xref: /openbmc/linux/mm/memory.c (revision 0d456bad)
1 /*
2  *  linux/mm/memory.c
3  *
4  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
5  */
6 
7 /*
8  * demand-loading started 01.12.91 - seems it is high on the list of
9  * things wanted, and it should be easy to implement. - Linus
10  */
11 
12 /*
13  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14  * pages started 02.12.91, seems to work. - Linus.
15  *
16  * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17  * would have taken more than the 6M I have free, but it worked well as
18  * far as I could see.
19  *
20  * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21  */
22 
23 /*
24  * Real VM (paging to/from disk) started 18.12.91. Much more work and
25  * thought has to go into this. Oh, well..
26  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
27  *		Found it. Everything seems to work now.
28  * 20.12.91  -  Ok, making the swap-device changeable like the root.
29  */
30 
31 /*
32  * 05.04.94  -  Multi-page memory management added for v1.1.
33  * 		Idea by Alex Bligh (alex@cconcepts.co.uk)
34  *
35  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
36  *		(Gerhard.Wichert@pdb.siemens.de)
37  *
38  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39  */
40 
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
60 #include <linux/migrate.h>
61 #include <linux/string.h>
62 
63 #include <asm/io.h>
64 #include <asm/pgalloc.h>
65 #include <asm/uaccess.h>
66 #include <asm/tlb.h>
67 #include <asm/tlbflush.h>
68 #include <asm/pgtable.h>
69 
70 #include "internal.h"
71 
72 #ifndef CONFIG_NEED_MULTIPLE_NODES
73 /* use the per-pgdat data instead for discontigmem - mbligh */
74 unsigned long max_mapnr;
75 struct page *mem_map;
76 
77 EXPORT_SYMBOL(max_mapnr);
78 EXPORT_SYMBOL(mem_map);
79 #endif
80 
81 unsigned long num_physpages;
82 /*
83  * A number of key systems in x86 including ioremap() rely on the assumption
84  * that high_memory defines the upper bound on direct map memory, then end
85  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
86  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
87  * and ZONE_HIGHMEM.
88  */
89 void * high_memory;
90 
91 EXPORT_SYMBOL(num_physpages);
92 EXPORT_SYMBOL(high_memory);
93 
94 /*
95  * Randomize the address space (stacks, mmaps, brk, etc.).
96  *
97  * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
98  *   as ancient (libc5 based) binaries can segfault. )
99  */
100 int randomize_va_space __read_mostly =
101 #ifdef CONFIG_COMPAT_BRK
102 					1;
103 #else
104 					2;
105 #endif
106 
107 static int __init disable_randmaps(char *s)
108 {
109 	randomize_va_space = 0;
110 	return 1;
111 }
112 __setup("norandmaps", disable_randmaps);
113 
114 unsigned long zero_pfn __read_mostly;
115 unsigned long highest_memmap_pfn __read_mostly;
116 
117 /*
118  * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
119  */
120 static int __init init_zero_pfn(void)
121 {
122 	zero_pfn = page_to_pfn(ZERO_PAGE(0));
123 	return 0;
124 }
125 core_initcall(init_zero_pfn);
126 
127 
128 #if defined(SPLIT_RSS_COUNTING)
129 
130 void sync_mm_rss(struct mm_struct *mm)
131 {
132 	int i;
133 
134 	for (i = 0; i < NR_MM_COUNTERS; i++) {
135 		if (current->rss_stat.count[i]) {
136 			add_mm_counter(mm, i, current->rss_stat.count[i]);
137 			current->rss_stat.count[i] = 0;
138 		}
139 	}
140 	current->rss_stat.events = 0;
141 }
142 
143 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
144 {
145 	struct task_struct *task = current;
146 
147 	if (likely(task->mm == mm))
148 		task->rss_stat.count[member] += val;
149 	else
150 		add_mm_counter(mm, member, val);
151 }
152 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
153 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
154 
155 /* sync counter once per 64 page faults */
156 #define TASK_RSS_EVENTS_THRESH	(64)
157 static void check_sync_rss_stat(struct task_struct *task)
158 {
159 	if (unlikely(task != current))
160 		return;
161 	if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
162 		sync_mm_rss(task->mm);
163 }
164 #else /* SPLIT_RSS_COUNTING */
165 
166 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
167 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
168 
169 static void check_sync_rss_stat(struct task_struct *task)
170 {
171 }
172 
173 #endif /* SPLIT_RSS_COUNTING */
174 
175 #ifdef HAVE_GENERIC_MMU_GATHER
176 
177 static int tlb_next_batch(struct mmu_gather *tlb)
178 {
179 	struct mmu_gather_batch *batch;
180 
181 	batch = tlb->active;
182 	if (batch->next) {
183 		tlb->active = batch->next;
184 		return 1;
185 	}
186 
187 	batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
188 	if (!batch)
189 		return 0;
190 
191 	batch->next = NULL;
192 	batch->nr   = 0;
193 	batch->max  = MAX_GATHER_BATCH;
194 
195 	tlb->active->next = batch;
196 	tlb->active = batch;
197 
198 	return 1;
199 }
200 
201 /* tlb_gather_mmu
202  *	Called to initialize an (on-stack) mmu_gather structure for page-table
203  *	tear-down from @mm. The @fullmm argument is used when @mm is without
204  *	users and we're going to destroy the full address space (exit/execve).
205  */
206 void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
207 {
208 	tlb->mm = mm;
209 
210 	tlb->fullmm     = fullmm;
211 	tlb->start	= -1UL;
212 	tlb->end	= 0;
213 	tlb->need_flush = 0;
214 	tlb->fast_mode  = (num_possible_cpus() == 1);
215 	tlb->local.next = NULL;
216 	tlb->local.nr   = 0;
217 	tlb->local.max  = ARRAY_SIZE(tlb->__pages);
218 	tlb->active     = &tlb->local;
219 
220 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
221 	tlb->batch = NULL;
222 #endif
223 }
224 
225 void tlb_flush_mmu(struct mmu_gather *tlb)
226 {
227 	struct mmu_gather_batch *batch;
228 
229 	if (!tlb->need_flush)
230 		return;
231 	tlb->need_flush = 0;
232 	tlb_flush(tlb);
233 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 	tlb_table_flush(tlb);
235 #endif
236 
237 	if (tlb_fast_mode(tlb))
238 		return;
239 
240 	for (batch = &tlb->local; batch; batch = batch->next) {
241 		free_pages_and_swap_cache(batch->pages, batch->nr);
242 		batch->nr = 0;
243 	}
244 	tlb->active = &tlb->local;
245 }
246 
247 /* tlb_finish_mmu
248  *	Called at the end of the shootdown operation to free up any resources
249  *	that were required.
250  */
251 void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
252 {
253 	struct mmu_gather_batch *batch, *next;
254 
255 	tlb->start = start;
256 	tlb->end   = end;
257 	tlb_flush_mmu(tlb);
258 
259 	/* keep the page table cache within bounds */
260 	check_pgt_cache();
261 
262 	for (batch = tlb->local.next; batch; batch = next) {
263 		next = batch->next;
264 		free_pages((unsigned long)batch, 0);
265 	}
266 	tlb->local.next = NULL;
267 }
268 
269 /* __tlb_remove_page
270  *	Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
271  *	handling the additional races in SMP caused by other CPUs caching valid
272  *	mappings in their TLBs. Returns the number of free page slots left.
273  *	When out of page slots we must call tlb_flush_mmu().
274  */
275 int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
276 {
277 	struct mmu_gather_batch *batch;
278 
279 	VM_BUG_ON(!tlb->need_flush);
280 
281 	if (tlb_fast_mode(tlb)) {
282 		free_page_and_swap_cache(page);
283 		return 1; /* avoid calling tlb_flush_mmu() */
284 	}
285 
286 	batch = tlb->active;
287 	batch->pages[batch->nr++] = page;
288 	if (batch->nr == batch->max) {
289 		if (!tlb_next_batch(tlb))
290 			return 0;
291 		batch = tlb->active;
292 	}
293 	VM_BUG_ON(batch->nr > batch->max);
294 
295 	return batch->max - batch->nr;
296 }
297 
298 #endif /* HAVE_GENERIC_MMU_GATHER */
299 
300 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
301 
302 /*
303  * See the comment near struct mmu_table_batch.
304  */
305 
306 static void tlb_remove_table_smp_sync(void *arg)
307 {
308 	/* Simply deliver the interrupt */
309 }
310 
311 static void tlb_remove_table_one(void *table)
312 {
313 	/*
314 	 * This isn't an RCU grace period and hence the page-tables cannot be
315 	 * assumed to be actually RCU-freed.
316 	 *
317 	 * It is however sufficient for software page-table walkers that rely on
318 	 * IRQ disabling. See the comment near struct mmu_table_batch.
319 	 */
320 	smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
321 	__tlb_remove_table(table);
322 }
323 
324 static void tlb_remove_table_rcu(struct rcu_head *head)
325 {
326 	struct mmu_table_batch *batch;
327 	int i;
328 
329 	batch = container_of(head, struct mmu_table_batch, rcu);
330 
331 	for (i = 0; i < batch->nr; i++)
332 		__tlb_remove_table(batch->tables[i]);
333 
334 	free_page((unsigned long)batch);
335 }
336 
337 void tlb_table_flush(struct mmu_gather *tlb)
338 {
339 	struct mmu_table_batch **batch = &tlb->batch;
340 
341 	if (*batch) {
342 		call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
343 		*batch = NULL;
344 	}
345 }
346 
347 void tlb_remove_table(struct mmu_gather *tlb, void *table)
348 {
349 	struct mmu_table_batch **batch = &tlb->batch;
350 
351 	tlb->need_flush = 1;
352 
353 	/*
354 	 * When there's less then two users of this mm there cannot be a
355 	 * concurrent page-table walk.
356 	 */
357 	if (atomic_read(&tlb->mm->mm_users) < 2) {
358 		__tlb_remove_table(table);
359 		return;
360 	}
361 
362 	if (*batch == NULL) {
363 		*batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
364 		if (*batch == NULL) {
365 			tlb_remove_table_one(table);
366 			return;
367 		}
368 		(*batch)->nr = 0;
369 	}
370 	(*batch)->tables[(*batch)->nr++] = table;
371 	if ((*batch)->nr == MAX_TABLE_BATCH)
372 		tlb_table_flush(tlb);
373 }
374 
375 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
376 
377 /*
378  * If a p?d_bad entry is found while walking page tables, report
379  * the error, before resetting entry to p?d_none.  Usually (but
380  * very seldom) called out from the p?d_none_or_clear_bad macros.
381  */
382 
383 void pgd_clear_bad(pgd_t *pgd)
384 {
385 	pgd_ERROR(*pgd);
386 	pgd_clear(pgd);
387 }
388 
389 void pud_clear_bad(pud_t *pud)
390 {
391 	pud_ERROR(*pud);
392 	pud_clear(pud);
393 }
394 
395 void pmd_clear_bad(pmd_t *pmd)
396 {
397 	pmd_ERROR(*pmd);
398 	pmd_clear(pmd);
399 }
400 
401 /*
402  * Note: this doesn't free the actual pages themselves. That
403  * has been handled earlier when unmapping all the memory regions.
404  */
405 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
406 			   unsigned long addr)
407 {
408 	pgtable_t token = pmd_pgtable(*pmd);
409 	pmd_clear(pmd);
410 	pte_free_tlb(tlb, token, addr);
411 	tlb->mm->nr_ptes--;
412 }
413 
414 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
415 				unsigned long addr, unsigned long end,
416 				unsigned long floor, unsigned long ceiling)
417 {
418 	pmd_t *pmd;
419 	unsigned long next;
420 	unsigned long start;
421 
422 	start = addr;
423 	pmd = pmd_offset(pud, addr);
424 	do {
425 		next = pmd_addr_end(addr, end);
426 		if (pmd_none_or_clear_bad(pmd))
427 			continue;
428 		free_pte_range(tlb, pmd, addr);
429 	} while (pmd++, addr = next, addr != end);
430 
431 	start &= PUD_MASK;
432 	if (start < floor)
433 		return;
434 	if (ceiling) {
435 		ceiling &= PUD_MASK;
436 		if (!ceiling)
437 			return;
438 	}
439 	if (end - 1 > ceiling - 1)
440 		return;
441 
442 	pmd = pmd_offset(pud, start);
443 	pud_clear(pud);
444 	pmd_free_tlb(tlb, pmd, start);
445 }
446 
447 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
448 				unsigned long addr, unsigned long end,
449 				unsigned long floor, unsigned long ceiling)
450 {
451 	pud_t *pud;
452 	unsigned long next;
453 	unsigned long start;
454 
455 	start = addr;
456 	pud = pud_offset(pgd, addr);
457 	do {
458 		next = pud_addr_end(addr, end);
459 		if (pud_none_or_clear_bad(pud))
460 			continue;
461 		free_pmd_range(tlb, pud, addr, next, floor, ceiling);
462 	} while (pud++, addr = next, addr != end);
463 
464 	start &= PGDIR_MASK;
465 	if (start < floor)
466 		return;
467 	if (ceiling) {
468 		ceiling &= PGDIR_MASK;
469 		if (!ceiling)
470 			return;
471 	}
472 	if (end - 1 > ceiling - 1)
473 		return;
474 
475 	pud = pud_offset(pgd, start);
476 	pgd_clear(pgd);
477 	pud_free_tlb(tlb, pud, start);
478 }
479 
480 /*
481  * This function frees user-level page tables of a process.
482  *
483  * Must be called with pagetable lock held.
484  */
485 void free_pgd_range(struct mmu_gather *tlb,
486 			unsigned long addr, unsigned long end,
487 			unsigned long floor, unsigned long ceiling)
488 {
489 	pgd_t *pgd;
490 	unsigned long next;
491 
492 	/*
493 	 * The next few lines have given us lots of grief...
494 	 *
495 	 * Why are we testing PMD* at this top level?  Because often
496 	 * there will be no work to do at all, and we'd prefer not to
497 	 * go all the way down to the bottom just to discover that.
498 	 *
499 	 * Why all these "- 1"s?  Because 0 represents both the bottom
500 	 * of the address space and the top of it (using -1 for the
501 	 * top wouldn't help much: the masks would do the wrong thing).
502 	 * The rule is that addr 0 and floor 0 refer to the bottom of
503 	 * the address space, but end 0 and ceiling 0 refer to the top
504 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though
505 	 * that end 0 case should be mythical).
506 	 *
507 	 * Wherever addr is brought up or ceiling brought down, we must
508 	 * be careful to reject "the opposite 0" before it confuses the
509 	 * subsequent tests.  But what about where end is brought down
510 	 * by PMD_SIZE below? no, end can't go down to 0 there.
511 	 *
512 	 * Whereas we round start (addr) and ceiling down, by different
513 	 * masks at different levels, in order to test whether a table
514 	 * now has no other vmas using it, so can be freed, we don't
515 	 * bother to round floor or end up - the tests don't need that.
516 	 */
517 
518 	addr &= PMD_MASK;
519 	if (addr < floor) {
520 		addr += PMD_SIZE;
521 		if (!addr)
522 			return;
523 	}
524 	if (ceiling) {
525 		ceiling &= PMD_MASK;
526 		if (!ceiling)
527 			return;
528 	}
529 	if (end - 1 > ceiling - 1)
530 		end -= PMD_SIZE;
531 	if (addr > end - 1)
532 		return;
533 
534 	pgd = pgd_offset(tlb->mm, addr);
535 	do {
536 		next = pgd_addr_end(addr, end);
537 		if (pgd_none_or_clear_bad(pgd))
538 			continue;
539 		free_pud_range(tlb, pgd, addr, next, floor, ceiling);
540 	} while (pgd++, addr = next, addr != end);
541 }
542 
543 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
544 		unsigned long floor, unsigned long ceiling)
545 {
546 	while (vma) {
547 		struct vm_area_struct *next = vma->vm_next;
548 		unsigned long addr = vma->vm_start;
549 
550 		/*
551 		 * Hide vma from rmap and truncate_pagecache before freeing
552 		 * pgtables
553 		 */
554 		unlink_anon_vmas(vma);
555 		unlink_file_vma(vma);
556 
557 		if (is_vm_hugetlb_page(vma)) {
558 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
559 				floor, next? next->vm_start: ceiling);
560 		} else {
561 			/*
562 			 * Optimization: gather nearby vmas into one call down
563 			 */
564 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE
565 			       && !is_vm_hugetlb_page(next)) {
566 				vma = next;
567 				next = vma->vm_next;
568 				unlink_anon_vmas(vma);
569 				unlink_file_vma(vma);
570 			}
571 			free_pgd_range(tlb, addr, vma->vm_end,
572 				floor, next? next->vm_start: ceiling);
573 		}
574 		vma = next;
575 	}
576 }
577 
578 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
579 		pmd_t *pmd, unsigned long address)
580 {
581 	pgtable_t new = pte_alloc_one(mm, address);
582 	int wait_split_huge_page;
583 	if (!new)
584 		return -ENOMEM;
585 
586 	/*
587 	 * Ensure all pte setup (eg. pte page lock and page clearing) are
588 	 * visible before the pte is made visible to other CPUs by being
589 	 * put into page tables.
590 	 *
591 	 * The other side of the story is the pointer chasing in the page
592 	 * table walking code (when walking the page table without locking;
593 	 * ie. most of the time). Fortunately, these data accesses consist
594 	 * of a chain of data-dependent loads, meaning most CPUs (alpha
595 	 * being the notable exception) will already guarantee loads are
596 	 * seen in-order. See the alpha page table accessors for the
597 	 * smp_read_barrier_depends() barriers in page table walking code.
598 	 */
599 	smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
600 
601 	spin_lock(&mm->page_table_lock);
602 	wait_split_huge_page = 0;
603 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
604 		mm->nr_ptes++;
605 		pmd_populate(mm, pmd, new);
606 		new = NULL;
607 	} else if (unlikely(pmd_trans_splitting(*pmd)))
608 		wait_split_huge_page = 1;
609 	spin_unlock(&mm->page_table_lock);
610 	if (new)
611 		pte_free(mm, new);
612 	if (wait_split_huge_page)
613 		wait_split_huge_page(vma->anon_vma, pmd);
614 	return 0;
615 }
616 
617 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
618 {
619 	pte_t *new = pte_alloc_one_kernel(&init_mm, address);
620 	if (!new)
621 		return -ENOMEM;
622 
623 	smp_wmb(); /* See comment in __pte_alloc */
624 
625 	spin_lock(&init_mm.page_table_lock);
626 	if (likely(pmd_none(*pmd))) {	/* Has another populated it ? */
627 		pmd_populate_kernel(&init_mm, pmd, new);
628 		new = NULL;
629 	} else
630 		VM_BUG_ON(pmd_trans_splitting(*pmd));
631 	spin_unlock(&init_mm.page_table_lock);
632 	if (new)
633 		pte_free_kernel(&init_mm, new);
634 	return 0;
635 }
636 
637 static inline void init_rss_vec(int *rss)
638 {
639 	memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
640 }
641 
642 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
643 {
644 	int i;
645 
646 	if (current->mm == mm)
647 		sync_mm_rss(mm);
648 	for (i = 0; i < NR_MM_COUNTERS; i++)
649 		if (rss[i])
650 			add_mm_counter(mm, i, rss[i]);
651 }
652 
653 /*
654  * This function is called to print an error when a bad pte
655  * is found. For example, we might have a PFN-mapped pte in
656  * a region that doesn't allow it.
657  *
658  * The calling function must still handle the error.
659  */
660 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
661 			  pte_t pte, struct page *page)
662 {
663 	pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
664 	pud_t *pud = pud_offset(pgd, addr);
665 	pmd_t *pmd = pmd_offset(pud, addr);
666 	struct address_space *mapping;
667 	pgoff_t index;
668 	static unsigned long resume;
669 	static unsigned long nr_shown;
670 	static unsigned long nr_unshown;
671 
672 	/*
673 	 * Allow a burst of 60 reports, then keep quiet for that minute;
674 	 * or allow a steady drip of one report per second.
675 	 */
676 	if (nr_shown == 60) {
677 		if (time_before(jiffies, resume)) {
678 			nr_unshown++;
679 			return;
680 		}
681 		if (nr_unshown) {
682 			printk(KERN_ALERT
683 				"BUG: Bad page map: %lu messages suppressed\n",
684 				nr_unshown);
685 			nr_unshown = 0;
686 		}
687 		nr_shown = 0;
688 	}
689 	if (nr_shown++ == 0)
690 		resume = jiffies + 60 * HZ;
691 
692 	mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
693 	index = linear_page_index(vma, addr);
694 
695 	printk(KERN_ALERT
696 		"BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
697 		current->comm,
698 		(long long)pte_val(pte), (long long)pmd_val(*pmd));
699 	if (page)
700 		dump_page(page);
701 	printk(KERN_ALERT
702 		"addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
703 		(void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
704 	/*
705 	 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
706 	 */
707 	if (vma->vm_ops)
708 		print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
709 				(unsigned long)vma->vm_ops->fault);
710 	if (vma->vm_file && vma->vm_file->f_op)
711 		print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
712 				(unsigned long)vma->vm_file->f_op->mmap);
713 	dump_stack();
714 	add_taint(TAINT_BAD_PAGE);
715 }
716 
717 static inline bool is_cow_mapping(vm_flags_t flags)
718 {
719 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
720 }
721 
722 /*
723  * vm_normal_page -- This function gets the "struct page" associated with a pte.
724  *
725  * "Special" mappings do not wish to be associated with a "struct page" (either
726  * it doesn't exist, or it exists but they don't want to touch it). In this
727  * case, NULL is returned here. "Normal" mappings do have a struct page.
728  *
729  * There are 2 broad cases. Firstly, an architecture may define a pte_special()
730  * pte bit, in which case this function is trivial. Secondly, an architecture
731  * may not have a spare pte bit, which requires a more complicated scheme,
732  * described below.
733  *
734  * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
735  * special mapping (even if there are underlying and valid "struct pages").
736  * COWed pages of a VM_PFNMAP are always normal.
737  *
738  * The way we recognize COWed pages within VM_PFNMAP mappings is through the
739  * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
740  * set, and the vm_pgoff will point to the first PFN mapped: thus every special
741  * mapping will always honor the rule
742  *
743  *	pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
744  *
745  * And for normal mappings this is false.
746  *
747  * This restricts such mappings to be a linear translation from virtual address
748  * to pfn. To get around this restriction, we allow arbitrary mappings so long
749  * as the vma is not a COW mapping; in that case, we know that all ptes are
750  * special (because none can have been COWed).
751  *
752  *
753  * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
754  *
755  * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
756  * page" backing, however the difference is that _all_ pages with a struct
757  * page (that is, those where pfn_valid is true) are refcounted and considered
758  * normal pages by the VM. The disadvantage is that pages are refcounted
759  * (which can be slower and simply not an option for some PFNMAP users). The
760  * advantage is that we don't have to follow the strict linearity rule of
761  * PFNMAP mappings in order to support COWable mappings.
762  *
763  */
764 #ifdef __HAVE_ARCH_PTE_SPECIAL
765 # define HAVE_PTE_SPECIAL 1
766 #else
767 # define HAVE_PTE_SPECIAL 0
768 #endif
769 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
770 				pte_t pte)
771 {
772 	unsigned long pfn = pte_pfn(pte);
773 
774 	if (HAVE_PTE_SPECIAL) {
775 		if (likely(!pte_special(pte)))
776 			goto check_pfn;
777 		if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
778 			return NULL;
779 		if (!is_zero_pfn(pfn))
780 			print_bad_pte(vma, addr, pte, NULL);
781 		return NULL;
782 	}
783 
784 	/* !HAVE_PTE_SPECIAL case follows: */
785 
786 	if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
787 		if (vma->vm_flags & VM_MIXEDMAP) {
788 			if (!pfn_valid(pfn))
789 				return NULL;
790 			goto out;
791 		} else {
792 			unsigned long off;
793 			off = (addr - vma->vm_start) >> PAGE_SHIFT;
794 			if (pfn == vma->vm_pgoff + off)
795 				return NULL;
796 			if (!is_cow_mapping(vma->vm_flags))
797 				return NULL;
798 		}
799 	}
800 
801 	if (is_zero_pfn(pfn))
802 		return NULL;
803 check_pfn:
804 	if (unlikely(pfn > highest_memmap_pfn)) {
805 		print_bad_pte(vma, addr, pte, NULL);
806 		return NULL;
807 	}
808 
809 	/*
810 	 * NOTE! We still have PageReserved() pages in the page tables.
811 	 * eg. VDSO mappings can cause them to exist.
812 	 */
813 out:
814 	return pfn_to_page(pfn);
815 }
816 
817 /*
818  * copy one vm_area from one task to the other. Assumes the page tables
819  * already present in the new task to be cleared in the whole range
820  * covered by this vma.
821  */
822 
823 static inline unsigned long
824 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
825 		pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
826 		unsigned long addr, int *rss)
827 {
828 	unsigned long vm_flags = vma->vm_flags;
829 	pte_t pte = *src_pte;
830 	struct page *page;
831 
832 	/* pte contains position in swap or file, so copy. */
833 	if (unlikely(!pte_present(pte))) {
834 		if (!pte_file(pte)) {
835 			swp_entry_t entry = pte_to_swp_entry(pte);
836 
837 			if (swap_duplicate(entry) < 0)
838 				return entry.val;
839 
840 			/* make sure dst_mm is on swapoff's mmlist. */
841 			if (unlikely(list_empty(&dst_mm->mmlist))) {
842 				spin_lock(&mmlist_lock);
843 				if (list_empty(&dst_mm->mmlist))
844 					list_add(&dst_mm->mmlist,
845 						 &src_mm->mmlist);
846 				spin_unlock(&mmlist_lock);
847 			}
848 			if (likely(!non_swap_entry(entry)))
849 				rss[MM_SWAPENTS]++;
850 			else if (is_migration_entry(entry)) {
851 				page = migration_entry_to_page(entry);
852 
853 				if (PageAnon(page))
854 					rss[MM_ANONPAGES]++;
855 				else
856 					rss[MM_FILEPAGES]++;
857 
858 				if (is_write_migration_entry(entry) &&
859 				    is_cow_mapping(vm_flags)) {
860 					/*
861 					 * COW mappings require pages in both
862 					 * parent and child to be set to read.
863 					 */
864 					make_migration_entry_read(&entry);
865 					pte = swp_entry_to_pte(entry);
866 					set_pte_at(src_mm, addr, src_pte, pte);
867 				}
868 			}
869 		}
870 		goto out_set_pte;
871 	}
872 
873 	/*
874 	 * If it's a COW mapping, write protect it both
875 	 * in the parent and the child
876 	 */
877 	if (is_cow_mapping(vm_flags)) {
878 		ptep_set_wrprotect(src_mm, addr, src_pte);
879 		pte = pte_wrprotect(pte);
880 	}
881 
882 	/*
883 	 * If it's a shared mapping, mark it clean in
884 	 * the child
885 	 */
886 	if (vm_flags & VM_SHARED)
887 		pte = pte_mkclean(pte);
888 	pte = pte_mkold(pte);
889 
890 	page = vm_normal_page(vma, addr, pte);
891 	if (page) {
892 		get_page(page);
893 		page_dup_rmap(page);
894 		if (PageAnon(page))
895 			rss[MM_ANONPAGES]++;
896 		else
897 			rss[MM_FILEPAGES]++;
898 	}
899 
900 out_set_pte:
901 	set_pte_at(dst_mm, addr, dst_pte, pte);
902 	return 0;
903 }
904 
905 int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
906 		   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
907 		   unsigned long addr, unsigned long end)
908 {
909 	pte_t *orig_src_pte, *orig_dst_pte;
910 	pte_t *src_pte, *dst_pte;
911 	spinlock_t *src_ptl, *dst_ptl;
912 	int progress = 0;
913 	int rss[NR_MM_COUNTERS];
914 	swp_entry_t entry = (swp_entry_t){0};
915 
916 again:
917 	init_rss_vec(rss);
918 
919 	dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
920 	if (!dst_pte)
921 		return -ENOMEM;
922 	src_pte = pte_offset_map(src_pmd, addr);
923 	src_ptl = pte_lockptr(src_mm, src_pmd);
924 	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
925 	orig_src_pte = src_pte;
926 	orig_dst_pte = dst_pte;
927 	arch_enter_lazy_mmu_mode();
928 
929 	do {
930 		/*
931 		 * We are holding two locks at this point - either of them
932 		 * could generate latencies in another task on another CPU.
933 		 */
934 		if (progress >= 32) {
935 			progress = 0;
936 			if (need_resched() ||
937 			    spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
938 				break;
939 		}
940 		if (pte_none(*src_pte)) {
941 			progress++;
942 			continue;
943 		}
944 		entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
945 							vma, addr, rss);
946 		if (entry.val)
947 			break;
948 		progress += 8;
949 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
950 
951 	arch_leave_lazy_mmu_mode();
952 	spin_unlock(src_ptl);
953 	pte_unmap(orig_src_pte);
954 	add_mm_rss_vec(dst_mm, rss);
955 	pte_unmap_unlock(orig_dst_pte, dst_ptl);
956 	cond_resched();
957 
958 	if (entry.val) {
959 		if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
960 			return -ENOMEM;
961 		progress = 0;
962 	}
963 	if (addr != end)
964 		goto again;
965 	return 0;
966 }
967 
968 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
969 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
970 		unsigned long addr, unsigned long end)
971 {
972 	pmd_t *src_pmd, *dst_pmd;
973 	unsigned long next;
974 
975 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
976 	if (!dst_pmd)
977 		return -ENOMEM;
978 	src_pmd = pmd_offset(src_pud, addr);
979 	do {
980 		next = pmd_addr_end(addr, end);
981 		if (pmd_trans_huge(*src_pmd)) {
982 			int err;
983 			VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
984 			err = copy_huge_pmd(dst_mm, src_mm,
985 					    dst_pmd, src_pmd, addr, vma);
986 			if (err == -ENOMEM)
987 				return -ENOMEM;
988 			if (!err)
989 				continue;
990 			/* fall through */
991 		}
992 		if (pmd_none_or_clear_bad(src_pmd))
993 			continue;
994 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
995 						vma, addr, next))
996 			return -ENOMEM;
997 	} while (dst_pmd++, src_pmd++, addr = next, addr != end);
998 	return 0;
999 }
1000 
1001 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1002 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1003 		unsigned long addr, unsigned long end)
1004 {
1005 	pud_t *src_pud, *dst_pud;
1006 	unsigned long next;
1007 
1008 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
1009 	if (!dst_pud)
1010 		return -ENOMEM;
1011 	src_pud = pud_offset(src_pgd, addr);
1012 	do {
1013 		next = pud_addr_end(addr, end);
1014 		if (pud_none_or_clear_bad(src_pud))
1015 			continue;
1016 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1017 						vma, addr, next))
1018 			return -ENOMEM;
1019 	} while (dst_pud++, src_pud++, addr = next, addr != end);
1020 	return 0;
1021 }
1022 
1023 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1024 		struct vm_area_struct *vma)
1025 {
1026 	pgd_t *src_pgd, *dst_pgd;
1027 	unsigned long next;
1028 	unsigned long addr = vma->vm_start;
1029 	unsigned long end = vma->vm_end;
1030 	unsigned long mmun_start;	/* For mmu_notifiers */
1031 	unsigned long mmun_end;		/* For mmu_notifiers */
1032 	bool is_cow;
1033 	int ret;
1034 
1035 	/*
1036 	 * Don't copy ptes where a page fault will fill them correctly.
1037 	 * Fork becomes much lighter when there are big shared or private
1038 	 * readonly mappings. The tradeoff is that copy_page_range is more
1039 	 * efficient than faulting.
1040 	 */
1041 	if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1042 			       VM_PFNMAP | VM_MIXEDMAP))) {
1043 		if (!vma->anon_vma)
1044 			return 0;
1045 	}
1046 
1047 	if (is_vm_hugetlb_page(vma))
1048 		return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1049 
1050 	if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1051 		/*
1052 		 * We do not free on error cases below as remove_vma
1053 		 * gets called on error from higher level routine
1054 		 */
1055 		ret = track_pfn_copy(vma);
1056 		if (ret)
1057 			return ret;
1058 	}
1059 
1060 	/*
1061 	 * We need to invalidate the secondary MMU mappings only when
1062 	 * there could be a permission downgrade on the ptes of the
1063 	 * parent mm. And a permission downgrade will only happen if
1064 	 * is_cow_mapping() returns true.
1065 	 */
1066 	is_cow = is_cow_mapping(vma->vm_flags);
1067 	mmun_start = addr;
1068 	mmun_end   = end;
1069 	if (is_cow)
1070 		mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1071 						    mmun_end);
1072 
1073 	ret = 0;
1074 	dst_pgd = pgd_offset(dst_mm, addr);
1075 	src_pgd = pgd_offset(src_mm, addr);
1076 	do {
1077 		next = pgd_addr_end(addr, end);
1078 		if (pgd_none_or_clear_bad(src_pgd))
1079 			continue;
1080 		if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1081 					    vma, addr, next))) {
1082 			ret = -ENOMEM;
1083 			break;
1084 		}
1085 	} while (dst_pgd++, src_pgd++, addr = next, addr != end);
1086 
1087 	if (is_cow)
1088 		mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1089 	return ret;
1090 }
1091 
1092 static unsigned long zap_pte_range(struct mmu_gather *tlb,
1093 				struct vm_area_struct *vma, pmd_t *pmd,
1094 				unsigned long addr, unsigned long end,
1095 				struct zap_details *details)
1096 {
1097 	struct mm_struct *mm = tlb->mm;
1098 	int force_flush = 0;
1099 	int rss[NR_MM_COUNTERS];
1100 	spinlock_t *ptl;
1101 	pte_t *start_pte;
1102 	pte_t *pte;
1103 
1104 again:
1105 	init_rss_vec(rss);
1106 	start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1107 	pte = start_pte;
1108 	arch_enter_lazy_mmu_mode();
1109 	do {
1110 		pte_t ptent = *pte;
1111 		if (pte_none(ptent)) {
1112 			continue;
1113 		}
1114 
1115 		if (pte_present(ptent)) {
1116 			struct page *page;
1117 
1118 			page = vm_normal_page(vma, addr, ptent);
1119 			if (unlikely(details) && page) {
1120 				/*
1121 				 * unmap_shared_mapping_pages() wants to
1122 				 * invalidate cache without truncating:
1123 				 * unmap shared but keep private pages.
1124 				 */
1125 				if (details->check_mapping &&
1126 				    details->check_mapping != page->mapping)
1127 					continue;
1128 				/*
1129 				 * Each page->index must be checked when
1130 				 * invalidating or truncating nonlinear.
1131 				 */
1132 				if (details->nonlinear_vma &&
1133 				    (page->index < details->first_index ||
1134 				     page->index > details->last_index))
1135 					continue;
1136 			}
1137 			ptent = ptep_get_and_clear_full(mm, addr, pte,
1138 							tlb->fullmm);
1139 			tlb_remove_tlb_entry(tlb, pte, addr);
1140 			if (unlikely(!page))
1141 				continue;
1142 			if (unlikely(details) && details->nonlinear_vma
1143 			    && linear_page_index(details->nonlinear_vma,
1144 						addr) != page->index)
1145 				set_pte_at(mm, addr, pte,
1146 					   pgoff_to_pte(page->index));
1147 			if (PageAnon(page))
1148 				rss[MM_ANONPAGES]--;
1149 			else {
1150 				if (pte_dirty(ptent))
1151 					set_page_dirty(page);
1152 				if (pte_young(ptent) &&
1153 				    likely(!VM_SequentialReadHint(vma)))
1154 					mark_page_accessed(page);
1155 				rss[MM_FILEPAGES]--;
1156 			}
1157 			page_remove_rmap(page);
1158 			if (unlikely(page_mapcount(page) < 0))
1159 				print_bad_pte(vma, addr, ptent, page);
1160 			force_flush = !__tlb_remove_page(tlb, page);
1161 			if (force_flush)
1162 				break;
1163 			continue;
1164 		}
1165 		/*
1166 		 * If details->check_mapping, we leave swap entries;
1167 		 * if details->nonlinear_vma, we leave file entries.
1168 		 */
1169 		if (unlikely(details))
1170 			continue;
1171 		if (pte_file(ptent)) {
1172 			if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1173 				print_bad_pte(vma, addr, ptent, NULL);
1174 		} else {
1175 			swp_entry_t entry = pte_to_swp_entry(ptent);
1176 
1177 			if (!non_swap_entry(entry))
1178 				rss[MM_SWAPENTS]--;
1179 			else if (is_migration_entry(entry)) {
1180 				struct page *page;
1181 
1182 				page = migration_entry_to_page(entry);
1183 
1184 				if (PageAnon(page))
1185 					rss[MM_ANONPAGES]--;
1186 				else
1187 					rss[MM_FILEPAGES]--;
1188 			}
1189 			if (unlikely(!free_swap_and_cache(entry)))
1190 				print_bad_pte(vma, addr, ptent, NULL);
1191 		}
1192 		pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1193 	} while (pte++, addr += PAGE_SIZE, addr != end);
1194 
1195 	add_mm_rss_vec(mm, rss);
1196 	arch_leave_lazy_mmu_mode();
1197 	pte_unmap_unlock(start_pte, ptl);
1198 
1199 	/*
1200 	 * mmu_gather ran out of room to batch pages, we break out of
1201 	 * the PTE lock to avoid doing the potential expensive TLB invalidate
1202 	 * and page-free while holding it.
1203 	 */
1204 	if (force_flush) {
1205 		force_flush = 0;
1206 
1207 #ifdef HAVE_GENERIC_MMU_GATHER
1208 		tlb->start = addr;
1209 		tlb->end = end;
1210 #endif
1211 		tlb_flush_mmu(tlb);
1212 		if (addr != end)
1213 			goto again;
1214 	}
1215 
1216 	return addr;
1217 }
1218 
1219 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1220 				struct vm_area_struct *vma, pud_t *pud,
1221 				unsigned long addr, unsigned long end,
1222 				struct zap_details *details)
1223 {
1224 	pmd_t *pmd;
1225 	unsigned long next;
1226 
1227 	pmd = pmd_offset(pud, addr);
1228 	do {
1229 		next = pmd_addr_end(addr, end);
1230 		if (pmd_trans_huge(*pmd)) {
1231 			if (next - addr != HPAGE_PMD_SIZE) {
1232 #ifdef CONFIG_DEBUG_VM
1233 				if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1234 					pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1235 						__func__, addr, end,
1236 						vma->vm_start,
1237 						vma->vm_end);
1238 					BUG();
1239 				}
1240 #endif
1241 				split_huge_page_pmd(vma, addr, pmd);
1242 			} else if (zap_huge_pmd(tlb, vma, pmd, addr))
1243 				goto next;
1244 			/* fall through */
1245 		}
1246 		/*
1247 		 * Here there can be other concurrent MADV_DONTNEED or
1248 		 * trans huge page faults running, and if the pmd is
1249 		 * none or trans huge it can change under us. This is
1250 		 * because MADV_DONTNEED holds the mmap_sem in read
1251 		 * mode.
1252 		 */
1253 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1254 			goto next;
1255 		next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1256 next:
1257 		cond_resched();
1258 	} while (pmd++, addr = next, addr != end);
1259 
1260 	return addr;
1261 }
1262 
1263 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1264 				struct vm_area_struct *vma, pgd_t *pgd,
1265 				unsigned long addr, unsigned long end,
1266 				struct zap_details *details)
1267 {
1268 	pud_t *pud;
1269 	unsigned long next;
1270 
1271 	pud = pud_offset(pgd, addr);
1272 	do {
1273 		next = pud_addr_end(addr, end);
1274 		if (pud_none_or_clear_bad(pud))
1275 			continue;
1276 		next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1277 	} while (pud++, addr = next, addr != end);
1278 
1279 	return addr;
1280 }
1281 
1282 static void unmap_page_range(struct mmu_gather *tlb,
1283 			     struct vm_area_struct *vma,
1284 			     unsigned long addr, unsigned long end,
1285 			     struct zap_details *details)
1286 {
1287 	pgd_t *pgd;
1288 	unsigned long next;
1289 
1290 	if (details && !details->check_mapping && !details->nonlinear_vma)
1291 		details = NULL;
1292 
1293 	BUG_ON(addr >= end);
1294 	mem_cgroup_uncharge_start();
1295 	tlb_start_vma(tlb, vma);
1296 	pgd = pgd_offset(vma->vm_mm, addr);
1297 	do {
1298 		next = pgd_addr_end(addr, end);
1299 		if (pgd_none_or_clear_bad(pgd))
1300 			continue;
1301 		next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1302 	} while (pgd++, addr = next, addr != end);
1303 	tlb_end_vma(tlb, vma);
1304 	mem_cgroup_uncharge_end();
1305 }
1306 
1307 
1308 static void unmap_single_vma(struct mmu_gather *tlb,
1309 		struct vm_area_struct *vma, unsigned long start_addr,
1310 		unsigned long end_addr,
1311 		struct zap_details *details)
1312 {
1313 	unsigned long start = max(vma->vm_start, start_addr);
1314 	unsigned long end;
1315 
1316 	if (start >= vma->vm_end)
1317 		return;
1318 	end = min(vma->vm_end, end_addr);
1319 	if (end <= vma->vm_start)
1320 		return;
1321 
1322 	if (vma->vm_file)
1323 		uprobe_munmap(vma, start, end);
1324 
1325 	if (unlikely(vma->vm_flags & VM_PFNMAP))
1326 		untrack_pfn(vma, 0, 0);
1327 
1328 	if (start != end) {
1329 		if (unlikely(is_vm_hugetlb_page(vma))) {
1330 			/*
1331 			 * It is undesirable to test vma->vm_file as it
1332 			 * should be non-null for valid hugetlb area.
1333 			 * However, vm_file will be NULL in the error
1334 			 * cleanup path of do_mmap_pgoff. When
1335 			 * hugetlbfs ->mmap method fails,
1336 			 * do_mmap_pgoff() nullifies vma->vm_file
1337 			 * before calling this function to clean up.
1338 			 * Since no pte has actually been setup, it is
1339 			 * safe to do nothing in this case.
1340 			 */
1341 			if (vma->vm_file) {
1342 				mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
1343 				__unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1344 				mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1345 			}
1346 		} else
1347 			unmap_page_range(tlb, vma, start, end, details);
1348 	}
1349 }
1350 
1351 /**
1352  * unmap_vmas - unmap a range of memory covered by a list of vma's
1353  * @tlb: address of the caller's struct mmu_gather
1354  * @vma: the starting vma
1355  * @start_addr: virtual address at which to start unmapping
1356  * @end_addr: virtual address at which to end unmapping
1357  *
1358  * Unmap all pages in the vma list.
1359  *
1360  * Only addresses between `start' and `end' will be unmapped.
1361  *
1362  * The VMA list must be sorted in ascending virtual address order.
1363  *
1364  * unmap_vmas() assumes that the caller will flush the whole unmapped address
1365  * range after unmap_vmas() returns.  So the only responsibility here is to
1366  * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1367  * drops the lock and schedules.
1368  */
1369 void unmap_vmas(struct mmu_gather *tlb,
1370 		struct vm_area_struct *vma, unsigned long start_addr,
1371 		unsigned long end_addr)
1372 {
1373 	struct mm_struct *mm = vma->vm_mm;
1374 
1375 	mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1376 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1377 		unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1378 	mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1379 }
1380 
1381 /**
1382  * zap_page_range - remove user pages in a given range
1383  * @vma: vm_area_struct holding the applicable pages
1384  * @start: starting address of pages to zap
1385  * @size: number of bytes to zap
1386  * @details: details of nonlinear truncation or shared cache invalidation
1387  *
1388  * Caller must protect the VMA list
1389  */
1390 void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1391 		unsigned long size, struct zap_details *details)
1392 {
1393 	struct mm_struct *mm = vma->vm_mm;
1394 	struct mmu_gather tlb;
1395 	unsigned long end = start + size;
1396 
1397 	lru_add_drain();
1398 	tlb_gather_mmu(&tlb, mm, 0);
1399 	update_hiwater_rss(mm);
1400 	mmu_notifier_invalidate_range_start(mm, start, end);
1401 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1402 		unmap_single_vma(&tlb, vma, start, end, details);
1403 	mmu_notifier_invalidate_range_end(mm, start, end);
1404 	tlb_finish_mmu(&tlb, start, end);
1405 }
1406 
1407 /**
1408  * zap_page_range_single - remove user pages in a given range
1409  * @vma: vm_area_struct holding the applicable pages
1410  * @address: starting address of pages to zap
1411  * @size: number of bytes to zap
1412  * @details: details of nonlinear truncation or shared cache invalidation
1413  *
1414  * The range must fit into one VMA.
1415  */
1416 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1417 		unsigned long size, struct zap_details *details)
1418 {
1419 	struct mm_struct *mm = vma->vm_mm;
1420 	struct mmu_gather tlb;
1421 	unsigned long end = address + size;
1422 
1423 	lru_add_drain();
1424 	tlb_gather_mmu(&tlb, mm, 0);
1425 	update_hiwater_rss(mm);
1426 	mmu_notifier_invalidate_range_start(mm, address, end);
1427 	unmap_single_vma(&tlb, vma, address, end, details);
1428 	mmu_notifier_invalidate_range_end(mm, address, end);
1429 	tlb_finish_mmu(&tlb, address, end);
1430 }
1431 
1432 /**
1433  * zap_vma_ptes - remove ptes mapping the vma
1434  * @vma: vm_area_struct holding ptes to be zapped
1435  * @address: starting address of pages to zap
1436  * @size: number of bytes to zap
1437  *
1438  * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1439  *
1440  * The entire address range must be fully contained within the vma.
1441  *
1442  * Returns 0 if successful.
1443  */
1444 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1445 		unsigned long size)
1446 {
1447 	if (address < vma->vm_start || address + size > vma->vm_end ||
1448 	    		!(vma->vm_flags & VM_PFNMAP))
1449 		return -1;
1450 	zap_page_range_single(vma, address, size, NULL);
1451 	return 0;
1452 }
1453 EXPORT_SYMBOL_GPL(zap_vma_ptes);
1454 
1455 /**
1456  * follow_page - look up a page descriptor from a user-virtual address
1457  * @vma: vm_area_struct mapping @address
1458  * @address: virtual address to look up
1459  * @flags: flags modifying lookup behaviour
1460  *
1461  * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1462  *
1463  * Returns the mapped (struct page *), %NULL if no mapping exists, or
1464  * an error pointer if there is a mapping to something not represented
1465  * by a page descriptor (see also vm_normal_page()).
1466  */
1467 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1468 			unsigned int flags)
1469 {
1470 	pgd_t *pgd;
1471 	pud_t *pud;
1472 	pmd_t *pmd;
1473 	pte_t *ptep, pte;
1474 	spinlock_t *ptl;
1475 	struct page *page;
1476 	struct mm_struct *mm = vma->vm_mm;
1477 
1478 	page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1479 	if (!IS_ERR(page)) {
1480 		BUG_ON(flags & FOLL_GET);
1481 		goto out;
1482 	}
1483 
1484 	page = NULL;
1485 	pgd = pgd_offset(mm, address);
1486 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
1487 		goto no_page_table;
1488 
1489 	pud = pud_offset(pgd, address);
1490 	if (pud_none(*pud))
1491 		goto no_page_table;
1492 	if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
1493 		BUG_ON(flags & FOLL_GET);
1494 		page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1495 		goto out;
1496 	}
1497 	if (unlikely(pud_bad(*pud)))
1498 		goto no_page_table;
1499 
1500 	pmd = pmd_offset(pud, address);
1501 	if (pmd_none(*pmd))
1502 		goto no_page_table;
1503 	if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
1504 		BUG_ON(flags & FOLL_GET);
1505 		page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1506 		goto out;
1507 	}
1508 	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1509 		goto no_page_table;
1510 	if (pmd_trans_huge(*pmd)) {
1511 		if (flags & FOLL_SPLIT) {
1512 			split_huge_page_pmd(vma, address, pmd);
1513 			goto split_fallthrough;
1514 		}
1515 		spin_lock(&mm->page_table_lock);
1516 		if (likely(pmd_trans_huge(*pmd))) {
1517 			if (unlikely(pmd_trans_splitting(*pmd))) {
1518 				spin_unlock(&mm->page_table_lock);
1519 				wait_split_huge_page(vma->anon_vma, pmd);
1520 			} else {
1521 				page = follow_trans_huge_pmd(vma, address,
1522 							     pmd, flags);
1523 				spin_unlock(&mm->page_table_lock);
1524 				goto out;
1525 			}
1526 		} else
1527 			spin_unlock(&mm->page_table_lock);
1528 		/* fall through */
1529 	}
1530 split_fallthrough:
1531 	if (unlikely(pmd_bad(*pmd)))
1532 		goto no_page_table;
1533 
1534 	ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1535 
1536 	pte = *ptep;
1537 	if (!pte_present(pte))
1538 		goto no_page;
1539 	if ((flags & FOLL_NUMA) && pte_numa(pte))
1540 		goto no_page;
1541 	if ((flags & FOLL_WRITE) && !pte_write(pte))
1542 		goto unlock;
1543 
1544 	page = vm_normal_page(vma, address, pte);
1545 	if (unlikely(!page)) {
1546 		if ((flags & FOLL_DUMP) ||
1547 		    !is_zero_pfn(pte_pfn(pte)))
1548 			goto bad_page;
1549 		page = pte_page(pte);
1550 	}
1551 
1552 	if (flags & FOLL_GET)
1553 		get_page_foll(page);
1554 	if (flags & FOLL_TOUCH) {
1555 		if ((flags & FOLL_WRITE) &&
1556 		    !pte_dirty(pte) && !PageDirty(page))
1557 			set_page_dirty(page);
1558 		/*
1559 		 * pte_mkyoung() would be more correct here, but atomic care
1560 		 * is needed to avoid losing the dirty bit: it is easier to use
1561 		 * mark_page_accessed().
1562 		 */
1563 		mark_page_accessed(page);
1564 	}
1565 	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1566 		/*
1567 		 * The preliminary mapping check is mainly to avoid the
1568 		 * pointless overhead of lock_page on the ZERO_PAGE
1569 		 * which might bounce very badly if there is contention.
1570 		 *
1571 		 * If the page is already locked, we don't need to
1572 		 * handle it now - vmscan will handle it later if and
1573 		 * when it attempts to reclaim the page.
1574 		 */
1575 		if (page->mapping && trylock_page(page)) {
1576 			lru_add_drain();  /* push cached pages to LRU */
1577 			/*
1578 			 * Because we lock page here, and migration is
1579 			 * blocked by the pte's page reference, and we
1580 			 * know the page is still mapped, we don't even
1581 			 * need to check for file-cache page truncation.
1582 			 */
1583 			mlock_vma_page(page);
1584 			unlock_page(page);
1585 		}
1586 	}
1587 unlock:
1588 	pte_unmap_unlock(ptep, ptl);
1589 out:
1590 	return page;
1591 
1592 bad_page:
1593 	pte_unmap_unlock(ptep, ptl);
1594 	return ERR_PTR(-EFAULT);
1595 
1596 no_page:
1597 	pte_unmap_unlock(ptep, ptl);
1598 	if (!pte_none(pte))
1599 		return page;
1600 
1601 no_page_table:
1602 	/*
1603 	 * When core dumping an enormous anonymous area that nobody
1604 	 * has touched so far, we don't want to allocate unnecessary pages or
1605 	 * page tables.  Return error instead of NULL to skip handle_mm_fault,
1606 	 * then get_dump_page() will return NULL to leave a hole in the dump.
1607 	 * But we can only make this optimization where a hole would surely
1608 	 * be zero-filled if handle_mm_fault() actually did handle it.
1609 	 */
1610 	if ((flags & FOLL_DUMP) &&
1611 	    (!vma->vm_ops || !vma->vm_ops->fault))
1612 		return ERR_PTR(-EFAULT);
1613 	return page;
1614 }
1615 
1616 static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
1617 {
1618 	return stack_guard_page_start(vma, addr) ||
1619 	       stack_guard_page_end(vma, addr+PAGE_SIZE);
1620 }
1621 
1622 /**
1623  * __get_user_pages() - pin user pages in memory
1624  * @tsk:	task_struct of target task
1625  * @mm:		mm_struct of target mm
1626  * @start:	starting user address
1627  * @nr_pages:	number of pages from start to pin
1628  * @gup_flags:	flags modifying pin behaviour
1629  * @pages:	array that receives pointers to the pages pinned.
1630  *		Should be at least nr_pages long. Or NULL, if caller
1631  *		only intends to ensure the pages are faulted in.
1632  * @vmas:	array of pointers to vmas corresponding to each page.
1633  *		Or NULL if the caller does not require them.
1634  * @nonblocking: whether waiting for disk IO or mmap_sem contention
1635  *
1636  * Returns number of pages pinned. This may be fewer than the number
1637  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1638  * were pinned, returns -errno. Each page returned must be released
1639  * with a put_page() call when it is finished with. vmas will only
1640  * remain valid while mmap_sem is held.
1641  *
1642  * Must be called with mmap_sem held for read or write.
1643  *
1644  * __get_user_pages walks a process's page tables and takes a reference to
1645  * each struct page that each user address corresponds to at a given
1646  * instant. That is, it takes the page that would be accessed if a user
1647  * thread accesses the given user virtual address at that instant.
1648  *
1649  * This does not guarantee that the page exists in the user mappings when
1650  * __get_user_pages returns, and there may even be a completely different
1651  * page there in some cases (eg. if mmapped pagecache has been invalidated
1652  * and subsequently re faulted). However it does guarantee that the page
1653  * won't be freed completely. And mostly callers simply care that the page
1654  * contains data that was valid *at some point in time*. Typically, an IO
1655  * or similar operation cannot guarantee anything stronger anyway because
1656  * locks can't be held over the syscall boundary.
1657  *
1658  * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1659  * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1660  * appropriate) must be called after the page is finished with, and
1661  * before put_page is called.
1662  *
1663  * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1664  * or mmap_sem contention, and if waiting is needed to pin all pages,
1665  * *@nonblocking will be set to 0.
1666  *
1667  * In most cases, get_user_pages or get_user_pages_fast should be used
1668  * instead of __get_user_pages. __get_user_pages should be used only if
1669  * you need some special @gup_flags.
1670  */
1671 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1672 		     unsigned long start, int nr_pages, unsigned int gup_flags,
1673 		     struct page **pages, struct vm_area_struct **vmas,
1674 		     int *nonblocking)
1675 {
1676 	int i;
1677 	unsigned long vm_flags;
1678 
1679 	if (nr_pages <= 0)
1680 		return 0;
1681 
1682 	VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
1683 
1684 	/*
1685 	 * Require read or write permissions.
1686 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
1687 	 */
1688 	vm_flags  = (gup_flags & FOLL_WRITE) ?
1689 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1690 	vm_flags &= (gup_flags & FOLL_FORCE) ?
1691 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1692 
1693 	/*
1694 	 * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
1695 	 * would be called on PROT_NONE ranges. We must never invoke
1696 	 * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
1697 	 * page faults would unprotect the PROT_NONE ranges if
1698 	 * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
1699 	 * bitflag. So to avoid that, don't set FOLL_NUMA if
1700 	 * FOLL_FORCE is set.
1701 	 */
1702 	if (!(gup_flags & FOLL_FORCE))
1703 		gup_flags |= FOLL_NUMA;
1704 
1705 	i = 0;
1706 
1707 	do {
1708 		struct vm_area_struct *vma;
1709 
1710 		vma = find_extend_vma(mm, start);
1711 		if (!vma && in_gate_area(mm, start)) {
1712 			unsigned long pg = start & PAGE_MASK;
1713 			pgd_t *pgd;
1714 			pud_t *pud;
1715 			pmd_t *pmd;
1716 			pte_t *pte;
1717 
1718 			/* user gate pages are read-only */
1719 			if (gup_flags & FOLL_WRITE)
1720 				return i ? : -EFAULT;
1721 			if (pg > TASK_SIZE)
1722 				pgd = pgd_offset_k(pg);
1723 			else
1724 				pgd = pgd_offset_gate(mm, pg);
1725 			BUG_ON(pgd_none(*pgd));
1726 			pud = pud_offset(pgd, pg);
1727 			BUG_ON(pud_none(*pud));
1728 			pmd = pmd_offset(pud, pg);
1729 			if (pmd_none(*pmd))
1730 				return i ? : -EFAULT;
1731 			VM_BUG_ON(pmd_trans_huge(*pmd));
1732 			pte = pte_offset_map(pmd, pg);
1733 			if (pte_none(*pte)) {
1734 				pte_unmap(pte);
1735 				return i ? : -EFAULT;
1736 			}
1737 			vma = get_gate_vma(mm);
1738 			if (pages) {
1739 				struct page *page;
1740 
1741 				page = vm_normal_page(vma, start, *pte);
1742 				if (!page) {
1743 					if (!(gup_flags & FOLL_DUMP) &&
1744 					     is_zero_pfn(pte_pfn(*pte)))
1745 						page = pte_page(*pte);
1746 					else {
1747 						pte_unmap(pte);
1748 						return i ? : -EFAULT;
1749 					}
1750 				}
1751 				pages[i] = page;
1752 				get_page(page);
1753 			}
1754 			pte_unmap(pte);
1755 			goto next_page;
1756 		}
1757 
1758 		if (!vma ||
1759 		    (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1760 		    !(vm_flags & vma->vm_flags))
1761 			return i ? : -EFAULT;
1762 
1763 		if (is_vm_hugetlb_page(vma)) {
1764 			i = follow_hugetlb_page(mm, vma, pages, vmas,
1765 					&start, &nr_pages, i, gup_flags);
1766 			continue;
1767 		}
1768 
1769 		do {
1770 			struct page *page;
1771 			unsigned int foll_flags = gup_flags;
1772 
1773 			/*
1774 			 * If we have a pending SIGKILL, don't keep faulting
1775 			 * pages and potentially allocating memory.
1776 			 */
1777 			if (unlikely(fatal_signal_pending(current)))
1778 				return i ? i : -ERESTARTSYS;
1779 
1780 			cond_resched();
1781 			while (!(page = follow_page(vma, start, foll_flags))) {
1782 				int ret;
1783 				unsigned int fault_flags = 0;
1784 
1785 				/* For mlock, just skip the stack guard page. */
1786 				if (foll_flags & FOLL_MLOCK) {
1787 					if (stack_guard_page(vma, start))
1788 						goto next_page;
1789 				}
1790 				if (foll_flags & FOLL_WRITE)
1791 					fault_flags |= FAULT_FLAG_WRITE;
1792 				if (nonblocking)
1793 					fault_flags |= FAULT_FLAG_ALLOW_RETRY;
1794 				if (foll_flags & FOLL_NOWAIT)
1795 					fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
1796 
1797 				ret = handle_mm_fault(mm, vma, start,
1798 							fault_flags);
1799 
1800 				if (ret & VM_FAULT_ERROR) {
1801 					if (ret & VM_FAULT_OOM)
1802 						return i ? i : -ENOMEM;
1803 					if (ret & (VM_FAULT_HWPOISON |
1804 						   VM_FAULT_HWPOISON_LARGE)) {
1805 						if (i)
1806 							return i;
1807 						else if (gup_flags & FOLL_HWPOISON)
1808 							return -EHWPOISON;
1809 						else
1810 							return -EFAULT;
1811 					}
1812 					if (ret & VM_FAULT_SIGBUS)
1813 						return i ? i : -EFAULT;
1814 					BUG();
1815 				}
1816 
1817 				if (tsk) {
1818 					if (ret & VM_FAULT_MAJOR)
1819 						tsk->maj_flt++;
1820 					else
1821 						tsk->min_flt++;
1822 				}
1823 
1824 				if (ret & VM_FAULT_RETRY) {
1825 					if (nonblocking)
1826 						*nonblocking = 0;
1827 					return i;
1828 				}
1829 
1830 				/*
1831 				 * The VM_FAULT_WRITE bit tells us that
1832 				 * do_wp_page has broken COW when necessary,
1833 				 * even if maybe_mkwrite decided not to set
1834 				 * pte_write. We can thus safely do subsequent
1835 				 * page lookups as if they were reads. But only
1836 				 * do so when looping for pte_write is futile:
1837 				 * in some cases userspace may also be wanting
1838 				 * to write to the gotten user page, which a
1839 				 * read fault here might prevent (a readonly
1840 				 * page might get reCOWed by userspace write).
1841 				 */
1842 				if ((ret & VM_FAULT_WRITE) &&
1843 				    !(vma->vm_flags & VM_WRITE))
1844 					foll_flags &= ~FOLL_WRITE;
1845 
1846 				cond_resched();
1847 			}
1848 			if (IS_ERR(page))
1849 				return i ? i : PTR_ERR(page);
1850 			if (pages) {
1851 				pages[i] = page;
1852 
1853 				flush_anon_page(vma, page, start);
1854 				flush_dcache_page(page);
1855 			}
1856 next_page:
1857 			if (vmas)
1858 				vmas[i] = vma;
1859 			i++;
1860 			start += PAGE_SIZE;
1861 			nr_pages--;
1862 		} while (nr_pages && start < vma->vm_end);
1863 	} while (nr_pages);
1864 	return i;
1865 }
1866 EXPORT_SYMBOL(__get_user_pages);
1867 
1868 /*
1869  * fixup_user_fault() - manually resolve a user page fault
1870  * @tsk:	the task_struct to use for page fault accounting, or
1871  *		NULL if faults are not to be recorded.
1872  * @mm:		mm_struct of target mm
1873  * @address:	user address
1874  * @fault_flags:flags to pass down to handle_mm_fault()
1875  *
1876  * This is meant to be called in the specific scenario where for locking reasons
1877  * we try to access user memory in atomic context (within a pagefault_disable()
1878  * section), this returns -EFAULT, and we want to resolve the user fault before
1879  * trying again.
1880  *
1881  * Typically this is meant to be used by the futex code.
1882  *
1883  * The main difference with get_user_pages() is that this function will
1884  * unconditionally call handle_mm_fault() which will in turn perform all the
1885  * necessary SW fixup of the dirty and young bits in the PTE, while
1886  * handle_mm_fault() only guarantees to update these in the struct page.
1887  *
1888  * This is important for some architectures where those bits also gate the
1889  * access permission to the page because they are maintained in software.  On
1890  * such architectures, gup() will not be enough to make a subsequent access
1891  * succeed.
1892  *
1893  * This should be called with the mm_sem held for read.
1894  */
1895 int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1896 		     unsigned long address, unsigned int fault_flags)
1897 {
1898 	struct vm_area_struct *vma;
1899 	int ret;
1900 
1901 	vma = find_extend_vma(mm, address);
1902 	if (!vma || address < vma->vm_start)
1903 		return -EFAULT;
1904 
1905 	ret = handle_mm_fault(mm, vma, address, fault_flags);
1906 	if (ret & VM_FAULT_ERROR) {
1907 		if (ret & VM_FAULT_OOM)
1908 			return -ENOMEM;
1909 		if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
1910 			return -EHWPOISON;
1911 		if (ret & VM_FAULT_SIGBUS)
1912 			return -EFAULT;
1913 		BUG();
1914 	}
1915 	if (tsk) {
1916 		if (ret & VM_FAULT_MAJOR)
1917 			tsk->maj_flt++;
1918 		else
1919 			tsk->min_flt++;
1920 	}
1921 	return 0;
1922 }
1923 
1924 /*
1925  * get_user_pages() - pin user pages in memory
1926  * @tsk:	the task_struct to use for page fault accounting, or
1927  *		NULL if faults are not to be recorded.
1928  * @mm:		mm_struct of target mm
1929  * @start:	starting user address
1930  * @nr_pages:	number of pages from start to pin
1931  * @write:	whether pages will be written to by the caller
1932  * @force:	whether to force write access even if user mapping is
1933  *		readonly. This will result in the page being COWed even
1934  *		in MAP_SHARED mappings. You do not want this.
1935  * @pages:	array that receives pointers to the pages pinned.
1936  *		Should be at least nr_pages long. Or NULL, if caller
1937  *		only intends to ensure the pages are faulted in.
1938  * @vmas:	array of pointers to vmas corresponding to each page.
1939  *		Or NULL if the caller does not require them.
1940  *
1941  * Returns number of pages pinned. This may be fewer than the number
1942  * requested. If nr_pages is 0 or negative, returns 0. If no pages
1943  * were pinned, returns -errno. Each page returned must be released
1944  * with a put_page() call when it is finished with. vmas will only
1945  * remain valid while mmap_sem is held.
1946  *
1947  * Must be called with mmap_sem held for read or write.
1948  *
1949  * get_user_pages walks a process's page tables and takes a reference to
1950  * each struct page that each user address corresponds to at a given
1951  * instant. That is, it takes the page that would be accessed if a user
1952  * thread accesses the given user virtual address at that instant.
1953  *
1954  * This does not guarantee that the page exists in the user mappings when
1955  * get_user_pages returns, and there may even be a completely different
1956  * page there in some cases (eg. if mmapped pagecache has been invalidated
1957  * and subsequently re faulted). However it does guarantee that the page
1958  * won't be freed completely. And mostly callers simply care that the page
1959  * contains data that was valid *at some point in time*. Typically, an IO
1960  * or similar operation cannot guarantee anything stronger anyway because
1961  * locks can't be held over the syscall boundary.
1962  *
1963  * If write=0, the page must not be written to. If the page is written to,
1964  * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1965  * after the page is finished with, and before put_page is called.
1966  *
1967  * get_user_pages is typically used for fewer-copy IO operations, to get a
1968  * handle on the memory by some means other than accesses via the user virtual
1969  * addresses. The pages may be submitted for DMA to devices or accessed via
1970  * their kernel linear mapping (via the kmap APIs). Care should be taken to
1971  * use the correct cache flushing APIs.
1972  *
1973  * See also get_user_pages_fast, for performance critical applications.
1974  */
1975 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1976 		unsigned long start, int nr_pages, int write, int force,
1977 		struct page **pages, struct vm_area_struct **vmas)
1978 {
1979 	int flags = FOLL_TOUCH;
1980 
1981 	if (pages)
1982 		flags |= FOLL_GET;
1983 	if (write)
1984 		flags |= FOLL_WRITE;
1985 	if (force)
1986 		flags |= FOLL_FORCE;
1987 
1988 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
1989 				NULL);
1990 }
1991 EXPORT_SYMBOL(get_user_pages);
1992 
1993 /**
1994  * get_dump_page() - pin user page in memory while writing it to core dump
1995  * @addr: user address
1996  *
1997  * Returns struct page pointer of user page pinned for dump,
1998  * to be freed afterwards by page_cache_release() or put_page().
1999  *
2000  * Returns NULL on any kind of failure - a hole must then be inserted into
2001  * the corefile, to preserve alignment with its headers; and also returns
2002  * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
2003  * allowing a hole to be left in the corefile to save diskspace.
2004  *
2005  * Called without mmap_sem, but after all other threads have been killed.
2006  */
2007 #ifdef CONFIG_ELF_CORE
2008 struct page *get_dump_page(unsigned long addr)
2009 {
2010 	struct vm_area_struct *vma;
2011 	struct page *page;
2012 
2013 	if (__get_user_pages(current, current->mm, addr, 1,
2014 			     FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
2015 			     NULL) < 1)
2016 		return NULL;
2017 	flush_cache_page(vma, addr, page_to_pfn(page));
2018 	return page;
2019 }
2020 #endif /* CONFIG_ELF_CORE */
2021 
2022 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2023 			spinlock_t **ptl)
2024 {
2025 	pgd_t * pgd = pgd_offset(mm, addr);
2026 	pud_t * pud = pud_alloc(mm, pgd, addr);
2027 	if (pud) {
2028 		pmd_t * pmd = pmd_alloc(mm, pud, addr);
2029 		if (pmd) {
2030 			VM_BUG_ON(pmd_trans_huge(*pmd));
2031 			return pte_alloc_map_lock(mm, pmd, addr, ptl);
2032 		}
2033 	}
2034 	return NULL;
2035 }
2036 
2037 /*
2038  * This is the old fallback for page remapping.
2039  *
2040  * For historical reasons, it only allows reserved pages. Only
2041  * old drivers should use this, and they needed to mark their
2042  * pages reserved for the old functions anyway.
2043  */
2044 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
2045 			struct page *page, pgprot_t prot)
2046 {
2047 	struct mm_struct *mm = vma->vm_mm;
2048 	int retval;
2049 	pte_t *pte;
2050 	spinlock_t *ptl;
2051 
2052 	retval = -EINVAL;
2053 	if (PageAnon(page))
2054 		goto out;
2055 	retval = -ENOMEM;
2056 	flush_dcache_page(page);
2057 	pte = get_locked_pte(mm, addr, &ptl);
2058 	if (!pte)
2059 		goto out;
2060 	retval = -EBUSY;
2061 	if (!pte_none(*pte))
2062 		goto out_unlock;
2063 
2064 	/* Ok, finally just insert the thing.. */
2065 	get_page(page);
2066 	inc_mm_counter_fast(mm, MM_FILEPAGES);
2067 	page_add_file_rmap(page);
2068 	set_pte_at(mm, addr, pte, mk_pte(page, prot));
2069 
2070 	retval = 0;
2071 	pte_unmap_unlock(pte, ptl);
2072 	return retval;
2073 out_unlock:
2074 	pte_unmap_unlock(pte, ptl);
2075 out:
2076 	return retval;
2077 }
2078 
2079 /**
2080  * vm_insert_page - insert single page into user vma
2081  * @vma: user vma to map to
2082  * @addr: target user address of this page
2083  * @page: source kernel page
2084  *
2085  * This allows drivers to insert individual pages they've allocated
2086  * into a user vma.
2087  *
2088  * The page has to be a nice clean _individual_ kernel allocation.
2089  * If you allocate a compound page, you need to have marked it as
2090  * such (__GFP_COMP), or manually just split the page up yourself
2091  * (see split_page()).
2092  *
2093  * NOTE! Traditionally this was done with "remap_pfn_range()" which
2094  * took an arbitrary page protection parameter. This doesn't allow
2095  * that. Your vma protection will have to be set up correctly, which
2096  * means that if you want a shared writable mapping, you'd better
2097  * ask for a shared writable mapping!
2098  *
2099  * The page does not need to be reserved.
2100  *
2101  * Usually this function is called from f_op->mmap() handler
2102  * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
2103  * Caller must set VM_MIXEDMAP on vma if it wants to call this
2104  * function from other places, for example from page-fault handler.
2105  */
2106 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2107 			struct page *page)
2108 {
2109 	if (addr < vma->vm_start || addr >= vma->vm_end)
2110 		return -EFAULT;
2111 	if (!page_count(page))
2112 		return -EINVAL;
2113 	if (!(vma->vm_flags & VM_MIXEDMAP)) {
2114 		BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
2115 		BUG_ON(vma->vm_flags & VM_PFNMAP);
2116 		vma->vm_flags |= VM_MIXEDMAP;
2117 	}
2118 	return insert_page(vma, addr, page, vma->vm_page_prot);
2119 }
2120 EXPORT_SYMBOL(vm_insert_page);
2121 
2122 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2123 			unsigned long pfn, pgprot_t prot)
2124 {
2125 	struct mm_struct *mm = vma->vm_mm;
2126 	int retval;
2127 	pte_t *pte, entry;
2128 	spinlock_t *ptl;
2129 
2130 	retval = -ENOMEM;
2131 	pte = get_locked_pte(mm, addr, &ptl);
2132 	if (!pte)
2133 		goto out;
2134 	retval = -EBUSY;
2135 	if (!pte_none(*pte))
2136 		goto out_unlock;
2137 
2138 	/* Ok, finally just insert the thing.. */
2139 	entry = pte_mkspecial(pfn_pte(pfn, prot));
2140 	set_pte_at(mm, addr, pte, entry);
2141 	update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2142 
2143 	retval = 0;
2144 out_unlock:
2145 	pte_unmap_unlock(pte, ptl);
2146 out:
2147 	return retval;
2148 }
2149 
2150 /**
2151  * vm_insert_pfn - insert single pfn into user vma
2152  * @vma: user vma to map to
2153  * @addr: target user address of this page
2154  * @pfn: source kernel pfn
2155  *
2156  * Similar to vm_insert_page, this allows drivers to insert individual pages
2157  * they've allocated into a user vma. Same comments apply.
2158  *
2159  * This function should only be called from a vm_ops->fault handler, and
2160  * in that case the handler should return NULL.
2161  *
2162  * vma cannot be a COW mapping.
2163  *
2164  * As this is called only for pages that do not currently exist, we
2165  * do not need to flush old virtual caches or the TLB.
2166  */
2167 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2168 			unsigned long pfn)
2169 {
2170 	int ret;
2171 	pgprot_t pgprot = vma->vm_page_prot;
2172 	/*
2173 	 * Technically, architectures with pte_special can avoid all these
2174 	 * restrictions (same for remap_pfn_range).  However we would like
2175 	 * consistency in testing and feature parity among all, so we should
2176 	 * try to keep these invariants in place for everybody.
2177 	 */
2178 	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2179 	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2180 						(VM_PFNMAP|VM_MIXEDMAP));
2181 	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2182 	BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2183 
2184 	if (addr < vma->vm_start || addr >= vma->vm_end)
2185 		return -EFAULT;
2186 	if (track_pfn_insert(vma, &pgprot, pfn))
2187 		return -EINVAL;
2188 
2189 	ret = insert_pfn(vma, addr, pfn, pgprot);
2190 
2191 	return ret;
2192 }
2193 EXPORT_SYMBOL(vm_insert_pfn);
2194 
2195 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2196 			unsigned long pfn)
2197 {
2198 	BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
2199 
2200 	if (addr < vma->vm_start || addr >= vma->vm_end)
2201 		return -EFAULT;
2202 
2203 	/*
2204 	 * If we don't have pte special, then we have to use the pfn_valid()
2205 	 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2206 	 * refcount the page if pfn_valid is true (hence insert_page rather
2207 	 * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
2208 	 * without pte special, it would there be refcounted as a normal page.
2209 	 */
2210 	if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
2211 		struct page *page;
2212 
2213 		page = pfn_to_page(pfn);
2214 		return insert_page(vma, addr, page, vma->vm_page_prot);
2215 	}
2216 	return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
2217 }
2218 EXPORT_SYMBOL(vm_insert_mixed);
2219 
2220 /*
2221  * maps a range of physical memory into the requested pages. the old
2222  * mappings are removed. any references to nonexistent pages results
2223  * in null mappings (currently treated as "copy-on-access")
2224  */
2225 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2226 			unsigned long addr, unsigned long end,
2227 			unsigned long pfn, pgprot_t prot)
2228 {
2229 	pte_t *pte;
2230 	spinlock_t *ptl;
2231 
2232 	pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2233 	if (!pte)
2234 		return -ENOMEM;
2235 	arch_enter_lazy_mmu_mode();
2236 	do {
2237 		BUG_ON(!pte_none(*pte));
2238 		set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2239 		pfn++;
2240 	} while (pte++, addr += PAGE_SIZE, addr != end);
2241 	arch_leave_lazy_mmu_mode();
2242 	pte_unmap_unlock(pte - 1, ptl);
2243 	return 0;
2244 }
2245 
2246 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2247 			unsigned long addr, unsigned long end,
2248 			unsigned long pfn, pgprot_t prot)
2249 {
2250 	pmd_t *pmd;
2251 	unsigned long next;
2252 
2253 	pfn -= addr >> PAGE_SHIFT;
2254 	pmd = pmd_alloc(mm, pud, addr);
2255 	if (!pmd)
2256 		return -ENOMEM;
2257 	VM_BUG_ON(pmd_trans_huge(*pmd));
2258 	do {
2259 		next = pmd_addr_end(addr, end);
2260 		if (remap_pte_range(mm, pmd, addr, next,
2261 				pfn + (addr >> PAGE_SHIFT), prot))
2262 			return -ENOMEM;
2263 	} while (pmd++, addr = next, addr != end);
2264 	return 0;
2265 }
2266 
2267 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
2268 			unsigned long addr, unsigned long end,
2269 			unsigned long pfn, pgprot_t prot)
2270 {
2271 	pud_t *pud;
2272 	unsigned long next;
2273 
2274 	pfn -= addr >> PAGE_SHIFT;
2275 	pud = pud_alloc(mm, pgd, addr);
2276 	if (!pud)
2277 		return -ENOMEM;
2278 	do {
2279 		next = pud_addr_end(addr, end);
2280 		if (remap_pmd_range(mm, pud, addr, next,
2281 				pfn + (addr >> PAGE_SHIFT), prot))
2282 			return -ENOMEM;
2283 	} while (pud++, addr = next, addr != end);
2284 	return 0;
2285 }
2286 
2287 /**
2288  * remap_pfn_range - remap kernel memory to userspace
2289  * @vma: user vma to map to
2290  * @addr: target user address to start at
2291  * @pfn: physical address of kernel memory
2292  * @size: size of map area
2293  * @prot: page protection flags for this mapping
2294  *
2295  *  Note: this is only safe if the mm semaphore is held when called.
2296  */
2297 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2298 		    unsigned long pfn, unsigned long size, pgprot_t prot)
2299 {
2300 	pgd_t *pgd;
2301 	unsigned long next;
2302 	unsigned long end = addr + PAGE_ALIGN(size);
2303 	struct mm_struct *mm = vma->vm_mm;
2304 	int err;
2305 
2306 	/*
2307 	 * Physically remapped pages are special. Tell the
2308 	 * rest of the world about it:
2309 	 *   VM_IO tells people not to look at these pages
2310 	 *	(accesses can have side effects).
2311 	 *   VM_PFNMAP tells the core MM that the base pages are just
2312 	 *	raw PFN mappings, and do not have a "struct page" associated
2313 	 *	with them.
2314 	 *   VM_DONTEXPAND
2315 	 *      Disable vma merging and expanding with mremap().
2316 	 *   VM_DONTDUMP
2317 	 *      Omit vma from core dump, even when VM_IO turned off.
2318 	 *
2319 	 * There's a horrible special case to handle copy-on-write
2320 	 * behaviour that some programs depend on. We mark the "original"
2321 	 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2322 	 * See vm_normal_page() for details.
2323 	 */
2324 	if (is_cow_mapping(vma->vm_flags)) {
2325 		if (addr != vma->vm_start || end != vma->vm_end)
2326 			return -EINVAL;
2327 		vma->vm_pgoff = pfn;
2328 	}
2329 
2330 	err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2331 	if (err)
2332 		return -EINVAL;
2333 
2334 	vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2335 
2336 	BUG_ON(addr >= end);
2337 	pfn -= addr >> PAGE_SHIFT;
2338 	pgd = pgd_offset(mm, addr);
2339 	flush_cache_range(vma, addr, end);
2340 	do {
2341 		next = pgd_addr_end(addr, end);
2342 		err = remap_pud_range(mm, pgd, addr, next,
2343 				pfn + (addr >> PAGE_SHIFT), prot);
2344 		if (err)
2345 			break;
2346 	} while (pgd++, addr = next, addr != end);
2347 
2348 	if (err)
2349 		untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2350 
2351 	return err;
2352 }
2353 EXPORT_SYMBOL(remap_pfn_range);
2354 
2355 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2356 				     unsigned long addr, unsigned long end,
2357 				     pte_fn_t fn, void *data)
2358 {
2359 	pte_t *pte;
2360 	int err;
2361 	pgtable_t token;
2362 	spinlock_t *uninitialized_var(ptl);
2363 
2364 	pte = (mm == &init_mm) ?
2365 		pte_alloc_kernel(pmd, addr) :
2366 		pte_alloc_map_lock(mm, pmd, addr, &ptl);
2367 	if (!pte)
2368 		return -ENOMEM;
2369 
2370 	BUG_ON(pmd_huge(*pmd));
2371 
2372 	arch_enter_lazy_mmu_mode();
2373 
2374 	token = pmd_pgtable(*pmd);
2375 
2376 	do {
2377 		err = fn(pte++, token, addr, data);
2378 		if (err)
2379 			break;
2380 	} while (addr += PAGE_SIZE, addr != end);
2381 
2382 	arch_leave_lazy_mmu_mode();
2383 
2384 	if (mm != &init_mm)
2385 		pte_unmap_unlock(pte-1, ptl);
2386 	return err;
2387 }
2388 
2389 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2390 				     unsigned long addr, unsigned long end,
2391 				     pte_fn_t fn, void *data)
2392 {
2393 	pmd_t *pmd;
2394 	unsigned long next;
2395 	int err;
2396 
2397 	BUG_ON(pud_huge(*pud));
2398 
2399 	pmd = pmd_alloc(mm, pud, addr);
2400 	if (!pmd)
2401 		return -ENOMEM;
2402 	do {
2403 		next = pmd_addr_end(addr, end);
2404 		err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2405 		if (err)
2406 			break;
2407 	} while (pmd++, addr = next, addr != end);
2408 	return err;
2409 }
2410 
2411 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
2412 				     unsigned long addr, unsigned long end,
2413 				     pte_fn_t fn, void *data)
2414 {
2415 	pud_t *pud;
2416 	unsigned long next;
2417 	int err;
2418 
2419 	pud = pud_alloc(mm, pgd, addr);
2420 	if (!pud)
2421 		return -ENOMEM;
2422 	do {
2423 		next = pud_addr_end(addr, end);
2424 		err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2425 		if (err)
2426 			break;
2427 	} while (pud++, addr = next, addr != end);
2428 	return err;
2429 }
2430 
2431 /*
2432  * Scan a region of virtual memory, filling in page tables as necessary
2433  * and calling a provided function on each leaf page table.
2434  */
2435 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2436 			unsigned long size, pte_fn_t fn, void *data)
2437 {
2438 	pgd_t *pgd;
2439 	unsigned long next;
2440 	unsigned long end = addr + size;
2441 	int err;
2442 
2443 	BUG_ON(addr >= end);
2444 	pgd = pgd_offset(mm, addr);
2445 	do {
2446 		next = pgd_addr_end(addr, end);
2447 		err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
2448 		if (err)
2449 			break;
2450 	} while (pgd++, addr = next, addr != end);
2451 
2452 	return err;
2453 }
2454 EXPORT_SYMBOL_GPL(apply_to_page_range);
2455 
2456 /*
2457  * handle_pte_fault chooses page fault handler according to an entry
2458  * which was read non-atomically.  Before making any commitment, on
2459  * those architectures or configurations (e.g. i386 with PAE) which
2460  * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2461  * must check under lock before unmapping the pte and proceeding
2462  * (but do_wp_page is only called after already making such a check;
2463  * and do_anonymous_page can safely check later on).
2464  */
2465 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2466 				pte_t *page_table, pte_t orig_pte)
2467 {
2468 	int same = 1;
2469 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2470 	if (sizeof(pte_t) > sizeof(unsigned long)) {
2471 		spinlock_t *ptl = pte_lockptr(mm, pmd);
2472 		spin_lock(ptl);
2473 		same = pte_same(*page_table, orig_pte);
2474 		spin_unlock(ptl);
2475 	}
2476 #endif
2477 	pte_unmap(page_table);
2478 	return same;
2479 }
2480 
2481 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2482 {
2483 	/*
2484 	 * If the source page was a PFN mapping, we don't have
2485 	 * a "struct page" for it. We do a best-effort copy by
2486 	 * just copying from the original user address. If that
2487 	 * fails, we just zero-fill it. Live with it.
2488 	 */
2489 	if (unlikely(!src)) {
2490 		void *kaddr = kmap_atomic(dst);
2491 		void __user *uaddr = (void __user *)(va & PAGE_MASK);
2492 
2493 		/*
2494 		 * This really shouldn't fail, because the page is there
2495 		 * in the page tables. But it might just be unreadable,
2496 		 * in which case we just give up and fill the result with
2497 		 * zeroes.
2498 		 */
2499 		if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2500 			clear_page(kaddr);
2501 		kunmap_atomic(kaddr);
2502 		flush_dcache_page(dst);
2503 	} else
2504 		copy_user_highpage(dst, src, va, vma);
2505 }
2506 
2507 /*
2508  * This routine handles present pages, when users try to write
2509  * to a shared page. It is done by copying the page to a new address
2510  * and decrementing the shared-page counter for the old page.
2511  *
2512  * Note that this routine assumes that the protection checks have been
2513  * done by the caller (the low-level page fault routine in most cases).
2514  * Thus we can safely just mark it writable once we've done any necessary
2515  * COW.
2516  *
2517  * We also mark the page dirty at this point even though the page will
2518  * change only once the write actually happens. This avoids a few races,
2519  * and potentially makes it more efficient.
2520  *
2521  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2522  * but allow concurrent faults), with pte both mapped and locked.
2523  * We return with mmap_sem still held, but pte unmapped and unlocked.
2524  */
2525 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2526 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2527 		spinlock_t *ptl, pte_t orig_pte)
2528 	__releases(ptl)
2529 {
2530 	struct page *old_page, *new_page = NULL;
2531 	pte_t entry;
2532 	int ret = 0;
2533 	int page_mkwrite = 0;
2534 	struct page *dirty_page = NULL;
2535 	unsigned long mmun_start = 0;	/* For mmu_notifiers */
2536 	unsigned long mmun_end = 0;	/* For mmu_notifiers */
2537 
2538 	old_page = vm_normal_page(vma, address, orig_pte);
2539 	if (!old_page) {
2540 		/*
2541 		 * VM_MIXEDMAP !pfn_valid() case
2542 		 *
2543 		 * We should not cow pages in a shared writeable mapping.
2544 		 * Just mark the pages writable as we can't do any dirty
2545 		 * accounting on raw pfn maps.
2546 		 */
2547 		if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2548 				     (VM_WRITE|VM_SHARED))
2549 			goto reuse;
2550 		goto gotten;
2551 	}
2552 
2553 	/*
2554 	 * Take out anonymous pages first, anonymous shared vmas are
2555 	 * not dirty accountable.
2556 	 */
2557 	if (PageAnon(old_page) && !PageKsm(old_page)) {
2558 		if (!trylock_page(old_page)) {
2559 			page_cache_get(old_page);
2560 			pte_unmap_unlock(page_table, ptl);
2561 			lock_page(old_page);
2562 			page_table = pte_offset_map_lock(mm, pmd, address,
2563 							 &ptl);
2564 			if (!pte_same(*page_table, orig_pte)) {
2565 				unlock_page(old_page);
2566 				goto unlock;
2567 			}
2568 			page_cache_release(old_page);
2569 		}
2570 		if (reuse_swap_page(old_page)) {
2571 			/*
2572 			 * The page is all ours.  Move it to our anon_vma so
2573 			 * the rmap code will not search our parent or siblings.
2574 			 * Protected against the rmap code by the page lock.
2575 			 */
2576 			page_move_anon_rmap(old_page, vma, address);
2577 			unlock_page(old_page);
2578 			goto reuse;
2579 		}
2580 		unlock_page(old_page);
2581 	} else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2582 					(VM_WRITE|VM_SHARED))) {
2583 		/*
2584 		 * Only catch write-faults on shared writable pages,
2585 		 * read-only shared pages can get COWed by
2586 		 * get_user_pages(.write=1, .force=1).
2587 		 */
2588 		if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2589 			struct vm_fault vmf;
2590 			int tmp;
2591 
2592 			vmf.virtual_address = (void __user *)(address &
2593 								PAGE_MASK);
2594 			vmf.pgoff = old_page->index;
2595 			vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2596 			vmf.page = old_page;
2597 
2598 			/*
2599 			 * Notify the address space that the page is about to
2600 			 * become writable so that it can prohibit this or wait
2601 			 * for the page to get into an appropriate state.
2602 			 *
2603 			 * We do this without the lock held, so that it can
2604 			 * sleep if it needs to.
2605 			 */
2606 			page_cache_get(old_page);
2607 			pte_unmap_unlock(page_table, ptl);
2608 
2609 			tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
2610 			if (unlikely(tmp &
2611 					(VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2612 				ret = tmp;
2613 				goto unwritable_page;
2614 			}
2615 			if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
2616 				lock_page(old_page);
2617 				if (!old_page->mapping) {
2618 					ret = 0; /* retry the fault */
2619 					unlock_page(old_page);
2620 					goto unwritable_page;
2621 				}
2622 			} else
2623 				VM_BUG_ON(!PageLocked(old_page));
2624 
2625 			/*
2626 			 * Since we dropped the lock we need to revalidate
2627 			 * the PTE as someone else may have changed it.  If
2628 			 * they did, we just return, as we can count on the
2629 			 * MMU to tell us if they didn't also make it writable.
2630 			 */
2631 			page_table = pte_offset_map_lock(mm, pmd, address,
2632 							 &ptl);
2633 			if (!pte_same(*page_table, orig_pte)) {
2634 				unlock_page(old_page);
2635 				goto unlock;
2636 			}
2637 
2638 			page_mkwrite = 1;
2639 		}
2640 		dirty_page = old_page;
2641 		get_page(dirty_page);
2642 
2643 reuse:
2644 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2645 		entry = pte_mkyoung(orig_pte);
2646 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2647 		if (ptep_set_access_flags(vma, address, page_table, entry,1))
2648 			update_mmu_cache(vma, address, page_table);
2649 		pte_unmap_unlock(page_table, ptl);
2650 		ret |= VM_FAULT_WRITE;
2651 
2652 		if (!dirty_page)
2653 			return ret;
2654 
2655 		/*
2656 		 * Yes, Virginia, this is actually required to prevent a race
2657 		 * with clear_page_dirty_for_io() from clearing the page dirty
2658 		 * bit after it clear all dirty ptes, but before a racing
2659 		 * do_wp_page installs a dirty pte.
2660 		 *
2661 		 * __do_fault is protected similarly.
2662 		 */
2663 		if (!page_mkwrite) {
2664 			wait_on_page_locked(dirty_page);
2665 			set_page_dirty_balance(dirty_page, page_mkwrite);
2666 			/* file_update_time outside page_lock */
2667 			if (vma->vm_file)
2668 				file_update_time(vma->vm_file);
2669 		}
2670 		put_page(dirty_page);
2671 		if (page_mkwrite) {
2672 			struct address_space *mapping = dirty_page->mapping;
2673 
2674 			set_page_dirty(dirty_page);
2675 			unlock_page(dirty_page);
2676 			page_cache_release(dirty_page);
2677 			if (mapping)	{
2678 				/*
2679 				 * Some device drivers do not set page.mapping
2680 				 * but still dirty their pages
2681 				 */
2682 				balance_dirty_pages_ratelimited(mapping);
2683 			}
2684 		}
2685 
2686 		return ret;
2687 	}
2688 
2689 	/*
2690 	 * Ok, we need to copy. Oh, well..
2691 	 */
2692 	page_cache_get(old_page);
2693 gotten:
2694 	pte_unmap_unlock(page_table, ptl);
2695 
2696 	if (unlikely(anon_vma_prepare(vma)))
2697 		goto oom;
2698 
2699 	if (is_zero_pfn(pte_pfn(orig_pte))) {
2700 		new_page = alloc_zeroed_user_highpage_movable(vma, address);
2701 		if (!new_page)
2702 			goto oom;
2703 	} else {
2704 		new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2705 		if (!new_page)
2706 			goto oom;
2707 		cow_user_page(new_page, old_page, address, vma);
2708 	}
2709 	__SetPageUptodate(new_page);
2710 
2711 	if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
2712 		goto oom_free_new;
2713 
2714 	mmun_start  = address & PAGE_MASK;
2715 	mmun_end    = mmun_start + PAGE_SIZE;
2716 	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2717 
2718 	/*
2719 	 * Re-check the pte - we dropped the lock
2720 	 */
2721 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2722 	if (likely(pte_same(*page_table, orig_pte))) {
2723 		if (old_page) {
2724 			if (!PageAnon(old_page)) {
2725 				dec_mm_counter_fast(mm, MM_FILEPAGES);
2726 				inc_mm_counter_fast(mm, MM_ANONPAGES);
2727 			}
2728 		} else
2729 			inc_mm_counter_fast(mm, MM_ANONPAGES);
2730 		flush_cache_page(vma, address, pte_pfn(orig_pte));
2731 		entry = mk_pte(new_page, vma->vm_page_prot);
2732 		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2733 		/*
2734 		 * Clear the pte entry and flush it first, before updating the
2735 		 * pte with the new entry. This will avoid a race condition
2736 		 * seen in the presence of one thread doing SMC and another
2737 		 * thread doing COW.
2738 		 */
2739 		ptep_clear_flush(vma, address, page_table);
2740 		page_add_new_anon_rmap(new_page, vma, address);
2741 		/*
2742 		 * We call the notify macro here because, when using secondary
2743 		 * mmu page tables (such as kvm shadow page tables), we want the
2744 		 * new page to be mapped directly into the secondary page table.
2745 		 */
2746 		set_pte_at_notify(mm, address, page_table, entry);
2747 		update_mmu_cache(vma, address, page_table);
2748 		if (old_page) {
2749 			/*
2750 			 * Only after switching the pte to the new page may
2751 			 * we remove the mapcount here. Otherwise another
2752 			 * process may come and find the rmap count decremented
2753 			 * before the pte is switched to the new page, and
2754 			 * "reuse" the old page writing into it while our pte
2755 			 * here still points into it and can be read by other
2756 			 * threads.
2757 			 *
2758 			 * The critical issue is to order this
2759 			 * page_remove_rmap with the ptp_clear_flush above.
2760 			 * Those stores are ordered by (if nothing else,)
2761 			 * the barrier present in the atomic_add_negative
2762 			 * in page_remove_rmap.
2763 			 *
2764 			 * Then the TLB flush in ptep_clear_flush ensures that
2765 			 * no process can access the old page before the
2766 			 * decremented mapcount is visible. And the old page
2767 			 * cannot be reused until after the decremented
2768 			 * mapcount is visible. So transitively, TLBs to
2769 			 * old page will be flushed before it can be reused.
2770 			 */
2771 			page_remove_rmap(old_page);
2772 		}
2773 
2774 		/* Free the old page.. */
2775 		new_page = old_page;
2776 		ret |= VM_FAULT_WRITE;
2777 	} else
2778 		mem_cgroup_uncharge_page(new_page);
2779 
2780 	if (new_page)
2781 		page_cache_release(new_page);
2782 unlock:
2783 	pte_unmap_unlock(page_table, ptl);
2784 	if (mmun_end > mmun_start)
2785 		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2786 	if (old_page) {
2787 		/*
2788 		 * Don't let another task, with possibly unlocked vma,
2789 		 * keep the mlocked page.
2790 		 */
2791 		if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2792 			lock_page(old_page);	/* LRU manipulation */
2793 			munlock_vma_page(old_page);
2794 			unlock_page(old_page);
2795 		}
2796 		page_cache_release(old_page);
2797 	}
2798 	return ret;
2799 oom_free_new:
2800 	page_cache_release(new_page);
2801 oom:
2802 	if (old_page)
2803 		page_cache_release(old_page);
2804 	return VM_FAULT_OOM;
2805 
2806 unwritable_page:
2807 	page_cache_release(old_page);
2808 	return ret;
2809 }
2810 
2811 static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2812 		unsigned long start_addr, unsigned long end_addr,
2813 		struct zap_details *details)
2814 {
2815 	zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2816 }
2817 
2818 static inline void unmap_mapping_range_tree(struct rb_root *root,
2819 					    struct zap_details *details)
2820 {
2821 	struct vm_area_struct *vma;
2822 	pgoff_t vba, vea, zba, zea;
2823 
2824 	vma_interval_tree_foreach(vma, root,
2825 			details->first_index, details->last_index) {
2826 
2827 		vba = vma->vm_pgoff;
2828 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2829 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2830 		zba = details->first_index;
2831 		if (zba < vba)
2832 			zba = vba;
2833 		zea = details->last_index;
2834 		if (zea > vea)
2835 			zea = vea;
2836 
2837 		unmap_mapping_range_vma(vma,
2838 			((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2839 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2840 				details);
2841 	}
2842 }
2843 
2844 static inline void unmap_mapping_range_list(struct list_head *head,
2845 					    struct zap_details *details)
2846 {
2847 	struct vm_area_struct *vma;
2848 
2849 	/*
2850 	 * In nonlinear VMAs there is no correspondence between virtual address
2851 	 * offset and file offset.  So we must perform an exhaustive search
2852 	 * across *all* the pages in each nonlinear VMA, not just the pages
2853 	 * whose virtual address lies outside the file truncation point.
2854 	 */
2855 	list_for_each_entry(vma, head, shared.nonlinear) {
2856 		details->nonlinear_vma = vma;
2857 		unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
2858 	}
2859 }
2860 
2861 /**
2862  * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2863  * @mapping: the address space containing mmaps to be unmapped.
2864  * @holebegin: byte in first page to unmap, relative to the start of
2865  * the underlying file.  This will be rounded down to a PAGE_SIZE
2866  * boundary.  Note that this is different from truncate_pagecache(), which
2867  * must keep the partial page.  In contrast, we must get rid of
2868  * partial pages.
2869  * @holelen: size of prospective hole in bytes.  This will be rounded
2870  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2871  * end of the file.
2872  * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2873  * but 0 when invalidating pagecache, don't throw away private data.
2874  */
2875 void unmap_mapping_range(struct address_space *mapping,
2876 		loff_t const holebegin, loff_t const holelen, int even_cows)
2877 {
2878 	struct zap_details details;
2879 	pgoff_t hba = holebegin >> PAGE_SHIFT;
2880 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2881 
2882 	/* Check for overflow. */
2883 	if (sizeof(holelen) > sizeof(hlen)) {
2884 		long long holeend =
2885 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2886 		if (holeend & ~(long long)ULONG_MAX)
2887 			hlen = ULONG_MAX - hba + 1;
2888 	}
2889 
2890 	details.check_mapping = even_cows? NULL: mapping;
2891 	details.nonlinear_vma = NULL;
2892 	details.first_index = hba;
2893 	details.last_index = hba + hlen - 1;
2894 	if (details.last_index < details.first_index)
2895 		details.last_index = ULONG_MAX;
2896 
2897 
2898 	mutex_lock(&mapping->i_mmap_mutex);
2899 	if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
2900 		unmap_mapping_range_tree(&mapping->i_mmap, &details);
2901 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2902 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2903 	mutex_unlock(&mapping->i_mmap_mutex);
2904 }
2905 EXPORT_SYMBOL(unmap_mapping_range);
2906 
2907 /*
2908  * We enter with non-exclusive mmap_sem (to exclude vma changes,
2909  * but allow concurrent faults), and pte mapped but not yet locked.
2910  * We return with mmap_sem still held, but pte unmapped and unlocked.
2911  */
2912 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2913 		unsigned long address, pte_t *page_table, pmd_t *pmd,
2914 		unsigned int flags, pte_t orig_pte)
2915 {
2916 	spinlock_t *ptl;
2917 	struct page *page, *swapcache = NULL;
2918 	swp_entry_t entry;
2919 	pte_t pte;
2920 	int locked;
2921 	struct mem_cgroup *ptr;
2922 	int exclusive = 0;
2923 	int ret = 0;
2924 
2925 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2926 		goto out;
2927 
2928 	entry = pte_to_swp_entry(orig_pte);
2929 	if (unlikely(non_swap_entry(entry))) {
2930 		if (is_migration_entry(entry)) {
2931 			migration_entry_wait(mm, pmd, address);
2932 		} else if (is_hwpoison_entry(entry)) {
2933 			ret = VM_FAULT_HWPOISON;
2934 		} else {
2935 			print_bad_pte(vma, address, orig_pte, NULL);
2936 			ret = VM_FAULT_SIGBUS;
2937 		}
2938 		goto out;
2939 	}
2940 	delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2941 	page = lookup_swap_cache(entry);
2942 	if (!page) {
2943 		page = swapin_readahead(entry,
2944 					GFP_HIGHUSER_MOVABLE, vma, address);
2945 		if (!page) {
2946 			/*
2947 			 * Back out if somebody else faulted in this pte
2948 			 * while we released the pte lock.
2949 			 */
2950 			page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2951 			if (likely(pte_same(*page_table, orig_pte)))
2952 				ret = VM_FAULT_OOM;
2953 			delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2954 			goto unlock;
2955 		}
2956 
2957 		/* Had to read the page from swap area: Major fault */
2958 		ret = VM_FAULT_MAJOR;
2959 		count_vm_event(PGMAJFAULT);
2960 		mem_cgroup_count_vm_event(mm, PGMAJFAULT);
2961 	} else if (PageHWPoison(page)) {
2962 		/*
2963 		 * hwpoisoned dirty swapcache pages are kept for killing
2964 		 * owner processes (which may be unknown at hwpoison time)
2965 		 */
2966 		ret = VM_FAULT_HWPOISON;
2967 		delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2968 		goto out_release;
2969 	}
2970 
2971 	locked = lock_page_or_retry(page, mm, flags);
2972 
2973 	delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2974 	if (!locked) {
2975 		ret |= VM_FAULT_RETRY;
2976 		goto out_release;
2977 	}
2978 
2979 	/*
2980 	 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2981 	 * release the swapcache from under us.  The page pin, and pte_same
2982 	 * test below, are not enough to exclude that.  Even if it is still
2983 	 * swapcache, we need to check that the page's swap has not changed.
2984 	 */
2985 	if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
2986 		goto out_page;
2987 
2988 	if (ksm_might_need_to_copy(page, vma, address)) {
2989 		swapcache = page;
2990 		page = ksm_does_need_to_copy(page, vma, address);
2991 
2992 		if (unlikely(!page)) {
2993 			ret = VM_FAULT_OOM;
2994 			page = swapcache;
2995 			swapcache = NULL;
2996 			goto out_page;
2997 		}
2998 	}
2999 
3000 	if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
3001 		ret = VM_FAULT_OOM;
3002 		goto out_page;
3003 	}
3004 
3005 	/*
3006 	 * Back out if somebody else already faulted in this pte.
3007 	 */
3008 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3009 	if (unlikely(!pte_same(*page_table, orig_pte)))
3010 		goto out_nomap;
3011 
3012 	if (unlikely(!PageUptodate(page))) {
3013 		ret = VM_FAULT_SIGBUS;
3014 		goto out_nomap;
3015 	}
3016 
3017 	/*
3018 	 * The page isn't present yet, go ahead with the fault.
3019 	 *
3020 	 * Be careful about the sequence of operations here.
3021 	 * To get its accounting right, reuse_swap_page() must be called
3022 	 * while the page is counted on swap but not yet in mapcount i.e.
3023 	 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3024 	 * must be called after the swap_free(), or it will never succeed.
3025 	 * Because delete_from_swap_page() may be called by reuse_swap_page(),
3026 	 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
3027 	 * in page->private. In this case, a record in swap_cgroup  is silently
3028 	 * discarded at swap_free().
3029 	 */
3030 
3031 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3032 	dec_mm_counter_fast(mm, MM_SWAPENTS);
3033 	pte = mk_pte(page, vma->vm_page_prot);
3034 	if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
3035 		pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3036 		flags &= ~FAULT_FLAG_WRITE;
3037 		ret |= VM_FAULT_WRITE;
3038 		exclusive = 1;
3039 	}
3040 	flush_icache_page(vma, page);
3041 	set_pte_at(mm, address, page_table, pte);
3042 	do_page_add_anon_rmap(page, vma, address, exclusive);
3043 	/* It's better to call commit-charge after rmap is established */
3044 	mem_cgroup_commit_charge_swapin(page, ptr);
3045 
3046 	swap_free(entry);
3047 	if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3048 		try_to_free_swap(page);
3049 	unlock_page(page);
3050 	if (swapcache) {
3051 		/*
3052 		 * Hold the lock to avoid the swap entry to be reused
3053 		 * until we take the PT lock for the pte_same() check
3054 		 * (to avoid false positives from pte_same). For
3055 		 * further safety release the lock after the swap_free
3056 		 * so that the swap count won't change under a
3057 		 * parallel locked swapcache.
3058 		 */
3059 		unlock_page(swapcache);
3060 		page_cache_release(swapcache);
3061 	}
3062 
3063 	if (flags & FAULT_FLAG_WRITE) {
3064 		ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
3065 		if (ret & VM_FAULT_ERROR)
3066 			ret &= VM_FAULT_ERROR;
3067 		goto out;
3068 	}
3069 
3070 	/* No need to invalidate - it was non-present before */
3071 	update_mmu_cache(vma, address, page_table);
3072 unlock:
3073 	pte_unmap_unlock(page_table, ptl);
3074 out:
3075 	return ret;
3076 out_nomap:
3077 	mem_cgroup_cancel_charge_swapin(ptr);
3078 	pte_unmap_unlock(page_table, ptl);
3079 out_page:
3080 	unlock_page(page);
3081 out_release:
3082 	page_cache_release(page);
3083 	if (swapcache) {
3084 		unlock_page(swapcache);
3085 		page_cache_release(swapcache);
3086 	}
3087 	return ret;
3088 }
3089 
3090 /*
3091  * This is like a special single-page "expand_{down|up}wards()",
3092  * except we must first make sure that 'address{-|+}PAGE_SIZE'
3093  * doesn't hit another vma.
3094  */
3095 static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
3096 {
3097 	address &= PAGE_MASK;
3098 	if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
3099 		struct vm_area_struct *prev = vma->vm_prev;
3100 
3101 		/*
3102 		 * Is there a mapping abutting this one below?
3103 		 *
3104 		 * That's only ok if it's the same stack mapping
3105 		 * that has gotten split..
3106 		 */
3107 		if (prev && prev->vm_end == address)
3108 			return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
3109 
3110 		expand_downwards(vma, address - PAGE_SIZE);
3111 	}
3112 	if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
3113 		struct vm_area_struct *next = vma->vm_next;
3114 
3115 		/* As VM_GROWSDOWN but s/below/above/ */
3116 		if (next && next->vm_start == address + PAGE_SIZE)
3117 			return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
3118 
3119 		expand_upwards(vma, address + PAGE_SIZE);
3120 	}
3121 	return 0;
3122 }
3123 
3124 /*
3125  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3126  * but allow concurrent faults), and pte mapped but not yet locked.
3127  * We return with mmap_sem still held, but pte unmapped and unlocked.
3128  */
3129 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
3130 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3131 		unsigned int flags)
3132 {
3133 	struct page *page;
3134 	spinlock_t *ptl;
3135 	pte_t entry;
3136 
3137 	pte_unmap(page_table);
3138 
3139 	/* Check if we need to add a guard page to the stack */
3140 	if (check_stack_guard_page(vma, address) < 0)
3141 		return VM_FAULT_SIGBUS;
3142 
3143 	/* Use the zero-page for reads */
3144 	if (!(flags & FAULT_FLAG_WRITE)) {
3145 		entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
3146 						vma->vm_page_prot));
3147 		page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3148 		if (!pte_none(*page_table))
3149 			goto unlock;
3150 		goto setpte;
3151 	}
3152 
3153 	/* Allocate our own private page. */
3154 	if (unlikely(anon_vma_prepare(vma)))
3155 		goto oom;
3156 	page = alloc_zeroed_user_highpage_movable(vma, address);
3157 	if (!page)
3158 		goto oom;
3159 	__SetPageUptodate(page);
3160 
3161 	if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
3162 		goto oom_free_page;
3163 
3164 	entry = mk_pte(page, vma->vm_page_prot);
3165 	if (vma->vm_flags & VM_WRITE)
3166 		entry = pte_mkwrite(pte_mkdirty(entry));
3167 
3168 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3169 	if (!pte_none(*page_table))
3170 		goto release;
3171 
3172 	inc_mm_counter_fast(mm, MM_ANONPAGES);
3173 	page_add_new_anon_rmap(page, vma, address);
3174 setpte:
3175 	set_pte_at(mm, address, page_table, entry);
3176 
3177 	/* No need to invalidate - it was non-present before */
3178 	update_mmu_cache(vma, address, page_table);
3179 unlock:
3180 	pte_unmap_unlock(page_table, ptl);
3181 	return 0;
3182 release:
3183 	mem_cgroup_uncharge_page(page);
3184 	page_cache_release(page);
3185 	goto unlock;
3186 oom_free_page:
3187 	page_cache_release(page);
3188 oom:
3189 	return VM_FAULT_OOM;
3190 }
3191 
3192 /*
3193  * __do_fault() tries to create a new page mapping. It aggressively
3194  * tries to share with existing pages, but makes a separate copy if
3195  * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3196  * the next page fault.
3197  *
3198  * As this is called only for pages that do not currently exist, we
3199  * do not need to flush old virtual caches or the TLB.
3200  *
3201  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3202  * but allow concurrent faults), and pte neither mapped nor locked.
3203  * We return with mmap_sem still held, but pte unmapped and unlocked.
3204  */
3205 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3206 		unsigned long address, pmd_t *pmd,
3207 		pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
3208 {
3209 	pte_t *page_table;
3210 	spinlock_t *ptl;
3211 	struct page *page;
3212 	struct page *cow_page;
3213 	pte_t entry;
3214 	int anon = 0;
3215 	struct page *dirty_page = NULL;
3216 	struct vm_fault vmf;
3217 	int ret;
3218 	int page_mkwrite = 0;
3219 
3220 	/*
3221 	 * If we do COW later, allocate page befor taking lock_page()
3222 	 * on the file cache page. This will reduce lock holding time.
3223 	 */
3224 	if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3225 
3226 		if (unlikely(anon_vma_prepare(vma)))
3227 			return VM_FAULT_OOM;
3228 
3229 		cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
3230 		if (!cow_page)
3231 			return VM_FAULT_OOM;
3232 
3233 		if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
3234 			page_cache_release(cow_page);
3235 			return VM_FAULT_OOM;
3236 		}
3237 	} else
3238 		cow_page = NULL;
3239 
3240 	vmf.virtual_address = (void __user *)(address & PAGE_MASK);
3241 	vmf.pgoff = pgoff;
3242 	vmf.flags = flags;
3243 	vmf.page = NULL;
3244 
3245 	ret = vma->vm_ops->fault(vma, &vmf);
3246 	if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3247 			    VM_FAULT_RETRY)))
3248 		goto uncharge_out;
3249 
3250 	if (unlikely(PageHWPoison(vmf.page))) {
3251 		if (ret & VM_FAULT_LOCKED)
3252 			unlock_page(vmf.page);
3253 		ret = VM_FAULT_HWPOISON;
3254 		goto uncharge_out;
3255 	}
3256 
3257 	/*
3258 	 * For consistency in subsequent calls, make the faulted page always
3259 	 * locked.
3260 	 */
3261 	if (unlikely(!(ret & VM_FAULT_LOCKED)))
3262 		lock_page(vmf.page);
3263 	else
3264 		VM_BUG_ON(!PageLocked(vmf.page));
3265 
3266 	/*
3267 	 * Should we do an early C-O-W break?
3268 	 */
3269 	page = vmf.page;
3270 	if (flags & FAULT_FLAG_WRITE) {
3271 		if (!(vma->vm_flags & VM_SHARED)) {
3272 			page = cow_page;
3273 			anon = 1;
3274 			copy_user_highpage(page, vmf.page, address, vma);
3275 			__SetPageUptodate(page);
3276 		} else {
3277 			/*
3278 			 * If the page will be shareable, see if the backing
3279 			 * address space wants to know that the page is about
3280 			 * to become writable
3281 			 */
3282 			if (vma->vm_ops->page_mkwrite) {
3283 				int tmp;
3284 
3285 				unlock_page(page);
3286 				vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
3287 				tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
3288 				if (unlikely(tmp &
3289 					  (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3290 					ret = tmp;
3291 					goto unwritable_page;
3292 				}
3293 				if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
3294 					lock_page(page);
3295 					if (!page->mapping) {
3296 						ret = 0; /* retry the fault */
3297 						unlock_page(page);
3298 						goto unwritable_page;
3299 					}
3300 				} else
3301 					VM_BUG_ON(!PageLocked(page));
3302 				page_mkwrite = 1;
3303 			}
3304 		}
3305 
3306 	}
3307 
3308 	page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
3309 
3310 	/*
3311 	 * This silly early PAGE_DIRTY setting removes a race
3312 	 * due to the bad i386 page protection. But it's valid
3313 	 * for other architectures too.
3314 	 *
3315 	 * Note that if FAULT_FLAG_WRITE is set, we either now have
3316 	 * an exclusive copy of the page, or this is a shared mapping,
3317 	 * so we can make it writable and dirty to avoid having to
3318 	 * handle that later.
3319 	 */
3320 	/* Only go through if we didn't race with anybody else... */
3321 	if (likely(pte_same(*page_table, orig_pte))) {
3322 		flush_icache_page(vma, page);
3323 		entry = mk_pte(page, vma->vm_page_prot);
3324 		if (flags & FAULT_FLAG_WRITE)
3325 			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3326 		if (anon) {
3327 			inc_mm_counter_fast(mm, MM_ANONPAGES);
3328 			page_add_new_anon_rmap(page, vma, address);
3329 		} else {
3330 			inc_mm_counter_fast(mm, MM_FILEPAGES);
3331 			page_add_file_rmap(page);
3332 			if (flags & FAULT_FLAG_WRITE) {
3333 				dirty_page = page;
3334 				get_page(dirty_page);
3335 			}
3336 		}
3337 		set_pte_at(mm, address, page_table, entry);
3338 
3339 		/* no need to invalidate: a not-present page won't be cached */
3340 		update_mmu_cache(vma, address, page_table);
3341 	} else {
3342 		if (cow_page)
3343 			mem_cgroup_uncharge_page(cow_page);
3344 		if (anon)
3345 			page_cache_release(page);
3346 		else
3347 			anon = 1; /* no anon but release faulted_page */
3348 	}
3349 
3350 	pte_unmap_unlock(page_table, ptl);
3351 
3352 	if (dirty_page) {
3353 		struct address_space *mapping = page->mapping;
3354 		int dirtied = 0;
3355 
3356 		if (set_page_dirty(dirty_page))
3357 			dirtied = 1;
3358 		unlock_page(dirty_page);
3359 		put_page(dirty_page);
3360 		if ((dirtied || page_mkwrite) && mapping) {
3361 			/*
3362 			 * Some device drivers do not set page.mapping but still
3363 			 * dirty their pages
3364 			 */
3365 			balance_dirty_pages_ratelimited(mapping);
3366 		}
3367 
3368 		/* file_update_time outside page_lock */
3369 		if (vma->vm_file && !page_mkwrite)
3370 			file_update_time(vma->vm_file);
3371 	} else {
3372 		unlock_page(vmf.page);
3373 		if (anon)
3374 			page_cache_release(vmf.page);
3375 	}
3376 
3377 	return ret;
3378 
3379 unwritable_page:
3380 	page_cache_release(page);
3381 	return ret;
3382 uncharge_out:
3383 	/* fs's fault handler get error */
3384 	if (cow_page) {
3385 		mem_cgroup_uncharge_page(cow_page);
3386 		page_cache_release(cow_page);
3387 	}
3388 	return ret;
3389 }
3390 
3391 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3392 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3393 		unsigned int flags, pte_t orig_pte)
3394 {
3395 	pgoff_t pgoff = (((address & PAGE_MASK)
3396 			- vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
3397 
3398 	pte_unmap(page_table);
3399 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3400 }
3401 
3402 /*
3403  * Fault of a previously existing named mapping. Repopulate the pte
3404  * from the encoded file_pte if possible. This enables swappable
3405  * nonlinear vmas.
3406  *
3407  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3408  * but allow concurrent faults), and pte mapped but not yet locked.
3409  * We return with mmap_sem still held, but pte unmapped and unlocked.
3410  */
3411 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3412 		unsigned long address, pte_t *page_table, pmd_t *pmd,
3413 		unsigned int flags, pte_t orig_pte)
3414 {
3415 	pgoff_t pgoff;
3416 
3417 	flags |= FAULT_FLAG_NONLINEAR;
3418 
3419 	if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
3420 		return 0;
3421 
3422 	if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
3423 		/*
3424 		 * Page table corrupted: show pte and kill process.
3425 		 */
3426 		print_bad_pte(vma, address, orig_pte, NULL);
3427 		return VM_FAULT_SIGBUS;
3428 	}
3429 
3430 	pgoff = pte_to_pgoff(orig_pte);
3431 	return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
3432 }
3433 
3434 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3435 				unsigned long addr, int current_nid)
3436 {
3437 	get_page(page);
3438 
3439 	count_vm_numa_event(NUMA_HINT_FAULTS);
3440 	if (current_nid == numa_node_id())
3441 		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3442 
3443 	return mpol_misplaced(page, vma, addr);
3444 }
3445 
3446 int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3447 		   unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3448 {
3449 	struct page *page = NULL;
3450 	spinlock_t *ptl;
3451 	int current_nid = -1;
3452 	int target_nid;
3453 	bool migrated = false;
3454 
3455 	/*
3456 	* The "pte" at this point cannot be used safely without
3457 	* validation through pte_unmap_same(). It's of NUMA type but
3458 	* the pfn may be screwed if the read is non atomic.
3459 	*
3460 	* ptep_modify_prot_start is not called as this is clearing
3461 	* the _PAGE_NUMA bit and it is not really expected that there
3462 	* would be concurrent hardware modifications to the PTE.
3463 	*/
3464 	ptl = pte_lockptr(mm, pmd);
3465 	spin_lock(ptl);
3466 	if (unlikely(!pte_same(*ptep, pte))) {
3467 		pte_unmap_unlock(ptep, ptl);
3468 		goto out;
3469 	}
3470 
3471 	pte = pte_mknonnuma(pte);
3472 	set_pte_at(mm, addr, ptep, pte);
3473 	update_mmu_cache(vma, addr, ptep);
3474 
3475 	page = vm_normal_page(vma, addr, pte);
3476 	if (!page) {
3477 		pte_unmap_unlock(ptep, ptl);
3478 		return 0;
3479 	}
3480 
3481 	current_nid = page_to_nid(page);
3482 	target_nid = numa_migrate_prep(page, vma, addr, current_nid);
3483 	pte_unmap_unlock(ptep, ptl);
3484 	if (target_nid == -1) {
3485 		/*
3486 		 * Account for the fault against the current node if it not
3487 		 * being replaced regardless of where the page is located.
3488 		 */
3489 		current_nid = numa_node_id();
3490 		put_page(page);
3491 		goto out;
3492 	}
3493 
3494 	/* Migrate to the requested node */
3495 	migrated = migrate_misplaced_page(page, target_nid);
3496 	if (migrated)
3497 		current_nid = target_nid;
3498 
3499 out:
3500 	if (current_nid != -1)
3501 		task_numa_fault(current_nid, 1, migrated);
3502 	return 0;
3503 }
3504 
3505 /* NUMA hinting page fault entry point for regular pmds */
3506 #ifdef CONFIG_NUMA_BALANCING
3507 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3508 		     unsigned long addr, pmd_t *pmdp)
3509 {
3510 	pmd_t pmd;
3511 	pte_t *pte, *orig_pte;
3512 	unsigned long _addr = addr & PMD_MASK;
3513 	unsigned long offset;
3514 	spinlock_t *ptl;
3515 	bool numa = false;
3516 	int local_nid = numa_node_id();
3517 
3518 	spin_lock(&mm->page_table_lock);
3519 	pmd = *pmdp;
3520 	if (pmd_numa(pmd)) {
3521 		set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
3522 		numa = true;
3523 	}
3524 	spin_unlock(&mm->page_table_lock);
3525 
3526 	if (!numa)
3527 		return 0;
3528 
3529 	/* we're in a page fault so some vma must be in the range */
3530 	BUG_ON(!vma);
3531 	BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
3532 	offset = max(_addr, vma->vm_start) & ~PMD_MASK;
3533 	VM_BUG_ON(offset >= PMD_SIZE);
3534 	orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
3535 	pte += offset >> PAGE_SHIFT;
3536 	for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
3537 		pte_t pteval = *pte;
3538 		struct page *page;
3539 		int curr_nid = local_nid;
3540 		int target_nid;
3541 		bool migrated;
3542 		if (!pte_present(pteval))
3543 			continue;
3544 		if (!pte_numa(pteval))
3545 			continue;
3546 		if (addr >= vma->vm_end) {
3547 			vma = find_vma(mm, addr);
3548 			/* there's a pte present so there must be a vma */
3549 			BUG_ON(!vma);
3550 			BUG_ON(addr < vma->vm_start);
3551 		}
3552 		if (pte_numa(pteval)) {
3553 			pteval = pte_mknonnuma(pteval);
3554 			set_pte_at(mm, addr, pte, pteval);
3555 		}
3556 		page = vm_normal_page(vma, addr, pteval);
3557 		if (unlikely(!page))
3558 			continue;
3559 		/* only check non-shared pages */
3560 		if (unlikely(page_mapcount(page) != 1))
3561 			continue;
3562 
3563 		/*
3564 		 * Note that the NUMA fault is later accounted to either
3565 		 * the node that is currently running or where the page is
3566 		 * migrated to.
3567 		 */
3568 		curr_nid = local_nid;
3569 		target_nid = numa_migrate_prep(page, vma, addr,
3570 					       page_to_nid(page));
3571 		if (target_nid == -1) {
3572 			put_page(page);
3573 			continue;
3574 		}
3575 
3576 		/* Migrate to the requested node */
3577 		pte_unmap_unlock(pte, ptl);
3578 		migrated = migrate_misplaced_page(page, target_nid);
3579 		if (migrated)
3580 			curr_nid = target_nid;
3581 		task_numa_fault(curr_nid, 1, migrated);
3582 
3583 		pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
3584 	}
3585 	pte_unmap_unlock(orig_pte, ptl);
3586 
3587 	return 0;
3588 }
3589 #else
3590 static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
3591 		     unsigned long addr, pmd_t *pmdp)
3592 {
3593 	BUG();
3594 	return 0;
3595 }
3596 #endif /* CONFIG_NUMA_BALANCING */
3597 
3598 /*
3599  * These routines also need to handle stuff like marking pages dirty
3600  * and/or accessed for architectures that don't do it in hardware (most
3601  * RISC architectures).  The early dirtying is also good on the i386.
3602  *
3603  * There is also a hook called "update_mmu_cache()" that architectures
3604  * with external mmu caches can use to update those (ie the Sparc or
3605  * PowerPC hashed page tables that act as extended TLBs).
3606  *
3607  * We enter with non-exclusive mmap_sem (to exclude vma changes,
3608  * but allow concurrent faults), and pte mapped but not yet locked.
3609  * We return with mmap_sem still held, but pte unmapped and unlocked.
3610  */
3611 int handle_pte_fault(struct mm_struct *mm,
3612 		     struct vm_area_struct *vma, unsigned long address,
3613 		     pte_t *pte, pmd_t *pmd, unsigned int flags)
3614 {
3615 	pte_t entry;
3616 	spinlock_t *ptl;
3617 
3618 	entry = *pte;
3619 	if (!pte_present(entry)) {
3620 		if (pte_none(entry)) {
3621 			if (vma->vm_ops) {
3622 				if (likely(vma->vm_ops->fault))
3623 					return do_linear_fault(mm, vma, address,
3624 						pte, pmd, flags, entry);
3625 			}
3626 			return do_anonymous_page(mm, vma, address,
3627 						 pte, pmd, flags);
3628 		}
3629 		if (pte_file(entry))
3630 			return do_nonlinear_fault(mm, vma, address,
3631 					pte, pmd, flags, entry);
3632 		return do_swap_page(mm, vma, address,
3633 					pte, pmd, flags, entry);
3634 	}
3635 
3636 	if (pte_numa(entry))
3637 		return do_numa_page(mm, vma, address, entry, pte, pmd);
3638 
3639 	ptl = pte_lockptr(mm, pmd);
3640 	spin_lock(ptl);
3641 	if (unlikely(!pte_same(*pte, entry)))
3642 		goto unlock;
3643 	if (flags & FAULT_FLAG_WRITE) {
3644 		if (!pte_write(entry))
3645 			return do_wp_page(mm, vma, address,
3646 					pte, pmd, ptl, entry);
3647 		entry = pte_mkdirty(entry);
3648 	}
3649 	entry = pte_mkyoung(entry);
3650 	if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
3651 		update_mmu_cache(vma, address, pte);
3652 	} else {
3653 		/*
3654 		 * This is needed only for protection faults but the arch code
3655 		 * is not yet telling us if this is a protection fault or not.
3656 		 * This still avoids useless tlb flushes for .text page faults
3657 		 * with threads.
3658 		 */
3659 		if (flags & FAULT_FLAG_WRITE)
3660 			flush_tlb_fix_spurious_fault(vma, address);
3661 	}
3662 unlock:
3663 	pte_unmap_unlock(pte, ptl);
3664 	return 0;
3665 }
3666 
3667 /*
3668  * By the time we get here, we already hold the mm semaphore
3669  */
3670 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3671 		unsigned long address, unsigned int flags)
3672 {
3673 	pgd_t *pgd;
3674 	pud_t *pud;
3675 	pmd_t *pmd;
3676 	pte_t *pte;
3677 
3678 	__set_current_state(TASK_RUNNING);
3679 
3680 	count_vm_event(PGFAULT);
3681 	mem_cgroup_count_vm_event(mm, PGFAULT);
3682 
3683 	/* do counter updates before entering really critical section. */
3684 	check_sync_rss_stat(current);
3685 
3686 	if (unlikely(is_vm_hugetlb_page(vma)))
3687 		return hugetlb_fault(mm, vma, address, flags);
3688 
3689 retry:
3690 	pgd = pgd_offset(mm, address);
3691 	pud = pud_alloc(mm, pgd, address);
3692 	if (!pud)
3693 		return VM_FAULT_OOM;
3694 	pmd = pmd_alloc(mm, pud, address);
3695 	if (!pmd)
3696 		return VM_FAULT_OOM;
3697 	if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
3698 		if (!vma->vm_ops)
3699 			return do_huge_pmd_anonymous_page(mm, vma, address,
3700 							  pmd, flags);
3701 	} else {
3702 		pmd_t orig_pmd = *pmd;
3703 		int ret;
3704 
3705 		barrier();
3706 		if (pmd_trans_huge(orig_pmd)) {
3707 			unsigned int dirty = flags & FAULT_FLAG_WRITE;
3708 
3709 			if (pmd_numa(orig_pmd))
3710 				return do_huge_pmd_numa_page(mm, vma, address,
3711 							     orig_pmd, pmd);
3712 
3713 			if (dirty && !pmd_write(orig_pmd)) {
3714 				ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3715 							  orig_pmd);
3716 				/*
3717 				 * If COW results in an oom, the huge pmd will
3718 				 * have been split, so retry the fault on the
3719 				 * pte for a smaller charge.
3720 				 */
3721 				if (unlikely(ret & VM_FAULT_OOM))
3722 					goto retry;
3723 				return ret;
3724 			} else {
3725 				huge_pmd_set_accessed(mm, vma, address, pmd,
3726 						      orig_pmd, dirty);
3727 			}
3728 
3729 			return 0;
3730 		}
3731 	}
3732 
3733 	if (pmd_numa(*pmd))
3734 		return do_pmd_numa_page(mm, vma, address, pmd);
3735 
3736 	/*
3737 	 * Use __pte_alloc instead of pte_alloc_map, because we can't
3738 	 * run pte_offset_map on the pmd, if an huge pmd could
3739 	 * materialize from under us from a different thread.
3740 	 */
3741 	if (unlikely(pmd_none(*pmd)) &&
3742 	    unlikely(__pte_alloc(mm, vma, pmd, address)))
3743 		return VM_FAULT_OOM;
3744 	/* if an huge pmd materialized from under us just retry later */
3745 	if (unlikely(pmd_trans_huge(*pmd)))
3746 		return 0;
3747 	/*
3748 	 * A regular pmd is established and it can't morph into a huge pmd
3749 	 * from under us anymore at this point because we hold the mmap_sem
3750 	 * read mode and khugepaged takes it in write mode. So now it's
3751 	 * safe to run pte_offset_map().
3752 	 */
3753 	pte = pte_offset_map(pmd, address);
3754 
3755 	return handle_pte_fault(mm, vma, address, pte, pmd, flags);
3756 }
3757 
3758 #ifndef __PAGETABLE_PUD_FOLDED
3759 /*
3760  * Allocate page upper directory.
3761  * We've already handled the fast-path in-line.
3762  */
3763 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3764 {
3765 	pud_t *new = pud_alloc_one(mm, address);
3766 	if (!new)
3767 		return -ENOMEM;
3768 
3769 	smp_wmb(); /* See comment in __pte_alloc */
3770 
3771 	spin_lock(&mm->page_table_lock);
3772 	if (pgd_present(*pgd))		/* Another has populated it */
3773 		pud_free(mm, new);
3774 	else
3775 		pgd_populate(mm, pgd, new);
3776 	spin_unlock(&mm->page_table_lock);
3777 	return 0;
3778 }
3779 #endif /* __PAGETABLE_PUD_FOLDED */
3780 
3781 #ifndef __PAGETABLE_PMD_FOLDED
3782 /*
3783  * Allocate page middle directory.
3784  * We've already handled the fast-path in-line.
3785  */
3786 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
3787 {
3788 	pmd_t *new = pmd_alloc_one(mm, address);
3789 	if (!new)
3790 		return -ENOMEM;
3791 
3792 	smp_wmb(); /* See comment in __pte_alloc */
3793 
3794 	spin_lock(&mm->page_table_lock);
3795 #ifndef __ARCH_HAS_4LEVEL_HACK
3796 	if (pud_present(*pud))		/* Another has populated it */
3797 		pmd_free(mm, new);
3798 	else
3799 		pud_populate(mm, pud, new);
3800 #else
3801 	if (pgd_present(*pud))		/* Another has populated it */
3802 		pmd_free(mm, new);
3803 	else
3804 		pgd_populate(mm, pud, new);
3805 #endif /* __ARCH_HAS_4LEVEL_HACK */
3806 	spin_unlock(&mm->page_table_lock);
3807 	return 0;
3808 }
3809 #endif /* __PAGETABLE_PMD_FOLDED */
3810 
3811 int make_pages_present(unsigned long addr, unsigned long end)
3812 {
3813 	int ret, len, write;
3814 	struct vm_area_struct * vma;
3815 
3816 	vma = find_vma(current->mm, addr);
3817 	if (!vma)
3818 		return -ENOMEM;
3819 	/*
3820 	 * We want to touch writable mappings with a write fault in order
3821 	 * to break COW, except for shared mappings because these don't COW
3822 	 * and we would not want to dirty them for nothing.
3823 	 */
3824 	write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
3825 	BUG_ON(addr >= end);
3826 	BUG_ON(end > vma->vm_end);
3827 	len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
3828 	ret = get_user_pages(current, current->mm, addr,
3829 			len, write, 0, NULL, NULL);
3830 	if (ret < 0)
3831 		return ret;
3832 	return ret == len ? 0 : -EFAULT;
3833 }
3834 
3835 #if !defined(__HAVE_ARCH_GATE_AREA)
3836 
3837 #if defined(AT_SYSINFO_EHDR)
3838 static struct vm_area_struct gate_vma;
3839 
3840 static int __init gate_vma_init(void)
3841 {
3842 	gate_vma.vm_mm = NULL;
3843 	gate_vma.vm_start = FIXADDR_USER_START;
3844 	gate_vma.vm_end = FIXADDR_USER_END;
3845 	gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
3846 	gate_vma.vm_page_prot = __P101;
3847 
3848 	return 0;
3849 }
3850 __initcall(gate_vma_init);
3851 #endif
3852 
3853 struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3854 {
3855 #ifdef AT_SYSINFO_EHDR
3856 	return &gate_vma;
3857 #else
3858 	return NULL;
3859 #endif
3860 }
3861 
3862 int in_gate_area_no_mm(unsigned long addr)
3863 {
3864 #ifdef AT_SYSINFO_EHDR
3865 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
3866 		return 1;
3867 #endif
3868 	return 0;
3869 }
3870 
3871 #endif	/* __HAVE_ARCH_GATE_AREA */
3872 
3873 static int __follow_pte(struct mm_struct *mm, unsigned long address,
3874 		pte_t **ptepp, spinlock_t **ptlp)
3875 {
3876 	pgd_t *pgd;
3877 	pud_t *pud;
3878 	pmd_t *pmd;
3879 	pte_t *ptep;
3880 
3881 	pgd = pgd_offset(mm, address);
3882 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3883 		goto out;
3884 
3885 	pud = pud_offset(pgd, address);
3886 	if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3887 		goto out;
3888 
3889 	pmd = pmd_offset(pud, address);
3890 	VM_BUG_ON(pmd_trans_huge(*pmd));
3891 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3892 		goto out;
3893 
3894 	/* We cannot handle huge page PFN maps. Luckily they don't exist. */
3895 	if (pmd_huge(*pmd))
3896 		goto out;
3897 
3898 	ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3899 	if (!ptep)
3900 		goto out;
3901 	if (!pte_present(*ptep))
3902 		goto unlock;
3903 	*ptepp = ptep;
3904 	return 0;
3905 unlock:
3906 	pte_unmap_unlock(ptep, *ptlp);
3907 out:
3908 	return -EINVAL;
3909 }
3910 
3911 static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3912 			     pte_t **ptepp, spinlock_t **ptlp)
3913 {
3914 	int res;
3915 
3916 	/* (void) is needed to make gcc happy */
3917 	(void) __cond_lock(*ptlp,
3918 			   !(res = __follow_pte(mm, address, ptepp, ptlp)));
3919 	return res;
3920 }
3921 
3922 /**
3923  * follow_pfn - look up PFN at a user virtual address
3924  * @vma: memory mapping
3925  * @address: user virtual address
3926  * @pfn: location to store found PFN
3927  *
3928  * Only IO mappings and raw PFN mappings are allowed.
3929  *
3930  * Returns zero and the pfn at @pfn on success, -ve otherwise.
3931  */
3932 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3933 	unsigned long *pfn)
3934 {
3935 	int ret = -EINVAL;
3936 	spinlock_t *ptl;
3937 	pte_t *ptep;
3938 
3939 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3940 		return ret;
3941 
3942 	ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3943 	if (ret)
3944 		return ret;
3945 	*pfn = pte_pfn(*ptep);
3946 	pte_unmap_unlock(ptep, ptl);
3947 	return 0;
3948 }
3949 EXPORT_SYMBOL(follow_pfn);
3950 
3951 #ifdef CONFIG_HAVE_IOREMAP_PROT
3952 int follow_phys(struct vm_area_struct *vma,
3953 		unsigned long address, unsigned int flags,
3954 		unsigned long *prot, resource_size_t *phys)
3955 {
3956 	int ret = -EINVAL;
3957 	pte_t *ptep, pte;
3958 	spinlock_t *ptl;
3959 
3960 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3961 		goto out;
3962 
3963 	if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
3964 		goto out;
3965 	pte = *ptep;
3966 
3967 	if ((flags & FOLL_WRITE) && !pte_write(pte))
3968 		goto unlock;
3969 
3970 	*prot = pgprot_val(pte_pgprot(pte));
3971 	*phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
3972 
3973 	ret = 0;
3974 unlock:
3975 	pte_unmap_unlock(ptep, ptl);
3976 out:
3977 	return ret;
3978 }
3979 
3980 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3981 			void *buf, int len, int write)
3982 {
3983 	resource_size_t phys_addr;
3984 	unsigned long prot = 0;
3985 	void __iomem *maddr;
3986 	int offset = addr & (PAGE_SIZE-1);
3987 
3988 	if (follow_phys(vma, addr, write, &prot, &phys_addr))
3989 		return -EINVAL;
3990 
3991 	maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3992 	if (write)
3993 		memcpy_toio(maddr + offset, buf, len);
3994 	else
3995 		memcpy_fromio(buf, maddr + offset, len);
3996 	iounmap(maddr);
3997 
3998 	return len;
3999 }
4000 #endif
4001 
4002 /*
4003  * Access another process' address space as given in mm.  If non-NULL, use the
4004  * given task for page fault accounting.
4005  */
4006 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4007 		unsigned long addr, void *buf, int len, int write)
4008 {
4009 	struct vm_area_struct *vma;
4010 	void *old_buf = buf;
4011 
4012 	down_read(&mm->mmap_sem);
4013 	/* ignore errors, just check how much was successfully transferred */
4014 	while (len) {
4015 		int bytes, ret, offset;
4016 		void *maddr;
4017 		struct page *page = NULL;
4018 
4019 		ret = get_user_pages(tsk, mm, addr, 1,
4020 				write, 1, &page, &vma);
4021 		if (ret <= 0) {
4022 			/*
4023 			 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4024 			 * we can access using slightly different code.
4025 			 */
4026 #ifdef CONFIG_HAVE_IOREMAP_PROT
4027 			vma = find_vma(mm, addr);
4028 			if (!vma || vma->vm_start > addr)
4029 				break;
4030 			if (vma->vm_ops && vma->vm_ops->access)
4031 				ret = vma->vm_ops->access(vma, addr, buf,
4032 							  len, write);
4033 			if (ret <= 0)
4034 #endif
4035 				break;
4036 			bytes = ret;
4037 		} else {
4038 			bytes = len;
4039 			offset = addr & (PAGE_SIZE-1);
4040 			if (bytes > PAGE_SIZE-offset)
4041 				bytes = PAGE_SIZE-offset;
4042 
4043 			maddr = kmap(page);
4044 			if (write) {
4045 				copy_to_user_page(vma, page, addr,
4046 						  maddr + offset, buf, bytes);
4047 				set_page_dirty_lock(page);
4048 			} else {
4049 				copy_from_user_page(vma, page, addr,
4050 						    buf, maddr + offset, bytes);
4051 			}
4052 			kunmap(page);
4053 			page_cache_release(page);
4054 		}
4055 		len -= bytes;
4056 		buf += bytes;
4057 		addr += bytes;
4058 	}
4059 	up_read(&mm->mmap_sem);
4060 
4061 	return buf - old_buf;
4062 }
4063 
4064 /**
4065  * access_remote_vm - access another process' address space
4066  * @mm:		the mm_struct of the target address space
4067  * @addr:	start address to access
4068  * @buf:	source or destination buffer
4069  * @len:	number of bytes to transfer
4070  * @write:	whether the access is a write
4071  *
4072  * The caller must hold a reference on @mm.
4073  */
4074 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4075 		void *buf, int len, int write)
4076 {
4077 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
4078 }
4079 
4080 /*
4081  * Access another process' address space.
4082  * Source/target buffer must be kernel space,
4083  * Do not walk the page table directly, use get_user_pages
4084  */
4085 int access_process_vm(struct task_struct *tsk, unsigned long addr,
4086 		void *buf, int len, int write)
4087 {
4088 	struct mm_struct *mm;
4089 	int ret;
4090 
4091 	mm = get_task_mm(tsk);
4092 	if (!mm)
4093 		return 0;
4094 
4095 	ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
4096 	mmput(mm);
4097 
4098 	return ret;
4099 }
4100 
4101 /*
4102  * Print the name of a VMA.
4103  */
4104 void print_vma_addr(char *prefix, unsigned long ip)
4105 {
4106 	struct mm_struct *mm = current->mm;
4107 	struct vm_area_struct *vma;
4108 
4109 	/*
4110 	 * Do not print if we are in atomic
4111 	 * contexts (in exception stacks, etc.):
4112 	 */
4113 	if (preempt_count())
4114 		return;
4115 
4116 	down_read(&mm->mmap_sem);
4117 	vma = find_vma(mm, ip);
4118 	if (vma && vma->vm_file) {
4119 		struct file *f = vma->vm_file;
4120 		char *buf = (char *)__get_free_page(GFP_KERNEL);
4121 		if (buf) {
4122 			char *p;
4123 
4124 			p = d_path(&f->f_path, buf, PAGE_SIZE);
4125 			if (IS_ERR(p))
4126 				p = "?";
4127 			printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4128 					vma->vm_start,
4129 					vma->vm_end - vma->vm_start);
4130 			free_page((unsigned long)buf);
4131 		}
4132 	}
4133 	up_read(&mm->mmap_sem);
4134 }
4135 
4136 #ifdef CONFIG_PROVE_LOCKING
4137 void might_fault(void)
4138 {
4139 	/*
4140 	 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4141 	 * holding the mmap_sem, this is safe because kernel memory doesn't
4142 	 * get paged out, therefore we'll never actually fault, and the
4143 	 * below annotations will generate false positives.
4144 	 */
4145 	if (segment_eq(get_fs(), KERNEL_DS))
4146 		return;
4147 
4148 	might_sleep();
4149 	/*
4150 	 * it would be nicer only to annotate paths which are not under
4151 	 * pagefault_disable, however that requires a larger audit and
4152 	 * providing helpers like get_user_atomic.
4153 	 */
4154 	if (!in_atomic() && current->mm)
4155 		might_lock_read(&current->mm->mmap_sem);
4156 }
4157 EXPORT_SYMBOL(might_fault);
4158 #endif
4159 
4160 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4161 static void clear_gigantic_page(struct page *page,
4162 				unsigned long addr,
4163 				unsigned int pages_per_huge_page)
4164 {
4165 	int i;
4166 	struct page *p = page;
4167 
4168 	might_sleep();
4169 	for (i = 0; i < pages_per_huge_page;
4170 	     i++, p = mem_map_next(p, page, i)) {
4171 		cond_resched();
4172 		clear_user_highpage(p, addr + i * PAGE_SIZE);
4173 	}
4174 }
4175 void clear_huge_page(struct page *page,
4176 		     unsigned long addr, unsigned int pages_per_huge_page)
4177 {
4178 	int i;
4179 
4180 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4181 		clear_gigantic_page(page, addr, pages_per_huge_page);
4182 		return;
4183 	}
4184 
4185 	might_sleep();
4186 	for (i = 0; i < pages_per_huge_page; i++) {
4187 		cond_resched();
4188 		clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4189 	}
4190 }
4191 
4192 static void copy_user_gigantic_page(struct page *dst, struct page *src,
4193 				    unsigned long addr,
4194 				    struct vm_area_struct *vma,
4195 				    unsigned int pages_per_huge_page)
4196 {
4197 	int i;
4198 	struct page *dst_base = dst;
4199 	struct page *src_base = src;
4200 
4201 	for (i = 0; i < pages_per_huge_page; ) {
4202 		cond_resched();
4203 		copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4204 
4205 		i++;
4206 		dst = mem_map_next(dst, dst_base, i);
4207 		src = mem_map_next(src, src_base, i);
4208 	}
4209 }
4210 
4211 void copy_user_huge_page(struct page *dst, struct page *src,
4212 			 unsigned long addr, struct vm_area_struct *vma,
4213 			 unsigned int pages_per_huge_page)
4214 {
4215 	int i;
4216 
4217 	if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4218 		copy_user_gigantic_page(dst, src, addr, vma,
4219 					pages_per_huge_page);
4220 		return;
4221 	}
4222 
4223 	might_sleep();
4224 	for (i = 0; i < pages_per_huge_page; i++) {
4225 		cond_resched();
4226 		copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4227 	}
4228 }
4229 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4230