xref: /openbmc/linux/mm/memory.c (revision 163b0991)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/debugfs.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/dax.h>
71 #include <linux/oom.h>
72 #include <linux/numa.h>
73 #include <linux/perf_event.h>
74 #include <linux/ptrace.h>
75 #include <linux/vmalloc.h>
76 
77 #include <trace/events/kmem.h>
78 
79 #include <asm/io.h>
80 #include <asm/mmu_context.h>
81 #include <asm/pgalloc.h>
82 #include <linux/uaccess.h>
83 #include <asm/tlb.h>
84 #include <asm/tlbflush.h>
85 
86 #include "pgalloc-track.h"
87 #include "internal.h"
88 
89 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
90 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
91 #endif
92 
93 #ifndef CONFIG_NEED_MULTIPLE_NODES
94 /* use the per-pgdat data instead for discontigmem - mbligh */
95 unsigned long max_mapnr;
96 EXPORT_SYMBOL(max_mapnr);
97 
98 struct page *mem_map;
99 EXPORT_SYMBOL(mem_map);
100 #endif
101 
102 /*
103  * A number of key systems in x86 including ioremap() rely on the assumption
104  * that high_memory defines the upper bound on direct map memory, then end
105  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
106  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
107  * and ZONE_HIGHMEM.
108  */
109 void *high_memory;
110 EXPORT_SYMBOL(high_memory);
111 
112 /*
113  * Randomize the address space (stacks, mmaps, brk, etc.).
114  *
115  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
116  *   as ancient (libc5 based) binaries can segfault. )
117  */
118 int randomize_va_space __read_mostly =
119 #ifdef CONFIG_COMPAT_BRK
120 					1;
121 #else
122 					2;
123 #endif
124 
125 #ifndef arch_faults_on_old_pte
126 static inline bool arch_faults_on_old_pte(void)
127 {
128 	/*
129 	 * Those arches which don't have hw access flag feature need to
130 	 * implement their own helper. By default, "true" means pagefault
131 	 * will be hit on old pte.
132 	 */
133 	return true;
134 }
135 #endif
136 
137 #ifndef arch_wants_old_prefaulted_pte
138 static inline bool arch_wants_old_prefaulted_pte(void)
139 {
140 	/*
141 	 * Transitioning a PTE from 'old' to 'young' can be expensive on
142 	 * some architectures, even if it's performed in hardware. By
143 	 * default, "false" means prefaulted entries will be 'young'.
144 	 */
145 	return false;
146 }
147 #endif
148 
149 static int __init disable_randmaps(char *s)
150 {
151 	randomize_va_space = 0;
152 	return 1;
153 }
154 __setup("norandmaps", disable_randmaps);
155 
156 unsigned long zero_pfn __read_mostly;
157 EXPORT_SYMBOL(zero_pfn);
158 
159 unsigned long highest_memmap_pfn __read_mostly;
160 
161 /*
162  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
163  */
164 static int __init init_zero_pfn(void)
165 {
166 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
167 	return 0;
168 }
169 core_initcall(init_zero_pfn);
170 
171 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
172 {
173 	trace_rss_stat(mm, member, count);
174 }
175 
176 #if defined(SPLIT_RSS_COUNTING)
177 
178 void sync_mm_rss(struct mm_struct *mm)
179 {
180 	int i;
181 
182 	for (i = 0; i < NR_MM_COUNTERS; i++) {
183 		if (current->rss_stat.count[i]) {
184 			add_mm_counter(mm, i, current->rss_stat.count[i]);
185 			current->rss_stat.count[i] = 0;
186 		}
187 	}
188 	current->rss_stat.events = 0;
189 }
190 
191 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
192 {
193 	struct task_struct *task = current;
194 
195 	if (likely(task->mm == mm))
196 		task->rss_stat.count[member] += val;
197 	else
198 		add_mm_counter(mm, member, val);
199 }
200 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
201 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
202 
203 /* sync counter once per 64 page faults */
204 #define TASK_RSS_EVENTS_THRESH	(64)
205 static void check_sync_rss_stat(struct task_struct *task)
206 {
207 	if (unlikely(task != current))
208 		return;
209 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
210 		sync_mm_rss(task->mm);
211 }
212 #else /* SPLIT_RSS_COUNTING */
213 
214 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
215 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
216 
217 static void check_sync_rss_stat(struct task_struct *task)
218 {
219 }
220 
221 #endif /* SPLIT_RSS_COUNTING */
222 
223 /*
224  * Note: this doesn't free the actual pages themselves. That
225  * has been handled earlier when unmapping all the memory regions.
226  */
227 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
228 			   unsigned long addr)
229 {
230 	pgtable_t token = pmd_pgtable(*pmd);
231 	pmd_clear(pmd);
232 	pte_free_tlb(tlb, token, addr);
233 	mm_dec_nr_ptes(tlb->mm);
234 }
235 
236 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
237 				unsigned long addr, unsigned long end,
238 				unsigned long floor, unsigned long ceiling)
239 {
240 	pmd_t *pmd;
241 	unsigned long next;
242 	unsigned long start;
243 
244 	start = addr;
245 	pmd = pmd_offset(pud, addr);
246 	do {
247 		next = pmd_addr_end(addr, end);
248 		if (pmd_none_or_clear_bad(pmd))
249 			continue;
250 		free_pte_range(tlb, pmd, addr);
251 	} while (pmd++, addr = next, addr != end);
252 
253 	start &= PUD_MASK;
254 	if (start < floor)
255 		return;
256 	if (ceiling) {
257 		ceiling &= PUD_MASK;
258 		if (!ceiling)
259 			return;
260 	}
261 	if (end - 1 > ceiling - 1)
262 		return;
263 
264 	pmd = pmd_offset(pud, start);
265 	pud_clear(pud);
266 	pmd_free_tlb(tlb, pmd, start);
267 	mm_dec_nr_pmds(tlb->mm);
268 }
269 
270 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
271 				unsigned long addr, unsigned long end,
272 				unsigned long floor, unsigned long ceiling)
273 {
274 	pud_t *pud;
275 	unsigned long next;
276 	unsigned long start;
277 
278 	start = addr;
279 	pud = pud_offset(p4d, addr);
280 	do {
281 		next = pud_addr_end(addr, end);
282 		if (pud_none_or_clear_bad(pud))
283 			continue;
284 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
285 	} while (pud++, addr = next, addr != end);
286 
287 	start &= P4D_MASK;
288 	if (start < floor)
289 		return;
290 	if (ceiling) {
291 		ceiling &= P4D_MASK;
292 		if (!ceiling)
293 			return;
294 	}
295 	if (end - 1 > ceiling - 1)
296 		return;
297 
298 	pud = pud_offset(p4d, start);
299 	p4d_clear(p4d);
300 	pud_free_tlb(tlb, pud, start);
301 	mm_dec_nr_puds(tlb->mm);
302 }
303 
304 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
305 				unsigned long addr, unsigned long end,
306 				unsigned long floor, unsigned long ceiling)
307 {
308 	p4d_t *p4d;
309 	unsigned long next;
310 	unsigned long start;
311 
312 	start = addr;
313 	p4d = p4d_offset(pgd, addr);
314 	do {
315 		next = p4d_addr_end(addr, end);
316 		if (p4d_none_or_clear_bad(p4d))
317 			continue;
318 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
319 	} while (p4d++, addr = next, addr != end);
320 
321 	start &= PGDIR_MASK;
322 	if (start < floor)
323 		return;
324 	if (ceiling) {
325 		ceiling &= PGDIR_MASK;
326 		if (!ceiling)
327 			return;
328 	}
329 	if (end - 1 > ceiling - 1)
330 		return;
331 
332 	p4d = p4d_offset(pgd, start);
333 	pgd_clear(pgd);
334 	p4d_free_tlb(tlb, p4d, start);
335 }
336 
337 /*
338  * This function frees user-level page tables of a process.
339  */
340 void free_pgd_range(struct mmu_gather *tlb,
341 			unsigned long addr, unsigned long end,
342 			unsigned long floor, unsigned long ceiling)
343 {
344 	pgd_t *pgd;
345 	unsigned long next;
346 
347 	/*
348 	 * The next few lines have given us lots of grief...
349 	 *
350 	 * Why are we testing PMD* at this top level?  Because often
351 	 * there will be no work to do at all, and we'd prefer not to
352 	 * go all the way down to the bottom just to discover that.
353 	 *
354 	 * Why all these "- 1"s?  Because 0 represents both the bottom
355 	 * of the address space and the top of it (using -1 for the
356 	 * top wouldn't help much: the masks would do the wrong thing).
357 	 * The rule is that addr 0 and floor 0 refer to the bottom of
358 	 * the address space, but end 0 and ceiling 0 refer to the top
359 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
360 	 * that end 0 case should be mythical).
361 	 *
362 	 * Wherever addr is brought up or ceiling brought down, we must
363 	 * be careful to reject "the opposite 0" before it confuses the
364 	 * subsequent tests.  But what about where end is brought down
365 	 * by PMD_SIZE below? no, end can't go down to 0 there.
366 	 *
367 	 * Whereas we round start (addr) and ceiling down, by different
368 	 * masks at different levels, in order to test whether a table
369 	 * now has no other vmas using it, so can be freed, we don't
370 	 * bother to round floor or end up - the tests don't need that.
371 	 */
372 
373 	addr &= PMD_MASK;
374 	if (addr < floor) {
375 		addr += PMD_SIZE;
376 		if (!addr)
377 			return;
378 	}
379 	if (ceiling) {
380 		ceiling &= PMD_MASK;
381 		if (!ceiling)
382 			return;
383 	}
384 	if (end - 1 > ceiling - 1)
385 		end -= PMD_SIZE;
386 	if (addr > end - 1)
387 		return;
388 	/*
389 	 * We add page table cache pages with PAGE_SIZE,
390 	 * (see pte_free_tlb()), flush the tlb if we need
391 	 */
392 	tlb_change_page_size(tlb, PAGE_SIZE);
393 	pgd = pgd_offset(tlb->mm, addr);
394 	do {
395 		next = pgd_addr_end(addr, end);
396 		if (pgd_none_or_clear_bad(pgd))
397 			continue;
398 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
399 	} while (pgd++, addr = next, addr != end);
400 }
401 
402 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
403 		unsigned long floor, unsigned long ceiling)
404 {
405 	while (vma) {
406 		struct vm_area_struct *next = vma->vm_next;
407 		unsigned long addr = vma->vm_start;
408 
409 		/*
410 		 * Hide vma from rmap and truncate_pagecache before freeing
411 		 * pgtables
412 		 */
413 		unlink_anon_vmas(vma);
414 		unlink_file_vma(vma);
415 
416 		if (is_vm_hugetlb_page(vma)) {
417 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
418 				floor, next ? next->vm_start : ceiling);
419 		} else {
420 			/*
421 			 * Optimization: gather nearby vmas into one call down
422 			 */
423 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
424 			       && !is_vm_hugetlb_page(next)) {
425 				vma = next;
426 				next = vma->vm_next;
427 				unlink_anon_vmas(vma);
428 				unlink_file_vma(vma);
429 			}
430 			free_pgd_range(tlb, addr, vma->vm_end,
431 				floor, next ? next->vm_start : ceiling);
432 		}
433 		vma = next;
434 	}
435 }
436 
437 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
438 {
439 	spinlock_t *ptl;
440 	pgtable_t new = pte_alloc_one(mm);
441 	if (!new)
442 		return -ENOMEM;
443 
444 	/*
445 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
446 	 * visible before the pte is made visible to other CPUs by being
447 	 * put into page tables.
448 	 *
449 	 * The other side of the story is the pointer chasing in the page
450 	 * table walking code (when walking the page table without locking;
451 	 * ie. most of the time). Fortunately, these data accesses consist
452 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
453 	 * being the notable exception) will already guarantee loads are
454 	 * seen in-order. See the alpha page table accessors for the
455 	 * smp_rmb() barriers in page table walking code.
456 	 */
457 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
458 
459 	ptl = pmd_lock(mm, pmd);
460 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
461 		mm_inc_nr_ptes(mm);
462 		pmd_populate(mm, pmd, new);
463 		new = NULL;
464 	}
465 	spin_unlock(ptl);
466 	if (new)
467 		pte_free(mm, new);
468 	return 0;
469 }
470 
471 int __pte_alloc_kernel(pmd_t *pmd)
472 {
473 	pte_t *new = pte_alloc_one_kernel(&init_mm);
474 	if (!new)
475 		return -ENOMEM;
476 
477 	smp_wmb(); /* See comment in __pte_alloc */
478 
479 	spin_lock(&init_mm.page_table_lock);
480 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
481 		pmd_populate_kernel(&init_mm, pmd, new);
482 		new = NULL;
483 	}
484 	spin_unlock(&init_mm.page_table_lock);
485 	if (new)
486 		pte_free_kernel(&init_mm, new);
487 	return 0;
488 }
489 
490 static inline void init_rss_vec(int *rss)
491 {
492 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
493 }
494 
495 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
496 {
497 	int i;
498 
499 	if (current->mm == mm)
500 		sync_mm_rss(mm);
501 	for (i = 0; i < NR_MM_COUNTERS; i++)
502 		if (rss[i])
503 			add_mm_counter(mm, i, rss[i]);
504 }
505 
506 /*
507  * This function is called to print an error when a bad pte
508  * is found. For example, we might have a PFN-mapped pte in
509  * a region that doesn't allow it.
510  *
511  * The calling function must still handle the error.
512  */
513 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
514 			  pte_t pte, struct page *page)
515 {
516 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
517 	p4d_t *p4d = p4d_offset(pgd, addr);
518 	pud_t *pud = pud_offset(p4d, addr);
519 	pmd_t *pmd = pmd_offset(pud, addr);
520 	struct address_space *mapping;
521 	pgoff_t index;
522 	static unsigned long resume;
523 	static unsigned long nr_shown;
524 	static unsigned long nr_unshown;
525 
526 	/*
527 	 * Allow a burst of 60 reports, then keep quiet for that minute;
528 	 * or allow a steady drip of one report per second.
529 	 */
530 	if (nr_shown == 60) {
531 		if (time_before(jiffies, resume)) {
532 			nr_unshown++;
533 			return;
534 		}
535 		if (nr_unshown) {
536 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
537 				 nr_unshown);
538 			nr_unshown = 0;
539 		}
540 		nr_shown = 0;
541 	}
542 	if (nr_shown++ == 0)
543 		resume = jiffies + 60 * HZ;
544 
545 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
546 	index = linear_page_index(vma, addr);
547 
548 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
549 		 current->comm,
550 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
551 	if (page)
552 		dump_page(page, "bad pte");
553 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
554 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
555 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
556 		 vma->vm_file,
557 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
558 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
559 		 mapping ? mapping->a_ops->readpage : NULL);
560 	dump_stack();
561 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
562 }
563 
564 /*
565  * vm_normal_page -- This function gets the "struct page" associated with a pte.
566  *
567  * "Special" mappings do not wish to be associated with a "struct page" (either
568  * it doesn't exist, or it exists but they don't want to touch it). In this
569  * case, NULL is returned here. "Normal" mappings do have a struct page.
570  *
571  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
572  * pte bit, in which case this function is trivial. Secondly, an architecture
573  * may not have a spare pte bit, which requires a more complicated scheme,
574  * described below.
575  *
576  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
577  * special mapping (even if there are underlying and valid "struct pages").
578  * COWed pages of a VM_PFNMAP are always normal.
579  *
580  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
581  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
582  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
583  * mapping will always honor the rule
584  *
585  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
586  *
587  * And for normal mappings this is false.
588  *
589  * This restricts such mappings to be a linear translation from virtual address
590  * to pfn. To get around this restriction, we allow arbitrary mappings so long
591  * as the vma is not a COW mapping; in that case, we know that all ptes are
592  * special (because none can have been COWed).
593  *
594  *
595  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
596  *
597  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
598  * page" backing, however the difference is that _all_ pages with a struct
599  * page (that is, those where pfn_valid is true) are refcounted and considered
600  * normal pages by the VM. The disadvantage is that pages are refcounted
601  * (which can be slower and simply not an option for some PFNMAP users). The
602  * advantage is that we don't have to follow the strict linearity rule of
603  * PFNMAP mappings in order to support COWable mappings.
604  *
605  */
606 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
607 			    pte_t pte)
608 {
609 	unsigned long pfn = pte_pfn(pte);
610 
611 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
612 		if (likely(!pte_special(pte)))
613 			goto check_pfn;
614 		if (vma->vm_ops && vma->vm_ops->find_special_page)
615 			return vma->vm_ops->find_special_page(vma, addr);
616 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
617 			return NULL;
618 		if (is_zero_pfn(pfn))
619 			return NULL;
620 		if (pte_devmap(pte))
621 			return NULL;
622 
623 		print_bad_pte(vma, addr, pte, NULL);
624 		return NULL;
625 	}
626 
627 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
628 
629 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
630 		if (vma->vm_flags & VM_MIXEDMAP) {
631 			if (!pfn_valid(pfn))
632 				return NULL;
633 			goto out;
634 		} else {
635 			unsigned long off;
636 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
637 			if (pfn == vma->vm_pgoff + off)
638 				return NULL;
639 			if (!is_cow_mapping(vma->vm_flags))
640 				return NULL;
641 		}
642 	}
643 
644 	if (is_zero_pfn(pfn))
645 		return NULL;
646 
647 check_pfn:
648 	if (unlikely(pfn > highest_memmap_pfn)) {
649 		print_bad_pte(vma, addr, pte, NULL);
650 		return NULL;
651 	}
652 
653 	/*
654 	 * NOTE! We still have PageReserved() pages in the page tables.
655 	 * eg. VDSO mappings can cause them to exist.
656 	 */
657 out:
658 	return pfn_to_page(pfn);
659 }
660 
661 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
662 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
663 				pmd_t pmd)
664 {
665 	unsigned long pfn = pmd_pfn(pmd);
666 
667 	/*
668 	 * There is no pmd_special() but there may be special pmds, e.g.
669 	 * in a direct-access (dax) mapping, so let's just replicate the
670 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
671 	 */
672 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
673 		if (vma->vm_flags & VM_MIXEDMAP) {
674 			if (!pfn_valid(pfn))
675 				return NULL;
676 			goto out;
677 		} else {
678 			unsigned long off;
679 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
680 			if (pfn == vma->vm_pgoff + off)
681 				return NULL;
682 			if (!is_cow_mapping(vma->vm_flags))
683 				return NULL;
684 		}
685 	}
686 
687 	if (pmd_devmap(pmd))
688 		return NULL;
689 	if (is_huge_zero_pmd(pmd))
690 		return NULL;
691 	if (unlikely(pfn > highest_memmap_pfn))
692 		return NULL;
693 
694 	/*
695 	 * NOTE! We still have PageReserved() pages in the page tables.
696 	 * eg. VDSO mappings can cause them to exist.
697 	 */
698 out:
699 	return pfn_to_page(pfn);
700 }
701 #endif
702 
703 /*
704  * copy one vm_area from one task to the other. Assumes the page tables
705  * already present in the new task to be cleared in the whole range
706  * covered by this vma.
707  */
708 
709 static unsigned long
710 copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
711 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
712 		unsigned long addr, int *rss)
713 {
714 	unsigned long vm_flags = vma->vm_flags;
715 	pte_t pte = *src_pte;
716 	struct page *page;
717 	swp_entry_t entry = pte_to_swp_entry(pte);
718 
719 	if (likely(!non_swap_entry(entry))) {
720 		if (swap_duplicate(entry) < 0)
721 			return entry.val;
722 
723 		/* make sure dst_mm is on swapoff's mmlist. */
724 		if (unlikely(list_empty(&dst_mm->mmlist))) {
725 			spin_lock(&mmlist_lock);
726 			if (list_empty(&dst_mm->mmlist))
727 				list_add(&dst_mm->mmlist,
728 						&src_mm->mmlist);
729 			spin_unlock(&mmlist_lock);
730 		}
731 		rss[MM_SWAPENTS]++;
732 	} else if (is_migration_entry(entry)) {
733 		page = migration_entry_to_page(entry);
734 
735 		rss[mm_counter(page)]++;
736 
737 		if (is_write_migration_entry(entry) &&
738 				is_cow_mapping(vm_flags)) {
739 			/*
740 			 * COW mappings require pages in both
741 			 * parent and child to be set to read.
742 			 */
743 			make_migration_entry_read(&entry);
744 			pte = swp_entry_to_pte(entry);
745 			if (pte_swp_soft_dirty(*src_pte))
746 				pte = pte_swp_mksoft_dirty(pte);
747 			if (pte_swp_uffd_wp(*src_pte))
748 				pte = pte_swp_mkuffd_wp(pte);
749 			set_pte_at(src_mm, addr, src_pte, pte);
750 		}
751 	} else if (is_device_private_entry(entry)) {
752 		page = device_private_entry_to_page(entry);
753 
754 		/*
755 		 * Update rss count even for unaddressable pages, as
756 		 * they should treated just like normal pages in this
757 		 * respect.
758 		 *
759 		 * We will likely want to have some new rss counters
760 		 * for unaddressable pages, at some point. But for now
761 		 * keep things as they are.
762 		 */
763 		get_page(page);
764 		rss[mm_counter(page)]++;
765 		page_dup_rmap(page, false);
766 
767 		/*
768 		 * We do not preserve soft-dirty information, because so
769 		 * far, checkpoint/restore is the only feature that
770 		 * requires that. And checkpoint/restore does not work
771 		 * when a device driver is involved (you cannot easily
772 		 * save and restore device driver state).
773 		 */
774 		if (is_write_device_private_entry(entry) &&
775 		    is_cow_mapping(vm_flags)) {
776 			make_device_private_entry_read(&entry);
777 			pte = swp_entry_to_pte(entry);
778 			if (pte_swp_uffd_wp(*src_pte))
779 				pte = pte_swp_mkuffd_wp(pte);
780 			set_pte_at(src_mm, addr, src_pte, pte);
781 		}
782 	}
783 	set_pte_at(dst_mm, addr, dst_pte, pte);
784 	return 0;
785 }
786 
787 /*
788  * Copy a present and normal page if necessary.
789  *
790  * NOTE! The usual case is that this doesn't need to do
791  * anything, and can just return a positive value. That
792  * will let the caller know that it can just increase
793  * the page refcount and re-use the pte the traditional
794  * way.
795  *
796  * But _if_ we need to copy it because it needs to be
797  * pinned in the parent (and the child should get its own
798  * copy rather than just a reference to the same page),
799  * we'll do that here and return zero to let the caller
800  * know we're done.
801  *
802  * And if we need a pre-allocated page but don't yet have
803  * one, return a negative error to let the preallocation
804  * code know so that it can do so outside the page table
805  * lock.
806  */
807 static inline int
808 copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
809 		  pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
810 		  struct page **prealloc, pte_t pte, struct page *page)
811 {
812 	struct page *new_page;
813 
814 	/*
815 	 * What we want to do is to check whether this page may
816 	 * have been pinned by the parent process.  If so,
817 	 * instead of wrprotect the pte on both sides, we copy
818 	 * the page immediately so that we'll always guarantee
819 	 * the pinned page won't be randomly replaced in the
820 	 * future.
821 	 *
822 	 * The page pinning checks are just "has this mm ever
823 	 * seen pinning", along with the (inexact) check of
824 	 * the page count. That might give false positives for
825 	 * for pinning, but it will work correctly.
826 	 */
827 	if (likely(!page_needs_cow_for_dma(src_vma, page)))
828 		return 1;
829 
830 	new_page = *prealloc;
831 	if (!new_page)
832 		return -EAGAIN;
833 
834 	/*
835 	 * We have a prealloc page, all good!  Take it
836 	 * over and copy the page & arm it.
837 	 */
838 	*prealloc = NULL;
839 	copy_user_highpage(new_page, page, addr, src_vma);
840 	__SetPageUptodate(new_page);
841 	page_add_new_anon_rmap(new_page, dst_vma, addr, false);
842 	lru_cache_add_inactive_or_unevictable(new_page, dst_vma);
843 	rss[mm_counter(new_page)]++;
844 
845 	/* All done, just insert the new page copy in the child */
846 	pte = mk_pte(new_page, dst_vma->vm_page_prot);
847 	pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
848 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
849 	return 0;
850 }
851 
852 /*
853  * Copy one pte.  Returns 0 if succeeded, or -EAGAIN if one preallocated page
854  * is required to copy this pte.
855  */
856 static inline int
857 copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
858 		 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
859 		 struct page **prealloc)
860 {
861 	struct mm_struct *src_mm = src_vma->vm_mm;
862 	unsigned long vm_flags = src_vma->vm_flags;
863 	pte_t pte = *src_pte;
864 	struct page *page;
865 
866 	page = vm_normal_page(src_vma, addr, pte);
867 	if (page) {
868 		int retval;
869 
870 		retval = copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
871 					   addr, rss, prealloc, pte, page);
872 		if (retval <= 0)
873 			return retval;
874 
875 		get_page(page);
876 		page_dup_rmap(page, false);
877 		rss[mm_counter(page)]++;
878 	}
879 
880 	/*
881 	 * If it's a COW mapping, write protect it both
882 	 * in the parent and the child
883 	 */
884 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
885 		ptep_set_wrprotect(src_mm, addr, src_pte);
886 		pte = pte_wrprotect(pte);
887 	}
888 
889 	/*
890 	 * If it's a shared mapping, mark it clean in
891 	 * the child
892 	 */
893 	if (vm_flags & VM_SHARED)
894 		pte = pte_mkclean(pte);
895 	pte = pte_mkold(pte);
896 
897 	/*
898 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
899 	 * does not have the VM_UFFD_WP, which means that the uffd
900 	 * fork event is not enabled.
901 	 */
902 	if (!(vm_flags & VM_UFFD_WP))
903 		pte = pte_clear_uffd_wp(pte);
904 
905 	set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
906 	return 0;
907 }
908 
909 static inline struct page *
910 page_copy_prealloc(struct mm_struct *src_mm, struct vm_area_struct *vma,
911 		   unsigned long addr)
912 {
913 	struct page *new_page;
914 
915 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, addr);
916 	if (!new_page)
917 		return NULL;
918 
919 	if (mem_cgroup_charge(new_page, src_mm, GFP_KERNEL)) {
920 		put_page(new_page);
921 		return NULL;
922 	}
923 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
924 
925 	return new_page;
926 }
927 
928 static int
929 copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
930 	       pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
931 	       unsigned long end)
932 {
933 	struct mm_struct *dst_mm = dst_vma->vm_mm;
934 	struct mm_struct *src_mm = src_vma->vm_mm;
935 	pte_t *orig_src_pte, *orig_dst_pte;
936 	pte_t *src_pte, *dst_pte;
937 	spinlock_t *src_ptl, *dst_ptl;
938 	int progress, ret = 0;
939 	int rss[NR_MM_COUNTERS];
940 	swp_entry_t entry = (swp_entry_t){0};
941 	struct page *prealloc = NULL;
942 
943 again:
944 	progress = 0;
945 	init_rss_vec(rss);
946 
947 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
948 	if (!dst_pte) {
949 		ret = -ENOMEM;
950 		goto out;
951 	}
952 	src_pte = pte_offset_map(src_pmd, addr);
953 	src_ptl = pte_lockptr(src_mm, src_pmd);
954 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
955 	orig_src_pte = src_pte;
956 	orig_dst_pte = dst_pte;
957 	arch_enter_lazy_mmu_mode();
958 
959 	do {
960 		/*
961 		 * We are holding two locks at this point - either of them
962 		 * could generate latencies in another task on another CPU.
963 		 */
964 		if (progress >= 32) {
965 			progress = 0;
966 			if (need_resched() ||
967 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
968 				break;
969 		}
970 		if (pte_none(*src_pte)) {
971 			progress++;
972 			continue;
973 		}
974 		if (unlikely(!pte_present(*src_pte))) {
975 			entry.val = copy_nonpresent_pte(dst_mm, src_mm,
976 							dst_pte, src_pte,
977 							src_vma, addr, rss);
978 			if (entry.val)
979 				break;
980 			progress += 8;
981 			continue;
982 		}
983 		/* copy_present_pte() will clear `*prealloc' if consumed */
984 		ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
985 				       addr, rss, &prealloc);
986 		/*
987 		 * If we need a pre-allocated page for this pte, drop the
988 		 * locks, allocate, and try again.
989 		 */
990 		if (unlikely(ret == -EAGAIN))
991 			break;
992 		if (unlikely(prealloc)) {
993 			/*
994 			 * pre-alloc page cannot be reused by next time so as
995 			 * to strictly follow mempolicy (e.g., alloc_page_vma()
996 			 * will allocate page according to address).  This
997 			 * could only happen if one pinned pte changed.
998 			 */
999 			put_page(prealloc);
1000 			prealloc = NULL;
1001 		}
1002 		progress += 8;
1003 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1004 
1005 	arch_leave_lazy_mmu_mode();
1006 	spin_unlock(src_ptl);
1007 	pte_unmap(orig_src_pte);
1008 	add_mm_rss_vec(dst_mm, rss);
1009 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
1010 	cond_resched();
1011 
1012 	if (entry.val) {
1013 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1014 			ret = -ENOMEM;
1015 			goto out;
1016 		}
1017 		entry.val = 0;
1018 	} else if (ret) {
1019 		WARN_ON_ONCE(ret != -EAGAIN);
1020 		prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1021 		if (!prealloc)
1022 			return -ENOMEM;
1023 		/* We've captured and resolved the error. Reset, try again. */
1024 		ret = 0;
1025 	}
1026 	if (addr != end)
1027 		goto again;
1028 out:
1029 	if (unlikely(prealloc))
1030 		put_page(prealloc);
1031 	return ret;
1032 }
1033 
1034 static inline int
1035 copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1036 	       pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1037 	       unsigned long end)
1038 {
1039 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1040 	struct mm_struct *src_mm = src_vma->vm_mm;
1041 	pmd_t *src_pmd, *dst_pmd;
1042 	unsigned long next;
1043 
1044 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1045 	if (!dst_pmd)
1046 		return -ENOMEM;
1047 	src_pmd = pmd_offset(src_pud, addr);
1048 	do {
1049 		next = pmd_addr_end(addr, end);
1050 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1051 			|| pmd_devmap(*src_pmd)) {
1052 			int err;
1053 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1054 			err = copy_huge_pmd(dst_mm, src_mm,
1055 					    dst_pmd, src_pmd, addr, src_vma);
1056 			if (err == -ENOMEM)
1057 				return -ENOMEM;
1058 			if (!err)
1059 				continue;
1060 			/* fall through */
1061 		}
1062 		if (pmd_none_or_clear_bad(src_pmd))
1063 			continue;
1064 		if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1065 				   addr, next))
1066 			return -ENOMEM;
1067 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
1068 	return 0;
1069 }
1070 
1071 static inline int
1072 copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1073 	       p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1074 	       unsigned long end)
1075 {
1076 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1077 	struct mm_struct *src_mm = src_vma->vm_mm;
1078 	pud_t *src_pud, *dst_pud;
1079 	unsigned long next;
1080 
1081 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1082 	if (!dst_pud)
1083 		return -ENOMEM;
1084 	src_pud = pud_offset(src_p4d, addr);
1085 	do {
1086 		next = pud_addr_end(addr, end);
1087 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1088 			int err;
1089 
1090 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1091 			err = copy_huge_pud(dst_mm, src_mm,
1092 					    dst_pud, src_pud, addr, src_vma);
1093 			if (err == -ENOMEM)
1094 				return -ENOMEM;
1095 			if (!err)
1096 				continue;
1097 			/* fall through */
1098 		}
1099 		if (pud_none_or_clear_bad(src_pud))
1100 			continue;
1101 		if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1102 				   addr, next))
1103 			return -ENOMEM;
1104 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1105 	return 0;
1106 }
1107 
1108 static inline int
1109 copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1110 	       pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1111 	       unsigned long end)
1112 {
1113 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1114 	p4d_t *src_p4d, *dst_p4d;
1115 	unsigned long next;
1116 
1117 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1118 	if (!dst_p4d)
1119 		return -ENOMEM;
1120 	src_p4d = p4d_offset(src_pgd, addr);
1121 	do {
1122 		next = p4d_addr_end(addr, end);
1123 		if (p4d_none_or_clear_bad(src_p4d))
1124 			continue;
1125 		if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1126 				   addr, next))
1127 			return -ENOMEM;
1128 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
1129 	return 0;
1130 }
1131 
1132 int
1133 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1134 {
1135 	pgd_t *src_pgd, *dst_pgd;
1136 	unsigned long next;
1137 	unsigned long addr = src_vma->vm_start;
1138 	unsigned long end = src_vma->vm_end;
1139 	struct mm_struct *dst_mm = dst_vma->vm_mm;
1140 	struct mm_struct *src_mm = src_vma->vm_mm;
1141 	struct mmu_notifier_range range;
1142 	bool is_cow;
1143 	int ret;
1144 
1145 	/*
1146 	 * Don't copy ptes where a page fault will fill them correctly.
1147 	 * Fork becomes much lighter when there are big shared or private
1148 	 * readonly mappings. The tradeoff is that copy_page_range is more
1149 	 * efficient than faulting.
1150 	 */
1151 	if (!(src_vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1152 	    !src_vma->anon_vma)
1153 		return 0;
1154 
1155 	if (is_vm_hugetlb_page(src_vma))
1156 		return copy_hugetlb_page_range(dst_mm, src_mm, src_vma);
1157 
1158 	if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1159 		/*
1160 		 * We do not free on error cases below as remove_vma
1161 		 * gets called on error from higher level routine
1162 		 */
1163 		ret = track_pfn_copy(src_vma);
1164 		if (ret)
1165 			return ret;
1166 	}
1167 
1168 	/*
1169 	 * We need to invalidate the secondary MMU mappings only when
1170 	 * there could be a permission downgrade on the ptes of the
1171 	 * parent mm. And a permission downgrade will only happen if
1172 	 * is_cow_mapping() returns true.
1173 	 */
1174 	is_cow = is_cow_mapping(src_vma->vm_flags);
1175 
1176 	if (is_cow) {
1177 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1178 					0, src_vma, src_mm, addr, end);
1179 		mmu_notifier_invalidate_range_start(&range);
1180 		/*
1181 		 * Disabling preemption is not needed for the write side, as
1182 		 * the read side doesn't spin, but goes to the mmap_lock.
1183 		 *
1184 		 * Use the raw variant of the seqcount_t write API to avoid
1185 		 * lockdep complaining about preemptibility.
1186 		 */
1187 		mmap_assert_write_locked(src_mm);
1188 		raw_write_seqcount_begin(&src_mm->write_protect_seq);
1189 	}
1190 
1191 	ret = 0;
1192 	dst_pgd = pgd_offset(dst_mm, addr);
1193 	src_pgd = pgd_offset(src_mm, addr);
1194 	do {
1195 		next = pgd_addr_end(addr, end);
1196 		if (pgd_none_or_clear_bad(src_pgd))
1197 			continue;
1198 		if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1199 					    addr, next))) {
1200 			ret = -ENOMEM;
1201 			break;
1202 		}
1203 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1204 
1205 	if (is_cow) {
1206 		raw_write_seqcount_end(&src_mm->write_protect_seq);
1207 		mmu_notifier_invalidate_range_end(&range);
1208 	}
1209 	return ret;
1210 }
1211 
1212 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1213 				struct vm_area_struct *vma, pmd_t *pmd,
1214 				unsigned long addr, unsigned long end,
1215 				struct zap_details *details)
1216 {
1217 	struct mm_struct *mm = tlb->mm;
1218 	int force_flush = 0;
1219 	int rss[NR_MM_COUNTERS];
1220 	spinlock_t *ptl;
1221 	pte_t *start_pte;
1222 	pte_t *pte;
1223 	swp_entry_t entry;
1224 
1225 	tlb_change_page_size(tlb, PAGE_SIZE);
1226 again:
1227 	init_rss_vec(rss);
1228 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1229 	pte = start_pte;
1230 	flush_tlb_batched_pending(mm);
1231 	arch_enter_lazy_mmu_mode();
1232 	do {
1233 		pte_t ptent = *pte;
1234 		if (pte_none(ptent))
1235 			continue;
1236 
1237 		if (need_resched())
1238 			break;
1239 
1240 		if (pte_present(ptent)) {
1241 			struct page *page;
1242 
1243 			page = vm_normal_page(vma, addr, ptent);
1244 			if (unlikely(details) && page) {
1245 				/*
1246 				 * unmap_shared_mapping_pages() wants to
1247 				 * invalidate cache without truncating:
1248 				 * unmap shared but keep private pages.
1249 				 */
1250 				if (details->check_mapping &&
1251 				    details->check_mapping != page_rmapping(page))
1252 					continue;
1253 			}
1254 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1255 							tlb->fullmm);
1256 			tlb_remove_tlb_entry(tlb, pte, addr);
1257 			if (unlikely(!page))
1258 				continue;
1259 
1260 			if (!PageAnon(page)) {
1261 				if (pte_dirty(ptent)) {
1262 					force_flush = 1;
1263 					set_page_dirty(page);
1264 				}
1265 				if (pte_young(ptent) &&
1266 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1267 					mark_page_accessed(page);
1268 			}
1269 			rss[mm_counter(page)]--;
1270 			page_remove_rmap(page, false);
1271 			if (unlikely(page_mapcount(page) < 0))
1272 				print_bad_pte(vma, addr, ptent, page);
1273 			if (unlikely(__tlb_remove_page(tlb, page))) {
1274 				force_flush = 1;
1275 				addr += PAGE_SIZE;
1276 				break;
1277 			}
1278 			continue;
1279 		}
1280 
1281 		entry = pte_to_swp_entry(ptent);
1282 		if (is_device_private_entry(entry)) {
1283 			struct page *page = device_private_entry_to_page(entry);
1284 
1285 			if (unlikely(details && details->check_mapping)) {
1286 				/*
1287 				 * unmap_shared_mapping_pages() wants to
1288 				 * invalidate cache without truncating:
1289 				 * unmap shared but keep private pages.
1290 				 */
1291 				if (details->check_mapping !=
1292 				    page_rmapping(page))
1293 					continue;
1294 			}
1295 
1296 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1297 			rss[mm_counter(page)]--;
1298 			page_remove_rmap(page, false);
1299 			put_page(page);
1300 			continue;
1301 		}
1302 
1303 		/* If details->check_mapping, we leave swap entries. */
1304 		if (unlikely(details))
1305 			continue;
1306 
1307 		if (!non_swap_entry(entry))
1308 			rss[MM_SWAPENTS]--;
1309 		else if (is_migration_entry(entry)) {
1310 			struct page *page;
1311 
1312 			page = migration_entry_to_page(entry);
1313 			rss[mm_counter(page)]--;
1314 		}
1315 		if (unlikely(!free_swap_and_cache(entry)))
1316 			print_bad_pte(vma, addr, ptent, NULL);
1317 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1318 	} while (pte++, addr += PAGE_SIZE, addr != end);
1319 
1320 	add_mm_rss_vec(mm, rss);
1321 	arch_leave_lazy_mmu_mode();
1322 
1323 	/* Do the actual TLB flush before dropping ptl */
1324 	if (force_flush)
1325 		tlb_flush_mmu_tlbonly(tlb);
1326 	pte_unmap_unlock(start_pte, ptl);
1327 
1328 	/*
1329 	 * If we forced a TLB flush (either due to running out of
1330 	 * batch buffers or because we needed to flush dirty TLB
1331 	 * entries before releasing the ptl), free the batched
1332 	 * memory too. Restart if we didn't do everything.
1333 	 */
1334 	if (force_flush) {
1335 		force_flush = 0;
1336 		tlb_flush_mmu(tlb);
1337 	}
1338 
1339 	if (addr != end) {
1340 		cond_resched();
1341 		goto again;
1342 	}
1343 
1344 	return addr;
1345 }
1346 
1347 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1348 				struct vm_area_struct *vma, pud_t *pud,
1349 				unsigned long addr, unsigned long end,
1350 				struct zap_details *details)
1351 {
1352 	pmd_t *pmd;
1353 	unsigned long next;
1354 
1355 	pmd = pmd_offset(pud, addr);
1356 	do {
1357 		next = pmd_addr_end(addr, end);
1358 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1359 			if (next - addr != HPAGE_PMD_SIZE)
1360 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1361 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1362 				goto next;
1363 			/* fall through */
1364 		}
1365 		/*
1366 		 * Here there can be other concurrent MADV_DONTNEED or
1367 		 * trans huge page faults running, and if the pmd is
1368 		 * none or trans huge it can change under us. This is
1369 		 * because MADV_DONTNEED holds the mmap_lock in read
1370 		 * mode.
1371 		 */
1372 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1373 			goto next;
1374 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1375 next:
1376 		cond_resched();
1377 	} while (pmd++, addr = next, addr != end);
1378 
1379 	return addr;
1380 }
1381 
1382 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1383 				struct vm_area_struct *vma, p4d_t *p4d,
1384 				unsigned long addr, unsigned long end,
1385 				struct zap_details *details)
1386 {
1387 	pud_t *pud;
1388 	unsigned long next;
1389 
1390 	pud = pud_offset(p4d, addr);
1391 	do {
1392 		next = pud_addr_end(addr, end);
1393 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1394 			if (next - addr != HPAGE_PUD_SIZE) {
1395 				mmap_assert_locked(tlb->mm);
1396 				split_huge_pud(vma, pud, addr);
1397 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1398 				goto next;
1399 			/* fall through */
1400 		}
1401 		if (pud_none_or_clear_bad(pud))
1402 			continue;
1403 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1404 next:
1405 		cond_resched();
1406 	} while (pud++, addr = next, addr != end);
1407 
1408 	return addr;
1409 }
1410 
1411 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1412 				struct vm_area_struct *vma, pgd_t *pgd,
1413 				unsigned long addr, unsigned long end,
1414 				struct zap_details *details)
1415 {
1416 	p4d_t *p4d;
1417 	unsigned long next;
1418 
1419 	p4d = p4d_offset(pgd, addr);
1420 	do {
1421 		next = p4d_addr_end(addr, end);
1422 		if (p4d_none_or_clear_bad(p4d))
1423 			continue;
1424 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1425 	} while (p4d++, addr = next, addr != end);
1426 
1427 	return addr;
1428 }
1429 
1430 void unmap_page_range(struct mmu_gather *tlb,
1431 			     struct vm_area_struct *vma,
1432 			     unsigned long addr, unsigned long end,
1433 			     struct zap_details *details)
1434 {
1435 	pgd_t *pgd;
1436 	unsigned long next;
1437 
1438 	BUG_ON(addr >= end);
1439 	tlb_start_vma(tlb, vma);
1440 	pgd = pgd_offset(vma->vm_mm, addr);
1441 	do {
1442 		next = pgd_addr_end(addr, end);
1443 		if (pgd_none_or_clear_bad(pgd))
1444 			continue;
1445 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1446 	} while (pgd++, addr = next, addr != end);
1447 	tlb_end_vma(tlb, vma);
1448 }
1449 
1450 
1451 static void unmap_single_vma(struct mmu_gather *tlb,
1452 		struct vm_area_struct *vma, unsigned long start_addr,
1453 		unsigned long end_addr,
1454 		struct zap_details *details)
1455 {
1456 	unsigned long start = max(vma->vm_start, start_addr);
1457 	unsigned long end;
1458 
1459 	if (start >= vma->vm_end)
1460 		return;
1461 	end = min(vma->vm_end, end_addr);
1462 	if (end <= vma->vm_start)
1463 		return;
1464 
1465 	if (vma->vm_file)
1466 		uprobe_munmap(vma, start, end);
1467 
1468 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1469 		untrack_pfn(vma, 0, 0);
1470 
1471 	if (start != end) {
1472 		if (unlikely(is_vm_hugetlb_page(vma))) {
1473 			/*
1474 			 * It is undesirable to test vma->vm_file as it
1475 			 * should be non-null for valid hugetlb area.
1476 			 * However, vm_file will be NULL in the error
1477 			 * cleanup path of mmap_region. When
1478 			 * hugetlbfs ->mmap method fails,
1479 			 * mmap_region() nullifies vma->vm_file
1480 			 * before calling this function to clean up.
1481 			 * Since no pte has actually been setup, it is
1482 			 * safe to do nothing in this case.
1483 			 */
1484 			if (vma->vm_file) {
1485 				i_mmap_lock_write(vma->vm_file->f_mapping);
1486 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1487 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1488 			}
1489 		} else
1490 			unmap_page_range(tlb, vma, start, end, details);
1491 	}
1492 }
1493 
1494 /**
1495  * unmap_vmas - unmap a range of memory covered by a list of vma's
1496  * @tlb: address of the caller's struct mmu_gather
1497  * @vma: the starting vma
1498  * @start_addr: virtual address at which to start unmapping
1499  * @end_addr: virtual address at which to end unmapping
1500  *
1501  * Unmap all pages in the vma list.
1502  *
1503  * Only addresses between `start' and `end' will be unmapped.
1504  *
1505  * The VMA list must be sorted in ascending virtual address order.
1506  *
1507  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1508  * range after unmap_vmas() returns.  So the only responsibility here is to
1509  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1510  * drops the lock and schedules.
1511  */
1512 void unmap_vmas(struct mmu_gather *tlb,
1513 		struct vm_area_struct *vma, unsigned long start_addr,
1514 		unsigned long end_addr)
1515 {
1516 	struct mmu_notifier_range range;
1517 
1518 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1519 				start_addr, end_addr);
1520 	mmu_notifier_invalidate_range_start(&range);
1521 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1522 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1523 	mmu_notifier_invalidate_range_end(&range);
1524 }
1525 
1526 /**
1527  * zap_page_range - remove user pages in a given range
1528  * @vma: vm_area_struct holding the applicable pages
1529  * @start: starting address of pages to zap
1530  * @size: number of bytes to zap
1531  *
1532  * Caller must protect the VMA list
1533  */
1534 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1535 		unsigned long size)
1536 {
1537 	struct mmu_notifier_range range;
1538 	struct mmu_gather tlb;
1539 
1540 	lru_add_drain();
1541 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1542 				start, start + size);
1543 	tlb_gather_mmu(&tlb, vma->vm_mm);
1544 	update_hiwater_rss(vma->vm_mm);
1545 	mmu_notifier_invalidate_range_start(&range);
1546 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1547 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1548 	mmu_notifier_invalidate_range_end(&range);
1549 	tlb_finish_mmu(&tlb);
1550 }
1551 
1552 /**
1553  * zap_page_range_single - remove user pages in a given range
1554  * @vma: vm_area_struct holding the applicable pages
1555  * @address: starting address of pages to zap
1556  * @size: number of bytes to zap
1557  * @details: details of shared cache invalidation
1558  *
1559  * The range must fit into one VMA.
1560  */
1561 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1562 		unsigned long size, struct zap_details *details)
1563 {
1564 	struct mmu_notifier_range range;
1565 	struct mmu_gather tlb;
1566 
1567 	lru_add_drain();
1568 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1569 				address, address + size);
1570 	tlb_gather_mmu(&tlb, vma->vm_mm);
1571 	update_hiwater_rss(vma->vm_mm);
1572 	mmu_notifier_invalidate_range_start(&range);
1573 	unmap_single_vma(&tlb, vma, address, range.end, details);
1574 	mmu_notifier_invalidate_range_end(&range);
1575 	tlb_finish_mmu(&tlb);
1576 }
1577 
1578 /**
1579  * zap_vma_ptes - remove ptes mapping the vma
1580  * @vma: vm_area_struct holding ptes to be zapped
1581  * @address: starting address of pages to zap
1582  * @size: number of bytes to zap
1583  *
1584  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1585  *
1586  * The entire address range must be fully contained within the vma.
1587  *
1588  */
1589 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1590 		unsigned long size)
1591 {
1592 	if (address < vma->vm_start || address + size > vma->vm_end ||
1593 	    		!(vma->vm_flags & VM_PFNMAP))
1594 		return;
1595 
1596 	zap_page_range_single(vma, address, size, NULL);
1597 }
1598 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1599 
1600 static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1601 {
1602 	pgd_t *pgd;
1603 	p4d_t *p4d;
1604 	pud_t *pud;
1605 	pmd_t *pmd;
1606 
1607 	pgd = pgd_offset(mm, addr);
1608 	p4d = p4d_alloc(mm, pgd, addr);
1609 	if (!p4d)
1610 		return NULL;
1611 	pud = pud_alloc(mm, p4d, addr);
1612 	if (!pud)
1613 		return NULL;
1614 	pmd = pmd_alloc(mm, pud, addr);
1615 	if (!pmd)
1616 		return NULL;
1617 
1618 	VM_BUG_ON(pmd_trans_huge(*pmd));
1619 	return pmd;
1620 }
1621 
1622 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1623 			spinlock_t **ptl)
1624 {
1625 	pmd_t *pmd = walk_to_pmd(mm, addr);
1626 
1627 	if (!pmd)
1628 		return NULL;
1629 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1630 }
1631 
1632 static int validate_page_before_insert(struct page *page)
1633 {
1634 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1635 		return -EINVAL;
1636 	flush_dcache_page(page);
1637 	return 0;
1638 }
1639 
1640 static int insert_page_into_pte_locked(struct mm_struct *mm, pte_t *pte,
1641 			unsigned long addr, struct page *page, pgprot_t prot)
1642 {
1643 	if (!pte_none(*pte))
1644 		return -EBUSY;
1645 	/* Ok, finally just insert the thing.. */
1646 	get_page(page);
1647 	inc_mm_counter_fast(mm, mm_counter_file(page));
1648 	page_add_file_rmap(page, false);
1649 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1650 	return 0;
1651 }
1652 
1653 /*
1654  * This is the old fallback for page remapping.
1655  *
1656  * For historical reasons, it only allows reserved pages. Only
1657  * old drivers should use this, and they needed to mark their
1658  * pages reserved for the old functions anyway.
1659  */
1660 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1661 			struct page *page, pgprot_t prot)
1662 {
1663 	struct mm_struct *mm = vma->vm_mm;
1664 	int retval;
1665 	pte_t *pte;
1666 	spinlock_t *ptl;
1667 
1668 	retval = validate_page_before_insert(page);
1669 	if (retval)
1670 		goto out;
1671 	retval = -ENOMEM;
1672 	pte = get_locked_pte(mm, addr, &ptl);
1673 	if (!pte)
1674 		goto out;
1675 	retval = insert_page_into_pte_locked(mm, pte, addr, page, prot);
1676 	pte_unmap_unlock(pte, ptl);
1677 out:
1678 	return retval;
1679 }
1680 
1681 #ifdef pte_index
1682 static int insert_page_in_batch_locked(struct mm_struct *mm, pte_t *pte,
1683 			unsigned long addr, struct page *page, pgprot_t prot)
1684 {
1685 	int err;
1686 
1687 	if (!page_count(page))
1688 		return -EINVAL;
1689 	err = validate_page_before_insert(page);
1690 	if (err)
1691 		return err;
1692 	return insert_page_into_pte_locked(mm, pte, addr, page, prot);
1693 }
1694 
1695 /* insert_pages() amortizes the cost of spinlock operations
1696  * when inserting pages in a loop. Arch *must* define pte_index.
1697  */
1698 static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1699 			struct page **pages, unsigned long *num, pgprot_t prot)
1700 {
1701 	pmd_t *pmd = NULL;
1702 	pte_t *start_pte, *pte;
1703 	spinlock_t *pte_lock;
1704 	struct mm_struct *const mm = vma->vm_mm;
1705 	unsigned long curr_page_idx = 0;
1706 	unsigned long remaining_pages_total = *num;
1707 	unsigned long pages_to_write_in_pmd;
1708 	int ret;
1709 more:
1710 	ret = -EFAULT;
1711 	pmd = walk_to_pmd(mm, addr);
1712 	if (!pmd)
1713 		goto out;
1714 
1715 	pages_to_write_in_pmd = min_t(unsigned long,
1716 		remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1717 
1718 	/* Allocate the PTE if necessary; takes PMD lock once only. */
1719 	ret = -ENOMEM;
1720 	if (pte_alloc(mm, pmd))
1721 		goto out;
1722 
1723 	while (pages_to_write_in_pmd) {
1724 		int pte_idx = 0;
1725 		const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1726 
1727 		start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1728 		for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1729 			int err = insert_page_in_batch_locked(mm, pte,
1730 				addr, pages[curr_page_idx], prot);
1731 			if (unlikely(err)) {
1732 				pte_unmap_unlock(start_pte, pte_lock);
1733 				ret = err;
1734 				remaining_pages_total -= pte_idx;
1735 				goto out;
1736 			}
1737 			addr += PAGE_SIZE;
1738 			++curr_page_idx;
1739 		}
1740 		pte_unmap_unlock(start_pte, pte_lock);
1741 		pages_to_write_in_pmd -= batch_size;
1742 		remaining_pages_total -= batch_size;
1743 	}
1744 	if (remaining_pages_total)
1745 		goto more;
1746 	ret = 0;
1747 out:
1748 	*num = remaining_pages_total;
1749 	return ret;
1750 }
1751 #endif  /* ifdef pte_index */
1752 
1753 /**
1754  * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1755  * @vma: user vma to map to
1756  * @addr: target start user address of these pages
1757  * @pages: source kernel pages
1758  * @num: in: number of pages to map. out: number of pages that were *not*
1759  * mapped. (0 means all pages were successfully mapped).
1760  *
1761  * Preferred over vm_insert_page() when inserting multiple pages.
1762  *
1763  * In case of error, we may have mapped a subset of the provided
1764  * pages. It is the caller's responsibility to account for this case.
1765  *
1766  * The same restrictions apply as in vm_insert_page().
1767  */
1768 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1769 			struct page **pages, unsigned long *num)
1770 {
1771 #ifdef pte_index
1772 	const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1773 
1774 	if (addr < vma->vm_start || end_addr >= vma->vm_end)
1775 		return -EFAULT;
1776 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1777 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1778 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1779 		vma->vm_flags |= VM_MIXEDMAP;
1780 	}
1781 	/* Defer page refcount checking till we're about to map that page. */
1782 	return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1783 #else
1784 	unsigned long idx = 0, pgcount = *num;
1785 	int err = -EINVAL;
1786 
1787 	for (; idx < pgcount; ++idx) {
1788 		err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1789 		if (err)
1790 			break;
1791 	}
1792 	*num = pgcount - idx;
1793 	return err;
1794 #endif  /* ifdef pte_index */
1795 }
1796 EXPORT_SYMBOL(vm_insert_pages);
1797 
1798 /**
1799  * vm_insert_page - insert single page into user vma
1800  * @vma: user vma to map to
1801  * @addr: target user address of this page
1802  * @page: source kernel page
1803  *
1804  * This allows drivers to insert individual pages they've allocated
1805  * into a user vma.
1806  *
1807  * The page has to be a nice clean _individual_ kernel allocation.
1808  * If you allocate a compound page, you need to have marked it as
1809  * such (__GFP_COMP), or manually just split the page up yourself
1810  * (see split_page()).
1811  *
1812  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1813  * took an arbitrary page protection parameter. This doesn't allow
1814  * that. Your vma protection will have to be set up correctly, which
1815  * means that if you want a shared writable mapping, you'd better
1816  * ask for a shared writable mapping!
1817  *
1818  * The page does not need to be reserved.
1819  *
1820  * Usually this function is called from f_op->mmap() handler
1821  * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
1822  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1823  * function from other places, for example from page-fault handler.
1824  *
1825  * Return: %0 on success, negative error code otherwise.
1826  */
1827 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1828 			struct page *page)
1829 {
1830 	if (addr < vma->vm_start || addr >= vma->vm_end)
1831 		return -EFAULT;
1832 	if (!page_count(page))
1833 		return -EINVAL;
1834 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1835 		BUG_ON(mmap_read_trylock(vma->vm_mm));
1836 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1837 		vma->vm_flags |= VM_MIXEDMAP;
1838 	}
1839 	return insert_page(vma, addr, page, vma->vm_page_prot);
1840 }
1841 EXPORT_SYMBOL(vm_insert_page);
1842 
1843 /*
1844  * __vm_map_pages - maps range of kernel pages into user vma
1845  * @vma: user vma to map to
1846  * @pages: pointer to array of source kernel pages
1847  * @num: number of pages in page array
1848  * @offset: user's requested vm_pgoff
1849  *
1850  * This allows drivers to map range of kernel pages into a user vma.
1851  *
1852  * Return: 0 on success and error code otherwise.
1853  */
1854 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1855 				unsigned long num, unsigned long offset)
1856 {
1857 	unsigned long count = vma_pages(vma);
1858 	unsigned long uaddr = vma->vm_start;
1859 	int ret, i;
1860 
1861 	/* Fail if the user requested offset is beyond the end of the object */
1862 	if (offset >= num)
1863 		return -ENXIO;
1864 
1865 	/* Fail if the user requested size exceeds available object size */
1866 	if (count > num - offset)
1867 		return -ENXIO;
1868 
1869 	for (i = 0; i < count; i++) {
1870 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1871 		if (ret < 0)
1872 			return ret;
1873 		uaddr += PAGE_SIZE;
1874 	}
1875 
1876 	return 0;
1877 }
1878 
1879 /**
1880  * vm_map_pages - maps range of kernel pages starts with non zero offset
1881  * @vma: user vma to map to
1882  * @pages: pointer to array of source kernel pages
1883  * @num: number of pages in page array
1884  *
1885  * Maps an object consisting of @num pages, catering for the user's
1886  * requested vm_pgoff
1887  *
1888  * If we fail to insert any page into the vma, the function will return
1889  * immediately leaving any previously inserted pages present.  Callers
1890  * from the mmap handler may immediately return the error as their caller
1891  * will destroy the vma, removing any successfully inserted pages. Other
1892  * callers should make their own arrangements for calling unmap_region().
1893  *
1894  * Context: Process context. Called by mmap handlers.
1895  * Return: 0 on success and error code otherwise.
1896  */
1897 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1898 				unsigned long num)
1899 {
1900 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1901 }
1902 EXPORT_SYMBOL(vm_map_pages);
1903 
1904 /**
1905  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1906  * @vma: user vma to map to
1907  * @pages: pointer to array of source kernel pages
1908  * @num: number of pages in page array
1909  *
1910  * Similar to vm_map_pages(), except that it explicitly sets the offset
1911  * to 0. This function is intended for the drivers that did not consider
1912  * vm_pgoff.
1913  *
1914  * Context: Process context. Called by mmap handlers.
1915  * Return: 0 on success and error code otherwise.
1916  */
1917 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1918 				unsigned long num)
1919 {
1920 	return __vm_map_pages(vma, pages, num, 0);
1921 }
1922 EXPORT_SYMBOL(vm_map_pages_zero);
1923 
1924 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1925 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1926 {
1927 	struct mm_struct *mm = vma->vm_mm;
1928 	pte_t *pte, entry;
1929 	spinlock_t *ptl;
1930 
1931 	pte = get_locked_pte(mm, addr, &ptl);
1932 	if (!pte)
1933 		return VM_FAULT_OOM;
1934 	if (!pte_none(*pte)) {
1935 		if (mkwrite) {
1936 			/*
1937 			 * For read faults on private mappings the PFN passed
1938 			 * in may not match the PFN we have mapped if the
1939 			 * mapped PFN is a writeable COW page.  In the mkwrite
1940 			 * case we are creating a writable PTE for a shared
1941 			 * mapping and we expect the PFNs to match. If they
1942 			 * don't match, we are likely racing with block
1943 			 * allocation and mapping invalidation so just skip the
1944 			 * update.
1945 			 */
1946 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1947 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1948 				goto out_unlock;
1949 			}
1950 			entry = pte_mkyoung(*pte);
1951 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1952 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1953 				update_mmu_cache(vma, addr, pte);
1954 		}
1955 		goto out_unlock;
1956 	}
1957 
1958 	/* Ok, finally just insert the thing.. */
1959 	if (pfn_t_devmap(pfn))
1960 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1961 	else
1962 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1963 
1964 	if (mkwrite) {
1965 		entry = pte_mkyoung(entry);
1966 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1967 	}
1968 
1969 	set_pte_at(mm, addr, pte, entry);
1970 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1971 
1972 out_unlock:
1973 	pte_unmap_unlock(pte, ptl);
1974 	return VM_FAULT_NOPAGE;
1975 }
1976 
1977 /**
1978  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1979  * @vma: user vma to map to
1980  * @addr: target user address of this page
1981  * @pfn: source kernel pfn
1982  * @pgprot: pgprot flags for the inserted page
1983  *
1984  * This is exactly like vmf_insert_pfn(), except that it allows drivers
1985  * to override pgprot on a per-page basis.
1986  *
1987  * This only makes sense for IO mappings, and it makes no sense for
1988  * COW mappings.  In general, using multiple vmas is preferable;
1989  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1990  * impractical.
1991  *
1992  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1993  * a value of @pgprot different from that of @vma->vm_page_prot.
1994  *
1995  * Context: Process context.  May allocate using %GFP_KERNEL.
1996  * Return: vm_fault_t value.
1997  */
1998 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1999 			unsigned long pfn, pgprot_t pgprot)
2000 {
2001 	/*
2002 	 * Technically, architectures with pte_special can avoid all these
2003 	 * restrictions (same for remap_pfn_range).  However we would like
2004 	 * consistency in testing and feature parity among all, so we should
2005 	 * try to keep these invariants in place for everybody.
2006 	 */
2007 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2008 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2009 						(VM_PFNMAP|VM_MIXEDMAP));
2010 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2011 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2012 
2013 	if (addr < vma->vm_start || addr >= vma->vm_end)
2014 		return VM_FAULT_SIGBUS;
2015 
2016 	if (!pfn_modify_allowed(pfn, pgprot))
2017 		return VM_FAULT_SIGBUS;
2018 
2019 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2020 
2021 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2022 			false);
2023 }
2024 EXPORT_SYMBOL(vmf_insert_pfn_prot);
2025 
2026 /**
2027  * vmf_insert_pfn - insert single pfn into user vma
2028  * @vma: user vma to map to
2029  * @addr: target user address of this page
2030  * @pfn: source kernel pfn
2031  *
2032  * Similar to vm_insert_page, this allows drivers to insert individual pages
2033  * they've allocated into a user vma. Same comments apply.
2034  *
2035  * This function should only be called from a vm_ops->fault handler, and
2036  * in that case the handler should return the result of this function.
2037  *
2038  * vma cannot be a COW mapping.
2039  *
2040  * As this is called only for pages that do not currently exist, we
2041  * do not need to flush old virtual caches or the TLB.
2042  *
2043  * Context: Process context.  May allocate using %GFP_KERNEL.
2044  * Return: vm_fault_t value.
2045  */
2046 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2047 			unsigned long pfn)
2048 {
2049 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2050 }
2051 EXPORT_SYMBOL(vmf_insert_pfn);
2052 
2053 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2054 {
2055 	/* these checks mirror the abort conditions in vm_normal_page */
2056 	if (vma->vm_flags & VM_MIXEDMAP)
2057 		return true;
2058 	if (pfn_t_devmap(pfn))
2059 		return true;
2060 	if (pfn_t_special(pfn))
2061 		return true;
2062 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2063 		return true;
2064 	return false;
2065 }
2066 
2067 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2068 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
2069 		bool mkwrite)
2070 {
2071 	int err;
2072 
2073 	BUG_ON(!vm_mixed_ok(vma, pfn));
2074 
2075 	if (addr < vma->vm_start || addr >= vma->vm_end)
2076 		return VM_FAULT_SIGBUS;
2077 
2078 	track_pfn_insert(vma, &pgprot, pfn);
2079 
2080 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2081 		return VM_FAULT_SIGBUS;
2082 
2083 	/*
2084 	 * If we don't have pte special, then we have to use the pfn_valid()
2085 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2086 	 * refcount the page if pfn_valid is true (hence insert_page rather
2087 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2088 	 * without pte special, it would there be refcounted as a normal page.
2089 	 */
2090 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2091 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2092 		struct page *page;
2093 
2094 		/*
2095 		 * At this point we are committed to insert_page()
2096 		 * regardless of whether the caller specified flags that
2097 		 * result in pfn_t_has_page() == false.
2098 		 */
2099 		page = pfn_to_page(pfn_t_to_pfn(pfn));
2100 		err = insert_page(vma, addr, page, pgprot);
2101 	} else {
2102 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2103 	}
2104 
2105 	if (err == -ENOMEM)
2106 		return VM_FAULT_OOM;
2107 	if (err < 0 && err != -EBUSY)
2108 		return VM_FAULT_SIGBUS;
2109 
2110 	return VM_FAULT_NOPAGE;
2111 }
2112 
2113 /**
2114  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
2115  * @vma: user vma to map to
2116  * @addr: target user address of this page
2117  * @pfn: source kernel pfn
2118  * @pgprot: pgprot flags for the inserted page
2119  *
2120  * This is exactly like vmf_insert_mixed(), except that it allows drivers
2121  * to override pgprot on a per-page basis.
2122  *
2123  * Typically this function should be used by drivers to set caching- and
2124  * encryption bits different than those of @vma->vm_page_prot, because
2125  * the caching- or encryption mode may not be known at mmap() time.
2126  * This is ok as long as @vma->vm_page_prot is not used by the core vm
2127  * to set caching and encryption bits for those vmas (except for COW pages).
2128  * This is ensured by core vm only modifying these page table entries using
2129  * functions that don't touch caching- or encryption bits, using pte_modify()
2130  * if needed. (See for example mprotect()).
2131  * Also when new page-table entries are created, this is only done using the
2132  * fault() callback, and never using the value of vma->vm_page_prot,
2133  * except for page-table entries that point to anonymous pages as the result
2134  * of COW.
2135  *
2136  * Context: Process context.  May allocate using %GFP_KERNEL.
2137  * Return: vm_fault_t value.
2138  */
2139 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2140 				 pfn_t pfn, pgprot_t pgprot)
2141 {
2142 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
2143 }
2144 EXPORT_SYMBOL(vmf_insert_mixed_prot);
2145 
2146 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2147 		pfn_t pfn)
2148 {
2149 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
2150 }
2151 EXPORT_SYMBOL(vmf_insert_mixed);
2152 
2153 /*
2154  *  If the insertion of PTE failed because someone else already added a
2155  *  different entry in the mean time, we treat that as success as we assume
2156  *  the same entry was actually inserted.
2157  */
2158 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2159 		unsigned long addr, pfn_t pfn)
2160 {
2161 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
2162 }
2163 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2164 
2165 /*
2166  * maps a range of physical memory into the requested pages. the old
2167  * mappings are removed. any references to nonexistent pages results
2168  * in null mappings (currently treated as "copy-on-access")
2169  */
2170 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2171 			unsigned long addr, unsigned long end,
2172 			unsigned long pfn, pgprot_t prot)
2173 {
2174 	pte_t *pte, *mapped_pte;
2175 	spinlock_t *ptl;
2176 	int err = 0;
2177 
2178 	mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2179 	if (!pte)
2180 		return -ENOMEM;
2181 	arch_enter_lazy_mmu_mode();
2182 	do {
2183 		BUG_ON(!pte_none(*pte));
2184 		if (!pfn_modify_allowed(pfn, prot)) {
2185 			err = -EACCES;
2186 			break;
2187 		}
2188 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2189 		pfn++;
2190 	} while (pte++, addr += PAGE_SIZE, addr != end);
2191 	arch_leave_lazy_mmu_mode();
2192 	pte_unmap_unlock(mapped_pte, ptl);
2193 	return err;
2194 }
2195 
2196 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2197 			unsigned long addr, unsigned long end,
2198 			unsigned long pfn, pgprot_t prot)
2199 {
2200 	pmd_t *pmd;
2201 	unsigned long next;
2202 	int err;
2203 
2204 	pfn -= addr >> PAGE_SHIFT;
2205 	pmd = pmd_alloc(mm, pud, addr);
2206 	if (!pmd)
2207 		return -ENOMEM;
2208 	VM_BUG_ON(pmd_trans_huge(*pmd));
2209 	do {
2210 		next = pmd_addr_end(addr, end);
2211 		err = remap_pte_range(mm, pmd, addr, next,
2212 				pfn + (addr >> PAGE_SHIFT), prot);
2213 		if (err)
2214 			return err;
2215 	} while (pmd++, addr = next, addr != end);
2216 	return 0;
2217 }
2218 
2219 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2220 			unsigned long addr, unsigned long end,
2221 			unsigned long pfn, pgprot_t prot)
2222 {
2223 	pud_t *pud;
2224 	unsigned long next;
2225 	int err;
2226 
2227 	pfn -= addr >> PAGE_SHIFT;
2228 	pud = pud_alloc(mm, p4d, addr);
2229 	if (!pud)
2230 		return -ENOMEM;
2231 	do {
2232 		next = pud_addr_end(addr, end);
2233 		err = remap_pmd_range(mm, pud, addr, next,
2234 				pfn + (addr >> PAGE_SHIFT), prot);
2235 		if (err)
2236 			return err;
2237 	} while (pud++, addr = next, addr != end);
2238 	return 0;
2239 }
2240 
2241 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2242 			unsigned long addr, unsigned long end,
2243 			unsigned long pfn, pgprot_t prot)
2244 {
2245 	p4d_t *p4d;
2246 	unsigned long next;
2247 	int err;
2248 
2249 	pfn -= addr >> PAGE_SHIFT;
2250 	p4d = p4d_alloc(mm, pgd, addr);
2251 	if (!p4d)
2252 		return -ENOMEM;
2253 	do {
2254 		next = p4d_addr_end(addr, end);
2255 		err = remap_pud_range(mm, p4d, addr, next,
2256 				pfn + (addr >> PAGE_SHIFT), prot);
2257 		if (err)
2258 			return err;
2259 	} while (p4d++, addr = next, addr != end);
2260 	return 0;
2261 }
2262 
2263 /**
2264  * remap_pfn_range - remap kernel memory to userspace
2265  * @vma: user vma to map to
2266  * @addr: target page aligned user address to start at
2267  * @pfn: page frame number of kernel physical memory address
2268  * @size: size of mapping area
2269  * @prot: page protection flags for this mapping
2270  *
2271  * Note: this is only safe if the mm semaphore is held when called.
2272  *
2273  * Return: %0 on success, negative error code otherwise.
2274  */
2275 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2276 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2277 {
2278 	pgd_t *pgd;
2279 	unsigned long next;
2280 	unsigned long end = addr + PAGE_ALIGN(size);
2281 	struct mm_struct *mm = vma->vm_mm;
2282 	unsigned long remap_pfn = pfn;
2283 	int err;
2284 
2285 	if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2286 		return -EINVAL;
2287 
2288 	/*
2289 	 * Physically remapped pages are special. Tell the
2290 	 * rest of the world about it:
2291 	 *   VM_IO tells people not to look at these pages
2292 	 *	(accesses can have side effects).
2293 	 *   VM_PFNMAP tells the core MM that the base pages are just
2294 	 *	raw PFN mappings, and do not have a "struct page" associated
2295 	 *	with them.
2296 	 *   VM_DONTEXPAND
2297 	 *      Disable vma merging and expanding with mremap().
2298 	 *   VM_DONTDUMP
2299 	 *      Omit vma from core dump, even when VM_IO turned off.
2300 	 *
2301 	 * There's a horrible special case to handle copy-on-write
2302 	 * behaviour that some programs depend on. We mark the "original"
2303 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2304 	 * See vm_normal_page() for details.
2305 	 */
2306 	if (is_cow_mapping(vma->vm_flags)) {
2307 		if (addr != vma->vm_start || end != vma->vm_end)
2308 			return -EINVAL;
2309 		vma->vm_pgoff = pfn;
2310 	}
2311 
2312 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2313 	if (err)
2314 		return -EINVAL;
2315 
2316 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2317 
2318 	BUG_ON(addr >= end);
2319 	pfn -= addr >> PAGE_SHIFT;
2320 	pgd = pgd_offset(mm, addr);
2321 	flush_cache_range(vma, addr, end);
2322 	do {
2323 		next = pgd_addr_end(addr, end);
2324 		err = remap_p4d_range(mm, pgd, addr, next,
2325 				pfn + (addr >> PAGE_SHIFT), prot);
2326 		if (err)
2327 			break;
2328 	} while (pgd++, addr = next, addr != end);
2329 
2330 	if (err)
2331 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2332 
2333 	return err;
2334 }
2335 EXPORT_SYMBOL(remap_pfn_range);
2336 
2337 /**
2338  * vm_iomap_memory - remap memory to userspace
2339  * @vma: user vma to map to
2340  * @start: start of the physical memory to be mapped
2341  * @len: size of area
2342  *
2343  * This is a simplified io_remap_pfn_range() for common driver use. The
2344  * driver just needs to give us the physical memory range to be mapped,
2345  * we'll figure out the rest from the vma information.
2346  *
2347  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2348  * whatever write-combining details or similar.
2349  *
2350  * Return: %0 on success, negative error code otherwise.
2351  */
2352 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2353 {
2354 	unsigned long vm_len, pfn, pages;
2355 
2356 	/* Check that the physical memory area passed in looks valid */
2357 	if (start + len < start)
2358 		return -EINVAL;
2359 	/*
2360 	 * You *really* shouldn't map things that aren't page-aligned,
2361 	 * but we've historically allowed it because IO memory might
2362 	 * just have smaller alignment.
2363 	 */
2364 	len += start & ~PAGE_MASK;
2365 	pfn = start >> PAGE_SHIFT;
2366 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2367 	if (pfn + pages < pfn)
2368 		return -EINVAL;
2369 
2370 	/* We start the mapping 'vm_pgoff' pages into the area */
2371 	if (vma->vm_pgoff > pages)
2372 		return -EINVAL;
2373 	pfn += vma->vm_pgoff;
2374 	pages -= vma->vm_pgoff;
2375 
2376 	/* Can we fit all of the mapping? */
2377 	vm_len = vma->vm_end - vma->vm_start;
2378 	if (vm_len >> PAGE_SHIFT > pages)
2379 		return -EINVAL;
2380 
2381 	/* Ok, let it rip */
2382 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2383 }
2384 EXPORT_SYMBOL(vm_iomap_memory);
2385 
2386 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2387 				     unsigned long addr, unsigned long end,
2388 				     pte_fn_t fn, void *data, bool create,
2389 				     pgtbl_mod_mask *mask)
2390 {
2391 	pte_t *pte, *mapped_pte;
2392 	int err = 0;
2393 	spinlock_t *ptl;
2394 
2395 	if (create) {
2396 		mapped_pte = pte = (mm == &init_mm) ?
2397 			pte_alloc_kernel_track(pmd, addr, mask) :
2398 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2399 		if (!pte)
2400 			return -ENOMEM;
2401 	} else {
2402 		mapped_pte = pte = (mm == &init_mm) ?
2403 			pte_offset_kernel(pmd, addr) :
2404 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2405 	}
2406 
2407 	BUG_ON(pmd_huge(*pmd));
2408 
2409 	arch_enter_lazy_mmu_mode();
2410 
2411 	if (fn) {
2412 		do {
2413 			if (create || !pte_none(*pte)) {
2414 				err = fn(pte++, addr, data);
2415 				if (err)
2416 					break;
2417 			}
2418 		} while (addr += PAGE_SIZE, addr != end);
2419 	}
2420 	*mask |= PGTBL_PTE_MODIFIED;
2421 
2422 	arch_leave_lazy_mmu_mode();
2423 
2424 	if (mm != &init_mm)
2425 		pte_unmap_unlock(mapped_pte, ptl);
2426 	return err;
2427 }
2428 
2429 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2430 				     unsigned long addr, unsigned long end,
2431 				     pte_fn_t fn, void *data, bool create,
2432 				     pgtbl_mod_mask *mask)
2433 {
2434 	pmd_t *pmd;
2435 	unsigned long next;
2436 	int err = 0;
2437 
2438 	BUG_ON(pud_huge(*pud));
2439 
2440 	if (create) {
2441 		pmd = pmd_alloc_track(mm, pud, addr, mask);
2442 		if (!pmd)
2443 			return -ENOMEM;
2444 	} else {
2445 		pmd = pmd_offset(pud, addr);
2446 	}
2447 	do {
2448 		next = pmd_addr_end(addr, end);
2449 		if (create || !pmd_none_or_clear_bad(pmd)) {
2450 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2451 						 create, mask);
2452 			if (err)
2453 				break;
2454 		}
2455 	} while (pmd++, addr = next, addr != end);
2456 	return err;
2457 }
2458 
2459 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2460 				     unsigned long addr, unsigned long end,
2461 				     pte_fn_t fn, void *data, bool create,
2462 				     pgtbl_mod_mask *mask)
2463 {
2464 	pud_t *pud;
2465 	unsigned long next;
2466 	int err = 0;
2467 
2468 	if (create) {
2469 		pud = pud_alloc_track(mm, p4d, addr, mask);
2470 		if (!pud)
2471 			return -ENOMEM;
2472 	} else {
2473 		pud = pud_offset(p4d, addr);
2474 	}
2475 	do {
2476 		next = pud_addr_end(addr, end);
2477 		if (create || !pud_none_or_clear_bad(pud)) {
2478 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2479 						 create, mask);
2480 			if (err)
2481 				break;
2482 		}
2483 	} while (pud++, addr = next, addr != end);
2484 	return err;
2485 }
2486 
2487 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2488 				     unsigned long addr, unsigned long end,
2489 				     pte_fn_t fn, void *data, bool create,
2490 				     pgtbl_mod_mask *mask)
2491 {
2492 	p4d_t *p4d;
2493 	unsigned long next;
2494 	int err = 0;
2495 
2496 	if (create) {
2497 		p4d = p4d_alloc_track(mm, pgd, addr, mask);
2498 		if (!p4d)
2499 			return -ENOMEM;
2500 	} else {
2501 		p4d = p4d_offset(pgd, addr);
2502 	}
2503 	do {
2504 		next = p4d_addr_end(addr, end);
2505 		if (create || !p4d_none_or_clear_bad(p4d)) {
2506 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2507 						 create, mask);
2508 			if (err)
2509 				break;
2510 		}
2511 	} while (p4d++, addr = next, addr != end);
2512 	return err;
2513 }
2514 
2515 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2516 				 unsigned long size, pte_fn_t fn,
2517 				 void *data, bool create)
2518 {
2519 	pgd_t *pgd;
2520 	unsigned long start = addr, next;
2521 	unsigned long end = addr + size;
2522 	pgtbl_mod_mask mask = 0;
2523 	int err = 0;
2524 
2525 	if (WARN_ON(addr >= end))
2526 		return -EINVAL;
2527 
2528 	pgd = pgd_offset(mm, addr);
2529 	do {
2530 		next = pgd_addr_end(addr, end);
2531 		if (!create && pgd_none_or_clear_bad(pgd))
2532 			continue;
2533 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create, &mask);
2534 		if (err)
2535 			break;
2536 	} while (pgd++, addr = next, addr != end);
2537 
2538 	if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2539 		arch_sync_kernel_mappings(start, start + size);
2540 
2541 	return err;
2542 }
2543 
2544 /*
2545  * Scan a region of virtual memory, filling in page tables as necessary
2546  * and calling a provided function on each leaf page table.
2547  */
2548 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2549 			unsigned long size, pte_fn_t fn, void *data)
2550 {
2551 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2552 }
2553 EXPORT_SYMBOL_GPL(apply_to_page_range);
2554 
2555 /*
2556  * Scan a region of virtual memory, calling a provided function on
2557  * each leaf page table where it exists.
2558  *
2559  * Unlike apply_to_page_range, this does _not_ fill in page tables
2560  * where they are absent.
2561  */
2562 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2563 				 unsigned long size, pte_fn_t fn, void *data)
2564 {
2565 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2566 }
2567 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2568 
2569 /*
2570  * handle_pte_fault chooses page fault handler according to an entry which was
2571  * read non-atomically.  Before making any commitment, on those architectures
2572  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2573  * parts, do_swap_page must check under lock before unmapping the pte and
2574  * proceeding (but do_wp_page is only called after already making such a check;
2575  * and do_anonymous_page can safely check later on).
2576  */
2577 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2578 				pte_t *page_table, pte_t orig_pte)
2579 {
2580 	int same = 1;
2581 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2582 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2583 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2584 		spin_lock(ptl);
2585 		same = pte_same(*page_table, orig_pte);
2586 		spin_unlock(ptl);
2587 	}
2588 #endif
2589 	pte_unmap(page_table);
2590 	return same;
2591 }
2592 
2593 static inline bool cow_user_page(struct page *dst, struct page *src,
2594 				 struct vm_fault *vmf)
2595 {
2596 	bool ret;
2597 	void *kaddr;
2598 	void __user *uaddr;
2599 	bool locked = false;
2600 	struct vm_area_struct *vma = vmf->vma;
2601 	struct mm_struct *mm = vma->vm_mm;
2602 	unsigned long addr = vmf->address;
2603 
2604 	if (likely(src)) {
2605 		copy_user_highpage(dst, src, addr, vma);
2606 		return true;
2607 	}
2608 
2609 	/*
2610 	 * If the source page was a PFN mapping, we don't have
2611 	 * a "struct page" for it. We do a best-effort copy by
2612 	 * just copying from the original user address. If that
2613 	 * fails, we just zero-fill it. Live with it.
2614 	 */
2615 	kaddr = kmap_atomic(dst);
2616 	uaddr = (void __user *)(addr & PAGE_MASK);
2617 
2618 	/*
2619 	 * On architectures with software "accessed" bits, we would
2620 	 * take a double page fault, so mark it accessed here.
2621 	 */
2622 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2623 		pte_t entry;
2624 
2625 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2626 		locked = true;
2627 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2628 			/*
2629 			 * Other thread has already handled the fault
2630 			 * and update local tlb only
2631 			 */
2632 			update_mmu_tlb(vma, addr, vmf->pte);
2633 			ret = false;
2634 			goto pte_unlock;
2635 		}
2636 
2637 		entry = pte_mkyoung(vmf->orig_pte);
2638 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2639 			update_mmu_cache(vma, addr, vmf->pte);
2640 	}
2641 
2642 	/*
2643 	 * This really shouldn't fail, because the page is there
2644 	 * in the page tables. But it might just be unreadable,
2645 	 * in which case we just give up and fill the result with
2646 	 * zeroes.
2647 	 */
2648 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2649 		if (locked)
2650 			goto warn;
2651 
2652 		/* Re-validate under PTL if the page is still mapped */
2653 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2654 		locked = true;
2655 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2656 			/* The PTE changed under us, update local tlb */
2657 			update_mmu_tlb(vma, addr, vmf->pte);
2658 			ret = false;
2659 			goto pte_unlock;
2660 		}
2661 
2662 		/*
2663 		 * The same page can be mapped back since last copy attempt.
2664 		 * Try to copy again under PTL.
2665 		 */
2666 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2667 			/*
2668 			 * Give a warn in case there can be some obscure
2669 			 * use-case
2670 			 */
2671 warn:
2672 			WARN_ON_ONCE(1);
2673 			clear_page(kaddr);
2674 		}
2675 	}
2676 
2677 	ret = true;
2678 
2679 pte_unlock:
2680 	if (locked)
2681 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2682 	kunmap_atomic(kaddr);
2683 	flush_dcache_page(dst);
2684 
2685 	return ret;
2686 }
2687 
2688 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2689 {
2690 	struct file *vm_file = vma->vm_file;
2691 
2692 	if (vm_file)
2693 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2694 
2695 	/*
2696 	 * Special mappings (e.g. VDSO) do not have any file so fake
2697 	 * a default GFP_KERNEL for them.
2698 	 */
2699 	return GFP_KERNEL;
2700 }
2701 
2702 /*
2703  * Notify the address space that the page is about to become writable so that
2704  * it can prohibit this or wait for the page to get into an appropriate state.
2705  *
2706  * We do this without the lock held, so that it can sleep if it needs to.
2707  */
2708 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2709 {
2710 	vm_fault_t ret;
2711 	struct page *page = vmf->page;
2712 	unsigned int old_flags = vmf->flags;
2713 
2714 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2715 
2716 	if (vmf->vma->vm_file &&
2717 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2718 		return VM_FAULT_SIGBUS;
2719 
2720 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2721 	/* Restore original flags so that caller is not surprised */
2722 	vmf->flags = old_flags;
2723 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2724 		return ret;
2725 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2726 		lock_page(page);
2727 		if (!page->mapping) {
2728 			unlock_page(page);
2729 			return 0; /* retry */
2730 		}
2731 		ret |= VM_FAULT_LOCKED;
2732 	} else
2733 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2734 	return ret;
2735 }
2736 
2737 /*
2738  * Handle dirtying of a page in shared file mapping on a write fault.
2739  *
2740  * The function expects the page to be locked and unlocks it.
2741  */
2742 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2743 {
2744 	struct vm_area_struct *vma = vmf->vma;
2745 	struct address_space *mapping;
2746 	struct page *page = vmf->page;
2747 	bool dirtied;
2748 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2749 
2750 	dirtied = set_page_dirty(page);
2751 	VM_BUG_ON_PAGE(PageAnon(page), page);
2752 	/*
2753 	 * Take a local copy of the address_space - page.mapping may be zeroed
2754 	 * by truncate after unlock_page().   The address_space itself remains
2755 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2756 	 * release semantics to prevent the compiler from undoing this copying.
2757 	 */
2758 	mapping = page_rmapping(page);
2759 	unlock_page(page);
2760 
2761 	if (!page_mkwrite)
2762 		file_update_time(vma->vm_file);
2763 
2764 	/*
2765 	 * Throttle page dirtying rate down to writeback speed.
2766 	 *
2767 	 * mapping may be NULL here because some device drivers do not
2768 	 * set page.mapping but still dirty their pages
2769 	 *
2770 	 * Drop the mmap_lock before waiting on IO, if we can. The file
2771 	 * is pinning the mapping, as per above.
2772 	 */
2773 	if ((dirtied || page_mkwrite) && mapping) {
2774 		struct file *fpin;
2775 
2776 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2777 		balance_dirty_pages_ratelimited(mapping);
2778 		if (fpin) {
2779 			fput(fpin);
2780 			return VM_FAULT_RETRY;
2781 		}
2782 	}
2783 
2784 	return 0;
2785 }
2786 
2787 /*
2788  * Handle write page faults for pages that can be reused in the current vma
2789  *
2790  * This can happen either due to the mapping being with the VM_SHARED flag,
2791  * or due to us being the last reference standing to the page. In either
2792  * case, all we need to do here is to mark the page as writable and update
2793  * any related book-keeping.
2794  */
2795 static inline void wp_page_reuse(struct vm_fault *vmf)
2796 	__releases(vmf->ptl)
2797 {
2798 	struct vm_area_struct *vma = vmf->vma;
2799 	struct page *page = vmf->page;
2800 	pte_t entry;
2801 	/*
2802 	 * Clear the pages cpupid information as the existing
2803 	 * information potentially belongs to a now completely
2804 	 * unrelated process.
2805 	 */
2806 	if (page)
2807 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2808 
2809 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2810 	entry = pte_mkyoung(vmf->orig_pte);
2811 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2812 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2813 		update_mmu_cache(vma, vmf->address, vmf->pte);
2814 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2815 	count_vm_event(PGREUSE);
2816 }
2817 
2818 /*
2819  * Handle the case of a page which we actually need to copy to a new page.
2820  *
2821  * Called with mmap_lock locked and the old page referenced, but
2822  * without the ptl held.
2823  *
2824  * High level logic flow:
2825  *
2826  * - Allocate a page, copy the content of the old page to the new one.
2827  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2828  * - Take the PTL. If the pte changed, bail out and release the allocated page
2829  * - If the pte is still the way we remember it, update the page table and all
2830  *   relevant references. This includes dropping the reference the page-table
2831  *   held to the old page, as well as updating the rmap.
2832  * - In any case, unlock the PTL and drop the reference we took to the old page.
2833  */
2834 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2835 {
2836 	struct vm_area_struct *vma = vmf->vma;
2837 	struct mm_struct *mm = vma->vm_mm;
2838 	struct page *old_page = vmf->page;
2839 	struct page *new_page = NULL;
2840 	pte_t entry;
2841 	int page_copied = 0;
2842 	struct mmu_notifier_range range;
2843 
2844 	if (unlikely(anon_vma_prepare(vma)))
2845 		goto oom;
2846 
2847 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2848 		new_page = alloc_zeroed_user_highpage_movable(vma,
2849 							      vmf->address);
2850 		if (!new_page)
2851 			goto oom;
2852 	} else {
2853 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2854 				vmf->address);
2855 		if (!new_page)
2856 			goto oom;
2857 
2858 		if (!cow_user_page(new_page, old_page, vmf)) {
2859 			/*
2860 			 * COW failed, if the fault was solved by other,
2861 			 * it's fine. If not, userspace would re-fault on
2862 			 * the same address and we will handle the fault
2863 			 * from the second attempt.
2864 			 */
2865 			put_page(new_page);
2866 			if (old_page)
2867 				put_page(old_page);
2868 			return 0;
2869 		}
2870 	}
2871 
2872 	if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
2873 		goto oom_free_new;
2874 	cgroup_throttle_swaprate(new_page, GFP_KERNEL);
2875 
2876 	__SetPageUptodate(new_page);
2877 
2878 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2879 				vmf->address & PAGE_MASK,
2880 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2881 	mmu_notifier_invalidate_range_start(&range);
2882 
2883 	/*
2884 	 * Re-check the pte - we dropped the lock
2885 	 */
2886 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2887 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2888 		if (old_page) {
2889 			if (!PageAnon(old_page)) {
2890 				dec_mm_counter_fast(mm,
2891 						mm_counter_file(old_page));
2892 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2893 			}
2894 		} else {
2895 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2896 		}
2897 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2898 		entry = mk_pte(new_page, vma->vm_page_prot);
2899 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2900 
2901 		/*
2902 		 * Clear the pte entry and flush it first, before updating the
2903 		 * pte with the new entry, to keep TLBs on different CPUs in
2904 		 * sync. This code used to set the new PTE then flush TLBs, but
2905 		 * that left a window where the new PTE could be loaded into
2906 		 * some TLBs while the old PTE remains in others.
2907 		 */
2908 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2909 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2910 		lru_cache_add_inactive_or_unevictable(new_page, vma);
2911 		/*
2912 		 * We call the notify macro here because, when using secondary
2913 		 * mmu page tables (such as kvm shadow page tables), we want the
2914 		 * new page to be mapped directly into the secondary page table.
2915 		 */
2916 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2917 		update_mmu_cache(vma, vmf->address, vmf->pte);
2918 		if (old_page) {
2919 			/*
2920 			 * Only after switching the pte to the new page may
2921 			 * we remove the mapcount here. Otherwise another
2922 			 * process may come and find the rmap count decremented
2923 			 * before the pte is switched to the new page, and
2924 			 * "reuse" the old page writing into it while our pte
2925 			 * here still points into it and can be read by other
2926 			 * threads.
2927 			 *
2928 			 * The critical issue is to order this
2929 			 * page_remove_rmap with the ptp_clear_flush above.
2930 			 * Those stores are ordered by (if nothing else,)
2931 			 * the barrier present in the atomic_add_negative
2932 			 * in page_remove_rmap.
2933 			 *
2934 			 * Then the TLB flush in ptep_clear_flush ensures that
2935 			 * no process can access the old page before the
2936 			 * decremented mapcount is visible. And the old page
2937 			 * cannot be reused until after the decremented
2938 			 * mapcount is visible. So transitively, TLBs to
2939 			 * old page will be flushed before it can be reused.
2940 			 */
2941 			page_remove_rmap(old_page, false);
2942 		}
2943 
2944 		/* Free the old page.. */
2945 		new_page = old_page;
2946 		page_copied = 1;
2947 	} else {
2948 		update_mmu_tlb(vma, vmf->address, vmf->pte);
2949 	}
2950 
2951 	if (new_page)
2952 		put_page(new_page);
2953 
2954 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2955 	/*
2956 	 * No need to double call mmu_notifier->invalidate_range() callback as
2957 	 * the above ptep_clear_flush_notify() did already call it.
2958 	 */
2959 	mmu_notifier_invalidate_range_only_end(&range);
2960 	if (old_page) {
2961 		/*
2962 		 * Don't let another task, with possibly unlocked vma,
2963 		 * keep the mlocked page.
2964 		 */
2965 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2966 			lock_page(old_page);	/* LRU manipulation */
2967 			if (PageMlocked(old_page))
2968 				munlock_vma_page(old_page);
2969 			unlock_page(old_page);
2970 		}
2971 		put_page(old_page);
2972 	}
2973 	return page_copied ? VM_FAULT_WRITE : 0;
2974 oom_free_new:
2975 	put_page(new_page);
2976 oom:
2977 	if (old_page)
2978 		put_page(old_page);
2979 	return VM_FAULT_OOM;
2980 }
2981 
2982 /**
2983  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2984  *			  writeable once the page is prepared
2985  *
2986  * @vmf: structure describing the fault
2987  *
2988  * This function handles all that is needed to finish a write page fault in a
2989  * shared mapping due to PTE being read-only once the mapped page is prepared.
2990  * It handles locking of PTE and modifying it.
2991  *
2992  * The function expects the page to be locked or other protection against
2993  * concurrent faults / writeback (such as DAX radix tree locks).
2994  *
2995  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2996  * we acquired PTE lock.
2997  */
2998 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2999 {
3000 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3001 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3002 				       &vmf->ptl);
3003 	/*
3004 	 * We might have raced with another page fault while we released the
3005 	 * pte_offset_map_lock.
3006 	 */
3007 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
3008 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3009 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3010 		return VM_FAULT_NOPAGE;
3011 	}
3012 	wp_page_reuse(vmf);
3013 	return 0;
3014 }
3015 
3016 /*
3017  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3018  * mapping
3019  */
3020 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3021 {
3022 	struct vm_area_struct *vma = vmf->vma;
3023 
3024 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3025 		vm_fault_t ret;
3026 
3027 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3028 		vmf->flags |= FAULT_FLAG_MKWRITE;
3029 		ret = vma->vm_ops->pfn_mkwrite(vmf);
3030 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3031 			return ret;
3032 		return finish_mkwrite_fault(vmf);
3033 	}
3034 	wp_page_reuse(vmf);
3035 	return VM_FAULT_WRITE;
3036 }
3037 
3038 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3039 	__releases(vmf->ptl)
3040 {
3041 	struct vm_area_struct *vma = vmf->vma;
3042 	vm_fault_t ret = VM_FAULT_WRITE;
3043 
3044 	get_page(vmf->page);
3045 
3046 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3047 		vm_fault_t tmp;
3048 
3049 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3050 		tmp = do_page_mkwrite(vmf);
3051 		if (unlikely(!tmp || (tmp &
3052 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3053 			put_page(vmf->page);
3054 			return tmp;
3055 		}
3056 		tmp = finish_mkwrite_fault(vmf);
3057 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3058 			unlock_page(vmf->page);
3059 			put_page(vmf->page);
3060 			return tmp;
3061 		}
3062 	} else {
3063 		wp_page_reuse(vmf);
3064 		lock_page(vmf->page);
3065 	}
3066 	ret |= fault_dirty_shared_page(vmf);
3067 	put_page(vmf->page);
3068 
3069 	return ret;
3070 }
3071 
3072 /*
3073  * This routine handles present pages, when users try to write
3074  * to a shared page. It is done by copying the page to a new address
3075  * and decrementing the shared-page counter for the old page.
3076  *
3077  * Note that this routine assumes that the protection checks have been
3078  * done by the caller (the low-level page fault routine in most cases).
3079  * Thus we can safely just mark it writable once we've done any necessary
3080  * COW.
3081  *
3082  * We also mark the page dirty at this point even though the page will
3083  * change only once the write actually happens. This avoids a few races,
3084  * and potentially makes it more efficient.
3085  *
3086  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3087  * but allow concurrent faults), with pte both mapped and locked.
3088  * We return with mmap_lock still held, but pte unmapped and unlocked.
3089  */
3090 static vm_fault_t do_wp_page(struct vm_fault *vmf)
3091 	__releases(vmf->ptl)
3092 {
3093 	struct vm_area_struct *vma = vmf->vma;
3094 
3095 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
3096 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3097 		return handle_userfault(vmf, VM_UFFD_WP);
3098 	}
3099 
3100 	/*
3101 	 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3102 	 * is flushed in this case before copying.
3103 	 */
3104 	if (unlikely(userfaultfd_wp(vmf->vma) &&
3105 		     mm_tlb_flush_pending(vmf->vma->vm_mm)))
3106 		flush_tlb_page(vmf->vma, vmf->address);
3107 
3108 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3109 	if (!vmf->page) {
3110 		/*
3111 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3112 		 * VM_PFNMAP VMA.
3113 		 *
3114 		 * We should not cow pages in a shared writeable mapping.
3115 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3116 		 */
3117 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3118 				     (VM_WRITE|VM_SHARED))
3119 			return wp_pfn_shared(vmf);
3120 
3121 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3122 		return wp_page_copy(vmf);
3123 	}
3124 
3125 	/*
3126 	 * Take out anonymous pages first, anonymous shared vmas are
3127 	 * not dirty accountable.
3128 	 */
3129 	if (PageAnon(vmf->page)) {
3130 		struct page *page = vmf->page;
3131 
3132 		/* PageKsm() doesn't necessarily raise the page refcount */
3133 		if (PageKsm(page) || page_count(page) != 1)
3134 			goto copy;
3135 		if (!trylock_page(page))
3136 			goto copy;
3137 		if (PageKsm(page) || page_mapcount(page) != 1 || page_count(page) != 1) {
3138 			unlock_page(page);
3139 			goto copy;
3140 		}
3141 		/*
3142 		 * Ok, we've got the only map reference, and the only
3143 		 * page count reference, and the page is locked,
3144 		 * it's dark out, and we're wearing sunglasses. Hit it.
3145 		 */
3146 		unlock_page(page);
3147 		wp_page_reuse(vmf);
3148 		return VM_FAULT_WRITE;
3149 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
3150 					(VM_WRITE|VM_SHARED))) {
3151 		return wp_page_shared(vmf);
3152 	}
3153 copy:
3154 	/*
3155 	 * Ok, we need to copy. Oh, well..
3156 	 */
3157 	get_page(vmf->page);
3158 
3159 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3160 	return wp_page_copy(vmf);
3161 }
3162 
3163 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3164 		unsigned long start_addr, unsigned long end_addr,
3165 		struct zap_details *details)
3166 {
3167 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3168 }
3169 
3170 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3171 					    struct zap_details *details)
3172 {
3173 	struct vm_area_struct *vma;
3174 	pgoff_t vba, vea, zba, zea;
3175 
3176 	vma_interval_tree_foreach(vma, root,
3177 			details->first_index, details->last_index) {
3178 
3179 		vba = vma->vm_pgoff;
3180 		vea = vba + vma_pages(vma) - 1;
3181 		zba = details->first_index;
3182 		if (zba < vba)
3183 			zba = vba;
3184 		zea = details->last_index;
3185 		if (zea > vea)
3186 			zea = vea;
3187 
3188 		unmap_mapping_range_vma(vma,
3189 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3190 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3191 				details);
3192 	}
3193 }
3194 
3195 /**
3196  * unmap_mapping_pages() - Unmap pages from processes.
3197  * @mapping: The address space containing pages to be unmapped.
3198  * @start: Index of first page to be unmapped.
3199  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
3200  * @even_cows: Whether to unmap even private COWed pages.
3201  *
3202  * Unmap the pages in this address space from any userspace process which
3203  * has them mmaped.  Generally, you want to remove COWed pages as well when
3204  * a file is being truncated, but not when invalidating pages from the page
3205  * cache.
3206  */
3207 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3208 		pgoff_t nr, bool even_cows)
3209 {
3210 	struct zap_details details = { };
3211 
3212 	details.check_mapping = even_cows ? NULL : mapping;
3213 	details.first_index = start;
3214 	details.last_index = start + nr - 1;
3215 	if (details.last_index < details.first_index)
3216 		details.last_index = ULONG_MAX;
3217 
3218 	i_mmap_lock_write(mapping);
3219 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3220 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
3221 	i_mmap_unlock_write(mapping);
3222 }
3223 
3224 /**
3225  * unmap_mapping_range - unmap the portion of all mmaps in the specified
3226  * address_space corresponding to the specified byte range in the underlying
3227  * file.
3228  *
3229  * @mapping: the address space containing mmaps to be unmapped.
3230  * @holebegin: byte in first page to unmap, relative to the start of
3231  * the underlying file.  This will be rounded down to a PAGE_SIZE
3232  * boundary.  Note that this is different from truncate_pagecache(), which
3233  * must keep the partial page.  In contrast, we must get rid of
3234  * partial pages.
3235  * @holelen: size of prospective hole in bytes.  This will be rounded
3236  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
3237  * end of the file.
3238  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3239  * but 0 when invalidating pagecache, don't throw away private data.
3240  */
3241 void unmap_mapping_range(struct address_space *mapping,
3242 		loff_t const holebegin, loff_t const holelen, int even_cows)
3243 {
3244 	pgoff_t hba = holebegin >> PAGE_SHIFT;
3245 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3246 
3247 	/* Check for overflow. */
3248 	if (sizeof(holelen) > sizeof(hlen)) {
3249 		long long holeend =
3250 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3251 		if (holeend & ~(long long)ULONG_MAX)
3252 			hlen = ULONG_MAX - hba + 1;
3253 	}
3254 
3255 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
3256 }
3257 EXPORT_SYMBOL(unmap_mapping_range);
3258 
3259 /*
3260  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3261  * but allow concurrent faults), and pte mapped but not yet locked.
3262  * We return with pte unmapped and unlocked.
3263  *
3264  * We return with the mmap_lock locked or unlocked in the same cases
3265  * as does filemap_fault().
3266  */
3267 vm_fault_t do_swap_page(struct vm_fault *vmf)
3268 {
3269 	struct vm_area_struct *vma = vmf->vma;
3270 	struct page *page = NULL, *swapcache;
3271 	swp_entry_t entry;
3272 	pte_t pte;
3273 	int locked;
3274 	int exclusive = 0;
3275 	vm_fault_t ret = 0;
3276 	void *shadow = NULL;
3277 
3278 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
3279 		goto out;
3280 
3281 	entry = pte_to_swp_entry(vmf->orig_pte);
3282 	if (unlikely(non_swap_entry(entry))) {
3283 		if (is_migration_entry(entry)) {
3284 			migration_entry_wait(vma->vm_mm, vmf->pmd,
3285 					     vmf->address);
3286 		} else if (is_device_private_entry(entry)) {
3287 			vmf->page = device_private_entry_to_page(entry);
3288 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3289 		} else if (is_hwpoison_entry(entry)) {
3290 			ret = VM_FAULT_HWPOISON;
3291 		} else {
3292 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3293 			ret = VM_FAULT_SIGBUS;
3294 		}
3295 		goto out;
3296 	}
3297 
3298 
3299 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
3300 	page = lookup_swap_cache(entry, vma, vmf->address);
3301 	swapcache = page;
3302 
3303 	if (!page) {
3304 		struct swap_info_struct *si = swp_swap_info(entry);
3305 
3306 		if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3307 		    __swap_count(entry) == 1) {
3308 			/* skip swapcache */
3309 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
3310 							vmf->address);
3311 			if (page) {
3312 				int err;
3313 
3314 				__SetPageLocked(page);
3315 				__SetPageSwapBacked(page);
3316 				set_page_private(page, entry.val);
3317 
3318 				/* Tell memcg to use swap ownership records */
3319 				SetPageSwapCache(page);
3320 				err = mem_cgroup_charge(page, vma->vm_mm,
3321 							GFP_KERNEL);
3322 				ClearPageSwapCache(page);
3323 				if (err) {
3324 					ret = VM_FAULT_OOM;
3325 					goto out_page;
3326 				}
3327 
3328 				shadow = get_shadow_from_swap_cache(entry);
3329 				if (shadow)
3330 					workingset_refault(page, shadow);
3331 
3332 				lru_cache_add(page);
3333 				swap_readpage(page, true);
3334 			}
3335 		} else {
3336 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3337 						vmf);
3338 			swapcache = page;
3339 		}
3340 
3341 		if (!page) {
3342 			/*
3343 			 * Back out if somebody else faulted in this pte
3344 			 * while we released the pte lock.
3345 			 */
3346 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3347 					vmf->address, &vmf->ptl);
3348 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3349 				ret = VM_FAULT_OOM;
3350 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3351 			goto unlock;
3352 		}
3353 
3354 		/* Had to read the page from swap area: Major fault */
3355 		ret = VM_FAULT_MAJOR;
3356 		count_vm_event(PGMAJFAULT);
3357 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3358 	} else if (PageHWPoison(page)) {
3359 		/*
3360 		 * hwpoisoned dirty swapcache pages are kept for killing
3361 		 * owner processes (which may be unknown at hwpoison time)
3362 		 */
3363 		ret = VM_FAULT_HWPOISON;
3364 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3365 		goto out_release;
3366 	}
3367 
3368 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3369 
3370 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3371 	if (!locked) {
3372 		ret |= VM_FAULT_RETRY;
3373 		goto out_release;
3374 	}
3375 
3376 	/*
3377 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3378 	 * release the swapcache from under us.  The page pin, and pte_same
3379 	 * test below, are not enough to exclude that.  Even if it is still
3380 	 * swapcache, we need to check that the page's swap has not changed.
3381 	 */
3382 	if (unlikely((!PageSwapCache(page) ||
3383 			page_private(page) != entry.val)) && swapcache)
3384 		goto out_page;
3385 
3386 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3387 	if (unlikely(!page)) {
3388 		ret = VM_FAULT_OOM;
3389 		page = swapcache;
3390 		goto out_page;
3391 	}
3392 
3393 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3394 
3395 	/*
3396 	 * Back out if somebody else already faulted in this pte.
3397 	 */
3398 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3399 			&vmf->ptl);
3400 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3401 		goto out_nomap;
3402 
3403 	if (unlikely(!PageUptodate(page))) {
3404 		ret = VM_FAULT_SIGBUS;
3405 		goto out_nomap;
3406 	}
3407 
3408 	/*
3409 	 * The page isn't present yet, go ahead with the fault.
3410 	 *
3411 	 * Be careful about the sequence of operations here.
3412 	 * To get its accounting right, reuse_swap_page() must be called
3413 	 * while the page is counted on swap but not yet in mapcount i.e.
3414 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3415 	 * must be called after the swap_free(), or it will never succeed.
3416 	 */
3417 
3418 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3419 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3420 	pte = mk_pte(page, vma->vm_page_prot);
3421 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3422 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3423 		vmf->flags &= ~FAULT_FLAG_WRITE;
3424 		ret |= VM_FAULT_WRITE;
3425 		exclusive = RMAP_EXCLUSIVE;
3426 	}
3427 	flush_icache_page(vma, page);
3428 	if (pte_swp_soft_dirty(vmf->orig_pte))
3429 		pte = pte_mksoft_dirty(pte);
3430 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3431 		pte = pte_mkuffd_wp(pte);
3432 		pte = pte_wrprotect(pte);
3433 	}
3434 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3435 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3436 	vmf->orig_pte = pte;
3437 
3438 	/* ksm created a completely new copy */
3439 	if (unlikely(page != swapcache && swapcache)) {
3440 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3441 		lru_cache_add_inactive_or_unevictable(page, vma);
3442 	} else {
3443 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3444 	}
3445 
3446 	swap_free(entry);
3447 	if (mem_cgroup_swap_full(page) ||
3448 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3449 		try_to_free_swap(page);
3450 	unlock_page(page);
3451 	if (page != swapcache && swapcache) {
3452 		/*
3453 		 * Hold the lock to avoid the swap entry to be reused
3454 		 * until we take the PT lock for the pte_same() check
3455 		 * (to avoid false positives from pte_same). For
3456 		 * further safety release the lock after the swap_free
3457 		 * so that the swap count won't change under a
3458 		 * parallel locked swapcache.
3459 		 */
3460 		unlock_page(swapcache);
3461 		put_page(swapcache);
3462 	}
3463 
3464 	if (vmf->flags & FAULT_FLAG_WRITE) {
3465 		ret |= do_wp_page(vmf);
3466 		if (ret & VM_FAULT_ERROR)
3467 			ret &= VM_FAULT_ERROR;
3468 		goto out;
3469 	}
3470 
3471 	/* No need to invalidate - it was non-present before */
3472 	update_mmu_cache(vma, vmf->address, vmf->pte);
3473 unlock:
3474 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3475 out:
3476 	return ret;
3477 out_nomap:
3478 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3479 out_page:
3480 	unlock_page(page);
3481 out_release:
3482 	put_page(page);
3483 	if (page != swapcache && swapcache) {
3484 		unlock_page(swapcache);
3485 		put_page(swapcache);
3486 	}
3487 	return ret;
3488 }
3489 
3490 /*
3491  * We enter with non-exclusive mmap_lock (to exclude vma changes,
3492  * but allow concurrent faults), and pte mapped but not yet locked.
3493  * We return with mmap_lock still held, but pte unmapped and unlocked.
3494  */
3495 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3496 {
3497 	struct vm_area_struct *vma = vmf->vma;
3498 	struct page *page;
3499 	vm_fault_t ret = 0;
3500 	pte_t entry;
3501 
3502 	/* File mapping without ->vm_ops ? */
3503 	if (vma->vm_flags & VM_SHARED)
3504 		return VM_FAULT_SIGBUS;
3505 
3506 	/*
3507 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3508 	 * pte_offset_map() on pmds where a huge pmd might be created
3509 	 * from a different thread.
3510 	 *
3511 	 * pte_alloc_map() is safe to use under mmap_write_lock(mm) or when
3512 	 * parallel threads are excluded by other means.
3513 	 *
3514 	 * Here we only have mmap_read_lock(mm).
3515 	 */
3516 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3517 		return VM_FAULT_OOM;
3518 
3519 	/* See comment in handle_pte_fault() */
3520 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3521 		return 0;
3522 
3523 	/* Use the zero-page for reads */
3524 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3525 			!mm_forbids_zeropage(vma->vm_mm)) {
3526 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3527 						vma->vm_page_prot));
3528 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3529 				vmf->address, &vmf->ptl);
3530 		if (!pte_none(*vmf->pte)) {
3531 			update_mmu_tlb(vma, vmf->address, vmf->pte);
3532 			goto unlock;
3533 		}
3534 		ret = check_stable_address_space(vma->vm_mm);
3535 		if (ret)
3536 			goto unlock;
3537 		/* Deliver the page fault to userland, check inside PT lock */
3538 		if (userfaultfd_missing(vma)) {
3539 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3540 			return handle_userfault(vmf, VM_UFFD_MISSING);
3541 		}
3542 		goto setpte;
3543 	}
3544 
3545 	/* Allocate our own private page. */
3546 	if (unlikely(anon_vma_prepare(vma)))
3547 		goto oom;
3548 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3549 	if (!page)
3550 		goto oom;
3551 
3552 	if (mem_cgroup_charge(page, vma->vm_mm, GFP_KERNEL))
3553 		goto oom_free_page;
3554 	cgroup_throttle_swaprate(page, GFP_KERNEL);
3555 
3556 	/*
3557 	 * The memory barrier inside __SetPageUptodate makes sure that
3558 	 * preceding stores to the page contents become visible before
3559 	 * the set_pte_at() write.
3560 	 */
3561 	__SetPageUptodate(page);
3562 
3563 	entry = mk_pte(page, vma->vm_page_prot);
3564 	if (vma->vm_flags & VM_WRITE)
3565 		entry = pte_mkwrite(pte_mkdirty(entry));
3566 
3567 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3568 			&vmf->ptl);
3569 	if (!pte_none(*vmf->pte)) {
3570 		update_mmu_cache(vma, vmf->address, vmf->pte);
3571 		goto release;
3572 	}
3573 
3574 	ret = check_stable_address_space(vma->vm_mm);
3575 	if (ret)
3576 		goto release;
3577 
3578 	/* Deliver the page fault to userland, check inside PT lock */
3579 	if (userfaultfd_missing(vma)) {
3580 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3581 		put_page(page);
3582 		return handle_userfault(vmf, VM_UFFD_MISSING);
3583 	}
3584 
3585 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3586 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3587 	lru_cache_add_inactive_or_unevictable(page, vma);
3588 setpte:
3589 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3590 
3591 	/* No need to invalidate - it was non-present before */
3592 	update_mmu_cache(vma, vmf->address, vmf->pte);
3593 unlock:
3594 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3595 	return ret;
3596 release:
3597 	put_page(page);
3598 	goto unlock;
3599 oom_free_page:
3600 	put_page(page);
3601 oom:
3602 	return VM_FAULT_OOM;
3603 }
3604 
3605 /*
3606  * The mmap_lock must have been held on entry, and may have been
3607  * released depending on flags and vma->vm_ops->fault() return value.
3608  * See filemap_fault() and __lock_page_retry().
3609  */
3610 static vm_fault_t __do_fault(struct vm_fault *vmf)
3611 {
3612 	struct vm_area_struct *vma = vmf->vma;
3613 	vm_fault_t ret;
3614 
3615 	/*
3616 	 * Preallocate pte before we take page_lock because this might lead to
3617 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3618 	 *				lock_page(A)
3619 	 *				SetPageWriteback(A)
3620 	 *				unlock_page(A)
3621 	 * lock_page(B)
3622 	 *				lock_page(B)
3623 	 * pte_alloc_one
3624 	 *   shrink_page_list
3625 	 *     wait_on_page_writeback(A)
3626 	 *				SetPageWriteback(B)
3627 	 *				unlock_page(B)
3628 	 *				# flush A, B to clear the writeback
3629 	 */
3630 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3631 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3632 		if (!vmf->prealloc_pte)
3633 			return VM_FAULT_OOM;
3634 		smp_wmb(); /* See comment in __pte_alloc() */
3635 	}
3636 
3637 	ret = vma->vm_ops->fault(vmf);
3638 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3639 			    VM_FAULT_DONE_COW)))
3640 		return ret;
3641 
3642 	if (unlikely(PageHWPoison(vmf->page))) {
3643 		if (ret & VM_FAULT_LOCKED)
3644 			unlock_page(vmf->page);
3645 		put_page(vmf->page);
3646 		vmf->page = NULL;
3647 		return VM_FAULT_HWPOISON;
3648 	}
3649 
3650 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3651 		lock_page(vmf->page);
3652 	else
3653 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3654 
3655 	return ret;
3656 }
3657 
3658 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3659 static void deposit_prealloc_pte(struct vm_fault *vmf)
3660 {
3661 	struct vm_area_struct *vma = vmf->vma;
3662 
3663 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3664 	/*
3665 	 * We are going to consume the prealloc table,
3666 	 * count that as nr_ptes.
3667 	 */
3668 	mm_inc_nr_ptes(vma->vm_mm);
3669 	vmf->prealloc_pte = NULL;
3670 }
3671 
3672 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3673 {
3674 	struct vm_area_struct *vma = vmf->vma;
3675 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3676 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3677 	pmd_t entry;
3678 	int i;
3679 	vm_fault_t ret = VM_FAULT_FALLBACK;
3680 
3681 	if (!transhuge_vma_suitable(vma, haddr))
3682 		return ret;
3683 
3684 	page = compound_head(page);
3685 	if (compound_order(page) != HPAGE_PMD_ORDER)
3686 		return ret;
3687 
3688 	/*
3689 	 * Archs like ppc64 need additonal space to store information
3690 	 * related to pte entry. Use the preallocated table for that.
3691 	 */
3692 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3693 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3694 		if (!vmf->prealloc_pte)
3695 			return VM_FAULT_OOM;
3696 		smp_wmb(); /* See comment in __pte_alloc() */
3697 	}
3698 
3699 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3700 	if (unlikely(!pmd_none(*vmf->pmd)))
3701 		goto out;
3702 
3703 	for (i = 0; i < HPAGE_PMD_NR; i++)
3704 		flush_icache_page(vma, page + i);
3705 
3706 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3707 	if (write)
3708 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3709 
3710 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3711 	page_add_file_rmap(page, true);
3712 	/*
3713 	 * deposit and withdraw with pmd lock held
3714 	 */
3715 	if (arch_needs_pgtable_deposit())
3716 		deposit_prealloc_pte(vmf);
3717 
3718 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3719 
3720 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3721 
3722 	/* fault is handled */
3723 	ret = 0;
3724 	count_vm_event(THP_FILE_MAPPED);
3725 out:
3726 	spin_unlock(vmf->ptl);
3727 	return ret;
3728 }
3729 #else
3730 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3731 {
3732 	return VM_FAULT_FALLBACK;
3733 }
3734 #endif
3735 
3736 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
3737 {
3738 	struct vm_area_struct *vma = vmf->vma;
3739 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3740 	bool prefault = vmf->address != addr;
3741 	pte_t entry;
3742 
3743 	flush_icache_page(vma, page);
3744 	entry = mk_pte(page, vma->vm_page_prot);
3745 
3746 	if (prefault && arch_wants_old_prefaulted_pte())
3747 		entry = pte_mkold(entry);
3748 
3749 	if (write)
3750 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3751 	/* copy-on-write page */
3752 	if (write && !(vma->vm_flags & VM_SHARED)) {
3753 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3754 		page_add_new_anon_rmap(page, vma, addr, false);
3755 		lru_cache_add_inactive_or_unevictable(page, vma);
3756 	} else {
3757 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3758 		page_add_file_rmap(page, false);
3759 	}
3760 	set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
3761 }
3762 
3763 /**
3764  * finish_fault - finish page fault once we have prepared the page to fault
3765  *
3766  * @vmf: structure describing the fault
3767  *
3768  * This function handles all that is needed to finish a page fault once the
3769  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3770  * given page, adds reverse page mapping, handles memcg charges and LRU
3771  * addition.
3772  *
3773  * The function expects the page to be locked and on success it consumes a
3774  * reference of a page being mapped (for the PTE which maps it).
3775  *
3776  * Return: %0 on success, %VM_FAULT_ code in case of error.
3777  */
3778 vm_fault_t finish_fault(struct vm_fault *vmf)
3779 {
3780 	struct vm_area_struct *vma = vmf->vma;
3781 	struct page *page;
3782 	vm_fault_t ret;
3783 
3784 	/* Did we COW the page? */
3785 	if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3786 		page = vmf->cow_page;
3787 	else
3788 		page = vmf->page;
3789 
3790 	/*
3791 	 * check even for read faults because we might have lost our CoWed
3792 	 * page
3793 	 */
3794 	if (!(vma->vm_flags & VM_SHARED)) {
3795 		ret = check_stable_address_space(vma->vm_mm);
3796 		if (ret)
3797 			return ret;
3798 	}
3799 
3800 	if (pmd_none(*vmf->pmd)) {
3801 		if (PageTransCompound(page)) {
3802 			ret = do_set_pmd(vmf, page);
3803 			if (ret != VM_FAULT_FALLBACK)
3804 				return ret;
3805 		}
3806 
3807 		if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
3808 			return VM_FAULT_OOM;
3809 	}
3810 
3811 	/* See comment in handle_pte_fault() */
3812 	if (pmd_devmap_trans_unstable(vmf->pmd))
3813 		return 0;
3814 
3815 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3816 				      vmf->address, &vmf->ptl);
3817 	ret = 0;
3818 	/* Re-check under ptl */
3819 	if (likely(pte_none(*vmf->pte)))
3820 		do_set_pte(vmf, page, vmf->address);
3821 	else
3822 		ret = VM_FAULT_NOPAGE;
3823 
3824 	update_mmu_tlb(vma, vmf->address, vmf->pte);
3825 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3826 	return ret;
3827 }
3828 
3829 static unsigned long fault_around_bytes __read_mostly =
3830 	rounddown_pow_of_two(65536);
3831 
3832 #ifdef CONFIG_DEBUG_FS
3833 static int fault_around_bytes_get(void *data, u64 *val)
3834 {
3835 	*val = fault_around_bytes;
3836 	return 0;
3837 }
3838 
3839 /*
3840  * fault_around_bytes must be rounded down to the nearest page order as it's
3841  * what do_fault_around() expects to see.
3842  */
3843 static int fault_around_bytes_set(void *data, u64 val)
3844 {
3845 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3846 		return -EINVAL;
3847 	if (val > PAGE_SIZE)
3848 		fault_around_bytes = rounddown_pow_of_two(val);
3849 	else
3850 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3851 	return 0;
3852 }
3853 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3854 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3855 
3856 static int __init fault_around_debugfs(void)
3857 {
3858 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3859 				   &fault_around_bytes_fops);
3860 	return 0;
3861 }
3862 late_initcall(fault_around_debugfs);
3863 #endif
3864 
3865 /*
3866  * do_fault_around() tries to map few pages around the fault address. The hope
3867  * is that the pages will be needed soon and this will lower the number of
3868  * faults to handle.
3869  *
3870  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3871  * not ready to be mapped: not up-to-date, locked, etc.
3872  *
3873  * This function is called with the page table lock taken. In the split ptlock
3874  * case the page table lock only protects only those entries which belong to
3875  * the page table corresponding to the fault address.
3876  *
3877  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3878  * only once.
3879  *
3880  * fault_around_bytes defines how many bytes we'll try to map.
3881  * do_fault_around() expects it to be set to a power of two less than or equal
3882  * to PTRS_PER_PTE.
3883  *
3884  * The virtual address of the area that we map is naturally aligned to
3885  * fault_around_bytes rounded down to the machine page size
3886  * (and therefore to page order).  This way it's easier to guarantee
3887  * that we don't cross page table boundaries.
3888  */
3889 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3890 {
3891 	unsigned long address = vmf->address, nr_pages, mask;
3892 	pgoff_t start_pgoff = vmf->pgoff;
3893 	pgoff_t end_pgoff;
3894 	int off;
3895 
3896 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3897 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3898 
3899 	address = max(address & mask, vmf->vma->vm_start);
3900 	off = ((vmf->address - address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3901 	start_pgoff -= off;
3902 
3903 	/*
3904 	 *  end_pgoff is either the end of the page table, the end of
3905 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3906 	 */
3907 	end_pgoff = start_pgoff -
3908 		((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3909 		PTRS_PER_PTE - 1;
3910 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3911 			start_pgoff + nr_pages - 1);
3912 
3913 	if (pmd_none(*vmf->pmd)) {
3914 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3915 		if (!vmf->prealloc_pte)
3916 			return VM_FAULT_OOM;
3917 		smp_wmb(); /* See comment in __pte_alloc() */
3918 	}
3919 
3920 	return vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3921 }
3922 
3923 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3924 {
3925 	struct vm_area_struct *vma = vmf->vma;
3926 	vm_fault_t ret = 0;
3927 
3928 	/*
3929 	 * Let's call ->map_pages() first and use ->fault() as fallback
3930 	 * if page by the offset is not ready to be mapped (cold cache or
3931 	 * something).
3932 	 */
3933 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3934 		ret = do_fault_around(vmf);
3935 		if (ret)
3936 			return ret;
3937 	}
3938 
3939 	ret = __do_fault(vmf);
3940 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3941 		return ret;
3942 
3943 	ret |= finish_fault(vmf);
3944 	unlock_page(vmf->page);
3945 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3946 		put_page(vmf->page);
3947 	return ret;
3948 }
3949 
3950 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3951 {
3952 	struct vm_area_struct *vma = vmf->vma;
3953 	vm_fault_t ret;
3954 
3955 	if (unlikely(anon_vma_prepare(vma)))
3956 		return VM_FAULT_OOM;
3957 
3958 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3959 	if (!vmf->cow_page)
3960 		return VM_FAULT_OOM;
3961 
3962 	if (mem_cgroup_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL)) {
3963 		put_page(vmf->cow_page);
3964 		return VM_FAULT_OOM;
3965 	}
3966 	cgroup_throttle_swaprate(vmf->cow_page, GFP_KERNEL);
3967 
3968 	ret = __do_fault(vmf);
3969 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3970 		goto uncharge_out;
3971 	if (ret & VM_FAULT_DONE_COW)
3972 		return ret;
3973 
3974 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3975 	__SetPageUptodate(vmf->cow_page);
3976 
3977 	ret |= finish_fault(vmf);
3978 	unlock_page(vmf->page);
3979 	put_page(vmf->page);
3980 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3981 		goto uncharge_out;
3982 	return ret;
3983 uncharge_out:
3984 	put_page(vmf->cow_page);
3985 	return ret;
3986 }
3987 
3988 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3989 {
3990 	struct vm_area_struct *vma = vmf->vma;
3991 	vm_fault_t ret, tmp;
3992 
3993 	ret = __do_fault(vmf);
3994 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3995 		return ret;
3996 
3997 	/*
3998 	 * Check if the backing address space wants to know that the page is
3999 	 * about to become writable
4000 	 */
4001 	if (vma->vm_ops->page_mkwrite) {
4002 		unlock_page(vmf->page);
4003 		tmp = do_page_mkwrite(vmf);
4004 		if (unlikely(!tmp ||
4005 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4006 			put_page(vmf->page);
4007 			return tmp;
4008 		}
4009 	}
4010 
4011 	ret |= finish_fault(vmf);
4012 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4013 					VM_FAULT_RETRY))) {
4014 		unlock_page(vmf->page);
4015 		put_page(vmf->page);
4016 		return ret;
4017 	}
4018 
4019 	ret |= fault_dirty_shared_page(vmf);
4020 	return ret;
4021 }
4022 
4023 /*
4024  * We enter with non-exclusive mmap_lock (to exclude vma changes,
4025  * but allow concurrent faults).
4026  * The mmap_lock may have been released depending on flags and our
4027  * return value.  See filemap_fault() and __lock_page_or_retry().
4028  * If mmap_lock is released, vma may become invalid (for example
4029  * by other thread calling munmap()).
4030  */
4031 static vm_fault_t do_fault(struct vm_fault *vmf)
4032 {
4033 	struct vm_area_struct *vma = vmf->vma;
4034 	struct mm_struct *vm_mm = vma->vm_mm;
4035 	vm_fault_t ret;
4036 
4037 	/*
4038 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4039 	 */
4040 	if (!vma->vm_ops->fault) {
4041 		/*
4042 		 * If we find a migration pmd entry or a none pmd entry, which
4043 		 * should never happen, return SIGBUS
4044 		 */
4045 		if (unlikely(!pmd_present(*vmf->pmd)))
4046 			ret = VM_FAULT_SIGBUS;
4047 		else {
4048 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
4049 						       vmf->pmd,
4050 						       vmf->address,
4051 						       &vmf->ptl);
4052 			/*
4053 			 * Make sure this is not a temporary clearing of pte
4054 			 * by holding ptl and checking again. A R/M/W update
4055 			 * of pte involves: take ptl, clearing the pte so that
4056 			 * we don't have concurrent modification by hardware
4057 			 * followed by an update.
4058 			 */
4059 			if (unlikely(pte_none(*vmf->pte)))
4060 				ret = VM_FAULT_SIGBUS;
4061 			else
4062 				ret = VM_FAULT_NOPAGE;
4063 
4064 			pte_unmap_unlock(vmf->pte, vmf->ptl);
4065 		}
4066 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
4067 		ret = do_read_fault(vmf);
4068 	else if (!(vma->vm_flags & VM_SHARED))
4069 		ret = do_cow_fault(vmf);
4070 	else
4071 		ret = do_shared_fault(vmf);
4072 
4073 	/* preallocated pagetable is unused: free it */
4074 	if (vmf->prealloc_pte) {
4075 		pte_free(vm_mm, vmf->prealloc_pte);
4076 		vmf->prealloc_pte = NULL;
4077 	}
4078 	return ret;
4079 }
4080 
4081 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4082 				unsigned long addr, int page_nid,
4083 				int *flags)
4084 {
4085 	get_page(page);
4086 
4087 	count_vm_numa_event(NUMA_HINT_FAULTS);
4088 	if (page_nid == numa_node_id()) {
4089 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4090 		*flags |= TNF_FAULT_LOCAL;
4091 	}
4092 
4093 	return mpol_misplaced(page, vma, addr);
4094 }
4095 
4096 static vm_fault_t do_numa_page(struct vm_fault *vmf)
4097 {
4098 	struct vm_area_struct *vma = vmf->vma;
4099 	struct page *page = NULL;
4100 	int page_nid = NUMA_NO_NODE;
4101 	int last_cpupid;
4102 	int target_nid;
4103 	bool migrated = false;
4104 	pte_t pte, old_pte;
4105 	bool was_writable = pte_savedwrite(vmf->orig_pte);
4106 	int flags = 0;
4107 
4108 	/*
4109 	 * The "pte" at this point cannot be used safely without
4110 	 * validation through pte_unmap_same(). It's of NUMA type but
4111 	 * the pfn may be screwed if the read is non atomic.
4112 	 */
4113 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
4114 	spin_lock(vmf->ptl);
4115 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
4116 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4117 		goto out;
4118 	}
4119 
4120 	/*
4121 	 * Make it present again, Depending on how arch implementes non
4122 	 * accessible ptes, some can allow access by kernel mode.
4123 	 */
4124 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4125 	pte = pte_modify(old_pte, vma->vm_page_prot);
4126 	pte = pte_mkyoung(pte);
4127 	if (was_writable)
4128 		pte = pte_mkwrite(pte);
4129 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4130 	update_mmu_cache(vma, vmf->address, vmf->pte);
4131 
4132 	page = vm_normal_page(vma, vmf->address, pte);
4133 	if (!page) {
4134 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4135 		return 0;
4136 	}
4137 
4138 	/* TODO: handle PTE-mapped THP */
4139 	if (PageCompound(page)) {
4140 		pte_unmap_unlock(vmf->pte, vmf->ptl);
4141 		return 0;
4142 	}
4143 
4144 	/*
4145 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4146 	 * much anyway since they can be in shared cache state. This misses
4147 	 * the case where a mapping is writable but the process never writes
4148 	 * to it but pte_write gets cleared during protection updates and
4149 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
4150 	 * background writeback, dirty balancing and application behaviour.
4151 	 */
4152 	if (!pte_write(pte))
4153 		flags |= TNF_NO_GROUP;
4154 
4155 	/*
4156 	 * Flag if the page is shared between multiple address spaces. This
4157 	 * is later used when determining whether to group tasks together
4158 	 */
4159 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4160 		flags |= TNF_SHARED;
4161 
4162 	last_cpupid = page_cpupid_last(page);
4163 	page_nid = page_to_nid(page);
4164 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4165 			&flags);
4166 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4167 	if (target_nid == NUMA_NO_NODE) {
4168 		put_page(page);
4169 		goto out;
4170 	}
4171 
4172 	/* Migrate to the requested node */
4173 	migrated = migrate_misplaced_page(page, vma, target_nid);
4174 	if (migrated) {
4175 		page_nid = target_nid;
4176 		flags |= TNF_MIGRATED;
4177 	} else
4178 		flags |= TNF_MIGRATE_FAIL;
4179 
4180 out:
4181 	if (page_nid != NUMA_NO_NODE)
4182 		task_numa_fault(last_cpupid, page_nid, 1, flags);
4183 	return 0;
4184 }
4185 
4186 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4187 {
4188 	if (vma_is_anonymous(vmf->vma))
4189 		return do_huge_pmd_anonymous_page(vmf);
4190 	if (vmf->vma->vm_ops->huge_fault)
4191 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4192 	return VM_FAULT_FALLBACK;
4193 }
4194 
4195 /* `inline' is required to avoid gcc 4.1.2 build error */
4196 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
4197 {
4198 	if (vma_is_anonymous(vmf->vma)) {
4199 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
4200 			return handle_userfault(vmf, VM_UFFD_WP);
4201 		return do_huge_pmd_wp_page(vmf, orig_pmd);
4202 	}
4203 	if (vmf->vma->vm_ops->huge_fault) {
4204 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4205 
4206 		if (!(ret & VM_FAULT_FALLBACK))
4207 			return ret;
4208 	}
4209 
4210 	/* COW or write-notify handled on pte level: split pmd. */
4211 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4212 
4213 	return VM_FAULT_FALLBACK;
4214 }
4215 
4216 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4217 {
4218 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
4219 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4220 	/* No support for anonymous transparent PUD pages yet */
4221 	if (vma_is_anonymous(vmf->vma))
4222 		goto split;
4223 	if (vmf->vma->vm_ops->huge_fault) {
4224 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4225 
4226 		if (!(ret & VM_FAULT_FALLBACK))
4227 			return ret;
4228 	}
4229 split:
4230 	/* COW or write-notify not handled on PUD level: split pud.*/
4231 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4232 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4233 	return VM_FAULT_FALLBACK;
4234 }
4235 
4236 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4237 {
4238 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4239 	/* No support for anonymous transparent PUD pages yet */
4240 	if (vma_is_anonymous(vmf->vma))
4241 		return VM_FAULT_FALLBACK;
4242 	if (vmf->vma->vm_ops->huge_fault)
4243 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4244 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4245 	return VM_FAULT_FALLBACK;
4246 }
4247 
4248 /*
4249  * These routines also need to handle stuff like marking pages dirty
4250  * and/or accessed for architectures that don't do it in hardware (most
4251  * RISC architectures).  The early dirtying is also good on the i386.
4252  *
4253  * There is also a hook called "update_mmu_cache()" that architectures
4254  * with external mmu caches can use to update those (ie the Sparc or
4255  * PowerPC hashed page tables that act as extended TLBs).
4256  *
4257  * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4258  * concurrent faults).
4259  *
4260  * The mmap_lock may have been released depending on flags and our return value.
4261  * See filemap_fault() and __lock_page_or_retry().
4262  */
4263 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4264 {
4265 	pte_t entry;
4266 
4267 	if (unlikely(pmd_none(*vmf->pmd))) {
4268 		/*
4269 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4270 		 * want to allocate huge page, and if we expose page table
4271 		 * for an instant, it will be difficult to retract from
4272 		 * concurrent faults and from rmap lookups.
4273 		 */
4274 		vmf->pte = NULL;
4275 	} else {
4276 		/*
4277 		 * If a huge pmd materialized under us just retry later.  Use
4278 		 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead
4279 		 * of pmd_trans_huge() to ensure the pmd didn't become
4280 		 * pmd_trans_huge under us and then back to pmd_none, as a
4281 		 * result of MADV_DONTNEED running immediately after a huge pmd
4282 		 * fault in a different thread of this mm, in turn leading to a
4283 		 * misleading pmd_trans_huge() retval. All we have to ensure is
4284 		 * that it is a regular pmd that we can walk with
4285 		 * pte_offset_map() and we can do that through an atomic read
4286 		 * in C, which is what pmd_trans_unstable() provides.
4287 		 */
4288 		if (pmd_devmap_trans_unstable(vmf->pmd))
4289 			return 0;
4290 		/*
4291 		 * A regular pmd is established and it can't morph into a huge
4292 		 * pmd from under us anymore at this point because we hold the
4293 		 * mmap_lock read mode and khugepaged takes it in write mode.
4294 		 * So now it's safe to run pte_offset_map().
4295 		 */
4296 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4297 		vmf->orig_pte = *vmf->pte;
4298 
4299 		/*
4300 		 * some architectures can have larger ptes than wordsize,
4301 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4302 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4303 		 * accesses.  The code below just needs a consistent view
4304 		 * for the ifs and we later double check anyway with the
4305 		 * ptl lock held. So here a barrier will do.
4306 		 */
4307 		barrier();
4308 		if (pte_none(vmf->orig_pte)) {
4309 			pte_unmap(vmf->pte);
4310 			vmf->pte = NULL;
4311 		}
4312 	}
4313 
4314 	if (!vmf->pte) {
4315 		if (vma_is_anonymous(vmf->vma))
4316 			return do_anonymous_page(vmf);
4317 		else
4318 			return do_fault(vmf);
4319 	}
4320 
4321 	if (!pte_present(vmf->orig_pte))
4322 		return do_swap_page(vmf);
4323 
4324 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4325 		return do_numa_page(vmf);
4326 
4327 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4328 	spin_lock(vmf->ptl);
4329 	entry = vmf->orig_pte;
4330 	if (unlikely(!pte_same(*vmf->pte, entry))) {
4331 		update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4332 		goto unlock;
4333 	}
4334 	if (vmf->flags & FAULT_FLAG_WRITE) {
4335 		if (!pte_write(entry))
4336 			return do_wp_page(vmf);
4337 		entry = pte_mkdirty(entry);
4338 	}
4339 	entry = pte_mkyoung(entry);
4340 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4341 				vmf->flags & FAULT_FLAG_WRITE)) {
4342 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4343 	} else {
4344 		/* Skip spurious TLB flush for retried page fault */
4345 		if (vmf->flags & FAULT_FLAG_TRIED)
4346 			goto unlock;
4347 		/*
4348 		 * This is needed only for protection faults but the arch code
4349 		 * is not yet telling us if this is a protection fault or not.
4350 		 * This still avoids useless tlb flushes for .text page faults
4351 		 * with threads.
4352 		 */
4353 		if (vmf->flags & FAULT_FLAG_WRITE)
4354 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4355 	}
4356 unlock:
4357 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4358 	return 0;
4359 }
4360 
4361 /*
4362  * By the time we get here, we already hold the mm semaphore
4363  *
4364  * The mmap_lock may have been released depending on flags and our
4365  * return value.  See filemap_fault() and __lock_page_or_retry().
4366  */
4367 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4368 		unsigned long address, unsigned int flags)
4369 {
4370 	struct vm_fault vmf = {
4371 		.vma = vma,
4372 		.address = address & PAGE_MASK,
4373 		.flags = flags,
4374 		.pgoff = linear_page_index(vma, address),
4375 		.gfp_mask = __get_fault_gfp_mask(vma),
4376 	};
4377 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4378 	struct mm_struct *mm = vma->vm_mm;
4379 	pgd_t *pgd;
4380 	p4d_t *p4d;
4381 	vm_fault_t ret;
4382 
4383 	pgd = pgd_offset(mm, address);
4384 	p4d = p4d_alloc(mm, pgd, address);
4385 	if (!p4d)
4386 		return VM_FAULT_OOM;
4387 
4388 	vmf.pud = pud_alloc(mm, p4d, address);
4389 	if (!vmf.pud)
4390 		return VM_FAULT_OOM;
4391 retry_pud:
4392 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4393 		ret = create_huge_pud(&vmf);
4394 		if (!(ret & VM_FAULT_FALLBACK))
4395 			return ret;
4396 	} else {
4397 		pud_t orig_pud = *vmf.pud;
4398 
4399 		barrier();
4400 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4401 
4402 			/* NUMA case for anonymous PUDs would go here */
4403 
4404 			if (dirty && !pud_write(orig_pud)) {
4405 				ret = wp_huge_pud(&vmf, orig_pud);
4406 				if (!(ret & VM_FAULT_FALLBACK))
4407 					return ret;
4408 			} else {
4409 				huge_pud_set_accessed(&vmf, orig_pud);
4410 				return 0;
4411 			}
4412 		}
4413 	}
4414 
4415 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4416 	if (!vmf.pmd)
4417 		return VM_FAULT_OOM;
4418 
4419 	/* Huge pud page fault raced with pmd_alloc? */
4420 	if (pud_trans_unstable(vmf.pud))
4421 		goto retry_pud;
4422 
4423 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4424 		ret = create_huge_pmd(&vmf);
4425 		if (!(ret & VM_FAULT_FALLBACK))
4426 			return ret;
4427 	} else {
4428 		pmd_t orig_pmd = *vmf.pmd;
4429 
4430 		barrier();
4431 		if (unlikely(is_swap_pmd(orig_pmd))) {
4432 			VM_BUG_ON(thp_migration_supported() &&
4433 					  !is_pmd_migration_entry(orig_pmd));
4434 			if (is_pmd_migration_entry(orig_pmd))
4435 				pmd_migration_entry_wait(mm, vmf.pmd);
4436 			return 0;
4437 		}
4438 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4439 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4440 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4441 
4442 			if (dirty && !pmd_write(orig_pmd)) {
4443 				ret = wp_huge_pmd(&vmf, orig_pmd);
4444 				if (!(ret & VM_FAULT_FALLBACK))
4445 					return ret;
4446 			} else {
4447 				huge_pmd_set_accessed(&vmf, orig_pmd);
4448 				return 0;
4449 			}
4450 		}
4451 	}
4452 
4453 	return handle_pte_fault(&vmf);
4454 }
4455 
4456 /**
4457  * mm_account_fault - Do page fault accountings
4458  *
4459  * @regs: the pt_regs struct pointer.  When set to NULL, will skip accounting
4460  *        of perf event counters, but we'll still do the per-task accounting to
4461  *        the task who triggered this page fault.
4462  * @address: the faulted address.
4463  * @flags: the fault flags.
4464  * @ret: the fault retcode.
4465  *
4466  * This will take care of most of the page fault accountings.  Meanwhile, it
4467  * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
4468  * updates.  However note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
4469  * still be in per-arch page fault handlers at the entry of page fault.
4470  */
4471 static inline void mm_account_fault(struct pt_regs *regs,
4472 				    unsigned long address, unsigned int flags,
4473 				    vm_fault_t ret)
4474 {
4475 	bool major;
4476 
4477 	/*
4478 	 * We don't do accounting for some specific faults:
4479 	 *
4480 	 * - Unsuccessful faults (e.g. when the address wasn't valid).  That
4481 	 *   includes arch_vma_access_permitted() failing before reaching here.
4482 	 *   So this is not a "this many hardware page faults" counter.  We
4483 	 *   should use the hw profiling for that.
4484 	 *
4485 	 * - Incomplete faults (VM_FAULT_RETRY).  They will only be counted
4486 	 *   once they're completed.
4487 	 */
4488 	if (ret & (VM_FAULT_ERROR | VM_FAULT_RETRY))
4489 		return;
4490 
4491 	/*
4492 	 * We define the fault as a major fault when the final successful fault
4493 	 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
4494 	 * handle it immediately previously).
4495 	 */
4496 	major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
4497 
4498 	if (major)
4499 		current->maj_flt++;
4500 	else
4501 		current->min_flt++;
4502 
4503 	/*
4504 	 * If the fault is done for GUP, regs will be NULL.  We only do the
4505 	 * accounting for the per thread fault counters who triggered the
4506 	 * fault, and we skip the perf event updates.
4507 	 */
4508 	if (!regs)
4509 		return;
4510 
4511 	if (major)
4512 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
4513 	else
4514 		perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
4515 }
4516 
4517 /*
4518  * By the time we get here, we already hold the mm semaphore
4519  *
4520  * The mmap_lock may have been released depending on flags and our
4521  * return value.  See filemap_fault() and __lock_page_or_retry().
4522  */
4523 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4524 			   unsigned int flags, struct pt_regs *regs)
4525 {
4526 	vm_fault_t ret;
4527 
4528 	__set_current_state(TASK_RUNNING);
4529 
4530 	count_vm_event(PGFAULT);
4531 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4532 
4533 	/* do counter updates before entering really critical section. */
4534 	check_sync_rss_stat(current);
4535 
4536 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4537 					    flags & FAULT_FLAG_INSTRUCTION,
4538 					    flags & FAULT_FLAG_REMOTE))
4539 		return VM_FAULT_SIGSEGV;
4540 
4541 	/*
4542 	 * Enable the memcg OOM handling for faults triggered in user
4543 	 * space.  Kernel faults are handled more gracefully.
4544 	 */
4545 	if (flags & FAULT_FLAG_USER)
4546 		mem_cgroup_enter_user_fault();
4547 
4548 	if (unlikely(is_vm_hugetlb_page(vma)))
4549 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4550 	else
4551 		ret = __handle_mm_fault(vma, address, flags);
4552 
4553 	if (flags & FAULT_FLAG_USER) {
4554 		mem_cgroup_exit_user_fault();
4555 		/*
4556 		 * The task may have entered a memcg OOM situation but
4557 		 * if the allocation error was handled gracefully (no
4558 		 * VM_FAULT_OOM), there is no need to kill anything.
4559 		 * Just clean up the OOM state peacefully.
4560 		 */
4561 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4562 			mem_cgroup_oom_synchronize(false);
4563 	}
4564 
4565 	mm_account_fault(regs, address, flags, ret);
4566 
4567 	return ret;
4568 }
4569 EXPORT_SYMBOL_GPL(handle_mm_fault);
4570 
4571 #ifndef __PAGETABLE_P4D_FOLDED
4572 /*
4573  * Allocate p4d page table.
4574  * We've already handled the fast-path in-line.
4575  */
4576 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4577 {
4578 	p4d_t *new = p4d_alloc_one(mm, address);
4579 	if (!new)
4580 		return -ENOMEM;
4581 
4582 	smp_wmb(); /* See comment in __pte_alloc */
4583 
4584 	spin_lock(&mm->page_table_lock);
4585 	if (pgd_present(*pgd))		/* Another has populated it */
4586 		p4d_free(mm, new);
4587 	else
4588 		pgd_populate(mm, pgd, new);
4589 	spin_unlock(&mm->page_table_lock);
4590 	return 0;
4591 }
4592 #endif /* __PAGETABLE_P4D_FOLDED */
4593 
4594 #ifndef __PAGETABLE_PUD_FOLDED
4595 /*
4596  * Allocate page upper directory.
4597  * We've already handled the fast-path in-line.
4598  */
4599 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4600 {
4601 	pud_t *new = pud_alloc_one(mm, address);
4602 	if (!new)
4603 		return -ENOMEM;
4604 
4605 	smp_wmb(); /* See comment in __pte_alloc */
4606 
4607 	spin_lock(&mm->page_table_lock);
4608 	if (!p4d_present(*p4d)) {
4609 		mm_inc_nr_puds(mm);
4610 		p4d_populate(mm, p4d, new);
4611 	} else	/* Another has populated it */
4612 		pud_free(mm, new);
4613 	spin_unlock(&mm->page_table_lock);
4614 	return 0;
4615 }
4616 #endif /* __PAGETABLE_PUD_FOLDED */
4617 
4618 #ifndef __PAGETABLE_PMD_FOLDED
4619 /*
4620  * Allocate page middle directory.
4621  * We've already handled the fast-path in-line.
4622  */
4623 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4624 {
4625 	spinlock_t *ptl;
4626 	pmd_t *new = pmd_alloc_one(mm, address);
4627 	if (!new)
4628 		return -ENOMEM;
4629 
4630 	smp_wmb(); /* See comment in __pte_alloc */
4631 
4632 	ptl = pud_lock(mm, pud);
4633 	if (!pud_present(*pud)) {
4634 		mm_inc_nr_pmds(mm);
4635 		pud_populate(mm, pud, new);
4636 	} else	/* Another has populated it */
4637 		pmd_free(mm, new);
4638 	spin_unlock(ptl);
4639 	return 0;
4640 }
4641 #endif /* __PAGETABLE_PMD_FOLDED */
4642 
4643 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
4644 			  struct mmu_notifier_range *range, pte_t **ptepp,
4645 			  pmd_t **pmdpp, spinlock_t **ptlp)
4646 {
4647 	pgd_t *pgd;
4648 	p4d_t *p4d;
4649 	pud_t *pud;
4650 	pmd_t *pmd;
4651 	pte_t *ptep;
4652 
4653 	pgd = pgd_offset(mm, address);
4654 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4655 		goto out;
4656 
4657 	p4d = p4d_offset(pgd, address);
4658 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4659 		goto out;
4660 
4661 	pud = pud_offset(p4d, address);
4662 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4663 		goto out;
4664 
4665 	pmd = pmd_offset(pud, address);
4666 	VM_BUG_ON(pmd_trans_huge(*pmd));
4667 
4668 	if (pmd_huge(*pmd)) {
4669 		if (!pmdpp)
4670 			goto out;
4671 
4672 		if (range) {
4673 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4674 						NULL, mm, address & PMD_MASK,
4675 						(address & PMD_MASK) + PMD_SIZE);
4676 			mmu_notifier_invalidate_range_start(range);
4677 		}
4678 		*ptlp = pmd_lock(mm, pmd);
4679 		if (pmd_huge(*pmd)) {
4680 			*pmdpp = pmd;
4681 			return 0;
4682 		}
4683 		spin_unlock(*ptlp);
4684 		if (range)
4685 			mmu_notifier_invalidate_range_end(range);
4686 	}
4687 
4688 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4689 		goto out;
4690 
4691 	if (range) {
4692 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4693 					address & PAGE_MASK,
4694 					(address & PAGE_MASK) + PAGE_SIZE);
4695 		mmu_notifier_invalidate_range_start(range);
4696 	}
4697 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4698 	if (!pte_present(*ptep))
4699 		goto unlock;
4700 	*ptepp = ptep;
4701 	return 0;
4702 unlock:
4703 	pte_unmap_unlock(ptep, *ptlp);
4704 	if (range)
4705 		mmu_notifier_invalidate_range_end(range);
4706 out:
4707 	return -EINVAL;
4708 }
4709 
4710 /**
4711  * follow_pte - look up PTE at a user virtual address
4712  * @mm: the mm_struct of the target address space
4713  * @address: user virtual address
4714  * @ptepp: location to store found PTE
4715  * @ptlp: location to store the lock for the PTE
4716  *
4717  * On a successful return, the pointer to the PTE is stored in @ptepp;
4718  * the corresponding lock is taken and its location is stored in @ptlp.
4719  * The contents of the PTE are only stable until @ptlp is released;
4720  * any further use, if any, must be protected against invalidation
4721  * with MMU notifiers.
4722  *
4723  * Only IO mappings and raw PFN mappings are allowed.  The mmap semaphore
4724  * should be taken for read.
4725  *
4726  * KVM uses this function.  While it is arguably less bad than ``follow_pfn``,
4727  * it is not a good general-purpose API.
4728  *
4729  * Return: zero on success, -ve otherwise.
4730  */
4731 int follow_pte(struct mm_struct *mm, unsigned long address,
4732 	       pte_t **ptepp, spinlock_t **ptlp)
4733 {
4734 	return follow_invalidate_pte(mm, address, NULL, ptepp, NULL, ptlp);
4735 }
4736 EXPORT_SYMBOL_GPL(follow_pte);
4737 
4738 /**
4739  * follow_pfn - look up PFN at a user virtual address
4740  * @vma: memory mapping
4741  * @address: user virtual address
4742  * @pfn: location to store found PFN
4743  *
4744  * Only IO mappings and raw PFN mappings are allowed.
4745  *
4746  * This function does not allow the caller to read the permissions
4747  * of the PTE.  Do not use it.
4748  *
4749  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4750  */
4751 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4752 	unsigned long *pfn)
4753 {
4754 	int ret = -EINVAL;
4755 	spinlock_t *ptl;
4756 	pte_t *ptep;
4757 
4758 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4759 		return ret;
4760 
4761 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4762 	if (ret)
4763 		return ret;
4764 	*pfn = pte_pfn(*ptep);
4765 	pte_unmap_unlock(ptep, ptl);
4766 	return 0;
4767 }
4768 EXPORT_SYMBOL(follow_pfn);
4769 
4770 #ifdef CONFIG_HAVE_IOREMAP_PROT
4771 int follow_phys(struct vm_area_struct *vma,
4772 		unsigned long address, unsigned int flags,
4773 		unsigned long *prot, resource_size_t *phys)
4774 {
4775 	int ret = -EINVAL;
4776 	pte_t *ptep, pte;
4777 	spinlock_t *ptl;
4778 
4779 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4780 		goto out;
4781 
4782 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4783 		goto out;
4784 	pte = *ptep;
4785 
4786 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4787 		goto unlock;
4788 
4789 	*prot = pgprot_val(pte_pgprot(pte));
4790 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4791 
4792 	ret = 0;
4793 unlock:
4794 	pte_unmap_unlock(ptep, ptl);
4795 out:
4796 	return ret;
4797 }
4798 
4799 /**
4800  * generic_access_phys - generic implementation for iomem mmap access
4801  * @vma: the vma to access
4802  * @addr: userspace addres, not relative offset within @vma
4803  * @buf: buffer to read/write
4804  * @len: length of transfer
4805  * @write: set to FOLL_WRITE when writing, otherwise reading
4806  *
4807  * This is a generic implementation for &vm_operations_struct.access for an
4808  * iomem mapping. This callback is used by access_process_vm() when the @vma is
4809  * not page based.
4810  */
4811 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4812 			void *buf, int len, int write)
4813 {
4814 	resource_size_t phys_addr;
4815 	unsigned long prot = 0;
4816 	void __iomem *maddr;
4817 	pte_t *ptep, pte;
4818 	spinlock_t *ptl;
4819 	int offset = offset_in_page(addr);
4820 	int ret = -EINVAL;
4821 
4822 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4823 		return -EINVAL;
4824 
4825 retry:
4826 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4827 		return -EINVAL;
4828 	pte = *ptep;
4829 	pte_unmap_unlock(ptep, ptl);
4830 
4831 	prot = pgprot_val(pte_pgprot(pte));
4832 	phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4833 
4834 	if ((write & FOLL_WRITE) && !pte_write(pte))
4835 		return -EINVAL;
4836 
4837 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4838 	if (!maddr)
4839 		return -ENOMEM;
4840 
4841 	if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
4842 		goto out_unmap;
4843 
4844 	if (!pte_same(pte, *ptep)) {
4845 		pte_unmap_unlock(ptep, ptl);
4846 		iounmap(maddr);
4847 
4848 		goto retry;
4849 	}
4850 
4851 	if (write)
4852 		memcpy_toio(maddr + offset, buf, len);
4853 	else
4854 		memcpy_fromio(buf, maddr + offset, len);
4855 	ret = len;
4856 	pte_unmap_unlock(ptep, ptl);
4857 out_unmap:
4858 	iounmap(maddr);
4859 
4860 	return ret;
4861 }
4862 EXPORT_SYMBOL_GPL(generic_access_phys);
4863 #endif
4864 
4865 /*
4866  * Access another process' address space as given in mm.
4867  */
4868 int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
4869 		       int len, unsigned int gup_flags)
4870 {
4871 	struct vm_area_struct *vma;
4872 	void *old_buf = buf;
4873 	int write = gup_flags & FOLL_WRITE;
4874 
4875 	if (mmap_read_lock_killable(mm))
4876 		return 0;
4877 
4878 	/* ignore errors, just check how much was successfully transferred */
4879 	while (len) {
4880 		int bytes, ret, offset;
4881 		void *maddr;
4882 		struct page *page = NULL;
4883 
4884 		ret = get_user_pages_remote(mm, addr, 1,
4885 				gup_flags, &page, &vma, NULL);
4886 		if (ret <= 0) {
4887 #ifndef CONFIG_HAVE_IOREMAP_PROT
4888 			break;
4889 #else
4890 			/*
4891 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4892 			 * we can access using slightly different code.
4893 			 */
4894 			vma = find_vma(mm, addr);
4895 			if (!vma || vma->vm_start > addr)
4896 				break;
4897 			if (vma->vm_ops && vma->vm_ops->access)
4898 				ret = vma->vm_ops->access(vma, addr, buf,
4899 							  len, write);
4900 			if (ret <= 0)
4901 				break;
4902 			bytes = ret;
4903 #endif
4904 		} else {
4905 			bytes = len;
4906 			offset = addr & (PAGE_SIZE-1);
4907 			if (bytes > PAGE_SIZE-offset)
4908 				bytes = PAGE_SIZE-offset;
4909 
4910 			maddr = kmap(page);
4911 			if (write) {
4912 				copy_to_user_page(vma, page, addr,
4913 						  maddr + offset, buf, bytes);
4914 				set_page_dirty_lock(page);
4915 			} else {
4916 				copy_from_user_page(vma, page, addr,
4917 						    buf, maddr + offset, bytes);
4918 			}
4919 			kunmap(page);
4920 			put_page(page);
4921 		}
4922 		len -= bytes;
4923 		buf += bytes;
4924 		addr += bytes;
4925 	}
4926 	mmap_read_unlock(mm);
4927 
4928 	return buf - old_buf;
4929 }
4930 
4931 /**
4932  * access_remote_vm - access another process' address space
4933  * @mm:		the mm_struct of the target address space
4934  * @addr:	start address to access
4935  * @buf:	source or destination buffer
4936  * @len:	number of bytes to transfer
4937  * @gup_flags:	flags modifying lookup behaviour
4938  *
4939  * The caller must hold a reference on @mm.
4940  *
4941  * Return: number of bytes copied from source to destination.
4942  */
4943 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4944 		void *buf, int len, unsigned int gup_flags)
4945 {
4946 	return __access_remote_vm(mm, addr, buf, len, gup_flags);
4947 }
4948 
4949 /*
4950  * Access another process' address space.
4951  * Source/target buffer must be kernel space,
4952  * Do not walk the page table directly, use get_user_pages
4953  */
4954 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4955 		void *buf, int len, unsigned int gup_flags)
4956 {
4957 	struct mm_struct *mm;
4958 	int ret;
4959 
4960 	mm = get_task_mm(tsk);
4961 	if (!mm)
4962 		return 0;
4963 
4964 	ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
4965 
4966 	mmput(mm);
4967 
4968 	return ret;
4969 }
4970 EXPORT_SYMBOL_GPL(access_process_vm);
4971 
4972 /*
4973  * Print the name of a VMA.
4974  */
4975 void print_vma_addr(char *prefix, unsigned long ip)
4976 {
4977 	struct mm_struct *mm = current->mm;
4978 	struct vm_area_struct *vma;
4979 
4980 	/*
4981 	 * we might be running from an atomic context so we cannot sleep
4982 	 */
4983 	if (!mmap_read_trylock(mm))
4984 		return;
4985 
4986 	vma = find_vma(mm, ip);
4987 	if (vma && vma->vm_file) {
4988 		struct file *f = vma->vm_file;
4989 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4990 		if (buf) {
4991 			char *p;
4992 
4993 			p = file_path(f, buf, PAGE_SIZE);
4994 			if (IS_ERR(p))
4995 				p = "?";
4996 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4997 					vma->vm_start,
4998 					vma->vm_end - vma->vm_start);
4999 			free_page((unsigned long)buf);
5000 		}
5001 	}
5002 	mmap_read_unlock(mm);
5003 }
5004 
5005 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5006 void __might_fault(const char *file, int line)
5007 {
5008 	/*
5009 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
5010 	 * holding the mmap_lock, this is safe because kernel memory doesn't
5011 	 * get paged out, therefore we'll never actually fault, and the
5012 	 * below annotations will generate false positives.
5013 	 */
5014 	if (uaccess_kernel())
5015 		return;
5016 	if (pagefault_disabled())
5017 		return;
5018 	__might_sleep(file, line, 0);
5019 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5020 	if (current->mm)
5021 		might_lock_read(&current->mm->mmap_lock);
5022 #endif
5023 }
5024 EXPORT_SYMBOL(__might_fault);
5025 #endif
5026 
5027 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5028 /*
5029  * Process all subpages of the specified huge page with the specified
5030  * operation.  The target subpage will be processed last to keep its
5031  * cache lines hot.
5032  */
5033 static inline void process_huge_page(
5034 	unsigned long addr_hint, unsigned int pages_per_huge_page,
5035 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
5036 	void *arg)
5037 {
5038 	int i, n, base, l;
5039 	unsigned long addr = addr_hint &
5040 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5041 
5042 	/* Process target subpage last to keep its cache lines hot */
5043 	might_sleep();
5044 	n = (addr_hint - addr) / PAGE_SIZE;
5045 	if (2 * n <= pages_per_huge_page) {
5046 		/* If target subpage in first half of huge page */
5047 		base = 0;
5048 		l = n;
5049 		/* Process subpages at the end of huge page */
5050 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5051 			cond_resched();
5052 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5053 		}
5054 	} else {
5055 		/* If target subpage in second half of huge page */
5056 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5057 		l = pages_per_huge_page - n;
5058 		/* Process subpages at the begin of huge page */
5059 		for (i = 0; i < base; i++) {
5060 			cond_resched();
5061 			process_subpage(addr + i * PAGE_SIZE, i, arg);
5062 		}
5063 	}
5064 	/*
5065 	 * Process remaining subpages in left-right-left-right pattern
5066 	 * towards the target subpage
5067 	 */
5068 	for (i = 0; i < l; i++) {
5069 		int left_idx = base + i;
5070 		int right_idx = base + 2 * l - 1 - i;
5071 
5072 		cond_resched();
5073 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5074 		cond_resched();
5075 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5076 	}
5077 }
5078 
5079 static void clear_gigantic_page(struct page *page,
5080 				unsigned long addr,
5081 				unsigned int pages_per_huge_page)
5082 {
5083 	int i;
5084 	struct page *p = page;
5085 
5086 	might_sleep();
5087 	for (i = 0; i < pages_per_huge_page;
5088 	     i++, p = mem_map_next(p, page, i)) {
5089 		cond_resched();
5090 		clear_user_highpage(p, addr + i * PAGE_SIZE);
5091 	}
5092 }
5093 
5094 static void clear_subpage(unsigned long addr, int idx, void *arg)
5095 {
5096 	struct page *page = arg;
5097 
5098 	clear_user_highpage(page + idx, addr);
5099 }
5100 
5101 void clear_huge_page(struct page *page,
5102 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
5103 {
5104 	unsigned long addr = addr_hint &
5105 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5106 
5107 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5108 		clear_gigantic_page(page, addr, pages_per_huge_page);
5109 		return;
5110 	}
5111 
5112 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5113 }
5114 
5115 static void copy_user_gigantic_page(struct page *dst, struct page *src,
5116 				    unsigned long addr,
5117 				    struct vm_area_struct *vma,
5118 				    unsigned int pages_per_huge_page)
5119 {
5120 	int i;
5121 	struct page *dst_base = dst;
5122 	struct page *src_base = src;
5123 
5124 	for (i = 0; i < pages_per_huge_page; ) {
5125 		cond_resched();
5126 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
5127 
5128 		i++;
5129 		dst = mem_map_next(dst, dst_base, i);
5130 		src = mem_map_next(src, src_base, i);
5131 	}
5132 }
5133 
5134 struct copy_subpage_arg {
5135 	struct page *dst;
5136 	struct page *src;
5137 	struct vm_area_struct *vma;
5138 };
5139 
5140 static void copy_subpage(unsigned long addr, int idx, void *arg)
5141 {
5142 	struct copy_subpage_arg *copy_arg = arg;
5143 
5144 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5145 			   addr, copy_arg->vma);
5146 }
5147 
5148 void copy_user_huge_page(struct page *dst, struct page *src,
5149 			 unsigned long addr_hint, struct vm_area_struct *vma,
5150 			 unsigned int pages_per_huge_page)
5151 {
5152 	unsigned long addr = addr_hint &
5153 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5154 	struct copy_subpage_arg arg = {
5155 		.dst = dst,
5156 		.src = src,
5157 		.vma = vma,
5158 	};
5159 
5160 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5161 		copy_user_gigantic_page(dst, src, addr, vma,
5162 					pages_per_huge_page);
5163 		return;
5164 	}
5165 
5166 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
5167 }
5168 
5169 long copy_huge_page_from_user(struct page *dst_page,
5170 				const void __user *usr_src,
5171 				unsigned int pages_per_huge_page,
5172 				bool allow_pagefault)
5173 {
5174 	void *src = (void *)usr_src;
5175 	void *page_kaddr;
5176 	unsigned long i, rc = 0;
5177 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
5178 	struct page *subpage = dst_page;
5179 
5180 	for (i = 0; i < pages_per_huge_page;
5181 	     i++, subpage = mem_map_next(subpage, dst_page, i)) {
5182 		if (allow_pagefault)
5183 			page_kaddr = kmap(subpage);
5184 		else
5185 			page_kaddr = kmap_atomic(subpage);
5186 		rc = copy_from_user(page_kaddr,
5187 				(const void __user *)(src + i * PAGE_SIZE),
5188 				PAGE_SIZE);
5189 		if (allow_pagefault)
5190 			kunmap(subpage);
5191 		else
5192 			kunmap_atomic(page_kaddr);
5193 
5194 		ret_val -= (PAGE_SIZE - rc);
5195 		if (rc)
5196 			break;
5197 
5198 		cond_resched();
5199 	}
5200 	return ret_val;
5201 }
5202 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
5203 
5204 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
5205 
5206 static struct kmem_cache *page_ptl_cachep;
5207 
5208 void __init ptlock_cache_init(void)
5209 {
5210 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
5211 			SLAB_PANIC, NULL);
5212 }
5213 
5214 bool ptlock_alloc(struct page *page)
5215 {
5216 	spinlock_t *ptl;
5217 
5218 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
5219 	if (!ptl)
5220 		return false;
5221 	page->ptl = ptl;
5222 	return true;
5223 }
5224 
5225 void ptlock_free(struct page *page)
5226 {
5227 	kmem_cache_free(page_ptl_cachep, page->ptl);
5228 }
5229 #endif
5230