xref: /openbmc/linux/mm/memory-failure.c (revision e8e0929d)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a 2bit ECC memory or cache
11  * failure.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronous to other VM
15  * users, because memory failures could happen anytime and anywhere,
16  * possibly violating some of their assumptions. This is why this code
17  * has to be extremely careful. Generally it tries to use normal locking
18  * rules, as in get the standard locks, even if that means the
19  * error handling takes potentially a long time.
20  *
21  * The operation to map back from RMAP chains to processes has to walk
22  * the complete process list and has non linear complexity with the number
23  * mappings. In short it can be quite slow. But since memory corruptions
24  * are rare we hope to get away with this.
25  */
26 
27 /*
28  * Notebook:
29  * - hugetlb needs more code
30  * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31  * - pass bad pages to kdump next kernel
32  */
33 #define DEBUG 1		/* remove me in 2.6.34 */
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/page-flags.h>
37 #include <linux/sched.h>
38 #include <linux/rmap.h>
39 #include <linux/pagemap.h>
40 #include <linux/swap.h>
41 #include <linux/backing-dev.h>
42 #include "internal.h"
43 
44 int sysctl_memory_failure_early_kill __read_mostly = 0;
45 
46 int sysctl_memory_failure_recovery __read_mostly = 1;
47 
48 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
49 
50 /*
51  * Send all the processes who have the page mapped an ``action optional''
52  * signal.
53  */
54 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
55 			unsigned long pfn)
56 {
57 	struct siginfo si;
58 	int ret;
59 
60 	printk(KERN_ERR
61 		"MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
62 		pfn, t->comm, t->pid);
63 	si.si_signo = SIGBUS;
64 	si.si_errno = 0;
65 	si.si_code = BUS_MCEERR_AO;
66 	si.si_addr = (void *)addr;
67 #ifdef __ARCH_SI_TRAPNO
68 	si.si_trapno = trapno;
69 #endif
70 	si.si_addr_lsb = PAGE_SHIFT;
71 	/*
72 	 * Don't use force here, it's convenient if the signal
73 	 * can be temporarily blocked.
74 	 * This could cause a loop when the user sets SIGBUS
75 	 * to SIG_IGN, but hopefully noone will do that?
76 	 */
77 	ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
78 	if (ret < 0)
79 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
80 		       t->comm, t->pid, ret);
81 	return ret;
82 }
83 
84 /*
85  * Kill all processes that have a poisoned page mapped and then isolate
86  * the page.
87  *
88  * General strategy:
89  * Find all processes having the page mapped and kill them.
90  * But we keep a page reference around so that the page is not
91  * actually freed yet.
92  * Then stash the page away
93  *
94  * There's no convenient way to get back to mapped processes
95  * from the VMAs. So do a brute-force search over all
96  * running processes.
97  *
98  * Remember that machine checks are not common (or rather
99  * if they are common you have other problems), so this shouldn't
100  * be a performance issue.
101  *
102  * Also there are some races possible while we get from the
103  * error detection to actually handle it.
104  */
105 
106 struct to_kill {
107 	struct list_head nd;
108 	struct task_struct *tsk;
109 	unsigned long addr;
110 	unsigned addr_valid:1;
111 };
112 
113 /*
114  * Failure handling: if we can't find or can't kill a process there's
115  * not much we can do.	We just print a message and ignore otherwise.
116  */
117 
118 /*
119  * Schedule a process for later kill.
120  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
121  * TBD would GFP_NOIO be enough?
122  */
123 static void add_to_kill(struct task_struct *tsk, struct page *p,
124 		       struct vm_area_struct *vma,
125 		       struct list_head *to_kill,
126 		       struct to_kill **tkc)
127 {
128 	struct to_kill *tk;
129 
130 	if (*tkc) {
131 		tk = *tkc;
132 		*tkc = NULL;
133 	} else {
134 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
135 		if (!tk) {
136 			printk(KERN_ERR
137 		"MCE: Out of memory while machine check handling\n");
138 			return;
139 		}
140 	}
141 	tk->addr = page_address_in_vma(p, vma);
142 	tk->addr_valid = 1;
143 
144 	/*
145 	 * In theory we don't have to kill when the page was
146 	 * munmaped. But it could be also a mremap. Since that's
147 	 * likely very rare kill anyways just out of paranoia, but use
148 	 * a SIGKILL because the error is not contained anymore.
149 	 */
150 	if (tk->addr == -EFAULT) {
151 		pr_debug("MCE: Unable to find user space address %lx in %s\n",
152 			page_to_pfn(p), tsk->comm);
153 		tk->addr_valid = 0;
154 	}
155 	get_task_struct(tsk);
156 	tk->tsk = tsk;
157 	list_add_tail(&tk->nd, to_kill);
158 }
159 
160 /*
161  * Kill the processes that have been collected earlier.
162  *
163  * Only do anything when DOIT is set, otherwise just free the list
164  * (this is used for clean pages which do not need killing)
165  * Also when FAIL is set do a force kill because something went
166  * wrong earlier.
167  */
168 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
169 			  int fail, unsigned long pfn)
170 {
171 	struct to_kill *tk, *next;
172 
173 	list_for_each_entry_safe (tk, next, to_kill, nd) {
174 		if (doit) {
175 			/*
176 			 * In case something went wrong with munmaping
177 			 * make sure the process doesn't catch the
178 			 * signal and then access the memory. Just kill it.
179 			 * the signal handlers
180 			 */
181 			if (fail || tk->addr_valid == 0) {
182 				printk(KERN_ERR
183 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
184 					pfn, tk->tsk->comm, tk->tsk->pid);
185 				force_sig(SIGKILL, tk->tsk);
186 			}
187 
188 			/*
189 			 * In theory the process could have mapped
190 			 * something else on the address in-between. We could
191 			 * check for that, but we need to tell the
192 			 * process anyways.
193 			 */
194 			else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
195 					      pfn) < 0)
196 				printk(KERN_ERR
197 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
198 					pfn, tk->tsk->comm, tk->tsk->pid);
199 		}
200 		put_task_struct(tk->tsk);
201 		kfree(tk);
202 	}
203 }
204 
205 static int task_early_kill(struct task_struct *tsk)
206 {
207 	if (!tsk->mm)
208 		return 0;
209 	if (tsk->flags & PF_MCE_PROCESS)
210 		return !!(tsk->flags & PF_MCE_EARLY);
211 	return sysctl_memory_failure_early_kill;
212 }
213 
214 /*
215  * Collect processes when the error hit an anonymous page.
216  */
217 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
218 			      struct to_kill **tkc)
219 {
220 	struct vm_area_struct *vma;
221 	struct task_struct *tsk;
222 	struct anon_vma *av;
223 
224 	read_lock(&tasklist_lock);
225 	av = page_lock_anon_vma(page);
226 	if (av == NULL)	/* Not actually mapped anymore */
227 		goto out;
228 	for_each_process (tsk) {
229 		if (!task_early_kill(tsk))
230 			continue;
231 		list_for_each_entry (vma, &av->head, anon_vma_node) {
232 			if (!page_mapped_in_vma(page, vma))
233 				continue;
234 			if (vma->vm_mm == tsk->mm)
235 				add_to_kill(tsk, page, vma, to_kill, tkc);
236 		}
237 	}
238 	page_unlock_anon_vma(av);
239 out:
240 	read_unlock(&tasklist_lock);
241 }
242 
243 /*
244  * Collect processes when the error hit a file mapped page.
245  */
246 static void collect_procs_file(struct page *page, struct list_head *to_kill,
247 			      struct to_kill **tkc)
248 {
249 	struct vm_area_struct *vma;
250 	struct task_struct *tsk;
251 	struct prio_tree_iter iter;
252 	struct address_space *mapping = page->mapping;
253 
254 	/*
255 	 * A note on the locking order between the two locks.
256 	 * We don't rely on this particular order.
257 	 * If you have some other code that needs a different order
258 	 * feel free to switch them around. Or add a reverse link
259 	 * from mm_struct to task_struct, then this could be all
260 	 * done without taking tasklist_lock and looping over all tasks.
261 	 */
262 
263 	read_lock(&tasklist_lock);
264 	spin_lock(&mapping->i_mmap_lock);
265 	for_each_process(tsk) {
266 		pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
267 
268 		if (!task_early_kill(tsk))
269 			continue;
270 
271 		vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
272 				      pgoff) {
273 			/*
274 			 * Send early kill signal to tasks where a vma covers
275 			 * the page but the corrupted page is not necessarily
276 			 * mapped it in its pte.
277 			 * Assume applications who requested early kill want
278 			 * to be informed of all such data corruptions.
279 			 */
280 			if (vma->vm_mm == tsk->mm)
281 				add_to_kill(tsk, page, vma, to_kill, tkc);
282 		}
283 	}
284 	spin_unlock(&mapping->i_mmap_lock);
285 	read_unlock(&tasklist_lock);
286 }
287 
288 /*
289  * Collect the processes who have the corrupted page mapped to kill.
290  * This is done in two steps for locking reasons.
291  * First preallocate one tokill structure outside the spin locks,
292  * so that we can kill at least one process reasonably reliable.
293  */
294 static void collect_procs(struct page *page, struct list_head *tokill)
295 {
296 	struct to_kill *tk;
297 
298 	if (!page->mapping)
299 		return;
300 
301 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
302 	if (!tk)
303 		return;
304 	if (PageAnon(page))
305 		collect_procs_anon(page, tokill, &tk);
306 	else
307 		collect_procs_file(page, tokill, &tk);
308 	kfree(tk);
309 }
310 
311 /*
312  * Error handlers for various types of pages.
313  */
314 
315 enum outcome {
316 	FAILED,		/* Error handling failed */
317 	DELAYED,	/* Will be handled later */
318 	IGNORED,	/* Error safely ignored */
319 	RECOVERED,	/* Successfully recovered */
320 };
321 
322 static const char *action_name[] = {
323 	[FAILED] = "Failed",
324 	[DELAYED] = "Delayed",
325 	[IGNORED] = "Ignored",
326 	[RECOVERED] = "Recovered",
327 };
328 
329 /*
330  * Error hit kernel page.
331  * Do nothing, try to be lucky and not touch this instead. For a few cases we
332  * could be more sophisticated.
333  */
334 static int me_kernel(struct page *p, unsigned long pfn)
335 {
336 	return DELAYED;
337 }
338 
339 /*
340  * Already poisoned page.
341  */
342 static int me_ignore(struct page *p, unsigned long pfn)
343 {
344 	return IGNORED;
345 }
346 
347 /*
348  * Page in unknown state. Do nothing.
349  */
350 static int me_unknown(struct page *p, unsigned long pfn)
351 {
352 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
353 	return FAILED;
354 }
355 
356 /*
357  * Free memory
358  */
359 static int me_free(struct page *p, unsigned long pfn)
360 {
361 	return DELAYED;
362 }
363 
364 /*
365  * Clean (or cleaned) page cache page.
366  */
367 static int me_pagecache_clean(struct page *p, unsigned long pfn)
368 {
369 	int err;
370 	int ret = FAILED;
371 	struct address_space *mapping;
372 
373 	if (!isolate_lru_page(p))
374 		page_cache_release(p);
375 
376 	/*
377 	 * For anonymous pages we're done the only reference left
378 	 * should be the one m_f() holds.
379 	 */
380 	if (PageAnon(p))
381 		return RECOVERED;
382 
383 	/*
384 	 * Now truncate the page in the page cache. This is really
385 	 * more like a "temporary hole punch"
386 	 * Don't do this for block devices when someone else
387 	 * has a reference, because it could be file system metadata
388 	 * and that's not safe to truncate.
389 	 */
390 	mapping = page_mapping(p);
391 	if (!mapping) {
392 		/*
393 		 * Page has been teared down in the meanwhile
394 		 */
395 		return FAILED;
396 	}
397 
398 	/*
399 	 * Truncation is a bit tricky. Enable it per file system for now.
400 	 *
401 	 * Open: to take i_mutex or not for this? Right now we don't.
402 	 */
403 	if (mapping->a_ops->error_remove_page) {
404 		err = mapping->a_ops->error_remove_page(mapping, p);
405 		if (err != 0) {
406 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
407 					pfn, err);
408 		} else if (page_has_private(p) &&
409 				!try_to_release_page(p, GFP_NOIO)) {
410 			pr_debug("MCE %#lx: failed to release buffers\n", pfn);
411 		} else {
412 			ret = RECOVERED;
413 		}
414 	} else {
415 		/*
416 		 * If the file system doesn't support it just invalidate
417 		 * This fails on dirty or anything with private pages
418 		 */
419 		if (invalidate_inode_page(p))
420 			ret = RECOVERED;
421 		else
422 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
423 				pfn);
424 	}
425 	return ret;
426 }
427 
428 /*
429  * Dirty cache page page
430  * Issues: when the error hit a hole page the error is not properly
431  * propagated.
432  */
433 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
434 {
435 	struct address_space *mapping = page_mapping(p);
436 
437 	SetPageError(p);
438 	/* TBD: print more information about the file. */
439 	if (mapping) {
440 		/*
441 		 * IO error will be reported by write(), fsync(), etc.
442 		 * who check the mapping.
443 		 * This way the application knows that something went
444 		 * wrong with its dirty file data.
445 		 *
446 		 * There's one open issue:
447 		 *
448 		 * The EIO will be only reported on the next IO
449 		 * operation and then cleared through the IO map.
450 		 * Normally Linux has two mechanisms to pass IO error
451 		 * first through the AS_EIO flag in the address space
452 		 * and then through the PageError flag in the page.
453 		 * Since we drop pages on memory failure handling the
454 		 * only mechanism open to use is through AS_AIO.
455 		 *
456 		 * This has the disadvantage that it gets cleared on
457 		 * the first operation that returns an error, while
458 		 * the PageError bit is more sticky and only cleared
459 		 * when the page is reread or dropped.  If an
460 		 * application assumes it will always get error on
461 		 * fsync, but does other operations on the fd before
462 		 * and the page is dropped inbetween then the error
463 		 * will not be properly reported.
464 		 *
465 		 * This can already happen even without hwpoisoned
466 		 * pages: first on metadata IO errors (which only
467 		 * report through AS_EIO) or when the page is dropped
468 		 * at the wrong time.
469 		 *
470 		 * So right now we assume that the application DTRT on
471 		 * the first EIO, but we're not worse than other parts
472 		 * of the kernel.
473 		 */
474 		mapping_set_error(mapping, EIO);
475 	}
476 
477 	return me_pagecache_clean(p, pfn);
478 }
479 
480 /*
481  * Clean and dirty swap cache.
482  *
483  * Dirty swap cache page is tricky to handle. The page could live both in page
484  * cache and swap cache(ie. page is freshly swapped in). So it could be
485  * referenced concurrently by 2 types of PTEs:
486  * normal PTEs and swap PTEs. We try to handle them consistently by calling
487  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
488  * and then
489  *      - clear dirty bit to prevent IO
490  *      - remove from LRU
491  *      - but keep in the swap cache, so that when we return to it on
492  *        a later page fault, we know the application is accessing
493  *        corrupted data and shall be killed (we installed simple
494  *        interception code in do_swap_page to catch it).
495  *
496  * Clean swap cache pages can be directly isolated. A later page fault will
497  * bring in the known good data from disk.
498  */
499 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
500 {
501 	int ret = FAILED;
502 
503 	ClearPageDirty(p);
504 	/* Trigger EIO in shmem: */
505 	ClearPageUptodate(p);
506 
507 	if (!isolate_lru_page(p)) {
508 		page_cache_release(p);
509 		ret = DELAYED;
510 	}
511 
512 	return ret;
513 }
514 
515 static int me_swapcache_clean(struct page *p, unsigned long pfn)
516 {
517 	int ret = FAILED;
518 
519 	if (!isolate_lru_page(p)) {
520 		page_cache_release(p);
521 		ret = RECOVERED;
522 	}
523 	delete_from_swap_cache(p);
524 	return ret;
525 }
526 
527 /*
528  * Huge pages. Needs work.
529  * Issues:
530  * No rmap support so we cannot find the original mapper. In theory could walk
531  * all MMs and look for the mappings, but that would be non atomic and racy.
532  * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
533  * like just walking the current process and hoping it has it mapped (that
534  * should be usually true for the common "shared database cache" case)
535  * Should handle free huge pages and dequeue them too, but this needs to
536  * handle huge page accounting correctly.
537  */
538 static int me_huge_page(struct page *p, unsigned long pfn)
539 {
540 	return FAILED;
541 }
542 
543 /*
544  * Various page states we can handle.
545  *
546  * A page state is defined by its current page->flags bits.
547  * The table matches them in order and calls the right handler.
548  *
549  * This is quite tricky because we can access page at any time
550  * in its live cycle, so all accesses have to be extremly careful.
551  *
552  * This is not complete. More states could be added.
553  * For any missing state don't attempt recovery.
554  */
555 
556 #define dirty		(1UL << PG_dirty)
557 #define sc		(1UL << PG_swapcache)
558 #define unevict		(1UL << PG_unevictable)
559 #define mlock		(1UL << PG_mlocked)
560 #define writeback	(1UL << PG_writeback)
561 #define lru		(1UL << PG_lru)
562 #define swapbacked	(1UL << PG_swapbacked)
563 #define head		(1UL << PG_head)
564 #define tail		(1UL << PG_tail)
565 #define compound	(1UL << PG_compound)
566 #define slab		(1UL << PG_slab)
567 #define buddy		(1UL << PG_buddy)
568 #define reserved	(1UL << PG_reserved)
569 
570 static struct page_state {
571 	unsigned long mask;
572 	unsigned long res;
573 	char *msg;
574 	int (*action)(struct page *p, unsigned long pfn);
575 } error_states[] = {
576 	{ reserved,	reserved,	"reserved kernel",	me_ignore },
577 	{ buddy,	buddy,		"free kernel",	me_free },
578 
579 	/*
580 	 * Could in theory check if slab page is free or if we can drop
581 	 * currently unused objects without touching them. But just
582 	 * treat it as standard kernel for now.
583 	 */
584 	{ slab,		slab,		"kernel slab",	me_kernel },
585 
586 #ifdef CONFIG_PAGEFLAGS_EXTENDED
587 	{ head,		head,		"huge",		me_huge_page },
588 	{ tail,		tail,		"huge",		me_huge_page },
589 #else
590 	{ compound,	compound,	"huge",		me_huge_page },
591 #endif
592 
593 	{ sc|dirty,	sc|dirty,	"swapcache",	me_swapcache_dirty },
594 	{ sc|dirty,	sc,		"swapcache",	me_swapcache_clean },
595 
596 	{ unevict|dirty, unevict|dirty,	"unevictable LRU", me_pagecache_dirty},
597 	{ unevict,	unevict,	"unevictable LRU", me_pagecache_clean},
598 
599 #ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
600 	{ mlock|dirty,	mlock|dirty,	"mlocked LRU",	me_pagecache_dirty },
601 	{ mlock,	mlock,		"mlocked LRU",	me_pagecache_clean },
602 #endif
603 
604 	{ lru|dirty,	lru|dirty,	"LRU",		me_pagecache_dirty },
605 	{ lru|dirty,	lru,		"clean LRU",	me_pagecache_clean },
606 	{ swapbacked,	swapbacked,	"anonymous",	me_pagecache_clean },
607 
608 	/*
609 	 * Catchall entry: must be at end.
610 	 */
611 	{ 0,		0,		"unknown page state",	me_unknown },
612 };
613 
614 #undef lru
615 
616 static void action_result(unsigned long pfn, char *msg, int result)
617 {
618 	struct page *page = NULL;
619 	if (pfn_valid(pfn))
620 		page = pfn_to_page(pfn);
621 
622 	printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
623 		pfn,
624 		page && PageDirty(page) ? "dirty " : "",
625 		msg, action_name[result]);
626 }
627 
628 static int page_action(struct page_state *ps, struct page *p,
629 			unsigned long pfn, int ref)
630 {
631 	int result;
632 
633 	result = ps->action(p, pfn);
634 	action_result(pfn, ps->msg, result);
635 	if (page_count(p) != 1 + ref)
636 		printk(KERN_ERR
637 		       "MCE %#lx: %s page still referenced by %d users\n",
638 		       pfn, ps->msg, page_count(p) - 1);
639 
640 	/* Could do more checks here if page looks ok */
641 	/*
642 	 * Could adjust zone counters here to correct for the missing page.
643 	 */
644 
645 	return result == RECOVERED ? 0 : -EBUSY;
646 }
647 
648 #define N_UNMAP_TRIES 5
649 
650 /*
651  * Do all that is necessary to remove user space mappings. Unmap
652  * the pages and send SIGBUS to the processes if the data was dirty.
653  */
654 static void hwpoison_user_mappings(struct page *p, unsigned long pfn,
655 				  int trapno)
656 {
657 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
658 	struct address_space *mapping;
659 	LIST_HEAD(tokill);
660 	int ret;
661 	int i;
662 	int kill = 1;
663 
664 	if (PageReserved(p) || PageCompound(p) || PageSlab(p))
665 		return;
666 
667 	if (!PageLRU(p))
668 		lru_add_drain_all();
669 
670 	/*
671 	 * This check implies we don't kill processes if their pages
672 	 * are in the swap cache early. Those are always late kills.
673 	 */
674 	if (!page_mapped(p))
675 		return;
676 
677 	if (PageSwapCache(p)) {
678 		printk(KERN_ERR
679 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
680 		ttu |= TTU_IGNORE_HWPOISON;
681 	}
682 
683 	/*
684 	 * Propagate the dirty bit from PTEs to struct page first, because we
685 	 * need this to decide if we should kill or just drop the page.
686 	 */
687 	mapping = page_mapping(p);
688 	if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
689 		if (page_mkclean(p)) {
690 			SetPageDirty(p);
691 		} else {
692 			kill = 0;
693 			ttu |= TTU_IGNORE_HWPOISON;
694 			printk(KERN_INFO
695 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
696 				pfn);
697 		}
698 	}
699 
700 	/*
701 	 * First collect all the processes that have the page
702 	 * mapped in dirty form.  This has to be done before try_to_unmap,
703 	 * because ttu takes the rmap data structures down.
704 	 *
705 	 * Error handling: We ignore errors here because
706 	 * there's nothing that can be done.
707 	 */
708 	if (kill)
709 		collect_procs(p, &tokill);
710 
711 	/*
712 	 * try_to_unmap can fail temporarily due to races.
713 	 * Try a few times (RED-PEN better strategy?)
714 	 */
715 	for (i = 0; i < N_UNMAP_TRIES; i++) {
716 		ret = try_to_unmap(p, ttu);
717 		if (ret == SWAP_SUCCESS)
718 			break;
719 		pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn,  ret);
720 	}
721 
722 	if (ret != SWAP_SUCCESS)
723 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
724 				pfn, page_mapcount(p));
725 
726 	/*
727 	 * Now that the dirty bit has been propagated to the
728 	 * struct page and all unmaps done we can decide if
729 	 * killing is needed or not.  Only kill when the page
730 	 * was dirty, otherwise the tokill list is merely
731 	 * freed.  When there was a problem unmapping earlier
732 	 * use a more force-full uncatchable kill to prevent
733 	 * any accesses to the poisoned memory.
734 	 */
735 	kill_procs_ao(&tokill, !!PageDirty(p), trapno,
736 		      ret != SWAP_SUCCESS, pfn);
737 }
738 
739 int __memory_failure(unsigned long pfn, int trapno, int ref)
740 {
741 	struct page_state *ps;
742 	struct page *p;
743 	int res;
744 
745 	if (!sysctl_memory_failure_recovery)
746 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
747 
748 	if (!pfn_valid(pfn)) {
749 		action_result(pfn, "memory outside kernel control", IGNORED);
750 		return -EIO;
751 	}
752 
753 	p = pfn_to_page(pfn);
754 	if (TestSetPageHWPoison(p)) {
755 		action_result(pfn, "already hardware poisoned", IGNORED);
756 		return 0;
757 	}
758 
759 	atomic_long_add(1, &mce_bad_pages);
760 
761 	/*
762 	 * We need/can do nothing about count=0 pages.
763 	 * 1) it's a free page, and therefore in safe hand:
764 	 *    prep_new_page() will be the gate keeper.
765 	 * 2) it's part of a non-compound high order page.
766 	 *    Implies some kernel user: cannot stop them from
767 	 *    R/W the page; let's pray that the page has been
768 	 *    used and will be freed some time later.
769 	 * In fact it's dangerous to directly bump up page count from 0,
770 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
771 	 */
772 	if (!get_page_unless_zero(compound_head(p))) {
773 		action_result(pfn, "free or high order kernel", IGNORED);
774 		return PageBuddy(compound_head(p)) ? 0 : -EBUSY;
775 	}
776 
777 	/*
778 	 * Lock the page and wait for writeback to finish.
779 	 * It's very difficult to mess with pages currently under IO
780 	 * and in many cases impossible, so we just avoid it here.
781 	 */
782 	lock_page_nosync(p);
783 	wait_on_page_writeback(p);
784 
785 	/*
786 	 * Now take care of user space mappings.
787 	 */
788 	hwpoison_user_mappings(p, pfn, trapno);
789 
790 	/*
791 	 * Torn down by someone else?
792 	 */
793 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
794 		action_result(pfn, "already truncated LRU", IGNORED);
795 		res = 0;
796 		goto out;
797 	}
798 
799 	res = -EBUSY;
800 	for (ps = error_states;; ps++) {
801 		if ((p->flags & ps->mask) == ps->res) {
802 			res = page_action(ps, p, pfn, ref);
803 			break;
804 		}
805 	}
806 out:
807 	unlock_page(p);
808 	return res;
809 }
810 EXPORT_SYMBOL_GPL(__memory_failure);
811 
812 /**
813  * memory_failure - Handle memory failure of a page.
814  * @pfn: Page Number of the corrupted page
815  * @trapno: Trap number reported in the signal to user space.
816  *
817  * This function is called by the low level machine check code
818  * of an architecture when it detects hardware memory corruption
819  * of a page. It tries its best to recover, which includes
820  * dropping pages, killing processes etc.
821  *
822  * The function is primarily of use for corruptions that
823  * happen outside the current execution context (e.g. when
824  * detected by a background scrubber)
825  *
826  * Must run in process context (e.g. a work queue) with interrupts
827  * enabled and no spinlocks hold.
828  */
829 void memory_failure(unsigned long pfn, int trapno)
830 {
831 	__memory_failure(pfn, trapno, 0);
832 }
833