1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (C) 2008, 2009 Intel Corporation 4 * Authors: Andi Kleen, Fengguang Wu 5 * 6 * High level machine check handler. Handles pages reported by the 7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 8 * failure. 9 * 10 * In addition there is a "soft offline" entry point that allows stop using 11 * not-yet-corrupted-by-suspicious pages without killing anything. 12 * 13 * Handles page cache pages in various states. The tricky part 14 * here is that we can access any page asynchronously in respect to 15 * other VM users, because memory failures could happen anytime and 16 * anywhere. This could violate some of their assumptions. This is why 17 * this code has to be extremely careful. Generally it tries to use 18 * normal locking rules, as in get the standard locks, even if that means 19 * the error handling takes potentially a long time. 20 * 21 * It can be very tempting to add handling for obscure cases here. 22 * In general any code for handling new cases should only be added iff: 23 * - You know how to test it. 24 * - You have a test that can be added to mce-test 25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 26 * - The case actually shows up as a frequent (top 10) page state in 27 * tools/mm/page-types when running a real workload. 28 * 29 * There are several operations here with exponential complexity because 30 * of unsuitable VM data structures. For example the operation to map back 31 * from RMAP chains to processes has to walk the complete process list and 32 * has non linear complexity with the number. But since memory corruptions 33 * are rare we hope to get away with this. This avoids impacting the core 34 * VM. 35 */ 36 37 #define pr_fmt(fmt) "Memory failure: " fmt 38 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/dax.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/slab.h> 53 #include <linux/swapops.h> 54 #include <linux/hugetlb.h> 55 #include <linux/memory_hotplug.h> 56 #include <linux/mm_inline.h> 57 #include <linux/memremap.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include <linux/pagewalk.h> 61 #include <linux/shmem_fs.h> 62 #include <linux/sysctl.h> 63 #include "swap.h" 64 #include "internal.h" 65 #include "ras/ras_event.h" 66 67 static int sysctl_memory_failure_early_kill __read_mostly; 68 69 static int sysctl_memory_failure_recovery __read_mostly = 1; 70 71 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 72 73 static bool hw_memory_failure __read_mostly = false; 74 75 static DEFINE_MUTEX(mf_mutex); 76 77 void num_poisoned_pages_inc(unsigned long pfn) 78 { 79 atomic_long_inc(&num_poisoned_pages); 80 memblk_nr_poison_inc(pfn); 81 } 82 83 void num_poisoned_pages_sub(unsigned long pfn, long i) 84 { 85 atomic_long_sub(i, &num_poisoned_pages); 86 if (pfn != -1UL) 87 memblk_nr_poison_sub(pfn, i); 88 } 89 90 /** 91 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics. 92 * @_name: name of the file in the per NUMA sysfs directory. 93 */ 94 #define MF_ATTR_RO(_name) \ 95 static ssize_t _name##_show(struct device *dev, \ 96 struct device_attribute *attr, \ 97 char *buf) \ 98 { \ 99 struct memory_failure_stats *mf_stats = \ 100 &NODE_DATA(dev->id)->mf_stats; \ 101 return sprintf(buf, "%lu\n", mf_stats->_name); \ 102 } \ 103 static DEVICE_ATTR_RO(_name) 104 105 MF_ATTR_RO(total); 106 MF_ATTR_RO(ignored); 107 MF_ATTR_RO(failed); 108 MF_ATTR_RO(delayed); 109 MF_ATTR_RO(recovered); 110 111 static struct attribute *memory_failure_attr[] = { 112 &dev_attr_total.attr, 113 &dev_attr_ignored.attr, 114 &dev_attr_failed.attr, 115 &dev_attr_delayed.attr, 116 &dev_attr_recovered.attr, 117 NULL, 118 }; 119 120 const struct attribute_group memory_failure_attr_group = { 121 .name = "memory_failure", 122 .attrs = memory_failure_attr, 123 }; 124 125 static struct ctl_table memory_failure_table[] = { 126 { 127 .procname = "memory_failure_early_kill", 128 .data = &sysctl_memory_failure_early_kill, 129 .maxlen = sizeof(sysctl_memory_failure_early_kill), 130 .mode = 0644, 131 .proc_handler = proc_dointvec_minmax, 132 .extra1 = SYSCTL_ZERO, 133 .extra2 = SYSCTL_ONE, 134 }, 135 { 136 .procname = "memory_failure_recovery", 137 .data = &sysctl_memory_failure_recovery, 138 .maxlen = sizeof(sysctl_memory_failure_recovery), 139 .mode = 0644, 140 .proc_handler = proc_dointvec_minmax, 141 .extra1 = SYSCTL_ZERO, 142 .extra2 = SYSCTL_ONE, 143 }, 144 { } 145 }; 146 147 /* 148 * Return values: 149 * 1: the page is dissolved (if needed) and taken off from buddy, 150 * 0: the page is dissolved (if needed) and not taken off from buddy, 151 * < 0: failed to dissolve. 152 */ 153 static int __page_handle_poison(struct page *page) 154 { 155 int ret; 156 157 zone_pcp_disable(page_zone(page)); 158 ret = dissolve_free_huge_page(page); 159 if (!ret) 160 ret = take_page_off_buddy(page); 161 zone_pcp_enable(page_zone(page)); 162 163 return ret; 164 } 165 166 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release) 167 { 168 if (hugepage_or_freepage) { 169 /* 170 * Doing this check for free pages is also fine since dissolve_free_huge_page 171 * returns 0 for non-hugetlb pages as well. 172 */ 173 if (__page_handle_poison(page) <= 0) 174 /* 175 * We could fail to take off the target page from buddy 176 * for example due to racy page allocation, but that's 177 * acceptable because soft-offlined page is not broken 178 * and if someone really want to use it, they should 179 * take it. 180 */ 181 return false; 182 } 183 184 SetPageHWPoison(page); 185 if (release) 186 put_page(page); 187 page_ref_inc(page); 188 num_poisoned_pages_inc(page_to_pfn(page)); 189 190 return true; 191 } 192 193 #if IS_ENABLED(CONFIG_HWPOISON_INJECT) 194 195 u32 hwpoison_filter_enable = 0; 196 u32 hwpoison_filter_dev_major = ~0U; 197 u32 hwpoison_filter_dev_minor = ~0U; 198 u64 hwpoison_filter_flags_mask; 199 u64 hwpoison_filter_flags_value; 200 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 201 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 202 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 203 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 204 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 205 206 static int hwpoison_filter_dev(struct page *p) 207 { 208 struct address_space *mapping; 209 dev_t dev; 210 211 if (hwpoison_filter_dev_major == ~0U && 212 hwpoison_filter_dev_minor == ~0U) 213 return 0; 214 215 mapping = page_mapping(p); 216 if (mapping == NULL || mapping->host == NULL) 217 return -EINVAL; 218 219 dev = mapping->host->i_sb->s_dev; 220 if (hwpoison_filter_dev_major != ~0U && 221 hwpoison_filter_dev_major != MAJOR(dev)) 222 return -EINVAL; 223 if (hwpoison_filter_dev_minor != ~0U && 224 hwpoison_filter_dev_minor != MINOR(dev)) 225 return -EINVAL; 226 227 return 0; 228 } 229 230 static int hwpoison_filter_flags(struct page *p) 231 { 232 if (!hwpoison_filter_flags_mask) 233 return 0; 234 235 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 236 hwpoison_filter_flags_value) 237 return 0; 238 else 239 return -EINVAL; 240 } 241 242 /* 243 * This allows stress tests to limit test scope to a collection of tasks 244 * by putting them under some memcg. This prevents killing unrelated/important 245 * processes such as /sbin/init. Note that the target task may share clean 246 * pages with init (eg. libc text), which is harmless. If the target task 247 * share _dirty_ pages with another task B, the test scheme must make sure B 248 * is also included in the memcg. At last, due to race conditions this filter 249 * can only guarantee that the page either belongs to the memcg tasks, or is 250 * a freed page. 251 */ 252 #ifdef CONFIG_MEMCG 253 u64 hwpoison_filter_memcg; 254 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 255 static int hwpoison_filter_task(struct page *p) 256 { 257 if (!hwpoison_filter_memcg) 258 return 0; 259 260 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 261 return -EINVAL; 262 263 return 0; 264 } 265 #else 266 static int hwpoison_filter_task(struct page *p) { return 0; } 267 #endif 268 269 int hwpoison_filter(struct page *p) 270 { 271 if (!hwpoison_filter_enable) 272 return 0; 273 274 if (hwpoison_filter_dev(p)) 275 return -EINVAL; 276 277 if (hwpoison_filter_flags(p)) 278 return -EINVAL; 279 280 if (hwpoison_filter_task(p)) 281 return -EINVAL; 282 283 return 0; 284 } 285 #else 286 int hwpoison_filter(struct page *p) 287 { 288 return 0; 289 } 290 #endif 291 292 EXPORT_SYMBOL_GPL(hwpoison_filter); 293 294 /* 295 * Kill all processes that have a poisoned page mapped and then isolate 296 * the page. 297 * 298 * General strategy: 299 * Find all processes having the page mapped and kill them. 300 * But we keep a page reference around so that the page is not 301 * actually freed yet. 302 * Then stash the page away 303 * 304 * There's no convenient way to get back to mapped processes 305 * from the VMAs. So do a brute-force search over all 306 * running processes. 307 * 308 * Remember that machine checks are not common (or rather 309 * if they are common you have other problems), so this shouldn't 310 * be a performance issue. 311 * 312 * Also there are some races possible while we get from the 313 * error detection to actually handle it. 314 */ 315 316 struct to_kill { 317 struct list_head nd; 318 struct task_struct *tsk; 319 unsigned long addr; 320 short size_shift; 321 }; 322 323 /* 324 * Send all the processes who have the page mapped a signal. 325 * ``action optional'' if they are not immediately affected by the error 326 * ``action required'' if error happened in current execution context 327 */ 328 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags) 329 { 330 struct task_struct *t = tk->tsk; 331 short addr_lsb = tk->size_shift; 332 int ret = 0; 333 334 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n", 335 pfn, t->comm, t->pid); 336 337 if ((flags & MF_ACTION_REQUIRED) && (t == current)) 338 ret = force_sig_mceerr(BUS_MCEERR_AR, 339 (void __user *)tk->addr, addr_lsb); 340 else 341 /* 342 * Signal other processes sharing the page if they have 343 * PF_MCE_EARLY set. 344 * Don't use force here, it's convenient if the signal 345 * can be temporarily blocked. 346 * This could cause a loop when the user sets SIGBUS 347 * to SIG_IGN, but hopefully no one will do that? 348 */ 349 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr, 350 addr_lsb, t); 351 if (ret < 0) 352 pr_info("Error sending signal to %s:%d: %d\n", 353 t->comm, t->pid, ret); 354 return ret; 355 } 356 357 /* 358 * Unknown page type encountered. Try to check whether it can turn PageLRU by 359 * lru_add_drain_all. 360 */ 361 void shake_page(struct page *p) 362 { 363 if (PageHuge(p)) 364 return; 365 /* 366 * TODO: Could shrink slab caches here if a lightweight range-based 367 * shrinker will be available. 368 */ 369 if (PageSlab(p)) 370 return; 371 372 lru_add_drain_all(); 373 } 374 EXPORT_SYMBOL_GPL(shake_page); 375 376 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma, 377 unsigned long address) 378 { 379 unsigned long ret = 0; 380 pgd_t *pgd; 381 p4d_t *p4d; 382 pud_t *pud; 383 pmd_t *pmd; 384 pte_t *pte; 385 pte_t ptent; 386 387 VM_BUG_ON_VMA(address == -EFAULT, vma); 388 pgd = pgd_offset(vma->vm_mm, address); 389 if (!pgd_present(*pgd)) 390 return 0; 391 p4d = p4d_offset(pgd, address); 392 if (!p4d_present(*p4d)) 393 return 0; 394 pud = pud_offset(p4d, address); 395 if (!pud_present(*pud)) 396 return 0; 397 if (pud_devmap(*pud)) 398 return PUD_SHIFT; 399 pmd = pmd_offset(pud, address); 400 if (!pmd_present(*pmd)) 401 return 0; 402 if (pmd_devmap(*pmd)) 403 return PMD_SHIFT; 404 pte = pte_offset_map(pmd, address); 405 if (!pte) 406 return 0; 407 ptent = ptep_get(pte); 408 if (pte_present(ptent) && pte_devmap(ptent)) 409 ret = PAGE_SHIFT; 410 pte_unmap(pte); 411 return ret; 412 } 413 414 /* 415 * Failure handling: if we can't find or can't kill a process there's 416 * not much we can do. We just print a message and ignore otherwise. 417 */ 418 419 #define FSDAX_INVALID_PGOFF ULONG_MAX 420 421 /* 422 * Schedule a process for later kill. 423 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 424 * 425 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a 426 * filesystem with a memory failure handler has claimed the 427 * memory_failure event. In all other cases, page->index and 428 * page->mapping are sufficient for mapping the page back to its 429 * corresponding user virtual address. 430 */ 431 static void __add_to_kill(struct task_struct *tsk, struct page *p, 432 struct vm_area_struct *vma, struct list_head *to_kill, 433 unsigned long ksm_addr, pgoff_t fsdax_pgoff) 434 { 435 struct to_kill *tk; 436 437 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 438 if (!tk) { 439 pr_err("Out of memory while machine check handling\n"); 440 return; 441 } 442 443 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma); 444 if (is_zone_device_page(p)) { 445 if (fsdax_pgoff != FSDAX_INVALID_PGOFF) 446 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma); 447 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr); 448 } else 449 tk->size_shift = page_shift(compound_head(p)); 450 451 /* 452 * Send SIGKILL if "tk->addr == -EFAULT". Also, as 453 * "tk->size_shift" is always non-zero for !is_zone_device_page(), 454 * so "tk->size_shift == 0" effectively checks no mapping on 455 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times 456 * to a process' address space, it's possible not all N VMAs 457 * contain mappings for the page, but at least one VMA does. 458 * Only deliver SIGBUS with payload derived from the VMA that 459 * has a mapping for the page. 460 */ 461 if (tk->addr == -EFAULT) { 462 pr_info("Unable to find user space address %lx in %s\n", 463 page_to_pfn(p), tsk->comm); 464 } else if (tk->size_shift == 0) { 465 kfree(tk); 466 return; 467 } 468 469 get_task_struct(tsk); 470 tk->tsk = tsk; 471 list_add_tail(&tk->nd, to_kill); 472 } 473 474 static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p, 475 struct vm_area_struct *vma, 476 struct list_head *to_kill) 477 { 478 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF); 479 } 480 481 #ifdef CONFIG_KSM 482 static bool task_in_to_kill_list(struct list_head *to_kill, 483 struct task_struct *tsk) 484 { 485 struct to_kill *tk, *next; 486 487 list_for_each_entry_safe(tk, next, to_kill, nd) { 488 if (tk->tsk == tsk) 489 return true; 490 } 491 492 return false; 493 } 494 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 495 struct vm_area_struct *vma, struct list_head *to_kill, 496 unsigned long ksm_addr) 497 { 498 if (!task_in_to_kill_list(to_kill, tsk)) 499 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF); 500 } 501 #endif 502 /* 503 * Kill the processes that have been collected earlier. 504 * 505 * Only do anything when FORCEKILL is set, otherwise just free the 506 * list (this is used for clean pages which do not need killing) 507 * Also when FAIL is set do a force kill because something went 508 * wrong earlier. 509 */ 510 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail, 511 unsigned long pfn, int flags) 512 { 513 struct to_kill *tk, *next; 514 515 list_for_each_entry_safe(tk, next, to_kill, nd) { 516 if (forcekill) { 517 /* 518 * In case something went wrong with munmapping 519 * make sure the process doesn't catch the 520 * signal and then access the memory. Just kill it. 521 */ 522 if (fail || tk->addr == -EFAULT) { 523 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 524 pfn, tk->tsk->comm, tk->tsk->pid); 525 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, 526 tk->tsk, PIDTYPE_PID); 527 } 528 529 /* 530 * In theory the process could have mapped 531 * something else on the address in-between. We could 532 * check for that, but we need to tell the 533 * process anyways. 534 */ 535 else if (kill_proc(tk, pfn, flags) < 0) 536 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n", 537 pfn, tk->tsk->comm, tk->tsk->pid); 538 } 539 list_del(&tk->nd); 540 put_task_struct(tk->tsk); 541 kfree(tk); 542 } 543 } 544 545 /* 546 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 547 * on behalf of the thread group. Return task_struct of the (first found) 548 * dedicated thread if found, and return NULL otherwise. 549 * 550 * We already hold rcu lock in the caller, so we don't have to call 551 * rcu_read_lock/unlock() in this function. 552 */ 553 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 554 { 555 struct task_struct *t; 556 557 for_each_thread(tsk, t) { 558 if (t->flags & PF_MCE_PROCESS) { 559 if (t->flags & PF_MCE_EARLY) 560 return t; 561 } else { 562 if (sysctl_memory_failure_early_kill) 563 return t; 564 } 565 } 566 return NULL; 567 } 568 569 /* 570 * Determine whether a given process is "early kill" process which expects 571 * to be signaled when some page under the process is hwpoisoned. 572 * Return task_struct of the dedicated thread (main thread unless explicitly 573 * specified) if the process is "early kill" and otherwise returns NULL. 574 * 575 * Note that the above is true for Action Optional case. For Action Required 576 * case, it's only meaningful to the current thread which need to be signaled 577 * with SIGBUS, this error is Action Optional for other non current 578 * processes sharing the same error page,if the process is "early kill", the 579 * task_struct of the dedicated thread will also be returned. 580 */ 581 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early) 582 { 583 if (!tsk->mm) 584 return NULL; 585 /* 586 * Comparing ->mm here because current task might represent 587 * a subthread, while tsk always points to the main thread. 588 */ 589 if (force_early && tsk->mm == current->mm) 590 return current; 591 592 return find_early_kill_thread(tsk); 593 } 594 595 /* 596 * Collect processes when the error hit an anonymous page. 597 */ 598 static void collect_procs_anon(struct folio *folio, struct page *page, 599 struct list_head *to_kill, int force_early) 600 { 601 struct vm_area_struct *vma; 602 struct task_struct *tsk; 603 struct anon_vma *av; 604 pgoff_t pgoff; 605 606 av = folio_lock_anon_vma_read(folio, NULL); 607 if (av == NULL) /* Not actually mapped anymore */ 608 return; 609 610 pgoff = page_to_pgoff(page); 611 rcu_read_lock(); 612 for_each_process(tsk) { 613 struct anon_vma_chain *vmac; 614 struct task_struct *t = task_early_kill(tsk, force_early); 615 616 if (!t) 617 continue; 618 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 619 pgoff, pgoff) { 620 vma = vmac->vma; 621 if (vma->vm_mm != t->mm) 622 continue; 623 if (!page_mapped_in_vma(page, vma)) 624 continue; 625 add_to_kill_anon_file(t, page, vma, to_kill); 626 } 627 } 628 rcu_read_unlock(); 629 anon_vma_unlock_read(av); 630 } 631 632 /* 633 * Collect processes when the error hit a file mapped page. 634 */ 635 static void collect_procs_file(struct folio *folio, struct page *page, 636 struct list_head *to_kill, int force_early) 637 { 638 struct vm_area_struct *vma; 639 struct task_struct *tsk; 640 struct address_space *mapping = folio->mapping; 641 pgoff_t pgoff; 642 643 i_mmap_lock_read(mapping); 644 rcu_read_lock(); 645 pgoff = page_to_pgoff(page); 646 for_each_process(tsk) { 647 struct task_struct *t = task_early_kill(tsk, force_early); 648 649 if (!t) 650 continue; 651 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 652 pgoff) { 653 /* 654 * Send early kill signal to tasks where a vma covers 655 * the page but the corrupted page is not necessarily 656 * mapped in its pte. 657 * Assume applications who requested early kill want 658 * to be informed of all such data corruptions. 659 */ 660 if (vma->vm_mm == t->mm) 661 add_to_kill_anon_file(t, page, vma, to_kill); 662 } 663 } 664 rcu_read_unlock(); 665 i_mmap_unlock_read(mapping); 666 } 667 668 #ifdef CONFIG_FS_DAX 669 static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p, 670 struct vm_area_struct *vma, 671 struct list_head *to_kill, pgoff_t pgoff) 672 { 673 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff); 674 } 675 676 /* 677 * Collect processes when the error hit a fsdax page. 678 */ 679 static void collect_procs_fsdax(struct page *page, 680 struct address_space *mapping, pgoff_t pgoff, 681 struct list_head *to_kill) 682 { 683 struct vm_area_struct *vma; 684 struct task_struct *tsk; 685 686 i_mmap_lock_read(mapping); 687 rcu_read_lock(); 688 for_each_process(tsk) { 689 struct task_struct *t = task_early_kill(tsk, true); 690 691 if (!t) 692 continue; 693 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) { 694 if (vma->vm_mm == t->mm) 695 add_to_kill_fsdax(t, page, vma, to_kill, pgoff); 696 } 697 } 698 rcu_read_unlock(); 699 i_mmap_unlock_read(mapping); 700 } 701 #endif /* CONFIG_FS_DAX */ 702 703 /* 704 * Collect the processes who have the corrupted page mapped to kill. 705 */ 706 static void collect_procs(struct folio *folio, struct page *page, 707 struct list_head *tokill, int force_early) 708 { 709 if (!folio->mapping) 710 return; 711 if (unlikely(PageKsm(page))) 712 collect_procs_ksm(page, tokill, force_early); 713 else if (PageAnon(page)) 714 collect_procs_anon(folio, page, tokill, force_early); 715 else 716 collect_procs_file(folio, page, tokill, force_early); 717 } 718 719 struct hwpoison_walk { 720 struct to_kill tk; 721 unsigned long pfn; 722 int flags; 723 }; 724 725 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift) 726 { 727 tk->addr = addr; 728 tk->size_shift = shift; 729 } 730 731 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift, 732 unsigned long poisoned_pfn, struct to_kill *tk) 733 { 734 unsigned long pfn = 0; 735 736 if (pte_present(pte)) { 737 pfn = pte_pfn(pte); 738 } else { 739 swp_entry_t swp = pte_to_swp_entry(pte); 740 741 if (is_hwpoison_entry(swp)) 742 pfn = swp_offset_pfn(swp); 743 } 744 745 if (!pfn || pfn != poisoned_pfn) 746 return 0; 747 748 set_to_kill(tk, addr, shift); 749 return 1; 750 } 751 752 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 753 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 754 struct hwpoison_walk *hwp) 755 { 756 pmd_t pmd = *pmdp; 757 unsigned long pfn; 758 unsigned long hwpoison_vaddr; 759 760 if (!pmd_present(pmd)) 761 return 0; 762 pfn = pmd_pfn(pmd); 763 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) { 764 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT); 765 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT); 766 return 1; 767 } 768 return 0; 769 } 770 #else 771 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr, 772 struct hwpoison_walk *hwp) 773 { 774 return 0; 775 } 776 #endif 777 778 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr, 779 unsigned long end, struct mm_walk *walk) 780 { 781 struct hwpoison_walk *hwp = walk->private; 782 int ret = 0; 783 pte_t *ptep, *mapped_pte; 784 spinlock_t *ptl; 785 786 ptl = pmd_trans_huge_lock(pmdp, walk->vma); 787 if (ptl) { 788 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp); 789 spin_unlock(ptl); 790 goto out; 791 } 792 793 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp, 794 addr, &ptl); 795 if (!ptep) 796 goto out; 797 798 for (; addr != end; ptep++, addr += PAGE_SIZE) { 799 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT, 800 hwp->pfn, &hwp->tk); 801 if (ret == 1) 802 break; 803 } 804 pte_unmap_unlock(mapped_pte, ptl); 805 out: 806 cond_resched(); 807 return ret; 808 } 809 810 #ifdef CONFIG_HUGETLB_PAGE 811 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask, 812 unsigned long addr, unsigned long end, 813 struct mm_walk *walk) 814 { 815 struct hwpoison_walk *hwp = walk->private; 816 pte_t pte = huge_ptep_get(ptep); 817 struct hstate *h = hstate_vma(walk->vma); 818 819 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h), 820 hwp->pfn, &hwp->tk); 821 } 822 #else 823 #define hwpoison_hugetlb_range NULL 824 #endif 825 826 static const struct mm_walk_ops hwpoison_walk_ops = { 827 .pmd_entry = hwpoison_pte_range, 828 .hugetlb_entry = hwpoison_hugetlb_range, 829 .walk_lock = PGWALK_RDLOCK, 830 }; 831 832 /* 833 * Sends SIGBUS to the current process with error info. 834 * 835 * This function is intended to handle "Action Required" MCEs on already 836 * hardware poisoned pages. They could happen, for example, when 837 * memory_failure() failed to unmap the error page at the first call, or 838 * when multiple local machine checks happened on different CPUs. 839 * 840 * MCE handler currently has no easy access to the error virtual address, 841 * so this function walks page table to find it. The returned virtual address 842 * is proper in most cases, but it could be wrong when the application 843 * process has multiple entries mapping the error page. 844 */ 845 static int kill_accessing_process(struct task_struct *p, unsigned long pfn, 846 int flags) 847 { 848 int ret; 849 struct hwpoison_walk priv = { 850 .pfn = pfn, 851 }; 852 priv.tk.tsk = p; 853 854 if (!p->mm) 855 return -EFAULT; 856 857 mmap_read_lock(p->mm); 858 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops, 859 (void *)&priv); 860 if (ret == 1 && priv.tk.addr) 861 kill_proc(&priv.tk, pfn, flags); 862 else 863 ret = 0; 864 mmap_read_unlock(p->mm); 865 return ret > 0 ? -EHWPOISON : -EFAULT; 866 } 867 868 static const char *action_name[] = { 869 [MF_IGNORED] = "Ignored", 870 [MF_FAILED] = "Failed", 871 [MF_DELAYED] = "Delayed", 872 [MF_RECOVERED] = "Recovered", 873 }; 874 875 static const char * const action_page_types[] = { 876 [MF_MSG_KERNEL] = "reserved kernel page", 877 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 878 [MF_MSG_SLAB] = "kernel slab page", 879 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 880 [MF_MSG_HUGE] = "huge page", 881 [MF_MSG_FREE_HUGE] = "free huge page", 882 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 883 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 884 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 885 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 886 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 887 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 888 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 889 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 890 [MF_MSG_CLEAN_LRU] = "clean LRU page", 891 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 892 [MF_MSG_BUDDY] = "free buddy page", 893 [MF_MSG_DAX] = "dax page", 894 [MF_MSG_UNSPLIT_THP] = "unsplit thp", 895 [MF_MSG_UNKNOWN] = "unknown page", 896 }; 897 898 /* 899 * XXX: It is possible that a page is isolated from LRU cache, 900 * and then kept in swap cache or failed to remove from page cache. 901 * The page count will stop it from being freed by unpoison. 902 * Stress tests should be aware of this memory leak problem. 903 */ 904 static int delete_from_lru_cache(struct page *p) 905 { 906 if (isolate_lru_page(p)) { 907 /* 908 * Clear sensible page flags, so that the buddy system won't 909 * complain when the page is unpoison-and-freed. 910 */ 911 ClearPageActive(p); 912 ClearPageUnevictable(p); 913 914 /* 915 * Poisoned page might never drop its ref count to 0 so we have 916 * to uncharge it manually from its memcg. 917 */ 918 mem_cgroup_uncharge(page_folio(p)); 919 920 /* 921 * drop the page count elevated by isolate_lru_page() 922 */ 923 put_page(p); 924 return 0; 925 } 926 return -EIO; 927 } 928 929 static int truncate_error_page(struct page *p, unsigned long pfn, 930 struct address_space *mapping) 931 { 932 int ret = MF_FAILED; 933 934 if (mapping->a_ops->error_remove_page) { 935 struct folio *folio = page_folio(p); 936 int err = mapping->a_ops->error_remove_page(mapping, p); 937 938 if (err != 0) 939 pr_info("%#lx: Failed to punch page: %d\n", pfn, err); 940 else if (!filemap_release_folio(folio, GFP_NOIO)) 941 pr_info("%#lx: failed to release buffers\n", pfn); 942 else 943 ret = MF_RECOVERED; 944 } else { 945 /* 946 * If the file system doesn't support it just invalidate 947 * This fails on dirty or anything with private pages 948 */ 949 if (invalidate_inode_page(p)) 950 ret = MF_RECOVERED; 951 else 952 pr_info("%#lx: Failed to invalidate\n", pfn); 953 } 954 955 return ret; 956 } 957 958 struct page_state { 959 unsigned long mask; 960 unsigned long res; 961 enum mf_action_page_type type; 962 963 /* Callback ->action() has to unlock the relevant page inside it. */ 964 int (*action)(struct page_state *ps, struct page *p); 965 }; 966 967 /* 968 * Return true if page is still referenced by others, otherwise return 969 * false. 970 * 971 * The extra_pins is true when one extra refcount is expected. 972 */ 973 static bool has_extra_refcount(struct page_state *ps, struct page *p, 974 bool extra_pins) 975 { 976 int count = page_count(p) - 1; 977 978 if (extra_pins) 979 count -= 1; 980 981 if (count > 0) { 982 pr_err("%#lx: %s still referenced by %d users\n", 983 page_to_pfn(p), action_page_types[ps->type], count); 984 return true; 985 } 986 987 return false; 988 } 989 990 /* 991 * Error hit kernel page. 992 * Do nothing, try to be lucky and not touch this instead. For a few cases we 993 * could be more sophisticated. 994 */ 995 static int me_kernel(struct page_state *ps, struct page *p) 996 { 997 unlock_page(p); 998 return MF_IGNORED; 999 } 1000 1001 /* 1002 * Page in unknown state. Do nothing. 1003 */ 1004 static int me_unknown(struct page_state *ps, struct page *p) 1005 { 1006 pr_err("%#lx: Unknown page state\n", page_to_pfn(p)); 1007 unlock_page(p); 1008 return MF_FAILED; 1009 } 1010 1011 /* 1012 * Clean (or cleaned) page cache page. 1013 */ 1014 static int me_pagecache_clean(struct page_state *ps, struct page *p) 1015 { 1016 int ret; 1017 struct address_space *mapping; 1018 bool extra_pins; 1019 1020 delete_from_lru_cache(p); 1021 1022 /* 1023 * For anonymous pages we're done the only reference left 1024 * should be the one m_f() holds. 1025 */ 1026 if (PageAnon(p)) { 1027 ret = MF_RECOVERED; 1028 goto out; 1029 } 1030 1031 /* 1032 * Now truncate the page in the page cache. This is really 1033 * more like a "temporary hole punch" 1034 * Don't do this for block devices when someone else 1035 * has a reference, because it could be file system metadata 1036 * and that's not safe to truncate. 1037 */ 1038 mapping = page_mapping(p); 1039 if (!mapping) { 1040 /* 1041 * Page has been teared down in the meanwhile 1042 */ 1043 ret = MF_FAILED; 1044 goto out; 1045 } 1046 1047 /* 1048 * The shmem page is kept in page cache instead of truncating 1049 * so is expected to have an extra refcount after error-handling. 1050 */ 1051 extra_pins = shmem_mapping(mapping); 1052 1053 /* 1054 * Truncation is a bit tricky. Enable it per file system for now. 1055 * 1056 * Open: to take i_rwsem or not for this? Right now we don't. 1057 */ 1058 ret = truncate_error_page(p, page_to_pfn(p), mapping); 1059 if (has_extra_refcount(ps, p, extra_pins)) 1060 ret = MF_FAILED; 1061 1062 out: 1063 unlock_page(p); 1064 1065 return ret; 1066 } 1067 1068 /* 1069 * Dirty pagecache page 1070 * Issues: when the error hit a hole page the error is not properly 1071 * propagated. 1072 */ 1073 static int me_pagecache_dirty(struct page_state *ps, struct page *p) 1074 { 1075 struct address_space *mapping = page_mapping(p); 1076 1077 SetPageError(p); 1078 /* TBD: print more information about the file. */ 1079 if (mapping) { 1080 /* 1081 * IO error will be reported by write(), fsync(), etc. 1082 * who check the mapping. 1083 * This way the application knows that something went 1084 * wrong with its dirty file data. 1085 * 1086 * There's one open issue: 1087 * 1088 * The EIO will be only reported on the next IO 1089 * operation and then cleared through the IO map. 1090 * Normally Linux has two mechanisms to pass IO error 1091 * first through the AS_EIO flag in the address space 1092 * and then through the PageError flag in the page. 1093 * Since we drop pages on memory failure handling the 1094 * only mechanism open to use is through AS_AIO. 1095 * 1096 * This has the disadvantage that it gets cleared on 1097 * the first operation that returns an error, while 1098 * the PageError bit is more sticky and only cleared 1099 * when the page is reread or dropped. If an 1100 * application assumes it will always get error on 1101 * fsync, but does other operations on the fd before 1102 * and the page is dropped between then the error 1103 * will not be properly reported. 1104 * 1105 * This can already happen even without hwpoisoned 1106 * pages: first on metadata IO errors (which only 1107 * report through AS_EIO) or when the page is dropped 1108 * at the wrong time. 1109 * 1110 * So right now we assume that the application DTRT on 1111 * the first EIO, but we're not worse than other parts 1112 * of the kernel. 1113 */ 1114 mapping_set_error(mapping, -EIO); 1115 } 1116 1117 return me_pagecache_clean(ps, p); 1118 } 1119 1120 /* 1121 * Clean and dirty swap cache. 1122 * 1123 * Dirty swap cache page is tricky to handle. The page could live both in page 1124 * cache and swap cache(ie. page is freshly swapped in). So it could be 1125 * referenced concurrently by 2 types of PTEs: 1126 * normal PTEs and swap PTEs. We try to handle them consistently by calling 1127 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs, 1128 * and then 1129 * - clear dirty bit to prevent IO 1130 * - remove from LRU 1131 * - but keep in the swap cache, so that when we return to it on 1132 * a later page fault, we know the application is accessing 1133 * corrupted data and shall be killed (we installed simple 1134 * interception code in do_swap_page to catch it). 1135 * 1136 * Clean swap cache pages can be directly isolated. A later page fault will 1137 * bring in the known good data from disk. 1138 */ 1139 static int me_swapcache_dirty(struct page_state *ps, struct page *p) 1140 { 1141 int ret; 1142 bool extra_pins = false; 1143 1144 ClearPageDirty(p); 1145 /* Trigger EIO in shmem: */ 1146 ClearPageUptodate(p); 1147 1148 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED; 1149 unlock_page(p); 1150 1151 if (ret == MF_DELAYED) 1152 extra_pins = true; 1153 1154 if (has_extra_refcount(ps, p, extra_pins)) 1155 ret = MF_FAILED; 1156 1157 return ret; 1158 } 1159 1160 static int me_swapcache_clean(struct page_state *ps, struct page *p) 1161 { 1162 struct folio *folio = page_folio(p); 1163 int ret; 1164 1165 delete_from_swap_cache(folio); 1166 1167 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED; 1168 folio_unlock(folio); 1169 1170 if (has_extra_refcount(ps, p, false)) 1171 ret = MF_FAILED; 1172 1173 return ret; 1174 } 1175 1176 /* 1177 * Huge pages. Needs work. 1178 * Issues: 1179 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 1180 * To narrow down kill region to one page, we need to break up pmd. 1181 */ 1182 static int me_huge_page(struct page_state *ps, struct page *p) 1183 { 1184 int res; 1185 struct page *hpage = compound_head(p); 1186 struct address_space *mapping; 1187 bool extra_pins = false; 1188 1189 mapping = page_mapping(hpage); 1190 if (mapping) { 1191 res = truncate_error_page(hpage, page_to_pfn(p), mapping); 1192 /* The page is kept in page cache. */ 1193 extra_pins = true; 1194 unlock_page(hpage); 1195 } else { 1196 unlock_page(hpage); 1197 /* 1198 * migration entry prevents later access on error hugepage, 1199 * so we can free and dissolve it into buddy to save healthy 1200 * subpages. 1201 */ 1202 put_page(hpage); 1203 if (__page_handle_poison(p) >= 0) { 1204 page_ref_inc(p); 1205 res = MF_RECOVERED; 1206 } else { 1207 res = MF_FAILED; 1208 } 1209 } 1210 1211 if (has_extra_refcount(ps, p, extra_pins)) 1212 res = MF_FAILED; 1213 1214 return res; 1215 } 1216 1217 /* 1218 * Various page states we can handle. 1219 * 1220 * A page state is defined by its current page->flags bits. 1221 * The table matches them in order and calls the right handler. 1222 * 1223 * This is quite tricky because we can access page at any time 1224 * in its live cycle, so all accesses have to be extremely careful. 1225 * 1226 * This is not complete. More states could be added. 1227 * For any missing state don't attempt recovery. 1228 */ 1229 1230 #define dirty (1UL << PG_dirty) 1231 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 1232 #define unevict (1UL << PG_unevictable) 1233 #define mlock (1UL << PG_mlocked) 1234 #define lru (1UL << PG_lru) 1235 #define head (1UL << PG_head) 1236 #define slab (1UL << PG_slab) 1237 #define reserved (1UL << PG_reserved) 1238 1239 static struct page_state error_states[] = { 1240 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 1241 /* 1242 * free pages are specially detected outside this table: 1243 * PG_buddy pages only make a small fraction of all free pages. 1244 */ 1245 1246 /* 1247 * Could in theory check if slab page is free or if we can drop 1248 * currently unused objects without touching them. But just 1249 * treat it as standard kernel for now. 1250 */ 1251 { slab, slab, MF_MSG_SLAB, me_kernel }, 1252 1253 { head, head, MF_MSG_HUGE, me_huge_page }, 1254 1255 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 1256 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 1257 1258 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 1259 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 1260 1261 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 1262 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 1263 1264 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 1265 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 1266 1267 /* 1268 * Catchall entry: must be at end. 1269 */ 1270 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 1271 }; 1272 1273 #undef dirty 1274 #undef sc 1275 #undef unevict 1276 #undef mlock 1277 #undef lru 1278 #undef head 1279 #undef slab 1280 #undef reserved 1281 1282 static void update_per_node_mf_stats(unsigned long pfn, 1283 enum mf_result result) 1284 { 1285 int nid = MAX_NUMNODES; 1286 struct memory_failure_stats *mf_stats = NULL; 1287 1288 nid = pfn_to_nid(pfn); 1289 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) { 1290 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid); 1291 return; 1292 } 1293 1294 mf_stats = &NODE_DATA(nid)->mf_stats; 1295 switch (result) { 1296 case MF_IGNORED: 1297 ++mf_stats->ignored; 1298 break; 1299 case MF_FAILED: 1300 ++mf_stats->failed; 1301 break; 1302 case MF_DELAYED: 1303 ++mf_stats->delayed; 1304 break; 1305 case MF_RECOVERED: 1306 ++mf_stats->recovered; 1307 break; 1308 default: 1309 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result); 1310 break; 1311 } 1312 ++mf_stats->total; 1313 } 1314 1315 /* 1316 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 1317 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 1318 */ 1319 static int action_result(unsigned long pfn, enum mf_action_page_type type, 1320 enum mf_result result) 1321 { 1322 trace_memory_failure_event(pfn, type, result); 1323 1324 num_poisoned_pages_inc(pfn); 1325 1326 update_per_node_mf_stats(pfn, result); 1327 1328 pr_err("%#lx: recovery action for %s: %s\n", 1329 pfn, action_page_types[type], action_name[result]); 1330 1331 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 1332 } 1333 1334 static int page_action(struct page_state *ps, struct page *p, 1335 unsigned long pfn) 1336 { 1337 int result; 1338 1339 /* page p should be unlocked after returning from ps->action(). */ 1340 result = ps->action(ps, p); 1341 1342 /* Could do more checks here if page looks ok */ 1343 /* 1344 * Could adjust zone counters here to correct for the missing page. 1345 */ 1346 1347 return action_result(pfn, ps->type, result); 1348 } 1349 1350 static inline bool PageHWPoisonTakenOff(struct page *page) 1351 { 1352 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON; 1353 } 1354 1355 void SetPageHWPoisonTakenOff(struct page *page) 1356 { 1357 set_page_private(page, MAGIC_HWPOISON); 1358 } 1359 1360 void ClearPageHWPoisonTakenOff(struct page *page) 1361 { 1362 if (PageHWPoison(page)) 1363 set_page_private(page, 0); 1364 } 1365 1366 /* 1367 * Return true if a page type of a given page is supported by hwpoison 1368 * mechanism (while handling could fail), otherwise false. This function 1369 * does not return true for hugetlb or device memory pages, so it's assumed 1370 * to be called only in the context where we never have such pages. 1371 */ 1372 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags) 1373 { 1374 /* Soft offline could migrate non-LRU movable pages */ 1375 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page)) 1376 return true; 1377 1378 return PageLRU(page) || is_free_buddy_page(page); 1379 } 1380 1381 static int __get_hwpoison_page(struct page *page, unsigned long flags) 1382 { 1383 struct folio *folio = page_folio(page); 1384 int ret = 0; 1385 bool hugetlb = false; 1386 1387 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false); 1388 if (hugetlb) { 1389 /* Make sure hugetlb demotion did not happen from under us. */ 1390 if (folio == page_folio(page)) 1391 return ret; 1392 if (ret > 0) { 1393 folio_put(folio); 1394 folio = page_folio(page); 1395 } 1396 } 1397 1398 /* 1399 * This check prevents from calling folio_try_get() for any 1400 * unsupported type of folio in order to reduce the risk of unexpected 1401 * races caused by taking a folio refcount. 1402 */ 1403 if (!HWPoisonHandlable(&folio->page, flags)) 1404 return -EBUSY; 1405 1406 if (folio_try_get(folio)) { 1407 if (folio == page_folio(page)) 1408 return 1; 1409 1410 pr_info("%#lx cannot catch tail\n", page_to_pfn(page)); 1411 folio_put(folio); 1412 } 1413 1414 return 0; 1415 } 1416 1417 static int get_any_page(struct page *p, unsigned long flags) 1418 { 1419 int ret = 0, pass = 0; 1420 bool count_increased = false; 1421 1422 if (flags & MF_COUNT_INCREASED) 1423 count_increased = true; 1424 1425 try_again: 1426 if (!count_increased) { 1427 ret = __get_hwpoison_page(p, flags); 1428 if (!ret) { 1429 if (page_count(p)) { 1430 /* We raced with an allocation, retry. */ 1431 if (pass++ < 3) 1432 goto try_again; 1433 ret = -EBUSY; 1434 } else if (!PageHuge(p) && !is_free_buddy_page(p)) { 1435 /* We raced with put_page, retry. */ 1436 if (pass++ < 3) 1437 goto try_again; 1438 ret = -EIO; 1439 } 1440 goto out; 1441 } else if (ret == -EBUSY) { 1442 /* 1443 * We raced with (possibly temporary) unhandlable 1444 * page, retry. 1445 */ 1446 if (pass++ < 3) { 1447 shake_page(p); 1448 goto try_again; 1449 } 1450 ret = -EIO; 1451 goto out; 1452 } 1453 } 1454 1455 if (PageHuge(p) || HWPoisonHandlable(p, flags)) { 1456 ret = 1; 1457 } else { 1458 /* 1459 * A page we cannot handle. Check whether we can turn 1460 * it into something we can handle. 1461 */ 1462 if (pass++ < 3) { 1463 put_page(p); 1464 shake_page(p); 1465 count_increased = false; 1466 goto try_again; 1467 } 1468 put_page(p); 1469 ret = -EIO; 1470 } 1471 out: 1472 if (ret == -EIO) 1473 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p)); 1474 1475 return ret; 1476 } 1477 1478 static int __get_unpoison_page(struct page *page) 1479 { 1480 struct folio *folio = page_folio(page); 1481 int ret = 0; 1482 bool hugetlb = false; 1483 1484 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true); 1485 if (hugetlb) { 1486 /* Make sure hugetlb demotion did not happen from under us. */ 1487 if (folio == page_folio(page)) 1488 return ret; 1489 if (ret > 0) 1490 folio_put(folio); 1491 } 1492 1493 /* 1494 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison, 1495 * but also isolated from buddy freelist, so need to identify the 1496 * state and have to cancel both operations to unpoison. 1497 */ 1498 if (PageHWPoisonTakenOff(page)) 1499 return -EHWPOISON; 1500 1501 return get_page_unless_zero(page) ? 1 : 0; 1502 } 1503 1504 /** 1505 * get_hwpoison_page() - Get refcount for memory error handling 1506 * @p: Raw error page (hit by memory error) 1507 * @flags: Flags controlling behavior of error handling 1508 * 1509 * get_hwpoison_page() takes a page refcount of an error page to handle memory 1510 * error on it, after checking that the error page is in a well-defined state 1511 * (defined as a page-type we can successfully handle the memory error on it, 1512 * such as LRU page and hugetlb page). 1513 * 1514 * Memory error handling could be triggered at any time on any type of page, 1515 * so it's prone to race with typical memory management lifecycle (like 1516 * allocation and free). So to avoid such races, get_hwpoison_page() takes 1517 * extra care for the error page's state (as done in __get_hwpoison_page()), 1518 * and has some retry logic in get_any_page(). 1519 * 1520 * When called from unpoison_memory(), the caller should already ensure that 1521 * the given page has PG_hwpoison. So it's never reused for other page 1522 * allocations, and __get_unpoison_page() never races with them. 1523 * 1524 * Return: 0 on failure, 1525 * 1 on success for in-use pages in a well-defined state, 1526 * -EIO for pages on which we can not handle memory errors, 1527 * -EBUSY when get_hwpoison_page() has raced with page lifecycle 1528 * operations like allocation and free, 1529 * -EHWPOISON when the page is hwpoisoned and taken off from buddy. 1530 */ 1531 static int get_hwpoison_page(struct page *p, unsigned long flags) 1532 { 1533 int ret; 1534 1535 zone_pcp_disable(page_zone(p)); 1536 if (flags & MF_UNPOISON) 1537 ret = __get_unpoison_page(p); 1538 else 1539 ret = get_any_page(p, flags); 1540 zone_pcp_enable(page_zone(p)); 1541 1542 return ret; 1543 } 1544 1545 /* 1546 * Do all that is necessary to remove user space mappings. Unmap 1547 * the pages and send SIGBUS to the processes if the data was dirty. 1548 */ 1549 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 1550 int flags, struct page *hpage) 1551 { 1552 struct folio *folio = page_folio(hpage); 1553 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON; 1554 struct address_space *mapping; 1555 LIST_HEAD(tokill); 1556 bool unmap_success; 1557 int forcekill; 1558 bool mlocked = PageMlocked(hpage); 1559 1560 /* 1561 * Here we are interested only in user-mapped pages, so skip any 1562 * other types of pages. 1563 */ 1564 if (PageReserved(p) || PageSlab(p) || PageTable(p) || PageOffline(p)) 1565 return true; 1566 if (!(PageLRU(hpage) || PageHuge(p))) 1567 return true; 1568 1569 /* 1570 * This check implies we don't kill processes if their pages 1571 * are in the swap cache early. Those are always late kills. 1572 */ 1573 if (!page_mapped(p)) 1574 return true; 1575 1576 if (PageSwapCache(p)) { 1577 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn); 1578 ttu &= ~TTU_HWPOISON; 1579 } 1580 1581 /* 1582 * Propagate the dirty bit from PTEs to struct page first, because we 1583 * need this to decide if we should kill or just drop the page. 1584 * XXX: the dirty test could be racy: set_page_dirty() may not always 1585 * be called inside page lock (it's recommended but not enforced). 1586 */ 1587 mapping = page_mapping(hpage); 1588 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 1589 mapping_can_writeback(mapping)) { 1590 if (page_mkclean(hpage)) { 1591 SetPageDirty(hpage); 1592 } else { 1593 ttu &= ~TTU_HWPOISON; 1594 pr_info("%#lx: corrupted page was clean: dropped without side effects\n", 1595 pfn); 1596 } 1597 } 1598 1599 /* 1600 * First collect all the processes that have the page 1601 * mapped in dirty form. This has to be done before try_to_unmap, 1602 * because ttu takes the rmap data structures down. 1603 */ 1604 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED); 1605 1606 if (PageHuge(hpage) && !PageAnon(hpage)) { 1607 /* 1608 * For hugetlb pages in shared mappings, try_to_unmap 1609 * could potentially call huge_pmd_unshare. Because of 1610 * this, take semaphore in write mode here and set 1611 * TTU_RMAP_LOCKED to indicate we have taken the lock 1612 * at this higher level. 1613 */ 1614 mapping = hugetlb_page_mapping_lock_write(hpage); 1615 if (mapping) { 1616 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED); 1617 i_mmap_unlock_write(mapping); 1618 } else 1619 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn); 1620 } else { 1621 try_to_unmap(folio, ttu); 1622 } 1623 1624 unmap_success = !page_mapped(p); 1625 if (!unmap_success) 1626 pr_err("%#lx: failed to unmap page (mapcount=%d)\n", 1627 pfn, page_mapcount(p)); 1628 1629 /* 1630 * try_to_unmap() might put mlocked page in lru cache, so call 1631 * shake_page() again to ensure that it's flushed. 1632 */ 1633 if (mlocked) 1634 shake_page(hpage); 1635 1636 /* 1637 * Now that the dirty bit has been propagated to the 1638 * struct page and all unmaps done we can decide if 1639 * killing is needed or not. Only kill when the page 1640 * was dirty or the process is not restartable, 1641 * otherwise the tokill list is merely 1642 * freed. When there was a problem unmapping earlier 1643 * use a more force-full uncatchable kill to prevent 1644 * any accesses to the poisoned memory. 1645 */ 1646 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) || 1647 !unmap_success; 1648 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags); 1649 1650 return unmap_success; 1651 } 1652 1653 static int identify_page_state(unsigned long pfn, struct page *p, 1654 unsigned long page_flags) 1655 { 1656 struct page_state *ps; 1657 1658 /* 1659 * The first check uses the current page flags which may not have any 1660 * relevant information. The second check with the saved page flags is 1661 * carried out only if the first check can't determine the page status. 1662 */ 1663 for (ps = error_states;; ps++) 1664 if ((p->flags & ps->mask) == ps->res) 1665 break; 1666 1667 page_flags |= (p->flags & (1UL << PG_dirty)); 1668 1669 if (!ps->mask) 1670 for (ps = error_states;; ps++) 1671 if ((page_flags & ps->mask) == ps->res) 1672 break; 1673 return page_action(ps, p, pfn); 1674 } 1675 1676 static int try_to_split_thp_page(struct page *page) 1677 { 1678 int ret; 1679 1680 lock_page(page); 1681 ret = split_huge_page(page); 1682 unlock_page(page); 1683 1684 if (unlikely(ret)) 1685 put_page(page); 1686 1687 return ret; 1688 } 1689 1690 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn, 1691 struct address_space *mapping, pgoff_t index, int flags) 1692 { 1693 struct to_kill *tk; 1694 unsigned long size = 0; 1695 1696 list_for_each_entry(tk, to_kill, nd) 1697 if (tk->size_shift) 1698 size = max(size, 1UL << tk->size_shift); 1699 1700 if (size) { 1701 /* 1702 * Unmap the largest mapping to avoid breaking up device-dax 1703 * mappings which are constant size. The actual size of the 1704 * mapping being torn down is communicated in siginfo, see 1705 * kill_proc() 1706 */ 1707 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1); 1708 1709 unmap_mapping_range(mapping, start, size, 0); 1710 } 1711 1712 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags); 1713 } 1714 1715 /* 1716 * Only dev_pagemap pages get here, such as fsdax when the filesystem 1717 * either do not claim or fails to claim a hwpoison event, or devdax. 1718 * The fsdax pages are initialized per base page, and the devdax pages 1719 * could be initialized either as base pages, or as compound pages with 1720 * vmemmap optimization enabled. Devdax is simplistic in its dealing with 1721 * hwpoison, such that, if a subpage of a compound page is poisoned, 1722 * simply mark the compound head page is by far sufficient. 1723 */ 1724 static int mf_generic_kill_procs(unsigned long long pfn, int flags, 1725 struct dev_pagemap *pgmap) 1726 { 1727 struct folio *folio = pfn_folio(pfn); 1728 LIST_HEAD(to_kill); 1729 dax_entry_t cookie; 1730 int rc = 0; 1731 1732 /* 1733 * Prevent the inode from being freed while we are interrogating 1734 * the address_space, typically this would be handled by 1735 * lock_page(), but dax pages do not use the page lock. This 1736 * also prevents changes to the mapping of this pfn until 1737 * poison signaling is complete. 1738 */ 1739 cookie = dax_lock_folio(folio); 1740 if (!cookie) 1741 return -EBUSY; 1742 1743 if (hwpoison_filter(&folio->page)) { 1744 rc = -EOPNOTSUPP; 1745 goto unlock; 1746 } 1747 1748 switch (pgmap->type) { 1749 case MEMORY_DEVICE_PRIVATE: 1750 case MEMORY_DEVICE_COHERENT: 1751 /* 1752 * TODO: Handle device pages which may need coordination 1753 * with device-side memory. 1754 */ 1755 rc = -ENXIO; 1756 goto unlock; 1757 default: 1758 break; 1759 } 1760 1761 /* 1762 * Use this flag as an indication that the dax page has been 1763 * remapped UC to prevent speculative consumption of poison. 1764 */ 1765 SetPageHWPoison(&folio->page); 1766 1767 /* 1768 * Unlike System-RAM there is no possibility to swap in a 1769 * different physical page at a given virtual address, so all 1770 * userspace consumption of ZONE_DEVICE memory necessitates 1771 * SIGBUS (i.e. MF_MUST_KILL) 1772 */ 1773 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1774 collect_procs(folio, &folio->page, &to_kill, true); 1775 1776 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags); 1777 unlock: 1778 dax_unlock_folio(folio, cookie); 1779 return rc; 1780 } 1781 1782 #ifdef CONFIG_FS_DAX 1783 /** 1784 * mf_dax_kill_procs - Collect and kill processes who are using this file range 1785 * @mapping: address_space of the file in use 1786 * @index: start pgoff of the range within the file 1787 * @count: length of the range, in unit of PAGE_SIZE 1788 * @mf_flags: memory failure flags 1789 */ 1790 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 1791 unsigned long count, int mf_flags) 1792 { 1793 LIST_HEAD(to_kill); 1794 dax_entry_t cookie; 1795 struct page *page; 1796 size_t end = index + count; 1797 1798 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL; 1799 1800 for (; index < end; index++) { 1801 page = NULL; 1802 cookie = dax_lock_mapping_entry(mapping, index, &page); 1803 if (!cookie) 1804 return -EBUSY; 1805 if (!page) 1806 goto unlock; 1807 1808 SetPageHWPoison(page); 1809 1810 collect_procs_fsdax(page, mapping, index, &to_kill); 1811 unmap_and_kill(&to_kill, page_to_pfn(page), mapping, 1812 index, mf_flags); 1813 unlock: 1814 dax_unlock_mapping_entry(mapping, index, cookie); 1815 } 1816 return 0; 1817 } 1818 EXPORT_SYMBOL_GPL(mf_dax_kill_procs); 1819 #endif /* CONFIG_FS_DAX */ 1820 1821 #ifdef CONFIG_HUGETLB_PAGE 1822 1823 /* 1824 * Struct raw_hwp_page represents information about "raw error page", 1825 * constructing singly linked list from ->_hugetlb_hwpoison field of folio. 1826 */ 1827 struct raw_hwp_page { 1828 struct llist_node node; 1829 struct page *page; 1830 }; 1831 1832 static inline struct llist_head *raw_hwp_list_head(struct folio *folio) 1833 { 1834 return (struct llist_head *)&folio->_hugetlb_hwpoison; 1835 } 1836 1837 bool is_raw_hwpoison_page_in_hugepage(struct page *page) 1838 { 1839 struct llist_head *raw_hwp_head; 1840 struct raw_hwp_page *p; 1841 struct folio *folio = page_folio(page); 1842 bool ret = false; 1843 1844 if (!folio_test_hwpoison(folio)) 1845 return false; 1846 1847 if (!folio_test_hugetlb(folio)) 1848 return PageHWPoison(page); 1849 1850 /* 1851 * When RawHwpUnreliable is set, kernel lost track of which subpages 1852 * are HWPOISON. So return as if ALL subpages are HWPOISONed. 1853 */ 1854 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1855 return true; 1856 1857 mutex_lock(&mf_mutex); 1858 1859 raw_hwp_head = raw_hwp_list_head(folio); 1860 llist_for_each_entry(p, raw_hwp_head->first, node) { 1861 if (page == p->page) { 1862 ret = true; 1863 break; 1864 } 1865 } 1866 1867 mutex_unlock(&mf_mutex); 1868 1869 return ret; 1870 } 1871 1872 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag) 1873 { 1874 struct llist_node *head; 1875 struct raw_hwp_page *p, *next; 1876 unsigned long count = 0; 1877 1878 head = llist_del_all(raw_hwp_list_head(folio)); 1879 llist_for_each_entry_safe(p, next, head, node) { 1880 if (move_flag) 1881 SetPageHWPoison(p->page); 1882 else 1883 num_poisoned_pages_sub(page_to_pfn(p->page), 1); 1884 kfree(p); 1885 count++; 1886 } 1887 return count; 1888 } 1889 1890 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page) 1891 { 1892 struct llist_head *head; 1893 struct raw_hwp_page *raw_hwp; 1894 struct raw_hwp_page *p, *next; 1895 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0; 1896 1897 /* 1898 * Once the hwpoison hugepage has lost reliable raw error info, 1899 * there is little meaning to keep additional error info precisely, 1900 * so skip to add additional raw error info. 1901 */ 1902 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1903 return -EHWPOISON; 1904 head = raw_hwp_list_head(folio); 1905 llist_for_each_entry_safe(p, next, head->first, node) { 1906 if (p->page == page) 1907 return -EHWPOISON; 1908 } 1909 1910 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC); 1911 if (raw_hwp) { 1912 raw_hwp->page = page; 1913 llist_add(&raw_hwp->node, head); 1914 /* the first error event will be counted in action_result(). */ 1915 if (ret) 1916 num_poisoned_pages_inc(page_to_pfn(page)); 1917 } else { 1918 /* 1919 * Failed to save raw error info. We no longer trace all 1920 * hwpoisoned subpages, and we need refuse to free/dissolve 1921 * this hwpoisoned hugepage. 1922 */ 1923 folio_set_hugetlb_raw_hwp_unreliable(folio); 1924 /* 1925 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not 1926 * used any more, so free it. 1927 */ 1928 __folio_free_raw_hwp(folio, false); 1929 } 1930 return ret; 1931 } 1932 1933 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag) 1934 { 1935 /* 1936 * hugetlb_vmemmap_optimized hugepages can't be freed because struct 1937 * pages for tail pages are required but they don't exist. 1938 */ 1939 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio)) 1940 return 0; 1941 1942 /* 1943 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by 1944 * definition. 1945 */ 1946 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1947 return 0; 1948 1949 return __folio_free_raw_hwp(folio, move_flag); 1950 } 1951 1952 void folio_clear_hugetlb_hwpoison(struct folio *folio) 1953 { 1954 if (folio_test_hugetlb_raw_hwp_unreliable(folio)) 1955 return; 1956 if (folio_test_hugetlb_vmemmap_optimized(folio)) 1957 return; 1958 folio_clear_hwpoison(folio); 1959 folio_free_raw_hwp(folio, true); 1960 } 1961 1962 /* 1963 * Called from hugetlb code with hugetlb_lock held. 1964 * 1965 * Return values: 1966 * 0 - free hugepage 1967 * 1 - in-use hugepage 1968 * 2 - not a hugepage 1969 * -EBUSY - the hugepage is busy (try to retry) 1970 * -EHWPOISON - the hugepage is already hwpoisoned 1971 */ 1972 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 1973 bool *migratable_cleared) 1974 { 1975 struct page *page = pfn_to_page(pfn); 1976 struct folio *folio = page_folio(page); 1977 int ret = 2; /* fallback to normal page handling */ 1978 bool count_increased = false; 1979 1980 if (!folio_test_hugetlb(folio)) 1981 goto out; 1982 1983 if (flags & MF_COUNT_INCREASED) { 1984 ret = 1; 1985 count_increased = true; 1986 } else if (folio_test_hugetlb_freed(folio)) { 1987 ret = 0; 1988 } else if (folio_test_hugetlb_migratable(folio)) { 1989 ret = folio_try_get(folio); 1990 if (ret) 1991 count_increased = true; 1992 } else { 1993 ret = -EBUSY; 1994 if (!(flags & MF_NO_RETRY)) 1995 goto out; 1996 } 1997 1998 if (folio_set_hugetlb_hwpoison(folio, page)) { 1999 ret = -EHWPOISON; 2000 goto out; 2001 } 2002 2003 /* 2004 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them 2005 * from being migrated by memory hotremove. 2006 */ 2007 if (count_increased && folio_test_hugetlb_migratable(folio)) { 2008 folio_clear_hugetlb_migratable(folio); 2009 *migratable_cleared = true; 2010 } 2011 2012 return ret; 2013 out: 2014 if (count_increased) 2015 folio_put(folio); 2016 return ret; 2017 } 2018 2019 /* 2020 * Taking refcount of hugetlb pages needs extra care about race conditions 2021 * with basic operations like hugepage allocation/free/demotion. 2022 * So some of prechecks for hwpoison (pinning, and testing/setting 2023 * PageHWPoison) should be done in single hugetlb_lock range. 2024 */ 2025 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2026 { 2027 int res; 2028 struct page *p = pfn_to_page(pfn); 2029 struct folio *folio; 2030 unsigned long page_flags; 2031 bool migratable_cleared = false; 2032 2033 *hugetlb = 1; 2034 retry: 2035 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared); 2036 if (res == 2) { /* fallback to normal page handling */ 2037 *hugetlb = 0; 2038 return 0; 2039 } else if (res == -EHWPOISON) { 2040 pr_err("%#lx: already hardware poisoned\n", pfn); 2041 if (flags & MF_ACTION_REQUIRED) { 2042 folio = page_folio(p); 2043 res = kill_accessing_process(current, folio_pfn(folio), flags); 2044 } 2045 return res; 2046 } else if (res == -EBUSY) { 2047 if (!(flags & MF_NO_RETRY)) { 2048 flags |= MF_NO_RETRY; 2049 goto retry; 2050 } 2051 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2052 } 2053 2054 folio = page_folio(p); 2055 folio_lock(folio); 2056 2057 if (hwpoison_filter(p)) { 2058 folio_clear_hugetlb_hwpoison(folio); 2059 if (migratable_cleared) 2060 folio_set_hugetlb_migratable(folio); 2061 folio_unlock(folio); 2062 if (res == 1) 2063 folio_put(folio); 2064 return -EOPNOTSUPP; 2065 } 2066 2067 /* 2068 * Handling free hugepage. The possible race with hugepage allocation 2069 * or demotion can be prevented by PageHWPoison flag. 2070 */ 2071 if (res == 0) { 2072 folio_unlock(folio); 2073 if (__page_handle_poison(p) >= 0) { 2074 page_ref_inc(p); 2075 res = MF_RECOVERED; 2076 } else { 2077 res = MF_FAILED; 2078 } 2079 return action_result(pfn, MF_MSG_FREE_HUGE, res); 2080 } 2081 2082 page_flags = folio->flags; 2083 2084 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) { 2085 folio_unlock(folio); 2086 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2087 } 2088 2089 return identify_page_state(pfn, p, page_flags); 2090 } 2091 2092 #else 2093 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb) 2094 { 2095 return 0; 2096 } 2097 2098 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag) 2099 { 2100 return 0; 2101 } 2102 #endif /* CONFIG_HUGETLB_PAGE */ 2103 2104 /* Drop the extra refcount in case we come from madvise() */ 2105 static void put_ref_page(unsigned long pfn, int flags) 2106 { 2107 struct page *page; 2108 2109 if (!(flags & MF_COUNT_INCREASED)) 2110 return; 2111 2112 page = pfn_to_page(pfn); 2113 if (page) 2114 put_page(page); 2115 } 2116 2117 static int memory_failure_dev_pagemap(unsigned long pfn, int flags, 2118 struct dev_pagemap *pgmap) 2119 { 2120 int rc = -ENXIO; 2121 2122 /* device metadata space is not recoverable */ 2123 if (!pgmap_pfn_valid(pgmap, pfn)) 2124 goto out; 2125 2126 /* 2127 * Call driver's implementation to handle the memory failure, otherwise 2128 * fall back to generic handler. 2129 */ 2130 if (pgmap_has_memory_failure(pgmap)) { 2131 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags); 2132 /* 2133 * Fall back to generic handler too if operation is not 2134 * supported inside the driver/device/filesystem. 2135 */ 2136 if (rc != -EOPNOTSUPP) 2137 goto out; 2138 } 2139 2140 rc = mf_generic_kill_procs(pfn, flags, pgmap); 2141 out: 2142 /* drop pgmap ref acquired in caller */ 2143 put_dev_pagemap(pgmap); 2144 if (rc != -EOPNOTSUPP) 2145 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED); 2146 return rc; 2147 } 2148 2149 /** 2150 * memory_failure - Handle memory failure of a page. 2151 * @pfn: Page Number of the corrupted page 2152 * @flags: fine tune action taken 2153 * 2154 * This function is called by the low level machine check code 2155 * of an architecture when it detects hardware memory corruption 2156 * of a page. It tries its best to recover, which includes 2157 * dropping pages, killing processes etc. 2158 * 2159 * The function is primarily of use for corruptions that 2160 * happen outside the current execution context (e.g. when 2161 * detected by a background scrubber) 2162 * 2163 * Must run in process context (e.g. a work queue) with interrupts 2164 * enabled and no spinlocks held. 2165 * 2166 * Return: 0 for successfully handled the memory error, 2167 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, 2168 * < 0(except -EOPNOTSUPP) on failure. 2169 */ 2170 int memory_failure(unsigned long pfn, int flags) 2171 { 2172 struct page *p; 2173 struct page *hpage; 2174 struct dev_pagemap *pgmap; 2175 int res = 0; 2176 unsigned long page_flags; 2177 bool retry = true; 2178 int hugetlb = 0; 2179 2180 if (!sysctl_memory_failure_recovery) 2181 panic("Memory failure on page %lx", pfn); 2182 2183 mutex_lock(&mf_mutex); 2184 2185 if (!(flags & MF_SW_SIMULATED)) 2186 hw_memory_failure = true; 2187 2188 p = pfn_to_online_page(pfn); 2189 if (!p) { 2190 res = arch_memory_failure(pfn, flags); 2191 if (res == 0) 2192 goto unlock_mutex; 2193 2194 if (pfn_valid(pfn)) { 2195 pgmap = get_dev_pagemap(pfn, NULL); 2196 put_ref_page(pfn, flags); 2197 if (pgmap) { 2198 res = memory_failure_dev_pagemap(pfn, flags, 2199 pgmap); 2200 goto unlock_mutex; 2201 } 2202 } 2203 pr_err("%#lx: memory outside kernel control\n", pfn); 2204 res = -ENXIO; 2205 goto unlock_mutex; 2206 } 2207 2208 try_again: 2209 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb); 2210 if (hugetlb) 2211 goto unlock_mutex; 2212 2213 if (TestSetPageHWPoison(p)) { 2214 pr_err("%#lx: already hardware poisoned\n", pfn); 2215 res = -EHWPOISON; 2216 if (flags & MF_ACTION_REQUIRED) 2217 res = kill_accessing_process(current, pfn, flags); 2218 if (flags & MF_COUNT_INCREASED) 2219 put_page(p); 2220 goto unlock_mutex; 2221 } 2222 2223 /* 2224 * We need/can do nothing about count=0 pages. 2225 * 1) it's a free page, and therefore in safe hand: 2226 * check_new_page() will be the gate keeper. 2227 * 2) it's part of a non-compound high order page. 2228 * Implies some kernel user: cannot stop them from 2229 * R/W the page; let's pray that the page has been 2230 * used and will be freed some time later. 2231 * In fact it's dangerous to directly bump up page count from 0, 2232 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch. 2233 */ 2234 if (!(flags & MF_COUNT_INCREASED)) { 2235 res = get_hwpoison_page(p, flags); 2236 if (!res) { 2237 if (is_free_buddy_page(p)) { 2238 if (take_page_off_buddy(p)) { 2239 page_ref_inc(p); 2240 res = MF_RECOVERED; 2241 } else { 2242 /* We lost the race, try again */ 2243 if (retry) { 2244 ClearPageHWPoison(p); 2245 retry = false; 2246 goto try_again; 2247 } 2248 res = MF_FAILED; 2249 } 2250 res = action_result(pfn, MF_MSG_BUDDY, res); 2251 } else { 2252 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 2253 } 2254 goto unlock_mutex; 2255 } else if (res < 0) { 2256 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED); 2257 goto unlock_mutex; 2258 } 2259 } 2260 2261 hpage = compound_head(p); 2262 if (PageTransHuge(hpage)) { 2263 /* 2264 * The flag must be set after the refcount is bumped 2265 * otherwise it may race with THP split. 2266 * And the flag can't be set in get_hwpoison_page() since 2267 * it is called by soft offline too and it is just called 2268 * for !MF_COUNT_INCREASED. So here seems to be the best 2269 * place. 2270 * 2271 * Don't need care about the above error handling paths for 2272 * get_hwpoison_page() since they handle either free page 2273 * or unhandlable page. The refcount is bumped iff the 2274 * page is a valid handlable page. 2275 */ 2276 SetPageHasHWPoisoned(hpage); 2277 if (try_to_split_thp_page(p) < 0) { 2278 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED); 2279 goto unlock_mutex; 2280 } 2281 VM_BUG_ON_PAGE(!page_count(p), p); 2282 } 2283 2284 /* 2285 * We ignore non-LRU pages for good reasons. 2286 * - PG_locked is only well defined for LRU pages and a few others 2287 * - to avoid races with __SetPageLocked() 2288 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 2289 * The check (unnecessarily) ignores LRU pages being isolated and 2290 * walked by the page reclaim code, however that's not a big loss. 2291 */ 2292 shake_page(p); 2293 2294 lock_page(p); 2295 2296 /* 2297 * We're only intended to deal with the non-Compound page here. 2298 * However, the page could have changed compound pages due to 2299 * race window. If this happens, we could try again to hopefully 2300 * handle the page next round. 2301 */ 2302 if (PageCompound(p)) { 2303 if (retry) { 2304 ClearPageHWPoison(p); 2305 unlock_page(p); 2306 put_page(p); 2307 flags &= ~MF_COUNT_INCREASED; 2308 retry = false; 2309 goto try_again; 2310 } 2311 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 2312 goto unlock_page; 2313 } 2314 2315 /* 2316 * We use page flags to determine what action should be taken, but 2317 * the flags can be modified by the error containment action. One 2318 * example is an mlocked page, where PG_mlocked is cleared by 2319 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 2320 * correctly, we save a copy of the page flags at this time. 2321 */ 2322 page_flags = p->flags; 2323 2324 if (hwpoison_filter(p)) { 2325 ClearPageHWPoison(p); 2326 unlock_page(p); 2327 put_page(p); 2328 res = -EOPNOTSUPP; 2329 goto unlock_mutex; 2330 } 2331 2332 /* 2333 * __munlock_folio() may clear a writeback page's LRU flag without 2334 * page_lock. We need wait writeback completion for this page or it 2335 * may trigger vfs BUG while evict inode. 2336 */ 2337 if (!PageLRU(p) && !PageWriteback(p)) 2338 goto identify_page_state; 2339 2340 /* 2341 * It's very difficult to mess with pages currently under IO 2342 * and in many cases impossible, so we just avoid it here. 2343 */ 2344 wait_on_page_writeback(p); 2345 2346 /* 2347 * Now take care of user space mappings. 2348 * Abort on fail: __filemap_remove_folio() assumes unmapped page. 2349 */ 2350 if (!hwpoison_user_mappings(p, pfn, flags, p)) { 2351 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 2352 goto unlock_page; 2353 } 2354 2355 /* 2356 * Torn down by someone else? 2357 */ 2358 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 2359 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 2360 goto unlock_page; 2361 } 2362 2363 identify_page_state: 2364 res = identify_page_state(pfn, p, page_flags); 2365 mutex_unlock(&mf_mutex); 2366 return res; 2367 unlock_page: 2368 unlock_page(p); 2369 unlock_mutex: 2370 mutex_unlock(&mf_mutex); 2371 return res; 2372 } 2373 EXPORT_SYMBOL_GPL(memory_failure); 2374 2375 #define MEMORY_FAILURE_FIFO_ORDER 4 2376 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 2377 2378 struct memory_failure_entry { 2379 unsigned long pfn; 2380 int flags; 2381 }; 2382 2383 struct memory_failure_cpu { 2384 DECLARE_KFIFO(fifo, struct memory_failure_entry, 2385 MEMORY_FAILURE_FIFO_SIZE); 2386 spinlock_t lock; 2387 struct work_struct work; 2388 }; 2389 2390 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 2391 2392 /** 2393 * memory_failure_queue - Schedule handling memory failure of a page. 2394 * @pfn: Page Number of the corrupted page 2395 * @flags: Flags for memory failure handling 2396 * 2397 * This function is called by the low level hardware error handler 2398 * when it detects hardware memory corruption of a page. It schedules 2399 * the recovering of error page, including dropping pages, killing 2400 * processes etc. 2401 * 2402 * The function is primarily of use for corruptions that 2403 * happen outside the current execution context (e.g. when 2404 * detected by a background scrubber) 2405 * 2406 * Can run in IRQ context. 2407 */ 2408 void memory_failure_queue(unsigned long pfn, int flags) 2409 { 2410 struct memory_failure_cpu *mf_cpu; 2411 unsigned long proc_flags; 2412 struct memory_failure_entry entry = { 2413 .pfn = pfn, 2414 .flags = flags, 2415 }; 2416 2417 mf_cpu = &get_cpu_var(memory_failure_cpu); 2418 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2419 if (kfifo_put(&mf_cpu->fifo, entry)) 2420 schedule_work_on(smp_processor_id(), &mf_cpu->work); 2421 else 2422 pr_err("buffer overflow when queuing memory failure at %#lx\n", 2423 pfn); 2424 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2425 put_cpu_var(memory_failure_cpu); 2426 } 2427 EXPORT_SYMBOL_GPL(memory_failure_queue); 2428 2429 static void memory_failure_work_func(struct work_struct *work) 2430 { 2431 struct memory_failure_cpu *mf_cpu; 2432 struct memory_failure_entry entry = { 0, }; 2433 unsigned long proc_flags; 2434 int gotten; 2435 2436 mf_cpu = container_of(work, struct memory_failure_cpu, work); 2437 for (;;) { 2438 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 2439 gotten = kfifo_get(&mf_cpu->fifo, &entry); 2440 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 2441 if (!gotten) 2442 break; 2443 if (entry.flags & MF_SOFT_OFFLINE) 2444 soft_offline_page(entry.pfn, entry.flags); 2445 else 2446 memory_failure(entry.pfn, entry.flags); 2447 } 2448 } 2449 2450 /* 2451 * Process memory_failure work queued on the specified CPU. 2452 * Used to avoid return-to-userspace racing with the memory_failure workqueue. 2453 */ 2454 void memory_failure_queue_kick(int cpu) 2455 { 2456 struct memory_failure_cpu *mf_cpu; 2457 2458 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2459 cancel_work_sync(&mf_cpu->work); 2460 memory_failure_work_func(&mf_cpu->work); 2461 } 2462 2463 static int __init memory_failure_init(void) 2464 { 2465 struct memory_failure_cpu *mf_cpu; 2466 int cpu; 2467 2468 for_each_possible_cpu(cpu) { 2469 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 2470 spin_lock_init(&mf_cpu->lock); 2471 INIT_KFIFO(mf_cpu->fifo); 2472 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 2473 } 2474 2475 register_sysctl_init("vm", memory_failure_table); 2476 2477 return 0; 2478 } 2479 core_initcall(memory_failure_init); 2480 2481 #undef pr_fmt 2482 #define pr_fmt(fmt) "" fmt 2483 #define unpoison_pr_info(fmt, pfn, rs) \ 2484 ({ \ 2485 if (__ratelimit(rs)) \ 2486 pr_info(fmt, pfn); \ 2487 }) 2488 2489 /** 2490 * unpoison_memory - Unpoison a previously poisoned page 2491 * @pfn: Page number of the to be unpoisoned page 2492 * 2493 * Software-unpoison a page that has been poisoned by 2494 * memory_failure() earlier. 2495 * 2496 * This is only done on the software-level, so it only works 2497 * for linux injected failures, not real hardware failures 2498 * 2499 * Returns 0 for success, otherwise -errno. 2500 */ 2501 int unpoison_memory(unsigned long pfn) 2502 { 2503 struct folio *folio; 2504 struct page *p; 2505 int ret = -EBUSY, ghp; 2506 unsigned long count = 1; 2507 bool huge = false; 2508 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 2509 DEFAULT_RATELIMIT_BURST); 2510 2511 if (!pfn_valid(pfn)) 2512 return -ENXIO; 2513 2514 p = pfn_to_page(pfn); 2515 folio = page_folio(p); 2516 2517 mutex_lock(&mf_mutex); 2518 2519 if (hw_memory_failure) { 2520 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n", 2521 pfn, &unpoison_rs); 2522 ret = -EOPNOTSUPP; 2523 goto unlock_mutex; 2524 } 2525 2526 if (!PageHWPoison(p)) { 2527 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 2528 pfn, &unpoison_rs); 2529 goto unlock_mutex; 2530 } 2531 2532 if (folio_ref_count(folio) > 1) { 2533 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 2534 pfn, &unpoison_rs); 2535 goto unlock_mutex; 2536 } 2537 2538 if (folio_test_slab(folio) || PageTable(&folio->page) || 2539 folio_test_reserved(folio) || PageOffline(&folio->page)) 2540 goto unlock_mutex; 2541 2542 /* 2543 * Note that folio->_mapcount is overloaded in SLAB, so the simple test 2544 * in folio_mapped() has to be done after folio_test_slab() is checked. 2545 */ 2546 if (folio_mapped(folio)) { 2547 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 2548 pfn, &unpoison_rs); 2549 goto unlock_mutex; 2550 } 2551 2552 if (folio_mapping(folio)) { 2553 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 2554 pfn, &unpoison_rs); 2555 goto unlock_mutex; 2556 } 2557 2558 ghp = get_hwpoison_page(p, MF_UNPOISON); 2559 if (!ghp) { 2560 if (PageHuge(p)) { 2561 huge = true; 2562 count = folio_free_raw_hwp(folio, false); 2563 if (count == 0) 2564 goto unlock_mutex; 2565 } 2566 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY; 2567 } else if (ghp < 0) { 2568 if (ghp == -EHWPOISON) { 2569 ret = put_page_back_buddy(p) ? 0 : -EBUSY; 2570 } else { 2571 ret = ghp; 2572 unpoison_pr_info("Unpoison: failed to grab page %#lx\n", 2573 pfn, &unpoison_rs); 2574 } 2575 } else { 2576 if (PageHuge(p)) { 2577 huge = true; 2578 count = folio_free_raw_hwp(folio, false); 2579 if (count == 0) { 2580 folio_put(folio); 2581 goto unlock_mutex; 2582 } 2583 } 2584 2585 folio_put(folio); 2586 if (TestClearPageHWPoison(p)) { 2587 folio_put(folio); 2588 ret = 0; 2589 } 2590 } 2591 2592 unlock_mutex: 2593 mutex_unlock(&mf_mutex); 2594 if (!ret) { 2595 if (!huge) 2596 num_poisoned_pages_sub(pfn, 1); 2597 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 2598 page_to_pfn(p), &unpoison_rs); 2599 } 2600 return ret; 2601 } 2602 EXPORT_SYMBOL(unpoison_memory); 2603 2604 static bool isolate_page(struct page *page, struct list_head *pagelist) 2605 { 2606 bool isolated = false; 2607 2608 if (PageHuge(page)) { 2609 isolated = isolate_hugetlb(page_folio(page), pagelist); 2610 } else { 2611 bool lru = !__PageMovable(page); 2612 2613 if (lru) 2614 isolated = isolate_lru_page(page); 2615 else 2616 isolated = isolate_movable_page(page, 2617 ISOLATE_UNEVICTABLE); 2618 2619 if (isolated) { 2620 list_add(&page->lru, pagelist); 2621 if (lru) 2622 inc_node_page_state(page, NR_ISOLATED_ANON + 2623 page_is_file_lru(page)); 2624 } 2625 } 2626 2627 /* 2628 * If we succeed to isolate the page, we grabbed another refcount on 2629 * the page, so we can safely drop the one we got from get_any_page(). 2630 * If we failed to isolate the page, it means that we cannot go further 2631 * and we will return an error, so drop the reference we got from 2632 * get_any_page() as well. 2633 */ 2634 put_page(page); 2635 return isolated; 2636 } 2637 2638 /* 2639 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages. 2640 * If the page is a non-dirty unmapped page-cache page, it simply invalidates. 2641 * If the page is mapped, it migrates the contents over. 2642 */ 2643 static int soft_offline_in_use_page(struct page *page) 2644 { 2645 long ret = 0; 2646 unsigned long pfn = page_to_pfn(page); 2647 struct page *hpage = compound_head(page); 2648 char const *msg_page[] = {"page", "hugepage"}; 2649 bool huge = PageHuge(page); 2650 LIST_HEAD(pagelist); 2651 struct migration_target_control mtc = { 2652 .nid = NUMA_NO_NODE, 2653 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 2654 }; 2655 2656 if (!huge && PageTransHuge(hpage)) { 2657 if (try_to_split_thp_page(page)) { 2658 pr_info("soft offline: %#lx: thp split failed\n", pfn); 2659 return -EBUSY; 2660 } 2661 hpage = page; 2662 } 2663 2664 lock_page(page); 2665 if (!huge) 2666 wait_on_page_writeback(page); 2667 if (PageHWPoison(page)) { 2668 unlock_page(page); 2669 put_page(page); 2670 pr_info("soft offline: %#lx page already poisoned\n", pfn); 2671 return 0; 2672 } 2673 2674 if (!huge && PageLRU(page) && !PageSwapCache(page)) 2675 /* 2676 * Try to invalidate first. This should work for 2677 * non dirty unmapped page cache pages. 2678 */ 2679 ret = invalidate_inode_page(page); 2680 unlock_page(page); 2681 2682 if (ret) { 2683 pr_info("soft_offline: %#lx: invalidated\n", pfn); 2684 page_handle_poison(page, false, true); 2685 return 0; 2686 } 2687 2688 if (isolate_page(hpage, &pagelist)) { 2689 ret = migrate_pages(&pagelist, alloc_migration_target, NULL, 2690 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL); 2691 if (!ret) { 2692 bool release = !huge; 2693 2694 if (!page_handle_poison(page, huge, release)) 2695 ret = -EBUSY; 2696 } else { 2697 if (!list_empty(&pagelist)) 2698 putback_movable_pages(&pagelist); 2699 2700 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n", 2701 pfn, msg_page[huge], ret, &page->flags); 2702 if (ret > 0) 2703 ret = -EBUSY; 2704 } 2705 } else { 2706 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n", 2707 pfn, msg_page[huge], page_count(page), &page->flags); 2708 ret = -EBUSY; 2709 } 2710 return ret; 2711 } 2712 2713 /** 2714 * soft_offline_page - Soft offline a page. 2715 * @pfn: pfn to soft-offline 2716 * @flags: flags. Same as memory_failure(). 2717 * 2718 * Returns 0 on success 2719 * -EOPNOTSUPP for hwpoison_filter() filtered the error event 2720 * < 0 otherwise negated errno. 2721 * 2722 * Soft offline a page, by migration or invalidation, 2723 * without killing anything. This is for the case when 2724 * a page is not corrupted yet (so it's still valid to access), 2725 * but has had a number of corrected errors and is better taken 2726 * out. 2727 * 2728 * The actual policy on when to do that is maintained by 2729 * user space. 2730 * 2731 * This should never impact any application or cause data loss, 2732 * however it might take some time. 2733 * 2734 * This is not a 100% solution for all memory, but tries to be 2735 * ``good enough'' for the majority of memory. 2736 */ 2737 int soft_offline_page(unsigned long pfn, int flags) 2738 { 2739 int ret; 2740 bool try_again = true; 2741 struct page *page; 2742 2743 if (!pfn_valid(pfn)) { 2744 WARN_ON_ONCE(flags & MF_COUNT_INCREASED); 2745 return -ENXIO; 2746 } 2747 2748 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */ 2749 page = pfn_to_online_page(pfn); 2750 if (!page) { 2751 put_ref_page(pfn, flags); 2752 return -EIO; 2753 } 2754 2755 mutex_lock(&mf_mutex); 2756 2757 if (PageHWPoison(page)) { 2758 pr_info("%s: %#lx page already poisoned\n", __func__, pfn); 2759 put_ref_page(pfn, flags); 2760 mutex_unlock(&mf_mutex); 2761 return 0; 2762 } 2763 2764 retry: 2765 get_online_mems(); 2766 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE); 2767 put_online_mems(); 2768 2769 if (hwpoison_filter(page)) { 2770 if (ret > 0) 2771 put_page(page); 2772 2773 mutex_unlock(&mf_mutex); 2774 return -EOPNOTSUPP; 2775 } 2776 2777 if (ret > 0) { 2778 ret = soft_offline_in_use_page(page); 2779 } else if (ret == 0) { 2780 if (!page_handle_poison(page, true, false)) { 2781 if (try_again) { 2782 try_again = false; 2783 flags &= ~MF_COUNT_INCREASED; 2784 goto retry; 2785 } 2786 ret = -EBUSY; 2787 } 2788 } 2789 2790 mutex_unlock(&mf_mutex); 2791 2792 return ret; 2793 } 2794