xref: /openbmc/linux/mm/memory.c (revision 174cd4b1)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/sched/mm.h>
44 #include <linux/sched/coredump.h>
45 #include <linux/sched/numa_balancing.h>
46 #include <linux/hugetlb.h>
47 #include <linux/mman.h>
48 #include <linux/swap.h>
49 #include <linux/highmem.h>
50 #include <linux/pagemap.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/export.h>
54 #include <linux/delayacct.h>
55 #include <linux/init.h>
56 #include <linux/pfn_t.h>
57 #include <linux/writeback.h>
58 #include <linux/memcontrol.h>
59 #include <linux/mmu_notifier.h>
60 #include <linux/kallsyms.h>
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
63 #include <linux/gfp.h>
64 #include <linux/migrate.h>
65 #include <linux/string.h>
66 #include <linux/dma-debug.h>
67 #include <linux/debugfs.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/dax.h>
70 
71 #include <asm/io.h>
72 #include <asm/mmu_context.h>
73 #include <asm/pgalloc.h>
74 #include <linux/uaccess.h>
75 #include <asm/tlb.h>
76 #include <asm/tlbflush.h>
77 #include <asm/pgtable.h>
78 
79 #include "internal.h"
80 
81 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
82 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
83 #endif
84 
85 #ifndef CONFIG_NEED_MULTIPLE_NODES
86 /* use the per-pgdat data instead for discontigmem - mbligh */
87 unsigned long max_mapnr;
88 EXPORT_SYMBOL(max_mapnr);
89 
90 struct page *mem_map;
91 EXPORT_SYMBOL(mem_map);
92 #endif
93 
94 /*
95  * A number of key systems in x86 including ioremap() rely on the assumption
96  * that high_memory defines the upper bound on direct map memory, then end
97  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
98  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
99  * and ZONE_HIGHMEM.
100  */
101 void *high_memory;
102 EXPORT_SYMBOL(high_memory);
103 
104 /*
105  * Randomize the address space (stacks, mmaps, brk, etc.).
106  *
107  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
108  *   as ancient (libc5 based) binaries can segfault. )
109  */
110 int randomize_va_space __read_mostly =
111 #ifdef CONFIG_COMPAT_BRK
112 					1;
113 #else
114 					2;
115 #endif
116 
117 static int __init disable_randmaps(char *s)
118 {
119 	randomize_va_space = 0;
120 	return 1;
121 }
122 __setup("norandmaps", disable_randmaps);
123 
124 unsigned long zero_pfn __read_mostly;
125 EXPORT_SYMBOL(zero_pfn);
126 
127 unsigned long highest_memmap_pfn __read_mostly;
128 
129 /*
130  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
131  */
132 static int __init init_zero_pfn(void)
133 {
134 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
135 	return 0;
136 }
137 core_initcall(init_zero_pfn);
138 
139 
140 #if defined(SPLIT_RSS_COUNTING)
141 
142 void sync_mm_rss(struct mm_struct *mm)
143 {
144 	int i;
145 
146 	for (i = 0; i < NR_MM_COUNTERS; i++) {
147 		if (current->rss_stat.count[i]) {
148 			add_mm_counter(mm, i, current->rss_stat.count[i]);
149 			current->rss_stat.count[i] = 0;
150 		}
151 	}
152 	current->rss_stat.events = 0;
153 }
154 
155 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
156 {
157 	struct task_struct *task = current;
158 
159 	if (likely(task->mm == mm))
160 		task->rss_stat.count[member] += val;
161 	else
162 		add_mm_counter(mm, member, val);
163 }
164 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
165 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
166 
167 /* sync counter once per 64 page faults */
168 #define TASK_RSS_EVENTS_THRESH	(64)
169 static void check_sync_rss_stat(struct task_struct *task)
170 {
171 	if (unlikely(task != current))
172 		return;
173 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
174 		sync_mm_rss(task->mm);
175 }
176 #else /* SPLIT_RSS_COUNTING */
177 
178 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
179 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
180 
181 static void check_sync_rss_stat(struct task_struct *task)
182 {
183 }
184 
185 #endif /* SPLIT_RSS_COUNTING */
186 
187 #ifdef HAVE_GENERIC_MMU_GATHER
188 
189 static bool tlb_next_batch(struct mmu_gather *tlb)
190 {
191 	struct mmu_gather_batch *batch;
192 
193 	batch = tlb->active;
194 	if (batch->next) {
195 		tlb->active = batch->next;
196 		return true;
197 	}
198 
199 	if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
200 		return false;
201 
202 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
203 	if (!batch)
204 		return false;
205 
206 	tlb->batch_count++;
207 	batch->next = NULL;
208 	batch->nr   = 0;
209 	batch->max  = MAX_GATHER_BATCH;
210 
211 	tlb->active->next = batch;
212 	tlb->active = batch;
213 
214 	return true;
215 }
216 
217 /* tlb_gather_mmu
218  *	Called to initialize an (on-stack) mmu_gather structure for page-table
219  *	tear-down from @mm. The @fullmm argument is used when @mm is without
220  *	users and we're going to destroy the full address space (exit/execve).
221  */
222 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
223 {
224 	tlb->mm = mm;
225 
226 	/* Is it from 0 to ~0? */
227 	tlb->fullmm     = !(start | (end+1));
228 	tlb->need_flush_all = 0;
229 	tlb->local.next = NULL;
230 	tlb->local.nr   = 0;
231 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
232 	tlb->active     = &tlb->local;
233 	tlb->batch_count = 0;
234 
235 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
236 	tlb->batch = NULL;
237 #endif
238 	tlb->page_size = 0;
239 
240 	__tlb_reset_range(tlb);
241 }
242 
243 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
244 {
245 	if (!tlb->end)
246 		return;
247 
248 	tlb_flush(tlb);
249 	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
250 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
251 	tlb_table_flush(tlb);
252 #endif
253 	__tlb_reset_range(tlb);
254 }
255 
256 static void tlb_flush_mmu_free(struct mmu_gather *tlb)
257 {
258 	struct mmu_gather_batch *batch;
259 
260 	for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
261 		free_pages_and_swap_cache(batch->pages, batch->nr);
262 		batch->nr = 0;
263 	}
264 	tlb->active = &tlb->local;
265 }
266 
267 void tlb_flush_mmu(struct mmu_gather *tlb)
268 {
269 	tlb_flush_mmu_tlbonly(tlb);
270 	tlb_flush_mmu_free(tlb);
271 }
272 
273 /* tlb_finish_mmu
274  *	Called at the end of the shootdown operation to free up any resources
275  *	that were required.
276  */
277 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
278 {
279 	struct mmu_gather_batch *batch, *next;
280 
281 	tlb_flush_mmu(tlb);
282 
283 	/* keep the page table cache within bounds */
284 	check_pgt_cache();
285 
286 	for (batch = tlb->local.next; batch; batch = next) {
287 		next = batch->next;
288 		free_pages((unsigned long)batch, 0);
289 	}
290 	tlb->local.next = NULL;
291 }
292 
293 /* __tlb_remove_page
294  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
295  *	handling the additional races in SMP caused by other CPUs caching valid
296  *	mappings in their TLBs. Returns the number of free page slots left.
297  *	When out of page slots we must call tlb_flush_mmu().
298  *returns true if the caller should flush.
299  */
300 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
301 {
302 	struct mmu_gather_batch *batch;
303 
304 	VM_BUG_ON(!tlb->end);
305 	VM_WARN_ON(tlb->page_size != page_size);
306 
307 	batch = tlb->active;
308 	/*
309 	 * Add the page and check if we are full. If so
310 	 * force a flush.
311 	 */
312 	batch->pages[batch->nr++] = page;
313 	if (batch->nr == batch->max) {
314 		if (!tlb_next_batch(tlb))
315 			return true;
316 		batch = tlb->active;
317 	}
318 	VM_BUG_ON_PAGE(batch->nr > batch->max, page);
319 
320 	return false;
321 }
322 
323 #endif /* HAVE_GENERIC_MMU_GATHER */
324 
325 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
326 
327 /*
328  * See the comment near struct mmu_table_batch.
329  */
330 
331 static void tlb_remove_table_smp_sync(void *arg)
332 {
333 	/* Simply deliver the interrupt */
334 }
335 
336 static void tlb_remove_table_one(void *table)
337 {
338 	/*
339 	 * This isn't an RCU grace period and hence the page-tables cannot be
340 	 * assumed to be actually RCU-freed.
341 	 *
342 	 * It is however sufficient for software page-table walkers that rely on
343 	 * IRQ disabling. See the comment near struct mmu_table_batch.
344 	 */
345 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
346 	__tlb_remove_table(table);
347 }
348 
349 static void tlb_remove_table_rcu(struct rcu_head *head)
350 {
351 	struct mmu_table_batch *batch;
352 	int i;
353 
354 	batch = container_of(head, struct mmu_table_batch, rcu);
355 
356 	for (i = 0; i < batch->nr; i++)
357 		__tlb_remove_table(batch->tables[i]);
358 
359 	free_page((unsigned long)batch);
360 }
361 
362 void tlb_table_flush(struct mmu_gather *tlb)
363 {
364 	struct mmu_table_batch **batch = &tlb->batch;
365 
366 	if (*batch) {
367 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
368 		*batch = NULL;
369 	}
370 }
371 
372 void tlb_remove_table(struct mmu_gather *tlb, void *table)
373 {
374 	struct mmu_table_batch **batch = &tlb->batch;
375 
376 	/*
377 	 * When there's less then two users of this mm there cannot be a
378 	 * concurrent page-table walk.
379 	 */
380 	if (atomic_read(&tlb->mm->mm_users) < 2) {
381 		__tlb_remove_table(table);
382 		return;
383 	}
384 
385 	if (*batch == NULL) {
386 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
387 		if (*batch == NULL) {
388 			tlb_remove_table_one(table);
389 			return;
390 		}
391 		(*batch)->nr = 0;
392 	}
393 	(*batch)->tables[(*batch)->nr++] = table;
394 	if ((*batch)->nr == MAX_TABLE_BATCH)
395 		tlb_table_flush(tlb);
396 }
397 
398 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
399 
400 /*
401  * Note: this doesn't free the actual pages themselves. That
402  * has been handled earlier when unmapping all the memory regions.
403  */
404 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
405 			   unsigned long addr)
406 {
407 	pgtable_t token = pmd_pgtable(*pmd);
408 	pmd_clear(pmd);
409 	pte_free_tlb(tlb, token, addr);
410 	atomic_long_dec(&tlb->mm->nr_ptes);
411 }
412 
413 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
414 				unsigned long addr, unsigned long end,
415 				unsigned long floor, unsigned long ceiling)
416 {
417 	pmd_t *pmd;
418 	unsigned long next;
419 	unsigned long start;
420 
421 	start = addr;
422 	pmd = pmd_offset(pud, addr);
423 	do {
424 		next = pmd_addr_end(addr, end);
425 		if (pmd_none_or_clear_bad(pmd))
426 			continue;
427 		free_pte_range(tlb, pmd, addr);
428 	} while (pmd++, addr = next, addr != end);
429 
430 	start &= PUD_MASK;
431 	if (start < floor)
432 		return;
433 	if (ceiling) {
434 		ceiling &= PUD_MASK;
435 		if (!ceiling)
436 			return;
437 	}
438 	if (end - 1 > ceiling - 1)
439 		return;
440 
441 	pmd = pmd_offset(pud, start);
442 	pud_clear(pud);
443 	pmd_free_tlb(tlb, pmd, start);
444 	mm_dec_nr_pmds(tlb->mm);
445 }
446 
447 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
448 				unsigned long addr, unsigned long end,
449 				unsigned long floor, unsigned long ceiling)
450 {
451 	pud_t *pud;
452 	unsigned long next;
453 	unsigned long start;
454 
455 	start = addr;
456 	pud = pud_offset(pgd, addr);
457 	do {
458 		next = pud_addr_end(addr, end);
459 		if (pud_none_or_clear_bad(pud))
460 			continue;
461 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
462 	} while (pud++, addr = next, addr != end);
463 
464 	start &= PGDIR_MASK;
465 	if (start < floor)
466 		return;
467 	if (ceiling) {
468 		ceiling &= PGDIR_MASK;
469 		if (!ceiling)
470 			return;
471 	}
472 	if (end - 1 > ceiling - 1)
473 		return;
474 
475 	pud = pud_offset(pgd, start);
476 	pgd_clear(pgd);
477 	pud_free_tlb(tlb, pud, start);
478 }
479 
480 /*
481  * This function frees user-level page tables of a process.
482  */
483 void free_pgd_range(struct mmu_gather *tlb,
484 			unsigned long addr, unsigned long end,
485 			unsigned long floor, unsigned long ceiling)
486 {
487 	pgd_t *pgd;
488 	unsigned long next;
489 
490 	/*
491 	 * The next few lines have given us lots of grief...
492 	 *
493 	 * Why are we testing PMD* at this top level?  Because often
494 	 * there will be no work to do at all, and we'd prefer not to
495 	 * go all the way down to the bottom just to discover that.
496 	 *
497 	 * Why all these "- 1"s?  Because 0 represents both the bottom
498 	 * of the address space and the top of it (using -1 for the
499 	 * top wouldn't help much: the masks would do the wrong thing).
500 	 * The rule is that addr 0 and floor 0 refer to the bottom of
501 	 * the address space, but end 0 and ceiling 0 refer to the top
502 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
503 	 * that end 0 case should be mythical).
504 	 *
505 	 * Wherever addr is brought up or ceiling brought down, we must
506 	 * be careful to reject "the opposite 0" before it confuses the
507 	 * subsequent tests.  But what about where end is brought down
508 	 * by PMD_SIZE below? no, end can't go down to 0 there.
509 	 *
510 	 * Whereas we round start (addr) and ceiling down, by different
511 	 * masks at different levels, in order to test whether a table
512 	 * now has no other vmas using it, so can be freed, we don't
513 	 * bother to round floor or end up - the tests don't need that.
514 	 */
515 
516 	addr &= PMD_MASK;
517 	if (addr < floor) {
518 		addr += PMD_SIZE;
519 		if (!addr)
520 			return;
521 	}
522 	if (ceiling) {
523 		ceiling &= PMD_MASK;
524 		if (!ceiling)
525 			return;
526 	}
527 	if (end - 1 > ceiling - 1)
528 		end -= PMD_SIZE;
529 	if (addr > end - 1)
530 		return;
531 	/*
532 	 * We add page table cache pages with PAGE_SIZE,
533 	 * (see pte_free_tlb()), flush the tlb if we need
534 	 */
535 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
536 	pgd = pgd_offset(tlb->mm, addr);
537 	do {
538 		next = pgd_addr_end(addr, end);
539 		if (pgd_none_or_clear_bad(pgd))
540 			continue;
541 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
542 	} while (pgd++, addr = next, addr != end);
543 }
544 
545 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
546 		unsigned long floor, unsigned long ceiling)
547 {
548 	while (vma) {
549 		struct vm_area_struct *next = vma->vm_next;
550 		unsigned long addr = vma->vm_start;
551 
552 		/*
553 		 * Hide vma from rmap and truncate_pagecache before freeing
554 		 * pgtables
555 		 */
556 		unlink_anon_vmas(vma);
557 		unlink_file_vma(vma);
558 
559 		if (is_vm_hugetlb_page(vma)) {
560 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
561 				floor, next ? next->vm_start : ceiling);
562 		} else {
563 			/*
564 			 * Optimization: gather nearby vmas into one call down
565 			 */
566 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
567 			       && !is_vm_hugetlb_page(next)) {
568 				vma = next;
569 				next = vma->vm_next;
570 				unlink_anon_vmas(vma);
571 				unlink_file_vma(vma);
572 			}
573 			free_pgd_range(tlb, addr, vma->vm_end,
574 				floor, next ? next->vm_start : ceiling);
575 		}
576 		vma = next;
577 	}
578 }
579 
580 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
581 {
582 	spinlock_t *ptl;
583 	pgtable_t new = pte_alloc_one(mm, address);
584 	if (!new)
585 		return -ENOMEM;
586 
587 	/*
588 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
589 	 * visible before the pte is made visible to other CPUs by being
590 	 * put into page tables.
591 	 *
592 	 * The other side of the story is the pointer chasing in the page
593 	 * table walking code (when walking the page table without locking;
594 	 * ie. most of the time). Fortunately, these data accesses consist
595 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
596 	 * being the notable exception) will already guarantee loads are
597 	 * seen in-order. See the alpha page table accessors for the
598 	 * smp_read_barrier_depends() barriers in page table walking code.
599 	 */
600 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
601 
602 	ptl = pmd_lock(mm, pmd);
603 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
604 		atomic_long_inc(&mm->nr_ptes);
605 		pmd_populate(mm, pmd, new);
606 		new = NULL;
607 	}
608 	spin_unlock(ptl);
609 	if (new)
610 		pte_free(mm, new);
611 	return 0;
612 }
613 
614 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
615 {
616 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
617 	if (!new)
618 		return -ENOMEM;
619 
620 	smp_wmb(); /* See comment in __pte_alloc */
621 
622 	spin_lock(&init_mm.page_table_lock);
623 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
624 		pmd_populate_kernel(&init_mm, pmd, new);
625 		new = NULL;
626 	}
627 	spin_unlock(&init_mm.page_table_lock);
628 	if (new)
629 		pte_free_kernel(&init_mm, new);
630 	return 0;
631 }
632 
633 static inline void init_rss_vec(int *rss)
634 {
635 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
636 }
637 
638 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
639 {
640 	int i;
641 
642 	if (current->mm == mm)
643 		sync_mm_rss(mm);
644 	for (i = 0; i < NR_MM_COUNTERS; i++)
645 		if (rss[i])
646 			add_mm_counter(mm, i, rss[i]);
647 }
648 
649 /*
650  * This function is called to print an error when a bad pte
651  * is found. For example, we might have a PFN-mapped pte in
652  * a region that doesn't allow it.
653  *
654  * The calling function must still handle the error.
655  */
656 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
657 			  pte_t pte, struct page *page)
658 {
659 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
660 	pud_t *pud = pud_offset(pgd, addr);
661 	pmd_t *pmd = pmd_offset(pud, addr);
662 	struct address_space *mapping;
663 	pgoff_t index;
664 	static unsigned long resume;
665 	static unsigned long nr_shown;
666 	static unsigned long nr_unshown;
667 
668 	/*
669 	 * Allow a burst of 60 reports, then keep quiet for that minute;
670 	 * or allow a steady drip of one report per second.
671 	 */
672 	if (nr_shown == 60) {
673 		if (time_before(jiffies, resume)) {
674 			nr_unshown++;
675 			return;
676 		}
677 		if (nr_unshown) {
678 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
679 				 nr_unshown);
680 			nr_unshown = 0;
681 		}
682 		nr_shown = 0;
683 	}
684 	if (nr_shown++ == 0)
685 		resume = jiffies + 60 * HZ;
686 
687 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
688 	index = linear_page_index(vma, addr);
689 
690 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
691 		 current->comm,
692 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
693 	if (page)
694 		dump_page(page, "bad pte");
695 	pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
696 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
697 	/*
698 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
699 	 */
700 	pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
701 		 vma->vm_file,
702 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
703 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
704 		 mapping ? mapping->a_ops->readpage : NULL);
705 	dump_stack();
706 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
707 }
708 
709 /*
710  * vm_normal_page -- This function gets the "struct page" associated with a pte.
711  *
712  * "Special" mappings do not wish to be associated with a "struct page" (either
713  * it doesn't exist, or it exists but they don't want to touch it). In this
714  * case, NULL is returned here. "Normal" mappings do have a struct page.
715  *
716  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
717  * pte bit, in which case this function is trivial. Secondly, an architecture
718  * may not have a spare pte bit, which requires a more complicated scheme,
719  * described below.
720  *
721  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
722  * special mapping (even if there are underlying and valid "struct pages").
723  * COWed pages of a VM_PFNMAP are always normal.
724  *
725  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
726  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
727  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
728  * mapping will always honor the rule
729  *
730  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
731  *
732  * And for normal mappings this is false.
733  *
734  * This restricts such mappings to be a linear translation from virtual address
735  * to pfn. To get around this restriction, we allow arbitrary mappings so long
736  * as the vma is not a COW mapping; in that case, we know that all ptes are
737  * special (because none can have been COWed).
738  *
739  *
740  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
741  *
742  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
743  * page" backing, however the difference is that _all_ pages with a struct
744  * page (that is, those where pfn_valid is true) are refcounted and considered
745  * normal pages by the VM. The disadvantage is that pages are refcounted
746  * (which can be slower and simply not an option for some PFNMAP users). The
747  * advantage is that we don't have to follow the strict linearity rule of
748  * PFNMAP mappings in order to support COWable mappings.
749  *
750  */
751 #ifdef __HAVE_ARCH_PTE_SPECIAL
752 # define HAVE_PTE_SPECIAL 1
753 #else
754 # define HAVE_PTE_SPECIAL 0
755 #endif
756 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
757 				pte_t pte)
758 {
759 	unsigned long pfn = pte_pfn(pte);
760 
761 	if (HAVE_PTE_SPECIAL) {
762 		if (likely(!pte_special(pte)))
763 			goto check_pfn;
764 		if (vma->vm_ops && vma->vm_ops->find_special_page)
765 			return vma->vm_ops->find_special_page(vma, addr);
766 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
767 			return NULL;
768 		if (!is_zero_pfn(pfn))
769 			print_bad_pte(vma, addr, pte, NULL);
770 		return NULL;
771 	}
772 
773 	/* !HAVE_PTE_SPECIAL case follows: */
774 
775 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
776 		if (vma->vm_flags & VM_MIXEDMAP) {
777 			if (!pfn_valid(pfn))
778 				return NULL;
779 			goto out;
780 		} else {
781 			unsigned long off;
782 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
783 			if (pfn == vma->vm_pgoff + off)
784 				return NULL;
785 			if (!is_cow_mapping(vma->vm_flags))
786 				return NULL;
787 		}
788 	}
789 
790 	if (is_zero_pfn(pfn))
791 		return NULL;
792 check_pfn:
793 	if (unlikely(pfn > highest_memmap_pfn)) {
794 		print_bad_pte(vma, addr, pte, NULL);
795 		return NULL;
796 	}
797 
798 	/*
799 	 * NOTE! We still have PageReserved() pages in the page tables.
800 	 * eg. VDSO mappings can cause them to exist.
801 	 */
802 out:
803 	return pfn_to_page(pfn);
804 }
805 
806 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
807 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
808 				pmd_t pmd)
809 {
810 	unsigned long pfn = pmd_pfn(pmd);
811 
812 	/*
813 	 * There is no pmd_special() but there may be special pmds, e.g.
814 	 * in a direct-access (dax) mapping, so let's just replicate the
815 	 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
816 	 */
817 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
818 		if (vma->vm_flags & VM_MIXEDMAP) {
819 			if (!pfn_valid(pfn))
820 				return NULL;
821 			goto out;
822 		} else {
823 			unsigned long off;
824 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
825 			if (pfn == vma->vm_pgoff + off)
826 				return NULL;
827 			if (!is_cow_mapping(vma->vm_flags))
828 				return NULL;
829 		}
830 	}
831 
832 	if (is_zero_pfn(pfn))
833 		return NULL;
834 	if (unlikely(pfn > highest_memmap_pfn))
835 		return NULL;
836 
837 	/*
838 	 * NOTE! We still have PageReserved() pages in the page tables.
839 	 * eg. VDSO mappings can cause them to exist.
840 	 */
841 out:
842 	return pfn_to_page(pfn);
843 }
844 #endif
845 
846 /*
847  * copy one vm_area from one task to the other. Assumes the page tables
848  * already present in the new task to be cleared in the whole range
849  * covered by this vma.
850  */
851 
852 static inline unsigned long
853 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
854 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
855 		unsigned long addr, int *rss)
856 {
857 	unsigned long vm_flags = vma->vm_flags;
858 	pte_t pte = *src_pte;
859 	struct page *page;
860 
861 	/* pte contains position in swap or file, so copy. */
862 	if (unlikely(!pte_present(pte))) {
863 		swp_entry_t entry = pte_to_swp_entry(pte);
864 
865 		if (likely(!non_swap_entry(entry))) {
866 			if (swap_duplicate(entry) < 0)
867 				return entry.val;
868 
869 			/* make sure dst_mm is on swapoff's mmlist. */
870 			if (unlikely(list_empty(&dst_mm->mmlist))) {
871 				spin_lock(&mmlist_lock);
872 				if (list_empty(&dst_mm->mmlist))
873 					list_add(&dst_mm->mmlist,
874 							&src_mm->mmlist);
875 				spin_unlock(&mmlist_lock);
876 			}
877 			rss[MM_SWAPENTS]++;
878 		} else if (is_migration_entry(entry)) {
879 			page = migration_entry_to_page(entry);
880 
881 			rss[mm_counter(page)]++;
882 
883 			if (is_write_migration_entry(entry) &&
884 					is_cow_mapping(vm_flags)) {
885 				/*
886 				 * COW mappings require pages in both
887 				 * parent and child to be set to read.
888 				 */
889 				make_migration_entry_read(&entry);
890 				pte = swp_entry_to_pte(entry);
891 				if (pte_swp_soft_dirty(*src_pte))
892 					pte = pte_swp_mksoft_dirty(pte);
893 				set_pte_at(src_mm, addr, src_pte, pte);
894 			}
895 		}
896 		goto out_set_pte;
897 	}
898 
899 	/*
900 	 * If it's a COW mapping, write protect it both
901 	 * in the parent and the child
902 	 */
903 	if (is_cow_mapping(vm_flags)) {
904 		ptep_set_wrprotect(src_mm, addr, src_pte);
905 		pte = pte_wrprotect(pte);
906 	}
907 
908 	/*
909 	 * If it's a shared mapping, mark it clean in
910 	 * the child
911 	 */
912 	if (vm_flags & VM_SHARED)
913 		pte = pte_mkclean(pte);
914 	pte = pte_mkold(pte);
915 
916 	page = vm_normal_page(vma, addr, pte);
917 	if (page) {
918 		get_page(page);
919 		page_dup_rmap(page, false);
920 		rss[mm_counter(page)]++;
921 	}
922 
923 out_set_pte:
924 	set_pte_at(dst_mm, addr, dst_pte, pte);
925 	return 0;
926 }
927 
928 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
929 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
930 		   unsigned long addr, unsigned long end)
931 {
932 	pte_t *orig_src_pte, *orig_dst_pte;
933 	pte_t *src_pte, *dst_pte;
934 	spinlock_t *src_ptl, *dst_ptl;
935 	int progress = 0;
936 	int rss[NR_MM_COUNTERS];
937 	swp_entry_t entry = (swp_entry_t){0};
938 
939 again:
940 	init_rss_vec(rss);
941 
942 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
943 	if (!dst_pte)
944 		return -ENOMEM;
945 	src_pte = pte_offset_map(src_pmd, addr);
946 	src_ptl = pte_lockptr(src_mm, src_pmd);
947 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
948 	orig_src_pte = src_pte;
949 	orig_dst_pte = dst_pte;
950 	arch_enter_lazy_mmu_mode();
951 
952 	do {
953 		/*
954 		 * We are holding two locks at this point - either of them
955 		 * could generate latencies in another task on another CPU.
956 		 */
957 		if (progress >= 32) {
958 			progress = 0;
959 			if (need_resched() ||
960 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
961 				break;
962 		}
963 		if (pte_none(*src_pte)) {
964 			progress++;
965 			continue;
966 		}
967 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
968 							vma, addr, rss);
969 		if (entry.val)
970 			break;
971 		progress += 8;
972 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
973 
974 	arch_leave_lazy_mmu_mode();
975 	spin_unlock(src_ptl);
976 	pte_unmap(orig_src_pte);
977 	add_mm_rss_vec(dst_mm, rss);
978 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
979 	cond_resched();
980 
981 	if (entry.val) {
982 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
983 			return -ENOMEM;
984 		progress = 0;
985 	}
986 	if (addr != end)
987 		goto again;
988 	return 0;
989 }
990 
991 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
992 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
993 		unsigned long addr, unsigned long end)
994 {
995 	pmd_t *src_pmd, *dst_pmd;
996 	unsigned long next;
997 
998 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
999 	if (!dst_pmd)
1000 		return -ENOMEM;
1001 	src_pmd = pmd_offset(src_pud, addr);
1002 	do {
1003 		next = pmd_addr_end(addr, end);
1004 		if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
1005 			int err;
1006 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1007 			err = copy_huge_pmd(dst_mm, src_mm,
1008 					    dst_pmd, src_pmd, addr, vma);
1009 			if (err == -ENOMEM)
1010 				return -ENOMEM;
1011 			if (!err)
1012 				continue;
1013 			/* fall through */
1014 		}
1015 		if (pmd_none_or_clear_bad(src_pmd))
1016 			continue;
1017 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1018 						vma, addr, next))
1019 			return -ENOMEM;
1020 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1021 	return 0;
1022 }
1023 
1024 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1025 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1026 		unsigned long addr, unsigned long end)
1027 {
1028 	pud_t *src_pud, *dst_pud;
1029 	unsigned long next;
1030 
1031 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1032 	if (!dst_pud)
1033 		return -ENOMEM;
1034 	src_pud = pud_offset(src_pgd, addr);
1035 	do {
1036 		next = pud_addr_end(addr, end);
1037 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1038 			int err;
1039 
1040 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1041 			err = copy_huge_pud(dst_mm, src_mm,
1042 					    dst_pud, src_pud, addr, vma);
1043 			if (err == -ENOMEM)
1044 				return -ENOMEM;
1045 			if (!err)
1046 				continue;
1047 			/* fall through */
1048 		}
1049 		if (pud_none_or_clear_bad(src_pud))
1050 			continue;
1051 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1052 						vma, addr, next))
1053 			return -ENOMEM;
1054 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1055 	return 0;
1056 }
1057 
1058 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1059 		struct vm_area_struct *vma)
1060 {
1061 	pgd_t *src_pgd, *dst_pgd;
1062 	unsigned long next;
1063 	unsigned long addr = vma->vm_start;
1064 	unsigned long end = vma->vm_end;
1065 	unsigned long mmun_start;	/* For mmu_notifiers */
1066 	unsigned long mmun_end;		/* For mmu_notifiers */
1067 	bool is_cow;
1068 	int ret;
1069 
1070 	/*
1071 	 * Don't copy ptes where a page fault will fill them correctly.
1072 	 * Fork becomes much lighter when there are big shared or private
1073 	 * readonly mappings. The tradeoff is that copy_page_range is more
1074 	 * efficient than faulting.
1075 	 */
1076 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1077 			!vma->anon_vma)
1078 		return 0;
1079 
1080 	if (is_vm_hugetlb_page(vma))
1081 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1082 
1083 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1084 		/*
1085 		 * We do not free on error cases below as remove_vma
1086 		 * gets called on error from higher level routine
1087 		 */
1088 		ret = track_pfn_copy(vma);
1089 		if (ret)
1090 			return ret;
1091 	}
1092 
1093 	/*
1094 	 * We need to invalidate the secondary MMU mappings only when
1095 	 * there could be a permission downgrade on the ptes of the
1096 	 * parent mm. And a permission downgrade will only happen if
1097 	 * is_cow_mapping() returns true.
1098 	 */
1099 	is_cow = is_cow_mapping(vma->vm_flags);
1100 	mmun_start = addr;
1101 	mmun_end   = end;
1102 	if (is_cow)
1103 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1104 						    mmun_end);
1105 
1106 	ret = 0;
1107 	dst_pgd = pgd_offset(dst_mm, addr);
1108 	src_pgd = pgd_offset(src_mm, addr);
1109 	do {
1110 		next = pgd_addr_end(addr, end);
1111 		if (pgd_none_or_clear_bad(src_pgd))
1112 			continue;
1113 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1114 					    vma, addr, next))) {
1115 			ret = -ENOMEM;
1116 			break;
1117 		}
1118 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1119 
1120 	if (is_cow)
1121 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1122 	return ret;
1123 }
1124 
1125 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1126 				struct vm_area_struct *vma, pmd_t *pmd,
1127 				unsigned long addr, unsigned long end,
1128 				struct zap_details *details)
1129 {
1130 	struct mm_struct *mm = tlb->mm;
1131 	int force_flush = 0;
1132 	int rss[NR_MM_COUNTERS];
1133 	spinlock_t *ptl;
1134 	pte_t *start_pte;
1135 	pte_t *pte;
1136 	swp_entry_t entry;
1137 
1138 	tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1139 again:
1140 	init_rss_vec(rss);
1141 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1142 	pte = start_pte;
1143 	arch_enter_lazy_mmu_mode();
1144 	do {
1145 		pte_t ptent = *pte;
1146 		if (pte_none(ptent))
1147 			continue;
1148 
1149 		if (pte_present(ptent)) {
1150 			struct page *page;
1151 
1152 			page = vm_normal_page(vma, addr, ptent);
1153 			if (unlikely(details) && page) {
1154 				/*
1155 				 * unmap_shared_mapping_pages() wants to
1156 				 * invalidate cache without truncating:
1157 				 * unmap shared but keep private pages.
1158 				 */
1159 				if (details->check_mapping &&
1160 				    details->check_mapping != page_rmapping(page))
1161 					continue;
1162 			}
1163 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1164 							tlb->fullmm);
1165 			tlb_remove_tlb_entry(tlb, pte, addr);
1166 			if (unlikely(!page))
1167 				continue;
1168 
1169 			if (!PageAnon(page)) {
1170 				if (pte_dirty(ptent)) {
1171 					force_flush = 1;
1172 					set_page_dirty(page);
1173 				}
1174 				if (pte_young(ptent) &&
1175 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1176 					mark_page_accessed(page);
1177 			}
1178 			rss[mm_counter(page)]--;
1179 			page_remove_rmap(page, false);
1180 			if (unlikely(page_mapcount(page) < 0))
1181 				print_bad_pte(vma, addr, ptent, page);
1182 			if (unlikely(__tlb_remove_page(tlb, page))) {
1183 				force_flush = 1;
1184 				addr += PAGE_SIZE;
1185 				break;
1186 			}
1187 			continue;
1188 		}
1189 		/* If details->check_mapping, we leave swap entries. */
1190 		if (unlikely(details))
1191 			continue;
1192 
1193 		entry = pte_to_swp_entry(ptent);
1194 		if (!non_swap_entry(entry))
1195 			rss[MM_SWAPENTS]--;
1196 		else if (is_migration_entry(entry)) {
1197 			struct page *page;
1198 
1199 			page = migration_entry_to_page(entry);
1200 			rss[mm_counter(page)]--;
1201 		}
1202 		if (unlikely(!free_swap_and_cache(entry)))
1203 			print_bad_pte(vma, addr, ptent, NULL);
1204 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1205 	} while (pte++, addr += PAGE_SIZE, addr != end);
1206 
1207 	add_mm_rss_vec(mm, rss);
1208 	arch_leave_lazy_mmu_mode();
1209 
1210 	/* Do the actual TLB flush before dropping ptl */
1211 	if (force_flush)
1212 		tlb_flush_mmu_tlbonly(tlb);
1213 	pte_unmap_unlock(start_pte, ptl);
1214 
1215 	/*
1216 	 * If we forced a TLB flush (either due to running out of
1217 	 * batch buffers or because we needed to flush dirty TLB
1218 	 * entries before releasing the ptl), free the batched
1219 	 * memory too. Restart if we didn't do everything.
1220 	 */
1221 	if (force_flush) {
1222 		force_flush = 0;
1223 		tlb_flush_mmu_free(tlb);
1224 		if (addr != end)
1225 			goto again;
1226 	}
1227 
1228 	return addr;
1229 }
1230 
1231 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1232 				struct vm_area_struct *vma, pud_t *pud,
1233 				unsigned long addr, unsigned long end,
1234 				struct zap_details *details)
1235 {
1236 	pmd_t *pmd;
1237 	unsigned long next;
1238 
1239 	pmd = pmd_offset(pud, addr);
1240 	do {
1241 		next = pmd_addr_end(addr, end);
1242 		if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1243 			if (next - addr != HPAGE_PMD_SIZE) {
1244 				VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1245 				    !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1246 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1247 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1248 				goto next;
1249 			/* fall through */
1250 		}
1251 		/*
1252 		 * Here there can be other concurrent MADV_DONTNEED or
1253 		 * trans huge page faults running, and if the pmd is
1254 		 * none or trans huge it can change under us. This is
1255 		 * because MADV_DONTNEED holds the mmap_sem in read
1256 		 * mode.
1257 		 */
1258 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1259 			goto next;
1260 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1261 next:
1262 		cond_resched();
1263 	} while (pmd++, addr = next, addr != end);
1264 
1265 	return addr;
1266 }
1267 
1268 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1269 				struct vm_area_struct *vma, pgd_t *pgd,
1270 				unsigned long addr, unsigned long end,
1271 				struct zap_details *details)
1272 {
1273 	pud_t *pud;
1274 	unsigned long next;
1275 
1276 	pud = pud_offset(pgd, addr);
1277 	do {
1278 		next = pud_addr_end(addr, end);
1279 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1280 			if (next - addr != HPAGE_PUD_SIZE) {
1281 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1282 				split_huge_pud(vma, pud, addr);
1283 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1284 				goto next;
1285 			/* fall through */
1286 		}
1287 		if (pud_none_or_clear_bad(pud))
1288 			continue;
1289 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1290 next:
1291 		cond_resched();
1292 	} while (pud++, addr = next, addr != end);
1293 
1294 	return addr;
1295 }
1296 
1297 void unmap_page_range(struct mmu_gather *tlb,
1298 			     struct vm_area_struct *vma,
1299 			     unsigned long addr, unsigned long end,
1300 			     struct zap_details *details)
1301 {
1302 	pgd_t *pgd;
1303 	unsigned long next;
1304 
1305 	BUG_ON(addr >= end);
1306 	tlb_start_vma(tlb, vma);
1307 	pgd = pgd_offset(vma->vm_mm, addr);
1308 	do {
1309 		next = pgd_addr_end(addr, end);
1310 		if (pgd_none_or_clear_bad(pgd))
1311 			continue;
1312 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1313 	} while (pgd++, addr = next, addr != end);
1314 	tlb_end_vma(tlb, vma);
1315 }
1316 
1317 
1318 static void unmap_single_vma(struct mmu_gather *tlb,
1319 		struct vm_area_struct *vma, unsigned long start_addr,
1320 		unsigned long end_addr,
1321 		struct zap_details *details)
1322 {
1323 	unsigned long start = max(vma->vm_start, start_addr);
1324 	unsigned long end;
1325 
1326 	if (start >= vma->vm_end)
1327 		return;
1328 	end = min(vma->vm_end, end_addr);
1329 	if (end <= vma->vm_start)
1330 		return;
1331 
1332 	if (vma->vm_file)
1333 		uprobe_munmap(vma, start, end);
1334 
1335 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1336 		untrack_pfn(vma, 0, 0);
1337 
1338 	if (start != end) {
1339 		if (unlikely(is_vm_hugetlb_page(vma))) {
1340 			/*
1341 			 * It is undesirable to test vma->vm_file as it
1342 			 * should be non-null for valid hugetlb area.
1343 			 * However, vm_file will be NULL in the error
1344 			 * cleanup path of mmap_region. When
1345 			 * hugetlbfs ->mmap method fails,
1346 			 * mmap_region() nullifies vma->vm_file
1347 			 * before calling this function to clean up.
1348 			 * Since no pte has actually been setup, it is
1349 			 * safe to do nothing in this case.
1350 			 */
1351 			if (vma->vm_file) {
1352 				i_mmap_lock_write(vma->vm_file->f_mapping);
1353 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1354 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1355 			}
1356 		} else
1357 			unmap_page_range(tlb, vma, start, end, details);
1358 	}
1359 }
1360 
1361 /**
1362  * unmap_vmas - unmap a range of memory covered by a list of vma's
1363  * @tlb: address of the caller's struct mmu_gather
1364  * @vma: the starting vma
1365  * @start_addr: virtual address at which to start unmapping
1366  * @end_addr: virtual address at which to end unmapping
1367  *
1368  * Unmap all pages in the vma list.
1369  *
1370  * Only addresses between `start' and `end' will be unmapped.
1371  *
1372  * The VMA list must be sorted in ascending virtual address order.
1373  *
1374  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1375  * range after unmap_vmas() returns.  So the only responsibility here is to
1376  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1377  * drops the lock and schedules.
1378  */
1379 void unmap_vmas(struct mmu_gather *tlb,
1380 		struct vm_area_struct *vma, unsigned long start_addr,
1381 		unsigned long end_addr)
1382 {
1383 	struct mm_struct *mm = vma->vm_mm;
1384 
1385 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1386 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1387 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1388 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1389 }
1390 
1391 /**
1392  * zap_page_range - remove user pages in a given range
1393  * @vma: vm_area_struct holding the applicable pages
1394  * @start: starting address of pages to zap
1395  * @size: number of bytes to zap
1396  *
1397  * Caller must protect the VMA list
1398  */
1399 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1400 		unsigned long size)
1401 {
1402 	struct mm_struct *mm = vma->vm_mm;
1403 	struct mmu_gather tlb;
1404 	unsigned long end = start + size;
1405 
1406 	lru_add_drain();
1407 	tlb_gather_mmu(&tlb, mm, start, end);
1408 	update_hiwater_rss(mm);
1409 	mmu_notifier_invalidate_range_start(mm, start, end);
1410 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1411 		unmap_single_vma(&tlb, vma, start, end, NULL);
1412 	mmu_notifier_invalidate_range_end(mm, start, end);
1413 	tlb_finish_mmu(&tlb, start, end);
1414 }
1415 
1416 /**
1417  * zap_page_range_single - remove user pages in a given range
1418  * @vma: vm_area_struct holding the applicable pages
1419  * @address: starting address of pages to zap
1420  * @size: number of bytes to zap
1421  * @details: details of shared cache invalidation
1422  *
1423  * The range must fit into one VMA.
1424  */
1425 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1426 		unsigned long size, struct zap_details *details)
1427 {
1428 	struct mm_struct *mm = vma->vm_mm;
1429 	struct mmu_gather tlb;
1430 	unsigned long end = address + size;
1431 
1432 	lru_add_drain();
1433 	tlb_gather_mmu(&tlb, mm, address, end);
1434 	update_hiwater_rss(mm);
1435 	mmu_notifier_invalidate_range_start(mm, address, end);
1436 	unmap_single_vma(&tlb, vma, address, end, details);
1437 	mmu_notifier_invalidate_range_end(mm, address, end);
1438 	tlb_finish_mmu(&tlb, address, end);
1439 }
1440 
1441 /**
1442  * zap_vma_ptes - remove ptes mapping the vma
1443  * @vma: vm_area_struct holding ptes to be zapped
1444  * @address: starting address of pages to zap
1445  * @size: number of bytes to zap
1446  *
1447  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1448  *
1449  * The entire address range must be fully contained within the vma.
1450  *
1451  * Returns 0 if successful.
1452  */
1453 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1454 		unsigned long size)
1455 {
1456 	if (address < vma->vm_start || address + size > vma->vm_end ||
1457 	    		!(vma->vm_flags & VM_PFNMAP))
1458 		return -1;
1459 	zap_page_range_single(vma, address, size, NULL);
1460 	return 0;
1461 }
1462 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1463 
1464 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1465 			spinlock_t **ptl)
1466 {
1467 	pgd_t *pgd = pgd_offset(mm, addr);
1468 	pud_t *pud = pud_alloc(mm, pgd, addr);
1469 	if (pud) {
1470 		pmd_t *pmd = pmd_alloc(mm, pud, addr);
1471 		if (pmd) {
1472 			VM_BUG_ON(pmd_trans_huge(*pmd));
1473 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
1474 		}
1475 	}
1476 	return NULL;
1477 }
1478 
1479 /*
1480  * This is the old fallback for page remapping.
1481  *
1482  * For historical reasons, it only allows reserved pages. Only
1483  * old drivers should use this, and they needed to mark their
1484  * pages reserved for the old functions anyway.
1485  */
1486 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1487 			struct page *page, pgprot_t prot)
1488 {
1489 	struct mm_struct *mm = vma->vm_mm;
1490 	int retval;
1491 	pte_t *pte;
1492 	spinlock_t *ptl;
1493 
1494 	retval = -EINVAL;
1495 	if (PageAnon(page))
1496 		goto out;
1497 	retval = -ENOMEM;
1498 	flush_dcache_page(page);
1499 	pte = get_locked_pte(mm, addr, &ptl);
1500 	if (!pte)
1501 		goto out;
1502 	retval = -EBUSY;
1503 	if (!pte_none(*pte))
1504 		goto out_unlock;
1505 
1506 	/* Ok, finally just insert the thing.. */
1507 	get_page(page);
1508 	inc_mm_counter_fast(mm, mm_counter_file(page));
1509 	page_add_file_rmap(page, false);
1510 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1511 
1512 	retval = 0;
1513 	pte_unmap_unlock(pte, ptl);
1514 	return retval;
1515 out_unlock:
1516 	pte_unmap_unlock(pte, ptl);
1517 out:
1518 	return retval;
1519 }
1520 
1521 /**
1522  * vm_insert_page - insert single page into user vma
1523  * @vma: user vma to map to
1524  * @addr: target user address of this page
1525  * @page: source kernel page
1526  *
1527  * This allows drivers to insert individual pages they've allocated
1528  * into a user vma.
1529  *
1530  * The page has to be a nice clean _individual_ kernel allocation.
1531  * If you allocate a compound page, you need to have marked it as
1532  * such (__GFP_COMP), or manually just split the page up yourself
1533  * (see split_page()).
1534  *
1535  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1536  * took an arbitrary page protection parameter. This doesn't allow
1537  * that. Your vma protection will have to be set up correctly, which
1538  * means that if you want a shared writable mapping, you'd better
1539  * ask for a shared writable mapping!
1540  *
1541  * The page does not need to be reserved.
1542  *
1543  * Usually this function is called from f_op->mmap() handler
1544  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1545  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1546  * function from other places, for example from page-fault handler.
1547  */
1548 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1549 			struct page *page)
1550 {
1551 	if (addr < vma->vm_start || addr >= vma->vm_end)
1552 		return -EFAULT;
1553 	if (!page_count(page))
1554 		return -EINVAL;
1555 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1556 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1557 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1558 		vma->vm_flags |= VM_MIXEDMAP;
1559 	}
1560 	return insert_page(vma, addr, page, vma->vm_page_prot);
1561 }
1562 EXPORT_SYMBOL(vm_insert_page);
1563 
1564 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1565 			pfn_t pfn, pgprot_t prot)
1566 {
1567 	struct mm_struct *mm = vma->vm_mm;
1568 	int retval;
1569 	pte_t *pte, entry;
1570 	spinlock_t *ptl;
1571 
1572 	retval = -ENOMEM;
1573 	pte = get_locked_pte(mm, addr, &ptl);
1574 	if (!pte)
1575 		goto out;
1576 	retval = -EBUSY;
1577 	if (!pte_none(*pte))
1578 		goto out_unlock;
1579 
1580 	/* Ok, finally just insert the thing.. */
1581 	if (pfn_t_devmap(pfn))
1582 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1583 	else
1584 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1585 	set_pte_at(mm, addr, pte, entry);
1586 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1587 
1588 	retval = 0;
1589 out_unlock:
1590 	pte_unmap_unlock(pte, ptl);
1591 out:
1592 	return retval;
1593 }
1594 
1595 /**
1596  * vm_insert_pfn - insert single pfn into user vma
1597  * @vma: user vma to map to
1598  * @addr: target user address of this page
1599  * @pfn: source kernel pfn
1600  *
1601  * Similar to vm_insert_page, this allows drivers to insert individual pages
1602  * they've allocated into a user vma. Same comments apply.
1603  *
1604  * This function should only be called from a vm_ops->fault handler, and
1605  * in that case the handler should return NULL.
1606  *
1607  * vma cannot be a COW mapping.
1608  *
1609  * As this is called only for pages that do not currently exist, we
1610  * do not need to flush old virtual caches or the TLB.
1611  */
1612 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1613 			unsigned long pfn)
1614 {
1615 	return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1616 }
1617 EXPORT_SYMBOL(vm_insert_pfn);
1618 
1619 /**
1620  * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1621  * @vma: user vma to map to
1622  * @addr: target user address of this page
1623  * @pfn: source kernel pfn
1624  * @pgprot: pgprot flags for the inserted page
1625  *
1626  * This is exactly like vm_insert_pfn, except that it allows drivers to
1627  * to override pgprot on a per-page basis.
1628  *
1629  * This only makes sense for IO mappings, and it makes no sense for
1630  * cow mappings.  In general, using multiple vmas is preferable;
1631  * vm_insert_pfn_prot should only be used if using multiple VMAs is
1632  * impractical.
1633  */
1634 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1635 			unsigned long pfn, pgprot_t pgprot)
1636 {
1637 	int ret;
1638 	/*
1639 	 * Technically, architectures with pte_special can avoid all these
1640 	 * restrictions (same for remap_pfn_range).  However we would like
1641 	 * consistency in testing and feature parity among all, so we should
1642 	 * try to keep these invariants in place for everybody.
1643 	 */
1644 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1645 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1646 						(VM_PFNMAP|VM_MIXEDMAP));
1647 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1648 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1649 
1650 	if (addr < vma->vm_start || addr >= vma->vm_end)
1651 		return -EFAULT;
1652 
1653 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1654 
1655 	ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot);
1656 
1657 	return ret;
1658 }
1659 EXPORT_SYMBOL(vm_insert_pfn_prot);
1660 
1661 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1662 			pfn_t pfn)
1663 {
1664 	pgprot_t pgprot = vma->vm_page_prot;
1665 
1666 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1667 
1668 	if (addr < vma->vm_start || addr >= vma->vm_end)
1669 		return -EFAULT;
1670 
1671 	track_pfn_insert(vma, &pgprot, pfn);
1672 
1673 	/*
1674 	 * If we don't have pte special, then we have to use the pfn_valid()
1675 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1676 	 * refcount the page if pfn_valid is true (hence insert_page rather
1677 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1678 	 * without pte special, it would there be refcounted as a normal page.
1679 	 */
1680 	if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1681 		struct page *page;
1682 
1683 		/*
1684 		 * At this point we are committed to insert_page()
1685 		 * regardless of whether the caller specified flags that
1686 		 * result in pfn_t_has_page() == false.
1687 		 */
1688 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1689 		return insert_page(vma, addr, page, pgprot);
1690 	}
1691 	return insert_pfn(vma, addr, pfn, pgprot);
1692 }
1693 EXPORT_SYMBOL(vm_insert_mixed);
1694 
1695 /*
1696  * maps a range of physical memory into the requested pages. the old
1697  * mappings are removed. any references to nonexistent pages results
1698  * in null mappings (currently treated as "copy-on-access")
1699  */
1700 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1701 			unsigned long addr, unsigned long end,
1702 			unsigned long pfn, pgprot_t prot)
1703 {
1704 	pte_t *pte;
1705 	spinlock_t *ptl;
1706 
1707 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1708 	if (!pte)
1709 		return -ENOMEM;
1710 	arch_enter_lazy_mmu_mode();
1711 	do {
1712 		BUG_ON(!pte_none(*pte));
1713 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1714 		pfn++;
1715 	} while (pte++, addr += PAGE_SIZE, addr != end);
1716 	arch_leave_lazy_mmu_mode();
1717 	pte_unmap_unlock(pte - 1, ptl);
1718 	return 0;
1719 }
1720 
1721 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1722 			unsigned long addr, unsigned long end,
1723 			unsigned long pfn, pgprot_t prot)
1724 {
1725 	pmd_t *pmd;
1726 	unsigned long next;
1727 
1728 	pfn -= addr >> PAGE_SHIFT;
1729 	pmd = pmd_alloc(mm, pud, addr);
1730 	if (!pmd)
1731 		return -ENOMEM;
1732 	VM_BUG_ON(pmd_trans_huge(*pmd));
1733 	do {
1734 		next = pmd_addr_end(addr, end);
1735 		if (remap_pte_range(mm, pmd, addr, next,
1736 				pfn + (addr >> PAGE_SHIFT), prot))
1737 			return -ENOMEM;
1738 	} while (pmd++, addr = next, addr != end);
1739 	return 0;
1740 }
1741 
1742 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1743 			unsigned long addr, unsigned long end,
1744 			unsigned long pfn, pgprot_t prot)
1745 {
1746 	pud_t *pud;
1747 	unsigned long next;
1748 
1749 	pfn -= addr >> PAGE_SHIFT;
1750 	pud = pud_alloc(mm, pgd, addr);
1751 	if (!pud)
1752 		return -ENOMEM;
1753 	do {
1754 		next = pud_addr_end(addr, end);
1755 		if (remap_pmd_range(mm, pud, addr, next,
1756 				pfn + (addr >> PAGE_SHIFT), prot))
1757 			return -ENOMEM;
1758 	} while (pud++, addr = next, addr != end);
1759 	return 0;
1760 }
1761 
1762 /**
1763  * remap_pfn_range - remap kernel memory to userspace
1764  * @vma: user vma to map to
1765  * @addr: target user address to start at
1766  * @pfn: physical address of kernel memory
1767  * @size: size of map area
1768  * @prot: page protection flags for this mapping
1769  *
1770  *  Note: this is only safe if the mm semaphore is held when called.
1771  */
1772 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1773 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1774 {
1775 	pgd_t *pgd;
1776 	unsigned long next;
1777 	unsigned long end = addr + PAGE_ALIGN(size);
1778 	struct mm_struct *mm = vma->vm_mm;
1779 	unsigned long remap_pfn = pfn;
1780 	int err;
1781 
1782 	/*
1783 	 * Physically remapped pages are special. Tell the
1784 	 * rest of the world about it:
1785 	 *   VM_IO tells people not to look at these pages
1786 	 *	(accesses can have side effects).
1787 	 *   VM_PFNMAP tells the core MM that the base pages are just
1788 	 *	raw PFN mappings, and do not have a "struct page" associated
1789 	 *	with them.
1790 	 *   VM_DONTEXPAND
1791 	 *      Disable vma merging and expanding with mremap().
1792 	 *   VM_DONTDUMP
1793 	 *      Omit vma from core dump, even when VM_IO turned off.
1794 	 *
1795 	 * There's a horrible special case to handle copy-on-write
1796 	 * behaviour that some programs depend on. We mark the "original"
1797 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1798 	 * See vm_normal_page() for details.
1799 	 */
1800 	if (is_cow_mapping(vma->vm_flags)) {
1801 		if (addr != vma->vm_start || end != vma->vm_end)
1802 			return -EINVAL;
1803 		vma->vm_pgoff = pfn;
1804 	}
1805 
1806 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1807 	if (err)
1808 		return -EINVAL;
1809 
1810 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1811 
1812 	BUG_ON(addr >= end);
1813 	pfn -= addr >> PAGE_SHIFT;
1814 	pgd = pgd_offset(mm, addr);
1815 	flush_cache_range(vma, addr, end);
1816 	do {
1817 		next = pgd_addr_end(addr, end);
1818 		err = remap_pud_range(mm, pgd, addr, next,
1819 				pfn + (addr >> PAGE_SHIFT), prot);
1820 		if (err)
1821 			break;
1822 	} while (pgd++, addr = next, addr != end);
1823 
1824 	if (err)
1825 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
1826 
1827 	return err;
1828 }
1829 EXPORT_SYMBOL(remap_pfn_range);
1830 
1831 /**
1832  * vm_iomap_memory - remap memory to userspace
1833  * @vma: user vma to map to
1834  * @start: start of area
1835  * @len: size of area
1836  *
1837  * This is a simplified io_remap_pfn_range() for common driver use. The
1838  * driver just needs to give us the physical memory range to be mapped,
1839  * we'll figure out the rest from the vma information.
1840  *
1841  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1842  * whatever write-combining details or similar.
1843  */
1844 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1845 {
1846 	unsigned long vm_len, pfn, pages;
1847 
1848 	/* Check that the physical memory area passed in looks valid */
1849 	if (start + len < start)
1850 		return -EINVAL;
1851 	/*
1852 	 * You *really* shouldn't map things that aren't page-aligned,
1853 	 * but we've historically allowed it because IO memory might
1854 	 * just have smaller alignment.
1855 	 */
1856 	len += start & ~PAGE_MASK;
1857 	pfn = start >> PAGE_SHIFT;
1858 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1859 	if (pfn + pages < pfn)
1860 		return -EINVAL;
1861 
1862 	/* We start the mapping 'vm_pgoff' pages into the area */
1863 	if (vma->vm_pgoff > pages)
1864 		return -EINVAL;
1865 	pfn += vma->vm_pgoff;
1866 	pages -= vma->vm_pgoff;
1867 
1868 	/* Can we fit all of the mapping? */
1869 	vm_len = vma->vm_end - vma->vm_start;
1870 	if (vm_len >> PAGE_SHIFT > pages)
1871 		return -EINVAL;
1872 
1873 	/* Ok, let it rip */
1874 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1875 }
1876 EXPORT_SYMBOL(vm_iomap_memory);
1877 
1878 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1879 				     unsigned long addr, unsigned long end,
1880 				     pte_fn_t fn, void *data)
1881 {
1882 	pte_t *pte;
1883 	int err;
1884 	pgtable_t token;
1885 	spinlock_t *uninitialized_var(ptl);
1886 
1887 	pte = (mm == &init_mm) ?
1888 		pte_alloc_kernel(pmd, addr) :
1889 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
1890 	if (!pte)
1891 		return -ENOMEM;
1892 
1893 	BUG_ON(pmd_huge(*pmd));
1894 
1895 	arch_enter_lazy_mmu_mode();
1896 
1897 	token = pmd_pgtable(*pmd);
1898 
1899 	do {
1900 		err = fn(pte++, token, addr, data);
1901 		if (err)
1902 			break;
1903 	} while (addr += PAGE_SIZE, addr != end);
1904 
1905 	arch_leave_lazy_mmu_mode();
1906 
1907 	if (mm != &init_mm)
1908 		pte_unmap_unlock(pte-1, ptl);
1909 	return err;
1910 }
1911 
1912 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1913 				     unsigned long addr, unsigned long end,
1914 				     pte_fn_t fn, void *data)
1915 {
1916 	pmd_t *pmd;
1917 	unsigned long next;
1918 	int err;
1919 
1920 	BUG_ON(pud_huge(*pud));
1921 
1922 	pmd = pmd_alloc(mm, pud, addr);
1923 	if (!pmd)
1924 		return -ENOMEM;
1925 	do {
1926 		next = pmd_addr_end(addr, end);
1927 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1928 		if (err)
1929 			break;
1930 	} while (pmd++, addr = next, addr != end);
1931 	return err;
1932 }
1933 
1934 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1935 				     unsigned long addr, unsigned long end,
1936 				     pte_fn_t fn, void *data)
1937 {
1938 	pud_t *pud;
1939 	unsigned long next;
1940 	int err;
1941 
1942 	pud = pud_alloc(mm, pgd, addr);
1943 	if (!pud)
1944 		return -ENOMEM;
1945 	do {
1946 		next = pud_addr_end(addr, end);
1947 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1948 		if (err)
1949 			break;
1950 	} while (pud++, addr = next, addr != end);
1951 	return err;
1952 }
1953 
1954 /*
1955  * Scan a region of virtual memory, filling in page tables as necessary
1956  * and calling a provided function on each leaf page table.
1957  */
1958 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1959 			unsigned long size, pte_fn_t fn, void *data)
1960 {
1961 	pgd_t *pgd;
1962 	unsigned long next;
1963 	unsigned long end = addr + size;
1964 	int err;
1965 
1966 	if (WARN_ON(addr >= end))
1967 		return -EINVAL;
1968 
1969 	pgd = pgd_offset(mm, addr);
1970 	do {
1971 		next = pgd_addr_end(addr, end);
1972 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1973 		if (err)
1974 			break;
1975 	} while (pgd++, addr = next, addr != end);
1976 
1977 	return err;
1978 }
1979 EXPORT_SYMBOL_GPL(apply_to_page_range);
1980 
1981 /*
1982  * handle_pte_fault chooses page fault handler according to an entry which was
1983  * read non-atomically.  Before making any commitment, on those architectures
1984  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
1985  * parts, do_swap_page must check under lock before unmapping the pte and
1986  * proceeding (but do_wp_page is only called after already making such a check;
1987  * and do_anonymous_page can safely check later on).
1988  */
1989 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1990 				pte_t *page_table, pte_t orig_pte)
1991 {
1992 	int same = 1;
1993 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1994 	if (sizeof(pte_t) > sizeof(unsigned long)) {
1995 		spinlock_t *ptl = pte_lockptr(mm, pmd);
1996 		spin_lock(ptl);
1997 		same = pte_same(*page_table, orig_pte);
1998 		spin_unlock(ptl);
1999 	}
2000 #endif
2001 	pte_unmap(page_table);
2002 	return same;
2003 }
2004 
2005 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2006 {
2007 	debug_dma_assert_idle(src);
2008 
2009 	/*
2010 	 * If the source page was a PFN mapping, we don't have
2011 	 * a "struct page" for it. We do a best-effort copy by
2012 	 * just copying from the original user address. If that
2013 	 * fails, we just zero-fill it. Live with it.
2014 	 */
2015 	if (unlikely(!src)) {
2016 		void *kaddr = kmap_atomic(dst);
2017 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2018 
2019 		/*
2020 		 * This really shouldn't fail, because the page is there
2021 		 * in the page tables. But it might just be unreadable,
2022 		 * in which case we just give up and fill the result with
2023 		 * zeroes.
2024 		 */
2025 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2026 			clear_page(kaddr);
2027 		kunmap_atomic(kaddr);
2028 		flush_dcache_page(dst);
2029 	} else
2030 		copy_user_highpage(dst, src, va, vma);
2031 }
2032 
2033 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2034 {
2035 	struct file *vm_file = vma->vm_file;
2036 
2037 	if (vm_file)
2038 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2039 
2040 	/*
2041 	 * Special mappings (e.g. VDSO) do not have any file so fake
2042 	 * a default GFP_KERNEL for them.
2043 	 */
2044 	return GFP_KERNEL;
2045 }
2046 
2047 /*
2048  * Notify the address space that the page is about to become writable so that
2049  * it can prohibit this or wait for the page to get into an appropriate state.
2050  *
2051  * We do this without the lock held, so that it can sleep if it needs to.
2052  */
2053 static int do_page_mkwrite(struct vm_fault *vmf)
2054 {
2055 	int ret;
2056 	struct page *page = vmf->page;
2057 	unsigned int old_flags = vmf->flags;
2058 
2059 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2060 
2061 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2062 	/* Restore original flags so that caller is not surprised */
2063 	vmf->flags = old_flags;
2064 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2065 		return ret;
2066 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2067 		lock_page(page);
2068 		if (!page->mapping) {
2069 			unlock_page(page);
2070 			return 0; /* retry */
2071 		}
2072 		ret |= VM_FAULT_LOCKED;
2073 	} else
2074 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2075 	return ret;
2076 }
2077 
2078 /*
2079  * Handle dirtying of a page in shared file mapping on a write fault.
2080  *
2081  * The function expects the page to be locked and unlocks it.
2082  */
2083 static void fault_dirty_shared_page(struct vm_area_struct *vma,
2084 				    struct page *page)
2085 {
2086 	struct address_space *mapping;
2087 	bool dirtied;
2088 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2089 
2090 	dirtied = set_page_dirty(page);
2091 	VM_BUG_ON_PAGE(PageAnon(page), page);
2092 	/*
2093 	 * Take a local copy of the address_space - page.mapping may be zeroed
2094 	 * by truncate after unlock_page().   The address_space itself remains
2095 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2096 	 * release semantics to prevent the compiler from undoing this copying.
2097 	 */
2098 	mapping = page_rmapping(page);
2099 	unlock_page(page);
2100 
2101 	if ((dirtied || page_mkwrite) && mapping) {
2102 		/*
2103 		 * Some device drivers do not set page.mapping
2104 		 * but still dirty their pages
2105 		 */
2106 		balance_dirty_pages_ratelimited(mapping);
2107 	}
2108 
2109 	if (!page_mkwrite)
2110 		file_update_time(vma->vm_file);
2111 }
2112 
2113 /*
2114  * Handle write page faults for pages that can be reused in the current vma
2115  *
2116  * This can happen either due to the mapping being with the VM_SHARED flag,
2117  * or due to us being the last reference standing to the page. In either
2118  * case, all we need to do here is to mark the page as writable and update
2119  * any related book-keeping.
2120  */
2121 static inline void wp_page_reuse(struct vm_fault *vmf)
2122 	__releases(vmf->ptl)
2123 {
2124 	struct vm_area_struct *vma = vmf->vma;
2125 	struct page *page = vmf->page;
2126 	pte_t entry;
2127 	/*
2128 	 * Clear the pages cpupid information as the existing
2129 	 * information potentially belongs to a now completely
2130 	 * unrelated process.
2131 	 */
2132 	if (page)
2133 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2134 
2135 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2136 	entry = pte_mkyoung(vmf->orig_pte);
2137 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2138 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2139 		update_mmu_cache(vma, vmf->address, vmf->pte);
2140 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2141 }
2142 
2143 /*
2144  * Handle the case of a page which we actually need to copy to a new page.
2145  *
2146  * Called with mmap_sem locked and the old page referenced, but
2147  * without the ptl held.
2148  *
2149  * High level logic flow:
2150  *
2151  * - Allocate a page, copy the content of the old page to the new one.
2152  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2153  * - Take the PTL. If the pte changed, bail out and release the allocated page
2154  * - If the pte is still the way we remember it, update the page table and all
2155  *   relevant references. This includes dropping the reference the page-table
2156  *   held to the old page, as well as updating the rmap.
2157  * - In any case, unlock the PTL and drop the reference we took to the old page.
2158  */
2159 static int wp_page_copy(struct vm_fault *vmf)
2160 {
2161 	struct vm_area_struct *vma = vmf->vma;
2162 	struct mm_struct *mm = vma->vm_mm;
2163 	struct page *old_page = vmf->page;
2164 	struct page *new_page = NULL;
2165 	pte_t entry;
2166 	int page_copied = 0;
2167 	const unsigned long mmun_start = vmf->address & PAGE_MASK;
2168 	const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2169 	struct mem_cgroup *memcg;
2170 
2171 	if (unlikely(anon_vma_prepare(vma)))
2172 		goto oom;
2173 
2174 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2175 		new_page = alloc_zeroed_user_highpage_movable(vma,
2176 							      vmf->address);
2177 		if (!new_page)
2178 			goto oom;
2179 	} else {
2180 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2181 				vmf->address);
2182 		if (!new_page)
2183 			goto oom;
2184 		cow_user_page(new_page, old_page, vmf->address, vma);
2185 	}
2186 
2187 	if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2188 		goto oom_free_new;
2189 
2190 	__SetPageUptodate(new_page);
2191 
2192 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2193 
2194 	/*
2195 	 * Re-check the pte - we dropped the lock
2196 	 */
2197 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2198 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2199 		if (old_page) {
2200 			if (!PageAnon(old_page)) {
2201 				dec_mm_counter_fast(mm,
2202 						mm_counter_file(old_page));
2203 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2204 			}
2205 		} else {
2206 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2207 		}
2208 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2209 		entry = mk_pte(new_page, vma->vm_page_prot);
2210 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2211 		/*
2212 		 * Clear the pte entry and flush it first, before updating the
2213 		 * pte with the new entry. This will avoid a race condition
2214 		 * seen in the presence of one thread doing SMC and another
2215 		 * thread doing COW.
2216 		 */
2217 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2218 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2219 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2220 		lru_cache_add_active_or_unevictable(new_page, vma);
2221 		/*
2222 		 * We call the notify macro here because, when using secondary
2223 		 * mmu page tables (such as kvm shadow page tables), we want the
2224 		 * new page to be mapped directly into the secondary page table.
2225 		 */
2226 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2227 		update_mmu_cache(vma, vmf->address, vmf->pte);
2228 		if (old_page) {
2229 			/*
2230 			 * Only after switching the pte to the new page may
2231 			 * we remove the mapcount here. Otherwise another
2232 			 * process may come and find the rmap count decremented
2233 			 * before the pte is switched to the new page, and
2234 			 * "reuse" the old page writing into it while our pte
2235 			 * here still points into it and can be read by other
2236 			 * threads.
2237 			 *
2238 			 * The critical issue is to order this
2239 			 * page_remove_rmap with the ptp_clear_flush above.
2240 			 * Those stores are ordered by (if nothing else,)
2241 			 * the barrier present in the atomic_add_negative
2242 			 * in page_remove_rmap.
2243 			 *
2244 			 * Then the TLB flush in ptep_clear_flush ensures that
2245 			 * no process can access the old page before the
2246 			 * decremented mapcount is visible. And the old page
2247 			 * cannot be reused until after the decremented
2248 			 * mapcount is visible. So transitively, TLBs to
2249 			 * old page will be flushed before it can be reused.
2250 			 */
2251 			page_remove_rmap(old_page, false);
2252 		}
2253 
2254 		/* Free the old page.. */
2255 		new_page = old_page;
2256 		page_copied = 1;
2257 	} else {
2258 		mem_cgroup_cancel_charge(new_page, memcg, false);
2259 	}
2260 
2261 	if (new_page)
2262 		put_page(new_page);
2263 
2264 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2265 	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2266 	if (old_page) {
2267 		/*
2268 		 * Don't let another task, with possibly unlocked vma,
2269 		 * keep the mlocked page.
2270 		 */
2271 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2272 			lock_page(old_page);	/* LRU manipulation */
2273 			if (PageMlocked(old_page))
2274 				munlock_vma_page(old_page);
2275 			unlock_page(old_page);
2276 		}
2277 		put_page(old_page);
2278 	}
2279 	return page_copied ? VM_FAULT_WRITE : 0;
2280 oom_free_new:
2281 	put_page(new_page);
2282 oom:
2283 	if (old_page)
2284 		put_page(old_page);
2285 	return VM_FAULT_OOM;
2286 }
2287 
2288 /**
2289  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2290  *			  writeable once the page is prepared
2291  *
2292  * @vmf: structure describing the fault
2293  *
2294  * This function handles all that is needed to finish a write page fault in a
2295  * shared mapping due to PTE being read-only once the mapped page is prepared.
2296  * It handles locking of PTE and modifying it. The function returns
2297  * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2298  * lock.
2299  *
2300  * The function expects the page to be locked or other protection against
2301  * concurrent faults / writeback (such as DAX radix tree locks).
2302  */
2303 int finish_mkwrite_fault(struct vm_fault *vmf)
2304 {
2305 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2306 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2307 				       &vmf->ptl);
2308 	/*
2309 	 * We might have raced with another page fault while we released the
2310 	 * pte_offset_map_lock.
2311 	 */
2312 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2313 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2314 		return VM_FAULT_NOPAGE;
2315 	}
2316 	wp_page_reuse(vmf);
2317 	return 0;
2318 }
2319 
2320 /*
2321  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2322  * mapping
2323  */
2324 static int wp_pfn_shared(struct vm_fault *vmf)
2325 {
2326 	struct vm_area_struct *vma = vmf->vma;
2327 
2328 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2329 		int ret;
2330 
2331 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2332 		vmf->flags |= FAULT_FLAG_MKWRITE;
2333 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2334 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2335 			return ret;
2336 		return finish_mkwrite_fault(vmf);
2337 	}
2338 	wp_page_reuse(vmf);
2339 	return VM_FAULT_WRITE;
2340 }
2341 
2342 static int wp_page_shared(struct vm_fault *vmf)
2343 	__releases(vmf->ptl)
2344 {
2345 	struct vm_area_struct *vma = vmf->vma;
2346 
2347 	get_page(vmf->page);
2348 
2349 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2350 		int tmp;
2351 
2352 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2353 		tmp = do_page_mkwrite(vmf);
2354 		if (unlikely(!tmp || (tmp &
2355 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2356 			put_page(vmf->page);
2357 			return tmp;
2358 		}
2359 		tmp = finish_mkwrite_fault(vmf);
2360 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2361 			unlock_page(vmf->page);
2362 			put_page(vmf->page);
2363 			return tmp;
2364 		}
2365 	} else {
2366 		wp_page_reuse(vmf);
2367 		lock_page(vmf->page);
2368 	}
2369 	fault_dirty_shared_page(vma, vmf->page);
2370 	put_page(vmf->page);
2371 
2372 	return VM_FAULT_WRITE;
2373 }
2374 
2375 /*
2376  * This routine handles present pages, when users try to write
2377  * to a shared page. It is done by copying the page to a new address
2378  * and decrementing the shared-page counter for the old page.
2379  *
2380  * Note that this routine assumes that the protection checks have been
2381  * done by the caller (the low-level page fault routine in most cases).
2382  * Thus we can safely just mark it writable once we've done any necessary
2383  * COW.
2384  *
2385  * We also mark the page dirty at this point even though the page will
2386  * change only once the write actually happens. This avoids a few races,
2387  * and potentially makes it more efficient.
2388  *
2389  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2390  * but allow concurrent faults), with pte both mapped and locked.
2391  * We return with mmap_sem still held, but pte unmapped and unlocked.
2392  */
2393 static int do_wp_page(struct vm_fault *vmf)
2394 	__releases(vmf->ptl)
2395 {
2396 	struct vm_area_struct *vma = vmf->vma;
2397 
2398 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2399 	if (!vmf->page) {
2400 		/*
2401 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2402 		 * VM_PFNMAP VMA.
2403 		 *
2404 		 * We should not cow pages in a shared writeable mapping.
2405 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2406 		 */
2407 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2408 				     (VM_WRITE|VM_SHARED))
2409 			return wp_pfn_shared(vmf);
2410 
2411 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2412 		return wp_page_copy(vmf);
2413 	}
2414 
2415 	/*
2416 	 * Take out anonymous pages first, anonymous shared vmas are
2417 	 * not dirty accountable.
2418 	 */
2419 	if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2420 		int total_mapcount;
2421 		if (!trylock_page(vmf->page)) {
2422 			get_page(vmf->page);
2423 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2424 			lock_page(vmf->page);
2425 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2426 					vmf->address, &vmf->ptl);
2427 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2428 				unlock_page(vmf->page);
2429 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2430 				put_page(vmf->page);
2431 				return 0;
2432 			}
2433 			put_page(vmf->page);
2434 		}
2435 		if (reuse_swap_page(vmf->page, &total_mapcount)) {
2436 			if (total_mapcount == 1) {
2437 				/*
2438 				 * The page is all ours. Move it to
2439 				 * our anon_vma so the rmap code will
2440 				 * not search our parent or siblings.
2441 				 * Protected against the rmap code by
2442 				 * the page lock.
2443 				 */
2444 				page_move_anon_rmap(vmf->page, vma);
2445 			}
2446 			unlock_page(vmf->page);
2447 			wp_page_reuse(vmf);
2448 			return VM_FAULT_WRITE;
2449 		}
2450 		unlock_page(vmf->page);
2451 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2452 					(VM_WRITE|VM_SHARED))) {
2453 		return wp_page_shared(vmf);
2454 	}
2455 
2456 	/*
2457 	 * Ok, we need to copy. Oh, well..
2458 	 */
2459 	get_page(vmf->page);
2460 
2461 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2462 	return wp_page_copy(vmf);
2463 }
2464 
2465 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2466 		unsigned long start_addr, unsigned long end_addr,
2467 		struct zap_details *details)
2468 {
2469 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2470 }
2471 
2472 static inline void unmap_mapping_range_tree(struct rb_root *root,
2473 					    struct zap_details *details)
2474 {
2475 	struct vm_area_struct *vma;
2476 	pgoff_t vba, vea, zba, zea;
2477 
2478 	vma_interval_tree_foreach(vma, root,
2479 			details->first_index, details->last_index) {
2480 
2481 		vba = vma->vm_pgoff;
2482 		vea = vba + vma_pages(vma) - 1;
2483 		zba = details->first_index;
2484 		if (zba < vba)
2485 			zba = vba;
2486 		zea = details->last_index;
2487 		if (zea > vea)
2488 			zea = vea;
2489 
2490 		unmap_mapping_range_vma(vma,
2491 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2492 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2493 				details);
2494 	}
2495 }
2496 
2497 /**
2498  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2499  * address_space corresponding to the specified page range in the underlying
2500  * file.
2501  *
2502  * @mapping: the address space containing mmaps to be unmapped.
2503  * @holebegin: byte in first page to unmap, relative to the start of
2504  * the underlying file.  This will be rounded down to a PAGE_SIZE
2505  * boundary.  Note that this is different from truncate_pagecache(), which
2506  * must keep the partial page.  In contrast, we must get rid of
2507  * partial pages.
2508  * @holelen: size of prospective hole in bytes.  This will be rounded
2509  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2510  * end of the file.
2511  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2512  * but 0 when invalidating pagecache, don't throw away private data.
2513  */
2514 void unmap_mapping_range(struct address_space *mapping,
2515 		loff_t const holebegin, loff_t const holelen, int even_cows)
2516 {
2517 	struct zap_details details = { };
2518 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2519 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2520 
2521 	/* Check for overflow. */
2522 	if (sizeof(holelen) > sizeof(hlen)) {
2523 		long long holeend =
2524 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2525 		if (holeend & ~(long long)ULONG_MAX)
2526 			hlen = ULONG_MAX - hba + 1;
2527 	}
2528 
2529 	details.check_mapping = even_cows ? NULL : mapping;
2530 	details.first_index = hba;
2531 	details.last_index = hba + hlen - 1;
2532 	if (details.last_index < details.first_index)
2533 		details.last_index = ULONG_MAX;
2534 
2535 	i_mmap_lock_write(mapping);
2536 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2537 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2538 	i_mmap_unlock_write(mapping);
2539 }
2540 EXPORT_SYMBOL(unmap_mapping_range);
2541 
2542 /*
2543  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2544  * but allow concurrent faults), and pte mapped but not yet locked.
2545  * We return with pte unmapped and unlocked.
2546  *
2547  * We return with the mmap_sem locked or unlocked in the same cases
2548  * as does filemap_fault().
2549  */
2550 int do_swap_page(struct vm_fault *vmf)
2551 {
2552 	struct vm_area_struct *vma = vmf->vma;
2553 	struct page *page, *swapcache;
2554 	struct mem_cgroup *memcg;
2555 	swp_entry_t entry;
2556 	pte_t pte;
2557 	int locked;
2558 	int exclusive = 0;
2559 	int ret = 0;
2560 
2561 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2562 		goto out;
2563 
2564 	entry = pte_to_swp_entry(vmf->orig_pte);
2565 	if (unlikely(non_swap_entry(entry))) {
2566 		if (is_migration_entry(entry)) {
2567 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2568 					     vmf->address);
2569 		} else if (is_hwpoison_entry(entry)) {
2570 			ret = VM_FAULT_HWPOISON;
2571 		} else {
2572 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2573 			ret = VM_FAULT_SIGBUS;
2574 		}
2575 		goto out;
2576 	}
2577 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2578 	page = lookup_swap_cache(entry);
2579 	if (!page) {
2580 		page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2581 					vmf->address);
2582 		if (!page) {
2583 			/*
2584 			 * Back out if somebody else faulted in this pte
2585 			 * while we released the pte lock.
2586 			 */
2587 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2588 					vmf->address, &vmf->ptl);
2589 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2590 				ret = VM_FAULT_OOM;
2591 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2592 			goto unlock;
2593 		}
2594 
2595 		/* Had to read the page from swap area: Major fault */
2596 		ret = VM_FAULT_MAJOR;
2597 		count_vm_event(PGMAJFAULT);
2598 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2599 	} else if (PageHWPoison(page)) {
2600 		/*
2601 		 * hwpoisoned dirty swapcache pages are kept for killing
2602 		 * owner processes (which may be unknown at hwpoison time)
2603 		 */
2604 		ret = VM_FAULT_HWPOISON;
2605 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2606 		swapcache = page;
2607 		goto out_release;
2608 	}
2609 
2610 	swapcache = page;
2611 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2612 
2613 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2614 	if (!locked) {
2615 		ret |= VM_FAULT_RETRY;
2616 		goto out_release;
2617 	}
2618 
2619 	/*
2620 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2621 	 * release the swapcache from under us.  The page pin, and pte_same
2622 	 * test below, are not enough to exclude that.  Even if it is still
2623 	 * swapcache, we need to check that the page's swap has not changed.
2624 	 */
2625 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2626 		goto out_page;
2627 
2628 	page = ksm_might_need_to_copy(page, vma, vmf->address);
2629 	if (unlikely(!page)) {
2630 		ret = VM_FAULT_OOM;
2631 		page = swapcache;
2632 		goto out_page;
2633 	}
2634 
2635 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2636 				&memcg, false)) {
2637 		ret = VM_FAULT_OOM;
2638 		goto out_page;
2639 	}
2640 
2641 	/*
2642 	 * Back out if somebody else already faulted in this pte.
2643 	 */
2644 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2645 			&vmf->ptl);
2646 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
2647 		goto out_nomap;
2648 
2649 	if (unlikely(!PageUptodate(page))) {
2650 		ret = VM_FAULT_SIGBUS;
2651 		goto out_nomap;
2652 	}
2653 
2654 	/*
2655 	 * The page isn't present yet, go ahead with the fault.
2656 	 *
2657 	 * Be careful about the sequence of operations here.
2658 	 * To get its accounting right, reuse_swap_page() must be called
2659 	 * while the page is counted on swap but not yet in mapcount i.e.
2660 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2661 	 * must be called after the swap_free(), or it will never succeed.
2662 	 */
2663 
2664 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2665 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
2666 	pte = mk_pte(page, vma->vm_page_prot);
2667 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
2668 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2669 		vmf->flags &= ~FAULT_FLAG_WRITE;
2670 		ret |= VM_FAULT_WRITE;
2671 		exclusive = RMAP_EXCLUSIVE;
2672 	}
2673 	flush_icache_page(vma, page);
2674 	if (pte_swp_soft_dirty(vmf->orig_pte))
2675 		pte = pte_mksoft_dirty(pte);
2676 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2677 	vmf->orig_pte = pte;
2678 	if (page == swapcache) {
2679 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
2680 		mem_cgroup_commit_charge(page, memcg, true, false);
2681 		activate_page(page);
2682 	} else { /* ksm created a completely new copy */
2683 		page_add_new_anon_rmap(page, vma, vmf->address, false);
2684 		mem_cgroup_commit_charge(page, memcg, false, false);
2685 		lru_cache_add_active_or_unevictable(page, vma);
2686 	}
2687 
2688 	swap_free(entry);
2689 	if (mem_cgroup_swap_full(page) ||
2690 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
2691 		try_to_free_swap(page);
2692 	unlock_page(page);
2693 	if (page != swapcache) {
2694 		/*
2695 		 * Hold the lock to avoid the swap entry to be reused
2696 		 * until we take the PT lock for the pte_same() check
2697 		 * (to avoid false positives from pte_same). For
2698 		 * further safety release the lock after the swap_free
2699 		 * so that the swap count won't change under a
2700 		 * parallel locked swapcache.
2701 		 */
2702 		unlock_page(swapcache);
2703 		put_page(swapcache);
2704 	}
2705 
2706 	if (vmf->flags & FAULT_FLAG_WRITE) {
2707 		ret |= do_wp_page(vmf);
2708 		if (ret & VM_FAULT_ERROR)
2709 			ret &= VM_FAULT_ERROR;
2710 		goto out;
2711 	}
2712 
2713 	/* No need to invalidate - it was non-present before */
2714 	update_mmu_cache(vma, vmf->address, vmf->pte);
2715 unlock:
2716 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2717 out:
2718 	return ret;
2719 out_nomap:
2720 	mem_cgroup_cancel_charge(page, memcg, false);
2721 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2722 out_page:
2723 	unlock_page(page);
2724 out_release:
2725 	put_page(page);
2726 	if (page != swapcache) {
2727 		unlock_page(swapcache);
2728 		put_page(swapcache);
2729 	}
2730 	return ret;
2731 }
2732 
2733 /*
2734  * This is like a special single-page "expand_{down|up}wards()",
2735  * except we must first make sure that 'address{-|+}PAGE_SIZE'
2736  * doesn't hit another vma.
2737  */
2738 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2739 {
2740 	address &= PAGE_MASK;
2741 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
2742 		struct vm_area_struct *prev = vma->vm_prev;
2743 
2744 		/*
2745 		 * Is there a mapping abutting this one below?
2746 		 *
2747 		 * That's only ok if it's the same stack mapping
2748 		 * that has gotten split..
2749 		 */
2750 		if (prev && prev->vm_end == address)
2751 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
2752 
2753 		return expand_downwards(vma, address - PAGE_SIZE);
2754 	}
2755 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2756 		struct vm_area_struct *next = vma->vm_next;
2757 
2758 		/* As VM_GROWSDOWN but s/below/above/ */
2759 		if (next && next->vm_start == address + PAGE_SIZE)
2760 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2761 
2762 		return expand_upwards(vma, address + PAGE_SIZE);
2763 	}
2764 	return 0;
2765 }
2766 
2767 /*
2768  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2769  * but allow concurrent faults), and pte mapped but not yet locked.
2770  * We return with mmap_sem still held, but pte unmapped and unlocked.
2771  */
2772 static int do_anonymous_page(struct vm_fault *vmf)
2773 {
2774 	struct vm_area_struct *vma = vmf->vma;
2775 	struct mem_cgroup *memcg;
2776 	struct page *page;
2777 	pte_t entry;
2778 
2779 	/* File mapping without ->vm_ops ? */
2780 	if (vma->vm_flags & VM_SHARED)
2781 		return VM_FAULT_SIGBUS;
2782 
2783 	/* Check if we need to add a guard page to the stack */
2784 	if (check_stack_guard_page(vma, vmf->address) < 0)
2785 		return VM_FAULT_SIGSEGV;
2786 
2787 	/*
2788 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
2789 	 * pte_offset_map() on pmds where a huge pmd might be created
2790 	 * from a different thread.
2791 	 *
2792 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2793 	 * parallel threads are excluded by other means.
2794 	 *
2795 	 * Here we only have down_read(mmap_sem).
2796 	 */
2797 	if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
2798 		return VM_FAULT_OOM;
2799 
2800 	/* See the comment in pte_alloc_one_map() */
2801 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
2802 		return 0;
2803 
2804 	/* Use the zero-page for reads */
2805 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
2806 			!mm_forbids_zeropage(vma->vm_mm)) {
2807 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
2808 						vma->vm_page_prot));
2809 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2810 				vmf->address, &vmf->ptl);
2811 		if (!pte_none(*vmf->pte))
2812 			goto unlock;
2813 		/* Deliver the page fault to userland, check inside PT lock */
2814 		if (userfaultfd_missing(vma)) {
2815 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2816 			return handle_userfault(vmf, VM_UFFD_MISSING);
2817 		}
2818 		goto setpte;
2819 	}
2820 
2821 	/* Allocate our own private page. */
2822 	if (unlikely(anon_vma_prepare(vma)))
2823 		goto oom;
2824 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
2825 	if (!page)
2826 		goto oom;
2827 
2828 	if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2829 		goto oom_free_page;
2830 
2831 	/*
2832 	 * The memory barrier inside __SetPageUptodate makes sure that
2833 	 * preceeding stores to the page contents become visible before
2834 	 * the set_pte_at() write.
2835 	 */
2836 	__SetPageUptodate(page);
2837 
2838 	entry = mk_pte(page, vma->vm_page_prot);
2839 	if (vma->vm_flags & VM_WRITE)
2840 		entry = pte_mkwrite(pte_mkdirty(entry));
2841 
2842 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2843 			&vmf->ptl);
2844 	if (!pte_none(*vmf->pte))
2845 		goto release;
2846 
2847 	/* Deliver the page fault to userland, check inside PT lock */
2848 	if (userfaultfd_missing(vma)) {
2849 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2850 		mem_cgroup_cancel_charge(page, memcg, false);
2851 		put_page(page);
2852 		return handle_userfault(vmf, VM_UFFD_MISSING);
2853 	}
2854 
2855 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2856 	page_add_new_anon_rmap(page, vma, vmf->address, false);
2857 	mem_cgroup_commit_charge(page, memcg, false, false);
2858 	lru_cache_add_active_or_unevictable(page, vma);
2859 setpte:
2860 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
2861 
2862 	/* No need to invalidate - it was non-present before */
2863 	update_mmu_cache(vma, vmf->address, vmf->pte);
2864 unlock:
2865 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2866 	return 0;
2867 release:
2868 	mem_cgroup_cancel_charge(page, memcg, false);
2869 	put_page(page);
2870 	goto unlock;
2871 oom_free_page:
2872 	put_page(page);
2873 oom:
2874 	return VM_FAULT_OOM;
2875 }
2876 
2877 /*
2878  * The mmap_sem must have been held on entry, and may have been
2879  * released depending on flags and vma->vm_ops->fault() return value.
2880  * See filemap_fault() and __lock_page_retry().
2881  */
2882 static int __do_fault(struct vm_fault *vmf)
2883 {
2884 	struct vm_area_struct *vma = vmf->vma;
2885 	int ret;
2886 
2887 	ret = vma->vm_ops->fault(vmf);
2888 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
2889 			    VM_FAULT_DONE_COW)))
2890 		return ret;
2891 
2892 	if (unlikely(PageHWPoison(vmf->page))) {
2893 		if (ret & VM_FAULT_LOCKED)
2894 			unlock_page(vmf->page);
2895 		put_page(vmf->page);
2896 		vmf->page = NULL;
2897 		return VM_FAULT_HWPOISON;
2898 	}
2899 
2900 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
2901 		lock_page(vmf->page);
2902 	else
2903 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
2904 
2905 	return ret;
2906 }
2907 
2908 static int pte_alloc_one_map(struct vm_fault *vmf)
2909 {
2910 	struct vm_area_struct *vma = vmf->vma;
2911 
2912 	if (!pmd_none(*vmf->pmd))
2913 		goto map_pte;
2914 	if (vmf->prealloc_pte) {
2915 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
2916 		if (unlikely(!pmd_none(*vmf->pmd))) {
2917 			spin_unlock(vmf->ptl);
2918 			goto map_pte;
2919 		}
2920 
2921 		atomic_long_inc(&vma->vm_mm->nr_ptes);
2922 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2923 		spin_unlock(vmf->ptl);
2924 		vmf->prealloc_pte = NULL;
2925 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
2926 		return VM_FAULT_OOM;
2927 	}
2928 map_pte:
2929 	/*
2930 	 * If a huge pmd materialized under us just retry later.  Use
2931 	 * pmd_trans_unstable() instead of pmd_trans_huge() to ensure the pmd
2932 	 * didn't become pmd_trans_huge under us and then back to pmd_none, as
2933 	 * a result of MADV_DONTNEED running immediately after a huge pmd fault
2934 	 * in a different thread of this mm, in turn leading to a misleading
2935 	 * pmd_trans_huge() retval.  All we have to ensure is that it is a
2936 	 * regular pmd that we can walk with pte_offset_map() and we can do that
2937 	 * through an atomic read in C, which is what pmd_trans_unstable()
2938 	 * provides.
2939 	 */
2940 	if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
2941 		return VM_FAULT_NOPAGE;
2942 
2943 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2944 			&vmf->ptl);
2945 	return 0;
2946 }
2947 
2948 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
2949 
2950 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
2951 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
2952 		unsigned long haddr)
2953 {
2954 	if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
2955 			(vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
2956 		return false;
2957 	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
2958 		return false;
2959 	return true;
2960 }
2961 
2962 static void deposit_prealloc_pte(struct vm_fault *vmf)
2963 {
2964 	struct vm_area_struct *vma = vmf->vma;
2965 
2966 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
2967 	/*
2968 	 * We are going to consume the prealloc table,
2969 	 * count that as nr_ptes.
2970 	 */
2971 	atomic_long_inc(&vma->vm_mm->nr_ptes);
2972 	vmf->prealloc_pte = NULL;
2973 }
2974 
2975 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
2976 {
2977 	struct vm_area_struct *vma = vmf->vma;
2978 	bool write = vmf->flags & FAULT_FLAG_WRITE;
2979 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2980 	pmd_t entry;
2981 	int i, ret;
2982 
2983 	if (!transhuge_vma_suitable(vma, haddr))
2984 		return VM_FAULT_FALLBACK;
2985 
2986 	ret = VM_FAULT_FALLBACK;
2987 	page = compound_head(page);
2988 
2989 	/*
2990 	 * Archs like ppc64 need additonal space to store information
2991 	 * related to pte entry. Use the preallocated table for that.
2992 	 */
2993 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
2994 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
2995 		if (!vmf->prealloc_pte)
2996 			return VM_FAULT_OOM;
2997 		smp_wmb(); /* See comment in __pte_alloc() */
2998 	}
2999 
3000 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3001 	if (unlikely(!pmd_none(*vmf->pmd)))
3002 		goto out;
3003 
3004 	for (i = 0; i < HPAGE_PMD_NR; i++)
3005 		flush_icache_page(vma, page + i);
3006 
3007 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3008 	if (write)
3009 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3010 
3011 	add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3012 	page_add_file_rmap(page, true);
3013 	/*
3014 	 * deposit and withdraw with pmd lock held
3015 	 */
3016 	if (arch_needs_pgtable_deposit())
3017 		deposit_prealloc_pte(vmf);
3018 
3019 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3020 
3021 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3022 
3023 	/* fault is handled */
3024 	ret = 0;
3025 	count_vm_event(THP_FILE_MAPPED);
3026 out:
3027 	spin_unlock(vmf->ptl);
3028 	return ret;
3029 }
3030 #else
3031 static int do_set_pmd(struct vm_fault *vmf, struct page *page)
3032 {
3033 	BUILD_BUG();
3034 	return 0;
3035 }
3036 #endif
3037 
3038 /**
3039  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3040  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3041  *
3042  * @vmf: fault environment
3043  * @memcg: memcg to charge page (only for private mappings)
3044  * @page: page to map
3045  *
3046  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3047  * return.
3048  *
3049  * Target users are page handler itself and implementations of
3050  * vm_ops->map_pages.
3051  */
3052 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3053 		struct page *page)
3054 {
3055 	struct vm_area_struct *vma = vmf->vma;
3056 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3057 	pte_t entry;
3058 	int ret;
3059 
3060 	if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3061 			IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3062 		/* THP on COW? */
3063 		VM_BUG_ON_PAGE(memcg, page);
3064 
3065 		ret = do_set_pmd(vmf, page);
3066 		if (ret != VM_FAULT_FALLBACK)
3067 			return ret;
3068 	}
3069 
3070 	if (!vmf->pte) {
3071 		ret = pte_alloc_one_map(vmf);
3072 		if (ret)
3073 			return ret;
3074 	}
3075 
3076 	/* Re-check under ptl */
3077 	if (unlikely(!pte_none(*vmf->pte)))
3078 		return VM_FAULT_NOPAGE;
3079 
3080 	flush_icache_page(vma, page);
3081 	entry = mk_pte(page, vma->vm_page_prot);
3082 	if (write)
3083 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3084 	/* copy-on-write page */
3085 	if (write && !(vma->vm_flags & VM_SHARED)) {
3086 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3087 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3088 		mem_cgroup_commit_charge(page, memcg, false, false);
3089 		lru_cache_add_active_or_unevictable(page, vma);
3090 	} else {
3091 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3092 		page_add_file_rmap(page, false);
3093 	}
3094 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3095 
3096 	/* no need to invalidate: a not-present page won't be cached */
3097 	update_mmu_cache(vma, vmf->address, vmf->pte);
3098 
3099 	return 0;
3100 }
3101 
3102 
3103 /**
3104  * finish_fault - finish page fault once we have prepared the page to fault
3105  *
3106  * @vmf: structure describing the fault
3107  *
3108  * This function handles all that is needed to finish a page fault once the
3109  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3110  * given page, adds reverse page mapping, handles memcg charges and LRU
3111  * addition. The function returns 0 on success, VM_FAULT_ code in case of
3112  * error.
3113  *
3114  * The function expects the page to be locked and on success it consumes a
3115  * reference of a page being mapped (for the PTE which maps it).
3116  */
3117 int finish_fault(struct vm_fault *vmf)
3118 {
3119 	struct page *page;
3120 	int ret;
3121 
3122 	/* Did we COW the page? */
3123 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3124 	    !(vmf->vma->vm_flags & VM_SHARED))
3125 		page = vmf->cow_page;
3126 	else
3127 		page = vmf->page;
3128 	ret = alloc_set_pte(vmf, vmf->memcg, page);
3129 	if (vmf->pte)
3130 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3131 	return ret;
3132 }
3133 
3134 static unsigned long fault_around_bytes __read_mostly =
3135 	rounddown_pow_of_two(65536);
3136 
3137 #ifdef CONFIG_DEBUG_FS
3138 static int fault_around_bytes_get(void *data, u64 *val)
3139 {
3140 	*val = fault_around_bytes;
3141 	return 0;
3142 }
3143 
3144 /*
3145  * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3146  * rounded down to nearest page order. It's what do_fault_around() expects to
3147  * see.
3148  */
3149 static int fault_around_bytes_set(void *data, u64 val)
3150 {
3151 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3152 		return -EINVAL;
3153 	if (val > PAGE_SIZE)
3154 		fault_around_bytes = rounddown_pow_of_two(val);
3155 	else
3156 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3157 	return 0;
3158 }
3159 DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
3160 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3161 
3162 static int __init fault_around_debugfs(void)
3163 {
3164 	void *ret;
3165 
3166 	ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
3167 			&fault_around_bytes_fops);
3168 	if (!ret)
3169 		pr_warn("Failed to create fault_around_bytes in debugfs");
3170 	return 0;
3171 }
3172 late_initcall(fault_around_debugfs);
3173 #endif
3174 
3175 /*
3176  * do_fault_around() tries to map few pages around the fault address. The hope
3177  * is that the pages will be needed soon and this will lower the number of
3178  * faults to handle.
3179  *
3180  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3181  * not ready to be mapped: not up-to-date, locked, etc.
3182  *
3183  * This function is called with the page table lock taken. In the split ptlock
3184  * case the page table lock only protects only those entries which belong to
3185  * the page table corresponding to the fault address.
3186  *
3187  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3188  * only once.
3189  *
3190  * fault_around_pages() defines how many pages we'll try to map.
3191  * do_fault_around() expects it to return a power of two less than or equal to
3192  * PTRS_PER_PTE.
3193  *
3194  * The virtual address of the area that we map is naturally aligned to the
3195  * fault_around_pages() value (and therefore to page order).  This way it's
3196  * easier to guarantee that we don't cross page table boundaries.
3197  */
3198 static int do_fault_around(struct vm_fault *vmf)
3199 {
3200 	unsigned long address = vmf->address, nr_pages, mask;
3201 	pgoff_t start_pgoff = vmf->pgoff;
3202 	pgoff_t end_pgoff;
3203 	int off, ret = 0;
3204 
3205 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3206 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3207 
3208 	vmf->address = max(address & mask, vmf->vma->vm_start);
3209 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3210 	start_pgoff -= off;
3211 
3212 	/*
3213 	 *  end_pgoff is either end of page table or end of vma
3214 	 *  or fault_around_pages() from start_pgoff, depending what is nearest.
3215 	 */
3216 	end_pgoff = start_pgoff -
3217 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3218 		PTRS_PER_PTE - 1;
3219 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3220 			start_pgoff + nr_pages - 1);
3221 
3222 	if (pmd_none(*vmf->pmd)) {
3223 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3224 						  vmf->address);
3225 		if (!vmf->prealloc_pte)
3226 			goto out;
3227 		smp_wmb(); /* See comment in __pte_alloc() */
3228 	}
3229 
3230 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3231 
3232 	/* Huge page is mapped? Page fault is solved */
3233 	if (pmd_trans_huge(*vmf->pmd)) {
3234 		ret = VM_FAULT_NOPAGE;
3235 		goto out;
3236 	}
3237 
3238 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3239 	if (!vmf->pte)
3240 		goto out;
3241 
3242 	/* check if the page fault is solved */
3243 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3244 	if (!pte_none(*vmf->pte))
3245 		ret = VM_FAULT_NOPAGE;
3246 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3247 out:
3248 	vmf->address = address;
3249 	vmf->pte = NULL;
3250 	return ret;
3251 }
3252 
3253 static int do_read_fault(struct vm_fault *vmf)
3254 {
3255 	struct vm_area_struct *vma = vmf->vma;
3256 	int ret = 0;
3257 
3258 	/*
3259 	 * Let's call ->map_pages() first and use ->fault() as fallback
3260 	 * if page by the offset is not ready to be mapped (cold cache or
3261 	 * something).
3262 	 */
3263 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3264 		ret = do_fault_around(vmf);
3265 		if (ret)
3266 			return ret;
3267 	}
3268 
3269 	ret = __do_fault(vmf);
3270 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3271 		return ret;
3272 
3273 	ret |= finish_fault(vmf);
3274 	unlock_page(vmf->page);
3275 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3276 		put_page(vmf->page);
3277 	return ret;
3278 }
3279 
3280 static int do_cow_fault(struct vm_fault *vmf)
3281 {
3282 	struct vm_area_struct *vma = vmf->vma;
3283 	int ret;
3284 
3285 	if (unlikely(anon_vma_prepare(vma)))
3286 		return VM_FAULT_OOM;
3287 
3288 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3289 	if (!vmf->cow_page)
3290 		return VM_FAULT_OOM;
3291 
3292 	if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3293 				&vmf->memcg, false)) {
3294 		put_page(vmf->cow_page);
3295 		return VM_FAULT_OOM;
3296 	}
3297 
3298 	ret = __do_fault(vmf);
3299 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3300 		goto uncharge_out;
3301 	if (ret & VM_FAULT_DONE_COW)
3302 		return ret;
3303 
3304 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3305 	__SetPageUptodate(vmf->cow_page);
3306 
3307 	ret |= finish_fault(vmf);
3308 	unlock_page(vmf->page);
3309 	put_page(vmf->page);
3310 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3311 		goto uncharge_out;
3312 	return ret;
3313 uncharge_out:
3314 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3315 	put_page(vmf->cow_page);
3316 	return ret;
3317 }
3318 
3319 static int do_shared_fault(struct vm_fault *vmf)
3320 {
3321 	struct vm_area_struct *vma = vmf->vma;
3322 	int ret, tmp;
3323 
3324 	ret = __do_fault(vmf);
3325 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3326 		return ret;
3327 
3328 	/*
3329 	 * Check if the backing address space wants to know that the page is
3330 	 * about to become writable
3331 	 */
3332 	if (vma->vm_ops->page_mkwrite) {
3333 		unlock_page(vmf->page);
3334 		tmp = do_page_mkwrite(vmf);
3335 		if (unlikely(!tmp ||
3336 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3337 			put_page(vmf->page);
3338 			return tmp;
3339 		}
3340 	}
3341 
3342 	ret |= finish_fault(vmf);
3343 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3344 					VM_FAULT_RETRY))) {
3345 		unlock_page(vmf->page);
3346 		put_page(vmf->page);
3347 		return ret;
3348 	}
3349 
3350 	fault_dirty_shared_page(vma, vmf->page);
3351 	return ret;
3352 }
3353 
3354 /*
3355  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3356  * but allow concurrent faults).
3357  * The mmap_sem may have been released depending on flags and our
3358  * return value.  See filemap_fault() and __lock_page_or_retry().
3359  */
3360 static int do_fault(struct vm_fault *vmf)
3361 {
3362 	struct vm_area_struct *vma = vmf->vma;
3363 	int ret;
3364 
3365 	/* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3366 	if (!vma->vm_ops->fault)
3367 		ret = VM_FAULT_SIGBUS;
3368 	else if (!(vmf->flags & FAULT_FLAG_WRITE))
3369 		ret = do_read_fault(vmf);
3370 	else if (!(vma->vm_flags & VM_SHARED))
3371 		ret = do_cow_fault(vmf);
3372 	else
3373 		ret = do_shared_fault(vmf);
3374 
3375 	/* preallocated pagetable is unused: free it */
3376 	if (vmf->prealloc_pte) {
3377 		pte_free(vma->vm_mm, vmf->prealloc_pte);
3378 		vmf->prealloc_pte = NULL;
3379 	}
3380 	return ret;
3381 }
3382 
3383 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3384 				unsigned long addr, int page_nid,
3385 				int *flags)
3386 {
3387 	get_page(page);
3388 
3389 	count_vm_numa_event(NUMA_HINT_FAULTS);
3390 	if (page_nid == numa_node_id()) {
3391 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3392 		*flags |= TNF_FAULT_LOCAL;
3393 	}
3394 
3395 	return mpol_misplaced(page, vma, addr);
3396 }
3397 
3398 static int do_numa_page(struct vm_fault *vmf)
3399 {
3400 	struct vm_area_struct *vma = vmf->vma;
3401 	struct page *page = NULL;
3402 	int page_nid = -1;
3403 	int last_cpupid;
3404 	int target_nid;
3405 	bool migrated = false;
3406 	pte_t pte;
3407 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3408 	int flags = 0;
3409 
3410 	/*
3411 	 * The "pte" at this point cannot be used safely without
3412 	 * validation through pte_unmap_same(). It's of NUMA type but
3413 	 * the pfn may be screwed if the read is non atomic.
3414 	 */
3415 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3416 	spin_lock(vmf->ptl);
3417 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3418 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3419 		goto out;
3420 	}
3421 
3422 	/*
3423 	 * Make it present again, Depending on how arch implementes non
3424 	 * accessible ptes, some can allow access by kernel mode.
3425 	 */
3426 	pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3427 	pte = pte_modify(pte, vma->vm_page_prot);
3428 	pte = pte_mkyoung(pte);
3429 	if (was_writable)
3430 		pte = pte_mkwrite(pte);
3431 	ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3432 	update_mmu_cache(vma, vmf->address, vmf->pte);
3433 
3434 	page = vm_normal_page(vma, vmf->address, pte);
3435 	if (!page) {
3436 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3437 		return 0;
3438 	}
3439 
3440 	/* TODO: handle PTE-mapped THP */
3441 	if (PageCompound(page)) {
3442 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3443 		return 0;
3444 	}
3445 
3446 	/*
3447 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3448 	 * much anyway since they can be in shared cache state. This misses
3449 	 * the case where a mapping is writable but the process never writes
3450 	 * to it but pte_write gets cleared during protection updates and
3451 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3452 	 * background writeback, dirty balancing and application behaviour.
3453 	 */
3454 	if (!pte_write(pte))
3455 		flags |= TNF_NO_GROUP;
3456 
3457 	/*
3458 	 * Flag if the page is shared between multiple address spaces. This
3459 	 * is later used when determining whether to group tasks together
3460 	 */
3461 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3462 		flags |= TNF_SHARED;
3463 
3464 	last_cpupid = page_cpupid_last(page);
3465 	page_nid = page_to_nid(page);
3466 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3467 			&flags);
3468 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3469 	if (target_nid == -1) {
3470 		put_page(page);
3471 		goto out;
3472 	}
3473 
3474 	/* Migrate to the requested node */
3475 	migrated = migrate_misplaced_page(page, vma, target_nid);
3476 	if (migrated) {
3477 		page_nid = target_nid;
3478 		flags |= TNF_MIGRATED;
3479 	} else
3480 		flags |= TNF_MIGRATE_FAIL;
3481 
3482 out:
3483 	if (page_nid != -1)
3484 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3485 	return 0;
3486 }
3487 
3488 static int create_huge_pmd(struct vm_fault *vmf)
3489 {
3490 	if (vma_is_anonymous(vmf->vma))
3491 		return do_huge_pmd_anonymous_page(vmf);
3492 	if (vmf->vma->vm_ops->huge_fault)
3493 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3494 	return VM_FAULT_FALLBACK;
3495 }
3496 
3497 static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3498 {
3499 	if (vma_is_anonymous(vmf->vma))
3500 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3501 	if (vmf->vma->vm_ops->huge_fault)
3502 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3503 
3504 	/* COW handled on pte level: split pmd */
3505 	VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3506 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3507 
3508 	return VM_FAULT_FALLBACK;
3509 }
3510 
3511 static inline bool vma_is_accessible(struct vm_area_struct *vma)
3512 {
3513 	return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3514 }
3515 
3516 static int create_huge_pud(struct vm_fault *vmf)
3517 {
3518 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3519 	/* No support for anonymous transparent PUD pages yet */
3520 	if (vma_is_anonymous(vmf->vma))
3521 		return VM_FAULT_FALLBACK;
3522 	if (vmf->vma->vm_ops->huge_fault)
3523 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3524 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3525 	return VM_FAULT_FALLBACK;
3526 }
3527 
3528 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3529 {
3530 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3531 	/* No support for anonymous transparent PUD pages yet */
3532 	if (vma_is_anonymous(vmf->vma))
3533 		return VM_FAULT_FALLBACK;
3534 	if (vmf->vma->vm_ops->huge_fault)
3535 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3536 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3537 	return VM_FAULT_FALLBACK;
3538 }
3539 
3540 /*
3541  * These routines also need to handle stuff like marking pages dirty
3542  * and/or accessed for architectures that don't do it in hardware (most
3543  * RISC architectures).  The early dirtying is also good on the i386.
3544  *
3545  * There is also a hook called "update_mmu_cache()" that architectures
3546  * with external mmu caches can use to update those (ie the Sparc or
3547  * PowerPC hashed page tables that act as extended TLBs).
3548  *
3549  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3550  * concurrent faults).
3551  *
3552  * The mmap_sem may have been released depending on flags and our return value.
3553  * See filemap_fault() and __lock_page_or_retry().
3554  */
3555 static int handle_pte_fault(struct vm_fault *vmf)
3556 {
3557 	pte_t entry;
3558 
3559 	if (unlikely(pmd_none(*vmf->pmd))) {
3560 		/*
3561 		 * Leave __pte_alloc() until later: because vm_ops->fault may
3562 		 * want to allocate huge page, and if we expose page table
3563 		 * for an instant, it will be difficult to retract from
3564 		 * concurrent faults and from rmap lookups.
3565 		 */
3566 		vmf->pte = NULL;
3567 	} else {
3568 		/* See comment in pte_alloc_one_map() */
3569 		if (pmd_trans_unstable(vmf->pmd) || pmd_devmap(*vmf->pmd))
3570 			return 0;
3571 		/*
3572 		 * A regular pmd is established and it can't morph into a huge
3573 		 * pmd from under us anymore at this point because we hold the
3574 		 * mmap_sem read mode and khugepaged takes it in write mode.
3575 		 * So now it's safe to run pte_offset_map().
3576 		 */
3577 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3578 		vmf->orig_pte = *vmf->pte;
3579 
3580 		/*
3581 		 * some architectures can have larger ptes than wordsize,
3582 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3583 		 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3584 		 * atomic accesses.  The code below just needs a consistent
3585 		 * view for the ifs and we later double check anyway with the
3586 		 * ptl lock held. So here a barrier will do.
3587 		 */
3588 		barrier();
3589 		if (pte_none(vmf->orig_pte)) {
3590 			pte_unmap(vmf->pte);
3591 			vmf->pte = NULL;
3592 		}
3593 	}
3594 
3595 	if (!vmf->pte) {
3596 		if (vma_is_anonymous(vmf->vma))
3597 			return do_anonymous_page(vmf);
3598 		else
3599 			return do_fault(vmf);
3600 	}
3601 
3602 	if (!pte_present(vmf->orig_pte))
3603 		return do_swap_page(vmf);
3604 
3605 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3606 		return do_numa_page(vmf);
3607 
3608 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3609 	spin_lock(vmf->ptl);
3610 	entry = vmf->orig_pte;
3611 	if (unlikely(!pte_same(*vmf->pte, entry)))
3612 		goto unlock;
3613 	if (vmf->flags & FAULT_FLAG_WRITE) {
3614 		if (!pte_write(entry))
3615 			return do_wp_page(vmf);
3616 		entry = pte_mkdirty(entry);
3617 	}
3618 	entry = pte_mkyoung(entry);
3619 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3620 				vmf->flags & FAULT_FLAG_WRITE)) {
3621 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
3622 	} else {
3623 		/*
3624 		 * This is needed only for protection faults but the arch code
3625 		 * is not yet telling us if this is a protection fault or not.
3626 		 * This still avoids useless tlb flushes for .text page faults
3627 		 * with threads.
3628 		 */
3629 		if (vmf->flags & FAULT_FLAG_WRITE)
3630 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
3631 	}
3632 unlock:
3633 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3634 	return 0;
3635 }
3636 
3637 /*
3638  * By the time we get here, we already hold the mm semaphore
3639  *
3640  * The mmap_sem may have been released depending on flags and our
3641  * return value.  See filemap_fault() and __lock_page_or_retry().
3642  */
3643 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3644 		unsigned int flags)
3645 {
3646 	struct vm_fault vmf = {
3647 		.vma = vma,
3648 		.address = address & PAGE_MASK,
3649 		.flags = flags,
3650 		.pgoff = linear_page_index(vma, address),
3651 		.gfp_mask = __get_fault_gfp_mask(vma),
3652 	};
3653 	struct mm_struct *mm = vma->vm_mm;
3654 	pgd_t *pgd;
3655 	int ret;
3656 
3657 	pgd = pgd_offset(mm, address);
3658 
3659 	vmf.pud = pud_alloc(mm, pgd, address);
3660 	if (!vmf.pud)
3661 		return VM_FAULT_OOM;
3662 	if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
3663 		ret = create_huge_pud(&vmf);
3664 		if (!(ret & VM_FAULT_FALLBACK))
3665 			return ret;
3666 	} else {
3667 		pud_t orig_pud = *vmf.pud;
3668 
3669 		barrier();
3670 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3671 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3672 
3673 			/* NUMA case for anonymous PUDs would go here */
3674 
3675 			if (dirty && !pud_write(orig_pud)) {
3676 				ret = wp_huge_pud(&vmf, orig_pud);
3677 				if (!(ret & VM_FAULT_FALLBACK))
3678 					return ret;
3679 			} else {
3680 				huge_pud_set_accessed(&vmf, orig_pud);
3681 				return 0;
3682 			}
3683 		}
3684 	}
3685 
3686 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
3687 	if (!vmf.pmd)
3688 		return VM_FAULT_OOM;
3689 	if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
3690 		ret = create_huge_pmd(&vmf);
3691 		if (!(ret & VM_FAULT_FALLBACK))
3692 			return ret;
3693 	} else {
3694 		pmd_t orig_pmd = *vmf.pmd;
3695 
3696 		barrier();
3697 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
3698 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
3699 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
3700 
3701 			if ((vmf.flags & FAULT_FLAG_WRITE) &&
3702 					!pmd_write(orig_pmd)) {
3703 				ret = wp_huge_pmd(&vmf, orig_pmd);
3704 				if (!(ret & VM_FAULT_FALLBACK))
3705 					return ret;
3706 			} else {
3707 				huge_pmd_set_accessed(&vmf, orig_pmd);
3708 				return 0;
3709 			}
3710 		}
3711 	}
3712 
3713 	return handle_pte_fault(&vmf);
3714 }
3715 
3716 /*
3717  * By the time we get here, we already hold the mm semaphore
3718  *
3719  * The mmap_sem may have been released depending on flags and our
3720  * return value.  See filemap_fault() and __lock_page_or_retry().
3721  */
3722 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3723 		unsigned int flags)
3724 {
3725 	int ret;
3726 
3727 	__set_current_state(TASK_RUNNING);
3728 
3729 	count_vm_event(PGFAULT);
3730 	mem_cgroup_count_vm_event(vma->vm_mm, PGFAULT);
3731 
3732 	/* do counter updates before entering really critical section. */
3733 	check_sync_rss_stat(current);
3734 
3735 	/*
3736 	 * Enable the memcg OOM handling for faults triggered in user
3737 	 * space.  Kernel faults are handled more gracefully.
3738 	 */
3739 	if (flags & FAULT_FLAG_USER)
3740 		mem_cgroup_oom_enable();
3741 
3742 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3743 					    flags & FAULT_FLAG_INSTRUCTION,
3744 					    flags & FAULT_FLAG_REMOTE))
3745 		return VM_FAULT_SIGSEGV;
3746 
3747 	if (unlikely(is_vm_hugetlb_page(vma)))
3748 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3749 	else
3750 		ret = __handle_mm_fault(vma, address, flags);
3751 
3752 	if (flags & FAULT_FLAG_USER) {
3753 		mem_cgroup_oom_disable();
3754 		/*
3755 		 * The task may have entered a memcg OOM situation but
3756 		 * if the allocation error was handled gracefully (no
3757 		 * VM_FAULT_OOM), there is no need to kill anything.
3758 		 * Just clean up the OOM state peacefully.
3759 		 */
3760 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3761 			mem_cgroup_oom_synchronize(false);
3762 	}
3763 
3764 	/*
3765 	 * This mm has been already reaped by the oom reaper and so the
3766 	 * refault cannot be trusted in general. Anonymous refaults would
3767 	 * lose data and give a zero page instead e.g. This is especially
3768 	 * problem for use_mm() because regular tasks will just die and
3769 	 * the corrupted data will not be visible anywhere while kthread
3770 	 * will outlive the oom victim and potentially propagate the date
3771 	 * further.
3772 	 */
3773 	if (unlikely((current->flags & PF_KTHREAD) && !(ret & VM_FAULT_ERROR)
3774 				&& test_bit(MMF_UNSTABLE, &vma->vm_mm->flags)))
3775 		ret = VM_FAULT_SIGBUS;
3776 
3777 	return ret;
3778 }
3779 EXPORT_SYMBOL_GPL(handle_mm_fault);
3780 
3781 #ifndef __PAGETABLE_PUD_FOLDED
3782 /*
3783  * Allocate page upper directory.
3784  * We've already handled the fast-path in-line.
3785  */
3786 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3787 {
3788 	pud_t *new = pud_alloc_one(mm, address);
3789 	if (!new)
3790 		return -ENOMEM;
3791 
3792 	smp_wmb(); /* See comment in __pte_alloc */
3793 
3794 	spin_lock(&mm->page_table_lock);
3795 	if (pgd_present(*pgd))		/* Another has populated it */
3796 		pud_free(mm, new);
3797 	else
3798 		pgd_populate(mm, pgd, new);
3799 	spin_unlock(&mm->page_table_lock);
3800 	return 0;
3801 }
3802 #endif /* __PAGETABLE_PUD_FOLDED */
3803 
3804 #ifndef __PAGETABLE_PMD_FOLDED
3805 /*
3806  * Allocate page middle directory.
3807  * We've already handled the fast-path in-line.
3808  */
3809 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3810 {
3811 	spinlock_t *ptl;
3812 	pmd_t *new = pmd_alloc_one(mm, address);
3813 	if (!new)
3814 		return -ENOMEM;
3815 
3816 	smp_wmb(); /* See comment in __pte_alloc */
3817 
3818 	ptl = pud_lock(mm, pud);
3819 #ifndef __ARCH_HAS_4LEVEL_HACK
3820 	if (!pud_present(*pud)) {
3821 		mm_inc_nr_pmds(mm);
3822 		pud_populate(mm, pud, new);
3823 	} else	/* Another has populated it */
3824 		pmd_free(mm, new);
3825 #else
3826 	if (!pgd_present(*pud)) {
3827 		mm_inc_nr_pmds(mm);
3828 		pgd_populate(mm, pud, new);
3829 	} else /* Another has populated it */
3830 		pmd_free(mm, new);
3831 #endif /* __ARCH_HAS_4LEVEL_HACK */
3832 	spin_unlock(ptl);
3833 	return 0;
3834 }
3835 #endif /* __PAGETABLE_PMD_FOLDED */
3836 
3837 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3838 		pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3839 {
3840 	pgd_t *pgd;
3841 	pud_t *pud;
3842 	pmd_t *pmd;
3843 	pte_t *ptep;
3844 
3845 	pgd = pgd_offset(mm, address);
3846 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3847 		goto out;
3848 
3849 	pud = pud_offset(pgd, address);
3850 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3851 		goto out;
3852 
3853 	pmd = pmd_offset(pud, address);
3854 	VM_BUG_ON(pmd_trans_huge(*pmd));
3855 
3856 	if (pmd_huge(*pmd)) {
3857 		if (!pmdpp)
3858 			goto out;
3859 
3860 		*ptlp = pmd_lock(mm, pmd);
3861 		if (pmd_huge(*pmd)) {
3862 			*pmdpp = pmd;
3863 			return 0;
3864 		}
3865 		spin_unlock(*ptlp);
3866 	}
3867 
3868 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3869 		goto out;
3870 
3871 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3872 	if (!ptep)
3873 		goto out;
3874 	if (!pte_present(*ptep))
3875 		goto unlock;
3876 	*ptepp = ptep;
3877 	return 0;
3878 unlock:
3879 	pte_unmap_unlock(ptep, *ptlp);
3880 out:
3881 	return -EINVAL;
3882 }
3883 
3884 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3885 			     pte_t **ptepp, spinlock_t **ptlp)
3886 {
3887 	int res;
3888 
3889 	/* (void) is needed to make gcc happy */
3890 	(void) __cond_lock(*ptlp,
3891 			   !(res = __follow_pte_pmd(mm, address, ptepp, NULL,
3892 					   ptlp)));
3893 	return res;
3894 }
3895 
3896 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
3897 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
3898 {
3899 	int res;
3900 
3901 	/* (void) is needed to make gcc happy */
3902 	(void) __cond_lock(*ptlp,
3903 			   !(res = __follow_pte_pmd(mm, address, ptepp, pmdpp,
3904 					   ptlp)));
3905 	return res;
3906 }
3907 EXPORT_SYMBOL(follow_pte_pmd);
3908 
3909 /**
3910  * follow_pfn - look up PFN at a user virtual address
3911  * @vma: memory mapping
3912  * @address: user virtual address
3913  * @pfn: location to store found PFN
3914  *
3915  * Only IO mappings and raw PFN mappings are allowed.
3916  *
3917  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3918  */
3919 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3920 	unsigned long *pfn)
3921 {
3922 	int ret = -EINVAL;
3923 	spinlock_t *ptl;
3924 	pte_t *ptep;
3925 
3926 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3927 		return ret;
3928 
3929 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3930 	if (ret)
3931 		return ret;
3932 	*pfn = pte_pfn(*ptep);
3933 	pte_unmap_unlock(ptep, ptl);
3934 	return 0;
3935 }
3936 EXPORT_SYMBOL(follow_pfn);
3937 
3938 #ifdef CONFIG_HAVE_IOREMAP_PROT
3939 int follow_phys(struct vm_area_struct *vma,
3940 		unsigned long address, unsigned int flags,
3941 		unsigned long *prot, resource_size_t *phys)
3942 {
3943 	int ret = -EINVAL;
3944 	pte_t *ptep, pte;
3945 	spinlock_t *ptl;
3946 
3947 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3948 		goto out;
3949 
3950 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3951 		goto out;
3952 	pte = *ptep;
3953 
3954 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3955 		goto unlock;
3956 
3957 	*prot = pgprot_val(pte_pgprot(pte));
3958 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3959 
3960 	ret = 0;
3961 unlock:
3962 	pte_unmap_unlock(ptep, ptl);
3963 out:
3964 	return ret;
3965 }
3966 
3967 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3968 			void *buf, int len, int write)
3969 {
3970 	resource_size_t phys_addr;
3971 	unsigned long prot = 0;
3972 	void __iomem *maddr;
3973 	int offset = addr & (PAGE_SIZE-1);
3974 
3975 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3976 		return -EINVAL;
3977 
3978 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
3979 	if (write)
3980 		memcpy_toio(maddr + offset, buf, len);
3981 	else
3982 		memcpy_fromio(buf, maddr + offset, len);
3983 	iounmap(maddr);
3984 
3985 	return len;
3986 }
3987 EXPORT_SYMBOL_GPL(generic_access_phys);
3988 #endif
3989 
3990 /*
3991  * Access another process' address space as given in mm.  If non-NULL, use the
3992  * given task for page fault accounting.
3993  */
3994 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3995 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
3996 {
3997 	struct vm_area_struct *vma;
3998 	void *old_buf = buf;
3999 	int write = gup_flags & FOLL_WRITE;
4000 
4001 	down_read(&mm->mmap_sem);
4002 	/* ignore errors, just check how much was successfully transferred */
4003 	while (len) {
4004 		int bytes, ret, offset;
4005 		void *maddr;
4006 		struct page *page = NULL;
4007 
4008 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4009 				gup_flags, &page, &vma, NULL);
4010 		if (ret <= 0) {
4011 #ifndef CONFIG_HAVE_IOREMAP_PROT
4012 			break;
4013 #else
4014 			/*
4015 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4016 			 * we can access using slightly different code.
4017 			 */
4018 			vma = find_vma(mm, addr);
4019 			if (!vma || vma->vm_start > addr)
4020 				break;
4021 			if (vma->vm_ops && vma->vm_ops->access)
4022 				ret = vma->vm_ops->access(vma, addr, buf,
4023 							  len, write);
4024 			if (ret <= 0)
4025 				break;
4026 			bytes = ret;
4027 #endif
4028 		} else {
4029 			bytes = len;
4030 			offset = addr & (PAGE_SIZE-1);
4031 			if (bytes > PAGE_SIZE-offset)
4032 				bytes = PAGE_SIZE-offset;
4033 
4034 			maddr = kmap(page);
4035 			if (write) {
4036 				copy_to_user_page(vma, page, addr,
4037 						  maddr + offset, buf, bytes);
4038 				set_page_dirty_lock(page);
4039 			} else {
4040 				copy_from_user_page(vma, page, addr,
4041 						    buf, maddr + offset, bytes);
4042 			}
4043 			kunmap(page);
4044 			put_page(page);
4045 		}
4046 		len -= bytes;
4047 		buf += bytes;
4048 		addr += bytes;
4049 	}
4050 	up_read(&mm->mmap_sem);
4051 
4052 	return buf - old_buf;
4053 }
4054 
4055 /**
4056  * access_remote_vm - access another process' address space
4057  * @mm:		the mm_struct of the target address space
4058  * @addr:	start address to access
4059  * @buf:	source or destination buffer
4060  * @len:	number of bytes to transfer
4061  * @gup_flags:	flags modifying lookup behaviour
4062  *
4063  * The caller must hold a reference on @mm.
4064  */
4065 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4066 		void *buf, int len, unsigned int gup_flags)
4067 {
4068 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4069 }
4070 
4071 /*
4072  * Access another process' address space.
4073  * Source/target buffer must be kernel space,
4074  * Do not walk the page table directly, use get_user_pages
4075  */
4076 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4077 		void *buf, int len, unsigned int gup_flags)
4078 {
4079 	struct mm_struct *mm;
4080 	int ret;
4081 
4082 	mm = get_task_mm(tsk);
4083 	if (!mm)
4084 		return 0;
4085 
4086 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4087 
4088 	mmput(mm);
4089 
4090 	return ret;
4091 }
4092 EXPORT_SYMBOL_GPL(access_process_vm);
4093 
4094 /*
4095  * Print the name of a VMA.
4096  */
4097 void print_vma_addr(char *prefix, unsigned long ip)
4098 {
4099 	struct mm_struct *mm = current->mm;
4100 	struct vm_area_struct *vma;
4101 
4102 	/*
4103 	 * Do not print if we are in atomic
4104 	 * contexts (in exception stacks, etc.):
4105 	 */
4106 	if (preempt_count())
4107 		return;
4108 
4109 	down_read(&mm->mmap_sem);
4110 	vma = find_vma(mm, ip);
4111 	if (vma && vma->vm_file) {
4112 		struct file *f = vma->vm_file;
4113 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4114 		if (buf) {
4115 			char *p;
4116 
4117 			p = file_path(f, buf, PAGE_SIZE);
4118 			if (IS_ERR(p))
4119 				p = "?";
4120 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4121 					vma->vm_start,
4122 					vma->vm_end - vma->vm_start);
4123 			free_page((unsigned long)buf);
4124 		}
4125 	}
4126 	up_read(&mm->mmap_sem);
4127 }
4128 
4129 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4130 void __might_fault(const char *file, int line)
4131 {
4132 	/*
4133 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4134 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4135 	 * get paged out, therefore we'll never actually fault, and the
4136 	 * below annotations will generate false positives.
4137 	 */
4138 	if (segment_eq(get_fs(), KERNEL_DS))
4139 		return;
4140 	if (pagefault_disabled())
4141 		return;
4142 	__might_sleep(file, line, 0);
4143 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4144 	if (current->mm)
4145 		might_lock_read(&current->mm->mmap_sem);
4146 #endif
4147 }
4148 EXPORT_SYMBOL(__might_fault);
4149 #endif
4150 
4151 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4152 static void clear_gigantic_page(struct page *page,
4153 				unsigned long addr,
4154 				unsigned int pages_per_huge_page)
4155 {
4156 	int i;
4157 	struct page *p = page;
4158 
4159 	might_sleep();
4160 	for (i = 0; i < pages_per_huge_page;
4161 	     i++, p = mem_map_next(p, page, i)) {
4162 		cond_resched();
4163 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4164 	}
4165 }
4166 void clear_huge_page(struct page *page,
4167 		     unsigned long addr, unsigned int pages_per_huge_page)
4168 {
4169 	int i;
4170 
4171 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4172 		clear_gigantic_page(page, addr, pages_per_huge_page);
4173 		return;
4174 	}
4175 
4176 	might_sleep();
4177 	for (i = 0; i < pages_per_huge_page; i++) {
4178 		cond_resched();
4179 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4180 	}
4181 }
4182 
4183 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4184 				    unsigned long addr,
4185 				    struct vm_area_struct *vma,
4186 				    unsigned int pages_per_huge_page)
4187 {
4188 	int i;
4189 	struct page *dst_base = dst;
4190 	struct page *src_base = src;
4191 
4192 	for (i = 0; i < pages_per_huge_page; ) {
4193 		cond_resched();
4194 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4195 
4196 		i++;
4197 		dst = mem_map_next(dst, dst_base, i);
4198 		src = mem_map_next(src, src_base, i);
4199 	}
4200 }
4201 
4202 void copy_user_huge_page(struct page *dst, struct page *src,
4203 			 unsigned long addr, struct vm_area_struct *vma,
4204 			 unsigned int pages_per_huge_page)
4205 {
4206 	int i;
4207 
4208 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4209 		copy_user_gigantic_page(dst, src, addr, vma,
4210 					pages_per_huge_page);
4211 		return;
4212 	}
4213 
4214 	might_sleep();
4215 	for (i = 0; i < pages_per_huge_page; i++) {
4216 		cond_resched();
4217 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4218 	}
4219 }
4220 
4221 long copy_huge_page_from_user(struct page *dst_page,
4222 				const void __user *usr_src,
4223 				unsigned int pages_per_huge_page,
4224 				bool allow_pagefault)
4225 {
4226 	void *src = (void *)usr_src;
4227 	void *page_kaddr;
4228 	unsigned long i, rc = 0;
4229 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4230 
4231 	for (i = 0; i < pages_per_huge_page; i++) {
4232 		if (allow_pagefault)
4233 			page_kaddr = kmap(dst_page + i);
4234 		else
4235 			page_kaddr = kmap_atomic(dst_page + i);
4236 		rc = copy_from_user(page_kaddr,
4237 				(const void __user *)(src + i * PAGE_SIZE),
4238 				PAGE_SIZE);
4239 		if (allow_pagefault)
4240 			kunmap(dst_page + i);
4241 		else
4242 			kunmap_atomic(page_kaddr);
4243 
4244 		ret_val -= (PAGE_SIZE - rc);
4245 		if (rc)
4246 			break;
4247 
4248 		cond_resched();
4249 	}
4250 	return ret_val;
4251 }
4252 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4253 
4254 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4255 
4256 static struct kmem_cache *page_ptl_cachep;
4257 
4258 void __init ptlock_cache_init(void)
4259 {
4260 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4261 			SLAB_PANIC, NULL);
4262 }
4263 
4264 bool ptlock_alloc(struct page *page)
4265 {
4266 	spinlock_t *ptl;
4267 
4268 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4269 	if (!ptl)
4270 		return false;
4271 	page->ptl = ptl;
4272 	return true;
4273 }
4274 
4275 void ptlock_free(struct page *page)
4276 {
4277 	kmem_cache_free(page_ptl_cachep, page->ptl);
4278 }
4279 #endif
4280