1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/dax.h> 46 #include <linux/ksm.h> 47 #include <linux/rmap.h> 48 #include <linux/export.h> 49 #include <linux/pagemap.h> 50 #include <linux/swap.h> 51 #include <linux/backing-dev.h> 52 #include <linux/migrate.h> 53 #include <linux/suspend.h> 54 #include <linux/slab.h> 55 #include <linux/swapops.h> 56 #include <linux/hugetlb.h> 57 #include <linux/memory_hotplug.h> 58 #include <linux/mm_inline.h> 59 #include <linux/memremap.h> 60 #include <linux/kfifo.h> 61 #include <linux/ratelimit.h> 62 #include <linux/page-isolation.h> 63 #include <linux/pagewalk.h> 64 #include <linux/shmem_fs.h> 65 #include <linux/sysctl.h> 66 #include "swap.h" 67 #include "internal.h" 68 #include "ras/ras_event.h" 69 70 static int sysctl_memory_failure_early_kill __read_mostly; 71 72 static int sysctl_memory_failure_recovery __read_mostly = 1; 73 74 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 75 76 static bool hw_memory_failure __read_mostly = false; 77 78 void num_poisoned_pages_inc(unsigned long pfn) 79 { 80 atomic_long_inc(&num_poisoned_pages); 81 memblk_nr_poison_inc(pfn); 82 } 83 84 void num_poisoned_pages_sub(unsigned long pfn, long i) 85 { 86 atomic_long_sub(i, &num_poisoned_pages); 87 if (pfn != -1UL) 88 memblk_nr_poison_sub(pfn, i); 89 } 90 91 /** 92 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 93 * @_name: name of the file in the per NUMA sysfs directory. 94 */ 95 #define MF_ATTR_RO(_name) \ 96 static ssize_t _name##_show(struct device *dev, \ 97 struct device_attribute *attr, \ 98 char *buf) \ 99 { \ 100 struct memory_failure_stats *mf_stats = \ 101 &NODE_DATA(dev->id)->mf_stats; \ 102 return sprintf(buf, "%lu\n", mf_stats->_name); \ 103 } \ 104 static DEVICE_ATTR_RO(_name) 105 106 MF_ATTR_RO(total); 107 MF_ATTR_RO(ignored); 108 MF_ATTR_RO(failed); 109 MF_ATTR_RO(delayed); 110 MF_ATTR_RO(recovered); 111 112 static struct attribute *memory_failure_attr[] = { 113 &dev_attr_total.attr, 114 &dev_attr_ignored.attr, 115 &dev_attr_failed.attr, 116 &dev_attr_delayed.attr, 117 &dev_attr_recovered.attr, 118 NULL, 119 }; 120 121 const struct attribute_group memory_failure_attr_group = { 122 .name = "memory_failure", 123 .attrs = memory_failure_attr, 124 }; 125 126 static struct ctl_table memory_failure_table[] = { 127 { 128 .procname = "memory_failure_early_kill", 129 .data = &sysctl_memory_failure_early_kill, 130 .maxlen = sizeof(sysctl_memory_failure_early_kill), 131 .mode = 0644, 132 .proc_handler = proc_dointvec_minmax, 133 .extra1 = SYSCTL_ZERO, 134 .extra2 = SYSCTL_ONE, 135 }, 136 { 137 .procname = "memory_failure_recovery", 138 .data = &sysctl_memory_failure_recovery, 139 .maxlen = sizeof(sysctl_memory_failure_recovery), 140 .mode = 0644, 141 .proc_handler = proc_dointvec_minmax, 142 .extra1 = SYSCTL_ZERO, 143 .extra2 = SYSCTL_ONE, 144 }, 145 { } 146 }; 147 148 /* 149 * Return values: 150 * 1: the page is dissolved (if needed) and taken off from buddy, 151 * 0: the page is dissolved (if needed) and not taken off from buddy, 152 * < 0: failed to dissolve. 153 */ 154 static int __page_handle_poison(struct page *page) 155 { 156 int ret; 157 158 zone_pcp_disable(page_zone(page)); 159 ret = dissolve_free_huge_page(page); 160 if (!ret) 161 ret = take_page_off_buddy(page); 162 zone_pcp_enable(page_zone(page)); 163 164 return ret; 165 } 166 167 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 168 { 169 if (hugepage_or_freepage) { 170 /* 171 * Doing this check for free pages is also fine since dissolve_free_huge_page 172 * returns 0 for non-hugetlb pages as well. 173 */ 174 if (__page_handle_poison(page) <= 0) 175 /* 176 * We could fail to take off the target page from buddy 177 * for example due to racy page allocation, but that's 178 * acceptable because soft-offlined page is not broken 179 * and if someone really want to use it, they should 180 * take it. 181 */ 182 return false; 183 } 184 185 SetPageHWPoison(page); 186 if (release) 187 put_page(page); 188 page_ref_inc(page); 189 num_poisoned_pages_inc(page_to_pfn(page)); 190 191 return true; 192 } 193 194 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 195 196 u32 hwpoison_filter_enable = 0; 197 u32 hwpoison_filter_dev_major = ~0U; 198 u32 hwpoison_filter_dev_minor = ~0U; 199 u64 hwpoison_filter_flags_mask; 200 u64 hwpoison_filter_flags_value; 201 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 202 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 203 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 204 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 205 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 206 207 static int hwpoison_filter_dev(struct page *p) 208 { 209 struct address_space *mapping; 210 dev_t dev; 211 212 if (hwpoison_filter_dev_major == ~0U && 213 hwpoison_filter_dev_minor == ~0U) 214 return 0; 215 216 mapping = page_mapping(p); 217 if (mapping == NULL || mapping->host == NULL) 218 return -EINVAL; 219 220 dev = mapping->host->i_sb->s_dev; 221 if (hwpoison_filter_dev_major != ~0U && 222 hwpoison_filter_dev_major != MAJOR(dev)) 223 return -EINVAL; 224 if (hwpoison_filter_dev_minor != ~0U && 225 hwpoison_filter_dev_minor != MINOR(dev)) 226 return -EINVAL; 227 228 return 0; 229 } 230 231 static int hwpoison_filter_flags(struct page *p) 232 { 233 if (!hwpoison_filter_flags_mask) 234 return 0; 235 236 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 237 hwpoison_filter_flags_value) 238 return 0; 239 else 240 return -EINVAL; 241 } 242 243 /* 244 * This allows stress tests to limit test scope to a collection of tasks 245 * by putting them under some memcg. This prevents killing unrelated/important 246 * processes such as /sbin/init. Note that the target task may share clean 247 * pages with init (eg. libc text), which is harmless. If the target task 248 * share _dirty_ pages with another task B, the test scheme must make sure B 249 * is also included in the memcg. At last, due to race conditions this filter 250 * can only guarantee that the page either belongs to the memcg tasks, or is 251 * a freed page. 252 */ 253 #ifdef CONFIG_MEMCG 254 u64 hwpoison_filter_memcg; 255 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 256 static int hwpoison_filter_task(struct page *p) 257 { 258 if (!hwpoison_filter_memcg) 259 return 0; 260 261 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 262 return -EINVAL; 263 264 return 0; 265 } 266 #else 267 static int hwpoison_filter_task(struct page *p) { return 0; } 268 #endif 269 270 int hwpoison_filter(struct page *p) 271 { 272 if (!hwpoison_filter_enable) 273 return 0; 274 275 if (hwpoison_filter_dev(p)) 276 return -EINVAL; 277 278 if (hwpoison_filter_flags(p)) 279 return -EINVAL; 280 281 if (hwpoison_filter_task(p)) 282 return -EINVAL; 283 284 return 0; 285 } 286 #else 287 int hwpoison_filter(struct page *p) 288 { 289 return 0; 290 } 291 #endif 292 293 EXPORT_SYMBOL_GPL(hwpoison_filter); 294 295 /* 296 * Kill all processes that have a poisoned page mapped and then isolate 297 * the page. 298 * 299 * General strategy: 300 * Find all processes having the page mapped and kill them. 301 * But we keep a page reference around so that the page is not 302 * actually freed yet. 303 * Then stash the page away 304 * 305 * There's no convenient way to get back to mapped processes 306 * from the VMAs. So do a brute-force search over all 307 * running processes. 308 * 309 * Remember that machine checks are not common (or rather 310 * if they are common you have other problems), so this shouldn't 311 * be a performance issue. 312 * 313 * Also there are some races possible while we get from the 314 * error detection to actually handle it. 315 */ 316 317 struct to_kill { 318 struct list_head nd; 319 struct task_struct *tsk; 320 unsigned long addr; 321 short size_shift; 322 }; 323 324 /* 325 * Send all the processes who have the page mapped a signal. 326 * ``action optional'' if they are not immediately affected by the error 327 * ``action required'' if error happened in current execution context 328 */ 329 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 330 { 331 struct task_struct *t = tk->tsk; 332 short addr_lsb = tk->size_shift; 333 int ret = 0; 334 335 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 336 pfn, t->comm, t->pid); 337 338 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 339 ret = force_sig_mceerr(BUS_MCEERR_AR, 340 (void __user *)tk->addr, addr_lsb); 341 else 342 /* 343 * Signal other processes sharing the page if they have 344 * PF_MCE_EARLY set. 345 * Don't use force here, it's convenient if the signal 346 * can be temporarily blocked. 347 * This could cause a loop when the user sets SIGBUS 348 * to SIG_IGN, but hopefully no one will do that? 349 */ 350 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 351 addr_lsb, t); 352 if (ret < 0) 353 pr_info("Error sending signal to %s:%d: %d\n", 354 t->comm, t->pid, ret); 355 return ret; 356 } 357 358 /* 359 * Unknown page type encountered. Try to check whether it can turn PageLRU by 360 * lru_add_drain_all. 361 */ 362 void shake_page(struct page *p) 363 { 364 if (PageHuge(p)) 365 return; 366 /* 367 * TODO: Could shrink slab caches here if a lightweight range-based 368 * shrinker will be available. 369 */ 370 if (PageSlab(p)) 371 return; 372 373 lru_add_drain_all(); 374 } 375 EXPORT_SYMBOL_GPL(shake_page); 376 377 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 378 unsigned long address) 379 { 380 unsigned long ret = 0; 381 pgd_t *pgd; 382 p4d_t *p4d; 383 pud_t *pud; 384 pmd_t *pmd; 385 pte_t *pte; 386 pte_t ptent; 387 388 VM_BUG_ON_VMA(address == -EFAULT, vma); 389 pgd = pgd_offset(vma->vm_mm, address); 390 if (!pgd_present(*pgd)) 391 return 0; 392 p4d = p4d_offset(pgd, address); 393 if (!p4d_present(*p4d)) 394 return 0; 395 pud = pud_offset(p4d, address); 396 if (!pud_present(*pud)) 397 return 0; 398 if (pud_devmap(*pud)) 399 return PUD_SHIFT; 400 pmd = pmd_offset(pud, address); 401 if (!pmd_present(*pmd)) 402 return 0; 403 if (pmd_devmap(*pmd)) 404 return PMD_SHIFT; 405 pte = pte_offset_map(pmd, address); 406 if (!pte) 407 return 0; 408 ptent = ptep_get(pte); 409 if (pte_present(ptent) && pte_devmap(ptent)) 410 ret = PAGE_SHIFT; 411 pte_unmap(pte); 412 return ret; 413 } 414 415 /* 416 * Failure handling: if we can't find or can't kill a process there's 417 * not much we can do. We just print a message and ignore otherwise. 418 */ 419 420 #define FSDAX_INVALID_PGOFF ULONG_MAX 421 422 /* 423 * Schedule a process for later kill. 424 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 425 * 426 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a 427 * filesystem with a memory failure handler has claimed the 428 * memory_failure event. In all other cases, page->index and 429 * page->mapping are sufficient for mapping the page back to its 430 * corresponding user virtual address. 431 */ 432 static void __add_to_kill(struct task_struct *tsk, struct page *p, 433 struct vm_area_struct *vma, struct list_head *to_kill, 434 unsigned long ksm_addr, pgoff_t fsdax_pgoff) 435 { 436 struct to_kill *tk; 437 438 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 439 if (!tk) { 440 pr_err("Out of memory while machine check handling\n"); 441 return; 442 } 443 444 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma); 445 if (is_zone_device_page(p)) { 446 if (fsdax_pgoff != FSDAX_INVALID_PGOFF) 447 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 448 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 449 } else 450 tk->size_shift = page_shift(compound_head(p)); 451 452 /* 453 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 454 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 455 * so "tk->size_shift == 0" effectively checks no mapping on 456 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 457 * to a process' address space, it's possible not all N VMAs 458 * contain mappings for the page, but at least one VMA does. 459 * Only deliver SIGBUS with payload derived from the VMA that 460 * has a mapping for the page. 461 */ 462 if (tk->addr == -EFAULT) { 463 pr_info("Unable to find user space address %lx in %s\n", 464 page_to_pfn(p), tsk->comm); 465 } else if (tk->size_shift == 0) { 466 kfree(tk); 467 return; 468 } 469 470 get_task_struct(tsk); 471 tk->tsk = tsk; 472 list_add_tail(&tk->nd, to_kill); 473 } 474 475 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p, 476 struct vm_area_struct *vma, 477 struct list_head *to_kill) 478 { 479 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF); 480 } 481 482 #ifdef CONFIG_KSM 483 static bool task_in_to_kill_list(struct list_head *to_kill, 484 struct task_struct *tsk) 485 { 486 struct to_kill *tk, *next; 487 488 list_for_each_entry_safe(tk, next, to_kill, nd) { 489 if (tk->tsk == tsk) 490 return true; 491 } 492 493 return false; 494 } 495 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 496 struct vm_area_struct *vma, struct list_head *to_kill, 497 unsigned long ksm_addr) 498 { 499 if (!task_in_to_kill_list(to_kill, tsk)) 500 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF); 501 } 502 #endif 503 /* 504 * Kill the processes that have been collected earlier. 505 * 506 * Only do anything when FORCEKILL is set, otherwise just free the 507 * list (this is used for clean pages which do not need killing) 508 * Also when FAIL is set do a force kill because something went 509 * wrong earlier. 510 */ 511 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 512 unsigned long pfn, int flags) 513 { 514 struct to_kill *tk, *next; 515 516 list_for_each_entry_safe(tk, next, to_kill, nd) { 517 if (forcekill) { 518 /* 519 * In case something went wrong with munmapping 520 * make sure the process doesn't catch the 521 * signal and then access the memory. Just kill it. 522 */ 523 if (fail || tk->addr == -EFAULT) { 524 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 525 pfn, tk->tsk->comm, tk->tsk->pid); 526 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 527 tk->tsk, PIDTYPE_PID); 528 } 529 530 /* 531 * In theory the process could have mapped 532 * something else on the address in-between. We could 533 * check for that, but we need to tell the 534 * process anyways. 535 */ 536 else if (kill_proc(tk, pfn, flags) < 0) 537 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 538 pfn, tk->tsk->comm, tk->tsk->pid); 539 } 540 list_del(&tk->nd); 541 put_task_struct(tk->tsk); 542 kfree(tk); 543 } 544 } 545 546 /* 547 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 548 * on behalf of the thread group. Return task_struct of the (first found) 549 * dedicated thread if found, and return NULL otherwise. 550 * 551 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 552 * have to call rcu_read_lock/unlock() in this function. 553 */ 554 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 555 { 556 struct task_struct *t; 557 558 for_each_thread(tsk, t) { 559 if (t->flags & PF_MCE_PROCESS) { 560 if (t->flags & PF_MCE_EARLY) 561 return t; 562 } else { 563 if (sysctl_memory_failure_early_kill) 564 return t; 565 } 566 } 567 return NULL; 568 } 569 570 /* 571 * Determine whether a given process is "early kill" process which expects 572 * to be signaled when some page under the process is hwpoisoned. 573 * Return task_struct of the dedicated thread (main thread unless explicitly 574 * specified) if the process is "early kill" and otherwise returns NULL. 575 * 576 * Note that the above is true for Action Optional case. For Action Required 577 * case, it's only meaningful to the current thread which need to be signaled 578 * with SIGBUS, this error is Action Optional for other non current 579 * processes sharing the same error page,if the process is "early kill", the 580 * task_struct of the dedicated thread will also be returned. 581 */ 582 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 583 { 584 if (!tsk->mm) 585 return NULL; 586 /* 587 * Comparing ->mm here because current task might represent 588 * a subthread, while tsk always points to the main thread. 589 */ 590 if (force_early && tsk->mm == current->mm) 591 return current; 592 593 return find_early_kill_thread(tsk); 594 } 595 596 /* 597 * Collect processes when the error hit an anonymous page. 598 */ 599 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 600 int force_early) 601 { 602 struct folio *folio = page_folio(page); 603 struct vm_area_struct *vma; 604 struct task_struct *tsk; 605 struct anon_vma *av; 606 pgoff_t pgoff; 607 608 av = folio_lock_anon_vma_read(folio, NULL); 609 if (av == NULL) /* Not actually mapped anymore */ 610 return; 611 612 pgoff = page_to_pgoff(page); 613 read_lock(&tasklist_lock); 614 for_each_process (tsk) { 615 struct anon_vma_chain *vmac; 616 struct task_struct *t = task_early_kill(tsk, force_early); 617 618 if (!t) 619 continue; 620 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 621 pgoff, pgoff) { 622 vma = vmac->vma; 623 if (vma->vm_mm != t->mm) 624 continue; 625 if (!page_mapped_in_vma(page, vma)) 626 continue; 627 add_to_kill_anon_file(t, page, vma, to_kill); 628 } 629 } 630 read_unlock(&tasklist_lock); 631 anon_vma_unlock_read(av); 632 } 633 634 /* 635 * Collect processes when the error hit a file mapped page. 636 */ 637 static void collect_procs_file(struct page *page, struct list_head *to_kill, 638 int force_early) 639 { 640 struct vm_area_struct *vma; 641 struct task_struct *tsk; 642 struct address_space *mapping = page->mapping; 643 pgoff_t pgoff; 644 645 i_mmap_lock_read(mapping); 646 read_lock(&tasklist_lock); 647 pgoff = page_to_pgoff(page); 648 for_each_process(tsk) { 649 struct task_struct *t = task_early_kill(tsk, force_early); 650 651 if (!t) 652 continue; 653 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 654 pgoff) { 655 /* 656 * Send early kill signal to tasks where a vma covers 657 * the page but the corrupted page is not necessarily 658 * mapped it in its pte. 659 * Assume applications who requested early kill want 660 * to be informed of all such data corruptions. 661 */ 662 if (vma->vm_mm == t->mm) 663 add_to_kill_anon_file(t, page, vma, to_kill); 664 } 665 } 666 read_unlock(&tasklist_lock); 667 i_mmap_unlock_read(mapping); 668 } 669 670 #ifdef CONFIG_FS_DAX 671 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p, 672 struct vm_area_struct *vma, 673 struct list_head *to_kill, pgoff_t pgoff) 674 { 675 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff); 676 } 677 678 /* 679 * Collect processes when the error hit a fsdax page. 680 */ 681 static void collect_procs_fsdax(struct page *page, 682 struct address_space *mapping, pgoff_t pgoff, 683 struct list_head *to_kill) 684 { 685 struct vm_area_struct *vma; 686 struct task_struct *tsk; 687 688 i_mmap_lock_read(mapping); 689 read_lock(&tasklist_lock); 690 for_each_process(tsk) { 691 struct task_struct *t = task_early_kill(tsk, true); 692 693 if (!t) 694 continue; 695 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 696 if (vma->vm_mm == t->mm) 697 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 698 } 699 } 700 read_unlock(&tasklist_lock); 701 i_mmap_unlock_read(mapping); 702 } 703 #endif /* CONFIG_FS_DAX */ 704 705 /* 706 * Collect the processes who have the corrupted page mapped to kill. 707 */ 708 static void collect_procs(struct page *page, struct list_head *tokill, 709 int force_early) 710 { 711 if (!page->mapping) 712 return; 713 if (unlikely(PageKsm(page))) 714 collect_procs_ksm(page, tokill, force_early); 715 else if (PageAnon(page)) 716 collect_procs_anon(page, tokill, force_early); 717 else 718 collect_procs_file(page, tokill, force_early); 719 } 720 721 struct hwp_walk { 722 struct to_kill tk; 723 unsigned long pfn; 724 int flags; 725 }; 726 727 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 728 { 729 tk->addr = addr; 730 tk->size_shift = shift; 731 } 732 733 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 734 unsigned long poisoned_pfn, struct to_kill *tk) 735 { 736 unsigned long pfn = 0; 737 738 if (pte_present(pte)) { 739 pfn = pte_pfn(pte); 740 } else { 741 swp_entry_t swp = pte_to_swp_entry(pte); 742 743 if (is_hwpoison_entry(swp)) 744 pfn = swp_offset_pfn(swp); 745 } 746 747 if (!pfn || pfn != poisoned_pfn) 748 return 0; 749 750 set_to_kill(tk, addr, shift); 751 return 1; 752 } 753 754 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 755 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 756 struct hwp_walk *hwp) 757 { 758 pmd_t pmd = *pmdp; 759 unsigned long pfn; 760 unsigned long hwpoison_vaddr; 761 762 if (!pmd_present(pmd)) 763 return 0; 764 pfn = pmd_pfn(pmd); 765 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 766 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 767 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 768 return 1; 769 } 770 return 0; 771 } 772 #else 773 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 774 struct hwp_walk *hwp) 775 { 776 return 0; 777 } 778 #endif 779 780 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 781 unsigned long end, struct mm_walk *walk) 782 { 783 struct hwp_walk *hwp = walk->private; 784 int ret = 0; 785 pte_t *ptep, *mapped_pte; 786 spinlock_t *ptl; 787 788 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 789 if (ptl) { 790 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 791 spin_unlock(ptl); 792 goto out; 793 } 794 795 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 796 addr, &ptl); 797 if (!ptep) 798 goto out; 799 800 for (; addr != end; ptep++, addr += PAGE_SIZE) { 801 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 802 hwp->pfn, &hwp->tk); 803 if (ret == 1) 804 break; 805 } 806 pte_unmap_unlock(mapped_pte, ptl); 807 out: 808 cond_resched(); 809 return ret; 810 } 811 812 #ifdef CONFIG_HUGETLB_PAGE 813 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 814 unsigned long addr, unsigned long end, 815 struct mm_walk *walk) 816 { 817 struct hwp_walk *hwp = walk->private; 818 pte_t pte = huge_ptep_get(ptep); 819 struct hstate *h = hstate_vma(walk->vma); 820 821 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 822 hwp->pfn, &hwp->tk); 823 } 824 #else 825 #define hwpoison_hugetlb_range NULL 826 #endif 827 828 static const struct mm_walk_ops hwp_walk_ops = { 829 .pmd_entry = hwpoison_pte_range, 830 .hugetlb_entry = hwpoison_hugetlb_range, 831 }; 832 833 /* 834 * Sends SIGBUS to the current process with error info. 835 * 836 * This function is intended to handle "Action Required" MCEs on already 837 * hardware poisoned pages. They could happen, for example, when 838 * memory_failure() failed to unmap the error page at the first call, or 839 * when multiple local machine checks happened on different CPUs. 840 * 841 * MCE handler currently has no easy access to the error virtual address, 842 * so this function walks page table to find it. The returned virtual address 843 * is proper in most cases, but it could be wrong when the application 844 * process has multiple entries mapping the error page. 845 */ 846 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 847 int flags) 848 { 849 int ret; 850 struct hwp_walk priv = { 851 .pfn = pfn, 852 }; 853 priv.tk.tsk = p; 854 855 if (!p->mm) 856 return -EFAULT; 857 858 mmap_read_lock(p->mm); 859 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops, 860 (void *)&priv); 861 if (ret == 1 && priv.tk.addr) 862 kill_proc(&priv.tk, pfn, flags); 863 else 864 ret = 0; 865 mmap_read_unlock(p->mm); 866 return ret > 0 ? -EHWPOISON : -EFAULT; 867 } 868 869 static const char *action_name[] = { 870 [MF_IGNORED] = "Ignored", 871 [MF_FAILED] = "Failed", 872 [MF_DELAYED] = "Delayed", 873 [MF_RECOVERED] = "Recovered", 874 }; 875 876 static const char * const action_page_types[] = { 877 [MF_MSG_KERNEL] = "reserved kernel page", 878 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 879 [MF_MSG_SLAB] = "kernel slab page", 880 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 881 [MF_MSG_HUGE] = "huge page", 882 [MF_MSG_FREE_HUGE] = "free huge page", 883 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 884 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 885 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 886 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 887 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 888 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 889 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 890 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 891 [MF_MSG_CLEAN_LRU] = "clean LRU page", 892 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 893 [MF_MSG_BUDDY] = "free buddy page", 894 [MF_MSG_DAX] = "dax page", 895 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 896 [MF_MSG_UNKNOWN] = "unknown page", 897 }; 898 899 /* 900 * XXX: It is possible that a page is isolated from LRU cache, 901 * and then kept in swap cache or failed to remove from page cache. 902 * The page count will stop it from being freed by unpoison. 903 * Stress tests should be aware of this memory leak problem. 904 */ 905 static int delete_from_lru_cache(struct page *p) 906 { 907 if (isolate_lru_page(p)) { 908 /* 909 * Clear sensible page flags, so that the buddy system won't 910 * complain when the page is unpoison-and-freed. 911 */ 912 ClearPageActive(p); 913 ClearPageUnevictable(p); 914 915 /* 916 * Poisoned page might never drop its ref count to 0 so we have 917 * to uncharge it manually from its memcg. 918 */ 919 mem_cgroup_uncharge(page_folio(p)); 920 921 /* 922 * drop the page count elevated by isolate_lru_page() 923 */ 924 put_page(p); 925 return 0; 926 } 927 return -EIO; 928 } 929 930 static int truncate_error_page(struct page *p, unsigned long pfn, 931 struct address_space *mapping) 932 { 933 int ret = MF_FAILED; 934 935 if (mapping->a_ops->error_remove_page) { 936 struct folio *folio = page_folio(p); 937 int err = mapping->a_ops->error_remove_page(mapping, p); 938 939 if (err != 0) 940 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 941 else if (!filemap_release_folio(folio, GFP_NOIO)) 942 pr_info("%#lx: failed to release buffers\n", pfn); 943 else 944 ret = MF_RECOVERED; 945 } else { 946 /* 947 * If the file system doesn't support it just invalidate 948 * This fails on dirty or anything with private pages 949 */ 950 if (invalidate_inode_page(p)) 951 ret = MF_RECOVERED; 952 else 953 pr_info("%#lx: Failed to invalidate\n", pfn); 954 } 955 956 return ret; 957 } 958 959 struct page_state { 960 unsigned long mask; 961 unsigned long res; 962 enum mf_action_page_type type; 963 964 /* Callback ->action() has to unlock the relevant page inside it. */ 965 int (*action)(struct page_state *ps, struct page *p); 966 }; 967 968 /* 969 * Return true if page is still referenced by others, otherwise return 970 * false. 971 * 972 * The extra_pins is true when one extra refcount is expected. 973 */ 974 static bool has_extra_refcount(struct page_state *ps, struct page *p, 975 bool extra_pins) 976 { 977 int count = page_count(p) - 1; 978 979 if (extra_pins) 980 count -= 1; 981 982 if (count > 0) { 983 pr_err("%#lx: %s still referenced by %d users\n", 984 page_to_pfn(p), action_page_types[ps->type], count); 985 return true; 986 } 987 988 return false; 989 } 990 991 /* 992 * Error hit kernel page. 993 * Do nothing, try to be lucky and not touch this instead. For a few cases we 994 * could be more sophisticated. 995 */ 996 static int me_kernel(struct page_state *ps, struct page *p) 997 { 998 unlock_page(p); 999 return MF_IGNORED; 1000 } 1001 1002 /* 1003 * Page in unknown state. Do nothing. 1004 */ 1005 static int me_unknown(struct page_state *ps, struct page *p) 1006 { 1007 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1008 unlock_page(p); 1009 return MF_FAILED; 1010 } 1011 1012 /* 1013 * Clean (or cleaned) page cache page. 1014 */ 1015 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1016 { 1017 int ret; 1018 struct address_space *mapping; 1019 bool extra_pins; 1020 1021 delete_from_lru_cache(p); 1022 1023 /* 1024 * For anonymous pages we're done the only reference left 1025 * should be the one m_f() holds. 1026 */ 1027 if (PageAnon(p)) { 1028 ret = MF_RECOVERED; 1029 goto out; 1030 } 1031 1032 /* 1033 * Now truncate the page in the page cache. This is really 1034 * more like a "temporary hole punch" 1035 * Don't do this for block devices when someone else 1036 * has a reference, because it could be file system metadata 1037 * and that's not safe to truncate. 1038 */ 1039 mapping = page_mapping(p); 1040 if (!mapping) { 1041 /* 1042 * Page has been teared down in the meanwhile 1043 */ 1044 ret = MF_FAILED; 1045 goto out; 1046 } 1047 1048 /* 1049 * The shmem page is kept in page cache instead of truncating 1050 * so is expected to have an extra refcount after error-handling. 1051 */ 1052 extra_pins = shmem_mapping(mapping); 1053 1054 /* 1055 * Truncation is a bit tricky. Enable it per file system for now. 1056 * 1057 * Open: to take i_rwsem or not for this? Right now we don't. 1058 */ 1059 ret = truncate_error_page(p, page_to_pfn(p), mapping); 1060 if (has_extra_refcount(ps, p, extra_pins)) 1061 ret = MF_FAILED; 1062 1063 out: 1064 unlock_page(p); 1065 1066 return ret; 1067 } 1068 1069 /* 1070 * Dirty pagecache page 1071 * Issues: when the error hit a hole page the error is not properly 1072 * propagated. 1073 */ 1074 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1075 { 1076 struct address_space *mapping = page_mapping(p); 1077 1078 SetPageError(p); 1079 /* TBD: print more information about the file. */ 1080 if (mapping) { 1081 /* 1082 * IO error will be reported by write(), fsync(), etc. 1083 * who check the mapping. 1084 * This way the application knows that something went 1085 * wrong with its dirty file data. 1086 * 1087 * There's one open issue: 1088 * 1089 * The EIO will be only reported on the next IO 1090 * operation and then cleared through the IO map. 1091 * Normally Linux has two mechanisms to pass IO error 1092 * first through the AS_EIO flag in the address space 1093 * and then through the PageError flag in the page. 1094 * Since we drop pages on memory failure handling the 1095 * only mechanism open to use is through AS_AIO. 1096 * 1097 * This has the disadvantage that it gets cleared on 1098 * the first operation that returns an error, while 1099 * the PageError bit is more sticky and only cleared 1100 * when the page is reread or dropped. If an 1101 * application assumes it will always get error on 1102 * fsync, but does other operations on the fd before 1103 * and the page is dropped between then the error 1104 * will not be properly reported. 1105 * 1106 * This can already happen even without hwpoisoned 1107 * pages: first on metadata IO errors (which only 1108 * report through AS_EIO) or when the page is dropped 1109 * at the wrong time. 1110 * 1111 * So right now we assume that the application DTRT on 1112 * the first EIO, but we're not worse than other parts 1113 * of the kernel. 1114 */ 1115 mapping_set_error(mapping, -EIO); 1116 } 1117 1118 return me_pagecache_clean(ps, p); 1119 } 1120 1121 /* 1122 * Clean and dirty swap cache. 1123 * 1124 * Dirty swap cache page is tricky to handle. The page could live both in page 1125 * cache and swap cache(ie. page is freshly swapped in). So it could be 1126 * referenced concurrently by 2 types of PTEs: 1127 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1128 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1129 * and then 1130 * - clear dirty bit to prevent IO 1131 * - remove from LRU 1132 * - but keep in the swap cache, so that when we return to it on 1133 * a later page fault, we know the application is accessing 1134 * corrupted data and shall be killed (we installed simple 1135 * interception code in do_swap_page to catch it). 1136 * 1137 * Clean swap cache pages can be directly isolated. A later page fault will 1138 * bring in the known good data from disk. 1139 */ 1140 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1141 { 1142 int ret; 1143 bool extra_pins = false; 1144 1145 ClearPageDirty(p); 1146 /* Trigger EIO in shmem: */ 1147 ClearPageUptodate(p); 1148 1149 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1150 unlock_page(p); 1151 1152 if (ret == MF_DELAYED) 1153 extra_pins = true; 1154 1155 if (has_extra_refcount(ps, p, extra_pins)) 1156 ret = MF_FAILED; 1157 1158 return ret; 1159 } 1160 1161 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1162 { 1163 struct folio *folio = page_folio(p); 1164 int ret; 1165 1166 delete_from_swap_cache(folio); 1167 1168 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1169 folio_unlock(folio); 1170 1171 if (has_extra_refcount(ps, p, false)) 1172 ret = MF_FAILED; 1173 1174 return ret; 1175 } 1176 1177 /* 1178 * Huge pages. Needs work. 1179 * Issues: 1180 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1181 * To narrow down kill region to one page, we need to break up pmd. 1182 */ 1183 static int me_huge_page(struct page_state *ps, struct page *p) 1184 { 1185 int res; 1186 struct page *hpage = compound_head(p); 1187 struct address_space *mapping; 1188 bool extra_pins = false; 1189 1190 if (!PageHuge(hpage)) 1191 return MF_DELAYED; 1192 1193 mapping = page_mapping(hpage); 1194 if (mapping) { 1195 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1196 /* The page is kept in page cache. */ 1197 extra_pins = true; 1198 unlock_page(hpage); 1199 } else { 1200 unlock_page(hpage); 1201 /* 1202 * migration entry prevents later access on error hugepage, 1203 * so we can free and dissolve it into buddy to save healthy 1204 * subpages. 1205 */ 1206 put_page(hpage); 1207 if (__page_handle_poison(p) >= 0) { 1208 page_ref_inc(p); 1209 res = MF_RECOVERED; 1210 } else { 1211 res = MF_FAILED; 1212 } 1213 } 1214 1215 if (has_extra_refcount(ps, p, extra_pins)) 1216 res = MF_FAILED; 1217 1218 return res; 1219 } 1220 1221 /* 1222 * Various page states we can handle. 1223 * 1224 * A page state is defined by its current page->flags bits. 1225 * The table matches them in order and calls the right handler. 1226 * 1227 * This is quite tricky because we can access page at any time 1228 * in its live cycle, so all accesses have to be extremely careful. 1229 * 1230 * This is not complete. More states could be added. 1231 * For any missing state don't attempt recovery. 1232 */ 1233 1234 #define dirty (1UL << PG_dirty) 1235 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1236 #define unevict (1UL << PG_unevictable) 1237 #define mlock (1UL << PG_mlocked) 1238 #define lru (1UL << PG_lru) 1239 #define head (1UL << PG_head) 1240 #define slab (1UL << PG_slab) 1241 #define reserved (1UL << PG_reserved) 1242 1243 static struct page_state error_states[] = { 1244 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1245 /* 1246 * free pages are specially detected outside this table: 1247 * PG_buddy pages only make a small fraction of all free pages. 1248 */ 1249 1250 /* 1251 * Could in theory check if slab page is free or if we can drop 1252 * currently unused objects without touching them. But just 1253 * treat it as standard kernel for now. 1254 */ 1255 { slab, slab, MF_MSG_SLAB, me_kernel }, 1256 1257 { head, head, MF_MSG_HUGE, me_huge_page }, 1258 1259 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1260 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1261 1262 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1263 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1264 1265 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1266 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1267 1268 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1269 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1270 1271 /* 1272 * Catchall entry: must be at end. 1273 */ 1274 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1275 }; 1276 1277 #undef dirty 1278 #undef sc 1279 #undef unevict 1280 #undef mlock 1281 #undef lru 1282 #undef head 1283 #undef slab 1284 #undef reserved 1285 1286 static void update_per_node_mf_stats(unsigned long pfn, 1287 enum mf_result result) 1288 { 1289 int nid = MAX_NUMNODES; 1290 struct memory_failure_stats *mf_stats = NULL; 1291 1292 nid = pfn_to_nid(pfn); 1293 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1294 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1295 return; 1296 } 1297 1298 mf_stats = &NODE_DATA(nid)->mf_stats; 1299 switch (result) { 1300 case MF_IGNORED: 1301 ++mf_stats->ignored; 1302 break; 1303 case MF_FAILED: 1304 ++mf_stats->failed; 1305 break; 1306 case MF_DELAYED: 1307 ++mf_stats->delayed; 1308 break; 1309 case MF_RECOVERED: 1310 ++mf_stats->recovered; 1311 break; 1312 default: 1313 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1314 break; 1315 } 1316 ++mf_stats->total; 1317 } 1318 1319 /* 1320 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1321 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1322 */ 1323 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1324 enum mf_result result) 1325 { 1326 trace_memory_failure_event(pfn, type, result); 1327 1328 num_poisoned_pages_inc(pfn); 1329 1330 update_per_node_mf_stats(pfn, result); 1331 1332 pr_err("%#lx: recovery action for %s: %s\n", 1333 pfn, action_page_types[type], action_name[result]); 1334 1335 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1336 } 1337 1338 static int page_action(struct page_state *ps, struct page *p, 1339 unsigned long pfn) 1340 { 1341 int result; 1342 1343 /* page p should be unlocked after returning from ps->action(). */ 1344 result = ps->action(ps, p); 1345 1346 /* Could do more checks here if page looks ok */ 1347 /* 1348 * Could adjust zone counters here to correct for the missing page. 1349 */ 1350 1351 return action_result(pfn, ps->type, result); 1352 } 1353 1354 static inline bool PageHWPoisonTakenOff(struct page *page) 1355 { 1356 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1357 } 1358 1359 void SetPageHWPoisonTakenOff(struct page *page) 1360 { 1361 set_page_private(page, MAGIC_HWPOISON); 1362 } 1363 1364 void ClearPageHWPoisonTakenOff(struct page *page) 1365 { 1366 if (PageHWPoison(page)) 1367 set_page_private(page, 0); 1368 } 1369 1370 /* 1371 * Return true if a page type of a given page is supported by hwpoison 1372 * mechanism (while handling could fail), otherwise false. This function 1373 * does not return true for hugetlb or device memory pages, so it's assumed 1374 * to be called only in the context where we never have such pages. 1375 */ 1376 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1377 { 1378 /* Soft offline could migrate non-LRU movable pages */ 1379 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1380 return true; 1381 1382 return PageLRU(page) || is_free_buddy_page(page); 1383 } 1384 1385 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1386 { 1387 struct folio *folio = page_folio(page); 1388 int ret = 0; 1389 bool hugetlb = false; 1390 1391 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1392 if (hugetlb) 1393 return ret; 1394 1395 /* 1396 * This check prevents from calling folio_try_get() for any 1397 * unsupported type of folio in order to reduce the risk of unexpected 1398 * races caused by taking a folio refcount. 1399 */ 1400 if (!HWPoisonHandlable(&folio->page, flags)) 1401 return -EBUSY; 1402 1403 if (folio_try_get(folio)) { 1404 if (folio == page_folio(page)) 1405 return 1; 1406 1407 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1408 folio_put(folio); 1409 } 1410 1411 return 0; 1412 } 1413 1414 static int get_any_page(struct page *p, unsigned long flags) 1415 { 1416 int ret = 0, pass = 0; 1417 bool count_increased = false; 1418 1419 if (flags & MF_COUNT_INCREASED) 1420 count_increased = true; 1421 1422 try_again: 1423 if (!count_increased) { 1424 ret = __get_hwpoison_page(p, flags); 1425 if (!ret) { 1426 if (page_count(p)) { 1427 /* We raced with an allocation, retry. */ 1428 if (pass++ < 3) 1429 goto try_again; 1430 ret = -EBUSY; 1431 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1432 /* We raced with put_page, retry. */ 1433 if (pass++ < 3) 1434 goto try_again; 1435 ret = -EIO; 1436 } 1437 goto out; 1438 } else if (ret == -EBUSY) { 1439 /* 1440 * We raced with (possibly temporary) unhandlable 1441 * page, retry. 1442 */ 1443 if (pass++ < 3) { 1444 shake_page(p); 1445 goto try_again; 1446 } 1447 ret = -EIO; 1448 goto out; 1449 } 1450 } 1451 1452 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1453 ret = 1; 1454 } else { 1455 /* 1456 * A page we cannot handle. Check whether we can turn 1457 * it into something we can handle. 1458 */ 1459 if (pass++ < 3) { 1460 put_page(p); 1461 shake_page(p); 1462 count_increased = false; 1463 goto try_again; 1464 } 1465 put_page(p); 1466 ret = -EIO; 1467 } 1468 out: 1469 if (ret == -EIO) 1470 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1471 1472 return ret; 1473 } 1474 1475 static int __get_unpoison_page(struct page *page) 1476 { 1477 struct folio *folio = page_folio(page); 1478 int ret = 0; 1479 bool hugetlb = false; 1480 1481 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1482 if (hugetlb) 1483 return ret; 1484 1485 /* 1486 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1487 * but also isolated from buddy freelist, so need to identify the 1488 * state and have to cancel both operations to unpoison. 1489 */ 1490 if (PageHWPoisonTakenOff(page)) 1491 return -EHWPOISON; 1492 1493 return get_page_unless_zero(page) ? 1 : 0; 1494 } 1495 1496 /** 1497 * get_hwpoison_page() - Get refcount for memory error handling 1498 * @p: Raw error page (hit by memory error) 1499 * @flags: Flags controlling behavior of error handling 1500 * 1501 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1502 * error on it, after checking that the error page is in a well-defined state 1503 * (defined as a page-type we can successfully handle the memory error on it, 1504 * such as LRU page and hugetlb page). 1505 * 1506 * Memory error handling could be triggered at any time on any type of page, 1507 * so it's prone to race with typical memory management lifecycle (like 1508 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1509 * extra care for the error page's state (as done in __get_hwpoison_page()), 1510 * and has some retry logic in get_any_page(). 1511 * 1512 * When called from unpoison_memory(), the caller should already ensure that 1513 * the given page has PG_hwpoison. So it's never reused for other page 1514 * allocations, and __get_unpoison_page() never races with them. 1515 * 1516 * Return: 0 on failure, 1517 * 1 on success for in-use pages in a well-defined state, 1518 * -EIO for pages on which we can not handle memory errors, 1519 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1520 * operations like allocation and free, 1521 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1522 */ 1523 static int get_hwpoison_page(struct page *p, unsigned long flags) 1524 { 1525 int ret; 1526 1527 zone_pcp_disable(page_zone(p)); 1528 if (flags & MF_UNPOISON) 1529 ret = __get_unpoison_page(p); 1530 else 1531 ret = get_any_page(p, flags); 1532 zone_pcp_enable(page_zone(p)); 1533 1534 return ret; 1535 } 1536 1537 /* 1538 * Do all that is necessary to remove user space mappings. Unmap 1539 * the pages and send SIGBUS to the processes if the data was dirty. 1540 */ 1541 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1542 int flags, struct page *hpage) 1543 { 1544 struct folio *folio = page_folio(hpage); 1545 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1546 struct address_space *mapping; 1547 LIST_HEAD(tokill); 1548 bool unmap_success; 1549 int forcekill; 1550 bool mlocked = PageMlocked(hpage); 1551 1552 /* 1553 * Here we are interested only in user-mapped pages, so skip any 1554 * other types of pages. 1555 */ 1556 if (PageReserved(p) || PageSlab(p) || PageTable(p)) 1557 return true; 1558 if (!(PageLRU(hpage) || PageHuge(p))) 1559 return true; 1560 1561 /* 1562 * This check implies we don't kill processes if their pages 1563 * are in the swap cache early. Those are always late kills. 1564 */ 1565 if (!page_mapped(hpage)) 1566 return true; 1567 1568 if (PageSwapCache(p)) { 1569 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1570 ttu &= ~TTU_HWPOISON; 1571 } 1572 1573 /* 1574 * Propagate the dirty bit from PTEs to struct page first, because we 1575 * need this to decide if we should kill or just drop the page. 1576 * XXX: the dirty test could be racy: set_page_dirty() may not always 1577 * be called inside page lock (it's recommended but not enforced). 1578 */ 1579 mapping = page_mapping(hpage); 1580 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1581 mapping_can_writeback(mapping)) { 1582 if (page_mkclean(hpage)) { 1583 SetPageDirty(hpage); 1584 } else { 1585 ttu &= ~TTU_HWPOISON; 1586 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1587 pfn); 1588 } 1589 } 1590 1591 /* 1592 * First collect all the processes that have the page 1593 * mapped in dirty form. This has to be done before try_to_unmap, 1594 * because ttu takes the rmap data structures down. 1595 */ 1596 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 1597 1598 if (PageHuge(hpage) && !PageAnon(hpage)) { 1599 /* 1600 * For hugetlb pages in shared mappings, try_to_unmap 1601 * could potentially call huge_pmd_unshare. Because of 1602 * this, take semaphore in write mode here and set 1603 * TTU_RMAP_LOCKED to indicate we have taken the lock 1604 * at this higher level. 1605 */ 1606 mapping = hugetlb_page_mapping_lock_write(hpage); 1607 if (mapping) { 1608 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1609 i_mmap_unlock_write(mapping); 1610 } else 1611 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1612 } else { 1613 try_to_unmap(folio, ttu); 1614 } 1615 1616 unmap_success = !page_mapped(hpage); 1617 if (!unmap_success) 1618 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1619 pfn, page_mapcount(hpage)); 1620 1621 /* 1622 * try_to_unmap() might put mlocked page in lru cache, so call 1623 * shake_page() again to ensure that it's flushed. 1624 */ 1625 if (mlocked) 1626 shake_page(hpage); 1627 1628 /* 1629 * Now that the dirty bit has been propagated to the 1630 * struct page and all unmaps done we can decide if 1631 * killing is needed or not. Only kill when the page 1632 * was dirty or the process is not restartable, 1633 * otherwise the tokill list is merely 1634 * freed. When there was a problem unmapping earlier 1635 * use a more force-full uncatchable kill to prevent 1636 * any accesses to the poisoned memory. 1637 */ 1638 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) || 1639 !unmap_success; 1640 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1641 1642 return unmap_success; 1643 } 1644 1645 static int identify_page_state(unsigned long pfn, struct page *p, 1646 unsigned long page_flags) 1647 { 1648 struct page_state *ps; 1649 1650 /* 1651 * The first check uses the current page flags which may not have any 1652 * relevant information. The second check with the saved page flags is 1653 * carried out only if the first check can't determine the page status. 1654 */ 1655 for (ps = error_states;; ps++) 1656 if ((p->flags & ps->mask) == ps->res) 1657 break; 1658 1659 page_flags |= (p->flags & (1UL << PG_dirty)); 1660 1661 if (!ps->mask) 1662 for (ps = error_states;; ps++) 1663 if ((page_flags & ps->mask) == ps->res) 1664 break; 1665 return page_action(ps, p, pfn); 1666 } 1667 1668 static int try_to_split_thp_page(struct page *page) 1669 { 1670 int ret; 1671 1672 lock_page(page); 1673 ret = split_huge_page(page); 1674 unlock_page(page); 1675 1676 if (unlikely(ret)) 1677 put_page(page); 1678 1679 return ret; 1680 } 1681 1682 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1683 struct address_space *mapping, pgoff_t index, int flags) 1684 { 1685 struct to_kill *tk; 1686 unsigned long size = 0; 1687 1688 list_for_each_entry(tk, to_kill, nd) 1689 if (tk->size_shift) 1690 size = max(size, 1UL << tk->size_shift); 1691 1692 if (size) { 1693 /* 1694 * Unmap the largest mapping to avoid breaking up device-dax 1695 * mappings which are constant size. The actual size of the 1696 * mapping being torn down is communicated in siginfo, see 1697 * kill_proc() 1698 */ 1699 loff_t start = (index << PAGE_SHIFT) & ~(size - 1); 1700 1701 unmap_mapping_range(mapping, start, size, 0); 1702 } 1703 1704 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1705 } 1706 1707 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1708 struct dev_pagemap *pgmap) 1709 { 1710 struct page *page = pfn_to_page(pfn); 1711 LIST_HEAD(to_kill); 1712 dax_entry_t cookie; 1713 int rc = 0; 1714 1715 /* 1716 * Pages instantiated by device-dax (not filesystem-dax) 1717 * may be compound pages. 1718 */ 1719 page = compound_head(page); 1720 1721 /* 1722 * Prevent the inode from being freed while we are interrogating 1723 * the address_space, typically this would be handled by 1724 * lock_page(), but dax pages do not use the page lock. This 1725 * also prevents changes to the mapping of this pfn until 1726 * poison signaling is complete. 1727 */ 1728 cookie = dax_lock_page(page); 1729 if (!cookie) 1730 return -EBUSY; 1731 1732 if (hwpoison_filter(page)) { 1733 rc = -EOPNOTSUPP; 1734 goto unlock; 1735 } 1736 1737 switch (pgmap->type) { 1738 case MEMORY_DEVICE_PRIVATE: 1739 case MEMORY_DEVICE_COHERENT: 1740 /* 1741 * TODO: Handle device pages which may need coordination 1742 * with device-side memory. 1743 */ 1744 rc = -ENXIO; 1745 goto unlock; 1746 default: 1747 break; 1748 } 1749 1750 /* 1751 * Use this flag as an indication that the dax page has been 1752 * remapped UC to prevent speculative consumption of poison. 1753 */ 1754 SetPageHWPoison(page); 1755 1756 /* 1757 * Unlike System-RAM there is no possibility to swap in a 1758 * different physical page at a given virtual address, so all 1759 * userspace consumption of ZONE_DEVICE memory necessitates 1760 * SIGBUS (i.e. MF_MUST_KILL) 1761 */ 1762 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1763 collect_procs(page, &to_kill, true); 1764 1765 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags); 1766 unlock: 1767 dax_unlock_page(page, cookie); 1768 return rc; 1769 } 1770 1771 #ifdef CONFIG_FS_DAX 1772 /** 1773 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1774 * @mapping: address_space of the file in use 1775 * @index: start pgoff of the range within the file 1776 * @count: length of the range, in unit of PAGE_SIZE 1777 * @mf_flags: memory failure flags 1778 */ 1779 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1780 unsigned long count, int mf_flags) 1781 { 1782 LIST_HEAD(to_kill); 1783 dax_entry_t cookie; 1784 struct page *page; 1785 size_t end = index + count; 1786 1787 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1788 1789 for (; index < end; index++) { 1790 page = NULL; 1791 cookie = dax_lock_mapping_entry(mapping, index, &page); 1792 if (!cookie) 1793 return -EBUSY; 1794 if (!page) 1795 goto unlock; 1796 1797 SetPageHWPoison(page); 1798 1799 collect_procs_fsdax(page, mapping, index, &to_kill); 1800 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1801 index, mf_flags); 1802 unlock: 1803 dax_unlock_mapping_entry(mapping, index, cookie); 1804 } 1805 return 0; 1806 } 1807 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1808 #endif /* CONFIG_FS_DAX */ 1809 1810 #ifdef CONFIG_HUGETLB_PAGE 1811 /* 1812 * Struct raw_hwp_page represents information about "raw error page", 1813 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1814 */ 1815 struct raw_hwp_page { 1816 struct llist_node node; 1817 struct page *page; 1818 }; 1819 1820 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1821 { 1822 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1823 } 1824 1825 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1826 { 1827 struct llist_head *head; 1828 struct llist_node *t, *tnode; 1829 unsigned long count = 0; 1830 1831 head = raw_hwp_list_head(folio); 1832 llist_for_each_safe(tnode, t, head->first) { 1833 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1834 1835 if (move_flag) 1836 SetPageHWPoison(p->page); 1837 else 1838 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1839 kfree(p); 1840 count++; 1841 } 1842 llist_del_all(head); 1843 return count; 1844 } 1845 1846 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1847 { 1848 struct llist_head *head; 1849 struct raw_hwp_page *raw_hwp; 1850 struct llist_node *t, *tnode; 1851 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1852 1853 /* 1854 * Once the hwpoison hugepage has lost reliable raw error info, 1855 * there is little meaning to keep additional error info precisely, 1856 * so skip to add additional raw error info. 1857 */ 1858 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1859 return -EHWPOISON; 1860 head = raw_hwp_list_head(folio); 1861 llist_for_each_safe(tnode, t, head->first) { 1862 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node); 1863 1864 if (p->page == page) 1865 return -EHWPOISON; 1866 } 1867 1868 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1869 if (raw_hwp) { 1870 raw_hwp->page = page; 1871 llist_add(&raw_hwp->node, head); 1872 /* the first error event will be counted in action_result(). */ 1873 if (ret) 1874 num_poisoned_pages_inc(page_to_pfn(page)); 1875 } else { 1876 /* 1877 * Failed to save raw error info. We no longer trace all 1878 * hwpoisoned subpages, and we need refuse to free/dissolve 1879 * this hwpoisoned hugepage. 1880 */ 1881 folio_set_hugetlb_raw_hwp_unreliable(folio); 1882 /* 1883 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1884 * used any more, so free it. 1885 */ 1886 __folio_free_raw_hwp(folio, false); 1887 } 1888 return ret; 1889 } 1890 1891 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1892 { 1893 /* 1894 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1895 * pages for tail pages are required but they don't exist. 1896 */ 1897 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1898 return 0; 1899 1900 /* 1901 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1902 * definition. 1903 */ 1904 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1905 return 0; 1906 1907 return __folio_free_raw_hwp(folio, move_flag); 1908 } 1909 1910 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1911 { 1912 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1913 return; 1914 folio_clear_hwpoison(folio); 1915 folio_free_raw_hwp(folio, true); 1916 } 1917 1918 /* 1919 * Called from hugetlb code with hugetlb_lock held. 1920 * 1921 * Return values: 1922 * 0 - free hugepage 1923 * 1 - in-use hugepage 1924 * 2 - not a hugepage 1925 * -EBUSY - the hugepage is busy (try to retry) 1926 * -EHWPOISON - the hugepage is already hwpoisoned 1927 */ 1928 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1929 bool *migratable_cleared) 1930 { 1931 struct page *page = pfn_to_page(pfn); 1932 struct folio *folio = page_folio(page); 1933 int ret = 2; /* fallback to normal page handling */ 1934 bool count_increased = false; 1935 1936 if (!folio_test_hugetlb(folio)) 1937 goto out; 1938 1939 if (flags & MF_COUNT_INCREASED) { 1940 ret = 1; 1941 count_increased = true; 1942 } else if (folio_test_hugetlb_freed(folio)) { 1943 ret = 0; 1944 } else if (folio_test_hugetlb_migratable(folio)) { 1945 ret = folio_try_get(folio); 1946 if (ret) 1947 count_increased = true; 1948 } else { 1949 ret = -EBUSY; 1950 if (!(flags & MF_NO_RETRY)) 1951 goto out; 1952 } 1953 1954 if (folio_set_hugetlb_hwpoison(folio, page)) { 1955 ret = -EHWPOISON; 1956 goto out; 1957 } 1958 1959 /* 1960 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 1961 * from being migrated by memory hotremove. 1962 */ 1963 if (count_increased && folio_test_hugetlb_migratable(folio)) { 1964 folio_clear_hugetlb_migratable(folio); 1965 *migratable_cleared = true; 1966 } 1967 1968 return ret; 1969 out: 1970 if (count_increased) 1971 folio_put(folio); 1972 return ret; 1973 } 1974 1975 /* 1976 * Taking refcount of hugetlb pages needs extra care about race conditions 1977 * with basic operations like hugepage allocation/free/demotion. 1978 * So some of prechecks for hwpoison (pinning, and testing/setting 1979 * PageHWPoison) should be done in single hugetlb_lock range. 1980 */ 1981 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 1982 { 1983 int res; 1984 struct page *p = pfn_to_page(pfn); 1985 struct folio *folio; 1986 unsigned long page_flags; 1987 bool migratable_cleared = false; 1988 1989 *hugetlb = 1; 1990 retry: 1991 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 1992 if (res == 2) { /* fallback to normal page handling */ 1993 *hugetlb = 0; 1994 return 0; 1995 } else if (res == -EHWPOISON) { 1996 pr_err("%#lx: already hardware poisoned\n", pfn); 1997 if (flags & MF_ACTION_REQUIRED) { 1998 folio = page_folio(p); 1999 res = kill_accessing_process(current, folio_pfn(folio), flags); 2000 } 2001 return res; 2002 } else if (res == -EBUSY) { 2003 if (!(flags & MF_NO_RETRY)) { 2004 flags |= MF_NO_RETRY; 2005 goto retry; 2006 } 2007 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2008 } 2009 2010 folio = page_folio(p); 2011 folio_lock(folio); 2012 2013 if (hwpoison_filter(p)) { 2014 folio_clear_hugetlb_hwpoison(folio); 2015 if (migratable_cleared) 2016 folio_set_hugetlb_migratable(folio); 2017 folio_unlock(folio); 2018 if (res == 1) 2019 folio_put(folio); 2020 return -EOPNOTSUPP; 2021 } 2022 2023 /* 2024 * Handling free hugepage. The possible race with hugepage allocation 2025 * or demotion can be prevented by PageHWPoison flag. 2026 */ 2027 if (res == 0) { 2028 folio_unlock(folio); 2029 if (__page_handle_poison(p) >= 0) { 2030 page_ref_inc(p); 2031 res = MF_RECOVERED; 2032 } else { 2033 res = MF_FAILED; 2034 } 2035 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2036 } 2037 2038 page_flags = folio->flags; 2039 2040 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) { 2041 folio_unlock(folio); 2042 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2043 } 2044 2045 return identify_page_state(pfn, p, page_flags); 2046 } 2047 2048 #else 2049 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2050 { 2051 return 0; 2052 } 2053 2054 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2055 { 2056 return 0; 2057 } 2058 #endif /* CONFIG_HUGETLB_PAGE */ 2059 2060 /* Drop the extra refcount in case we come from madvise() */ 2061 static void put_ref_page(unsigned long pfn, int flags) 2062 { 2063 struct page *page; 2064 2065 if (!(flags & MF_COUNT_INCREASED)) 2066 return; 2067 2068 page = pfn_to_page(pfn); 2069 if (page) 2070 put_page(page); 2071 } 2072 2073 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2074 struct dev_pagemap *pgmap) 2075 { 2076 int rc = -ENXIO; 2077 2078 put_ref_page(pfn, flags); 2079 2080 /* device metadata space is not recoverable */ 2081 if (!pgmap_pfn_valid(pgmap, pfn)) 2082 goto out; 2083 2084 /* 2085 * Call driver's implementation to handle the memory failure, otherwise 2086 * fall back to generic handler. 2087 */ 2088 if (pgmap_has_memory_failure(pgmap)) { 2089 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2090 /* 2091 * Fall back to generic handler too if operation is not 2092 * supported inside the driver/device/filesystem. 2093 */ 2094 if (rc != -EOPNOTSUPP) 2095 goto out; 2096 } 2097 2098 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2099 out: 2100 /* drop pgmap ref acquired in caller */ 2101 put_dev_pagemap(pgmap); 2102 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2103 return rc; 2104 } 2105 2106 static DEFINE_MUTEX(mf_mutex); 2107 2108 /** 2109 * memory_failure - Handle memory failure of a page. 2110 * @pfn: Page Number of the corrupted page 2111 * @flags: fine tune action taken 2112 * 2113 * This function is called by the low level machine check code 2114 * of an architecture when it detects hardware memory corruption 2115 * of a page. It tries its best to recover, which includes 2116 * dropping pages, killing processes etc. 2117 * 2118 * The function is primarily of use for corruptions that 2119 * happen outside the current execution context (e.g. when 2120 * detected by a background scrubber) 2121 * 2122 * Must run in process context (e.g. a work queue) with interrupts 2123 * enabled and no spinlocks hold. 2124 * 2125 * Return: 0 for successfully handled the memory error, 2126 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2127 * < 0(except -EOPNOTSUPP) on failure. 2128 */ 2129 int memory_failure(unsigned long pfn, int flags) 2130 { 2131 struct page *p; 2132 struct page *hpage; 2133 struct dev_pagemap *pgmap; 2134 int res = 0; 2135 unsigned long page_flags; 2136 bool retry = true; 2137 int hugetlb = 0; 2138 2139 if (!sysctl_memory_failure_recovery) 2140 panic("Memory failure on page %lx", pfn); 2141 2142 mutex_lock(&mf_mutex); 2143 2144 if (!(flags & MF_SW_SIMULATED)) 2145 hw_memory_failure = true; 2146 2147 p = pfn_to_online_page(pfn); 2148 if (!p) { 2149 res = arch_memory_failure(pfn, flags); 2150 if (res == 0) 2151 goto unlock_mutex; 2152 2153 if (pfn_valid(pfn)) { 2154 pgmap = get_dev_pagemap(pfn, NULL); 2155 if (pgmap) { 2156 res = memory_failure_dev_pagemap(pfn, flags, 2157 pgmap); 2158 goto unlock_mutex; 2159 } 2160 } 2161 pr_err("%#lx: memory outside kernel control\n", pfn); 2162 res = -ENXIO; 2163 goto unlock_mutex; 2164 } 2165 2166 try_again: 2167 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2168 if (hugetlb) 2169 goto unlock_mutex; 2170 2171 if (TestSetPageHWPoison(p)) { 2172 pr_err("%#lx: already hardware poisoned\n", pfn); 2173 res = -EHWPOISON; 2174 if (flags & MF_ACTION_REQUIRED) 2175 res = kill_accessing_process(current, pfn, flags); 2176 if (flags & MF_COUNT_INCREASED) 2177 put_page(p); 2178 goto unlock_mutex; 2179 } 2180 2181 hpage = compound_head(p); 2182 2183 /* 2184 * We need/can do nothing about count=0 pages. 2185 * 1) it's a free page, and therefore in safe hand: 2186 * check_new_page() will be the gate keeper. 2187 * 2) it's part of a non-compound high order page. 2188 * Implies some kernel user: cannot stop them from 2189 * R/W the page; let's pray that the page has been 2190 * used and will be freed some time later. 2191 * In fact it's dangerous to directly bump up page count from 0, 2192 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2193 */ 2194 if (!(flags & MF_COUNT_INCREASED)) { 2195 res = get_hwpoison_page(p, flags); 2196 if (!res) { 2197 if (is_free_buddy_page(p)) { 2198 if (take_page_off_buddy(p)) { 2199 page_ref_inc(p); 2200 res = MF_RECOVERED; 2201 } else { 2202 /* We lost the race, try again */ 2203 if (retry) { 2204 ClearPageHWPoison(p); 2205 retry = false; 2206 goto try_again; 2207 } 2208 res = MF_FAILED; 2209 } 2210 res = action_result(pfn, MF_MSG_BUDDY, res); 2211 } else { 2212 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2213 } 2214 goto unlock_mutex; 2215 } else if (res < 0) { 2216 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2217 goto unlock_mutex; 2218 } 2219 } 2220 2221 if (PageTransHuge(hpage)) { 2222 /* 2223 * The flag must be set after the refcount is bumped 2224 * otherwise it may race with THP split. 2225 * And the flag can't be set in get_hwpoison_page() since 2226 * it is called by soft offline too and it is just called 2227 * for !MF_COUNT_INCREASE. So here seems to be the best 2228 * place. 2229 * 2230 * Don't need care about the above error handling paths for 2231 * get_hwpoison_page() since they handle either free page 2232 * or unhandlable page. The refcount is bumped iff the 2233 * page is a valid handlable page. 2234 */ 2235 SetPageHasHWPoisoned(hpage); 2236 if (try_to_split_thp_page(p) < 0) { 2237 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2238 goto unlock_mutex; 2239 } 2240 VM_BUG_ON_PAGE(!page_count(p), p); 2241 } 2242 2243 /* 2244 * We ignore non-LRU pages for good reasons. 2245 * - PG_locked is only well defined for LRU pages and a few others 2246 * - to avoid races with __SetPageLocked() 2247 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2248 * The check (unnecessarily) ignores LRU pages being isolated and 2249 * walked by the page reclaim code, however that's not a big loss. 2250 */ 2251 shake_page(p); 2252 2253 lock_page(p); 2254 2255 /* 2256 * We're only intended to deal with the non-Compound page here. 2257 * However, the page could have changed compound pages due to 2258 * race window. If this happens, we could try again to hopefully 2259 * handle the page next round. 2260 */ 2261 if (PageCompound(p)) { 2262 if (retry) { 2263 ClearPageHWPoison(p); 2264 unlock_page(p); 2265 put_page(p); 2266 flags &= ~MF_COUNT_INCREASED; 2267 retry = false; 2268 goto try_again; 2269 } 2270 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2271 goto unlock_page; 2272 } 2273 2274 /* 2275 * We use page flags to determine what action should be taken, but 2276 * the flags can be modified by the error containment action. One 2277 * example is an mlocked page, where PG_mlocked is cleared by 2278 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 2279 * correctly, we save a copy of the page flags at this time. 2280 */ 2281 page_flags = p->flags; 2282 2283 if (hwpoison_filter(p)) { 2284 ClearPageHWPoison(p); 2285 unlock_page(p); 2286 put_page(p); 2287 res = -EOPNOTSUPP; 2288 goto unlock_mutex; 2289 } 2290 2291 /* 2292 * __munlock_folio() may clear a writeback page's LRU flag without 2293 * page_lock. We need wait writeback completion for this page or it 2294 * may trigger vfs BUG while evict inode. 2295 */ 2296 if (!PageLRU(p) && !PageWriteback(p)) 2297 goto identify_page_state; 2298 2299 /* 2300 * It's very difficult to mess with pages currently under IO 2301 * and in many cases impossible, so we just avoid it here. 2302 */ 2303 wait_on_page_writeback(p); 2304 2305 /* 2306 * Now take care of user space mappings. 2307 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2308 */ 2309 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2310 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2311 goto unlock_page; 2312 } 2313 2314 /* 2315 * Torn down by someone else? 2316 */ 2317 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2318 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2319 goto unlock_page; 2320 } 2321 2322 identify_page_state: 2323 res = identify_page_state(pfn, p, page_flags); 2324 mutex_unlock(&mf_mutex); 2325 return res; 2326 unlock_page: 2327 unlock_page(p); 2328 unlock_mutex: 2329 mutex_unlock(&mf_mutex); 2330 return res; 2331 } 2332 EXPORT_SYMBOL_GPL(memory_failure); 2333 2334 #define MEMORY_FAILURE_FIFO_ORDER 4 2335 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2336 2337 struct memory_failure_entry { 2338 unsigned long pfn; 2339 int flags; 2340 }; 2341 2342 struct memory_failure_cpu { 2343 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2344 MEMORY_FAILURE_FIFO_SIZE); 2345 spinlock_t lock; 2346 struct work_struct work; 2347 }; 2348 2349 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2350 2351 /** 2352 * memory_failure_queue - Schedule handling memory failure of a page. 2353 * @pfn: Page Number of the corrupted page 2354 * @flags: Flags for memory failure handling 2355 * 2356 * This function is called by the low level hardware error handler 2357 * when it detects hardware memory corruption of a page. It schedules 2358 * the recovering of error page, including dropping pages, killing 2359 * processes etc. 2360 * 2361 * The function is primarily of use for corruptions that 2362 * happen outside the current execution context (e.g. when 2363 * detected by a background scrubber) 2364 * 2365 * Can run in IRQ context. 2366 */ 2367 void memory_failure_queue(unsigned long pfn, int flags) 2368 { 2369 struct memory_failure_cpu *mf_cpu; 2370 unsigned long proc_flags; 2371 struct memory_failure_entry entry = { 2372 .pfn = pfn, 2373 .flags = flags, 2374 }; 2375 2376 mf_cpu = &get_cpu_var(memory_failure_cpu); 2377 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2378 if (kfifo_put(&mf_cpu->fifo, entry)) 2379 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2380 else 2381 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2382 pfn); 2383 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2384 put_cpu_var(memory_failure_cpu); 2385 } 2386 EXPORT_SYMBOL_GPL(memory_failure_queue); 2387 2388 static void memory_failure_work_func(struct work_struct *work) 2389 { 2390 struct memory_failure_cpu *mf_cpu; 2391 struct memory_failure_entry entry = { 0, }; 2392 unsigned long proc_flags; 2393 int gotten; 2394 2395 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2396 for (;;) { 2397 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2398 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2399 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2400 if (!gotten) 2401 break; 2402 if (entry.flags & MF_SOFT_OFFLINE) 2403 soft_offline_page(entry.pfn, entry.flags); 2404 else 2405 memory_failure(entry.pfn, entry.flags); 2406 } 2407 } 2408 2409 /* 2410 * Process memory_failure work queued on the specified CPU. 2411 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2412 */ 2413 void memory_failure_queue_kick(int cpu) 2414 { 2415 struct memory_failure_cpu *mf_cpu; 2416 2417 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2418 cancel_work_sync(&mf_cpu->work); 2419 memory_failure_work_func(&mf_cpu->work); 2420 } 2421 2422 static int __init memory_failure_init(void) 2423 { 2424 struct memory_failure_cpu *mf_cpu; 2425 int cpu; 2426 2427 for_each_possible_cpu(cpu) { 2428 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2429 spin_lock_init(&mf_cpu->lock); 2430 INIT_KFIFO(mf_cpu->fifo); 2431 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2432 } 2433 2434 register_sysctl_init("vm", memory_failure_table); 2435 2436 return 0; 2437 } 2438 core_initcall(memory_failure_init); 2439 2440 #undef pr_fmt 2441 #define pr_fmt(fmt) "" fmt 2442 #define unpoison_pr_info(fmt, pfn, rs) \ 2443 ({ \ 2444 if (__ratelimit(rs)) \ 2445 pr_info(fmt, pfn); \ 2446 }) 2447 2448 /** 2449 * unpoison_memory - Unpoison a previously poisoned page 2450 * @pfn: Page number of the to be unpoisoned page 2451 * 2452 * Software-unpoison a page that has been poisoned by 2453 * memory_failure() earlier. 2454 * 2455 * This is only done on the software-level, so it only works 2456 * for linux injected failures, not real hardware failures 2457 * 2458 * Returns 0 for success, otherwise -errno. 2459 */ 2460 int unpoison_memory(unsigned long pfn) 2461 { 2462 struct folio *folio; 2463 struct page *p; 2464 int ret = -EBUSY; 2465 unsigned long count = 1; 2466 bool huge = false; 2467 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2468 DEFAULT_RATELIMIT_BURST); 2469 2470 if (!pfn_valid(pfn)) 2471 return -ENXIO; 2472 2473 p = pfn_to_page(pfn); 2474 folio = page_folio(p); 2475 2476 mutex_lock(&mf_mutex); 2477 2478 if (hw_memory_failure) { 2479 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2480 pfn, &unpoison_rs); 2481 ret = -EOPNOTSUPP; 2482 goto unlock_mutex; 2483 } 2484 2485 if (!PageHWPoison(p)) { 2486 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2487 pfn, &unpoison_rs); 2488 goto unlock_mutex; 2489 } 2490 2491 if (folio_ref_count(folio) > 1) { 2492 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2493 pfn, &unpoison_rs); 2494 goto unlock_mutex; 2495 } 2496 2497 if (folio_mapped(folio)) { 2498 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2499 pfn, &unpoison_rs); 2500 goto unlock_mutex; 2501 } 2502 2503 if (folio_mapping(folio)) { 2504 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2505 pfn, &unpoison_rs); 2506 goto unlock_mutex; 2507 } 2508 2509 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio)) 2510 goto unlock_mutex; 2511 2512 ret = get_hwpoison_page(p, MF_UNPOISON); 2513 if (!ret) { 2514 if (PageHuge(p)) { 2515 huge = true; 2516 count = folio_free_raw_hwp(folio, false); 2517 if (count == 0) { 2518 ret = -EBUSY; 2519 goto unlock_mutex; 2520 } 2521 } 2522 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2523 } else if (ret < 0) { 2524 if (ret == -EHWPOISON) { 2525 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2526 } else 2527 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2528 pfn, &unpoison_rs); 2529 } else { 2530 if (PageHuge(p)) { 2531 huge = true; 2532 count = folio_free_raw_hwp(folio, false); 2533 if (count == 0) { 2534 ret = -EBUSY; 2535 folio_put(folio); 2536 goto unlock_mutex; 2537 } 2538 } 2539 2540 folio_put(folio); 2541 if (TestClearPageHWPoison(p)) { 2542 folio_put(folio); 2543 ret = 0; 2544 } 2545 } 2546 2547 unlock_mutex: 2548 mutex_unlock(&mf_mutex); 2549 if (!ret) { 2550 if (!huge) 2551 num_poisoned_pages_sub(pfn, 1); 2552 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2553 page_to_pfn(p), &unpoison_rs); 2554 } 2555 return ret; 2556 } 2557 EXPORT_SYMBOL(unpoison_memory); 2558 2559 static bool isolate_page(struct page *page, struct list_head *pagelist) 2560 { 2561 bool isolated = false; 2562 2563 if (PageHuge(page)) { 2564 isolated = isolate_hugetlb(page_folio(page), pagelist); 2565 } else { 2566 bool lru = !__PageMovable(page); 2567 2568 if (lru) 2569 isolated = isolate_lru_page(page); 2570 else 2571 isolated = isolate_movable_page(page, 2572 ISOLATE_UNEVICTABLE); 2573 2574 if (isolated) { 2575 list_add(&page->lru, pagelist); 2576 if (lru) 2577 inc_node_page_state(page, NR_ISOLATED_ANON + 2578 page_is_file_lru(page)); 2579 } 2580 } 2581 2582 /* 2583 * If we succeed to isolate the page, we grabbed another refcount on 2584 * the page, so we can safely drop the one we got from get_any_pages(). 2585 * If we failed to isolate the page, it means that we cannot go further 2586 * and we will return an error, so drop the reference we got from 2587 * get_any_pages() as well. 2588 */ 2589 put_page(page); 2590 return isolated; 2591 } 2592 2593 /* 2594 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2595 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2596 * If the page is mapped, it migrates the contents over. 2597 */ 2598 static int soft_offline_in_use_page(struct page *page) 2599 { 2600 long ret = 0; 2601 unsigned long pfn = page_to_pfn(page); 2602 struct page *hpage = compound_head(page); 2603 char const *msg_page[] = {"page", "hugepage"}; 2604 bool huge = PageHuge(page); 2605 LIST_HEAD(pagelist); 2606 struct migration_target_control mtc = { 2607 .nid = NUMA_NO_NODE, 2608 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2609 }; 2610 2611 if (!huge && PageTransHuge(hpage)) { 2612 if (try_to_split_thp_page(page)) { 2613 pr_info("soft offline: %#lx: thp split failed\n", pfn); 2614 return -EBUSY; 2615 } 2616 hpage = page; 2617 } 2618 2619 lock_page(page); 2620 if (!PageHuge(page)) 2621 wait_on_page_writeback(page); 2622 if (PageHWPoison(page)) { 2623 unlock_page(page); 2624 put_page(page); 2625 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2626 return 0; 2627 } 2628 2629 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page)) 2630 /* 2631 * Try to invalidate first. This should work for 2632 * non dirty unmapped page cache pages. 2633 */ 2634 ret = invalidate_inode_page(page); 2635 unlock_page(page); 2636 2637 if (ret) { 2638 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2639 page_handle_poison(page, false, true); 2640 return 0; 2641 } 2642 2643 if (isolate_page(hpage, &pagelist)) { 2644 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2645 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2646 if (!ret) { 2647 bool release = !huge; 2648 2649 if (!page_handle_poison(page, huge, release)) 2650 ret = -EBUSY; 2651 } else { 2652 if (!list_empty(&pagelist)) 2653 putback_movable_pages(&pagelist); 2654 2655 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2656 pfn, msg_page[huge], ret, &page->flags); 2657 if (ret > 0) 2658 ret = -EBUSY; 2659 } 2660 } else { 2661 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2662 pfn, msg_page[huge], page_count(page), &page->flags); 2663 ret = -EBUSY; 2664 } 2665 return ret; 2666 } 2667 2668 /** 2669 * soft_offline_page - Soft offline a page. 2670 * @pfn: pfn to soft-offline 2671 * @flags: flags. Same as memory_failure(). 2672 * 2673 * Returns 0 on success 2674 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2675 * < 0 otherwise negated errno. 2676 * 2677 * Soft offline a page, by migration or invalidation, 2678 * without killing anything. This is for the case when 2679 * a page is not corrupted yet (so it's still valid to access), 2680 * but has had a number of corrected errors and is better taken 2681 * out. 2682 * 2683 * The actual policy on when to do that is maintained by 2684 * user space. 2685 * 2686 * This should never impact any application or cause data loss, 2687 * however it might take some time. 2688 * 2689 * This is not a 100% solution for all memory, but tries to be 2690 * ``good enough'' for the majority of memory. 2691 */ 2692 int soft_offline_page(unsigned long pfn, int flags) 2693 { 2694 int ret; 2695 bool try_again = true; 2696 struct page *page; 2697 2698 if (!pfn_valid(pfn)) { 2699 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2700 return -ENXIO; 2701 } 2702 2703 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2704 page = pfn_to_online_page(pfn); 2705 if (!page) { 2706 put_ref_page(pfn, flags); 2707 return -EIO; 2708 } 2709 2710 mutex_lock(&mf_mutex); 2711 2712 if (PageHWPoison(page)) { 2713 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2714 put_ref_page(pfn, flags); 2715 mutex_unlock(&mf_mutex); 2716 return 0; 2717 } 2718 2719 retry: 2720 get_online_mems(); 2721 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2722 put_online_mems(); 2723 2724 if (hwpoison_filter(page)) { 2725 if (ret > 0) 2726 put_page(page); 2727 2728 mutex_unlock(&mf_mutex); 2729 return -EOPNOTSUPP; 2730 } 2731 2732 if (ret > 0) { 2733 ret = soft_offline_in_use_page(page); 2734 } else if (ret == 0) { 2735 if (!page_handle_poison(page, true, false) && try_again) { 2736 try_again = false; 2737 flags &= ~MF_COUNT_INCREASED; 2738 goto retry; 2739 } 2740 } 2741 2742 mutex_unlock(&mf_mutex); 2743 2744 return ret; 2745 } 2746