1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/rmap.h> 49 #include <linux/module.h> 50 #include <linux/delayacct.h> 51 #include <linux/init.h> 52 #include <linux/writeback.h> 53 #include <linux/memcontrol.h> 54 #include <linux/mmu_notifier.h> 55 #include <linux/kallsyms.h> 56 #include <linux/swapops.h> 57 #include <linux/elf.h> 58 59 #include <asm/pgalloc.h> 60 #include <asm/uaccess.h> 61 #include <asm/tlb.h> 62 #include <asm/tlbflush.h> 63 #include <asm/pgtable.h> 64 65 #include "internal.h" 66 67 #ifndef CONFIG_NEED_MULTIPLE_NODES 68 /* use the per-pgdat data instead for discontigmem - mbligh */ 69 unsigned long max_mapnr; 70 struct page *mem_map; 71 72 EXPORT_SYMBOL(max_mapnr); 73 EXPORT_SYMBOL(mem_map); 74 #endif 75 76 unsigned long num_physpages; 77 /* 78 * A number of key systems in x86 including ioremap() rely on the assumption 79 * that high_memory defines the upper bound on direct map memory, then end 80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 82 * and ZONE_HIGHMEM. 83 */ 84 void * high_memory; 85 86 EXPORT_SYMBOL(num_physpages); 87 EXPORT_SYMBOL(high_memory); 88 89 /* 90 * Randomize the address space (stacks, mmaps, brk, etc.). 91 * 92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 93 * as ancient (libc5 based) binaries can segfault. ) 94 */ 95 int randomize_va_space __read_mostly = 96 #ifdef CONFIG_COMPAT_BRK 97 1; 98 #else 99 2; 100 #endif 101 102 static int __init disable_randmaps(char *s) 103 { 104 randomize_va_space = 0; 105 return 1; 106 } 107 __setup("norandmaps", disable_randmaps); 108 109 110 /* 111 * If a p?d_bad entry is found while walking page tables, report 112 * the error, before resetting entry to p?d_none. Usually (but 113 * very seldom) called out from the p?d_none_or_clear_bad macros. 114 */ 115 116 void pgd_clear_bad(pgd_t *pgd) 117 { 118 pgd_ERROR(*pgd); 119 pgd_clear(pgd); 120 } 121 122 void pud_clear_bad(pud_t *pud) 123 { 124 pud_ERROR(*pud); 125 pud_clear(pud); 126 } 127 128 void pmd_clear_bad(pmd_t *pmd) 129 { 130 pmd_ERROR(*pmd); 131 pmd_clear(pmd); 132 } 133 134 /* 135 * Note: this doesn't free the actual pages themselves. That 136 * has been handled earlier when unmapping all the memory regions. 137 */ 138 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 139 unsigned long addr) 140 { 141 pgtable_t token = pmd_pgtable(*pmd); 142 pmd_clear(pmd); 143 pte_free_tlb(tlb, token, addr); 144 tlb->mm->nr_ptes--; 145 } 146 147 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 148 unsigned long addr, unsigned long end, 149 unsigned long floor, unsigned long ceiling) 150 { 151 pmd_t *pmd; 152 unsigned long next; 153 unsigned long start; 154 155 start = addr; 156 pmd = pmd_offset(pud, addr); 157 do { 158 next = pmd_addr_end(addr, end); 159 if (pmd_none_or_clear_bad(pmd)) 160 continue; 161 free_pte_range(tlb, pmd, addr); 162 } while (pmd++, addr = next, addr != end); 163 164 start &= PUD_MASK; 165 if (start < floor) 166 return; 167 if (ceiling) { 168 ceiling &= PUD_MASK; 169 if (!ceiling) 170 return; 171 } 172 if (end - 1 > ceiling - 1) 173 return; 174 175 pmd = pmd_offset(pud, start); 176 pud_clear(pud); 177 pmd_free_tlb(tlb, pmd, start); 178 } 179 180 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 181 unsigned long addr, unsigned long end, 182 unsigned long floor, unsigned long ceiling) 183 { 184 pud_t *pud; 185 unsigned long next; 186 unsigned long start; 187 188 start = addr; 189 pud = pud_offset(pgd, addr); 190 do { 191 next = pud_addr_end(addr, end); 192 if (pud_none_or_clear_bad(pud)) 193 continue; 194 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 195 } while (pud++, addr = next, addr != end); 196 197 start &= PGDIR_MASK; 198 if (start < floor) 199 return; 200 if (ceiling) { 201 ceiling &= PGDIR_MASK; 202 if (!ceiling) 203 return; 204 } 205 if (end - 1 > ceiling - 1) 206 return; 207 208 pud = pud_offset(pgd, start); 209 pgd_clear(pgd); 210 pud_free_tlb(tlb, pud, start); 211 } 212 213 /* 214 * This function frees user-level page tables of a process. 215 * 216 * Must be called with pagetable lock held. 217 */ 218 void free_pgd_range(struct mmu_gather *tlb, 219 unsigned long addr, unsigned long end, 220 unsigned long floor, unsigned long ceiling) 221 { 222 pgd_t *pgd; 223 unsigned long next; 224 unsigned long start; 225 226 /* 227 * The next few lines have given us lots of grief... 228 * 229 * Why are we testing PMD* at this top level? Because often 230 * there will be no work to do at all, and we'd prefer not to 231 * go all the way down to the bottom just to discover that. 232 * 233 * Why all these "- 1"s? Because 0 represents both the bottom 234 * of the address space and the top of it (using -1 for the 235 * top wouldn't help much: the masks would do the wrong thing). 236 * The rule is that addr 0 and floor 0 refer to the bottom of 237 * the address space, but end 0 and ceiling 0 refer to the top 238 * Comparisons need to use "end - 1" and "ceiling - 1" (though 239 * that end 0 case should be mythical). 240 * 241 * Wherever addr is brought up or ceiling brought down, we must 242 * be careful to reject "the opposite 0" before it confuses the 243 * subsequent tests. But what about where end is brought down 244 * by PMD_SIZE below? no, end can't go down to 0 there. 245 * 246 * Whereas we round start (addr) and ceiling down, by different 247 * masks at different levels, in order to test whether a table 248 * now has no other vmas using it, so can be freed, we don't 249 * bother to round floor or end up - the tests don't need that. 250 */ 251 252 addr &= PMD_MASK; 253 if (addr < floor) { 254 addr += PMD_SIZE; 255 if (!addr) 256 return; 257 } 258 if (ceiling) { 259 ceiling &= PMD_MASK; 260 if (!ceiling) 261 return; 262 } 263 if (end - 1 > ceiling - 1) 264 end -= PMD_SIZE; 265 if (addr > end - 1) 266 return; 267 268 start = addr; 269 pgd = pgd_offset(tlb->mm, addr); 270 do { 271 next = pgd_addr_end(addr, end); 272 if (pgd_none_or_clear_bad(pgd)) 273 continue; 274 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 275 } while (pgd++, addr = next, addr != end); 276 } 277 278 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 279 unsigned long floor, unsigned long ceiling) 280 { 281 while (vma) { 282 struct vm_area_struct *next = vma->vm_next; 283 unsigned long addr = vma->vm_start; 284 285 /* 286 * Hide vma from rmap and vmtruncate before freeing pgtables 287 */ 288 anon_vma_unlink(vma); 289 unlink_file_vma(vma); 290 291 if (is_vm_hugetlb_page(vma)) { 292 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 293 floor, next? next->vm_start: ceiling); 294 } else { 295 /* 296 * Optimization: gather nearby vmas into one call down 297 */ 298 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 299 && !is_vm_hugetlb_page(next)) { 300 vma = next; 301 next = vma->vm_next; 302 anon_vma_unlink(vma); 303 unlink_file_vma(vma); 304 } 305 free_pgd_range(tlb, addr, vma->vm_end, 306 floor, next? next->vm_start: ceiling); 307 } 308 vma = next; 309 } 310 } 311 312 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 313 { 314 pgtable_t new = pte_alloc_one(mm, address); 315 if (!new) 316 return -ENOMEM; 317 318 /* 319 * Ensure all pte setup (eg. pte page lock and page clearing) are 320 * visible before the pte is made visible to other CPUs by being 321 * put into page tables. 322 * 323 * The other side of the story is the pointer chasing in the page 324 * table walking code (when walking the page table without locking; 325 * ie. most of the time). Fortunately, these data accesses consist 326 * of a chain of data-dependent loads, meaning most CPUs (alpha 327 * being the notable exception) will already guarantee loads are 328 * seen in-order. See the alpha page table accessors for the 329 * smp_read_barrier_depends() barriers in page table walking code. 330 */ 331 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 332 333 spin_lock(&mm->page_table_lock); 334 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 335 mm->nr_ptes++; 336 pmd_populate(mm, pmd, new); 337 new = NULL; 338 } 339 spin_unlock(&mm->page_table_lock); 340 if (new) 341 pte_free(mm, new); 342 return 0; 343 } 344 345 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 346 { 347 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 348 if (!new) 349 return -ENOMEM; 350 351 smp_wmb(); /* See comment in __pte_alloc */ 352 353 spin_lock(&init_mm.page_table_lock); 354 if (!pmd_present(*pmd)) { /* Has another populated it ? */ 355 pmd_populate_kernel(&init_mm, pmd, new); 356 new = NULL; 357 } 358 spin_unlock(&init_mm.page_table_lock); 359 if (new) 360 pte_free_kernel(&init_mm, new); 361 return 0; 362 } 363 364 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss) 365 { 366 if (file_rss) 367 add_mm_counter(mm, file_rss, file_rss); 368 if (anon_rss) 369 add_mm_counter(mm, anon_rss, anon_rss); 370 } 371 372 /* 373 * This function is called to print an error when a bad pte 374 * is found. For example, we might have a PFN-mapped pte in 375 * a region that doesn't allow it. 376 * 377 * The calling function must still handle the error. 378 */ 379 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 380 pte_t pte, struct page *page) 381 { 382 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 383 pud_t *pud = pud_offset(pgd, addr); 384 pmd_t *pmd = pmd_offset(pud, addr); 385 struct address_space *mapping; 386 pgoff_t index; 387 static unsigned long resume; 388 static unsigned long nr_shown; 389 static unsigned long nr_unshown; 390 391 /* 392 * Allow a burst of 60 reports, then keep quiet for that minute; 393 * or allow a steady drip of one report per second. 394 */ 395 if (nr_shown == 60) { 396 if (time_before(jiffies, resume)) { 397 nr_unshown++; 398 return; 399 } 400 if (nr_unshown) { 401 printk(KERN_ALERT 402 "BUG: Bad page map: %lu messages suppressed\n", 403 nr_unshown); 404 nr_unshown = 0; 405 } 406 nr_shown = 0; 407 } 408 if (nr_shown++ == 0) 409 resume = jiffies + 60 * HZ; 410 411 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 412 index = linear_page_index(vma, addr); 413 414 printk(KERN_ALERT 415 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 416 current->comm, 417 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 418 if (page) { 419 printk(KERN_ALERT 420 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n", 421 page, (void *)page->flags, page_count(page), 422 page_mapcount(page), page->mapping, page->index); 423 } 424 printk(KERN_ALERT 425 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 426 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 427 /* 428 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 429 */ 430 if (vma->vm_ops) 431 print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n", 432 (unsigned long)vma->vm_ops->fault); 433 if (vma->vm_file && vma->vm_file->f_op) 434 print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n", 435 (unsigned long)vma->vm_file->f_op->mmap); 436 dump_stack(); 437 add_taint(TAINT_BAD_PAGE); 438 } 439 440 static inline int is_cow_mapping(unsigned int flags) 441 { 442 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 443 } 444 445 /* 446 * vm_normal_page -- This function gets the "struct page" associated with a pte. 447 * 448 * "Special" mappings do not wish to be associated with a "struct page" (either 449 * it doesn't exist, or it exists but they don't want to touch it). In this 450 * case, NULL is returned here. "Normal" mappings do have a struct page. 451 * 452 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 453 * pte bit, in which case this function is trivial. Secondly, an architecture 454 * may not have a spare pte bit, which requires a more complicated scheme, 455 * described below. 456 * 457 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 458 * special mapping (even if there are underlying and valid "struct pages"). 459 * COWed pages of a VM_PFNMAP are always normal. 460 * 461 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 462 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 463 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 464 * mapping will always honor the rule 465 * 466 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 467 * 468 * And for normal mappings this is false. 469 * 470 * This restricts such mappings to be a linear translation from virtual address 471 * to pfn. To get around this restriction, we allow arbitrary mappings so long 472 * as the vma is not a COW mapping; in that case, we know that all ptes are 473 * special (because none can have been COWed). 474 * 475 * 476 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 477 * 478 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 479 * page" backing, however the difference is that _all_ pages with a struct 480 * page (that is, those where pfn_valid is true) are refcounted and considered 481 * normal pages by the VM. The disadvantage is that pages are refcounted 482 * (which can be slower and simply not an option for some PFNMAP users). The 483 * advantage is that we don't have to follow the strict linearity rule of 484 * PFNMAP mappings in order to support COWable mappings. 485 * 486 */ 487 #ifdef __HAVE_ARCH_PTE_SPECIAL 488 # define HAVE_PTE_SPECIAL 1 489 #else 490 # define HAVE_PTE_SPECIAL 0 491 #endif 492 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 493 pte_t pte) 494 { 495 unsigned long pfn = pte_pfn(pte); 496 497 if (HAVE_PTE_SPECIAL) { 498 if (likely(!pte_special(pte))) 499 goto check_pfn; 500 if (!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))) 501 print_bad_pte(vma, addr, pte, NULL); 502 return NULL; 503 } 504 505 /* !HAVE_PTE_SPECIAL case follows: */ 506 507 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 508 if (vma->vm_flags & VM_MIXEDMAP) { 509 if (!pfn_valid(pfn)) 510 return NULL; 511 goto out; 512 } else { 513 unsigned long off; 514 off = (addr - vma->vm_start) >> PAGE_SHIFT; 515 if (pfn == vma->vm_pgoff + off) 516 return NULL; 517 if (!is_cow_mapping(vma->vm_flags)) 518 return NULL; 519 } 520 } 521 522 check_pfn: 523 if (unlikely(pfn > highest_memmap_pfn)) { 524 print_bad_pte(vma, addr, pte, NULL); 525 return NULL; 526 } 527 528 /* 529 * NOTE! We still have PageReserved() pages in the page tables. 530 * eg. VDSO mappings can cause them to exist. 531 */ 532 out: 533 return pfn_to_page(pfn); 534 } 535 536 /* 537 * copy one vm_area from one task to the other. Assumes the page tables 538 * already present in the new task to be cleared in the whole range 539 * covered by this vma. 540 */ 541 542 static inline void 543 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 544 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 545 unsigned long addr, int *rss) 546 { 547 unsigned long vm_flags = vma->vm_flags; 548 pte_t pte = *src_pte; 549 struct page *page; 550 551 /* pte contains position in swap or file, so copy. */ 552 if (unlikely(!pte_present(pte))) { 553 if (!pte_file(pte)) { 554 swp_entry_t entry = pte_to_swp_entry(pte); 555 556 swap_duplicate(entry); 557 /* make sure dst_mm is on swapoff's mmlist. */ 558 if (unlikely(list_empty(&dst_mm->mmlist))) { 559 spin_lock(&mmlist_lock); 560 if (list_empty(&dst_mm->mmlist)) 561 list_add(&dst_mm->mmlist, 562 &src_mm->mmlist); 563 spin_unlock(&mmlist_lock); 564 } 565 if (is_write_migration_entry(entry) && 566 is_cow_mapping(vm_flags)) { 567 /* 568 * COW mappings require pages in both parent 569 * and child to be set to read. 570 */ 571 make_migration_entry_read(&entry); 572 pte = swp_entry_to_pte(entry); 573 set_pte_at(src_mm, addr, src_pte, pte); 574 } 575 } 576 goto out_set_pte; 577 } 578 579 /* 580 * If it's a COW mapping, write protect it both 581 * in the parent and the child 582 */ 583 if (is_cow_mapping(vm_flags)) { 584 ptep_set_wrprotect(src_mm, addr, src_pte); 585 pte = pte_wrprotect(pte); 586 } 587 588 /* 589 * If it's a shared mapping, mark it clean in 590 * the child 591 */ 592 if (vm_flags & VM_SHARED) 593 pte = pte_mkclean(pte); 594 pte = pte_mkold(pte); 595 596 page = vm_normal_page(vma, addr, pte); 597 if (page) { 598 get_page(page); 599 page_dup_rmap(page, vma, addr); 600 rss[!!PageAnon(page)]++; 601 } 602 603 out_set_pte: 604 set_pte_at(dst_mm, addr, dst_pte, pte); 605 } 606 607 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 608 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 609 unsigned long addr, unsigned long end) 610 { 611 pte_t *src_pte, *dst_pte; 612 spinlock_t *src_ptl, *dst_ptl; 613 int progress = 0; 614 int rss[2]; 615 616 again: 617 rss[1] = rss[0] = 0; 618 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 619 if (!dst_pte) 620 return -ENOMEM; 621 src_pte = pte_offset_map_nested(src_pmd, addr); 622 src_ptl = pte_lockptr(src_mm, src_pmd); 623 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 624 arch_enter_lazy_mmu_mode(); 625 626 do { 627 /* 628 * We are holding two locks at this point - either of them 629 * could generate latencies in another task on another CPU. 630 */ 631 if (progress >= 32) { 632 progress = 0; 633 if (need_resched() || 634 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 635 break; 636 } 637 if (pte_none(*src_pte)) { 638 progress++; 639 continue; 640 } 641 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss); 642 progress += 8; 643 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 644 645 arch_leave_lazy_mmu_mode(); 646 spin_unlock(src_ptl); 647 pte_unmap_nested(src_pte - 1); 648 add_mm_rss(dst_mm, rss[0], rss[1]); 649 pte_unmap_unlock(dst_pte - 1, dst_ptl); 650 cond_resched(); 651 if (addr != end) 652 goto again; 653 return 0; 654 } 655 656 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 657 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 658 unsigned long addr, unsigned long end) 659 { 660 pmd_t *src_pmd, *dst_pmd; 661 unsigned long next; 662 663 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 664 if (!dst_pmd) 665 return -ENOMEM; 666 src_pmd = pmd_offset(src_pud, addr); 667 do { 668 next = pmd_addr_end(addr, end); 669 if (pmd_none_or_clear_bad(src_pmd)) 670 continue; 671 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 672 vma, addr, next)) 673 return -ENOMEM; 674 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 675 return 0; 676 } 677 678 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 679 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 680 unsigned long addr, unsigned long end) 681 { 682 pud_t *src_pud, *dst_pud; 683 unsigned long next; 684 685 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 686 if (!dst_pud) 687 return -ENOMEM; 688 src_pud = pud_offset(src_pgd, addr); 689 do { 690 next = pud_addr_end(addr, end); 691 if (pud_none_or_clear_bad(src_pud)) 692 continue; 693 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 694 vma, addr, next)) 695 return -ENOMEM; 696 } while (dst_pud++, src_pud++, addr = next, addr != end); 697 return 0; 698 } 699 700 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 701 struct vm_area_struct *vma) 702 { 703 pgd_t *src_pgd, *dst_pgd; 704 unsigned long next; 705 unsigned long addr = vma->vm_start; 706 unsigned long end = vma->vm_end; 707 int ret; 708 709 /* 710 * Don't copy ptes where a page fault will fill them correctly. 711 * Fork becomes much lighter when there are big shared or private 712 * readonly mappings. The tradeoff is that copy_page_range is more 713 * efficient than faulting. 714 */ 715 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) { 716 if (!vma->anon_vma) 717 return 0; 718 } 719 720 if (is_vm_hugetlb_page(vma)) 721 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 722 723 if (unlikely(is_pfn_mapping(vma))) { 724 /* 725 * We do not free on error cases below as remove_vma 726 * gets called on error from higher level routine 727 */ 728 ret = track_pfn_vma_copy(vma); 729 if (ret) 730 return ret; 731 } 732 733 /* 734 * We need to invalidate the secondary MMU mappings only when 735 * there could be a permission downgrade on the ptes of the 736 * parent mm. And a permission downgrade will only happen if 737 * is_cow_mapping() returns true. 738 */ 739 if (is_cow_mapping(vma->vm_flags)) 740 mmu_notifier_invalidate_range_start(src_mm, addr, end); 741 742 ret = 0; 743 dst_pgd = pgd_offset(dst_mm, addr); 744 src_pgd = pgd_offset(src_mm, addr); 745 do { 746 next = pgd_addr_end(addr, end); 747 if (pgd_none_or_clear_bad(src_pgd)) 748 continue; 749 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 750 vma, addr, next))) { 751 ret = -ENOMEM; 752 break; 753 } 754 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 755 756 if (is_cow_mapping(vma->vm_flags)) 757 mmu_notifier_invalidate_range_end(src_mm, 758 vma->vm_start, end); 759 return ret; 760 } 761 762 static unsigned long zap_pte_range(struct mmu_gather *tlb, 763 struct vm_area_struct *vma, pmd_t *pmd, 764 unsigned long addr, unsigned long end, 765 long *zap_work, struct zap_details *details) 766 { 767 struct mm_struct *mm = tlb->mm; 768 pte_t *pte; 769 spinlock_t *ptl; 770 int file_rss = 0; 771 int anon_rss = 0; 772 773 pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 774 arch_enter_lazy_mmu_mode(); 775 do { 776 pte_t ptent = *pte; 777 if (pte_none(ptent)) { 778 (*zap_work)--; 779 continue; 780 } 781 782 (*zap_work) -= PAGE_SIZE; 783 784 if (pte_present(ptent)) { 785 struct page *page; 786 787 page = vm_normal_page(vma, addr, ptent); 788 if (unlikely(details) && page) { 789 /* 790 * unmap_shared_mapping_pages() wants to 791 * invalidate cache without truncating: 792 * unmap shared but keep private pages. 793 */ 794 if (details->check_mapping && 795 details->check_mapping != page->mapping) 796 continue; 797 /* 798 * Each page->index must be checked when 799 * invalidating or truncating nonlinear. 800 */ 801 if (details->nonlinear_vma && 802 (page->index < details->first_index || 803 page->index > details->last_index)) 804 continue; 805 } 806 ptent = ptep_get_and_clear_full(mm, addr, pte, 807 tlb->fullmm); 808 tlb_remove_tlb_entry(tlb, pte, addr); 809 if (unlikely(!page)) 810 continue; 811 if (unlikely(details) && details->nonlinear_vma 812 && linear_page_index(details->nonlinear_vma, 813 addr) != page->index) 814 set_pte_at(mm, addr, pte, 815 pgoff_to_pte(page->index)); 816 if (PageAnon(page)) 817 anon_rss--; 818 else { 819 if (pte_dirty(ptent)) 820 set_page_dirty(page); 821 if (pte_young(ptent) && 822 likely(!VM_SequentialReadHint(vma))) 823 mark_page_accessed(page); 824 file_rss--; 825 } 826 page_remove_rmap(page); 827 if (unlikely(page_mapcount(page) < 0)) 828 print_bad_pte(vma, addr, ptent, page); 829 tlb_remove_page(tlb, page); 830 continue; 831 } 832 /* 833 * If details->check_mapping, we leave swap entries; 834 * if details->nonlinear_vma, we leave file entries. 835 */ 836 if (unlikely(details)) 837 continue; 838 if (pte_file(ptent)) { 839 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 840 print_bad_pte(vma, addr, ptent, NULL); 841 } else if 842 (unlikely(!free_swap_and_cache(pte_to_swp_entry(ptent)))) 843 print_bad_pte(vma, addr, ptent, NULL); 844 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 845 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0)); 846 847 add_mm_rss(mm, file_rss, anon_rss); 848 arch_leave_lazy_mmu_mode(); 849 pte_unmap_unlock(pte - 1, ptl); 850 851 return addr; 852 } 853 854 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 855 struct vm_area_struct *vma, pud_t *pud, 856 unsigned long addr, unsigned long end, 857 long *zap_work, struct zap_details *details) 858 { 859 pmd_t *pmd; 860 unsigned long next; 861 862 pmd = pmd_offset(pud, addr); 863 do { 864 next = pmd_addr_end(addr, end); 865 if (pmd_none_or_clear_bad(pmd)) { 866 (*zap_work)--; 867 continue; 868 } 869 next = zap_pte_range(tlb, vma, pmd, addr, next, 870 zap_work, details); 871 } while (pmd++, addr = next, (addr != end && *zap_work > 0)); 872 873 return addr; 874 } 875 876 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 877 struct vm_area_struct *vma, pgd_t *pgd, 878 unsigned long addr, unsigned long end, 879 long *zap_work, struct zap_details *details) 880 { 881 pud_t *pud; 882 unsigned long next; 883 884 pud = pud_offset(pgd, addr); 885 do { 886 next = pud_addr_end(addr, end); 887 if (pud_none_or_clear_bad(pud)) { 888 (*zap_work)--; 889 continue; 890 } 891 next = zap_pmd_range(tlb, vma, pud, addr, next, 892 zap_work, details); 893 } while (pud++, addr = next, (addr != end && *zap_work > 0)); 894 895 return addr; 896 } 897 898 static unsigned long unmap_page_range(struct mmu_gather *tlb, 899 struct vm_area_struct *vma, 900 unsigned long addr, unsigned long end, 901 long *zap_work, struct zap_details *details) 902 { 903 pgd_t *pgd; 904 unsigned long next; 905 906 if (details && !details->check_mapping && !details->nonlinear_vma) 907 details = NULL; 908 909 BUG_ON(addr >= end); 910 tlb_start_vma(tlb, vma); 911 pgd = pgd_offset(vma->vm_mm, addr); 912 do { 913 next = pgd_addr_end(addr, end); 914 if (pgd_none_or_clear_bad(pgd)) { 915 (*zap_work)--; 916 continue; 917 } 918 next = zap_pud_range(tlb, vma, pgd, addr, next, 919 zap_work, details); 920 } while (pgd++, addr = next, (addr != end && *zap_work > 0)); 921 tlb_end_vma(tlb, vma); 922 923 return addr; 924 } 925 926 #ifdef CONFIG_PREEMPT 927 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE) 928 #else 929 /* No preempt: go for improved straight-line efficiency */ 930 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE) 931 #endif 932 933 /** 934 * unmap_vmas - unmap a range of memory covered by a list of vma's 935 * @tlbp: address of the caller's struct mmu_gather 936 * @vma: the starting vma 937 * @start_addr: virtual address at which to start unmapping 938 * @end_addr: virtual address at which to end unmapping 939 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here 940 * @details: details of nonlinear truncation or shared cache invalidation 941 * 942 * Returns the end address of the unmapping (restart addr if interrupted). 943 * 944 * Unmap all pages in the vma list. 945 * 946 * We aim to not hold locks for too long (for scheduling latency reasons). 947 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to 948 * return the ending mmu_gather to the caller. 949 * 950 * Only addresses between `start' and `end' will be unmapped. 951 * 952 * The VMA list must be sorted in ascending virtual address order. 953 * 954 * unmap_vmas() assumes that the caller will flush the whole unmapped address 955 * range after unmap_vmas() returns. So the only responsibility here is to 956 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 957 * drops the lock and schedules. 958 */ 959 unsigned long unmap_vmas(struct mmu_gather **tlbp, 960 struct vm_area_struct *vma, unsigned long start_addr, 961 unsigned long end_addr, unsigned long *nr_accounted, 962 struct zap_details *details) 963 { 964 long zap_work = ZAP_BLOCK_SIZE; 965 unsigned long tlb_start = 0; /* For tlb_finish_mmu */ 966 int tlb_start_valid = 0; 967 unsigned long start = start_addr; 968 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; 969 int fullmm = (*tlbp)->fullmm; 970 struct mm_struct *mm = vma->vm_mm; 971 972 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 973 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { 974 unsigned long end; 975 976 start = max(vma->vm_start, start_addr); 977 if (start >= vma->vm_end) 978 continue; 979 end = min(vma->vm_end, end_addr); 980 if (end <= vma->vm_start) 981 continue; 982 983 if (vma->vm_flags & VM_ACCOUNT) 984 *nr_accounted += (end - start) >> PAGE_SHIFT; 985 986 if (unlikely(is_pfn_mapping(vma))) 987 untrack_pfn_vma(vma, 0, 0); 988 989 while (start != end) { 990 if (!tlb_start_valid) { 991 tlb_start = start; 992 tlb_start_valid = 1; 993 } 994 995 if (unlikely(is_vm_hugetlb_page(vma))) { 996 /* 997 * It is undesirable to test vma->vm_file as it 998 * should be non-null for valid hugetlb area. 999 * However, vm_file will be NULL in the error 1000 * cleanup path of do_mmap_pgoff. When 1001 * hugetlbfs ->mmap method fails, 1002 * do_mmap_pgoff() nullifies vma->vm_file 1003 * before calling this function to clean up. 1004 * Since no pte has actually been setup, it is 1005 * safe to do nothing in this case. 1006 */ 1007 if (vma->vm_file) { 1008 unmap_hugepage_range(vma, start, end, NULL); 1009 zap_work -= (end - start) / 1010 pages_per_huge_page(hstate_vma(vma)); 1011 } 1012 1013 start = end; 1014 } else 1015 start = unmap_page_range(*tlbp, vma, 1016 start, end, &zap_work, details); 1017 1018 if (zap_work > 0) { 1019 BUG_ON(start != end); 1020 break; 1021 } 1022 1023 tlb_finish_mmu(*tlbp, tlb_start, start); 1024 1025 if (need_resched() || 1026 (i_mmap_lock && spin_needbreak(i_mmap_lock))) { 1027 if (i_mmap_lock) { 1028 *tlbp = NULL; 1029 goto out; 1030 } 1031 cond_resched(); 1032 } 1033 1034 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm); 1035 tlb_start_valid = 0; 1036 zap_work = ZAP_BLOCK_SIZE; 1037 } 1038 } 1039 out: 1040 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1041 return start; /* which is now the end (or restart) address */ 1042 } 1043 1044 /** 1045 * zap_page_range - remove user pages in a given range 1046 * @vma: vm_area_struct holding the applicable pages 1047 * @address: starting address of pages to zap 1048 * @size: number of bytes to zap 1049 * @details: details of nonlinear truncation or shared cache invalidation 1050 */ 1051 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 1052 unsigned long size, struct zap_details *details) 1053 { 1054 struct mm_struct *mm = vma->vm_mm; 1055 struct mmu_gather *tlb; 1056 unsigned long end = address + size; 1057 unsigned long nr_accounted = 0; 1058 1059 lru_add_drain(); 1060 tlb = tlb_gather_mmu(mm, 0); 1061 update_hiwater_rss(mm); 1062 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details); 1063 if (tlb) 1064 tlb_finish_mmu(tlb, address, end); 1065 return end; 1066 } 1067 1068 /** 1069 * zap_vma_ptes - remove ptes mapping the vma 1070 * @vma: vm_area_struct holding ptes to be zapped 1071 * @address: starting address of pages to zap 1072 * @size: number of bytes to zap 1073 * 1074 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1075 * 1076 * The entire address range must be fully contained within the vma. 1077 * 1078 * Returns 0 if successful. 1079 */ 1080 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1081 unsigned long size) 1082 { 1083 if (address < vma->vm_start || address + size > vma->vm_end || 1084 !(vma->vm_flags & VM_PFNMAP)) 1085 return -1; 1086 zap_page_range(vma, address, size, NULL); 1087 return 0; 1088 } 1089 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1090 1091 /* 1092 * Do a quick page-table lookup for a single page. 1093 */ 1094 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 1095 unsigned int flags) 1096 { 1097 pgd_t *pgd; 1098 pud_t *pud; 1099 pmd_t *pmd; 1100 pte_t *ptep, pte; 1101 spinlock_t *ptl; 1102 struct page *page; 1103 struct mm_struct *mm = vma->vm_mm; 1104 1105 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1106 if (!IS_ERR(page)) { 1107 BUG_ON(flags & FOLL_GET); 1108 goto out; 1109 } 1110 1111 page = NULL; 1112 pgd = pgd_offset(mm, address); 1113 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1114 goto no_page_table; 1115 1116 pud = pud_offset(pgd, address); 1117 if (pud_none(*pud)) 1118 goto no_page_table; 1119 if (pud_huge(*pud)) { 1120 BUG_ON(flags & FOLL_GET); 1121 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1122 goto out; 1123 } 1124 if (unlikely(pud_bad(*pud))) 1125 goto no_page_table; 1126 1127 pmd = pmd_offset(pud, address); 1128 if (pmd_none(*pmd)) 1129 goto no_page_table; 1130 if (pmd_huge(*pmd)) { 1131 BUG_ON(flags & FOLL_GET); 1132 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1133 goto out; 1134 } 1135 if (unlikely(pmd_bad(*pmd))) 1136 goto no_page_table; 1137 1138 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1139 1140 pte = *ptep; 1141 if (!pte_present(pte)) 1142 goto no_page; 1143 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1144 goto unlock; 1145 page = vm_normal_page(vma, address, pte); 1146 if (unlikely(!page)) 1147 goto bad_page; 1148 1149 if (flags & FOLL_GET) 1150 get_page(page); 1151 if (flags & FOLL_TOUCH) { 1152 if ((flags & FOLL_WRITE) && 1153 !pte_dirty(pte) && !PageDirty(page)) 1154 set_page_dirty(page); 1155 /* 1156 * pte_mkyoung() would be more correct here, but atomic care 1157 * is needed to avoid losing the dirty bit: it is easier to use 1158 * mark_page_accessed(). 1159 */ 1160 mark_page_accessed(page); 1161 } 1162 unlock: 1163 pte_unmap_unlock(ptep, ptl); 1164 out: 1165 return page; 1166 1167 bad_page: 1168 pte_unmap_unlock(ptep, ptl); 1169 return ERR_PTR(-EFAULT); 1170 1171 no_page: 1172 pte_unmap_unlock(ptep, ptl); 1173 if (!pte_none(pte)) 1174 return page; 1175 /* Fall through to ZERO_PAGE handling */ 1176 no_page_table: 1177 /* 1178 * When core dumping an enormous anonymous area that nobody 1179 * has touched so far, we don't want to allocate page tables. 1180 */ 1181 if (flags & FOLL_ANON) { 1182 page = ZERO_PAGE(0); 1183 if (flags & FOLL_GET) 1184 get_page(page); 1185 BUG_ON(flags & FOLL_WRITE); 1186 } 1187 return page; 1188 } 1189 1190 /* Can we do the FOLL_ANON optimization? */ 1191 static inline int use_zero_page(struct vm_area_struct *vma) 1192 { 1193 /* 1194 * We don't want to optimize FOLL_ANON for make_pages_present() 1195 * when it tries to page in a VM_LOCKED region. As to VM_SHARED, 1196 * we want to get the page from the page tables to make sure 1197 * that we serialize and update with any other user of that 1198 * mapping. 1199 */ 1200 if (vma->vm_flags & (VM_LOCKED | VM_SHARED)) 1201 return 0; 1202 /* 1203 * And if we have a fault routine, it's not an anonymous region. 1204 */ 1205 return !vma->vm_ops || !vma->vm_ops->fault; 1206 } 1207 1208 1209 1210 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1211 unsigned long start, int nr_pages, int flags, 1212 struct page **pages, struct vm_area_struct **vmas) 1213 { 1214 int i; 1215 unsigned int vm_flags = 0; 1216 int write = !!(flags & GUP_FLAGS_WRITE); 1217 int force = !!(flags & GUP_FLAGS_FORCE); 1218 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS); 1219 int ignore_sigkill = !!(flags & GUP_FLAGS_IGNORE_SIGKILL); 1220 1221 if (nr_pages <= 0) 1222 return 0; 1223 /* 1224 * Require read or write permissions. 1225 * If 'force' is set, we only require the "MAY" flags. 1226 */ 1227 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1228 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1229 i = 0; 1230 1231 do { 1232 struct vm_area_struct *vma; 1233 unsigned int foll_flags; 1234 1235 vma = find_extend_vma(mm, start); 1236 if (!vma && in_gate_area(tsk, start)) { 1237 unsigned long pg = start & PAGE_MASK; 1238 struct vm_area_struct *gate_vma = get_gate_vma(tsk); 1239 pgd_t *pgd; 1240 pud_t *pud; 1241 pmd_t *pmd; 1242 pte_t *pte; 1243 1244 /* user gate pages are read-only */ 1245 if (!ignore && write) 1246 return i ? : -EFAULT; 1247 if (pg > TASK_SIZE) 1248 pgd = pgd_offset_k(pg); 1249 else 1250 pgd = pgd_offset_gate(mm, pg); 1251 BUG_ON(pgd_none(*pgd)); 1252 pud = pud_offset(pgd, pg); 1253 BUG_ON(pud_none(*pud)); 1254 pmd = pmd_offset(pud, pg); 1255 if (pmd_none(*pmd)) 1256 return i ? : -EFAULT; 1257 pte = pte_offset_map(pmd, pg); 1258 if (pte_none(*pte)) { 1259 pte_unmap(pte); 1260 return i ? : -EFAULT; 1261 } 1262 if (pages) { 1263 struct page *page = vm_normal_page(gate_vma, start, *pte); 1264 pages[i] = page; 1265 if (page) 1266 get_page(page); 1267 } 1268 pte_unmap(pte); 1269 if (vmas) 1270 vmas[i] = gate_vma; 1271 i++; 1272 start += PAGE_SIZE; 1273 nr_pages--; 1274 continue; 1275 } 1276 1277 if (!vma || 1278 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1279 (!ignore && !(vm_flags & vma->vm_flags))) 1280 return i ? : -EFAULT; 1281 1282 if (is_vm_hugetlb_page(vma)) { 1283 i = follow_hugetlb_page(mm, vma, pages, vmas, 1284 &start, &nr_pages, i, write); 1285 continue; 1286 } 1287 1288 foll_flags = FOLL_TOUCH; 1289 if (pages) 1290 foll_flags |= FOLL_GET; 1291 if (!write && use_zero_page(vma)) 1292 foll_flags |= FOLL_ANON; 1293 1294 do { 1295 struct page *page; 1296 1297 /* 1298 * If we have a pending SIGKILL, don't keep faulting 1299 * pages and potentially allocating memory, unless 1300 * current is handling munlock--e.g., on exit. In 1301 * that case, we are not allocating memory. Rather, 1302 * we're only unlocking already resident/mapped pages. 1303 */ 1304 if (unlikely(!ignore_sigkill && 1305 fatal_signal_pending(current))) 1306 return i ? i : -ERESTARTSYS; 1307 1308 if (write) 1309 foll_flags |= FOLL_WRITE; 1310 1311 cond_resched(); 1312 while (!(page = follow_page(vma, start, foll_flags))) { 1313 int ret; 1314 1315 ret = handle_mm_fault(mm, vma, start, 1316 (foll_flags & FOLL_WRITE) ? 1317 FAULT_FLAG_WRITE : 0); 1318 1319 if (ret & VM_FAULT_ERROR) { 1320 if (ret & VM_FAULT_OOM) 1321 return i ? i : -ENOMEM; 1322 else if (ret & VM_FAULT_SIGBUS) 1323 return i ? i : -EFAULT; 1324 BUG(); 1325 } 1326 if (ret & VM_FAULT_MAJOR) 1327 tsk->maj_flt++; 1328 else 1329 tsk->min_flt++; 1330 1331 /* 1332 * The VM_FAULT_WRITE bit tells us that 1333 * do_wp_page has broken COW when necessary, 1334 * even if maybe_mkwrite decided not to set 1335 * pte_write. We can thus safely do subsequent 1336 * page lookups as if they were reads. But only 1337 * do so when looping for pte_write is futile: 1338 * in some cases userspace may also be wanting 1339 * to write to the gotten user page, which a 1340 * read fault here might prevent (a readonly 1341 * page might get reCOWed by userspace write). 1342 */ 1343 if ((ret & VM_FAULT_WRITE) && 1344 !(vma->vm_flags & VM_WRITE)) 1345 foll_flags &= ~FOLL_WRITE; 1346 1347 cond_resched(); 1348 } 1349 if (IS_ERR(page)) 1350 return i ? i : PTR_ERR(page); 1351 if (pages) { 1352 pages[i] = page; 1353 1354 flush_anon_page(vma, page, start); 1355 flush_dcache_page(page); 1356 } 1357 if (vmas) 1358 vmas[i] = vma; 1359 i++; 1360 start += PAGE_SIZE; 1361 nr_pages--; 1362 } while (nr_pages && start < vma->vm_end); 1363 } while (nr_pages); 1364 return i; 1365 } 1366 1367 /** 1368 * get_user_pages() - pin user pages in memory 1369 * @tsk: task_struct of target task 1370 * @mm: mm_struct of target mm 1371 * @start: starting user address 1372 * @nr_pages: number of pages from start to pin 1373 * @write: whether pages will be written to by the caller 1374 * @force: whether to force write access even if user mapping is 1375 * readonly. This will result in the page being COWed even 1376 * in MAP_SHARED mappings. You do not want this. 1377 * @pages: array that receives pointers to the pages pinned. 1378 * Should be at least nr_pages long. Or NULL, if caller 1379 * only intends to ensure the pages are faulted in. 1380 * @vmas: array of pointers to vmas corresponding to each page. 1381 * Or NULL if the caller does not require them. 1382 * 1383 * Returns number of pages pinned. This may be fewer than the number 1384 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1385 * were pinned, returns -errno. Each page returned must be released 1386 * with a put_page() call when it is finished with. vmas will only 1387 * remain valid while mmap_sem is held. 1388 * 1389 * Must be called with mmap_sem held for read or write. 1390 * 1391 * get_user_pages walks a process's page tables and takes a reference to 1392 * each struct page that each user address corresponds to at a given 1393 * instant. That is, it takes the page that would be accessed if a user 1394 * thread accesses the given user virtual address at that instant. 1395 * 1396 * This does not guarantee that the page exists in the user mappings when 1397 * get_user_pages returns, and there may even be a completely different 1398 * page there in some cases (eg. if mmapped pagecache has been invalidated 1399 * and subsequently re faulted). However it does guarantee that the page 1400 * won't be freed completely. And mostly callers simply care that the page 1401 * contains data that was valid *at some point in time*. Typically, an IO 1402 * or similar operation cannot guarantee anything stronger anyway because 1403 * locks can't be held over the syscall boundary. 1404 * 1405 * If write=0, the page must not be written to. If the page is written to, 1406 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1407 * after the page is finished with, and before put_page is called. 1408 * 1409 * get_user_pages is typically used for fewer-copy IO operations, to get a 1410 * handle on the memory by some means other than accesses via the user virtual 1411 * addresses. The pages may be submitted for DMA to devices or accessed via 1412 * their kernel linear mapping (via the kmap APIs). Care should be taken to 1413 * use the correct cache flushing APIs. 1414 * 1415 * See also get_user_pages_fast, for performance critical applications. 1416 */ 1417 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1418 unsigned long start, int nr_pages, int write, int force, 1419 struct page **pages, struct vm_area_struct **vmas) 1420 { 1421 int flags = 0; 1422 1423 if (write) 1424 flags |= GUP_FLAGS_WRITE; 1425 if (force) 1426 flags |= GUP_FLAGS_FORCE; 1427 1428 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas); 1429 } 1430 1431 EXPORT_SYMBOL(get_user_pages); 1432 1433 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1434 spinlock_t **ptl) 1435 { 1436 pgd_t * pgd = pgd_offset(mm, addr); 1437 pud_t * pud = pud_alloc(mm, pgd, addr); 1438 if (pud) { 1439 pmd_t * pmd = pmd_alloc(mm, pud, addr); 1440 if (pmd) 1441 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1442 } 1443 return NULL; 1444 } 1445 1446 /* 1447 * This is the old fallback for page remapping. 1448 * 1449 * For historical reasons, it only allows reserved pages. Only 1450 * old drivers should use this, and they needed to mark their 1451 * pages reserved for the old functions anyway. 1452 */ 1453 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1454 struct page *page, pgprot_t prot) 1455 { 1456 struct mm_struct *mm = vma->vm_mm; 1457 int retval; 1458 pte_t *pte; 1459 spinlock_t *ptl; 1460 1461 retval = -EINVAL; 1462 if (PageAnon(page)) 1463 goto out; 1464 retval = -ENOMEM; 1465 flush_dcache_page(page); 1466 pte = get_locked_pte(mm, addr, &ptl); 1467 if (!pte) 1468 goto out; 1469 retval = -EBUSY; 1470 if (!pte_none(*pte)) 1471 goto out_unlock; 1472 1473 /* Ok, finally just insert the thing.. */ 1474 get_page(page); 1475 inc_mm_counter(mm, file_rss); 1476 page_add_file_rmap(page); 1477 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1478 1479 retval = 0; 1480 pte_unmap_unlock(pte, ptl); 1481 return retval; 1482 out_unlock: 1483 pte_unmap_unlock(pte, ptl); 1484 out: 1485 return retval; 1486 } 1487 1488 /** 1489 * vm_insert_page - insert single page into user vma 1490 * @vma: user vma to map to 1491 * @addr: target user address of this page 1492 * @page: source kernel page 1493 * 1494 * This allows drivers to insert individual pages they've allocated 1495 * into a user vma. 1496 * 1497 * The page has to be a nice clean _individual_ kernel allocation. 1498 * If you allocate a compound page, you need to have marked it as 1499 * such (__GFP_COMP), or manually just split the page up yourself 1500 * (see split_page()). 1501 * 1502 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1503 * took an arbitrary page protection parameter. This doesn't allow 1504 * that. Your vma protection will have to be set up correctly, which 1505 * means that if you want a shared writable mapping, you'd better 1506 * ask for a shared writable mapping! 1507 * 1508 * The page does not need to be reserved. 1509 */ 1510 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1511 struct page *page) 1512 { 1513 if (addr < vma->vm_start || addr >= vma->vm_end) 1514 return -EFAULT; 1515 if (!page_count(page)) 1516 return -EINVAL; 1517 vma->vm_flags |= VM_INSERTPAGE; 1518 return insert_page(vma, addr, page, vma->vm_page_prot); 1519 } 1520 EXPORT_SYMBOL(vm_insert_page); 1521 1522 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1523 unsigned long pfn, pgprot_t prot) 1524 { 1525 struct mm_struct *mm = vma->vm_mm; 1526 int retval; 1527 pte_t *pte, entry; 1528 spinlock_t *ptl; 1529 1530 retval = -ENOMEM; 1531 pte = get_locked_pte(mm, addr, &ptl); 1532 if (!pte) 1533 goto out; 1534 retval = -EBUSY; 1535 if (!pte_none(*pte)) 1536 goto out_unlock; 1537 1538 /* Ok, finally just insert the thing.. */ 1539 entry = pte_mkspecial(pfn_pte(pfn, prot)); 1540 set_pte_at(mm, addr, pte, entry); 1541 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */ 1542 1543 retval = 0; 1544 out_unlock: 1545 pte_unmap_unlock(pte, ptl); 1546 out: 1547 return retval; 1548 } 1549 1550 /** 1551 * vm_insert_pfn - insert single pfn into user vma 1552 * @vma: user vma to map to 1553 * @addr: target user address of this page 1554 * @pfn: source kernel pfn 1555 * 1556 * Similar to vm_inert_page, this allows drivers to insert individual pages 1557 * they've allocated into a user vma. Same comments apply. 1558 * 1559 * This function should only be called from a vm_ops->fault handler, and 1560 * in that case the handler should return NULL. 1561 * 1562 * vma cannot be a COW mapping. 1563 * 1564 * As this is called only for pages that do not currently exist, we 1565 * do not need to flush old virtual caches or the TLB. 1566 */ 1567 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1568 unsigned long pfn) 1569 { 1570 int ret; 1571 pgprot_t pgprot = vma->vm_page_prot; 1572 /* 1573 * Technically, architectures with pte_special can avoid all these 1574 * restrictions (same for remap_pfn_range). However we would like 1575 * consistency in testing and feature parity among all, so we should 1576 * try to keep these invariants in place for everybody. 1577 */ 1578 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1579 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1580 (VM_PFNMAP|VM_MIXEDMAP)); 1581 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1582 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1583 1584 if (addr < vma->vm_start || addr >= vma->vm_end) 1585 return -EFAULT; 1586 if (track_pfn_vma_new(vma, &pgprot, pfn, PAGE_SIZE)) 1587 return -EINVAL; 1588 1589 ret = insert_pfn(vma, addr, pfn, pgprot); 1590 1591 if (ret) 1592 untrack_pfn_vma(vma, pfn, PAGE_SIZE); 1593 1594 return ret; 1595 } 1596 EXPORT_SYMBOL(vm_insert_pfn); 1597 1598 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1599 unsigned long pfn) 1600 { 1601 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 1602 1603 if (addr < vma->vm_start || addr >= vma->vm_end) 1604 return -EFAULT; 1605 1606 /* 1607 * If we don't have pte special, then we have to use the pfn_valid() 1608 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1609 * refcount the page if pfn_valid is true (hence insert_page rather 1610 * than insert_pfn). 1611 */ 1612 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 1613 struct page *page; 1614 1615 page = pfn_to_page(pfn); 1616 return insert_page(vma, addr, page, vma->vm_page_prot); 1617 } 1618 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 1619 } 1620 EXPORT_SYMBOL(vm_insert_mixed); 1621 1622 /* 1623 * maps a range of physical memory into the requested pages. the old 1624 * mappings are removed. any references to nonexistent pages results 1625 * in null mappings (currently treated as "copy-on-access") 1626 */ 1627 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1628 unsigned long addr, unsigned long end, 1629 unsigned long pfn, pgprot_t prot) 1630 { 1631 pte_t *pte; 1632 spinlock_t *ptl; 1633 1634 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1635 if (!pte) 1636 return -ENOMEM; 1637 arch_enter_lazy_mmu_mode(); 1638 do { 1639 BUG_ON(!pte_none(*pte)); 1640 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1641 pfn++; 1642 } while (pte++, addr += PAGE_SIZE, addr != end); 1643 arch_leave_lazy_mmu_mode(); 1644 pte_unmap_unlock(pte - 1, ptl); 1645 return 0; 1646 } 1647 1648 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1649 unsigned long addr, unsigned long end, 1650 unsigned long pfn, pgprot_t prot) 1651 { 1652 pmd_t *pmd; 1653 unsigned long next; 1654 1655 pfn -= addr >> PAGE_SHIFT; 1656 pmd = pmd_alloc(mm, pud, addr); 1657 if (!pmd) 1658 return -ENOMEM; 1659 do { 1660 next = pmd_addr_end(addr, end); 1661 if (remap_pte_range(mm, pmd, addr, next, 1662 pfn + (addr >> PAGE_SHIFT), prot)) 1663 return -ENOMEM; 1664 } while (pmd++, addr = next, addr != end); 1665 return 0; 1666 } 1667 1668 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 1669 unsigned long addr, unsigned long end, 1670 unsigned long pfn, pgprot_t prot) 1671 { 1672 pud_t *pud; 1673 unsigned long next; 1674 1675 pfn -= addr >> PAGE_SHIFT; 1676 pud = pud_alloc(mm, pgd, addr); 1677 if (!pud) 1678 return -ENOMEM; 1679 do { 1680 next = pud_addr_end(addr, end); 1681 if (remap_pmd_range(mm, pud, addr, next, 1682 pfn + (addr >> PAGE_SHIFT), prot)) 1683 return -ENOMEM; 1684 } while (pud++, addr = next, addr != end); 1685 return 0; 1686 } 1687 1688 /** 1689 * remap_pfn_range - remap kernel memory to userspace 1690 * @vma: user vma to map to 1691 * @addr: target user address to start at 1692 * @pfn: physical address of kernel memory 1693 * @size: size of map area 1694 * @prot: page protection flags for this mapping 1695 * 1696 * Note: this is only safe if the mm semaphore is held when called. 1697 */ 1698 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1699 unsigned long pfn, unsigned long size, pgprot_t prot) 1700 { 1701 pgd_t *pgd; 1702 unsigned long next; 1703 unsigned long end = addr + PAGE_ALIGN(size); 1704 struct mm_struct *mm = vma->vm_mm; 1705 int err; 1706 1707 /* 1708 * Physically remapped pages are special. Tell the 1709 * rest of the world about it: 1710 * VM_IO tells people not to look at these pages 1711 * (accesses can have side effects). 1712 * VM_RESERVED is specified all over the place, because 1713 * in 2.4 it kept swapout's vma scan off this vma; but 1714 * in 2.6 the LRU scan won't even find its pages, so this 1715 * flag means no more than count its pages in reserved_vm, 1716 * and omit it from core dump, even when VM_IO turned off. 1717 * VM_PFNMAP tells the core MM that the base pages are just 1718 * raw PFN mappings, and do not have a "struct page" associated 1719 * with them. 1720 * 1721 * There's a horrible special case to handle copy-on-write 1722 * behaviour that some programs depend on. We mark the "original" 1723 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1724 */ 1725 if (addr == vma->vm_start && end == vma->vm_end) { 1726 vma->vm_pgoff = pfn; 1727 vma->vm_flags |= VM_PFN_AT_MMAP; 1728 } else if (is_cow_mapping(vma->vm_flags)) 1729 return -EINVAL; 1730 1731 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP; 1732 1733 err = track_pfn_vma_new(vma, &prot, pfn, PAGE_ALIGN(size)); 1734 if (err) { 1735 /* 1736 * To indicate that track_pfn related cleanup is not 1737 * needed from higher level routine calling unmap_vmas 1738 */ 1739 vma->vm_flags &= ~(VM_IO | VM_RESERVED | VM_PFNMAP); 1740 vma->vm_flags &= ~VM_PFN_AT_MMAP; 1741 return -EINVAL; 1742 } 1743 1744 BUG_ON(addr >= end); 1745 pfn -= addr >> PAGE_SHIFT; 1746 pgd = pgd_offset(mm, addr); 1747 flush_cache_range(vma, addr, end); 1748 do { 1749 next = pgd_addr_end(addr, end); 1750 err = remap_pud_range(mm, pgd, addr, next, 1751 pfn + (addr >> PAGE_SHIFT), prot); 1752 if (err) 1753 break; 1754 } while (pgd++, addr = next, addr != end); 1755 1756 if (err) 1757 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size)); 1758 1759 return err; 1760 } 1761 EXPORT_SYMBOL(remap_pfn_range); 1762 1763 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1764 unsigned long addr, unsigned long end, 1765 pte_fn_t fn, void *data) 1766 { 1767 pte_t *pte; 1768 int err; 1769 pgtable_t token; 1770 spinlock_t *uninitialized_var(ptl); 1771 1772 pte = (mm == &init_mm) ? 1773 pte_alloc_kernel(pmd, addr) : 1774 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1775 if (!pte) 1776 return -ENOMEM; 1777 1778 BUG_ON(pmd_huge(*pmd)); 1779 1780 arch_enter_lazy_mmu_mode(); 1781 1782 token = pmd_pgtable(*pmd); 1783 1784 do { 1785 err = fn(pte, token, addr, data); 1786 if (err) 1787 break; 1788 } while (pte++, addr += PAGE_SIZE, addr != end); 1789 1790 arch_leave_lazy_mmu_mode(); 1791 1792 if (mm != &init_mm) 1793 pte_unmap_unlock(pte-1, ptl); 1794 return err; 1795 } 1796 1797 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1798 unsigned long addr, unsigned long end, 1799 pte_fn_t fn, void *data) 1800 { 1801 pmd_t *pmd; 1802 unsigned long next; 1803 int err; 1804 1805 BUG_ON(pud_huge(*pud)); 1806 1807 pmd = pmd_alloc(mm, pud, addr); 1808 if (!pmd) 1809 return -ENOMEM; 1810 do { 1811 next = pmd_addr_end(addr, end); 1812 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1813 if (err) 1814 break; 1815 } while (pmd++, addr = next, addr != end); 1816 return err; 1817 } 1818 1819 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 1820 unsigned long addr, unsigned long end, 1821 pte_fn_t fn, void *data) 1822 { 1823 pud_t *pud; 1824 unsigned long next; 1825 int err; 1826 1827 pud = pud_alloc(mm, pgd, addr); 1828 if (!pud) 1829 return -ENOMEM; 1830 do { 1831 next = pud_addr_end(addr, end); 1832 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 1833 if (err) 1834 break; 1835 } while (pud++, addr = next, addr != end); 1836 return err; 1837 } 1838 1839 /* 1840 * Scan a region of virtual memory, filling in page tables as necessary 1841 * and calling a provided function on each leaf page table. 1842 */ 1843 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 1844 unsigned long size, pte_fn_t fn, void *data) 1845 { 1846 pgd_t *pgd; 1847 unsigned long next; 1848 unsigned long start = addr, end = addr + size; 1849 int err; 1850 1851 BUG_ON(addr >= end); 1852 mmu_notifier_invalidate_range_start(mm, start, end); 1853 pgd = pgd_offset(mm, addr); 1854 do { 1855 next = pgd_addr_end(addr, end); 1856 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 1857 if (err) 1858 break; 1859 } while (pgd++, addr = next, addr != end); 1860 mmu_notifier_invalidate_range_end(mm, start, end); 1861 return err; 1862 } 1863 EXPORT_SYMBOL_GPL(apply_to_page_range); 1864 1865 /* 1866 * handle_pte_fault chooses page fault handler according to an entry 1867 * which was read non-atomically. Before making any commitment, on 1868 * those architectures or configurations (e.g. i386 with PAE) which 1869 * might give a mix of unmatched parts, do_swap_page and do_file_page 1870 * must check under lock before unmapping the pte and proceeding 1871 * (but do_wp_page is only called after already making such a check; 1872 * and do_anonymous_page and do_no_page can safely check later on). 1873 */ 1874 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 1875 pte_t *page_table, pte_t orig_pte) 1876 { 1877 int same = 1; 1878 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 1879 if (sizeof(pte_t) > sizeof(unsigned long)) { 1880 spinlock_t *ptl = pte_lockptr(mm, pmd); 1881 spin_lock(ptl); 1882 same = pte_same(*page_table, orig_pte); 1883 spin_unlock(ptl); 1884 } 1885 #endif 1886 pte_unmap(page_table); 1887 return same; 1888 } 1889 1890 /* 1891 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1892 * servicing faults for write access. In the normal case, do always want 1893 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1894 * that do not have writing enabled, when used by access_process_vm. 1895 */ 1896 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1897 { 1898 if (likely(vma->vm_flags & VM_WRITE)) 1899 pte = pte_mkwrite(pte); 1900 return pte; 1901 } 1902 1903 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 1904 { 1905 /* 1906 * If the source page was a PFN mapping, we don't have 1907 * a "struct page" for it. We do a best-effort copy by 1908 * just copying from the original user address. If that 1909 * fails, we just zero-fill it. Live with it. 1910 */ 1911 if (unlikely(!src)) { 1912 void *kaddr = kmap_atomic(dst, KM_USER0); 1913 void __user *uaddr = (void __user *)(va & PAGE_MASK); 1914 1915 /* 1916 * This really shouldn't fail, because the page is there 1917 * in the page tables. But it might just be unreadable, 1918 * in which case we just give up and fill the result with 1919 * zeroes. 1920 */ 1921 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 1922 memset(kaddr, 0, PAGE_SIZE); 1923 kunmap_atomic(kaddr, KM_USER0); 1924 flush_dcache_page(dst); 1925 } else 1926 copy_user_highpage(dst, src, va, vma); 1927 } 1928 1929 /* 1930 * This routine handles present pages, when users try to write 1931 * to a shared page. It is done by copying the page to a new address 1932 * and decrementing the shared-page counter for the old page. 1933 * 1934 * Note that this routine assumes that the protection checks have been 1935 * done by the caller (the low-level page fault routine in most cases). 1936 * Thus we can safely just mark it writable once we've done any necessary 1937 * COW. 1938 * 1939 * We also mark the page dirty at this point even though the page will 1940 * change only once the write actually happens. This avoids a few races, 1941 * and potentially makes it more efficient. 1942 * 1943 * We enter with non-exclusive mmap_sem (to exclude vma changes, 1944 * but allow concurrent faults), with pte both mapped and locked. 1945 * We return with mmap_sem still held, but pte unmapped and unlocked. 1946 */ 1947 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 1948 unsigned long address, pte_t *page_table, pmd_t *pmd, 1949 spinlock_t *ptl, pte_t orig_pte) 1950 { 1951 struct page *old_page, *new_page; 1952 pte_t entry; 1953 int reuse = 0, ret = 0; 1954 int page_mkwrite = 0; 1955 struct page *dirty_page = NULL; 1956 1957 old_page = vm_normal_page(vma, address, orig_pte); 1958 if (!old_page) { 1959 /* 1960 * VM_MIXEDMAP !pfn_valid() case 1961 * 1962 * We should not cow pages in a shared writeable mapping. 1963 * Just mark the pages writable as we can't do any dirty 1964 * accounting on raw pfn maps. 1965 */ 1966 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1967 (VM_WRITE|VM_SHARED)) 1968 goto reuse; 1969 goto gotten; 1970 } 1971 1972 /* 1973 * Take out anonymous pages first, anonymous shared vmas are 1974 * not dirty accountable. 1975 */ 1976 if (PageAnon(old_page)) { 1977 if (!trylock_page(old_page)) { 1978 page_cache_get(old_page); 1979 pte_unmap_unlock(page_table, ptl); 1980 lock_page(old_page); 1981 page_table = pte_offset_map_lock(mm, pmd, address, 1982 &ptl); 1983 if (!pte_same(*page_table, orig_pte)) { 1984 unlock_page(old_page); 1985 page_cache_release(old_page); 1986 goto unlock; 1987 } 1988 page_cache_release(old_page); 1989 } 1990 reuse = reuse_swap_page(old_page); 1991 unlock_page(old_page); 1992 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 1993 (VM_WRITE|VM_SHARED))) { 1994 /* 1995 * Only catch write-faults on shared writable pages, 1996 * read-only shared pages can get COWed by 1997 * get_user_pages(.write=1, .force=1). 1998 */ 1999 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2000 struct vm_fault vmf; 2001 int tmp; 2002 2003 vmf.virtual_address = (void __user *)(address & 2004 PAGE_MASK); 2005 vmf.pgoff = old_page->index; 2006 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2007 vmf.page = old_page; 2008 2009 /* 2010 * Notify the address space that the page is about to 2011 * become writable so that it can prohibit this or wait 2012 * for the page to get into an appropriate state. 2013 * 2014 * We do this without the lock held, so that it can 2015 * sleep if it needs to. 2016 */ 2017 page_cache_get(old_page); 2018 pte_unmap_unlock(page_table, ptl); 2019 2020 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2021 if (unlikely(tmp & 2022 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2023 ret = tmp; 2024 goto unwritable_page; 2025 } 2026 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2027 lock_page(old_page); 2028 if (!old_page->mapping) { 2029 ret = 0; /* retry the fault */ 2030 unlock_page(old_page); 2031 goto unwritable_page; 2032 } 2033 } else 2034 VM_BUG_ON(!PageLocked(old_page)); 2035 2036 /* 2037 * Since we dropped the lock we need to revalidate 2038 * the PTE as someone else may have changed it. If 2039 * they did, we just return, as we can count on the 2040 * MMU to tell us if they didn't also make it writable. 2041 */ 2042 page_table = pte_offset_map_lock(mm, pmd, address, 2043 &ptl); 2044 if (!pte_same(*page_table, orig_pte)) { 2045 unlock_page(old_page); 2046 page_cache_release(old_page); 2047 goto unlock; 2048 } 2049 2050 page_mkwrite = 1; 2051 } 2052 dirty_page = old_page; 2053 get_page(dirty_page); 2054 reuse = 1; 2055 } 2056 2057 if (reuse) { 2058 reuse: 2059 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2060 entry = pte_mkyoung(orig_pte); 2061 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2062 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2063 update_mmu_cache(vma, address, entry); 2064 ret |= VM_FAULT_WRITE; 2065 goto unlock; 2066 } 2067 2068 /* 2069 * Ok, we need to copy. Oh, well.. 2070 */ 2071 page_cache_get(old_page); 2072 gotten: 2073 pte_unmap_unlock(page_table, ptl); 2074 2075 if (unlikely(anon_vma_prepare(vma))) 2076 goto oom; 2077 VM_BUG_ON(old_page == ZERO_PAGE(0)); 2078 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2079 if (!new_page) 2080 goto oom; 2081 /* 2082 * Don't let another task, with possibly unlocked vma, 2083 * keep the mlocked page. 2084 */ 2085 if ((vma->vm_flags & VM_LOCKED) && old_page) { 2086 lock_page(old_page); /* for LRU manipulation */ 2087 clear_page_mlock(old_page); 2088 unlock_page(old_page); 2089 } 2090 cow_user_page(new_page, old_page, address, vma); 2091 __SetPageUptodate(new_page); 2092 2093 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2094 goto oom_free_new; 2095 2096 /* 2097 * Re-check the pte - we dropped the lock 2098 */ 2099 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2100 if (likely(pte_same(*page_table, orig_pte))) { 2101 if (old_page) { 2102 if (!PageAnon(old_page)) { 2103 dec_mm_counter(mm, file_rss); 2104 inc_mm_counter(mm, anon_rss); 2105 } 2106 } else 2107 inc_mm_counter(mm, anon_rss); 2108 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2109 entry = mk_pte(new_page, vma->vm_page_prot); 2110 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2111 /* 2112 * Clear the pte entry and flush it first, before updating the 2113 * pte with the new entry. This will avoid a race condition 2114 * seen in the presence of one thread doing SMC and another 2115 * thread doing COW. 2116 */ 2117 ptep_clear_flush_notify(vma, address, page_table); 2118 page_add_new_anon_rmap(new_page, vma, address); 2119 set_pte_at(mm, address, page_table, entry); 2120 update_mmu_cache(vma, address, entry); 2121 if (old_page) { 2122 /* 2123 * Only after switching the pte to the new page may 2124 * we remove the mapcount here. Otherwise another 2125 * process may come and find the rmap count decremented 2126 * before the pte is switched to the new page, and 2127 * "reuse" the old page writing into it while our pte 2128 * here still points into it and can be read by other 2129 * threads. 2130 * 2131 * The critical issue is to order this 2132 * page_remove_rmap with the ptp_clear_flush above. 2133 * Those stores are ordered by (if nothing else,) 2134 * the barrier present in the atomic_add_negative 2135 * in page_remove_rmap. 2136 * 2137 * Then the TLB flush in ptep_clear_flush ensures that 2138 * no process can access the old page before the 2139 * decremented mapcount is visible. And the old page 2140 * cannot be reused until after the decremented 2141 * mapcount is visible. So transitively, TLBs to 2142 * old page will be flushed before it can be reused. 2143 */ 2144 page_remove_rmap(old_page); 2145 } 2146 2147 /* Free the old page.. */ 2148 new_page = old_page; 2149 ret |= VM_FAULT_WRITE; 2150 } else 2151 mem_cgroup_uncharge_page(new_page); 2152 2153 if (new_page) 2154 page_cache_release(new_page); 2155 if (old_page) 2156 page_cache_release(old_page); 2157 unlock: 2158 pte_unmap_unlock(page_table, ptl); 2159 if (dirty_page) { 2160 /* 2161 * Yes, Virginia, this is actually required to prevent a race 2162 * with clear_page_dirty_for_io() from clearing the page dirty 2163 * bit after it clear all dirty ptes, but before a racing 2164 * do_wp_page installs a dirty pte. 2165 * 2166 * do_no_page is protected similarly. 2167 */ 2168 if (!page_mkwrite) { 2169 wait_on_page_locked(dirty_page); 2170 set_page_dirty_balance(dirty_page, page_mkwrite); 2171 } 2172 put_page(dirty_page); 2173 if (page_mkwrite) { 2174 struct address_space *mapping = dirty_page->mapping; 2175 2176 set_page_dirty(dirty_page); 2177 unlock_page(dirty_page); 2178 page_cache_release(dirty_page); 2179 if (mapping) { 2180 /* 2181 * Some device drivers do not set page.mapping 2182 * but still dirty their pages 2183 */ 2184 balance_dirty_pages_ratelimited(mapping); 2185 } 2186 } 2187 2188 /* file_update_time outside page_lock */ 2189 if (vma->vm_file) 2190 file_update_time(vma->vm_file); 2191 } 2192 return ret; 2193 oom_free_new: 2194 page_cache_release(new_page); 2195 oom: 2196 if (old_page) { 2197 if (page_mkwrite) { 2198 unlock_page(old_page); 2199 page_cache_release(old_page); 2200 } 2201 page_cache_release(old_page); 2202 } 2203 return VM_FAULT_OOM; 2204 2205 unwritable_page: 2206 page_cache_release(old_page); 2207 return ret; 2208 } 2209 2210 /* 2211 * Helper functions for unmap_mapping_range(). 2212 * 2213 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ 2214 * 2215 * We have to restart searching the prio_tree whenever we drop the lock, 2216 * since the iterator is only valid while the lock is held, and anyway 2217 * a later vma might be split and reinserted earlier while lock dropped. 2218 * 2219 * The list of nonlinear vmas could be handled more efficiently, using 2220 * a placeholder, but handle it in the same way until a need is shown. 2221 * It is important to search the prio_tree before nonlinear list: a vma 2222 * may become nonlinear and be shifted from prio_tree to nonlinear list 2223 * while the lock is dropped; but never shifted from list to prio_tree. 2224 * 2225 * In order to make forward progress despite restarting the search, 2226 * vm_truncate_count is used to mark a vma as now dealt with, so we can 2227 * quickly skip it next time around. Since the prio_tree search only 2228 * shows us those vmas affected by unmapping the range in question, we 2229 * can't efficiently keep all vmas in step with mapping->truncate_count: 2230 * so instead reset them all whenever it wraps back to 0 (then go to 1). 2231 * mapping->truncate_count and vma->vm_truncate_count are protected by 2232 * i_mmap_lock. 2233 * 2234 * In order to make forward progress despite repeatedly restarting some 2235 * large vma, note the restart_addr from unmap_vmas when it breaks out: 2236 * and restart from that address when we reach that vma again. It might 2237 * have been split or merged, shrunk or extended, but never shifted: so 2238 * restart_addr remains valid so long as it remains in the vma's range. 2239 * unmap_mapping_range forces truncate_count to leap over page-aligned 2240 * values so we can save vma's restart_addr in its truncate_count field. 2241 */ 2242 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) 2243 2244 static void reset_vma_truncate_counts(struct address_space *mapping) 2245 { 2246 struct vm_area_struct *vma; 2247 struct prio_tree_iter iter; 2248 2249 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) 2250 vma->vm_truncate_count = 0; 2251 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) 2252 vma->vm_truncate_count = 0; 2253 } 2254 2255 static int unmap_mapping_range_vma(struct vm_area_struct *vma, 2256 unsigned long start_addr, unsigned long end_addr, 2257 struct zap_details *details) 2258 { 2259 unsigned long restart_addr; 2260 int need_break; 2261 2262 /* 2263 * files that support invalidating or truncating portions of the 2264 * file from under mmaped areas must have their ->fault function 2265 * return a locked page (and set VM_FAULT_LOCKED in the return). 2266 * This provides synchronisation against concurrent unmapping here. 2267 */ 2268 2269 again: 2270 restart_addr = vma->vm_truncate_count; 2271 if (is_restart_addr(restart_addr) && start_addr < restart_addr) { 2272 start_addr = restart_addr; 2273 if (start_addr >= end_addr) { 2274 /* Top of vma has been split off since last time */ 2275 vma->vm_truncate_count = details->truncate_count; 2276 return 0; 2277 } 2278 } 2279 2280 restart_addr = zap_page_range(vma, start_addr, 2281 end_addr - start_addr, details); 2282 need_break = need_resched() || spin_needbreak(details->i_mmap_lock); 2283 2284 if (restart_addr >= end_addr) { 2285 /* We have now completed this vma: mark it so */ 2286 vma->vm_truncate_count = details->truncate_count; 2287 if (!need_break) 2288 return 0; 2289 } else { 2290 /* Note restart_addr in vma's truncate_count field */ 2291 vma->vm_truncate_count = restart_addr; 2292 if (!need_break) 2293 goto again; 2294 } 2295 2296 spin_unlock(details->i_mmap_lock); 2297 cond_resched(); 2298 spin_lock(details->i_mmap_lock); 2299 return -EINTR; 2300 } 2301 2302 static inline void unmap_mapping_range_tree(struct prio_tree_root *root, 2303 struct zap_details *details) 2304 { 2305 struct vm_area_struct *vma; 2306 struct prio_tree_iter iter; 2307 pgoff_t vba, vea, zba, zea; 2308 2309 restart: 2310 vma_prio_tree_foreach(vma, &iter, root, 2311 details->first_index, details->last_index) { 2312 /* Skip quickly over those we have already dealt with */ 2313 if (vma->vm_truncate_count == details->truncate_count) 2314 continue; 2315 2316 vba = vma->vm_pgoff; 2317 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; 2318 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2319 zba = details->first_index; 2320 if (zba < vba) 2321 zba = vba; 2322 zea = details->last_index; 2323 if (zea > vea) 2324 zea = vea; 2325 2326 if (unmap_mapping_range_vma(vma, 2327 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2328 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2329 details) < 0) 2330 goto restart; 2331 } 2332 } 2333 2334 static inline void unmap_mapping_range_list(struct list_head *head, 2335 struct zap_details *details) 2336 { 2337 struct vm_area_struct *vma; 2338 2339 /* 2340 * In nonlinear VMAs there is no correspondence between virtual address 2341 * offset and file offset. So we must perform an exhaustive search 2342 * across *all* the pages in each nonlinear VMA, not just the pages 2343 * whose virtual address lies outside the file truncation point. 2344 */ 2345 restart: 2346 list_for_each_entry(vma, head, shared.vm_set.list) { 2347 /* Skip quickly over those we have already dealt with */ 2348 if (vma->vm_truncate_count == details->truncate_count) 2349 continue; 2350 details->nonlinear_vma = vma; 2351 if (unmap_mapping_range_vma(vma, vma->vm_start, 2352 vma->vm_end, details) < 0) 2353 goto restart; 2354 } 2355 } 2356 2357 /** 2358 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2359 * @mapping: the address space containing mmaps to be unmapped. 2360 * @holebegin: byte in first page to unmap, relative to the start of 2361 * the underlying file. This will be rounded down to a PAGE_SIZE 2362 * boundary. Note that this is different from vmtruncate(), which 2363 * must keep the partial page. In contrast, we must get rid of 2364 * partial pages. 2365 * @holelen: size of prospective hole in bytes. This will be rounded 2366 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2367 * end of the file. 2368 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2369 * but 0 when invalidating pagecache, don't throw away private data. 2370 */ 2371 void unmap_mapping_range(struct address_space *mapping, 2372 loff_t const holebegin, loff_t const holelen, int even_cows) 2373 { 2374 struct zap_details details; 2375 pgoff_t hba = holebegin >> PAGE_SHIFT; 2376 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2377 2378 /* Check for overflow. */ 2379 if (sizeof(holelen) > sizeof(hlen)) { 2380 long long holeend = 2381 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2382 if (holeend & ~(long long)ULONG_MAX) 2383 hlen = ULONG_MAX - hba + 1; 2384 } 2385 2386 details.check_mapping = even_cows? NULL: mapping; 2387 details.nonlinear_vma = NULL; 2388 details.first_index = hba; 2389 details.last_index = hba + hlen - 1; 2390 if (details.last_index < details.first_index) 2391 details.last_index = ULONG_MAX; 2392 details.i_mmap_lock = &mapping->i_mmap_lock; 2393 2394 spin_lock(&mapping->i_mmap_lock); 2395 2396 /* Protect against endless unmapping loops */ 2397 mapping->truncate_count++; 2398 if (unlikely(is_restart_addr(mapping->truncate_count))) { 2399 if (mapping->truncate_count == 0) 2400 reset_vma_truncate_counts(mapping); 2401 mapping->truncate_count++; 2402 } 2403 details.truncate_count = mapping->truncate_count; 2404 2405 if (unlikely(!prio_tree_empty(&mapping->i_mmap))) 2406 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2407 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2408 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2409 spin_unlock(&mapping->i_mmap_lock); 2410 } 2411 EXPORT_SYMBOL(unmap_mapping_range); 2412 2413 /** 2414 * vmtruncate - unmap mappings "freed" by truncate() syscall 2415 * @inode: inode of the file used 2416 * @offset: file offset to start truncating 2417 * 2418 * NOTE! We have to be ready to update the memory sharing 2419 * between the file and the memory map for a potential last 2420 * incomplete page. Ugly, but necessary. 2421 */ 2422 int vmtruncate(struct inode * inode, loff_t offset) 2423 { 2424 if (inode->i_size < offset) { 2425 unsigned long limit; 2426 2427 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2428 if (limit != RLIM_INFINITY && offset > limit) 2429 goto out_sig; 2430 if (offset > inode->i_sb->s_maxbytes) 2431 goto out_big; 2432 i_size_write(inode, offset); 2433 } else { 2434 struct address_space *mapping = inode->i_mapping; 2435 2436 /* 2437 * truncation of in-use swapfiles is disallowed - it would 2438 * cause subsequent swapout to scribble on the now-freed 2439 * blocks. 2440 */ 2441 if (IS_SWAPFILE(inode)) 2442 return -ETXTBSY; 2443 i_size_write(inode, offset); 2444 2445 /* 2446 * unmap_mapping_range is called twice, first simply for 2447 * efficiency so that truncate_inode_pages does fewer 2448 * single-page unmaps. However after this first call, and 2449 * before truncate_inode_pages finishes, it is possible for 2450 * private pages to be COWed, which remain after 2451 * truncate_inode_pages finishes, hence the second 2452 * unmap_mapping_range call must be made for correctness. 2453 */ 2454 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2455 truncate_inode_pages(mapping, offset); 2456 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); 2457 } 2458 2459 if (inode->i_op->truncate) 2460 inode->i_op->truncate(inode); 2461 return 0; 2462 2463 out_sig: 2464 send_sig(SIGXFSZ, current, 0); 2465 out_big: 2466 return -EFBIG; 2467 } 2468 EXPORT_SYMBOL(vmtruncate); 2469 2470 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end) 2471 { 2472 struct address_space *mapping = inode->i_mapping; 2473 2474 /* 2475 * If the underlying filesystem is not going to provide 2476 * a way to truncate a range of blocks (punch a hole) - 2477 * we should return failure right now. 2478 */ 2479 if (!inode->i_op->truncate_range) 2480 return -ENOSYS; 2481 2482 mutex_lock(&inode->i_mutex); 2483 down_write(&inode->i_alloc_sem); 2484 unmap_mapping_range(mapping, offset, (end - offset), 1); 2485 truncate_inode_pages_range(mapping, offset, end); 2486 unmap_mapping_range(mapping, offset, (end - offset), 1); 2487 inode->i_op->truncate_range(inode, offset, end); 2488 up_write(&inode->i_alloc_sem); 2489 mutex_unlock(&inode->i_mutex); 2490 2491 return 0; 2492 } 2493 2494 /* 2495 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2496 * but allow concurrent faults), and pte mapped but not yet locked. 2497 * We return with mmap_sem still held, but pte unmapped and unlocked. 2498 */ 2499 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 2500 unsigned long address, pte_t *page_table, pmd_t *pmd, 2501 unsigned int flags, pte_t orig_pte) 2502 { 2503 spinlock_t *ptl; 2504 struct page *page; 2505 swp_entry_t entry; 2506 pte_t pte; 2507 struct mem_cgroup *ptr = NULL; 2508 int ret = 0; 2509 2510 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2511 goto out; 2512 2513 entry = pte_to_swp_entry(orig_pte); 2514 if (is_migration_entry(entry)) { 2515 migration_entry_wait(mm, pmd, address); 2516 goto out; 2517 } 2518 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2519 page = lookup_swap_cache(entry); 2520 if (!page) { 2521 grab_swap_token(mm); /* Contend for token _before_ read-in */ 2522 page = swapin_readahead(entry, 2523 GFP_HIGHUSER_MOVABLE, vma, address); 2524 if (!page) { 2525 /* 2526 * Back out if somebody else faulted in this pte 2527 * while we released the pte lock. 2528 */ 2529 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2530 if (likely(pte_same(*page_table, orig_pte))) 2531 ret = VM_FAULT_OOM; 2532 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2533 goto unlock; 2534 } 2535 2536 /* Had to read the page from swap area: Major fault */ 2537 ret = VM_FAULT_MAJOR; 2538 count_vm_event(PGMAJFAULT); 2539 } 2540 2541 lock_page(page); 2542 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2543 2544 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 2545 ret = VM_FAULT_OOM; 2546 goto out_page; 2547 } 2548 2549 /* 2550 * Back out if somebody else already faulted in this pte. 2551 */ 2552 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2553 if (unlikely(!pte_same(*page_table, orig_pte))) 2554 goto out_nomap; 2555 2556 if (unlikely(!PageUptodate(page))) { 2557 ret = VM_FAULT_SIGBUS; 2558 goto out_nomap; 2559 } 2560 2561 /* 2562 * The page isn't present yet, go ahead with the fault. 2563 * 2564 * Be careful about the sequence of operations here. 2565 * To get its accounting right, reuse_swap_page() must be called 2566 * while the page is counted on swap but not yet in mapcount i.e. 2567 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2568 * must be called after the swap_free(), or it will never succeed. 2569 * Because delete_from_swap_page() may be called by reuse_swap_page(), 2570 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 2571 * in page->private. In this case, a record in swap_cgroup is silently 2572 * discarded at swap_free(). 2573 */ 2574 2575 inc_mm_counter(mm, anon_rss); 2576 pte = mk_pte(page, vma->vm_page_prot); 2577 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 2578 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2579 flags &= ~FAULT_FLAG_WRITE; 2580 } 2581 flush_icache_page(vma, page); 2582 set_pte_at(mm, address, page_table, pte); 2583 page_add_anon_rmap(page, vma, address); 2584 /* It's better to call commit-charge after rmap is established */ 2585 mem_cgroup_commit_charge_swapin(page, ptr); 2586 2587 swap_free(entry); 2588 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2589 try_to_free_swap(page); 2590 unlock_page(page); 2591 2592 if (flags & FAULT_FLAG_WRITE) { 2593 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 2594 if (ret & VM_FAULT_ERROR) 2595 ret &= VM_FAULT_ERROR; 2596 goto out; 2597 } 2598 2599 /* No need to invalidate - it was non-present before */ 2600 update_mmu_cache(vma, address, pte); 2601 unlock: 2602 pte_unmap_unlock(page_table, ptl); 2603 out: 2604 return ret; 2605 out_nomap: 2606 mem_cgroup_cancel_charge_swapin(ptr); 2607 pte_unmap_unlock(page_table, ptl); 2608 out_page: 2609 unlock_page(page); 2610 page_cache_release(page); 2611 return ret; 2612 } 2613 2614 /* 2615 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2616 * but allow concurrent faults), and pte mapped but not yet locked. 2617 * We return with mmap_sem still held, but pte unmapped and unlocked. 2618 */ 2619 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 2620 unsigned long address, pte_t *page_table, pmd_t *pmd, 2621 unsigned int flags) 2622 { 2623 struct page *page; 2624 spinlock_t *ptl; 2625 pte_t entry; 2626 2627 /* Allocate our own private page. */ 2628 pte_unmap(page_table); 2629 2630 if (unlikely(anon_vma_prepare(vma))) 2631 goto oom; 2632 page = alloc_zeroed_user_highpage_movable(vma, address); 2633 if (!page) 2634 goto oom; 2635 __SetPageUptodate(page); 2636 2637 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 2638 goto oom_free_page; 2639 2640 entry = mk_pte(page, vma->vm_page_prot); 2641 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2642 2643 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2644 if (!pte_none(*page_table)) 2645 goto release; 2646 inc_mm_counter(mm, anon_rss); 2647 page_add_new_anon_rmap(page, vma, address); 2648 set_pte_at(mm, address, page_table, entry); 2649 2650 /* No need to invalidate - it was non-present before */ 2651 update_mmu_cache(vma, address, entry); 2652 unlock: 2653 pte_unmap_unlock(page_table, ptl); 2654 return 0; 2655 release: 2656 mem_cgroup_uncharge_page(page); 2657 page_cache_release(page); 2658 goto unlock; 2659 oom_free_page: 2660 page_cache_release(page); 2661 oom: 2662 return VM_FAULT_OOM; 2663 } 2664 2665 /* 2666 * __do_fault() tries to create a new page mapping. It aggressively 2667 * tries to share with existing pages, but makes a separate copy if 2668 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 2669 * the next page fault. 2670 * 2671 * As this is called only for pages that do not currently exist, we 2672 * do not need to flush old virtual caches or the TLB. 2673 * 2674 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2675 * but allow concurrent faults), and pte neither mapped nor locked. 2676 * We return with mmap_sem still held, but pte unmapped and unlocked. 2677 */ 2678 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2679 unsigned long address, pmd_t *pmd, 2680 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 2681 { 2682 pte_t *page_table; 2683 spinlock_t *ptl; 2684 struct page *page; 2685 pte_t entry; 2686 int anon = 0; 2687 int charged = 0; 2688 struct page *dirty_page = NULL; 2689 struct vm_fault vmf; 2690 int ret; 2691 int page_mkwrite = 0; 2692 2693 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 2694 vmf.pgoff = pgoff; 2695 vmf.flags = flags; 2696 vmf.page = NULL; 2697 2698 ret = vma->vm_ops->fault(vma, &vmf); 2699 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2700 return ret; 2701 2702 /* 2703 * For consistency in subsequent calls, make the faulted page always 2704 * locked. 2705 */ 2706 if (unlikely(!(ret & VM_FAULT_LOCKED))) 2707 lock_page(vmf.page); 2708 else 2709 VM_BUG_ON(!PageLocked(vmf.page)); 2710 2711 /* 2712 * Should we do an early C-O-W break? 2713 */ 2714 page = vmf.page; 2715 if (flags & FAULT_FLAG_WRITE) { 2716 if (!(vma->vm_flags & VM_SHARED)) { 2717 anon = 1; 2718 if (unlikely(anon_vma_prepare(vma))) { 2719 ret = VM_FAULT_OOM; 2720 goto out; 2721 } 2722 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, 2723 vma, address); 2724 if (!page) { 2725 ret = VM_FAULT_OOM; 2726 goto out; 2727 } 2728 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) { 2729 ret = VM_FAULT_OOM; 2730 page_cache_release(page); 2731 goto out; 2732 } 2733 charged = 1; 2734 /* 2735 * Don't let another task, with possibly unlocked vma, 2736 * keep the mlocked page. 2737 */ 2738 if (vma->vm_flags & VM_LOCKED) 2739 clear_page_mlock(vmf.page); 2740 copy_user_highpage(page, vmf.page, address, vma); 2741 __SetPageUptodate(page); 2742 } else { 2743 /* 2744 * If the page will be shareable, see if the backing 2745 * address space wants to know that the page is about 2746 * to become writable 2747 */ 2748 if (vma->vm_ops->page_mkwrite) { 2749 int tmp; 2750 2751 unlock_page(page); 2752 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2753 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2754 if (unlikely(tmp & 2755 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2756 ret = tmp; 2757 goto unwritable_page; 2758 } 2759 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2760 lock_page(page); 2761 if (!page->mapping) { 2762 ret = 0; /* retry the fault */ 2763 unlock_page(page); 2764 goto unwritable_page; 2765 } 2766 } else 2767 VM_BUG_ON(!PageLocked(page)); 2768 page_mkwrite = 1; 2769 } 2770 } 2771 2772 } 2773 2774 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2775 2776 /* 2777 * This silly early PAGE_DIRTY setting removes a race 2778 * due to the bad i386 page protection. But it's valid 2779 * for other architectures too. 2780 * 2781 * Note that if FAULT_FLAG_WRITE is set, we either now have 2782 * an exclusive copy of the page, or this is a shared mapping, 2783 * so we can make it writable and dirty to avoid having to 2784 * handle that later. 2785 */ 2786 /* Only go through if we didn't race with anybody else... */ 2787 if (likely(pte_same(*page_table, orig_pte))) { 2788 flush_icache_page(vma, page); 2789 entry = mk_pte(page, vma->vm_page_prot); 2790 if (flags & FAULT_FLAG_WRITE) 2791 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2792 if (anon) { 2793 inc_mm_counter(mm, anon_rss); 2794 page_add_new_anon_rmap(page, vma, address); 2795 } else { 2796 inc_mm_counter(mm, file_rss); 2797 page_add_file_rmap(page); 2798 if (flags & FAULT_FLAG_WRITE) { 2799 dirty_page = page; 2800 get_page(dirty_page); 2801 } 2802 } 2803 set_pte_at(mm, address, page_table, entry); 2804 2805 /* no need to invalidate: a not-present page won't be cached */ 2806 update_mmu_cache(vma, address, entry); 2807 } else { 2808 if (charged) 2809 mem_cgroup_uncharge_page(page); 2810 if (anon) 2811 page_cache_release(page); 2812 else 2813 anon = 1; /* no anon but release faulted_page */ 2814 } 2815 2816 pte_unmap_unlock(page_table, ptl); 2817 2818 out: 2819 if (dirty_page) { 2820 struct address_space *mapping = page->mapping; 2821 2822 if (set_page_dirty(dirty_page)) 2823 page_mkwrite = 1; 2824 unlock_page(dirty_page); 2825 put_page(dirty_page); 2826 if (page_mkwrite && mapping) { 2827 /* 2828 * Some device drivers do not set page.mapping but still 2829 * dirty their pages 2830 */ 2831 balance_dirty_pages_ratelimited(mapping); 2832 } 2833 2834 /* file_update_time outside page_lock */ 2835 if (vma->vm_file) 2836 file_update_time(vma->vm_file); 2837 } else { 2838 unlock_page(vmf.page); 2839 if (anon) 2840 page_cache_release(vmf.page); 2841 } 2842 2843 return ret; 2844 2845 unwritable_page: 2846 page_cache_release(page); 2847 return ret; 2848 } 2849 2850 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2851 unsigned long address, pte_t *page_table, pmd_t *pmd, 2852 unsigned int flags, pte_t orig_pte) 2853 { 2854 pgoff_t pgoff = (((address & PAGE_MASK) 2855 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 2856 2857 pte_unmap(page_table); 2858 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2859 } 2860 2861 /* 2862 * Fault of a previously existing named mapping. Repopulate the pte 2863 * from the encoded file_pte if possible. This enables swappable 2864 * nonlinear vmas. 2865 * 2866 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2867 * but allow concurrent faults), and pte mapped but not yet locked. 2868 * We return with mmap_sem still held, but pte unmapped and unlocked. 2869 */ 2870 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2871 unsigned long address, pte_t *page_table, pmd_t *pmd, 2872 unsigned int flags, pte_t orig_pte) 2873 { 2874 pgoff_t pgoff; 2875 2876 flags |= FAULT_FLAG_NONLINEAR; 2877 2878 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 2879 return 0; 2880 2881 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 2882 /* 2883 * Page table corrupted: show pte and kill process. 2884 */ 2885 print_bad_pte(vma, address, orig_pte, NULL); 2886 return VM_FAULT_OOM; 2887 } 2888 2889 pgoff = pte_to_pgoff(orig_pte); 2890 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 2891 } 2892 2893 /* 2894 * These routines also need to handle stuff like marking pages dirty 2895 * and/or accessed for architectures that don't do it in hardware (most 2896 * RISC architectures). The early dirtying is also good on the i386. 2897 * 2898 * There is also a hook called "update_mmu_cache()" that architectures 2899 * with external mmu caches can use to update those (ie the Sparc or 2900 * PowerPC hashed page tables that act as extended TLBs). 2901 * 2902 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2903 * but allow concurrent faults), and pte mapped but not yet locked. 2904 * We return with mmap_sem still held, but pte unmapped and unlocked. 2905 */ 2906 static inline int handle_pte_fault(struct mm_struct *mm, 2907 struct vm_area_struct *vma, unsigned long address, 2908 pte_t *pte, pmd_t *pmd, unsigned int flags) 2909 { 2910 pte_t entry; 2911 spinlock_t *ptl; 2912 2913 entry = *pte; 2914 if (!pte_present(entry)) { 2915 if (pte_none(entry)) { 2916 if (vma->vm_ops) { 2917 if (likely(vma->vm_ops->fault)) 2918 return do_linear_fault(mm, vma, address, 2919 pte, pmd, flags, entry); 2920 } 2921 return do_anonymous_page(mm, vma, address, 2922 pte, pmd, flags); 2923 } 2924 if (pte_file(entry)) 2925 return do_nonlinear_fault(mm, vma, address, 2926 pte, pmd, flags, entry); 2927 return do_swap_page(mm, vma, address, 2928 pte, pmd, flags, entry); 2929 } 2930 2931 ptl = pte_lockptr(mm, pmd); 2932 spin_lock(ptl); 2933 if (unlikely(!pte_same(*pte, entry))) 2934 goto unlock; 2935 if (flags & FAULT_FLAG_WRITE) { 2936 if (!pte_write(entry)) 2937 return do_wp_page(mm, vma, address, 2938 pte, pmd, ptl, entry); 2939 entry = pte_mkdirty(entry); 2940 } 2941 entry = pte_mkyoung(entry); 2942 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 2943 update_mmu_cache(vma, address, entry); 2944 } else { 2945 /* 2946 * This is needed only for protection faults but the arch code 2947 * is not yet telling us if this is a protection fault or not. 2948 * This still avoids useless tlb flushes for .text page faults 2949 * with threads. 2950 */ 2951 if (flags & FAULT_FLAG_WRITE) 2952 flush_tlb_page(vma, address); 2953 } 2954 unlock: 2955 pte_unmap_unlock(pte, ptl); 2956 return 0; 2957 } 2958 2959 /* 2960 * By the time we get here, we already hold the mm semaphore 2961 */ 2962 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 2963 unsigned long address, unsigned int flags) 2964 { 2965 pgd_t *pgd; 2966 pud_t *pud; 2967 pmd_t *pmd; 2968 pte_t *pte; 2969 2970 __set_current_state(TASK_RUNNING); 2971 2972 count_vm_event(PGFAULT); 2973 2974 if (unlikely(is_vm_hugetlb_page(vma))) 2975 return hugetlb_fault(mm, vma, address, flags); 2976 2977 pgd = pgd_offset(mm, address); 2978 pud = pud_alloc(mm, pgd, address); 2979 if (!pud) 2980 return VM_FAULT_OOM; 2981 pmd = pmd_alloc(mm, pud, address); 2982 if (!pmd) 2983 return VM_FAULT_OOM; 2984 pte = pte_alloc_map(mm, pmd, address); 2985 if (!pte) 2986 return VM_FAULT_OOM; 2987 2988 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 2989 } 2990 2991 #ifndef __PAGETABLE_PUD_FOLDED 2992 /* 2993 * Allocate page upper directory. 2994 * We've already handled the fast-path in-line. 2995 */ 2996 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 2997 { 2998 pud_t *new = pud_alloc_one(mm, address); 2999 if (!new) 3000 return -ENOMEM; 3001 3002 smp_wmb(); /* See comment in __pte_alloc */ 3003 3004 spin_lock(&mm->page_table_lock); 3005 if (pgd_present(*pgd)) /* Another has populated it */ 3006 pud_free(mm, new); 3007 else 3008 pgd_populate(mm, pgd, new); 3009 spin_unlock(&mm->page_table_lock); 3010 return 0; 3011 } 3012 #endif /* __PAGETABLE_PUD_FOLDED */ 3013 3014 #ifndef __PAGETABLE_PMD_FOLDED 3015 /* 3016 * Allocate page middle directory. 3017 * We've already handled the fast-path in-line. 3018 */ 3019 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3020 { 3021 pmd_t *new = pmd_alloc_one(mm, address); 3022 if (!new) 3023 return -ENOMEM; 3024 3025 smp_wmb(); /* See comment in __pte_alloc */ 3026 3027 spin_lock(&mm->page_table_lock); 3028 #ifndef __ARCH_HAS_4LEVEL_HACK 3029 if (pud_present(*pud)) /* Another has populated it */ 3030 pmd_free(mm, new); 3031 else 3032 pud_populate(mm, pud, new); 3033 #else 3034 if (pgd_present(*pud)) /* Another has populated it */ 3035 pmd_free(mm, new); 3036 else 3037 pgd_populate(mm, pud, new); 3038 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3039 spin_unlock(&mm->page_table_lock); 3040 return 0; 3041 } 3042 #endif /* __PAGETABLE_PMD_FOLDED */ 3043 3044 int make_pages_present(unsigned long addr, unsigned long end) 3045 { 3046 int ret, len, write; 3047 struct vm_area_struct * vma; 3048 3049 vma = find_vma(current->mm, addr); 3050 if (!vma) 3051 return -ENOMEM; 3052 write = (vma->vm_flags & VM_WRITE) != 0; 3053 BUG_ON(addr >= end); 3054 BUG_ON(end > vma->vm_end); 3055 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE; 3056 ret = get_user_pages(current, current->mm, addr, 3057 len, write, 0, NULL, NULL); 3058 if (ret < 0) 3059 return ret; 3060 return ret == len ? 0 : -EFAULT; 3061 } 3062 3063 #if !defined(__HAVE_ARCH_GATE_AREA) 3064 3065 #if defined(AT_SYSINFO_EHDR) 3066 static struct vm_area_struct gate_vma; 3067 3068 static int __init gate_vma_init(void) 3069 { 3070 gate_vma.vm_mm = NULL; 3071 gate_vma.vm_start = FIXADDR_USER_START; 3072 gate_vma.vm_end = FIXADDR_USER_END; 3073 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3074 gate_vma.vm_page_prot = __P101; 3075 /* 3076 * Make sure the vDSO gets into every core dump. 3077 * Dumping its contents makes post-mortem fully interpretable later 3078 * without matching up the same kernel and hardware config to see 3079 * what PC values meant. 3080 */ 3081 gate_vma.vm_flags |= VM_ALWAYSDUMP; 3082 return 0; 3083 } 3084 __initcall(gate_vma_init); 3085 #endif 3086 3087 struct vm_area_struct *get_gate_vma(struct task_struct *tsk) 3088 { 3089 #ifdef AT_SYSINFO_EHDR 3090 return &gate_vma; 3091 #else 3092 return NULL; 3093 #endif 3094 } 3095 3096 int in_gate_area_no_task(unsigned long addr) 3097 { 3098 #ifdef AT_SYSINFO_EHDR 3099 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3100 return 1; 3101 #endif 3102 return 0; 3103 } 3104 3105 #endif /* __HAVE_ARCH_GATE_AREA */ 3106 3107 static int follow_pte(struct mm_struct *mm, unsigned long address, 3108 pte_t **ptepp, spinlock_t **ptlp) 3109 { 3110 pgd_t *pgd; 3111 pud_t *pud; 3112 pmd_t *pmd; 3113 pte_t *ptep; 3114 3115 pgd = pgd_offset(mm, address); 3116 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3117 goto out; 3118 3119 pud = pud_offset(pgd, address); 3120 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3121 goto out; 3122 3123 pmd = pmd_offset(pud, address); 3124 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3125 goto out; 3126 3127 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3128 if (pmd_huge(*pmd)) 3129 goto out; 3130 3131 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3132 if (!ptep) 3133 goto out; 3134 if (!pte_present(*ptep)) 3135 goto unlock; 3136 *ptepp = ptep; 3137 return 0; 3138 unlock: 3139 pte_unmap_unlock(ptep, *ptlp); 3140 out: 3141 return -EINVAL; 3142 } 3143 3144 /** 3145 * follow_pfn - look up PFN at a user virtual address 3146 * @vma: memory mapping 3147 * @address: user virtual address 3148 * @pfn: location to store found PFN 3149 * 3150 * Only IO mappings and raw PFN mappings are allowed. 3151 * 3152 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3153 */ 3154 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3155 unsigned long *pfn) 3156 { 3157 int ret = -EINVAL; 3158 spinlock_t *ptl; 3159 pte_t *ptep; 3160 3161 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3162 return ret; 3163 3164 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3165 if (ret) 3166 return ret; 3167 *pfn = pte_pfn(*ptep); 3168 pte_unmap_unlock(ptep, ptl); 3169 return 0; 3170 } 3171 EXPORT_SYMBOL(follow_pfn); 3172 3173 #ifdef CONFIG_HAVE_IOREMAP_PROT 3174 int follow_phys(struct vm_area_struct *vma, 3175 unsigned long address, unsigned int flags, 3176 unsigned long *prot, resource_size_t *phys) 3177 { 3178 int ret = -EINVAL; 3179 pte_t *ptep, pte; 3180 spinlock_t *ptl; 3181 3182 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3183 goto out; 3184 3185 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 3186 goto out; 3187 pte = *ptep; 3188 3189 if ((flags & FOLL_WRITE) && !pte_write(pte)) 3190 goto unlock; 3191 3192 *prot = pgprot_val(pte_pgprot(pte)); 3193 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 3194 3195 ret = 0; 3196 unlock: 3197 pte_unmap_unlock(ptep, ptl); 3198 out: 3199 return ret; 3200 } 3201 3202 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 3203 void *buf, int len, int write) 3204 { 3205 resource_size_t phys_addr; 3206 unsigned long prot = 0; 3207 void __iomem *maddr; 3208 int offset = addr & (PAGE_SIZE-1); 3209 3210 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 3211 return -EINVAL; 3212 3213 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 3214 if (write) 3215 memcpy_toio(maddr + offset, buf, len); 3216 else 3217 memcpy_fromio(buf, maddr + offset, len); 3218 iounmap(maddr); 3219 3220 return len; 3221 } 3222 #endif 3223 3224 /* 3225 * Access another process' address space. 3226 * Source/target buffer must be kernel space, 3227 * Do not walk the page table directly, use get_user_pages 3228 */ 3229 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write) 3230 { 3231 struct mm_struct *mm; 3232 struct vm_area_struct *vma; 3233 void *old_buf = buf; 3234 3235 mm = get_task_mm(tsk); 3236 if (!mm) 3237 return 0; 3238 3239 down_read(&mm->mmap_sem); 3240 /* ignore errors, just check how much was successfully transferred */ 3241 while (len) { 3242 int bytes, ret, offset; 3243 void *maddr; 3244 struct page *page = NULL; 3245 3246 ret = get_user_pages(tsk, mm, addr, 1, 3247 write, 1, &page, &vma); 3248 if (ret <= 0) { 3249 /* 3250 * Check if this is a VM_IO | VM_PFNMAP VMA, which 3251 * we can access using slightly different code. 3252 */ 3253 #ifdef CONFIG_HAVE_IOREMAP_PROT 3254 vma = find_vma(mm, addr); 3255 if (!vma) 3256 break; 3257 if (vma->vm_ops && vma->vm_ops->access) 3258 ret = vma->vm_ops->access(vma, addr, buf, 3259 len, write); 3260 if (ret <= 0) 3261 #endif 3262 break; 3263 bytes = ret; 3264 } else { 3265 bytes = len; 3266 offset = addr & (PAGE_SIZE-1); 3267 if (bytes > PAGE_SIZE-offset) 3268 bytes = PAGE_SIZE-offset; 3269 3270 maddr = kmap(page); 3271 if (write) { 3272 copy_to_user_page(vma, page, addr, 3273 maddr + offset, buf, bytes); 3274 set_page_dirty_lock(page); 3275 } else { 3276 copy_from_user_page(vma, page, addr, 3277 buf, maddr + offset, bytes); 3278 } 3279 kunmap(page); 3280 page_cache_release(page); 3281 } 3282 len -= bytes; 3283 buf += bytes; 3284 addr += bytes; 3285 } 3286 up_read(&mm->mmap_sem); 3287 mmput(mm); 3288 3289 return buf - old_buf; 3290 } 3291 3292 /* 3293 * Print the name of a VMA. 3294 */ 3295 void print_vma_addr(char *prefix, unsigned long ip) 3296 { 3297 struct mm_struct *mm = current->mm; 3298 struct vm_area_struct *vma; 3299 3300 /* 3301 * Do not print if we are in atomic 3302 * contexts (in exception stacks, etc.): 3303 */ 3304 if (preempt_count()) 3305 return; 3306 3307 down_read(&mm->mmap_sem); 3308 vma = find_vma(mm, ip); 3309 if (vma && vma->vm_file) { 3310 struct file *f = vma->vm_file; 3311 char *buf = (char *)__get_free_page(GFP_KERNEL); 3312 if (buf) { 3313 char *p, *s; 3314 3315 p = d_path(&f->f_path, buf, PAGE_SIZE); 3316 if (IS_ERR(p)) 3317 p = "?"; 3318 s = strrchr(p, '/'); 3319 if (s) 3320 p = s+1; 3321 printk("%s%s[%lx+%lx]", prefix, p, 3322 vma->vm_start, 3323 vma->vm_end - vma->vm_start); 3324 free_page((unsigned long)buf); 3325 } 3326 } 3327 up_read(¤t->mm->mmap_sem); 3328 } 3329 3330 #ifdef CONFIG_PROVE_LOCKING 3331 void might_fault(void) 3332 { 3333 /* 3334 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 3335 * holding the mmap_sem, this is safe because kernel memory doesn't 3336 * get paged out, therefore we'll never actually fault, and the 3337 * below annotations will generate false positives. 3338 */ 3339 if (segment_eq(get_fs(), KERNEL_DS)) 3340 return; 3341 3342 might_sleep(); 3343 /* 3344 * it would be nicer only to annotate paths which are not under 3345 * pagefault_disable, however that requires a larger audit and 3346 * providing helpers like get_user_atomic. 3347 */ 3348 if (!in_atomic() && current->mm) 3349 might_lock_read(¤t->mm->mmap_sem); 3350 } 3351 EXPORT_SYMBOL(might_fault); 3352 #endif 3353