xref: /openbmc/linux/mm/memory-failure.c (revision f442ab50)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/mm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 
37 #define pr_fmt(fmt) "Memory failure: " fmt
38 
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/dax.h>
46 #include <linux/ksm.h>
47 #include <linux/rmap.h>
48 #include <linux/export.h>
49 #include <linux/pagemap.h>
50 #include <linux/swap.h>
51 #include <linux/backing-dev.h>
52 #include <linux/migrate.h>
53 #include <linux/suspend.h>
54 #include <linux/slab.h>
55 #include <linux/swapops.h>
56 #include <linux/hugetlb.h>
57 #include <linux/memory_hotplug.h>
58 #include <linux/mm_inline.h>
59 #include <linux/memremap.h>
60 #include <linux/kfifo.h>
61 #include <linux/ratelimit.h>
62 #include <linux/page-isolation.h>
63 #include <linux/pagewalk.h>
64 #include <linux/shmem_fs.h>
65 #include <linux/sysctl.h>
66 #include "swap.h"
67 #include "internal.h"
68 #include "ras/ras_event.h"
69 
70 static int sysctl_memory_failure_early_kill __read_mostly;
71 
72 static int sysctl_memory_failure_recovery __read_mostly = 1;
73 
74 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
75 
76 static bool hw_memory_failure __read_mostly = false;
77 
78 void num_poisoned_pages_inc(unsigned long pfn)
79 {
80 	atomic_long_inc(&num_poisoned_pages);
81 	memblk_nr_poison_inc(pfn);
82 }
83 
84 void num_poisoned_pages_sub(unsigned long pfn, long i)
85 {
86 	atomic_long_sub(i, &num_poisoned_pages);
87 	if (pfn != -1UL)
88 		memblk_nr_poison_sub(pfn, i);
89 }
90 
91 /**
92  * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
93  * @_name: name of the file in the per NUMA sysfs directory.
94  */
95 #define MF_ATTR_RO(_name)					\
96 static ssize_t _name##_show(struct device *dev,			\
97 			    struct device_attribute *attr,	\
98 			    char *buf)				\
99 {								\
100 	struct memory_failure_stats *mf_stats =			\
101 		&NODE_DATA(dev->id)->mf_stats;			\
102 	return sprintf(buf, "%lu\n", mf_stats->_name);		\
103 }								\
104 static DEVICE_ATTR_RO(_name)
105 
106 MF_ATTR_RO(total);
107 MF_ATTR_RO(ignored);
108 MF_ATTR_RO(failed);
109 MF_ATTR_RO(delayed);
110 MF_ATTR_RO(recovered);
111 
112 static struct attribute *memory_failure_attr[] = {
113 	&dev_attr_total.attr,
114 	&dev_attr_ignored.attr,
115 	&dev_attr_failed.attr,
116 	&dev_attr_delayed.attr,
117 	&dev_attr_recovered.attr,
118 	NULL,
119 };
120 
121 const struct attribute_group memory_failure_attr_group = {
122 	.name = "memory_failure",
123 	.attrs = memory_failure_attr,
124 };
125 
126 static struct ctl_table memory_failure_table[] = {
127 	{
128 		.procname	= "memory_failure_early_kill",
129 		.data		= &sysctl_memory_failure_early_kill,
130 		.maxlen		= sizeof(sysctl_memory_failure_early_kill),
131 		.mode		= 0644,
132 		.proc_handler	= proc_dointvec_minmax,
133 		.extra1		= SYSCTL_ZERO,
134 		.extra2		= SYSCTL_ONE,
135 	},
136 	{
137 		.procname	= "memory_failure_recovery",
138 		.data		= &sysctl_memory_failure_recovery,
139 		.maxlen		= sizeof(sysctl_memory_failure_recovery),
140 		.mode		= 0644,
141 		.proc_handler	= proc_dointvec_minmax,
142 		.extra1		= SYSCTL_ZERO,
143 		.extra2		= SYSCTL_ONE,
144 	},
145 	{ }
146 };
147 
148 /*
149  * Return values:
150  *   1:   the page is dissolved (if needed) and taken off from buddy,
151  *   0:   the page is dissolved (if needed) and not taken off from buddy,
152  *   < 0: failed to dissolve.
153  */
154 static int __page_handle_poison(struct page *page)
155 {
156 	int ret;
157 
158 	zone_pcp_disable(page_zone(page));
159 	ret = dissolve_free_huge_page(page);
160 	if (!ret)
161 		ret = take_page_off_buddy(page);
162 	zone_pcp_enable(page_zone(page));
163 
164 	return ret;
165 }
166 
167 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
168 {
169 	if (hugepage_or_freepage) {
170 		/*
171 		 * Doing this check for free pages is also fine since dissolve_free_huge_page
172 		 * returns 0 for non-hugetlb pages as well.
173 		 */
174 		if (__page_handle_poison(page) <= 0)
175 			/*
176 			 * We could fail to take off the target page from buddy
177 			 * for example due to racy page allocation, but that's
178 			 * acceptable because soft-offlined page is not broken
179 			 * and if someone really want to use it, they should
180 			 * take it.
181 			 */
182 			return false;
183 	}
184 
185 	SetPageHWPoison(page);
186 	if (release)
187 		put_page(page);
188 	page_ref_inc(page);
189 	num_poisoned_pages_inc(page_to_pfn(page));
190 
191 	return true;
192 }
193 
194 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
195 
196 u32 hwpoison_filter_enable = 0;
197 u32 hwpoison_filter_dev_major = ~0U;
198 u32 hwpoison_filter_dev_minor = ~0U;
199 u64 hwpoison_filter_flags_mask;
200 u64 hwpoison_filter_flags_value;
201 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
202 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
203 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
204 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
205 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
206 
207 static int hwpoison_filter_dev(struct page *p)
208 {
209 	struct address_space *mapping;
210 	dev_t dev;
211 
212 	if (hwpoison_filter_dev_major == ~0U &&
213 	    hwpoison_filter_dev_minor == ~0U)
214 		return 0;
215 
216 	mapping = page_mapping(p);
217 	if (mapping == NULL || mapping->host == NULL)
218 		return -EINVAL;
219 
220 	dev = mapping->host->i_sb->s_dev;
221 	if (hwpoison_filter_dev_major != ~0U &&
222 	    hwpoison_filter_dev_major != MAJOR(dev))
223 		return -EINVAL;
224 	if (hwpoison_filter_dev_minor != ~0U &&
225 	    hwpoison_filter_dev_minor != MINOR(dev))
226 		return -EINVAL;
227 
228 	return 0;
229 }
230 
231 static int hwpoison_filter_flags(struct page *p)
232 {
233 	if (!hwpoison_filter_flags_mask)
234 		return 0;
235 
236 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
237 				    hwpoison_filter_flags_value)
238 		return 0;
239 	else
240 		return -EINVAL;
241 }
242 
243 /*
244  * This allows stress tests to limit test scope to a collection of tasks
245  * by putting them under some memcg. This prevents killing unrelated/important
246  * processes such as /sbin/init. Note that the target task may share clean
247  * pages with init (eg. libc text), which is harmless. If the target task
248  * share _dirty_ pages with another task B, the test scheme must make sure B
249  * is also included in the memcg. At last, due to race conditions this filter
250  * can only guarantee that the page either belongs to the memcg tasks, or is
251  * a freed page.
252  */
253 #ifdef CONFIG_MEMCG
254 u64 hwpoison_filter_memcg;
255 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
256 static int hwpoison_filter_task(struct page *p)
257 {
258 	if (!hwpoison_filter_memcg)
259 		return 0;
260 
261 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
262 		return -EINVAL;
263 
264 	return 0;
265 }
266 #else
267 static int hwpoison_filter_task(struct page *p) { return 0; }
268 #endif
269 
270 int hwpoison_filter(struct page *p)
271 {
272 	if (!hwpoison_filter_enable)
273 		return 0;
274 
275 	if (hwpoison_filter_dev(p))
276 		return -EINVAL;
277 
278 	if (hwpoison_filter_flags(p))
279 		return -EINVAL;
280 
281 	if (hwpoison_filter_task(p))
282 		return -EINVAL;
283 
284 	return 0;
285 }
286 #else
287 int hwpoison_filter(struct page *p)
288 {
289 	return 0;
290 }
291 #endif
292 
293 EXPORT_SYMBOL_GPL(hwpoison_filter);
294 
295 /*
296  * Kill all processes that have a poisoned page mapped and then isolate
297  * the page.
298  *
299  * General strategy:
300  * Find all processes having the page mapped and kill them.
301  * But we keep a page reference around so that the page is not
302  * actually freed yet.
303  * Then stash the page away
304  *
305  * There's no convenient way to get back to mapped processes
306  * from the VMAs. So do a brute-force search over all
307  * running processes.
308  *
309  * Remember that machine checks are not common (or rather
310  * if they are common you have other problems), so this shouldn't
311  * be a performance issue.
312  *
313  * Also there are some races possible while we get from the
314  * error detection to actually handle it.
315  */
316 
317 struct to_kill {
318 	struct list_head nd;
319 	struct task_struct *tsk;
320 	unsigned long addr;
321 	short size_shift;
322 };
323 
324 /*
325  * Send all the processes who have the page mapped a signal.
326  * ``action optional'' if they are not immediately affected by the error
327  * ``action required'' if error happened in current execution context
328  */
329 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
330 {
331 	struct task_struct *t = tk->tsk;
332 	short addr_lsb = tk->size_shift;
333 	int ret = 0;
334 
335 	pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
336 			pfn, t->comm, t->pid);
337 
338 	if ((flags & MF_ACTION_REQUIRED) && (t == current))
339 		ret = force_sig_mceerr(BUS_MCEERR_AR,
340 				 (void __user *)tk->addr, addr_lsb);
341 	else
342 		/*
343 		 * Signal other processes sharing the page if they have
344 		 * PF_MCE_EARLY set.
345 		 * Don't use force here, it's convenient if the signal
346 		 * can be temporarily blocked.
347 		 * This could cause a loop when the user sets SIGBUS
348 		 * to SIG_IGN, but hopefully no one will do that?
349 		 */
350 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
351 				      addr_lsb, t);
352 	if (ret < 0)
353 		pr_info("Error sending signal to %s:%d: %d\n",
354 			t->comm, t->pid, ret);
355 	return ret;
356 }
357 
358 /*
359  * Unknown page type encountered. Try to check whether it can turn PageLRU by
360  * lru_add_drain_all.
361  */
362 void shake_page(struct page *p)
363 {
364 	if (PageHuge(p))
365 		return;
366 	/*
367 	 * TODO: Could shrink slab caches here if a lightweight range-based
368 	 * shrinker will be available.
369 	 */
370 	if (PageSlab(p))
371 		return;
372 
373 	lru_add_drain_all();
374 }
375 EXPORT_SYMBOL_GPL(shake_page);
376 
377 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
378 		unsigned long address)
379 {
380 	unsigned long ret = 0;
381 	pgd_t *pgd;
382 	p4d_t *p4d;
383 	pud_t *pud;
384 	pmd_t *pmd;
385 	pte_t *pte;
386 	pte_t ptent;
387 
388 	VM_BUG_ON_VMA(address == -EFAULT, vma);
389 	pgd = pgd_offset(vma->vm_mm, address);
390 	if (!pgd_present(*pgd))
391 		return 0;
392 	p4d = p4d_offset(pgd, address);
393 	if (!p4d_present(*p4d))
394 		return 0;
395 	pud = pud_offset(p4d, address);
396 	if (!pud_present(*pud))
397 		return 0;
398 	if (pud_devmap(*pud))
399 		return PUD_SHIFT;
400 	pmd = pmd_offset(pud, address);
401 	if (!pmd_present(*pmd))
402 		return 0;
403 	if (pmd_devmap(*pmd))
404 		return PMD_SHIFT;
405 	pte = pte_offset_map(pmd, address);
406 	if (!pte)
407 		return 0;
408 	ptent = ptep_get(pte);
409 	if (pte_present(ptent) && pte_devmap(ptent))
410 		ret = PAGE_SHIFT;
411 	pte_unmap(pte);
412 	return ret;
413 }
414 
415 /*
416  * Failure handling: if we can't find or can't kill a process there's
417  * not much we can do.	We just print a message and ignore otherwise.
418  */
419 
420 #define FSDAX_INVALID_PGOFF ULONG_MAX
421 
422 /*
423  * Schedule a process for later kill.
424  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
425  *
426  * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
427  * filesystem with a memory failure handler has claimed the
428  * memory_failure event. In all other cases, page->index and
429  * page->mapping are sufficient for mapping the page back to its
430  * corresponding user virtual address.
431  */
432 static void __add_to_kill(struct task_struct *tsk, struct page *p,
433 			  struct vm_area_struct *vma, struct list_head *to_kill,
434 			  unsigned long ksm_addr, pgoff_t fsdax_pgoff)
435 {
436 	struct to_kill *tk;
437 
438 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
439 	if (!tk) {
440 		pr_err("Out of memory while machine check handling\n");
441 		return;
442 	}
443 
444 	tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
445 	if (is_zone_device_page(p)) {
446 		if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
447 			tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
448 		tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
449 	} else
450 		tk->size_shift = page_shift(compound_head(p));
451 
452 	/*
453 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
454 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
455 	 * so "tk->size_shift == 0" effectively checks no mapping on
456 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
457 	 * to a process' address space, it's possible not all N VMAs
458 	 * contain mappings for the page, but at least one VMA does.
459 	 * Only deliver SIGBUS with payload derived from the VMA that
460 	 * has a mapping for the page.
461 	 */
462 	if (tk->addr == -EFAULT) {
463 		pr_info("Unable to find user space address %lx in %s\n",
464 			page_to_pfn(p), tsk->comm);
465 	} else if (tk->size_shift == 0) {
466 		kfree(tk);
467 		return;
468 	}
469 
470 	get_task_struct(tsk);
471 	tk->tsk = tsk;
472 	list_add_tail(&tk->nd, to_kill);
473 }
474 
475 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
476 				  struct vm_area_struct *vma,
477 				  struct list_head *to_kill)
478 {
479 	__add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
480 }
481 
482 #ifdef CONFIG_KSM
483 static bool task_in_to_kill_list(struct list_head *to_kill,
484 				 struct task_struct *tsk)
485 {
486 	struct to_kill *tk, *next;
487 
488 	list_for_each_entry_safe(tk, next, to_kill, nd) {
489 		if (tk->tsk == tsk)
490 			return true;
491 	}
492 
493 	return false;
494 }
495 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
496 		     struct vm_area_struct *vma, struct list_head *to_kill,
497 		     unsigned long ksm_addr)
498 {
499 	if (!task_in_to_kill_list(to_kill, tsk))
500 		__add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
501 }
502 #endif
503 /*
504  * Kill the processes that have been collected earlier.
505  *
506  * Only do anything when FORCEKILL is set, otherwise just free the
507  * list (this is used for clean pages which do not need killing)
508  * Also when FAIL is set do a force kill because something went
509  * wrong earlier.
510  */
511 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
512 		unsigned long pfn, int flags)
513 {
514 	struct to_kill *tk, *next;
515 
516 	list_for_each_entry_safe(tk, next, to_kill, nd) {
517 		if (forcekill) {
518 			/*
519 			 * In case something went wrong with munmapping
520 			 * make sure the process doesn't catch the
521 			 * signal and then access the memory. Just kill it.
522 			 */
523 			if (fail || tk->addr == -EFAULT) {
524 				pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
525 				       pfn, tk->tsk->comm, tk->tsk->pid);
526 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
527 						 tk->tsk, PIDTYPE_PID);
528 			}
529 
530 			/*
531 			 * In theory the process could have mapped
532 			 * something else on the address in-between. We could
533 			 * check for that, but we need to tell the
534 			 * process anyways.
535 			 */
536 			else if (kill_proc(tk, pfn, flags) < 0)
537 				pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
538 				       pfn, tk->tsk->comm, tk->tsk->pid);
539 		}
540 		list_del(&tk->nd);
541 		put_task_struct(tk->tsk);
542 		kfree(tk);
543 	}
544 }
545 
546 /*
547  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
548  * on behalf of the thread group. Return task_struct of the (first found)
549  * dedicated thread if found, and return NULL otherwise.
550  *
551  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
552  * have to call rcu_read_lock/unlock() in this function.
553  */
554 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
555 {
556 	struct task_struct *t;
557 
558 	for_each_thread(tsk, t) {
559 		if (t->flags & PF_MCE_PROCESS) {
560 			if (t->flags & PF_MCE_EARLY)
561 				return t;
562 		} else {
563 			if (sysctl_memory_failure_early_kill)
564 				return t;
565 		}
566 	}
567 	return NULL;
568 }
569 
570 /*
571  * Determine whether a given process is "early kill" process which expects
572  * to be signaled when some page under the process is hwpoisoned.
573  * Return task_struct of the dedicated thread (main thread unless explicitly
574  * specified) if the process is "early kill" and otherwise returns NULL.
575  *
576  * Note that the above is true for Action Optional case. For Action Required
577  * case, it's only meaningful to the current thread which need to be signaled
578  * with SIGBUS, this error is Action Optional for other non current
579  * processes sharing the same error page,if the process is "early kill", the
580  * task_struct of the dedicated thread will also be returned.
581  */
582 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
583 {
584 	if (!tsk->mm)
585 		return NULL;
586 	/*
587 	 * Comparing ->mm here because current task might represent
588 	 * a subthread, while tsk always points to the main thread.
589 	 */
590 	if (force_early && tsk->mm == current->mm)
591 		return current;
592 
593 	return find_early_kill_thread(tsk);
594 }
595 
596 /*
597  * Collect processes when the error hit an anonymous page.
598  */
599 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
600 				int force_early)
601 {
602 	struct folio *folio = page_folio(page);
603 	struct vm_area_struct *vma;
604 	struct task_struct *tsk;
605 	struct anon_vma *av;
606 	pgoff_t pgoff;
607 
608 	av = folio_lock_anon_vma_read(folio, NULL);
609 	if (av == NULL)	/* Not actually mapped anymore */
610 		return;
611 
612 	pgoff = page_to_pgoff(page);
613 	read_lock(&tasklist_lock);
614 	for_each_process (tsk) {
615 		struct anon_vma_chain *vmac;
616 		struct task_struct *t = task_early_kill(tsk, force_early);
617 
618 		if (!t)
619 			continue;
620 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
621 					       pgoff, pgoff) {
622 			vma = vmac->vma;
623 			if (vma->vm_mm != t->mm)
624 				continue;
625 			if (!page_mapped_in_vma(page, vma))
626 				continue;
627 			add_to_kill_anon_file(t, page, vma, to_kill);
628 		}
629 	}
630 	read_unlock(&tasklist_lock);
631 	anon_vma_unlock_read(av);
632 }
633 
634 /*
635  * Collect processes when the error hit a file mapped page.
636  */
637 static void collect_procs_file(struct page *page, struct list_head *to_kill,
638 				int force_early)
639 {
640 	struct vm_area_struct *vma;
641 	struct task_struct *tsk;
642 	struct address_space *mapping = page->mapping;
643 	pgoff_t pgoff;
644 
645 	i_mmap_lock_read(mapping);
646 	read_lock(&tasklist_lock);
647 	pgoff = page_to_pgoff(page);
648 	for_each_process(tsk) {
649 		struct task_struct *t = task_early_kill(tsk, force_early);
650 
651 		if (!t)
652 			continue;
653 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
654 				      pgoff) {
655 			/*
656 			 * Send early kill signal to tasks where a vma covers
657 			 * the page but the corrupted page is not necessarily
658 			 * mapped it in its pte.
659 			 * Assume applications who requested early kill want
660 			 * to be informed of all such data corruptions.
661 			 */
662 			if (vma->vm_mm == t->mm)
663 				add_to_kill_anon_file(t, page, vma, to_kill);
664 		}
665 	}
666 	read_unlock(&tasklist_lock);
667 	i_mmap_unlock_read(mapping);
668 }
669 
670 #ifdef CONFIG_FS_DAX
671 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
672 			      struct vm_area_struct *vma,
673 			      struct list_head *to_kill, pgoff_t pgoff)
674 {
675 	__add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
676 }
677 
678 /*
679  * Collect processes when the error hit a fsdax page.
680  */
681 static void collect_procs_fsdax(struct page *page,
682 		struct address_space *mapping, pgoff_t pgoff,
683 		struct list_head *to_kill)
684 {
685 	struct vm_area_struct *vma;
686 	struct task_struct *tsk;
687 
688 	i_mmap_lock_read(mapping);
689 	read_lock(&tasklist_lock);
690 	for_each_process(tsk) {
691 		struct task_struct *t = task_early_kill(tsk, true);
692 
693 		if (!t)
694 			continue;
695 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
696 			if (vma->vm_mm == t->mm)
697 				add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
698 		}
699 	}
700 	read_unlock(&tasklist_lock);
701 	i_mmap_unlock_read(mapping);
702 }
703 #endif /* CONFIG_FS_DAX */
704 
705 /*
706  * Collect the processes who have the corrupted page mapped to kill.
707  */
708 static void collect_procs(struct page *page, struct list_head *tokill,
709 				int force_early)
710 {
711 	if (!page->mapping)
712 		return;
713 	if (unlikely(PageKsm(page)))
714 		collect_procs_ksm(page, tokill, force_early);
715 	else if (PageAnon(page))
716 		collect_procs_anon(page, tokill, force_early);
717 	else
718 		collect_procs_file(page, tokill, force_early);
719 }
720 
721 struct hwp_walk {
722 	struct to_kill tk;
723 	unsigned long pfn;
724 	int flags;
725 };
726 
727 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
728 {
729 	tk->addr = addr;
730 	tk->size_shift = shift;
731 }
732 
733 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
734 				unsigned long poisoned_pfn, struct to_kill *tk)
735 {
736 	unsigned long pfn = 0;
737 
738 	if (pte_present(pte)) {
739 		pfn = pte_pfn(pte);
740 	} else {
741 		swp_entry_t swp = pte_to_swp_entry(pte);
742 
743 		if (is_hwpoison_entry(swp))
744 			pfn = swp_offset_pfn(swp);
745 	}
746 
747 	if (!pfn || pfn != poisoned_pfn)
748 		return 0;
749 
750 	set_to_kill(tk, addr, shift);
751 	return 1;
752 }
753 
754 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
755 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
756 				      struct hwp_walk *hwp)
757 {
758 	pmd_t pmd = *pmdp;
759 	unsigned long pfn;
760 	unsigned long hwpoison_vaddr;
761 
762 	if (!pmd_present(pmd))
763 		return 0;
764 	pfn = pmd_pfn(pmd);
765 	if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
766 		hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
767 		set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
768 		return 1;
769 	}
770 	return 0;
771 }
772 #else
773 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
774 				      struct hwp_walk *hwp)
775 {
776 	return 0;
777 }
778 #endif
779 
780 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
781 			      unsigned long end, struct mm_walk *walk)
782 {
783 	struct hwp_walk *hwp = walk->private;
784 	int ret = 0;
785 	pte_t *ptep, *mapped_pte;
786 	spinlock_t *ptl;
787 
788 	ptl = pmd_trans_huge_lock(pmdp, walk->vma);
789 	if (ptl) {
790 		ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
791 		spin_unlock(ptl);
792 		goto out;
793 	}
794 
795 	mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
796 						addr, &ptl);
797 	if (!ptep)
798 		goto out;
799 
800 	for (; addr != end; ptep++, addr += PAGE_SIZE) {
801 		ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
802 					     hwp->pfn, &hwp->tk);
803 		if (ret == 1)
804 			break;
805 	}
806 	pte_unmap_unlock(mapped_pte, ptl);
807 out:
808 	cond_resched();
809 	return ret;
810 }
811 
812 #ifdef CONFIG_HUGETLB_PAGE
813 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
814 			    unsigned long addr, unsigned long end,
815 			    struct mm_walk *walk)
816 {
817 	struct hwp_walk *hwp = walk->private;
818 	pte_t pte = huge_ptep_get(ptep);
819 	struct hstate *h = hstate_vma(walk->vma);
820 
821 	return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
822 				      hwp->pfn, &hwp->tk);
823 }
824 #else
825 #define hwpoison_hugetlb_range	NULL
826 #endif
827 
828 static const struct mm_walk_ops hwp_walk_ops = {
829 	.pmd_entry = hwpoison_pte_range,
830 	.hugetlb_entry = hwpoison_hugetlb_range,
831 };
832 
833 /*
834  * Sends SIGBUS to the current process with error info.
835  *
836  * This function is intended to handle "Action Required" MCEs on already
837  * hardware poisoned pages. They could happen, for example, when
838  * memory_failure() failed to unmap the error page at the first call, or
839  * when multiple local machine checks happened on different CPUs.
840  *
841  * MCE handler currently has no easy access to the error virtual address,
842  * so this function walks page table to find it. The returned virtual address
843  * is proper in most cases, but it could be wrong when the application
844  * process has multiple entries mapping the error page.
845  */
846 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
847 				  int flags)
848 {
849 	int ret;
850 	struct hwp_walk priv = {
851 		.pfn = pfn,
852 	};
853 	priv.tk.tsk = p;
854 
855 	if (!p->mm)
856 		return -EFAULT;
857 
858 	mmap_read_lock(p->mm);
859 	ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
860 			      (void *)&priv);
861 	if (ret == 1 && priv.tk.addr)
862 		kill_proc(&priv.tk, pfn, flags);
863 	else
864 		ret = 0;
865 	mmap_read_unlock(p->mm);
866 	return ret > 0 ? -EHWPOISON : -EFAULT;
867 }
868 
869 static const char *action_name[] = {
870 	[MF_IGNORED] = "Ignored",
871 	[MF_FAILED] = "Failed",
872 	[MF_DELAYED] = "Delayed",
873 	[MF_RECOVERED] = "Recovered",
874 };
875 
876 static const char * const action_page_types[] = {
877 	[MF_MSG_KERNEL]			= "reserved kernel page",
878 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
879 	[MF_MSG_SLAB]			= "kernel slab page",
880 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
881 	[MF_MSG_HUGE]			= "huge page",
882 	[MF_MSG_FREE_HUGE]		= "free huge page",
883 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
884 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
885 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
886 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
887 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
888 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
889 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
890 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
891 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
892 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
893 	[MF_MSG_BUDDY]			= "free buddy page",
894 	[MF_MSG_DAX]			= "dax page",
895 	[MF_MSG_UNSPLIT_THP]		= "unsplit thp",
896 	[MF_MSG_UNKNOWN]		= "unknown page",
897 };
898 
899 /*
900  * XXX: It is possible that a page is isolated from LRU cache,
901  * and then kept in swap cache or failed to remove from page cache.
902  * The page count will stop it from being freed by unpoison.
903  * Stress tests should be aware of this memory leak problem.
904  */
905 static int delete_from_lru_cache(struct page *p)
906 {
907 	if (isolate_lru_page(p)) {
908 		/*
909 		 * Clear sensible page flags, so that the buddy system won't
910 		 * complain when the page is unpoison-and-freed.
911 		 */
912 		ClearPageActive(p);
913 		ClearPageUnevictable(p);
914 
915 		/*
916 		 * Poisoned page might never drop its ref count to 0 so we have
917 		 * to uncharge it manually from its memcg.
918 		 */
919 		mem_cgroup_uncharge(page_folio(p));
920 
921 		/*
922 		 * drop the page count elevated by isolate_lru_page()
923 		 */
924 		put_page(p);
925 		return 0;
926 	}
927 	return -EIO;
928 }
929 
930 static int truncate_error_page(struct page *p, unsigned long pfn,
931 				struct address_space *mapping)
932 {
933 	int ret = MF_FAILED;
934 
935 	if (mapping->a_ops->error_remove_page) {
936 		struct folio *folio = page_folio(p);
937 		int err = mapping->a_ops->error_remove_page(mapping, p);
938 
939 		if (err != 0)
940 			pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
941 		else if (!filemap_release_folio(folio, GFP_NOIO))
942 			pr_info("%#lx: failed to release buffers\n", pfn);
943 		else
944 			ret = MF_RECOVERED;
945 	} else {
946 		/*
947 		 * If the file system doesn't support it just invalidate
948 		 * This fails on dirty or anything with private pages
949 		 */
950 		if (invalidate_inode_page(p))
951 			ret = MF_RECOVERED;
952 		else
953 			pr_info("%#lx: Failed to invalidate\n",	pfn);
954 	}
955 
956 	return ret;
957 }
958 
959 struct page_state {
960 	unsigned long mask;
961 	unsigned long res;
962 	enum mf_action_page_type type;
963 
964 	/* Callback ->action() has to unlock the relevant page inside it. */
965 	int (*action)(struct page_state *ps, struct page *p);
966 };
967 
968 /*
969  * Return true if page is still referenced by others, otherwise return
970  * false.
971  *
972  * The extra_pins is true when one extra refcount is expected.
973  */
974 static bool has_extra_refcount(struct page_state *ps, struct page *p,
975 			       bool extra_pins)
976 {
977 	int count = page_count(p) - 1;
978 
979 	if (extra_pins)
980 		count -= 1;
981 
982 	if (count > 0) {
983 		pr_err("%#lx: %s still referenced by %d users\n",
984 		       page_to_pfn(p), action_page_types[ps->type], count);
985 		return true;
986 	}
987 
988 	return false;
989 }
990 
991 /*
992  * Error hit kernel page.
993  * Do nothing, try to be lucky and not touch this instead. For a few cases we
994  * could be more sophisticated.
995  */
996 static int me_kernel(struct page_state *ps, struct page *p)
997 {
998 	unlock_page(p);
999 	return MF_IGNORED;
1000 }
1001 
1002 /*
1003  * Page in unknown state. Do nothing.
1004  */
1005 static int me_unknown(struct page_state *ps, struct page *p)
1006 {
1007 	pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1008 	unlock_page(p);
1009 	return MF_FAILED;
1010 }
1011 
1012 /*
1013  * Clean (or cleaned) page cache page.
1014  */
1015 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1016 {
1017 	int ret;
1018 	struct address_space *mapping;
1019 	bool extra_pins;
1020 
1021 	delete_from_lru_cache(p);
1022 
1023 	/*
1024 	 * For anonymous pages we're done the only reference left
1025 	 * should be the one m_f() holds.
1026 	 */
1027 	if (PageAnon(p)) {
1028 		ret = MF_RECOVERED;
1029 		goto out;
1030 	}
1031 
1032 	/*
1033 	 * Now truncate the page in the page cache. This is really
1034 	 * more like a "temporary hole punch"
1035 	 * Don't do this for block devices when someone else
1036 	 * has a reference, because it could be file system metadata
1037 	 * and that's not safe to truncate.
1038 	 */
1039 	mapping = page_mapping(p);
1040 	if (!mapping) {
1041 		/*
1042 		 * Page has been teared down in the meanwhile
1043 		 */
1044 		ret = MF_FAILED;
1045 		goto out;
1046 	}
1047 
1048 	/*
1049 	 * The shmem page is kept in page cache instead of truncating
1050 	 * so is expected to have an extra refcount after error-handling.
1051 	 */
1052 	extra_pins = shmem_mapping(mapping);
1053 
1054 	/*
1055 	 * Truncation is a bit tricky. Enable it per file system for now.
1056 	 *
1057 	 * Open: to take i_rwsem or not for this? Right now we don't.
1058 	 */
1059 	ret = truncate_error_page(p, page_to_pfn(p), mapping);
1060 	if (has_extra_refcount(ps, p, extra_pins))
1061 		ret = MF_FAILED;
1062 
1063 out:
1064 	unlock_page(p);
1065 
1066 	return ret;
1067 }
1068 
1069 /*
1070  * Dirty pagecache page
1071  * Issues: when the error hit a hole page the error is not properly
1072  * propagated.
1073  */
1074 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1075 {
1076 	struct address_space *mapping = page_mapping(p);
1077 
1078 	SetPageError(p);
1079 	/* TBD: print more information about the file. */
1080 	if (mapping) {
1081 		/*
1082 		 * IO error will be reported by write(), fsync(), etc.
1083 		 * who check the mapping.
1084 		 * This way the application knows that something went
1085 		 * wrong with its dirty file data.
1086 		 *
1087 		 * There's one open issue:
1088 		 *
1089 		 * The EIO will be only reported on the next IO
1090 		 * operation and then cleared through the IO map.
1091 		 * Normally Linux has two mechanisms to pass IO error
1092 		 * first through the AS_EIO flag in the address space
1093 		 * and then through the PageError flag in the page.
1094 		 * Since we drop pages on memory failure handling the
1095 		 * only mechanism open to use is through AS_AIO.
1096 		 *
1097 		 * This has the disadvantage that it gets cleared on
1098 		 * the first operation that returns an error, while
1099 		 * the PageError bit is more sticky and only cleared
1100 		 * when the page is reread or dropped.  If an
1101 		 * application assumes it will always get error on
1102 		 * fsync, but does other operations on the fd before
1103 		 * and the page is dropped between then the error
1104 		 * will not be properly reported.
1105 		 *
1106 		 * This can already happen even without hwpoisoned
1107 		 * pages: first on metadata IO errors (which only
1108 		 * report through AS_EIO) or when the page is dropped
1109 		 * at the wrong time.
1110 		 *
1111 		 * So right now we assume that the application DTRT on
1112 		 * the first EIO, but we're not worse than other parts
1113 		 * of the kernel.
1114 		 */
1115 		mapping_set_error(mapping, -EIO);
1116 	}
1117 
1118 	return me_pagecache_clean(ps, p);
1119 }
1120 
1121 /*
1122  * Clean and dirty swap cache.
1123  *
1124  * Dirty swap cache page is tricky to handle. The page could live both in page
1125  * cache and swap cache(ie. page is freshly swapped in). So it could be
1126  * referenced concurrently by 2 types of PTEs:
1127  * normal PTEs and swap PTEs. We try to handle them consistently by calling
1128  * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1129  * and then
1130  *      - clear dirty bit to prevent IO
1131  *      - remove from LRU
1132  *      - but keep in the swap cache, so that when we return to it on
1133  *        a later page fault, we know the application is accessing
1134  *        corrupted data and shall be killed (we installed simple
1135  *        interception code in do_swap_page to catch it).
1136  *
1137  * Clean swap cache pages can be directly isolated. A later page fault will
1138  * bring in the known good data from disk.
1139  */
1140 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1141 {
1142 	int ret;
1143 	bool extra_pins = false;
1144 
1145 	ClearPageDirty(p);
1146 	/* Trigger EIO in shmem: */
1147 	ClearPageUptodate(p);
1148 
1149 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1150 	unlock_page(p);
1151 
1152 	if (ret == MF_DELAYED)
1153 		extra_pins = true;
1154 
1155 	if (has_extra_refcount(ps, p, extra_pins))
1156 		ret = MF_FAILED;
1157 
1158 	return ret;
1159 }
1160 
1161 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1162 {
1163 	struct folio *folio = page_folio(p);
1164 	int ret;
1165 
1166 	delete_from_swap_cache(folio);
1167 
1168 	ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1169 	folio_unlock(folio);
1170 
1171 	if (has_extra_refcount(ps, p, false))
1172 		ret = MF_FAILED;
1173 
1174 	return ret;
1175 }
1176 
1177 /*
1178  * Huge pages. Needs work.
1179  * Issues:
1180  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1181  *   To narrow down kill region to one page, we need to break up pmd.
1182  */
1183 static int me_huge_page(struct page_state *ps, struct page *p)
1184 {
1185 	int res;
1186 	struct page *hpage = compound_head(p);
1187 	struct address_space *mapping;
1188 	bool extra_pins = false;
1189 
1190 	if (!PageHuge(hpage))
1191 		return MF_DELAYED;
1192 
1193 	mapping = page_mapping(hpage);
1194 	if (mapping) {
1195 		res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1196 		/* The page is kept in page cache. */
1197 		extra_pins = true;
1198 		unlock_page(hpage);
1199 	} else {
1200 		unlock_page(hpage);
1201 		/*
1202 		 * migration entry prevents later access on error hugepage,
1203 		 * so we can free and dissolve it into buddy to save healthy
1204 		 * subpages.
1205 		 */
1206 		put_page(hpage);
1207 		if (__page_handle_poison(p) >= 0) {
1208 			page_ref_inc(p);
1209 			res = MF_RECOVERED;
1210 		} else {
1211 			res = MF_FAILED;
1212 		}
1213 	}
1214 
1215 	if (has_extra_refcount(ps, p, extra_pins))
1216 		res = MF_FAILED;
1217 
1218 	return res;
1219 }
1220 
1221 /*
1222  * Various page states we can handle.
1223  *
1224  * A page state is defined by its current page->flags bits.
1225  * The table matches them in order and calls the right handler.
1226  *
1227  * This is quite tricky because we can access page at any time
1228  * in its live cycle, so all accesses have to be extremely careful.
1229  *
1230  * This is not complete. More states could be added.
1231  * For any missing state don't attempt recovery.
1232  */
1233 
1234 #define dirty		(1UL << PG_dirty)
1235 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1236 #define unevict		(1UL << PG_unevictable)
1237 #define mlock		(1UL << PG_mlocked)
1238 #define lru		(1UL << PG_lru)
1239 #define head		(1UL << PG_head)
1240 #define slab		(1UL << PG_slab)
1241 #define reserved	(1UL << PG_reserved)
1242 
1243 static struct page_state error_states[] = {
1244 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
1245 	/*
1246 	 * free pages are specially detected outside this table:
1247 	 * PG_buddy pages only make a small fraction of all free pages.
1248 	 */
1249 
1250 	/*
1251 	 * Could in theory check if slab page is free or if we can drop
1252 	 * currently unused objects without touching them. But just
1253 	 * treat it as standard kernel for now.
1254 	 */
1255 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
1256 
1257 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
1258 
1259 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
1260 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
1261 
1262 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
1263 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
1264 
1265 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
1266 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
1267 
1268 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
1269 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
1270 
1271 	/*
1272 	 * Catchall entry: must be at end.
1273 	 */
1274 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
1275 };
1276 
1277 #undef dirty
1278 #undef sc
1279 #undef unevict
1280 #undef mlock
1281 #undef lru
1282 #undef head
1283 #undef slab
1284 #undef reserved
1285 
1286 static void update_per_node_mf_stats(unsigned long pfn,
1287 				     enum mf_result result)
1288 {
1289 	int nid = MAX_NUMNODES;
1290 	struct memory_failure_stats *mf_stats = NULL;
1291 
1292 	nid = pfn_to_nid(pfn);
1293 	if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1294 		WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1295 		return;
1296 	}
1297 
1298 	mf_stats = &NODE_DATA(nid)->mf_stats;
1299 	switch (result) {
1300 	case MF_IGNORED:
1301 		++mf_stats->ignored;
1302 		break;
1303 	case MF_FAILED:
1304 		++mf_stats->failed;
1305 		break;
1306 	case MF_DELAYED:
1307 		++mf_stats->delayed;
1308 		break;
1309 	case MF_RECOVERED:
1310 		++mf_stats->recovered;
1311 		break;
1312 	default:
1313 		WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1314 		break;
1315 	}
1316 	++mf_stats->total;
1317 }
1318 
1319 /*
1320  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1321  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1322  */
1323 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1324 			 enum mf_result result)
1325 {
1326 	trace_memory_failure_event(pfn, type, result);
1327 
1328 	num_poisoned_pages_inc(pfn);
1329 
1330 	update_per_node_mf_stats(pfn, result);
1331 
1332 	pr_err("%#lx: recovery action for %s: %s\n",
1333 		pfn, action_page_types[type], action_name[result]);
1334 
1335 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1336 }
1337 
1338 static int page_action(struct page_state *ps, struct page *p,
1339 			unsigned long pfn)
1340 {
1341 	int result;
1342 
1343 	/* page p should be unlocked after returning from ps->action().  */
1344 	result = ps->action(ps, p);
1345 
1346 	/* Could do more checks here if page looks ok */
1347 	/*
1348 	 * Could adjust zone counters here to correct for the missing page.
1349 	 */
1350 
1351 	return action_result(pfn, ps->type, result);
1352 }
1353 
1354 static inline bool PageHWPoisonTakenOff(struct page *page)
1355 {
1356 	return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1357 }
1358 
1359 void SetPageHWPoisonTakenOff(struct page *page)
1360 {
1361 	set_page_private(page, MAGIC_HWPOISON);
1362 }
1363 
1364 void ClearPageHWPoisonTakenOff(struct page *page)
1365 {
1366 	if (PageHWPoison(page))
1367 		set_page_private(page, 0);
1368 }
1369 
1370 /*
1371  * Return true if a page type of a given page is supported by hwpoison
1372  * mechanism (while handling could fail), otherwise false.  This function
1373  * does not return true for hugetlb or device memory pages, so it's assumed
1374  * to be called only in the context where we never have such pages.
1375  */
1376 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1377 {
1378 	/* Soft offline could migrate non-LRU movable pages */
1379 	if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1380 		return true;
1381 
1382 	return PageLRU(page) || is_free_buddy_page(page);
1383 }
1384 
1385 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1386 {
1387 	struct folio *folio = page_folio(page);
1388 	int ret = 0;
1389 	bool hugetlb = false;
1390 
1391 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1392 	if (hugetlb)
1393 		return ret;
1394 
1395 	/*
1396 	 * This check prevents from calling folio_try_get() for any
1397 	 * unsupported type of folio in order to reduce the risk of unexpected
1398 	 * races caused by taking a folio refcount.
1399 	 */
1400 	if (!HWPoisonHandlable(&folio->page, flags))
1401 		return -EBUSY;
1402 
1403 	if (folio_try_get(folio)) {
1404 		if (folio == page_folio(page))
1405 			return 1;
1406 
1407 		pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1408 		folio_put(folio);
1409 	}
1410 
1411 	return 0;
1412 }
1413 
1414 static int get_any_page(struct page *p, unsigned long flags)
1415 {
1416 	int ret = 0, pass = 0;
1417 	bool count_increased = false;
1418 
1419 	if (flags & MF_COUNT_INCREASED)
1420 		count_increased = true;
1421 
1422 try_again:
1423 	if (!count_increased) {
1424 		ret = __get_hwpoison_page(p, flags);
1425 		if (!ret) {
1426 			if (page_count(p)) {
1427 				/* We raced with an allocation, retry. */
1428 				if (pass++ < 3)
1429 					goto try_again;
1430 				ret = -EBUSY;
1431 			} else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1432 				/* We raced with put_page, retry. */
1433 				if (pass++ < 3)
1434 					goto try_again;
1435 				ret = -EIO;
1436 			}
1437 			goto out;
1438 		} else if (ret == -EBUSY) {
1439 			/*
1440 			 * We raced with (possibly temporary) unhandlable
1441 			 * page, retry.
1442 			 */
1443 			if (pass++ < 3) {
1444 				shake_page(p);
1445 				goto try_again;
1446 			}
1447 			ret = -EIO;
1448 			goto out;
1449 		}
1450 	}
1451 
1452 	if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1453 		ret = 1;
1454 	} else {
1455 		/*
1456 		 * A page we cannot handle. Check whether we can turn
1457 		 * it into something we can handle.
1458 		 */
1459 		if (pass++ < 3) {
1460 			put_page(p);
1461 			shake_page(p);
1462 			count_increased = false;
1463 			goto try_again;
1464 		}
1465 		put_page(p);
1466 		ret = -EIO;
1467 	}
1468 out:
1469 	if (ret == -EIO)
1470 		pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1471 
1472 	return ret;
1473 }
1474 
1475 static int __get_unpoison_page(struct page *page)
1476 {
1477 	struct folio *folio = page_folio(page);
1478 	int ret = 0;
1479 	bool hugetlb = false;
1480 
1481 	ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1482 	if (hugetlb)
1483 		return ret;
1484 
1485 	/*
1486 	 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1487 	 * but also isolated from buddy freelist, so need to identify the
1488 	 * state and have to cancel both operations to unpoison.
1489 	 */
1490 	if (PageHWPoisonTakenOff(page))
1491 		return -EHWPOISON;
1492 
1493 	return get_page_unless_zero(page) ? 1 : 0;
1494 }
1495 
1496 /**
1497  * get_hwpoison_page() - Get refcount for memory error handling
1498  * @p:		Raw error page (hit by memory error)
1499  * @flags:	Flags controlling behavior of error handling
1500  *
1501  * get_hwpoison_page() takes a page refcount of an error page to handle memory
1502  * error on it, after checking that the error page is in a well-defined state
1503  * (defined as a page-type we can successfully handle the memory error on it,
1504  * such as LRU page and hugetlb page).
1505  *
1506  * Memory error handling could be triggered at any time on any type of page,
1507  * so it's prone to race with typical memory management lifecycle (like
1508  * allocation and free).  So to avoid such races, get_hwpoison_page() takes
1509  * extra care for the error page's state (as done in __get_hwpoison_page()),
1510  * and has some retry logic in get_any_page().
1511  *
1512  * When called from unpoison_memory(), the caller should already ensure that
1513  * the given page has PG_hwpoison. So it's never reused for other page
1514  * allocations, and __get_unpoison_page() never races with them.
1515  *
1516  * Return: 0 on failure,
1517  *         1 on success for in-use pages in a well-defined state,
1518  *         -EIO for pages on which we can not handle memory errors,
1519  *         -EBUSY when get_hwpoison_page() has raced with page lifecycle
1520  *         operations like allocation and free,
1521  *         -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1522  */
1523 static int get_hwpoison_page(struct page *p, unsigned long flags)
1524 {
1525 	int ret;
1526 
1527 	zone_pcp_disable(page_zone(p));
1528 	if (flags & MF_UNPOISON)
1529 		ret = __get_unpoison_page(p);
1530 	else
1531 		ret = get_any_page(p, flags);
1532 	zone_pcp_enable(page_zone(p));
1533 
1534 	return ret;
1535 }
1536 
1537 /*
1538  * Do all that is necessary to remove user space mappings. Unmap
1539  * the pages and send SIGBUS to the processes if the data was dirty.
1540  */
1541 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1542 				  int flags, struct page *hpage)
1543 {
1544 	struct folio *folio = page_folio(hpage);
1545 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1546 	struct address_space *mapping;
1547 	LIST_HEAD(tokill);
1548 	bool unmap_success;
1549 	int forcekill;
1550 	bool mlocked = PageMlocked(hpage);
1551 
1552 	/*
1553 	 * Here we are interested only in user-mapped pages, so skip any
1554 	 * other types of pages.
1555 	 */
1556 	if (PageReserved(p) || PageSlab(p) || PageTable(p))
1557 		return true;
1558 	if (!(PageLRU(hpage) || PageHuge(p)))
1559 		return true;
1560 
1561 	/*
1562 	 * This check implies we don't kill processes if their pages
1563 	 * are in the swap cache early. Those are always late kills.
1564 	 */
1565 	if (!page_mapped(hpage))
1566 		return true;
1567 
1568 	if (PageSwapCache(p)) {
1569 		pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1570 		ttu &= ~TTU_HWPOISON;
1571 	}
1572 
1573 	/*
1574 	 * Propagate the dirty bit from PTEs to struct page first, because we
1575 	 * need this to decide if we should kill or just drop the page.
1576 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1577 	 * be called inside page lock (it's recommended but not enforced).
1578 	 */
1579 	mapping = page_mapping(hpage);
1580 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1581 	    mapping_can_writeback(mapping)) {
1582 		if (page_mkclean(hpage)) {
1583 			SetPageDirty(hpage);
1584 		} else {
1585 			ttu &= ~TTU_HWPOISON;
1586 			pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1587 				pfn);
1588 		}
1589 	}
1590 
1591 	/*
1592 	 * First collect all the processes that have the page
1593 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1594 	 * because ttu takes the rmap data structures down.
1595 	 */
1596 	collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1597 
1598 	if (PageHuge(hpage) && !PageAnon(hpage)) {
1599 		/*
1600 		 * For hugetlb pages in shared mappings, try_to_unmap
1601 		 * could potentially call huge_pmd_unshare.  Because of
1602 		 * this, take semaphore in write mode here and set
1603 		 * TTU_RMAP_LOCKED to indicate we have taken the lock
1604 		 * at this higher level.
1605 		 */
1606 		mapping = hugetlb_page_mapping_lock_write(hpage);
1607 		if (mapping) {
1608 			try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1609 			i_mmap_unlock_write(mapping);
1610 		} else
1611 			pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1612 	} else {
1613 		try_to_unmap(folio, ttu);
1614 	}
1615 
1616 	unmap_success = !page_mapped(hpage);
1617 	if (!unmap_success)
1618 		pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1619 		       pfn, page_mapcount(hpage));
1620 
1621 	/*
1622 	 * try_to_unmap() might put mlocked page in lru cache, so call
1623 	 * shake_page() again to ensure that it's flushed.
1624 	 */
1625 	if (mlocked)
1626 		shake_page(hpage);
1627 
1628 	/*
1629 	 * Now that the dirty bit has been propagated to the
1630 	 * struct page and all unmaps done we can decide if
1631 	 * killing is needed or not.  Only kill when the page
1632 	 * was dirty or the process is not restartable,
1633 	 * otherwise the tokill list is merely
1634 	 * freed.  When there was a problem unmapping earlier
1635 	 * use a more force-full uncatchable kill to prevent
1636 	 * any accesses to the poisoned memory.
1637 	 */
1638 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1639 		    !unmap_success;
1640 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1641 
1642 	return unmap_success;
1643 }
1644 
1645 static int identify_page_state(unsigned long pfn, struct page *p,
1646 				unsigned long page_flags)
1647 {
1648 	struct page_state *ps;
1649 
1650 	/*
1651 	 * The first check uses the current page flags which may not have any
1652 	 * relevant information. The second check with the saved page flags is
1653 	 * carried out only if the first check can't determine the page status.
1654 	 */
1655 	for (ps = error_states;; ps++)
1656 		if ((p->flags & ps->mask) == ps->res)
1657 			break;
1658 
1659 	page_flags |= (p->flags & (1UL << PG_dirty));
1660 
1661 	if (!ps->mask)
1662 		for (ps = error_states;; ps++)
1663 			if ((page_flags & ps->mask) == ps->res)
1664 				break;
1665 	return page_action(ps, p, pfn);
1666 }
1667 
1668 static int try_to_split_thp_page(struct page *page)
1669 {
1670 	int ret;
1671 
1672 	lock_page(page);
1673 	ret = split_huge_page(page);
1674 	unlock_page(page);
1675 
1676 	if (unlikely(ret))
1677 		put_page(page);
1678 
1679 	return ret;
1680 }
1681 
1682 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1683 		struct address_space *mapping, pgoff_t index, int flags)
1684 {
1685 	struct to_kill *tk;
1686 	unsigned long size = 0;
1687 
1688 	list_for_each_entry(tk, to_kill, nd)
1689 		if (tk->size_shift)
1690 			size = max(size, 1UL << tk->size_shift);
1691 
1692 	if (size) {
1693 		/*
1694 		 * Unmap the largest mapping to avoid breaking up device-dax
1695 		 * mappings which are constant size. The actual size of the
1696 		 * mapping being torn down is communicated in siginfo, see
1697 		 * kill_proc()
1698 		 */
1699 		loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1700 
1701 		unmap_mapping_range(mapping, start, size, 0);
1702 	}
1703 
1704 	kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1705 }
1706 
1707 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1708 		struct dev_pagemap *pgmap)
1709 {
1710 	struct page *page = pfn_to_page(pfn);
1711 	LIST_HEAD(to_kill);
1712 	dax_entry_t cookie;
1713 	int rc = 0;
1714 
1715 	/*
1716 	 * Pages instantiated by device-dax (not filesystem-dax)
1717 	 * may be compound pages.
1718 	 */
1719 	page = compound_head(page);
1720 
1721 	/*
1722 	 * Prevent the inode from being freed while we are interrogating
1723 	 * the address_space, typically this would be handled by
1724 	 * lock_page(), but dax pages do not use the page lock. This
1725 	 * also prevents changes to the mapping of this pfn until
1726 	 * poison signaling is complete.
1727 	 */
1728 	cookie = dax_lock_page(page);
1729 	if (!cookie)
1730 		return -EBUSY;
1731 
1732 	if (hwpoison_filter(page)) {
1733 		rc = -EOPNOTSUPP;
1734 		goto unlock;
1735 	}
1736 
1737 	switch (pgmap->type) {
1738 	case MEMORY_DEVICE_PRIVATE:
1739 	case MEMORY_DEVICE_COHERENT:
1740 		/*
1741 		 * TODO: Handle device pages which may need coordination
1742 		 * with device-side memory.
1743 		 */
1744 		rc = -ENXIO;
1745 		goto unlock;
1746 	default:
1747 		break;
1748 	}
1749 
1750 	/*
1751 	 * Use this flag as an indication that the dax page has been
1752 	 * remapped UC to prevent speculative consumption of poison.
1753 	 */
1754 	SetPageHWPoison(page);
1755 
1756 	/*
1757 	 * Unlike System-RAM there is no possibility to swap in a
1758 	 * different physical page at a given virtual address, so all
1759 	 * userspace consumption of ZONE_DEVICE memory necessitates
1760 	 * SIGBUS (i.e. MF_MUST_KILL)
1761 	 */
1762 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1763 	collect_procs(page, &to_kill, true);
1764 
1765 	unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1766 unlock:
1767 	dax_unlock_page(page, cookie);
1768 	return rc;
1769 }
1770 
1771 #ifdef CONFIG_FS_DAX
1772 /**
1773  * mf_dax_kill_procs - Collect and kill processes who are using this file range
1774  * @mapping:	address_space of the file in use
1775  * @index:	start pgoff of the range within the file
1776  * @count:	length of the range, in unit of PAGE_SIZE
1777  * @mf_flags:	memory failure flags
1778  */
1779 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1780 		unsigned long count, int mf_flags)
1781 {
1782 	LIST_HEAD(to_kill);
1783 	dax_entry_t cookie;
1784 	struct page *page;
1785 	size_t end = index + count;
1786 
1787 	mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1788 
1789 	for (; index < end; index++) {
1790 		page = NULL;
1791 		cookie = dax_lock_mapping_entry(mapping, index, &page);
1792 		if (!cookie)
1793 			return -EBUSY;
1794 		if (!page)
1795 			goto unlock;
1796 
1797 		SetPageHWPoison(page);
1798 
1799 		collect_procs_fsdax(page, mapping, index, &to_kill);
1800 		unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1801 				index, mf_flags);
1802 unlock:
1803 		dax_unlock_mapping_entry(mapping, index, cookie);
1804 	}
1805 	return 0;
1806 }
1807 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1808 #endif /* CONFIG_FS_DAX */
1809 
1810 #ifdef CONFIG_HUGETLB_PAGE
1811 /*
1812  * Struct raw_hwp_page represents information about "raw error page",
1813  * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1814  */
1815 struct raw_hwp_page {
1816 	struct llist_node node;
1817 	struct page *page;
1818 };
1819 
1820 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1821 {
1822 	return (struct llist_head *)&folio->_hugetlb_hwpoison;
1823 }
1824 
1825 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1826 {
1827 	struct llist_head *head;
1828 	struct llist_node *t, *tnode;
1829 	unsigned long count = 0;
1830 
1831 	head = raw_hwp_list_head(folio);
1832 	llist_for_each_safe(tnode, t, head->first) {
1833 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1834 
1835 		if (move_flag)
1836 			SetPageHWPoison(p->page);
1837 		else
1838 			num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1839 		kfree(p);
1840 		count++;
1841 	}
1842 	llist_del_all(head);
1843 	return count;
1844 }
1845 
1846 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1847 {
1848 	struct llist_head *head;
1849 	struct raw_hwp_page *raw_hwp;
1850 	struct llist_node *t, *tnode;
1851 	int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1852 
1853 	/*
1854 	 * Once the hwpoison hugepage has lost reliable raw error info,
1855 	 * there is little meaning to keep additional error info precisely,
1856 	 * so skip to add additional raw error info.
1857 	 */
1858 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1859 		return -EHWPOISON;
1860 	head = raw_hwp_list_head(folio);
1861 	llist_for_each_safe(tnode, t, head->first) {
1862 		struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1863 
1864 		if (p->page == page)
1865 			return -EHWPOISON;
1866 	}
1867 
1868 	raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1869 	if (raw_hwp) {
1870 		raw_hwp->page = page;
1871 		llist_add(&raw_hwp->node, head);
1872 		/* the first error event will be counted in action_result(). */
1873 		if (ret)
1874 			num_poisoned_pages_inc(page_to_pfn(page));
1875 	} else {
1876 		/*
1877 		 * Failed to save raw error info.  We no longer trace all
1878 		 * hwpoisoned subpages, and we need refuse to free/dissolve
1879 		 * this hwpoisoned hugepage.
1880 		 */
1881 		folio_set_hugetlb_raw_hwp_unreliable(folio);
1882 		/*
1883 		 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1884 		 * used any more, so free it.
1885 		 */
1886 		__folio_free_raw_hwp(folio, false);
1887 	}
1888 	return ret;
1889 }
1890 
1891 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1892 {
1893 	/*
1894 	 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1895 	 * pages for tail pages are required but they don't exist.
1896 	 */
1897 	if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1898 		return 0;
1899 
1900 	/*
1901 	 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1902 	 * definition.
1903 	 */
1904 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1905 		return 0;
1906 
1907 	return __folio_free_raw_hwp(folio, move_flag);
1908 }
1909 
1910 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1911 {
1912 	if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1913 		return;
1914 	folio_clear_hwpoison(folio);
1915 	folio_free_raw_hwp(folio, true);
1916 }
1917 
1918 /*
1919  * Called from hugetlb code with hugetlb_lock held.
1920  *
1921  * Return values:
1922  *   0             - free hugepage
1923  *   1             - in-use hugepage
1924  *   2             - not a hugepage
1925  *   -EBUSY        - the hugepage is busy (try to retry)
1926  *   -EHWPOISON    - the hugepage is already hwpoisoned
1927  */
1928 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1929 				 bool *migratable_cleared)
1930 {
1931 	struct page *page = pfn_to_page(pfn);
1932 	struct folio *folio = page_folio(page);
1933 	int ret = 2;	/* fallback to normal page handling */
1934 	bool count_increased = false;
1935 
1936 	if (!folio_test_hugetlb(folio))
1937 		goto out;
1938 
1939 	if (flags & MF_COUNT_INCREASED) {
1940 		ret = 1;
1941 		count_increased = true;
1942 	} else if (folio_test_hugetlb_freed(folio)) {
1943 		ret = 0;
1944 	} else if (folio_test_hugetlb_migratable(folio)) {
1945 		ret = folio_try_get(folio);
1946 		if (ret)
1947 			count_increased = true;
1948 	} else {
1949 		ret = -EBUSY;
1950 		if (!(flags & MF_NO_RETRY))
1951 			goto out;
1952 	}
1953 
1954 	if (folio_set_hugetlb_hwpoison(folio, page)) {
1955 		ret = -EHWPOISON;
1956 		goto out;
1957 	}
1958 
1959 	/*
1960 	 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
1961 	 * from being migrated by memory hotremove.
1962 	 */
1963 	if (count_increased && folio_test_hugetlb_migratable(folio)) {
1964 		folio_clear_hugetlb_migratable(folio);
1965 		*migratable_cleared = true;
1966 	}
1967 
1968 	return ret;
1969 out:
1970 	if (count_increased)
1971 		folio_put(folio);
1972 	return ret;
1973 }
1974 
1975 /*
1976  * Taking refcount of hugetlb pages needs extra care about race conditions
1977  * with basic operations like hugepage allocation/free/demotion.
1978  * So some of prechecks for hwpoison (pinning, and testing/setting
1979  * PageHWPoison) should be done in single hugetlb_lock range.
1980  */
1981 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1982 {
1983 	int res;
1984 	struct page *p = pfn_to_page(pfn);
1985 	struct folio *folio;
1986 	unsigned long page_flags;
1987 	bool migratable_cleared = false;
1988 
1989 	*hugetlb = 1;
1990 retry:
1991 	res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1992 	if (res == 2) { /* fallback to normal page handling */
1993 		*hugetlb = 0;
1994 		return 0;
1995 	} else if (res == -EHWPOISON) {
1996 		pr_err("%#lx: already hardware poisoned\n", pfn);
1997 		if (flags & MF_ACTION_REQUIRED) {
1998 			folio = page_folio(p);
1999 			res = kill_accessing_process(current, folio_pfn(folio), flags);
2000 		}
2001 		return res;
2002 	} else if (res == -EBUSY) {
2003 		if (!(flags & MF_NO_RETRY)) {
2004 			flags |= MF_NO_RETRY;
2005 			goto retry;
2006 		}
2007 		return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2008 	}
2009 
2010 	folio = page_folio(p);
2011 	folio_lock(folio);
2012 
2013 	if (hwpoison_filter(p)) {
2014 		folio_clear_hugetlb_hwpoison(folio);
2015 		if (migratable_cleared)
2016 			folio_set_hugetlb_migratable(folio);
2017 		folio_unlock(folio);
2018 		if (res == 1)
2019 			folio_put(folio);
2020 		return -EOPNOTSUPP;
2021 	}
2022 
2023 	/*
2024 	 * Handling free hugepage.  The possible race with hugepage allocation
2025 	 * or demotion can be prevented by PageHWPoison flag.
2026 	 */
2027 	if (res == 0) {
2028 		folio_unlock(folio);
2029 		if (__page_handle_poison(p) >= 0) {
2030 			page_ref_inc(p);
2031 			res = MF_RECOVERED;
2032 		} else {
2033 			res = MF_FAILED;
2034 		}
2035 		return action_result(pfn, MF_MSG_FREE_HUGE, res);
2036 	}
2037 
2038 	page_flags = folio->flags;
2039 
2040 	if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2041 		folio_unlock(folio);
2042 		return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2043 	}
2044 
2045 	return identify_page_state(pfn, p, page_flags);
2046 }
2047 
2048 #else
2049 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2050 {
2051 	return 0;
2052 }
2053 
2054 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2055 {
2056 	return 0;
2057 }
2058 #endif	/* CONFIG_HUGETLB_PAGE */
2059 
2060 /* Drop the extra refcount in case we come from madvise() */
2061 static void put_ref_page(unsigned long pfn, int flags)
2062 {
2063 	struct page *page;
2064 
2065 	if (!(flags & MF_COUNT_INCREASED))
2066 		return;
2067 
2068 	page = pfn_to_page(pfn);
2069 	if (page)
2070 		put_page(page);
2071 }
2072 
2073 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2074 		struct dev_pagemap *pgmap)
2075 {
2076 	int rc = -ENXIO;
2077 
2078 	put_ref_page(pfn, flags);
2079 
2080 	/* device metadata space is not recoverable */
2081 	if (!pgmap_pfn_valid(pgmap, pfn))
2082 		goto out;
2083 
2084 	/*
2085 	 * Call driver's implementation to handle the memory failure, otherwise
2086 	 * fall back to generic handler.
2087 	 */
2088 	if (pgmap_has_memory_failure(pgmap)) {
2089 		rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2090 		/*
2091 		 * Fall back to generic handler too if operation is not
2092 		 * supported inside the driver/device/filesystem.
2093 		 */
2094 		if (rc != -EOPNOTSUPP)
2095 			goto out;
2096 	}
2097 
2098 	rc = mf_generic_kill_procs(pfn, flags, pgmap);
2099 out:
2100 	/* drop pgmap ref acquired in caller */
2101 	put_dev_pagemap(pgmap);
2102 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2103 	return rc;
2104 }
2105 
2106 static DEFINE_MUTEX(mf_mutex);
2107 
2108 /**
2109  * memory_failure - Handle memory failure of a page.
2110  * @pfn: Page Number of the corrupted page
2111  * @flags: fine tune action taken
2112  *
2113  * This function is called by the low level machine check code
2114  * of an architecture when it detects hardware memory corruption
2115  * of a page. It tries its best to recover, which includes
2116  * dropping pages, killing processes etc.
2117  *
2118  * The function is primarily of use for corruptions that
2119  * happen outside the current execution context (e.g. when
2120  * detected by a background scrubber)
2121  *
2122  * Must run in process context (e.g. a work queue) with interrupts
2123  * enabled and no spinlocks hold.
2124  *
2125  * Return: 0 for successfully handled the memory error,
2126  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2127  *         < 0(except -EOPNOTSUPP) on failure.
2128  */
2129 int memory_failure(unsigned long pfn, int flags)
2130 {
2131 	struct page *p;
2132 	struct page *hpage;
2133 	struct dev_pagemap *pgmap;
2134 	int res = 0;
2135 	unsigned long page_flags;
2136 	bool retry = true;
2137 	int hugetlb = 0;
2138 
2139 	if (!sysctl_memory_failure_recovery)
2140 		panic("Memory failure on page %lx", pfn);
2141 
2142 	mutex_lock(&mf_mutex);
2143 
2144 	if (!(flags & MF_SW_SIMULATED))
2145 		hw_memory_failure = true;
2146 
2147 	p = pfn_to_online_page(pfn);
2148 	if (!p) {
2149 		res = arch_memory_failure(pfn, flags);
2150 		if (res == 0)
2151 			goto unlock_mutex;
2152 
2153 		if (pfn_valid(pfn)) {
2154 			pgmap = get_dev_pagemap(pfn, NULL);
2155 			if (pgmap) {
2156 				res = memory_failure_dev_pagemap(pfn, flags,
2157 								 pgmap);
2158 				goto unlock_mutex;
2159 			}
2160 		}
2161 		pr_err("%#lx: memory outside kernel control\n", pfn);
2162 		res = -ENXIO;
2163 		goto unlock_mutex;
2164 	}
2165 
2166 try_again:
2167 	res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2168 	if (hugetlb)
2169 		goto unlock_mutex;
2170 
2171 	if (TestSetPageHWPoison(p)) {
2172 		pr_err("%#lx: already hardware poisoned\n", pfn);
2173 		res = -EHWPOISON;
2174 		if (flags & MF_ACTION_REQUIRED)
2175 			res = kill_accessing_process(current, pfn, flags);
2176 		if (flags & MF_COUNT_INCREASED)
2177 			put_page(p);
2178 		goto unlock_mutex;
2179 	}
2180 
2181 	hpage = compound_head(p);
2182 
2183 	/*
2184 	 * We need/can do nothing about count=0 pages.
2185 	 * 1) it's a free page, and therefore in safe hand:
2186 	 *    check_new_page() will be the gate keeper.
2187 	 * 2) it's part of a non-compound high order page.
2188 	 *    Implies some kernel user: cannot stop them from
2189 	 *    R/W the page; let's pray that the page has been
2190 	 *    used and will be freed some time later.
2191 	 * In fact it's dangerous to directly bump up page count from 0,
2192 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2193 	 */
2194 	if (!(flags & MF_COUNT_INCREASED)) {
2195 		res = get_hwpoison_page(p, flags);
2196 		if (!res) {
2197 			if (is_free_buddy_page(p)) {
2198 				if (take_page_off_buddy(p)) {
2199 					page_ref_inc(p);
2200 					res = MF_RECOVERED;
2201 				} else {
2202 					/* We lost the race, try again */
2203 					if (retry) {
2204 						ClearPageHWPoison(p);
2205 						retry = false;
2206 						goto try_again;
2207 					}
2208 					res = MF_FAILED;
2209 				}
2210 				res = action_result(pfn, MF_MSG_BUDDY, res);
2211 			} else {
2212 				res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2213 			}
2214 			goto unlock_mutex;
2215 		} else if (res < 0) {
2216 			res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2217 			goto unlock_mutex;
2218 		}
2219 	}
2220 
2221 	if (PageTransHuge(hpage)) {
2222 		/*
2223 		 * The flag must be set after the refcount is bumped
2224 		 * otherwise it may race with THP split.
2225 		 * And the flag can't be set in get_hwpoison_page() since
2226 		 * it is called by soft offline too and it is just called
2227 		 * for !MF_COUNT_INCREASE.  So here seems to be the best
2228 		 * place.
2229 		 *
2230 		 * Don't need care about the above error handling paths for
2231 		 * get_hwpoison_page() since they handle either free page
2232 		 * or unhandlable page.  The refcount is bumped iff the
2233 		 * page is a valid handlable page.
2234 		 */
2235 		SetPageHasHWPoisoned(hpage);
2236 		if (try_to_split_thp_page(p) < 0) {
2237 			res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2238 			goto unlock_mutex;
2239 		}
2240 		VM_BUG_ON_PAGE(!page_count(p), p);
2241 	}
2242 
2243 	/*
2244 	 * We ignore non-LRU pages for good reasons.
2245 	 * - PG_locked is only well defined for LRU pages and a few others
2246 	 * - to avoid races with __SetPageLocked()
2247 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2248 	 * The check (unnecessarily) ignores LRU pages being isolated and
2249 	 * walked by the page reclaim code, however that's not a big loss.
2250 	 */
2251 	shake_page(p);
2252 
2253 	lock_page(p);
2254 
2255 	/*
2256 	 * We're only intended to deal with the non-Compound page here.
2257 	 * However, the page could have changed compound pages due to
2258 	 * race window. If this happens, we could try again to hopefully
2259 	 * handle the page next round.
2260 	 */
2261 	if (PageCompound(p)) {
2262 		if (retry) {
2263 			ClearPageHWPoison(p);
2264 			unlock_page(p);
2265 			put_page(p);
2266 			flags &= ~MF_COUNT_INCREASED;
2267 			retry = false;
2268 			goto try_again;
2269 		}
2270 		res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2271 		goto unlock_page;
2272 	}
2273 
2274 	/*
2275 	 * We use page flags to determine what action should be taken, but
2276 	 * the flags can be modified by the error containment action.  One
2277 	 * example is an mlocked page, where PG_mlocked is cleared by
2278 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2279 	 * correctly, we save a copy of the page flags at this time.
2280 	 */
2281 	page_flags = p->flags;
2282 
2283 	if (hwpoison_filter(p)) {
2284 		ClearPageHWPoison(p);
2285 		unlock_page(p);
2286 		put_page(p);
2287 		res = -EOPNOTSUPP;
2288 		goto unlock_mutex;
2289 	}
2290 
2291 	/*
2292 	 * __munlock_folio() may clear a writeback page's LRU flag without
2293 	 * page_lock. We need wait writeback completion for this page or it
2294 	 * may trigger vfs BUG while evict inode.
2295 	 */
2296 	if (!PageLRU(p) && !PageWriteback(p))
2297 		goto identify_page_state;
2298 
2299 	/*
2300 	 * It's very difficult to mess with pages currently under IO
2301 	 * and in many cases impossible, so we just avoid it here.
2302 	 */
2303 	wait_on_page_writeback(p);
2304 
2305 	/*
2306 	 * Now take care of user space mappings.
2307 	 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2308 	 */
2309 	if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2310 		res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2311 		goto unlock_page;
2312 	}
2313 
2314 	/*
2315 	 * Torn down by someone else?
2316 	 */
2317 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2318 		res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2319 		goto unlock_page;
2320 	}
2321 
2322 identify_page_state:
2323 	res = identify_page_state(pfn, p, page_flags);
2324 	mutex_unlock(&mf_mutex);
2325 	return res;
2326 unlock_page:
2327 	unlock_page(p);
2328 unlock_mutex:
2329 	mutex_unlock(&mf_mutex);
2330 	return res;
2331 }
2332 EXPORT_SYMBOL_GPL(memory_failure);
2333 
2334 #define MEMORY_FAILURE_FIFO_ORDER	4
2335 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
2336 
2337 struct memory_failure_entry {
2338 	unsigned long pfn;
2339 	int flags;
2340 };
2341 
2342 struct memory_failure_cpu {
2343 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
2344 		      MEMORY_FAILURE_FIFO_SIZE);
2345 	spinlock_t lock;
2346 	struct work_struct work;
2347 };
2348 
2349 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2350 
2351 /**
2352  * memory_failure_queue - Schedule handling memory failure of a page.
2353  * @pfn: Page Number of the corrupted page
2354  * @flags: Flags for memory failure handling
2355  *
2356  * This function is called by the low level hardware error handler
2357  * when it detects hardware memory corruption of a page. It schedules
2358  * the recovering of error page, including dropping pages, killing
2359  * processes etc.
2360  *
2361  * The function is primarily of use for corruptions that
2362  * happen outside the current execution context (e.g. when
2363  * detected by a background scrubber)
2364  *
2365  * Can run in IRQ context.
2366  */
2367 void memory_failure_queue(unsigned long pfn, int flags)
2368 {
2369 	struct memory_failure_cpu *mf_cpu;
2370 	unsigned long proc_flags;
2371 	struct memory_failure_entry entry = {
2372 		.pfn =		pfn,
2373 		.flags =	flags,
2374 	};
2375 
2376 	mf_cpu = &get_cpu_var(memory_failure_cpu);
2377 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2378 	if (kfifo_put(&mf_cpu->fifo, entry))
2379 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
2380 	else
2381 		pr_err("buffer overflow when queuing memory failure at %#lx\n",
2382 		       pfn);
2383 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2384 	put_cpu_var(memory_failure_cpu);
2385 }
2386 EXPORT_SYMBOL_GPL(memory_failure_queue);
2387 
2388 static void memory_failure_work_func(struct work_struct *work)
2389 {
2390 	struct memory_failure_cpu *mf_cpu;
2391 	struct memory_failure_entry entry = { 0, };
2392 	unsigned long proc_flags;
2393 	int gotten;
2394 
2395 	mf_cpu = container_of(work, struct memory_failure_cpu, work);
2396 	for (;;) {
2397 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2398 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
2399 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2400 		if (!gotten)
2401 			break;
2402 		if (entry.flags & MF_SOFT_OFFLINE)
2403 			soft_offline_page(entry.pfn, entry.flags);
2404 		else
2405 			memory_failure(entry.pfn, entry.flags);
2406 	}
2407 }
2408 
2409 /*
2410  * Process memory_failure work queued on the specified CPU.
2411  * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2412  */
2413 void memory_failure_queue_kick(int cpu)
2414 {
2415 	struct memory_failure_cpu *mf_cpu;
2416 
2417 	mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2418 	cancel_work_sync(&mf_cpu->work);
2419 	memory_failure_work_func(&mf_cpu->work);
2420 }
2421 
2422 static int __init memory_failure_init(void)
2423 {
2424 	struct memory_failure_cpu *mf_cpu;
2425 	int cpu;
2426 
2427 	for_each_possible_cpu(cpu) {
2428 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2429 		spin_lock_init(&mf_cpu->lock);
2430 		INIT_KFIFO(mf_cpu->fifo);
2431 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2432 	}
2433 
2434 	register_sysctl_init("vm", memory_failure_table);
2435 
2436 	return 0;
2437 }
2438 core_initcall(memory_failure_init);
2439 
2440 #undef pr_fmt
2441 #define pr_fmt(fmt)	"" fmt
2442 #define unpoison_pr_info(fmt, pfn, rs)			\
2443 ({							\
2444 	if (__ratelimit(rs))				\
2445 		pr_info(fmt, pfn);			\
2446 })
2447 
2448 /**
2449  * unpoison_memory - Unpoison a previously poisoned page
2450  * @pfn: Page number of the to be unpoisoned page
2451  *
2452  * Software-unpoison a page that has been poisoned by
2453  * memory_failure() earlier.
2454  *
2455  * This is only done on the software-level, so it only works
2456  * for linux injected failures, not real hardware failures
2457  *
2458  * Returns 0 for success, otherwise -errno.
2459  */
2460 int unpoison_memory(unsigned long pfn)
2461 {
2462 	struct folio *folio;
2463 	struct page *p;
2464 	int ret = -EBUSY;
2465 	unsigned long count = 1;
2466 	bool huge = false;
2467 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2468 					DEFAULT_RATELIMIT_BURST);
2469 
2470 	if (!pfn_valid(pfn))
2471 		return -ENXIO;
2472 
2473 	p = pfn_to_page(pfn);
2474 	folio = page_folio(p);
2475 
2476 	mutex_lock(&mf_mutex);
2477 
2478 	if (hw_memory_failure) {
2479 		unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2480 				 pfn, &unpoison_rs);
2481 		ret = -EOPNOTSUPP;
2482 		goto unlock_mutex;
2483 	}
2484 
2485 	if (!PageHWPoison(p)) {
2486 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2487 				 pfn, &unpoison_rs);
2488 		goto unlock_mutex;
2489 	}
2490 
2491 	if (folio_ref_count(folio) > 1) {
2492 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2493 				 pfn, &unpoison_rs);
2494 		goto unlock_mutex;
2495 	}
2496 
2497 	if (folio_mapped(folio)) {
2498 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2499 				 pfn, &unpoison_rs);
2500 		goto unlock_mutex;
2501 	}
2502 
2503 	if (folio_mapping(folio)) {
2504 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2505 				 pfn, &unpoison_rs);
2506 		goto unlock_mutex;
2507 	}
2508 
2509 	if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
2510 		goto unlock_mutex;
2511 
2512 	ret = get_hwpoison_page(p, MF_UNPOISON);
2513 	if (!ret) {
2514 		if (PageHuge(p)) {
2515 			huge = true;
2516 			count = folio_free_raw_hwp(folio, false);
2517 			if (count == 0) {
2518 				ret = -EBUSY;
2519 				goto unlock_mutex;
2520 			}
2521 		}
2522 		ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2523 	} else if (ret < 0) {
2524 		if (ret == -EHWPOISON) {
2525 			ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2526 		} else
2527 			unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2528 					 pfn, &unpoison_rs);
2529 	} else {
2530 		if (PageHuge(p)) {
2531 			huge = true;
2532 			count = folio_free_raw_hwp(folio, false);
2533 			if (count == 0) {
2534 				ret = -EBUSY;
2535 				folio_put(folio);
2536 				goto unlock_mutex;
2537 			}
2538 		}
2539 
2540 		folio_put(folio);
2541 		if (TestClearPageHWPoison(p)) {
2542 			folio_put(folio);
2543 			ret = 0;
2544 		}
2545 	}
2546 
2547 unlock_mutex:
2548 	mutex_unlock(&mf_mutex);
2549 	if (!ret) {
2550 		if (!huge)
2551 			num_poisoned_pages_sub(pfn, 1);
2552 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2553 				 page_to_pfn(p), &unpoison_rs);
2554 	}
2555 	return ret;
2556 }
2557 EXPORT_SYMBOL(unpoison_memory);
2558 
2559 static bool isolate_page(struct page *page, struct list_head *pagelist)
2560 {
2561 	bool isolated = false;
2562 
2563 	if (PageHuge(page)) {
2564 		isolated = isolate_hugetlb(page_folio(page), pagelist);
2565 	} else {
2566 		bool lru = !__PageMovable(page);
2567 
2568 		if (lru)
2569 			isolated = isolate_lru_page(page);
2570 		else
2571 			isolated = isolate_movable_page(page,
2572 							ISOLATE_UNEVICTABLE);
2573 
2574 		if (isolated) {
2575 			list_add(&page->lru, pagelist);
2576 			if (lru)
2577 				inc_node_page_state(page, NR_ISOLATED_ANON +
2578 						    page_is_file_lru(page));
2579 		}
2580 	}
2581 
2582 	/*
2583 	 * If we succeed to isolate the page, we grabbed another refcount on
2584 	 * the page, so we can safely drop the one we got from get_any_pages().
2585 	 * If we failed to isolate the page, it means that we cannot go further
2586 	 * and we will return an error, so drop the reference we got from
2587 	 * get_any_pages() as well.
2588 	 */
2589 	put_page(page);
2590 	return isolated;
2591 }
2592 
2593 /*
2594  * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2595  * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2596  * If the page is mapped, it migrates the contents over.
2597  */
2598 static int soft_offline_in_use_page(struct page *page)
2599 {
2600 	long ret = 0;
2601 	unsigned long pfn = page_to_pfn(page);
2602 	struct page *hpage = compound_head(page);
2603 	char const *msg_page[] = {"page", "hugepage"};
2604 	bool huge = PageHuge(page);
2605 	LIST_HEAD(pagelist);
2606 	struct migration_target_control mtc = {
2607 		.nid = NUMA_NO_NODE,
2608 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2609 	};
2610 
2611 	if (!huge && PageTransHuge(hpage)) {
2612 		if (try_to_split_thp_page(page)) {
2613 			pr_info("soft offline: %#lx: thp split failed\n", pfn);
2614 			return -EBUSY;
2615 		}
2616 		hpage = page;
2617 	}
2618 
2619 	lock_page(page);
2620 	if (!PageHuge(page))
2621 		wait_on_page_writeback(page);
2622 	if (PageHWPoison(page)) {
2623 		unlock_page(page);
2624 		put_page(page);
2625 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
2626 		return 0;
2627 	}
2628 
2629 	if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2630 		/*
2631 		 * Try to invalidate first. This should work for
2632 		 * non dirty unmapped page cache pages.
2633 		 */
2634 		ret = invalidate_inode_page(page);
2635 	unlock_page(page);
2636 
2637 	if (ret) {
2638 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
2639 		page_handle_poison(page, false, true);
2640 		return 0;
2641 	}
2642 
2643 	if (isolate_page(hpage, &pagelist)) {
2644 		ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2645 			(unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2646 		if (!ret) {
2647 			bool release = !huge;
2648 
2649 			if (!page_handle_poison(page, huge, release))
2650 				ret = -EBUSY;
2651 		} else {
2652 			if (!list_empty(&pagelist))
2653 				putback_movable_pages(&pagelist);
2654 
2655 			pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2656 				pfn, msg_page[huge], ret, &page->flags);
2657 			if (ret > 0)
2658 				ret = -EBUSY;
2659 		}
2660 	} else {
2661 		pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2662 			pfn, msg_page[huge], page_count(page), &page->flags);
2663 		ret = -EBUSY;
2664 	}
2665 	return ret;
2666 }
2667 
2668 /**
2669  * soft_offline_page - Soft offline a page.
2670  * @pfn: pfn to soft-offline
2671  * @flags: flags. Same as memory_failure().
2672  *
2673  * Returns 0 on success
2674  *         -EOPNOTSUPP for hwpoison_filter() filtered the error event
2675  *         < 0 otherwise negated errno.
2676  *
2677  * Soft offline a page, by migration or invalidation,
2678  * without killing anything. This is for the case when
2679  * a page is not corrupted yet (so it's still valid to access),
2680  * but has had a number of corrected errors and is better taken
2681  * out.
2682  *
2683  * The actual policy on when to do that is maintained by
2684  * user space.
2685  *
2686  * This should never impact any application or cause data loss,
2687  * however it might take some time.
2688  *
2689  * This is not a 100% solution for all memory, but tries to be
2690  * ``good enough'' for the majority of memory.
2691  */
2692 int soft_offline_page(unsigned long pfn, int flags)
2693 {
2694 	int ret;
2695 	bool try_again = true;
2696 	struct page *page;
2697 
2698 	if (!pfn_valid(pfn)) {
2699 		WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2700 		return -ENXIO;
2701 	}
2702 
2703 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2704 	page = pfn_to_online_page(pfn);
2705 	if (!page) {
2706 		put_ref_page(pfn, flags);
2707 		return -EIO;
2708 	}
2709 
2710 	mutex_lock(&mf_mutex);
2711 
2712 	if (PageHWPoison(page)) {
2713 		pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2714 		put_ref_page(pfn, flags);
2715 		mutex_unlock(&mf_mutex);
2716 		return 0;
2717 	}
2718 
2719 retry:
2720 	get_online_mems();
2721 	ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2722 	put_online_mems();
2723 
2724 	if (hwpoison_filter(page)) {
2725 		if (ret > 0)
2726 			put_page(page);
2727 
2728 		mutex_unlock(&mf_mutex);
2729 		return -EOPNOTSUPP;
2730 	}
2731 
2732 	if (ret > 0) {
2733 		ret = soft_offline_in_use_page(page);
2734 	} else if (ret == 0) {
2735 		if (!page_handle_poison(page, true, false) && try_again) {
2736 			try_again = false;
2737 			flags &= ~MF_COUNT_INCREASED;
2738 			goto retry;
2739 		}
2740 	}
2741 
2742 	mutex_unlock(&mf_mutex);
2743 
2744 	return ret;
2745 }
2746