1 // SPDX-License-Identifier: GPL-2.0 2 #include <linux/slab.h> 3 #include <linux/lockdep.h> 4 #include <linux/sysfs.h> 5 #include <linux/kobject.h> 6 #include <linux/memory.h> 7 #include <linux/memory-tiers.h> 8 9 #include "internal.h" 10 11 struct memory_tier { 12 /* hierarchy of memory tiers */ 13 struct list_head list; 14 /* list of all memory types part of this tier */ 15 struct list_head memory_types; 16 /* 17 * start value of abstract distance. memory tier maps 18 * an abstract distance range, 19 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE 20 */ 21 int adistance_start; 22 struct device dev; 23 /* All the nodes that are part of all the lower memory tiers. */ 24 nodemask_t lower_tier_mask; 25 }; 26 27 struct demotion_nodes { 28 nodemask_t preferred; 29 }; 30 31 struct node_memory_type_map { 32 struct memory_dev_type *memtype; 33 int map_count; 34 }; 35 36 static DEFINE_MUTEX(memory_tier_lock); 37 static LIST_HEAD(memory_tiers); 38 static struct node_memory_type_map node_memory_types[MAX_NUMNODES]; 39 static struct memory_dev_type *default_dram_type; 40 41 static struct bus_type memory_tier_subsys = { 42 .name = "memory_tiering", 43 .dev_name = "memory_tier", 44 }; 45 46 #ifdef CONFIG_MIGRATION 47 static int top_tier_adistance; 48 /* 49 * node_demotion[] examples: 50 * 51 * Example 1: 52 * 53 * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes. 54 * 55 * node distances: 56 * node 0 1 2 3 57 * 0 10 20 30 40 58 * 1 20 10 40 30 59 * 2 30 40 10 40 60 * 3 40 30 40 10 61 * 62 * memory_tiers0 = 0-1 63 * memory_tiers1 = 2-3 64 * 65 * node_demotion[0].preferred = 2 66 * node_demotion[1].preferred = 3 67 * node_demotion[2].preferred = <empty> 68 * node_demotion[3].preferred = <empty> 69 * 70 * Example 2: 71 * 72 * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node. 73 * 74 * node distances: 75 * node 0 1 2 76 * 0 10 20 30 77 * 1 20 10 30 78 * 2 30 30 10 79 * 80 * memory_tiers0 = 0-2 81 * 82 * node_demotion[0].preferred = <empty> 83 * node_demotion[1].preferred = <empty> 84 * node_demotion[2].preferred = <empty> 85 * 86 * Example 3: 87 * 88 * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node. 89 * 90 * node distances: 91 * node 0 1 2 92 * 0 10 20 30 93 * 1 20 10 40 94 * 2 30 40 10 95 * 96 * memory_tiers0 = 1 97 * memory_tiers1 = 0 98 * memory_tiers2 = 2 99 * 100 * node_demotion[0].preferred = 2 101 * node_demotion[1].preferred = 0 102 * node_demotion[2].preferred = <empty> 103 * 104 */ 105 static struct demotion_nodes *node_demotion __read_mostly; 106 #endif /* CONFIG_MIGRATION */ 107 108 static inline struct memory_tier *to_memory_tier(struct device *device) 109 { 110 return container_of(device, struct memory_tier, dev); 111 } 112 113 static __always_inline nodemask_t get_memtier_nodemask(struct memory_tier *memtier) 114 { 115 nodemask_t nodes = NODE_MASK_NONE; 116 struct memory_dev_type *memtype; 117 118 list_for_each_entry(memtype, &memtier->memory_types, tier_sibiling) 119 nodes_or(nodes, nodes, memtype->nodes); 120 121 return nodes; 122 } 123 124 static void memory_tier_device_release(struct device *dev) 125 { 126 struct memory_tier *tier = to_memory_tier(dev); 127 /* 128 * synchronize_rcu in clear_node_memory_tier makes sure 129 * we don't have rcu access to this memory tier. 130 */ 131 kfree(tier); 132 } 133 134 static ssize_t nodelist_show(struct device *dev, 135 struct device_attribute *attr, char *buf) 136 { 137 int ret; 138 nodemask_t nmask; 139 140 mutex_lock(&memory_tier_lock); 141 nmask = get_memtier_nodemask(to_memory_tier(dev)); 142 ret = sysfs_emit(buf, "%*pbl\n", nodemask_pr_args(&nmask)); 143 mutex_unlock(&memory_tier_lock); 144 return ret; 145 } 146 static DEVICE_ATTR_RO(nodelist); 147 148 static struct attribute *memtier_dev_attrs[] = { 149 &dev_attr_nodelist.attr, 150 NULL 151 }; 152 153 static const struct attribute_group memtier_dev_group = { 154 .attrs = memtier_dev_attrs, 155 }; 156 157 static const struct attribute_group *memtier_dev_groups[] = { 158 &memtier_dev_group, 159 NULL 160 }; 161 162 static struct memory_tier *find_create_memory_tier(struct memory_dev_type *memtype) 163 { 164 int ret; 165 bool found_slot = false; 166 struct memory_tier *memtier, *new_memtier; 167 int adistance = memtype->adistance; 168 unsigned int memtier_adistance_chunk_size = MEMTIER_CHUNK_SIZE; 169 170 lockdep_assert_held_once(&memory_tier_lock); 171 172 adistance = round_down(adistance, memtier_adistance_chunk_size); 173 /* 174 * If the memtype is already part of a memory tier, 175 * just return that. 176 */ 177 if (!list_empty(&memtype->tier_sibiling)) { 178 list_for_each_entry(memtier, &memory_tiers, list) { 179 if (adistance == memtier->adistance_start) 180 return memtier; 181 } 182 WARN_ON(1); 183 return ERR_PTR(-EINVAL); 184 } 185 186 list_for_each_entry(memtier, &memory_tiers, list) { 187 if (adistance == memtier->adistance_start) { 188 goto link_memtype; 189 } else if (adistance < memtier->adistance_start) { 190 found_slot = true; 191 break; 192 } 193 } 194 195 new_memtier = kzalloc(sizeof(struct memory_tier), GFP_KERNEL); 196 if (!new_memtier) 197 return ERR_PTR(-ENOMEM); 198 199 new_memtier->adistance_start = adistance; 200 INIT_LIST_HEAD(&new_memtier->list); 201 INIT_LIST_HEAD(&new_memtier->memory_types); 202 if (found_slot) 203 list_add_tail(&new_memtier->list, &memtier->list); 204 else 205 list_add_tail(&new_memtier->list, &memory_tiers); 206 207 new_memtier->dev.id = adistance >> MEMTIER_CHUNK_BITS; 208 new_memtier->dev.bus = &memory_tier_subsys; 209 new_memtier->dev.release = memory_tier_device_release; 210 new_memtier->dev.groups = memtier_dev_groups; 211 212 ret = device_register(&new_memtier->dev); 213 if (ret) { 214 list_del(&new_memtier->list); 215 put_device(&new_memtier->dev); 216 return ERR_PTR(ret); 217 } 218 memtier = new_memtier; 219 220 link_memtype: 221 list_add(&memtype->tier_sibiling, &memtier->memory_types); 222 return memtier; 223 } 224 225 static struct memory_tier *__node_get_memory_tier(int node) 226 { 227 pg_data_t *pgdat; 228 229 pgdat = NODE_DATA(node); 230 if (!pgdat) 231 return NULL; 232 /* 233 * Since we hold memory_tier_lock, we can avoid 234 * RCU read locks when accessing the details. No 235 * parallel updates are possible here. 236 */ 237 return rcu_dereference_check(pgdat->memtier, 238 lockdep_is_held(&memory_tier_lock)); 239 } 240 241 #ifdef CONFIG_MIGRATION 242 bool node_is_toptier(int node) 243 { 244 bool toptier; 245 pg_data_t *pgdat; 246 struct memory_tier *memtier; 247 248 pgdat = NODE_DATA(node); 249 if (!pgdat) 250 return false; 251 252 rcu_read_lock(); 253 memtier = rcu_dereference(pgdat->memtier); 254 if (!memtier) { 255 toptier = true; 256 goto out; 257 } 258 if (memtier->adistance_start <= top_tier_adistance) 259 toptier = true; 260 else 261 toptier = false; 262 out: 263 rcu_read_unlock(); 264 return toptier; 265 } 266 267 void node_get_allowed_targets(pg_data_t *pgdat, nodemask_t *targets) 268 { 269 struct memory_tier *memtier; 270 271 /* 272 * pg_data_t.memtier updates includes a synchronize_rcu() 273 * which ensures that we either find NULL or a valid memtier 274 * in NODE_DATA. protect the access via rcu_read_lock(); 275 */ 276 rcu_read_lock(); 277 memtier = rcu_dereference(pgdat->memtier); 278 if (memtier) 279 *targets = memtier->lower_tier_mask; 280 else 281 *targets = NODE_MASK_NONE; 282 rcu_read_unlock(); 283 } 284 285 /** 286 * next_demotion_node() - Get the next node in the demotion path 287 * @node: The starting node to lookup the next node 288 * 289 * Return: node id for next memory node in the demotion path hierarchy 290 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep 291 * @node online or guarantee that it *continues* to be the next demotion 292 * target. 293 */ 294 int next_demotion_node(int node) 295 { 296 struct demotion_nodes *nd; 297 int target; 298 299 if (!node_demotion) 300 return NUMA_NO_NODE; 301 302 nd = &node_demotion[node]; 303 304 /* 305 * node_demotion[] is updated without excluding this 306 * function from running. 307 * 308 * Make sure to use RCU over entire code blocks if 309 * node_demotion[] reads need to be consistent. 310 */ 311 rcu_read_lock(); 312 /* 313 * If there are multiple target nodes, just select one 314 * target node randomly. 315 * 316 * In addition, we can also use round-robin to select 317 * target node, but we should introduce another variable 318 * for node_demotion[] to record last selected target node, 319 * that may cause cache ping-pong due to the changing of 320 * last target node. Or introducing per-cpu data to avoid 321 * caching issue, which seems more complicated. So selecting 322 * target node randomly seems better until now. 323 */ 324 target = node_random(&nd->preferred); 325 rcu_read_unlock(); 326 327 return target; 328 } 329 330 static void disable_all_demotion_targets(void) 331 { 332 struct memory_tier *memtier; 333 int node; 334 335 for_each_node_state(node, N_MEMORY) { 336 node_demotion[node].preferred = NODE_MASK_NONE; 337 /* 338 * We are holding memory_tier_lock, it is safe 339 * to access pgda->memtier. 340 */ 341 memtier = __node_get_memory_tier(node); 342 if (memtier) 343 memtier->lower_tier_mask = NODE_MASK_NONE; 344 } 345 /* 346 * Ensure that the "disable" is visible across the system. 347 * Readers will see either a combination of before+disable 348 * state or disable+after. They will never see before and 349 * after state together. 350 */ 351 synchronize_rcu(); 352 } 353 354 /* 355 * Find an automatic demotion target for all memory 356 * nodes. Failing here is OK. It might just indicate 357 * being at the end of a chain. 358 */ 359 static void establish_demotion_targets(void) 360 { 361 struct memory_tier *memtier; 362 struct demotion_nodes *nd; 363 int target = NUMA_NO_NODE, node; 364 int distance, best_distance; 365 nodemask_t tier_nodes, lower_tier; 366 367 lockdep_assert_held_once(&memory_tier_lock); 368 369 if (!node_demotion) 370 return; 371 372 disable_all_demotion_targets(); 373 374 for_each_node_state(node, N_MEMORY) { 375 best_distance = -1; 376 nd = &node_demotion[node]; 377 378 memtier = __node_get_memory_tier(node); 379 if (!memtier || list_is_last(&memtier->list, &memory_tiers)) 380 continue; 381 /* 382 * Get the lower memtier to find the demotion node list. 383 */ 384 memtier = list_next_entry(memtier, list); 385 tier_nodes = get_memtier_nodemask(memtier); 386 /* 387 * find_next_best_node, use 'used' nodemask as a skip list. 388 * Add all memory nodes except the selected memory tier 389 * nodelist to skip list so that we find the best node from the 390 * memtier nodelist. 391 */ 392 nodes_andnot(tier_nodes, node_states[N_MEMORY], tier_nodes); 393 394 /* 395 * Find all the nodes in the memory tier node list of same best distance. 396 * add them to the preferred mask. We randomly select between nodes 397 * in the preferred mask when allocating pages during demotion. 398 */ 399 do { 400 target = find_next_best_node(node, &tier_nodes); 401 if (target == NUMA_NO_NODE) 402 break; 403 404 distance = node_distance(node, target); 405 if (distance == best_distance || best_distance == -1) { 406 best_distance = distance; 407 node_set(target, nd->preferred); 408 } else { 409 break; 410 } 411 } while (1); 412 } 413 /* 414 * Promotion is allowed from a memory tier to higher 415 * memory tier only if the memory tier doesn't include 416 * compute. We want to skip promotion from a memory tier, 417 * if any node that is part of the memory tier have CPUs. 418 * Once we detect such a memory tier, we consider that tier 419 * as top tiper from which promotion is not allowed. 420 */ 421 list_for_each_entry_reverse(memtier, &memory_tiers, list) { 422 tier_nodes = get_memtier_nodemask(memtier); 423 nodes_and(tier_nodes, node_states[N_CPU], tier_nodes); 424 if (!nodes_empty(tier_nodes)) { 425 /* 426 * abstract distance below the max value of this memtier 427 * is considered toptier. 428 */ 429 top_tier_adistance = memtier->adistance_start + 430 MEMTIER_CHUNK_SIZE - 1; 431 break; 432 } 433 } 434 /* 435 * Now build the lower_tier mask for each node collecting node mask from 436 * all memory tier below it. This allows us to fallback demotion page 437 * allocation to a set of nodes that is closer the above selected 438 * perferred node. 439 */ 440 lower_tier = node_states[N_MEMORY]; 441 list_for_each_entry(memtier, &memory_tiers, list) { 442 /* 443 * Keep removing current tier from lower_tier nodes, 444 * This will remove all nodes in current and above 445 * memory tier from the lower_tier mask. 446 */ 447 tier_nodes = get_memtier_nodemask(memtier); 448 nodes_andnot(lower_tier, lower_tier, tier_nodes); 449 memtier->lower_tier_mask = lower_tier; 450 } 451 } 452 453 #else 454 static inline void establish_demotion_targets(void) {} 455 #endif /* CONFIG_MIGRATION */ 456 457 static inline void __init_node_memory_type(int node, struct memory_dev_type *memtype) 458 { 459 if (!node_memory_types[node].memtype) 460 node_memory_types[node].memtype = memtype; 461 /* 462 * for each device getting added in the same NUMA node 463 * with this specific memtype, bump the map count. We 464 * Only take memtype device reference once, so that 465 * changing a node memtype can be done by droping the 466 * only reference count taken here. 467 */ 468 469 if (node_memory_types[node].memtype == memtype) { 470 if (!node_memory_types[node].map_count++) 471 kref_get(&memtype->kref); 472 } 473 } 474 475 static struct memory_tier *set_node_memory_tier(int node) 476 { 477 struct memory_tier *memtier; 478 struct memory_dev_type *memtype; 479 pg_data_t *pgdat = NODE_DATA(node); 480 481 482 lockdep_assert_held_once(&memory_tier_lock); 483 484 if (!node_state(node, N_MEMORY)) 485 return ERR_PTR(-EINVAL); 486 487 __init_node_memory_type(node, default_dram_type); 488 489 memtype = node_memory_types[node].memtype; 490 node_set(node, memtype->nodes); 491 memtier = find_create_memory_tier(memtype); 492 if (!IS_ERR(memtier)) 493 rcu_assign_pointer(pgdat->memtier, memtier); 494 return memtier; 495 } 496 497 static void destroy_memory_tier(struct memory_tier *memtier) 498 { 499 list_del(&memtier->list); 500 device_unregister(&memtier->dev); 501 } 502 503 static bool clear_node_memory_tier(int node) 504 { 505 bool cleared = false; 506 pg_data_t *pgdat; 507 struct memory_tier *memtier; 508 509 pgdat = NODE_DATA(node); 510 if (!pgdat) 511 return false; 512 513 /* 514 * Make sure that anybody looking at NODE_DATA who finds 515 * a valid memtier finds memory_dev_types with nodes still 516 * linked to the memtier. We achieve this by waiting for 517 * rcu read section to finish using synchronize_rcu. 518 * This also enables us to free the destroyed memory tier 519 * with kfree instead of kfree_rcu 520 */ 521 memtier = __node_get_memory_tier(node); 522 if (memtier) { 523 struct memory_dev_type *memtype; 524 525 rcu_assign_pointer(pgdat->memtier, NULL); 526 synchronize_rcu(); 527 memtype = node_memory_types[node].memtype; 528 node_clear(node, memtype->nodes); 529 if (nodes_empty(memtype->nodes)) { 530 list_del_init(&memtype->tier_sibiling); 531 if (list_empty(&memtier->memory_types)) 532 destroy_memory_tier(memtier); 533 } 534 cleared = true; 535 } 536 return cleared; 537 } 538 539 static void release_memtype(struct kref *kref) 540 { 541 struct memory_dev_type *memtype; 542 543 memtype = container_of(kref, struct memory_dev_type, kref); 544 kfree(memtype); 545 } 546 547 struct memory_dev_type *alloc_memory_type(int adistance) 548 { 549 struct memory_dev_type *memtype; 550 551 memtype = kmalloc(sizeof(*memtype), GFP_KERNEL); 552 if (!memtype) 553 return ERR_PTR(-ENOMEM); 554 555 memtype->adistance = adistance; 556 INIT_LIST_HEAD(&memtype->tier_sibiling); 557 memtype->nodes = NODE_MASK_NONE; 558 kref_init(&memtype->kref); 559 return memtype; 560 } 561 EXPORT_SYMBOL_GPL(alloc_memory_type); 562 563 void put_memory_type(struct memory_dev_type *memtype) 564 { 565 kref_put(&memtype->kref, release_memtype); 566 } 567 EXPORT_SYMBOL_GPL(put_memory_type); 568 569 void init_node_memory_type(int node, struct memory_dev_type *memtype) 570 { 571 572 mutex_lock(&memory_tier_lock); 573 __init_node_memory_type(node, memtype); 574 mutex_unlock(&memory_tier_lock); 575 } 576 EXPORT_SYMBOL_GPL(init_node_memory_type); 577 578 void clear_node_memory_type(int node, struct memory_dev_type *memtype) 579 { 580 mutex_lock(&memory_tier_lock); 581 if (node_memory_types[node].memtype == memtype) 582 node_memory_types[node].map_count--; 583 /* 584 * If we umapped all the attached devices to this node, 585 * clear the node memory type. 586 */ 587 if (!node_memory_types[node].map_count) { 588 node_memory_types[node].memtype = NULL; 589 put_memory_type(memtype); 590 } 591 mutex_unlock(&memory_tier_lock); 592 } 593 EXPORT_SYMBOL_GPL(clear_node_memory_type); 594 595 static int __meminit memtier_hotplug_callback(struct notifier_block *self, 596 unsigned long action, void *_arg) 597 { 598 struct memory_tier *memtier; 599 struct memory_notify *arg = _arg; 600 601 /* 602 * Only update the node migration order when a node is 603 * changing status, like online->offline. 604 */ 605 if (arg->status_change_nid < 0) 606 return notifier_from_errno(0); 607 608 switch (action) { 609 case MEM_OFFLINE: 610 mutex_lock(&memory_tier_lock); 611 if (clear_node_memory_tier(arg->status_change_nid)) 612 establish_demotion_targets(); 613 mutex_unlock(&memory_tier_lock); 614 break; 615 case MEM_ONLINE: 616 mutex_lock(&memory_tier_lock); 617 memtier = set_node_memory_tier(arg->status_change_nid); 618 if (!IS_ERR(memtier)) 619 establish_demotion_targets(); 620 mutex_unlock(&memory_tier_lock); 621 break; 622 } 623 624 return notifier_from_errno(0); 625 } 626 627 static int __init memory_tier_init(void) 628 { 629 int ret, node; 630 struct memory_tier *memtier; 631 632 ret = subsys_virtual_register(&memory_tier_subsys, NULL); 633 if (ret) 634 panic("%s() failed to register memory tier subsystem\n", __func__); 635 636 #ifdef CONFIG_MIGRATION 637 node_demotion = kcalloc(nr_node_ids, sizeof(struct demotion_nodes), 638 GFP_KERNEL); 639 WARN_ON(!node_demotion); 640 #endif 641 mutex_lock(&memory_tier_lock); 642 /* 643 * For now we can have 4 faster memory tiers with smaller adistance 644 * than default DRAM tier. 645 */ 646 default_dram_type = alloc_memory_type(MEMTIER_ADISTANCE_DRAM); 647 if (IS_ERR(default_dram_type)) 648 panic("%s() failed to allocate default DRAM tier\n", __func__); 649 650 /* 651 * Look at all the existing N_MEMORY nodes and add them to 652 * default memory tier or to a tier if we already have memory 653 * types assigned. 654 */ 655 for_each_node_state(node, N_MEMORY) { 656 memtier = set_node_memory_tier(node); 657 if (IS_ERR(memtier)) 658 /* 659 * Continue with memtiers we are able to setup 660 */ 661 break; 662 } 663 establish_demotion_targets(); 664 mutex_unlock(&memory_tier_lock); 665 666 hotplug_memory_notifier(memtier_hotplug_callback, MEMTIER_HOTPLUG_PRI); 667 return 0; 668 } 669 subsys_initcall(memory_tier_init); 670 671 bool numa_demotion_enabled = false; 672 673 #ifdef CONFIG_MIGRATION 674 #ifdef CONFIG_SYSFS 675 static ssize_t demotion_enabled_show(struct kobject *kobj, 676 struct kobj_attribute *attr, char *buf) 677 { 678 return sysfs_emit(buf, "%s\n", 679 numa_demotion_enabled ? "true" : "false"); 680 } 681 682 static ssize_t demotion_enabled_store(struct kobject *kobj, 683 struct kobj_attribute *attr, 684 const char *buf, size_t count) 685 { 686 ssize_t ret; 687 688 ret = kstrtobool(buf, &numa_demotion_enabled); 689 if (ret) 690 return ret; 691 692 return count; 693 } 694 695 static struct kobj_attribute numa_demotion_enabled_attr = 696 __ATTR_RW(demotion_enabled); 697 698 static struct attribute *numa_attrs[] = { 699 &numa_demotion_enabled_attr.attr, 700 NULL, 701 }; 702 703 static const struct attribute_group numa_attr_group = { 704 .attrs = numa_attrs, 705 }; 706 707 static int __init numa_init_sysfs(void) 708 { 709 int err; 710 struct kobject *numa_kobj; 711 712 numa_kobj = kobject_create_and_add("numa", mm_kobj); 713 if (!numa_kobj) { 714 pr_err("failed to create numa kobject\n"); 715 return -ENOMEM; 716 } 717 err = sysfs_create_group(numa_kobj, &numa_attr_group); 718 if (err) { 719 pr_err("failed to register numa group\n"); 720 goto delete_obj; 721 } 722 return 0; 723 724 delete_obj: 725 kobject_put(numa_kobj); 726 return err; 727 } 728 subsys_initcall(numa_init_sysfs); 729 #endif /* CONFIG_SYSFS */ 730 #endif 731