1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 73 #include <asm/io.h> 74 #include <asm/mmu_context.h> 75 #include <asm/pgalloc.h> 76 #include <linux/uaccess.h> 77 #include <asm/tlb.h> 78 #include <asm/tlbflush.h> 79 #include <asm/pgtable.h> 80 81 #include "internal.h" 82 83 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 85 #endif 86 87 #ifndef CONFIG_NEED_MULTIPLE_NODES 88 /* use the per-pgdat data instead for discontigmem - mbligh */ 89 unsigned long max_mapnr; 90 EXPORT_SYMBOL(max_mapnr); 91 92 struct page *mem_map; 93 EXPORT_SYMBOL(mem_map); 94 #endif 95 96 /* 97 * A number of key systems in x86 including ioremap() rely on the assumption 98 * that high_memory defines the upper bound on direct map memory, then end 99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 101 * and ZONE_HIGHMEM. 102 */ 103 void *high_memory; 104 EXPORT_SYMBOL(high_memory); 105 106 /* 107 * Randomize the address space (stacks, mmaps, brk, etc.). 108 * 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 110 * as ancient (libc5 based) binaries can segfault. ) 111 */ 112 int randomize_va_space __read_mostly = 113 #ifdef CONFIG_COMPAT_BRK 114 1; 115 #else 116 2; 117 #endif 118 119 static int __init disable_randmaps(char *s) 120 { 121 randomize_va_space = 0; 122 return 1; 123 } 124 __setup("norandmaps", disable_randmaps); 125 126 unsigned long zero_pfn __read_mostly; 127 EXPORT_SYMBOL(zero_pfn); 128 129 unsigned long highest_memmap_pfn __read_mostly; 130 131 /* 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 133 */ 134 static int __init init_zero_pfn(void) 135 { 136 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 137 return 0; 138 } 139 core_initcall(init_zero_pfn); 140 141 142 #if defined(SPLIT_RSS_COUNTING) 143 144 void sync_mm_rss(struct mm_struct *mm) 145 { 146 int i; 147 148 for (i = 0; i < NR_MM_COUNTERS; i++) { 149 if (current->rss_stat.count[i]) { 150 add_mm_counter(mm, i, current->rss_stat.count[i]); 151 current->rss_stat.count[i] = 0; 152 } 153 } 154 current->rss_stat.events = 0; 155 } 156 157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 158 { 159 struct task_struct *task = current; 160 161 if (likely(task->mm == mm)) 162 task->rss_stat.count[member] += val; 163 else 164 add_mm_counter(mm, member, val); 165 } 166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 168 169 /* sync counter once per 64 page faults */ 170 #define TASK_RSS_EVENTS_THRESH (64) 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 if (unlikely(task != current)) 174 return; 175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 176 sync_mm_rss(task->mm); 177 } 178 #else /* SPLIT_RSS_COUNTING */ 179 180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 182 183 static void check_sync_rss_stat(struct task_struct *task) 184 { 185 } 186 187 #endif /* SPLIT_RSS_COUNTING */ 188 189 #ifdef HAVE_GENERIC_MMU_GATHER 190 191 static bool tlb_next_batch(struct mmu_gather *tlb) 192 { 193 struct mmu_gather_batch *batch; 194 195 batch = tlb->active; 196 if (batch->next) { 197 tlb->active = batch->next; 198 return true; 199 } 200 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT) 202 return false; 203 204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0); 205 if (!batch) 206 return false; 207 208 tlb->batch_count++; 209 batch->next = NULL; 210 batch->nr = 0; 211 batch->max = MAX_GATHER_BATCH; 212 213 tlb->active->next = batch; 214 tlb->active = batch; 215 216 return true; 217 } 218 219 void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 220 unsigned long start, unsigned long end) 221 { 222 tlb->mm = mm; 223 224 /* Is it from 0 to ~0? */ 225 tlb->fullmm = !(start | (end+1)); 226 tlb->need_flush_all = 0; 227 tlb->local.next = NULL; 228 tlb->local.nr = 0; 229 tlb->local.max = ARRAY_SIZE(tlb->__pages); 230 tlb->active = &tlb->local; 231 tlb->batch_count = 0; 232 233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 234 tlb->batch = NULL; 235 #endif 236 tlb->page_size = 0; 237 238 __tlb_reset_range(tlb); 239 } 240 241 static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb) 242 { 243 if (!tlb->end) 244 return; 245 246 tlb_flush(tlb); 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end); 248 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 249 tlb_table_flush(tlb); 250 #endif 251 __tlb_reset_range(tlb); 252 } 253 254 static void tlb_flush_mmu_free(struct mmu_gather *tlb) 255 { 256 struct mmu_gather_batch *batch; 257 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) { 259 free_pages_and_swap_cache(batch->pages, batch->nr); 260 batch->nr = 0; 261 } 262 tlb->active = &tlb->local; 263 } 264 265 void tlb_flush_mmu(struct mmu_gather *tlb) 266 { 267 tlb_flush_mmu_tlbonly(tlb); 268 tlb_flush_mmu_free(tlb); 269 } 270 271 /* tlb_finish_mmu 272 * Called at the end of the shootdown operation to free up any resources 273 * that were required. 274 */ 275 void arch_tlb_finish_mmu(struct mmu_gather *tlb, 276 unsigned long start, unsigned long end, bool force) 277 { 278 struct mmu_gather_batch *batch, *next; 279 280 if (force) 281 __tlb_adjust_range(tlb, start, end - start); 282 283 tlb_flush_mmu(tlb); 284 285 /* keep the page table cache within bounds */ 286 check_pgt_cache(); 287 288 for (batch = tlb->local.next; batch; batch = next) { 289 next = batch->next; 290 free_pages((unsigned long)batch, 0); 291 } 292 tlb->local.next = NULL; 293 } 294 295 /* __tlb_remove_page 296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while 297 * handling the additional races in SMP caused by other CPUs caching valid 298 * mappings in their TLBs. Returns the number of free page slots left. 299 * When out of page slots we must call tlb_flush_mmu(). 300 *returns true if the caller should flush. 301 */ 302 bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size) 303 { 304 struct mmu_gather_batch *batch; 305 306 VM_BUG_ON(!tlb->end); 307 VM_WARN_ON(tlb->page_size != page_size); 308 309 batch = tlb->active; 310 /* 311 * Add the page and check if we are full. If so 312 * force a flush. 313 */ 314 batch->pages[batch->nr++] = page; 315 if (batch->nr == batch->max) { 316 if (!tlb_next_batch(tlb)) 317 return true; 318 batch = tlb->active; 319 } 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page); 321 322 return false; 323 } 324 325 #endif /* HAVE_GENERIC_MMU_GATHER */ 326 327 #ifdef CONFIG_HAVE_RCU_TABLE_FREE 328 329 /* 330 * See the comment near struct mmu_table_batch. 331 */ 332 333 static void tlb_remove_table_smp_sync(void *arg) 334 { 335 /* Simply deliver the interrupt */ 336 } 337 338 static void tlb_remove_table_one(void *table) 339 { 340 /* 341 * This isn't an RCU grace period and hence the page-tables cannot be 342 * assumed to be actually RCU-freed. 343 * 344 * It is however sufficient for software page-table walkers that rely on 345 * IRQ disabling. See the comment near struct mmu_table_batch. 346 */ 347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1); 348 __tlb_remove_table(table); 349 } 350 351 static void tlb_remove_table_rcu(struct rcu_head *head) 352 { 353 struct mmu_table_batch *batch; 354 int i; 355 356 batch = container_of(head, struct mmu_table_batch, rcu); 357 358 for (i = 0; i < batch->nr; i++) 359 __tlb_remove_table(batch->tables[i]); 360 361 free_page((unsigned long)batch); 362 } 363 364 void tlb_table_flush(struct mmu_gather *tlb) 365 { 366 struct mmu_table_batch **batch = &tlb->batch; 367 368 if (*batch) { 369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu); 370 *batch = NULL; 371 } 372 } 373 374 void tlb_remove_table(struct mmu_gather *tlb, void *table) 375 { 376 struct mmu_table_batch **batch = &tlb->batch; 377 378 /* 379 * When there's less then two users of this mm there cannot be a 380 * concurrent page-table walk. 381 */ 382 if (atomic_read(&tlb->mm->mm_users) < 2) { 383 __tlb_remove_table(table); 384 return; 385 } 386 387 if (*batch == NULL) { 388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN); 389 if (*batch == NULL) { 390 tlb_remove_table_one(table); 391 return; 392 } 393 (*batch)->nr = 0; 394 } 395 (*batch)->tables[(*batch)->nr++] = table; 396 if ((*batch)->nr == MAX_TABLE_BATCH) 397 tlb_table_flush(tlb); 398 } 399 400 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */ 401 402 /** 403 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down 404 * @tlb: the mmu_gather structure to initialize 405 * @mm: the mm_struct of the target address space 406 * @start: start of the region that will be removed from the page-table 407 * @end: end of the region that will be removed from the page-table 408 * 409 * Called to initialize an (on-stack) mmu_gather structure for page-table 410 * tear-down from @mm. The @start and @end are set to 0 and -1 411 * respectively when @mm is without users and we're going to destroy 412 * the full address space (exit/execve). 413 */ 414 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, 415 unsigned long start, unsigned long end) 416 { 417 arch_tlb_gather_mmu(tlb, mm, start, end); 418 inc_tlb_flush_pending(tlb->mm); 419 } 420 421 void tlb_finish_mmu(struct mmu_gather *tlb, 422 unsigned long start, unsigned long end) 423 { 424 /* 425 * If there are parallel threads are doing PTE changes on same range 426 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB 427 * flush by batching, a thread has stable TLB entry can fail to flush 428 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB 429 * forcefully if we detect parallel PTE batching threads. 430 */ 431 bool force = mm_tlb_flush_nested(tlb->mm); 432 433 arch_tlb_finish_mmu(tlb, start, end, force); 434 dec_tlb_flush_pending(tlb->mm); 435 } 436 437 /* 438 * Note: this doesn't free the actual pages themselves. That 439 * has been handled earlier when unmapping all the memory regions. 440 */ 441 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 442 unsigned long addr) 443 { 444 pgtable_t token = pmd_pgtable(*pmd); 445 pmd_clear(pmd); 446 pte_free_tlb(tlb, token, addr); 447 mm_dec_nr_ptes(tlb->mm); 448 } 449 450 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 451 unsigned long addr, unsigned long end, 452 unsigned long floor, unsigned long ceiling) 453 { 454 pmd_t *pmd; 455 unsigned long next; 456 unsigned long start; 457 458 start = addr; 459 pmd = pmd_offset(pud, addr); 460 do { 461 next = pmd_addr_end(addr, end); 462 if (pmd_none_or_clear_bad(pmd)) 463 continue; 464 free_pte_range(tlb, pmd, addr); 465 } while (pmd++, addr = next, addr != end); 466 467 start &= PUD_MASK; 468 if (start < floor) 469 return; 470 if (ceiling) { 471 ceiling &= PUD_MASK; 472 if (!ceiling) 473 return; 474 } 475 if (end - 1 > ceiling - 1) 476 return; 477 478 pmd = pmd_offset(pud, start); 479 pud_clear(pud); 480 pmd_free_tlb(tlb, pmd, start); 481 mm_dec_nr_pmds(tlb->mm); 482 } 483 484 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 485 unsigned long addr, unsigned long end, 486 unsigned long floor, unsigned long ceiling) 487 { 488 pud_t *pud; 489 unsigned long next; 490 unsigned long start; 491 492 start = addr; 493 pud = pud_offset(p4d, addr); 494 do { 495 next = pud_addr_end(addr, end); 496 if (pud_none_or_clear_bad(pud)) 497 continue; 498 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 499 } while (pud++, addr = next, addr != end); 500 501 start &= P4D_MASK; 502 if (start < floor) 503 return; 504 if (ceiling) { 505 ceiling &= P4D_MASK; 506 if (!ceiling) 507 return; 508 } 509 if (end - 1 > ceiling - 1) 510 return; 511 512 pud = pud_offset(p4d, start); 513 p4d_clear(p4d); 514 pud_free_tlb(tlb, pud, start); 515 mm_dec_nr_puds(tlb->mm); 516 } 517 518 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 519 unsigned long addr, unsigned long end, 520 unsigned long floor, unsigned long ceiling) 521 { 522 p4d_t *p4d; 523 unsigned long next; 524 unsigned long start; 525 526 start = addr; 527 p4d = p4d_offset(pgd, addr); 528 do { 529 next = p4d_addr_end(addr, end); 530 if (p4d_none_or_clear_bad(p4d)) 531 continue; 532 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 533 } while (p4d++, addr = next, addr != end); 534 535 start &= PGDIR_MASK; 536 if (start < floor) 537 return; 538 if (ceiling) { 539 ceiling &= PGDIR_MASK; 540 if (!ceiling) 541 return; 542 } 543 if (end - 1 > ceiling - 1) 544 return; 545 546 p4d = p4d_offset(pgd, start); 547 pgd_clear(pgd); 548 p4d_free_tlb(tlb, p4d, start); 549 } 550 551 /* 552 * This function frees user-level page tables of a process. 553 */ 554 void free_pgd_range(struct mmu_gather *tlb, 555 unsigned long addr, unsigned long end, 556 unsigned long floor, unsigned long ceiling) 557 { 558 pgd_t *pgd; 559 unsigned long next; 560 561 /* 562 * The next few lines have given us lots of grief... 563 * 564 * Why are we testing PMD* at this top level? Because often 565 * there will be no work to do at all, and we'd prefer not to 566 * go all the way down to the bottom just to discover that. 567 * 568 * Why all these "- 1"s? Because 0 represents both the bottom 569 * of the address space and the top of it (using -1 for the 570 * top wouldn't help much: the masks would do the wrong thing). 571 * The rule is that addr 0 and floor 0 refer to the bottom of 572 * the address space, but end 0 and ceiling 0 refer to the top 573 * Comparisons need to use "end - 1" and "ceiling - 1" (though 574 * that end 0 case should be mythical). 575 * 576 * Wherever addr is brought up or ceiling brought down, we must 577 * be careful to reject "the opposite 0" before it confuses the 578 * subsequent tests. But what about where end is brought down 579 * by PMD_SIZE below? no, end can't go down to 0 there. 580 * 581 * Whereas we round start (addr) and ceiling down, by different 582 * masks at different levels, in order to test whether a table 583 * now has no other vmas using it, so can be freed, we don't 584 * bother to round floor or end up - the tests don't need that. 585 */ 586 587 addr &= PMD_MASK; 588 if (addr < floor) { 589 addr += PMD_SIZE; 590 if (!addr) 591 return; 592 } 593 if (ceiling) { 594 ceiling &= PMD_MASK; 595 if (!ceiling) 596 return; 597 } 598 if (end - 1 > ceiling - 1) 599 end -= PMD_SIZE; 600 if (addr > end - 1) 601 return; 602 /* 603 * We add page table cache pages with PAGE_SIZE, 604 * (see pte_free_tlb()), flush the tlb if we need 605 */ 606 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 607 pgd = pgd_offset(tlb->mm, addr); 608 do { 609 next = pgd_addr_end(addr, end); 610 if (pgd_none_or_clear_bad(pgd)) 611 continue; 612 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 613 } while (pgd++, addr = next, addr != end); 614 } 615 616 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 617 unsigned long floor, unsigned long ceiling) 618 { 619 while (vma) { 620 struct vm_area_struct *next = vma->vm_next; 621 unsigned long addr = vma->vm_start; 622 623 /* 624 * Hide vma from rmap and truncate_pagecache before freeing 625 * pgtables 626 */ 627 unlink_anon_vmas(vma); 628 unlink_file_vma(vma); 629 630 if (is_vm_hugetlb_page(vma)) { 631 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 632 floor, next ? next->vm_start : ceiling); 633 } else { 634 /* 635 * Optimization: gather nearby vmas into one call down 636 */ 637 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 638 && !is_vm_hugetlb_page(next)) { 639 vma = next; 640 next = vma->vm_next; 641 unlink_anon_vmas(vma); 642 unlink_file_vma(vma); 643 } 644 free_pgd_range(tlb, addr, vma->vm_end, 645 floor, next ? next->vm_start : ceiling); 646 } 647 vma = next; 648 } 649 } 650 651 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address) 652 { 653 spinlock_t *ptl; 654 pgtable_t new = pte_alloc_one(mm, address); 655 if (!new) 656 return -ENOMEM; 657 658 /* 659 * Ensure all pte setup (eg. pte page lock and page clearing) are 660 * visible before the pte is made visible to other CPUs by being 661 * put into page tables. 662 * 663 * The other side of the story is the pointer chasing in the page 664 * table walking code (when walking the page table without locking; 665 * ie. most of the time). Fortunately, these data accesses consist 666 * of a chain of data-dependent loads, meaning most CPUs (alpha 667 * being the notable exception) will already guarantee loads are 668 * seen in-order. See the alpha page table accessors for the 669 * smp_read_barrier_depends() barriers in page table walking code. 670 */ 671 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 672 673 ptl = pmd_lock(mm, pmd); 674 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 675 mm_inc_nr_ptes(mm); 676 pmd_populate(mm, pmd, new); 677 new = NULL; 678 } 679 spin_unlock(ptl); 680 if (new) 681 pte_free(mm, new); 682 return 0; 683 } 684 685 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address) 686 { 687 pte_t *new = pte_alloc_one_kernel(&init_mm, address); 688 if (!new) 689 return -ENOMEM; 690 691 smp_wmb(); /* See comment in __pte_alloc */ 692 693 spin_lock(&init_mm.page_table_lock); 694 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 695 pmd_populate_kernel(&init_mm, pmd, new); 696 new = NULL; 697 } 698 spin_unlock(&init_mm.page_table_lock); 699 if (new) 700 pte_free_kernel(&init_mm, new); 701 return 0; 702 } 703 704 static inline void init_rss_vec(int *rss) 705 { 706 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 707 } 708 709 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 710 { 711 int i; 712 713 if (current->mm == mm) 714 sync_mm_rss(mm); 715 for (i = 0; i < NR_MM_COUNTERS; i++) 716 if (rss[i]) 717 add_mm_counter(mm, i, rss[i]); 718 } 719 720 /* 721 * This function is called to print an error when a bad pte 722 * is found. For example, we might have a PFN-mapped pte in 723 * a region that doesn't allow it. 724 * 725 * The calling function must still handle the error. 726 */ 727 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 728 pte_t pte, struct page *page) 729 { 730 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 731 p4d_t *p4d = p4d_offset(pgd, addr); 732 pud_t *pud = pud_offset(p4d, addr); 733 pmd_t *pmd = pmd_offset(pud, addr); 734 struct address_space *mapping; 735 pgoff_t index; 736 static unsigned long resume; 737 static unsigned long nr_shown; 738 static unsigned long nr_unshown; 739 740 /* 741 * Allow a burst of 60 reports, then keep quiet for that minute; 742 * or allow a steady drip of one report per second. 743 */ 744 if (nr_shown == 60) { 745 if (time_before(jiffies, resume)) { 746 nr_unshown++; 747 return; 748 } 749 if (nr_unshown) { 750 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 751 nr_unshown); 752 nr_unshown = 0; 753 } 754 nr_shown = 0; 755 } 756 if (nr_shown++ == 0) 757 resume = jiffies + 60 * HZ; 758 759 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 760 index = linear_page_index(vma, addr); 761 762 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 763 current->comm, 764 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 765 if (page) 766 dump_page(page, "bad pte"); 767 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 768 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 769 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 770 vma->vm_file, 771 vma->vm_ops ? vma->vm_ops->fault : NULL, 772 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 773 mapping ? mapping->a_ops->readpage : NULL); 774 dump_stack(); 775 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 776 } 777 778 /* 779 * vm_normal_page -- This function gets the "struct page" associated with a pte. 780 * 781 * "Special" mappings do not wish to be associated with a "struct page" (either 782 * it doesn't exist, or it exists but they don't want to touch it). In this 783 * case, NULL is returned here. "Normal" mappings do have a struct page. 784 * 785 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 786 * pte bit, in which case this function is trivial. Secondly, an architecture 787 * may not have a spare pte bit, which requires a more complicated scheme, 788 * described below. 789 * 790 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 791 * special mapping (even if there are underlying and valid "struct pages"). 792 * COWed pages of a VM_PFNMAP are always normal. 793 * 794 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 795 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 796 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 797 * mapping will always honor the rule 798 * 799 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 800 * 801 * And for normal mappings this is false. 802 * 803 * This restricts such mappings to be a linear translation from virtual address 804 * to pfn. To get around this restriction, we allow arbitrary mappings so long 805 * as the vma is not a COW mapping; in that case, we know that all ptes are 806 * special (because none can have been COWed). 807 * 808 * 809 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 810 * 811 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 812 * page" backing, however the difference is that _all_ pages with a struct 813 * page (that is, those where pfn_valid is true) are refcounted and considered 814 * normal pages by the VM. The disadvantage is that pages are refcounted 815 * (which can be slower and simply not an option for some PFNMAP users). The 816 * advantage is that we don't have to follow the strict linearity rule of 817 * PFNMAP mappings in order to support COWable mappings. 818 * 819 */ 820 #ifdef __HAVE_ARCH_PTE_SPECIAL 821 # define HAVE_PTE_SPECIAL 1 822 #else 823 # define HAVE_PTE_SPECIAL 0 824 #endif 825 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 826 pte_t pte, bool with_public_device) 827 { 828 unsigned long pfn = pte_pfn(pte); 829 830 if (HAVE_PTE_SPECIAL) { 831 if (likely(!pte_special(pte))) 832 goto check_pfn; 833 if (vma->vm_ops && vma->vm_ops->find_special_page) 834 return vma->vm_ops->find_special_page(vma, addr); 835 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 836 return NULL; 837 if (is_zero_pfn(pfn)) 838 return NULL; 839 840 /* 841 * Device public pages are special pages (they are ZONE_DEVICE 842 * pages but different from persistent memory). They behave 843 * allmost like normal pages. The difference is that they are 844 * not on the lru and thus should never be involve with any- 845 * thing that involve lru manipulation (mlock, numa balancing, 846 * ...). 847 * 848 * This is why we still want to return NULL for such page from 849 * vm_normal_page() so that we do not have to special case all 850 * call site of vm_normal_page(). 851 */ 852 if (likely(pfn <= highest_memmap_pfn)) { 853 struct page *page = pfn_to_page(pfn); 854 855 if (is_device_public_page(page)) { 856 if (with_public_device) 857 return page; 858 return NULL; 859 } 860 } 861 print_bad_pte(vma, addr, pte, NULL); 862 return NULL; 863 } 864 865 /* !HAVE_PTE_SPECIAL case follows: */ 866 867 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 868 if (vma->vm_flags & VM_MIXEDMAP) { 869 if (!pfn_valid(pfn)) 870 return NULL; 871 goto out; 872 } else { 873 unsigned long off; 874 off = (addr - vma->vm_start) >> PAGE_SHIFT; 875 if (pfn == vma->vm_pgoff + off) 876 return NULL; 877 if (!is_cow_mapping(vma->vm_flags)) 878 return NULL; 879 } 880 } 881 882 if (is_zero_pfn(pfn)) 883 return NULL; 884 check_pfn: 885 if (unlikely(pfn > highest_memmap_pfn)) { 886 print_bad_pte(vma, addr, pte, NULL); 887 return NULL; 888 } 889 890 /* 891 * NOTE! We still have PageReserved() pages in the page tables. 892 * eg. VDSO mappings can cause them to exist. 893 */ 894 out: 895 return pfn_to_page(pfn); 896 } 897 898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 899 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 900 pmd_t pmd) 901 { 902 unsigned long pfn = pmd_pfn(pmd); 903 904 /* 905 * There is no pmd_special() but there may be special pmds, e.g. 906 * in a direct-access (dax) mapping, so let's just replicate the 907 * !HAVE_PTE_SPECIAL case from vm_normal_page() here. 908 */ 909 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 910 if (vma->vm_flags & VM_MIXEDMAP) { 911 if (!pfn_valid(pfn)) 912 return NULL; 913 goto out; 914 } else { 915 unsigned long off; 916 off = (addr - vma->vm_start) >> PAGE_SHIFT; 917 if (pfn == vma->vm_pgoff + off) 918 return NULL; 919 if (!is_cow_mapping(vma->vm_flags)) 920 return NULL; 921 } 922 } 923 924 if (is_zero_pfn(pfn)) 925 return NULL; 926 if (unlikely(pfn > highest_memmap_pfn)) 927 return NULL; 928 929 /* 930 * NOTE! We still have PageReserved() pages in the page tables. 931 * eg. VDSO mappings can cause them to exist. 932 */ 933 out: 934 return pfn_to_page(pfn); 935 } 936 #endif 937 938 /* 939 * copy one vm_area from one task to the other. Assumes the page tables 940 * already present in the new task to be cleared in the whole range 941 * covered by this vma. 942 */ 943 944 static inline unsigned long 945 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 946 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 947 unsigned long addr, int *rss) 948 { 949 unsigned long vm_flags = vma->vm_flags; 950 pte_t pte = *src_pte; 951 struct page *page; 952 953 /* pte contains position in swap or file, so copy. */ 954 if (unlikely(!pte_present(pte))) { 955 swp_entry_t entry = pte_to_swp_entry(pte); 956 957 if (likely(!non_swap_entry(entry))) { 958 if (swap_duplicate(entry) < 0) 959 return entry.val; 960 961 /* make sure dst_mm is on swapoff's mmlist. */ 962 if (unlikely(list_empty(&dst_mm->mmlist))) { 963 spin_lock(&mmlist_lock); 964 if (list_empty(&dst_mm->mmlist)) 965 list_add(&dst_mm->mmlist, 966 &src_mm->mmlist); 967 spin_unlock(&mmlist_lock); 968 } 969 rss[MM_SWAPENTS]++; 970 } else if (is_migration_entry(entry)) { 971 page = migration_entry_to_page(entry); 972 973 rss[mm_counter(page)]++; 974 975 if (is_write_migration_entry(entry) && 976 is_cow_mapping(vm_flags)) { 977 /* 978 * COW mappings require pages in both 979 * parent and child to be set to read. 980 */ 981 make_migration_entry_read(&entry); 982 pte = swp_entry_to_pte(entry); 983 if (pte_swp_soft_dirty(*src_pte)) 984 pte = pte_swp_mksoft_dirty(pte); 985 set_pte_at(src_mm, addr, src_pte, pte); 986 } 987 } else if (is_device_private_entry(entry)) { 988 page = device_private_entry_to_page(entry); 989 990 /* 991 * Update rss count even for unaddressable pages, as 992 * they should treated just like normal pages in this 993 * respect. 994 * 995 * We will likely want to have some new rss counters 996 * for unaddressable pages, at some point. But for now 997 * keep things as they are. 998 */ 999 get_page(page); 1000 rss[mm_counter(page)]++; 1001 page_dup_rmap(page, false); 1002 1003 /* 1004 * We do not preserve soft-dirty information, because so 1005 * far, checkpoint/restore is the only feature that 1006 * requires that. And checkpoint/restore does not work 1007 * when a device driver is involved (you cannot easily 1008 * save and restore device driver state). 1009 */ 1010 if (is_write_device_private_entry(entry) && 1011 is_cow_mapping(vm_flags)) { 1012 make_device_private_entry_read(&entry); 1013 pte = swp_entry_to_pte(entry); 1014 set_pte_at(src_mm, addr, src_pte, pte); 1015 } 1016 } 1017 goto out_set_pte; 1018 } 1019 1020 /* 1021 * If it's a COW mapping, write protect it both 1022 * in the parent and the child 1023 */ 1024 if (is_cow_mapping(vm_flags)) { 1025 ptep_set_wrprotect(src_mm, addr, src_pte); 1026 pte = pte_wrprotect(pte); 1027 } 1028 1029 /* 1030 * If it's a shared mapping, mark it clean in 1031 * the child 1032 */ 1033 if (vm_flags & VM_SHARED) 1034 pte = pte_mkclean(pte); 1035 pte = pte_mkold(pte); 1036 1037 page = vm_normal_page(vma, addr, pte); 1038 if (page) { 1039 get_page(page); 1040 page_dup_rmap(page, false); 1041 rss[mm_counter(page)]++; 1042 } else if (pte_devmap(pte)) { 1043 page = pte_page(pte); 1044 1045 /* 1046 * Cache coherent device memory behave like regular page and 1047 * not like persistent memory page. For more informations see 1048 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 1049 */ 1050 if (is_device_public_page(page)) { 1051 get_page(page); 1052 page_dup_rmap(page, false); 1053 rss[mm_counter(page)]++; 1054 } 1055 } 1056 1057 out_set_pte: 1058 set_pte_at(dst_mm, addr, dst_pte, pte); 1059 return 0; 1060 } 1061 1062 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1063 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 1064 unsigned long addr, unsigned long end) 1065 { 1066 pte_t *orig_src_pte, *orig_dst_pte; 1067 pte_t *src_pte, *dst_pte; 1068 spinlock_t *src_ptl, *dst_ptl; 1069 int progress = 0; 1070 int rss[NR_MM_COUNTERS]; 1071 swp_entry_t entry = (swp_entry_t){0}; 1072 1073 again: 1074 init_rss_vec(rss); 1075 1076 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 1077 if (!dst_pte) 1078 return -ENOMEM; 1079 src_pte = pte_offset_map(src_pmd, addr); 1080 src_ptl = pte_lockptr(src_mm, src_pmd); 1081 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 1082 orig_src_pte = src_pte; 1083 orig_dst_pte = dst_pte; 1084 arch_enter_lazy_mmu_mode(); 1085 1086 do { 1087 /* 1088 * We are holding two locks at this point - either of them 1089 * could generate latencies in another task on another CPU. 1090 */ 1091 if (progress >= 32) { 1092 progress = 0; 1093 if (need_resched() || 1094 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 1095 break; 1096 } 1097 if (pte_none(*src_pte)) { 1098 progress++; 1099 continue; 1100 } 1101 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 1102 vma, addr, rss); 1103 if (entry.val) 1104 break; 1105 progress += 8; 1106 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 1107 1108 arch_leave_lazy_mmu_mode(); 1109 spin_unlock(src_ptl); 1110 pte_unmap(orig_src_pte); 1111 add_mm_rss_vec(dst_mm, rss); 1112 pte_unmap_unlock(orig_dst_pte, dst_ptl); 1113 cond_resched(); 1114 1115 if (entry.val) { 1116 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 1117 return -ENOMEM; 1118 progress = 0; 1119 } 1120 if (addr != end) 1121 goto again; 1122 return 0; 1123 } 1124 1125 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1126 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 1127 unsigned long addr, unsigned long end) 1128 { 1129 pmd_t *src_pmd, *dst_pmd; 1130 unsigned long next; 1131 1132 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 1133 if (!dst_pmd) 1134 return -ENOMEM; 1135 src_pmd = pmd_offset(src_pud, addr); 1136 do { 1137 next = pmd_addr_end(addr, end); 1138 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 1139 || pmd_devmap(*src_pmd)) { 1140 int err; 1141 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 1142 err = copy_huge_pmd(dst_mm, src_mm, 1143 dst_pmd, src_pmd, addr, vma); 1144 if (err == -ENOMEM) 1145 return -ENOMEM; 1146 if (!err) 1147 continue; 1148 /* fall through */ 1149 } 1150 if (pmd_none_or_clear_bad(src_pmd)) 1151 continue; 1152 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 1153 vma, addr, next)) 1154 return -ENOMEM; 1155 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 1156 return 0; 1157 } 1158 1159 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1160 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 1161 unsigned long addr, unsigned long end) 1162 { 1163 pud_t *src_pud, *dst_pud; 1164 unsigned long next; 1165 1166 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 1167 if (!dst_pud) 1168 return -ENOMEM; 1169 src_pud = pud_offset(src_p4d, addr); 1170 do { 1171 next = pud_addr_end(addr, end); 1172 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 1173 int err; 1174 1175 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 1176 err = copy_huge_pud(dst_mm, src_mm, 1177 dst_pud, src_pud, addr, vma); 1178 if (err == -ENOMEM) 1179 return -ENOMEM; 1180 if (!err) 1181 continue; 1182 /* fall through */ 1183 } 1184 if (pud_none_or_clear_bad(src_pud)) 1185 continue; 1186 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 1187 vma, addr, next)) 1188 return -ENOMEM; 1189 } while (dst_pud++, src_pud++, addr = next, addr != end); 1190 return 0; 1191 } 1192 1193 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1194 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 1195 unsigned long addr, unsigned long end) 1196 { 1197 p4d_t *src_p4d, *dst_p4d; 1198 unsigned long next; 1199 1200 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 1201 if (!dst_p4d) 1202 return -ENOMEM; 1203 src_p4d = p4d_offset(src_pgd, addr); 1204 do { 1205 next = p4d_addr_end(addr, end); 1206 if (p4d_none_or_clear_bad(src_p4d)) 1207 continue; 1208 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 1209 vma, addr, next)) 1210 return -ENOMEM; 1211 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 1212 return 0; 1213 } 1214 1215 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 1216 struct vm_area_struct *vma) 1217 { 1218 pgd_t *src_pgd, *dst_pgd; 1219 unsigned long next; 1220 unsigned long addr = vma->vm_start; 1221 unsigned long end = vma->vm_end; 1222 unsigned long mmun_start; /* For mmu_notifiers */ 1223 unsigned long mmun_end; /* For mmu_notifiers */ 1224 bool is_cow; 1225 int ret; 1226 1227 /* 1228 * Don't copy ptes where a page fault will fill them correctly. 1229 * Fork becomes much lighter when there are big shared or private 1230 * readonly mappings. The tradeoff is that copy_page_range is more 1231 * efficient than faulting. 1232 */ 1233 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 1234 !vma->anon_vma) 1235 return 0; 1236 1237 if (is_vm_hugetlb_page(vma)) 1238 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 1239 1240 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 1241 /* 1242 * We do not free on error cases below as remove_vma 1243 * gets called on error from higher level routine 1244 */ 1245 ret = track_pfn_copy(vma); 1246 if (ret) 1247 return ret; 1248 } 1249 1250 /* 1251 * We need to invalidate the secondary MMU mappings only when 1252 * there could be a permission downgrade on the ptes of the 1253 * parent mm. And a permission downgrade will only happen if 1254 * is_cow_mapping() returns true. 1255 */ 1256 is_cow = is_cow_mapping(vma->vm_flags); 1257 mmun_start = addr; 1258 mmun_end = end; 1259 if (is_cow) 1260 mmu_notifier_invalidate_range_start(src_mm, mmun_start, 1261 mmun_end); 1262 1263 ret = 0; 1264 dst_pgd = pgd_offset(dst_mm, addr); 1265 src_pgd = pgd_offset(src_mm, addr); 1266 do { 1267 next = pgd_addr_end(addr, end); 1268 if (pgd_none_or_clear_bad(src_pgd)) 1269 continue; 1270 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1271 vma, addr, next))) { 1272 ret = -ENOMEM; 1273 break; 1274 } 1275 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1276 1277 if (is_cow) 1278 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end); 1279 return ret; 1280 } 1281 1282 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1283 struct vm_area_struct *vma, pmd_t *pmd, 1284 unsigned long addr, unsigned long end, 1285 struct zap_details *details) 1286 { 1287 struct mm_struct *mm = tlb->mm; 1288 int force_flush = 0; 1289 int rss[NR_MM_COUNTERS]; 1290 spinlock_t *ptl; 1291 pte_t *start_pte; 1292 pte_t *pte; 1293 swp_entry_t entry; 1294 1295 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1296 again: 1297 init_rss_vec(rss); 1298 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1299 pte = start_pte; 1300 flush_tlb_batched_pending(mm); 1301 arch_enter_lazy_mmu_mode(); 1302 do { 1303 pte_t ptent = *pte; 1304 if (pte_none(ptent)) 1305 continue; 1306 1307 if (pte_present(ptent)) { 1308 struct page *page; 1309 1310 page = _vm_normal_page(vma, addr, ptent, true); 1311 if (unlikely(details) && page) { 1312 /* 1313 * unmap_shared_mapping_pages() wants to 1314 * invalidate cache without truncating: 1315 * unmap shared but keep private pages. 1316 */ 1317 if (details->check_mapping && 1318 details->check_mapping != page_rmapping(page)) 1319 continue; 1320 } 1321 ptent = ptep_get_and_clear_full(mm, addr, pte, 1322 tlb->fullmm); 1323 tlb_remove_tlb_entry(tlb, pte, addr); 1324 if (unlikely(!page)) 1325 continue; 1326 1327 if (!PageAnon(page)) { 1328 if (pte_dirty(ptent)) { 1329 force_flush = 1; 1330 set_page_dirty(page); 1331 } 1332 if (pte_young(ptent) && 1333 likely(!(vma->vm_flags & VM_SEQ_READ))) 1334 mark_page_accessed(page); 1335 } 1336 rss[mm_counter(page)]--; 1337 page_remove_rmap(page, false); 1338 if (unlikely(page_mapcount(page) < 0)) 1339 print_bad_pte(vma, addr, ptent, page); 1340 if (unlikely(__tlb_remove_page(tlb, page))) { 1341 force_flush = 1; 1342 addr += PAGE_SIZE; 1343 break; 1344 } 1345 continue; 1346 } 1347 1348 entry = pte_to_swp_entry(ptent); 1349 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1350 struct page *page = device_private_entry_to_page(entry); 1351 1352 if (unlikely(details && details->check_mapping)) { 1353 /* 1354 * unmap_shared_mapping_pages() wants to 1355 * invalidate cache without truncating: 1356 * unmap shared but keep private pages. 1357 */ 1358 if (details->check_mapping != 1359 page_rmapping(page)) 1360 continue; 1361 } 1362 1363 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1364 rss[mm_counter(page)]--; 1365 page_remove_rmap(page, false); 1366 put_page(page); 1367 continue; 1368 } 1369 1370 /* If details->check_mapping, we leave swap entries. */ 1371 if (unlikely(details)) 1372 continue; 1373 1374 entry = pte_to_swp_entry(ptent); 1375 if (!non_swap_entry(entry)) 1376 rss[MM_SWAPENTS]--; 1377 else if (is_migration_entry(entry)) { 1378 struct page *page; 1379 1380 page = migration_entry_to_page(entry); 1381 rss[mm_counter(page)]--; 1382 } 1383 if (unlikely(!free_swap_and_cache(entry))) 1384 print_bad_pte(vma, addr, ptent, NULL); 1385 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1386 } while (pte++, addr += PAGE_SIZE, addr != end); 1387 1388 add_mm_rss_vec(mm, rss); 1389 arch_leave_lazy_mmu_mode(); 1390 1391 /* Do the actual TLB flush before dropping ptl */ 1392 if (force_flush) 1393 tlb_flush_mmu_tlbonly(tlb); 1394 pte_unmap_unlock(start_pte, ptl); 1395 1396 /* 1397 * If we forced a TLB flush (either due to running out of 1398 * batch buffers or because we needed to flush dirty TLB 1399 * entries before releasing the ptl), free the batched 1400 * memory too. Restart if we didn't do everything. 1401 */ 1402 if (force_flush) { 1403 force_flush = 0; 1404 tlb_flush_mmu_free(tlb); 1405 if (addr != end) 1406 goto again; 1407 } 1408 1409 return addr; 1410 } 1411 1412 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1413 struct vm_area_struct *vma, pud_t *pud, 1414 unsigned long addr, unsigned long end, 1415 struct zap_details *details) 1416 { 1417 pmd_t *pmd; 1418 unsigned long next; 1419 1420 pmd = pmd_offset(pud, addr); 1421 do { 1422 next = pmd_addr_end(addr, end); 1423 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1424 if (next - addr != HPAGE_PMD_SIZE) { 1425 VM_BUG_ON_VMA(vma_is_anonymous(vma) && 1426 !rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1427 __split_huge_pmd(vma, pmd, addr, false, NULL); 1428 } else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1429 goto next; 1430 /* fall through */ 1431 } 1432 /* 1433 * Here there can be other concurrent MADV_DONTNEED or 1434 * trans huge page faults running, and if the pmd is 1435 * none or trans huge it can change under us. This is 1436 * because MADV_DONTNEED holds the mmap_sem in read 1437 * mode. 1438 */ 1439 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1440 goto next; 1441 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1442 next: 1443 cond_resched(); 1444 } while (pmd++, addr = next, addr != end); 1445 1446 return addr; 1447 } 1448 1449 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1450 struct vm_area_struct *vma, p4d_t *p4d, 1451 unsigned long addr, unsigned long end, 1452 struct zap_details *details) 1453 { 1454 pud_t *pud; 1455 unsigned long next; 1456 1457 pud = pud_offset(p4d, addr); 1458 do { 1459 next = pud_addr_end(addr, end); 1460 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1461 if (next - addr != HPAGE_PUD_SIZE) { 1462 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1463 split_huge_pud(vma, pud, addr); 1464 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1465 goto next; 1466 /* fall through */ 1467 } 1468 if (pud_none_or_clear_bad(pud)) 1469 continue; 1470 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1471 next: 1472 cond_resched(); 1473 } while (pud++, addr = next, addr != end); 1474 1475 return addr; 1476 } 1477 1478 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1479 struct vm_area_struct *vma, pgd_t *pgd, 1480 unsigned long addr, unsigned long end, 1481 struct zap_details *details) 1482 { 1483 p4d_t *p4d; 1484 unsigned long next; 1485 1486 p4d = p4d_offset(pgd, addr); 1487 do { 1488 next = p4d_addr_end(addr, end); 1489 if (p4d_none_or_clear_bad(p4d)) 1490 continue; 1491 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1492 } while (p4d++, addr = next, addr != end); 1493 1494 return addr; 1495 } 1496 1497 void unmap_page_range(struct mmu_gather *tlb, 1498 struct vm_area_struct *vma, 1499 unsigned long addr, unsigned long end, 1500 struct zap_details *details) 1501 { 1502 pgd_t *pgd; 1503 unsigned long next; 1504 1505 BUG_ON(addr >= end); 1506 tlb_start_vma(tlb, vma); 1507 pgd = pgd_offset(vma->vm_mm, addr); 1508 do { 1509 next = pgd_addr_end(addr, end); 1510 if (pgd_none_or_clear_bad(pgd)) 1511 continue; 1512 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1513 } while (pgd++, addr = next, addr != end); 1514 tlb_end_vma(tlb, vma); 1515 } 1516 1517 1518 static void unmap_single_vma(struct mmu_gather *tlb, 1519 struct vm_area_struct *vma, unsigned long start_addr, 1520 unsigned long end_addr, 1521 struct zap_details *details) 1522 { 1523 unsigned long start = max(vma->vm_start, start_addr); 1524 unsigned long end; 1525 1526 if (start >= vma->vm_end) 1527 return; 1528 end = min(vma->vm_end, end_addr); 1529 if (end <= vma->vm_start) 1530 return; 1531 1532 if (vma->vm_file) 1533 uprobe_munmap(vma, start, end); 1534 1535 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1536 untrack_pfn(vma, 0, 0); 1537 1538 if (start != end) { 1539 if (unlikely(is_vm_hugetlb_page(vma))) { 1540 /* 1541 * It is undesirable to test vma->vm_file as it 1542 * should be non-null for valid hugetlb area. 1543 * However, vm_file will be NULL in the error 1544 * cleanup path of mmap_region. When 1545 * hugetlbfs ->mmap method fails, 1546 * mmap_region() nullifies vma->vm_file 1547 * before calling this function to clean up. 1548 * Since no pte has actually been setup, it is 1549 * safe to do nothing in this case. 1550 */ 1551 if (vma->vm_file) { 1552 i_mmap_lock_write(vma->vm_file->f_mapping); 1553 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1554 i_mmap_unlock_write(vma->vm_file->f_mapping); 1555 } 1556 } else 1557 unmap_page_range(tlb, vma, start, end, details); 1558 } 1559 } 1560 1561 /** 1562 * unmap_vmas - unmap a range of memory covered by a list of vma's 1563 * @tlb: address of the caller's struct mmu_gather 1564 * @vma: the starting vma 1565 * @start_addr: virtual address at which to start unmapping 1566 * @end_addr: virtual address at which to end unmapping 1567 * 1568 * Unmap all pages in the vma list. 1569 * 1570 * Only addresses between `start' and `end' will be unmapped. 1571 * 1572 * The VMA list must be sorted in ascending virtual address order. 1573 * 1574 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1575 * range after unmap_vmas() returns. So the only responsibility here is to 1576 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1577 * drops the lock and schedules. 1578 */ 1579 void unmap_vmas(struct mmu_gather *tlb, 1580 struct vm_area_struct *vma, unsigned long start_addr, 1581 unsigned long end_addr) 1582 { 1583 struct mm_struct *mm = vma->vm_mm; 1584 1585 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr); 1586 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1587 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1588 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr); 1589 } 1590 1591 /** 1592 * zap_page_range - remove user pages in a given range 1593 * @vma: vm_area_struct holding the applicable pages 1594 * @start: starting address of pages to zap 1595 * @size: number of bytes to zap 1596 * 1597 * Caller must protect the VMA list 1598 */ 1599 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1600 unsigned long size) 1601 { 1602 struct mm_struct *mm = vma->vm_mm; 1603 struct mmu_gather tlb; 1604 unsigned long end = start + size; 1605 1606 lru_add_drain(); 1607 tlb_gather_mmu(&tlb, mm, start, end); 1608 update_hiwater_rss(mm); 1609 mmu_notifier_invalidate_range_start(mm, start, end); 1610 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 1611 unmap_single_vma(&tlb, vma, start, end, NULL); 1612 1613 /* 1614 * zap_page_range does not specify whether mmap_sem should be 1615 * held for read or write. That allows parallel zap_page_range 1616 * operations to unmap a PTE and defer a flush meaning that 1617 * this call observes pte_none and fails to flush the TLB. 1618 * Rather than adding a complex API, ensure that no stale 1619 * TLB entries exist when this call returns. 1620 */ 1621 flush_tlb_range(vma, start, end); 1622 } 1623 1624 mmu_notifier_invalidate_range_end(mm, start, end); 1625 tlb_finish_mmu(&tlb, start, end); 1626 } 1627 1628 /** 1629 * zap_page_range_single - remove user pages in a given range 1630 * @vma: vm_area_struct holding the applicable pages 1631 * @address: starting address of pages to zap 1632 * @size: number of bytes to zap 1633 * @details: details of shared cache invalidation 1634 * 1635 * The range must fit into one VMA. 1636 */ 1637 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1638 unsigned long size, struct zap_details *details) 1639 { 1640 struct mm_struct *mm = vma->vm_mm; 1641 struct mmu_gather tlb; 1642 unsigned long end = address + size; 1643 1644 lru_add_drain(); 1645 tlb_gather_mmu(&tlb, mm, address, end); 1646 update_hiwater_rss(mm); 1647 mmu_notifier_invalidate_range_start(mm, address, end); 1648 unmap_single_vma(&tlb, vma, address, end, details); 1649 mmu_notifier_invalidate_range_end(mm, address, end); 1650 tlb_finish_mmu(&tlb, address, end); 1651 } 1652 1653 /** 1654 * zap_vma_ptes - remove ptes mapping the vma 1655 * @vma: vm_area_struct holding ptes to be zapped 1656 * @address: starting address of pages to zap 1657 * @size: number of bytes to zap 1658 * 1659 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1660 * 1661 * The entire address range must be fully contained within the vma. 1662 * 1663 * Returns 0 if successful. 1664 */ 1665 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1666 unsigned long size) 1667 { 1668 if (address < vma->vm_start || address + size > vma->vm_end || 1669 !(vma->vm_flags & VM_PFNMAP)) 1670 return -1; 1671 zap_page_range_single(vma, address, size, NULL); 1672 return 0; 1673 } 1674 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1675 1676 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1677 spinlock_t **ptl) 1678 { 1679 pgd_t *pgd; 1680 p4d_t *p4d; 1681 pud_t *pud; 1682 pmd_t *pmd; 1683 1684 pgd = pgd_offset(mm, addr); 1685 p4d = p4d_alloc(mm, pgd, addr); 1686 if (!p4d) 1687 return NULL; 1688 pud = pud_alloc(mm, p4d, addr); 1689 if (!pud) 1690 return NULL; 1691 pmd = pmd_alloc(mm, pud, addr); 1692 if (!pmd) 1693 return NULL; 1694 1695 VM_BUG_ON(pmd_trans_huge(*pmd)); 1696 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1697 } 1698 1699 /* 1700 * This is the old fallback for page remapping. 1701 * 1702 * For historical reasons, it only allows reserved pages. Only 1703 * old drivers should use this, and they needed to mark their 1704 * pages reserved for the old functions anyway. 1705 */ 1706 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1707 struct page *page, pgprot_t prot) 1708 { 1709 struct mm_struct *mm = vma->vm_mm; 1710 int retval; 1711 pte_t *pte; 1712 spinlock_t *ptl; 1713 1714 retval = -EINVAL; 1715 if (PageAnon(page)) 1716 goto out; 1717 retval = -ENOMEM; 1718 flush_dcache_page(page); 1719 pte = get_locked_pte(mm, addr, &ptl); 1720 if (!pte) 1721 goto out; 1722 retval = -EBUSY; 1723 if (!pte_none(*pte)) 1724 goto out_unlock; 1725 1726 /* Ok, finally just insert the thing.. */ 1727 get_page(page); 1728 inc_mm_counter_fast(mm, mm_counter_file(page)); 1729 page_add_file_rmap(page, false); 1730 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1731 1732 retval = 0; 1733 pte_unmap_unlock(pte, ptl); 1734 return retval; 1735 out_unlock: 1736 pte_unmap_unlock(pte, ptl); 1737 out: 1738 return retval; 1739 } 1740 1741 /** 1742 * vm_insert_page - insert single page into user vma 1743 * @vma: user vma to map to 1744 * @addr: target user address of this page 1745 * @page: source kernel page 1746 * 1747 * This allows drivers to insert individual pages they've allocated 1748 * into a user vma. 1749 * 1750 * The page has to be a nice clean _individual_ kernel allocation. 1751 * If you allocate a compound page, you need to have marked it as 1752 * such (__GFP_COMP), or manually just split the page up yourself 1753 * (see split_page()). 1754 * 1755 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1756 * took an arbitrary page protection parameter. This doesn't allow 1757 * that. Your vma protection will have to be set up correctly, which 1758 * means that if you want a shared writable mapping, you'd better 1759 * ask for a shared writable mapping! 1760 * 1761 * The page does not need to be reserved. 1762 * 1763 * Usually this function is called from f_op->mmap() handler 1764 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1765 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1766 * function from other places, for example from page-fault handler. 1767 */ 1768 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1769 struct page *page) 1770 { 1771 if (addr < vma->vm_start || addr >= vma->vm_end) 1772 return -EFAULT; 1773 if (!page_count(page)) 1774 return -EINVAL; 1775 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1776 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1777 BUG_ON(vma->vm_flags & VM_PFNMAP); 1778 vma->vm_flags |= VM_MIXEDMAP; 1779 } 1780 return insert_page(vma, addr, page, vma->vm_page_prot); 1781 } 1782 EXPORT_SYMBOL(vm_insert_page); 1783 1784 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1785 pfn_t pfn, pgprot_t prot, bool mkwrite) 1786 { 1787 struct mm_struct *mm = vma->vm_mm; 1788 int retval; 1789 pte_t *pte, entry; 1790 spinlock_t *ptl; 1791 1792 retval = -ENOMEM; 1793 pte = get_locked_pte(mm, addr, &ptl); 1794 if (!pte) 1795 goto out; 1796 retval = -EBUSY; 1797 if (!pte_none(*pte)) { 1798 if (mkwrite) { 1799 /* 1800 * For read faults on private mappings the PFN passed 1801 * in may not match the PFN we have mapped if the 1802 * mapped PFN is a writeable COW page. In the mkwrite 1803 * case we are creating a writable PTE for a shared 1804 * mapping and we expect the PFNs to match. 1805 */ 1806 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn))) 1807 goto out_unlock; 1808 entry = *pte; 1809 goto out_mkwrite; 1810 } else 1811 goto out_unlock; 1812 } 1813 1814 /* Ok, finally just insert the thing.. */ 1815 if (pfn_t_devmap(pfn)) 1816 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1817 else 1818 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1819 1820 out_mkwrite: 1821 if (mkwrite) { 1822 entry = pte_mkyoung(entry); 1823 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1824 } 1825 1826 set_pte_at(mm, addr, pte, entry); 1827 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1828 1829 retval = 0; 1830 out_unlock: 1831 pte_unmap_unlock(pte, ptl); 1832 out: 1833 return retval; 1834 } 1835 1836 /** 1837 * vm_insert_pfn - insert single pfn into user vma 1838 * @vma: user vma to map to 1839 * @addr: target user address of this page 1840 * @pfn: source kernel pfn 1841 * 1842 * Similar to vm_insert_page, this allows drivers to insert individual pages 1843 * they've allocated into a user vma. Same comments apply. 1844 * 1845 * This function should only be called from a vm_ops->fault handler, and 1846 * in that case the handler should return NULL. 1847 * 1848 * vma cannot be a COW mapping. 1849 * 1850 * As this is called only for pages that do not currently exist, we 1851 * do not need to flush old virtual caches or the TLB. 1852 */ 1853 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1854 unsigned long pfn) 1855 { 1856 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1857 } 1858 EXPORT_SYMBOL(vm_insert_pfn); 1859 1860 /** 1861 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1862 * @vma: user vma to map to 1863 * @addr: target user address of this page 1864 * @pfn: source kernel pfn 1865 * @pgprot: pgprot flags for the inserted page 1866 * 1867 * This is exactly like vm_insert_pfn, except that it allows drivers to 1868 * to override pgprot on a per-page basis. 1869 * 1870 * This only makes sense for IO mappings, and it makes no sense for 1871 * cow mappings. In general, using multiple vmas is preferable; 1872 * vm_insert_pfn_prot should only be used if using multiple VMAs is 1873 * impractical. 1874 */ 1875 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1876 unsigned long pfn, pgprot_t pgprot) 1877 { 1878 int ret; 1879 /* 1880 * Technically, architectures with pte_special can avoid all these 1881 * restrictions (same for remap_pfn_range). However we would like 1882 * consistency in testing and feature parity among all, so we should 1883 * try to keep these invariants in place for everybody. 1884 */ 1885 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1886 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1887 (VM_PFNMAP|VM_MIXEDMAP)); 1888 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1889 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1890 1891 if (addr < vma->vm_start || addr >= vma->vm_end) 1892 return -EFAULT; 1893 1894 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1895 1896 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1897 false); 1898 1899 return ret; 1900 } 1901 EXPORT_SYMBOL(vm_insert_pfn_prot); 1902 1903 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1904 { 1905 /* these checks mirror the abort conditions in vm_normal_page */ 1906 if (vma->vm_flags & VM_MIXEDMAP) 1907 return true; 1908 if (pfn_t_devmap(pfn)) 1909 return true; 1910 if (pfn_t_special(pfn)) 1911 return true; 1912 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1913 return true; 1914 return false; 1915 } 1916 1917 static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1918 pfn_t pfn, bool mkwrite) 1919 { 1920 pgprot_t pgprot = vma->vm_page_prot; 1921 1922 BUG_ON(!vm_mixed_ok(vma, pfn)); 1923 1924 if (addr < vma->vm_start || addr >= vma->vm_end) 1925 return -EFAULT; 1926 1927 track_pfn_insert(vma, &pgprot, pfn); 1928 1929 /* 1930 * If we don't have pte special, then we have to use the pfn_valid() 1931 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1932 * refcount the page if pfn_valid is true (hence insert_page rather 1933 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1934 * without pte special, it would there be refcounted as a normal page. 1935 */ 1936 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1937 struct page *page; 1938 1939 /* 1940 * At this point we are committed to insert_page() 1941 * regardless of whether the caller specified flags that 1942 * result in pfn_t_has_page() == false. 1943 */ 1944 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1945 return insert_page(vma, addr, page, pgprot); 1946 } 1947 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1948 } 1949 1950 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1951 pfn_t pfn) 1952 { 1953 return __vm_insert_mixed(vma, addr, pfn, false); 1954 1955 } 1956 EXPORT_SYMBOL(vm_insert_mixed); 1957 1958 int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr, 1959 pfn_t pfn) 1960 { 1961 return __vm_insert_mixed(vma, addr, pfn, true); 1962 } 1963 EXPORT_SYMBOL(vm_insert_mixed_mkwrite); 1964 1965 /* 1966 * maps a range of physical memory into the requested pages. the old 1967 * mappings are removed. any references to nonexistent pages results 1968 * in null mappings (currently treated as "copy-on-access") 1969 */ 1970 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1971 unsigned long addr, unsigned long end, 1972 unsigned long pfn, pgprot_t prot) 1973 { 1974 pte_t *pte; 1975 spinlock_t *ptl; 1976 1977 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1978 if (!pte) 1979 return -ENOMEM; 1980 arch_enter_lazy_mmu_mode(); 1981 do { 1982 BUG_ON(!pte_none(*pte)); 1983 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1984 pfn++; 1985 } while (pte++, addr += PAGE_SIZE, addr != end); 1986 arch_leave_lazy_mmu_mode(); 1987 pte_unmap_unlock(pte - 1, ptl); 1988 return 0; 1989 } 1990 1991 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1992 unsigned long addr, unsigned long end, 1993 unsigned long pfn, pgprot_t prot) 1994 { 1995 pmd_t *pmd; 1996 unsigned long next; 1997 1998 pfn -= addr >> PAGE_SHIFT; 1999 pmd = pmd_alloc(mm, pud, addr); 2000 if (!pmd) 2001 return -ENOMEM; 2002 VM_BUG_ON(pmd_trans_huge(*pmd)); 2003 do { 2004 next = pmd_addr_end(addr, end); 2005 if (remap_pte_range(mm, pmd, addr, next, 2006 pfn + (addr >> PAGE_SHIFT), prot)) 2007 return -ENOMEM; 2008 } while (pmd++, addr = next, addr != end); 2009 return 0; 2010 } 2011 2012 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 2013 unsigned long addr, unsigned long end, 2014 unsigned long pfn, pgprot_t prot) 2015 { 2016 pud_t *pud; 2017 unsigned long next; 2018 2019 pfn -= addr >> PAGE_SHIFT; 2020 pud = pud_alloc(mm, p4d, addr); 2021 if (!pud) 2022 return -ENOMEM; 2023 do { 2024 next = pud_addr_end(addr, end); 2025 if (remap_pmd_range(mm, pud, addr, next, 2026 pfn + (addr >> PAGE_SHIFT), prot)) 2027 return -ENOMEM; 2028 } while (pud++, addr = next, addr != end); 2029 return 0; 2030 } 2031 2032 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2033 unsigned long addr, unsigned long end, 2034 unsigned long pfn, pgprot_t prot) 2035 { 2036 p4d_t *p4d; 2037 unsigned long next; 2038 2039 pfn -= addr >> PAGE_SHIFT; 2040 p4d = p4d_alloc(mm, pgd, addr); 2041 if (!p4d) 2042 return -ENOMEM; 2043 do { 2044 next = p4d_addr_end(addr, end); 2045 if (remap_pud_range(mm, p4d, addr, next, 2046 pfn + (addr >> PAGE_SHIFT), prot)) 2047 return -ENOMEM; 2048 } while (p4d++, addr = next, addr != end); 2049 return 0; 2050 } 2051 2052 /** 2053 * remap_pfn_range - remap kernel memory to userspace 2054 * @vma: user vma to map to 2055 * @addr: target user address to start at 2056 * @pfn: physical address of kernel memory 2057 * @size: size of map area 2058 * @prot: page protection flags for this mapping 2059 * 2060 * Note: this is only safe if the mm semaphore is held when called. 2061 */ 2062 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 2063 unsigned long pfn, unsigned long size, pgprot_t prot) 2064 { 2065 pgd_t *pgd; 2066 unsigned long next; 2067 unsigned long end = addr + PAGE_ALIGN(size); 2068 struct mm_struct *mm = vma->vm_mm; 2069 unsigned long remap_pfn = pfn; 2070 int err; 2071 2072 /* 2073 * Physically remapped pages are special. Tell the 2074 * rest of the world about it: 2075 * VM_IO tells people not to look at these pages 2076 * (accesses can have side effects). 2077 * VM_PFNMAP tells the core MM that the base pages are just 2078 * raw PFN mappings, and do not have a "struct page" associated 2079 * with them. 2080 * VM_DONTEXPAND 2081 * Disable vma merging and expanding with mremap(). 2082 * VM_DONTDUMP 2083 * Omit vma from core dump, even when VM_IO turned off. 2084 * 2085 * There's a horrible special case to handle copy-on-write 2086 * behaviour that some programs depend on. We mark the "original" 2087 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 2088 * See vm_normal_page() for details. 2089 */ 2090 if (is_cow_mapping(vma->vm_flags)) { 2091 if (addr != vma->vm_start || end != vma->vm_end) 2092 return -EINVAL; 2093 vma->vm_pgoff = pfn; 2094 } 2095 2096 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 2097 if (err) 2098 return -EINVAL; 2099 2100 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 2101 2102 BUG_ON(addr >= end); 2103 pfn -= addr >> PAGE_SHIFT; 2104 pgd = pgd_offset(mm, addr); 2105 flush_cache_range(vma, addr, end); 2106 do { 2107 next = pgd_addr_end(addr, end); 2108 err = remap_p4d_range(mm, pgd, addr, next, 2109 pfn + (addr >> PAGE_SHIFT), prot); 2110 if (err) 2111 break; 2112 } while (pgd++, addr = next, addr != end); 2113 2114 if (err) 2115 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 2116 2117 return err; 2118 } 2119 EXPORT_SYMBOL(remap_pfn_range); 2120 2121 /** 2122 * vm_iomap_memory - remap memory to userspace 2123 * @vma: user vma to map to 2124 * @start: start of area 2125 * @len: size of area 2126 * 2127 * This is a simplified io_remap_pfn_range() for common driver use. The 2128 * driver just needs to give us the physical memory range to be mapped, 2129 * we'll figure out the rest from the vma information. 2130 * 2131 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 2132 * whatever write-combining details or similar. 2133 */ 2134 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 2135 { 2136 unsigned long vm_len, pfn, pages; 2137 2138 /* Check that the physical memory area passed in looks valid */ 2139 if (start + len < start) 2140 return -EINVAL; 2141 /* 2142 * You *really* shouldn't map things that aren't page-aligned, 2143 * but we've historically allowed it because IO memory might 2144 * just have smaller alignment. 2145 */ 2146 len += start & ~PAGE_MASK; 2147 pfn = start >> PAGE_SHIFT; 2148 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 2149 if (pfn + pages < pfn) 2150 return -EINVAL; 2151 2152 /* We start the mapping 'vm_pgoff' pages into the area */ 2153 if (vma->vm_pgoff > pages) 2154 return -EINVAL; 2155 pfn += vma->vm_pgoff; 2156 pages -= vma->vm_pgoff; 2157 2158 /* Can we fit all of the mapping? */ 2159 vm_len = vma->vm_end - vma->vm_start; 2160 if (vm_len >> PAGE_SHIFT > pages) 2161 return -EINVAL; 2162 2163 /* Ok, let it rip */ 2164 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 2165 } 2166 EXPORT_SYMBOL(vm_iomap_memory); 2167 2168 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 2169 unsigned long addr, unsigned long end, 2170 pte_fn_t fn, void *data) 2171 { 2172 pte_t *pte; 2173 int err; 2174 pgtable_t token; 2175 spinlock_t *uninitialized_var(ptl); 2176 2177 pte = (mm == &init_mm) ? 2178 pte_alloc_kernel(pmd, addr) : 2179 pte_alloc_map_lock(mm, pmd, addr, &ptl); 2180 if (!pte) 2181 return -ENOMEM; 2182 2183 BUG_ON(pmd_huge(*pmd)); 2184 2185 arch_enter_lazy_mmu_mode(); 2186 2187 token = pmd_pgtable(*pmd); 2188 2189 do { 2190 err = fn(pte++, token, addr, data); 2191 if (err) 2192 break; 2193 } while (addr += PAGE_SIZE, addr != end); 2194 2195 arch_leave_lazy_mmu_mode(); 2196 2197 if (mm != &init_mm) 2198 pte_unmap_unlock(pte-1, ptl); 2199 return err; 2200 } 2201 2202 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 2203 unsigned long addr, unsigned long end, 2204 pte_fn_t fn, void *data) 2205 { 2206 pmd_t *pmd; 2207 unsigned long next; 2208 int err; 2209 2210 BUG_ON(pud_huge(*pud)); 2211 2212 pmd = pmd_alloc(mm, pud, addr); 2213 if (!pmd) 2214 return -ENOMEM; 2215 do { 2216 next = pmd_addr_end(addr, end); 2217 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 2218 if (err) 2219 break; 2220 } while (pmd++, addr = next, addr != end); 2221 return err; 2222 } 2223 2224 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 2225 unsigned long addr, unsigned long end, 2226 pte_fn_t fn, void *data) 2227 { 2228 pud_t *pud; 2229 unsigned long next; 2230 int err; 2231 2232 pud = pud_alloc(mm, p4d, addr); 2233 if (!pud) 2234 return -ENOMEM; 2235 do { 2236 next = pud_addr_end(addr, end); 2237 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2238 if (err) 2239 break; 2240 } while (pud++, addr = next, addr != end); 2241 return err; 2242 } 2243 2244 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2245 unsigned long addr, unsigned long end, 2246 pte_fn_t fn, void *data) 2247 { 2248 p4d_t *p4d; 2249 unsigned long next; 2250 int err; 2251 2252 p4d = p4d_alloc(mm, pgd, addr); 2253 if (!p4d) 2254 return -ENOMEM; 2255 do { 2256 next = p4d_addr_end(addr, end); 2257 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2258 if (err) 2259 break; 2260 } while (p4d++, addr = next, addr != end); 2261 return err; 2262 } 2263 2264 /* 2265 * Scan a region of virtual memory, filling in page tables as necessary 2266 * and calling a provided function on each leaf page table. 2267 */ 2268 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2269 unsigned long size, pte_fn_t fn, void *data) 2270 { 2271 pgd_t *pgd; 2272 unsigned long next; 2273 unsigned long end = addr + size; 2274 int err; 2275 2276 if (WARN_ON(addr >= end)) 2277 return -EINVAL; 2278 2279 pgd = pgd_offset(mm, addr); 2280 do { 2281 next = pgd_addr_end(addr, end); 2282 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2283 if (err) 2284 break; 2285 } while (pgd++, addr = next, addr != end); 2286 2287 return err; 2288 } 2289 EXPORT_SYMBOL_GPL(apply_to_page_range); 2290 2291 /* 2292 * handle_pte_fault chooses page fault handler according to an entry which was 2293 * read non-atomically. Before making any commitment, on those architectures 2294 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2295 * parts, do_swap_page must check under lock before unmapping the pte and 2296 * proceeding (but do_wp_page is only called after already making such a check; 2297 * and do_anonymous_page can safely check later on). 2298 */ 2299 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2300 pte_t *page_table, pte_t orig_pte) 2301 { 2302 int same = 1; 2303 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2304 if (sizeof(pte_t) > sizeof(unsigned long)) { 2305 spinlock_t *ptl = pte_lockptr(mm, pmd); 2306 spin_lock(ptl); 2307 same = pte_same(*page_table, orig_pte); 2308 spin_unlock(ptl); 2309 } 2310 #endif 2311 pte_unmap(page_table); 2312 return same; 2313 } 2314 2315 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2316 { 2317 debug_dma_assert_idle(src); 2318 2319 /* 2320 * If the source page was a PFN mapping, we don't have 2321 * a "struct page" for it. We do a best-effort copy by 2322 * just copying from the original user address. If that 2323 * fails, we just zero-fill it. Live with it. 2324 */ 2325 if (unlikely(!src)) { 2326 void *kaddr = kmap_atomic(dst); 2327 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2328 2329 /* 2330 * This really shouldn't fail, because the page is there 2331 * in the page tables. But it might just be unreadable, 2332 * in which case we just give up and fill the result with 2333 * zeroes. 2334 */ 2335 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2336 clear_page(kaddr); 2337 kunmap_atomic(kaddr); 2338 flush_dcache_page(dst); 2339 } else 2340 copy_user_highpage(dst, src, va, vma); 2341 } 2342 2343 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2344 { 2345 struct file *vm_file = vma->vm_file; 2346 2347 if (vm_file) 2348 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2349 2350 /* 2351 * Special mappings (e.g. VDSO) do not have any file so fake 2352 * a default GFP_KERNEL for them. 2353 */ 2354 return GFP_KERNEL; 2355 } 2356 2357 /* 2358 * Notify the address space that the page is about to become writable so that 2359 * it can prohibit this or wait for the page to get into an appropriate state. 2360 * 2361 * We do this without the lock held, so that it can sleep if it needs to. 2362 */ 2363 static int do_page_mkwrite(struct vm_fault *vmf) 2364 { 2365 int ret; 2366 struct page *page = vmf->page; 2367 unsigned int old_flags = vmf->flags; 2368 2369 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2370 2371 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2372 /* Restore original flags so that caller is not surprised */ 2373 vmf->flags = old_flags; 2374 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2375 return ret; 2376 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2377 lock_page(page); 2378 if (!page->mapping) { 2379 unlock_page(page); 2380 return 0; /* retry */ 2381 } 2382 ret |= VM_FAULT_LOCKED; 2383 } else 2384 VM_BUG_ON_PAGE(!PageLocked(page), page); 2385 return ret; 2386 } 2387 2388 /* 2389 * Handle dirtying of a page in shared file mapping on a write fault. 2390 * 2391 * The function expects the page to be locked and unlocks it. 2392 */ 2393 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2394 struct page *page) 2395 { 2396 struct address_space *mapping; 2397 bool dirtied; 2398 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2399 2400 dirtied = set_page_dirty(page); 2401 VM_BUG_ON_PAGE(PageAnon(page), page); 2402 /* 2403 * Take a local copy of the address_space - page.mapping may be zeroed 2404 * by truncate after unlock_page(). The address_space itself remains 2405 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2406 * release semantics to prevent the compiler from undoing this copying. 2407 */ 2408 mapping = page_rmapping(page); 2409 unlock_page(page); 2410 2411 if ((dirtied || page_mkwrite) && mapping) { 2412 /* 2413 * Some device drivers do not set page.mapping 2414 * but still dirty their pages 2415 */ 2416 balance_dirty_pages_ratelimited(mapping); 2417 } 2418 2419 if (!page_mkwrite) 2420 file_update_time(vma->vm_file); 2421 } 2422 2423 /* 2424 * Handle write page faults for pages that can be reused in the current vma 2425 * 2426 * This can happen either due to the mapping being with the VM_SHARED flag, 2427 * or due to us being the last reference standing to the page. In either 2428 * case, all we need to do here is to mark the page as writable and update 2429 * any related book-keeping. 2430 */ 2431 static inline void wp_page_reuse(struct vm_fault *vmf) 2432 __releases(vmf->ptl) 2433 { 2434 struct vm_area_struct *vma = vmf->vma; 2435 struct page *page = vmf->page; 2436 pte_t entry; 2437 /* 2438 * Clear the pages cpupid information as the existing 2439 * information potentially belongs to a now completely 2440 * unrelated process. 2441 */ 2442 if (page) 2443 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2444 2445 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2446 entry = pte_mkyoung(vmf->orig_pte); 2447 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2448 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2449 update_mmu_cache(vma, vmf->address, vmf->pte); 2450 pte_unmap_unlock(vmf->pte, vmf->ptl); 2451 } 2452 2453 /* 2454 * Handle the case of a page which we actually need to copy to a new page. 2455 * 2456 * Called with mmap_sem locked and the old page referenced, but 2457 * without the ptl held. 2458 * 2459 * High level logic flow: 2460 * 2461 * - Allocate a page, copy the content of the old page to the new one. 2462 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2463 * - Take the PTL. If the pte changed, bail out and release the allocated page 2464 * - If the pte is still the way we remember it, update the page table and all 2465 * relevant references. This includes dropping the reference the page-table 2466 * held to the old page, as well as updating the rmap. 2467 * - In any case, unlock the PTL and drop the reference we took to the old page. 2468 */ 2469 static int wp_page_copy(struct vm_fault *vmf) 2470 { 2471 struct vm_area_struct *vma = vmf->vma; 2472 struct mm_struct *mm = vma->vm_mm; 2473 struct page *old_page = vmf->page; 2474 struct page *new_page = NULL; 2475 pte_t entry; 2476 int page_copied = 0; 2477 const unsigned long mmun_start = vmf->address & PAGE_MASK; 2478 const unsigned long mmun_end = mmun_start + PAGE_SIZE; 2479 struct mem_cgroup *memcg; 2480 2481 if (unlikely(anon_vma_prepare(vma))) 2482 goto oom; 2483 2484 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2485 new_page = alloc_zeroed_user_highpage_movable(vma, 2486 vmf->address); 2487 if (!new_page) 2488 goto oom; 2489 } else { 2490 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2491 vmf->address); 2492 if (!new_page) 2493 goto oom; 2494 cow_user_page(new_page, old_page, vmf->address, vma); 2495 } 2496 2497 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false)) 2498 goto oom_free_new; 2499 2500 __SetPageUptodate(new_page); 2501 2502 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end); 2503 2504 /* 2505 * Re-check the pte - we dropped the lock 2506 */ 2507 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2508 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2509 if (old_page) { 2510 if (!PageAnon(old_page)) { 2511 dec_mm_counter_fast(mm, 2512 mm_counter_file(old_page)); 2513 inc_mm_counter_fast(mm, MM_ANONPAGES); 2514 } 2515 } else { 2516 inc_mm_counter_fast(mm, MM_ANONPAGES); 2517 } 2518 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2519 entry = mk_pte(new_page, vma->vm_page_prot); 2520 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2521 /* 2522 * Clear the pte entry and flush it first, before updating the 2523 * pte with the new entry. This will avoid a race condition 2524 * seen in the presence of one thread doing SMC and another 2525 * thread doing COW. 2526 */ 2527 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2528 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2529 mem_cgroup_commit_charge(new_page, memcg, false, false); 2530 lru_cache_add_active_or_unevictable(new_page, vma); 2531 /* 2532 * We call the notify macro here because, when using secondary 2533 * mmu page tables (such as kvm shadow page tables), we want the 2534 * new page to be mapped directly into the secondary page table. 2535 */ 2536 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2537 update_mmu_cache(vma, vmf->address, vmf->pte); 2538 if (old_page) { 2539 /* 2540 * Only after switching the pte to the new page may 2541 * we remove the mapcount here. Otherwise another 2542 * process may come and find the rmap count decremented 2543 * before the pte is switched to the new page, and 2544 * "reuse" the old page writing into it while our pte 2545 * here still points into it and can be read by other 2546 * threads. 2547 * 2548 * The critical issue is to order this 2549 * page_remove_rmap with the ptp_clear_flush above. 2550 * Those stores are ordered by (if nothing else,) 2551 * the barrier present in the atomic_add_negative 2552 * in page_remove_rmap. 2553 * 2554 * Then the TLB flush in ptep_clear_flush ensures that 2555 * no process can access the old page before the 2556 * decremented mapcount is visible. And the old page 2557 * cannot be reused until after the decremented 2558 * mapcount is visible. So transitively, TLBs to 2559 * old page will be flushed before it can be reused. 2560 */ 2561 page_remove_rmap(old_page, false); 2562 } 2563 2564 /* Free the old page.. */ 2565 new_page = old_page; 2566 page_copied = 1; 2567 } else { 2568 mem_cgroup_cancel_charge(new_page, memcg, false); 2569 } 2570 2571 if (new_page) 2572 put_page(new_page); 2573 2574 pte_unmap_unlock(vmf->pte, vmf->ptl); 2575 /* 2576 * No need to double call mmu_notifier->invalidate_range() callback as 2577 * the above ptep_clear_flush_notify() did already call it. 2578 */ 2579 mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end); 2580 if (old_page) { 2581 /* 2582 * Don't let another task, with possibly unlocked vma, 2583 * keep the mlocked page. 2584 */ 2585 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2586 lock_page(old_page); /* LRU manipulation */ 2587 if (PageMlocked(old_page)) 2588 munlock_vma_page(old_page); 2589 unlock_page(old_page); 2590 } 2591 put_page(old_page); 2592 } 2593 return page_copied ? VM_FAULT_WRITE : 0; 2594 oom_free_new: 2595 put_page(new_page); 2596 oom: 2597 if (old_page) 2598 put_page(old_page); 2599 return VM_FAULT_OOM; 2600 } 2601 2602 /** 2603 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2604 * writeable once the page is prepared 2605 * 2606 * @vmf: structure describing the fault 2607 * 2608 * This function handles all that is needed to finish a write page fault in a 2609 * shared mapping due to PTE being read-only once the mapped page is prepared. 2610 * It handles locking of PTE and modifying it. The function returns 2611 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2612 * lock. 2613 * 2614 * The function expects the page to be locked or other protection against 2615 * concurrent faults / writeback (such as DAX radix tree locks). 2616 */ 2617 int finish_mkwrite_fault(struct vm_fault *vmf) 2618 { 2619 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2620 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2621 &vmf->ptl); 2622 /* 2623 * We might have raced with another page fault while we released the 2624 * pte_offset_map_lock. 2625 */ 2626 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2627 pte_unmap_unlock(vmf->pte, vmf->ptl); 2628 return VM_FAULT_NOPAGE; 2629 } 2630 wp_page_reuse(vmf); 2631 return 0; 2632 } 2633 2634 /* 2635 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2636 * mapping 2637 */ 2638 static int wp_pfn_shared(struct vm_fault *vmf) 2639 { 2640 struct vm_area_struct *vma = vmf->vma; 2641 2642 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2643 int ret; 2644 2645 pte_unmap_unlock(vmf->pte, vmf->ptl); 2646 vmf->flags |= FAULT_FLAG_MKWRITE; 2647 ret = vma->vm_ops->pfn_mkwrite(vmf); 2648 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2649 return ret; 2650 return finish_mkwrite_fault(vmf); 2651 } 2652 wp_page_reuse(vmf); 2653 return VM_FAULT_WRITE; 2654 } 2655 2656 static int wp_page_shared(struct vm_fault *vmf) 2657 __releases(vmf->ptl) 2658 { 2659 struct vm_area_struct *vma = vmf->vma; 2660 2661 get_page(vmf->page); 2662 2663 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2664 int tmp; 2665 2666 pte_unmap_unlock(vmf->pte, vmf->ptl); 2667 tmp = do_page_mkwrite(vmf); 2668 if (unlikely(!tmp || (tmp & 2669 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2670 put_page(vmf->page); 2671 return tmp; 2672 } 2673 tmp = finish_mkwrite_fault(vmf); 2674 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2675 unlock_page(vmf->page); 2676 put_page(vmf->page); 2677 return tmp; 2678 } 2679 } else { 2680 wp_page_reuse(vmf); 2681 lock_page(vmf->page); 2682 } 2683 fault_dirty_shared_page(vma, vmf->page); 2684 put_page(vmf->page); 2685 2686 return VM_FAULT_WRITE; 2687 } 2688 2689 /* 2690 * This routine handles present pages, when users try to write 2691 * to a shared page. It is done by copying the page to a new address 2692 * and decrementing the shared-page counter for the old page. 2693 * 2694 * Note that this routine assumes that the protection checks have been 2695 * done by the caller (the low-level page fault routine in most cases). 2696 * Thus we can safely just mark it writable once we've done any necessary 2697 * COW. 2698 * 2699 * We also mark the page dirty at this point even though the page will 2700 * change only once the write actually happens. This avoids a few races, 2701 * and potentially makes it more efficient. 2702 * 2703 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2704 * but allow concurrent faults), with pte both mapped and locked. 2705 * We return with mmap_sem still held, but pte unmapped and unlocked. 2706 */ 2707 static int do_wp_page(struct vm_fault *vmf) 2708 __releases(vmf->ptl) 2709 { 2710 struct vm_area_struct *vma = vmf->vma; 2711 2712 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2713 if (!vmf->page) { 2714 /* 2715 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2716 * VM_PFNMAP VMA. 2717 * 2718 * We should not cow pages in a shared writeable mapping. 2719 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2720 */ 2721 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2722 (VM_WRITE|VM_SHARED)) 2723 return wp_pfn_shared(vmf); 2724 2725 pte_unmap_unlock(vmf->pte, vmf->ptl); 2726 return wp_page_copy(vmf); 2727 } 2728 2729 /* 2730 * Take out anonymous pages first, anonymous shared vmas are 2731 * not dirty accountable. 2732 */ 2733 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2734 int total_map_swapcount; 2735 if (!trylock_page(vmf->page)) { 2736 get_page(vmf->page); 2737 pte_unmap_unlock(vmf->pte, vmf->ptl); 2738 lock_page(vmf->page); 2739 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2740 vmf->address, &vmf->ptl); 2741 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2742 unlock_page(vmf->page); 2743 pte_unmap_unlock(vmf->pte, vmf->ptl); 2744 put_page(vmf->page); 2745 return 0; 2746 } 2747 put_page(vmf->page); 2748 } 2749 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2750 if (total_map_swapcount == 1) { 2751 /* 2752 * The page is all ours. Move it to 2753 * our anon_vma so the rmap code will 2754 * not search our parent or siblings. 2755 * Protected against the rmap code by 2756 * the page lock. 2757 */ 2758 page_move_anon_rmap(vmf->page, vma); 2759 } 2760 unlock_page(vmf->page); 2761 wp_page_reuse(vmf); 2762 return VM_FAULT_WRITE; 2763 } 2764 unlock_page(vmf->page); 2765 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2766 (VM_WRITE|VM_SHARED))) { 2767 return wp_page_shared(vmf); 2768 } 2769 2770 /* 2771 * Ok, we need to copy. Oh, well.. 2772 */ 2773 get_page(vmf->page); 2774 2775 pte_unmap_unlock(vmf->pte, vmf->ptl); 2776 return wp_page_copy(vmf); 2777 } 2778 2779 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2780 unsigned long start_addr, unsigned long end_addr, 2781 struct zap_details *details) 2782 { 2783 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2784 } 2785 2786 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2787 struct zap_details *details) 2788 { 2789 struct vm_area_struct *vma; 2790 pgoff_t vba, vea, zba, zea; 2791 2792 vma_interval_tree_foreach(vma, root, 2793 details->first_index, details->last_index) { 2794 2795 vba = vma->vm_pgoff; 2796 vea = vba + vma_pages(vma) - 1; 2797 zba = details->first_index; 2798 if (zba < vba) 2799 zba = vba; 2800 zea = details->last_index; 2801 if (zea > vea) 2802 zea = vea; 2803 2804 unmap_mapping_range_vma(vma, 2805 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2806 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2807 details); 2808 } 2809 } 2810 2811 /** 2812 * unmap_mapping_pages() - Unmap pages from processes. 2813 * @mapping: The address space containing pages to be unmapped. 2814 * @start: Index of first page to be unmapped. 2815 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2816 * @even_cows: Whether to unmap even private COWed pages. 2817 * 2818 * Unmap the pages in this address space from any userspace process which 2819 * has them mmaped. Generally, you want to remove COWed pages as well when 2820 * a file is being truncated, but not when invalidating pages from the page 2821 * cache. 2822 */ 2823 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2824 pgoff_t nr, bool even_cows) 2825 { 2826 struct zap_details details = { }; 2827 2828 details.check_mapping = even_cows ? NULL : mapping; 2829 details.first_index = start; 2830 details.last_index = start + nr - 1; 2831 if (details.last_index < details.first_index) 2832 details.last_index = ULONG_MAX; 2833 2834 i_mmap_lock_write(mapping); 2835 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2836 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2837 i_mmap_unlock_write(mapping); 2838 } 2839 2840 /** 2841 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2842 * address_space corresponding to the specified byte range in the underlying 2843 * file. 2844 * 2845 * @mapping: the address space containing mmaps to be unmapped. 2846 * @holebegin: byte in first page to unmap, relative to the start of 2847 * the underlying file. This will be rounded down to a PAGE_SIZE 2848 * boundary. Note that this is different from truncate_pagecache(), which 2849 * must keep the partial page. In contrast, we must get rid of 2850 * partial pages. 2851 * @holelen: size of prospective hole in bytes. This will be rounded 2852 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2853 * end of the file. 2854 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2855 * but 0 when invalidating pagecache, don't throw away private data. 2856 */ 2857 void unmap_mapping_range(struct address_space *mapping, 2858 loff_t const holebegin, loff_t const holelen, int even_cows) 2859 { 2860 pgoff_t hba = holebegin >> PAGE_SHIFT; 2861 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2862 2863 /* Check for overflow. */ 2864 if (sizeof(holelen) > sizeof(hlen)) { 2865 long long holeend = 2866 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2867 if (holeend & ~(long long)ULONG_MAX) 2868 hlen = ULONG_MAX - hba + 1; 2869 } 2870 2871 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2872 } 2873 EXPORT_SYMBOL(unmap_mapping_range); 2874 2875 /* 2876 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2877 * but allow concurrent faults), and pte mapped but not yet locked. 2878 * We return with pte unmapped and unlocked. 2879 * 2880 * We return with the mmap_sem locked or unlocked in the same cases 2881 * as does filemap_fault(). 2882 */ 2883 int do_swap_page(struct vm_fault *vmf) 2884 { 2885 struct vm_area_struct *vma = vmf->vma; 2886 struct page *page = NULL, *swapcache = NULL; 2887 struct mem_cgroup *memcg; 2888 struct vma_swap_readahead swap_ra; 2889 swp_entry_t entry; 2890 pte_t pte; 2891 int locked; 2892 int exclusive = 0; 2893 int ret = 0; 2894 bool vma_readahead = swap_use_vma_readahead(); 2895 2896 if (vma_readahead) { 2897 page = swap_readahead_detect(vmf, &swap_ra); 2898 swapcache = page; 2899 } 2900 2901 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) { 2902 if (page) 2903 put_page(page); 2904 goto out; 2905 } 2906 2907 entry = pte_to_swp_entry(vmf->orig_pte); 2908 if (unlikely(non_swap_entry(entry))) { 2909 if (is_migration_entry(entry)) { 2910 migration_entry_wait(vma->vm_mm, vmf->pmd, 2911 vmf->address); 2912 } else if (is_device_private_entry(entry)) { 2913 /* 2914 * For un-addressable device memory we call the pgmap 2915 * fault handler callback. The callback must migrate 2916 * the page back to some CPU accessible page. 2917 */ 2918 ret = device_private_entry_fault(vma, vmf->address, entry, 2919 vmf->flags, vmf->pmd); 2920 } else if (is_hwpoison_entry(entry)) { 2921 ret = VM_FAULT_HWPOISON; 2922 } else { 2923 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2924 ret = VM_FAULT_SIGBUS; 2925 } 2926 goto out; 2927 } 2928 2929 2930 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2931 if (!page) { 2932 page = lookup_swap_cache(entry, vma_readahead ? vma : NULL, 2933 vmf->address); 2934 swapcache = page; 2935 } 2936 2937 if (!page) { 2938 struct swap_info_struct *si = swp_swap_info(entry); 2939 2940 if (si->flags & SWP_SYNCHRONOUS_IO && 2941 __swap_count(si, entry) == 1) { 2942 /* skip swapcache */ 2943 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 2944 if (page) { 2945 __SetPageLocked(page); 2946 __SetPageSwapBacked(page); 2947 set_page_private(page, entry.val); 2948 lru_cache_add_anon(page); 2949 swap_readpage(page, true); 2950 } 2951 } else { 2952 if (vma_readahead) 2953 page = do_swap_page_readahead(entry, 2954 GFP_HIGHUSER_MOVABLE, vmf, &swap_ra); 2955 else 2956 page = swapin_readahead(entry, 2957 GFP_HIGHUSER_MOVABLE, vma, vmf->address); 2958 swapcache = page; 2959 } 2960 2961 if (!page) { 2962 /* 2963 * Back out if somebody else faulted in this pte 2964 * while we released the pte lock. 2965 */ 2966 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2967 vmf->address, &vmf->ptl); 2968 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2969 ret = VM_FAULT_OOM; 2970 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2971 goto unlock; 2972 } 2973 2974 /* Had to read the page from swap area: Major fault */ 2975 ret = VM_FAULT_MAJOR; 2976 count_vm_event(PGMAJFAULT); 2977 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2978 } else if (PageHWPoison(page)) { 2979 /* 2980 * hwpoisoned dirty swapcache pages are kept for killing 2981 * owner processes (which may be unknown at hwpoison time) 2982 */ 2983 ret = VM_FAULT_HWPOISON; 2984 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2985 swapcache = page; 2986 goto out_release; 2987 } 2988 2989 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2990 2991 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2992 if (!locked) { 2993 ret |= VM_FAULT_RETRY; 2994 goto out_release; 2995 } 2996 2997 /* 2998 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2999 * release the swapcache from under us. The page pin, and pte_same 3000 * test below, are not enough to exclude that. Even if it is still 3001 * swapcache, we need to check that the page's swap has not changed. 3002 */ 3003 if (unlikely((!PageSwapCache(page) || 3004 page_private(page) != entry.val)) && swapcache) 3005 goto out_page; 3006 3007 page = ksm_might_need_to_copy(page, vma, vmf->address); 3008 if (unlikely(!page)) { 3009 ret = VM_FAULT_OOM; 3010 page = swapcache; 3011 goto out_page; 3012 } 3013 3014 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, 3015 &memcg, false)) { 3016 ret = VM_FAULT_OOM; 3017 goto out_page; 3018 } 3019 3020 /* 3021 * Back out if somebody else already faulted in this pte. 3022 */ 3023 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3024 &vmf->ptl); 3025 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 3026 goto out_nomap; 3027 3028 if (unlikely(!PageUptodate(page))) { 3029 ret = VM_FAULT_SIGBUS; 3030 goto out_nomap; 3031 } 3032 3033 /* 3034 * The page isn't present yet, go ahead with the fault. 3035 * 3036 * Be careful about the sequence of operations here. 3037 * To get its accounting right, reuse_swap_page() must be called 3038 * while the page is counted on swap but not yet in mapcount i.e. 3039 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 3040 * must be called after the swap_free(), or it will never succeed. 3041 */ 3042 3043 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3044 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 3045 pte = mk_pte(page, vma->vm_page_prot); 3046 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 3047 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 3048 vmf->flags &= ~FAULT_FLAG_WRITE; 3049 ret |= VM_FAULT_WRITE; 3050 exclusive = RMAP_EXCLUSIVE; 3051 } 3052 flush_icache_page(vma, page); 3053 if (pte_swp_soft_dirty(vmf->orig_pte)) 3054 pte = pte_mksoft_dirty(pte); 3055 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 3056 vmf->orig_pte = pte; 3057 3058 /* ksm created a completely new copy */ 3059 if (unlikely(page != swapcache && swapcache)) { 3060 page_add_new_anon_rmap(page, vma, vmf->address, false); 3061 mem_cgroup_commit_charge(page, memcg, false, false); 3062 lru_cache_add_active_or_unevictable(page, vma); 3063 } else { 3064 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 3065 mem_cgroup_commit_charge(page, memcg, true, false); 3066 activate_page(page); 3067 } 3068 3069 swap_free(entry); 3070 if (mem_cgroup_swap_full(page) || 3071 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 3072 try_to_free_swap(page); 3073 unlock_page(page); 3074 if (page != swapcache && swapcache) { 3075 /* 3076 * Hold the lock to avoid the swap entry to be reused 3077 * until we take the PT lock for the pte_same() check 3078 * (to avoid false positives from pte_same). For 3079 * further safety release the lock after the swap_free 3080 * so that the swap count won't change under a 3081 * parallel locked swapcache. 3082 */ 3083 unlock_page(swapcache); 3084 put_page(swapcache); 3085 } 3086 3087 if (vmf->flags & FAULT_FLAG_WRITE) { 3088 ret |= do_wp_page(vmf); 3089 if (ret & VM_FAULT_ERROR) 3090 ret &= VM_FAULT_ERROR; 3091 goto out; 3092 } 3093 3094 /* No need to invalidate - it was non-present before */ 3095 update_mmu_cache(vma, vmf->address, vmf->pte); 3096 unlock: 3097 pte_unmap_unlock(vmf->pte, vmf->ptl); 3098 out: 3099 return ret; 3100 out_nomap: 3101 mem_cgroup_cancel_charge(page, memcg, false); 3102 pte_unmap_unlock(vmf->pte, vmf->ptl); 3103 out_page: 3104 unlock_page(page); 3105 out_release: 3106 put_page(page); 3107 if (page != swapcache && swapcache) { 3108 unlock_page(swapcache); 3109 put_page(swapcache); 3110 } 3111 return ret; 3112 } 3113 3114 /* 3115 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3116 * but allow concurrent faults), and pte mapped but not yet locked. 3117 * We return with mmap_sem still held, but pte unmapped and unlocked. 3118 */ 3119 static int do_anonymous_page(struct vm_fault *vmf) 3120 { 3121 struct vm_area_struct *vma = vmf->vma; 3122 struct mem_cgroup *memcg; 3123 struct page *page; 3124 int ret = 0; 3125 pte_t entry; 3126 3127 /* File mapping without ->vm_ops ? */ 3128 if (vma->vm_flags & VM_SHARED) 3129 return VM_FAULT_SIGBUS; 3130 3131 /* 3132 * Use pte_alloc() instead of pte_alloc_map(). We can't run 3133 * pte_offset_map() on pmds where a huge pmd might be created 3134 * from a different thread. 3135 * 3136 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 3137 * parallel threads are excluded by other means. 3138 * 3139 * Here we only have down_read(mmap_sem). 3140 */ 3141 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address)) 3142 return VM_FAULT_OOM; 3143 3144 /* See the comment in pte_alloc_one_map() */ 3145 if (unlikely(pmd_trans_unstable(vmf->pmd))) 3146 return 0; 3147 3148 /* Use the zero-page for reads */ 3149 if (!(vmf->flags & FAULT_FLAG_WRITE) && 3150 !mm_forbids_zeropage(vma->vm_mm)) { 3151 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 3152 vma->vm_page_prot)); 3153 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 3154 vmf->address, &vmf->ptl); 3155 if (!pte_none(*vmf->pte)) 3156 goto unlock; 3157 ret = check_stable_address_space(vma->vm_mm); 3158 if (ret) 3159 goto unlock; 3160 /* Deliver the page fault to userland, check inside PT lock */ 3161 if (userfaultfd_missing(vma)) { 3162 pte_unmap_unlock(vmf->pte, vmf->ptl); 3163 return handle_userfault(vmf, VM_UFFD_MISSING); 3164 } 3165 goto setpte; 3166 } 3167 3168 /* Allocate our own private page. */ 3169 if (unlikely(anon_vma_prepare(vma))) 3170 goto oom; 3171 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 3172 if (!page) 3173 goto oom; 3174 3175 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false)) 3176 goto oom_free_page; 3177 3178 /* 3179 * The memory barrier inside __SetPageUptodate makes sure that 3180 * preceeding stores to the page contents become visible before 3181 * the set_pte_at() write. 3182 */ 3183 __SetPageUptodate(page); 3184 3185 entry = mk_pte(page, vma->vm_page_prot); 3186 if (vma->vm_flags & VM_WRITE) 3187 entry = pte_mkwrite(pte_mkdirty(entry)); 3188 3189 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3190 &vmf->ptl); 3191 if (!pte_none(*vmf->pte)) 3192 goto release; 3193 3194 ret = check_stable_address_space(vma->vm_mm); 3195 if (ret) 3196 goto release; 3197 3198 /* Deliver the page fault to userland, check inside PT lock */ 3199 if (userfaultfd_missing(vma)) { 3200 pte_unmap_unlock(vmf->pte, vmf->ptl); 3201 mem_cgroup_cancel_charge(page, memcg, false); 3202 put_page(page); 3203 return handle_userfault(vmf, VM_UFFD_MISSING); 3204 } 3205 3206 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3207 page_add_new_anon_rmap(page, vma, vmf->address, false); 3208 mem_cgroup_commit_charge(page, memcg, false, false); 3209 lru_cache_add_active_or_unevictable(page, vma); 3210 setpte: 3211 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3212 3213 /* No need to invalidate - it was non-present before */ 3214 update_mmu_cache(vma, vmf->address, vmf->pte); 3215 unlock: 3216 pte_unmap_unlock(vmf->pte, vmf->ptl); 3217 return ret; 3218 release: 3219 mem_cgroup_cancel_charge(page, memcg, false); 3220 put_page(page); 3221 goto unlock; 3222 oom_free_page: 3223 put_page(page); 3224 oom: 3225 return VM_FAULT_OOM; 3226 } 3227 3228 /* 3229 * The mmap_sem must have been held on entry, and may have been 3230 * released depending on flags and vma->vm_ops->fault() return value. 3231 * See filemap_fault() and __lock_page_retry(). 3232 */ 3233 static int __do_fault(struct vm_fault *vmf) 3234 { 3235 struct vm_area_struct *vma = vmf->vma; 3236 int ret; 3237 3238 ret = vma->vm_ops->fault(vmf); 3239 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 3240 VM_FAULT_DONE_COW))) 3241 return ret; 3242 3243 if (unlikely(PageHWPoison(vmf->page))) { 3244 if (ret & VM_FAULT_LOCKED) 3245 unlock_page(vmf->page); 3246 put_page(vmf->page); 3247 vmf->page = NULL; 3248 return VM_FAULT_HWPOISON; 3249 } 3250 3251 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3252 lock_page(vmf->page); 3253 else 3254 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3255 3256 return ret; 3257 } 3258 3259 /* 3260 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3261 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3262 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3263 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3264 */ 3265 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3266 { 3267 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3268 } 3269 3270 static int pte_alloc_one_map(struct vm_fault *vmf) 3271 { 3272 struct vm_area_struct *vma = vmf->vma; 3273 3274 if (!pmd_none(*vmf->pmd)) 3275 goto map_pte; 3276 if (vmf->prealloc_pte) { 3277 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3278 if (unlikely(!pmd_none(*vmf->pmd))) { 3279 spin_unlock(vmf->ptl); 3280 goto map_pte; 3281 } 3282 3283 mm_inc_nr_ptes(vma->vm_mm); 3284 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3285 spin_unlock(vmf->ptl); 3286 vmf->prealloc_pte = NULL; 3287 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) { 3288 return VM_FAULT_OOM; 3289 } 3290 map_pte: 3291 /* 3292 * If a huge pmd materialized under us just retry later. Use 3293 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3294 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3295 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3296 * running immediately after a huge pmd fault in a different thread of 3297 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3298 * All we have to ensure is that it is a regular pmd that we can walk 3299 * with pte_offset_map() and we can do that through an atomic read in 3300 * C, which is what pmd_trans_unstable() provides. 3301 */ 3302 if (pmd_devmap_trans_unstable(vmf->pmd)) 3303 return VM_FAULT_NOPAGE; 3304 3305 /* 3306 * At this point we know that our vmf->pmd points to a page of ptes 3307 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3308 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3309 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3310 * be valid and we will re-check to make sure the vmf->pte isn't 3311 * pte_none() under vmf->ptl protection when we return to 3312 * alloc_set_pte(). 3313 */ 3314 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3315 &vmf->ptl); 3316 return 0; 3317 } 3318 3319 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3320 3321 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3322 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3323 unsigned long haddr) 3324 { 3325 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3326 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3327 return false; 3328 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3329 return false; 3330 return true; 3331 } 3332 3333 static void deposit_prealloc_pte(struct vm_fault *vmf) 3334 { 3335 struct vm_area_struct *vma = vmf->vma; 3336 3337 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3338 /* 3339 * We are going to consume the prealloc table, 3340 * count that as nr_ptes. 3341 */ 3342 mm_inc_nr_ptes(vma->vm_mm); 3343 vmf->prealloc_pte = NULL; 3344 } 3345 3346 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3347 { 3348 struct vm_area_struct *vma = vmf->vma; 3349 bool write = vmf->flags & FAULT_FLAG_WRITE; 3350 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3351 pmd_t entry; 3352 int i, ret; 3353 3354 if (!transhuge_vma_suitable(vma, haddr)) 3355 return VM_FAULT_FALLBACK; 3356 3357 ret = VM_FAULT_FALLBACK; 3358 page = compound_head(page); 3359 3360 /* 3361 * Archs like ppc64 need additonal space to store information 3362 * related to pte entry. Use the preallocated table for that. 3363 */ 3364 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3365 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address); 3366 if (!vmf->prealloc_pte) 3367 return VM_FAULT_OOM; 3368 smp_wmb(); /* See comment in __pte_alloc() */ 3369 } 3370 3371 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3372 if (unlikely(!pmd_none(*vmf->pmd))) 3373 goto out; 3374 3375 for (i = 0; i < HPAGE_PMD_NR; i++) 3376 flush_icache_page(vma, page + i); 3377 3378 entry = mk_huge_pmd(page, vma->vm_page_prot); 3379 if (write) 3380 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3381 3382 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR); 3383 page_add_file_rmap(page, true); 3384 /* 3385 * deposit and withdraw with pmd lock held 3386 */ 3387 if (arch_needs_pgtable_deposit()) 3388 deposit_prealloc_pte(vmf); 3389 3390 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3391 3392 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3393 3394 /* fault is handled */ 3395 ret = 0; 3396 count_vm_event(THP_FILE_MAPPED); 3397 out: 3398 spin_unlock(vmf->ptl); 3399 return ret; 3400 } 3401 #else 3402 static int do_set_pmd(struct vm_fault *vmf, struct page *page) 3403 { 3404 BUILD_BUG(); 3405 return 0; 3406 } 3407 #endif 3408 3409 /** 3410 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3411 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3412 * 3413 * @vmf: fault environment 3414 * @memcg: memcg to charge page (only for private mappings) 3415 * @page: page to map 3416 * 3417 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3418 * return. 3419 * 3420 * Target users are page handler itself and implementations of 3421 * vm_ops->map_pages. 3422 */ 3423 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3424 struct page *page) 3425 { 3426 struct vm_area_struct *vma = vmf->vma; 3427 bool write = vmf->flags & FAULT_FLAG_WRITE; 3428 pte_t entry; 3429 int ret; 3430 3431 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3432 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3433 /* THP on COW? */ 3434 VM_BUG_ON_PAGE(memcg, page); 3435 3436 ret = do_set_pmd(vmf, page); 3437 if (ret != VM_FAULT_FALLBACK) 3438 return ret; 3439 } 3440 3441 if (!vmf->pte) { 3442 ret = pte_alloc_one_map(vmf); 3443 if (ret) 3444 return ret; 3445 } 3446 3447 /* Re-check under ptl */ 3448 if (unlikely(!pte_none(*vmf->pte))) 3449 return VM_FAULT_NOPAGE; 3450 3451 flush_icache_page(vma, page); 3452 entry = mk_pte(page, vma->vm_page_prot); 3453 if (write) 3454 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3455 /* copy-on-write page */ 3456 if (write && !(vma->vm_flags & VM_SHARED)) { 3457 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3458 page_add_new_anon_rmap(page, vma, vmf->address, false); 3459 mem_cgroup_commit_charge(page, memcg, false, false); 3460 lru_cache_add_active_or_unevictable(page, vma); 3461 } else { 3462 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3463 page_add_file_rmap(page, false); 3464 } 3465 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3466 3467 /* no need to invalidate: a not-present page won't be cached */ 3468 update_mmu_cache(vma, vmf->address, vmf->pte); 3469 3470 return 0; 3471 } 3472 3473 3474 /** 3475 * finish_fault - finish page fault once we have prepared the page to fault 3476 * 3477 * @vmf: structure describing the fault 3478 * 3479 * This function handles all that is needed to finish a page fault once the 3480 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3481 * given page, adds reverse page mapping, handles memcg charges and LRU 3482 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3483 * error. 3484 * 3485 * The function expects the page to be locked and on success it consumes a 3486 * reference of a page being mapped (for the PTE which maps it). 3487 */ 3488 int finish_fault(struct vm_fault *vmf) 3489 { 3490 struct page *page; 3491 int ret = 0; 3492 3493 /* Did we COW the page? */ 3494 if ((vmf->flags & FAULT_FLAG_WRITE) && 3495 !(vmf->vma->vm_flags & VM_SHARED)) 3496 page = vmf->cow_page; 3497 else 3498 page = vmf->page; 3499 3500 /* 3501 * check even for read faults because we might have lost our CoWed 3502 * page 3503 */ 3504 if (!(vmf->vma->vm_flags & VM_SHARED)) 3505 ret = check_stable_address_space(vmf->vma->vm_mm); 3506 if (!ret) 3507 ret = alloc_set_pte(vmf, vmf->memcg, page); 3508 if (vmf->pte) 3509 pte_unmap_unlock(vmf->pte, vmf->ptl); 3510 return ret; 3511 } 3512 3513 static unsigned long fault_around_bytes __read_mostly = 3514 rounddown_pow_of_two(65536); 3515 3516 #ifdef CONFIG_DEBUG_FS 3517 static int fault_around_bytes_get(void *data, u64 *val) 3518 { 3519 *val = fault_around_bytes; 3520 return 0; 3521 } 3522 3523 /* 3524 * fault_around_bytes must be rounded down to the nearest page order as it's 3525 * what do_fault_around() expects to see. 3526 */ 3527 static int fault_around_bytes_set(void *data, u64 val) 3528 { 3529 if (val / PAGE_SIZE > PTRS_PER_PTE) 3530 return -EINVAL; 3531 if (val > PAGE_SIZE) 3532 fault_around_bytes = rounddown_pow_of_two(val); 3533 else 3534 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3535 return 0; 3536 } 3537 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3538 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3539 3540 static int __init fault_around_debugfs(void) 3541 { 3542 void *ret; 3543 3544 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3545 &fault_around_bytes_fops); 3546 if (!ret) 3547 pr_warn("Failed to create fault_around_bytes in debugfs"); 3548 return 0; 3549 } 3550 late_initcall(fault_around_debugfs); 3551 #endif 3552 3553 /* 3554 * do_fault_around() tries to map few pages around the fault address. The hope 3555 * is that the pages will be needed soon and this will lower the number of 3556 * faults to handle. 3557 * 3558 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3559 * not ready to be mapped: not up-to-date, locked, etc. 3560 * 3561 * This function is called with the page table lock taken. In the split ptlock 3562 * case the page table lock only protects only those entries which belong to 3563 * the page table corresponding to the fault address. 3564 * 3565 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3566 * only once. 3567 * 3568 * fault_around_bytes defines how many bytes we'll try to map. 3569 * do_fault_around() expects it to be set to a power of two less than or equal 3570 * to PTRS_PER_PTE. 3571 * 3572 * The virtual address of the area that we map is naturally aligned to 3573 * fault_around_bytes rounded down to the machine page size 3574 * (and therefore to page order). This way it's easier to guarantee 3575 * that we don't cross page table boundaries. 3576 */ 3577 static int do_fault_around(struct vm_fault *vmf) 3578 { 3579 unsigned long address = vmf->address, nr_pages, mask; 3580 pgoff_t start_pgoff = vmf->pgoff; 3581 pgoff_t end_pgoff; 3582 int off, ret = 0; 3583 3584 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3585 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3586 3587 vmf->address = max(address & mask, vmf->vma->vm_start); 3588 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3589 start_pgoff -= off; 3590 3591 /* 3592 * end_pgoff is either the end of the page table, the end of 3593 * the vma or nr_pages from start_pgoff, depending what is nearest. 3594 */ 3595 end_pgoff = start_pgoff - 3596 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3597 PTRS_PER_PTE - 1; 3598 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3599 start_pgoff + nr_pages - 1); 3600 3601 if (pmd_none(*vmf->pmd)) { 3602 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm, 3603 vmf->address); 3604 if (!vmf->prealloc_pte) 3605 goto out; 3606 smp_wmb(); /* See comment in __pte_alloc() */ 3607 } 3608 3609 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3610 3611 /* Huge page is mapped? Page fault is solved */ 3612 if (pmd_trans_huge(*vmf->pmd)) { 3613 ret = VM_FAULT_NOPAGE; 3614 goto out; 3615 } 3616 3617 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3618 if (!vmf->pte) 3619 goto out; 3620 3621 /* check if the page fault is solved */ 3622 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3623 if (!pte_none(*vmf->pte)) 3624 ret = VM_FAULT_NOPAGE; 3625 pte_unmap_unlock(vmf->pte, vmf->ptl); 3626 out: 3627 vmf->address = address; 3628 vmf->pte = NULL; 3629 return ret; 3630 } 3631 3632 static int do_read_fault(struct vm_fault *vmf) 3633 { 3634 struct vm_area_struct *vma = vmf->vma; 3635 int ret = 0; 3636 3637 /* 3638 * Let's call ->map_pages() first and use ->fault() as fallback 3639 * if page by the offset is not ready to be mapped (cold cache or 3640 * something). 3641 */ 3642 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3643 ret = do_fault_around(vmf); 3644 if (ret) 3645 return ret; 3646 } 3647 3648 ret = __do_fault(vmf); 3649 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3650 return ret; 3651 3652 ret |= finish_fault(vmf); 3653 unlock_page(vmf->page); 3654 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3655 put_page(vmf->page); 3656 return ret; 3657 } 3658 3659 static int do_cow_fault(struct vm_fault *vmf) 3660 { 3661 struct vm_area_struct *vma = vmf->vma; 3662 int ret; 3663 3664 if (unlikely(anon_vma_prepare(vma))) 3665 return VM_FAULT_OOM; 3666 3667 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3668 if (!vmf->cow_page) 3669 return VM_FAULT_OOM; 3670 3671 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3672 &vmf->memcg, false)) { 3673 put_page(vmf->cow_page); 3674 return VM_FAULT_OOM; 3675 } 3676 3677 ret = __do_fault(vmf); 3678 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3679 goto uncharge_out; 3680 if (ret & VM_FAULT_DONE_COW) 3681 return ret; 3682 3683 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3684 __SetPageUptodate(vmf->cow_page); 3685 3686 ret |= finish_fault(vmf); 3687 unlock_page(vmf->page); 3688 put_page(vmf->page); 3689 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3690 goto uncharge_out; 3691 return ret; 3692 uncharge_out: 3693 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3694 put_page(vmf->cow_page); 3695 return ret; 3696 } 3697 3698 static int do_shared_fault(struct vm_fault *vmf) 3699 { 3700 struct vm_area_struct *vma = vmf->vma; 3701 int ret, tmp; 3702 3703 ret = __do_fault(vmf); 3704 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3705 return ret; 3706 3707 /* 3708 * Check if the backing address space wants to know that the page is 3709 * about to become writable 3710 */ 3711 if (vma->vm_ops->page_mkwrite) { 3712 unlock_page(vmf->page); 3713 tmp = do_page_mkwrite(vmf); 3714 if (unlikely(!tmp || 3715 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3716 put_page(vmf->page); 3717 return tmp; 3718 } 3719 } 3720 3721 ret |= finish_fault(vmf); 3722 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3723 VM_FAULT_RETRY))) { 3724 unlock_page(vmf->page); 3725 put_page(vmf->page); 3726 return ret; 3727 } 3728 3729 fault_dirty_shared_page(vma, vmf->page); 3730 return ret; 3731 } 3732 3733 /* 3734 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3735 * but allow concurrent faults). 3736 * The mmap_sem may have been released depending on flags and our 3737 * return value. See filemap_fault() and __lock_page_or_retry(). 3738 */ 3739 static int do_fault(struct vm_fault *vmf) 3740 { 3741 struct vm_area_struct *vma = vmf->vma; 3742 int ret; 3743 3744 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */ 3745 if (!vma->vm_ops->fault) 3746 ret = VM_FAULT_SIGBUS; 3747 else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3748 ret = do_read_fault(vmf); 3749 else if (!(vma->vm_flags & VM_SHARED)) 3750 ret = do_cow_fault(vmf); 3751 else 3752 ret = do_shared_fault(vmf); 3753 3754 /* preallocated pagetable is unused: free it */ 3755 if (vmf->prealloc_pte) { 3756 pte_free(vma->vm_mm, vmf->prealloc_pte); 3757 vmf->prealloc_pte = NULL; 3758 } 3759 return ret; 3760 } 3761 3762 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3763 unsigned long addr, int page_nid, 3764 int *flags) 3765 { 3766 get_page(page); 3767 3768 count_vm_numa_event(NUMA_HINT_FAULTS); 3769 if (page_nid == numa_node_id()) { 3770 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3771 *flags |= TNF_FAULT_LOCAL; 3772 } 3773 3774 return mpol_misplaced(page, vma, addr); 3775 } 3776 3777 static int do_numa_page(struct vm_fault *vmf) 3778 { 3779 struct vm_area_struct *vma = vmf->vma; 3780 struct page *page = NULL; 3781 int page_nid = -1; 3782 int last_cpupid; 3783 int target_nid; 3784 bool migrated = false; 3785 pte_t pte; 3786 bool was_writable = pte_savedwrite(vmf->orig_pte); 3787 int flags = 0; 3788 3789 /* 3790 * The "pte" at this point cannot be used safely without 3791 * validation through pte_unmap_same(). It's of NUMA type but 3792 * the pfn may be screwed if the read is non atomic. 3793 */ 3794 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3795 spin_lock(vmf->ptl); 3796 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3797 pte_unmap_unlock(vmf->pte, vmf->ptl); 3798 goto out; 3799 } 3800 3801 /* 3802 * Make it present again, Depending on how arch implementes non 3803 * accessible ptes, some can allow access by kernel mode. 3804 */ 3805 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3806 pte = pte_modify(pte, vma->vm_page_prot); 3807 pte = pte_mkyoung(pte); 3808 if (was_writable) 3809 pte = pte_mkwrite(pte); 3810 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3811 update_mmu_cache(vma, vmf->address, vmf->pte); 3812 3813 page = vm_normal_page(vma, vmf->address, pte); 3814 if (!page) { 3815 pte_unmap_unlock(vmf->pte, vmf->ptl); 3816 return 0; 3817 } 3818 3819 /* TODO: handle PTE-mapped THP */ 3820 if (PageCompound(page)) { 3821 pte_unmap_unlock(vmf->pte, vmf->ptl); 3822 return 0; 3823 } 3824 3825 /* 3826 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3827 * much anyway since they can be in shared cache state. This misses 3828 * the case where a mapping is writable but the process never writes 3829 * to it but pte_write gets cleared during protection updates and 3830 * pte_dirty has unpredictable behaviour between PTE scan updates, 3831 * background writeback, dirty balancing and application behaviour. 3832 */ 3833 if (!pte_write(pte)) 3834 flags |= TNF_NO_GROUP; 3835 3836 /* 3837 * Flag if the page is shared between multiple address spaces. This 3838 * is later used when determining whether to group tasks together 3839 */ 3840 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3841 flags |= TNF_SHARED; 3842 3843 last_cpupid = page_cpupid_last(page); 3844 page_nid = page_to_nid(page); 3845 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3846 &flags); 3847 pte_unmap_unlock(vmf->pte, vmf->ptl); 3848 if (target_nid == -1) { 3849 put_page(page); 3850 goto out; 3851 } 3852 3853 /* Migrate to the requested node */ 3854 migrated = migrate_misplaced_page(page, vma, target_nid); 3855 if (migrated) { 3856 page_nid = target_nid; 3857 flags |= TNF_MIGRATED; 3858 } else 3859 flags |= TNF_MIGRATE_FAIL; 3860 3861 out: 3862 if (page_nid != -1) 3863 task_numa_fault(last_cpupid, page_nid, 1, flags); 3864 return 0; 3865 } 3866 3867 static inline int create_huge_pmd(struct vm_fault *vmf) 3868 { 3869 if (vma_is_anonymous(vmf->vma)) 3870 return do_huge_pmd_anonymous_page(vmf); 3871 if (vmf->vma->vm_ops->huge_fault) 3872 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3873 return VM_FAULT_FALLBACK; 3874 } 3875 3876 /* `inline' is required to avoid gcc 4.1.2 build error */ 3877 static inline int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3878 { 3879 if (vma_is_anonymous(vmf->vma)) 3880 return do_huge_pmd_wp_page(vmf, orig_pmd); 3881 if (vmf->vma->vm_ops->huge_fault) 3882 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3883 3884 /* COW handled on pte level: split pmd */ 3885 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3886 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3887 3888 return VM_FAULT_FALLBACK; 3889 } 3890 3891 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3892 { 3893 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3894 } 3895 3896 static int create_huge_pud(struct vm_fault *vmf) 3897 { 3898 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3899 /* No support for anonymous transparent PUD pages yet */ 3900 if (vma_is_anonymous(vmf->vma)) 3901 return VM_FAULT_FALLBACK; 3902 if (vmf->vma->vm_ops->huge_fault) 3903 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3904 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3905 return VM_FAULT_FALLBACK; 3906 } 3907 3908 static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3909 { 3910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3911 /* No support for anonymous transparent PUD pages yet */ 3912 if (vma_is_anonymous(vmf->vma)) 3913 return VM_FAULT_FALLBACK; 3914 if (vmf->vma->vm_ops->huge_fault) 3915 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3916 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3917 return VM_FAULT_FALLBACK; 3918 } 3919 3920 /* 3921 * These routines also need to handle stuff like marking pages dirty 3922 * and/or accessed for architectures that don't do it in hardware (most 3923 * RISC architectures). The early dirtying is also good on the i386. 3924 * 3925 * There is also a hook called "update_mmu_cache()" that architectures 3926 * with external mmu caches can use to update those (ie the Sparc or 3927 * PowerPC hashed page tables that act as extended TLBs). 3928 * 3929 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3930 * concurrent faults). 3931 * 3932 * The mmap_sem may have been released depending on flags and our return value. 3933 * See filemap_fault() and __lock_page_or_retry(). 3934 */ 3935 static int handle_pte_fault(struct vm_fault *vmf) 3936 { 3937 pte_t entry; 3938 3939 if (unlikely(pmd_none(*vmf->pmd))) { 3940 /* 3941 * Leave __pte_alloc() until later: because vm_ops->fault may 3942 * want to allocate huge page, and if we expose page table 3943 * for an instant, it will be difficult to retract from 3944 * concurrent faults and from rmap lookups. 3945 */ 3946 vmf->pte = NULL; 3947 } else { 3948 /* See comment in pte_alloc_one_map() */ 3949 if (pmd_devmap_trans_unstable(vmf->pmd)) 3950 return 0; 3951 /* 3952 * A regular pmd is established and it can't morph into a huge 3953 * pmd from under us anymore at this point because we hold the 3954 * mmap_sem read mode and khugepaged takes it in write mode. 3955 * So now it's safe to run pte_offset_map(). 3956 */ 3957 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3958 vmf->orig_pte = *vmf->pte; 3959 3960 /* 3961 * some architectures can have larger ptes than wordsize, 3962 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3963 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3964 * accesses. The code below just needs a consistent view 3965 * for the ifs and we later double check anyway with the 3966 * ptl lock held. So here a barrier will do. 3967 */ 3968 barrier(); 3969 if (pte_none(vmf->orig_pte)) { 3970 pte_unmap(vmf->pte); 3971 vmf->pte = NULL; 3972 } 3973 } 3974 3975 if (!vmf->pte) { 3976 if (vma_is_anonymous(vmf->vma)) 3977 return do_anonymous_page(vmf); 3978 else 3979 return do_fault(vmf); 3980 } 3981 3982 if (!pte_present(vmf->orig_pte)) 3983 return do_swap_page(vmf); 3984 3985 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3986 return do_numa_page(vmf); 3987 3988 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3989 spin_lock(vmf->ptl); 3990 entry = vmf->orig_pte; 3991 if (unlikely(!pte_same(*vmf->pte, entry))) 3992 goto unlock; 3993 if (vmf->flags & FAULT_FLAG_WRITE) { 3994 if (!pte_write(entry)) 3995 return do_wp_page(vmf); 3996 entry = pte_mkdirty(entry); 3997 } 3998 entry = pte_mkyoung(entry); 3999 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 4000 vmf->flags & FAULT_FLAG_WRITE)) { 4001 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 4002 } else { 4003 /* 4004 * This is needed only for protection faults but the arch code 4005 * is not yet telling us if this is a protection fault or not. 4006 * This still avoids useless tlb flushes for .text page faults 4007 * with threads. 4008 */ 4009 if (vmf->flags & FAULT_FLAG_WRITE) 4010 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 4011 } 4012 unlock: 4013 pte_unmap_unlock(vmf->pte, vmf->ptl); 4014 return 0; 4015 } 4016 4017 /* 4018 * By the time we get here, we already hold the mm semaphore 4019 * 4020 * The mmap_sem may have been released depending on flags and our 4021 * return value. See filemap_fault() and __lock_page_or_retry(). 4022 */ 4023 static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4024 unsigned int flags) 4025 { 4026 struct vm_fault vmf = { 4027 .vma = vma, 4028 .address = address & PAGE_MASK, 4029 .flags = flags, 4030 .pgoff = linear_page_index(vma, address), 4031 .gfp_mask = __get_fault_gfp_mask(vma), 4032 }; 4033 unsigned int dirty = flags & FAULT_FLAG_WRITE; 4034 struct mm_struct *mm = vma->vm_mm; 4035 pgd_t *pgd; 4036 p4d_t *p4d; 4037 int ret; 4038 4039 pgd = pgd_offset(mm, address); 4040 p4d = p4d_alloc(mm, pgd, address); 4041 if (!p4d) 4042 return VM_FAULT_OOM; 4043 4044 vmf.pud = pud_alloc(mm, p4d, address); 4045 if (!vmf.pud) 4046 return VM_FAULT_OOM; 4047 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) { 4048 ret = create_huge_pud(&vmf); 4049 if (!(ret & VM_FAULT_FALLBACK)) 4050 return ret; 4051 } else { 4052 pud_t orig_pud = *vmf.pud; 4053 4054 barrier(); 4055 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 4056 4057 /* NUMA case for anonymous PUDs would go here */ 4058 4059 if (dirty && !pud_write(orig_pud)) { 4060 ret = wp_huge_pud(&vmf, orig_pud); 4061 if (!(ret & VM_FAULT_FALLBACK)) 4062 return ret; 4063 } else { 4064 huge_pud_set_accessed(&vmf, orig_pud); 4065 return 0; 4066 } 4067 } 4068 } 4069 4070 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 4071 if (!vmf.pmd) 4072 return VM_FAULT_OOM; 4073 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) { 4074 ret = create_huge_pmd(&vmf); 4075 if (!(ret & VM_FAULT_FALLBACK)) 4076 return ret; 4077 } else { 4078 pmd_t orig_pmd = *vmf.pmd; 4079 4080 barrier(); 4081 if (unlikely(is_swap_pmd(orig_pmd))) { 4082 VM_BUG_ON(thp_migration_supported() && 4083 !is_pmd_migration_entry(orig_pmd)); 4084 if (is_pmd_migration_entry(orig_pmd)) 4085 pmd_migration_entry_wait(mm, vmf.pmd); 4086 return 0; 4087 } 4088 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 4089 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 4090 return do_huge_pmd_numa_page(&vmf, orig_pmd); 4091 4092 if (dirty && !pmd_write(orig_pmd)) { 4093 ret = wp_huge_pmd(&vmf, orig_pmd); 4094 if (!(ret & VM_FAULT_FALLBACK)) 4095 return ret; 4096 } else { 4097 huge_pmd_set_accessed(&vmf, orig_pmd); 4098 return 0; 4099 } 4100 } 4101 } 4102 4103 return handle_pte_fault(&vmf); 4104 } 4105 4106 /* 4107 * By the time we get here, we already hold the mm semaphore 4108 * 4109 * The mmap_sem may have been released depending on flags and our 4110 * return value. See filemap_fault() and __lock_page_or_retry(). 4111 */ 4112 int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 4113 unsigned int flags) 4114 { 4115 int ret; 4116 4117 __set_current_state(TASK_RUNNING); 4118 4119 count_vm_event(PGFAULT); 4120 count_memcg_event_mm(vma->vm_mm, PGFAULT); 4121 4122 /* do counter updates before entering really critical section. */ 4123 check_sync_rss_stat(current); 4124 4125 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 4126 flags & FAULT_FLAG_INSTRUCTION, 4127 flags & FAULT_FLAG_REMOTE)) 4128 return VM_FAULT_SIGSEGV; 4129 4130 /* 4131 * Enable the memcg OOM handling for faults triggered in user 4132 * space. Kernel faults are handled more gracefully. 4133 */ 4134 if (flags & FAULT_FLAG_USER) 4135 mem_cgroup_oom_enable(); 4136 4137 if (unlikely(is_vm_hugetlb_page(vma))) 4138 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 4139 else 4140 ret = __handle_mm_fault(vma, address, flags); 4141 4142 if (flags & FAULT_FLAG_USER) { 4143 mem_cgroup_oom_disable(); 4144 /* 4145 * The task may have entered a memcg OOM situation but 4146 * if the allocation error was handled gracefully (no 4147 * VM_FAULT_OOM), there is no need to kill anything. 4148 * Just clean up the OOM state peacefully. 4149 */ 4150 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 4151 mem_cgroup_oom_synchronize(false); 4152 } 4153 4154 return ret; 4155 } 4156 EXPORT_SYMBOL_GPL(handle_mm_fault); 4157 4158 #ifndef __PAGETABLE_P4D_FOLDED 4159 /* 4160 * Allocate p4d page table. 4161 * We've already handled the fast-path in-line. 4162 */ 4163 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 4164 { 4165 p4d_t *new = p4d_alloc_one(mm, address); 4166 if (!new) 4167 return -ENOMEM; 4168 4169 smp_wmb(); /* See comment in __pte_alloc */ 4170 4171 spin_lock(&mm->page_table_lock); 4172 if (pgd_present(*pgd)) /* Another has populated it */ 4173 p4d_free(mm, new); 4174 else 4175 pgd_populate(mm, pgd, new); 4176 spin_unlock(&mm->page_table_lock); 4177 return 0; 4178 } 4179 #endif /* __PAGETABLE_P4D_FOLDED */ 4180 4181 #ifndef __PAGETABLE_PUD_FOLDED 4182 /* 4183 * Allocate page upper directory. 4184 * We've already handled the fast-path in-line. 4185 */ 4186 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 4187 { 4188 pud_t *new = pud_alloc_one(mm, address); 4189 if (!new) 4190 return -ENOMEM; 4191 4192 smp_wmb(); /* See comment in __pte_alloc */ 4193 4194 spin_lock(&mm->page_table_lock); 4195 #ifndef __ARCH_HAS_5LEVEL_HACK 4196 if (!p4d_present(*p4d)) { 4197 mm_inc_nr_puds(mm); 4198 p4d_populate(mm, p4d, new); 4199 } else /* Another has populated it */ 4200 pud_free(mm, new); 4201 #else 4202 if (!pgd_present(*p4d)) { 4203 mm_inc_nr_puds(mm); 4204 pgd_populate(mm, p4d, new); 4205 } else /* Another has populated it */ 4206 pud_free(mm, new); 4207 #endif /* __ARCH_HAS_5LEVEL_HACK */ 4208 spin_unlock(&mm->page_table_lock); 4209 return 0; 4210 } 4211 #endif /* __PAGETABLE_PUD_FOLDED */ 4212 4213 #ifndef __PAGETABLE_PMD_FOLDED 4214 /* 4215 * Allocate page middle directory. 4216 * We've already handled the fast-path in-line. 4217 */ 4218 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4219 { 4220 spinlock_t *ptl; 4221 pmd_t *new = pmd_alloc_one(mm, address); 4222 if (!new) 4223 return -ENOMEM; 4224 4225 smp_wmb(); /* See comment in __pte_alloc */ 4226 4227 ptl = pud_lock(mm, pud); 4228 #ifndef __ARCH_HAS_4LEVEL_HACK 4229 if (!pud_present(*pud)) { 4230 mm_inc_nr_pmds(mm); 4231 pud_populate(mm, pud, new); 4232 } else /* Another has populated it */ 4233 pmd_free(mm, new); 4234 #else 4235 if (!pgd_present(*pud)) { 4236 mm_inc_nr_pmds(mm); 4237 pgd_populate(mm, pud, new); 4238 } else /* Another has populated it */ 4239 pmd_free(mm, new); 4240 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4241 spin_unlock(ptl); 4242 return 0; 4243 } 4244 #endif /* __PAGETABLE_PMD_FOLDED */ 4245 4246 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4247 unsigned long *start, unsigned long *end, 4248 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4249 { 4250 pgd_t *pgd; 4251 p4d_t *p4d; 4252 pud_t *pud; 4253 pmd_t *pmd; 4254 pte_t *ptep; 4255 4256 pgd = pgd_offset(mm, address); 4257 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4258 goto out; 4259 4260 p4d = p4d_offset(pgd, address); 4261 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4262 goto out; 4263 4264 pud = pud_offset(p4d, address); 4265 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4266 goto out; 4267 4268 pmd = pmd_offset(pud, address); 4269 VM_BUG_ON(pmd_trans_huge(*pmd)); 4270 4271 if (pmd_huge(*pmd)) { 4272 if (!pmdpp) 4273 goto out; 4274 4275 if (start && end) { 4276 *start = address & PMD_MASK; 4277 *end = *start + PMD_SIZE; 4278 mmu_notifier_invalidate_range_start(mm, *start, *end); 4279 } 4280 *ptlp = pmd_lock(mm, pmd); 4281 if (pmd_huge(*pmd)) { 4282 *pmdpp = pmd; 4283 return 0; 4284 } 4285 spin_unlock(*ptlp); 4286 if (start && end) 4287 mmu_notifier_invalidate_range_end(mm, *start, *end); 4288 } 4289 4290 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4291 goto out; 4292 4293 if (start && end) { 4294 *start = address & PAGE_MASK; 4295 *end = *start + PAGE_SIZE; 4296 mmu_notifier_invalidate_range_start(mm, *start, *end); 4297 } 4298 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4299 if (!pte_present(*ptep)) 4300 goto unlock; 4301 *ptepp = ptep; 4302 return 0; 4303 unlock: 4304 pte_unmap_unlock(ptep, *ptlp); 4305 if (start && end) 4306 mmu_notifier_invalidate_range_end(mm, *start, *end); 4307 out: 4308 return -EINVAL; 4309 } 4310 4311 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4312 pte_t **ptepp, spinlock_t **ptlp) 4313 { 4314 int res; 4315 4316 /* (void) is needed to make gcc happy */ 4317 (void) __cond_lock(*ptlp, 4318 !(res = __follow_pte_pmd(mm, address, NULL, NULL, 4319 ptepp, NULL, ptlp))); 4320 return res; 4321 } 4322 4323 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4324 unsigned long *start, unsigned long *end, 4325 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4326 { 4327 int res; 4328 4329 /* (void) is needed to make gcc happy */ 4330 (void) __cond_lock(*ptlp, 4331 !(res = __follow_pte_pmd(mm, address, start, end, 4332 ptepp, pmdpp, ptlp))); 4333 return res; 4334 } 4335 EXPORT_SYMBOL(follow_pte_pmd); 4336 4337 /** 4338 * follow_pfn - look up PFN at a user virtual address 4339 * @vma: memory mapping 4340 * @address: user virtual address 4341 * @pfn: location to store found PFN 4342 * 4343 * Only IO mappings and raw PFN mappings are allowed. 4344 * 4345 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4346 */ 4347 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4348 unsigned long *pfn) 4349 { 4350 int ret = -EINVAL; 4351 spinlock_t *ptl; 4352 pte_t *ptep; 4353 4354 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4355 return ret; 4356 4357 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4358 if (ret) 4359 return ret; 4360 *pfn = pte_pfn(*ptep); 4361 pte_unmap_unlock(ptep, ptl); 4362 return 0; 4363 } 4364 EXPORT_SYMBOL(follow_pfn); 4365 4366 #ifdef CONFIG_HAVE_IOREMAP_PROT 4367 int follow_phys(struct vm_area_struct *vma, 4368 unsigned long address, unsigned int flags, 4369 unsigned long *prot, resource_size_t *phys) 4370 { 4371 int ret = -EINVAL; 4372 pte_t *ptep, pte; 4373 spinlock_t *ptl; 4374 4375 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4376 goto out; 4377 4378 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4379 goto out; 4380 pte = *ptep; 4381 4382 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4383 goto unlock; 4384 4385 *prot = pgprot_val(pte_pgprot(pte)); 4386 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4387 4388 ret = 0; 4389 unlock: 4390 pte_unmap_unlock(ptep, ptl); 4391 out: 4392 return ret; 4393 } 4394 4395 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4396 void *buf, int len, int write) 4397 { 4398 resource_size_t phys_addr; 4399 unsigned long prot = 0; 4400 void __iomem *maddr; 4401 int offset = addr & (PAGE_SIZE-1); 4402 4403 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4404 return -EINVAL; 4405 4406 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4407 if (write) 4408 memcpy_toio(maddr + offset, buf, len); 4409 else 4410 memcpy_fromio(buf, maddr + offset, len); 4411 iounmap(maddr); 4412 4413 return len; 4414 } 4415 EXPORT_SYMBOL_GPL(generic_access_phys); 4416 #endif 4417 4418 /* 4419 * Access another process' address space as given in mm. If non-NULL, use the 4420 * given task for page fault accounting. 4421 */ 4422 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4423 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4424 { 4425 struct vm_area_struct *vma; 4426 void *old_buf = buf; 4427 int write = gup_flags & FOLL_WRITE; 4428 4429 down_read(&mm->mmap_sem); 4430 /* ignore errors, just check how much was successfully transferred */ 4431 while (len) { 4432 int bytes, ret, offset; 4433 void *maddr; 4434 struct page *page = NULL; 4435 4436 ret = get_user_pages_remote(tsk, mm, addr, 1, 4437 gup_flags, &page, &vma, NULL); 4438 if (ret <= 0) { 4439 #ifndef CONFIG_HAVE_IOREMAP_PROT 4440 break; 4441 #else 4442 /* 4443 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4444 * we can access using slightly different code. 4445 */ 4446 vma = find_vma(mm, addr); 4447 if (!vma || vma->vm_start > addr) 4448 break; 4449 if (vma->vm_ops && vma->vm_ops->access) 4450 ret = vma->vm_ops->access(vma, addr, buf, 4451 len, write); 4452 if (ret <= 0) 4453 break; 4454 bytes = ret; 4455 #endif 4456 } else { 4457 bytes = len; 4458 offset = addr & (PAGE_SIZE-1); 4459 if (bytes > PAGE_SIZE-offset) 4460 bytes = PAGE_SIZE-offset; 4461 4462 maddr = kmap(page); 4463 if (write) { 4464 copy_to_user_page(vma, page, addr, 4465 maddr + offset, buf, bytes); 4466 set_page_dirty_lock(page); 4467 } else { 4468 copy_from_user_page(vma, page, addr, 4469 buf, maddr + offset, bytes); 4470 } 4471 kunmap(page); 4472 put_page(page); 4473 } 4474 len -= bytes; 4475 buf += bytes; 4476 addr += bytes; 4477 } 4478 up_read(&mm->mmap_sem); 4479 4480 return buf - old_buf; 4481 } 4482 4483 /** 4484 * access_remote_vm - access another process' address space 4485 * @mm: the mm_struct of the target address space 4486 * @addr: start address to access 4487 * @buf: source or destination buffer 4488 * @len: number of bytes to transfer 4489 * @gup_flags: flags modifying lookup behaviour 4490 * 4491 * The caller must hold a reference on @mm. 4492 */ 4493 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4494 void *buf, int len, unsigned int gup_flags) 4495 { 4496 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4497 } 4498 4499 /* 4500 * Access another process' address space. 4501 * Source/target buffer must be kernel space, 4502 * Do not walk the page table directly, use get_user_pages 4503 */ 4504 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4505 void *buf, int len, unsigned int gup_flags) 4506 { 4507 struct mm_struct *mm; 4508 int ret; 4509 4510 mm = get_task_mm(tsk); 4511 if (!mm) 4512 return 0; 4513 4514 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4515 4516 mmput(mm); 4517 4518 return ret; 4519 } 4520 EXPORT_SYMBOL_GPL(access_process_vm); 4521 4522 /* 4523 * Print the name of a VMA. 4524 */ 4525 void print_vma_addr(char *prefix, unsigned long ip) 4526 { 4527 struct mm_struct *mm = current->mm; 4528 struct vm_area_struct *vma; 4529 4530 /* 4531 * we might be running from an atomic context so we cannot sleep 4532 */ 4533 if (!down_read_trylock(&mm->mmap_sem)) 4534 return; 4535 4536 vma = find_vma(mm, ip); 4537 if (vma && vma->vm_file) { 4538 struct file *f = vma->vm_file; 4539 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4540 if (buf) { 4541 char *p; 4542 4543 p = file_path(f, buf, PAGE_SIZE); 4544 if (IS_ERR(p)) 4545 p = "?"; 4546 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4547 vma->vm_start, 4548 vma->vm_end - vma->vm_start); 4549 free_page((unsigned long)buf); 4550 } 4551 } 4552 up_read(&mm->mmap_sem); 4553 } 4554 4555 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4556 void __might_fault(const char *file, int line) 4557 { 4558 /* 4559 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4560 * holding the mmap_sem, this is safe because kernel memory doesn't 4561 * get paged out, therefore we'll never actually fault, and the 4562 * below annotations will generate false positives. 4563 */ 4564 if (uaccess_kernel()) 4565 return; 4566 if (pagefault_disabled()) 4567 return; 4568 __might_sleep(file, line, 0); 4569 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4570 if (current->mm) 4571 might_lock_read(¤t->mm->mmap_sem); 4572 #endif 4573 } 4574 EXPORT_SYMBOL(__might_fault); 4575 #endif 4576 4577 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4578 static void clear_gigantic_page(struct page *page, 4579 unsigned long addr, 4580 unsigned int pages_per_huge_page) 4581 { 4582 int i; 4583 struct page *p = page; 4584 4585 might_sleep(); 4586 for (i = 0; i < pages_per_huge_page; 4587 i++, p = mem_map_next(p, page, i)) { 4588 cond_resched(); 4589 clear_user_highpage(p, addr + i * PAGE_SIZE); 4590 } 4591 } 4592 void clear_huge_page(struct page *page, 4593 unsigned long addr_hint, unsigned int pages_per_huge_page) 4594 { 4595 int i, n, base, l; 4596 unsigned long addr = addr_hint & 4597 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4598 4599 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4600 clear_gigantic_page(page, addr, pages_per_huge_page); 4601 return; 4602 } 4603 4604 /* Clear sub-page to access last to keep its cache lines hot */ 4605 might_sleep(); 4606 n = (addr_hint - addr) / PAGE_SIZE; 4607 if (2 * n <= pages_per_huge_page) { 4608 /* If sub-page to access in first half of huge page */ 4609 base = 0; 4610 l = n; 4611 /* Clear sub-pages at the end of huge page */ 4612 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4613 cond_resched(); 4614 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4615 } 4616 } else { 4617 /* If sub-page to access in second half of huge page */ 4618 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4619 l = pages_per_huge_page - n; 4620 /* Clear sub-pages at the begin of huge page */ 4621 for (i = 0; i < base; i++) { 4622 cond_resched(); 4623 clear_user_highpage(page + i, addr + i * PAGE_SIZE); 4624 } 4625 } 4626 /* 4627 * Clear remaining sub-pages in left-right-left-right pattern 4628 * towards the sub-page to access 4629 */ 4630 for (i = 0; i < l; i++) { 4631 int left_idx = base + i; 4632 int right_idx = base + 2 * l - 1 - i; 4633 4634 cond_resched(); 4635 clear_user_highpage(page + left_idx, 4636 addr + left_idx * PAGE_SIZE); 4637 cond_resched(); 4638 clear_user_highpage(page + right_idx, 4639 addr + right_idx * PAGE_SIZE); 4640 } 4641 } 4642 4643 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4644 unsigned long addr, 4645 struct vm_area_struct *vma, 4646 unsigned int pages_per_huge_page) 4647 { 4648 int i; 4649 struct page *dst_base = dst; 4650 struct page *src_base = src; 4651 4652 for (i = 0; i < pages_per_huge_page; ) { 4653 cond_resched(); 4654 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4655 4656 i++; 4657 dst = mem_map_next(dst, dst_base, i); 4658 src = mem_map_next(src, src_base, i); 4659 } 4660 } 4661 4662 void copy_user_huge_page(struct page *dst, struct page *src, 4663 unsigned long addr, struct vm_area_struct *vma, 4664 unsigned int pages_per_huge_page) 4665 { 4666 int i; 4667 4668 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4669 copy_user_gigantic_page(dst, src, addr, vma, 4670 pages_per_huge_page); 4671 return; 4672 } 4673 4674 might_sleep(); 4675 for (i = 0; i < pages_per_huge_page; i++) { 4676 cond_resched(); 4677 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma); 4678 } 4679 } 4680 4681 long copy_huge_page_from_user(struct page *dst_page, 4682 const void __user *usr_src, 4683 unsigned int pages_per_huge_page, 4684 bool allow_pagefault) 4685 { 4686 void *src = (void *)usr_src; 4687 void *page_kaddr; 4688 unsigned long i, rc = 0; 4689 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4690 4691 for (i = 0; i < pages_per_huge_page; i++) { 4692 if (allow_pagefault) 4693 page_kaddr = kmap(dst_page + i); 4694 else 4695 page_kaddr = kmap_atomic(dst_page + i); 4696 rc = copy_from_user(page_kaddr, 4697 (const void __user *)(src + i * PAGE_SIZE), 4698 PAGE_SIZE); 4699 if (allow_pagefault) 4700 kunmap(dst_page + i); 4701 else 4702 kunmap_atomic(page_kaddr); 4703 4704 ret_val -= (PAGE_SIZE - rc); 4705 if (rc) 4706 break; 4707 4708 cond_resched(); 4709 } 4710 return ret_val; 4711 } 4712 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4713 4714 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4715 4716 static struct kmem_cache *page_ptl_cachep; 4717 4718 void __init ptlock_cache_init(void) 4719 { 4720 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4721 SLAB_PANIC, NULL); 4722 } 4723 4724 bool ptlock_alloc(struct page *page) 4725 { 4726 spinlock_t *ptl; 4727 4728 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4729 if (!ptl) 4730 return false; 4731 page->ptl = ptl; 4732 return true; 4733 } 4734 4735 void ptlock_free(struct page *page) 4736 { 4737 kmem_cache_free(page_ptl_cachep, page->ptl); 4738 } 4739 #endif 4740