xref: /openbmc/linux/mm/memory.c (revision 12a5b00a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/memory.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  */
7 
8 /*
9  * demand-loading started 01.12.91 - seems it is high on the list of
10  * things wanted, and it should be easy to implement. - Linus
11  */
12 
13 /*
14  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15  * pages started 02.12.91, seems to work. - Linus.
16  *
17  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18  * would have taken more than the 6M I have free, but it worked well as
19  * far as I could see.
20  *
21  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22  */
23 
24 /*
25  * Real VM (paging to/from disk) started 18.12.91. Much more work and
26  * thought has to go into this. Oh, well..
27  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
28  *		Found it. Everything seems to work now.
29  * 20.12.91  -  Ok, making the swap-device changeable like the root.
30  */
31 
32 /*
33  * 05.04.94  -  Multi-page memory management added for v1.1.
34  *              Idea by Alex Bligh (alex@cconcepts.co.uk)
35  *
36  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
37  *		(Gerhard.Wichert@pdb.siemens.de)
38  *
39  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40  */
41 
42 #include <linux/kernel_stat.h>
43 #include <linux/mm.h>
44 #include <linux/sched/mm.h>
45 #include <linux/sched/coredump.h>
46 #include <linux/sched/numa_balancing.h>
47 #include <linux/sched/task.h>
48 #include <linux/hugetlb.h>
49 #include <linux/mman.h>
50 #include <linux/swap.h>
51 #include <linux/highmem.h>
52 #include <linux/pagemap.h>
53 #include <linux/memremap.h>
54 #include <linux/ksm.h>
55 #include <linux/rmap.h>
56 #include <linux/export.h>
57 #include <linux/delayacct.h>
58 #include <linux/init.h>
59 #include <linux/pfn_t.h>
60 #include <linux/writeback.h>
61 #include <linux/memcontrol.h>
62 #include <linux/mmu_notifier.h>
63 #include <linux/swapops.h>
64 #include <linux/elf.h>
65 #include <linux/gfp.h>
66 #include <linux/migrate.h>
67 #include <linux/string.h>
68 #include <linux/dma-debug.h>
69 #include <linux/debugfs.h>
70 #include <linux/userfaultfd_k.h>
71 #include <linux/dax.h>
72 #include <linux/oom.h>
73 #include <linux/numa.h>
74 
75 #include <trace/events/kmem.h>
76 
77 #include <asm/io.h>
78 #include <asm/mmu_context.h>
79 #include <asm/pgalloc.h>
80 #include <linux/uaccess.h>
81 #include <asm/tlb.h>
82 #include <asm/tlbflush.h>
83 #include <asm/pgtable.h>
84 
85 #include "internal.h"
86 
87 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
88 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
89 #endif
90 
91 #ifndef CONFIG_NEED_MULTIPLE_NODES
92 /* use the per-pgdat data instead for discontigmem - mbligh */
93 unsigned long max_mapnr;
94 EXPORT_SYMBOL(max_mapnr);
95 
96 struct page *mem_map;
97 EXPORT_SYMBOL(mem_map);
98 #endif
99 
100 /*
101  * A number of key systems in x86 including ioremap() rely on the assumption
102  * that high_memory defines the upper bound on direct map memory, then end
103  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
104  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
105  * and ZONE_HIGHMEM.
106  */
107 void *high_memory;
108 EXPORT_SYMBOL(high_memory);
109 
110 /*
111  * Randomize the address space (stacks, mmaps, brk, etc.).
112  *
113  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
114  *   as ancient (libc5 based) binaries can segfault. )
115  */
116 int randomize_va_space __read_mostly =
117 #ifdef CONFIG_COMPAT_BRK
118 					1;
119 #else
120 					2;
121 #endif
122 
123 #ifndef arch_faults_on_old_pte
124 static inline bool arch_faults_on_old_pte(void)
125 {
126 	/*
127 	 * Those arches which don't have hw access flag feature need to
128 	 * implement their own helper. By default, "true" means pagefault
129 	 * will be hit on old pte.
130 	 */
131 	return true;
132 }
133 #endif
134 
135 static int __init disable_randmaps(char *s)
136 {
137 	randomize_va_space = 0;
138 	return 1;
139 }
140 __setup("norandmaps", disable_randmaps);
141 
142 unsigned long zero_pfn __read_mostly;
143 EXPORT_SYMBOL(zero_pfn);
144 
145 unsigned long highest_memmap_pfn __read_mostly;
146 
147 /*
148  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
149  */
150 static int __init init_zero_pfn(void)
151 {
152 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
153 	return 0;
154 }
155 core_initcall(init_zero_pfn);
156 
157 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count)
158 {
159 	trace_rss_stat(mm, member, count);
160 }
161 
162 #if defined(SPLIT_RSS_COUNTING)
163 
164 void sync_mm_rss(struct mm_struct *mm)
165 {
166 	int i;
167 
168 	for (i = 0; i < NR_MM_COUNTERS; i++) {
169 		if (current->rss_stat.count[i]) {
170 			add_mm_counter(mm, i, current->rss_stat.count[i]);
171 			current->rss_stat.count[i] = 0;
172 		}
173 	}
174 	current->rss_stat.events = 0;
175 }
176 
177 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
178 {
179 	struct task_struct *task = current;
180 
181 	if (likely(task->mm == mm))
182 		task->rss_stat.count[member] += val;
183 	else
184 		add_mm_counter(mm, member, val);
185 }
186 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
187 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
188 
189 /* sync counter once per 64 page faults */
190 #define TASK_RSS_EVENTS_THRESH	(64)
191 static void check_sync_rss_stat(struct task_struct *task)
192 {
193 	if (unlikely(task != current))
194 		return;
195 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
196 		sync_mm_rss(task->mm);
197 }
198 #else /* SPLIT_RSS_COUNTING */
199 
200 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
201 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
202 
203 static void check_sync_rss_stat(struct task_struct *task)
204 {
205 }
206 
207 #endif /* SPLIT_RSS_COUNTING */
208 
209 /*
210  * Note: this doesn't free the actual pages themselves. That
211  * has been handled earlier when unmapping all the memory regions.
212  */
213 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
214 			   unsigned long addr)
215 {
216 	pgtable_t token = pmd_pgtable(*pmd);
217 	pmd_clear(pmd);
218 	pte_free_tlb(tlb, token, addr);
219 	mm_dec_nr_ptes(tlb->mm);
220 }
221 
222 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
223 				unsigned long addr, unsigned long end,
224 				unsigned long floor, unsigned long ceiling)
225 {
226 	pmd_t *pmd;
227 	unsigned long next;
228 	unsigned long start;
229 
230 	start = addr;
231 	pmd = pmd_offset(pud, addr);
232 	do {
233 		next = pmd_addr_end(addr, end);
234 		if (pmd_none_or_clear_bad(pmd))
235 			continue;
236 		free_pte_range(tlb, pmd, addr);
237 	} while (pmd++, addr = next, addr != end);
238 
239 	start &= PUD_MASK;
240 	if (start < floor)
241 		return;
242 	if (ceiling) {
243 		ceiling &= PUD_MASK;
244 		if (!ceiling)
245 			return;
246 	}
247 	if (end - 1 > ceiling - 1)
248 		return;
249 
250 	pmd = pmd_offset(pud, start);
251 	pud_clear(pud);
252 	pmd_free_tlb(tlb, pmd, start);
253 	mm_dec_nr_pmds(tlb->mm);
254 }
255 
256 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
257 				unsigned long addr, unsigned long end,
258 				unsigned long floor, unsigned long ceiling)
259 {
260 	pud_t *pud;
261 	unsigned long next;
262 	unsigned long start;
263 
264 	start = addr;
265 	pud = pud_offset(p4d, addr);
266 	do {
267 		next = pud_addr_end(addr, end);
268 		if (pud_none_or_clear_bad(pud))
269 			continue;
270 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
271 	} while (pud++, addr = next, addr != end);
272 
273 	start &= P4D_MASK;
274 	if (start < floor)
275 		return;
276 	if (ceiling) {
277 		ceiling &= P4D_MASK;
278 		if (!ceiling)
279 			return;
280 	}
281 	if (end - 1 > ceiling - 1)
282 		return;
283 
284 	pud = pud_offset(p4d, start);
285 	p4d_clear(p4d);
286 	pud_free_tlb(tlb, pud, start);
287 	mm_dec_nr_puds(tlb->mm);
288 }
289 
290 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
291 				unsigned long addr, unsigned long end,
292 				unsigned long floor, unsigned long ceiling)
293 {
294 	p4d_t *p4d;
295 	unsigned long next;
296 	unsigned long start;
297 
298 	start = addr;
299 	p4d = p4d_offset(pgd, addr);
300 	do {
301 		next = p4d_addr_end(addr, end);
302 		if (p4d_none_or_clear_bad(p4d))
303 			continue;
304 		free_pud_range(tlb, p4d, addr, next, floor, ceiling);
305 	} while (p4d++, addr = next, addr != end);
306 
307 	start &= PGDIR_MASK;
308 	if (start < floor)
309 		return;
310 	if (ceiling) {
311 		ceiling &= PGDIR_MASK;
312 		if (!ceiling)
313 			return;
314 	}
315 	if (end - 1 > ceiling - 1)
316 		return;
317 
318 	p4d = p4d_offset(pgd, start);
319 	pgd_clear(pgd);
320 	p4d_free_tlb(tlb, p4d, start);
321 }
322 
323 /*
324  * This function frees user-level page tables of a process.
325  */
326 void free_pgd_range(struct mmu_gather *tlb,
327 			unsigned long addr, unsigned long end,
328 			unsigned long floor, unsigned long ceiling)
329 {
330 	pgd_t *pgd;
331 	unsigned long next;
332 
333 	/*
334 	 * The next few lines have given us lots of grief...
335 	 *
336 	 * Why are we testing PMD* at this top level?  Because often
337 	 * there will be no work to do at all, and we'd prefer not to
338 	 * go all the way down to the bottom just to discover that.
339 	 *
340 	 * Why all these "- 1"s?  Because 0 represents both the bottom
341 	 * of the address space and the top of it (using -1 for the
342 	 * top wouldn't help much: the masks would do the wrong thing).
343 	 * The rule is that addr 0 and floor 0 refer to the bottom of
344 	 * the address space, but end 0 and ceiling 0 refer to the top
345 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
346 	 * that end 0 case should be mythical).
347 	 *
348 	 * Wherever addr is brought up or ceiling brought down, we must
349 	 * be careful to reject "the opposite 0" before it confuses the
350 	 * subsequent tests.  But what about where end is brought down
351 	 * by PMD_SIZE below? no, end can't go down to 0 there.
352 	 *
353 	 * Whereas we round start (addr) and ceiling down, by different
354 	 * masks at different levels, in order to test whether a table
355 	 * now has no other vmas using it, so can be freed, we don't
356 	 * bother to round floor or end up - the tests don't need that.
357 	 */
358 
359 	addr &= PMD_MASK;
360 	if (addr < floor) {
361 		addr += PMD_SIZE;
362 		if (!addr)
363 			return;
364 	}
365 	if (ceiling) {
366 		ceiling &= PMD_MASK;
367 		if (!ceiling)
368 			return;
369 	}
370 	if (end - 1 > ceiling - 1)
371 		end -= PMD_SIZE;
372 	if (addr > end - 1)
373 		return;
374 	/*
375 	 * We add page table cache pages with PAGE_SIZE,
376 	 * (see pte_free_tlb()), flush the tlb if we need
377 	 */
378 	tlb_change_page_size(tlb, PAGE_SIZE);
379 	pgd = pgd_offset(tlb->mm, addr);
380 	do {
381 		next = pgd_addr_end(addr, end);
382 		if (pgd_none_or_clear_bad(pgd))
383 			continue;
384 		free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
385 	} while (pgd++, addr = next, addr != end);
386 }
387 
388 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
389 		unsigned long floor, unsigned long ceiling)
390 {
391 	while (vma) {
392 		struct vm_area_struct *next = vma->vm_next;
393 		unsigned long addr = vma->vm_start;
394 
395 		/*
396 		 * Hide vma from rmap and truncate_pagecache before freeing
397 		 * pgtables
398 		 */
399 		unlink_anon_vmas(vma);
400 		unlink_file_vma(vma);
401 
402 		if (is_vm_hugetlb_page(vma)) {
403 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
404 				floor, next ? next->vm_start : ceiling);
405 		} else {
406 			/*
407 			 * Optimization: gather nearby vmas into one call down
408 			 */
409 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
410 			       && !is_vm_hugetlb_page(next)) {
411 				vma = next;
412 				next = vma->vm_next;
413 				unlink_anon_vmas(vma);
414 				unlink_file_vma(vma);
415 			}
416 			free_pgd_range(tlb, addr, vma->vm_end,
417 				floor, next ? next->vm_start : ceiling);
418 		}
419 		vma = next;
420 	}
421 }
422 
423 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
424 {
425 	spinlock_t *ptl;
426 	pgtable_t new = pte_alloc_one(mm);
427 	if (!new)
428 		return -ENOMEM;
429 
430 	/*
431 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
432 	 * visible before the pte is made visible to other CPUs by being
433 	 * put into page tables.
434 	 *
435 	 * The other side of the story is the pointer chasing in the page
436 	 * table walking code (when walking the page table without locking;
437 	 * ie. most of the time). Fortunately, these data accesses consist
438 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
439 	 * being the notable exception) will already guarantee loads are
440 	 * seen in-order. See the alpha page table accessors for the
441 	 * smp_read_barrier_depends() barriers in page table walking code.
442 	 */
443 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
444 
445 	ptl = pmd_lock(mm, pmd);
446 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
447 		mm_inc_nr_ptes(mm);
448 		pmd_populate(mm, pmd, new);
449 		new = NULL;
450 	}
451 	spin_unlock(ptl);
452 	if (new)
453 		pte_free(mm, new);
454 	return 0;
455 }
456 
457 int __pte_alloc_kernel(pmd_t *pmd)
458 {
459 	pte_t *new = pte_alloc_one_kernel(&init_mm);
460 	if (!new)
461 		return -ENOMEM;
462 
463 	smp_wmb(); /* See comment in __pte_alloc */
464 
465 	spin_lock(&init_mm.page_table_lock);
466 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
467 		pmd_populate_kernel(&init_mm, pmd, new);
468 		new = NULL;
469 	}
470 	spin_unlock(&init_mm.page_table_lock);
471 	if (new)
472 		pte_free_kernel(&init_mm, new);
473 	return 0;
474 }
475 
476 static inline void init_rss_vec(int *rss)
477 {
478 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
479 }
480 
481 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
482 {
483 	int i;
484 
485 	if (current->mm == mm)
486 		sync_mm_rss(mm);
487 	for (i = 0; i < NR_MM_COUNTERS; i++)
488 		if (rss[i])
489 			add_mm_counter(mm, i, rss[i]);
490 }
491 
492 /*
493  * This function is called to print an error when a bad pte
494  * is found. For example, we might have a PFN-mapped pte in
495  * a region that doesn't allow it.
496  *
497  * The calling function must still handle the error.
498  */
499 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
500 			  pte_t pte, struct page *page)
501 {
502 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
503 	p4d_t *p4d = p4d_offset(pgd, addr);
504 	pud_t *pud = pud_offset(p4d, addr);
505 	pmd_t *pmd = pmd_offset(pud, addr);
506 	struct address_space *mapping;
507 	pgoff_t index;
508 	static unsigned long resume;
509 	static unsigned long nr_shown;
510 	static unsigned long nr_unshown;
511 
512 	/*
513 	 * Allow a burst of 60 reports, then keep quiet for that minute;
514 	 * or allow a steady drip of one report per second.
515 	 */
516 	if (nr_shown == 60) {
517 		if (time_before(jiffies, resume)) {
518 			nr_unshown++;
519 			return;
520 		}
521 		if (nr_unshown) {
522 			pr_alert("BUG: Bad page map: %lu messages suppressed\n",
523 				 nr_unshown);
524 			nr_unshown = 0;
525 		}
526 		nr_shown = 0;
527 	}
528 	if (nr_shown++ == 0)
529 		resume = jiffies + 60 * HZ;
530 
531 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
532 	index = linear_page_index(vma, addr);
533 
534 	pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
535 		 current->comm,
536 		 (long long)pte_val(pte), (long long)pmd_val(*pmd));
537 	if (page)
538 		dump_page(page, "bad pte");
539 	pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
540 		 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
541 	pr_alert("file:%pD fault:%ps mmap:%ps readpage:%ps\n",
542 		 vma->vm_file,
543 		 vma->vm_ops ? vma->vm_ops->fault : NULL,
544 		 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
545 		 mapping ? mapping->a_ops->readpage : NULL);
546 	dump_stack();
547 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
548 }
549 
550 /*
551  * vm_normal_page -- This function gets the "struct page" associated with a pte.
552  *
553  * "Special" mappings do not wish to be associated with a "struct page" (either
554  * it doesn't exist, or it exists but they don't want to touch it). In this
555  * case, NULL is returned here. "Normal" mappings do have a struct page.
556  *
557  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
558  * pte bit, in which case this function is trivial. Secondly, an architecture
559  * may not have a spare pte bit, which requires a more complicated scheme,
560  * described below.
561  *
562  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
563  * special mapping (even if there are underlying and valid "struct pages").
564  * COWed pages of a VM_PFNMAP are always normal.
565  *
566  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
567  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
568  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
569  * mapping will always honor the rule
570  *
571  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
572  *
573  * And for normal mappings this is false.
574  *
575  * This restricts such mappings to be a linear translation from virtual address
576  * to pfn. To get around this restriction, we allow arbitrary mappings so long
577  * as the vma is not a COW mapping; in that case, we know that all ptes are
578  * special (because none can have been COWed).
579  *
580  *
581  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
582  *
583  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
584  * page" backing, however the difference is that _all_ pages with a struct
585  * page (that is, those where pfn_valid is true) are refcounted and considered
586  * normal pages by the VM. The disadvantage is that pages are refcounted
587  * (which can be slower and simply not an option for some PFNMAP users). The
588  * advantage is that we don't have to follow the strict linearity rule of
589  * PFNMAP mappings in order to support COWable mappings.
590  *
591  */
592 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
593 			    pte_t pte)
594 {
595 	unsigned long pfn = pte_pfn(pte);
596 
597 	if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
598 		if (likely(!pte_special(pte)))
599 			goto check_pfn;
600 		if (vma->vm_ops && vma->vm_ops->find_special_page)
601 			return vma->vm_ops->find_special_page(vma, addr);
602 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
603 			return NULL;
604 		if (is_zero_pfn(pfn))
605 			return NULL;
606 		if (pte_devmap(pte))
607 			return NULL;
608 
609 		print_bad_pte(vma, addr, pte, NULL);
610 		return NULL;
611 	}
612 
613 	/* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614 
615 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 		if (vma->vm_flags & VM_MIXEDMAP) {
617 			if (!pfn_valid(pfn))
618 				return NULL;
619 			goto out;
620 		} else {
621 			unsigned long off;
622 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 			if (pfn == vma->vm_pgoff + off)
624 				return NULL;
625 			if (!is_cow_mapping(vma->vm_flags))
626 				return NULL;
627 		}
628 	}
629 
630 	if (is_zero_pfn(pfn))
631 		return NULL;
632 
633 check_pfn:
634 	if (unlikely(pfn > highest_memmap_pfn)) {
635 		print_bad_pte(vma, addr, pte, NULL);
636 		return NULL;
637 	}
638 
639 	/*
640 	 * NOTE! We still have PageReserved() pages in the page tables.
641 	 * eg. VDSO mappings can cause them to exist.
642 	 */
643 out:
644 	return pfn_to_page(pfn);
645 }
646 
647 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
648 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
649 				pmd_t pmd)
650 {
651 	unsigned long pfn = pmd_pfn(pmd);
652 
653 	/*
654 	 * There is no pmd_special() but there may be special pmds, e.g.
655 	 * in a direct-access (dax) mapping, so let's just replicate the
656 	 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
657 	 */
658 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
659 		if (vma->vm_flags & VM_MIXEDMAP) {
660 			if (!pfn_valid(pfn))
661 				return NULL;
662 			goto out;
663 		} else {
664 			unsigned long off;
665 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
666 			if (pfn == vma->vm_pgoff + off)
667 				return NULL;
668 			if (!is_cow_mapping(vma->vm_flags))
669 				return NULL;
670 		}
671 	}
672 
673 	if (pmd_devmap(pmd))
674 		return NULL;
675 	if (is_huge_zero_pmd(pmd))
676 		return NULL;
677 	if (unlikely(pfn > highest_memmap_pfn))
678 		return NULL;
679 
680 	/*
681 	 * NOTE! We still have PageReserved() pages in the page tables.
682 	 * eg. VDSO mappings can cause them to exist.
683 	 */
684 out:
685 	return pfn_to_page(pfn);
686 }
687 #endif
688 
689 /*
690  * copy one vm_area from one task to the other. Assumes the page tables
691  * already present in the new task to be cleared in the whole range
692  * covered by this vma.
693  */
694 
695 static inline unsigned long
696 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
697 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
698 		unsigned long addr, int *rss)
699 {
700 	unsigned long vm_flags = vma->vm_flags;
701 	pte_t pte = *src_pte;
702 	struct page *page;
703 
704 	/* pte contains position in swap or file, so copy. */
705 	if (unlikely(!pte_present(pte))) {
706 		swp_entry_t entry = pte_to_swp_entry(pte);
707 
708 		if (likely(!non_swap_entry(entry))) {
709 			if (swap_duplicate(entry) < 0)
710 				return entry.val;
711 
712 			/* make sure dst_mm is on swapoff's mmlist. */
713 			if (unlikely(list_empty(&dst_mm->mmlist))) {
714 				spin_lock(&mmlist_lock);
715 				if (list_empty(&dst_mm->mmlist))
716 					list_add(&dst_mm->mmlist,
717 							&src_mm->mmlist);
718 				spin_unlock(&mmlist_lock);
719 			}
720 			rss[MM_SWAPENTS]++;
721 		} else if (is_migration_entry(entry)) {
722 			page = migration_entry_to_page(entry);
723 
724 			rss[mm_counter(page)]++;
725 
726 			if (is_write_migration_entry(entry) &&
727 					is_cow_mapping(vm_flags)) {
728 				/*
729 				 * COW mappings require pages in both
730 				 * parent and child to be set to read.
731 				 */
732 				make_migration_entry_read(&entry);
733 				pte = swp_entry_to_pte(entry);
734 				if (pte_swp_soft_dirty(*src_pte))
735 					pte = pte_swp_mksoft_dirty(pte);
736 				if (pte_swp_uffd_wp(*src_pte))
737 					pte = pte_swp_mkuffd_wp(pte);
738 				set_pte_at(src_mm, addr, src_pte, pte);
739 			}
740 		} else if (is_device_private_entry(entry)) {
741 			page = device_private_entry_to_page(entry);
742 
743 			/*
744 			 * Update rss count even for unaddressable pages, as
745 			 * they should treated just like normal pages in this
746 			 * respect.
747 			 *
748 			 * We will likely want to have some new rss counters
749 			 * for unaddressable pages, at some point. But for now
750 			 * keep things as they are.
751 			 */
752 			get_page(page);
753 			rss[mm_counter(page)]++;
754 			page_dup_rmap(page, false);
755 
756 			/*
757 			 * We do not preserve soft-dirty information, because so
758 			 * far, checkpoint/restore is the only feature that
759 			 * requires that. And checkpoint/restore does not work
760 			 * when a device driver is involved (you cannot easily
761 			 * save and restore device driver state).
762 			 */
763 			if (is_write_device_private_entry(entry) &&
764 			    is_cow_mapping(vm_flags)) {
765 				make_device_private_entry_read(&entry);
766 				pte = swp_entry_to_pte(entry);
767 				if (pte_swp_uffd_wp(*src_pte))
768 					pte = pte_swp_mkuffd_wp(pte);
769 				set_pte_at(src_mm, addr, src_pte, pte);
770 			}
771 		}
772 		goto out_set_pte;
773 	}
774 
775 	/*
776 	 * If it's a COW mapping, write protect it both
777 	 * in the parent and the child
778 	 */
779 	if (is_cow_mapping(vm_flags) && pte_write(pte)) {
780 		ptep_set_wrprotect(src_mm, addr, src_pte);
781 		pte = pte_wrprotect(pte);
782 	}
783 
784 	/*
785 	 * If it's a shared mapping, mark it clean in
786 	 * the child
787 	 */
788 	if (vm_flags & VM_SHARED)
789 		pte = pte_mkclean(pte);
790 	pte = pte_mkold(pte);
791 
792 	/*
793 	 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
794 	 * does not have the VM_UFFD_WP, which means that the uffd
795 	 * fork event is not enabled.
796 	 */
797 	if (!(vm_flags & VM_UFFD_WP))
798 		pte = pte_clear_uffd_wp(pte);
799 
800 	page = vm_normal_page(vma, addr, pte);
801 	if (page) {
802 		get_page(page);
803 		page_dup_rmap(page, false);
804 		rss[mm_counter(page)]++;
805 	} else if (pte_devmap(pte)) {
806 		page = pte_page(pte);
807 	}
808 
809 out_set_pte:
810 	set_pte_at(dst_mm, addr, dst_pte, pte);
811 	return 0;
812 }
813 
814 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
815 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
816 		   unsigned long addr, unsigned long end)
817 {
818 	pte_t *orig_src_pte, *orig_dst_pte;
819 	pte_t *src_pte, *dst_pte;
820 	spinlock_t *src_ptl, *dst_ptl;
821 	int progress = 0;
822 	int rss[NR_MM_COUNTERS];
823 	swp_entry_t entry = (swp_entry_t){0};
824 
825 again:
826 	init_rss_vec(rss);
827 
828 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
829 	if (!dst_pte)
830 		return -ENOMEM;
831 	src_pte = pte_offset_map(src_pmd, addr);
832 	src_ptl = pte_lockptr(src_mm, src_pmd);
833 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
834 	orig_src_pte = src_pte;
835 	orig_dst_pte = dst_pte;
836 	arch_enter_lazy_mmu_mode();
837 
838 	do {
839 		/*
840 		 * We are holding two locks at this point - either of them
841 		 * could generate latencies in another task on another CPU.
842 		 */
843 		if (progress >= 32) {
844 			progress = 0;
845 			if (need_resched() ||
846 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
847 				break;
848 		}
849 		if (pte_none(*src_pte)) {
850 			progress++;
851 			continue;
852 		}
853 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
854 							vma, addr, rss);
855 		if (entry.val)
856 			break;
857 		progress += 8;
858 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
859 
860 	arch_leave_lazy_mmu_mode();
861 	spin_unlock(src_ptl);
862 	pte_unmap(orig_src_pte);
863 	add_mm_rss_vec(dst_mm, rss);
864 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
865 	cond_resched();
866 
867 	if (entry.val) {
868 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
869 			return -ENOMEM;
870 		progress = 0;
871 	}
872 	if (addr != end)
873 		goto again;
874 	return 0;
875 }
876 
877 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
879 		unsigned long addr, unsigned long end)
880 {
881 	pmd_t *src_pmd, *dst_pmd;
882 	unsigned long next;
883 
884 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
885 	if (!dst_pmd)
886 		return -ENOMEM;
887 	src_pmd = pmd_offset(src_pud, addr);
888 	do {
889 		next = pmd_addr_end(addr, end);
890 		if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
891 			|| pmd_devmap(*src_pmd)) {
892 			int err;
893 			VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
894 			err = copy_huge_pmd(dst_mm, src_mm,
895 					    dst_pmd, src_pmd, addr, vma);
896 			if (err == -ENOMEM)
897 				return -ENOMEM;
898 			if (!err)
899 				continue;
900 			/* fall through */
901 		}
902 		if (pmd_none_or_clear_bad(src_pmd))
903 			continue;
904 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
905 						vma, addr, next))
906 			return -ENOMEM;
907 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
908 	return 0;
909 }
910 
911 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
912 		p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
913 		unsigned long addr, unsigned long end)
914 {
915 	pud_t *src_pud, *dst_pud;
916 	unsigned long next;
917 
918 	dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
919 	if (!dst_pud)
920 		return -ENOMEM;
921 	src_pud = pud_offset(src_p4d, addr);
922 	do {
923 		next = pud_addr_end(addr, end);
924 		if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
925 			int err;
926 
927 			VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
928 			err = copy_huge_pud(dst_mm, src_mm,
929 					    dst_pud, src_pud, addr, vma);
930 			if (err == -ENOMEM)
931 				return -ENOMEM;
932 			if (!err)
933 				continue;
934 			/* fall through */
935 		}
936 		if (pud_none_or_clear_bad(src_pud))
937 			continue;
938 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
939 						vma, addr, next))
940 			return -ENOMEM;
941 	} while (dst_pud++, src_pud++, addr = next, addr != end);
942 	return 0;
943 }
944 
945 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
946 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
947 		unsigned long addr, unsigned long end)
948 {
949 	p4d_t *src_p4d, *dst_p4d;
950 	unsigned long next;
951 
952 	dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
953 	if (!dst_p4d)
954 		return -ENOMEM;
955 	src_p4d = p4d_offset(src_pgd, addr);
956 	do {
957 		next = p4d_addr_end(addr, end);
958 		if (p4d_none_or_clear_bad(src_p4d))
959 			continue;
960 		if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
961 						vma, addr, next))
962 			return -ENOMEM;
963 	} while (dst_p4d++, src_p4d++, addr = next, addr != end);
964 	return 0;
965 }
966 
967 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
968 		struct vm_area_struct *vma)
969 {
970 	pgd_t *src_pgd, *dst_pgd;
971 	unsigned long next;
972 	unsigned long addr = vma->vm_start;
973 	unsigned long end = vma->vm_end;
974 	struct mmu_notifier_range range;
975 	bool is_cow;
976 	int ret;
977 
978 	/*
979 	 * Don't copy ptes where a page fault will fill them correctly.
980 	 * Fork becomes much lighter when there are big shared or private
981 	 * readonly mappings. The tradeoff is that copy_page_range is more
982 	 * efficient than faulting.
983 	 */
984 	if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
985 			!vma->anon_vma)
986 		return 0;
987 
988 	if (is_vm_hugetlb_page(vma))
989 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
990 
991 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
992 		/*
993 		 * We do not free on error cases below as remove_vma
994 		 * gets called on error from higher level routine
995 		 */
996 		ret = track_pfn_copy(vma);
997 		if (ret)
998 			return ret;
999 	}
1000 
1001 	/*
1002 	 * We need to invalidate the secondary MMU mappings only when
1003 	 * there could be a permission downgrade on the ptes of the
1004 	 * parent mm. And a permission downgrade will only happen if
1005 	 * is_cow_mapping() returns true.
1006 	 */
1007 	is_cow = is_cow_mapping(vma->vm_flags);
1008 
1009 	if (is_cow) {
1010 		mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1011 					0, vma, src_mm, addr, end);
1012 		mmu_notifier_invalidate_range_start(&range);
1013 	}
1014 
1015 	ret = 0;
1016 	dst_pgd = pgd_offset(dst_mm, addr);
1017 	src_pgd = pgd_offset(src_mm, addr);
1018 	do {
1019 		next = pgd_addr_end(addr, end);
1020 		if (pgd_none_or_clear_bad(src_pgd))
1021 			continue;
1022 		if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1023 					    vma, addr, next))) {
1024 			ret = -ENOMEM;
1025 			break;
1026 		}
1027 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1028 
1029 	if (is_cow)
1030 		mmu_notifier_invalidate_range_end(&range);
1031 	return ret;
1032 }
1033 
1034 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1035 				struct vm_area_struct *vma, pmd_t *pmd,
1036 				unsigned long addr, unsigned long end,
1037 				struct zap_details *details)
1038 {
1039 	struct mm_struct *mm = tlb->mm;
1040 	int force_flush = 0;
1041 	int rss[NR_MM_COUNTERS];
1042 	spinlock_t *ptl;
1043 	pte_t *start_pte;
1044 	pte_t *pte;
1045 	swp_entry_t entry;
1046 
1047 	tlb_change_page_size(tlb, PAGE_SIZE);
1048 again:
1049 	init_rss_vec(rss);
1050 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1051 	pte = start_pte;
1052 	flush_tlb_batched_pending(mm);
1053 	arch_enter_lazy_mmu_mode();
1054 	do {
1055 		pte_t ptent = *pte;
1056 		if (pte_none(ptent))
1057 			continue;
1058 
1059 		if (need_resched())
1060 			break;
1061 
1062 		if (pte_present(ptent)) {
1063 			struct page *page;
1064 
1065 			page = vm_normal_page(vma, addr, ptent);
1066 			if (unlikely(details) && page) {
1067 				/*
1068 				 * unmap_shared_mapping_pages() wants to
1069 				 * invalidate cache without truncating:
1070 				 * unmap shared but keep private pages.
1071 				 */
1072 				if (details->check_mapping &&
1073 				    details->check_mapping != page_rmapping(page))
1074 					continue;
1075 			}
1076 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1077 							tlb->fullmm);
1078 			tlb_remove_tlb_entry(tlb, pte, addr);
1079 			if (unlikely(!page))
1080 				continue;
1081 
1082 			if (!PageAnon(page)) {
1083 				if (pte_dirty(ptent)) {
1084 					force_flush = 1;
1085 					set_page_dirty(page);
1086 				}
1087 				if (pte_young(ptent) &&
1088 				    likely(!(vma->vm_flags & VM_SEQ_READ)))
1089 					mark_page_accessed(page);
1090 			}
1091 			rss[mm_counter(page)]--;
1092 			page_remove_rmap(page, false);
1093 			if (unlikely(page_mapcount(page) < 0))
1094 				print_bad_pte(vma, addr, ptent, page);
1095 			if (unlikely(__tlb_remove_page(tlb, page))) {
1096 				force_flush = 1;
1097 				addr += PAGE_SIZE;
1098 				break;
1099 			}
1100 			continue;
1101 		}
1102 
1103 		entry = pte_to_swp_entry(ptent);
1104 		if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1105 			struct page *page = device_private_entry_to_page(entry);
1106 
1107 			if (unlikely(details && details->check_mapping)) {
1108 				/*
1109 				 * unmap_shared_mapping_pages() wants to
1110 				 * invalidate cache without truncating:
1111 				 * unmap shared but keep private pages.
1112 				 */
1113 				if (details->check_mapping !=
1114 				    page_rmapping(page))
1115 					continue;
1116 			}
1117 
1118 			pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1119 			rss[mm_counter(page)]--;
1120 			page_remove_rmap(page, false);
1121 			put_page(page);
1122 			continue;
1123 		}
1124 
1125 		/* If details->check_mapping, we leave swap entries. */
1126 		if (unlikely(details))
1127 			continue;
1128 
1129 		if (!non_swap_entry(entry))
1130 			rss[MM_SWAPENTS]--;
1131 		else if (is_migration_entry(entry)) {
1132 			struct page *page;
1133 
1134 			page = migration_entry_to_page(entry);
1135 			rss[mm_counter(page)]--;
1136 		}
1137 		if (unlikely(!free_swap_and_cache(entry)))
1138 			print_bad_pte(vma, addr, ptent, NULL);
1139 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1140 	} while (pte++, addr += PAGE_SIZE, addr != end);
1141 
1142 	add_mm_rss_vec(mm, rss);
1143 	arch_leave_lazy_mmu_mode();
1144 
1145 	/* Do the actual TLB flush before dropping ptl */
1146 	if (force_flush)
1147 		tlb_flush_mmu_tlbonly(tlb);
1148 	pte_unmap_unlock(start_pte, ptl);
1149 
1150 	/*
1151 	 * If we forced a TLB flush (either due to running out of
1152 	 * batch buffers or because we needed to flush dirty TLB
1153 	 * entries before releasing the ptl), free the batched
1154 	 * memory too. Restart if we didn't do everything.
1155 	 */
1156 	if (force_flush) {
1157 		force_flush = 0;
1158 		tlb_flush_mmu(tlb);
1159 	}
1160 
1161 	if (addr != end) {
1162 		cond_resched();
1163 		goto again;
1164 	}
1165 
1166 	return addr;
1167 }
1168 
1169 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1170 				struct vm_area_struct *vma, pud_t *pud,
1171 				unsigned long addr, unsigned long end,
1172 				struct zap_details *details)
1173 {
1174 	pmd_t *pmd;
1175 	unsigned long next;
1176 
1177 	pmd = pmd_offset(pud, addr);
1178 	do {
1179 		next = pmd_addr_end(addr, end);
1180 		if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1181 			if (next - addr != HPAGE_PMD_SIZE)
1182 				__split_huge_pmd(vma, pmd, addr, false, NULL);
1183 			else if (zap_huge_pmd(tlb, vma, pmd, addr))
1184 				goto next;
1185 			/* fall through */
1186 		}
1187 		/*
1188 		 * Here there can be other concurrent MADV_DONTNEED or
1189 		 * trans huge page faults running, and if the pmd is
1190 		 * none or trans huge it can change under us. This is
1191 		 * because MADV_DONTNEED holds the mmap_sem in read
1192 		 * mode.
1193 		 */
1194 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1195 			goto next;
1196 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1197 next:
1198 		cond_resched();
1199 	} while (pmd++, addr = next, addr != end);
1200 
1201 	return addr;
1202 }
1203 
1204 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1205 				struct vm_area_struct *vma, p4d_t *p4d,
1206 				unsigned long addr, unsigned long end,
1207 				struct zap_details *details)
1208 {
1209 	pud_t *pud;
1210 	unsigned long next;
1211 
1212 	pud = pud_offset(p4d, addr);
1213 	do {
1214 		next = pud_addr_end(addr, end);
1215 		if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1216 			if (next - addr != HPAGE_PUD_SIZE) {
1217 				VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1218 				split_huge_pud(vma, pud, addr);
1219 			} else if (zap_huge_pud(tlb, vma, pud, addr))
1220 				goto next;
1221 			/* fall through */
1222 		}
1223 		if (pud_none_or_clear_bad(pud))
1224 			continue;
1225 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1226 next:
1227 		cond_resched();
1228 	} while (pud++, addr = next, addr != end);
1229 
1230 	return addr;
1231 }
1232 
1233 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1234 				struct vm_area_struct *vma, pgd_t *pgd,
1235 				unsigned long addr, unsigned long end,
1236 				struct zap_details *details)
1237 {
1238 	p4d_t *p4d;
1239 	unsigned long next;
1240 
1241 	p4d = p4d_offset(pgd, addr);
1242 	do {
1243 		next = p4d_addr_end(addr, end);
1244 		if (p4d_none_or_clear_bad(p4d))
1245 			continue;
1246 		next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1247 	} while (p4d++, addr = next, addr != end);
1248 
1249 	return addr;
1250 }
1251 
1252 void unmap_page_range(struct mmu_gather *tlb,
1253 			     struct vm_area_struct *vma,
1254 			     unsigned long addr, unsigned long end,
1255 			     struct zap_details *details)
1256 {
1257 	pgd_t *pgd;
1258 	unsigned long next;
1259 
1260 	BUG_ON(addr >= end);
1261 	tlb_start_vma(tlb, vma);
1262 	pgd = pgd_offset(vma->vm_mm, addr);
1263 	do {
1264 		next = pgd_addr_end(addr, end);
1265 		if (pgd_none_or_clear_bad(pgd))
1266 			continue;
1267 		next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1268 	} while (pgd++, addr = next, addr != end);
1269 	tlb_end_vma(tlb, vma);
1270 }
1271 
1272 
1273 static void unmap_single_vma(struct mmu_gather *tlb,
1274 		struct vm_area_struct *vma, unsigned long start_addr,
1275 		unsigned long end_addr,
1276 		struct zap_details *details)
1277 {
1278 	unsigned long start = max(vma->vm_start, start_addr);
1279 	unsigned long end;
1280 
1281 	if (start >= vma->vm_end)
1282 		return;
1283 	end = min(vma->vm_end, end_addr);
1284 	if (end <= vma->vm_start)
1285 		return;
1286 
1287 	if (vma->vm_file)
1288 		uprobe_munmap(vma, start, end);
1289 
1290 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1291 		untrack_pfn(vma, 0, 0);
1292 
1293 	if (start != end) {
1294 		if (unlikely(is_vm_hugetlb_page(vma))) {
1295 			/*
1296 			 * It is undesirable to test vma->vm_file as it
1297 			 * should be non-null for valid hugetlb area.
1298 			 * However, vm_file will be NULL in the error
1299 			 * cleanup path of mmap_region. When
1300 			 * hugetlbfs ->mmap method fails,
1301 			 * mmap_region() nullifies vma->vm_file
1302 			 * before calling this function to clean up.
1303 			 * Since no pte has actually been setup, it is
1304 			 * safe to do nothing in this case.
1305 			 */
1306 			if (vma->vm_file) {
1307 				i_mmap_lock_write(vma->vm_file->f_mapping);
1308 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1309 				i_mmap_unlock_write(vma->vm_file->f_mapping);
1310 			}
1311 		} else
1312 			unmap_page_range(tlb, vma, start, end, details);
1313 	}
1314 }
1315 
1316 /**
1317  * unmap_vmas - unmap a range of memory covered by a list of vma's
1318  * @tlb: address of the caller's struct mmu_gather
1319  * @vma: the starting vma
1320  * @start_addr: virtual address at which to start unmapping
1321  * @end_addr: virtual address at which to end unmapping
1322  *
1323  * Unmap all pages in the vma list.
1324  *
1325  * Only addresses between `start' and `end' will be unmapped.
1326  *
1327  * The VMA list must be sorted in ascending virtual address order.
1328  *
1329  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1330  * range after unmap_vmas() returns.  So the only responsibility here is to
1331  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1332  * drops the lock and schedules.
1333  */
1334 void unmap_vmas(struct mmu_gather *tlb,
1335 		struct vm_area_struct *vma, unsigned long start_addr,
1336 		unsigned long end_addr)
1337 {
1338 	struct mmu_notifier_range range;
1339 
1340 	mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, vma->vm_mm,
1341 				start_addr, end_addr);
1342 	mmu_notifier_invalidate_range_start(&range);
1343 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1344 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1345 	mmu_notifier_invalidate_range_end(&range);
1346 }
1347 
1348 /**
1349  * zap_page_range - remove user pages in a given range
1350  * @vma: vm_area_struct holding the applicable pages
1351  * @start: starting address of pages to zap
1352  * @size: number of bytes to zap
1353  *
1354  * Caller must protect the VMA list
1355  */
1356 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1357 		unsigned long size)
1358 {
1359 	struct mmu_notifier_range range;
1360 	struct mmu_gather tlb;
1361 
1362 	lru_add_drain();
1363 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1364 				start, start + size);
1365 	tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end);
1366 	update_hiwater_rss(vma->vm_mm);
1367 	mmu_notifier_invalidate_range_start(&range);
1368 	for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next)
1369 		unmap_single_vma(&tlb, vma, start, range.end, NULL);
1370 	mmu_notifier_invalidate_range_end(&range);
1371 	tlb_finish_mmu(&tlb, start, range.end);
1372 }
1373 
1374 /**
1375  * zap_page_range_single - remove user pages in a given range
1376  * @vma: vm_area_struct holding the applicable pages
1377  * @address: starting address of pages to zap
1378  * @size: number of bytes to zap
1379  * @details: details of shared cache invalidation
1380  *
1381  * The range must fit into one VMA.
1382  */
1383 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1384 		unsigned long size, struct zap_details *details)
1385 {
1386 	struct mmu_notifier_range range;
1387 	struct mmu_gather tlb;
1388 
1389 	lru_add_drain();
1390 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1391 				address, address + size);
1392 	tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end);
1393 	update_hiwater_rss(vma->vm_mm);
1394 	mmu_notifier_invalidate_range_start(&range);
1395 	unmap_single_vma(&tlb, vma, address, range.end, details);
1396 	mmu_notifier_invalidate_range_end(&range);
1397 	tlb_finish_mmu(&tlb, address, range.end);
1398 }
1399 
1400 /**
1401  * zap_vma_ptes - remove ptes mapping the vma
1402  * @vma: vm_area_struct holding ptes to be zapped
1403  * @address: starting address of pages to zap
1404  * @size: number of bytes to zap
1405  *
1406  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1407  *
1408  * The entire address range must be fully contained within the vma.
1409  *
1410  */
1411 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1412 		unsigned long size)
1413 {
1414 	if (address < vma->vm_start || address + size > vma->vm_end ||
1415 	    		!(vma->vm_flags & VM_PFNMAP))
1416 		return;
1417 
1418 	zap_page_range_single(vma, address, size, NULL);
1419 }
1420 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1421 
1422 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1423 			spinlock_t **ptl)
1424 {
1425 	pgd_t *pgd;
1426 	p4d_t *p4d;
1427 	pud_t *pud;
1428 	pmd_t *pmd;
1429 
1430 	pgd = pgd_offset(mm, addr);
1431 	p4d = p4d_alloc(mm, pgd, addr);
1432 	if (!p4d)
1433 		return NULL;
1434 	pud = pud_alloc(mm, p4d, addr);
1435 	if (!pud)
1436 		return NULL;
1437 	pmd = pmd_alloc(mm, pud, addr);
1438 	if (!pmd)
1439 		return NULL;
1440 
1441 	VM_BUG_ON(pmd_trans_huge(*pmd));
1442 	return pte_alloc_map_lock(mm, pmd, addr, ptl);
1443 }
1444 
1445 /*
1446  * This is the old fallback for page remapping.
1447  *
1448  * For historical reasons, it only allows reserved pages. Only
1449  * old drivers should use this, and they needed to mark their
1450  * pages reserved for the old functions anyway.
1451  */
1452 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1453 			struct page *page, pgprot_t prot)
1454 {
1455 	struct mm_struct *mm = vma->vm_mm;
1456 	int retval;
1457 	pte_t *pte;
1458 	spinlock_t *ptl;
1459 
1460 	retval = -EINVAL;
1461 	if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1462 		goto out;
1463 	retval = -ENOMEM;
1464 	flush_dcache_page(page);
1465 	pte = get_locked_pte(mm, addr, &ptl);
1466 	if (!pte)
1467 		goto out;
1468 	retval = -EBUSY;
1469 	if (!pte_none(*pte))
1470 		goto out_unlock;
1471 
1472 	/* Ok, finally just insert the thing.. */
1473 	get_page(page);
1474 	inc_mm_counter_fast(mm, mm_counter_file(page));
1475 	page_add_file_rmap(page, false);
1476 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
1477 
1478 	retval = 0;
1479 out_unlock:
1480 	pte_unmap_unlock(pte, ptl);
1481 out:
1482 	return retval;
1483 }
1484 
1485 /**
1486  * vm_insert_page - insert single page into user vma
1487  * @vma: user vma to map to
1488  * @addr: target user address of this page
1489  * @page: source kernel page
1490  *
1491  * This allows drivers to insert individual pages they've allocated
1492  * into a user vma.
1493  *
1494  * The page has to be a nice clean _individual_ kernel allocation.
1495  * If you allocate a compound page, you need to have marked it as
1496  * such (__GFP_COMP), or manually just split the page up yourself
1497  * (see split_page()).
1498  *
1499  * NOTE! Traditionally this was done with "remap_pfn_range()" which
1500  * took an arbitrary page protection parameter. This doesn't allow
1501  * that. Your vma protection will have to be set up correctly, which
1502  * means that if you want a shared writable mapping, you'd better
1503  * ask for a shared writable mapping!
1504  *
1505  * The page does not need to be reserved.
1506  *
1507  * Usually this function is called from f_op->mmap() handler
1508  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1509  * Caller must set VM_MIXEDMAP on vma if it wants to call this
1510  * function from other places, for example from page-fault handler.
1511  *
1512  * Return: %0 on success, negative error code otherwise.
1513  */
1514 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1515 			struct page *page)
1516 {
1517 	if (addr < vma->vm_start || addr >= vma->vm_end)
1518 		return -EFAULT;
1519 	if (!page_count(page))
1520 		return -EINVAL;
1521 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
1522 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1523 		BUG_ON(vma->vm_flags & VM_PFNMAP);
1524 		vma->vm_flags |= VM_MIXEDMAP;
1525 	}
1526 	return insert_page(vma, addr, page, vma->vm_page_prot);
1527 }
1528 EXPORT_SYMBOL(vm_insert_page);
1529 
1530 /*
1531  * __vm_map_pages - maps range of kernel pages into user vma
1532  * @vma: user vma to map to
1533  * @pages: pointer to array of source kernel pages
1534  * @num: number of pages in page array
1535  * @offset: user's requested vm_pgoff
1536  *
1537  * This allows drivers to map range of kernel pages into a user vma.
1538  *
1539  * Return: 0 on success and error code otherwise.
1540  */
1541 static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1542 				unsigned long num, unsigned long offset)
1543 {
1544 	unsigned long count = vma_pages(vma);
1545 	unsigned long uaddr = vma->vm_start;
1546 	int ret, i;
1547 
1548 	/* Fail if the user requested offset is beyond the end of the object */
1549 	if (offset >= num)
1550 		return -ENXIO;
1551 
1552 	/* Fail if the user requested size exceeds available object size */
1553 	if (count > num - offset)
1554 		return -ENXIO;
1555 
1556 	for (i = 0; i < count; i++) {
1557 		ret = vm_insert_page(vma, uaddr, pages[offset + i]);
1558 		if (ret < 0)
1559 			return ret;
1560 		uaddr += PAGE_SIZE;
1561 	}
1562 
1563 	return 0;
1564 }
1565 
1566 /**
1567  * vm_map_pages - maps range of kernel pages starts with non zero offset
1568  * @vma: user vma to map to
1569  * @pages: pointer to array of source kernel pages
1570  * @num: number of pages in page array
1571  *
1572  * Maps an object consisting of @num pages, catering for the user's
1573  * requested vm_pgoff
1574  *
1575  * If we fail to insert any page into the vma, the function will return
1576  * immediately leaving any previously inserted pages present.  Callers
1577  * from the mmap handler may immediately return the error as their caller
1578  * will destroy the vma, removing any successfully inserted pages. Other
1579  * callers should make their own arrangements for calling unmap_region().
1580  *
1581  * Context: Process context. Called by mmap handlers.
1582  * Return: 0 on success and error code otherwise.
1583  */
1584 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
1585 				unsigned long num)
1586 {
1587 	return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
1588 }
1589 EXPORT_SYMBOL(vm_map_pages);
1590 
1591 /**
1592  * vm_map_pages_zero - map range of kernel pages starts with zero offset
1593  * @vma: user vma to map to
1594  * @pages: pointer to array of source kernel pages
1595  * @num: number of pages in page array
1596  *
1597  * Similar to vm_map_pages(), except that it explicitly sets the offset
1598  * to 0. This function is intended for the drivers that did not consider
1599  * vm_pgoff.
1600  *
1601  * Context: Process context. Called by mmap handlers.
1602  * Return: 0 on success and error code otherwise.
1603  */
1604 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
1605 				unsigned long num)
1606 {
1607 	return __vm_map_pages(vma, pages, num, 0);
1608 }
1609 EXPORT_SYMBOL(vm_map_pages_zero);
1610 
1611 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1612 			pfn_t pfn, pgprot_t prot, bool mkwrite)
1613 {
1614 	struct mm_struct *mm = vma->vm_mm;
1615 	pte_t *pte, entry;
1616 	spinlock_t *ptl;
1617 
1618 	pte = get_locked_pte(mm, addr, &ptl);
1619 	if (!pte)
1620 		return VM_FAULT_OOM;
1621 	if (!pte_none(*pte)) {
1622 		if (mkwrite) {
1623 			/*
1624 			 * For read faults on private mappings the PFN passed
1625 			 * in may not match the PFN we have mapped if the
1626 			 * mapped PFN is a writeable COW page.  In the mkwrite
1627 			 * case we are creating a writable PTE for a shared
1628 			 * mapping and we expect the PFNs to match. If they
1629 			 * don't match, we are likely racing with block
1630 			 * allocation and mapping invalidation so just skip the
1631 			 * update.
1632 			 */
1633 			if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) {
1634 				WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte)));
1635 				goto out_unlock;
1636 			}
1637 			entry = pte_mkyoung(*pte);
1638 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1639 			if (ptep_set_access_flags(vma, addr, pte, entry, 1))
1640 				update_mmu_cache(vma, addr, pte);
1641 		}
1642 		goto out_unlock;
1643 	}
1644 
1645 	/* Ok, finally just insert the thing.. */
1646 	if (pfn_t_devmap(pfn))
1647 		entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1648 	else
1649 		entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1650 
1651 	if (mkwrite) {
1652 		entry = pte_mkyoung(entry);
1653 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1654 	}
1655 
1656 	set_pte_at(mm, addr, pte, entry);
1657 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1658 
1659 out_unlock:
1660 	pte_unmap_unlock(pte, ptl);
1661 	return VM_FAULT_NOPAGE;
1662 }
1663 
1664 /**
1665  * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1666  * @vma: user vma to map to
1667  * @addr: target user address of this page
1668  * @pfn: source kernel pfn
1669  * @pgprot: pgprot flags for the inserted page
1670  *
1671  * This is exactly like vmf_insert_pfn(), except that it allows drivers to
1672  * to override pgprot on a per-page basis.
1673  *
1674  * This only makes sense for IO mappings, and it makes no sense for
1675  * COW mappings.  In general, using multiple vmas is preferable;
1676  * vmf_insert_pfn_prot should only be used if using multiple VMAs is
1677  * impractical.
1678  *
1679  * See vmf_insert_mixed_prot() for a discussion of the implication of using
1680  * a value of @pgprot different from that of @vma->vm_page_prot.
1681  *
1682  * Context: Process context.  May allocate using %GFP_KERNEL.
1683  * Return: vm_fault_t value.
1684  */
1685 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1686 			unsigned long pfn, pgprot_t pgprot)
1687 {
1688 	/*
1689 	 * Technically, architectures with pte_special can avoid all these
1690 	 * restrictions (same for remap_pfn_range).  However we would like
1691 	 * consistency in testing and feature parity among all, so we should
1692 	 * try to keep these invariants in place for everybody.
1693 	 */
1694 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1695 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1696 						(VM_PFNMAP|VM_MIXEDMAP));
1697 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1698 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1699 
1700 	if (addr < vma->vm_start || addr >= vma->vm_end)
1701 		return VM_FAULT_SIGBUS;
1702 
1703 	if (!pfn_modify_allowed(pfn, pgprot))
1704 		return VM_FAULT_SIGBUS;
1705 
1706 	track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1707 
1708 	return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1709 			false);
1710 }
1711 EXPORT_SYMBOL(vmf_insert_pfn_prot);
1712 
1713 /**
1714  * vmf_insert_pfn - insert single pfn into user vma
1715  * @vma: user vma to map to
1716  * @addr: target user address of this page
1717  * @pfn: source kernel pfn
1718  *
1719  * Similar to vm_insert_page, this allows drivers to insert individual pages
1720  * they've allocated into a user vma. Same comments apply.
1721  *
1722  * This function should only be called from a vm_ops->fault handler, and
1723  * in that case the handler should return the result of this function.
1724  *
1725  * vma cannot be a COW mapping.
1726  *
1727  * As this is called only for pages that do not currently exist, we
1728  * do not need to flush old virtual caches or the TLB.
1729  *
1730  * Context: Process context.  May allocate using %GFP_KERNEL.
1731  * Return: vm_fault_t value.
1732  */
1733 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1734 			unsigned long pfn)
1735 {
1736 	return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1737 }
1738 EXPORT_SYMBOL(vmf_insert_pfn);
1739 
1740 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1741 {
1742 	/* these checks mirror the abort conditions in vm_normal_page */
1743 	if (vma->vm_flags & VM_MIXEDMAP)
1744 		return true;
1745 	if (pfn_t_devmap(pfn))
1746 		return true;
1747 	if (pfn_t_special(pfn))
1748 		return true;
1749 	if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1750 		return true;
1751 	return false;
1752 }
1753 
1754 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
1755 		unsigned long addr, pfn_t pfn, pgprot_t pgprot,
1756 		bool mkwrite)
1757 {
1758 	int err;
1759 
1760 	BUG_ON(!vm_mixed_ok(vma, pfn));
1761 
1762 	if (addr < vma->vm_start || addr >= vma->vm_end)
1763 		return VM_FAULT_SIGBUS;
1764 
1765 	track_pfn_insert(vma, &pgprot, pfn);
1766 
1767 	if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1768 		return VM_FAULT_SIGBUS;
1769 
1770 	/*
1771 	 * If we don't have pte special, then we have to use the pfn_valid()
1772 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1773 	 * refcount the page if pfn_valid is true (hence insert_page rather
1774 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1775 	 * without pte special, it would there be refcounted as a normal page.
1776 	 */
1777 	if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1778 	    !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1779 		struct page *page;
1780 
1781 		/*
1782 		 * At this point we are committed to insert_page()
1783 		 * regardless of whether the caller specified flags that
1784 		 * result in pfn_t_has_page() == false.
1785 		 */
1786 		page = pfn_to_page(pfn_t_to_pfn(pfn));
1787 		err = insert_page(vma, addr, page, pgprot);
1788 	} else {
1789 		return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1790 	}
1791 
1792 	if (err == -ENOMEM)
1793 		return VM_FAULT_OOM;
1794 	if (err < 0 && err != -EBUSY)
1795 		return VM_FAULT_SIGBUS;
1796 
1797 	return VM_FAULT_NOPAGE;
1798 }
1799 
1800 /**
1801  * vmf_insert_mixed_prot - insert single pfn into user vma with specified pgprot
1802  * @vma: user vma to map to
1803  * @addr: target user address of this page
1804  * @pfn: source kernel pfn
1805  * @pgprot: pgprot flags for the inserted page
1806  *
1807  * This is exactly like vmf_insert_mixed(), except that it allows drivers to
1808  * to override pgprot on a per-page basis.
1809  *
1810  * Typically this function should be used by drivers to set caching- and
1811  * encryption bits different than those of @vma->vm_page_prot, because
1812  * the caching- or encryption mode may not be known at mmap() time.
1813  * This is ok as long as @vma->vm_page_prot is not used by the core vm
1814  * to set caching and encryption bits for those vmas (except for COW pages).
1815  * This is ensured by core vm only modifying these page table entries using
1816  * functions that don't touch caching- or encryption bits, using pte_modify()
1817  * if needed. (See for example mprotect()).
1818  * Also when new page-table entries are created, this is only done using the
1819  * fault() callback, and never using the value of vma->vm_page_prot,
1820  * except for page-table entries that point to anonymous pages as the result
1821  * of COW.
1822  *
1823  * Context: Process context.  May allocate using %GFP_KERNEL.
1824  * Return: vm_fault_t value.
1825  */
1826 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
1827 				 pfn_t pfn, pgprot_t pgprot)
1828 {
1829 	return __vm_insert_mixed(vma, addr, pfn, pgprot, false);
1830 }
1831 EXPORT_SYMBOL(vmf_insert_mixed_prot);
1832 
1833 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1834 		pfn_t pfn)
1835 {
1836 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, false);
1837 }
1838 EXPORT_SYMBOL(vmf_insert_mixed);
1839 
1840 /*
1841  *  If the insertion of PTE failed because someone else already added a
1842  *  different entry in the mean time, we treat that as success as we assume
1843  *  the same entry was actually inserted.
1844  */
1845 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1846 		unsigned long addr, pfn_t pfn)
1847 {
1848 	return __vm_insert_mixed(vma, addr, pfn, vma->vm_page_prot, true);
1849 }
1850 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1851 
1852 /*
1853  * maps a range of physical memory into the requested pages. the old
1854  * mappings are removed. any references to nonexistent pages results
1855  * in null mappings (currently treated as "copy-on-access")
1856  */
1857 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1858 			unsigned long addr, unsigned long end,
1859 			unsigned long pfn, pgprot_t prot)
1860 {
1861 	pte_t *pte;
1862 	spinlock_t *ptl;
1863 	int err = 0;
1864 
1865 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1866 	if (!pte)
1867 		return -ENOMEM;
1868 	arch_enter_lazy_mmu_mode();
1869 	do {
1870 		BUG_ON(!pte_none(*pte));
1871 		if (!pfn_modify_allowed(pfn, prot)) {
1872 			err = -EACCES;
1873 			break;
1874 		}
1875 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1876 		pfn++;
1877 	} while (pte++, addr += PAGE_SIZE, addr != end);
1878 	arch_leave_lazy_mmu_mode();
1879 	pte_unmap_unlock(pte - 1, ptl);
1880 	return err;
1881 }
1882 
1883 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1884 			unsigned long addr, unsigned long end,
1885 			unsigned long pfn, pgprot_t prot)
1886 {
1887 	pmd_t *pmd;
1888 	unsigned long next;
1889 	int err;
1890 
1891 	pfn -= addr >> PAGE_SHIFT;
1892 	pmd = pmd_alloc(mm, pud, addr);
1893 	if (!pmd)
1894 		return -ENOMEM;
1895 	VM_BUG_ON(pmd_trans_huge(*pmd));
1896 	do {
1897 		next = pmd_addr_end(addr, end);
1898 		err = remap_pte_range(mm, pmd, addr, next,
1899 				pfn + (addr >> PAGE_SHIFT), prot);
1900 		if (err)
1901 			return err;
1902 	} while (pmd++, addr = next, addr != end);
1903 	return 0;
1904 }
1905 
1906 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1907 			unsigned long addr, unsigned long end,
1908 			unsigned long pfn, pgprot_t prot)
1909 {
1910 	pud_t *pud;
1911 	unsigned long next;
1912 	int err;
1913 
1914 	pfn -= addr >> PAGE_SHIFT;
1915 	pud = pud_alloc(mm, p4d, addr);
1916 	if (!pud)
1917 		return -ENOMEM;
1918 	do {
1919 		next = pud_addr_end(addr, end);
1920 		err = remap_pmd_range(mm, pud, addr, next,
1921 				pfn + (addr >> PAGE_SHIFT), prot);
1922 		if (err)
1923 			return err;
1924 	} while (pud++, addr = next, addr != end);
1925 	return 0;
1926 }
1927 
1928 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1929 			unsigned long addr, unsigned long end,
1930 			unsigned long pfn, pgprot_t prot)
1931 {
1932 	p4d_t *p4d;
1933 	unsigned long next;
1934 	int err;
1935 
1936 	pfn -= addr >> PAGE_SHIFT;
1937 	p4d = p4d_alloc(mm, pgd, addr);
1938 	if (!p4d)
1939 		return -ENOMEM;
1940 	do {
1941 		next = p4d_addr_end(addr, end);
1942 		err = remap_pud_range(mm, p4d, addr, next,
1943 				pfn + (addr >> PAGE_SHIFT), prot);
1944 		if (err)
1945 			return err;
1946 	} while (p4d++, addr = next, addr != end);
1947 	return 0;
1948 }
1949 
1950 /**
1951  * remap_pfn_range - remap kernel memory to userspace
1952  * @vma: user vma to map to
1953  * @addr: target user address to start at
1954  * @pfn: page frame number of kernel physical memory address
1955  * @size: size of mapping area
1956  * @prot: page protection flags for this mapping
1957  *
1958  * Note: this is only safe if the mm semaphore is held when called.
1959  *
1960  * Return: %0 on success, negative error code otherwise.
1961  */
1962 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1963 		    unsigned long pfn, unsigned long size, pgprot_t prot)
1964 {
1965 	pgd_t *pgd;
1966 	unsigned long next;
1967 	unsigned long end = addr + PAGE_ALIGN(size);
1968 	struct mm_struct *mm = vma->vm_mm;
1969 	unsigned long remap_pfn = pfn;
1970 	int err;
1971 
1972 	/*
1973 	 * Physically remapped pages are special. Tell the
1974 	 * rest of the world about it:
1975 	 *   VM_IO tells people not to look at these pages
1976 	 *	(accesses can have side effects).
1977 	 *   VM_PFNMAP tells the core MM that the base pages are just
1978 	 *	raw PFN mappings, and do not have a "struct page" associated
1979 	 *	with them.
1980 	 *   VM_DONTEXPAND
1981 	 *      Disable vma merging and expanding with mremap().
1982 	 *   VM_DONTDUMP
1983 	 *      Omit vma from core dump, even when VM_IO turned off.
1984 	 *
1985 	 * There's a horrible special case to handle copy-on-write
1986 	 * behaviour that some programs depend on. We mark the "original"
1987 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1988 	 * See vm_normal_page() for details.
1989 	 */
1990 	if (is_cow_mapping(vma->vm_flags)) {
1991 		if (addr != vma->vm_start || end != vma->vm_end)
1992 			return -EINVAL;
1993 		vma->vm_pgoff = pfn;
1994 	}
1995 
1996 	err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
1997 	if (err)
1998 		return -EINVAL;
1999 
2000 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2001 
2002 	BUG_ON(addr >= end);
2003 	pfn -= addr >> PAGE_SHIFT;
2004 	pgd = pgd_offset(mm, addr);
2005 	flush_cache_range(vma, addr, end);
2006 	do {
2007 		next = pgd_addr_end(addr, end);
2008 		err = remap_p4d_range(mm, pgd, addr, next,
2009 				pfn + (addr >> PAGE_SHIFT), prot);
2010 		if (err)
2011 			break;
2012 	} while (pgd++, addr = next, addr != end);
2013 
2014 	if (err)
2015 		untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2016 
2017 	return err;
2018 }
2019 EXPORT_SYMBOL(remap_pfn_range);
2020 
2021 /**
2022  * vm_iomap_memory - remap memory to userspace
2023  * @vma: user vma to map to
2024  * @start: start of the physical memory to be mapped
2025  * @len: size of area
2026  *
2027  * This is a simplified io_remap_pfn_range() for common driver use. The
2028  * driver just needs to give us the physical memory range to be mapped,
2029  * we'll figure out the rest from the vma information.
2030  *
2031  * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2032  * whatever write-combining details or similar.
2033  *
2034  * Return: %0 on success, negative error code otherwise.
2035  */
2036 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2037 {
2038 	unsigned long vm_len, pfn, pages;
2039 
2040 	/* Check that the physical memory area passed in looks valid */
2041 	if (start + len < start)
2042 		return -EINVAL;
2043 	/*
2044 	 * You *really* shouldn't map things that aren't page-aligned,
2045 	 * but we've historically allowed it because IO memory might
2046 	 * just have smaller alignment.
2047 	 */
2048 	len += start & ~PAGE_MASK;
2049 	pfn = start >> PAGE_SHIFT;
2050 	pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2051 	if (pfn + pages < pfn)
2052 		return -EINVAL;
2053 
2054 	/* We start the mapping 'vm_pgoff' pages into the area */
2055 	if (vma->vm_pgoff > pages)
2056 		return -EINVAL;
2057 	pfn += vma->vm_pgoff;
2058 	pages -= vma->vm_pgoff;
2059 
2060 	/* Can we fit all of the mapping? */
2061 	vm_len = vma->vm_end - vma->vm_start;
2062 	if (vm_len >> PAGE_SHIFT > pages)
2063 		return -EINVAL;
2064 
2065 	/* Ok, let it rip */
2066 	return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2067 }
2068 EXPORT_SYMBOL(vm_iomap_memory);
2069 
2070 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2071 				     unsigned long addr, unsigned long end,
2072 				     pte_fn_t fn, void *data, bool create)
2073 {
2074 	pte_t *pte;
2075 	int err = 0;
2076 	spinlock_t *uninitialized_var(ptl);
2077 
2078 	if (create) {
2079 		pte = (mm == &init_mm) ?
2080 			pte_alloc_kernel(pmd, addr) :
2081 			pte_alloc_map_lock(mm, pmd, addr, &ptl);
2082 		if (!pte)
2083 			return -ENOMEM;
2084 	} else {
2085 		pte = (mm == &init_mm) ?
2086 			pte_offset_kernel(pmd, addr) :
2087 			pte_offset_map_lock(mm, pmd, addr, &ptl);
2088 	}
2089 
2090 	BUG_ON(pmd_huge(*pmd));
2091 
2092 	arch_enter_lazy_mmu_mode();
2093 
2094 	do {
2095 		if (create || !pte_none(*pte)) {
2096 			err = fn(pte++, addr, data);
2097 			if (err)
2098 				break;
2099 		}
2100 	} while (addr += PAGE_SIZE, addr != end);
2101 
2102 	arch_leave_lazy_mmu_mode();
2103 
2104 	if (mm != &init_mm)
2105 		pte_unmap_unlock(pte-1, ptl);
2106 	return err;
2107 }
2108 
2109 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2110 				     unsigned long addr, unsigned long end,
2111 				     pte_fn_t fn, void *data, bool create)
2112 {
2113 	pmd_t *pmd;
2114 	unsigned long next;
2115 	int err = 0;
2116 
2117 	BUG_ON(pud_huge(*pud));
2118 
2119 	if (create) {
2120 		pmd = pmd_alloc(mm, pud, addr);
2121 		if (!pmd)
2122 			return -ENOMEM;
2123 	} else {
2124 		pmd = pmd_offset(pud, addr);
2125 	}
2126 	do {
2127 		next = pmd_addr_end(addr, end);
2128 		if (create || !pmd_none_or_clear_bad(pmd)) {
2129 			err = apply_to_pte_range(mm, pmd, addr, next, fn, data,
2130 						 create);
2131 			if (err)
2132 				break;
2133 		}
2134 	} while (pmd++, addr = next, addr != end);
2135 	return err;
2136 }
2137 
2138 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2139 				     unsigned long addr, unsigned long end,
2140 				     pte_fn_t fn, void *data, bool create)
2141 {
2142 	pud_t *pud;
2143 	unsigned long next;
2144 	int err = 0;
2145 
2146 	if (create) {
2147 		pud = pud_alloc(mm, p4d, addr);
2148 		if (!pud)
2149 			return -ENOMEM;
2150 	} else {
2151 		pud = pud_offset(p4d, addr);
2152 	}
2153 	do {
2154 		next = pud_addr_end(addr, end);
2155 		if (create || !pud_none_or_clear_bad(pud)) {
2156 			err = apply_to_pmd_range(mm, pud, addr, next, fn, data,
2157 						 create);
2158 			if (err)
2159 				break;
2160 		}
2161 	} while (pud++, addr = next, addr != end);
2162 	return err;
2163 }
2164 
2165 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2166 				     unsigned long addr, unsigned long end,
2167 				     pte_fn_t fn, void *data, bool create)
2168 {
2169 	p4d_t *p4d;
2170 	unsigned long next;
2171 	int err = 0;
2172 
2173 	if (create) {
2174 		p4d = p4d_alloc(mm, pgd, addr);
2175 		if (!p4d)
2176 			return -ENOMEM;
2177 	} else {
2178 		p4d = p4d_offset(pgd, addr);
2179 	}
2180 	do {
2181 		next = p4d_addr_end(addr, end);
2182 		if (create || !p4d_none_or_clear_bad(p4d)) {
2183 			err = apply_to_pud_range(mm, p4d, addr, next, fn, data,
2184 						 create);
2185 			if (err)
2186 				break;
2187 		}
2188 	} while (p4d++, addr = next, addr != end);
2189 	return err;
2190 }
2191 
2192 static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2193 				 unsigned long size, pte_fn_t fn,
2194 				 void *data, bool create)
2195 {
2196 	pgd_t *pgd;
2197 	unsigned long next;
2198 	unsigned long end = addr + size;
2199 	int err = 0;
2200 
2201 	if (WARN_ON(addr >= end))
2202 		return -EINVAL;
2203 
2204 	pgd = pgd_offset(mm, addr);
2205 	do {
2206 		next = pgd_addr_end(addr, end);
2207 		if (!create && pgd_none_or_clear_bad(pgd))
2208 			continue;
2209 		err = apply_to_p4d_range(mm, pgd, addr, next, fn, data, create);
2210 		if (err)
2211 			break;
2212 	} while (pgd++, addr = next, addr != end);
2213 
2214 	return err;
2215 }
2216 
2217 /*
2218  * Scan a region of virtual memory, filling in page tables as necessary
2219  * and calling a provided function on each leaf page table.
2220  */
2221 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2222 			unsigned long size, pte_fn_t fn, void *data)
2223 {
2224 	return __apply_to_page_range(mm, addr, size, fn, data, true);
2225 }
2226 EXPORT_SYMBOL_GPL(apply_to_page_range);
2227 
2228 /*
2229  * Scan a region of virtual memory, calling a provided function on
2230  * each leaf page table where it exists.
2231  *
2232  * Unlike apply_to_page_range, this does _not_ fill in page tables
2233  * where they are absent.
2234  */
2235 int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2236 				 unsigned long size, pte_fn_t fn, void *data)
2237 {
2238 	return __apply_to_page_range(mm, addr, size, fn, data, false);
2239 }
2240 EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2241 
2242 /*
2243  * handle_pte_fault chooses page fault handler according to an entry which was
2244  * read non-atomically.  Before making any commitment, on those architectures
2245  * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2246  * parts, do_swap_page must check under lock before unmapping the pte and
2247  * proceeding (but do_wp_page is only called after already making such a check;
2248  * and do_anonymous_page can safely check later on).
2249  */
2250 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2251 				pte_t *page_table, pte_t orig_pte)
2252 {
2253 	int same = 1;
2254 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2255 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2256 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2257 		spin_lock(ptl);
2258 		same = pte_same(*page_table, orig_pte);
2259 		spin_unlock(ptl);
2260 	}
2261 #endif
2262 	pte_unmap(page_table);
2263 	return same;
2264 }
2265 
2266 static inline bool cow_user_page(struct page *dst, struct page *src,
2267 				 struct vm_fault *vmf)
2268 {
2269 	bool ret;
2270 	void *kaddr;
2271 	void __user *uaddr;
2272 	bool locked = false;
2273 	struct vm_area_struct *vma = vmf->vma;
2274 	struct mm_struct *mm = vma->vm_mm;
2275 	unsigned long addr = vmf->address;
2276 
2277 	debug_dma_assert_idle(src);
2278 
2279 	if (likely(src)) {
2280 		copy_user_highpage(dst, src, addr, vma);
2281 		return true;
2282 	}
2283 
2284 	/*
2285 	 * If the source page was a PFN mapping, we don't have
2286 	 * a "struct page" for it. We do a best-effort copy by
2287 	 * just copying from the original user address. If that
2288 	 * fails, we just zero-fill it. Live with it.
2289 	 */
2290 	kaddr = kmap_atomic(dst);
2291 	uaddr = (void __user *)(addr & PAGE_MASK);
2292 
2293 	/*
2294 	 * On architectures with software "accessed" bits, we would
2295 	 * take a double page fault, so mark it accessed here.
2296 	 */
2297 	if (arch_faults_on_old_pte() && !pte_young(vmf->orig_pte)) {
2298 		pte_t entry;
2299 
2300 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2301 		locked = true;
2302 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2303 			/*
2304 			 * Other thread has already handled the fault
2305 			 * and we don't need to do anything. If it's
2306 			 * not the case, the fault will be triggered
2307 			 * again on the same address.
2308 			 */
2309 			ret = false;
2310 			goto pte_unlock;
2311 		}
2312 
2313 		entry = pte_mkyoung(vmf->orig_pte);
2314 		if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2315 			update_mmu_cache(vma, addr, vmf->pte);
2316 	}
2317 
2318 	/*
2319 	 * This really shouldn't fail, because the page is there
2320 	 * in the page tables. But it might just be unreadable,
2321 	 * in which case we just give up and fill the result with
2322 	 * zeroes.
2323 	 */
2324 	if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2325 		if (locked)
2326 			goto warn;
2327 
2328 		/* Re-validate under PTL if the page is still mapped */
2329 		vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2330 		locked = true;
2331 		if (!likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2332 			/* The PTE changed under us. Retry page fault. */
2333 			ret = false;
2334 			goto pte_unlock;
2335 		}
2336 
2337 		/*
2338 		 * The same page can be mapped back since last copy attampt.
2339 		 * Try to copy again under PTL.
2340 		 */
2341 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2342 			/*
2343 			 * Give a warn in case there can be some obscure
2344 			 * use-case
2345 			 */
2346 warn:
2347 			WARN_ON_ONCE(1);
2348 			clear_page(kaddr);
2349 		}
2350 	}
2351 
2352 	ret = true;
2353 
2354 pte_unlock:
2355 	if (locked)
2356 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2357 	kunmap_atomic(kaddr);
2358 	flush_dcache_page(dst);
2359 
2360 	return ret;
2361 }
2362 
2363 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2364 {
2365 	struct file *vm_file = vma->vm_file;
2366 
2367 	if (vm_file)
2368 		return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2369 
2370 	/*
2371 	 * Special mappings (e.g. VDSO) do not have any file so fake
2372 	 * a default GFP_KERNEL for them.
2373 	 */
2374 	return GFP_KERNEL;
2375 }
2376 
2377 /*
2378  * Notify the address space that the page is about to become writable so that
2379  * it can prohibit this or wait for the page to get into an appropriate state.
2380  *
2381  * We do this without the lock held, so that it can sleep if it needs to.
2382  */
2383 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2384 {
2385 	vm_fault_t ret;
2386 	struct page *page = vmf->page;
2387 	unsigned int old_flags = vmf->flags;
2388 
2389 	vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2390 
2391 	if (vmf->vma->vm_file &&
2392 	    IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2393 		return VM_FAULT_SIGBUS;
2394 
2395 	ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2396 	/* Restore original flags so that caller is not surprised */
2397 	vmf->flags = old_flags;
2398 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2399 		return ret;
2400 	if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2401 		lock_page(page);
2402 		if (!page->mapping) {
2403 			unlock_page(page);
2404 			return 0; /* retry */
2405 		}
2406 		ret |= VM_FAULT_LOCKED;
2407 	} else
2408 		VM_BUG_ON_PAGE(!PageLocked(page), page);
2409 	return ret;
2410 }
2411 
2412 /*
2413  * Handle dirtying of a page in shared file mapping on a write fault.
2414  *
2415  * The function expects the page to be locked and unlocks it.
2416  */
2417 static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2418 {
2419 	struct vm_area_struct *vma = vmf->vma;
2420 	struct address_space *mapping;
2421 	struct page *page = vmf->page;
2422 	bool dirtied;
2423 	bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2424 
2425 	dirtied = set_page_dirty(page);
2426 	VM_BUG_ON_PAGE(PageAnon(page), page);
2427 	/*
2428 	 * Take a local copy of the address_space - page.mapping may be zeroed
2429 	 * by truncate after unlock_page().   The address_space itself remains
2430 	 * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2431 	 * release semantics to prevent the compiler from undoing this copying.
2432 	 */
2433 	mapping = page_rmapping(page);
2434 	unlock_page(page);
2435 
2436 	if (!page_mkwrite)
2437 		file_update_time(vma->vm_file);
2438 
2439 	/*
2440 	 * Throttle page dirtying rate down to writeback speed.
2441 	 *
2442 	 * mapping may be NULL here because some device drivers do not
2443 	 * set page.mapping but still dirty their pages
2444 	 *
2445 	 * Drop the mmap_sem before waiting on IO, if we can. The file
2446 	 * is pinning the mapping, as per above.
2447 	 */
2448 	if ((dirtied || page_mkwrite) && mapping) {
2449 		struct file *fpin;
2450 
2451 		fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2452 		balance_dirty_pages_ratelimited(mapping);
2453 		if (fpin) {
2454 			fput(fpin);
2455 			return VM_FAULT_RETRY;
2456 		}
2457 	}
2458 
2459 	return 0;
2460 }
2461 
2462 /*
2463  * Handle write page faults for pages that can be reused in the current vma
2464  *
2465  * This can happen either due to the mapping being with the VM_SHARED flag,
2466  * or due to us being the last reference standing to the page. In either
2467  * case, all we need to do here is to mark the page as writable and update
2468  * any related book-keeping.
2469  */
2470 static inline void wp_page_reuse(struct vm_fault *vmf)
2471 	__releases(vmf->ptl)
2472 {
2473 	struct vm_area_struct *vma = vmf->vma;
2474 	struct page *page = vmf->page;
2475 	pte_t entry;
2476 	/*
2477 	 * Clear the pages cpupid information as the existing
2478 	 * information potentially belongs to a now completely
2479 	 * unrelated process.
2480 	 */
2481 	if (page)
2482 		page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2483 
2484 	flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2485 	entry = pte_mkyoung(vmf->orig_pte);
2486 	entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2487 	if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2488 		update_mmu_cache(vma, vmf->address, vmf->pte);
2489 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2490 }
2491 
2492 /*
2493  * Handle the case of a page which we actually need to copy to a new page.
2494  *
2495  * Called with mmap_sem locked and the old page referenced, but
2496  * without the ptl held.
2497  *
2498  * High level logic flow:
2499  *
2500  * - Allocate a page, copy the content of the old page to the new one.
2501  * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2502  * - Take the PTL. If the pte changed, bail out and release the allocated page
2503  * - If the pte is still the way we remember it, update the page table and all
2504  *   relevant references. This includes dropping the reference the page-table
2505  *   held to the old page, as well as updating the rmap.
2506  * - In any case, unlock the PTL and drop the reference we took to the old page.
2507  */
2508 static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2509 {
2510 	struct vm_area_struct *vma = vmf->vma;
2511 	struct mm_struct *mm = vma->vm_mm;
2512 	struct page *old_page = vmf->page;
2513 	struct page *new_page = NULL;
2514 	pte_t entry;
2515 	int page_copied = 0;
2516 	struct mem_cgroup *memcg;
2517 	struct mmu_notifier_range range;
2518 
2519 	if (unlikely(anon_vma_prepare(vma)))
2520 		goto oom;
2521 
2522 	if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2523 		new_page = alloc_zeroed_user_highpage_movable(vma,
2524 							      vmf->address);
2525 		if (!new_page)
2526 			goto oom;
2527 	} else {
2528 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2529 				vmf->address);
2530 		if (!new_page)
2531 			goto oom;
2532 
2533 		if (!cow_user_page(new_page, old_page, vmf)) {
2534 			/*
2535 			 * COW failed, if the fault was solved by other,
2536 			 * it's fine. If not, userspace would re-fault on
2537 			 * the same address and we will handle the fault
2538 			 * from the second attempt.
2539 			 */
2540 			put_page(new_page);
2541 			if (old_page)
2542 				put_page(old_page);
2543 			return 0;
2544 		}
2545 	}
2546 
2547 	if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2548 		goto oom_free_new;
2549 
2550 	__SetPageUptodate(new_page);
2551 
2552 	mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
2553 				vmf->address & PAGE_MASK,
2554 				(vmf->address & PAGE_MASK) + PAGE_SIZE);
2555 	mmu_notifier_invalidate_range_start(&range);
2556 
2557 	/*
2558 	 * Re-check the pte - we dropped the lock
2559 	 */
2560 	vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2561 	if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2562 		if (old_page) {
2563 			if (!PageAnon(old_page)) {
2564 				dec_mm_counter_fast(mm,
2565 						mm_counter_file(old_page));
2566 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2567 			}
2568 		} else {
2569 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2570 		}
2571 		flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2572 		entry = mk_pte(new_page, vma->vm_page_prot);
2573 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2574 		/*
2575 		 * Clear the pte entry and flush it first, before updating the
2576 		 * pte with the new entry. This will avoid a race condition
2577 		 * seen in the presence of one thread doing SMC and another
2578 		 * thread doing COW.
2579 		 */
2580 		ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2581 		page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2582 		mem_cgroup_commit_charge(new_page, memcg, false, false);
2583 		lru_cache_add_active_or_unevictable(new_page, vma);
2584 		/*
2585 		 * We call the notify macro here because, when using secondary
2586 		 * mmu page tables (such as kvm shadow page tables), we want the
2587 		 * new page to be mapped directly into the secondary page table.
2588 		 */
2589 		set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2590 		update_mmu_cache(vma, vmf->address, vmf->pte);
2591 		if (old_page) {
2592 			/*
2593 			 * Only after switching the pte to the new page may
2594 			 * we remove the mapcount here. Otherwise another
2595 			 * process may come and find the rmap count decremented
2596 			 * before the pte is switched to the new page, and
2597 			 * "reuse" the old page writing into it while our pte
2598 			 * here still points into it and can be read by other
2599 			 * threads.
2600 			 *
2601 			 * The critical issue is to order this
2602 			 * page_remove_rmap with the ptp_clear_flush above.
2603 			 * Those stores are ordered by (if nothing else,)
2604 			 * the barrier present in the atomic_add_negative
2605 			 * in page_remove_rmap.
2606 			 *
2607 			 * Then the TLB flush in ptep_clear_flush ensures that
2608 			 * no process can access the old page before the
2609 			 * decremented mapcount is visible. And the old page
2610 			 * cannot be reused until after the decremented
2611 			 * mapcount is visible. So transitively, TLBs to
2612 			 * old page will be flushed before it can be reused.
2613 			 */
2614 			page_remove_rmap(old_page, false);
2615 		}
2616 
2617 		/* Free the old page.. */
2618 		new_page = old_page;
2619 		page_copied = 1;
2620 	} else {
2621 		mem_cgroup_cancel_charge(new_page, memcg, false);
2622 	}
2623 
2624 	if (new_page)
2625 		put_page(new_page);
2626 
2627 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2628 	/*
2629 	 * No need to double call mmu_notifier->invalidate_range() callback as
2630 	 * the above ptep_clear_flush_notify() did already call it.
2631 	 */
2632 	mmu_notifier_invalidate_range_only_end(&range);
2633 	if (old_page) {
2634 		/*
2635 		 * Don't let another task, with possibly unlocked vma,
2636 		 * keep the mlocked page.
2637 		 */
2638 		if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2639 			lock_page(old_page);	/* LRU manipulation */
2640 			if (PageMlocked(old_page))
2641 				munlock_vma_page(old_page);
2642 			unlock_page(old_page);
2643 		}
2644 		put_page(old_page);
2645 	}
2646 	return page_copied ? VM_FAULT_WRITE : 0;
2647 oom_free_new:
2648 	put_page(new_page);
2649 oom:
2650 	if (old_page)
2651 		put_page(old_page);
2652 	return VM_FAULT_OOM;
2653 }
2654 
2655 /**
2656  * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2657  *			  writeable once the page is prepared
2658  *
2659  * @vmf: structure describing the fault
2660  *
2661  * This function handles all that is needed to finish a write page fault in a
2662  * shared mapping due to PTE being read-only once the mapped page is prepared.
2663  * It handles locking of PTE and modifying it.
2664  *
2665  * The function expects the page to be locked or other protection against
2666  * concurrent faults / writeback (such as DAX radix tree locks).
2667  *
2668  * Return: %VM_FAULT_WRITE on success, %0 when PTE got changed before
2669  * we acquired PTE lock.
2670  */
2671 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2672 {
2673 	WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2674 	vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2675 				       &vmf->ptl);
2676 	/*
2677 	 * We might have raced with another page fault while we released the
2678 	 * pte_offset_map_lock.
2679 	 */
2680 	if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2681 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2682 		return VM_FAULT_NOPAGE;
2683 	}
2684 	wp_page_reuse(vmf);
2685 	return 0;
2686 }
2687 
2688 /*
2689  * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2690  * mapping
2691  */
2692 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2693 {
2694 	struct vm_area_struct *vma = vmf->vma;
2695 
2696 	if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2697 		vm_fault_t ret;
2698 
2699 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2700 		vmf->flags |= FAULT_FLAG_MKWRITE;
2701 		ret = vma->vm_ops->pfn_mkwrite(vmf);
2702 		if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2703 			return ret;
2704 		return finish_mkwrite_fault(vmf);
2705 	}
2706 	wp_page_reuse(vmf);
2707 	return VM_FAULT_WRITE;
2708 }
2709 
2710 static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2711 	__releases(vmf->ptl)
2712 {
2713 	struct vm_area_struct *vma = vmf->vma;
2714 	vm_fault_t ret = VM_FAULT_WRITE;
2715 
2716 	get_page(vmf->page);
2717 
2718 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2719 		vm_fault_t tmp;
2720 
2721 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2722 		tmp = do_page_mkwrite(vmf);
2723 		if (unlikely(!tmp || (tmp &
2724 				      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2725 			put_page(vmf->page);
2726 			return tmp;
2727 		}
2728 		tmp = finish_mkwrite_fault(vmf);
2729 		if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2730 			unlock_page(vmf->page);
2731 			put_page(vmf->page);
2732 			return tmp;
2733 		}
2734 	} else {
2735 		wp_page_reuse(vmf);
2736 		lock_page(vmf->page);
2737 	}
2738 	ret |= fault_dirty_shared_page(vmf);
2739 	put_page(vmf->page);
2740 
2741 	return ret;
2742 }
2743 
2744 /*
2745  * This routine handles present pages, when users try to write
2746  * to a shared page. It is done by copying the page to a new address
2747  * and decrementing the shared-page counter for the old page.
2748  *
2749  * Note that this routine assumes that the protection checks have been
2750  * done by the caller (the low-level page fault routine in most cases).
2751  * Thus we can safely just mark it writable once we've done any necessary
2752  * COW.
2753  *
2754  * We also mark the page dirty at this point even though the page will
2755  * change only once the write actually happens. This avoids a few races,
2756  * and potentially makes it more efficient.
2757  *
2758  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2759  * but allow concurrent faults), with pte both mapped and locked.
2760  * We return with mmap_sem still held, but pte unmapped and unlocked.
2761  */
2762 static vm_fault_t do_wp_page(struct vm_fault *vmf)
2763 	__releases(vmf->ptl)
2764 {
2765 	struct vm_area_struct *vma = vmf->vma;
2766 
2767 	if (userfaultfd_pte_wp(vma, *vmf->pte)) {
2768 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2769 		return handle_userfault(vmf, VM_UFFD_WP);
2770 	}
2771 
2772 	vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2773 	if (!vmf->page) {
2774 		/*
2775 		 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2776 		 * VM_PFNMAP VMA.
2777 		 *
2778 		 * We should not cow pages in a shared writeable mapping.
2779 		 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2780 		 */
2781 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2782 				     (VM_WRITE|VM_SHARED))
2783 			return wp_pfn_shared(vmf);
2784 
2785 		pte_unmap_unlock(vmf->pte, vmf->ptl);
2786 		return wp_page_copy(vmf);
2787 	}
2788 
2789 	/*
2790 	 * Take out anonymous pages first, anonymous shared vmas are
2791 	 * not dirty accountable.
2792 	 */
2793 	if (PageAnon(vmf->page)) {
2794 		int total_map_swapcount;
2795 		if (PageKsm(vmf->page) && (PageSwapCache(vmf->page) ||
2796 					   page_count(vmf->page) != 1))
2797 			goto copy;
2798 		if (!trylock_page(vmf->page)) {
2799 			get_page(vmf->page);
2800 			pte_unmap_unlock(vmf->pte, vmf->ptl);
2801 			lock_page(vmf->page);
2802 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2803 					vmf->address, &vmf->ptl);
2804 			if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2805 				unlock_page(vmf->page);
2806 				pte_unmap_unlock(vmf->pte, vmf->ptl);
2807 				put_page(vmf->page);
2808 				return 0;
2809 			}
2810 			put_page(vmf->page);
2811 		}
2812 		if (PageKsm(vmf->page)) {
2813 			bool reused = reuse_ksm_page(vmf->page, vmf->vma,
2814 						     vmf->address);
2815 			unlock_page(vmf->page);
2816 			if (!reused)
2817 				goto copy;
2818 			wp_page_reuse(vmf);
2819 			return VM_FAULT_WRITE;
2820 		}
2821 		if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2822 			if (total_map_swapcount == 1) {
2823 				/*
2824 				 * The page is all ours. Move it to
2825 				 * our anon_vma so the rmap code will
2826 				 * not search our parent or siblings.
2827 				 * Protected against the rmap code by
2828 				 * the page lock.
2829 				 */
2830 				page_move_anon_rmap(vmf->page, vma);
2831 			}
2832 			unlock_page(vmf->page);
2833 			wp_page_reuse(vmf);
2834 			return VM_FAULT_WRITE;
2835 		}
2836 		unlock_page(vmf->page);
2837 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2838 					(VM_WRITE|VM_SHARED))) {
2839 		return wp_page_shared(vmf);
2840 	}
2841 copy:
2842 	/*
2843 	 * Ok, we need to copy. Oh, well..
2844 	 */
2845 	get_page(vmf->page);
2846 
2847 	pte_unmap_unlock(vmf->pte, vmf->ptl);
2848 	return wp_page_copy(vmf);
2849 }
2850 
2851 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2852 		unsigned long start_addr, unsigned long end_addr,
2853 		struct zap_details *details)
2854 {
2855 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2856 }
2857 
2858 static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2859 					    struct zap_details *details)
2860 {
2861 	struct vm_area_struct *vma;
2862 	pgoff_t vba, vea, zba, zea;
2863 
2864 	vma_interval_tree_foreach(vma, root,
2865 			details->first_index, details->last_index) {
2866 
2867 		vba = vma->vm_pgoff;
2868 		vea = vba + vma_pages(vma) - 1;
2869 		zba = details->first_index;
2870 		if (zba < vba)
2871 			zba = vba;
2872 		zea = details->last_index;
2873 		if (zea > vea)
2874 			zea = vea;
2875 
2876 		unmap_mapping_range_vma(vma,
2877 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2878 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2879 				details);
2880 	}
2881 }
2882 
2883 /**
2884  * unmap_mapping_pages() - Unmap pages from processes.
2885  * @mapping: The address space containing pages to be unmapped.
2886  * @start: Index of first page to be unmapped.
2887  * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2888  * @even_cows: Whether to unmap even private COWed pages.
2889  *
2890  * Unmap the pages in this address space from any userspace process which
2891  * has them mmaped.  Generally, you want to remove COWed pages as well when
2892  * a file is being truncated, but not when invalidating pages from the page
2893  * cache.
2894  */
2895 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2896 		pgoff_t nr, bool even_cows)
2897 {
2898 	struct zap_details details = { };
2899 
2900 	details.check_mapping = even_cows ? NULL : mapping;
2901 	details.first_index = start;
2902 	details.last_index = start + nr - 1;
2903 	if (details.last_index < details.first_index)
2904 		details.last_index = ULONG_MAX;
2905 
2906 	i_mmap_lock_write(mapping);
2907 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2908 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2909 	i_mmap_unlock_write(mapping);
2910 }
2911 
2912 /**
2913  * unmap_mapping_range - unmap the portion of all mmaps in the specified
2914  * address_space corresponding to the specified byte range in the underlying
2915  * file.
2916  *
2917  * @mapping: the address space containing mmaps to be unmapped.
2918  * @holebegin: byte in first page to unmap, relative to the start of
2919  * the underlying file.  This will be rounded down to a PAGE_SIZE
2920  * boundary.  Note that this is different from truncate_pagecache(), which
2921  * must keep the partial page.  In contrast, we must get rid of
2922  * partial pages.
2923  * @holelen: size of prospective hole in bytes.  This will be rounded
2924  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2925  * end of the file.
2926  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2927  * but 0 when invalidating pagecache, don't throw away private data.
2928  */
2929 void unmap_mapping_range(struct address_space *mapping,
2930 		loff_t const holebegin, loff_t const holelen, int even_cows)
2931 {
2932 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2933 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2934 
2935 	/* Check for overflow. */
2936 	if (sizeof(holelen) > sizeof(hlen)) {
2937 		long long holeend =
2938 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2939 		if (holeend & ~(long long)ULONG_MAX)
2940 			hlen = ULONG_MAX - hba + 1;
2941 	}
2942 
2943 	unmap_mapping_pages(mapping, hba, hlen, even_cows);
2944 }
2945 EXPORT_SYMBOL(unmap_mapping_range);
2946 
2947 /*
2948  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2949  * but allow concurrent faults), and pte mapped but not yet locked.
2950  * We return with pte unmapped and unlocked.
2951  *
2952  * We return with the mmap_sem locked or unlocked in the same cases
2953  * as does filemap_fault().
2954  */
2955 vm_fault_t do_swap_page(struct vm_fault *vmf)
2956 {
2957 	struct vm_area_struct *vma = vmf->vma;
2958 	struct page *page = NULL, *swapcache;
2959 	struct mem_cgroup *memcg;
2960 	swp_entry_t entry;
2961 	pte_t pte;
2962 	int locked;
2963 	int exclusive = 0;
2964 	vm_fault_t ret = 0;
2965 
2966 	if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2967 		goto out;
2968 
2969 	entry = pte_to_swp_entry(vmf->orig_pte);
2970 	if (unlikely(non_swap_entry(entry))) {
2971 		if (is_migration_entry(entry)) {
2972 			migration_entry_wait(vma->vm_mm, vmf->pmd,
2973 					     vmf->address);
2974 		} else if (is_device_private_entry(entry)) {
2975 			vmf->page = device_private_entry_to_page(entry);
2976 			ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
2977 		} else if (is_hwpoison_entry(entry)) {
2978 			ret = VM_FAULT_HWPOISON;
2979 		} else {
2980 			print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2981 			ret = VM_FAULT_SIGBUS;
2982 		}
2983 		goto out;
2984 	}
2985 
2986 
2987 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2988 	page = lookup_swap_cache(entry, vma, vmf->address);
2989 	swapcache = page;
2990 
2991 	if (!page) {
2992 		struct swap_info_struct *si = swp_swap_info(entry);
2993 
2994 		if (si->flags & SWP_SYNCHRONOUS_IO &&
2995 				__swap_count(entry) == 1) {
2996 			/* skip swapcache */
2997 			page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2998 							vmf->address);
2999 			if (page) {
3000 				__SetPageLocked(page);
3001 				__SetPageSwapBacked(page);
3002 				set_page_private(page, entry.val);
3003 				lru_cache_add_anon(page);
3004 				swap_readpage(page, true);
3005 			}
3006 		} else {
3007 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3008 						vmf);
3009 			swapcache = page;
3010 		}
3011 
3012 		if (!page) {
3013 			/*
3014 			 * Back out if somebody else faulted in this pte
3015 			 * while we released the pte lock.
3016 			 */
3017 			vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3018 					vmf->address, &vmf->ptl);
3019 			if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
3020 				ret = VM_FAULT_OOM;
3021 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3022 			goto unlock;
3023 		}
3024 
3025 		/* Had to read the page from swap area: Major fault */
3026 		ret = VM_FAULT_MAJOR;
3027 		count_vm_event(PGMAJFAULT);
3028 		count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3029 	} else if (PageHWPoison(page)) {
3030 		/*
3031 		 * hwpoisoned dirty swapcache pages are kept for killing
3032 		 * owner processes (which may be unknown at hwpoison time)
3033 		 */
3034 		ret = VM_FAULT_HWPOISON;
3035 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3036 		goto out_release;
3037 	}
3038 
3039 	locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
3040 
3041 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
3042 	if (!locked) {
3043 		ret |= VM_FAULT_RETRY;
3044 		goto out_release;
3045 	}
3046 
3047 	/*
3048 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
3049 	 * release the swapcache from under us.  The page pin, and pte_same
3050 	 * test below, are not enough to exclude that.  Even if it is still
3051 	 * swapcache, we need to check that the page's swap has not changed.
3052 	 */
3053 	if (unlikely((!PageSwapCache(page) ||
3054 			page_private(page) != entry.val)) && swapcache)
3055 		goto out_page;
3056 
3057 	page = ksm_might_need_to_copy(page, vma, vmf->address);
3058 	if (unlikely(!page)) {
3059 		ret = VM_FAULT_OOM;
3060 		page = swapcache;
3061 		goto out_page;
3062 	}
3063 
3064 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3065 					&memcg, false)) {
3066 		ret = VM_FAULT_OOM;
3067 		goto out_page;
3068 	}
3069 
3070 	/*
3071 	 * Back out if somebody else already faulted in this pte.
3072 	 */
3073 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3074 			&vmf->ptl);
3075 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3076 		goto out_nomap;
3077 
3078 	if (unlikely(!PageUptodate(page))) {
3079 		ret = VM_FAULT_SIGBUS;
3080 		goto out_nomap;
3081 	}
3082 
3083 	/*
3084 	 * The page isn't present yet, go ahead with the fault.
3085 	 *
3086 	 * Be careful about the sequence of operations here.
3087 	 * To get its accounting right, reuse_swap_page() must be called
3088 	 * while the page is counted on swap but not yet in mapcount i.e.
3089 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3090 	 * must be called after the swap_free(), or it will never succeed.
3091 	 */
3092 
3093 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3094 	dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3095 	pte = mk_pte(page, vma->vm_page_prot);
3096 	if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3097 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3098 		vmf->flags &= ~FAULT_FLAG_WRITE;
3099 		ret |= VM_FAULT_WRITE;
3100 		exclusive = RMAP_EXCLUSIVE;
3101 	}
3102 	flush_icache_page(vma, page);
3103 	if (pte_swp_soft_dirty(vmf->orig_pte))
3104 		pte = pte_mksoft_dirty(pte);
3105 	if (pte_swp_uffd_wp(vmf->orig_pte)) {
3106 		pte = pte_mkuffd_wp(pte);
3107 		pte = pte_wrprotect(pte);
3108 	}
3109 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3110 	arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3111 	vmf->orig_pte = pte;
3112 
3113 	/* ksm created a completely new copy */
3114 	if (unlikely(page != swapcache && swapcache)) {
3115 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3116 		mem_cgroup_commit_charge(page, memcg, false, false);
3117 		lru_cache_add_active_or_unevictable(page, vma);
3118 	} else {
3119 		do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3120 		mem_cgroup_commit_charge(page, memcg, true, false);
3121 		activate_page(page);
3122 	}
3123 
3124 	swap_free(entry);
3125 	if (mem_cgroup_swap_full(page) ||
3126 	    (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3127 		try_to_free_swap(page);
3128 	unlock_page(page);
3129 	if (page != swapcache && swapcache) {
3130 		/*
3131 		 * Hold the lock to avoid the swap entry to be reused
3132 		 * until we take the PT lock for the pte_same() check
3133 		 * (to avoid false positives from pte_same). For
3134 		 * further safety release the lock after the swap_free
3135 		 * so that the swap count won't change under a
3136 		 * parallel locked swapcache.
3137 		 */
3138 		unlock_page(swapcache);
3139 		put_page(swapcache);
3140 	}
3141 
3142 	if (vmf->flags & FAULT_FLAG_WRITE) {
3143 		ret |= do_wp_page(vmf);
3144 		if (ret & VM_FAULT_ERROR)
3145 			ret &= VM_FAULT_ERROR;
3146 		goto out;
3147 	}
3148 
3149 	/* No need to invalidate - it was non-present before */
3150 	update_mmu_cache(vma, vmf->address, vmf->pte);
3151 unlock:
3152 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3153 out:
3154 	return ret;
3155 out_nomap:
3156 	mem_cgroup_cancel_charge(page, memcg, false);
3157 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3158 out_page:
3159 	unlock_page(page);
3160 out_release:
3161 	put_page(page);
3162 	if (page != swapcache && swapcache) {
3163 		unlock_page(swapcache);
3164 		put_page(swapcache);
3165 	}
3166 	return ret;
3167 }
3168 
3169 /*
3170  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3171  * but allow concurrent faults), and pte mapped but not yet locked.
3172  * We return with mmap_sem still held, but pte unmapped and unlocked.
3173  */
3174 static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3175 {
3176 	struct vm_area_struct *vma = vmf->vma;
3177 	struct mem_cgroup *memcg;
3178 	struct page *page;
3179 	vm_fault_t ret = 0;
3180 	pte_t entry;
3181 
3182 	/* File mapping without ->vm_ops ? */
3183 	if (vma->vm_flags & VM_SHARED)
3184 		return VM_FAULT_SIGBUS;
3185 
3186 	/*
3187 	 * Use pte_alloc() instead of pte_alloc_map().  We can't run
3188 	 * pte_offset_map() on pmds where a huge pmd might be created
3189 	 * from a different thread.
3190 	 *
3191 	 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3192 	 * parallel threads are excluded by other means.
3193 	 *
3194 	 * Here we only have down_read(mmap_sem).
3195 	 */
3196 	if (pte_alloc(vma->vm_mm, vmf->pmd))
3197 		return VM_FAULT_OOM;
3198 
3199 	/* See the comment in pte_alloc_one_map() */
3200 	if (unlikely(pmd_trans_unstable(vmf->pmd)))
3201 		return 0;
3202 
3203 	/* Use the zero-page for reads */
3204 	if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3205 			!mm_forbids_zeropage(vma->vm_mm)) {
3206 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3207 						vma->vm_page_prot));
3208 		vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3209 				vmf->address, &vmf->ptl);
3210 		if (!pte_none(*vmf->pte))
3211 			goto unlock;
3212 		ret = check_stable_address_space(vma->vm_mm);
3213 		if (ret)
3214 			goto unlock;
3215 		/* Deliver the page fault to userland, check inside PT lock */
3216 		if (userfaultfd_missing(vma)) {
3217 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3218 			return handle_userfault(vmf, VM_UFFD_MISSING);
3219 		}
3220 		goto setpte;
3221 	}
3222 
3223 	/* Allocate our own private page. */
3224 	if (unlikely(anon_vma_prepare(vma)))
3225 		goto oom;
3226 	page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3227 	if (!page)
3228 		goto oom;
3229 
3230 	if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3231 					false))
3232 		goto oom_free_page;
3233 
3234 	/*
3235 	 * The memory barrier inside __SetPageUptodate makes sure that
3236 	 * preceding stores to the page contents become visible before
3237 	 * the set_pte_at() write.
3238 	 */
3239 	__SetPageUptodate(page);
3240 
3241 	entry = mk_pte(page, vma->vm_page_prot);
3242 	if (vma->vm_flags & VM_WRITE)
3243 		entry = pte_mkwrite(pte_mkdirty(entry));
3244 
3245 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3246 			&vmf->ptl);
3247 	if (!pte_none(*vmf->pte))
3248 		goto release;
3249 
3250 	ret = check_stable_address_space(vma->vm_mm);
3251 	if (ret)
3252 		goto release;
3253 
3254 	/* Deliver the page fault to userland, check inside PT lock */
3255 	if (userfaultfd_missing(vma)) {
3256 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3257 		mem_cgroup_cancel_charge(page, memcg, false);
3258 		put_page(page);
3259 		return handle_userfault(vmf, VM_UFFD_MISSING);
3260 	}
3261 
3262 	inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3263 	page_add_new_anon_rmap(page, vma, vmf->address, false);
3264 	mem_cgroup_commit_charge(page, memcg, false, false);
3265 	lru_cache_add_active_or_unevictable(page, vma);
3266 setpte:
3267 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3268 
3269 	/* No need to invalidate - it was non-present before */
3270 	update_mmu_cache(vma, vmf->address, vmf->pte);
3271 unlock:
3272 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3273 	return ret;
3274 release:
3275 	mem_cgroup_cancel_charge(page, memcg, false);
3276 	put_page(page);
3277 	goto unlock;
3278 oom_free_page:
3279 	put_page(page);
3280 oom:
3281 	return VM_FAULT_OOM;
3282 }
3283 
3284 /*
3285  * The mmap_sem must have been held on entry, and may have been
3286  * released depending on flags and vma->vm_ops->fault() return value.
3287  * See filemap_fault() and __lock_page_retry().
3288  */
3289 static vm_fault_t __do_fault(struct vm_fault *vmf)
3290 {
3291 	struct vm_area_struct *vma = vmf->vma;
3292 	vm_fault_t ret;
3293 
3294 	/*
3295 	 * Preallocate pte before we take page_lock because this might lead to
3296 	 * deadlocks for memcg reclaim which waits for pages under writeback:
3297 	 *				lock_page(A)
3298 	 *				SetPageWriteback(A)
3299 	 *				unlock_page(A)
3300 	 * lock_page(B)
3301 	 *				lock_page(B)
3302 	 * pte_alloc_pne
3303 	 *   shrink_page_list
3304 	 *     wait_on_page_writeback(A)
3305 	 *				SetPageWriteback(B)
3306 	 *				unlock_page(B)
3307 	 *				# flush A, B to clear the writeback
3308 	 */
3309 	if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
3310 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3311 		if (!vmf->prealloc_pte)
3312 			return VM_FAULT_OOM;
3313 		smp_wmb(); /* See comment in __pte_alloc() */
3314 	}
3315 
3316 	ret = vma->vm_ops->fault(vmf);
3317 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3318 			    VM_FAULT_DONE_COW)))
3319 		return ret;
3320 
3321 	if (unlikely(PageHWPoison(vmf->page))) {
3322 		if (ret & VM_FAULT_LOCKED)
3323 			unlock_page(vmf->page);
3324 		put_page(vmf->page);
3325 		vmf->page = NULL;
3326 		return VM_FAULT_HWPOISON;
3327 	}
3328 
3329 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3330 		lock_page(vmf->page);
3331 	else
3332 		VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3333 
3334 	return ret;
3335 }
3336 
3337 /*
3338  * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3339  * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3340  * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3341  * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3342  */
3343 static int pmd_devmap_trans_unstable(pmd_t *pmd)
3344 {
3345 	return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3346 }
3347 
3348 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3349 {
3350 	struct vm_area_struct *vma = vmf->vma;
3351 
3352 	if (!pmd_none(*vmf->pmd))
3353 		goto map_pte;
3354 	if (vmf->prealloc_pte) {
3355 		vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3356 		if (unlikely(!pmd_none(*vmf->pmd))) {
3357 			spin_unlock(vmf->ptl);
3358 			goto map_pte;
3359 		}
3360 
3361 		mm_inc_nr_ptes(vma->vm_mm);
3362 		pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3363 		spin_unlock(vmf->ptl);
3364 		vmf->prealloc_pte = NULL;
3365 	} else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) {
3366 		return VM_FAULT_OOM;
3367 	}
3368 map_pte:
3369 	/*
3370 	 * If a huge pmd materialized under us just retry later.  Use
3371 	 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3372 	 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3373 	 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3374 	 * running immediately after a huge pmd fault in a different thread of
3375 	 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3376 	 * All we have to ensure is that it is a regular pmd that we can walk
3377 	 * with pte_offset_map() and we can do that through an atomic read in
3378 	 * C, which is what pmd_trans_unstable() provides.
3379 	 */
3380 	if (pmd_devmap_trans_unstable(vmf->pmd))
3381 		return VM_FAULT_NOPAGE;
3382 
3383 	/*
3384 	 * At this point we know that our vmf->pmd points to a page of ptes
3385 	 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3386 	 * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3387 	 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3388 	 * be valid and we will re-check to make sure the vmf->pte isn't
3389 	 * pte_none() under vmf->ptl protection when we return to
3390 	 * alloc_set_pte().
3391 	 */
3392 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3393 			&vmf->ptl);
3394 	return 0;
3395 }
3396 
3397 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3398 static void deposit_prealloc_pte(struct vm_fault *vmf)
3399 {
3400 	struct vm_area_struct *vma = vmf->vma;
3401 
3402 	pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3403 	/*
3404 	 * We are going to consume the prealloc table,
3405 	 * count that as nr_ptes.
3406 	 */
3407 	mm_inc_nr_ptes(vma->vm_mm);
3408 	vmf->prealloc_pte = NULL;
3409 }
3410 
3411 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3412 {
3413 	struct vm_area_struct *vma = vmf->vma;
3414 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3415 	unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3416 	pmd_t entry;
3417 	int i;
3418 	vm_fault_t ret;
3419 
3420 	if (!transhuge_vma_suitable(vma, haddr))
3421 		return VM_FAULT_FALLBACK;
3422 
3423 	ret = VM_FAULT_FALLBACK;
3424 	page = compound_head(page);
3425 
3426 	/*
3427 	 * Archs like ppc64 need additonal space to store information
3428 	 * related to pte entry. Use the preallocated table for that.
3429 	 */
3430 	if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3431 		vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
3432 		if (!vmf->prealloc_pte)
3433 			return VM_FAULT_OOM;
3434 		smp_wmb(); /* See comment in __pte_alloc() */
3435 	}
3436 
3437 	vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3438 	if (unlikely(!pmd_none(*vmf->pmd)))
3439 		goto out;
3440 
3441 	for (i = 0; i < HPAGE_PMD_NR; i++)
3442 		flush_icache_page(vma, page + i);
3443 
3444 	entry = mk_huge_pmd(page, vma->vm_page_prot);
3445 	if (write)
3446 		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3447 
3448 	add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3449 	page_add_file_rmap(page, true);
3450 	/*
3451 	 * deposit and withdraw with pmd lock held
3452 	 */
3453 	if (arch_needs_pgtable_deposit())
3454 		deposit_prealloc_pte(vmf);
3455 
3456 	set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3457 
3458 	update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3459 
3460 	/* fault is handled */
3461 	ret = 0;
3462 	count_vm_event(THP_FILE_MAPPED);
3463 out:
3464 	spin_unlock(vmf->ptl);
3465 	return ret;
3466 }
3467 #else
3468 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3469 {
3470 	BUILD_BUG();
3471 	return 0;
3472 }
3473 #endif
3474 
3475 /**
3476  * alloc_set_pte - setup new PTE entry for given page and add reverse page
3477  * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3478  *
3479  * @vmf: fault environment
3480  * @memcg: memcg to charge page (only for private mappings)
3481  * @page: page to map
3482  *
3483  * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3484  * return.
3485  *
3486  * Target users are page handler itself and implementations of
3487  * vm_ops->map_pages.
3488  *
3489  * Return: %0 on success, %VM_FAULT_ code in case of error.
3490  */
3491 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3492 		struct page *page)
3493 {
3494 	struct vm_area_struct *vma = vmf->vma;
3495 	bool write = vmf->flags & FAULT_FLAG_WRITE;
3496 	pte_t entry;
3497 	vm_fault_t ret;
3498 
3499 	if (pmd_none(*vmf->pmd) && PageTransCompound(page)) {
3500 		/* THP on COW? */
3501 		VM_BUG_ON_PAGE(memcg, page);
3502 
3503 		ret = do_set_pmd(vmf, page);
3504 		if (ret != VM_FAULT_FALLBACK)
3505 			return ret;
3506 	}
3507 
3508 	if (!vmf->pte) {
3509 		ret = pte_alloc_one_map(vmf);
3510 		if (ret)
3511 			return ret;
3512 	}
3513 
3514 	/* Re-check under ptl */
3515 	if (unlikely(!pte_none(*vmf->pte)))
3516 		return VM_FAULT_NOPAGE;
3517 
3518 	flush_icache_page(vma, page);
3519 	entry = mk_pte(page, vma->vm_page_prot);
3520 	if (write)
3521 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3522 	/* copy-on-write page */
3523 	if (write && !(vma->vm_flags & VM_SHARED)) {
3524 		inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3525 		page_add_new_anon_rmap(page, vma, vmf->address, false);
3526 		mem_cgroup_commit_charge(page, memcg, false, false);
3527 		lru_cache_add_active_or_unevictable(page, vma);
3528 	} else {
3529 		inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3530 		page_add_file_rmap(page, false);
3531 	}
3532 	set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3533 
3534 	/* no need to invalidate: a not-present page won't be cached */
3535 	update_mmu_cache(vma, vmf->address, vmf->pte);
3536 
3537 	return 0;
3538 }
3539 
3540 
3541 /**
3542  * finish_fault - finish page fault once we have prepared the page to fault
3543  *
3544  * @vmf: structure describing the fault
3545  *
3546  * This function handles all that is needed to finish a page fault once the
3547  * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3548  * given page, adds reverse page mapping, handles memcg charges and LRU
3549  * addition.
3550  *
3551  * The function expects the page to be locked and on success it consumes a
3552  * reference of a page being mapped (for the PTE which maps it).
3553  *
3554  * Return: %0 on success, %VM_FAULT_ code in case of error.
3555  */
3556 vm_fault_t finish_fault(struct vm_fault *vmf)
3557 {
3558 	struct page *page;
3559 	vm_fault_t ret = 0;
3560 
3561 	/* Did we COW the page? */
3562 	if ((vmf->flags & FAULT_FLAG_WRITE) &&
3563 	    !(vmf->vma->vm_flags & VM_SHARED))
3564 		page = vmf->cow_page;
3565 	else
3566 		page = vmf->page;
3567 
3568 	/*
3569 	 * check even for read faults because we might have lost our CoWed
3570 	 * page
3571 	 */
3572 	if (!(vmf->vma->vm_flags & VM_SHARED))
3573 		ret = check_stable_address_space(vmf->vma->vm_mm);
3574 	if (!ret)
3575 		ret = alloc_set_pte(vmf, vmf->memcg, page);
3576 	if (vmf->pte)
3577 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3578 	return ret;
3579 }
3580 
3581 static unsigned long fault_around_bytes __read_mostly =
3582 	rounddown_pow_of_two(65536);
3583 
3584 #ifdef CONFIG_DEBUG_FS
3585 static int fault_around_bytes_get(void *data, u64 *val)
3586 {
3587 	*val = fault_around_bytes;
3588 	return 0;
3589 }
3590 
3591 /*
3592  * fault_around_bytes must be rounded down to the nearest page order as it's
3593  * what do_fault_around() expects to see.
3594  */
3595 static int fault_around_bytes_set(void *data, u64 val)
3596 {
3597 	if (val / PAGE_SIZE > PTRS_PER_PTE)
3598 		return -EINVAL;
3599 	if (val > PAGE_SIZE)
3600 		fault_around_bytes = rounddown_pow_of_two(val);
3601 	else
3602 		fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3603 	return 0;
3604 }
3605 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3606 		fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3607 
3608 static int __init fault_around_debugfs(void)
3609 {
3610 	debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3611 				   &fault_around_bytes_fops);
3612 	return 0;
3613 }
3614 late_initcall(fault_around_debugfs);
3615 #endif
3616 
3617 /*
3618  * do_fault_around() tries to map few pages around the fault address. The hope
3619  * is that the pages will be needed soon and this will lower the number of
3620  * faults to handle.
3621  *
3622  * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3623  * not ready to be mapped: not up-to-date, locked, etc.
3624  *
3625  * This function is called with the page table lock taken. In the split ptlock
3626  * case the page table lock only protects only those entries which belong to
3627  * the page table corresponding to the fault address.
3628  *
3629  * This function doesn't cross the VMA boundaries, in order to call map_pages()
3630  * only once.
3631  *
3632  * fault_around_bytes defines how many bytes we'll try to map.
3633  * do_fault_around() expects it to be set to a power of two less than or equal
3634  * to PTRS_PER_PTE.
3635  *
3636  * The virtual address of the area that we map is naturally aligned to
3637  * fault_around_bytes rounded down to the machine page size
3638  * (and therefore to page order).  This way it's easier to guarantee
3639  * that we don't cross page table boundaries.
3640  */
3641 static vm_fault_t do_fault_around(struct vm_fault *vmf)
3642 {
3643 	unsigned long address = vmf->address, nr_pages, mask;
3644 	pgoff_t start_pgoff = vmf->pgoff;
3645 	pgoff_t end_pgoff;
3646 	int off;
3647 	vm_fault_t ret = 0;
3648 
3649 	nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3650 	mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3651 
3652 	vmf->address = max(address & mask, vmf->vma->vm_start);
3653 	off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3654 	start_pgoff -= off;
3655 
3656 	/*
3657 	 *  end_pgoff is either the end of the page table, the end of
3658 	 *  the vma or nr_pages from start_pgoff, depending what is nearest.
3659 	 */
3660 	end_pgoff = start_pgoff -
3661 		((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3662 		PTRS_PER_PTE - 1;
3663 	end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3664 			start_pgoff + nr_pages - 1);
3665 
3666 	if (pmd_none(*vmf->pmd)) {
3667 		vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
3668 		if (!vmf->prealloc_pte)
3669 			goto out;
3670 		smp_wmb(); /* See comment in __pte_alloc() */
3671 	}
3672 
3673 	vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3674 
3675 	/* Huge page is mapped? Page fault is solved */
3676 	if (pmd_trans_huge(*vmf->pmd)) {
3677 		ret = VM_FAULT_NOPAGE;
3678 		goto out;
3679 	}
3680 
3681 	/* ->map_pages() haven't done anything useful. Cold page cache? */
3682 	if (!vmf->pte)
3683 		goto out;
3684 
3685 	/* check if the page fault is solved */
3686 	vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3687 	if (!pte_none(*vmf->pte))
3688 		ret = VM_FAULT_NOPAGE;
3689 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3690 out:
3691 	vmf->address = address;
3692 	vmf->pte = NULL;
3693 	return ret;
3694 }
3695 
3696 static vm_fault_t do_read_fault(struct vm_fault *vmf)
3697 {
3698 	struct vm_area_struct *vma = vmf->vma;
3699 	vm_fault_t ret = 0;
3700 
3701 	/*
3702 	 * Let's call ->map_pages() first and use ->fault() as fallback
3703 	 * if page by the offset is not ready to be mapped (cold cache or
3704 	 * something).
3705 	 */
3706 	if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3707 		ret = do_fault_around(vmf);
3708 		if (ret)
3709 			return ret;
3710 	}
3711 
3712 	ret = __do_fault(vmf);
3713 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3714 		return ret;
3715 
3716 	ret |= finish_fault(vmf);
3717 	unlock_page(vmf->page);
3718 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3719 		put_page(vmf->page);
3720 	return ret;
3721 }
3722 
3723 static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3724 {
3725 	struct vm_area_struct *vma = vmf->vma;
3726 	vm_fault_t ret;
3727 
3728 	if (unlikely(anon_vma_prepare(vma)))
3729 		return VM_FAULT_OOM;
3730 
3731 	vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3732 	if (!vmf->cow_page)
3733 		return VM_FAULT_OOM;
3734 
3735 	if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3736 				&vmf->memcg, false)) {
3737 		put_page(vmf->cow_page);
3738 		return VM_FAULT_OOM;
3739 	}
3740 
3741 	ret = __do_fault(vmf);
3742 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3743 		goto uncharge_out;
3744 	if (ret & VM_FAULT_DONE_COW)
3745 		return ret;
3746 
3747 	copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3748 	__SetPageUptodate(vmf->cow_page);
3749 
3750 	ret |= finish_fault(vmf);
3751 	unlock_page(vmf->page);
3752 	put_page(vmf->page);
3753 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3754 		goto uncharge_out;
3755 	return ret;
3756 uncharge_out:
3757 	mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3758 	put_page(vmf->cow_page);
3759 	return ret;
3760 }
3761 
3762 static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3763 {
3764 	struct vm_area_struct *vma = vmf->vma;
3765 	vm_fault_t ret, tmp;
3766 
3767 	ret = __do_fault(vmf);
3768 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3769 		return ret;
3770 
3771 	/*
3772 	 * Check if the backing address space wants to know that the page is
3773 	 * about to become writable
3774 	 */
3775 	if (vma->vm_ops->page_mkwrite) {
3776 		unlock_page(vmf->page);
3777 		tmp = do_page_mkwrite(vmf);
3778 		if (unlikely(!tmp ||
3779 				(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3780 			put_page(vmf->page);
3781 			return tmp;
3782 		}
3783 	}
3784 
3785 	ret |= finish_fault(vmf);
3786 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3787 					VM_FAULT_RETRY))) {
3788 		unlock_page(vmf->page);
3789 		put_page(vmf->page);
3790 		return ret;
3791 	}
3792 
3793 	ret |= fault_dirty_shared_page(vmf);
3794 	return ret;
3795 }
3796 
3797 /*
3798  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3799  * but allow concurrent faults).
3800  * The mmap_sem may have been released depending on flags and our
3801  * return value.  See filemap_fault() and __lock_page_or_retry().
3802  * If mmap_sem is released, vma may become invalid (for example
3803  * by other thread calling munmap()).
3804  */
3805 static vm_fault_t do_fault(struct vm_fault *vmf)
3806 {
3807 	struct vm_area_struct *vma = vmf->vma;
3808 	struct mm_struct *vm_mm = vma->vm_mm;
3809 	vm_fault_t ret;
3810 
3811 	/*
3812 	 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
3813 	 */
3814 	if (!vma->vm_ops->fault) {
3815 		/*
3816 		 * If we find a migration pmd entry or a none pmd entry, which
3817 		 * should never happen, return SIGBUS
3818 		 */
3819 		if (unlikely(!pmd_present(*vmf->pmd)))
3820 			ret = VM_FAULT_SIGBUS;
3821 		else {
3822 			vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm,
3823 						       vmf->pmd,
3824 						       vmf->address,
3825 						       &vmf->ptl);
3826 			/*
3827 			 * Make sure this is not a temporary clearing of pte
3828 			 * by holding ptl and checking again. A R/M/W update
3829 			 * of pte involves: take ptl, clearing the pte so that
3830 			 * we don't have concurrent modification by hardware
3831 			 * followed by an update.
3832 			 */
3833 			if (unlikely(pte_none(*vmf->pte)))
3834 				ret = VM_FAULT_SIGBUS;
3835 			else
3836 				ret = VM_FAULT_NOPAGE;
3837 
3838 			pte_unmap_unlock(vmf->pte, vmf->ptl);
3839 		}
3840 	} else if (!(vmf->flags & FAULT_FLAG_WRITE))
3841 		ret = do_read_fault(vmf);
3842 	else if (!(vma->vm_flags & VM_SHARED))
3843 		ret = do_cow_fault(vmf);
3844 	else
3845 		ret = do_shared_fault(vmf);
3846 
3847 	/* preallocated pagetable is unused: free it */
3848 	if (vmf->prealloc_pte) {
3849 		pte_free(vm_mm, vmf->prealloc_pte);
3850 		vmf->prealloc_pte = NULL;
3851 	}
3852 	return ret;
3853 }
3854 
3855 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3856 				unsigned long addr, int page_nid,
3857 				int *flags)
3858 {
3859 	get_page(page);
3860 
3861 	count_vm_numa_event(NUMA_HINT_FAULTS);
3862 	if (page_nid == numa_node_id()) {
3863 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3864 		*flags |= TNF_FAULT_LOCAL;
3865 	}
3866 
3867 	return mpol_misplaced(page, vma, addr);
3868 }
3869 
3870 static vm_fault_t do_numa_page(struct vm_fault *vmf)
3871 {
3872 	struct vm_area_struct *vma = vmf->vma;
3873 	struct page *page = NULL;
3874 	int page_nid = NUMA_NO_NODE;
3875 	int last_cpupid;
3876 	int target_nid;
3877 	bool migrated = false;
3878 	pte_t pte, old_pte;
3879 	bool was_writable = pte_savedwrite(vmf->orig_pte);
3880 	int flags = 0;
3881 
3882 	/*
3883 	 * The "pte" at this point cannot be used safely without
3884 	 * validation through pte_unmap_same(). It's of NUMA type but
3885 	 * the pfn may be screwed if the read is non atomic.
3886 	 */
3887 	vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3888 	spin_lock(vmf->ptl);
3889 	if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3890 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3891 		goto out;
3892 	}
3893 
3894 	/*
3895 	 * Make it present again, Depending on how arch implementes non
3896 	 * accessible ptes, some can allow access by kernel mode.
3897 	 */
3898 	old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
3899 	pte = pte_modify(old_pte, vma->vm_page_prot);
3900 	pte = pte_mkyoung(pte);
3901 	if (was_writable)
3902 		pte = pte_mkwrite(pte);
3903 	ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
3904 	update_mmu_cache(vma, vmf->address, vmf->pte);
3905 
3906 	page = vm_normal_page(vma, vmf->address, pte);
3907 	if (!page) {
3908 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3909 		return 0;
3910 	}
3911 
3912 	/* TODO: handle PTE-mapped THP */
3913 	if (PageCompound(page)) {
3914 		pte_unmap_unlock(vmf->pte, vmf->ptl);
3915 		return 0;
3916 	}
3917 
3918 	/*
3919 	 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3920 	 * much anyway since they can be in shared cache state. This misses
3921 	 * the case where a mapping is writable but the process never writes
3922 	 * to it but pte_write gets cleared during protection updates and
3923 	 * pte_dirty has unpredictable behaviour between PTE scan updates,
3924 	 * background writeback, dirty balancing and application behaviour.
3925 	 */
3926 	if (!pte_write(pte))
3927 		flags |= TNF_NO_GROUP;
3928 
3929 	/*
3930 	 * Flag if the page is shared between multiple address spaces. This
3931 	 * is later used when determining whether to group tasks together
3932 	 */
3933 	if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3934 		flags |= TNF_SHARED;
3935 
3936 	last_cpupid = page_cpupid_last(page);
3937 	page_nid = page_to_nid(page);
3938 	target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3939 			&flags);
3940 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3941 	if (target_nid == NUMA_NO_NODE) {
3942 		put_page(page);
3943 		goto out;
3944 	}
3945 
3946 	/* Migrate to the requested node */
3947 	migrated = migrate_misplaced_page(page, vma, target_nid);
3948 	if (migrated) {
3949 		page_nid = target_nid;
3950 		flags |= TNF_MIGRATED;
3951 	} else
3952 		flags |= TNF_MIGRATE_FAIL;
3953 
3954 out:
3955 	if (page_nid != NUMA_NO_NODE)
3956 		task_numa_fault(last_cpupid, page_nid, 1, flags);
3957 	return 0;
3958 }
3959 
3960 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3961 {
3962 	if (vma_is_anonymous(vmf->vma))
3963 		return do_huge_pmd_anonymous_page(vmf);
3964 	if (vmf->vma->vm_ops->huge_fault)
3965 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3966 	return VM_FAULT_FALLBACK;
3967 }
3968 
3969 /* `inline' is required to avoid gcc 4.1.2 build error */
3970 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3971 {
3972 	if (vma_is_anonymous(vmf->vma)) {
3973 		if (userfaultfd_huge_pmd_wp(vmf->vma, orig_pmd))
3974 			return handle_userfault(vmf, VM_UFFD_WP);
3975 		return do_huge_pmd_wp_page(vmf, orig_pmd);
3976 	}
3977 	if (vmf->vma->vm_ops->huge_fault) {
3978 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3979 
3980 		if (!(ret & VM_FAULT_FALLBACK))
3981 			return ret;
3982 	}
3983 
3984 	/* COW or write-notify handled on pte level: split pmd. */
3985 	__split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3986 
3987 	return VM_FAULT_FALLBACK;
3988 }
3989 
3990 static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3991 {
3992 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) &&			\
3993 	defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
3994 	/* No support for anonymous transparent PUD pages yet */
3995 	if (vma_is_anonymous(vmf->vma))
3996 		goto split;
3997 	if (vmf->vma->vm_ops->huge_fault) {
3998 		vm_fault_t ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3999 
4000 		if (!(ret & VM_FAULT_FALLBACK))
4001 			return ret;
4002 	}
4003 split:
4004 	/* COW or write-notify not handled on PUD level: split pud.*/
4005 	__split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4006 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4007 	return VM_FAULT_FALLBACK;
4008 }
4009 
4010 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4011 {
4012 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4013 	/* No support for anonymous transparent PUD pages yet */
4014 	if (vma_is_anonymous(vmf->vma))
4015 		return VM_FAULT_FALLBACK;
4016 	if (vmf->vma->vm_ops->huge_fault)
4017 		return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4018 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4019 	return VM_FAULT_FALLBACK;
4020 }
4021 
4022 /*
4023  * These routines also need to handle stuff like marking pages dirty
4024  * and/or accessed for architectures that don't do it in hardware (most
4025  * RISC architectures).  The early dirtying is also good on the i386.
4026  *
4027  * There is also a hook called "update_mmu_cache()" that architectures
4028  * with external mmu caches can use to update those (ie the Sparc or
4029  * PowerPC hashed page tables that act as extended TLBs).
4030  *
4031  * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
4032  * concurrent faults).
4033  *
4034  * The mmap_sem may have been released depending on flags and our return value.
4035  * See filemap_fault() and __lock_page_or_retry().
4036  */
4037 static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4038 {
4039 	pte_t entry;
4040 
4041 	if (unlikely(pmd_none(*vmf->pmd))) {
4042 		/*
4043 		 * Leave __pte_alloc() until later: because vm_ops->fault may
4044 		 * want to allocate huge page, and if we expose page table
4045 		 * for an instant, it will be difficult to retract from
4046 		 * concurrent faults and from rmap lookups.
4047 		 */
4048 		vmf->pte = NULL;
4049 	} else {
4050 		/* See comment in pte_alloc_one_map() */
4051 		if (pmd_devmap_trans_unstable(vmf->pmd))
4052 			return 0;
4053 		/*
4054 		 * A regular pmd is established and it can't morph into a huge
4055 		 * pmd from under us anymore at this point because we hold the
4056 		 * mmap_sem read mode and khugepaged takes it in write mode.
4057 		 * So now it's safe to run pte_offset_map().
4058 		 */
4059 		vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
4060 		vmf->orig_pte = *vmf->pte;
4061 
4062 		/*
4063 		 * some architectures can have larger ptes than wordsize,
4064 		 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
4065 		 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
4066 		 * accesses.  The code below just needs a consistent view
4067 		 * for the ifs and we later double check anyway with the
4068 		 * ptl lock held. So here a barrier will do.
4069 		 */
4070 		barrier();
4071 		if (pte_none(vmf->orig_pte)) {
4072 			pte_unmap(vmf->pte);
4073 			vmf->pte = NULL;
4074 		}
4075 	}
4076 
4077 	if (!vmf->pte) {
4078 		if (vma_is_anonymous(vmf->vma))
4079 			return do_anonymous_page(vmf);
4080 		else
4081 			return do_fault(vmf);
4082 	}
4083 
4084 	if (!pte_present(vmf->orig_pte))
4085 		return do_swap_page(vmf);
4086 
4087 	if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4088 		return do_numa_page(vmf);
4089 
4090 	vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
4091 	spin_lock(vmf->ptl);
4092 	entry = vmf->orig_pte;
4093 	if (unlikely(!pte_same(*vmf->pte, entry)))
4094 		goto unlock;
4095 	if (vmf->flags & FAULT_FLAG_WRITE) {
4096 		if (!pte_write(entry))
4097 			return do_wp_page(vmf);
4098 		entry = pte_mkdirty(entry);
4099 	}
4100 	entry = pte_mkyoung(entry);
4101 	if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4102 				vmf->flags & FAULT_FLAG_WRITE)) {
4103 		update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4104 	} else {
4105 		/*
4106 		 * This is needed only for protection faults but the arch code
4107 		 * is not yet telling us if this is a protection fault or not.
4108 		 * This still avoids useless tlb flushes for .text page faults
4109 		 * with threads.
4110 		 */
4111 		if (vmf->flags & FAULT_FLAG_WRITE)
4112 			flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4113 	}
4114 unlock:
4115 	pte_unmap_unlock(vmf->pte, vmf->ptl);
4116 	return 0;
4117 }
4118 
4119 /*
4120  * By the time we get here, we already hold the mm semaphore
4121  *
4122  * The mmap_sem may have been released depending on flags and our
4123  * return value.  See filemap_fault() and __lock_page_or_retry().
4124  */
4125 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4126 		unsigned long address, unsigned int flags)
4127 {
4128 	struct vm_fault vmf = {
4129 		.vma = vma,
4130 		.address = address & PAGE_MASK,
4131 		.flags = flags,
4132 		.pgoff = linear_page_index(vma, address),
4133 		.gfp_mask = __get_fault_gfp_mask(vma),
4134 	};
4135 	unsigned int dirty = flags & FAULT_FLAG_WRITE;
4136 	struct mm_struct *mm = vma->vm_mm;
4137 	pgd_t *pgd;
4138 	p4d_t *p4d;
4139 	vm_fault_t ret;
4140 
4141 	pgd = pgd_offset(mm, address);
4142 	p4d = p4d_alloc(mm, pgd, address);
4143 	if (!p4d)
4144 		return VM_FAULT_OOM;
4145 
4146 	vmf.pud = pud_alloc(mm, p4d, address);
4147 	if (!vmf.pud)
4148 		return VM_FAULT_OOM;
4149 retry_pud:
4150 	if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) {
4151 		ret = create_huge_pud(&vmf);
4152 		if (!(ret & VM_FAULT_FALLBACK))
4153 			return ret;
4154 	} else {
4155 		pud_t orig_pud = *vmf.pud;
4156 
4157 		barrier();
4158 		if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4159 
4160 			/* NUMA case for anonymous PUDs would go here */
4161 
4162 			if (dirty && !pud_write(orig_pud)) {
4163 				ret = wp_huge_pud(&vmf, orig_pud);
4164 				if (!(ret & VM_FAULT_FALLBACK))
4165 					return ret;
4166 			} else {
4167 				huge_pud_set_accessed(&vmf, orig_pud);
4168 				return 0;
4169 			}
4170 		}
4171 	}
4172 
4173 	vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4174 	if (!vmf.pmd)
4175 		return VM_FAULT_OOM;
4176 
4177 	/* Huge pud page fault raced with pmd_alloc? */
4178 	if (pud_trans_unstable(vmf.pud))
4179 		goto retry_pud;
4180 
4181 	if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) {
4182 		ret = create_huge_pmd(&vmf);
4183 		if (!(ret & VM_FAULT_FALLBACK))
4184 			return ret;
4185 	} else {
4186 		pmd_t orig_pmd = *vmf.pmd;
4187 
4188 		barrier();
4189 		if (unlikely(is_swap_pmd(orig_pmd))) {
4190 			VM_BUG_ON(thp_migration_supported() &&
4191 					  !is_pmd_migration_entry(orig_pmd));
4192 			if (is_pmd_migration_entry(orig_pmd))
4193 				pmd_migration_entry_wait(mm, vmf.pmd);
4194 			return 0;
4195 		}
4196 		if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4197 			if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4198 				return do_huge_pmd_numa_page(&vmf, orig_pmd);
4199 
4200 			if (dirty && !pmd_write(orig_pmd)) {
4201 				ret = wp_huge_pmd(&vmf, orig_pmd);
4202 				if (!(ret & VM_FAULT_FALLBACK))
4203 					return ret;
4204 			} else {
4205 				huge_pmd_set_accessed(&vmf, orig_pmd);
4206 				return 0;
4207 			}
4208 		}
4209 	}
4210 
4211 	return handle_pte_fault(&vmf);
4212 }
4213 
4214 /*
4215  * By the time we get here, we already hold the mm semaphore
4216  *
4217  * The mmap_sem may have been released depending on flags and our
4218  * return value.  See filemap_fault() and __lock_page_or_retry().
4219  */
4220 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4221 		unsigned int flags)
4222 {
4223 	vm_fault_t ret;
4224 
4225 	__set_current_state(TASK_RUNNING);
4226 
4227 	count_vm_event(PGFAULT);
4228 	count_memcg_event_mm(vma->vm_mm, PGFAULT);
4229 
4230 	/* do counter updates before entering really critical section. */
4231 	check_sync_rss_stat(current);
4232 
4233 	if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4234 					    flags & FAULT_FLAG_INSTRUCTION,
4235 					    flags & FAULT_FLAG_REMOTE))
4236 		return VM_FAULT_SIGSEGV;
4237 
4238 	/*
4239 	 * Enable the memcg OOM handling for faults triggered in user
4240 	 * space.  Kernel faults are handled more gracefully.
4241 	 */
4242 	if (flags & FAULT_FLAG_USER)
4243 		mem_cgroup_enter_user_fault();
4244 
4245 	if (unlikely(is_vm_hugetlb_page(vma)))
4246 		ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4247 	else
4248 		ret = __handle_mm_fault(vma, address, flags);
4249 
4250 	if (flags & FAULT_FLAG_USER) {
4251 		mem_cgroup_exit_user_fault();
4252 		/*
4253 		 * The task may have entered a memcg OOM situation but
4254 		 * if the allocation error was handled gracefully (no
4255 		 * VM_FAULT_OOM), there is no need to kill anything.
4256 		 * Just clean up the OOM state peacefully.
4257 		 */
4258 		if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4259 			mem_cgroup_oom_synchronize(false);
4260 	}
4261 
4262 	return ret;
4263 }
4264 EXPORT_SYMBOL_GPL(handle_mm_fault);
4265 
4266 #ifndef __PAGETABLE_P4D_FOLDED
4267 /*
4268  * Allocate p4d page table.
4269  * We've already handled the fast-path in-line.
4270  */
4271 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4272 {
4273 	p4d_t *new = p4d_alloc_one(mm, address);
4274 	if (!new)
4275 		return -ENOMEM;
4276 
4277 	smp_wmb(); /* See comment in __pte_alloc */
4278 
4279 	spin_lock(&mm->page_table_lock);
4280 	if (pgd_present(*pgd))		/* Another has populated it */
4281 		p4d_free(mm, new);
4282 	else
4283 		pgd_populate(mm, pgd, new);
4284 	spin_unlock(&mm->page_table_lock);
4285 	return 0;
4286 }
4287 #endif /* __PAGETABLE_P4D_FOLDED */
4288 
4289 #ifndef __PAGETABLE_PUD_FOLDED
4290 /*
4291  * Allocate page upper directory.
4292  * We've already handled the fast-path in-line.
4293  */
4294 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4295 {
4296 	pud_t *new = pud_alloc_one(mm, address);
4297 	if (!new)
4298 		return -ENOMEM;
4299 
4300 	smp_wmb(); /* See comment in __pte_alloc */
4301 
4302 	spin_lock(&mm->page_table_lock);
4303 #ifndef __ARCH_HAS_5LEVEL_HACK
4304 	if (!p4d_present(*p4d)) {
4305 		mm_inc_nr_puds(mm);
4306 		p4d_populate(mm, p4d, new);
4307 	} else	/* Another has populated it */
4308 		pud_free(mm, new);
4309 #else
4310 	if (!pgd_present(*p4d)) {
4311 		mm_inc_nr_puds(mm);
4312 		pgd_populate(mm, p4d, new);
4313 	} else	/* Another has populated it */
4314 		pud_free(mm, new);
4315 #endif /* __ARCH_HAS_5LEVEL_HACK */
4316 	spin_unlock(&mm->page_table_lock);
4317 	return 0;
4318 }
4319 #endif /* __PAGETABLE_PUD_FOLDED */
4320 
4321 #ifndef __PAGETABLE_PMD_FOLDED
4322 /*
4323  * Allocate page middle directory.
4324  * We've already handled the fast-path in-line.
4325  */
4326 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4327 {
4328 	spinlock_t *ptl;
4329 	pmd_t *new = pmd_alloc_one(mm, address);
4330 	if (!new)
4331 		return -ENOMEM;
4332 
4333 	smp_wmb(); /* See comment in __pte_alloc */
4334 
4335 	ptl = pud_lock(mm, pud);
4336 	if (!pud_present(*pud)) {
4337 		mm_inc_nr_pmds(mm);
4338 		pud_populate(mm, pud, new);
4339 	} else	/* Another has populated it */
4340 		pmd_free(mm, new);
4341 	spin_unlock(ptl);
4342 	return 0;
4343 }
4344 #endif /* __PAGETABLE_PMD_FOLDED */
4345 
4346 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4347 			    struct mmu_notifier_range *range,
4348 			    pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4349 {
4350 	pgd_t *pgd;
4351 	p4d_t *p4d;
4352 	pud_t *pud;
4353 	pmd_t *pmd;
4354 	pte_t *ptep;
4355 
4356 	pgd = pgd_offset(mm, address);
4357 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4358 		goto out;
4359 
4360 	p4d = p4d_offset(pgd, address);
4361 	if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4362 		goto out;
4363 
4364 	pud = pud_offset(p4d, address);
4365 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4366 		goto out;
4367 
4368 	pmd = pmd_offset(pud, address);
4369 	VM_BUG_ON(pmd_trans_huge(*pmd));
4370 
4371 	if (pmd_huge(*pmd)) {
4372 		if (!pmdpp)
4373 			goto out;
4374 
4375 		if (range) {
4376 			mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0,
4377 						NULL, mm, address & PMD_MASK,
4378 						(address & PMD_MASK) + PMD_SIZE);
4379 			mmu_notifier_invalidate_range_start(range);
4380 		}
4381 		*ptlp = pmd_lock(mm, pmd);
4382 		if (pmd_huge(*pmd)) {
4383 			*pmdpp = pmd;
4384 			return 0;
4385 		}
4386 		spin_unlock(*ptlp);
4387 		if (range)
4388 			mmu_notifier_invalidate_range_end(range);
4389 	}
4390 
4391 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4392 		goto out;
4393 
4394 	if (range) {
4395 		mmu_notifier_range_init(range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
4396 					address & PAGE_MASK,
4397 					(address & PAGE_MASK) + PAGE_SIZE);
4398 		mmu_notifier_invalidate_range_start(range);
4399 	}
4400 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4401 	if (!pte_present(*ptep))
4402 		goto unlock;
4403 	*ptepp = ptep;
4404 	return 0;
4405 unlock:
4406 	pte_unmap_unlock(ptep, *ptlp);
4407 	if (range)
4408 		mmu_notifier_invalidate_range_end(range);
4409 out:
4410 	return -EINVAL;
4411 }
4412 
4413 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4414 			     pte_t **ptepp, spinlock_t **ptlp)
4415 {
4416 	int res;
4417 
4418 	/* (void) is needed to make gcc happy */
4419 	(void) __cond_lock(*ptlp,
4420 			   !(res = __follow_pte_pmd(mm, address, NULL,
4421 						    ptepp, NULL, ptlp)));
4422 	return res;
4423 }
4424 
4425 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4426 		   struct mmu_notifier_range *range,
4427 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4428 {
4429 	int res;
4430 
4431 	/* (void) is needed to make gcc happy */
4432 	(void) __cond_lock(*ptlp,
4433 			   !(res = __follow_pte_pmd(mm, address, range,
4434 						    ptepp, pmdpp, ptlp)));
4435 	return res;
4436 }
4437 EXPORT_SYMBOL(follow_pte_pmd);
4438 
4439 /**
4440  * follow_pfn - look up PFN at a user virtual address
4441  * @vma: memory mapping
4442  * @address: user virtual address
4443  * @pfn: location to store found PFN
4444  *
4445  * Only IO mappings and raw PFN mappings are allowed.
4446  *
4447  * Return: zero and the pfn at @pfn on success, -ve otherwise.
4448  */
4449 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4450 	unsigned long *pfn)
4451 {
4452 	int ret = -EINVAL;
4453 	spinlock_t *ptl;
4454 	pte_t *ptep;
4455 
4456 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4457 		return ret;
4458 
4459 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4460 	if (ret)
4461 		return ret;
4462 	*pfn = pte_pfn(*ptep);
4463 	pte_unmap_unlock(ptep, ptl);
4464 	return 0;
4465 }
4466 EXPORT_SYMBOL(follow_pfn);
4467 
4468 #ifdef CONFIG_HAVE_IOREMAP_PROT
4469 int follow_phys(struct vm_area_struct *vma,
4470 		unsigned long address, unsigned int flags,
4471 		unsigned long *prot, resource_size_t *phys)
4472 {
4473 	int ret = -EINVAL;
4474 	pte_t *ptep, pte;
4475 	spinlock_t *ptl;
4476 
4477 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4478 		goto out;
4479 
4480 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4481 		goto out;
4482 	pte = *ptep;
4483 
4484 	if ((flags & FOLL_WRITE) && !pte_write(pte))
4485 		goto unlock;
4486 
4487 	*prot = pgprot_val(pte_pgprot(pte));
4488 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4489 
4490 	ret = 0;
4491 unlock:
4492 	pte_unmap_unlock(ptep, ptl);
4493 out:
4494 	return ret;
4495 }
4496 
4497 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4498 			void *buf, int len, int write)
4499 {
4500 	resource_size_t phys_addr;
4501 	unsigned long prot = 0;
4502 	void __iomem *maddr;
4503 	int offset = addr & (PAGE_SIZE-1);
4504 
4505 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
4506 		return -EINVAL;
4507 
4508 	maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4509 	if (!maddr)
4510 		return -ENOMEM;
4511 
4512 	if (write)
4513 		memcpy_toio(maddr + offset, buf, len);
4514 	else
4515 		memcpy_fromio(buf, maddr + offset, len);
4516 	iounmap(maddr);
4517 
4518 	return len;
4519 }
4520 EXPORT_SYMBOL_GPL(generic_access_phys);
4521 #endif
4522 
4523 /*
4524  * Access another process' address space as given in mm.  If non-NULL, use the
4525  * given task for page fault accounting.
4526  */
4527 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4528 		unsigned long addr, void *buf, int len, unsigned int gup_flags)
4529 {
4530 	struct vm_area_struct *vma;
4531 	void *old_buf = buf;
4532 	int write = gup_flags & FOLL_WRITE;
4533 
4534 	if (down_read_killable(&mm->mmap_sem))
4535 		return 0;
4536 
4537 	/* ignore errors, just check how much was successfully transferred */
4538 	while (len) {
4539 		int bytes, ret, offset;
4540 		void *maddr;
4541 		struct page *page = NULL;
4542 
4543 		ret = get_user_pages_remote(tsk, mm, addr, 1,
4544 				gup_flags, &page, &vma, NULL);
4545 		if (ret <= 0) {
4546 #ifndef CONFIG_HAVE_IOREMAP_PROT
4547 			break;
4548 #else
4549 			/*
4550 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4551 			 * we can access using slightly different code.
4552 			 */
4553 			vma = find_vma(mm, addr);
4554 			if (!vma || vma->vm_start > addr)
4555 				break;
4556 			if (vma->vm_ops && vma->vm_ops->access)
4557 				ret = vma->vm_ops->access(vma, addr, buf,
4558 							  len, write);
4559 			if (ret <= 0)
4560 				break;
4561 			bytes = ret;
4562 #endif
4563 		} else {
4564 			bytes = len;
4565 			offset = addr & (PAGE_SIZE-1);
4566 			if (bytes > PAGE_SIZE-offset)
4567 				bytes = PAGE_SIZE-offset;
4568 
4569 			maddr = kmap(page);
4570 			if (write) {
4571 				copy_to_user_page(vma, page, addr,
4572 						  maddr + offset, buf, bytes);
4573 				set_page_dirty_lock(page);
4574 			} else {
4575 				copy_from_user_page(vma, page, addr,
4576 						    buf, maddr + offset, bytes);
4577 			}
4578 			kunmap(page);
4579 			put_page(page);
4580 		}
4581 		len -= bytes;
4582 		buf += bytes;
4583 		addr += bytes;
4584 	}
4585 	up_read(&mm->mmap_sem);
4586 
4587 	return buf - old_buf;
4588 }
4589 
4590 /**
4591  * access_remote_vm - access another process' address space
4592  * @mm:		the mm_struct of the target address space
4593  * @addr:	start address to access
4594  * @buf:	source or destination buffer
4595  * @len:	number of bytes to transfer
4596  * @gup_flags:	flags modifying lookup behaviour
4597  *
4598  * The caller must hold a reference on @mm.
4599  *
4600  * Return: number of bytes copied from source to destination.
4601  */
4602 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4603 		void *buf, int len, unsigned int gup_flags)
4604 {
4605 	return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4606 }
4607 
4608 /*
4609  * Access another process' address space.
4610  * Source/target buffer must be kernel space,
4611  * Do not walk the page table directly, use get_user_pages
4612  */
4613 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4614 		void *buf, int len, unsigned int gup_flags)
4615 {
4616 	struct mm_struct *mm;
4617 	int ret;
4618 
4619 	mm = get_task_mm(tsk);
4620 	if (!mm)
4621 		return 0;
4622 
4623 	ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4624 
4625 	mmput(mm);
4626 
4627 	return ret;
4628 }
4629 EXPORT_SYMBOL_GPL(access_process_vm);
4630 
4631 /*
4632  * Print the name of a VMA.
4633  */
4634 void print_vma_addr(char *prefix, unsigned long ip)
4635 {
4636 	struct mm_struct *mm = current->mm;
4637 	struct vm_area_struct *vma;
4638 
4639 	/*
4640 	 * we might be running from an atomic context so we cannot sleep
4641 	 */
4642 	if (!down_read_trylock(&mm->mmap_sem))
4643 		return;
4644 
4645 	vma = find_vma(mm, ip);
4646 	if (vma && vma->vm_file) {
4647 		struct file *f = vma->vm_file;
4648 		char *buf = (char *)__get_free_page(GFP_NOWAIT);
4649 		if (buf) {
4650 			char *p;
4651 
4652 			p = file_path(f, buf, PAGE_SIZE);
4653 			if (IS_ERR(p))
4654 				p = "?";
4655 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4656 					vma->vm_start,
4657 					vma->vm_end - vma->vm_start);
4658 			free_page((unsigned long)buf);
4659 		}
4660 	}
4661 	up_read(&mm->mmap_sem);
4662 }
4663 
4664 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4665 void __might_fault(const char *file, int line)
4666 {
4667 	/*
4668 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4669 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4670 	 * get paged out, therefore we'll never actually fault, and the
4671 	 * below annotations will generate false positives.
4672 	 */
4673 	if (uaccess_kernel())
4674 		return;
4675 	if (pagefault_disabled())
4676 		return;
4677 	__might_sleep(file, line, 0);
4678 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4679 	if (current->mm)
4680 		might_lock_read(&current->mm->mmap_sem);
4681 #endif
4682 }
4683 EXPORT_SYMBOL(__might_fault);
4684 #endif
4685 
4686 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4687 /*
4688  * Process all subpages of the specified huge page with the specified
4689  * operation.  The target subpage will be processed last to keep its
4690  * cache lines hot.
4691  */
4692 static inline void process_huge_page(
4693 	unsigned long addr_hint, unsigned int pages_per_huge_page,
4694 	void (*process_subpage)(unsigned long addr, int idx, void *arg),
4695 	void *arg)
4696 {
4697 	int i, n, base, l;
4698 	unsigned long addr = addr_hint &
4699 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4700 
4701 	/* Process target subpage last to keep its cache lines hot */
4702 	might_sleep();
4703 	n = (addr_hint - addr) / PAGE_SIZE;
4704 	if (2 * n <= pages_per_huge_page) {
4705 		/* If target subpage in first half of huge page */
4706 		base = 0;
4707 		l = n;
4708 		/* Process subpages at the end of huge page */
4709 		for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4710 			cond_resched();
4711 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4712 		}
4713 	} else {
4714 		/* If target subpage in second half of huge page */
4715 		base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4716 		l = pages_per_huge_page - n;
4717 		/* Process subpages at the begin of huge page */
4718 		for (i = 0; i < base; i++) {
4719 			cond_resched();
4720 			process_subpage(addr + i * PAGE_SIZE, i, arg);
4721 		}
4722 	}
4723 	/*
4724 	 * Process remaining subpages in left-right-left-right pattern
4725 	 * towards the target subpage
4726 	 */
4727 	for (i = 0; i < l; i++) {
4728 		int left_idx = base + i;
4729 		int right_idx = base + 2 * l - 1 - i;
4730 
4731 		cond_resched();
4732 		process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4733 		cond_resched();
4734 		process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4735 	}
4736 }
4737 
4738 static void clear_gigantic_page(struct page *page,
4739 				unsigned long addr,
4740 				unsigned int pages_per_huge_page)
4741 {
4742 	int i;
4743 	struct page *p = page;
4744 
4745 	might_sleep();
4746 	for (i = 0; i < pages_per_huge_page;
4747 	     i++, p = mem_map_next(p, page, i)) {
4748 		cond_resched();
4749 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4750 	}
4751 }
4752 
4753 static void clear_subpage(unsigned long addr, int idx, void *arg)
4754 {
4755 	struct page *page = arg;
4756 
4757 	clear_user_highpage(page + idx, addr);
4758 }
4759 
4760 void clear_huge_page(struct page *page,
4761 		     unsigned long addr_hint, unsigned int pages_per_huge_page)
4762 {
4763 	unsigned long addr = addr_hint &
4764 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4765 
4766 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4767 		clear_gigantic_page(page, addr, pages_per_huge_page);
4768 		return;
4769 	}
4770 
4771 	process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4772 }
4773 
4774 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4775 				    unsigned long addr,
4776 				    struct vm_area_struct *vma,
4777 				    unsigned int pages_per_huge_page)
4778 {
4779 	int i;
4780 	struct page *dst_base = dst;
4781 	struct page *src_base = src;
4782 
4783 	for (i = 0; i < pages_per_huge_page; ) {
4784 		cond_resched();
4785 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4786 
4787 		i++;
4788 		dst = mem_map_next(dst, dst_base, i);
4789 		src = mem_map_next(src, src_base, i);
4790 	}
4791 }
4792 
4793 struct copy_subpage_arg {
4794 	struct page *dst;
4795 	struct page *src;
4796 	struct vm_area_struct *vma;
4797 };
4798 
4799 static void copy_subpage(unsigned long addr, int idx, void *arg)
4800 {
4801 	struct copy_subpage_arg *copy_arg = arg;
4802 
4803 	copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4804 			   addr, copy_arg->vma);
4805 }
4806 
4807 void copy_user_huge_page(struct page *dst, struct page *src,
4808 			 unsigned long addr_hint, struct vm_area_struct *vma,
4809 			 unsigned int pages_per_huge_page)
4810 {
4811 	unsigned long addr = addr_hint &
4812 		~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4813 	struct copy_subpage_arg arg = {
4814 		.dst = dst,
4815 		.src = src,
4816 		.vma = vma,
4817 	};
4818 
4819 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4820 		copy_user_gigantic_page(dst, src, addr, vma,
4821 					pages_per_huge_page);
4822 		return;
4823 	}
4824 
4825 	process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4826 }
4827 
4828 long copy_huge_page_from_user(struct page *dst_page,
4829 				const void __user *usr_src,
4830 				unsigned int pages_per_huge_page,
4831 				bool allow_pagefault)
4832 {
4833 	void *src = (void *)usr_src;
4834 	void *page_kaddr;
4835 	unsigned long i, rc = 0;
4836 	unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4837 
4838 	for (i = 0; i < pages_per_huge_page; i++) {
4839 		if (allow_pagefault)
4840 			page_kaddr = kmap(dst_page + i);
4841 		else
4842 			page_kaddr = kmap_atomic(dst_page + i);
4843 		rc = copy_from_user(page_kaddr,
4844 				(const void __user *)(src + i * PAGE_SIZE),
4845 				PAGE_SIZE);
4846 		if (allow_pagefault)
4847 			kunmap(dst_page + i);
4848 		else
4849 			kunmap_atomic(page_kaddr);
4850 
4851 		ret_val -= (PAGE_SIZE - rc);
4852 		if (rc)
4853 			break;
4854 
4855 		cond_resched();
4856 	}
4857 	return ret_val;
4858 }
4859 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4860 
4861 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4862 
4863 static struct kmem_cache *page_ptl_cachep;
4864 
4865 void __init ptlock_cache_init(void)
4866 {
4867 	page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4868 			SLAB_PANIC, NULL);
4869 }
4870 
4871 bool ptlock_alloc(struct page *page)
4872 {
4873 	spinlock_t *ptl;
4874 
4875 	ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4876 	if (!ptl)
4877 		return false;
4878 	page->ptl = ptl;
4879 	return true;
4880 }
4881 
4882 void ptlock_free(struct page *page)
4883 {
4884 	kmem_cache_free(page_ptl_cachep, page->ptl);
4885 }
4886 #endif
4887