1 /* 2 * linux/mm/memory.c 3 * 4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 5 */ 6 7 /* 8 * demand-loading started 01.12.91 - seems it is high on the list of 9 * things wanted, and it should be easy to implement. - Linus 10 */ 11 12 /* 13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared 14 * pages started 02.12.91, seems to work. - Linus. 15 * 16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it 17 * would have taken more than the 6M I have free, but it worked well as 18 * far as I could see. 19 * 20 * Also corrected some "invalidate()"s - I wasn't doing enough of them. 21 */ 22 23 /* 24 * Real VM (paging to/from disk) started 18.12.91. Much more work and 25 * thought has to go into this. Oh, well.. 26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why. 27 * Found it. Everything seems to work now. 28 * 20.12.91 - Ok, making the swap-device changeable like the root. 29 */ 30 31 /* 32 * 05.04.94 - Multi-page memory management added for v1.1. 33 * Idea by Alex Bligh (alex@cconcepts.co.uk) 34 * 35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG 36 * (Gerhard.Wichert@pdb.siemens.de) 37 * 38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) 39 */ 40 41 #include <linux/kernel_stat.h> 42 #include <linux/mm.h> 43 #include <linux/sched/mm.h> 44 #include <linux/sched/coredump.h> 45 #include <linux/sched/numa_balancing.h> 46 #include <linux/sched/task.h> 47 #include <linux/hugetlb.h> 48 #include <linux/mman.h> 49 #include <linux/swap.h> 50 #include <linux/highmem.h> 51 #include <linux/pagemap.h> 52 #include <linux/memremap.h> 53 #include <linux/ksm.h> 54 #include <linux/rmap.h> 55 #include <linux/export.h> 56 #include <linux/delayacct.h> 57 #include <linux/init.h> 58 #include <linux/pfn_t.h> 59 #include <linux/writeback.h> 60 #include <linux/memcontrol.h> 61 #include <linux/mmu_notifier.h> 62 #include <linux/swapops.h> 63 #include <linux/elf.h> 64 #include <linux/gfp.h> 65 #include <linux/migrate.h> 66 #include <linux/string.h> 67 #include <linux/dma-debug.h> 68 #include <linux/debugfs.h> 69 #include <linux/userfaultfd_k.h> 70 #include <linux/dax.h> 71 #include <linux/oom.h> 72 73 #include <asm/io.h> 74 #include <asm/mmu_context.h> 75 #include <asm/pgalloc.h> 76 #include <linux/uaccess.h> 77 #include <asm/tlb.h> 78 #include <asm/tlbflush.h> 79 #include <asm/pgtable.h> 80 81 #include "internal.h" 82 83 #if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST) 84 #warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid. 85 #endif 86 87 #ifndef CONFIG_NEED_MULTIPLE_NODES 88 /* use the per-pgdat data instead for discontigmem - mbligh */ 89 unsigned long max_mapnr; 90 EXPORT_SYMBOL(max_mapnr); 91 92 struct page *mem_map; 93 EXPORT_SYMBOL(mem_map); 94 #endif 95 96 /* 97 * A number of key systems in x86 including ioremap() rely on the assumption 98 * that high_memory defines the upper bound on direct map memory, then end 99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL 101 * and ZONE_HIGHMEM. 102 */ 103 void *high_memory; 104 EXPORT_SYMBOL(high_memory); 105 106 /* 107 * Randomize the address space (stacks, mmaps, brk, etc.). 108 * 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization, 110 * as ancient (libc5 based) binaries can segfault. ) 111 */ 112 int randomize_va_space __read_mostly = 113 #ifdef CONFIG_COMPAT_BRK 114 1; 115 #else 116 2; 117 #endif 118 119 static int __init disable_randmaps(char *s) 120 { 121 randomize_va_space = 0; 122 return 1; 123 } 124 __setup("norandmaps", disable_randmaps); 125 126 unsigned long zero_pfn __read_mostly; 127 EXPORT_SYMBOL(zero_pfn); 128 129 unsigned long highest_memmap_pfn __read_mostly; 130 131 /* 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init() 133 */ 134 static int __init init_zero_pfn(void) 135 { 136 zero_pfn = page_to_pfn(ZERO_PAGE(0)); 137 return 0; 138 } 139 core_initcall(init_zero_pfn); 140 141 142 #if defined(SPLIT_RSS_COUNTING) 143 144 void sync_mm_rss(struct mm_struct *mm) 145 { 146 int i; 147 148 for (i = 0; i < NR_MM_COUNTERS; i++) { 149 if (current->rss_stat.count[i]) { 150 add_mm_counter(mm, i, current->rss_stat.count[i]); 151 current->rss_stat.count[i] = 0; 152 } 153 } 154 current->rss_stat.events = 0; 155 } 156 157 static void add_mm_counter_fast(struct mm_struct *mm, int member, int val) 158 { 159 struct task_struct *task = current; 160 161 if (likely(task->mm == mm)) 162 task->rss_stat.count[member] += val; 163 else 164 add_mm_counter(mm, member, val); 165 } 166 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1) 167 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1) 168 169 /* sync counter once per 64 page faults */ 170 #define TASK_RSS_EVENTS_THRESH (64) 171 static void check_sync_rss_stat(struct task_struct *task) 172 { 173 if (unlikely(task != current)) 174 return; 175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH)) 176 sync_mm_rss(task->mm); 177 } 178 #else /* SPLIT_RSS_COUNTING */ 179 180 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member) 181 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member) 182 183 static void check_sync_rss_stat(struct task_struct *task) 184 { 185 } 186 187 #endif /* SPLIT_RSS_COUNTING */ 188 189 /* 190 * Note: this doesn't free the actual pages themselves. That 191 * has been handled earlier when unmapping all the memory regions. 192 */ 193 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd, 194 unsigned long addr) 195 { 196 pgtable_t token = pmd_pgtable(*pmd); 197 pmd_clear(pmd); 198 pte_free_tlb(tlb, token, addr); 199 mm_dec_nr_ptes(tlb->mm); 200 } 201 202 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, 203 unsigned long addr, unsigned long end, 204 unsigned long floor, unsigned long ceiling) 205 { 206 pmd_t *pmd; 207 unsigned long next; 208 unsigned long start; 209 210 start = addr; 211 pmd = pmd_offset(pud, addr); 212 do { 213 next = pmd_addr_end(addr, end); 214 if (pmd_none_or_clear_bad(pmd)) 215 continue; 216 free_pte_range(tlb, pmd, addr); 217 } while (pmd++, addr = next, addr != end); 218 219 start &= PUD_MASK; 220 if (start < floor) 221 return; 222 if (ceiling) { 223 ceiling &= PUD_MASK; 224 if (!ceiling) 225 return; 226 } 227 if (end - 1 > ceiling - 1) 228 return; 229 230 pmd = pmd_offset(pud, start); 231 pud_clear(pud); 232 pmd_free_tlb(tlb, pmd, start); 233 mm_dec_nr_pmds(tlb->mm); 234 } 235 236 static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d, 237 unsigned long addr, unsigned long end, 238 unsigned long floor, unsigned long ceiling) 239 { 240 pud_t *pud; 241 unsigned long next; 242 unsigned long start; 243 244 start = addr; 245 pud = pud_offset(p4d, addr); 246 do { 247 next = pud_addr_end(addr, end); 248 if (pud_none_or_clear_bad(pud)) 249 continue; 250 free_pmd_range(tlb, pud, addr, next, floor, ceiling); 251 } while (pud++, addr = next, addr != end); 252 253 start &= P4D_MASK; 254 if (start < floor) 255 return; 256 if (ceiling) { 257 ceiling &= P4D_MASK; 258 if (!ceiling) 259 return; 260 } 261 if (end - 1 > ceiling - 1) 262 return; 263 264 pud = pud_offset(p4d, start); 265 p4d_clear(p4d); 266 pud_free_tlb(tlb, pud, start); 267 mm_dec_nr_puds(tlb->mm); 268 } 269 270 static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd, 271 unsigned long addr, unsigned long end, 272 unsigned long floor, unsigned long ceiling) 273 { 274 p4d_t *p4d; 275 unsigned long next; 276 unsigned long start; 277 278 start = addr; 279 p4d = p4d_offset(pgd, addr); 280 do { 281 next = p4d_addr_end(addr, end); 282 if (p4d_none_or_clear_bad(p4d)) 283 continue; 284 free_pud_range(tlb, p4d, addr, next, floor, ceiling); 285 } while (p4d++, addr = next, addr != end); 286 287 start &= PGDIR_MASK; 288 if (start < floor) 289 return; 290 if (ceiling) { 291 ceiling &= PGDIR_MASK; 292 if (!ceiling) 293 return; 294 } 295 if (end - 1 > ceiling - 1) 296 return; 297 298 p4d = p4d_offset(pgd, start); 299 pgd_clear(pgd); 300 p4d_free_tlb(tlb, p4d, start); 301 } 302 303 /* 304 * This function frees user-level page tables of a process. 305 */ 306 void free_pgd_range(struct mmu_gather *tlb, 307 unsigned long addr, unsigned long end, 308 unsigned long floor, unsigned long ceiling) 309 { 310 pgd_t *pgd; 311 unsigned long next; 312 313 /* 314 * The next few lines have given us lots of grief... 315 * 316 * Why are we testing PMD* at this top level? Because often 317 * there will be no work to do at all, and we'd prefer not to 318 * go all the way down to the bottom just to discover that. 319 * 320 * Why all these "- 1"s? Because 0 represents both the bottom 321 * of the address space and the top of it (using -1 for the 322 * top wouldn't help much: the masks would do the wrong thing). 323 * The rule is that addr 0 and floor 0 refer to the bottom of 324 * the address space, but end 0 and ceiling 0 refer to the top 325 * Comparisons need to use "end - 1" and "ceiling - 1" (though 326 * that end 0 case should be mythical). 327 * 328 * Wherever addr is brought up or ceiling brought down, we must 329 * be careful to reject "the opposite 0" before it confuses the 330 * subsequent tests. But what about where end is brought down 331 * by PMD_SIZE below? no, end can't go down to 0 there. 332 * 333 * Whereas we round start (addr) and ceiling down, by different 334 * masks at different levels, in order to test whether a table 335 * now has no other vmas using it, so can be freed, we don't 336 * bother to round floor or end up - the tests don't need that. 337 */ 338 339 addr &= PMD_MASK; 340 if (addr < floor) { 341 addr += PMD_SIZE; 342 if (!addr) 343 return; 344 } 345 if (ceiling) { 346 ceiling &= PMD_MASK; 347 if (!ceiling) 348 return; 349 } 350 if (end - 1 > ceiling - 1) 351 end -= PMD_SIZE; 352 if (addr > end - 1) 353 return; 354 /* 355 * We add page table cache pages with PAGE_SIZE, 356 * (see pte_free_tlb()), flush the tlb if we need 357 */ 358 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 359 pgd = pgd_offset(tlb->mm, addr); 360 do { 361 next = pgd_addr_end(addr, end); 362 if (pgd_none_or_clear_bad(pgd)) 363 continue; 364 free_p4d_range(tlb, pgd, addr, next, floor, ceiling); 365 } while (pgd++, addr = next, addr != end); 366 } 367 368 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma, 369 unsigned long floor, unsigned long ceiling) 370 { 371 while (vma) { 372 struct vm_area_struct *next = vma->vm_next; 373 unsigned long addr = vma->vm_start; 374 375 /* 376 * Hide vma from rmap and truncate_pagecache before freeing 377 * pgtables 378 */ 379 unlink_anon_vmas(vma); 380 unlink_file_vma(vma); 381 382 if (is_vm_hugetlb_page(vma)) { 383 hugetlb_free_pgd_range(tlb, addr, vma->vm_end, 384 floor, next ? next->vm_start : ceiling); 385 } else { 386 /* 387 * Optimization: gather nearby vmas into one call down 388 */ 389 while (next && next->vm_start <= vma->vm_end + PMD_SIZE 390 && !is_vm_hugetlb_page(next)) { 391 vma = next; 392 next = vma->vm_next; 393 unlink_anon_vmas(vma); 394 unlink_file_vma(vma); 395 } 396 free_pgd_range(tlb, addr, vma->vm_end, 397 floor, next ? next->vm_start : ceiling); 398 } 399 vma = next; 400 } 401 } 402 403 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd) 404 { 405 spinlock_t *ptl; 406 pgtable_t new = pte_alloc_one(mm); 407 if (!new) 408 return -ENOMEM; 409 410 /* 411 * Ensure all pte setup (eg. pte page lock and page clearing) are 412 * visible before the pte is made visible to other CPUs by being 413 * put into page tables. 414 * 415 * The other side of the story is the pointer chasing in the page 416 * table walking code (when walking the page table without locking; 417 * ie. most of the time). Fortunately, these data accesses consist 418 * of a chain of data-dependent loads, meaning most CPUs (alpha 419 * being the notable exception) will already guarantee loads are 420 * seen in-order. See the alpha page table accessors for the 421 * smp_read_barrier_depends() barriers in page table walking code. 422 */ 423 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */ 424 425 ptl = pmd_lock(mm, pmd); 426 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 427 mm_inc_nr_ptes(mm); 428 pmd_populate(mm, pmd, new); 429 new = NULL; 430 } 431 spin_unlock(ptl); 432 if (new) 433 pte_free(mm, new); 434 return 0; 435 } 436 437 int __pte_alloc_kernel(pmd_t *pmd) 438 { 439 pte_t *new = pte_alloc_one_kernel(&init_mm); 440 if (!new) 441 return -ENOMEM; 442 443 smp_wmb(); /* See comment in __pte_alloc */ 444 445 spin_lock(&init_mm.page_table_lock); 446 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */ 447 pmd_populate_kernel(&init_mm, pmd, new); 448 new = NULL; 449 } 450 spin_unlock(&init_mm.page_table_lock); 451 if (new) 452 pte_free_kernel(&init_mm, new); 453 return 0; 454 } 455 456 static inline void init_rss_vec(int *rss) 457 { 458 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS); 459 } 460 461 static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss) 462 { 463 int i; 464 465 if (current->mm == mm) 466 sync_mm_rss(mm); 467 for (i = 0; i < NR_MM_COUNTERS; i++) 468 if (rss[i]) 469 add_mm_counter(mm, i, rss[i]); 470 } 471 472 /* 473 * This function is called to print an error when a bad pte 474 * is found. For example, we might have a PFN-mapped pte in 475 * a region that doesn't allow it. 476 * 477 * The calling function must still handle the error. 478 */ 479 static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr, 480 pte_t pte, struct page *page) 481 { 482 pgd_t *pgd = pgd_offset(vma->vm_mm, addr); 483 p4d_t *p4d = p4d_offset(pgd, addr); 484 pud_t *pud = pud_offset(p4d, addr); 485 pmd_t *pmd = pmd_offset(pud, addr); 486 struct address_space *mapping; 487 pgoff_t index; 488 static unsigned long resume; 489 static unsigned long nr_shown; 490 static unsigned long nr_unshown; 491 492 /* 493 * Allow a burst of 60 reports, then keep quiet for that minute; 494 * or allow a steady drip of one report per second. 495 */ 496 if (nr_shown == 60) { 497 if (time_before(jiffies, resume)) { 498 nr_unshown++; 499 return; 500 } 501 if (nr_unshown) { 502 pr_alert("BUG: Bad page map: %lu messages suppressed\n", 503 nr_unshown); 504 nr_unshown = 0; 505 } 506 nr_shown = 0; 507 } 508 if (nr_shown++ == 0) 509 resume = jiffies + 60 * HZ; 510 511 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL; 512 index = linear_page_index(vma, addr); 513 514 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n", 515 current->comm, 516 (long long)pte_val(pte), (long long)pmd_val(*pmd)); 517 if (page) 518 dump_page(page, "bad pte"); 519 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n", 520 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index); 521 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n", 522 vma->vm_file, 523 vma->vm_ops ? vma->vm_ops->fault : NULL, 524 vma->vm_file ? vma->vm_file->f_op->mmap : NULL, 525 mapping ? mapping->a_ops->readpage : NULL); 526 dump_stack(); 527 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 528 } 529 530 /* 531 * vm_normal_page -- This function gets the "struct page" associated with a pte. 532 * 533 * "Special" mappings do not wish to be associated with a "struct page" (either 534 * it doesn't exist, or it exists but they don't want to touch it). In this 535 * case, NULL is returned here. "Normal" mappings do have a struct page. 536 * 537 * There are 2 broad cases. Firstly, an architecture may define a pte_special() 538 * pte bit, in which case this function is trivial. Secondly, an architecture 539 * may not have a spare pte bit, which requires a more complicated scheme, 540 * described below. 541 * 542 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a 543 * special mapping (even if there are underlying and valid "struct pages"). 544 * COWed pages of a VM_PFNMAP are always normal. 545 * 546 * The way we recognize COWed pages within VM_PFNMAP mappings is through the 547 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit 548 * set, and the vm_pgoff will point to the first PFN mapped: thus every special 549 * mapping will always honor the rule 550 * 551 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT) 552 * 553 * And for normal mappings this is false. 554 * 555 * This restricts such mappings to be a linear translation from virtual address 556 * to pfn. To get around this restriction, we allow arbitrary mappings so long 557 * as the vma is not a COW mapping; in that case, we know that all ptes are 558 * special (because none can have been COWed). 559 * 560 * 561 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP. 562 * 563 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct 564 * page" backing, however the difference is that _all_ pages with a struct 565 * page (that is, those where pfn_valid is true) are refcounted and considered 566 * normal pages by the VM. The disadvantage is that pages are refcounted 567 * (which can be slower and simply not an option for some PFNMAP users). The 568 * advantage is that we don't have to follow the strict linearity rule of 569 * PFNMAP mappings in order to support COWable mappings. 570 * 571 */ 572 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 573 pte_t pte, bool with_public_device) 574 { 575 unsigned long pfn = pte_pfn(pte); 576 577 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) { 578 if (likely(!pte_special(pte))) 579 goto check_pfn; 580 if (vma->vm_ops && vma->vm_ops->find_special_page) 581 return vma->vm_ops->find_special_page(vma, addr); 582 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)) 583 return NULL; 584 if (is_zero_pfn(pfn)) 585 return NULL; 586 587 /* 588 * Device public pages are special pages (they are ZONE_DEVICE 589 * pages but different from persistent memory). They behave 590 * allmost like normal pages. The difference is that they are 591 * not on the lru and thus should never be involve with any- 592 * thing that involve lru manipulation (mlock, numa balancing, 593 * ...). 594 * 595 * This is why we still want to return NULL for such page from 596 * vm_normal_page() so that we do not have to special case all 597 * call site of vm_normal_page(). 598 */ 599 if (likely(pfn <= highest_memmap_pfn)) { 600 struct page *page = pfn_to_page(pfn); 601 602 if (is_device_public_page(page)) { 603 if (with_public_device) 604 return page; 605 return NULL; 606 } 607 } 608 609 if (pte_devmap(pte)) 610 return NULL; 611 612 print_bad_pte(vma, addr, pte, NULL); 613 return NULL; 614 } 615 616 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */ 617 618 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 619 if (vma->vm_flags & VM_MIXEDMAP) { 620 if (!pfn_valid(pfn)) 621 return NULL; 622 goto out; 623 } else { 624 unsigned long off; 625 off = (addr - vma->vm_start) >> PAGE_SHIFT; 626 if (pfn == vma->vm_pgoff + off) 627 return NULL; 628 if (!is_cow_mapping(vma->vm_flags)) 629 return NULL; 630 } 631 } 632 633 if (is_zero_pfn(pfn)) 634 return NULL; 635 636 check_pfn: 637 if (unlikely(pfn > highest_memmap_pfn)) { 638 print_bad_pte(vma, addr, pte, NULL); 639 return NULL; 640 } 641 642 /* 643 * NOTE! We still have PageReserved() pages in the page tables. 644 * eg. VDSO mappings can cause them to exist. 645 */ 646 out: 647 return pfn_to_page(pfn); 648 } 649 650 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 652 pmd_t pmd) 653 { 654 unsigned long pfn = pmd_pfn(pmd); 655 656 /* 657 * There is no pmd_special() but there may be special pmds, e.g. 658 * in a direct-access (dax) mapping, so let's just replicate the 659 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here. 660 */ 661 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) { 662 if (vma->vm_flags & VM_MIXEDMAP) { 663 if (!pfn_valid(pfn)) 664 return NULL; 665 goto out; 666 } else { 667 unsigned long off; 668 off = (addr - vma->vm_start) >> PAGE_SHIFT; 669 if (pfn == vma->vm_pgoff + off) 670 return NULL; 671 if (!is_cow_mapping(vma->vm_flags)) 672 return NULL; 673 } 674 } 675 676 if (pmd_devmap(pmd)) 677 return NULL; 678 if (is_zero_pfn(pfn)) 679 return NULL; 680 if (unlikely(pfn > highest_memmap_pfn)) 681 return NULL; 682 683 /* 684 * NOTE! We still have PageReserved() pages in the page tables. 685 * eg. VDSO mappings can cause them to exist. 686 */ 687 out: 688 return pfn_to_page(pfn); 689 } 690 #endif 691 692 /* 693 * copy one vm_area from one task to the other. Assumes the page tables 694 * already present in the new task to be cleared in the whole range 695 * covered by this vma. 696 */ 697 698 static inline unsigned long 699 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, 700 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma, 701 unsigned long addr, int *rss) 702 { 703 unsigned long vm_flags = vma->vm_flags; 704 pte_t pte = *src_pte; 705 struct page *page; 706 707 /* pte contains position in swap or file, so copy. */ 708 if (unlikely(!pte_present(pte))) { 709 swp_entry_t entry = pte_to_swp_entry(pte); 710 711 if (likely(!non_swap_entry(entry))) { 712 if (swap_duplicate(entry) < 0) 713 return entry.val; 714 715 /* make sure dst_mm is on swapoff's mmlist. */ 716 if (unlikely(list_empty(&dst_mm->mmlist))) { 717 spin_lock(&mmlist_lock); 718 if (list_empty(&dst_mm->mmlist)) 719 list_add(&dst_mm->mmlist, 720 &src_mm->mmlist); 721 spin_unlock(&mmlist_lock); 722 } 723 rss[MM_SWAPENTS]++; 724 } else if (is_migration_entry(entry)) { 725 page = migration_entry_to_page(entry); 726 727 rss[mm_counter(page)]++; 728 729 if (is_write_migration_entry(entry) && 730 is_cow_mapping(vm_flags)) { 731 /* 732 * COW mappings require pages in both 733 * parent and child to be set to read. 734 */ 735 make_migration_entry_read(&entry); 736 pte = swp_entry_to_pte(entry); 737 if (pte_swp_soft_dirty(*src_pte)) 738 pte = pte_swp_mksoft_dirty(pte); 739 set_pte_at(src_mm, addr, src_pte, pte); 740 } 741 } else if (is_device_private_entry(entry)) { 742 page = device_private_entry_to_page(entry); 743 744 /* 745 * Update rss count even for unaddressable pages, as 746 * they should treated just like normal pages in this 747 * respect. 748 * 749 * We will likely want to have some new rss counters 750 * for unaddressable pages, at some point. But for now 751 * keep things as they are. 752 */ 753 get_page(page); 754 rss[mm_counter(page)]++; 755 page_dup_rmap(page, false); 756 757 /* 758 * We do not preserve soft-dirty information, because so 759 * far, checkpoint/restore is the only feature that 760 * requires that. And checkpoint/restore does not work 761 * when a device driver is involved (you cannot easily 762 * save and restore device driver state). 763 */ 764 if (is_write_device_private_entry(entry) && 765 is_cow_mapping(vm_flags)) { 766 make_device_private_entry_read(&entry); 767 pte = swp_entry_to_pte(entry); 768 set_pte_at(src_mm, addr, src_pte, pte); 769 } 770 } 771 goto out_set_pte; 772 } 773 774 /* 775 * If it's a COW mapping, write protect it both 776 * in the parent and the child 777 */ 778 if (is_cow_mapping(vm_flags) && pte_write(pte)) { 779 ptep_set_wrprotect(src_mm, addr, src_pte); 780 pte = pte_wrprotect(pte); 781 } 782 783 /* 784 * If it's a shared mapping, mark it clean in 785 * the child 786 */ 787 if (vm_flags & VM_SHARED) 788 pte = pte_mkclean(pte); 789 pte = pte_mkold(pte); 790 791 page = vm_normal_page(vma, addr, pte); 792 if (page) { 793 get_page(page); 794 page_dup_rmap(page, false); 795 rss[mm_counter(page)]++; 796 } else if (pte_devmap(pte)) { 797 page = pte_page(pte); 798 799 /* 800 * Cache coherent device memory behave like regular page and 801 * not like persistent memory page. For more informations see 802 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h 803 */ 804 if (is_device_public_page(page)) { 805 get_page(page); 806 page_dup_rmap(page, false); 807 rss[mm_counter(page)]++; 808 } 809 } 810 811 out_set_pte: 812 set_pte_at(dst_mm, addr, dst_pte, pte); 813 return 0; 814 } 815 816 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 817 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, 818 unsigned long addr, unsigned long end) 819 { 820 pte_t *orig_src_pte, *orig_dst_pte; 821 pte_t *src_pte, *dst_pte; 822 spinlock_t *src_ptl, *dst_ptl; 823 int progress = 0; 824 int rss[NR_MM_COUNTERS]; 825 swp_entry_t entry = (swp_entry_t){0}; 826 827 again: 828 init_rss_vec(rss); 829 830 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl); 831 if (!dst_pte) 832 return -ENOMEM; 833 src_pte = pte_offset_map(src_pmd, addr); 834 src_ptl = pte_lockptr(src_mm, src_pmd); 835 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING); 836 orig_src_pte = src_pte; 837 orig_dst_pte = dst_pte; 838 arch_enter_lazy_mmu_mode(); 839 840 do { 841 /* 842 * We are holding two locks at this point - either of them 843 * could generate latencies in another task on another CPU. 844 */ 845 if (progress >= 32) { 846 progress = 0; 847 if (need_resched() || 848 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl)) 849 break; 850 } 851 if (pte_none(*src_pte)) { 852 progress++; 853 continue; 854 } 855 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, 856 vma, addr, rss); 857 if (entry.val) 858 break; 859 progress += 8; 860 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); 861 862 arch_leave_lazy_mmu_mode(); 863 spin_unlock(src_ptl); 864 pte_unmap(orig_src_pte); 865 add_mm_rss_vec(dst_mm, rss); 866 pte_unmap_unlock(orig_dst_pte, dst_ptl); 867 cond_resched(); 868 869 if (entry.val) { 870 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) 871 return -ENOMEM; 872 progress = 0; 873 } 874 if (addr != end) 875 goto again; 876 return 0; 877 } 878 879 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 880 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, 881 unsigned long addr, unsigned long end) 882 { 883 pmd_t *src_pmd, *dst_pmd; 884 unsigned long next; 885 886 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); 887 if (!dst_pmd) 888 return -ENOMEM; 889 src_pmd = pmd_offset(src_pud, addr); 890 do { 891 next = pmd_addr_end(addr, end); 892 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd) 893 || pmd_devmap(*src_pmd)) { 894 int err; 895 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma); 896 err = copy_huge_pmd(dst_mm, src_mm, 897 dst_pmd, src_pmd, addr, vma); 898 if (err == -ENOMEM) 899 return -ENOMEM; 900 if (!err) 901 continue; 902 /* fall through */ 903 } 904 if (pmd_none_or_clear_bad(src_pmd)) 905 continue; 906 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, 907 vma, addr, next)) 908 return -ENOMEM; 909 } while (dst_pmd++, src_pmd++, addr = next, addr != end); 910 return 0; 911 } 912 913 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 914 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma, 915 unsigned long addr, unsigned long end) 916 { 917 pud_t *src_pud, *dst_pud; 918 unsigned long next; 919 920 dst_pud = pud_alloc(dst_mm, dst_p4d, addr); 921 if (!dst_pud) 922 return -ENOMEM; 923 src_pud = pud_offset(src_p4d, addr); 924 do { 925 next = pud_addr_end(addr, end); 926 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) { 927 int err; 928 929 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma); 930 err = copy_huge_pud(dst_mm, src_mm, 931 dst_pud, src_pud, addr, vma); 932 if (err == -ENOMEM) 933 return -ENOMEM; 934 if (!err) 935 continue; 936 /* fall through */ 937 } 938 if (pud_none_or_clear_bad(src_pud)) 939 continue; 940 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, 941 vma, addr, next)) 942 return -ENOMEM; 943 } while (dst_pud++, src_pud++, addr = next, addr != end); 944 return 0; 945 } 946 947 static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 948 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, 949 unsigned long addr, unsigned long end) 950 { 951 p4d_t *src_p4d, *dst_p4d; 952 unsigned long next; 953 954 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr); 955 if (!dst_p4d) 956 return -ENOMEM; 957 src_p4d = p4d_offset(src_pgd, addr); 958 do { 959 next = p4d_addr_end(addr, end); 960 if (p4d_none_or_clear_bad(src_p4d)) 961 continue; 962 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d, 963 vma, addr, next)) 964 return -ENOMEM; 965 } while (dst_p4d++, src_p4d++, addr = next, addr != end); 966 return 0; 967 } 968 969 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, 970 struct vm_area_struct *vma) 971 { 972 pgd_t *src_pgd, *dst_pgd; 973 unsigned long next; 974 unsigned long addr = vma->vm_start; 975 unsigned long end = vma->vm_end; 976 struct mmu_notifier_range range; 977 bool is_cow; 978 int ret; 979 980 /* 981 * Don't copy ptes where a page fault will fill them correctly. 982 * Fork becomes much lighter when there are big shared or private 983 * readonly mappings. The tradeoff is that copy_page_range is more 984 * efficient than faulting. 985 */ 986 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) && 987 !vma->anon_vma) 988 return 0; 989 990 if (is_vm_hugetlb_page(vma)) 991 return copy_hugetlb_page_range(dst_mm, src_mm, vma); 992 993 if (unlikely(vma->vm_flags & VM_PFNMAP)) { 994 /* 995 * We do not free on error cases below as remove_vma 996 * gets called on error from higher level routine 997 */ 998 ret = track_pfn_copy(vma); 999 if (ret) 1000 return ret; 1001 } 1002 1003 /* 1004 * We need to invalidate the secondary MMU mappings only when 1005 * there could be a permission downgrade on the ptes of the 1006 * parent mm. And a permission downgrade will only happen if 1007 * is_cow_mapping() returns true. 1008 */ 1009 is_cow = is_cow_mapping(vma->vm_flags); 1010 1011 if (is_cow) { 1012 mmu_notifier_range_init(&range, src_mm, addr, end); 1013 mmu_notifier_invalidate_range_start(&range); 1014 } 1015 1016 ret = 0; 1017 dst_pgd = pgd_offset(dst_mm, addr); 1018 src_pgd = pgd_offset(src_mm, addr); 1019 do { 1020 next = pgd_addr_end(addr, end); 1021 if (pgd_none_or_clear_bad(src_pgd)) 1022 continue; 1023 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd, 1024 vma, addr, next))) { 1025 ret = -ENOMEM; 1026 break; 1027 } 1028 } while (dst_pgd++, src_pgd++, addr = next, addr != end); 1029 1030 if (is_cow) 1031 mmu_notifier_invalidate_range_end(&range); 1032 return ret; 1033 } 1034 1035 static unsigned long zap_pte_range(struct mmu_gather *tlb, 1036 struct vm_area_struct *vma, pmd_t *pmd, 1037 unsigned long addr, unsigned long end, 1038 struct zap_details *details) 1039 { 1040 struct mm_struct *mm = tlb->mm; 1041 int force_flush = 0; 1042 int rss[NR_MM_COUNTERS]; 1043 spinlock_t *ptl; 1044 pte_t *start_pte; 1045 pte_t *pte; 1046 swp_entry_t entry; 1047 1048 tlb_remove_check_page_size_change(tlb, PAGE_SIZE); 1049 again: 1050 init_rss_vec(rss); 1051 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl); 1052 pte = start_pte; 1053 flush_tlb_batched_pending(mm); 1054 arch_enter_lazy_mmu_mode(); 1055 do { 1056 pte_t ptent = *pte; 1057 if (pte_none(ptent)) 1058 continue; 1059 1060 if (pte_present(ptent)) { 1061 struct page *page; 1062 1063 page = _vm_normal_page(vma, addr, ptent, true); 1064 if (unlikely(details) && page) { 1065 /* 1066 * unmap_shared_mapping_pages() wants to 1067 * invalidate cache without truncating: 1068 * unmap shared but keep private pages. 1069 */ 1070 if (details->check_mapping && 1071 details->check_mapping != page_rmapping(page)) 1072 continue; 1073 } 1074 ptent = ptep_get_and_clear_full(mm, addr, pte, 1075 tlb->fullmm); 1076 tlb_remove_tlb_entry(tlb, pte, addr); 1077 if (unlikely(!page)) 1078 continue; 1079 1080 if (!PageAnon(page)) { 1081 if (pte_dirty(ptent)) { 1082 force_flush = 1; 1083 set_page_dirty(page); 1084 } 1085 if (pte_young(ptent) && 1086 likely(!(vma->vm_flags & VM_SEQ_READ))) 1087 mark_page_accessed(page); 1088 } 1089 rss[mm_counter(page)]--; 1090 page_remove_rmap(page, false); 1091 if (unlikely(page_mapcount(page) < 0)) 1092 print_bad_pte(vma, addr, ptent, page); 1093 if (unlikely(__tlb_remove_page(tlb, page))) { 1094 force_flush = 1; 1095 addr += PAGE_SIZE; 1096 break; 1097 } 1098 continue; 1099 } 1100 1101 entry = pte_to_swp_entry(ptent); 1102 if (non_swap_entry(entry) && is_device_private_entry(entry)) { 1103 struct page *page = device_private_entry_to_page(entry); 1104 1105 if (unlikely(details && details->check_mapping)) { 1106 /* 1107 * unmap_shared_mapping_pages() wants to 1108 * invalidate cache without truncating: 1109 * unmap shared but keep private pages. 1110 */ 1111 if (details->check_mapping != 1112 page_rmapping(page)) 1113 continue; 1114 } 1115 1116 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1117 rss[mm_counter(page)]--; 1118 page_remove_rmap(page, false); 1119 put_page(page); 1120 continue; 1121 } 1122 1123 /* If details->check_mapping, we leave swap entries. */ 1124 if (unlikely(details)) 1125 continue; 1126 1127 entry = pte_to_swp_entry(ptent); 1128 if (!non_swap_entry(entry)) 1129 rss[MM_SWAPENTS]--; 1130 else if (is_migration_entry(entry)) { 1131 struct page *page; 1132 1133 page = migration_entry_to_page(entry); 1134 rss[mm_counter(page)]--; 1135 } 1136 if (unlikely(!free_swap_and_cache(entry))) 1137 print_bad_pte(vma, addr, ptent, NULL); 1138 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm); 1139 } while (pte++, addr += PAGE_SIZE, addr != end); 1140 1141 add_mm_rss_vec(mm, rss); 1142 arch_leave_lazy_mmu_mode(); 1143 1144 /* Do the actual TLB flush before dropping ptl */ 1145 if (force_flush) 1146 tlb_flush_mmu_tlbonly(tlb); 1147 pte_unmap_unlock(start_pte, ptl); 1148 1149 /* 1150 * If we forced a TLB flush (either due to running out of 1151 * batch buffers or because we needed to flush dirty TLB 1152 * entries before releasing the ptl), free the batched 1153 * memory too. Restart if we didn't do everything. 1154 */ 1155 if (force_flush) { 1156 force_flush = 0; 1157 tlb_flush_mmu_free(tlb); 1158 if (addr != end) 1159 goto again; 1160 } 1161 1162 return addr; 1163 } 1164 1165 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb, 1166 struct vm_area_struct *vma, pud_t *pud, 1167 unsigned long addr, unsigned long end, 1168 struct zap_details *details) 1169 { 1170 pmd_t *pmd; 1171 unsigned long next; 1172 1173 pmd = pmd_offset(pud, addr); 1174 do { 1175 next = pmd_addr_end(addr, end); 1176 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) { 1177 if (next - addr != HPAGE_PMD_SIZE) 1178 __split_huge_pmd(vma, pmd, addr, false, NULL); 1179 else if (zap_huge_pmd(tlb, vma, pmd, addr)) 1180 goto next; 1181 /* fall through */ 1182 } 1183 /* 1184 * Here there can be other concurrent MADV_DONTNEED or 1185 * trans huge page faults running, and if the pmd is 1186 * none or trans huge it can change under us. This is 1187 * because MADV_DONTNEED holds the mmap_sem in read 1188 * mode. 1189 */ 1190 if (pmd_none_or_trans_huge_or_clear_bad(pmd)) 1191 goto next; 1192 next = zap_pte_range(tlb, vma, pmd, addr, next, details); 1193 next: 1194 cond_resched(); 1195 } while (pmd++, addr = next, addr != end); 1196 1197 return addr; 1198 } 1199 1200 static inline unsigned long zap_pud_range(struct mmu_gather *tlb, 1201 struct vm_area_struct *vma, p4d_t *p4d, 1202 unsigned long addr, unsigned long end, 1203 struct zap_details *details) 1204 { 1205 pud_t *pud; 1206 unsigned long next; 1207 1208 pud = pud_offset(p4d, addr); 1209 do { 1210 next = pud_addr_end(addr, end); 1211 if (pud_trans_huge(*pud) || pud_devmap(*pud)) { 1212 if (next - addr != HPAGE_PUD_SIZE) { 1213 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma); 1214 split_huge_pud(vma, pud, addr); 1215 } else if (zap_huge_pud(tlb, vma, pud, addr)) 1216 goto next; 1217 /* fall through */ 1218 } 1219 if (pud_none_or_clear_bad(pud)) 1220 continue; 1221 next = zap_pmd_range(tlb, vma, pud, addr, next, details); 1222 next: 1223 cond_resched(); 1224 } while (pud++, addr = next, addr != end); 1225 1226 return addr; 1227 } 1228 1229 static inline unsigned long zap_p4d_range(struct mmu_gather *tlb, 1230 struct vm_area_struct *vma, pgd_t *pgd, 1231 unsigned long addr, unsigned long end, 1232 struct zap_details *details) 1233 { 1234 p4d_t *p4d; 1235 unsigned long next; 1236 1237 p4d = p4d_offset(pgd, addr); 1238 do { 1239 next = p4d_addr_end(addr, end); 1240 if (p4d_none_or_clear_bad(p4d)) 1241 continue; 1242 next = zap_pud_range(tlb, vma, p4d, addr, next, details); 1243 } while (p4d++, addr = next, addr != end); 1244 1245 return addr; 1246 } 1247 1248 void unmap_page_range(struct mmu_gather *tlb, 1249 struct vm_area_struct *vma, 1250 unsigned long addr, unsigned long end, 1251 struct zap_details *details) 1252 { 1253 pgd_t *pgd; 1254 unsigned long next; 1255 1256 BUG_ON(addr >= end); 1257 tlb_start_vma(tlb, vma); 1258 pgd = pgd_offset(vma->vm_mm, addr); 1259 do { 1260 next = pgd_addr_end(addr, end); 1261 if (pgd_none_or_clear_bad(pgd)) 1262 continue; 1263 next = zap_p4d_range(tlb, vma, pgd, addr, next, details); 1264 } while (pgd++, addr = next, addr != end); 1265 tlb_end_vma(tlb, vma); 1266 } 1267 1268 1269 static void unmap_single_vma(struct mmu_gather *tlb, 1270 struct vm_area_struct *vma, unsigned long start_addr, 1271 unsigned long end_addr, 1272 struct zap_details *details) 1273 { 1274 unsigned long start = max(vma->vm_start, start_addr); 1275 unsigned long end; 1276 1277 if (start >= vma->vm_end) 1278 return; 1279 end = min(vma->vm_end, end_addr); 1280 if (end <= vma->vm_start) 1281 return; 1282 1283 if (vma->vm_file) 1284 uprobe_munmap(vma, start, end); 1285 1286 if (unlikely(vma->vm_flags & VM_PFNMAP)) 1287 untrack_pfn(vma, 0, 0); 1288 1289 if (start != end) { 1290 if (unlikely(is_vm_hugetlb_page(vma))) { 1291 /* 1292 * It is undesirable to test vma->vm_file as it 1293 * should be non-null for valid hugetlb area. 1294 * However, vm_file will be NULL in the error 1295 * cleanup path of mmap_region. When 1296 * hugetlbfs ->mmap method fails, 1297 * mmap_region() nullifies vma->vm_file 1298 * before calling this function to clean up. 1299 * Since no pte has actually been setup, it is 1300 * safe to do nothing in this case. 1301 */ 1302 if (vma->vm_file) { 1303 i_mmap_lock_write(vma->vm_file->f_mapping); 1304 __unmap_hugepage_range_final(tlb, vma, start, end, NULL); 1305 i_mmap_unlock_write(vma->vm_file->f_mapping); 1306 } 1307 } else 1308 unmap_page_range(tlb, vma, start, end, details); 1309 } 1310 } 1311 1312 /** 1313 * unmap_vmas - unmap a range of memory covered by a list of vma's 1314 * @tlb: address of the caller's struct mmu_gather 1315 * @vma: the starting vma 1316 * @start_addr: virtual address at which to start unmapping 1317 * @end_addr: virtual address at which to end unmapping 1318 * 1319 * Unmap all pages in the vma list. 1320 * 1321 * Only addresses between `start' and `end' will be unmapped. 1322 * 1323 * The VMA list must be sorted in ascending virtual address order. 1324 * 1325 * unmap_vmas() assumes that the caller will flush the whole unmapped address 1326 * range after unmap_vmas() returns. So the only responsibility here is to 1327 * ensure that any thus-far unmapped pages are flushed before unmap_vmas() 1328 * drops the lock and schedules. 1329 */ 1330 void unmap_vmas(struct mmu_gather *tlb, 1331 struct vm_area_struct *vma, unsigned long start_addr, 1332 unsigned long end_addr) 1333 { 1334 struct mmu_notifier_range range; 1335 1336 mmu_notifier_range_init(&range, vma->vm_mm, start_addr, end_addr); 1337 mmu_notifier_invalidate_range_start(&range); 1338 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) 1339 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL); 1340 mmu_notifier_invalidate_range_end(&range); 1341 } 1342 1343 /** 1344 * zap_page_range - remove user pages in a given range 1345 * @vma: vm_area_struct holding the applicable pages 1346 * @start: starting address of pages to zap 1347 * @size: number of bytes to zap 1348 * 1349 * Caller must protect the VMA list 1350 */ 1351 void zap_page_range(struct vm_area_struct *vma, unsigned long start, 1352 unsigned long size) 1353 { 1354 struct mmu_notifier_range range; 1355 struct mmu_gather tlb; 1356 1357 lru_add_drain(); 1358 mmu_notifier_range_init(&range, vma->vm_mm, start, start + size); 1359 tlb_gather_mmu(&tlb, vma->vm_mm, start, range.end); 1360 update_hiwater_rss(vma->vm_mm); 1361 mmu_notifier_invalidate_range_start(&range); 1362 for ( ; vma && vma->vm_start < range.end; vma = vma->vm_next) 1363 unmap_single_vma(&tlb, vma, start, range.end, NULL); 1364 mmu_notifier_invalidate_range_end(&range); 1365 tlb_finish_mmu(&tlb, start, range.end); 1366 } 1367 1368 /** 1369 * zap_page_range_single - remove user pages in a given range 1370 * @vma: vm_area_struct holding the applicable pages 1371 * @address: starting address of pages to zap 1372 * @size: number of bytes to zap 1373 * @details: details of shared cache invalidation 1374 * 1375 * The range must fit into one VMA. 1376 */ 1377 static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 1378 unsigned long size, struct zap_details *details) 1379 { 1380 struct mmu_notifier_range range; 1381 struct mmu_gather tlb; 1382 1383 lru_add_drain(); 1384 mmu_notifier_range_init(&range, vma->vm_mm, address, address + size); 1385 tlb_gather_mmu(&tlb, vma->vm_mm, address, range.end); 1386 update_hiwater_rss(vma->vm_mm); 1387 mmu_notifier_invalidate_range_start(&range); 1388 unmap_single_vma(&tlb, vma, address, range.end, details); 1389 mmu_notifier_invalidate_range_end(&range); 1390 tlb_finish_mmu(&tlb, address, range.end); 1391 } 1392 1393 /** 1394 * zap_vma_ptes - remove ptes mapping the vma 1395 * @vma: vm_area_struct holding ptes to be zapped 1396 * @address: starting address of pages to zap 1397 * @size: number of bytes to zap 1398 * 1399 * This function only unmaps ptes assigned to VM_PFNMAP vmas. 1400 * 1401 * The entire address range must be fully contained within the vma. 1402 * 1403 */ 1404 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1405 unsigned long size) 1406 { 1407 if (address < vma->vm_start || address + size > vma->vm_end || 1408 !(vma->vm_flags & VM_PFNMAP)) 1409 return; 1410 1411 zap_page_range_single(vma, address, size, NULL); 1412 } 1413 EXPORT_SYMBOL_GPL(zap_vma_ptes); 1414 1415 pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1416 spinlock_t **ptl) 1417 { 1418 pgd_t *pgd; 1419 p4d_t *p4d; 1420 pud_t *pud; 1421 pmd_t *pmd; 1422 1423 pgd = pgd_offset(mm, addr); 1424 p4d = p4d_alloc(mm, pgd, addr); 1425 if (!p4d) 1426 return NULL; 1427 pud = pud_alloc(mm, p4d, addr); 1428 if (!pud) 1429 return NULL; 1430 pmd = pmd_alloc(mm, pud, addr); 1431 if (!pmd) 1432 return NULL; 1433 1434 VM_BUG_ON(pmd_trans_huge(*pmd)); 1435 return pte_alloc_map_lock(mm, pmd, addr, ptl); 1436 } 1437 1438 /* 1439 * This is the old fallback for page remapping. 1440 * 1441 * For historical reasons, it only allows reserved pages. Only 1442 * old drivers should use this, and they needed to mark their 1443 * pages reserved for the old functions anyway. 1444 */ 1445 static int insert_page(struct vm_area_struct *vma, unsigned long addr, 1446 struct page *page, pgprot_t prot) 1447 { 1448 struct mm_struct *mm = vma->vm_mm; 1449 int retval; 1450 pte_t *pte; 1451 spinlock_t *ptl; 1452 1453 retval = -EINVAL; 1454 if (PageAnon(page)) 1455 goto out; 1456 retval = -ENOMEM; 1457 flush_dcache_page(page); 1458 pte = get_locked_pte(mm, addr, &ptl); 1459 if (!pte) 1460 goto out; 1461 retval = -EBUSY; 1462 if (!pte_none(*pte)) 1463 goto out_unlock; 1464 1465 /* Ok, finally just insert the thing.. */ 1466 get_page(page); 1467 inc_mm_counter_fast(mm, mm_counter_file(page)); 1468 page_add_file_rmap(page, false); 1469 set_pte_at(mm, addr, pte, mk_pte(page, prot)); 1470 1471 retval = 0; 1472 pte_unmap_unlock(pte, ptl); 1473 return retval; 1474 out_unlock: 1475 pte_unmap_unlock(pte, ptl); 1476 out: 1477 return retval; 1478 } 1479 1480 /** 1481 * vm_insert_page - insert single page into user vma 1482 * @vma: user vma to map to 1483 * @addr: target user address of this page 1484 * @page: source kernel page 1485 * 1486 * This allows drivers to insert individual pages they've allocated 1487 * into a user vma. 1488 * 1489 * The page has to be a nice clean _individual_ kernel allocation. 1490 * If you allocate a compound page, you need to have marked it as 1491 * such (__GFP_COMP), or manually just split the page up yourself 1492 * (see split_page()). 1493 * 1494 * NOTE! Traditionally this was done with "remap_pfn_range()" which 1495 * took an arbitrary page protection parameter. This doesn't allow 1496 * that. Your vma protection will have to be set up correctly, which 1497 * means that if you want a shared writable mapping, you'd better 1498 * ask for a shared writable mapping! 1499 * 1500 * The page does not need to be reserved. 1501 * 1502 * Usually this function is called from f_op->mmap() handler 1503 * under mm->mmap_sem write-lock, so it can change vma->vm_flags. 1504 * Caller must set VM_MIXEDMAP on vma if it wants to call this 1505 * function from other places, for example from page-fault handler. 1506 */ 1507 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr, 1508 struct page *page) 1509 { 1510 if (addr < vma->vm_start || addr >= vma->vm_end) 1511 return -EFAULT; 1512 if (!page_count(page)) 1513 return -EINVAL; 1514 if (!(vma->vm_flags & VM_MIXEDMAP)) { 1515 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem)); 1516 BUG_ON(vma->vm_flags & VM_PFNMAP); 1517 vma->vm_flags |= VM_MIXEDMAP; 1518 } 1519 return insert_page(vma, addr, page, vma->vm_page_prot); 1520 } 1521 EXPORT_SYMBOL(vm_insert_page); 1522 1523 static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1524 pfn_t pfn, pgprot_t prot, bool mkwrite) 1525 { 1526 struct mm_struct *mm = vma->vm_mm; 1527 pte_t *pte, entry; 1528 spinlock_t *ptl; 1529 1530 pte = get_locked_pte(mm, addr, &ptl); 1531 if (!pte) 1532 return VM_FAULT_OOM; 1533 if (!pte_none(*pte)) { 1534 if (mkwrite) { 1535 /* 1536 * For read faults on private mappings the PFN passed 1537 * in may not match the PFN we have mapped if the 1538 * mapped PFN is a writeable COW page. In the mkwrite 1539 * case we are creating a writable PTE for a shared 1540 * mapping and we expect the PFNs to match. If they 1541 * don't match, we are likely racing with block 1542 * allocation and mapping invalidation so just skip the 1543 * update. 1544 */ 1545 if (pte_pfn(*pte) != pfn_t_to_pfn(pfn)) { 1546 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(*pte))); 1547 goto out_unlock; 1548 } 1549 entry = *pte; 1550 goto out_mkwrite; 1551 } else 1552 goto out_unlock; 1553 } 1554 1555 /* Ok, finally just insert the thing.. */ 1556 if (pfn_t_devmap(pfn)) 1557 entry = pte_mkdevmap(pfn_t_pte(pfn, prot)); 1558 else 1559 entry = pte_mkspecial(pfn_t_pte(pfn, prot)); 1560 1561 out_mkwrite: 1562 if (mkwrite) { 1563 entry = pte_mkyoung(entry); 1564 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 1565 } 1566 1567 set_pte_at(mm, addr, pte, entry); 1568 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */ 1569 1570 out_unlock: 1571 pte_unmap_unlock(pte, ptl); 1572 return VM_FAULT_NOPAGE; 1573 } 1574 1575 /** 1576 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot 1577 * @vma: user vma to map to 1578 * @addr: target user address of this page 1579 * @pfn: source kernel pfn 1580 * @pgprot: pgprot flags for the inserted page 1581 * 1582 * This is exactly like vmf_insert_pfn(), except that it allows drivers to 1583 * to override pgprot on a per-page basis. 1584 * 1585 * This only makes sense for IO mappings, and it makes no sense for 1586 * COW mappings. In general, using multiple vmas is preferable; 1587 * vmf_insert_pfn_prot should only be used if using multiple VMAs is 1588 * impractical. 1589 * 1590 * Context: Process context. May allocate using %GFP_KERNEL. 1591 * Return: vm_fault_t value. 1592 */ 1593 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 1594 unsigned long pfn, pgprot_t pgprot) 1595 { 1596 /* 1597 * Technically, architectures with pte_special can avoid all these 1598 * restrictions (same for remap_pfn_range). However we would like 1599 * consistency in testing and feature parity among all, so we should 1600 * try to keep these invariants in place for everybody. 1601 */ 1602 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))); 1603 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) == 1604 (VM_PFNMAP|VM_MIXEDMAP)); 1605 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags)); 1606 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn)); 1607 1608 if (addr < vma->vm_start || addr >= vma->vm_end) 1609 return VM_FAULT_SIGBUS; 1610 1611 if (!pfn_modify_allowed(pfn, pgprot)) 1612 return VM_FAULT_SIGBUS; 1613 1614 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV)); 1615 1616 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot, 1617 false); 1618 } 1619 EXPORT_SYMBOL(vmf_insert_pfn_prot); 1620 1621 /** 1622 * vmf_insert_pfn - insert single pfn into user vma 1623 * @vma: user vma to map to 1624 * @addr: target user address of this page 1625 * @pfn: source kernel pfn 1626 * 1627 * Similar to vm_insert_page, this allows drivers to insert individual pages 1628 * they've allocated into a user vma. Same comments apply. 1629 * 1630 * This function should only be called from a vm_ops->fault handler, and 1631 * in that case the handler should return the result of this function. 1632 * 1633 * vma cannot be a COW mapping. 1634 * 1635 * As this is called only for pages that do not currently exist, we 1636 * do not need to flush old virtual caches or the TLB. 1637 * 1638 * Context: Process context. May allocate using %GFP_KERNEL. 1639 * Return: vm_fault_t value. 1640 */ 1641 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1642 unsigned long pfn) 1643 { 1644 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot); 1645 } 1646 EXPORT_SYMBOL(vmf_insert_pfn); 1647 1648 static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn) 1649 { 1650 /* these checks mirror the abort conditions in vm_normal_page */ 1651 if (vma->vm_flags & VM_MIXEDMAP) 1652 return true; 1653 if (pfn_t_devmap(pfn)) 1654 return true; 1655 if (pfn_t_special(pfn)) 1656 return true; 1657 if (is_zero_pfn(pfn_t_to_pfn(pfn))) 1658 return true; 1659 return false; 1660 } 1661 1662 static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma, 1663 unsigned long addr, pfn_t pfn, bool mkwrite) 1664 { 1665 pgprot_t pgprot = vma->vm_page_prot; 1666 int err; 1667 1668 BUG_ON(!vm_mixed_ok(vma, pfn)); 1669 1670 if (addr < vma->vm_start || addr >= vma->vm_end) 1671 return VM_FAULT_SIGBUS; 1672 1673 track_pfn_insert(vma, &pgprot, pfn); 1674 1675 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot)) 1676 return VM_FAULT_SIGBUS; 1677 1678 /* 1679 * If we don't have pte special, then we have to use the pfn_valid() 1680 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must* 1681 * refcount the page if pfn_valid is true (hence insert_page rather 1682 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP 1683 * without pte special, it would there be refcounted as a normal page. 1684 */ 1685 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && 1686 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) { 1687 struct page *page; 1688 1689 /* 1690 * At this point we are committed to insert_page() 1691 * regardless of whether the caller specified flags that 1692 * result in pfn_t_has_page() == false. 1693 */ 1694 page = pfn_to_page(pfn_t_to_pfn(pfn)); 1695 err = insert_page(vma, addr, page, pgprot); 1696 } else { 1697 return insert_pfn(vma, addr, pfn, pgprot, mkwrite); 1698 } 1699 1700 if (err == -ENOMEM) 1701 return VM_FAULT_OOM; 1702 if (err < 0 && err != -EBUSY) 1703 return VM_FAULT_SIGBUS; 1704 1705 return VM_FAULT_NOPAGE; 1706 } 1707 1708 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1709 pfn_t pfn) 1710 { 1711 return __vm_insert_mixed(vma, addr, pfn, false); 1712 } 1713 EXPORT_SYMBOL(vmf_insert_mixed); 1714 1715 /* 1716 * If the insertion of PTE failed because someone else already added a 1717 * different entry in the mean time, we treat that as success as we assume 1718 * the same entry was actually inserted. 1719 */ 1720 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 1721 unsigned long addr, pfn_t pfn) 1722 { 1723 return __vm_insert_mixed(vma, addr, pfn, true); 1724 } 1725 EXPORT_SYMBOL(vmf_insert_mixed_mkwrite); 1726 1727 /* 1728 * maps a range of physical memory into the requested pages. the old 1729 * mappings are removed. any references to nonexistent pages results 1730 * in null mappings (currently treated as "copy-on-access") 1731 */ 1732 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, 1733 unsigned long addr, unsigned long end, 1734 unsigned long pfn, pgprot_t prot) 1735 { 1736 pte_t *pte; 1737 spinlock_t *ptl; 1738 int err = 0; 1739 1740 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl); 1741 if (!pte) 1742 return -ENOMEM; 1743 arch_enter_lazy_mmu_mode(); 1744 do { 1745 BUG_ON(!pte_none(*pte)); 1746 if (!pfn_modify_allowed(pfn, prot)) { 1747 err = -EACCES; 1748 break; 1749 } 1750 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot))); 1751 pfn++; 1752 } while (pte++, addr += PAGE_SIZE, addr != end); 1753 arch_leave_lazy_mmu_mode(); 1754 pte_unmap_unlock(pte - 1, ptl); 1755 return err; 1756 } 1757 1758 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, 1759 unsigned long addr, unsigned long end, 1760 unsigned long pfn, pgprot_t prot) 1761 { 1762 pmd_t *pmd; 1763 unsigned long next; 1764 int err; 1765 1766 pfn -= addr >> PAGE_SHIFT; 1767 pmd = pmd_alloc(mm, pud, addr); 1768 if (!pmd) 1769 return -ENOMEM; 1770 VM_BUG_ON(pmd_trans_huge(*pmd)); 1771 do { 1772 next = pmd_addr_end(addr, end); 1773 err = remap_pte_range(mm, pmd, addr, next, 1774 pfn + (addr >> PAGE_SHIFT), prot); 1775 if (err) 1776 return err; 1777 } while (pmd++, addr = next, addr != end); 1778 return 0; 1779 } 1780 1781 static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d, 1782 unsigned long addr, unsigned long end, 1783 unsigned long pfn, pgprot_t prot) 1784 { 1785 pud_t *pud; 1786 unsigned long next; 1787 int err; 1788 1789 pfn -= addr >> PAGE_SHIFT; 1790 pud = pud_alloc(mm, p4d, addr); 1791 if (!pud) 1792 return -ENOMEM; 1793 do { 1794 next = pud_addr_end(addr, end); 1795 err = remap_pmd_range(mm, pud, addr, next, 1796 pfn + (addr >> PAGE_SHIFT), prot); 1797 if (err) 1798 return err; 1799 } while (pud++, addr = next, addr != end); 1800 return 0; 1801 } 1802 1803 static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd, 1804 unsigned long addr, unsigned long end, 1805 unsigned long pfn, pgprot_t prot) 1806 { 1807 p4d_t *p4d; 1808 unsigned long next; 1809 int err; 1810 1811 pfn -= addr >> PAGE_SHIFT; 1812 p4d = p4d_alloc(mm, pgd, addr); 1813 if (!p4d) 1814 return -ENOMEM; 1815 do { 1816 next = p4d_addr_end(addr, end); 1817 err = remap_pud_range(mm, p4d, addr, next, 1818 pfn + (addr >> PAGE_SHIFT), prot); 1819 if (err) 1820 return err; 1821 } while (p4d++, addr = next, addr != end); 1822 return 0; 1823 } 1824 1825 /** 1826 * remap_pfn_range - remap kernel memory to userspace 1827 * @vma: user vma to map to 1828 * @addr: target user address to start at 1829 * @pfn: physical address of kernel memory 1830 * @size: size of map area 1831 * @prot: page protection flags for this mapping 1832 * 1833 * Note: this is only safe if the mm semaphore is held when called. 1834 */ 1835 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, 1836 unsigned long pfn, unsigned long size, pgprot_t prot) 1837 { 1838 pgd_t *pgd; 1839 unsigned long next; 1840 unsigned long end = addr + PAGE_ALIGN(size); 1841 struct mm_struct *mm = vma->vm_mm; 1842 unsigned long remap_pfn = pfn; 1843 int err; 1844 1845 /* 1846 * Physically remapped pages are special. Tell the 1847 * rest of the world about it: 1848 * VM_IO tells people not to look at these pages 1849 * (accesses can have side effects). 1850 * VM_PFNMAP tells the core MM that the base pages are just 1851 * raw PFN mappings, and do not have a "struct page" associated 1852 * with them. 1853 * VM_DONTEXPAND 1854 * Disable vma merging and expanding with mremap(). 1855 * VM_DONTDUMP 1856 * Omit vma from core dump, even when VM_IO turned off. 1857 * 1858 * There's a horrible special case to handle copy-on-write 1859 * behaviour that some programs depend on. We mark the "original" 1860 * un-COW'ed pages by matching them up with "vma->vm_pgoff". 1861 * See vm_normal_page() for details. 1862 */ 1863 if (is_cow_mapping(vma->vm_flags)) { 1864 if (addr != vma->vm_start || end != vma->vm_end) 1865 return -EINVAL; 1866 vma->vm_pgoff = pfn; 1867 } 1868 1869 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size)); 1870 if (err) 1871 return -EINVAL; 1872 1873 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP; 1874 1875 BUG_ON(addr >= end); 1876 pfn -= addr >> PAGE_SHIFT; 1877 pgd = pgd_offset(mm, addr); 1878 flush_cache_range(vma, addr, end); 1879 do { 1880 next = pgd_addr_end(addr, end); 1881 err = remap_p4d_range(mm, pgd, addr, next, 1882 pfn + (addr >> PAGE_SHIFT), prot); 1883 if (err) 1884 break; 1885 } while (pgd++, addr = next, addr != end); 1886 1887 if (err) 1888 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size)); 1889 1890 return err; 1891 } 1892 EXPORT_SYMBOL(remap_pfn_range); 1893 1894 /** 1895 * vm_iomap_memory - remap memory to userspace 1896 * @vma: user vma to map to 1897 * @start: start of area 1898 * @len: size of area 1899 * 1900 * This is a simplified io_remap_pfn_range() for common driver use. The 1901 * driver just needs to give us the physical memory range to be mapped, 1902 * we'll figure out the rest from the vma information. 1903 * 1904 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get 1905 * whatever write-combining details or similar. 1906 */ 1907 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len) 1908 { 1909 unsigned long vm_len, pfn, pages; 1910 1911 /* Check that the physical memory area passed in looks valid */ 1912 if (start + len < start) 1913 return -EINVAL; 1914 /* 1915 * You *really* shouldn't map things that aren't page-aligned, 1916 * but we've historically allowed it because IO memory might 1917 * just have smaller alignment. 1918 */ 1919 len += start & ~PAGE_MASK; 1920 pfn = start >> PAGE_SHIFT; 1921 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT; 1922 if (pfn + pages < pfn) 1923 return -EINVAL; 1924 1925 /* We start the mapping 'vm_pgoff' pages into the area */ 1926 if (vma->vm_pgoff > pages) 1927 return -EINVAL; 1928 pfn += vma->vm_pgoff; 1929 pages -= vma->vm_pgoff; 1930 1931 /* Can we fit all of the mapping? */ 1932 vm_len = vma->vm_end - vma->vm_start; 1933 if (vm_len >> PAGE_SHIFT > pages) 1934 return -EINVAL; 1935 1936 /* Ok, let it rip */ 1937 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot); 1938 } 1939 EXPORT_SYMBOL(vm_iomap_memory); 1940 1941 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd, 1942 unsigned long addr, unsigned long end, 1943 pte_fn_t fn, void *data) 1944 { 1945 pte_t *pte; 1946 int err; 1947 pgtable_t token; 1948 spinlock_t *uninitialized_var(ptl); 1949 1950 pte = (mm == &init_mm) ? 1951 pte_alloc_kernel(pmd, addr) : 1952 pte_alloc_map_lock(mm, pmd, addr, &ptl); 1953 if (!pte) 1954 return -ENOMEM; 1955 1956 BUG_ON(pmd_huge(*pmd)); 1957 1958 arch_enter_lazy_mmu_mode(); 1959 1960 token = pmd_pgtable(*pmd); 1961 1962 do { 1963 err = fn(pte++, token, addr, data); 1964 if (err) 1965 break; 1966 } while (addr += PAGE_SIZE, addr != end); 1967 1968 arch_leave_lazy_mmu_mode(); 1969 1970 if (mm != &init_mm) 1971 pte_unmap_unlock(pte-1, ptl); 1972 return err; 1973 } 1974 1975 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud, 1976 unsigned long addr, unsigned long end, 1977 pte_fn_t fn, void *data) 1978 { 1979 pmd_t *pmd; 1980 unsigned long next; 1981 int err; 1982 1983 BUG_ON(pud_huge(*pud)); 1984 1985 pmd = pmd_alloc(mm, pud, addr); 1986 if (!pmd) 1987 return -ENOMEM; 1988 do { 1989 next = pmd_addr_end(addr, end); 1990 err = apply_to_pte_range(mm, pmd, addr, next, fn, data); 1991 if (err) 1992 break; 1993 } while (pmd++, addr = next, addr != end); 1994 return err; 1995 } 1996 1997 static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d, 1998 unsigned long addr, unsigned long end, 1999 pte_fn_t fn, void *data) 2000 { 2001 pud_t *pud; 2002 unsigned long next; 2003 int err; 2004 2005 pud = pud_alloc(mm, p4d, addr); 2006 if (!pud) 2007 return -ENOMEM; 2008 do { 2009 next = pud_addr_end(addr, end); 2010 err = apply_to_pmd_range(mm, pud, addr, next, fn, data); 2011 if (err) 2012 break; 2013 } while (pud++, addr = next, addr != end); 2014 return err; 2015 } 2016 2017 static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd, 2018 unsigned long addr, unsigned long end, 2019 pte_fn_t fn, void *data) 2020 { 2021 p4d_t *p4d; 2022 unsigned long next; 2023 int err; 2024 2025 p4d = p4d_alloc(mm, pgd, addr); 2026 if (!p4d) 2027 return -ENOMEM; 2028 do { 2029 next = p4d_addr_end(addr, end); 2030 err = apply_to_pud_range(mm, p4d, addr, next, fn, data); 2031 if (err) 2032 break; 2033 } while (p4d++, addr = next, addr != end); 2034 return err; 2035 } 2036 2037 /* 2038 * Scan a region of virtual memory, filling in page tables as necessary 2039 * and calling a provided function on each leaf page table. 2040 */ 2041 int apply_to_page_range(struct mm_struct *mm, unsigned long addr, 2042 unsigned long size, pte_fn_t fn, void *data) 2043 { 2044 pgd_t *pgd; 2045 unsigned long next; 2046 unsigned long end = addr + size; 2047 int err; 2048 2049 if (WARN_ON(addr >= end)) 2050 return -EINVAL; 2051 2052 pgd = pgd_offset(mm, addr); 2053 do { 2054 next = pgd_addr_end(addr, end); 2055 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data); 2056 if (err) 2057 break; 2058 } while (pgd++, addr = next, addr != end); 2059 2060 return err; 2061 } 2062 EXPORT_SYMBOL_GPL(apply_to_page_range); 2063 2064 /* 2065 * handle_pte_fault chooses page fault handler according to an entry which was 2066 * read non-atomically. Before making any commitment, on those architectures 2067 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched 2068 * parts, do_swap_page must check under lock before unmapping the pte and 2069 * proceeding (but do_wp_page is only called after already making such a check; 2070 * and do_anonymous_page can safely check later on). 2071 */ 2072 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd, 2073 pte_t *page_table, pte_t orig_pte) 2074 { 2075 int same = 1; 2076 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT) 2077 if (sizeof(pte_t) > sizeof(unsigned long)) { 2078 spinlock_t *ptl = pte_lockptr(mm, pmd); 2079 spin_lock(ptl); 2080 same = pte_same(*page_table, orig_pte); 2081 spin_unlock(ptl); 2082 } 2083 #endif 2084 pte_unmap(page_table); 2085 return same; 2086 } 2087 2088 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma) 2089 { 2090 debug_dma_assert_idle(src); 2091 2092 /* 2093 * If the source page was a PFN mapping, we don't have 2094 * a "struct page" for it. We do a best-effort copy by 2095 * just copying from the original user address. If that 2096 * fails, we just zero-fill it. Live with it. 2097 */ 2098 if (unlikely(!src)) { 2099 void *kaddr = kmap_atomic(dst); 2100 void __user *uaddr = (void __user *)(va & PAGE_MASK); 2101 2102 /* 2103 * This really shouldn't fail, because the page is there 2104 * in the page tables. But it might just be unreadable, 2105 * in which case we just give up and fill the result with 2106 * zeroes. 2107 */ 2108 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) 2109 clear_page(kaddr); 2110 kunmap_atomic(kaddr); 2111 flush_dcache_page(dst); 2112 } else 2113 copy_user_highpage(dst, src, va, vma); 2114 } 2115 2116 static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma) 2117 { 2118 struct file *vm_file = vma->vm_file; 2119 2120 if (vm_file) 2121 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO; 2122 2123 /* 2124 * Special mappings (e.g. VDSO) do not have any file so fake 2125 * a default GFP_KERNEL for them. 2126 */ 2127 return GFP_KERNEL; 2128 } 2129 2130 /* 2131 * Notify the address space that the page is about to become writable so that 2132 * it can prohibit this or wait for the page to get into an appropriate state. 2133 * 2134 * We do this without the lock held, so that it can sleep if it needs to. 2135 */ 2136 static vm_fault_t do_page_mkwrite(struct vm_fault *vmf) 2137 { 2138 vm_fault_t ret; 2139 struct page *page = vmf->page; 2140 unsigned int old_flags = vmf->flags; 2141 2142 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE; 2143 2144 ret = vmf->vma->vm_ops->page_mkwrite(vmf); 2145 /* Restore original flags so that caller is not surprised */ 2146 vmf->flags = old_flags; 2147 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) 2148 return ret; 2149 if (unlikely(!(ret & VM_FAULT_LOCKED))) { 2150 lock_page(page); 2151 if (!page->mapping) { 2152 unlock_page(page); 2153 return 0; /* retry */ 2154 } 2155 ret |= VM_FAULT_LOCKED; 2156 } else 2157 VM_BUG_ON_PAGE(!PageLocked(page), page); 2158 return ret; 2159 } 2160 2161 /* 2162 * Handle dirtying of a page in shared file mapping on a write fault. 2163 * 2164 * The function expects the page to be locked and unlocks it. 2165 */ 2166 static void fault_dirty_shared_page(struct vm_area_struct *vma, 2167 struct page *page) 2168 { 2169 struct address_space *mapping; 2170 bool dirtied; 2171 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite; 2172 2173 dirtied = set_page_dirty(page); 2174 VM_BUG_ON_PAGE(PageAnon(page), page); 2175 /* 2176 * Take a local copy of the address_space - page.mapping may be zeroed 2177 * by truncate after unlock_page(). The address_space itself remains 2178 * pinned by vma->vm_file's reference. We rely on unlock_page()'s 2179 * release semantics to prevent the compiler from undoing this copying. 2180 */ 2181 mapping = page_rmapping(page); 2182 unlock_page(page); 2183 2184 if ((dirtied || page_mkwrite) && mapping) { 2185 /* 2186 * Some device drivers do not set page.mapping 2187 * but still dirty their pages 2188 */ 2189 balance_dirty_pages_ratelimited(mapping); 2190 } 2191 2192 if (!page_mkwrite) 2193 file_update_time(vma->vm_file); 2194 } 2195 2196 /* 2197 * Handle write page faults for pages that can be reused in the current vma 2198 * 2199 * This can happen either due to the mapping being with the VM_SHARED flag, 2200 * or due to us being the last reference standing to the page. In either 2201 * case, all we need to do here is to mark the page as writable and update 2202 * any related book-keeping. 2203 */ 2204 static inline void wp_page_reuse(struct vm_fault *vmf) 2205 __releases(vmf->ptl) 2206 { 2207 struct vm_area_struct *vma = vmf->vma; 2208 struct page *page = vmf->page; 2209 pte_t entry; 2210 /* 2211 * Clear the pages cpupid information as the existing 2212 * information potentially belongs to a now completely 2213 * unrelated process. 2214 */ 2215 if (page) 2216 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1); 2217 2218 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2219 entry = pte_mkyoung(vmf->orig_pte); 2220 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2221 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1)) 2222 update_mmu_cache(vma, vmf->address, vmf->pte); 2223 pte_unmap_unlock(vmf->pte, vmf->ptl); 2224 } 2225 2226 /* 2227 * Handle the case of a page which we actually need to copy to a new page. 2228 * 2229 * Called with mmap_sem locked and the old page referenced, but 2230 * without the ptl held. 2231 * 2232 * High level logic flow: 2233 * 2234 * - Allocate a page, copy the content of the old page to the new one. 2235 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc. 2236 * - Take the PTL. If the pte changed, bail out and release the allocated page 2237 * - If the pte is still the way we remember it, update the page table and all 2238 * relevant references. This includes dropping the reference the page-table 2239 * held to the old page, as well as updating the rmap. 2240 * - In any case, unlock the PTL and drop the reference we took to the old page. 2241 */ 2242 static vm_fault_t wp_page_copy(struct vm_fault *vmf) 2243 { 2244 struct vm_area_struct *vma = vmf->vma; 2245 struct mm_struct *mm = vma->vm_mm; 2246 struct page *old_page = vmf->page; 2247 struct page *new_page = NULL; 2248 pte_t entry; 2249 int page_copied = 0; 2250 struct mem_cgroup *memcg; 2251 struct mmu_notifier_range range; 2252 2253 if (unlikely(anon_vma_prepare(vma))) 2254 goto oom; 2255 2256 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) { 2257 new_page = alloc_zeroed_user_highpage_movable(vma, 2258 vmf->address); 2259 if (!new_page) 2260 goto oom; 2261 } else { 2262 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2263 vmf->address); 2264 if (!new_page) 2265 goto oom; 2266 cow_user_page(new_page, old_page, vmf->address, vma); 2267 } 2268 2269 if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false)) 2270 goto oom_free_new; 2271 2272 __SetPageUptodate(new_page); 2273 2274 mmu_notifier_range_init(&range, mm, vmf->address & PAGE_MASK, 2275 (vmf->address & PAGE_MASK) + PAGE_SIZE); 2276 mmu_notifier_invalidate_range_start(&range); 2277 2278 /* 2279 * Re-check the pte - we dropped the lock 2280 */ 2281 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl); 2282 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) { 2283 if (old_page) { 2284 if (!PageAnon(old_page)) { 2285 dec_mm_counter_fast(mm, 2286 mm_counter_file(old_page)); 2287 inc_mm_counter_fast(mm, MM_ANONPAGES); 2288 } 2289 } else { 2290 inc_mm_counter_fast(mm, MM_ANONPAGES); 2291 } 2292 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte)); 2293 entry = mk_pte(new_page, vma->vm_page_prot); 2294 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 2295 /* 2296 * Clear the pte entry and flush it first, before updating the 2297 * pte with the new entry. This will avoid a race condition 2298 * seen in the presence of one thread doing SMC and another 2299 * thread doing COW. 2300 */ 2301 ptep_clear_flush_notify(vma, vmf->address, vmf->pte); 2302 page_add_new_anon_rmap(new_page, vma, vmf->address, false); 2303 mem_cgroup_commit_charge(new_page, memcg, false, false); 2304 lru_cache_add_active_or_unevictable(new_page, vma); 2305 /* 2306 * We call the notify macro here because, when using secondary 2307 * mmu page tables (such as kvm shadow page tables), we want the 2308 * new page to be mapped directly into the secondary page table. 2309 */ 2310 set_pte_at_notify(mm, vmf->address, vmf->pte, entry); 2311 update_mmu_cache(vma, vmf->address, vmf->pte); 2312 if (old_page) { 2313 /* 2314 * Only after switching the pte to the new page may 2315 * we remove the mapcount here. Otherwise another 2316 * process may come and find the rmap count decremented 2317 * before the pte is switched to the new page, and 2318 * "reuse" the old page writing into it while our pte 2319 * here still points into it and can be read by other 2320 * threads. 2321 * 2322 * The critical issue is to order this 2323 * page_remove_rmap with the ptp_clear_flush above. 2324 * Those stores are ordered by (if nothing else,) 2325 * the barrier present in the atomic_add_negative 2326 * in page_remove_rmap. 2327 * 2328 * Then the TLB flush in ptep_clear_flush ensures that 2329 * no process can access the old page before the 2330 * decremented mapcount is visible. And the old page 2331 * cannot be reused until after the decremented 2332 * mapcount is visible. So transitively, TLBs to 2333 * old page will be flushed before it can be reused. 2334 */ 2335 page_remove_rmap(old_page, false); 2336 } 2337 2338 /* Free the old page.. */ 2339 new_page = old_page; 2340 page_copied = 1; 2341 } else { 2342 mem_cgroup_cancel_charge(new_page, memcg, false); 2343 } 2344 2345 if (new_page) 2346 put_page(new_page); 2347 2348 pte_unmap_unlock(vmf->pte, vmf->ptl); 2349 /* 2350 * No need to double call mmu_notifier->invalidate_range() callback as 2351 * the above ptep_clear_flush_notify() did already call it. 2352 */ 2353 mmu_notifier_invalidate_range_only_end(&range); 2354 if (old_page) { 2355 /* 2356 * Don't let another task, with possibly unlocked vma, 2357 * keep the mlocked page. 2358 */ 2359 if (page_copied && (vma->vm_flags & VM_LOCKED)) { 2360 lock_page(old_page); /* LRU manipulation */ 2361 if (PageMlocked(old_page)) 2362 munlock_vma_page(old_page); 2363 unlock_page(old_page); 2364 } 2365 put_page(old_page); 2366 } 2367 return page_copied ? VM_FAULT_WRITE : 0; 2368 oom_free_new: 2369 put_page(new_page); 2370 oom: 2371 if (old_page) 2372 put_page(old_page); 2373 return VM_FAULT_OOM; 2374 } 2375 2376 /** 2377 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE 2378 * writeable once the page is prepared 2379 * 2380 * @vmf: structure describing the fault 2381 * 2382 * This function handles all that is needed to finish a write page fault in a 2383 * shared mapping due to PTE being read-only once the mapped page is prepared. 2384 * It handles locking of PTE and modifying it. The function returns 2385 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE 2386 * lock. 2387 * 2388 * The function expects the page to be locked or other protection against 2389 * concurrent faults / writeback (such as DAX radix tree locks). 2390 */ 2391 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf) 2392 { 2393 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED)); 2394 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address, 2395 &vmf->ptl); 2396 /* 2397 * We might have raced with another page fault while we released the 2398 * pte_offset_map_lock. 2399 */ 2400 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2401 pte_unmap_unlock(vmf->pte, vmf->ptl); 2402 return VM_FAULT_NOPAGE; 2403 } 2404 wp_page_reuse(vmf); 2405 return 0; 2406 } 2407 2408 /* 2409 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED 2410 * mapping 2411 */ 2412 static vm_fault_t wp_pfn_shared(struct vm_fault *vmf) 2413 { 2414 struct vm_area_struct *vma = vmf->vma; 2415 2416 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) { 2417 vm_fault_t ret; 2418 2419 pte_unmap_unlock(vmf->pte, vmf->ptl); 2420 vmf->flags |= FAULT_FLAG_MKWRITE; 2421 ret = vma->vm_ops->pfn_mkwrite(vmf); 2422 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)) 2423 return ret; 2424 return finish_mkwrite_fault(vmf); 2425 } 2426 wp_page_reuse(vmf); 2427 return VM_FAULT_WRITE; 2428 } 2429 2430 static vm_fault_t wp_page_shared(struct vm_fault *vmf) 2431 __releases(vmf->ptl) 2432 { 2433 struct vm_area_struct *vma = vmf->vma; 2434 2435 get_page(vmf->page); 2436 2437 if (vma->vm_ops && vma->vm_ops->page_mkwrite) { 2438 vm_fault_t tmp; 2439 2440 pte_unmap_unlock(vmf->pte, vmf->ptl); 2441 tmp = do_page_mkwrite(vmf); 2442 if (unlikely(!tmp || (tmp & 2443 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 2444 put_page(vmf->page); 2445 return tmp; 2446 } 2447 tmp = finish_mkwrite_fault(vmf); 2448 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) { 2449 unlock_page(vmf->page); 2450 put_page(vmf->page); 2451 return tmp; 2452 } 2453 } else { 2454 wp_page_reuse(vmf); 2455 lock_page(vmf->page); 2456 } 2457 fault_dirty_shared_page(vma, vmf->page); 2458 put_page(vmf->page); 2459 2460 return VM_FAULT_WRITE; 2461 } 2462 2463 /* 2464 * This routine handles present pages, when users try to write 2465 * to a shared page. It is done by copying the page to a new address 2466 * and decrementing the shared-page counter for the old page. 2467 * 2468 * Note that this routine assumes that the protection checks have been 2469 * done by the caller (the low-level page fault routine in most cases). 2470 * Thus we can safely just mark it writable once we've done any necessary 2471 * COW. 2472 * 2473 * We also mark the page dirty at this point even though the page will 2474 * change only once the write actually happens. This avoids a few races, 2475 * and potentially makes it more efficient. 2476 * 2477 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2478 * but allow concurrent faults), with pte both mapped and locked. 2479 * We return with mmap_sem still held, but pte unmapped and unlocked. 2480 */ 2481 static vm_fault_t do_wp_page(struct vm_fault *vmf) 2482 __releases(vmf->ptl) 2483 { 2484 struct vm_area_struct *vma = vmf->vma; 2485 2486 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte); 2487 if (!vmf->page) { 2488 /* 2489 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a 2490 * VM_PFNMAP VMA. 2491 * 2492 * We should not cow pages in a shared writeable mapping. 2493 * Just mark the pages writable and/or call ops->pfn_mkwrite. 2494 */ 2495 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2496 (VM_WRITE|VM_SHARED)) 2497 return wp_pfn_shared(vmf); 2498 2499 pte_unmap_unlock(vmf->pte, vmf->ptl); 2500 return wp_page_copy(vmf); 2501 } 2502 2503 /* 2504 * Take out anonymous pages first, anonymous shared vmas are 2505 * not dirty accountable. 2506 */ 2507 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) { 2508 int total_map_swapcount; 2509 if (!trylock_page(vmf->page)) { 2510 get_page(vmf->page); 2511 pte_unmap_unlock(vmf->pte, vmf->ptl); 2512 lock_page(vmf->page); 2513 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2514 vmf->address, &vmf->ptl); 2515 if (!pte_same(*vmf->pte, vmf->orig_pte)) { 2516 unlock_page(vmf->page); 2517 pte_unmap_unlock(vmf->pte, vmf->ptl); 2518 put_page(vmf->page); 2519 return 0; 2520 } 2521 put_page(vmf->page); 2522 } 2523 if (reuse_swap_page(vmf->page, &total_map_swapcount)) { 2524 if (total_map_swapcount == 1) { 2525 /* 2526 * The page is all ours. Move it to 2527 * our anon_vma so the rmap code will 2528 * not search our parent or siblings. 2529 * Protected against the rmap code by 2530 * the page lock. 2531 */ 2532 page_move_anon_rmap(vmf->page, vma); 2533 } 2534 unlock_page(vmf->page); 2535 wp_page_reuse(vmf); 2536 return VM_FAULT_WRITE; 2537 } 2538 unlock_page(vmf->page); 2539 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) == 2540 (VM_WRITE|VM_SHARED))) { 2541 return wp_page_shared(vmf); 2542 } 2543 2544 /* 2545 * Ok, we need to copy. Oh, well.. 2546 */ 2547 get_page(vmf->page); 2548 2549 pte_unmap_unlock(vmf->pte, vmf->ptl); 2550 return wp_page_copy(vmf); 2551 } 2552 2553 static void unmap_mapping_range_vma(struct vm_area_struct *vma, 2554 unsigned long start_addr, unsigned long end_addr, 2555 struct zap_details *details) 2556 { 2557 zap_page_range_single(vma, start_addr, end_addr - start_addr, details); 2558 } 2559 2560 static inline void unmap_mapping_range_tree(struct rb_root_cached *root, 2561 struct zap_details *details) 2562 { 2563 struct vm_area_struct *vma; 2564 pgoff_t vba, vea, zba, zea; 2565 2566 vma_interval_tree_foreach(vma, root, 2567 details->first_index, details->last_index) { 2568 2569 vba = vma->vm_pgoff; 2570 vea = vba + vma_pages(vma) - 1; 2571 zba = details->first_index; 2572 if (zba < vba) 2573 zba = vba; 2574 zea = details->last_index; 2575 if (zea > vea) 2576 zea = vea; 2577 2578 unmap_mapping_range_vma(vma, 2579 ((zba - vba) << PAGE_SHIFT) + vma->vm_start, 2580 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, 2581 details); 2582 } 2583 } 2584 2585 /** 2586 * unmap_mapping_pages() - Unmap pages from processes. 2587 * @mapping: The address space containing pages to be unmapped. 2588 * @start: Index of first page to be unmapped. 2589 * @nr: Number of pages to be unmapped. 0 to unmap to end of file. 2590 * @even_cows: Whether to unmap even private COWed pages. 2591 * 2592 * Unmap the pages in this address space from any userspace process which 2593 * has them mmaped. Generally, you want to remove COWed pages as well when 2594 * a file is being truncated, but not when invalidating pages from the page 2595 * cache. 2596 */ 2597 void unmap_mapping_pages(struct address_space *mapping, pgoff_t start, 2598 pgoff_t nr, bool even_cows) 2599 { 2600 struct zap_details details = { }; 2601 2602 details.check_mapping = even_cows ? NULL : mapping; 2603 details.first_index = start; 2604 details.last_index = start + nr - 1; 2605 if (details.last_index < details.first_index) 2606 details.last_index = ULONG_MAX; 2607 2608 i_mmap_lock_write(mapping); 2609 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))) 2610 unmap_mapping_range_tree(&mapping->i_mmap, &details); 2611 i_mmap_unlock_write(mapping); 2612 } 2613 2614 /** 2615 * unmap_mapping_range - unmap the portion of all mmaps in the specified 2616 * address_space corresponding to the specified byte range in the underlying 2617 * file. 2618 * 2619 * @mapping: the address space containing mmaps to be unmapped. 2620 * @holebegin: byte in first page to unmap, relative to the start of 2621 * the underlying file. This will be rounded down to a PAGE_SIZE 2622 * boundary. Note that this is different from truncate_pagecache(), which 2623 * must keep the partial page. In contrast, we must get rid of 2624 * partial pages. 2625 * @holelen: size of prospective hole in bytes. This will be rounded 2626 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the 2627 * end of the file. 2628 * @even_cows: 1 when truncating a file, unmap even private COWed pages; 2629 * but 0 when invalidating pagecache, don't throw away private data. 2630 */ 2631 void unmap_mapping_range(struct address_space *mapping, 2632 loff_t const holebegin, loff_t const holelen, int even_cows) 2633 { 2634 pgoff_t hba = holebegin >> PAGE_SHIFT; 2635 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2636 2637 /* Check for overflow. */ 2638 if (sizeof(holelen) > sizeof(hlen)) { 2639 long long holeend = 2640 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; 2641 if (holeend & ~(long long)ULONG_MAX) 2642 hlen = ULONG_MAX - hba + 1; 2643 } 2644 2645 unmap_mapping_pages(mapping, hba, hlen, even_cows); 2646 } 2647 EXPORT_SYMBOL(unmap_mapping_range); 2648 2649 /* 2650 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2651 * but allow concurrent faults), and pte mapped but not yet locked. 2652 * We return with pte unmapped and unlocked. 2653 * 2654 * We return with the mmap_sem locked or unlocked in the same cases 2655 * as does filemap_fault(). 2656 */ 2657 vm_fault_t do_swap_page(struct vm_fault *vmf) 2658 { 2659 struct vm_area_struct *vma = vmf->vma; 2660 struct page *page = NULL, *swapcache; 2661 struct mem_cgroup *memcg; 2662 swp_entry_t entry; 2663 pte_t pte; 2664 int locked; 2665 int exclusive = 0; 2666 vm_fault_t ret = 0; 2667 2668 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte)) 2669 goto out; 2670 2671 entry = pte_to_swp_entry(vmf->orig_pte); 2672 if (unlikely(non_swap_entry(entry))) { 2673 if (is_migration_entry(entry)) { 2674 migration_entry_wait(vma->vm_mm, vmf->pmd, 2675 vmf->address); 2676 } else if (is_device_private_entry(entry)) { 2677 /* 2678 * For un-addressable device memory we call the pgmap 2679 * fault handler callback. The callback must migrate 2680 * the page back to some CPU accessible page. 2681 */ 2682 ret = device_private_entry_fault(vma, vmf->address, entry, 2683 vmf->flags, vmf->pmd); 2684 } else if (is_hwpoison_entry(entry)) { 2685 ret = VM_FAULT_HWPOISON; 2686 } else { 2687 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL); 2688 ret = VM_FAULT_SIGBUS; 2689 } 2690 goto out; 2691 } 2692 2693 2694 delayacct_set_flag(DELAYACCT_PF_SWAPIN); 2695 page = lookup_swap_cache(entry, vma, vmf->address); 2696 swapcache = page; 2697 2698 if (!page) { 2699 struct swap_info_struct *si = swp_swap_info(entry); 2700 2701 if (si->flags & SWP_SYNCHRONOUS_IO && 2702 __swap_count(si, entry) == 1) { 2703 /* skip swapcache */ 2704 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, 2705 vmf->address); 2706 if (page) { 2707 __SetPageLocked(page); 2708 __SetPageSwapBacked(page); 2709 set_page_private(page, entry.val); 2710 lru_cache_add_anon(page); 2711 swap_readpage(page, true); 2712 } 2713 } else { 2714 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, 2715 vmf); 2716 swapcache = page; 2717 } 2718 2719 if (!page) { 2720 /* 2721 * Back out if somebody else faulted in this pte 2722 * while we released the pte lock. 2723 */ 2724 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2725 vmf->address, &vmf->ptl); 2726 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) 2727 ret = VM_FAULT_OOM; 2728 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2729 goto unlock; 2730 } 2731 2732 /* Had to read the page from swap area: Major fault */ 2733 ret = VM_FAULT_MAJOR; 2734 count_vm_event(PGMAJFAULT); 2735 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT); 2736 } else if (PageHWPoison(page)) { 2737 /* 2738 * hwpoisoned dirty swapcache pages are kept for killing 2739 * owner processes (which may be unknown at hwpoison time) 2740 */ 2741 ret = VM_FAULT_HWPOISON; 2742 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2743 goto out_release; 2744 } 2745 2746 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags); 2747 2748 delayacct_clear_flag(DELAYACCT_PF_SWAPIN); 2749 if (!locked) { 2750 ret |= VM_FAULT_RETRY; 2751 goto out_release; 2752 } 2753 2754 /* 2755 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not 2756 * release the swapcache from under us. The page pin, and pte_same 2757 * test below, are not enough to exclude that. Even if it is still 2758 * swapcache, we need to check that the page's swap has not changed. 2759 */ 2760 if (unlikely((!PageSwapCache(page) || 2761 page_private(page) != entry.val)) && swapcache) 2762 goto out_page; 2763 2764 page = ksm_might_need_to_copy(page, vma, vmf->address); 2765 if (unlikely(!page)) { 2766 ret = VM_FAULT_OOM; 2767 page = swapcache; 2768 goto out_page; 2769 } 2770 2771 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, 2772 &memcg, false)) { 2773 ret = VM_FAULT_OOM; 2774 goto out_page; 2775 } 2776 2777 /* 2778 * Back out if somebody else already faulted in this pte. 2779 */ 2780 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2781 &vmf->ptl); 2782 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) 2783 goto out_nomap; 2784 2785 if (unlikely(!PageUptodate(page))) { 2786 ret = VM_FAULT_SIGBUS; 2787 goto out_nomap; 2788 } 2789 2790 /* 2791 * The page isn't present yet, go ahead with the fault. 2792 * 2793 * Be careful about the sequence of operations here. 2794 * To get its accounting right, reuse_swap_page() must be called 2795 * while the page is counted on swap but not yet in mapcount i.e. 2796 * before page_add_anon_rmap() and swap_free(); try_to_free_swap() 2797 * must be called after the swap_free(), or it will never succeed. 2798 */ 2799 2800 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2801 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS); 2802 pte = mk_pte(page, vma->vm_page_prot); 2803 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) { 2804 pte = maybe_mkwrite(pte_mkdirty(pte), vma); 2805 vmf->flags &= ~FAULT_FLAG_WRITE; 2806 ret |= VM_FAULT_WRITE; 2807 exclusive = RMAP_EXCLUSIVE; 2808 } 2809 flush_icache_page(vma, page); 2810 if (pte_swp_soft_dirty(vmf->orig_pte)) 2811 pte = pte_mksoft_dirty(pte); 2812 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte); 2813 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte); 2814 vmf->orig_pte = pte; 2815 2816 /* ksm created a completely new copy */ 2817 if (unlikely(page != swapcache && swapcache)) { 2818 page_add_new_anon_rmap(page, vma, vmf->address, false); 2819 mem_cgroup_commit_charge(page, memcg, false, false); 2820 lru_cache_add_active_or_unevictable(page, vma); 2821 } else { 2822 do_page_add_anon_rmap(page, vma, vmf->address, exclusive); 2823 mem_cgroup_commit_charge(page, memcg, true, false); 2824 activate_page(page); 2825 } 2826 2827 swap_free(entry); 2828 if (mem_cgroup_swap_full(page) || 2829 (vma->vm_flags & VM_LOCKED) || PageMlocked(page)) 2830 try_to_free_swap(page); 2831 unlock_page(page); 2832 if (page != swapcache && swapcache) { 2833 /* 2834 * Hold the lock to avoid the swap entry to be reused 2835 * until we take the PT lock for the pte_same() check 2836 * (to avoid false positives from pte_same). For 2837 * further safety release the lock after the swap_free 2838 * so that the swap count won't change under a 2839 * parallel locked swapcache. 2840 */ 2841 unlock_page(swapcache); 2842 put_page(swapcache); 2843 } 2844 2845 if (vmf->flags & FAULT_FLAG_WRITE) { 2846 ret |= do_wp_page(vmf); 2847 if (ret & VM_FAULT_ERROR) 2848 ret &= VM_FAULT_ERROR; 2849 goto out; 2850 } 2851 2852 /* No need to invalidate - it was non-present before */ 2853 update_mmu_cache(vma, vmf->address, vmf->pte); 2854 unlock: 2855 pte_unmap_unlock(vmf->pte, vmf->ptl); 2856 out: 2857 return ret; 2858 out_nomap: 2859 mem_cgroup_cancel_charge(page, memcg, false); 2860 pte_unmap_unlock(vmf->pte, vmf->ptl); 2861 out_page: 2862 unlock_page(page); 2863 out_release: 2864 put_page(page); 2865 if (page != swapcache && swapcache) { 2866 unlock_page(swapcache); 2867 put_page(swapcache); 2868 } 2869 return ret; 2870 } 2871 2872 /* 2873 * We enter with non-exclusive mmap_sem (to exclude vma changes, 2874 * but allow concurrent faults), and pte mapped but not yet locked. 2875 * We return with mmap_sem still held, but pte unmapped and unlocked. 2876 */ 2877 static vm_fault_t do_anonymous_page(struct vm_fault *vmf) 2878 { 2879 struct vm_area_struct *vma = vmf->vma; 2880 struct mem_cgroup *memcg; 2881 struct page *page; 2882 vm_fault_t ret = 0; 2883 pte_t entry; 2884 2885 /* File mapping without ->vm_ops ? */ 2886 if (vma->vm_flags & VM_SHARED) 2887 return VM_FAULT_SIGBUS; 2888 2889 /* 2890 * Use pte_alloc() instead of pte_alloc_map(). We can't run 2891 * pte_offset_map() on pmds where a huge pmd might be created 2892 * from a different thread. 2893 * 2894 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when 2895 * parallel threads are excluded by other means. 2896 * 2897 * Here we only have down_read(mmap_sem). 2898 */ 2899 if (pte_alloc(vma->vm_mm, vmf->pmd)) 2900 return VM_FAULT_OOM; 2901 2902 /* See the comment in pte_alloc_one_map() */ 2903 if (unlikely(pmd_trans_unstable(vmf->pmd))) 2904 return 0; 2905 2906 /* Use the zero-page for reads */ 2907 if (!(vmf->flags & FAULT_FLAG_WRITE) && 2908 !mm_forbids_zeropage(vma->vm_mm)) { 2909 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address), 2910 vma->vm_page_prot)); 2911 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, 2912 vmf->address, &vmf->ptl); 2913 if (!pte_none(*vmf->pte)) 2914 goto unlock; 2915 ret = check_stable_address_space(vma->vm_mm); 2916 if (ret) 2917 goto unlock; 2918 /* Deliver the page fault to userland, check inside PT lock */ 2919 if (userfaultfd_missing(vma)) { 2920 pte_unmap_unlock(vmf->pte, vmf->ptl); 2921 return handle_userfault(vmf, VM_UFFD_MISSING); 2922 } 2923 goto setpte; 2924 } 2925 2926 /* Allocate our own private page. */ 2927 if (unlikely(anon_vma_prepare(vma))) 2928 goto oom; 2929 page = alloc_zeroed_user_highpage_movable(vma, vmf->address); 2930 if (!page) 2931 goto oom; 2932 2933 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg, 2934 false)) 2935 goto oom_free_page; 2936 2937 /* 2938 * The memory barrier inside __SetPageUptodate makes sure that 2939 * preceeding stores to the page contents become visible before 2940 * the set_pte_at() write. 2941 */ 2942 __SetPageUptodate(page); 2943 2944 entry = mk_pte(page, vma->vm_page_prot); 2945 if (vma->vm_flags & VM_WRITE) 2946 entry = pte_mkwrite(pte_mkdirty(entry)); 2947 2948 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 2949 &vmf->ptl); 2950 if (!pte_none(*vmf->pte)) 2951 goto release; 2952 2953 ret = check_stable_address_space(vma->vm_mm); 2954 if (ret) 2955 goto release; 2956 2957 /* Deliver the page fault to userland, check inside PT lock */ 2958 if (userfaultfd_missing(vma)) { 2959 pte_unmap_unlock(vmf->pte, vmf->ptl); 2960 mem_cgroup_cancel_charge(page, memcg, false); 2961 put_page(page); 2962 return handle_userfault(vmf, VM_UFFD_MISSING); 2963 } 2964 2965 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 2966 page_add_new_anon_rmap(page, vma, vmf->address, false); 2967 mem_cgroup_commit_charge(page, memcg, false, false); 2968 lru_cache_add_active_or_unevictable(page, vma); 2969 setpte: 2970 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 2971 2972 /* No need to invalidate - it was non-present before */ 2973 update_mmu_cache(vma, vmf->address, vmf->pte); 2974 unlock: 2975 pte_unmap_unlock(vmf->pte, vmf->ptl); 2976 return ret; 2977 release: 2978 mem_cgroup_cancel_charge(page, memcg, false); 2979 put_page(page); 2980 goto unlock; 2981 oom_free_page: 2982 put_page(page); 2983 oom: 2984 return VM_FAULT_OOM; 2985 } 2986 2987 /* 2988 * The mmap_sem must have been held on entry, and may have been 2989 * released depending on flags and vma->vm_ops->fault() return value. 2990 * See filemap_fault() and __lock_page_retry(). 2991 */ 2992 static vm_fault_t __do_fault(struct vm_fault *vmf) 2993 { 2994 struct vm_area_struct *vma = vmf->vma; 2995 vm_fault_t ret; 2996 2997 ret = vma->vm_ops->fault(vmf); 2998 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY | 2999 VM_FAULT_DONE_COW))) 3000 return ret; 3001 3002 if (unlikely(PageHWPoison(vmf->page))) { 3003 if (ret & VM_FAULT_LOCKED) 3004 unlock_page(vmf->page); 3005 put_page(vmf->page); 3006 vmf->page = NULL; 3007 return VM_FAULT_HWPOISON; 3008 } 3009 3010 if (unlikely(!(ret & VM_FAULT_LOCKED))) 3011 lock_page(vmf->page); 3012 else 3013 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page); 3014 3015 return ret; 3016 } 3017 3018 /* 3019 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set. 3020 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check 3021 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly 3022 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output. 3023 */ 3024 static int pmd_devmap_trans_unstable(pmd_t *pmd) 3025 { 3026 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd); 3027 } 3028 3029 static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf) 3030 { 3031 struct vm_area_struct *vma = vmf->vma; 3032 3033 if (!pmd_none(*vmf->pmd)) 3034 goto map_pte; 3035 if (vmf->prealloc_pte) { 3036 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3037 if (unlikely(!pmd_none(*vmf->pmd))) { 3038 spin_unlock(vmf->ptl); 3039 goto map_pte; 3040 } 3041 3042 mm_inc_nr_ptes(vma->vm_mm); 3043 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3044 spin_unlock(vmf->ptl); 3045 vmf->prealloc_pte = NULL; 3046 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd))) { 3047 return VM_FAULT_OOM; 3048 } 3049 map_pte: 3050 /* 3051 * If a huge pmd materialized under us just retry later. Use 3052 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of 3053 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge 3054 * under us and then back to pmd_none, as a result of MADV_DONTNEED 3055 * running immediately after a huge pmd fault in a different thread of 3056 * this mm, in turn leading to a misleading pmd_trans_huge() retval. 3057 * All we have to ensure is that it is a regular pmd that we can walk 3058 * with pte_offset_map() and we can do that through an atomic read in 3059 * C, which is what pmd_trans_unstable() provides. 3060 */ 3061 if (pmd_devmap_trans_unstable(vmf->pmd)) 3062 return VM_FAULT_NOPAGE; 3063 3064 /* 3065 * At this point we know that our vmf->pmd points to a page of ptes 3066 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge() 3067 * for the duration of the fault. If a racing MADV_DONTNEED runs and 3068 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still 3069 * be valid and we will re-check to make sure the vmf->pte isn't 3070 * pte_none() under vmf->ptl protection when we return to 3071 * alloc_set_pte(). 3072 */ 3073 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address, 3074 &vmf->ptl); 3075 return 0; 3076 } 3077 3078 #ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE 3079 3080 #define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1) 3081 static inline bool transhuge_vma_suitable(struct vm_area_struct *vma, 3082 unsigned long haddr) 3083 { 3084 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) != 3085 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK)) 3086 return false; 3087 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end) 3088 return false; 3089 return true; 3090 } 3091 3092 static void deposit_prealloc_pte(struct vm_fault *vmf) 3093 { 3094 struct vm_area_struct *vma = vmf->vma; 3095 3096 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte); 3097 /* 3098 * We are going to consume the prealloc table, 3099 * count that as nr_ptes. 3100 */ 3101 mm_inc_nr_ptes(vma->vm_mm); 3102 vmf->prealloc_pte = NULL; 3103 } 3104 3105 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3106 { 3107 struct vm_area_struct *vma = vmf->vma; 3108 bool write = vmf->flags & FAULT_FLAG_WRITE; 3109 unsigned long haddr = vmf->address & HPAGE_PMD_MASK; 3110 pmd_t entry; 3111 int i; 3112 vm_fault_t ret; 3113 3114 if (!transhuge_vma_suitable(vma, haddr)) 3115 return VM_FAULT_FALLBACK; 3116 3117 ret = VM_FAULT_FALLBACK; 3118 page = compound_head(page); 3119 3120 /* 3121 * Archs like ppc64 need additonal space to store information 3122 * related to pte entry. Use the preallocated table for that. 3123 */ 3124 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) { 3125 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm); 3126 if (!vmf->prealloc_pte) 3127 return VM_FAULT_OOM; 3128 smp_wmb(); /* See comment in __pte_alloc() */ 3129 } 3130 3131 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd); 3132 if (unlikely(!pmd_none(*vmf->pmd))) 3133 goto out; 3134 3135 for (i = 0; i < HPAGE_PMD_NR; i++) 3136 flush_icache_page(vma, page + i); 3137 3138 entry = mk_huge_pmd(page, vma->vm_page_prot); 3139 if (write) 3140 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma); 3141 3142 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR); 3143 page_add_file_rmap(page, true); 3144 /* 3145 * deposit and withdraw with pmd lock held 3146 */ 3147 if (arch_needs_pgtable_deposit()) 3148 deposit_prealloc_pte(vmf); 3149 3150 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry); 3151 3152 update_mmu_cache_pmd(vma, haddr, vmf->pmd); 3153 3154 /* fault is handled */ 3155 ret = 0; 3156 count_vm_event(THP_FILE_MAPPED); 3157 out: 3158 spin_unlock(vmf->ptl); 3159 return ret; 3160 } 3161 #else 3162 static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page) 3163 { 3164 BUILD_BUG(); 3165 return 0; 3166 } 3167 #endif 3168 3169 /** 3170 * alloc_set_pte - setup new PTE entry for given page and add reverse page 3171 * mapping. If needed, the fucntion allocates page table or use pre-allocated. 3172 * 3173 * @vmf: fault environment 3174 * @memcg: memcg to charge page (only for private mappings) 3175 * @page: page to map 3176 * 3177 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on 3178 * return. 3179 * 3180 * Target users are page handler itself and implementations of 3181 * vm_ops->map_pages. 3182 */ 3183 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 3184 struct page *page) 3185 { 3186 struct vm_area_struct *vma = vmf->vma; 3187 bool write = vmf->flags & FAULT_FLAG_WRITE; 3188 pte_t entry; 3189 vm_fault_t ret; 3190 3191 if (pmd_none(*vmf->pmd) && PageTransCompound(page) && 3192 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) { 3193 /* THP on COW? */ 3194 VM_BUG_ON_PAGE(memcg, page); 3195 3196 ret = do_set_pmd(vmf, page); 3197 if (ret != VM_FAULT_FALLBACK) 3198 return ret; 3199 } 3200 3201 if (!vmf->pte) { 3202 ret = pte_alloc_one_map(vmf); 3203 if (ret) 3204 return ret; 3205 } 3206 3207 /* Re-check under ptl */ 3208 if (unlikely(!pte_none(*vmf->pte))) 3209 return VM_FAULT_NOPAGE; 3210 3211 flush_icache_page(vma, page); 3212 entry = mk_pte(page, vma->vm_page_prot); 3213 if (write) 3214 entry = maybe_mkwrite(pte_mkdirty(entry), vma); 3215 /* copy-on-write page */ 3216 if (write && !(vma->vm_flags & VM_SHARED)) { 3217 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES); 3218 page_add_new_anon_rmap(page, vma, vmf->address, false); 3219 mem_cgroup_commit_charge(page, memcg, false, false); 3220 lru_cache_add_active_or_unevictable(page, vma); 3221 } else { 3222 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page)); 3223 page_add_file_rmap(page, false); 3224 } 3225 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry); 3226 3227 /* no need to invalidate: a not-present page won't be cached */ 3228 update_mmu_cache(vma, vmf->address, vmf->pte); 3229 3230 return 0; 3231 } 3232 3233 3234 /** 3235 * finish_fault - finish page fault once we have prepared the page to fault 3236 * 3237 * @vmf: structure describing the fault 3238 * 3239 * This function handles all that is needed to finish a page fault once the 3240 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for 3241 * given page, adds reverse page mapping, handles memcg charges and LRU 3242 * addition. The function returns 0 on success, VM_FAULT_ code in case of 3243 * error. 3244 * 3245 * The function expects the page to be locked and on success it consumes a 3246 * reference of a page being mapped (for the PTE which maps it). 3247 */ 3248 vm_fault_t finish_fault(struct vm_fault *vmf) 3249 { 3250 struct page *page; 3251 vm_fault_t ret = 0; 3252 3253 /* Did we COW the page? */ 3254 if ((vmf->flags & FAULT_FLAG_WRITE) && 3255 !(vmf->vma->vm_flags & VM_SHARED)) 3256 page = vmf->cow_page; 3257 else 3258 page = vmf->page; 3259 3260 /* 3261 * check even for read faults because we might have lost our CoWed 3262 * page 3263 */ 3264 if (!(vmf->vma->vm_flags & VM_SHARED)) 3265 ret = check_stable_address_space(vmf->vma->vm_mm); 3266 if (!ret) 3267 ret = alloc_set_pte(vmf, vmf->memcg, page); 3268 if (vmf->pte) 3269 pte_unmap_unlock(vmf->pte, vmf->ptl); 3270 return ret; 3271 } 3272 3273 static unsigned long fault_around_bytes __read_mostly = 3274 rounddown_pow_of_two(65536); 3275 3276 #ifdef CONFIG_DEBUG_FS 3277 static int fault_around_bytes_get(void *data, u64 *val) 3278 { 3279 *val = fault_around_bytes; 3280 return 0; 3281 } 3282 3283 /* 3284 * fault_around_bytes must be rounded down to the nearest page order as it's 3285 * what do_fault_around() expects to see. 3286 */ 3287 static int fault_around_bytes_set(void *data, u64 val) 3288 { 3289 if (val / PAGE_SIZE > PTRS_PER_PTE) 3290 return -EINVAL; 3291 if (val > PAGE_SIZE) 3292 fault_around_bytes = rounddown_pow_of_two(val); 3293 else 3294 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */ 3295 return 0; 3296 } 3297 DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops, 3298 fault_around_bytes_get, fault_around_bytes_set, "%llu\n"); 3299 3300 static int __init fault_around_debugfs(void) 3301 { 3302 void *ret; 3303 3304 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL, 3305 &fault_around_bytes_fops); 3306 if (!ret) 3307 pr_warn("Failed to create fault_around_bytes in debugfs"); 3308 return 0; 3309 } 3310 late_initcall(fault_around_debugfs); 3311 #endif 3312 3313 /* 3314 * do_fault_around() tries to map few pages around the fault address. The hope 3315 * is that the pages will be needed soon and this will lower the number of 3316 * faults to handle. 3317 * 3318 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's 3319 * not ready to be mapped: not up-to-date, locked, etc. 3320 * 3321 * This function is called with the page table lock taken. In the split ptlock 3322 * case the page table lock only protects only those entries which belong to 3323 * the page table corresponding to the fault address. 3324 * 3325 * This function doesn't cross the VMA boundaries, in order to call map_pages() 3326 * only once. 3327 * 3328 * fault_around_bytes defines how many bytes we'll try to map. 3329 * do_fault_around() expects it to be set to a power of two less than or equal 3330 * to PTRS_PER_PTE. 3331 * 3332 * The virtual address of the area that we map is naturally aligned to 3333 * fault_around_bytes rounded down to the machine page size 3334 * (and therefore to page order). This way it's easier to guarantee 3335 * that we don't cross page table boundaries. 3336 */ 3337 static vm_fault_t do_fault_around(struct vm_fault *vmf) 3338 { 3339 unsigned long address = vmf->address, nr_pages, mask; 3340 pgoff_t start_pgoff = vmf->pgoff; 3341 pgoff_t end_pgoff; 3342 int off; 3343 vm_fault_t ret = 0; 3344 3345 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT; 3346 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK; 3347 3348 vmf->address = max(address & mask, vmf->vma->vm_start); 3349 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); 3350 start_pgoff -= off; 3351 3352 /* 3353 * end_pgoff is either the end of the page table, the end of 3354 * the vma or nr_pages from start_pgoff, depending what is nearest. 3355 */ 3356 end_pgoff = start_pgoff - 3357 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) + 3358 PTRS_PER_PTE - 1; 3359 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1, 3360 start_pgoff + nr_pages - 1); 3361 3362 if (pmd_none(*vmf->pmd)) { 3363 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm); 3364 if (!vmf->prealloc_pte) 3365 goto out; 3366 smp_wmb(); /* See comment in __pte_alloc() */ 3367 } 3368 3369 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff); 3370 3371 /* Huge page is mapped? Page fault is solved */ 3372 if (pmd_trans_huge(*vmf->pmd)) { 3373 ret = VM_FAULT_NOPAGE; 3374 goto out; 3375 } 3376 3377 /* ->map_pages() haven't done anything useful. Cold page cache? */ 3378 if (!vmf->pte) 3379 goto out; 3380 3381 /* check if the page fault is solved */ 3382 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT); 3383 if (!pte_none(*vmf->pte)) 3384 ret = VM_FAULT_NOPAGE; 3385 pte_unmap_unlock(vmf->pte, vmf->ptl); 3386 out: 3387 vmf->address = address; 3388 vmf->pte = NULL; 3389 return ret; 3390 } 3391 3392 static vm_fault_t do_read_fault(struct vm_fault *vmf) 3393 { 3394 struct vm_area_struct *vma = vmf->vma; 3395 vm_fault_t ret = 0; 3396 3397 /* 3398 * Let's call ->map_pages() first and use ->fault() as fallback 3399 * if page by the offset is not ready to be mapped (cold cache or 3400 * something). 3401 */ 3402 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) { 3403 ret = do_fault_around(vmf); 3404 if (ret) 3405 return ret; 3406 } 3407 3408 ret = __do_fault(vmf); 3409 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3410 return ret; 3411 3412 ret |= finish_fault(vmf); 3413 unlock_page(vmf->page); 3414 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3415 put_page(vmf->page); 3416 return ret; 3417 } 3418 3419 static vm_fault_t do_cow_fault(struct vm_fault *vmf) 3420 { 3421 struct vm_area_struct *vma = vmf->vma; 3422 vm_fault_t ret; 3423 3424 if (unlikely(anon_vma_prepare(vma))) 3425 return VM_FAULT_OOM; 3426 3427 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address); 3428 if (!vmf->cow_page) 3429 return VM_FAULT_OOM; 3430 3431 if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL, 3432 &vmf->memcg, false)) { 3433 put_page(vmf->cow_page); 3434 return VM_FAULT_OOM; 3435 } 3436 3437 ret = __do_fault(vmf); 3438 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3439 goto uncharge_out; 3440 if (ret & VM_FAULT_DONE_COW) 3441 return ret; 3442 3443 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma); 3444 __SetPageUptodate(vmf->cow_page); 3445 3446 ret |= finish_fault(vmf); 3447 unlock_page(vmf->page); 3448 put_page(vmf->page); 3449 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3450 goto uncharge_out; 3451 return ret; 3452 uncharge_out: 3453 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false); 3454 put_page(vmf->cow_page); 3455 return ret; 3456 } 3457 3458 static vm_fault_t do_shared_fault(struct vm_fault *vmf) 3459 { 3460 struct vm_area_struct *vma = vmf->vma; 3461 vm_fault_t ret, tmp; 3462 3463 ret = __do_fault(vmf); 3464 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY))) 3465 return ret; 3466 3467 /* 3468 * Check if the backing address space wants to know that the page is 3469 * about to become writable 3470 */ 3471 if (vma->vm_ops->page_mkwrite) { 3472 unlock_page(vmf->page); 3473 tmp = do_page_mkwrite(vmf); 3474 if (unlikely(!tmp || 3475 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) { 3476 put_page(vmf->page); 3477 return tmp; 3478 } 3479 } 3480 3481 ret |= finish_fault(vmf); 3482 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | 3483 VM_FAULT_RETRY))) { 3484 unlock_page(vmf->page); 3485 put_page(vmf->page); 3486 return ret; 3487 } 3488 3489 fault_dirty_shared_page(vma, vmf->page); 3490 return ret; 3491 } 3492 3493 /* 3494 * We enter with non-exclusive mmap_sem (to exclude vma changes, 3495 * but allow concurrent faults). 3496 * The mmap_sem may have been released depending on flags and our 3497 * return value. See filemap_fault() and __lock_page_or_retry(). 3498 */ 3499 static vm_fault_t do_fault(struct vm_fault *vmf) 3500 { 3501 struct vm_area_struct *vma = vmf->vma; 3502 vm_fault_t ret; 3503 3504 /* 3505 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND 3506 */ 3507 if (!vma->vm_ops->fault) { 3508 /* 3509 * If we find a migration pmd entry or a none pmd entry, which 3510 * should never happen, return SIGBUS 3511 */ 3512 if (unlikely(!pmd_present(*vmf->pmd))) 3513 ret = VM_FAULT_SIGBUS; 3514 else { 3515 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, 3516 vmf->pmd, 3517 vmf->address, 3518 &vmf->ptl); 3519 /* 3520 * Make sure this is not a temporary clearing of pte 3521 * by holding ptl and checking again. A R/M/W update 3522 * of pte involves: take ptl, clearing the pte so that 3523 * we don't have concurrent modification by hardware 3524 * followed by an update. 3525 */ 3526 if (unlikely(pte_none(*vmf->pte))) 3527 ret = VM_FAULT_SIGBUS; 3528 else 3529 ret = VM_FAULT_NOPAGE; 3530 3531 pte_unmap_unlock(vmf->pte, vmf->ptl); 3532 } 3533 } else if (!(vmf->flags & FAULT_FLAG_WRITE)) 3534 ret = do_read_fault(vmf); 3535 else if (!(vma->vm_flags & VM_SHARED)) 3536 ret = do_cow_fault(vmf); 3537 else 3538 ret = do_shared_fault(vmf); 3539 3540 /* preallocated pagetable is unused: free it */ 3541 if (vmf->prealloc_pte) { 3542 pte_free(vma->vm_mm, vmf->prealloc_pte); 3543 vmf->prealloc_pte = NULL; 3544 } 3545 return ret; 3546 } 3547 3548 static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma, 3549 unsigned long addr, int page_nid, 3550 int *flags) 3551 { 3552 get_page(page); 3553 3554 count_vm_numa_event(NUMA_HINT_FAULTS); 3555 if (page_nid == numa_node_id()) { 3556 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL); 3557 *flags |= TNF_FAULT_LOCAL; 3558 } 3559 3560 return mpol_misplaced(page, vma, addr); 3561 } 3562 3563 static vm_fault_t do_numa_page(struct vm_fault *vmf) 3564 { 3565 struct vm_area_struct *vma = vmf->vma; 3566 struct page *page = NULL; 3567 int page_nid = -1; 3568 int last_cpupid; 3569 int target_nid; 3570 bool migrated = false; 3571 pte_t pte; 3572 bool was_writable = pte_savedwrite(vmf->orig_pte); 3573 int flags = 0; 3574 3575 /* 3576 * The "pte" at this point cannot be used safely without 3577 * validation through pte_unmap_same(). It's of NUMA type but 3578 * the pfn may be screwed if the read is non atomic. 3579 */ 3580 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd); 3581 spin_lock(vmf->ptl); 3582 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) { 3583 pte_unmap_unlock(vmf->pte, vmf->ptl); 3584 goto out; 3585 } 3586 3587 /* 3588 * Make it present again, Depending on how arch implementes non 3589 * accessible ptes, some can allow access by kernel mode. 3590 */ 3591 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte); 3592 pte = pte_modify(pte, vma->vm_page_prot); 3593 pte = pte_mkyoung(pte); 3594 if (was_writable) 3595 pte = pte_mkwrite(pte); 3596 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte); 3597 update_mmu_cache(vma, vmf->address, vmf->pte); 3598 3599 page = vm_normal_page(vma, vmf->address, pte); 3600 if (!page) { 3601 pte_unmap_unlock(vmf->pte, vmf->ptl); 3602 return 0; 3603 } 3604 3605 /* TODO: handle PTE-mapped THP */ 3606 if (PageCompound(page)) { 3607 pte_unmap_unlock(vmf->pte, vmf->ptl); 3608 return 0; 3609 } 3610 3611 /* 3612 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as 3613 * much anyway since they can be in shared cache state. This misses 3614 * the case where a mapping is writable but the process never writes 3615 * to it but pte_write gets cleared during protection updates and 3616 * pte_dirty has unpredictable behaviour between PTE scan updates, 3617 * background writeback, dirty balancing and application behaviour. 3618 */ 3619 if (!pte_write(pte)) 3620 flags |= TNF_NO_GROUP; 3621 3622 /* 3623 * Flag if the page is shared between multiple address spaces. This 3624 * is later used when determining whether to group tasks together 3625 */ 3626 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED)) 3627 flags |= TNF_SHARED; 3628 3629 last_cpupid = page_cpupid_last(page); 3630 page_nid = page_to_nid(page); 3631 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid, 3632 &flags); 3633 pte_unmap_unlock(vmf->pte, vmf->ptl); 3634 if (target_nid == -1) { 3635 put_page(page); 3636 goto out; 3637 } 3638 3639 /* Migrate to the requested node */ 3640 migrated = migrate_misplaced_page(page, vma, target_nid); 3641 if (migrated) { 3642 page_nid = target_nid; 3643 flags |= TNF_MIGRATED; 3644 } else 3645 flags |= TNF_MIGRATE_FAIL; 3646 3647 out: 3648 if (page_nid != -1) 3649 task_numa_fault(last_cpupid, page_nid, 1, flags); 3650 return 0; 3651 } 3652 3653 static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf) 3654 { 3655 if (vma_is_anonymous(vmf->vma)) 3656 return do_huge_pmd_anonymous_page(vmf); 3657 if (vmf->vma->vm_ops->huge_fault) 3658 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3659 return VM_FAULT_FALLBACK; 3660 } 3661 3662 /* `inline' is required to avoid gcc 4.1.2 build error */ 3663 static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd) 3664 { 3665 if (vma_is_anonymous(vmf->vma)) 3666 return do_huge_pmd_wp_page(vmf, orig_pmd); 3667 if (vmf->vma->vm_ops->huge_fault) 3668 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD); 3669 3670 /* COW handled on pte level: split pmd */ 3671 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma); 3672 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL); 3673 3674 return VM_FAULT_FALLBACK; 3675 } 3676 3677 static inline bool vma_is_accessible(struct vm_area_struct *vma) 3678 { 3679 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE); 3680 } 3681 3682 static vm_fault_t create_huge_pud(struct vm_fault *vmf) 3683 { 3684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3685 /* No support for anonymous transparent PUD pages yet */ 3686 if (vma_is_anonymous(vmf->vma)) 3687 return VM_FAULT_FALLBACK; 3688 if (vmf->vma->vm_ops->huge_fault) 3689 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3690 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3691 return VM_FAULT_FALLBACK; 3692 } 3693 3694 static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud) 3695 { 3696 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3697 /* No support for anonymous transparent PUD pages yet */ 3698 if (vma_is_anonymous(vmf->vma)) 3699 return VM_FAULT_FALLBACK; 3700 if (vmf->vma->vm_ops->huge_fault) 3701 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD); 3702 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 3703 return VM_FAULT_FALLBACK; 3704 } 3705 3706 /* 3707 * These routines also need to handle stuff like marking pages dirty 3708 * and/or accessed for architectures that don't do it in hardware (most 3709 * RISC architectures). The early dirtying is also good on the i386. 3710 * 3711 * There is also a hook called "update_mmu_cache()" that architectures 3712 * with external mmu caches can use to update those (ie the Sparc or 3713 * PowerPC hashed page tables that act as extended TLBs). 3714 * 3715 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow 3716 * concurrent faults). 3717 * 3718 * The mmap_sem may have been released depending on flags and our return value. 3719 * See filemap_fault() and __lock_page_or_retry(). 3720 */ 3721 static vm_fault_t handle_pte_fault(struct vm_fault *vmf) 3722 { 3723 pte_t entry; 3724 3725 if (unlikely(pmd_none(*vmf->pmd))) { 3726 /* 3727 * Leave __pte_alloc() until later: because vm_ops->fault may 3728 * want to allocate huge page, and if we expose page table 3729 * for an instant, it will be difficult to retract from 3730 * concurrent faults and from rmap lookups. 3731 */ 3732 vmf->pte = NULL; 3733 } else { 3734 /* See comment in pte_alloc_one_map() */ 3735 if (pmd_devmap_trans_unstable(vmf->pmd)) 3736 return 0; 3737 /* 3738 * A regular pmd is established and it can't morph into a huge 3739 * pmd from under us anymore at this point because we hold the 3740 * mmap_sem read mode and khugepaged takes it in write mode. 3741 * So now it's safe to run pte_offset_map(). 3742 */ 3743 vmf->pte = pte_offset_map(vmf->pmd, vmf->address); 3744 vmf->orig_pte = *vmf->pte; 3745 3746 /* 3747 * some architectures can have larger ptes than wordsize, 3748 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and 3749 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic 3750 * accesses. The code below just needs a consistent view 3751 * for the ifs and we later double check anyway with the 3752 * ptl lock held. So here a barrier will do. 3753 */ 3754 barrier(); 3755 if (pte_none(vmf->orig_pte)) { 3756 pte_unmap(vmf->pte); 3757 vmf->pte = NULL; 3758 } 3759 } 3760 3761 if (!vmf->pte) { 3762 if (vma_is_anonymous(vmf->vma)) 3763 return do_anonymous_page(vmf); 3764 else 3765 return do_fault(vmf); 3766 } 3767 3768 if (!pte_present(vmf->orig_pte)) 3769 return do_swap_page(vmf); 3770 3771 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma)) 3772 return do_numa_page(vmf); 3773 3774 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd); 3775 spin_lock(vmf->ptl); 3776 entry = vmf->orig_pte; 3777 if (unlikely(!pte_same(*vmf->pte, entry))) 3778 goto unlock; 3779 if (vmf->flags & FAULT_FLAG_WRITE) { 3780 if (!pte_write(entry)) 3781 return do_wp_page(vmf); 3782 entry = pte_mkdirty(entry); 3783 } 3784 entry = pte_mkyoung(entry); 3785 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry, 3786 vmf->flags & FAULT_FLAG_WRITE)) { 3787 update_mmu_cache(vmf->vma, vmf->address, vmf->pte); 3788 } else { 3789 /* 3790 * This is needed only for protection faults but the arch code 3791 * is not yet telling us if this is a protection fault or not. 3792 * This still avoids useless tlb flushes for .text page faults 3793 * with threads. 3794 */ 3795 if (vmf->flags & FAULT_FLAG_WRITE) 3796 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address); 3797 } 3798 unlock: 3799 pte_unmap_unlock(vmf->pte, vmf->ptl); 3800 return 0; 3801 } 3802 3803 /* 3804 * By the time we get here, we already hold the mm semaphore 3805 * 3806 * The mmap_sem may have been released depending on flags and our 3807 * return value. See filemap_fault() and __lock_page_or_retry(). 3808 */ 3809 static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma, 3810 unsigned long address, unsigned int flags) 3811 { 3812 struct vm_fault vmf = { 3813 .vma = vma, 3814 .address = address & PAGE_MASK, 3815 .flags = flags, 3816 .pgoff = linear_page_index(vma, address), 3817 .gfp_mask = __get_fault_gfp_mask(vma), 3818 }; 3819 unsigned int dirty = flags & FAULT_FLAG_WRITE; 3820 struct mm_struct *mm = vma->vm_mm; 3821 pgd_t *pgd; 3822 p4d_t *p4d; 3823 vm_fault_t ret; 3824 3825 pgd = pgd_offset(mm, address); 3826 p4d = p4d_alloc(mm, pgd, address); 3827 if (!p4d) 3828 return VM_FAULT_OOM; 3829 3830 vmf.pud = pud_alloc(mm, p4d, address); 3831 if (!vmf.pud) 3832 return VM_FAULT_OOM; 3833 if (pud_none(*vmf.pud) && __transparent_hugepage_enabled(vma)) { 3834 ret = create_huge_pud(&vmf); 3835 if (!(ret & VM_FAULT_FALLBACK)) 3836 return ret; 3837 } else { 3838 pud_t orig_pud = *vmf.pud; 3839 3840 barrier(); 3841 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) { 3842 3843 /* NUMA case for anonymous PUDs would go here */ 3844 3845 if (dirty && !pud_write(orig_pud)) { 3846 ret = wp_huge_pud(&vmf, orig_pud); 3847 if (!(ret & VM_FAULT_FALLBACK)) 3848 return ret; 3849 } else { 3850 huge_pud_set_accessed(&vmf, orig_pud); 3851 return 0; 3852 } 3853 } 3854 } 3855 3856 vmf.pmd = pmd_alloc(mm, vmf.pud, address); 3857 if (!vmf.pmd) 3858 return VM_FAULT_OOM; 3859 if (pmd_none(*vmf.pmd) && __transparent_hugepage_enabled(vma)) { 3860 ret = create_huge_pmd(&vmf); 3861 if (!(ret & VM_FAULT_FALLBACK)) 3862 return ret; 3863 } else { 3864 pmd_t orig_pmd = *vmf.pmd; 3865 3866 barrier(); 3867 if (unlikely(is_swap_pmd(orig_pmd))) { 3868 VM_BUG_ON(thp_migration_supported() && 3869 !is_pmd_migration_entry(orig_pmd)); 3870 if (is_pmd_migration_entry(orig_pmd)) 3871 pmd_migration_entry_wait(mm, vmf.pmd); 3872 return 0; 3873 } 3874 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) { 3875 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma)) 3876 return do_huge_pmd_numa_page(&vmf, orig_pmd); 3877 3878 if (dirty && !pmd_write(orig_pmd)) { 3879 ret = wp_huge_pmd(&vmf, orig_pmd); 3880 if (!(ret & VM_FAULT_FALLBACK)) 3881 return ret; 3882 } else { 3883 huge_pmd_set_accessed(&vmf, orig_pmd); 3884 return 0; 3885 } 3886 } 3887 } 3888 3889 return handle_pte_fault(&vmf); 3890 } 3891 3892 /* 3893 * By the time we get here, we already hold the mm semaphore 3894 * 3895 * The mmap_sem may have been released depending on flags and our 3896 * return value. See filemap_fault() and __lock_page_or_retry(). 3897 */ 3898 vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 3899 unsigned int flags) 3900 { 3901 vm_fault_t ret; 3902 3903 __set_current_state(TASK_RUNNING); 3904 3905 count_vm_event(PGFAULT); 3906 count_memcg_event_mm(vma->vm_mm, PGFAULT); 3907 3908 /* do counter updates before entering really critical section. */ 3909 check_sync_rss_stat(current); 3910 3911 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE, 3912 flags & FAULT_FLAG_INSTRUCTION, 3913 flags & FAULT_FLAG_REMOTE)) 3914 return VM_FAULT_SIGSEGV; 3915 3916 /* 3917 * Enable the memcg OOM handling for faults triggered in user 3918 * space. Kernel faults are handled more gracefully. 3919 */ 3920 if (flags & FAULT_FLAG_USER) 3921 mem_cgroup_enter_user_fault(); 3922 3923 if (unlikely(is_vm_hugetlb_page(vma))) 3924 ret = hugetlb_fault(vma->vm_mm, vma, address, flags); 3925 else 3926 ret = __handle_mm_fault(vma, address, flags); 3927 3928 if (flags & FAULT_FLAG_USER) { 3929 mem_cgroup_exit_user_fault(); 3930 /* 3931 * The task may have entered a memcg OOM situation but 3932 * if the allocation error was handled gracefully (no 3933 * VM_FAULT_OOM), there is no need to kill anything. 3934 * Just clean up the OOM state peacefully. 3935 */ 3936 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM)) 3937 mem_cgroup_oom_synchronize(false); 3938 } 3939 3940 return ret; 3941 } 3942 EXPORT_SYMBOL_GPL(handle_mm_fault); 3943 3944 #ifndef __PAGETABLE_P4D_FOLDED 3945 /* 3946 * Allocate p4d page table. 3947 * We've already handled the fast-path in-line. 3948 */ 3949 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 3950 { 3951 p4d_t *new = p4d_alloc_one(mm, address); 3952 if (!new) 3953 return -ENOMEM; 3954 3955 smp_wmb(); /* See comment in __pte_alloc */ 3956 3957 spin_lock(&mm->page_table_lock); 3958 if (pgd_present(*pgd)) /* Another has populated it */ 3959 p4d_free(mm, new); 3960 else 3961 pgd_populate(mm, pgd, new); 3962 spin_unlock(&mm->page_table_lock); 3963 return 0; 3964 } 3965 #endif /* __PAGETABLE_P4D_FOLDED */ 3966 3967 #ifndef __PAGETABLE_PUD_FOLDED 3968 /* 3969 * Allocate page upper directory. 3970 * We've already handled the fast-path in-line. 3971 */ 3972 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address) 3973 { 3974 pud_t *new = pud_alloc_one(mm, address); 3975 if (!new) 3976 return -ENOMEM; 3977 3978 smp_wmb(); /* See comment in __pte_alloc */ 3979 3980 spin_lock(&mm->page_table_lock); 3981 #ifndef __ARCH_HAS_5LEVEL_HACK 3982 if (!p4d_present(*p4d)) { 3983 mm_inc_nr_puds(mm); 3984 p4d_populate(mm, p4d, new); 3985 } else /* Another has populated it */ 3986 pud_free(mm, new); 3987 #else 3988 if (!pgd_present(*p4d)) { 3989 mm_inc_nr_puds(mm); 3990 pgd_populate(mm, p4d, new); 3991 } else /* Another has populated it */ 3992 pud_free(mm, new); 3993 #endif /* __ARCH_HAS_5LEVEL_HACK */ 3994 spin_unlock(&mm->page_table_lock); 3995 return 0; 3996 } 3997 #endif /* __PAGETABLE_PUD_FOLDED */ 3998 3999 #ifndef __PAGETABLE_PMD_FOLDED 4000 /* 4001 * Allocate page middle directory. 4002 * We've already handled the fast-path in-line. 4003 */ 4004 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 4005 { 4006 spinlock_t *ptl; 4007 pmd_t *new = pmd_alloc_one(mm, address); 4008 if (!new) 4009 return -ENOMEM; 4010 4011 smp_wmb(); /* See comment in __pte_alloc */ 4012 4013 ptl = pud_lock(mm, pud); 4014 #ifndef __ARCH_HAS_4LEVEL_HACK 4015 if (!pud_present(*pud)) { 4016 mm_inc_nr_pmds(mm); 4017 pud_populate(mm, pud, new); 4018 } else /* Another has populated it */ 4019 pmd_free(mm, new); 4020 #else 4021 if (!pgd_present(*pud)) { 4022 mm_inc_nr_pmds(mm); 4023 pgd_populate(mm, pud, new); 4024 } else /* Another has populated it */ 4025 pmd_free(mm, new); 4026 #endif /* __ARCH_HAS_4LEVEL_HACK */ 4027 spin_unlock(ptl); 4028 return 0; 4029 } 4030 #endif /* __PAGETABLE_PMD_FOLDED */ 4031 4032 static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4033 struct mmu_notifier_range *range, 4034 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4035 { 4036 pgd_t *pgd; 4037 p4d_t *p4d; 4038 pud_t *pud; 4039 pmd_t *pmd; 4040 pte_t *ptep; 4041 4042 pgd = pgd_offset(mm, address); 4043 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) 4044 goto out; 4045 4046 p4d = p4d_offset(pgd, address); 4047 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d))) 4048 goto out; 4049 4050 pud = pud_offset(p4d, address); 4051 if (pud_none(*pud) || unlikely(pud_bad(*pud))) 4052 goto out; 4053 4054 pmd = pmd_offset(pud, address); 4055 VM_BUG_ON(pmd_trans_huge(*pmd)); 4056 4057 if (pmd_huge(*pmd)) { 4058 if (!pmdpp) 4059 goto out; 4060 4061 if (range) { 4062 mmu_notifier_range_init(range, mm, address & PMD_MASK, 4063 (address & PMD_MASK) + PMD_SIZE); 4064 mmu_notifier_invalidate_range_start(range); 4065 } 4066 *ptlp = pmd_lock(mm, pmd); 4067 if (pmd_huge(*pmd)) { 4068 *pmdpp = pmd; 4069 return 0; 4070 } 4071 spin_unlock(*ptlp); 4072 if (range) 4073 mmu_notifier_invalidate_range_end(range); 4074 } 4075 4076 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 4077 goto out; 4078 4079 if (range) { 4080 range->start = address & PAGE_MASK; 4081 range->end = range->start + PAGE_SIZE; 4082 mmu_notifier_invalidate_range_start(range); 4083 } 4084 ptep = pte_offset_map_lock(mm, pmd, address, ptlp); 4085 if (!pte_present(*ptep)) 4086 goto unlock; 4087 *ptepp = ptep; 4088 return 0; 4089 unlock: 4090 pte_unmap_unlock(ptep, *ptlp); 4091 if (range) 4092 mmu_notifier_invalidate_range_end(range); 4093 out: 4094 return -EINVAL; 4095 } 4096 4097 static inline int follow_pte(struct mm_struct *mm, unsigned long address, 4098 pte_t **ptepp, spinlock_t **ptlp) 4099 { 4100 int res; 4101 4102 /* (void) is needed to make gcc happy */ 4103 (void) __cond_lock(*ptlp, 4104 !(res = __follow_pte_pmd(mm, address, NULL, 4105 ptepp, NULL, ptlp))); 4106 return res; 4107 } 4108 4109 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 4110 struct mmu_notifier_range *range, 4111 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp) 4112 { 4113 int res; 4114 4115 /* (void) is needed to make gcc happy */ 4116 (void) __cond_lock(*ptlp, 4117 !(res = __follow_pte_pmd(mm, address, range, 4118 ptepp, pmdpp, ptlp))); 4119 return res; 4120 } 4121 EXPORT_SYMBOL(follow_pte_pmd); 4122 4123 /** 4124 * follow_pfn - look up PFN at a user virtual address 4125 * @vma: memory mapping 4126 * @address: user virtual address 4127 * @pfn: location to store found PFN 4128 * 4129 * Only IO mappings and raw PFN mappings are allowed. 4130 * 4131 * Returns zero and the pfn at @pfn on success, -ve otherwise. 4132 */ 4133 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 4134 unsigned long *pfn) 4135 { 4136 int ret = -EINVAL; 4137 spinlock_t *ptl; 4138 pte_t *ptep; 4139 4140 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4141 return ret; 4142 4143 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl); 4144 if (ret) 4145 return ret; 4146 *pfn = pte_pfn(*ptep); 4147 pte_unmap_unlock(ptep, ptl); 4148 return 0; 4149 } 4150 EXPORT_SYMBOL(follow_pfn); 4151 4152 #ifdef CONFIG_HAVE_IOREMAP_PROT 4153 int follow_phys(struct vm_area_struct *vma, 4154 unsigned long address, unsigned int flags, 4155 unsigned long *prot, resource_size_t *phys) 4156 { 4157 int ret = -EINVAL; 4158 pte_t *ptep, pte; 4159 spinlock_t *ptl; 4160 4161 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP))) 4162 goto out; 4163 4164 if (follow_pte(vma->vm_mm, address, &ptep, &ptl)) 4165 goto out; 4166 pte = *ptep; 4167 4168 if ((flags & FOLL_WRITE) && !pte_write(pte)) 4169 goto unlock; 4170 4171 *prot = pgprot_val(pte_pgprot(pte)); 4172 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT; 4173 4174 ret = 0; 4175 unlock: 4176 pte_unmap_unlock(ptep, ptl); 4177 out: 4178 return ret; 4179 } 4180 4181 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 4182 void *buf, int len, int write) 4183 { 4184 resource_size_t phys_addr; 4185 unsigned long prot = 0; 4186 void __iomem *maddr; 4187 int offset = addr & (PAGE_SIZE-1); 4188 4189 if (follow_phys(vma, addr, write, &prot, &phys_addr)) 4190 return -EINVAL; 4191 4192 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot); 4193 if (!maddr) 4194 return -ENOMEM; 4195 4196 if (write) 4197 memcpy_toio(maddr + offset, buf, len); 4198 else 4199 memcpy_fromio(buf, maddr + offset, len); 4200 iounmap(maddr); 4201 4202 return len; 4203 } 4204 EXPORT_SYMBOL_GPL(generic_access_phys); 4205 #endif 4206 4207 /* 4208 * Access another process' address space as given in mm. If non-NULL, use the 4209 * given task for page fault accounting. 4210 */ 4211 int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 4212 unsigned long addr, void *buf, int len, unsigned int gup_flags) 4213 { 4214 struct vm_area_struct *vma; 4215 void *old_buf = buf; 4216 int write = gup_flags & FOLL_WRITE; 4217 4218 down_read(&mm->mmap_sem); 4219 /* ignore errors, just check how much was successfully transferred */ 4220 while (len) { 4221 int bytes, ret, offset; 4222 void *maddr; 4223 struct page *page = NULL; 4224 4225 ret = get_user_pages_remote(tsk, mm, addr, 1, 4226 gup_flags, &page, &vma, NULL); 4227 if (ret <= 0) { 4228 #ifndef CONFIG_HAVE_IOREMAP_PROT 4229 break; 4230 #else 4231 /* 4232 * Check if this is a VM_IO | VM_PFNMAP VMA, which 4233 * we can access using slightly different code. 4234 */ 4235 vma = find_vma(mm, addr); 4236 if (!vma || vma->vm_start > addr) 4237 break; 4238 if (vma->vm_ops && vma->vm_ops->access) 4239 ret = vma->vm_ops->access(vma, addr, buf, 4240 len, write); 4241 if (ret <= 0) 4242 break; 4243 bytes = ret; 4244 #endif 4245 } else { 4246 bytes = len; 4247 offset = addr & (PAGE_SIZE-1); 4248 if (bytes > PAGE_SIZE-offset) 4249 bytes = PAGE_SIZE-offset; 4250 4251 maddr = kmap(page); 4252 if (write) { 4253 copy_to_user_page(vma, page, addr, 4254 maddr + offset, buf, bytes); 4255 set_page_dirty_lock(page); 4256 } else { 4257 copy_from_user_page(vma, page, addr, 4258 buf, maddr + offset, bytes); 4259 } 4260 kunmap(page); 4261 put_page(page); 4262 } 4263 len -= bytes; 4264 buf += bytes; 4265 addr += bytes; 4266 } 4267 up_read(&mm->mmap_sem); 4268 4269 return buf - old_buf; 4270 } 4271 4272 /** 4273 * access_remote_vm - access another process' address space 4274 * @mm: the mm_struct of the target address space 4275 * @addr: start address to access 4276 * @buf: source or destination buffer 4277 * @len: number of bytes to transfer 4278 * @gup_flags: flags modifying lookup behaviour 4279 * 4280 * The caller must hold a reference on @mm. 4281 */ 4282 int access_remote_vm(struct mm_struct *mm, unsigned long addr, 4283 void *buf, int len, unsigned int gup_flags) 4284 { 4285 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags); 4286 } 4287 4288 /* 4289 * Access another process' address space. 4290 * Source/target buffer must be kernel space, 4291 * Do not walk the page table directly, use get_user_pages 4292 */ 4293 int access_process_vm(struct task_struct *tsk, unsigned long addr, 4294 void *buf, int len, unsigned int gup_flags) 4295 { 4296 struct mm_struct *mm; 4297 int ret; 4298 4299 mm = get_task_mm(tsk); 4300 if (!mm) 4301 return 0; 4302 4303 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags); 4304 4305 mmput(mm); 4306 4307 return ret; 4308 } 4309 EXPORT_SYMBOL_GPL(access_process_vm); 4310 4311 /* 4312 * Print the name of a VMA. 4313 */ 4314 void print_vma_addr(char *prefix, unsigned long ip) 4315 { 4316 struct mm_struct *mm = current->mm; 4317 struct vm_area_struct *vma; 4318 4319 /* 4320 * we might be running from an atomic context so we cannot sleep 4321 */ 4322 if (!down_read_trylock(&mm->mmap_sem)) 4323 return; 4324 4325 vma = find_vma(mm, ip); 4326 if (vma && vma->vm_file) { 4327 struct file *f = vma->vm_file; 4328 char *buf = (char *)__get_free_page(GFP_NOWAIT); 4329 if (buf) { 4330 char *p; 4331 4332 p = file_path(f, buf, PAGE_SIZE); 4333 if (IS_ERR(p)) 4334 p = "?"; 4335 printk("%s%s[%lx+%lx]", prefix, kbasename(p), 4336 vma->vm_start, 4337 vma->vm_end - vma->vm_start); 4338 free_page((unsigned long)buf); 4339 } 4340 } 4341 up_read(&mm->mmap_sem); 4342 } 4343 4344 #if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4345 void __might_fault(const char *file, int line) 4346 { 4347 /* 4348 * Some code (nfs/sunrpc) uses socket ops on kernel memory while 4349 * holding the mmap_sem, this is safe because kernel memory doesn't 4350 * get paged out, therefore we'll never actually fault, and the 4351 * below annotations will generate false positives. 4352 */ 4353 if (uaccess_kernel()) 4354 return; 4355 if (pagefault_disabled()) 4356 return; 4357 __might_sleep(file, line, 0); 4358 #if defined(CONFIG_DEBUG_ATOMIC_SLEEP) 4359 if (current->mm) 4360 might_lock_read(¤t->mm->mmap_sem); 4361 #endif 4362 } 4363 EXPORT_SYMBOL(__might_fault); 4364 #endif 4365 4366 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4367 /* 4368 * Process all subpages of the specified huge page with the specified 4369 * operation. The target subpage will be processed last to keep its 4370 * cache lines hot. 4371 */ 4372 static inline void process_huge_page( 4373 unsigned long addr_hint, unsigned int pages_per_huge_page, 4374 void (*process_subpage)(unsigned long addr, int idx, void *arg), 4375 void *arg) 4376 { 4377 int i, n, base, l; 4378 unsigned long addr = addr_hint & 4379 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4380 4381 /* Process target subpage last to keep its cache lines hot */ 4382 might_sleep(); 4383 n = (addr_hint - addr) / PAGE_SIZE; 4384 if (2 * n <= pages_per_huge_page) { 4385 /* If target subpage in first half of huge page */ 4386 base = 0; 4387 l = n; 4388 /* Process subpages at the end of huge page */ 4389 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) { 4390 cond_resched(); 4391 process_subpage(addr + i * PAGE_SIZE, i, arg); 4392 } 4393 } else { 4394 /* If target subpage in second half of huge page */ 4395 base = pages_per_huge_page - 2 * (pages_per_huge_page - n); 4396 l = pages_per_huge_page - n; 4397 /* Process subpages at the begin of huge page */ 4398 for (i = 0; i < base; i++) { 4399 cond_resched(); 4400 process_subpage(addr + i * PAGE_SIZE, i, arg); 4401 } 4402 } 4403 /* 4404 * Process remaining subpages in left-right-left-right pattern 4405 * towards the target subpage 4406 */ 4407 for (i = 0; i < l; i++) { 4408 int left_idx = base + i; 4409 int right_idx = base + 2 * l - 1 - i; 4410 4411 cond_resched(); 4412 process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg); 4413 cond_resched(); 4414 process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg); 4415 } 4416 } 4417 4418 static void clear_gigantic_page(struct page *page, 4419 unsigned long addr, 4420 unsigned int pages_per_huge_page) 4421 { 4422 int i; 4423 struct page *p = page; 4424 4425 might_sleep(); 4426 for (i = 0; i < pages_per_huge_page; 4427 i++, p = mem_map_next(p, page, i)) { 4428 cond_resched(); 4429 clear_user_highpage(p, addr + i * PAGE_SIZE); 4430 } 4431 } 4432 4433 static void clear_subpage(unsigned long addr, int idx, void *arg) 4434 { 4435 struct page *page = arg; 4436 4437 clear_user_highpage(page + idx, addr); 4438 } 4439 4440 void clear_huge_page(struct page *page, 4441 unsigned long addr_hint, unsigned int pages_per_huge_page) 4442 { 4443 unsigned long addr = addr_hint & 4444 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4445 4446 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4447 clear_gigantic_page(page, addr, pages_per_huge_page); 4448 return; 4449 } 4450 4451 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page); 4452 } 4453 4454 static void copy_user_gigantic_page(struct page *dst, struct page *src, 4455 unsigned long addr, 4456 struct vm_area_struct *vma, 4457 unsigned int pages_per_huge_page) 4458 { 4459 int i; 4460 struct page *dst_base = dst; 4461 struct page *src_base = src; 4462 4463 for (i = 0; i < pages_per_huge_page; ) { 4464 cond_resched(); 4465 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma); 4466 4467 i++; 4468 dst = mem_map_next(dst, dst_base, i); 4469 src = mem_map_next(src, src_base, i); 4470 } 4471 } 4472 4473 struct copy_subpage_arg { 4474 struct page *dst; 4475 struct page *src; 4476 struct vm_area_struct *vma; 4477 }; 4478 4479 static void copy_subpage(unsigned long addr, int idx, void *arg) 4480 { 4481 struct copy_subpage_arg *copy_arg = arg; 4482 4483 copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx, 4484 addr, copy_arg->vma); 4485 } 4486 4487 void copy_user_huge_page(struct page *dst, struct page *src, 4488 unsigned long addr_hint, struct vm_area_struct *vma, 4489 unsigned int pages_per_huge_page) 4490 { 4491 unsigned long addr = addr_hint & 4492 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1); 4493 struct copy_subpage_arg arg = { 4494 .dst = dst, 4495 .src = src, 4496 .vma = vma, 4497 }; 4498 4499 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) { 4500 copy_user_gigantic_page(dst, src, addr, vma, 4501 pages_per_huge_page); 4502 return; 4503 } 4504 4505 process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg); 4506 } 4507 4508 long copy_huge_page_from_user(struct page *dst_page, 4509 const void __user *usr_src, 4510 unsigned int pages_per_huge_page, 4511 bool allow_pagefault) 4512 { 4513 void *src = (void *)usr_src; 4514 void *page_kaddr; 4515 unsigned long i, rc = 0; 4516 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE; 4517 4518 for (i = 0; i < pages_per_huge_page; i++) { 4519 if (allow_pagefault) 4520 page_kaddr = kmap(dst_page + i); 4521 else 4522 page_kaddr = kmap_atomic(dst_page + i); 4523 rc = copy_from_user(page_kaddr, 4524 (const void __user *)(src + i * PAGE_SIZE), 4525 PAGE_SIZE); 4526 if (allow_pagefault) 4527 kunmap(dst_page + i); 4528 else 4529 kunmap_atomic(page_kaddr); 4530 4531 ret_val -= (PAGE_SIZE - rc); 4532 if (rc) 4533 break; 4534 4535 cond_resched(); 4536 } 4537 return ret_val; 4538 } 4539 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4540 4541 #if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS 4542 4543 static struct kmem_cache *page_ptl_cachep; 4544 4545 void __init ptlock_cache_init(void) 4546 { 4547 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0, 4548 SLAB_PANIC, NULL); 4549 } 4550 4551 bool ptlock_alloc(struct page *page) 4552 { 4553 spinlock_t *ptl; 4554 4555 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL); 4556 if (!ptl) 4557 return false; 4558 page->ptl = ptl; 4559 return true; 4560 } 4561 4562 void ptlock_free(struct page *page) 4563 { 4564 kmem_cache_free(page_ptl_cachep, page->ptl); 4565 } 4566 #endif 4567