1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/hugetlb.h> 44 #include <linux/mman.h> 45 #include <linux/swap.h> 46 #include <linux/highmem.h> 47 #include <linux/pagemap.h> 48 #include <linux/ksm.h> 49 #include <linux/rmap.h> 50 #include <linux/export.h> 51 #include <linux/delayacct.h> 52 #include <linux/init.h> 53 #include <linux/writeback.h> 54 #include <linux/memcontrol.h> 55 #include <linux/mmu_notifier.h> 56 #include <linux/kallsyms.h> 57 #include <linux/swapops.h> 58 #include <linux/elf.h> 59 #include <linux/gfp.h> 60 #include <linux/migrate.h> 61 #include <linux/string.h> 62 63 #include <asm/io.h> 64 #include <asm/pgalloc.h> 65 #include <asm/uaccess.h> 66 #include <asm/tlb.h> 67 #include <asm/tlbflush.h> 68 #include <asm/pgtable.h> 69 70 #include "internal.h" 71 72 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 73 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 74 #endif 75 76 #ifndef CONFIG_NEED_MULTIPLE_NODES 77 /* use the per-pgdat data instead for discontigmem - mbligh */ 78 unsigned long max_mapnr; 79 struct page *mem_map; 80 81 EXPORT_SYMBOL(max_mapnr); 82 EXPORT_SYMBOL(mem_map); 83 #endif 84 85 /* 86 * A number of key systems in x86 including ioremap() rely on the assumption 87 * that high_memory defines the upper bound on direct map memory, then end 88 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 89 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 90 * and ZONE_HIGHMEM. 91 */ 92 void * high_memory; 93 94 EXPORT_SYMBOL(high_memory); 95 96 /* 97 * Randomize the address space (stacks, mmaps, brk, etc.). 98 * 99 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 100 * as ancient (libc5 based) binaries can segfault. ) 101 */ 102 int randomize_va_space __read_mostly = 103 #ifdef CONFIG_COMPAT_BRK 104 1; 105 #else 106 2; 107 #endif 108 109 static int __init disable_randmaps(char *s) 110 { 111 randomize_va_space = 0; 112 return 1; 113 } 114 __setup("norandmaps", disable_randmaps); 115 116 unsigned long zero_pfn __read_mostly; 117 unsigned long highest_memmap_pfn __read_mostly; 118 119 /* 120 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 121 */ 122 static int __init init_zero_pfn(void) 123 { 124 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 125 return 0; 126 } 127 core_initcall(init_zero_pfn); 128 129 130 #if defined(SPLIT_RSS_COUNTING) 131 132 void sync_mm_rss(struct mm_struct *mm) 133 { 134 int i; 135 136 for (i = 0; i < NR_MM_COUNTERS; i++) { 137 if (current->rss_stat.count[i]) { 138 add_mm_counter(mm, i, current->rss_stat.count[i]); 139 current->rss_stat.count[i] = 0; 140 } 141 } 142 current->rss_stat.events = 0; 143 } 144 145 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 146 { 147 struct task_struct *task = current; 148 149 if (likely(task->mm == mm)) 150 task->rss_stat.count[member] += val; 151 else 152 add_mm_counter(mm, member, val); 153 } 154 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 155 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 156 157 /* sync counter once per 64 page faults */ 158 #define TASK_RSS_EVENTS_THRESH (64) 159 static void check_sync_rss_stat(struct task_struct *task) 160 { 161 if (unlikely(task != current)) 162 return; 163 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 164 sync_mm_rss(task->mm); 165 } 166 #else /* SPLIT_RSS_COUNTING */ 167 168 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 169 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 170 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 } 174 175 #endif /* SPLIT_RSS_COUNTING */ 176 177 #ifdef HAVE_GENERIC_MMU_GATHER 178 179 static int tlb_next_batch(struct mmu_gather *tlb) 180 { 181 struct mmu_gather_batch *batch; 182 183 batch = tlb->active; 184 if (batch->next) { 185 tlb->active = batch->next; 186 return 1; 187 } 188 189 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 190 return 0; 191 192 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 193 if (!batch) 194 return 0; 195 196 tlb->batch_count++; 197 batch->next = NULL; 198 batch->nr = 0; 199 batch->max = MAX_GATHER_BATCH; 200 201 tlb->active->next = batch; 202 tlb->active = batch; 203 204 return 1; 205 } 206 207 /* tlb_gather_mmu 208 * Called to initialize an (on-stack) mmu_gather structure for page-table 209 * tear-down from @mm. The @fullmm argument is used when @mm is without 210 * users and we're going to destroy the full address space (exit/execve). 211 */ 212 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end) 213 { 214 tlb->mm = mm; 215 216 /* Is it from 0 to ~0? */ 217 tlb->fullmm = !(start | (end+1)); 218 tlb->need_flush_all = 0; 219 tlb->start = start; 220 tlb->end = end; 221 tlb->need_flush = 0; 222 tlb->local.next = NULL; 223 tlb->local.nr = 0; 224 tlb->local.max = ARRAY_SIZE(tlb->__pages); 225 tlb->active = &tlb->local; 226 tlb->batch_count = 0; 227 228 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 229 tlb->batch = NULL; 230 #endif 231 } 232 233 void tlb_flush_mmu(struct mmu_gather *tlb) 234 { 235 struct mmu_gather_batch *batch; 236 237 if (!tlb->need_flush) 238 return; 239 tlb->need_flush = 0; 240 tlb_flush(tlb); 241 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 242 tlb_table_flush(tlb); 243 #endif 244 245 for (batch = &tlb->local; batch; batch = batch->next) { 246 free_pages_and_swap_cache(batch->pages, batch->nr); 247 batch->nr = 0; 248 } 249 tlb->active = &tlb->local; 250 } 251 252 /* tlb_finish_mmu 253 * Called at the end of the shootdown operation to free up any resources 254 * that were required. 255 */ 256 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end) 257 { 258 struct mmu_gather_batch *batch, *next; 259 260 tlb_flush_mmu(tlb); 261 262 /* keep the page table cache within bounds */ 263 check_pgt_cache(); 264 265 for (batch = tlb->local.next; batch; batch = next) { 266 next = batch->next; 267 free_pages((unsigned long)batch, 0); 268 } 269 tlb->local.next = NULL; 270 } 271 272 /* __tlb_remove_page 273 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 274 * handling the additional races in SMP caused by other CPUs caching valid 275 * mappings in their TLBs. Returns the number of free page slots left. 276 * When out of page slots we must call tlb_flush_mmu(). 277 */ 278 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page) 279 { 280 struct mmu_gather_batch *batch; 281 282 VM_BUG_ON(!tlb->need_flush); 283 284 batch = tlb->active; 285 batch->pages[batch->nr++] = page; 286 if (batch->nr == batch->max) { 287 if (!tlb_next_batch(tlb)) 288 return 0; 289 batch = tlb->active; 290 } 291 VM_BUG_ON(batch->nr > batch->max); 292 293 return batch->max - batch->nr; 294 } 295 296 #endif /* HAVE_GENERIC_MMU_GATHER */ 297 298 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 299 300 /* 301 * See the comment near struct mmu_table_batch. 302 */ 303 304 static void tlb_remove_table_smp_sync(void *arg) 305 { 306 /* Simply deliver the interrupt */ 307 } 308 309 static void tlb_remove_table_one(void *table) 310 { 311 /* 312 * This isn't an RCU grace period and hence the page-tables cannot be 313 * assumed to be actually RCU-freed. 314 * 315 * It is however sufficient for software page-table walkers that rely on 316 * IRQ disabling. See the comment near struct mmu_table_batch. 317 */ 318 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 319 __tlb_remove_table(table); 320 } 321 322 static void tlb_remove_table_rcu(struct rcu_head *head) 323 { 324 struct mmu_table_batch *batch; 325 int i; 326 327 batch = container_of(head, struct mmu_table_batch, rcu); 328 329 for (i = 0; i < batch->nr; i++) 330 __tlb_remove_table(batch->tables[i]); 331 332 free_page((unsigned long)batch); 333 } 334 335 void tlb_table_flush(struct mmu_gather *tlb) 336 { 337 struct mmu_table_batch **batch = &tlb->batch; 338 339 if (*batch) { 340 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 341 *batch = NULL; 342 } 343 } 344 345 void tlb_remove_table(struct mmu_gather *tlb, void *table) 346 { 347 struct mmu_table_batch **batch = &tlb->batch; 348 349 tlb->need_flush = 1; 350 351 /* 352 * When there's less then two users of this mm there cannot be a 353 * concurrent page-table walk. 354 */ 355 if (atomic_read(&tlb->mm->mm_users) < 2) { 356 __tlb_remove_table(table); 357 return; 358 } 359 360 if (*batch == NULL) { 361 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 362 if (*batch == NULL) { 363 tlb_remove_table_one(table); 364 return; 365 } 366 (*batch)->nr = 0; 367 } 368 (*batch)->tables[(*batch)->nr++] = table; 369 if ((*batch)->nr == MAX_TABLE_BATCH) 370 tlb_table_flush(tlb); 371 } 372 373 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 374 375 /* 376 * Note: this doesn't free the actual pages themselves. That 377 * has been handled earlier when unmapping all the memory regions. 378 */ 379 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 380 unsigned long addr) 381 { 382 pgtable_t token = pmd_pgtable(*pmd); 383 pmd_clear(pmd); 384 pte_free_tlb(tlb, token, addr); 385 tlb->mm->nr_ptes--; 386 } 387 388 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 389 unsigned long addr, unsigned long end, 390 unsigned long floor, unsigned long ceiling) 391 { 392 pmd_t *pmd; 393 unsigned long next; 394 unsigned long start; 395 396 start = addr; 397 pmd = pmd_offset(pud, addr); 398 do { 399 next = pmd_addr_end(addr, end); 400 if (pmd_none_or_clear_bad(pmd)) 401 continue; 402 free_pte_range(tlb, pmd, addr); 403 } while (pmd++, addr = next, addr != end); 404 405 start &= PUD_MASK; 406 if (start < floor) 407 return; 408 if (ceiling) { 409 ceiling &= PUD_MASK; 410 if (!ceiling) 411 return; 412 } 413 if (end - 1 > ceiling - 1) 414 return; 415 416 pmd = pmd_offset(pud, start); 417 pud_clear(pud); 418 pmd_free_tlb(tlb, pmd, start); 419 } 420 421 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, 422 unsigned long addr, unsigned long end, 423 unsigned long floor, unsigned long ceiling) 424 { 425 pud_t *pud; 426 unsigned long next; 427 unsigned long start; 428 429 start = addr; 430 pud = pud_offset(pgd, addr); 431 do { 432 next = pud_addr_end(addr, end); 433 if (pud_none_or_clear_bad(pud)) 434 continue; 435 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 436 } while (pud++, addr = next, addr != end); 437 438 start &= PGDIR_MASK; 439 if (start < floor) 440 return; 441 if (ceiling) { 442 ceiling &= PGDIR_MASK; 443 if (!ceiling) 444 return; 445 } 446 if (end - 1 > ceiling - 1) 447 return; 448 449 pud = pud_offset(pgd, start); 450 pgd_clear(pgd); 451 pud_free_tlb(tlb, pud, start); 452 } 453 454 /* 455 * This function frees user-level page tables of a process. 456 * 457 * Must be called with pagetable lock held. 458 */ 459 void free_pgd_range(struct mmu_gather *tlb, 460 unsigned long addr, unsigned long end, 461 unsigned long floor, unsigned long ceiling) 462 { 463 pgd_t *pgd; 464 unsigned long next; 465 466 /* 467 * The next few lines have given us lots of grief... 468 * 469 * Why are we testing PMD* at this top level? Because often 470 * there will be no work to do at all, and we'd prefer not to 471 * go all the way down to the bottom just to discover that. 472 * 473 * Why all these "- 1"s? Because 0 represents both the bottom 474 * of the address space and the top of it (using -1 for the 475 * top wouldn't help much: the masks would do the wrong thing). 476 * The rule is that addr 0 and floor 0 refer to the bottom of 477 * the address space, but end 0 and ceiling 0 refer to the top 478 * Comparisons need to use "end - 1" and "ceiling - 1" (though 479 * that end 0 case should be mythical). 480 * 481 * Wherever addr is brought up or ceiling brought down, we must 482 * be careful to reject "the opposite 0" before it confuses the 483 * subsequent tests. But what about where end is brought down 484 * by PMD_SIZE below? no, end can't go down to 0 there. 485 * 486 * Whereas we round start (addr) and ceiling down, by different 487 * masks at different levels, in order to test whether a table 488 * now has no other vmas using it, so can be freed, we don't 489 * bother to round floor or end up - the tests don't need that. 490 */ 491 492 addr &= PMD_MASK; 493 if (addr < floor) { 494 addr += PMD_SIZE; 495 if (!addr) 496 return; 497 } 498 if (ceiling) { 499 ceiling &= PMD_MASK; 500 if (!ceiling) 501 return; 502 } 503 if (end - 1 > ceiling - 1) 504 end -= PMD_SIZE; 505 if (addr > end - 1) 506 return; 507 508 pgd = pgd_offset(tlb->mm, addr); 509 do { 510 next = pgd_addr_end(addr, end); 511 if (pgd_none_or_clear_bad(pgd)) 512 continue; 513 free_pud_range(tlb, pgd, addr, next, floor, ceiling); 514 } while (pgd++, addr = next, addr != end); 515 } 516 517 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 518 unsigned long floor, unsigned long ceiling) 519 { 520 while (vma) { 521 struct vm_area_struct *next = vma->vm_next; 522 unsigned long addr = vma->vm_start; 523 524 /* 525 * Hide vma from rmap and truncate_pagecache before freeing 526 * pgtables 527 */ 528 unlink_anon_vmas(vma); 529 unlink_file_vma(vma); 530 531 if (is_vm_hugetlb_page(vma)) { 532 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 533 floor, next? next->vm_start: ceiling); 534 } else { 535 /* 536 * Optimization: gather nearby vmas into one call down 537 */ 538 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 539 && !is_vm_hugetlb_page(next)) { 540 vma = next; 541 next = vma->vm_next; 542 unlink_anon_vmas(vma); 543 unlink_file_vma(vma); 544 } 545 free_pgd_range(tlb, addr, vma->vm_end, 546 floor, next? next->vm_start: ceiling); 547 } 548 vma = next; 549 } 550 } 551 552 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 553 pmd_t *pmd, unsigned long address) 554 { 555 pgtable_t new = pte_alloc_one(mm, address); 556 int wait_split_huge_page; 557 if (!new) 558 return -ENOMEM; 559 560 /* 561 * Ensure all pte setup (eg. pte page lock and page clearing) are 562 * visible before the pte is made visible to other CPUs by being 563 * put into page tables. 564 * 565 * The other side of the story is the pointer chasing in the page 566 * table walking code (when walking the page table without locking; 567 * ie. most of the time). Fortunately, these data accesses consist 568 * of a chain of data-dependent loads, meaning most CPUs (alpha 569 * being the notable exception) will already guarantee loads are 570 * seen in-order. See the alpha page table accessors for the 571 * smp_read_barrier_depends() barriers in page table walking code. 572 */ 573 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 574 575 spin_lock(&mm->page_table_lock); 576 wait_split_huge_page = 0; 577 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 578 mm->nr_ptes++; 579 pmd_populate(mm, pmd, new); 580 new = NULL; 581 } else if (unlikely(pmd_trans_splitting(*pmd))) 582 wait_split_huge_page = 1; 583 spin_unlock(&mm->page_table_lock); 584 if (new) 585 pte_free(mm, new); 586 if (wait_split_huge_page) 587 wait_split_huge_page(vma->anon_vma, pmd); 588 return 0; 589 } 590 591 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 592 { 593 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 594 if (!new) 595 return -ENOMEM; 596 597 smp_wmb(); /* See comment in __pte_alloc */ 598 599 spin_lock(&init_mm.page_table_lock); 600 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 601 pmd_populate_kernel(&init_mm, pmd, new); 602 new = NULL; 603 } else 604 VM_BUG_ON(pmd_trans_splitting(*pmd)); 605 spin_unlock(&init_mm.page_table_lock); 606 if (new) 607 pte_free_kernel(&init_mm, new); 608 return 0; 609 } 610 611 static inline void init_rss_vec(int *rss) 612 { 613 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 614 } 615 616 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 617 { 618 int i; 619 620 if (current->mm == mm) 621 sync_mm_rss(mm); 622 for (i = 0; i < NR_MM_COUNTERS; i++) 623 if (rss[i]) 624 add_mm_counter(mm, i, rss[i]); 625 } 626 627 /* 628 * This function is called to print an error when a bad pte 629 * is found. For example, we might have a PFN-mapped pte in 630 * a region that doesn't allow it. 631 * 632 * The calling function must still handle the error. 633 */ 634 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 635 pte_t pte, struct page *page) 636 { 637 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 638 pud_t *pud = pud_offset(pgd, addr); 639 pmd_t *pmd = pmd_offset(pud, addr); 640 struct address_space *mapping; 641 pgoff_t index; 642 static unsigned long resume; 643 static unsigned long nr_shown; 644 static unsigned long nr_unshown; 645 646 /* 647 * Allow a burst of 60 reports, then keep quiet for that minute; 648 * or allow a steady drip of one report per second. 649 */ 650 if (nr_shown == 60) { 651 if (time_before(jiffies, resume)) { 652 nr_unshown++; 653 return; 654 } 655 if (nr_unshown) { 656 printk(KERN_ALERT 657 "BUG: Bad page map: %lu messages suppressed\n", 658 nr_unshown); 659 nr_unshown = 0; 660 } 661 nr_shown = 0; 662 } 663 if (nr_shown++ == 0) 664 resume = jiffies + 60 * HZ; 665 666 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 667 index = linear_page_index(vma, addr); 668 669 printk(KERN_ALERT 670 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 671 current->comm, 672 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 673 if (page) 674 dump_page(page); 675 printk(KERN_ALERT 676 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 677 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 678 /* 679 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y 680 */ 681 if (vma->vm_ops) 682 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n", 683 vma->vm_ops->fault); 684 if (vma->vm_file && vma->vm_file->f_op) 685 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n", 686 vma->vm_file->f_op->mmap); 687 dump_stack(); 688 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 689 } 690 691 static inline bool is_cow_mapping(vm_flags_t flags) 692 { 693 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 694 } 695 696 /* 697 * vm_normal_page -- This function gets the "struct page" associated with a pte. 698 * 699 * "Special" mappings do not wish to be associated with a "struct page" (either 700 * it doesn't exist, or it exists but they don't want to touch it). In this 701 * case, NULL is returned here. "Normal" mappings do have a struct page. 702 * 703 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 704 * pte bit, in which case this function is trivial. Secondly, an architecture 705 * may not have a spare pte bit, which requires a more complicated scheme, 706 * described below. 707 * 708 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 709 * special mapping (even if there are underlying and valid "struct pages"). 710 * COWed pages of a VM_PFNMAP are always normal. 711 * 712 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 713 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 714 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 715 * mapping will always honor the rule 716 * 717 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 718 * 719 * And for normal mappings this is false. 720 * 721 * This restricts such mappings to be a linear translation from virtual address 722 * to pfn. To get around this restriction, we allow arbitrary mappings so long 723 * as the vma is not a COW mapping; in that case, we know that all ptes are 724 * special (because none can have been COWed). 725 * 726 * 727 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 728 * 729 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 730 * page" backing, however the difference is that _all_ pages with a struct 731 * page (that is, those where pfn_valid is true) are refcounted and considered 732 * normal pages by the VM. The disadvantage is that pages are refcounted 733 * (which can be slower and simply not an option for some PFNMAP users). The 734 * advantage is that we don't have to follow the strict linearity rule of 735 * PFNMAP mappings in order to support COWable mappings. 736 * 737 */ 738 #ifdef __HAVE_ARCH_PTE_SPECIAL 739 # define HAVE_PTE_SPECIAL 1 740 #else 741 # define HAVE_PTE_SPECIAL 0 742 #endif 743 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 744 pte_t pte) 745 { 746 unsigned long pfn = pte_pfn(pte); 747 748 if (HAVE_PTE_SPECIAL) { 749 if (likely(!pte_special(pte))) 750 goto check_pfn; 751 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 752 return NULL; 753 if (!is_zero_pfn(pfn)) 754 print_bad_pte(vma, addr, pte, NULL); 755 return NULL; 756 } 757 758 /* !HAVE_PTE_SPECIAL case follows: */ 759 760 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 761 if (vma->vm_flags & VM_MIXEDMAP) { 762 if (!pfn_valid(pfn)) 763 return NULL; 764 goto out; 765 } else { 766 unsigned long off; 767 off = (addr - vma->vm_start) >> PAGE_SHIFT; 768 if (pfn == vma->vm_pgoff + off) 769 return NULL; 770 if (!is_cow_mapping(vma->vm_flags)) 771 return NULL; 772 } 773 } 774 775 if (is_zero_pfn(pfn)) 776 return NULL; 777 check_pfn: 778 if (unlikely(pfn > highest_memmap_pfn)) { 779 print_bad_pte(vma, addr, pte, NULL); 780 return NULL; 781 } 782 783 /* 784 * NOTE! We still have PageReserved() pages in the page tables. 785 * eg. VDSO mappings can cause them to exist. 786 */ 787 out: 788 return pfn_to_page(pfn); 789 } 790 791 /* 792 * copy one vm_area from one task to the other. Assumes the page tables 793 * already present in the new task to be cleared in the whole range 794 * covered by this vma. 795 */ 796 797 static inline unsigned long 798 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 799 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 800 unsigned long addr, int *rss) 801 { 802 unsigned long vm_flags = vma->vm_flags; 803 pte_t pte = *src_pte; 804 struct page *page; 805 806 /* pte contains position in swap or file, so copy. */ 807 if (unlikely(!pte_present(pte))) { 808 if (!pte_file(pte)) { 809 swp_entry_t entry = pte_to_swp_entry(pte); 810 811 if (swap_duplicate(entry) < 0) 812 return entry.val; 813 814 /* make sure dst_mm is on swapoff's mmlist. */ 815 if (unlikely(list_empty(&dst_mm->mmlist))) { 816 spin_lock(&mmlist_lock); 817 if (list_empty(&dst_mm->mmlist)) 818 list_add(&dst_mm->mmlist, 819 &src_mm->mmlist); 820 spin_unlock(&mmlist_lock); 821 } 822 if (likely(!non_swap_entry(entry))) 823 rss[MM_SWAPENTS]++; 824 else if (is_migration_entry(entry)) { 825 page = migration_entry_to_page(entry); 826 827 if (PageAnon(page)) 828 rss[MM_ANONPAGES]++; 829 else 830 rss[MM_FILEPAGES]++; 831 832 if (is_write_migration_entry(entry) && 833 is_cow_mapping(vm_flags)) { 834 /* 835 * COW mappings require pages in both 836 * parent and child to be set to read. 837 */ 838 make_migration_entry_read(&entry); 839 pte = swp_entry_to_pte(entry); 840 if (pte_swp_soft_dirty(*src_pte)) 841 pte = pte_swp_mksoft_dirty(pte); 842 set_pte_at(src_mm, addr, src_pte, pte); 843 } 844 } 845 } 846 goto out_set_pte; 847 } 848 849 /* 850 * If it's a COW mapping, write protect it both 851 * in the parent and the child 852 */ 853 if (is_cow_mapping(vm_flags)) { 854 ptep_set_wrprotect(src_mm, addr, src_pte); 855 pte = pte_wrprotect(pte); 856 } 857 858 /* 859 * If it's a shared mapping, mark it clean in 860 * the child 861 */ 862 if (vm_flags & VM_SHARED) 863 pte = pte_mkclean(pte); 864 pte = pte_mkold(pte); 865 866 page = vm_normal_page(vma, addr, pte); 867 if (page) { 868 get_page(page); 869 page_dup_rmap(page); 870 if (PageAnon(page)) 871 rss[MM_ANONPAGES]++; 872 else 873 rss[MM_FILEPAGES]++; 874 } 875 876 out_set_pte: 877 set_pte_at(dst_mm, addr, dst_pte, pte); 878 return 0; 879 } 880 881 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 882 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 883 unsigned long addr, unsigned long end) 884 { 885 pte_t *orig_src_pte, *orig_dst_pte; 886 pte_t *src_pte, *dst_pte; 887 spinlock_t *src_ptl, *dst_ptl; 888 int progress = 0; 889 int rss[NR_MM_COUNTERS]; 890 swp_entry_t entry = (swp_entry_t){0}; 891 892 again: 893 init_rss_vec(rss); 894 895 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 896 if (!dst_pte) 897 return -ENOMEM; 898 src_pte = pte_offset_map(src_pmd, addr); 899 src_ptl = pte_lockptr(src_mm, src_pmd); 900 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 901 orig_src_pte = src_pte; 902 orig_dst_pte = dst_pte; 903 arch_enter_lazy_mmu_mode(); 904 905 do { 906 /* 907 * We are holding two locks at this point - either of them 908 * could generate latencies in another task on another CPU. 909 */ 910 if (progress >= 32) { 911 progress = 0; 912 if (need_resched() || 913 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 914 break; 915 } 916 if (pte_none(*src_pte)) { 917 progress++; 918 continue; 919 } 920 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 921 vma, addr, rss); 922 if (entry.val) 923 break; 924 progress += 8; 925 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 926 927 arch_leave_lazy_mmu_mode(); 928 spin_unlock(src_ptl); 929 pte_unmap(orig_src_pte); 930 add_mm_rss_vec(dst_mm, rss); 931 pte_unmap_unlock(orig_dst_pte, dst_ptl); 932 cond_resched(); 933 934 if (entry.val) { 935 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 936 return -ENOMEM; 937 progress = 0; 938 } 939 if (addr != end) 940 goto again; 941 return 0; 942 } 943 944 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 945 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 946 unsigned long addr, unsigned long end) 947 { 948 pmd_t *src_pmd, *dst_pmd; 949 unsigned long next; 950 951 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 952 if (!dst_pmd) 953 return -ENOMEM; 954 src_pmd = pmd_offset(src_pud, addr); 955 do { 956 next = pmd_addr_end(addr, end); 957 if (pmd_trans_huge(*src_pmd)) { 958 int err; 959 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE); 960 err = copy_huge_pmd(dst_mm, src_mm, 961 dst_pmd, src_pmd, addr, vma); 962 if (err == -ENOMEM) 963 return -ENOMEM; 964 if (!err) 965 continue; 966 /* fall through */ 967 } 968 if (pmd_none_or_clear_bad(src_pmd)) 969 continue; 970 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 971 vma, addr, next)) 972 return -ENOMEM; 973 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 974 return 0; 975 } 976 977 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 978 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 979 unsigned long addr, unsigned long end) 980 { 981 pud_t *src_pud, *dst_pud; 982 unsigned long next; 983 984 dst_pud = pud_alloc(dst_mm, dst_pgd, addr); 985 if (!dst_pud) 986 return -ENOMEM; 987 src_pud = pud_offset(src_pgd, addr); 988 do { 989 next = pud_addr_end(addr, end); 990 if (pud_none_or_clear_bad(src_pud)) 991 continue; 992 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 993 vma, addr, next)) 994 return -ENOMEM; 995 } while (dst_pud++, src_pud++, addr = next, addr != end); 996 return 0; 997 } 998 999 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1000 struct vm_area_struct *vma) 1001 { 1002 pgd_t *src_pgd, *dst_pgd; 1003 unsigned long next; 1004 unsigned long addr = vma->vm_start; 1005 unsigned long end = vma->vm_end; 1006 unsigned long mmun_start; /* For mmu_notifiers */ 1007 unsigned long mmun_end; /* For mmu_notifiers */ 1008 bool is_cow; 1009 int ret; 1010 1011 /* 1012 * Don't copy ptes where a page fault will fill them correctly. 1013 * Fork becomes much lighter when there are big shared or private 1014 * readonly mappings. The tradeoff is that copy_page_range is more 1015 * efficient than faulting. 1016 */ 1017 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR | 1018 VM_PFNMAP | VM_MIXEDMAP))) { 1019 if (!vma->anon_vma) 1020 return 0; 1021 } 1022 1023 if (is_vm_hugetlb_page(vma)) 1024 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1025 1026 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1027 /* 1028 * We do not free on error cases below as remove_vma 1029 * gets called on error from higher level routine 1030 */ 1031 ret = track_pfn_copy(vma); 1032 if (ret) 1033 return ret; 1034 } 1035 1036 /* 1037 * We need to invalidate the secondary MMU mappings only when 1038 * there could be a permission downgrade on the ptes of the 1039 * parent mm. And a permission downgrade will only happen if 1040 * is_cow_mapping() returns true. 1041 */ 1042 is_cow = is_cow_mapping(vma->vm_flags); 1043 mmun_start = addr; 1044 mmun_end = end; 1045 if (is_cow) 1046 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1047 mmun_end); 1048 1049 ret = 0; 1050 dst_pgd = pgd_offset(dst_mm, addr); 1051 src_pgd = pgd_offset(src_mm, addr); 1052 do { 1053 next = pgd_addr_end(addr, end); 1054 if (pgd_none_or_clear_bad(src_pgd)) 1055 continue; 1056 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, 1057 vma, addr, next))) { 1058 ret = -ENOMEM; 1059 break; 1060 } 1061 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1062 1063 if (is_cow) 1064 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1065 return ret; 1066 } 1067 1068 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1069 struct vm_area_struct *vma, pmd_t *pmd, 1070 unsigned long addr, unsigned long end, 1071 struct zap_details *details) 1072 { 1073 struct mm_struct *mm = tlb->mm; 1074 int force_flush = 0; 1075 int rss[NR_MM_COUNTERS]; 1076 spinlock_t *ptl; 1077 pte_t *start_pte; 1078 pte_t *pte; 1079 1080 again: 1081 init_rss_vec(rss); 1082 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1083 pte = start_pte; 1084 arch_enter_lazy_mmu_mode(); 1085 do { 1086 pte_t ptent = *pte; 1087 if (pte_none(ptent)) { 1088 continue; 1089 } 1090 1091 if (pte_present(ptent)) { 1092 struct page *page; 1093 1094 page = vm_normal_page(vma, addr, ptent); 1095 if (unlikely(details) && page) { 1096 /* 1097 * unmap_shared_mapping_pages() wants to 1098 * invalidate cache without truncating: 1099 * unmap shared but keep private pages. 1100 */ 1101 if (details->check_mapping && 1102 details->check_mapping != page->mapping) 1103 continue; 1104 /* 1105 * Each page->index must be checked when 1106 * invalidating or truncating nonlinear. 1107 */ 1108 if (details->nonlinear_vma && 1109 (page->index < details->first_index || 1110 page->index > details->last_index)) 1111 continue; 1112 } 1113 ptent = ptep_get_and_clear_full(mm, addr, pte, 1114 tlb->fullmm); 1115 tlb_remove_tlb_entry(tlb, pte, addr); 1116 if (unlikely(!page)) 1117 continue; 1118 if (unlikely(details) && details->nonlinear_vma 1119 && linear_page_index(details->nonlinear_vma, 1120 addr) != page->index) { 1121 pte_t ptfile = pgoff_to_pte(page->index); 1122 if (pte_soft_dirty(ptent)) 1123 pte_file_mksoft_dirty(ptfile); 1124 set_pte_at(mm, addr, pte, ptfile); 1125 } 1126 if (PageAnon(page)) 1127 rss[MM_ANONPAGES]--; 1128 else { 1129 if (pte_dirty(ptent)) 1130 set_page_dirty(page); 1131 if (pte_young(ptent) && 1132 likely(!(vma->vm_flags & VM_SEQ_READ))) 1133 mark_page_accessed(page); 1134 rss[MM_FILEPAGES]--; 1135 } 1136 page_remove_rmap(page); 1137 if (unlikely(page_mapcount(page) < 0)) 1138 print_bad_pte(vma, addr, ptent, page); 1139 force_flush = !__tlb_remove_page(tlb, page); 1140 if (force_flush) 1141 break; 1142 continue; 1143 } 1144 /* 1145 * If details->check_mapping, we leave swap entries; 1146 * if details->nonlinear_vma, we leave file entries. 1147 */ 1148 if (unlikely(details)) 1149 continue; 1150 if (pte_file(ptent)) { 1151 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) 1152 print_bad_pte(vma, addr, ptent, NULL); 1153 } else { 1154 swp_entry_t entry = pte_to_swp_entry(ptent); 1155 1156 if (!non_swap_entry(entry)) 1157 rss[MM_SWAPENTS]--; 1158 else if (is_migration_entry(entry)) { 1159 struct page *page; 1160 1161 page = migration_entry_to_page(entry); 1162 1163 if (PageAnon(page)) 1164 rss[MM_ANONPAGES]--; 1165 else 1166 rss[MM_FILEPAGES]--; 1167 } 1168 if (unlikely(!free_swap_and_cache(entry))) 1169 print_bad_pte(vma, addr, ptent, NULL); 1170 } 1171 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1172 } while (pte++, addr += PAGE_SIZE, addr != end); 1173 1174 add_mm_rss_vec(mm, rss); 1175 arch_leave_lazy_mmu_mode(); 1176 pte_unmap_unlock(start_pte, ptl); 1177 1178 /* 1179 * mmu_gather ran out of room to batch pages, we break out of 1180 * the PTE lock to avoid doing the potential expensive TLB invalidate 1181 * and page-free while holding it. 1182 */ 1183 if (force_flush) { 1184 unsigned long old_end; 1185 1186 force_flush = 0; 1187 1188 /* 1189 * Flush the TLB just for the previous segment, 1190 * then update the range to be the remaining 1191 * TLB range. 1192 */ 1193 old_end = tlb->end; 1194 tlb->end = addr; 1195 1196 tlb_flush_mmu(tlb); 1197 1198 tlb->start = addr; 1199 tlb->end = old_end; 1200 1201 if (addr != end) 1202 goto again; 1203 } 1204 1205 return addr; 1206 } 1207 1208 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1209 struct vm_area_struct *vma, pud_t *pud, 1210 unsigned long addr, unsigned long end, 1211 struct zap_details *details) 1212 { 1213 pmd_t *pmd; 1214 unsigned long next; 1215 1216 pmd = pmd_offset(pud, addr); 1217 do { 1218 next = pmd_addr_end(addr, end); 1219 if (pmd_trans_huge(*pmd)) { 1220 if (next - addr != HPAGE_PMD_SIZE) { 1221 #ifdef CONFIG_DEBUG_VM 1222 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) { 1223 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n", 1224 __func__, addr, end, 1225 vma->vm_start, 1226 vma->vm_end); 1227 BUG(); 1228 } 1229 #endif 1230 split_huge_page_pmd(vma, addr, pmd); 1231 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1232 goto next; 1233 /* fall through */ 1234 } 1235 /* 1236 * Here there can be other concurrent MADV_DONTNEED or 1237 * trans huge page faults running, and if the pmd is 1238 * none or trans huge it can change under us. This is 1239 * because MADV_DONTNEED holds the mmap_sem in read 1240 * mode. 1241 */ 1242 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1243 goto next; 1244 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1245 next: 1246 cond_resched(); 1247 } while (pmd++, addr = next, addr != end); 1248 1249 return addr; 1250 } 1251 1252 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1253 struct vm_area_struct *vma, pgd_t *pgd, 1254 unsigned long addr, unsigned long end, 1255 struct zap_details *details) 1256 { 1257 pud_t *pud; 1258 unsigned long next; 1259 1260 pud = pud_offset(pgd, addr); 1261 do { 1262 next = pud_addr_end(addr, end); 1263 if (pud_none_or_clear_bad(pud)) 1264 continue; 1265 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1266 } while (pud++, addr = next, addr != end); 1267 1268 return addr; 1269 } 1270 1271 static void unmap_page_range(struct mmu_gather *tlb, 1272 struct vm_area_struct *vma, 1273 unsigned long addr, unsigned long end, 1274 struct zap_details *details) 1275 { 1276 pgd_t *pgd; 1277 unsigned long next; 1278 1279 if (details && !details->check_mapping && !details->nonlinear_vma) 1280 details = NULL; 1281 1282 BUG_ON(addr >= end); 1283 mem_cgroup_uncharge_start(); 1284 tlb_start_vma(tlb, vma); 1285 pgd = pgd_offset(vma->vm_mm, addr); 1286 do { 1287 next = pgd_addr_end(addr, end); 1288 if (pgd_none_or_clear_bad(pgd)) 1289 continue; 1290 next = zap_pud_range(tlb, vma, pgd, addr, next, details); 1291 } while (pgd++, addr = next, addr != end); 1292 tlb_end_vma(tlb, vma); 1293 mem_cgroup_uncharge_end(); 1294 } 1295 1296 1297 static void unmap_single_vma(struct mmu_gather *tlb, 1298 struct vm_area_struct *vma, unsigned long start_addr, 1299 unsigned long end_addr, 1300 struct zap_details *details) 1301 { 1302 unsigned long start = max(vma->vm_start, start_addr); 1303 unsigned long end; 1304 1305 if (start >= vma->vm_end) 1306 return; 1307 end = min(vma->vm_end, end_addr); 1308 if (end <= vma->vm_start) 1309 return; 1310 1311 if (vma->vm_file) 1312 uprobe_munmap(vma, start, end); 1313 1314 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1315 untrack_pfn(vma, 0, 0); 1316 1317 if (start != end) { 1318 if (unlikely(is_vm_hugetlb_page(vma))) { 1319 /* 1320 * It is undesirable to test vma->vm_file as it 1321 * should be non-null for valid hugetlb area. 1322 * However, vm_file will be NULL in the error 1323 * cleanup path of do_mmap_pgoff. When 1324 * hugetlbfs ->mmap method fails, 1325 * do_mmap_pgoff() nullifies vma->vm_file 1326 * before calling this function to clean up. 1327 * Since no pte has actually been setup, it is 1328 * safe to do nothing in this case. 1329 */ 1330 if (vma->vm_file) { 1331 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex); 1332 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1333 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex); 1334 } 1335 } else 1336 unmap_page_range(tlb, vma, start, end, details); 1337 } 1338 } 1339 1340 /** 1341 * unmap_vmas - unmap a range of memory covered by a list of vma's 1342 * @tlb: address of the caller's struct mmu_gather 1343 * @vma: the starting vma 1344 * @start_addr: virtual address at which to start unmapping 1345 * @end_addr: virtual address at which to end unmapping 1346 * 1347 * Unmap all pages in the vma list. 1348 * 1349 * Only addresses between `start' and `end' will be unmapped. 1350 * 1351 * The VMA list must be sorted in ascending virtual address order. 1352 * 1353 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1354 * range after unmap_vmas() returns. So the only responsibility here is to 1355 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1356 * drops the lock and schedules. 1357 */ 1358 void unmap_vmas(struct mmu_gather *tlb, 1359 struct vm_area_struct *vma, unsigned long start_addr, 1360 unsigned long end_addr) 1361 { 1362 struct mm_struct *mm = vma->vm_mm; 1363 1364 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1365 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1366 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1367 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1368 } 1369 1370 /** 1371 * zap_page_range - remove user pages in a given range 1372 * @vma: vm_area_struct holding the applicable pages 1373 * @start: starting address of pages to zap 1374 * @size: number of bytes to zap 1375 * @details: details of nonlinear truncation or shared cache invalidation 1376 * 1377 * Caller must protect the VMA list 1378 */ 1379 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1380 unsigned long size, struct zap_details *details) 1381 { 1382 struct mm_struct *mm = vma->vm_mm; 1383 struct mmu_gather tlb; 1384 unsigned long end = start + size; 1385 1386 lru_add_drain(); 1387 tlb_gather_mmu(&tlb, mm, start, end); 1388 update_hiwater_rss(mm); 1389 mmu_notifier_invalidate_range_start(mm, start, end); 1390 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) 1391 unmap_single_vma(&tlb, vma, start, end, details); 1392 mmu_notifier_invalidate_range_end(mm, start, end); 1393 tlb_finish_mmu(&tlb, start, end); 1394 } 1395 1396 /** 1397 * zap_page_range_single - remove user pages in a given range 1398 * @vma: vm_area_struct holding the applicable pages 1399 * @address: starting address of pages to zap 1400 * @size: number of bytes to zap 1401 * @details: details of nonlinear truncation or shared cache invalidation 1402 * 1403 * The range must fit into one VMA. 1404 */ 1405 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1406 unsigned long size, struct zap_details *details) 1407 { 1408 struct mm_struct *mm = vma->vm_mm; 1409 struct mmu_gather tlb; 1410 unsigned long end = address + size; 1411 1412 lru_add_drain(); 1413 tlb_gather_mmu(&tlb, mm, address, end); 1414 update_hiwater_rss(mm); 1415 mmu_notifier_invalidate_range_start(mm, address, end); 1416 unmap_single_vma(&tlb, vma, address, end, details); 1417 mmu_notifier_invalidate_range_end(mm, address, end); 1418 tlb_finish_mmu(&tlb, address, end); 1419 } 1420 1421 /** 1422 * zap_vma_ptes - remove ptes mapping the vma 1423 * @vma: vm_area_struct holding ptes to be zapped 1424 * @address: starting address of pages to zap 1425 * @size: number of bytes to zap 1426 * 1427 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1428 * 1429 * The entire address range must be fully contained within the vma. 1430 * 1431 * Returns 0 if successful. 1432 */ 1433 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1434 unsigned long size) 1435 { 1436 if (address < vma->vm_start || address + size > vma->vm_end || 1437 !(vma->vm_flags & VM_PFNMAP)) 1438 return -1; 1439 zap_page_range_single(vma, address, size, NULL); 1440 return 0; 1441 } 1442 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1443 1444 /** 1445 * follow_page_mask - look up a page descriptor from a user-virtual address 1446 * @vma: vm_area_struct mapping @address 1447 * @address: virtual address to look up 1448 * @flags: flags modifying lookup behaviour 1449 * @page_mask: on output, *page_mask is set according to the size of the page 1450 * 1451 * @flags can have FOLL_ flags set, defined in <linux/mm.h> 1452 * 1453 * Returns the mapped (struct page *), %NULL if no mapping exists, or 1454 * an error pointer if there is a mapping to something not represented 1455 * by a page descriptor (see also vm_normal_page()). 1456 */ 1457 struct page *follow_page_mask(struct vm_area_struct *vma, 1458 unsigned long address, unsigned int flags, 1459 unsigned int *page_mask) 1460 { 1461 pgd_t *pgd; 1462 pud_t *pud; 1463 pmd_t *pmd; 1464 pte_t *ptep, pte; 1465 spinlock_t *ptl; 1466 struct page *page; 1467 struct mm_struct *mm = vma->vm_mm; 1468 1469 *page_mask = 0; 1470 1471 page = follow_huge_addr(mm, address, flags & FOLL_WRITE); 1472 if (!IS_ERR(page)) { 1473 BUG_ON(flags & FOLL_GET); 1474 goto out; 1475 } 1476 1477 page = NULL; 1478 pgd = pgd_offset(mm, address); 1479 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 1480 goto no_page_table; 1481 1482 pud = pud_offset(pgd, address); 1483 if (pud_none(*pud)) 1484 goto no_page_table; 1485 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) { 1486 if (flags & FOLL_GET) 1487 goto out; 1488 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE); 1489 goto out; 1490 } 1491 if (unlikely(pud_bad(*pud))) 1492 goto no_page_table; 1493 1494 pmd = pmd_offset(pud, address); 1495 if (pmd_none(*pmd)) 1496 goto no_page_table; 1497 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) { 1498 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE); 1499 if (flags & FOLL_GET) { 1500 /* 1501 * Refcount on tail pages are not well-defined and 1502 * shouldn't be taken. The caller should handle a NULL 1503 * return when trying to follow tail pages. 1504 */ 1505 if (PageHead(page)) 1506 get_page(page); 1507 else { 1508 page = NULL; 1509 goto out; 1510 } 1511 } 1512 goto out; 1513 } 1514 if ((flags & FOLL_NUMA) && pmd_numa(*pmd)) 1515 goto no_page_table; 1516 if (pmd_trans_huge(*pmd)) { 1517 if (flags & FOLL_SPLIT) { 1518 split_huge_page_pmd(vma, address, pmd); 1519 goto split_fallthrough; 1520 } 1521 spin_lock(&mm->page_table_lock); 1522 if (likely(pmd_trans_huge(*pmd))) { 1523 if (unlikely(pmd_trans_splitting(*pmd))) { 1524 spin_unlock(&mm->page_table_lock); 1525 wait_split_huge_page(vma->anon_vma, pmd); 1526 } else { 1527 page = follow_trans_huge_pmd(vma, address, 1528 pmd, flags); 1529 spin_unlock(&mm->page_table_lock); 1530 *page_mask = HPAGE_PMD_NR - 1; 1531 goto out; 1532 } 1533 } else 1534 spin_unlock(&mm->page_table_lock); 1535 /* fall through */ 1536 } 1537 split_fallthrough: 1538 if (unlikely(pmd_bad(*pmd))) 1539 goto no_page_table; 1540 1541 ptep = pte_offset_map_lock(mm, pmd, address, &ptl); 1542 1543 pte = *ptep; 1544 if (!pte_present(pte)) { 1545 swp_entry_t entry; 1546 /* 1547 * KSM's break_ksm() relies upon recognizing a ksm page 1548 * even while it is being migrated, so for that case we 1549 * need migration_entry_wait(). 1550 */ 1551 if (likely(!(flags & FOLL_MIGRATION))) 1552 goto no_page; 1553 if (pte_none(pte) || pte_file(pte)) 1554 goto no_page; 1555 entry = pte_to_swp_entry(pte); 1556 if (!is_migration_entry(entry)) 1557 goto no_page; 1558 pte_unmap_unlock(ptep, ptl); 1559 migration_entry_wait(mm, pmd, address); 1560 goto split_fallthrough; 1561 } 1562 if ((flags & FOLL_NUMA) && pte_numa(pte)) 1563 goto no_page; 1564 if ((flags & FOLL_WRITE) && !pte_write(pte)) 1565 goto unlock; 1566 1567 page = vm_normal_page(vma, address, pte); 1568 if (unlikely(!page)) { 1569 if ((flags & FOLL_DUMP) || 1570 !is_zero_pfn(pte_pfn(pte))) 1571 goto bad_page; 1572 page = pte_page(pte); 1573 } 1574 1575 if (flags & FOLL_GET) 1576 get_page_foll(page); 1577 if (flags & FOLL_TOUCH) { 1578 if ((flags & FOLL_WRITE) && 1579 !pte_dirty(pte) && !PageDirty(page)) 1580 set_page_dirty(page); 1581 /* 1582 * pte_mkyoung() would be more correct here, but atomic care 1583 * is needed to avoid losing the dirty bit: it is easier to use 1584 * mark_page_accessed(). 1585 */ 1586 mark_page_accessed(page); 1587 } 1588 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) { 1589 /* 1590 * The preliminary mapping check is mainly to avoid the 1591 * pointless overhead of lock_page on the ZERO_PAGE 1592 * which might bounce very badly if there is contention. 1593 * 1594 * If the page is already locked, we don't need to 1595 * handle it now - vmscan will handle it later if and 1596 * when it attempts to reclaim the page. 1597 */ 1598 if (page->mapping && trylock_page(page)) { 1599 lru_add_drain(); /* push cached pages to LRU */ 1600 /* 1601 * Because we lock page here, and migration is 1602 * blocked by the pte's page reference, and we 1603 * know the page is still mapped, we don't even 1604 * need to check for file-cache page truncation. 1605 */ 1606 mlock_vma_page(page); 1607 unlock_page(page); 1608 } 1609 } 1610 unlock: 1611 pte_unmap_unlock(ptep, ptl); 1612 out: 1613 return page; 1614 1615 bad_page: 1616 pte_unmap_unlock(ptep, ptl); 1617 return ERR_PTR(-EFAULT); 1618 1619 no_page: 1620 pte_unmap_unlock(ptep, ptl); 1621 if (!pte_none(pte)) 1622 return page; 1623 1624 no_page_table: 1625 /* 1626 * When core dumping an enormous anonymous area that nobody 1627 * has touched so far, we don't want to allocate unnecessary pages or 1628 * page tables. Return error instead of NULL to skip handle_mm_fault, 1629 * then get_dump_page() will return NULL to leave a hole in the dump. 1630 * But we can only make this optimization where a hole would surely 1631 * be zero-filled if handle_mm_fault() actually did handle it. 1632 */ 1633 if ((flags & FOLL_DUMP) && 1634 (!vma->vm_ops || !vma->vm_ops->fault)) 1635 return ERR_PTR(-EFAULT); 1636 return page; 1637 } 1638 1639 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr) 1640 { 1641 return stack_guard_page_start(vma, addr) || 1642 stack_guard_page_end(vma, addr+PAGE_SIZE); 1643 } 1644 1645 /** 1646 * __get_user_pages() - pin user pages in memory 1647 * @tsk: task_struct of target task 1648 * @mm: mm_struct of target mm 1649 * @start: starting user address 1650 * @nr_pages: number of pages from start to pin 1651 * @gup_flags: flags modifying pin behaviour 1652 * @pages: array that receives pointers to the pages pinned. 1653 * Should be at least nr_pages long. Or NULL, if caller 1654 * only intends to ensure the pages are faulted in. 1655 * @vmas: array of pointers to vmas corresponding to each page. 1656 * Or NULL if the caller does not require them. 1657 * @nonblocking: whether waiting for disk IO or mmap_sem contention 1658 * 1659 * Returns number of pages pinned. This may be fewer than the number 1660 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1661 * were pinned, returns -errno. Each page returned must be released 1662 * with a put_page() call when it is finished with. vmas will only 1663 * remain valid while mmap_sem is held. 1664 * 1665 * Must be called with mmap_sem held for read or write. 1666 * 1667 * __get_user_pages walks a process's page tables and takes a reference to 1668 * each struct page that each user address corresponds to at a given 1669 * instant. That is, it takes the page that would be accessed if a user 1670 * thread accesses the given user virtual address at that instant. 1671 * 1672 * This does not guarantee that the page exists in the user mappings when 1673 * __get_user_pages returns, and there may even be a completely different 1674 * page there in some cases (eg. if mmapped pagecache has been invalidated 1675 * and subsequently re faulted). However it does guarantee that the page 1676 * won't be freed completely. And mostly callers simply care that the page 1677 * contains data that was valid *at some point in time*. Typically, an IO 1678 * or similar operation cannot guarantee anything stronger anyway because 1679 * locks can't be held over the syscall boundary. 1680 * 1681 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If 1682 * the page is written to, set_page_dirty (or set_page_dirty_lock, as 1683 * appropriate) must be called after the page is finished with, and 1684 * before put_page is called. 1685 * 1686 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO 1687 * or mmap_sem contention, and if waiting is needed to pin all pages, 1688 * *@nonblocking will be set to 0. 1689 * 1690 * In most cases, get_user_pages or get_user_pages_fast should be used 1691 * instead of __get_user_pages. __get_user_pages should be used only if 1692 * you need some special @gup_flags. 1693 */ 1694 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1695 unsigned long start, unsigned long nr_pages, 1696 unsigned int gup_flags, struct page **pages, 1697 struct vm_area_struct **vmas, int *nonblocking) 1698 { 1699 long i; 1700 unsigned long vm_flags; 1701 unsigned int page_mask; 1702 1703 if (!nr_pages) 1704 return 0; 1705 1706 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET)); 1707 1708 /* 1709 * Require read or write permissions. 1710 * If FOLL_FORCE is set, we only require the "MAY" flags. 1711 */ 1712 vm_flags = (gup_flags & FOLL_WRITE) ? 1713 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); 1714 vm_flags &= (gup_flags & FOLL_FORCE) ? 1715 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); 1716 1717 /* 1718 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault 1719 * would be called on PROT_NONE ranges. We must never invoke 1720 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting 1721 * page faults would unprotect the PROT_NONE ranges if 1722 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd 1723 * bitflag. So to avoid that, don't set FOLL_NUMA if 1724 * FOLL_FORCE is set. 1725 */ 1726 if (!(gup_flags & FOLL_FORCE)) 1727 gup_flags |= FOLL_NUMA; 1728 1729 i = 0; 1730 1731 do { 1732 struct vm_area_struct *vma; 1733 1734 vma = find_extend_vma(mm, start); 1735 if (!vma && in_gate_area(mm, start)) { 1736 unsigned long pg = start & PAGE_MASK; 1737 pgd_t *pgd; 1738 pud_t *pud; 1739 pmd_t *pmd; 1740 pte_t *pte; 1741 1742 /* user gate pages are read-only */ 1743 if (gup_flags & FOLL_WRITE) 1744 return i ? : -EFAULT; 1745 if (pg > TASK_SIZE) 1746 pgd = pgd_offset_k(pg); 1747 else 1748 pgd = pgd_offset_gate(mm, pg); 1749 BUG_ON(pgd_none(*pgd)); 1750 pud = pud_offset(pgd, pg); 1751 BUG_ON(pud_none(*pud)); 1752 pmd = pmd_offset(pud, pg); 1753 if (pmd_none(*pmd)) 1754 return i ? : -EFAULT; 1755 VM_BUG_ON(pmd_trans_huge(*pmd)); 1756 pte = pte_offset_map(pmd, pg); 1757 if (pte_none(*pte)) { 1758 pte_unmap(pte); 1759 return i ? : -EFAULT; 1760 } 1761 vma = get_gate_vma(mm); 1762 if (pages) { 1763 struct page *page; 1764 1765 page = vm_normal_page(vma, start, *pte); 1766 if (!page) { 1767 if (!(gup_flags & FOLL_DUMP) && 1768 is_zero_pfn(pte_pfn(*pte))) 1769 page = pte_page(*pte); 1770 else { 1771 pte_unmap(pte); 1772 return i ? : -EFAULT; 1773 } 1774 } 1775 pages[i] = page; 1776 get_page(page); 1777 } 1778 pte_unmap(pte); 1779 page_mask = 0; 1780 goto next_page; 1781 } 1782 1783 if (!vma || 1784 (vma->vm_flags & (VM_IO | VM_PFNMAP)) || 1785 !(vm_flags & vma->vm_flags)) 1786 return i ? : -EFAULT; 1787 1788 if (is_vm_hugetlb_page(vma)) { 1789 i = follow_hugetlb_page(mm, vma, pages, vmas, 1790 &start, &nr_pages, i, gup_flags); 1791 continue; 1792 } 1793 1794 do { 1795 struct page *page; 1796 unsigned int foll_flags = gup_flags; 1797 unsigned int page_increm; 1798 1799 /* 1800 * If we have a pending SIGKILL, don't keep faulting 1801 * pages and potentially allocating memory. 1802 */ 1803 if (unlikely(fatal_signal_pending(current))) 1804 return i ? i : -ERESTARTSYS; 1805 1806 cond_resched(); 1807 while (!(page = follow_page_mask(vma, start, 1808 foll_flags, &page_mask))) { 1809 int ret; 1810 unsigned int fault_flags = 0; 1811 1812 /* For mlock, just skip the stack guard page. */ 1813 if (foll_flags & FOLL_MLOCK) { 1814 if (stack_guard_page(vma, start)) 1815 goto next_page; 1816 } 1817 if (foll_flags & FOLL_WRITE) 1818 fault_flags |= FAULT_FLAG_WRITE; 1819 if (nonblocking) 1820 fault_flags |= FAULT_FLAG_ALLOW_RETRY; 1821 if (foll_flags & FOLL_NOWAIT) 1822 fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT); 1823 1824 ret = handle_mm_fault(mm, vma, start, 1825 fault_flags); 1826 1827 if (ret & VM_FAULT_ERROR) { 1828 if (ret & VM_FAULT_OOM) 1829 return i ? i : -ENOMEM; 1830 if (ret & (VM_FAULT_HWPOISON | 1831 VM_FAULT_HWPOISON_LARGE)) { 1832 if (i) 1833 return i; 1834 else if (gup_flags & FOLL_HWPOISON) 1835 return -EHWPOISON; 1836 else 1837 return -EFAULT; 1838 } 1839 if (ret & VM_FAULT_SIGBUS) 1840 return i ? i : -EFAULT; 1841 BUG(); 1842 } 1843 1844 if (tsk) { 1845 if (ret & VM_FAULT_MAJOR) 1846 tsk->maj_flt++; 1847 else 1848 tsk->min_flt++; 1849 } 1850 1851 if (ret & VM_FAULT_RETRY) { 1852 if (nonblocking) 1853 *nonblocking = 0; 1854 return i; 1855 } 1856 1857 /* 1858 * The VM_FAULT_WRITE bit tells us that 1859 * do_wp_page has broken COW when necessary, 1860 * even if maybe_mkwrite decided not to set 1861 * pte_write. We can thus safely do subsequent 1862 * page lookups as if they were reads. But only 1863 * do so when looping for pte_write is futile: 1864 * in some cases userspace may also be wanting 1865 * to write to the gotten user page, which a 1866 * read fault here might prevent (a readonly 1867 * page might get reCOWed by userspace write). 1868 */ 1869 if ((ret & VM_FAULT_WRITE) && 1870 !(vma->vm_flags & VM_WRITE)) 1871 foll_flags &= ~FOLL_WRITE; 1872 1873 cond_resched(); 1874 } 1875 if (IS_ERR(page)) 1876 return i ? i : PTR_ERR(page); 1877 if (pages) { 1878 pages[i] = page; 1879 1880 flush_anon_page(vma, page, start); 1881 flush_dcache_page(page); 1882 page_mask = 0; 1883 } 1884 next_page: 1885 if (vmas) { 1886 vmas[i] = vma; 1887 page_mask = 0; 1888 } 1889 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask); 1890 if (page_increm > nr_pages) 1891 page_increm = nr_pages; 1892 i += page_increm; 1893 start += page_increm * PAGE_SIZE; 1894 nr_pages -= page_increm; 1895 } while (nr_pages && start < vma->vm_end); 1896 } while (nr_pages); 1897 return i; 1898 } 1899 EXPORT_SYMBOL(__get_user_pages); 1900 1901 /* 1902 * fixup_user_fault() - manually resolve a user page fault 1903 * @tsk: the task_struct to use for page fault accounting, or 1904 * NULL if faults are not to be recorded. 1905 * @mm: mm_struct of target mm 1906 * @address: user address 1907 * @fault_flags:flags to pass down to handle_mm_fault() 1908 * 1909 * This is meant to be called in the specific scenario where for locking reasons 1910 * we try to access user memory in atomic context (within a pagefault_disable() 1911 * section), this returns -EFAULT, and we want to resolve the user fault before 1912 * trying again. 1913 * 1914 * Typically this is meant to be used by the futex code. 1915 * 1916 * The main difference with get_user_pages() is that this function will 1917 * unconditionally call handle_mm_fault() which will in turn perform all the 1918 * necessary SW fixup of the dirty and young bits in the PTE, while 1919 * handle_mm_fault() only guarantees to update these in the struct page. 1920 * 1921 * This is important for some architectures where those bits also gate the 1922 * access permission to the page because they are maintained in software. On 1923 * such architectures, gup() will not be enough to make a subsequent access 1924 * succeed. 1925 * 1926 * This should be called with the mm_sem held for read. 1927 */ 1928 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1929 unsigned long address, unsigned int fault_flags) 1930 { 1931 struct vm_area_struct *vma; 1932 int ret; 1933 1934 vma = find_extend_vma(mm, address); 1935 if (!vma || address < vma->vm_start) 1936 return -EFAULT; 1937 1938 ret = handle_mm_fault(mm, vma, address, fault_flags); 1939 if (ret & VM_FAULT_ERROR) { 1940 if (ret & VM_FAULT_OOM) 1941 return -ENOMEM; 1942 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 1943 return -EHWPOISON; 1944 if (ret & VM_FAULT_SIGBUS) 1945 return -EFAULT; 1946 BUG(); 1947 } 1948 if (tsk) { 1949 if (ret & VM_FAULT_MAJOR) 1950 tsk->maj_flt++; 1951 else 1952 tsk->min_flt++; 1953 } 1954 return 0; 1955 } 1956 1957 /* 1958 * get_user_pages() - pin user pages in memory 1959 * @tsk: the task_struct to use for page fault accounting, or 1960 * NULL if faults are not to be recorded. 1961 * @mm: mm_struct of target mm 1962 * @start: starting user address 1963 * @nr_pages: number of pages from start to pin 1964 * @write: whether pages will be written to by the caller 1965 * @force: whether to force write access even if user mapping is 1966 * readonly. This will result in the page being COWed even 1967 * in MAP_SHARED mappings. You do not want this. 1968 * @pages: array that receives pointers to the pages pinned. 1969 * Should be at least nr_pages long. Or NULL, if caller 1970 * only intends to ensure the pages are faulted in. 1971 * @vmas: array of pointers to vmas corresponding to each page. 1972 * Or NULL if the caller does not require them. 1973 * 1974 * Returns number of pages pinned. This may be fewer than the number 1975 * requested. If nr_pages is 0 or negative, returns 0. If no pages 1976 * were pinned, returns -errno. Each page returned must be released 1977 * with a put_page() call when it is finished with. vmas will only 1978 * remain valid while mmap_sem is held. 1979 * 1980 * Must be called with mmap_sem held for read or write. 1981 * 1982 * get_user_pages walks a process's page tables and takes a reference to 1983 * each struct page that each user address corresponds to at a given 1984 * instant. That is, it takes the page that would be accessed if a user 1985 * thread accesses the given user virtual address at that instant. 1986 * 1987 * This does not guarantee that the page exists in the user mappings when 1988 * get_user_pages returns, and there may even be a completely different 1989 * page there in some cases (eg. if mmapped pagecache has been invalidated 1990 * and subsequently re faulted). However it does guarantee that the page 1991 * won't be freed completely. And mostly callers simply care that the page 1992 * contains data that was valid *at some point in time*. Typically, an IO 1993 * or similar operation cannot guarantee anything stronger anyway because 1994 * locks can't be held over the syscall boundary. 1995 * 1996 * If write=0, the page must not be written to. If the page is written to, 1997 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called 1998 * after the page is finished with, and before put_page is called. 1999 * 2000 * get_user_pages is typically used for fewer-copy IO operations, to get a 2001 * handle on the memory by some means other than accesses via the user virtual 2002 * addresses. The pages may be submitted for DMA to devices or accessed via 2003 * their kernel linear mapping (via the kmap APIs). Care should be taken to 2004 * use the correct cache flushing APIs. 2005 * 2006 * See also get_user_pages_fast, for performance critical applications. 2007 */ 2008 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 2009 unsigned long start, unsigned long nr_pages, int write, 2010 int force, struct page **pages, struct vm_area_struct **vmas) 2011 { 2012 int flags = FOLL_TOUCH; 2013 2014 if (pages) 2015 flags |= FOLL_GET; 2016 if (write) 2017 flags |= FOLL_WRITE; 2018 if (force) 2019 flags |= FOLL_FORCE; 2020 2021 return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas, 2022 NULL); 2023 } 2024 EXPORT_SYMBOL(get_user_pages); 2025 2026 /** 2027 * get_dump_page() - pin user page in memory while writing it to core dump 2028 * @addr: user address 2029 * 2030 * Returns struct page pointer of user page pinned for dump, 2031 * to be freed afterwards by page_cache_release() or put_page(). 2032 * 2033 * Returns NULL on any kind of failure - a hole must then be inserted into 2034 * the corefile, to preserve alignment with its headers; and also returns 2035 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found - 2036 * allowing a hole to be left in the corefile to save diskspace. 2037 * 2038 * Called without mmap_sem, but after all other threads have been killed. 2039 */ 2040 #ifdef CONFIG_ELF_CORE 2041 struct page *get_dump_page(unsigned long addr) 2042 { 2043 struct vm_area_struct *vma; 2044 struct page *page; 2045 2046 if (__get_user_pages(current, current->mm, addr, 1, 2047 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma, 2048 NULL) < 1) 2049 return NULL; 2050 flush_cache_page(vma, addr, page_to_pfn(page)); 2051 return page; 2052 } 2053 #endif /* CONFIG_ELF_CORE */ 2054 2055 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2056 spinlock_t **ptl) 2057 { 2058 pgd_t * pgd = pgd_offset(mm, addr); 2059 pud_t * pud = pud_alloc(mm, pgd, addr); 2060 if (pud) { 2061 pmd_t * pmd = pmd_alloc(mm, pud, addr); 2062 if (pmd) { 2063 VM_BUG_ON(pmd_trans_huge(*pmd)); 2064 return pte_alloc_map_lock(mm, pmd, addr, ptl); 2065 } 2066 } 2067 return NULL; 2068 } 2069 2070 /* 2071 * This is the old fallback for page remapping. 2072 * 2073 * For historical reasons, it only allows reserved pages. Only 2074 * old drivers should use this, and they needed to mark their 2075 * pages reserved for the old functions anyway. 2076 */ 2077 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 2078 struct page *page, pgprot_t prot) 2079 { 2080 struct mm_struct *mm = vma->vm_mm; 2081 int retval; 2082 pte_t *pte; 2083 spinlock_t *ptl; 2084 2085 retval = -EINVAL; 2086 if (PageAnon(page)) 2087 goto out; 2088 retval = -ENOMEM; 2089 flush_dcache_page(page); 2090 pte = get_locked_pte(mm, addr, &ptl); 2091 if (!pte) 2092 goto out; 2093 retval = -EBUSY; 2094 if (!pte_none(*pte)) 2095 goto out_unlock; 2096 2097 /* Ok, finally just insert the thing.. */ 2098 get_page(page); 2099 inc_mm_counter_fast(mm, MM_FILEPAGES); 2100 page_add_file_rmap(page); 2101 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 2102 2103 retval = 0; 2104 pte_unmap_unlock(pte, ptl); 2105 return retval; 2106 out_unlock: 2107 pte_unmap_unlock(pte, ptl); 2108 out: 2109 return retval; 2110 } 2111 2112 /** 2113 * vm_insert_page - insert single page into user vma 2114 * @vma: user vma to map to 2115 * @addr: target user address of this page 2116 * @page: source kernel page 2117 * 2118 * This allows drivers to insert individual pages they've allocated 2119 * into a user vma. 2120 * 2121 * The page has to be a nice clean _individual_ kernel allocation. 2122 * If you allocate a compound page, you need to have marked it as 2123 * such (__GFP_COMP), or manually just split the page up yourself 2124 * (see split_page()). 2125 * 2126 * NOTE! Traditionally this was done with "remap_pfn_range()" which 2127 * took an arbitrary page protection parameter. This doesn't allow 2128 * that. Your vma protection will have to be set up correctly, which 2129 * means that if you want a shared writable mapping, you'd better 2130 * ask for a shared writable mapping! 2131 * 2132 * The page does not need to be reserved. 2133 * 2134 * Usually this function is called from f_op->mmap() handler 2135 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 2136 * Caller must set VM_MIXEDMAP on vma if it wants to call this 2137 * function from other places, for example from page-fault handler. 2138 */ 2139 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 2140 struct page *page) 2141 { 2142 if (addr < vma->vm_start || addr >= vma->vm_end) 2143 return -EFAULT; 2144 if (!page_count(page)) 2145 return -EINVAL; 2146 if (!(vma->vm_flags & VM_MIXEDMAP)) { 2147 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 2148 BUG_ON(vma->vm_flags & VM_PFNMAP); 2149 vma->vm_flags |= VM_MIXEDMAP; 2150 } 2151 return insert_page(vma, addr, page, vma->vm_page_prot); 2152 } 2153 EXPORT_SYMBOL(vm_insert_page); 2154 2155 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2156 unsigned long pfn, pgprot_t prot) 2157 { 2158 struct mm_struct *mm = vma->vm_mm; 2159 int retval; 2160 pte_t *pte, entry; 2161 spinlock_t *ptl; 2162 2163 retval = -ENOMEM; 2164 pte = get_locked_pte(mm, addr, &ptl); 2165 if (!pte) 2166 goto out; 2167 retval = -EBUSY; 2168 if (!pte_none(*pte)) 2169 goto out_unlock; 2170 2171 /* Ok, finally just insert the thing.. */ 2172 entry = pte_mkspecial(pfn_pte(pfn, prot)); 2173 set_pte_at(mm, addr, pte, entry); 2174 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 2175 2176 retval = 0; 2177 out_unlock: 2178 pte_unmap_unlock(pte, ptl); 2179 out: 2180 return retval; 2181 } 2182 2183 /** 2184 * vm_insert_pfn - insert single pfn into user vma 2185 * @vma: user vma to map to 2186 * @addr: target user address of this page 2187 * @pfn: source kernel pfn 2188 * 2189 * Similar to vm_insert_page, this allows drivers to insert individual pages 2190 * they've allocated into a user vma. Same comments apply. 2191 * 2192 * This function should only be called from a vm_ops->fault handler, and 2193 * in that case the handler should return NULL. 2194 * 2195 * vma cannot be a COW mapping. 2196 * 2197 * As this is called only for pages that do not currently exist, we 2198 * do not need to flush old virtual caches or the TLB. 2199 */ 2200 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2201 unsigned long pfn) 2202 { 2203 int ret; 2204 pgprot_t pgprot = vma->vm_page_prot; 2205 /* 2206 * Technically, architectures with pte_special can avoid all these 2207 * restrictions (same for remap_pfn_range). However we would like 2208 * consistency in testing and feature parity among all, so we should 2209 * try to keep these invariants in place for everybody. 2210 */ 2211 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 2212 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 2213 (VM_PFNMAP|VM_MIXEDMAP)); 2214 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 2215 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 2216 2217 if (addr < vma->vm_start || addr >= vma->vm_end) 2218 return -EFAULT; 2219 if (track_pfn_insert(vma, &pgprot, pfn)) 2220 return -EINVAL; 2221 2222 ret = insert_pfn(vma, addr, pfn, pgprot); 2223 2224 return ret; 2225 } 2226 EXPORT_SYMBOL(vm_insert_pfn); 2227 2228 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2229 unsigned long pfn) 2230 { 2231 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP)); 2232 2233 if (addr < vma->vm_start || addr >= vma->vm_end) 2234 return -EFAULT; 2235 2236 /* 2237 * If we don't have pte special, then we have to use the pfn_valid() 2238 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 2239 * refcount the page if pfn_valid is true (hence insert_page rather 2240 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 2241 * without pte special, it would there be refcounted as a normal page. 2242 */ 2243 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) { 2244 struct page *page; 2245 2246 page = pfn_to_page(pfn); 2247 return insert_page(vma, addr, page, vma->vm_page_prot); 2248 } 2249 return insert_pfn(vma, addr, pfn, vma->vm_page_prot); 2250 } 2251 EXPORT_SYMBOL(vm_insert_mixed); 2252 2253 /* 2254 * maps a range of physical memory into the requested pages. the old 2255 * mappings are removed. any references to nonexistent pages results 2256 * in null mappings (currently treated as "copy-on-access") 2257 */ 2258 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 2259 unsigned long addr, unsigned long end, 2260 unsigned long pfn, pgprot_t prot) 2261 { 2262 pte_t *pte; 2263 spinlock_t *ptl; 2264 2265 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 2266 if (!pte) 2267 return -ENOMEM; 2268 arch_enter_lazy_mmu_mode(); 2269 do { 2270 BUG_ON(!pte_none(*pte)); 2271 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 2272 pfn++; 2273 } while (pte++, addr += PAGE_SIZE, addr != end); 2274 arch_leave_lazy_mmu_mode(); 2275 pte_unmap_unlock(pte - 1, ptl); 2276 return 0; 2277 } 2278 2279 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 2280 unsigned long addr, unsigned long end, 2281 unsigned long pfn, pgprot_t prot) 2282 { 2283 pmd_t *pmd; 2284 unsigned long next; 2285 2286 pfn -= addr >> PAGE_SHIFT; 2287 pmd = pmd_alloc(mm, pud, addr); 2288 if (!pmd) 2289 return -ENOMEM; 2290 VM_BUG_ON(pmd_trans_huge(*pmd)); 2291 do { 2292 next = pmd_addr_end(addr, end); 2293 if (remap_pte_range(mm, pmd, addr, next, 2294 pfn + (addr >> PAGE_SHIFT), prot)) 2295 return -ENOMEM; 2296 } while (pmd++, addr = next, addr != end); 2297 return 0; 2298 } 2299 2300 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, 2301 unsigned long addr, unsigned long end, 2302 unsigned long pfn, pgprot_t prot) 2303 { 2304 pud_t *pud; 2305 unsigned long next; 2306 2307 pfn -= addr >> PAGE_SHIFT; 2308 pud = pud_alloc(mm, pgd, addr); 2309 if (!pud) 2310 return -ENOMEM; 2311 do { 2312 next = pud_addr_end(addr, end); 2313 if (remap_pmd_range(mm, pud, addr, next, 2314 pfn + (addr >> PAGE_SHIFT), prot)) 2315 return -ENOMEM; 2316 } while (pud++, addr = next, addr != end); 2317 return 0; 2318 } 2319 2320 /** 2321 * remap_pfn_range - remap kernel memory to userspace 2322 * @vma: user vma to map to 2323 * @addr: target user address to start at 2324 * @pfn: physical address of kernel memory 2325 * @size: size of map area 2326 * @prot: page protection flags for this mapping 2327 * 2328 * Note: this is only safe if the mm semaphore is held when called. 2329 */ 2330 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2331 unsigned long pfn, unsigned long size, pgprot_t prot) 2332 { 2333 pgd_t *pgd; 2334 unsigned long next; 2335 unsigned long end = addr + PAGE_ALIGN(size); 2336 struct mm_struct *mm = vma->vm_mm; 2337 int err; 2338 2339 /* 2340 * Physically remapped pages are special. Tell the 2341 * rest of the world about it: 2342 * VM_IO tells people not to look at these pages 2343 * (accesses can have side effects). 2344 * VM_PFNMAP tells the core MM that the base pages are just 2345 * raw PFN mappings, and do not have a "struct page" associated 2346 * with them. 2347 * VM_DONTEXPAND 2348 * Disable vma merging and expanding with mremap(). 2349 * VM_DONTDUMP 2350 * Omit vma from core dump, even when VM_IO turned off. 2351 * 2352 * There's a horrible special case to handle copy-on-write 2353 * behaviour that some programs depend on. We mark the "original" 2354 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2355 * See vm_normal_page() for details. 2356 */ 2357 if (is_cow_mapping(vma->vm_flags)) { 2358 if (addr != vma->vm_start || end != vma->vm_end) 2359 return -EINVAL; 2360 vma->vm_pgoff = pfn; 2361 } 2362 2363 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size)); 2364 if (err) 2365 return -EINVAL; 2366 2367 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2368 2369 BUG_ON(addr >= end); 2370 pfn -= addr >> PAGE_SHIFT; 2371 pgd = pgd_offset(mm, addr); 2372 flush_cache_range(vma, addr, end); 2373 do { 2374 next = pgd_addr_end(addr, end); 2375 err = remap_pud_range(mm, pgd, addr, next, 2376 pfn + (addr >> PAGE_SHIFT), prot); 2377 if (err) 2378 break; 2379 } while (pgd++, addr = next, addr != end); 2380 2381 if (err) 2382 untrack_pfn(vma, pfn, PAGE_ALIGN(size)); 2383 2384 return err; 2385 } 2386 EXPORT_SYMBOL(remap_pfn_range); 2387 2388 /** 2389 * vm_iomap_memory - remap memory to userspace 2390 * @vma: user vma to map to 2391 * @start: start of area 2392 * @len: size of area 2393 * 2394 * This is a simplified io_remap_pfn_range() for common driver use. The 2395 * driver just needs to give us the physical memory range to be mapped, 2396 * we'll figure out the rest from the vma information. 2397 * 2398 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2399 * whatever write-combining details or similar. 2400 */ 2401 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2402 { 2403 unsigned long vm_len, pfn, pages; 2404 2405 /* Check that the physical memory area passed in looks valid */ 2406 if (start + len < start) 2407 return -EINVAL; 2408 /* 2409 * You *really* shouldn't map things that aren't page-aligned, 2410 * but we've historically allowed it because IO memory might 2411 * just have smaller alignment. 2412 */ 2413 len += start & ~PAGE_MASK; 2414 pfn = start >> PAGE_SHIFT; 2415 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2416 if (pfn + pages < pfn) 2417 return -EINVAL; 2418 2419 /* We start the mapping 'vm_pgoff' pages into the area */ 2420 if (vma->vm_pgoff > pages) 2421 return -EINVAL; 2422 pfn += vma->vm_pgoff; 2423 pages -= vma->vm_pgoff; 2424 2425 /* Can we fit all of the mapping? */ 2426 vm_len = vma->vm_end - vma->vm_start; 2427 if (vm_len >> PAGE_SHIFT > pages) 2428 return -EINVAL; 2429 2430 /* Ok, let it rip */ 2431 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2432 } 2433 EXPORT_SYMBOL(vm_iomap_memory); 2434 2435 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2436 unsigned long addr, unsigned long end, 2437 pte_fn_t fn, void *data) 2438 { 2439 pte_t *pte; 2440 int err; 2441 pgtable_t token; 2442 spinlock_t *uninitialized_var(ptl); 2443 2444 pte = (mm == &init_mm) ? 2445 pte_alloc_kernel(pmd, addr) : 2446 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2447 if (!pte) 2448 return -ENOMEM; 2449 2450 BUG_ON(pmd_huge(*pmd)); 2451 2452 arch_enter_lazy_mmu_mode(); 2453 2454 token = pmd_pgtable(*pmd); 2455 2456 do { 2457 err = fn(pte++, token, addr, data); 2458 if (err) 2459 break; 2460 } while (addr += PAGE_SIZE, addr != end); 2461 2462 arch_leave_lazy_mmu_mode(); 2463 2464 if (mm != &init_mm) 2465 pte_unmap_unlock(pte-1, ptl); 2466 return err; 2467 } 2468 2469 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2470 unsigned long addr, unsigned long end, 2471 pte_fn_t fn, void *data) 2472 { 2473 pmd_t *pmd; 2474 unsigned long next; 2475 int err; 2476 2477 BUG_ON(pud_huge(*pud)); 2478 2479 pmd = pmd_alloc(mm, pud, addr); 2480 if (!pmd) 2481 return -ENOMEM; 2482 do { 2483 next = pmd_addr_end(addr, end); 2484 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2485 if (err) 2486 break; 2487 } while (pmd++, addr = next, addr != end); 2488 return err; 2489 } 2490 2491 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd, 2492 unsigned long addr, unsigned long end, 2493 pte_fn_t fn, void *data) 2494 { 2495 pud_t *pud; 2496 unsigned long next; 2497 int err; 2498 2499 pud = pud_alloc(mm, pgd, addr); 2500 if (!pud) 2501 return -ENOMEM; 2502 do { 2503 next = pud_addr_end(addr, end); 2504 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2505 if (err) 2506 break; 2507 } while (pud++, addr = next, addr != end); 2508 return err; 2509 } 2510 2511 /* 2512 * Scan a region of virtual memory, filling in page tables as necessary 2513 * and calling a provided function on each leaf page table. 2514 */ 2515 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2516 unsigned long size, pte_fn_t fn, void *data) 2517 { 2518 pgd_t *pgd; 2519 unsigned long next; 2520 unsigned long end = addr + size; 2521 int err; 2522 2523 BUG_ON(addr >= end); 2524 pgd = pgd_offset(mm, addr); 2525 do { 2526 next = pgd_addr_end(addr, end); 2527 err = apply_to_pud_range(mm, pgd, addr, next, fn, data); 2528 if (err) 2529 break; 2530 } while (pgd++, addr = next, addr != end); 2531 2532 return err; 2533 } 2534 EXPORT_SYMBOL_GPL(apply_to_page_range); 2535 2536 /* 2537 * handle_pte_fault chooses page fault handler according to an entry 2538 * which was read non-atomically. Before making any commitment, on 2539 * those architectures or configurations (e.g. i386 with PAE) which 2540 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault 2541 * must check under lock before unmapping the pte and proceeding 2542 * (but do_wp_page is only called after already making such a check; 2543 * and do_anonymous_page can safely check later on). 2544 */ 2545 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2546 pte_t *page_table, pte_t orig_pte) 2547 { 2548 int same = 1; 2549 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2550 if (sizeof(pte_t) > sizeof(unsigned long)) { 2551 spinlock_t *ptl = pte_lockptr(mm, pmd); 2552 spin_lock(ptl); 2553 same = pte_same(*page_table, orig_pte); 2554 spin_unlock(ptl); 2555 } 2556 #endif 2557 pte_unmap(page_table); 2558 return same; 2559 } 2560 2561 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2562 { 2563 /* 2564 * If the source page was a PFN mapping, we don't have 2565 * a "struct page" for it. We do a best-effort copy by 2566 * just copying from the original user address. If that 2567 * fails, we just zero-fill it. Live with it. 2568 */ 2569 if (unlikely(!src)) { 2570 void *kaddr = kmap_atomic(dst); 2571 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2572 2573 /* 2574 * This really shouldn't fail, because the page is there 2575 * in the page tables. But it might just be unreadable, 2576 * in which case we just give up and fill the result with 2577 * zeroes. 2578 */ 2579 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2580 clear_page(kaddr); 2581 kunmap_atomic(kaddr); 2582 flush_dcache_page(dst); 2583 } else 2584 copy_user_highpage(dst, src, va, vma); 2585 } 2586 2587 /* 2588 * This routine handles present pages, when users try to write 2589 * to a shared page. It is done by copying the page to a new address 2590 * and decrementing the shared-page counter for the old page. 2591 * 2592 * Note that this routine assumes that the protection checks have been 2593 * done by the caller (the low-level page fault routine in most cases). 2594 * Thus we can safely just mark it writable once we've done any necessary 2595 * COW. 2596 * 2597 * We also mark the page dirty at this point even though the page will 2598 * change only once the write actually happens. This avoids a few races, 2599 * and potentially makes it more efficient. 2600 * 2601 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2602 * but allow concurrent faults), with pte both mapped and locked. 2603 * We return with mmap_sem still held, but pte unmapped and unlocked. 2604 */ 2605 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, 2606 unsigned long address, pte_t *page_table, pmd_t *pmd, 2607 spinlock_t *ptl, pte_t orig_pte) 2608 __releases(ptl) 2609 { 2610 struct page *old_page, *new_page = NULL; 2611 pte_t entry; 2612 int ret = 0; 2613 int page_mkwrite = 0; 2614 struct page *dirty_page = NULL; 2615 unsigned long mmun_start = 0; /* For mmu_notifiers */ 2616 unsigned long mmun_end = 0; /* For mmu_notifiers */ 2617 2618 old_page = vm_normal_page(vma, address, orig_pte); 2619 if (!old_page) { 2620 /* 2621 * VM_MIXEDMAP !pfn_valid() case 2622 * 2623 * We should not cow pages in a shared writeable mapping. 2624 * Just mark the pages writable as we can't do any dirty 2625 * accounting on raw pfn maps. 2626 */ 2627 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2628 (VM_WRITE|VM_SHARED)) 2629 goto reuse; 2630 goto gotten; 2631 } 2632 2633 /* 2634 * Take out anonymous pages first, anonymous shared vmas are 2635 * not dirty accountable. 2636 */ 2637 if (PageAnon(old_page) && !PageKsm(old_page)) { 2638 if (!trylock_page(old_page)) { 2639 page_cache_get(old_page); 2640 pte_unmap_unlock(page_table, ptl); 2641 lock_page(old_page); 2642 page_table = pte_offset_map_lock(mm, pmd, address, 2643 &ptl); 2644 if (!pte_same(*page_table, orig_pte)) { 2645 unlock_page(old_page); 2646 goto unlock; 2647 } 2648 page_cache_release(old_page); 2649 } 2650 if (reuse_swap_page(old_page)) { 2651 /* 2652 * The page is all ours. Move it to our anon_vma so 2653 * the rmap code will not search our parent or siblings. 2654 * Protected against the rmap code by the page lock. 2655 */ 2656 page_move_anon_rmap(old_page, vma, address); 2657 unlock_page(old_page); 2658 goto reuse; 2659 } 2660 unlock_page(old_page); 2661 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2662 (VM_WRITE|VM_SHARED))) { 2663 /* 2664 * Only catch write-faults on shared writable pages, 2665 * read-only shared pages can get COWed by 2666 * get_user_pages(.write=1, .force=1). 2667 */ 2668 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2669 struct vm_fault vmf; 2670 int tmp; 2671 2672 vmf.virtual_address = (void __user *)(address & 2673 PAGE_MASK); 2674 vmf.pgoff = old_page->index; 2675 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2676 vmf.page = old_page; 2677 2678 /* 2679 * Notify the address space that the page is about to 2680 * become writable so that it can prohibit this or wait 2681 * for the page to get into an appropriate state. 2682 * 2683 * We do this without the lock held, so that it can 2684 * sleep if it needs to. 2685 */ 2686 page_cache_get(old_page); 2687 pte_unmap_unlock(page_table, ptl); 2688 2689 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 2690 if (unlikely(tmp & 2691 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2692 ret = tmp; 2693 goto unwritable_page; 2694 } 2695 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 2696 lock_page(old_page); 2697 if (!old_page->mapping) { 2698 ret = 0; /* retry the fault */ 2699 unlock_page(old_page); 2700 goto unwritable_page; 2701 } 2702 } else 2703 VM_BUG_ON(!PageLocked(old_page)); 2704 2705 /* 2706 * Since we dropped the lock we need to revalidate 2707 * the PTE as someone else may have changed it. If 2708 * they did, we just return, as we can count on the 2709 * MMU to tell us if they didn't also make it writable. 2710 */ 2711 page_table = pte_offset_map_lock(mm, pmd, address, 2712 &ptl); 2713 if (!pte_same(*page_table, orig_pte)) { 2714 unlock_page(old_page); 2715 goto unlock; 2716 } 2717 2718 page_mkwrite = 1; 2719 } 2720 dirty_page = old_page; 2721 get_page(dirty_page); 2722 2723 reuse: 2724 /* 2725 * Clear the pages cpupid information as the existing 2726 * information potentially belongs to a now completely 2727 * unrelated process. 2728 */ 2729 if (old_page) 2730 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1); 2731 2732 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2733 entry = pte_mkyoung(orig_pte); 2734 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2735 if (ptep_set_access_flags(vma, address, page_table, entry,1)) 2736 update_mmu_cache(vma, address, page_table); 2737 pte_unmap_unlock(page_table, ptl); 2738 ret |= VM_FAULT_WRITE; 2739 2740 if (!dirty_page) 2741 return ret; 2742 2743 /* 2744 * Yes, Virginia, this is actually required to prevent a race 2745 * with clear_page_dirty_for_io() from clearing the page dirty 2746 * bit after it clear all dirty ptes, but before a racing 2747 * do_wp_page installs a dirty pte. 2748 * 2749 * __do_fault is protected similarly. 2750 */ 2751 if (!page_mkwrite) { 2752 wait_on_page_locked(dirty_page); 2753 set_page_dirty_balance(dirty_page, page_mkwrite); 2754 /* file_update_time outside page_lock */ 2755 if (vma->vm_file) 2756 file_update_time(vma->vm_file); 2757 } 2758 put_page(dirty_page); 2759 if (page_mkwrite) { 2760 struct address_space *mapping = dirty_page->mapping; 2761 2762 set_page_dirty(dirty_page); 2763 unlock_page(dirty_page); 2764 page_cache_release(dirty_page); 2765 if (mapping) { 2766 /* 2767 * Some device drivers do not set page.mapping 2768 * but still dirty their pages 2769 */ 2770 balance_dirty_pages_ratelimited(mapping); 2771 } 2772 } 2773 2774 return ret; 2775 } 2776 2777 /* 2778 * Ok, we need to copy. Oh, well.. 2779 */ 2780 page_cache_get(old_page); 2781 gotten: 2782 pte_unmap_unlock(page_table, ptl); 2783 2784 if (unlikely(anon_vma_prepare(vma))) 2785 goto oom; 2786 2787 if (is_zero_pfn(pte_pfn(orig_pte))) { 2788 new_page = alloc_zeroed_user_highpage_movable(vma, address); 2789 if (!new_page) 2790 goto oom; 2791 } else { 2792 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 2793 if (!new_page) 2794 goto oom; 2795 cow_user_page(new_page, old_page, address, vma); 2796 } 2797 __SetPageUptodate(new_page); 2798 2799 if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)) 2800 goto oom_free_new; 2801 2802 mmun_start = address & PAGE_MASK; 2803 mmun_end = mmun_start + PAGE_SIZE; 2804 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2805 2806 /* 2807 * Re-check the pte - we dropped the lock 2808 */ 2809 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 2810 if (likely(pte_same(*page_table, orig_pte))) { 2811 if (old_page) { 2812 if (!PageAnon(old_page)) { 2813 dec_mm_counter_fast(mm, MM_FILEPAGES); 2814 inc_mm_counter_fast(mm, MM_ANONPAGES); 2815 } 2816 } else 2817 inc_mm_counter_fast(mm, MM_ANONPAGES); 2818 flush_cache_page(vma, address, pte_pfn(orig_pte)); 2819 entry = mk_pte(new_page, vma->vm_page_prot); 2820 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2821 /* 2822 * Clear the pte entry and flush it first, before updating the 2823 * pte with the new entry. This will avoid a race condition 2824 * seen in the presence of one thread doing SMC and another 2825 * thread doing COW. 2826 */ 2827 ptep_clear_flush(vma, address, page_table); 2828 page_add_new_anon_rmap(new_page, vma, address); 2829 /* 2830 * We call the notify macro here because, when using secondary 2831 * mmu page tables (such as kvm shadow page tables), we want the 2832 * new page to be mapped directly into the secondary page table. 2833 */ 2834 set_pte_at_notify(mm, address, page_table, entry); 2835 update_mmu_cache(vma, address, page_table); 2836 if (old_page) { 2837 /* 2838 * Only after switching the pte to the new page may 2839 * we remove the mapcount here. Otherwise another 2840 * process may come and find the rmap count decremented 2841 * before the pte is switched to the new page, and 2842 * "reuse" the old page writing into it while our pte 2843 * here still points into it and can be read by other 2844 * threads. 2845 * 2846 * The critical issue is to order this 2847 * page_remove_rmap with the ptp_clear_flush above. 2848 * Those stores are ordered by (if nothing else,) 2849 * the barrier present in the atomic_add_negative 2850 * in page_remove_rmap. 2851 * 2852 * Then the TLB flush in ptep_clear_flush ensures that 2853 * no process can access the old page before the 2854 * decremented mapcount is visible. And the old page 2855 * cannot be reused until after the decremented 2856 * mapcount is visible. So transitively, TLBs to 2857 * old page will be flushed before it can be reused. 2858 */ 2859 page_remove_rmap(old_page); 2860 } 2861 2862 /* Free the old page.. */ 2863 new_page = old_page; 2864 ret |= VM_FAULT_WRITE; 2865 } else 2866 mem_cgroup_uncharge_page(new_page); 2867 2868 if (new_page) 2869 page_cache_release(new_page); 2870 unlock: 2871 pte_unmap_unlock(page_table, ptl); 2872 if (mmun_end > mmun_start) 2873 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end); 2874 if (old_page) { 2875 /* 2876 * Don't let another task, with possibly unlocked vma, 2877 * keep the mlocked page. 2878 */ 2879 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) { 2880 lock_page(old_page); /* LRU manipulation */ 2881 munlock_vma_page(old_page); 2882 unlock_page(old_page); 2883 } 2884 page_cache_release(old_page); 2885 } 2886 return ret; 2887 oom_free_new: 2888 page_cache_release(new_page); 2889 oom: 2890 if (old_page) 2891 page_cache_release(old_page); 2892 return VM_FAULT_OOM; 2893 2894 unwritable_page: 2895 page_cache_release(old_page); 2896 return ret; 2897 } 2898 2899 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2900 unsigned long start_addr, unsigned long end_addr, 2901 struct zap_details *details) 2902 { 2903 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2904 } 2905 2906 static inline void unmap_mapping_range_tree(struct rb_root *root, 2907 struct zap_details *details) 2908 { 2909 struct vm_area_struct *vma; 2910 pgoff_t vba, vea, zba, zea; 2911 2912 vma_interval_tree_foreach(vma, root, 2913 details->first_index, details->last_index) { 2914 2915 vba = vma->vm_pgoff; 2916 vea = vba + vma_pages(vma) - 1; 2917 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ 2918 zba = details->first_index; 2919 if (zba < vba) 2920 zba = vba; 2921 zea = details->last_index; 2922 if (zea > vea) 2923 zea = vea; 2924 2925 unmap_mapping_range_vma(vma, 2926 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2927 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2928 details); 2929 } 2930 } 2931 2932 static inline void unmap_mapping_range_list(struct list_head *head, 2933 struct zap_details *details) 2934 { 2935 struct vm_area_struct *vma; 2936 2937 /* 2938 * In nonlinear VMAs there is no correspondence between virtual address 2939 * offset and file offset. So we must perform an exhaustive search 2940 * across *all* the pages in each nonlinear VMA, not just the pages 2941 * whose virtual address lies outside the file truncation point. 2942 */ 2943 list_for_each_entry(vma, head, shared.nonlinear) { 2944 details->nonlinear_vma = vma; 2945 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details); 2946 } 2947 } 2948 2949 /** 2950 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file. 2951 * @mapping: the address space containing mmaps to be unmapped. 2952 * @holebegin: byte in first page to unmap, relative to the start of 2953 * the underlying file. This will be rounded down to a PAGE_SIZE 2954 * boundary. Note that this is different from truncate_pagecache(), which 2955 * must keep the partial page. In contrast, we must get rid of 2956 * partial pages. 2957 * @holelen: size of prospective hole in bytes. This will be rounded 2958 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2959 * end of the file. 2960 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2961 * but 0 when invalidating pagecache, don't throw away private data. 2962 */ 2963 void unmap_mapping_range(struct address_space *mapping, 2964 loff_t const holebegin, loff_t const holelen, int even_cows) 2965 { 2966 struct zap_details details; 2967 pgoff_t hba = holebegin >> PAGE_SHIFT; 2968 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2969 2970 /* Check for overflow. */ 2971 if (sizeof(holelen) > sizeof(hlen)) { 2972 long long holeend = 2973 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2974 if (holeend & ~(long long)ULONG_MAX) 2975 hlen = ULONG_MAX - hba + 1; 2976 } 2977 2978 details.check_mapping = even_cows? NULL: mapping; 2979 details.nonlinear_vma = NULL; 2980 details.first_index = hba; 2981 details.last_index = hba + hlen - 1; 2982 if (details.last_index < details.first_index) 2983 details.last_index = ULONG_MAX; 2984 2985 2986 mutex_lock(&mapping->i_mmap_mutex); 2987 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap))) 2988 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2989 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) 2990 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); 2991 mutex_unlock(&mapping->i_mmap_mutex); 2992 } 2993 EXPORT_SYMBOL(unmap_mapping_range); 2994 2995 /* 2996 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2997 * but allow concurrent faults), and pte mapped but not yet locked. 2998 * We return with mmap_sem still held, but pte unmapped and unlocked. 2999 */ 3000 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma, 3001 unsigned long address, pte_t *page_table, pmd_t *pmd, 3002 unsigned int flags, pte_t orig_pte) 3003 { 3004 spinlock_t *ptl; 3005 struct page *page, *swapcache; 3006 swp_entry_t entry; 3007 pte_t pte; 3008 int locked; 3009 struct mem_cgroup *ptr; 3010 int exclusive = 0; 3011 int ret = 0; 3012 3013 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3014 goto out; 3015 3016 entry = pte_to_swp_entry(orig_pte); 3017 if (unlikely(non_swap_entry(entry))) { 3018 if (is_migration_entry(entry)) { 3019 migration_entry_wait(mm, pmd, address); 3020 } else if (is_hwpoison_entry(entry)) { 3021 ret = VM_FAULT_HWPOISON; 3022 } else { 3023 print_bad_pte(vma, address, orig_pte, NULL); 3024 ret = VM_FAULT_SIGBUS; 3025 } 3026 goto out; 3027 } 3028 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 3029 page = lookup_swap_cache(entry); 3030 if (!page) { 3031 page = swapin_readahead(entry, 3032 GFP_HIGHUSER_MOVABLE, vma, address); 3033 if (!page) { 3034 /* 3035 * Back out if somebody else faulted in this pte 3036 * while we released the pte lock. 3037 */ 3038 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3039 if (likely(pte_same(*page_table, orig_pte))) 3040 ret = VM_FAULT_OOM; 3041 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3042 goto unlock; 3043 } 3044 3045 /* Had to read the page from swap area: Major fault */ 3046 ret = VM_FAULT_MAJOR; 3047 count_vm_event(PGMAJFAULT); 3048 mem_cgroup_count_vm_event(mm, PGMAJFAULT); 3049 } else if (PageHWPoison(page)) { 3050 /* 3051 * hwpoisoned dirty swapcache pages are kept for killing 3052 * owner processes (which may be unknown at hwpoison time) 3053 */ 3054 ret = VM_FAULT_HWPOISON; 3055 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3056 swapcache = page; 3057 goto out_release; 3058 } 3059 3060 swapcache = page; 3061 locked = lock_page_or_retry(page, mm, flags); 3062 3063 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 3064 if (!locked) { 3065 ret |= VM_FAULT_RETRY; 3066 goto out_release; 3067 } 3068 3069 /* 3070 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 3071 * release the swapcache from under us. The page pin, and pte_same 3072 * test below, are not enough to exclude that. Even if it is still 3073 * swapcache, we need to check that the page's swap has not changed. 3074 */ 3075 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val)) 3076 goto out_page; 3077 3078 page = ksm_might_need_to_copy(page, vma, address); 3079 if (unlikely(!page)) { 3080 ret = VM_FAULT_OOM; 3081 page = swapcache; 3082 goto out_page; 3083 } 3084 3085 if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) { 3086 ret = VM_FAULT_OOM; 3087 goto out_page; 3088 } 3089 3090 /* 3091 * Back out if somebody else already faulted in this pte. 3092 */ 3093 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3094 if (unlikely(!pte_same(*page_table, orig_pte))) 3095 goto out_nomap; 3096 3097 if (unlikely(!PageUptodate(page))) { 3098 ret = VM_FAULT_SIGBUS; 3099 goto out_nomap; 3100 } 3101 3102 /* 3103 * The page isn't present yet, go ahead with the fault. 3104 * 3105 * Be careful about the sequence of operations here. 3106 * To get its accounting right, reuse_swap_page() must be called 3107 * while the page is counted on swap but not yet in mapcount i.e. 3108 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3109 * must be called after the swap_free(), or it will never succeed. 3110 * Because delete_from_swap_page() may be called by reuse_swap_page(), 3111 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry 3112 * in page->private. In this case, a record in swap_cgroup is silently 3113 * discarded at swap_free(). 3114 */ 3115 3116 inc_mm_counter_fast(mm, MM_ANONPAGES); 3117 dec_mm_counter_fast(mm, MM_SWAPENTS); 3118 pte = mk_pte(page, vma->vm_page_prot); 3119 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) { 3120 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3121 flags &= ~FAULT_FLAG_WRITE; 3122 ret |= VM_FAULT_WRITE; 3123 exclusive = 1; 3124 } 3125 flush_icache_page(vma, page); 3126 if (pte_swp_soft_dirty(orig_pte)) 3127 pte = pte_mksoft_dirty(pte); 3128 set_pte_at(mm, address, page_table, pte); 3129 if (page == swapcache) 3130 do_page_add_anon_rmap(page, vma, address, exclusive); 3131 else /* ksm created a completely new copy */ 3132 page_add_new_anon_rmap(page, vma, address); 3133 /* It's better to call commit-charge after rmap is established */ 3134 mem_cgroup_commit_charge_swapin(page, ptr); 3135 3136 swap_free(entry); 3137 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3138 try_to_free_swap(page); 3139 unlock_page(page); 3140 if (page != swapcache) { 3141 /* 3142 * Hold the lock to avoid the swap entry to be reused 3143 * until we take the PT lock for the pte_same() check 3144 * (to avoid false positives from pte_same). For 3145 * further safety release the lock after the swap_free 3146 * so that the swap count won't change under a 3147 * parallel locked swapcache. 3148 */ 3149 unlock_page(swapcache); 3150 page_cache_release(swapcache); 3151 } 3152 3153 if (flags & FAULT_FLAG_WRITE) { 3154 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte); 3155 if (ret & VM_FAULT_ERROR) 3156 ret &= VM_FAULT_ERROR; 3157 goto out; 3158 } 3159 3160 /* No need to invalidate - it was non-present before */ 3161 update_mmu_cache(vma, address, page_table); 3162 unlock: 3163 pte_unmap_unlock(page_table, ptl); 3164 out: 3165 return ret; 3166 out_nomap: 3167 mem_cgroup_cancel_charge_swapin(ptr); 3168 pte_unmap_unlock(page_table, ptl); 3169 out_page: 3170 unlock_page(page); 3171 out_release: 3172 page_cache_release(page); 3173 if (page != swapcache) { 3174 unlock_page(swapcache); 3175 page_cache_release(swapcache); 3176 } 3177 return ret; 3178 } 3179 3180 /* 3181 * This is like a special single-page "expand_{down|up}wards()", 3182 * except we must first make sure that 'address{-|+}PAGE_SIZE' 3183 * doesn't hit another vma. 3184 */ 3185 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address) 3186 { 3187 address &= PAGE_MASK; 3188 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) { 3189 struct vm_area_struct *prev = vma->vm_prev; 3190 3191 /* 3192 * Is there a mapping abutting this one below? 3193 * 3194 * That's only ok if it's the same stack mapping 3195 * that has gotten split.. 3196 */ 3197 if (prev && prev->vm_end == address) 3198 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM; 3199 3200 expand_downwards(vma, address - PAGE_SIZE); 3201 } 3202 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) { 3203 struct vm_area_struct *next = vma->vm_next; 3204 3205 /* As VM_GROWSDOWN but s/below/above/ */ 3206 if (next && next->vm_start == address + PAGE_SIZE) 3207 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM; 3208 3209 expand_upwards(vma, address + PAGE_SIZE); 3210 } 3211 return 0; 3212 } 3213 3214 /* 3215 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3216 * but allow concurrent faults), and pte mapped but not yet locked. 3217 * We return with mmap_sem still held, but pte unmapped and unlocked. 3218 */ 3219 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, 3220 unsigned long address, pte_t *page_table, pmd_t *pmd, 3221 unsigned int flags) 3222 { 3223 struct page *page; 3224 spinlock_t *ptl; 3225 pte_t entry; 3226 3227 pte_unmap(page_table); 3228 3229 /* Check if we need to add a guard page to the stack */ 3230 if (check_stack_guard_page(vma, address) < 0) 3231 return VM_FAULT_SIGBUS; 3232 3233 /* Use the zero-page for reads */ 3234 if (!(flags & FAULT_FLAG_WRITE)) { 3235 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address), 3236 vma->vm_page_prot)); 3237 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3238 if (!pte_none(*page_table)) 3239 goto unlock; 3240 goto setpte; 3241 } 3242 3243 /* Allocate our own private page. */ 3244 if (unlikely(anon_vma_prepare(vma))) 3245 goto oom; 3246 page = alloc_zeroed_user_highpage_movable(vma, address); 3247 if (!page) 3248 goto oom; 3249 /* 3250 * The memory barrier inside __SetPageUptodate makes sure that 3251 * preceeding stores to the page contents become visible before 3252 * the set_pte_at() write. 3253 */ 3254 __SetPageUptodate(page); 3255 3256 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) 3257 goto oom_free_page; 3258 3259 entry = mk_pte(page, vma->vm_page_prot); 3260 if (vma->vm_flags & VM_WRITE) 3261 entry = pte_mkwrite(pte_mkdirty(entry)); 3262 3263 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3264 if (!pte_none(*page_table)) 3265 goto release; 3266 3267 inc_mm_counter_fast(mm, MM_ANONPAGES); 3268 page_add_new_anon_rmap(page, vma, address); 3269 setpte: 3270 set_pte_at(mm, address, page_table, entry); 3271 3272 /* No need to invalidate - it was non-present before */ 3273 update_mmu_cache(vma, address, page_table); 3274 unlock: 3275 pte_unmap_unlock(page_table, ptl); 3276 return 0; 3277 release: 3278 mem_cgroup_uncharge_page(page); 3279 page_cache_release(page); 3280 goto unlock; 3281 oom_free_page: 3282 page_cache_release(page); 3283 oom: 3284 return VM_FAULT_OOM; 3285 } 3286 3287 /* 3288 * __do_fault() tries to create a new page mapping. It aggressively 3289 * tries to share with existing pages, but makes a separate copy if 3290 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid 3291 * the next page fault. 3292 * 3293 * As this is called only for pages that do not currently exist, we 3294 * do not need to flush old virtual caches or the TLB. 3295 * 3296 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3297 * but allow concurrent faults), and pte neither mapped nor locked. 3298 * We return with mmap_sem still held, but pte unmapped and unlocked. 3299 */ 3300 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3301 unsigned long address, pmd_t *pmd, 3302 pgoff_t pgoff, unsigned int flags, pte_t orig_pte) 3303 { 3304 pte_t *page_table; 3305 spinlock_t *ptl; 3306 struct page *page; 3307 struct page *cow_page; 3308 pte_t entry; 3309 int anon = 0; 3310 struct page *dirty_page = NULL; 3311 struct vm_fault vmf; 3312 int ret; 3313 int page_mkwrite = 0; 3314 3315 /* 3316 * If we do COW later, allocate page befor taking lock_page() 3317 * on the file cache page. This will reduce lock holding time. 3318 */ 3319 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) { 3320 3321 if (unlikely(anon_vma_prepare(vma))) 3322 return VM_FAULT_OOM; 3323 3324 cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address); 3325 if (!cow_page) 3326 return VM_FAULT_OOM; 3327 3328 if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) { 3329 page_cache_release(cow_page); 3330 return VM_FAULT_OOM; 3331 } 3332 } else 3333 cow_page = NULL; 3334 3335 vmf.virtual_address = (void __user *)(address & PAGE_MASK); 3336 vmf.pgoff = pgoff; 3337 vmf.flags = flags; 3338 vmf.page = NULL; 3339 3340 ret = vma->vm_ops->fault(vma, &vmf); 3341 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3342 VM_FAULT_RETRY))) 3343 goto uncharge_out; 3344 3345 if (unlikely(PageHWPoison(vmf.page))) { 3346 if (ret & VM_FAULT_LOCKED) 3347 unlock_page(vmf.page); 3348 ret = VM_FAULT_HWPOISON; 3349 goto uncharge_out; 3350 } 3351 3352 /* 3353 * For consistency in subsequent calls, make the faulted page always 3354 * locked. 3355 */ 3356 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3357 lock_page(vmf.page); 3358 else 3359 VM_BUG_ON(!PageLocked(vmf.page)); 3360 3361 /* 3362 * Should we do an early C-O-W break? 3363 */ 3364 page = vmf.page; 3365 if (flags & FAULT_FLAG_WRITE) { 3366 if (!(vma->vm_flags & VM_SHARED)) { 3367 page = cow_page; 3368 anon = 1; 3369 copy_user_highpage(page, vmf.page, address, vma); 3370 __SetPageUptodate(page); 3371 } else { 3372 /* 3373 * If the page will be shareable, see if the backing 3374 * address space wants to know that the page is about 3375 * to become writable 3376 */ 3377 if (vma->vm_ops->page_mkwrite) { 3378 int tmp; 3379 3380 unlock_page(page); 3381 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 3382 tmp = vma->vm_ops->page_mkwrite(vma, &vmf); 3383 if (unlikely(tmp & 3384 (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 3385 ret = tmp; 3386 goto unwritable_page; 3387 } 3388 if (unlikely(!(tmp & VM_FAULT_LOCKED))) { 3389 lock_page(page); 3390 if (!page->mapping) { 3391 ret = 0; /* retry the fault */ 3392 unlock_page(page); 3393 goto unwritable_page; 3394 } 3395 } else 3396 VM_BUG_ON(!PageLocked(page)); 3397 page_mkwrite = 1; 3398 } 3399 } 3400 3401 } 3402 3403 page_table = pte_offset_map_lock(mm, pmd, address, &ptl); 3404 3405 /* 3406 * This silly early PAGE_DIRTY setting removes a race 3407 * due to the bad i386 page protection. But it's valid 3408 * for other architectures too. 3409 * 3410 * Note that if FAULT_FLAG_WRITE is set, we either now have 3411 * an exclusive copy of the page, or this is a shared mapping, 3412 * so we can make it writable and dirty to avoid having to 3413 * handle that later. 3414 */ 3415 /* Only go through if we didn't race with anybody else... */ 3416 if (likely(pte_same(*page_table, orig_pte))) { 3417 flush_icache_page(vma, page); 3418 entry = mk_pte(page, vma->vm_page_prot); 3419 if (flags & FAULT_FLAG_WRITE) 3420 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3421 else if (pte_file(orig_pte) && pte_file_soft_dirty(orig_pte)) 3422 pte_mksoft_dirty(entry); 3423 if (anon) { 3424 inc_mm_counter_fast(mm, MM_ANONPAGES); 3425 page_add_new_anon_rmap(page, vma, address); 3426 } else { 3427 inc_mm_counter_fast(mm, MM_FILEPAGES); 3428 page_add_file_rmap(page); 3429 if (flags & FAULT_FLAG_WRITE) { 3430 dirty_page = page; 3431 get_page(dirty_page); 3432 } 3433 } 3434 set_pte_at(mm, address, page_table, entry); 3435 3436 /* no need to invalidate: a not-present page won't be cached */ 3437 update_mmu_cache(vma, address, page_table); 3438 } else { 3439 if (cow_page) 3440 mem_cgroup_uncharge_page(cow_page); 3441 if (anon) 3442 page_cache_release(page); 3443 else 3444 anon = 1; /* no anon but release faulted_page */ 3445 } 3446 3447 pte_unmap_unlock(page_table, ptl); 3448 3449 if (dirty_page) { 3450 struct address_space *mapping = page->mapping; 3451 int dirtied = 0; 3452 3453 if (set_page_dirty(dirty_page)) 3454 dirtied = 1; 3455 unlock_page(dirty_page); 3456 put_page(dirty_page); 3457 if ((dirtied || page_mkwrite) && mapping) { 3458 /* 3459 * Some device drivers do not set page.mapping but still 3460 * dirty their pages 3461 */ 3462 balance_dirty_pages_ratelimited(mapping); 3463 } 3464 3465 /* file_update_time outside page_lock */ 3466 if (vma->vm_file && !page_mkwrite) 3467 file_update_time(vma->vm_file); 3468 } else { 3469 unlock_page(vmf.page); 3470 if (anon) 3471 page_cache_release(vmf.page); 3472 } 3473 3474 return ret; 3475 3476 unwritable_page: 3477 page_cache_release(page); 3478 return ret; 3479 uncharge_out: 3480 /* fs's fault handler get error */ 3481 if (cow_page) { 3482 mem_cgroup_uncharge_page(cow_page); 3483 page_cache_release(cow_page); 3484 } 3485 return ret; 3486 } 3487 3488 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3489 unsigned long address, pte_t *page_table, pmd_t *pmd, 3490 unsigned int flags, pte_t orig_pte) 3491 { 3492 pgoff_t pgoff = (((address & PAGE_MASK) 3493 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff; 3494 3495 pte_unmap(page_table); 3496 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3497 } 3498 3499 /* 3500 * Fault of a previously existing named mapping. Repopulate the pte 3501 * from the encoded file_pte if possible. This enables swappable 3502 * nonlinear vmas. 3503 * 3504 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3505 * but allow concurrent faults), and pte mapped but not yet locked. 3506 * We return with mmap_sem still held, but pte unmapped and unlocked. 3507 */ 3508 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3509 unsigned long address, pte_t *page_table, pmd_t *pmd, 3510 unsigned int flags, pte_t orig_pte) 3511 { 3512 pgoff_t pgoff; 3513 3514 flags |= FAULT_FLAG_NONLINEAR; 3515 3516 if (!pte_unmap_same(mm, pmd, page_table, orig_pte)) 3517 return 0; 3518 3519 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) { 3520 /* 3521 * Page table corrupted: show pte and kill process. 3522 */ 3523 print_bad_pte(vma, address, orig_pte, NULL); 3524 return VM_FAULT_SIGBUS; 3525 } 3526 3527 pgoff = pte_to_pgoff(orig_pte); 3528 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte); 3529 } 3530 3531 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3532 unsigned long addr, int page_nid, 3533 int *flags) 3534 { 3535 get_page(page); 3536 3537 count_vm_numa_event(NUMA_HINT_FAULTS); 3538 if (page_nid == numa_node_id()) { 3539 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3540 *flags |= TNF_FAULT_LOCAL; 3541 } 3542 3543 return mpol_misplaced(page, vma, addr); 3544 } 3545 3546 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma, 3547 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd) 3548 { 3549 struct page *page = NULL; 3550 spinlock_t *ptl; 3551 int page_nid = -1; 3552 int last_cpupid; 3553 int target_nid; 3554 bool migrated = false; 3555 int flags = 0; 3556 3557 /* 3558 * The "pte" at this point cannot be used safely without 3559 * validation through pte_unmap_same(). It's of NUMA type but 3560 * the pfn may be screwed if the read is non atomic. 3561 * 3562 * ptep_modify_prot_start is not called as this is clearing 3563 * the _PAGE_NUMA bit and it is not really expected that there 3564 * would be concurrent hardware modifications to the PTE. 3565 */ 3566 ptl = pte_lockptr(mm, pmd); 3567 spin_lock(ptl); 3568 if (unlikely(!pte_same(*ptep, pte))) { 3569 pte_unmap_unlock(ptep, ptl); 3570 goto out; 3571 } 3572 3573 pte = pte_mknonnuma(pte); 3574 set_pte_at(mm, addr, ptep, pte); 3575 update_mmu_cache(vma, addr, ptep); 3576 3577 page = vm_normal_page(vma, addr, pte); 3578 if (!page) { 3579 pte_unmap_unlock(ptep, ptl); 3580 return 0; 3581 } 3582 BUG_ON(is_zero_pfn(page_to_pfn(page))); 3583 3584 /* 3585 * Avoid grouping on DSO/COW pages in specific and RO pages 3586 * in general, RO pages shouldn't hurt as much anyway since 3587 * they can be in shared cache state. 3588 */ 3589 if (!pte_write(pte)) 3590 flags |= TNF_NO_GROUP; 3591 3592 /* 3593 * Flag if the page is shared between multiple address spaces. This 3594 * is later used when determining whether to group tasks together 3595 */ 3596 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3597 flags |= TNF_SHARED; 3598 3599 last_cpupid = page_cpupid_last(page); 3600 page_nid = page_to_nid(page); 3601 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags); 3602 pte_unmap_unlock(ptep, ptl); 3603 if (target_nid == -1) { 3604 put_page(page); 3605 goto out; 3606 } 3607 3608 /* Migrate to the requested node */ 3609 migrated = migrate_misplaced_page(page, vma, target_nid); 3610 if (migrated) { 3611 page_nid = target_nid; 3612 flags |= TNF_MIGRATED; 3613 } 3614 3615 out: 3616 if (page_nid != -1) 3617 task_numa_fault(last_cpupid, page_nid, 1, flags); 3618 return 0; 3619 } 3620 3621 /* 3622 * These routines also need to handle stuff like marking pages dirty 3623 * and/or accessed for architectures that don't do it in hardware (most 3624 * RISC architectures). The early dirtying is also good on the i386. 3625 * 3626 * There is also a hook called "update_mmu_cache()" that architectures 3627 * with external mmu caches can use to update those (ie the Sparc or 3628 * PowerPC hashed page tables that act as extended TLBs). 3629 * 3630 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3631 * but allow concurrent faults), and pte mapped but not yet locked. 3632 * We return with mmap_sem still held, but pte unmapped and unlocked. 3633 */ 3634 static int handle_pte_fault(struct mm_struct *mm, 3635 struct vm_area_struct *vma, unsigned long address, 3636 pte_t *pte, pmd_t *pmd, unsigned int flags) 3637 { 3638 pte_t entry; 3639 spinlock_t *ptl; 3640 3641 entry = *pte; 3642 if (!pte_present(entry)) { 3643 if (pte_none(entry)) { 3644 if (vma->vm_ops) { 3645 if (likely(vma->vm_ops->fault)) 3646 return do_linear_fault(mm, vma, address, 3647 pte, pmd, flags, entry); 3648 } 3649 return do_anonymous_page(mm, vma, address, 3650 pte, pmd, flags); 3651 } 3652 if (pte_file(entry)) 3653 return do_nonlinear_fault(mm, vma, address, 3654 pte, pmd, flags, entry); 3655 return do_swap_page(mm, vma, address, 3656 pte, pmd, flags, entry); 3657 } 3658 3659 if (pte_numa(entry)) 3660 return do_numa_page(mm, vma, address, entry, pte, pmd); 3661 3662 ptl = pte_lockptr(mm, pmd); 3663 spin_lock(ptl); 3664 if (unlikely(!pte_same(*pte, entry))) 3665 goto unlock; 3666 if (flags & FAULT_FLAG_WRITE) { 3667 if (!pte_write(entry)) 3668 return do_wp_page(mm, vma, address, 3669 pte, pmd, ptl, entry); 3670 entry = pte_mkdirty(entry); 3671 } 3672 entry = pte_mkyoung(entry); 3673 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) { 3674 update_mmu_cache(vma, address, pte); 3675 } else { 3676 /* 3677 * This is needed only for protection faults but the arch code 3678 * is not yet telling us if this is a protection fault or not. 3679 * This still avoids useless tlb flushes for .text page faults 3680 * with threads. 3681 */ 3682 if (flags & FAULT_FLAG_WRITE) 3683 flush_tlb_fix_spurious_fault(vma, address); 3684 } 3685 unlock: 3686 pte_unmap_unlock(pte, ptl); 3687 return 0; 3688 } 3689 3690 /* 3691 * By the time we get here, we already hold the mm semaphore 3692 */ 3693 static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3694 unsigned long address, unsigned int flags) 3695 { 3696 pgd_t *pgd; 3697 pud_t *pud; 3698 pmd_t *pmd; 3699 pte_t *pte; 3700 3701 if (unlikely(is_vm_hugetlb_page(vma))) 3702 return hugetlb_fault(mm, vma, address, flags); 3703 3704 retry: 3705 pgd = pgd_offset(mm, address); 3706 pud = pud_alloc(mm, pgd, address); 3707 if (!pud) 3708 return VM_FAULT_OOM; 3709 pmd = pmd_alloc(mm, pud, address); 3710 if (!pmd) 3711 return VM_FAULT_OOM; 3712 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) { 3713 int ret = VM_FAULT_FALLBACK; 3714 if (!vma->vm_ops) 3715 ret = do_huge_pmd_anonymous_page(mm, vma, address, 3716 pmd, flags); 3717 if (!(ret & VM_FAULT_FALLBACK)) 3718 return ret; 3719 } else { 3720 pmd_t orig_pmd = *pmd; 3721 int ret; 3722 3723 barrier(); 3724 if (pmd_trans_huge(orig_pmd)) { 3725 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3726 3727 /* 3728 * If the pmd is splitting, return and retry the 3729 * the fault. Alternative: wait until the split 3730 * is done, and goto retry. 3731 */ 3732 if (pmd_trans_splitting(orig_pmd)) 3733 return 0; 3734 3735 if (pmd_numa(orig_pmd)) 3736 return do_huge_pmd_numa_page(mm, vma, address, 3737 orig_pmd, pmd); 3738 3739 if (dirty && !pmd_write(orig_pmd)) { 3740 ret = do_huge_pmd_wp_page(mm, vma, address, pmd, 3741 orig_pmd); 3742 /* 3743 * If COW results in an oom, the huge pmd will 3744 * have been split, so retry the fault on the 3745 * pte for a smaller charge. 3746 */ 3747 if (unlikely(ret & VM_FAULT_OOM)) 3748 goto retry; 3749 return ret; 3750 } else { 3751 huge_pmd_set_accessed(mm, vma, address, pmd, 3752 orig_pmd, dirty); 3753 } 3754 3755 return 0; 3756 } 3757 } 3758 3759 /* THP should already have been handled */ 3760 BUG_ON(pmd_numa(*pmd)); 3761 3762 /* 3763 * Use __pte_alloc instead of pte_alloc_map, because we can't 3764 * run pte_offset_map on the pmd, if an huge pmd could 3765 * materialize from under us from a different thread. 3766 */ 3767 if (unlikely(pmd_none(*pmd)) && 3768 unlikely(__pte_alloc(mm, vma, pmd, address))) 3769 return VM_FAULT_OOM; 3770 /* if an huge pmd materialized from under us just retry later */ 3771 if (unlikely(pmd_trans_huge(*pmd))) 3772 return 0; 3773 /* 3774 * A regular pmd is established and it can't morph into a huge pmd 3775 * from under us anymore at this point because we hold the mmap_sem 3776 * read mode and khugepaged takes it in write mode. So now it's 3777 * safe to run pte_offset_map(). 3778 */ 3779 pte = pte_offset_map(pmd, address); 3780 3781 return handle_pte_fault(mm, vma, address, pte, pmd, flags); 3782 } 3783 3784 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 3785 unsigned long address, unsigned int flags) 3786 { 3787 int ret; 3788 3789 __set_current_state(TASK_RUNNING); 3790 3791 count_vm_event(PGFAULT); 3792 mem_cgroup_count_vm_event(mm, PGFAULT); 3793 3794 /* do counter updates before entering really critical section. */ 3795 check_sync_rss_stat(current); 3796 3797 /* 3798 * Enable the memcg OOM handling for faults triggered in user 3799 * space. Kernel faults are handled more gracefully. 3800 */ 3801 if (flags & FAULT_FLAG_USER) 3802 mem_cgroup_oom_enable(); 3803 3804 ret = __handle_mm_fault(mm, vma, address, flags); 3805 3806 if (flags & FAULT_FLAG_USER) { 3807 mem_cgroup_oom_disable(); 3808 /* 3809 * The task may have entered a memcg OOM situation but 3810 * if the allocation error was handled gracefully (no 3811 * VM_FAULT_OOM), there is no need to kill anything. 3812 * Just clean up the OOM state peacefully. 3813 */ 3814 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3815 mem_cgroup_oom_synchronize(false); 3816 } 3817 3818 return ret; 3819 } 3820 3821 #ifndef __PAGETABLE_PUD_FOLDED 3822 /* 3823 * Allocate page upper directory. 3824 * We've already handled the fast-path in-line. 3825 */ 3826 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3827 { 3828 pud_t *new = pud_alloc_one(mm, address); 3829 if (!new) 3830 return -ENOMEM; 3831 3832 smp_wmb(); /* See comment in __pte_alloc */ 3833 3834 spin_lock(&mm->page_table_lock); 3835 if (pgd_present(*pgd)) /* Another has populated it */ 3836 pud_free(mm, new); 3837 else 3838 pgd_populate(mm, pgd, new); 3839 spin_unlock(&mm->page_table_lock); 3840 return 0; 3841 } 3842 #endif /* __PAGETABLE_PUD_FOLDED */ 3843 3844 #ifndef __PAGETABLE_PMD_FOLDED 3845 /* 3846 * Allocate page middle directory. 3847 * We've already handled the fast-path in-line. 3848 */ 3849 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 3850 { 3851 pmd_t *new = pmd_alloc_one(mm, address); 3852 if (!new) 3853 return -ENOMEM; 3854 3855 smp_wmb(); /* See comment in __pte_alloc */ 3856 3857 spin_lock(&mm->page_table_lock); 3858 #ifndef __ARCH_HAS_4LEVEL_HACK 3859 if (pud_present(*pud)) /* Another has populated it */ 3860 pmd_free(mm, new); 3861 else 3862 pud_populate(mm, pud, new); 3863 #else 3864 if (pgd_present(*pud)) /* Another has populated it */ 3865 pmd_free(mm, new); 3866 else 3867 pgd_populate(mm, pud, new); 3868 #endif /* __ARCH_HAS_4LEVEL_HACK */ 3869 spin_unlock(&mm->page_table_lock); 3870 return 0; 3871 } 3872 #endif /* __PAGETABLE_PMD_FOLDED */ 3873 3874 #if !defined(__HAVE_ARCH_GATE_AREA) 3875 3876 #if defined(AT_SYSINFO_EHDR) 3877 static struct vm_area_struct gate_vma; 3878 3879 static int __init gate_vma_init(void) 3880 { 3881 gate_vma.vm_mm = NULL; 3882 gate_vma.vm_start = FIXADDR_USER_START; 3883 gate_vma.vm_end = FIXADDR_USER_END; 3884 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC; 3885 gate_vma.vm_page_prot = __P101; 3886 3887 return 0; 3888 } 3889 __initcall(gate_vma_init); 3890 #endif 3891 3892 struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3893 { 3894 #ifdef AT_SYSINFO_EHDR 3895 return &gate_vma; 3896 #else 3897 return NULL; 3898 #endif 3899 } 3900 3901 int in_gate_area_no_mm(unsigned long addr) 3902 { 3903 #ifdef AT_SYSINFO_EHDR 3904 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) 3905 return 1; 3906 #endif 3907 return 0; 3908 } 3909 3910 #endif /* __HAVE_ARCH_GATE_AREA */ 3911 3912 static int __follow_pte(struct mm_struct *mm, unsigned long address, 3913 pte_t **ptepp, spinlock_t **ptlp) 3914 { 3915 pgd_t *pgd; 3916 pud_t *pud; 3917 pmd_t *pmd; 3918 pte_t *ptep; 3919 3920 pgd = pgd_offset(mm, address); 3921 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 3922 goto out; 3923 3924 pud = pud_offset(pgd, address); 3925 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 3926 goto out; 3927 3928 pmd = pmd_offset(pud, address); 3929 VM_BUG_ON(pmd_trans_huge(*pmd)); 3930 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 3931 goto out; 3932 3933 /* We cannot handle huge page PFN maps. Luckily they don't exist. */ 3934 if (pmd_huge(*pmd)) 3935 goto out; 3936 3937 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 3938 if (!ptep) 3939 goto out; 3940 if (!pte_present(*ptep)) 3941 goto unlock; 3942 *ptepp = ptep; 3943 return 0; 3944 unlock: 3945 pte_unmap_unlock(ptep, *ptlp); 3946 out: 3947 return -EINVAL; 3948 } 3949 3950 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 3951 pte_t **ptepp, spinlock_t **ptlp) 3952 { 3953 int res; 3954 3955 /* (void) is needed to make gcc happy */ 3956 (void) __cond_lock(*ptlp, 3957 !(res = __follow_pte(mm, address, ptepp, ptlp))); 3958 return res; 3959 } 3960 3961 /** 3962 * follow_pfn - look up PFN at a user virtual address 3963 * @vma: memory mapping 3964 * @address: user virtual address 3965 * @pfn: location to store found PFN 3966 * 3967 * Only IO mappings and raw PFN mappings are allowed. 3968 * 3969 * Returns zero and the pfn at @pfn on success, -ve otherwise. 3970 */ 3971 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 3972 unsigned long *pfn) 3973 { 3974 int ret = -EINVAL; 3975 spinlock_t *ptl; 3976 pte_t *ptep; 3977 3978 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 3979 return ret; 3980 3981 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 3982 if (ret) 3983 return ret; 3984 *pfn = pte_pfn(*ptep); 3985 pte_unmap_unlock(ptep, ptl); 3986 return 0; 3987 } 3988 EXPORT_SYMBOL(follow_pfn); 3989 3990 #ifdef CONFIG_HAVE_IOREMAP_PROT 3991 int follow_phys(struct vm_area_struct *vma, 3992 unsigned long address, unsigned int flags, 3993 unsigned long *prot, resource_size_t *phys) 3994 { 3995 int ret = -EINVAL; 3996 pte_t *ptep, pte; 3997 spinlock_t *ptl; 3998 3999 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4000 goto out; 4001 4002 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4003 goto out; 4004 pte = *ptep; 4005 4006 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4007 goto unlock; 4008 4009 *prot = pgprot_val(pte_pgprot(pte)); 4010 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4011 4012 ret = 0; 4013 unlock: 4014 pte_unmap_unlock(ptep, ptl); 4015 out: 4016 return ret; 4017 } 4018 4019 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4020 void *buf, int len, int write) 4021 { 4022 resource_size_t phys_addr; 4023 unsigned long prot = 0; 4024 void __iomem *maddr; 4025 int offset = addr & (PAGE_SIZE-1); 4026 4027 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4028 return -EINVAL; 4029 4030 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot); 4031 if (write) 4032 memcpy_toio(maddr + offset, buf, len); 4033 else 4034 memcpy_fromio(buf, maddr + offset, len); 4035 iounmap(maddr); 4036 4037 return len; 4038 } 4039 EXPORT_SYMBOL_GPL(generic_access_phys); 4040 #endif 4041 4042 /* 4043 * Access another process' address space as given in mm. If non-NULL, use the 4044 * given task for page fault accounting. 4045 */ 4046 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4047 unsigned long addr, void *buf, int len, int write) 4048 { 4049 struct vm_area_struct *vma; 4050 void *old_buf = buf; 4051 4052 down_read(&mm->mmap_sem); 4053 /* ignore errors, just check how much was successfully transferred */ 4054 while (len) { 4055 int bytes, ret, offset; 4056 void *maddr; 4057 struct page *page = NULL; 4058 4059 ret = get_user_pages(tsk, mm, addr, 1, 4060 write, 1, &page, &vma); 4061 if (ret <= 0) { 4062 /* 4063 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4064 * we can access using slightly different code. 4065 */ 4066 #ifdef CONFIG_HAVE_IOREMAP_PROT 4067 vma = find_vma(mm, addr); 4068 if (!vma || vma->vm_start > addr) 4069 break; 4070 if (vma->vm_ops && vma->vm_ops->access) 4071 ret = vma->vm_ops->access(vma, addr, buf, 4072 len, write); 4073 if (ret <= 0) 4074 #endif 4075 break; 4076 bytes = ret; 4077 } else { 4078 bytes = len; 4079 offset = addr & (PAGE_SIZE-1); 4080 if (bytes > PAGE_SIZE-offset) 4081 bytes = PAGE_SIZE-offset; 4082 4083 maddr = kmap(page); 4084 if (write) { 4085 copy_to_user_page(vma, page, addr, 4086 maddr + offset, buf, bytes); 4087 set_page_dirty_lock(page); 4088 } else { 4089 copy_from_user_page(vma, page, addr, 4090 buf, maddr + offset, bytes); 4091 } 4092 kunmap(page); 4093 page_cache_release(page); 4094 } 4095 len -= bytes; 4096 buf += bytes; 4097 addr += bytes; 4098 } 4099 up_read(&mm->mmap_sem); 4100 4101 return buf - old_buf; 4102 } 4103 4104 /** 4105 * access_remote_vm - access another process' address space 4106 * @mm: the mm_struct of the target address space 4107 * @addr: start address to access 4108 * @buf: source or destination buffer 4109 * @len: number of bytes to transfer 4110 * @write: whether the access is a write 4111 * 4112 * The caller must hold a reference on @mm. 4113 */ 4114 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4115 void *buf, int len, int write) 4116 { 4117 return __access_remote_vm(NULL, mm, addr, buf, len, write); 4118 } 4119 4120 /* 4121 * Access another process' address space. 4122 * Source/target buffer must be kernel space, 4123 * Do not walk the page table directly, use get_user_pages 4124 */ 4125 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4126 void *buf, int len, int write) 4127 { 4128 struct mm_struct *mm; 4129 int ret; 4130 4131 mm = get_task_mm(tsk); 4132 if (!mm) 4133 return 0; 4134 4135 ret = __access_remote_vm(tsk, mm, addr, buf, len, write); 4136 mmput(mm); 4137 4138 return ret; 4139 } 4140 4141 /* 4142 * Print the name of a VMA. 4143 */ 4144 void print_vma_addr(char *prefix, unsigned long ip) 4145 { 4146 struct mm_struct *mm = current->mm; 4147 struct vm_area_struct *vma; 4148 4149 /* 4150 * Do not print if we are in atomic 4151 * contexts (in exception stacks, etc.): 4152 */ 4153 if (preempt_count()) 4154 return; 4155 4156 down_read(&mm->mmap_sem); 4157 vma = find_vma(mm, ip); 4158 if (vma && vma->vm_file) { 4159 struct file *f = vma->vm_file; 4160 char *buf = (char *)__get_free_page(GFP_KERNEL); 4161 if (buf) { 4162 char *p; 4163 4164 p = d_path(&f->f_path, buf, PAGE_SIZE); 4165 if (IS_ERR(p)) 4166 p = "?"; 4167 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4168 vma->vm_start, 4169 vma->vm_end - vma->vm_start); 4170 free_page((unsigned long)buf); 4171 } 4172 } 4173 up_read(&mm->mmap_sem); 4174 } 4175 4176 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4177 void might_fault(void) 4178 { 4179 /* 4180 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4181 * holding the mmap_sem, this is safe because kernel memory doesn't 4182 * get paged out, therefore we'll never actually fault, and the 4183 * below annotations will generate false positives. 4184 */ 4185 if (segment_eq(get_fs(), KERNEL_DS)) 4186 return; 4187 4188 /* 4189 * it would be nicer only to annotate paths which are not under 4190 * pagefault_disable, however that requires a larger audit and 4191 * providing helpers like get_user_atomic. 4192 */ 4193 if (in_atomic()) 4194 return; 4195 4196 __might_sleep(__FILE__, __LINE__, 0); 4197 4198 if (current->mm) 4199 might_lock_read(¤t->mm->mmap_sem); 4200 } 4201 EXPORT_SYMBOL(might_fault); 4202 #endif 4203 4204 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4205 static void clear_gigantic_page(struct page *page, 4206 unsigned long addr, 4207 unsigned int pages_per_huge_page) 4208 { 4209 int i; 4210 struct page *p = page; 4211 4212 might_sleep(); 4213 for (i = 0; i < pages_per_huge_page; 4214 i++, p = mem_map_next(p, page, i)) { 4215 cond_resched(); 4216 clear_user_highpage(p, addr + i * PAGE_SIZE); 4217 } 4218 } 4219 void clear_huge_page(struct page *page, 4220 unsigned long addr, unsigned int pages_per_huge_page) 4221 { 4222 int i; 4223 4224 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4225 clear_gigantic_page(page, addr, pages_per_huge_page); 4226 return; 4227 } 4228 4229 might_sleep(); 4230 for (i = 0; i < pages_per_huge_page; i++) { 4231 cond_resched(); 4232 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4233 } 4234 } 4235 4236 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4237 unsigned long addr, 4238 struct vm_area_struct *vma, 4239 unsigned int pages_per_huge_page) 4240 { 4241 int i; 4242 struct page *dst_base = dst; 4243 struct page *src_base = src; 4244 4245 for (i = 0; i < pages_per_huge_page; ) { 4246 cond_resched(); 4247 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4248 4249 i++; 4250 dst = mem_map_next(dst, dst_base, i); 4251 src = mem_map_next(src, src_base, i); 4252 } 4253 } 4254 4255 void copy_user_huge_page(struct page *dst, struct page *src, 4256 unsigned long addr, struct vm_area_struct *vma, 4257 unsigned int pages_per_huge_page) 4258 { 4259 int i; 4260 4261 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4262 copy_user_gigantic_page(dst, src, addr, vma, 4263 pages_per_huge_page); 4264 return; 4265 } 4266 4267 might_sleep(); 4268 for (i = 0; i < pages_per_huge_page; i++) { 4269 cond_resched(); 4270 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4271 } 4272 } 4273 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4274