The tradeoff is that copy_page_range is more
713 	 * efficient than faulting.
714 	 */
715 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
716 		if (!vma->anon_vma)
717 			return 0;
718 	}
719 
720 	if (is_vm_hugetlb_page(vma))
721 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
722 
723 	if (unlikely(is_pfn_mapping(vma))) {
724 		/*
725 		 * We do not free on error cases below as remove_vma
726 		 * gets called on error from higher level routine
727 		 */
728 		ret = track_pfn_vma_copy(vma);
729 		if (ret)
730 			return ret;
731 	}
732 
733 	/*
734 	 * We need to invalidate the secondary MMU mappings only when
735 	 * there could be a permission downgrade on the ptes of the
736 	 * parent mm. And a permission downgrade will only happen if
737 	 * is_cow_mapping() returns true.
738 	 */
739 	if (is_cow_mapping(vma->vm_flags))
740 		mmu_notifier_invalidate_range_start(src_mm, addr, end);
741 
742 	ret = 0;
743 	dst_pgd = pgd_offset(dst_mm, addr);
744 	src_pgd = pgd_offset(src_mm, addr);
745 	do {
746 		next = pgd_addr_end(addr, end);
747 		if (pgd_none_or_clear_bad(src_pgd))
748 			continue;
749 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
750 					    vma, addr, next))) {
751 			ret = -ENOMEM;
752 			break;
753 		}
754 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
755 
756 	if (is_cow_mapping(vma->vm_flags))
757 		mmu_notifier_invalidate_range_end(src_mm,
758 						  vma->vm_start, end);
759 	return ret;
760 }
761 
762 static unsigned long zap_pte_range(struct mmu_gather *tlb,
763 				struct vm_area_struct *vma, pmd_t *pmd,
764 				unsigned long addr, unsigned long end,
765 				long *zap_work, struct zap_details *details)
766 {
767 	struct mm_struct *mm = tlb->mm;
768 	pte_t *pte;
769 	spinlock_t *ptl;
770 	int file_rss = 0;
771 	int anon_rss = 0;
772 
773 	pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
774 	arch_enter_lazy_mmu_mode();
775 	do {
776 		pte_t ptent = *pte;
777 		if (pte_none(ptent)) {
778 			(*zap_work)--;
779 			continue;
780 		}
781 
782 		(*zap_work) -= PAGE_SIZE;
783 
784 		if (pte_present(ptent)) {
785 			struct page *page;
786 
787 			page = vm_normal_page(vma, addr, ptent);
788 			if (unlikely(details) && page) {
789 				/*
790 				 * unmap_shared_mapping_pages() wants to
791 				 * invalidate cache without truncating:
792 				 * unmap shared but keep private pages.
793 				 */
794 				if (details->check_mapping &&
795 				    details->check_mapping != page->mapping)
796 					continue;
797 				/*
798 				 * Each page->index must be checked when
799 				 * invalidating or truncating nonlinear.
800 				 */
801 				if (details->nonlinear_vma &&
802 				    (page->index < details->first_index ||
803 				     page->index > details->last_index))
804 					continue;
805 			}
806 			ptent = ptep_get_and_clear_full(mm, addr, pte,
807 							tlb->fullmm);
808 			tlb_remove_tlb_entry(tlb, pte, addr);
809 			if (unlikely(!page))
810 				continue;
811 			if (unlikely(details) && details->nonlinear_vma
812 			    && linear_page_index(details->nonlinear_vma,
813 						addr) != page->index)
814 				set_pte_at(mm, addr, pte,
815 					   pgoff_to_pte(page->index));
816 			if (PageAnon(page))
817 				anon_rss--;
818 			else {
819 				if (pte_dirty(ptent))
820 					set_page_dirty(page);
821 				if (pte_young(ptent) &&
822 				    likely(!VM_SequentialReadHint(vma)))
823 					mark_page_accessed(page);
824 				file_rss--;
825 			}
826 			page_remove_rmap(page);
827 			if (unlikely(page_mapcount(page) < 0))
828 				print_bad_pte(vma, addr, ptent, page);
829 			tlb_remove_page(tlb, page);
830 			continue;
831 		}
832 		/*
833 		 * If details->check_mapping, we leave swap entries;
834 		 * if details->nonlinear_vma, we leave file entries.
835 		 */
836 		if (unlikely(details))
837 			continue;
838 		if (pte_file(ptent)) {
839 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
840 				print_bad_pte(vma, addr, ptent, NULL);
841 		} else if
842 		  (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent))))
843 			print_bad_pte(vma, addr, ptent, NULL);
844 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
845 	} while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
846 
847 	add_mm_rss(mm, file_rss, anon_rss);
848 	arch_leave_lazy_mmu_mode();
849 	pte_unmap_unlock(pte - 1, ptl);
850 
851 	return addr;
852 }
853 
854 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
855 				struct vm_area_struct *vma, pud_t *pud,
856 				unsigned long addr, unsigned long end,
857 				long *zap_work, struct zap_details *details)
858 {
859 	pmd_t *pmd;
860 	unsigned long next;
861 
862 	pmd = pmd_offset(pud, addr);
863 	do {
864 		next = pmd_addr_end(addr, end);
865 		if (pmd_none_or_clear_bad(pmd)) {
866 			(*zap_work)--;
867 			continue;
868 		}
869 		next = zap_pte_range(tlb, vma, pmd, addr, next,
870 						zap_work, details);
871 	} while (pmd++, addr = next, (addr != end && *zap_work > 0));
872 
873 	return addr;
874 }
875 
876 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
877 				struct vm_area_struct *vma, pgd_t *pgd,
878 				unsigned long addr, unsigned long end,
879 				long *zap_work, struct zap_details *details)
880 {
881 	pud_t *pud;
882 	unsigned long next;
883 
884 	pud = pud_offset(pgd, addr);
885 	do {
886 		next = pud_addr_end(addr, end);
887 		if (pud_none_or_clear_bad(pud)) {
888 			(*zap_work)--;
889 			continue;
890 		}
891 		next = zap_pmd_range(tlb, vma, pud, addr, next,
892 						zap_work, details);
893 	} while (pud++, addr = next, (addr != end && *zap_work > 0));
894 
895 	return addr;
896 }
897 
898 static unsigned long unmap_page_range(struct mmu_gather *tlb,
899 				struct vm_area_struct *vma,
900 				unsigned long addr, unsigned long end,
901 				long *zap_work, struct zap_details *details)
902 {
903 	pgd_t *pgd;
904 	unsigned long next;
905 
906 	if (details && !details->check_mapping && !details->nonlinear_vma)
907 		details = NULL;
908 
909 	BUG_ON(addr >= end);
910 	tlb_start_vma(tlb, vma);
911 	pgd = pgd_offset(vma->vm_mm, addr);
912 	do {
913 		next = pgd_addr_end(addr, end);
914 		if (pgd_none_or_clear_bad(pgd)) {
915 			(*zap_work)--;
916 			continue;
917 		}
918 		next = zap_pud_range(tlb, vma, pgd, addr, next,
919 						zap_work, details);
920 	} while (pgd++, addr = next, (addr != end && *zap_work > 0));
921 	tlb_end_vma(tlb, vma);
922 
923 	return addr;
924 }
925 
926 #ifdef CONFIG_PREEMPT
927 # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE)
928 #else
929 /* No preempt: go for improved straight-line efficiency */
930 # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE)
931 #endif
932 
933 /**
934  * unmap_vmas - unmap a range of memory covered by a list of vma's
935  * @tlbp: address of the caller's struct mmu_gather
936  * @vma: the starting vma
937  * @start_addr: virtual address at which to start unmapping
938  * @end_addr: virtual address at which to end unmapping
939  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
940  * @details: details of nonlinear truncation or shared cache invalidation
941  *
942  * Returns the end address of the unmapping (restart addr if interrupted).
943  *
944  * Unmap all pages in the vma list.
945  *
946  * We aim to not hold locks for too long (for scheduling latency reasons).
947  * So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to
948  * return the ending mmu_gather to the caller.
949  *
950  * Only addresses between `start' and `end' will be unmapped.
951  *
952  * The VMA list must be sorted in ascending virtual address order.
953  *
954  * unmap_vmas() assumes that the caller will flush the whole unmapped address
955  * range after unmap_vmas() returns.  So the only responsibility here is to
956  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
957  * drops the lock and schedules.
958  */
959 unsigned long unmap_vmas(struct mmu_gather **tlbp,
960 		struct vm_area_struct *vma, unsigned long start_addr,
961 		unsigned long end_addr, unsigned long *nr_accounted,
962 		struct zap_details *details)
963 {
964 	long zap_work = ZAP_BLOCK_SIZE;
965 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */
966 	int tlb_start_valid = 0;
967 	unsigned long start = start_addr;
968 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
969 	int fullmm = (*tlbp)->fullmm;
970 	struct mm_struct *mm = vma->vm_mm;
971 
972 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
973 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
974 		unsigned long end;
975 
976 		start = max(vma->vm_start, start_addr);
977 		if (start >= vma->vm_end)
978 			continue;
979 		end = min(vma->vm_end, end_addr);
980 		if (end <= vma->vm_start)
981 			continue;
982 
983 		if (vma->vm_flags & VM_ACCOUNT)
984 			*nr_accounted += (end - start) >> PAGE_SHIFT;
985 
986 		if (unlikely(is_pfn_mapping(vma)))
987 			untrack_pfn_vma(vma, 0, 0);
988 
989 		while (start != end) {
990 			if (!tlb_start_valid) {
991 				tlb_start = start;
992 				tlb_start_valid = 1;
993 			}
994 
995 			if (unlikely(is_vm_hugetlb_page(vma))) {
996 				/*
997 				 * It is undesirable to test vma->vm_file as it
998 				 * should be non-null for valid hugetlb area.
999 				 * However, vm_file will be NULL in the error
1000 				 * cleanup path of do_mmap_pgoff. When
1001 				 * hugetlbfs ->mmap method fails,
1002 				 * do_mmap_pgoff() nullifies vma->vm_file
1003 				 * before calling this function to clean up.
1004 				 * Since no pte has actually been setup, it is
1005 				 * safe to do nothing in this case.
1006 				 */
1007 				if (vma->vm_file) {
1008 					unmap_hugepage_range(vma, start, end, NULL);
1009 					zap_work -= (end - start) /
1010 					pages_per_huge_page(hstate_vma(vma));
1011 				}
1012 
1013 				start = end;
1014 			} else
1015 				start = unmap_page_range(*tlbp, vma,
1016 						start, end, &zap_work, details);
1017 
1018 			if (zap_work > 0) {
1019 				BUG_ON(start != end);
1020 				break;
1021 			}
1022 
1023 			tlb_finish_mmu(*tlbp, tlb_start, start);
1024 
1025 			if (need_resched() ||
1026 				(i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1027 				if (i_mmap_lock) {
1028 					*tlbp = NULL;
1029 					goto out;
1030 				}
1031 				cond_resched();
1032 			}
1033 
1034 			*tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1035 			tlb_start_valid = 0;
1036 			zap_work = ZAP_BLOCK_SIZE;
1037 		}
1038 	}
1039 out:
1040 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1041 	return start;	/* which is now the end (or restart) address */
1042 }
1043 
1044 /**
1045  * zap_page_range - remove user pages in a given range
1046  * @vma: vm_area_struct holding the applicable pages
1047  * @address: starting address of pages to zap
1048  * @size: number of bytes to zap
1049  * @details: details of nonlinear truncation or shared cache invalidation
1050  */
1051 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1052 		unsigned long size, struct zap_details *details)
1053 {
1054 	struct mm_struct *mm = vma->vm_mm;
1055 	struct mmu_gather *tlb;
1056 	unsigned long end = address + size;
1057 	unsigned long nr_accounted = 0;
1058 
1059 	lru_add_drain();
1060 	tlb = tlb_gather_mmu(mm, 0);
1061 	update_hiwater_rss(mm);
1062 	end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1063 	if (tlb)
1064 		tlb_finish_mmu(tlb, address, end);
1065 	return end;
1066 }
1067 
1068 /**
1069  * zap_vma_ptes - remove ptes mapping the vma
1070  * @vma: vm_area_struct holding ptes to be zapped
1071  * @address: starting address of pages to zap
1072  * @size: number of bytes to zap
1073  *
1074  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1075  *
1076  * The entire address range must be fully contained within the vma.
1077  *
1078  * Returns 0 if successful.
1079  */
1080 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1081 		unsigned long size)
1082 {
1083 	if (address < vma->vm_start || address + size > vma->vm_end ||
1084 	    		!(vma->vm_flags & VM_PFNMAP))
1085 		return -1;
1086 	zap_page_range(vma, address, size, NULL);
1087 	return 0;
1088 }
1089 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1090 
1091 /*
1092  * Do a quick page-table lookup for a single page.
1093  */
1094 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1095 			unsigned int flags)
1096 {
1097 	pgd_t *pgd;
1098 	pud_t *pud;
1099 	pmd_t *pmd;
1100 	pte_t *ptep, pte;
1101 	spinlock_t *ptl;
1102 	struct page *page;
1103 	struct mm_struct *mm = vma->vm_mm;
1104 
1105 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1106 	if (!IS_ERR(page)) {
1107 		BUG_ON(flags & FOLL_GET);
1108 		goto out;
1109 	}
1110 
1111 	page = NULL;
1112 	pgd = pgd_offset(mm, address);
1113 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1114 		goto no_page_table;
1115 
1116 	pud = pud_offset(pgd, address);
1117 	if (pud_none(*pud))
1118 		goto no_page_table;
1119 	if (pud_huge(*pud)) {
1120 		BUG_ON(flags & FOLL_GET);
1121 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1122 		goto out;
1123 	}
1124 	if (unlikely(pud_bad(*pud)))
1125 		goto no_page_table;
1126 
1127 	pmd = pmd_offset(pud, address);
1128 	if (pmd_none(*pmd))
1129 		goto no_page_table;
1130 	if (pmd_huge(*pmd)) {
1131 		BUG_ON(flags & FOLL_GET);
1132 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1133 		goto out;
1134 	}
1135 	if (unlikely(pmd_bad(*pmd)))
1136 		goto no_page_table;
1137 
1138 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1139 
1140 	pte = *ptep;
1141 	if (!pte_present(pte))
1142 		goto no_page;
1143 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1144 		goto unlock;
1145 	page = vm_normal_page(vma, address, pte);
1146 	if (unlikely(!page))
1147 		goto bad_page;
1148 
1149 	if (flags & FOLL_GET)
1150 		get_page(page);
1151 	if (flags & FOLL_TOUCH) {
1152 		if ((flags & FOLL_WRITE) &&
1153 		    !pte_dirty(pte) && !PageDirty(page))
1154 			set_page_dirty(page);
1155 		/*
1156 		 * pte_mkyoung() would be more correct here, but atomic care
1157 		 * is needed to avoid losing the dirty bit: it is easier to use
1158 		 * mark_page_accessed().
1159 		 */
1160 		mark_page_accessed(page);
1161 	}
1162 unlock:
1163 	pte_unmap_unlock(ptep, ptl);
1164 out:
1165 	return page;
1166 
1167 bad_page:
1168 	pte_unmap_unlock(ptep, ptl);
1169 	return ERR_PTR(-EFAULT);
1170 
1171 no_page:
1172 	pte_unmap_unlock(ptep, ptl);
1173 	if (!pte_none(pte))
1174 		return page;
1175 	/* Fall through to ZERO_PAGE handling */
1176 no_page_table:
1177 	/*
1178 	 * When core dumping an enormous anonymous area that nobody
1179 	 * has touched so far, we don't want to allocate page tables.
1180 	 */
1181 	if (flags & FOLL_ANON) {
1182 		page = ZERO_PAGE(0);
1183 		if (flags & FOLL_GET)
1184 			get_page(page);
1185 		BUG_ON(flags & FOLL_WRITE);
1186 	}
1187 	return page;
1188 }
1189 
1190 /* Can we do the FOLL_ANON optimization? */
1191 static inline int use_zero_page(struct vm_area_struct *vma)
1192 {
1193 	/*
1194 	 * We don't want to optimize FOLL_ANON for make_pages_present()
1195 	 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1196 	 * we want to get the page from the page tables to make sure
1197 	 * that we serialize and update with any other user of that
1198 	 * mapping.
1199 	 */
1200 	if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1201 		return 0;
1202 	/*
1203 	 * And if we have a fault routine, it's not an anonymous region.
1204 	 */
1205 	return !vma->vm_ops || !vma->vm_ops->fault;
1206 }
1207 
1208 
1209 
1210 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1211 		     unsigned long start, int nr_pages, int flags,
1212 		     struct page **pages, struct vm_area_struct **vmas)
1213 {
1214 	int i;
1215 	unsigned int vm_flags = 0;
1216 	int write = !!(flags & GUP_FLAGS_WRITE);
1217 	int force = !!(flags & GUP_FLAGS_FORCE);
1218 	int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1219 	int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL);
1220 
1221 	if (nr_pages <= 0)
1222 		return 0;
1223 	/*
1224 	 * Require read or write permissions.
1225 	 * If 'force' is set, we only require the "MAY" flags.
1226 	 */
1227 	vm_flags  = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1228 	vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1229 	i = 0;
1230 
1231 	do {
1232 		struct vm_area_struct *vma;
1233 		unsigned int foll_flags;
1234 
1235 		vma = find_extend_vma(mm, start);
1236 		if (!vma && in_gate_area(tsk, start)) {
1237 			unsigned long pg = start & PAGE_MASK;
1238 			struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1239 			pgd_t *pgd;
1240 			pud_t *pud;
1241 			pmd_t *pmd;
1242 			pte_t *pte;
1243 
1244 			/* user gate pages are read-only */
1245 			if (!ignore && write)
1246 				return i ? : -EFAULT;
1247 			if (pg > TASK_SIZE)
1248 				pgd = pgd_offset_k(pg);
1249 			else
1250 				pgd = pgd_offset_gate(mm, pg);
1251 			BUG_ON(pgd_none(*pgd));
1252 			pud = pud_offset(pgd, pg);
1253 			BUG_ON(pud_none(*pud));
1254 			pmd = pmd_offset(pud, pg);
1255 			if (pmd_none(*pmd))
1256 				return i ? : -EFAULT;
1257 			pte = pte_offset_map(pmd, pg);
1258 			if (pte_none(*pte)) {
1259 				pte_unmap(pte);
1260 				return i ? : -EFAULT;
1261 			}
1262 			if (pages) {
1263 				struct page *page = vm_normal_page(gate_vma, start, *pte);
1264 				pages[i] = page;
1265 				if (page)
1266 					get_page(page);
1267 			}
1268 			pte_unmap(pte);
1269 			if (vmas)
1270 				vmas[i] = gate_vma;
1271 			i++;
1272 			start += PAGE_SIZE;
1273 			nr_pages--;
1274 			continue;
1275 		}
1276 
1277 		if (!vma ||
1278 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1279 		    (!ignore && !(vm_flags & vma->vm_flags)))
1280 			return i ? : -EFAULT;
1281 
1282 		if (is_vm_hugetlb_page(vma)) {
1283 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1284 						&start, &nr_pages, i, write);
1285 			continue;
1286 		}
1287 
1288 		foll_flags = FOLL_TOUCH;
1289 		if (pages)
1290 			foll_flags |= FOLL_GET;
1291 		if (!write && use_zero_page(vma))
1292 			foll_flags |= FOLL_ANON;
1293 
1294 		do {
1295 			struct page *page;
1296 
1297 			/*
1298 			 * If we have a pending SIGKILL, don't keep faulting
1299 			 * pages and potentially allocating memory, unless
1300 			 * current is handling munlock--e.g., on exit. In
1301 			 * that case, we are not allocating memory.  Rather,
1302 			 * we're only unlocking already resident/mapped pages.
1303 			 */
1304 			if (unlikely(!ignore_sigkill &&
1305 					fatal_signal_pending(current)))
1306 				return i ? i : -ERESTARTSYS;
1307 
1308 			if (write)
1309 				foll_flags |= FOLL_WRITE;
1310 
1311 			cond_resched();
1312 			while (!(page = follow_page(vma, start, foll_flags))) {
1313 				int ret;
1314 
1315 				ret = handle_mm_fault(mm, vma, start,
1316 					(foll_flags & FOLL_WRITE) ?
1317 					FAULT_FLAG_WRITE : 0);
1318 
1319 				if (ret & VM_FAULT_ERROR) {
1320 					if (ret & VM_FAULT_OOM)
1321 						return i ? i : -ENOMEM;
1322 					else if (ret & VM_FAULT_SIGBUS)
1323 						return i ? i : -EFAULT;
1324 					BUG();
1325 				}
1326 				if (ret & VM_FAULT_MAJOR)
1327 					tsk->maj_flt++;
1328 				else
1329 					tsk->min_flt++;
1330 
1331 				/*
1332 				 * The VM_FAULT_WRITE bit tells us that
1333 				 * do_wp_page has broken COW when necessary,
1334 				 * even if maybe_mkwrite decided not to set
1335 				 * pte_write. We can thus safely do subsequent
1336 				 * page lookups as if they were reads. But only
1337 				 * do so when looping for pte_write is futile:
1338 				 * in some cases userspace may also be wanting
1339 				 * to write to the gotten user page, which a
1340 				 * read fault here might prevent (a readonly
1341 				 * page might get reCOWed by userspace write).
1342 				 */
1343 				if ((ret & VM_FAULT_WRITE) &&
1344 				    !(vma->vm_flags & VM_WRITE))
1345 					foll_flags &= ~FOLL_WRITE;
1346 
1347 				cond_resched();
1348 			}
1349 			if (IS_ERR(page))
1350 				return i ? i : PTR_ERR(page);
1351 			if (pages) {
1352 				pages[i] = page;
1353 
1354 				flush_anon_page(vma, page, start);
1355 				flush_dcache_page(page);
1356 			}
1357 			if (vmas)
1358 				vmas[i] = vma;
1359 			i++;
1360 			start += PAGE_SIZE;
1361 			nr_pages--;
1362 		} while (nr_pages && start < vma->vm_end);
1363 	} while (nr_pages);
1364 	return i;
1365 }
1366 
1367 /**
1368  * get_user_pages() - pin user pages in memory
1369  * @tsk:	task_struct of target task
1370  * @mm:		mm_struct of target mm
1371  * @start:	starting user address
1372  * @nr_pages:	number of pages from start to pin
1373  * @write:	whether pages will be written to by the caller
1374  * @force:	whether to force write access even if user mapping is
1375  *		readonly. This will result in the page being COWed even
1376  *		in MAP_SHARED mappings. You do not want this.
1377  * @pages:	array that receives pointers to the pages pinned.
1378  *		Should be at least nr_pages long. Or NULL, if caller
1379  *		only intends to ensure the pages are faulted in.
1380  * @vmas:	array of pointers to vmas corresponding to each page.
1381  *		Or NULL if the caller does not require them.
1382  *
1383  * Returns number of pages pinned. This may be fewer than the number
1384  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1385  * were pinned, returns -errno. Each page returned must be released
1386  * with a put_page() call when it is finished with. vmas will only
1387  * remain valid while mmap_sem is held.
1388  *
1389  * Must be called with mmap_sem held for read or write.
1390  *
1391  * get_user_pages walks a process's page tables and takes a reference to
1392  * each struct page that each user address corresponds to at a given
1393  * instant. That is, it takes the page that would be accessed if a user
1394  * thread accesses the given user virtual address at that instant.
1395  *
1396  * This does not guarantee that the page exists in the user mappings when
1397  * get_user_pages returns, and there may even be a completely different
1398  * page there in some cases (eg. if mmapped pagecache has been invalidated
1399  * and subsequently re faulted). However it does guarantee that the page
1400  * won't be freed completely. And mostly callers simply care that the page
1401  * contains data that was valid *at some point in time*. Typically, an IO
1402  * or similar operation cannot guarantee anything stronger anyway because
1403  * locks can't be held over the syscall boundary.
1404  *
1405  * If write=0, the page must not be written to. If the page is written to,
1406  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1407  * after the page is finished with, and before put_page is called.
1408  *
1409  * get_user_pages is typically used for fewer-copy IO operations, to get a
1410  * handle on the memory by some means other than accesses via the user virtual
1411  * addresses. The pages may be submitted for DMA to devices or accessed via
1412  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1413  * use the correct cache flushing APIs.
1414  *
1415  * See also get_user_pages_fast, for performance critical applications.
1416  */
1417 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1418 		unsigned long start, int nr_pages, int write, int force,
1419 		struct page **pages, struct vm_area_struct **vmas)
1420 {
1421 	int flags = 0;
1422 
1423 	if (write)
1424 		flags |= GUP_FLAGS_WRITE;
1425 	if (force)
1426 		flags |= GUP_FLAGS_FORCE;
1427 
1428 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas);
1429 }
1430 
1431 EXPORT_SYMBOL(get_user_pages);
1432 
1433 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1434 			spinlock_t **ptl)
1435 {
1436 	pgd_t * pgd = pgd_offset(mm, addr);
1437 	pud_t * pud = pud_alloc(mm, pgd, addr);
1438 	if (pud) {
1439 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
1440 		if (pmd)
1441 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1442 	}
1443 	return NULL;
1444 }
1445 
1446 /*
1447  * This is the old fallback for page remapping.
1448  *
1449  * For historical reasons, it only allows reserved pages. Only
1450  * old drivers should use this, and they needed to mark their
1451  * pages reserved for the old functions anyway.
1452  */
1453 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1454 			struct page *page, pgprot_t prot)
1455 {
1456 	struct mm_struct *mm = vma->vm_mm;
1457 	int retval;
1458 	pte_t *pte;
1459 	spinlock_t *ptl;
1460 
1461 	retval = -EINVAL;
1462 	if (PageAnon(page))
1463 		goto out;
1464 	retval = -ENOMEM;
1465 	flush_dcache_page(page);
1466 	pte = get_locked_pte(mm, addr, &ptl);
1467 	if (!pte)
1468 		goto out;
1469 	retval = -EBUSY;
1470 	if (!pte_none(*pte))
1471 		goto out_unlock;
1472 
1473 	/* Ok, finally just insert the thing.. */
1474 	get_page(page);
1475 	inc_mm_counter(mm, file_rss);
1476 	page_add_file_rmap(page);
1477 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1478 
1479 	retval = 0;
1480 	pte_unmap_unlock(pte, ptl);
1481 	return retval;
1482 out_unlock:
1483 	pte_unmap_unlock(pte, ptl);
1484 out:
1485 	return retval;
1486 }
1487 
1488 /**
1489  * vm_insert_page - insert single page into user vma
1490  * @vma: user vma to map to
1491  * @addr: target user address of this page
1492  * @page: source kernel page
1493  *
1494  * This allows drivers to insert individual pages they've allocated
1495  * into a user vma.
1496  *
1497  * The page has to be a nice clean _individual_ kernel allocation.
1498  * If you allocate a compound page, you need to have marked it as
1499  * such (__GFP_COMP), or manually just split the page up yourself
1500  * (see split_page()).
1501  *
1502  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1503  * took an arbitrary page protection parameter. This doesn't allow
1504  * that. Your vma protection will have to be set up correctly, which
1505  * means that if you want a shared writable mapping, you'd better
1506  * ask for a shared writable mapping!
1507  *
1508  * The page does not need to be reserved.
1509  */
1510 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1511 			struct page *page)
1512 {
1513 	if (addr < vma->vm_start || addr >= vma->vm_end)
1514 		return -EFAULT;
1515 	if (!page_count(page))
1516 		return -EINVAL;
1517 	vma->vm_flags |= VM_INSERTPAGE;
1518 	return insert_page(vma, addr, page, vma->vm_page_prot);
1519 }
1520 EXPORT_SYMBOL(vm_insert_page);
1521 
1522 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1523 			unsigned long pfn, pgprot_t prot)
1524 {
1525 	struct mm_struct *mm = vma->vm_mm;
1526 	int retval;
1527 	pte_t *pte, entry;
1528 	spinlock_t *ptl;
1529 
1530 	retval = -ENOMEM;
1531 	pte = get_locked_pte(mm, addr, &ptl);
1532 	if (!pte)
1533 		goto out;
1534 	retval = -EBUSY;
1535 	if (!pte_none(*pte))
1536 		goto out_unlock;
1537 
1538 	/* Ok, finally just insert the thing.. */
1539 	entry = pte_mkspecial(pfn_pte(pfn, prot));
1540 	set_pte_at(mm, addr, pte, entry);
1541 	update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1542 
1543 	retval = 0;
1544 out_unlock:
1545 	pte_unmap_unlock(pte, ptl);
1546 out:
1547 	return retval;
1548 }
1549 
1550 /**
1551  * vm_insert_pfn - insert single pfn into user vma
1552  * @vma: user vma to map to
1553  * @addr: target user address of this page
1554  * @pfn: source kernel pfn
1555  *
1556  * Similar to vm_inert_page, this allows drivers to insert individual pages
1557  * they've allocated into a user vma. Same comments apply.
1558  *
1559  * This function should only be called from a vm_ops->fault handler, and
1560  * in that case the handler should return NULL.
1561  *
1562  * vma cannot be a COW mapping.
1563  *
1564  * As this is called only for pages that do not currently exist, we
1565  * do not need to flush old virtual caches or the TLB.
1566  */
1567 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1568 			unsigned long pfn)
1569 {
1570 	int ret;
1571 	pgprot_t pgprot = vma->vm_page_prot;
1572 	/*
1573 	 * Technically, architectures with pte_special can avoid all these
1574 	 * restrictions (same for remap_pfn_range).  However we would like
1575 	 * consistency in testing and feature parity among all, so we should
1576 	 * try to keep these invariants in place for everybody.
1577 	 */
1578 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1579 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1580 						(VM_PFNMAP|VM_MIXEDMAP));
1581 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1582 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1583 
1584 	if (addr < vma->vm_start || addr >= vma->vm_end)
1585 		return -EFAULT;
1586 	if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE))
1587 		return -EINVAL;
1588 
1589 	ret = insert_pfn(vma, addr, pfn, pgprot);
1590 
1591 	if (ret)
1592 		untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1593 
1594 	return ret;
1595 }
1596 EXPORT_SYMBOL(vm_insert_pfn);
1597 
1598 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1599 			unsigned long pfn)
1600 {
1601 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1602 
1603 	if (addr < vma->vm_start || addr >= vma->vm_end)
1604 		return -EFAULT;
1605 
1606 	/*
1607 	 * If we don't have pte special, then we have to use the pfn_valid()
1608 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1609 	 * refcount the page if pfn_valid is true (hence insert_page rather
1610 	 * than insert_pfn).
1611 	 */
1612 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1613 		struct page *page;
1614 
1615 		page = pfn_to_page(pfn);
1616 		return insert_page(vma, addr, page, vma->vm_page_prot);
1617 	}
1618 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1619 }
1620 EXPORT_SYMBOL(vm_insert_mixed);
1621 
1622 /*
1623  * maps a range of physical memory into the requested pages. the old
1624  * mappings are removed. any references to nonexistent pages results
1625  * in null mappings (currently treated as "copy-on-access")
1626  */
1627 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1628 			unsigned long addr, unsigned long end,
1629 			unsigned long pfn, pgprot_t prot)
1630 {
1631 	pte_t *pte;
1632 	spinlock_t *ptl;
1633 
1634 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1635 	if (!pte)
1636 		return -ENOMEM;
1637 	arch_enter_lazy_mmu_mode();
1638 	do {
1639 		BUG_ON(!pte_none(*pte));
1640 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1641 		pfn++;
1642 	} while (pte++, addr += PAGE_SIZE, addr != end);
1643 	arch_leave_lazy_mmu_mode();
1644 	pte_unmap_unlock(pte - 1, ptl);
1645 	return 0;
1646 }
1647 
1648 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1649 			unsigned long addr, unsigned long end,
1650 			unsigned long pfn, pgprot_t prot)
1651 {
1652 	pmd_t *pmd;
1653 	unsigned long next;
1654 
1655 	pfn -= addr >> PAGE_SHIFT;
1656 	pmd = pmd_alloc(mm, pud, addr);
1657 	if (!pmd)
1658 		return -ENOMEM;
1659 	do {
1660 		next = pmd_addr_end(addr, end);
1661 		if (remap_pte_range(mm, pmd, addr, next,
1662 				pfn + (addr >> PAGE_SHIFT), prot))
1663 			return -ENOMEM;
1664 	} while (pmd++, addr = next, addr != end);
1665 	return 0;
1666 }
1667 
1668 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1669 			unsigned long addr, unsigned long end,
1670 			unsigned long pfn, pgprot_t prot)
1671 {
1672 	pud_t *pud;
1673 	unsigned long next;
1674 
1675 	pfn -= addr >> PAGE_SHIFT;
1676 	pud = pud_alloc(mm, pgd, addr);
1677 	if (!pud)
1678 		return -ENOMEM;
1679 	do {
1680 		next = pud_addr_end(addr, end);
1681 		if (remap_pmd_range(mm, pud, addr, next,
1682 				pfn + (addr >> PAGE_SHIFT), prot))
1683 			return -ENOMEM;
1684 	} while (pud++, addr = next, addr != end);
1685 	return 0;
1686 }
1687 
1688 /**
1689  * remap_pfn_range - remap kernel memory to userspace
1690  * @vma: user vma to map to
1691  * @addr: target user address to start at
1692  * @pfn: physical address of kernel memory
1693  * @size: size of map area
1694  * @prot: page protection flags for this mapping
1695  *
1696  *  Note: this is only safe if the mm semaphore is held when called.
1697  */
1698 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1699 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1700 {
1701 	pgd_t *pgd;
1702 	unsigned long next;
1703 	unsigned long end = addr + PAGE_ALIGN(size);
1704 	struct mm_struct *mm = vma->vm_mm;
1705 	int err;
1706 
1707 	/*
1708 	 * Physically remapped pages are special. Tell the
1709 	 * rest of the world about it:
1710 	 *   VM_IO tells people not to look at these pages
1711 	 *	(accesses can have side effects).
1712 	 *   VM_RESERVED is specified all over the place, because
1713 	 *	in 2.4 it kept swapout's vma scan off this vma; but
1714 	 *	in 2.6 the LRU scan won't even find its pages, so this
1715 	 *	flag means no more than count its pages in reserved_vm,
1716 	 * 	and omit it from core dump, even when VM_IO turned off.
1717 	 *   VM_PFNMAP tells the core MM that the base pages are just
1718 	 *	raw PFN mappings, and do not have a "struct page" associated
1719 	 *	with them.
1720 	 *
1721 	 * There's a horrible special case to handle copy-on-write
1722 	 * behaviour that some programs depend on. We mark the "original"
1723 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1724 	 */
1725 	if (addr == vma->vm_start && end == vma->vm_end) {
1726 		vma->vm_pgoff = pfn;
1727 		vma->vm_flags |= VM_PFN_AT_MMAP;
1728 	} else if (is_cow_mapping(vma->vm_flags))
1729 		return -EINVAL;
1730 
1731 	vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1732 
1733 	err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size));
1734 	if (err) {
1735 		/*
1736 		 * To indicate that track_pfn related cleanup is not
1737 		 * needed from higher level routine calling unmap_vmas
1738 		 */
1739 		vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP);
1740 		vma->vm_flags &= ~VM_PFN_AT_MMAP;
1741 		return -EINVAL;
1742 	}
1743 
1744 	BUG_ON(addr >= end);
1745 	pfn -= addr >> PAGE_SHIFT;
1746 	pgd = pgd_offset(mm, addr);
1747 	flush_cache_range(vma, addr, end);
1748 	do {
1749 		next = pgd_addr_end(addr, end);
1750 		err = remap_pud_range(mm, pgd, addr, next,
1751 				pfn + (addr >> PAGE_SHIFT), prot);
1752 		if (err)
1753 			break;
1754 	} while (pgd++, addr = next, addr != end);
1755 
1756 	if (err)
1757 		untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1758 
1759 	return err;
1760 }
1761 EXPORT_SYMBOL(remap_pfn_range);
1762 
1763 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1764 				     unsigned long addr, unsigned long end,
1765 				     pte_fn_t fn, void *data)
1766 {
1767 	pte_t *pte;
1768 	int err;
1769 	pgtable_t token;
1770 	spinlock_t *uninitialized_var(ptl);
1771 
1772 	pte = (mm == &init_mm) ?
1773 		pte_alloc_kernel(pmd, addr) :
1774 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1775 	if (!pte)
1776 		return -ENOMEM;
1777 
1778 	BUG_ON(pmd_huge(*pmd));
1779 
1780 	arch_enter_lazy_mmu_mode();
1781 
1782 	token = pmd_pgtable(*pmd);
1783 
1784 	do {
1785 		err = fn(pte, token, addr, data);
1786 		if (err)
1787 			break;
1788 	} while (pte++, addr += PAGE_SIZE, addr != end);
1789 
1790 	arch_leave_lazy_mmu_mode();
1791 
1792 	if (mm != &init_mm)
1793 		pte_unmap_unlock(pte-1, ptl);
1794 	return err;
1795 }
1796 
1797 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1798 				     unsigned long addr, unsigned long end,
1799 				     pte_fn_t fn, void *data)
1800 {
1801 	pmd_t *pmd;
1802 	unsigned long next;
1803 	int err;
1804 
1805 	BUG_ON(pud_huge(*pud));
1806 
1807 	pmd = pmd_alloc(mm, pud, addr);
1808 	if (!pmd)
1809 		return -ENOMEM;
1810 	do {
1811 		next = pmd_addr_end(addr, end);
1812 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1813 		if (err)
1814 			break;
1815 	} while (pmd++, addr = next, addr != end);
1816 	return err;
1817 }
1818 
1819 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1820 				     unsigned long addr, unsigned long end,
1821 				     pte_fn_t fn, void *data)
1822 {
1823 	pud_t *pud;
1824 	unsigned long next;
1825 	int err;
1826 
1827 	pud = pud_alloc(mm, pgd, addr);
1828 	if (!pud)
1829 		return -ENOMEM;
1830 	do {
1831 		next = pud_addr_end(addr, end);
1832 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1833 		if (err)
1834 			break;
1835 	} while (pud++, addr = next, addr != end);
1836 	return err;
1837 }
1838 
1839 /*
1840  * Scan a region of virtual memory, filling in page tables as necessary
1841  * and calling a provided function on each leaf page table.
1842  */
1843 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1844 			unsigned long size, pte_fn_t fn, void *data)
1845 {
1846 	pgd_t *pgd;
1847 	unsigned long next;
1848 	unsigned long start = addr, end = addr + size;
1849 	int err;
1850 
1851 	BUG_ON(addr >= end);
1852 	mmu_notifier_invalidate_range_start(mm, start, end);
1853 	pgd = pgd_offset(mm, addr);
1854 	do {
1855 		next = pgd_addr_end(addr, end);
1856 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1857 		if (err)
1858 			break;
1859 	} while (pgd++, addr = next, addr != end);
1860 	mmu_notifier_invalidate_range_end(mm, start, end);
1861 	return err;
1862 }
1863 EXPORT_SYMBOL_GPL(apply_to_page_range);
1864 
1865 /*
1866  * handle_pte_fault chooses page fault handler according to an entry
1867  * which was read non-atomically.  Before making any commitment, on
1868  * those architectures or configurations (e.g. i386 with PAE) which
1869  * might give a mix of unmatched parts, do_swap_page and do_file_page
1870  * must check under lock before unmapping the pte and proceeding
1871  * (but do_wp_page is only called after already making such a check;
1872  * and do_anonymous_page and do_no_page can safely check later on).
1873  */
1874 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1875 				pte_t *page_table, pte_t orig_pte)
1876 {
1877 	int same = 1;
1878 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1879 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1880 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1881 		spin_lock(ptl);
1882 		same = pte_same(*page_table, orig_pte);
1883 		spin_unlock(ptl);
1884 	}
1885 #endif
1886 	pte_unmap(page_table);
1887 	return same;
1888 }
1889 
1890 /*
1891  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1892  * servicing faults for write access.  In the normal case, do always want
1893  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1894  * that do not have writing enabled, when used by access_process_vm.
1895  */
1896 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1897 {
1898 	if (likely(vma->vm_flags & VM_WRITE))
1899 		pte = pte_mkwrite(pte);
1900 	return pte;
1901 }
1902 
1903 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1904 {
1905 	/*
1906 	 * If the source page was a PFN mapping, we don't have
1907 	 * a "struct page" for it. We do a best-effort copy by
1908 	 * just copying from the original user address. If that
1909 	 * fails, we just zero-fill it. Live with it.
1910 	 */
1911 	if (unlikely(!src)) {
1912 		void *kaddr = kmap_atomic(dst, KM_USER0);
1913 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
1914 
1915 		/*
1916 		 * This really shouldn't fail, because the page is there
1917 		 * in the page tables. But it might just be unreadable,
1918 		 * in which case we just give up and fill the result with
1919 		 * zeroes.
1920 		 */
1921 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1922 			memset(kaddr, 0, PAGE_SIZE);
1923 		kunmap_atomic(kaddr, KM_USER0);
1924 		flush_dcache_page(dst);
1925 	} else
1926 		copy_user_highpage(dst, src, va, vma);
1927 }
1928 
1929 /*
1930  * This routine handles present pages, when users try to write
1931  * to a shared page. It is done by copying the page to a new address
1932  * and decrementing the shared-page counter for the old page.
1933  *
1934  * Note that this routine assumes that the protection checks have been
1935  * done by the caller (the low-level page fault routine in most cases).
1936  * Thus we can safely just mark it writable once we've done any necessary
1937  * COW.
1938  *
1939  * We also mark the page dirty at this point even though the page will
1940  * change only once the write actually happens. This avoids a few races,
1941  * and potentially makes it more efficient.
1942  *
1943  * We enter with non-exclusive mmap_sem (to exclude vma changes,
1944  * but allow concurrent faults), with pte both mapped and locked.
1945  * We return with mmap_sem still held, but pte unmapped and unlocked.
1946  */
1947 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1948 		unsigned long address, pte_t *page_table, pmd_t *pmd,
1949 		spinlock_t *ptl, pte_t orig_pte)
1950 {
1951 	struct page *old_page, *new_page;
1952 	pte_t entry;
1953 	int reuse = 0, ret = 0;
1954 	int page_mkwrite = 0;
1955 	struct page *dirty_page = NULL;
1956 
1957 	old_page = vm_normal_page(vma, address, orig_pte);
1958 	if (!old_page) {
1959 		/*
1960 		 * VM_MIXEDMAP !pfn_valid() case
1961 		 *
1962 		 * We should not cow pages in a shared writeable mapping.
1963 		 * Just mark the pages writable as we can't do any dirty
1964 		 * accounting on raw pfn maps.
1965 		 */
1966 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1967 				     (VM_WRITE|VM_SHARED))
1968 			goto reuse;
1969 		goto gotten;
1970 	}
1971 
1972 	/*
1973 	 * Take out anonymous pages first, anonymous shared vmas are
1974 	 * not dirty accountable.
1975 	 */
1976 	if (PageAnon(old_page)) {
1977 		if (!trylock_page(old_page)) {
1978 			page_cache_get(old_page);
1979 			pte_unmap_unlock(page_table, ptl);
1980 			lock_page(old_page);
1981 			page_table = pte_offset_map_lock(mm, pmd, address,
1982 							 &ptl);
1983 			if (!pte_same(*page_table, orig_pte)) {
1984 				unlock_page(old_page);
1985 				page_cache_release(old_page);
1986 				goto unlock;
1987 			}
1988 			page_cache_release(old_page);
1989 		}
1990 		reuse = reuse_swap_page(old_page);
1991 		unlock_page(old_page);
1992 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1993 					(VM_WRITE|VM_SHARED))) {
1994 		/*
1995 		 * Only catch write-faults on shared writable pages,
1996 		 * read-only shared pages can get COWed by
1997 		 * get_user_pages(.write=1, .force=1).
1998 		 */
1999 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2000 			struct vm_fault vmf;
2001 			int tmp;
2002 
2003 			vmf.virtual_address = (void __user *)(address &
2004 								PAGE_MASK);
2005 			vmf.pgoff = old_page->index;
2006 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2007 			vmf.page = old_page;
2008 
2009 			/*
2010 			 * Notify the address space that the page is about to
2011 			 * become writable so that it can prohibit this or wait
2012 			 * for the page to get into an appropriate state.
2013 			 *
2014 			 * We do this without the lock held, so that it can
2015 			 * sleep if it needs to.
2016 			 */
2017 			page_cache_get(old_page);
2018 			pte_unmap_unlock(page_table, ptl);
2019 
2020 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2021 			if (unlikely(tmp &
2022 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2023 				ret = tmp;
2024 				goto unwritable_page;
2025 			}
2026 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2027 				lock_page(old_page);
2028 				if (!old_page->mapping) {
2029 					ret = 0; /* retry the fault */
2030 					unlock_page(old_page);
2031 					goto unwritable_page;
2032 				}
2033 			} else
2034 				VM_BUG_ON(!PageLocked(old_page));
2035 
2036 			/*
2037 			 * Since we dropped the lock we need to revalidate
2038 			 * the PTE as someone else may have changed it.  If
2039 			 * they did, we just return, as we can count on the
2040 			 * MMU to tell us if they didn't also make it writable.
2041 			 */
2042 			page_table = pte_offset_map_lock(mm, pmd, address,
2043 							 &ptl);
2044 			if (!pte_same(*page_table, orig_pte)) {
2045 				unlock_page(old_page);
2046 				page_cache_release(old_page);
2047 				goto unlock;
2048 			}
2049 
2050 			page_mkwrite = 1;
2051 		}
2052 		dirty_page = old_page;
2053 		get_page(dirty_page);
2054 		reuse = 1;
2055 	}
2056 
2057 	if (reuse) {
2058 reuse:
2059 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2060 		entry = pte_mkyoung(orig_pte);
2061 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2062 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2063 			update_mmu_cache(vma, address, entry);
2064 		ret |= VM_FAULT_WRITE;
2065 		goto unlock;
2066 	}
2067 
2068 	/*
2069 	 * Ok, we need to copy. Oh, well..
2070 	 */
2071 	page_cache_get(old_page);
2072 gotten:
2073 	pte_unmap_unlock(page_table, ptl);
2074 
2075 	if (unlikely(anon_vma_prepare(vma)))
2076 		goto oom;
2077 	VM_BUG_ON(old_page == ZERO_PAGE(0));
2078 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2079 	if (!new_page)
2080 		goto oom;
2081 	/*
2082 	 * Don't let another task, with possibly unlocked vma,
2083 	 * keep the mlocked page.
2084 	 */
2085 	if ((vma->vm_flags & VM_LOCKED) && old_page) {
2086 		lock_page(old_page);	/* for LRU manipulation */
2087 		clear_page_mlock(old_page);
2088 		unlock_page(old_page);
2089 	}
2090 	cow_user_page(new_page, old_page, address, vma);
2091 	__SetPageUptodate(new_page);
2092 
2093 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2094 		goto oom_free_new;
2095 
2096 	/*
2097 	 * Re-check the pte - we dropped the lock
2098 	 */
2099 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2100 	if (likely(pte_same(*page_table, orig_pte))) {
2101 		if (old_page) {
2102 			if (!PageAnon(old_page)) {
2103 				dec_mm_counter(mm, file_rss);
2104 				inc_mm_counter(mm, anon_rss);
2105 			}
2106 		} else
2107 			inc_mm_counter(mm, anon_rss);
2108 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2109 		entry = mk_pte(new_page, vma->vm_page_prot);
2110 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2111 		/*
2112 		 * Clear the pte entry and flush it first, before updating the
2113 		 * pte with the new entry. This will avoid a race condition
2114 		 * seen in the presence of one thread doing SMC and another
2115 		 * thread doing COW.
2116 		 */
2117 		ptep_clear_flush_notify(vma, address, page_table);
2118 		page_add_new_anon_rmap(new_page, vma, address);
2119 		set_pte_at(mm, address, page_table, entry);
2120 		update_mmu_cache(vma, address, entry);
2121 		if (old_page) {
2122 			/*
2123 			 * Only after switching the pte to the new page may
2124 			 * we remove the mapcount here. Otherwise another
2125 			 * process may come and find the rmap count decremented
2126 			 * before the pte is switched to the new page, and
2127 			 * "reuse" the old page writing into it while our pte
2128 			 * here still points into it and can be read by other
2129 			 * threads.
2130 			 *
2131 			 * The critical issue is to order this
2132 			 * page_remove_rmap with the ptp_clear_flush above.
2133 			 * Those stores are ordered by (if nothing else,)
2134 			 * the barrier present in the atomic_add_negative
2135 			 * in page_remove_rmap.
2136 			 *
2137 			 * Then the TLB flush in ptep_clear_flush ensures that
2138 			 * no process can access the old page before the
2139 			 * decremented mapcount is visible. And the old page
2140 			 * cannot be reused until after the decremented
2141 			 * mapcount is visible. So transitively, TLBs to
2142 			 * old page will be flushed before it can be reused.
2143 			 */
2144 			page_remove_rmap(old_page);
2145 		}
2146 
2147 		/* Free the old page.. */
2148 		new_page = old_page;
2149 		ret |= VM_FAULT_WRITE;
2150 	} else
2151 		mem_cgroup_uncharge_page(new_page);
2152 
2153 	if (new_page)
2154 		page_cache_release(new_page);
2155 	if (old_page)
2156 		page_cache_release(old_page);
2157 unlock:
2158 	pte_unmap_unlock(page_table, ptl);
2159 	if (dirty_page) {
2160 		/*
2161 		 * Yes, Virginia, this is actually required to prevent a race
2162 		 * with clear_page_dirty_for_io() from clearing the page dirty
2163 		 * bit after it clear all dirty ptes, but before a racing
2164 		 * do_wp_page installs a dirty pte.
2165 		 *
2166 		 * do_no_page is protected similarly.
2167 		 */
2168 		if (!page_mkwrite) {
2169 			wait_on_page_locked(dirty_page);
2170 			set_page_dirty_balance(dirty_page, page_mkwrite);
2171 		}
2172 		put_page(dirty_page);
2173 		if (page_mkwrite) {
2174 			struct address_space *mapping = dirty_page->mapping;
2175 
2176 			set_page_dirty(dirty_page);
2177 			unlock_page(dirty_page);
2178 			page_cache_release(dirty_page);
2179 			if (mapping)	{
2180 				/*
2181 				 * Some device drivers do not set page.mapping
2182 				 * but still dirty their pages
2183 				 */
2184 				balance_dirty_pages_ratelimited(mapping);
2185 			}
2186 		}
2187 
2188 		/* file_update_time outside page_lock */
2189 		if (vma->vm_file)
2190 			file_update_time(vma->vm_file);
2191 	}
2192 	return ret;
2193 oom_free_new:
2194 	page_cache_release(new_page);
2195 oom:
2196 	if (old_page) {
2197 		if (page_mkwrite) {
2198 			unlock_page(old_page);
2199 			page_cache_release(old_page);
2200 		}
2201 		page_cache_release(old_page);
2202 	}
2203 	return VM_FAULT_OOM;
2204 
2205 unwritable_page:
2206 	page_cache_release(old_page);
2207 	return ret;
2208 }
2209 
2210 /*
2211  * Helper functions for unmap_mapping_range().
2212  *
2213  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2214  *
2215  * We have to restart searching the prio_tree whenever we drop the lock,
2216  * since the iterator is only valid while the lock is held, and anyway
2217  * a later vma might be split and reinserted earlier while lock dropped.
2218  *
2219  * The list of nonlinear vmas could be handled more efficiently, using
2220  * a placeholder, but handle it in the same way until a need is shown.
2221  * It is important to search the prio_tree before nonlinear list: a vma
2222  * may become nonlinear and be shifted from prio_tree to nonlinear list
2223  * while the lock is dropped; but never shifted from list to prio_tree.
2224  *
2225  * In order to make forward progress despite restarting the search,
2226  * vm_truncate_count is used to mark a vma as now dealt with, so we can
2227  * quickly skip it next time around.  Since the prio_tree search only
2228  * shows us those vmas affected by unmapping the range in question, we
2229  * can't efficiently keep all vmas in step with mapping->truncate_count:
2230  * so instead reset them all whenever it wraps back to 0 (then go to 1).
2231  * mapping->truncate_count and vma->vm_truncate_count are protected by
2232  * i_mmap_lock.
2233  *
2234  * In order to make forward progress despite repeatedly restarting some
2235  * large vma, note the restart_addr from unmap_vmas when it breaks out:
2236  * and restart from that address when we reach that vma again.  It might
2237  * have been split or merged, shrunk or extended, but never shifted: so
2238  * restart_addr remains valid so long as it remains in the vma's range.
2239  * unmap_mapping_range forces truncate_count to leap over page-aligned
2240  * values so we can save vma's restart_addr in its truncate_count field.
2241  */
2242 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2243 
2244 static void reset_vma_truncate_counts(struct address_space *mapping)
2245 {
2246 	struct vm_area_struct *vma;
2247 	struct prio_tree_iter iter;
2248 
2249 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2250 		vma->vm_truncate_count = 0;
2251 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2252 		vma->vm_truncate_count = 0;
2253 }
2254 
2255 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2256 		unsigned long start_addr, unsigned long end_addr,
2257 		struct zap_details *details)
2258 {
2259 	unsigned long restart_addr;
2260 	int need_break;
2261 
2262 	/*
2263 	 * files that support invalidating or truncating portions of the
2264 	 * file from under mmaped areas must have their ->fault function
2265 	 * return a locked page (and set VM_FAULT_LOCKED in the return).
2266 	 * This provides synchronisation against concurrent unmapping here.
2267 	 */
2268 
2269 again:
2270 	restart_addr = vma->vm_truncate_count;
2271 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2272 		start_addr = restart_addr;
2273 		if (start_addr >= end_addr) {
2274 			/* Top of vma has been split off since last time */
2275 			vma->vm_truncate_count = details->truncate_count;
2276 			return 0;
2277 		}
2278 	}
2279 
2280 	restart_addr = zap_page_range(vma, start_addr,
2281 					end_addr - start_addr, details);
2282 	need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
2283 
2284 	if (restart_addr >= end_addr) {
2285 		/* We have now completed this vma: mark it so */
2286 		vma->vm_truncate_count = details->truncate_count;
2287 		if (!need_break)
2288 			return 0;
2289 	} else {
2290 		/* Note restart_addr in vma's truncate_count field */
2291 		vma->vm_truncate_count = restart_addr;
2292 		if (!need_break)
2293 			goto again;
2294 	}
2295 
2296 	spin_unlock(details->i_mmap_lock);
2297 	cond_resched();
2298 	spin_lock(details->i_mmap_lock);
2299 	return -EINTR;
2300 }
2301 
2302 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2303 					    struct zap_details *details)
2304 {
2305 	struct vm_area_struct *vma;
2306 	struct prio_tree_iter iter;
2307 	pgoff_t vba, vea, zba, zea;
2308 
2309 restart:
2310 	vma_prio_tree_foreach(vma, &iter, root,
2311 			details->first_index, details->last_index) {
2312 		/* Skip quickly over those we have already dealt with */
2313 		if (vma->vm_truncate_count == details->truncate_count)
2314 			continue;
2315 
2316 		vba = vma->vm_pgoff;
2317 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2318 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2319 		zba = details->first_index;
2320 		if (zba < vba)
2321 			zba = vba;
2322 		zea = details->last_index;
2323 		if (zea > vea)
2324 			zea = vea;
2325 
2326 		if (unmap_mapping_range_vma(vma,
2327 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2328 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2329 				details) < 0)
2330 			goto restart;
2331 	}
2332 }
2333 
2334 static inline void unmap_mapping_range_list(struct list_head *head,
2335 					    struct zap_details *details)
2336 {
2337 	struct vm_area_struct *vma;
2338 
2339 	/*
2340 	 * In nonlinear VMAs there is no correspondence between virtual address
2341 	 * offset and file offset.  So we must perform an exhaustive search
2342 	 * across *all* the pages in each nonlinear VMA, not just the pages
2343 	 * whose virtual address lies outside the file truncation point.
2344 	 */
2345 restart:
2346 	list_for_each_entry(vma, head, shared.vm_set.list) {
2347 		/* Skip quickly over those we have already dealt with */
2348 		if (vma->vm_truncate_count == details->truncate_count)
2349 			continue;
2350 		details->nonlinear_vma = vma;
2351 		if (unmap_mapping_range_vma(vma, vma->vm_start,
2352 					vma->vm_end, details) < 0)
2353 			goto restart;
2354 	}
2355 }
2356 
2357 /**
2358  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2359  * @mapping: the address space containing mmaps to be unmapped.
2360  * @holebegin: byte in first page to unmap, relative to the start of
2361  * the underlying file.  This will be rounded down to a PAGE_SIZE
2362  * boundary.  Note that this is different from vmtruncate(), which
2363  * must keep the partial page.  In contrast, we must get rid of
2364  * partial pages.
2365  * @holelen: size of prospective hole in bytes.  This will be rounded
2366  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2367  * end of the file.
2368  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2369  * but 0 when invalidating pagecache, don't throw away private data.
2370  */
2371 void unmap_mapping_range(struct address_space *mapping,
2372 		loff_t const holebegin, loff_t const holelen, int even_cows)
2373 {
2374 	struct zap_details details;
2375 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2376 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2377 
2378 	/* Check for overflow. */
2379 	if (sizeof(holelen) > sizeof(hlen)) {
2380 		long long holeend =
2381 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2382 		if (holeend & ~(long long)ULONG_MAX)
2383 			hlen = ULONG_MAX - hba + 1;
2384 	}
2385 
2386 	details.check_mapping = even_cows? NULL: mapping;
2387 	details.nonlinear_vma = NULL;
2388 	details.first_index = hba;
2389 	details.last_index = hba + hlen - 1;
2390 	if (details.last_index < details.first_index)
2391 		details.last_index = ULONG_MAX;
2392 	details.i_mmap_lock = &mapping->i_mmap_lock;
2393 
2394 	spin_lock(&mapping->i_mmap_lock);
2395 
2396 	/* Protect against endless unmapping loops */
2397 	mapping->truncate_count++;
2398 	if (unlikely(is_restart_addr(mapping->truncate_count))) {
2399 		if (mapping->truncate_count == 0)
2400 			reset_vma_truncate_counts(mapping);
2401 		mapping->truncate_count++;
2402 	}
2403 	details.truncate_count = mapping->truncate_count;
2404 
2405 	if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2406 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2407 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2408 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2409 	spin_unlock(&mapping->i_mmap_lock);
2410 }
2411 EXPORT_SYMBOL(unmap_mapping_range);
2412 
2413 /**
2414  * vmtruncate - unmap mappings "freed" by truncate() syscall
2415  * @inode: inode of the file used
2416  * @offset: file offset to start truncating
2417  *
2418  * NOTE! We have to be ready to update the memory sharing
2419  * between the file and the memory map for a potential last
2420  * incomplete page.  Ugly, but necessary.
2421  */
2422 int vmtruncate(struct inode * inode, loff_t offset)
2423 {
2424 	if (inode->i_size < offset) {
2425 		unsigned long limit;
2426 
2427 		limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2428 		if (limit != RLIM_INFINITY && offset > limit)
2429 			goto out_sig;
2430 		if (offset > inode->i_sb->s_maxbytes)
2431 			goto out_big;
2432 		i_size_write(inode, offset);
2433 	} else {
2434 		struct address_space *mapping = inode->i_mapping;
2435 
2436 		/*
2437 		 * truncation of in-use swapfiles is disallowed - it would
2438 		 * cause subsequent swapout to scribble on the now-freed
2439 		 * blocks.
2440 		 */
2441 		if (IS_SWAPFILE(inode))
2442 			return -ETXTBSY;
2443 		i_size_write(inode, offset);
2444 
2445 		/*
2446 		 * unmap_mapping_range is called twice, first simply for
2447 		 * efficiency so that truncate_inode_pages does fewer
2448 		 * single-page unmaps.  However after this first call, and
2449 		 * before truncate_inode_pages finishes, it is possible for
2450 		 * private pages to be COWed, which remain after
2451 		 * truncate_inode_pages finishes, hence the second
2452 		 * unmap_mapping_range call must be made for correctness.
2453 		 */
2454 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2455 		truncate_inode_pages(mapping, offset);
2456 		unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2457 	}
2458 
2459 	if (inode->i_op->truncate)
2460 		inode->i_op->truncate(inode);
2461 	return 0;
2462 
2463 out_sig:
2464 	send_sig(SIGXFSZ, current, 0);
2465 out_big:
2466 	return -EFBIG;
2467 }
2468 EXPORT_SYMBOL(vmtruncate);
2469 
2470 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2471 {
2472 	struct address_space *mapping = inode->i_mapping;
2473 
2474 	/*
2475 	 * If the underlying filesystem is not going to provide
2476 	 * a way to truncate a range of blocks (punch a hole) -
2477 	 * we should return failure right now.
2478 	 */
2479 	if (!inode->i_op->truncate_range)
2480 		return -ENOSYS;
2481 
2482 	mutex_lock(&inode->i_mutex);
2483 	down_write(&inode->i_alloc_sem);
2484 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2485 	truncate_inode_pages_range(mapping, offset, end);
2486 	unmap_mapping_range(mapping, offset, (end - offset), 1);
2487 	inode->i_op->truncate_range(inode, offset, end);
2488 	up_write(&inode->i_alloc_sem);
2489 	mutex_unlock(&inode->i_mutex);
2490 
2491 	return 0;
2492 }
2493 
2494 /*
2495  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2496  * but allow concurrent faults), and pte mapped but not yet locked.
2497  * We return with mmap_sem still held, but pte unmapped and unlocked.
2498  */
2499 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2500 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2501 		unsigned int flags, pte_t orig_pte)
2502 {
2503 	spinlock_t *ptl;
2504 	struct page *page;
2505 	swp_entry_t entry;
2506 	pte_t pte;
2507 	struct mem_cgroup *ptr = NULL;
2508 	int ret = 0;
2509 
2510 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2511 		goto out;
2512 
2513 	entry = pte_to_swp_entry(orig_pte);
2514 	if (is_migration_entry(entry)) {
2515 		migration_entry_wait(mm, pmd, address);
2516 		goto out;
2517 	}
2518 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2519 	page = lookup_swap_cache(entry);
2520 	if (!page) {
2521 		grab_swap_token(mm); /* Contend for token _before_ read-in */
2522 		page = swapin_readahead(entry,
2523 					GFP_HIGHUSER_MOVABLE, vma, address);
2524 		if (!page) {
2525 			/*
2526 			 * Back out if somebody else faulted in this pte
2527 			 * while we released the pte lock.
2528 			 */
2529 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2530 			if (likely(pte_same(*page_table, orig_pte)))
2531 				ret = VM_FAULT_OOM;
2532 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2533 			goto unlock;
2534 		}
2535 
2536 		/* Had to read the page from swap area: Major fault */
2537 		ret = VM_FAULT_MAJOR;
2538 		count_vm_event(PGMAJFAULT);
2539 	}
2540 
2541 	lock_page(page);
2542 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2543 
2544 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
2545 		ret = VM_FAULT_OOM;
2546 		goto out_page;
2547 	}
2548 
2549 	/*
2550 	 * Back out if somebody else already faulted in this pte.
2551 	 */
2552 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2553 	if (unlikely(!pte_same(*page_table, orig_pte)))
2554 		goto out_nomap;
2555 
2556 	if (unlikely(!PageUptodate(page))) {
2557 		ret = VM_FAULT_SIGBUS;
2558 		goto out_nomap;
2559 	}
2560 
2561 	/*
2562 	 * The page isn't present yet, go ahead with the fault.
2563 	 *
2564 	 * Be careful about the sequence of operations here.
2565 	 * To get its accounting right, reuse_swap_page() must be called
2566 	 * while the page is counted on swap but not yet in mapcount i.e.
2567 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2568 	 * must be called after the swap_free(), or it will never succeed.
2569 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2570 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2571 	 * in page->private. In this case, a record in swap_cgroup  is silently
2572 	 * discarded at swap_free().
2573 	 */
2574 
2575 	inc_mm_counter(mm, anon_rss);
2576 	pte = mk_pte(page, vma->vm_page_prot);
2577 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
2578 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2579 		flags &= ~FAULT_FLAG_WRITE;
2580 	}
2581 	flush_icache_page(vma, page);
2582 	set_pte_at(mm, address, page_table, pte);
2583 	page_add_anon_rmap(page, vma, address);
2584 	/* It's better to call commit-charge after rmap is established */
2585 	mem_cgroup_commit_charge_swapin(page, ptr);
2586 
2587 	swap_free(entry);
2588 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2589 		try_to_free_swap(page);
2590 	unlock_page(page);
2591 
2592 	if (flags & FAULT_FLAG_WRITE) {
2593 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2594 		if (ret & VM_FAULT_ERROR)
2595 			ret &= VM_FAULT_ERROR;
2596 		goto out;
2597 	}
2598 
2599 	/* No need to invalidate - it was non-present before */
2600 	update_mmu_cache(vma, address, pte);
2601 unlock:
2602 	pte_unmap_unlock(page_table, ptl);
2603 out:
2604 	return ret;
2605 out_nomap:
2606 	mem_cgroup_cancel_charge_swapin(ptr);
2607 	pte_unmap_unlock(page_table, ptl);
2608 out_page:
2609 	unlock_page(page);
2610 	page_cache_release(page);
2611 	return ret;
2612 }
2613 
2614 /*
2615  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2616  * but allow concurrent faults), and pte mapped but not yet locked.
2617  * We return with mmap_sem still held, but pte unmapped and unlocked.
2618  */
2619 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2620 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2621 		unsigned int flags)
2622 {
2623 	struct page *page;
2624 	spinlock_t *ptl;
2625 	pte_t entry;
2626 
2627 	/* Allocate our own private page. */
2628 	pte_unmap(page_table);
2629 
2630 	if (unlikely(anon_vma_prepare(vma)))
2631 		goto oom;
2632 	page = alloc_zeroed_user_highpage_movable(vma, address);
2633 	if (!page)
2634 		goto oom;
2635 	__SetPageUptodate(page);
2636 
2637 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
2638 		goto oom_free_page;
2639 
2640 	entry = mk_pte(page, vma->vm_page_prot);
2641 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2642 
2643 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2644 	if (!pte_none(*page_table))
2645 		goto release;
2646 	inc_mm_counter(mm, anon_rss);
2647 	page_add_new_anon_rmap(page, vma, address);
2648 	set_pte_at(mm, address, page_table, entry);
2649 
2650 	/* No need to invalidate - it was non-present before */
2651 	update_mmu_cache(vma, address, entry);
2652 unlock:
2653 	pte_unmap_unlock(page_table, ptl);
2654 	return 0;
2655 release:
2656 	mem_cgroup_uncharge_page(page);
2657 	page_cache_release(page);
2658 	goto unlock;
2659 oom_free_page:
2660 	page_cache_release(page);
2661 oom:
2662 	return VM_FAULT_OOM;
2663 }
2664 
2665 /*
2666  * __do_fault() tries to create a new page mapping. It aggressively
2667  * tries to share with existing pages, but makes a separate copy if
2668  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2669  * the next page fault.
2670  *
2671  * As this is called only for pages that do not currently exist, we
2672  * do not need to flush old virtual caches or the TLB.
2673  *
2674  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2675  * but allow concurrent faults), and pte neither mapped nor locked.
2676  * We return with mmap_sem still held, but pte unmapped and unlocked.
2677  */
2678 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2679 		unsigned long address, pmd_t *pmd,
2680 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2681 {
2682 	pte_t *page_table;
2683 	spinlock_t *ptl;
2684 	struct page *page;
2685 	pte_t entry;
2686 	int anon = 0;
2687 	int charged = 0;
2688 	struct page *dirty_page = NULL;
2689 	struct vm_fault vmf;
2690 	int ret;
2691 	int page_mkwrite = 0;
2692 
2693 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2694 	vmf.pgoff = pgoff;
2695 	vmf.flags = flags;
2696 	vmf.page = NULL;
2697 
2698 	ret = vma->vm_ops->fault(vma, &vmf);
2699 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2700 		return ret;
2701 
2702 	/*
2703 	 * For consistency in subsequent calls, make the faulted page always
2704 	 * locked.
2705 	 */
2706 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2707 		lock_page(vmf.page);
2708 	else
2709 		VM_BUG_ON(!PageLocked(vmf.page));
2710 
2711 	/*
2712 	 * Should we do an early C-O-W break?
2713 	 */
2714 	page = vmf.page;
2715 	if (flags & FAULT_FLAG_WRITE) {
2716 		if (!(vma->vm_flags & VM_SHARED)) {
2717 			anon = 1;
2718 			if (unlikely(anon_vma_prepare(vma))) {
2719 				ret = VM_FAULT_OOM;
2720 				goto out;
2721 			}
2722 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2723 						vma, address);
2724 			if (!page) {
2725 				ret = VM_FAULT_OOM;
2726 				goto out;
2727 			}
2728 			if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
2729 				ret = VM_FAULT_OOM;
2730 				page_cache_release(page);
2731 				goto out;
2732 			}
2733 			charged = 1;
2734 			/*
2735 			 * Don't let another task, with possibly unlocked vma,
2736 			 * keep the mlocked page.
2737 			 */
2738 			if (vma->vm_flags & VM_LOCKED)
2739 				clear_page_mlock(vmf.page);
2740 			copy_user_highpage(page, vmf.page, address, vma);
2741 			__SetPageUptodate(page);
2742 		} else {
2743 			/*
2744 			 * If the page will be shareable, see if the backing
2745 			 * address space wants to know that the page is about
2746 			 * to become writable
2747 			 */
2748 			if (vma->vm_ops->page_mkwrite) {
2749 				int tmp;
2750 
2751 				unlock_page(page);
2752 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2753 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2754 				if (unlikely(tmp &
2755 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2756 					ret = tmp;
2757 					goto unwritable_page;
2758 				}
2759 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2760 					lock_page(page);
2761 					if (!page->mapping) {
2762 						ret = 0; /* retry the fault */
2763 						unlock_page(page);
2764 						goto unwritable_page;
2765 					}
2766 				} else
2767 					VM_BUG_ON(!PageLocked(page));
2768 				page_mkwrite = 1;
2769 			}
2770 		}
2771 
2772 	}
2773 
2774 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2775 
2776 	/*
2777 	 * This silly early PAGE_DIRTY setting removes a race
2778 	 * due to the bad i386 page protection. But it's valid
2779 	 * for other architectures too.
2780 	 *
2781 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
2782 	 * an exclusive copy of the page, or this is a shared mapping,
2783 	 * so we can make it writable and dirty to avoid having to
2784 	 * handle that later.
2785 	 */
2786 	/* Only go through if we didn't race with anybody else... */
2787 	if (likely(pte_same(*page_table, orig_pte))) {
2788 		flush_icache_page(vma, page);
2789 		entry = mk_pte(page, vma->vm_page_prot);
2790 		if (flags & FAULT_FLAG_WRITE)
2791 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2792 		if (anon) {
2793 			inc_mm_counter(mm, anon_rss);
2794 			page_add_new_anon_rmap(page, vma, address);
2795 		} else {
2796 			inc_mm_counter(mm, file_rss);
2797 			page_add_file_rmap(page);
2798 			if (flags & FAULT_FLAG_WRITE) {
2799 				dirty_page = page;
2800 				get_page(dirty_page);
2801 			}
2802 		}
2803 		set_pte_at(mm, address, page_table, entry);
2804 
2805 		/* no need to invalidate: a not-present page won't be cached */
2806 		update_mmu_cache(vma, address, entry);
2807 	} else {
2808 		if (charged)
2809 			mem_cgroup_uncharge_page(page);
2810 		if (anon)
2811 			page_cache_release(page);
2812 		else
2813 			anon = 1; /* no anon but release faulted_page */
2814 	}
2815 
2816 	pte_unmap_unlock(page_table, ptl);
2817 
2818 out:
2819 	if (dirty_page) {
2820 		struct address_space *mapping = page->mapping;
2821 
2822 		if (set_page_dirty(dirty_page))
2823 			page_mkwrite = 1;
2824 		unlock_page(dirty_page);
2825 		put_page(dirty_page);
2826 		if (page_mkwrite && mapping) {
2827 			/*
2828 			 * Some device drivers do not set page.mapping but still
2829 			 * dirty their pages
2830 			 */
2831 			balance_dirty_pages_ratelimited(mapping);
2832 		}
2833 
2834 		/* file_update_time outside page_lock */
2835 		if (vma->vm_file)
2836 			file_update_time(vma->vm_file);
2837 	} else {
2838 		unlock_page(vmf.page);
2839 		if (anon)
2840 			page_cache_release(vmf.page);
2841 	}
2842 
2843 	return ret;
2844 
2845 unwritable_page:
2846 	page_cache_release(page);
2847 	return ret;
2848 }
2849 
2850 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2851 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2852 		unsigned int flags, pte_t orig_pte)
2853 {
2854 	pgoff_t pgoff = (((address & PAGE_MASK)
2855 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2856 
2857 	pte_unmap(page_table);
2858 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2859 }
2860 
2861 /*
2862  * Fault of a previously existing named mapping. Repopulate the pte
2863  * from the encoded file_pte if possible. This enables swappable
2864  * nonlinear vmas.
2865  *
2866  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2867  * but allow concurrent faults), and pte mapped but not yet locked.
2868  * We return with mmap_sem still held, but pte unmapped and unlocked.
2869  */
2870 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2871 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2872 		unsigned int flags, pte_t orig_pte)
2873 {
2874 	pgoff_t pgoff;
2875 
2876 	flags |= FAULT_FLAG_NONLINEAR;
2877 
2878 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2879 		return 0;
2880 
2881 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
2882 		/*
2883 		 * Page table corrupted: show pte and kill process.
2884 		 */
2885 		print_bad_pte(vma, address, orig_pte, NULL);
2886 		return VM_FAULT_OOM;
2887 	}
2888 
2889 	pgoff = pte_to_pgoff(orig_pte);
2890 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2891 }
2892 
2893 /*
2894  * These routines also need to handle stuff like marking pages dirty
2895  * and/or accessed for architectures that don't do it in hardware (most
2896  * RISC architectures).  The early dirtying is also good on the i386.
2897  *
2898  * There is also a hook called "update_mmu_cache()" that architectures
2899  * with external mmu caches can use to update those (ie the Sparc or
2900  * PowerPC hashed page tables that act as extended TLBs).
2901  *
2902  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2903  * but allow concurrent faults), and pte mapped but not yet locked.
2904  * We return with mmap_sem still held, but pte unmapped and unlocked.
2905  */
2906 static inline int handle_pte_fault(struct mm_struct *mm,
2907 		struct vm_area_struct *vma, unsigned long address,
2908 		pte_t *pte, pmd_t *pmd, unsigned int flags)
2909 {
2910 	pte_t entry;
2911 	spinlock_t *ptl;
2912 
2913 	entry = *pte;
2914 	if (!pte_present(entry)) {
2915 		if (pte_none(entry)) {
2916 			if (vma->vm_ops) {
2917 				if (likely(vma->vm_ops->fault))
2918 					return do_linear_fault(mm, vma, address,
2919 						pte, pmd, flags, entry);
2920 			}
2921 			return do_anonymous_page(mm, vma, address,
2922 						 pte, pmd, flags);
2923 		}
2924 		if (pte_file(entry))
2925 			return do_nonlinear_fault(mm, vma, address,
2926 					pte, pmd, flags, entry);
2927 		return do_swap_page(mm, vma, address,
2928 					pte, pmd, flags, entry);
2929 	}
2930 
2931 	ptl = pte_lockptr(mm, pmd);
2932 	spin_lock(ptl);
2933 	if (unlikely(!pte_same(*pte, entry)))
2934 		goto unlock;
2935 	if (flags & FAULT_FLAG_WRITE) {
2936 		if (!pte_write(entry))
2937 			return do_wp_page(mm, vma, address,
2938 					pte, pmd, ptl, entry);
2939 		entry = pte_mkdirty(entry);
2940 	}
2941 	entry = pte_mkyoung(entry);
2942 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
2943 		update_mmu_cache(vma, address, entry);
2944 	} else {
2945 		/*
2946 		 * This is needed only for protection faults but the arch code
2947 		 * is not yet telling us if this is a protection fault or not.
2948 		 * This still avoids useless tlb flushes for .text page faults
2949 		 * with threads.
2950 		 */
2951 		if (flags & FAULT_FLAG_WRITE)
2952 			flush_tlb_page(vma, address);
2953 	}
2954 unlock:
2955 	pte_unmap_unlock(pte, ptl);
2956 	return 0;
2957 }
2958 
2959 /*
2960  * By the time we get here, we already hold the mm semaphore
2961  */
2962 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2963 		unsigned long address, unsigned int flags)
2964 {
2965 	pgd_t *pgd;
2966 	pud_t *pud;
2967 	pmd_t *pmd;
2968 	pte_t *pte;
2969 
2970 	__set_current_state(TASK_RUNNING);
2971 
2972 	count_vm_event(PGFAULT);
2973 
2974 	if (unlikely(is_vm_hugetlb_page(vma)))
2975 		return hugetlb_fault(mm, vma, address, flags);
2976 
2977 	pgd = pgd_offset(mm, address);
2978 	pud = pud_alloc(mm, pgd, address);
2979 	if (!pud)
2980 		return VM_FAULT_OOM;
2981 	pmd = pmd_alloc(mm, pud, address);
2982 	if (!pmd)
2983 		return VM_FAULT_OOM;
2984 	pte = pte_alloc_map(mm, pmd, address);
2985 	if (!pte)
2986 		return VM_FAULT_OOM;
2987 
2988 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
2989 }
2990 
2991 #ifndef __PAGETABLE_PUD_FOLDED
2992 /*
2993  * Allocate page upper directory.
2994  * We've already handled the fast-path in-line.
2995  */
2996 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2997 {
2998 	pud_t *new = pud_alloc_one(mm, address);
2999 	if (!new)
3000 		return -ENOMEM;
3001 
3002 	smp_wmb(); /* See comment in __pte_alloc */
3003 
3004 	spin_lock(&mm->page_table_lock);
3005 	if (pgd_present(*pgd))		/* Another has populated it */
3006 		pud_free(mm, new);
3007 	else
3008 		pgd_populate(mm, pgd, new);
3009 	spin_unlock(&mm->page_table_lock);
3010 	return 0;
3011 }
3012 #endif /* __PAGETABLE_PUD_FOLDED */
3013 
3014 #ifndef __PAGETABLE_PMD_FOLDED
3015 /*
3016  * Allocate page middle directory.
3017  * We've already handled the fast-path in-line.
3018  */
3019 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3020 {
3021 	pmd_t *new = pmd_alloc_one(mm, address);
3022 	if (!new)
3023 		return -ENOMEM;
3024 
3025 	smp_wmb(); /* See comment in __pte_alloc */
3026 
3027 	spin_lock(&mm->page_table_lock);
3028 #ifndef __ARCH_HAS_4LEVEL_HACK
3029 	if (pud_present(*pud))		/* Another has populated it */
3030 		pmd_free(mm, new);
3031 	else
3032 		pud_populate(mm, pud, new);
3033 #else
3034 	if (pgd_present(*pud))		/* Another has populated it */
3035 		pmd_free(mm, new);
3036 	else
3037 		pgd_populate(mm, pud, new);
3038 #endif /* __ARCH_HAS_4LEVEL_HACK */
3039 	spin_unlock(&mm->page_table_lock);
3040 	return 0;
3041 }
3042 #endif /* __PAGETABLE_PMD_FOLDED */
3043 
3044 int make_pages_present(unsigned long addr, unsigned long end)
3045 {
3046 	int ret, len, write;
3047 	struct vm_area_struct * vma;
3048 
3049 	vma = find_vma(current->mm, addr);
3050 	if (!vma)
3051 		return -ENOMEM;
3052 	write = (vma->vm_flags & VM_WRITE) != 0;
3053 	BUG_ON(addr >= end);
3054 	BUG_ON(end > vma->vm_end);
3055 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3056 	ret = get_user_pages(current, current->mm, addr,
3057 			len, write, 0, NULL, NULL);
3058 	if (ret < 0)
3059 		return ret;
3060 	return ret == len ? 0 : -EFAULT;
3061 }
3062 
3063 #if !defined(__HAVE_ARCH_GATE_AREA)
3064 
3065 #if defined(AT_SYSINFO_EHDR)
3066 static struct vm_area_struct gate_vma;
3067 
3068 static int __init gate_vma_init(void)
3069 {
3070 	gate_vma.vm_mm = NULL;
3071 	gate_vma.vm_start = FIXADDR_USER_START;
3072 	gate_vma.vm_end = FIXADDR_USER_END;
3073 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3074 	gate_vma.vm_page_prot = __P101;
3075 	/*
3076 	 * Make sure the vDSO gets into every core dump.
3077 	 * Dumping its contents makes post-mortem fully interpretable later
3078 	 * without matching up the same kernel and hardware config to see
3079 	 * what PC values meant.
3080 	 */
3081 	gate_vma.vm_flags |= VM_ALWAYSDUMP;
3082 	return 0;
3083 }
3084 __initcall(gate_vma_init);
3085 #endif
3086 
3087 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
3088 {
3089 #ifdef AT_SYSINFO_EHDR
3090 	return &gate_vma;
3091 #else
3092 	return NULL;
3093 #endif
3094 }
3095 
3096 int in_gate_area_no_task(unsigned long addr)
3097 {
3098 #ifdef AT_SYSINFO_EHDR
3099 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3100 		return 1;
3101 #endif
3102 	return 0;
3103 }
3104 
3105 #endif	/* __HAVE_ARCH_GATE_AREA */
3106 
3107 static int follow_pte(struct mm_struct *mm, unsigned long address,
3108 		pte_t **ptepp, spinlock_t **ptlp)
3109 {
3110 	pgd_t *pgd;
3111 	pud_t *pud;
3112 	pmd_t *pmd;
3113 	pte_t *ptep;
3114 
3115 	pgd = pgd_offset(mm, address);
3116 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3117 		goto out;
3118 
3119 	pud = pud_offset(pgd, address);
3120 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3121 		goto out;
3122 
3123 	pmd = pmd_offset(pud, address);
3124 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3125 		goto out;
3126 
3127 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3128 	if (pmd_huge(*pmd))
3129 		goto out;
3130 
3131 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3132 	if (!ptep)
3133 		goto out;
3134 	if (!pte_present(*ptep))
3135 		goto unlock;
3136 	*ptepp = ptep;
3137 	return 0;
3138 unlock:
3139 	pte_unmap_unlock(ptep, *ptlp);
3140 out:
3141 	return -EINVAL;
3142 }
3143 
3144 /**
3145  * follow_pfn - look up PFN at a user virtual address
3146  * @vma: memory mapping
3147  * @address: user virtual address
3148  * @pfn: location to store found PFN
3149  *
3150  * Only IO mappings and raw PFN mappings are allowed.
3151  *
3152  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3153  */
3154 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3155 	unsigned long *pfn)
3156 {
3157 	int ret = -EINVAL;
3158 	spinlock_t *ptl;
3159 	pte_t *ptep;
3160 
3161 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3162 		return ret;
3163 
3164 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3165 	if (ret)
3166 		return ret;
3167 	*pfn = pte_pfn(*ptep);
3168 	pte_unmap_unlock(ptep, ptl);
3169 	return 0;
3170 }
3171 EXPORT_SYMBOL(follow_pfn);
3172 
3173 #ifdef CONFIG_HAVE_IOREMAP_PROT
3174 int follow_phys(struct vm_area_struct *vma,
3175 		unsigned long address, unsigned int flags,
3176 		unsigned long *prot, resource_size_t *phys)
3177 {
3178 	int ret = -EINVAL;
3179 	pte_t *ptep, pte;
3180 	spinlock_t *ptl;
3181 
3182 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3183 		goto out;
3184 
3185 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3186 		goto out;
3187 	pte = *ptep;
3188 
3189 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3190 		goto unlock;
3191 
3192 	*prot = pgprot_val(pte_pgprot(pte));
3193 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3194 
3195 	ret = 0;
3196 unlock:
3197 	pte_unmap_unlock(ptep, ptl);
3198 out:
3199 	return ret;
3200 }
3201 
3202 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3203 			void *buf, int len, int write)
3204 {
3205 	resource_size_t phys_addr;
3206 	unsigned long prot = 0;
3207 	void __iomem *maddr;
3208 	int offset = addr & (PAGE_SIZE-1);
3209 
3210 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3211 		return -EINVAL;
3212 
3213 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3214 	if (write)
3215 		memcpy_toio(maddr + offset, buf, len);
3216 	else
3217 		memcpy_fromio(buf, maddr + offset, len);
3218 	iounmap(maddr);
3219 
3220 	return len;
3221 }
3222 #endif
3223 
3224 /*
3225  * Access another process' address space.
3226  * Source/target buffer must be kernel space,
3227  * Do not walk the page table directly, use get_user_pages
3228  */
3229 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
3230 {
3231 	struct mm_struct *mm;
3232 	struct vm_area_struct *vma;
3233 	void *old_buf = buf;
3234 
3235 	mm = get_task_mm(tsk);
3236 	if (!mm)
3237 		return 0;
3238 
3239 	down_read(&mm->mmap_sem);
3240 	/* ignore errors, just check how much was successfully transferred */
3241 	while (len) {
3242 		int bytes, ret, offset;
3243 		void *maddr;
3244 		struct page *page = NULL;
3245 
3246 		ret = get_user_pages(tsk, mm, addr, 1,
3247 				write, 1, &page, &vma);
3248 		if (ret <= 0) {
3249 			/*
3250 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3251 			 * we can access using slightly different code.
3252 			 */
3253 #ifdef CONFIG_HAVE_IOREMAP_PROT
3254 			vma = find_vma(mm, addr);
3255 			if (!vma)
3256 				break;
3257 			if (vma->vm_ops && vma->vm_ops->access)
3258 				ret = vma->vm_ops->access(vma, addr, buf,
3259 							  len, write);
3260 			if (ret <= 0)
3261 #endif
3262 				break;
3263 			bytes = ret;
3264 		} else {
3265 			bytes = len;
3266 			offset = addr & (PAGE_SIZE-1);
3267 			if (bytes > PAGE_SIZE-offset)
3268 				bytes = PAGE_SIZE-offset;
3269 
3270 			maddr = kmap(page);
3271 			if (write) {
3272 				copy_to_user_page(vma, page, addr,
3273 						  maddr + offset, buf, bytes);
3274 				set_page_dirty_lock(page);
3275 			} else {
3276 				copy_from_user_page(vma, page, addr,
3277 						    buf, maddr + offset, bytes);
3278 			}
3279 			kunmap(page);
3280 			page_cache_release(page);
3281 		}
3282 		len -= bytes;
3283 		buf += bytes;
3284 		addr += bytes;
3285 	}
3286 	up_read(&mm->mmap_sem);
3287 	mmput(mm);
3288 
3289 	return buf - old_buf;
3290 }
3291 
3292 /*
3293  * Print the name of a VMA.
3294  */
3295 void print_vma_addr(char *prefix, unsigned long ip)
3296 {
3297 	struct mm_struct *mm = current->mm;
3298 	struct vm_area_struct *vma;
3299 
3300 	/*
3301 	 * Do not print if we are in atomic
3302 	 * contexts (in exception stacks, etc.):
3303 	 */
3304 	if (preempt_count())
3305 		return;
3306 
3307 	down_read(&mm->mmap_sem);
3308 	vma = find_vma(mm, ip);
3309 	if (vma && vma->vm_file) {
3310 		struct file *f = vma->vm_file;
3311 		char *buf = (char *)__get_free_page(GFP_KERNEL);
3312 		if (buf) {
3313 			char *p, *s;
3314 
3315 			p = d_path(&f->f_path, buf, PAGE_SIZE);
3316 			if (IS_ERR(p))
3317 				p = "?";
3318 			s = strrchr(p, '/');
3319 			if (s)
3320 				p = s+1;
3321 			printk("%s%s[%lx+%lx]", prefix, p,
3322 					vma->vm_start,
3323 					vma->vm_end - vma->vm_start);
3324 			free_page((unsigned long)buf);
3325 		}
3326 	}
3327 	up_read(&current->mm->mmap_sem);
3328 }
3329 
3330 #ifdef CONFIG_PROVE_LOCKING
3331 void might_fault(void)
3332 {
3333 	/*
3334 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3335 	 * holding the mmap_sem, this is safe because kernel memory doesn't
3336 	 * get paged out, therefore we'll never actually fault, and the
3337 	 * below annotations will generate false positives.
3338 	 */
3339 	if (segment_eq(get_fs(), KERNEL_DS))
3340 		return;
3341 
3342 	might_sleep();
3343 	/*
3344 	 * it would be nicer only to annotate paths which are not under
3345 	 * pagefault_disable, however that requires a larger audit and
3346 	 * providing helpers like get_user_atomic.
3347 	 */
3348 	if (!in_atomic() && current->mm)
3349 		might_lock_read(&current->mm->mmap_sem);
3350 }
3351 EXPORT_SYMBOL(might_fault);
3352 #endif
3353