1 /* 2 * Copyright (C) 2008, 2009 Intel Corporation 3 * Authors: Andi Kleen, Fengguang Wu 4 * 5 * This software may be redistributed and/or modified under the terms of 6 * the GNU General Public License ("GPL") version 2 only as published by the 7 * Free Software Foundation. 8 * 9 * High level machine check handler. Handles pages reported by the 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache 11 * failure. 12 * 13 * In addition there is a "soft offline" entry point that allows stop using 14 * not-yet-corrupted-by-suspicious pages without killing anything. 15 * 16 * Handles page cache pages in various states. The tricky part 17 * here is that we can access any page asynchronously in respect to 18 * other VM users, because memory failures could happen anytime and 19 * anywhere. This could violate some of their assumptions. This is why 20 * this code has to be extremely careful. Generally it tries to use 21 * normal locking rules, as in get the standard locks, even if that means 22 * the error handling takes potentially a long time. 23 * 24 * It can be very tempting to add handling for obscure cases here. 25 * In general any code for handling new cases should only be added iff: 26 * - You know how to test it. 27 * - You have a test that can be added to mce-test 28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/ 29 * - The case actually shows up as a frequent (top 10) page state in 30 * tools/vm/page-types when running a real workload. 31 * 32 * There are several operations here with exponential complexity because 33 * of unsuitable VM data structures. For example the operation to map back 34 * from RMAP chains to processes has to walk the complete process list and 35 * has non linear complexity with the number. But since memory corruptions 36 * are rare we hope to get away with this. This avoids impacting the core 37 * VM. 38 */ 39 #include <linux/kernel.h> 40 #include <linux/mm.h> 41 #include <linux/page-flags.h> 42 #include <linux/kernel-page-flags.h> 43 #include <linux/sched/signal.h> 44 #include <linux/sched/task.h> 45 #include <linux/ksm.h> 46 #include <linux/rmap.h> 47 #include <linux/export.h> 48 #include <linux/pagemap.h> 49 #include <linux/swap.h> 50 #include <linux/backing-dev.h> 51 #include <linux/migrate.h> 52 #include <linux/suspend.h> 53 #include <linux/slab.h> 54 #include <linux/swapops.h> 55 #include <linux/hugetlb.h> 56 #include <linux/memory_hotplug.h> 57 #include <linux/mm_inline.h> 58 #include <linux/kfifo.h> 59 #include <linux/ratelimit.h> 60 #include "internal.h" 61 #include "ras/ras_event.h" 62 63 int sysctl_memory_failure_early_kill __read_mostly = 0; 64 65 int sysctl_memory_failure_recovery __read_mostly = 1; 66 67 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0); 68 69 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE) 70 71 u32 hwpoison_filter_enable = 0; 72 u32 hwpoison_filter_dev_major = ~0U; 73 u32 hwpoison_filter_dev_minor = ~0U; 74 u64 hwpoison_filter_flags_mask; 75 u64 hwpoison_filter_flags_value; 76 EXPORT_SYMBOL_GPL(hwpoison_filter_enable); 77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major); 78 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor); 79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask); 80 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value); 81 82 static int hwpoison_filter_dev(struct page *p) 83 { 84 struct address_space *mapping; 85 dev_t dev; 86 87 if (hwpoison_filter_dev_major == ~0U && 88 hwpoison_filter_dev_minor == ~0U) 89 return 0; 90 91 /* 92 * page_mapping() does not accept slab pages. 93 */ 94 if (PageSlab(p)) 95 return -EINVAL; 96 97 mapping = page_mapping(p); 98 if (mapping == NULL || mapping->host == NULL) 99 return -EINVAL; 100 101 dev = mapping->host->i_sb->s_dev; 102 if (hwpoison_filter_dev_major != ~0U && 103 hwpoison_filter_dev_major != MAJOR(dev)) 104 return -EINVAL; 105 if (hwpoison_filter_dev_minor != ~0U && 106 hwpoison_filter_dev_minor != MINOR(dev)) 107 return -EINVAL; 108 109 return 0; 110 } 111 112 static int hwpoison_filter_flags(struct page *p) 113 { 114 if (!hwpoison_filter_flags_mask) 115 return 0; 116 117 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) == 118 hwpoison_filter_flags_value) 119 return 0; 120 else 121 return -EINVAL; 122 } 123 124 /* 125 * This allows stress tests to limit test scope to a collection of tasks 126 * by putting them under some memcg. This prevents killing unrelated/important 127 * processes such as /sbin/init. Note that the target task may share clean 128 * pages with init (eg. libc text), which is harmless. If the target task 129 * share _dirty_ pages with another task B, the test scheme must make sure B 130 * is also included in the memcg. At last, due to race conditions this filter 131 * can only guarantee that the page either belongs to the memcg tasks, or is 132 * a freed page. 133 */ 134 #ifdef CONFIG_MEMCG 135 u64 hwpoison_filter_memcg; 136 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg); 137 static int hwpoison_filter_task(struct page *p) 138 { 139 if (!hwpoison_filter_memcg) 140 return 0; 141 142 if (page_cgroup_ino(p) != hwpoison_filter_memcg) 143 return -EINVAL; 144 145 return 0; 146 } 147 #else 148 static int hwpoison_filter_task(struct page *p) { return 0; } 149 #endif 150 151 int hwpoison_filter(struct page *p) 152 { 153 if (!hwpoison_filter_enable) 154 return 0; 155 156 if (hwpoison_filter_dev(p)) 157 return -EINVAL; 158 159 if (hwpoison_filter_flags(p)) 160 return -EINVAL; 161 162 if (hwpoison_filter_task(p)) 163 return -EINVAL; 164 165 return 0; 166 } 167 #else 168 int hwpoison_filter(struct page *p) 169 { 170 return 0; 171 } 172 #endif 173 174 EXPORT_SYMBOL_GPL(hwpoison_filter); 175 176 /* 177 * Send all the processes who have the page mapped a signal. 178 * ``action optional'' if they are not immediately affected by the error 179 * ``action required'' if error happened in current execution context 180 */ 181 static int kill_proc(struct task_struct *t, unsigned long addr, 182 unsigned long pfn, struct page *page, int flags) 183 { 184 short addr_lsb; 185 int ret; 186 187 pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n", 188 pfn, t->comm, t->pid); 189 addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT; 190 191 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) { 192 ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)addr, 193 addr_lsb, current); 194 } else { 195 /* 196 * Don't use force here, it's convenient if the signal 197 * can be temporarily blocked. 198 * This could cause a loop when the user sets SIGBUS 199 * to SIG_IGN, but hopefully no one will do that? 200 */ 201 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)addr, 202 addr_lsb, t); /* synchronous? */ 203 } 204 if (ret < 0) 205 pr_info("Memory failure: Error sending signal to %s:%d: %d\n", 206 t->comm, t->pid, ret); 207 return ret; 208 } 209 210 /* 211 * When a unknown page type is encountered drain as many buffers as possible 212 * in the hope to turn the page into a LRU or free page, which we can handle. 213 */ 214 void shake_page(struct page *p, int access) 215 { 216 if (PageHuge(p)) 217 return; 218 219 if (!PageSlab(p)) { 220 lru_add_drain_all(); 221 if (PageLRU(p)) 222 return; 223 drain_all_pages(page_zone(p)); 224 if (PageLRU(p) || is_free_buddy_page(p)) 225 return; 226 } 227 228 /* 229 * Only call shrink_node_slabs here (which would also shrink 230 * other caches) if access is not potentially fatal. 231 */ 232 if (access) 233 drop_slab_node(page_to_nid(p)); 234 } 235 EXPORT_SYMBOL_GPL(shake_page); 236 237 /* 238 * Kill all processes that have a poisoned page mapped and then isolate 239 * the page. 240 * 241 * General strategy: 242 * Find all processes having the page mapped and kill them. 243 * But we keep a page reference around so that the page is not 244 * actually freed yet. 245 * Then stash the page away 246 * 247 * There's no convenient way to get back to mapped processes 248 * from the VMAs. So do a brute-force search over all 249 * running processes. 250 * 251 * Remember that machine checks are not common (or rather 252 * if they are common you have other problems), so this shouldn't 253 * be a performance issue. 254 * 255 * Also there are some races possible while we get from the 256 * error detection to actually handle it. 257 */ 258 259 struct to_kill { 260 struct list_head nd; 261 struct task_struct *tsk; 262 unsigned long addr; 263 char addr_valid; 264 }; 265 266 /* 267 * Failure handling: if we can't find or can't kill a process there's 268 * not much we can do. We just print a message and ignore otherwise. 269 */ 270 271 /* 272 * Schedule a process for later kill. 273 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM. 274 * TBD would GFP_NOIO be enough? 275 */ 276 static void add_to_kill(struct task_struct *tsk, struct page *p, 277 struct vm_area_struct *vma, 278 struct list_head *to_kill, 279 struct to_kill **tkc) 280 { 281 struct to_kill *tk; 282 283 if (*tkc) { 284 tk = *tkc; 285 *tkc = NULL; 286 } else { 287 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC); 288 if (!tk) { 289 pr_err("Memory failure: Out of memory while machine check handling\n"); 290 return; 291 } 292 } 293 tk->addr = page_address_in_vma(p, vma); 294 tk->addr_valid = 1; 295 296 /* 297 * In theory we don't have to kill when the page was 298 * munmaped. But it could be also a mremap. Since that's 299 * likely very rare kill anyways just out of paranoia, but use 300 * a SIGKILL because the error is not contained anymore. 301 */ 302 if (tk->addr == -EFAULT) { 303 pr_info("Memory failure: Unable to find user space address %lx in %s\n", 304 page_to_pfn(p), tsk->comm); 305 tk->addr_valid = 0; 306 } 307 get_task_struct(tsk); 308 tk->tsk = tsk; 309 list_add_tail(&tk->nd, to_kill); 310 } 311 312 /* 313 * Kill the processes that have been collected earlier. 314 * 315 * Only do anything when DOIT is set, otherwise just free the list 316 * (this is used for clean pages which do not need killing) 317 * Also when FAIL is set do a force kill because something went 318 * wrong earlier. 319 */ 320 static void kill_procs(struct list_head *to_kill, int forcekill, 321 bool fail, struct page *page, unsigned long pfn, 322 int flags) 323 { 324 struct to_kill *tk, *next; 325 326 list_for_each_entry_safe (tk, next, to_kill, nd) { 327 if (forcekill) { 328 /* 329 * In case something went wrong with munmapping 330 * make sure the process doesn't catch the 331 * signal and then access the memory. Just kill it. 332 */ 333 if (fail || tk->addr_valid == 0) { 334 pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n", 335 pfn, tk->tsk->comm, tk->tsk->pid); 336 force_sig(SIGKILL, tk->tsk); 337 } 338 339 /* 340 * In theory the process could have mapped 341 * something else on the address in-between. We could 342 * check for that, but we need to tell the 343 * process anyways. 344 */ 345 else if (kill_proc(tk->tsk, tk->addr, 346 pfn, page, flags) < 0) 347 pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n", 348 pfn, tk->tsk->comm, tk->tsk->pid); 349 } 350 put_task_struct(tk->tsk); 351 kfree(tk); 352 } 353 } 354 355 /* 356 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO) 357 * on behalf of the thread group. Return task_struct of the (first found) 358 * dedicated thread if found, and return NULL otherwise. 359 * 360 * We already hold read_lock(&tasklist_lock) in the caller, so we don't 361 * have to call rcu_read_lock/unlock() in this function. 362 */ 363 static struct task_struct *find_early_kill_thread(struct task_struct *tsk) 364 { 365 struct task_struct *t; 366 367 for_each_thread(tsk, t) 368 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY)) 369 return t; 370 return NULL; 371 } 372 373 /* 374 * Determine whether a given process is "early kill" process which expects 375 * to be signaled when some page under the process is hwpoisoned. 376 * Return task_struct of the dedicated thread (main thread unless explicitly 377 * specified) if the process is "early kill," and otherwise returns NULL. 378 */ 379 static struct task_struct *task_early_kill(struct task_struct *tsk, 380 int force_early) 381 { 382 struct task_struct *t; 383 if (!tsk->mm) 384 return NULL; 385 if (force_early) 386 return tsk; 387 t = find_early_kill_thread(tsk); 388 if (t) 389 return t; 390 if (sysctl_memory_failure_early_kill) 391 return tsk; 392 return NULL; 393 } 394 395 /* 396 * Collect processes when the error hit an anonymous page. 397 */ 398 static void collect_procs_anon(struct page *page, struct list_head *to_kill, 399 struct to_kill **tkc, int force_early) 400 { 401 struct vm_area_struct *vma; 402 struct task_struct *tsk; 403 struct anon_vma *av; 404 pgoff_t pgoff; 405 406 av = page_lock_anon_vma_read(page); 407 if (av == NULL) /* Not actually mapped anymore */ 408 return; 409 410 pgoff = page_to_pgoff(page); 411 read_lock(&tasklist_lock); 412 for_each_process (tsk) { 413 struct anon_vma_chain *vmac; 414 struct task_struct *t = task_early_kill(tsk, force_early); 415 416 if (!t) 417 continue; 418 anon_vma_interval_tree_foreach(vmac, &av->rb_root, 419 pgoff, pgoff) { 420 vma = vmac->vma; 421 if (!page_mapped_in_vma(page, vma)) 422 continue; 423 if (vma->vm_mm == t->mm) 424 add_to_kill(t, page, vma, to_kill, tkc); 425 } 426 } 427 read_unlock(&tasklist_lock); 428 page_unlock_anon_vma_read(av); 429 } 430 431 /* 432 * Collect processes when the error hit a file mapped page. 433 */ 434 static void collect_procs_file(struct page *page, struct list_head *to_kill, 435 struct to_kill **tkc, int force_early) 436 { 437 struct vm_area_struct *vma; 438 struct task_struct *tsk; 439 struct address_space *mapping = page->mapping; 440 441 i_mmap_lock_read(mapping); 442 read_lock(&tasklist_lock); 443 for_each_process(tsk) { 444 pgoff_t pgoff = page_to_pgoff(page); 445 struct task_struct *t = task_early_kill(tsk, force_early); 446 447 if (!t) 448 continue; 449 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, 450 pgoff) { 451 /* 452 * Send early kill signal to tasks where a vma covers 453 * the page but the corrupted page is not necessarily 454 * mapped it in its pte. 455 * Assume applications who requested early kill want 456 * to be informed of all such data corruptions. 457 */ 458 if (vma->vm_mm == t->mm) 459 add_to_kill(t, page, vma, to_kill, tkc); 460 } 461 } 462 read_unlock(&tasklist_lock); 463 i_mmap_unlock_read(mapping); 464 } 465 466 /* 467 * Collect the processes who have the corrupted page mapped to kill. 468 * This is done in two steps for locking reasons. 469 * First preallocate one tokill structure outside the spin locks, 470 * so that we can kill at least one process reasonably reliable. 471 */ 472 static void collect_procs(struct page *page, struct list_head *tokill, 473 int force_early) 474 { 475 struct to_kill *tk; 476 477 if (!page->mapping) 478 return; 479 480 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO); 481 if (!tk) 482 return; 483 if (PageAnon(page)) 484 collect_procs_anon(page, tokill, &tk, force_early); 485 else 486 collect_procs_file(page, tokill, &tk, force_early); 487 kfree(tk); 488 } 489 490 static const char *action_name[] = { 491 [MF_IGNORED] = "Ignored", 492 [MF_FAILED] = "Failed", 493 [MF_DELAYED] = "Delayed", 494 [MF_RECOVERED] = "Recovered", 495 }; 496 497 static const char * const action_page_types[] = { 498 [MF_MSG_KERNEL] = "reserved kernel page", 499 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page", 500 [MF_MSG_SLAB] = "kernel slab page", 501 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking", 502 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned", 503 [MF_MSG_HUGE] = "huge page", 504 [MF_MSG_FREE_HUGE] = "free huge page", 505 [MF_MSG_UNMAP_FAILED] = "unmapping failed page", 506 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page", 507 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page", 508 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page", 509 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page", 510 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page", 511 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page", 512 [MF_MSG_DIRTY_LRU] = "dirty LRU page", 513 [MF_MSG_CLEAN_LRU] = "clean LRU page", 514 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page", 515 [MF_MSG_BUDDY] = "free buddy page", 516 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)", 517 [MF_MSG_UNKNOWN] = "unknown page", 518 }; 519 520 /* 521 * XXX: It is possible that a page is isolated from LRU cache, 522 * and then kept in swap cache or failed to remove from page cache. 523 * The page count will stop it from being freed by unpoison. 524 * Stress tests should be aware of this memory leak problem. 525 */ 526 static int delete_from_lru_cache(struct page *p) 527 { 528 if (!isolate_lru_page(p)) { 529 /* 530 * Clear sensible page flags, so that the buddy system won't 531 * complain when the page is unpoison-and-freed. 532 */ 533 ClearPageActive(p); 534 ClearPageUnevictable(p); 535 536 /* 537 * Poisoned page might never drop its ref count to 0 so we have 538 * to uncharge it manually from its memcg. 539 */ 540 mem_cgroup_uncharge(p); 541 542 /* 543 * drop the page count elevated by isolate_lru_page() 544 */ 545 put_page(p); 546 return 0; 547 } 548 return -EIO; 549 } 550 551 static int truncate_error_page(struct page *p, unsigned long pfn, 552 struct address_space *mapping) 553 { 554 int ret = MF_FAILED; 555 556 if (mapping->a_ops->error_remove_page) { 557 int err = mapping->a_ops->error_remove_page(mapping, p); 558 559 if (err != 0) { 560 pr_info("Memory failure: %#lx: Failed to punch page: %d\n", 561 pfn, err); 562 } else if (page_has_private(p) && 563 !try_to_release_page(p, GFP_NOIO)) { 564 pr_info("Memory failure: %#lx: failed to release buffers\n", 565 pfn); 566 } else { 567 ret = MF_RECOVERED; 568 } 569 } else { 570 /* 571 * If the file system doesn't support it just invalidate 572 * This fails on dirty or anything with private pages 573 */ 574 if (invalidate_inode_page(p)) 575 ret = MF_RECOVERED; 576 else 577 pr_info("Memory failure: %#lx: Failed to invalidate\n", 578 pfn); 579 } 580 581 return ret; 582 } 583 584 /* 585 * Error hit kernel page. 586 * Do nothing, try to be lucky and not touch this instead. For a few cases we 587 * could be more sophisticated. 588 */ 589 static int me_kernel(struct page *p, unsigned long pfn) 590 { 591 return MF_IGNORED; 592 } 593 594 /* 595 * Page in unknown state. Do nothing. 596 */ 597 static int me_unknown(struct page *p, unsigned long pfn) 598 { 599 pr_err("Memory failure: %#lx: Unknown page state\n", pfn); 600 return MF_FAILED; 601 } 602 603 /* 604 * Clean (or cleaned) page cache page. 605 */ 606 static int me_pagecache_clean(struct page *p, unsigned long pfn) 607 { 608 struct address_space *mapping; 609 610 delete_from_lru_cache(p); 611 612 /* 613 * For anonymous pages we're done the only reference left 614 * should be the one m_f() holds. 615 */ 616 if (PageAnon(p)) 617 return MF_RECOVERED; 618 619 /* 620 * Now truncate the page in the page cache. This is really 621 * more like a "temporary hole punch" 622 * Don't do this for block devices when someone else 623 * has a reference, because it could be file system metadata 624 * and that's not safe to truncate. 625 */ 626 mapping = page_mapping(p); 627 if (!mapping) { 628 /* 629 * Page has been teared down in the meanwhile 630 */ 631 return MF_FAILED; 632 } 633 634 /* 635 * Truncation is a bit tricky. Enable it per file system for now. 636 * 637 * Open: to take i_mutex or not for this? Right now we don't. 638 */ 639 return truncate_error_page(p, pfn, mapping); 640 } 641 642 /* 643 * Dirty pagecache page 644 * Issues: when the error hit a hole page the error is not properly 645 * propagated. 646 */ 647 static int me_pagecache_dirty(struct page *p, unsigned long pfn) 648 { 649 struct address_space *mapping = page_mapping(p); 650 651 SetPageError(p); 652 /* TBD: print more information about the file. */ 653 if (mapping) { 654 /* 655 * IO error will be reported by write(), fsync(), etc. 656 * who check the mapping. 657 * This way the application knows that something went 658 * wrong with its dirty file data. 659 * 660 * There's one open issue: 661 * 662 * The EIO will be only reported on the next IO 663 * operation and then cleared through the IO map. 664 * Normally Linux has two mechanisms to pass IO error 665 * first through the AS_EIO flag in the address space 666 * and then through the PageError flag in the page. 667 * Since we drop pages on memory failure handling the 668 * only mechanism open to use is through AS_AIO. 669 * 670 * This has the disadvantage that it gets cleared on 671 * the first operation that returns an error, while 672 * the PageError bit is more sticky and only cleared 673 * when the page is reread or dropped. If an 674 * application assumes it will always get error on 675 * fsync, but does other operations on the fd before 676 * and the page is dropped between then the error 677 * will not be properly reported. 678 * 679 * This can already happen even without hwpoisoned 680 * pages: first on metadata IO errors (which only 681 * report through AS_EIO) or when the page is dropped 682 * at the wrong time. 683 * 684 * So right now we assume that the application DTRT on 685 * the first EIO, but we're not worse than other parts 686 * of the kernel. 687 */ 688 mapping_set_error(mapping, -EIO); 689 } 690 691 return me_pagecache_clean(p, pfn); 692 } 693 694 /* 695 * Clean and dirty swap cache. 696 * 697 * Dirty swap cache page is tricky to handle. The page could live both in page 698 * cache and swap cache(ie. page is freshly swapped in). So it could be 699 * referenced concurrently by 2 types of PTEs: 700 * normal PTEs and swap PTEs. We try to handle them consistently by calling 701 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs, 702 * and then 703 * - clear dirty bit to prevent IO 704 * - remove from LRU 705 * - but keep in the swap cache, so that when we return to it on 706 * a later page fault, we know the application is accessing 707 * corrupted data and shall be killed (we installed simple 708 * interception code in do_swap_page to catch it). 709 * 710 * Clean swap cache pages can be directly isolated. A later page fault will 711 * bring in the known good data from disk. 712 */ 713 static int me_swapcache_dirty(struct page *p, unsigned long pfn) 714 { 715 ClearPageDirty(p); 716 /* Trigger EIO in shmem: */ 717 ClearPageUptodate(p); 718 719 if (!delete_from_lru_cache(p)) 720 return MF_DELAYED; 721 else 722 return MF_FAILED; 723 } 724 725 static int me_swapcache_clean(struct page *p, unsigned long pfn) 726 { 727 delete_from_swap_cache(p); 728 729 if (!delete_from_lru_cache(p)) 730 return MF_RECOVERED; 731 else 732 return MF_FAILED; 733 } 734 735 /* 736 * Huge pages. Needs work. 737 * Issues: 738 * - Error on hugepage is contained in hugepage unit (not in raw page unit.) 739 * To narrow down kill region to one page, we need to break up pmd. 740 */ 741 static int me_huge_page(struct page *p, unsigned long pfn) 742 { 743 int res = 0; 744 struct page *hpage = compound_head(p); 745 struct address_space *mapping; 746 747 if (!PageHuge(hpage)) 748 return MF_DELAYED; 749 750 mapping = page_mapping(hpage); 751 if (mapping) { 752 res = truncate_error_page(hpage, pfn, mapping); 753 } else { 754 unlock_page(hpage); 755 /* 756 * migration entry prevents later access on error anonymous 757 * hugepage, so we can free and dissolve it into buddy to 758 * save healthy subpages. 759 */ 760 if (PageAnon(hpage)) 761 put_page(hpage); 762 dissolve_free_huge_page(p); 763 res = MF_RECOVERED; 764 lock_page(hpage); 765 } 766 767 return res; 768 } 769 770 /* 771 * Various page states we can handle. 772 * 773 * A page state is defined by its current page->flags bits. 774 * The table matches them in order and calls the right handler. 775 * 776 * This is quite tricky because we can access page at any time 777 * in its live cycle, so all accesses have to be extremely careful. 778 * 779 * This is not complete. More states could be added. 780 * For any missing state don't attempt recovery. 781 */ 782 783 #define dirty (1UL << PG_dirty) 784 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked)) 785 #define unevict (1UL << PG_unevictable) 786 #define mlock (1UL << PG_mlocked) 787 #define writeback (1UL << PG_writeback) 788 #define lru (1UL << PG_lru) 789 #define head (1UL << PG_head) 790 #define slab (1UL << PG_slab) 791 #define reserved (1UL << PG_reserved) 792 793 static struct page_state { 794 unsigned long mask; 795 unsigned long res; 796 enum mf_action_page_type type; 797 int (*action)(struct page *p, unsigned long pfn); 798 } error_states[] = { 799 { reserved, reserved, MF_MSG_KERNEL, me_kernel }, 800 /* 801 * free pages are specially detected outside this table: 802 * PG_buddy pages only make a small fraction of all free pages. 803 */ 804 805 /* 806 * Could in theory check if slab page is free or if we can drop 807 * currently unused objects without touching them. But just 808 * treat it as standard kernel for now. 809 */ 810 { slab, slab, MF_MSG_SLAB, me_kernel }, 811 812 { head, head, MF_MSG_HUGE, me_huge_page }, 813 814 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty }, 815 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean }, 816 817 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty }, 818 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean }, 819 820 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty }, 821 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean }, 822 823 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty }, 824 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean }, 825 826 /* 827 * Catchall entry: must be at end. 828 */ 829 { 0, 0, MF_MSG_UNKNOWN, me_unknown }, 830 }; 831 832 #undef dirty 833 #undef sc 834 #undef unevict 835 #undef mlock 836 #undef writeback 837 #undef lru 838 #undef head 839 #undef slab 840 #undef reserved 841 842 /* 843 * "Dirty/Clean" indication is not 100% accurate due to the possibility of 844 * setting PG_dirty outside page lock. See also comment above set_page_dirty(). 845 */ 846 static void action_result(unsigned long pfn, enum mf_action_page_type type, 847 enum mf_result result) 848 { 849 trace_memory_failure_event(pfn, type, result); 850 851 pr_err("Memory failure: %#lx: recovery action for %s: %s\n", 852 pfn, action_page_types[type], action_name[result]); 853 } 854 855 static int page_action(struct page_state *ps, struct page *p, 856 unsigned long pfn) 857 { 858 int result; 859 int count; 860 861 result = ps->action(p, pfn); 862 863 count = page_count(p) - 1; 864 if (ps->action == me_swapcache_dirty && result == MF_DELAYED) 865 count--; 866 if (count > 0) { 867 pr_err("Memory failure: %#lx: %s still referenced by %d users\n", 868 pfn, action_page_types[ps->type], count); 869 result = MF_FAILED; 870 } 871 action_result(pfn, ps->type, result); 872 873 /* Could do more checks here if page looks ok */ 874 /* 875 * Could adjust zone counters here to correct for the missing page. 876 */ 877 878 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY; 879 } 880 881 /** 882 * get_hwpoison_page() - Get refcount for memory error handling: 883 * @page: raw error page (hit by memory error) 884 * 885 * Return: return 0 if failed to grab the refcount, otherwise true (some 886 * non-zero value.) 887 */ 888 int get_hwpoison_page(struct page *page) 889 { 890 struct page *head = compound_head(page); 891 892 if (!PageHuge(head) && PageTransHuge(head)) { 893 /* 894 * Non anonymous thp exists only in allocation/free time. We 895 * can't handle such a case correctly, so let's give it up. 896 * This should be better than triggering BUG_ON when kernel 897 * tries to touch the "partially handled" page. 898 */ 899 if (!PageAnon(head)) { 900 pr_err("Memory failure: %#lx: non anonymous thp\n", 901 page_to_pfn(page)); 902 return 0; 903 } 904 } 905 906 if (get_page_unless_zero(head)) { 907 if (head == compound_head(page)) 908 return 1; 909 910 pr_info("Memory failure: %#lx cannot catch tail\n", 911 page_to_pfn(page)); 912 put_page(head); 913 } 914 915 return 0; 916 } 917 EXPORT_SYMBOL_GPL(get_hwpoison_page); 918 919 /* 920 * Do all that is necessary to remove user space mappings. Unmap 921 * the pages and send SIGBUS to the processes if the data was dirty. 922 */ 923 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn, 924 int flags, struct page **hpagep) 925 { 926 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS; 927 struct address_space *mapping; 928 LIST_HEAD(tokill); 929 bool unmap_success; 930 int kill = 1, forcekill; 931 struct page *hpage = *hpagep; 932 bool mlocked = PageMlocked(hpage); 933 934 /* 935 * Here we are interested only in user-mapped pages, so skip any 936 * other types of pages. 937 */ 938 if (PageReserved(p) || PageSlab(p)) 939 return true; 940 if (!(PageLRU(hpage) || PageHuge(p))) 941 return true; 942 943 /* 944 * This check implies we don't kill processes if their pages 945 * are in the swap cache early. Those are always late kills. 946 */ 947 if (!page_mapped(hpage)) 948 return true; 949 950 if (PageKsm(p)) { 951 pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn); 952 return false; 953 } 954 955 if (PageSwapCache(p)) { 956 pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n", 957 pfn); 958 ttu |= TTU_IGNORE_HWPOISON; 959 } 960 961 /* 962 * Propagate the dirty bit from PTEs to struct page first, because we 963 * need this to decide if we should kill or just drop the page. 964 * XXX: the dirty test could be racy: set_page_dirty() may not always 965 * be called inside page lock (it's recommended but not enforced). 966 */ 967 mapping = page_mapping(hpage); 968 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping && 969 mapping_cap_writeback_dirty(mapping)) { 970 if (page_mkclean(hpage)) { 971 SetPageDirty(hpage); 972 } else { 973 kill = 0; 974 ttu |= TTU_IGNORE_HWPOISON; 975 pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n", 976 pfn); 977 } 978 } 979 980 /* 981 * First collect all the processes that have the page 982 * mapped in dirty form. This has to be done before try_to_unmap, 983 * because ttu takes the rmap data structures down. 984 * 985 * Error handling: We ignore errors here because 986 * there's nothing that can be done. 987 */ 988 if (kill) 989 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED); 990 991 unmap_success = try_to_unmap(hpage, ttu); 992 if (!unmap_success) 993 pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n", 994 pfn, page_mapcount(hpage)); 995 996 /* 997 * try_to_unmap() might put mlocked page in lru cache, so call 998 * shake_page() again to ensure that it's flushed. 999 */ 1000 if (mlocked) 1001 shake_page(hpage, 0); 1002 1003 /* 1004 * Now that the dirty bit has been propagated to the 1005 * struct page and all unmaps done we can decide if 1006 * killing is needed or not. Only kill when the page 1007 * was dirty or the process is not restartable, 1008 * otherwise the tokill list is merely 1009 * freed. When there was a problem unmapping earlier 1010 * use a more force-full uncatchable kill to prevent 1011 * any accesses to the poisoned memory. 1012 */ 1013 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL); 1014 kill_procs(&tokill, forcekill, !unmap_success, p, pfn, flags); 1015 1016 return unmap_success; 1017 } 1018 1019 static int identify_page_state(unsigned long pfn, struct page *p, 1020 unsigned long page_flags) 1021 { 1022 struct page_state *ps; 1023 1024 /* 1025 * The first check uses the current page flags which may not have any 1026 * relevant information. The second check with the saved page flags is 1027 * carried out only if the first check can't determine the page status. 1028 */ 1029 for (ps = error_states;; ps++) 1030 if ((p->flags & ps->mask) == ps->res) 1031 break; 1032 1033 page_flags |= (p->flags & (1UL << PG_dirty)); 1034 1035 if (!ps->mask) 1036 for (ps = error_states;; ps++) 1037 if ((page_flags & ps->mask) == ps->res) 1038 break; 1039 return page_action(ps, p, pfn); 1040 } 1041 1042 static int memory_failure_hugetlb(unsigned long pfn, int flags) 1043 { 1044 struct page *p = pfn_to_page(pfn); 1045 struct page *head = compound_head(p); 1046 int res; 1047 unsigned long page_flags; 1048 1049 if (TestSetPageHWPoison(head)) { 1050 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1051 pfn); 1052 return 0; 1053 } 1054 1055 num_poisoned_pages_inc(); 1056 1057 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1058 /* 1059 * Check "filter hit" and "race with other subpage." 1060 */ 1061 lock_page(head); 1062 if (PageHWPoison(head)) { 1063 if ((hwpoison_filter(p) && TestClearPageHWPoison(p)) 1064 || (p != head && TestSetPageHWPoison(head))) { 1065 num_poisoned_pages_dec(); 1066 unlock_page(head); 1067 return 0; 1068 } 1069 } 1070 unlock_page(head); 1071 dissolve_free_huge_page(p); 1072 action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED); 1073 return 0; 1074 } 1075 1076 lock_page(head); 1077 page_flags = head->flags; 1078 1079 if (!PageHWPoison(head)) { 1080 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1081 num_poisoned_pages_dec(); 1082 unlock_page(head); 1083 put_hwpoison_page(head); 1084 return 0; 1085 } 1086 1087 if (!hwpoison_user_mappings(p, pfn, flags, &head)) { 1088 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1089 res = -EBUSY; 1090 goto out; 1091 } 1092 1093 res = identify_page_state(pfn, p, page_flags); 1094 out: 1095 unlock_page(head); 1096 return res; 1097 } 1098 1099 /** 1100 * memory_failure - Handle memory failure of a page. 1101 * @pfn: Page Number of the corrupted page 1102 * @flags: fine tune action taken 1103 * 1104 * This function is called by the low level machine check code 1105 * of an architecture when it detects hardware memory corruption 1106 * of a page. It tries its best to recover, which includes 1107 * dropping pages, killing processes etc. 1108 * 1109 * The function is primarily of use for corruptions that 1110 * happen outside the current execution context (e.g. when 1111 * detected by a background scrubber) 1112 * 1113 * Must run in process context (e.g. a work queue) with interrupts 1114 * enabled and no spinlocks hold. 1115 */ 1116 int memory_failure(unsigned long pfn, int flags) 1117 { 1118 struct page *p; 1119 struct page *hpage; 1120 struct page *orig_head; 1121 int res; 1122 unsigned long page_flags; 1123 1124 if (!sysctl_memory_failure_recovery) 1125 panic("Memory failure on page %lx", pfn); 1126 1127 if (!pfn_valid(pfn)) { 1128 pr_err("Memory failure: %#lx: memory outside kernel control\n", 1129 pfn); 1130 return -ENXIO; 1131 } 1132 1133 p = pfn_to_page(pfn); 1134 if (PageHuge(p)) 1135 return memory_failure_hugetlb(pfn, flags); 1136 if (TestSetPageHWPoison(p)) { 1137 pr_err("Memory failure: %#lx: already hardware poisoned\n", 1138 pfn); 1139 return 0; 1140 } 1141 1142 orig_head = hpage = compound_head(p); 1143 num_poisoned_pages_inc(); 1144 1145 /* 1146 * We need/can do nothing about count=0 pages. 1147 * 1) it's a free page, and therefore in safe hand: 1148 * prep_new_page() will be the gate keeper. 1149 * 2) it's part of a non-compound high order page. 1150 * Implies some kernel user: cannot stop them from 1151 * R/W the page; let's pray that the page has been 1152 * used and will be freed some time later. 1153 * In fact it's dangerous to directly bump up page count from 0, 1154 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch. 1155 */ 1156 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) { 1157 if (is_free_buddy_page(p)) { 1158 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1159 return 0; 1160 } else { 1161 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED); 1162 return -EBUSY; 1163 } 1164 } 1165 1166 if (PageTransHuge(hpage)) { 1167 lock_page(p); 1168 if (!PageAnon(p) || unlikely(split_huge_page(p))) { 1169 unlock_page(p); 1170 if (!PageAnon(p)) 1171 pr_err("Memory failure: %#lx: non anonymous thp\n", 1172 pfn); 1173 else 1174 pr_err("Memory failure: %#lx: thp split failed\n", 1175 pfn); 1176 if (TestClearPageHWPoison(p)) 1177 num_poisoned_pages_dec(); 1178 put_hwpoison_page(p); 1179 return -EBUSY; 1180 } 1181 unlock_page(p); 1182 VM_BUG_ON_PAGE(!page_count(p), p); 1183 hpage = compound_head(p); 1184 } 1185 1186 /* 1187 * We ignore non-LRU pages for good reasons. 1188 * - PG_locked is only well defined for LRU pages and a few others 1189 * - to avoid races with __SetPageLocked() 1190 * - to avoid races with __SetPageSlab*() (and more non-atomic ops) 1191 * The check (unnecessarily) ignores LRU pages being isolated and 1192 * walked by the page reclaim code, however that's not a big loss. 1193 */ 1194 shake_page(p, 0); 1195 /* shake_page could have turned it free. */ 1196 if (!PageLRU(p) && is_free_buddy_page(p)) { 1197 if (flags & MF_COUNT_INCREASED) 1198 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED); 1199 else 1200 action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED); 1201 return 0; 1202 } 1203 1204 lock_page(p); 1205 1206 /* 1207 * The page could have changed compound pages during the locking. 1208 * If this happens just bail out. 1209 */ 1210 if (PageCompound(p) && compound_head(p) != orig_head) { 1211 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED); 1212 res = -EBUSY; 1213 goto out; 1214 } 1215 1216 /* 1217 * We use page flags to determine what action should be taken, but 1218 * the flags can be modified by the error containment action. One 1219 * example is an mlocked page, where PG_mlocked is cleared by 1220 * page_remove_rmap() in try_to_unmap_one(). So to determine page status 1221 * correctly, we save a copy of the page flags at this time. 1222 */ 1223 if (PageHuge(p)) 1224 page_flags = hpage->flags; 1225 else 1226 page_flags = p->flags; 1227 1228 /* 1229 * unpoison always clear PG_hwpoison inside page lock 1230 */ 1231 if (!PageHWPoison(p)) { 1232 pr_err("Memory failure: %#lx: just unpoisoned\n", pfn); 1233 num_poisoned_pages_dec(); 1234 unlock_page(p); 1235 put_hwpoison_page(p); 1236 return 0; 1237 } 1238 if (hwpoison_filter(p)) { 1239 if (TestClearPageHWPoison(p)) 1240 num_poisoned_pages_dec(); 1241 unlock_page(p); 1242 put_hwpoison_page(p); 1243 return 0; 1244 } 1245 1246 if (!PageTransTail(p) && !PageLRU(p)) 1247 goto identify_page_state; 1248 1249 /* 1250 * It's very difficult to mess with pages currently under IO 1251 * and in many cases impossible, so we just avoid it here. 1252 */ 1253 wait_on_page_writeback(p); 1254 1255 /* 1256 * Now take care of user space mappings. 1257 * Abort on fail: __delete_from_page_cache() assumes unmapped page. 1258 * 1259 * When the raw error page is thp tail page, hpage points to the raw 1260 * page after thp split. 1261 */ 1262 if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) { 1263 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED); 1264 res = -EBUSY; 1265 goto out; 1266 } 1267 1268 /* 1269 * Torn down by someone else? 1270 */ 1271 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) { 1272 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED); 1273 res = -EBUSY; 1274 goto out; 1275 } 1276 1277 identify_page_state: 1278 res = identify_page_state(pfn, p, page_flags); 1279 out: 1280 unlock_page(p); 1281 return res; 1282 } 1283 EXPORT_SYMBOL_GPL(memory_failure); 1284 1285 #define MEMORY_FAILURE_FIFO_ORDER 4 1286 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER) 1287 1288 struct memory_failure_entry { 1289 unsigned long pfn; 1290 int flags; 1291 }; 1292 1293 struct memory_failure_cpu { 1294 DECLARE_KFIFO(fifo, struct memory_failure_entry, 1295 MEMORY_FAILURE_FIFO_SIZE); 1296 spinlock_t lock; 1297 struct work_struct work; 1298 }; 1299 1300 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu); 1301 1302 /** 1303 * memory_failure_queue - Schedule handling memory failure of a page. 1304 * @pfn: Page Number of the corrupted page 1305 * @flags: Flags for memory failure handling 1306 * 1307 * This function is called by the low level hardware error handler 1308 * when it detects hardware memory corruption of a page. It schedules 1309 * the recovering of error page, including dropping pages, killing 1310 * processes etc. 1311 * 1312 * The function is primarily of use for corruptions that 1313 * happen outside the current execution context (e.g. when 1314 * detected by a background scrubber) 1315 * 1316 * Can run in IRQ context. 1317 */ 1318 void memory_failure_queue(unsigned long pfn, int flags) 1319 { 1320 struct memory_failure_cpu *mf_cpu; 1321 unsigned long proc_flags; 1322 struct memory_failure_entry entry = { 1323 .pfn = pfn, 1324 .flags = flags, 1325 }; 1326 1327 mf_cpu = &get_cpu_var(memory_failure_cpu); 1328 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1329 if (kfifo_put(&mf_cpu->fifo, entry)) 1330 schedule_work_on(smp_processor_id(), &mf_cpu->work); 1331 else 1332 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n", 1333 pfn); 1334 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1335 put_cpu_var(memory_failure_cpu); 1336 } 1337 EXPORT_SYMBOL_GPL(memory_failure_queue); 1338 1339 static void memory_failure_work_func(struct work_struct *work) 1340 { 1341 struct memory_failure_cpu *mf_cpu; 1342 struct memory_failure_entry entry = { 0, }; 1343 unsigned long proc_flags; 1344 int gotten; 1345 1346 mf_cpu = this_cpu_ptr(&memory_failure_cpu); 1347 for (;;) { 1348 spin_lock_irqsave(&mf_cpu->lock, proc_flags); 1349 gotten = kfifo_get(&mf_cpu->fifo, &entry); 1350 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags); 1351 if (!gotten) 1352 break; 1353 if (entry.flags & MF_SOFT_OFFLINE) 1354 soft_offline_page(pfn_to_page(entry.pfn), entry.flags); 1355 else 1356 memory_failure(entry.pfn, entry.flags); 1357 } 1358 } 1359 1360 static int __init memory_failure_init(void) 1361 { 1362 struct memory_failure_cpu *mf_cpu; 1363 int cpu; 1364 1365 for_each_possible_cpu(cpu) { 1366 mf_cpu = &per_cpu(memory_failure_cpu, cpu); 1367 spin_lock_init(&mf_cpu->lock); 1368 INIT_KFIFO(mf_cpu->fifo); 1369 INIT_WORK(&mf_cpu->work, memory_failure_work_func); 1370 } 1371 1372 return 0; 1373 } 1374 core_initcall(memory_failure_init); 1375 1376 #define unpoison_pr_info(fmt, pfn, rs) \ 1377 ({ \ 1378 if (__ratelimit(rs)) \ 1379 pr_info(fmt, pfn); \ 1380 }) 1381 1382 /** 1383 * unpoison_memory - Unpoison a previously poisoned page 1384 * @pfn: Page number of the to be unpoisoned page 1385 * 1386 * Software-unpoison a page that has been poisoned by 1387 * memory_failure() earlier. 1388 * 1389 * This is only done on the software-level, so it only works 1390 * for linux injected failures, not real hardware failures 1391 * 1392 * Returns 0 for success, otherwise -errno. 1393 */ 1394 int unpoison_memory(unsigned long pfn) 1395 { 1396 struct page *page; 1397 struct page *p; 1398 int freeit = 0; 1399 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL, 1400 DEFAULT_RATELIMIT_BURST); 1401 1402 if (!pfn_valid(pfn)) 1403 return -ENXIO; 1404 1405 p = pfn_to_page(pfn); 1406 page = compound_head(p); 1407 1408 if (!PageHWPoison(p)) { 1409 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n", 1410 pfn, &unpoison_rs); 1411 return 0; 1412 } 1413 1414 if (page_count(page) > 1) { 1415 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n", 1416 pfn, &unpoison_rs); 1417 return 0; 1418 } 1419 1420 if (page_mapped(page)) { 1421 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n", 1422 pfn, &unpoison_rs); 1423 return 0; 1424 } 1425 1426 if (page_mapping(page)) { 1427 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n", 1428 pfn, &unpoison_rs); 1429 return 0; 1430 } 1431 1432 /* 1433 * unpoison_memory() can encounter thp only when the thp is being 1434 * worked by memory_failure() and the page lock is not held yet. 1435 * In such case, we yield to memory_failure() and make unpoison fail. 1436 */ 1437 if (!PageHuge(page) && PageTransHuge(page)) { 1438 unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n", 1439 pfn, &unpoison_rs); 1440 return 0; 1441 } 1442 1443 if (!get_hwpoison_page(p)) { 1444 if (TestClearPageHWPoison(p)) 1445 num_poisoned_pages_dec(); 1446 unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n", 1447 pfn, &unpoison_rs); 1448 return 0; 1449 } 1450 1451 lock_page(page); 1452 /* 1453 * This test is racy because PG_hwpoison is set outside of page lock. 1454 * That's acceptable because that won't trigger kernel panic. Instead, 1455 * the PG_hwpoison page will be caught and isolated on the entrance to 1456 * the free buddy page pool. 1457 */ 1458 if (TestClearPageHWPoison(page)) { 1459 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n", 1460 pfn, &unpoison_rs); 1461 num_poisoned_pages_dec(); 1462 freeit = 1; 1463 } 1464 unlock_page(page); 1465 1466 put_hwpoison_page(page); 1467 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1)) 1468 put_hwpoison_page(page); 1469 1470 return 0; 1471 } 1472 EXPORT_SYMBOL(unpoison_memory); 1473 1474 static struct page *new_page(struct page *p, unsigned long private, int **x) 1475 { 1476 int nid = page_to_nid(p); 1477 1478 return new_page_nodemask(p, nid, &node_states[N_MEMORY]); 1479 } 1480 1481 /* 1482 * Safely get reference count of an arbitrary page. 1483 * Returns 0 for a free page, -EIO for a zero refcount page 1484 * that is not free, and 1 for any other page type. 1485 * For 1 the page is returned with increased page count, otherwise not. 1486 */ 1487 static int __get_any_page(struct page *p, unsigned long pfn, int flags) 1488 { 1489 int ret; 1490 1491 if (flags & MF_COUNT_INCREASED) 1492 return 1; 1493 1494 /* 1495 * When the target page is a free hugepage, just remove it 1496 * from free hugepage list. 1497 */ 1498 if (!get_hwpoison_page(p)) { 1499 if (PageHuge(p)) { 1500 pr_info("%s: %#lx free huge page\n", __func__, pfn); 1501 ret = 0; 1502 } else if (is_free_buddy_page(p)) { 1503 pr_info("%s: %#lx free buddy page\n", __func__, pfn); 1504 ret = 0; 1505 } else { 1506 pr_info("%s: %#lx: unknown zero refcount page type %lx\n", 1507 __func__, pfn, p->flags); 1508 ret = -EIO; 1509 } 1510 } else { 1511 /* Not a free page */ 1512 ret = 1; 1513 } 1514 return ret; 1515 } 1516 1517 static int get_any_page(struct page *page, unsigned long pfn, int flags) 1518 { 1519 int ret = __get_any_page(page, pfn, flags); 1520 1521 if (ret == 1 && !PageHuge(page) && 1522 !PageLRU(page) && !__PageMovable(page)) { 1523 /* 1524 * Try to free it. 1525 */ 1526 put_hwpoison_page(page); 1527 shake_page(page, 1); 1528 1529 /* 1530 * Did it turn free? 1531 */ 1532 ret = __get_any_page(page, pfn, 0); 1533 if (ret == 1 && !PageLRU(page)) { 1534 /* Drop page reference which is from __get_any_page() */ 1535 put_hwpoison_page(page); 1536 pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n", 1537 pfn, page->flags, &page->flags); 1538 return -EIO; 1539 } 1540 } 1541 return ret; 1542 } 1543 1544 static int soft_offline_huge_page(struct page *page, int flags) 1545 { 1546 int ret; 1547 unsigned long pfn = page_to_pfn(page); 1548 struct page *hpage = compound_head(page); 1549 LIST_HEAD(pagelist); 1550 1551 /* 1552 * This double-check of PageHWPoison is to avoid the race with 1553 * memory_failure(). See also comment in __soft_offline_page(). 1554 */ 1555 lock_page(hpage); 1556 if (PageHWPoison(hpage)) { 1557 unlock_page(hpage); 1558 put_hwpoison_page(hpage); 1559 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn); 1560 return -EBUSY; 1561 } 1562 unlock_page(hpage); 1563 1564 ret = isolate_huge_page(hpage, &pagelist); 1565 /* 1566 * get_any_page() and isolate_huge_page() takes a refcount each, 1567 * so need to drop one here. 1568 */ 1569 put_hwpoison_page(hpage); 1570 if (!ret) { 1571 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn); 1572 return -EBUSY; 1573 } 1574 1575 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1576 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1577 if (ret) { 1578 pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n", 1579 pfn, ret, page->flags, &page->flags); 1580 if (!list_empty(&pagelist)) 1581 putback_movable_pages(&pagelist); 1582 if (ret > 0) 1583 ret = -EIO; 1584 } else { 1585 if (PageHuge(page)) 1586 dissolve_free_huge_page(page); 1587 } 1588 return ret; 1589 } 1590 1591 static int __soft_offline_page(struct page *page, int flags) 1592 { 1593 int ret; 1594 unsigned long pfn = page_to_pfn(page); 1595 1596 /* 1597 * Check PageHWPoison again inside page lock because PageHWPoison 1598 * is set by memory_failure() outside page lock. Note that 1599 * memory_failure() also double-checks PageHWPoison inside page lock, 1600 * so there's no race between soft_offline_page() and memory_failure(). 1601 */ 1602 lock_page(page); 1603 wait_on_page_writeback(page); 1604 if (PageHWPoison(page)) { 1605 unlock_page(page); 1606 put_hwpoison_page(page); 1607 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1608 return -EBUSY; 1609 } 1610 /* 1611 * Try to invalidate first. This should work for 1612 * non dirty unmapped page cache pages. 1613 */ 1614 ret = invalidate_inode_page(page); 1615 unlock_page(page); 1616 /* 1617 * RED-PEN would be better to keep it isolated here, but we 1618 * would need to fix isolation locking first. 1619 */ 1620 if (ret == 1) { 1621 put_hwpoison_page(page); 1622 pr_info("soft_offline: %#lx: invalidated\n", pfn); 1623 SetPageHWPoison(page); 1624 num_poisoned_pages_inc(); 1625 return 0; 1626 } 1627 1628 /* 1629 * Simple invalidation didn't work. 1630 * Try to migrate to a new page instead. migrate.c 1631 * handles a large number of cases for us. 1632 */ 1633 if (PageLRU(page)) 1634 ret = isolate_lru_page(page); 1635 else 1636 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE); 1637 /* 1638 * Drop page reference which is came from get_any_page() 1639 * successful isolate_lru_page() already took another one. 1640 */ 1641 put_hwpoison_page(page); 1642 if (!ret) { 1643 LIST_HEAD(pagelist); 1644 /* 1645 * After isolated lru page, the PageLRU will be cleared, 1646 * so use !__PageMovable instead for LRU page's mapping 1647 * cannot have PAGE_MAPPING_MOVABLE. 1648 */ 1649 if (!__PageMovable(page)) 1650 inc_node_page_state(page, NR_ISOLATED_ANON + 1651 page_is_file_cache(page)); 1652 list_add(&page->lru, &pagelist); 1653 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL, 1654 MIGRATE_SYNC, MR_MEMORY_FAILURE); 1655 if (ret) { 1656 if (!list_empty(&pagelist)) 1657 putback_movable_pages(&pagelist); 1658 1659 pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n", 1660 pfn, ret, page->flags, &page->flags); 1661 if (ret > 0) 1662 ret = -EIO; 1663 } 1664 } else { 1665 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n", 1666 pfn, ret, page_count(page), page->flags, &page->flags); 1667 } 1668 return ret; 1669 } 1670 1671 static int soft_offline_in_use_page(struct page *page, int flags) 1672 { 1673 int ret; 1674 struct page *hpage = compound_head(page); 1675 1676 if (!PageHuge(page) && PageTransHuge(hpage)) { 1677 lock_page(hpage); 1678 if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) { 1679 unlock_page(hpage); 1680 if (!PageAnon(hpage)) 1681 pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page)); 1682 else 1683 pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page)); 1684 put_hwpoison_page(hpage); 1685 return -EBUSY; 1686 } 1687 unlock_page(hpage); 1688 get_hwpoison_page(page); 1689 put_hwpoison_page(hpage); 1690 } 1691 1692 if (PageHuge(page)) 1693 ret = soft_offline_huge_page(page, flags); 1694 else 1695 ret = __soft_offline_page(page, flags); 1696 1697 return ret; 1698 } 1699 1700 static void soft_offline_free_page(struct page *page) 1701 { 1702 struct page *head = compound_head(page); 1703 1704 if (!TestSetPageHWPoison(head)) { 1705 num_poisoned_pages_inc(); 1706 if (PageHuge(head)) 1707 dissolve_free_huge_page(page); 1708 } 1709 } 1710 1711 /** 1712 * soft_offline_page - Soft offline a page. 1713 * @page: page to offline 1714 * @flags: flags. Same as memory_failure(). 1715 * 1716 * Returns 0 on success, otherwise negated errno. 1717 * 1718 * Soft offline a page, by migration or invalidation, 1719 * without killing anything. This is for the case when 1720 * a page is not corrupted yet (so it's still valid to access), 1721 * but has had a number of corrected errors and is better taken 1722 * out. 1723 * 1724 * The actual policy on when to do that is maintained by 1725 * user space. 1726 * 1727 * This should never impact any application or cause data loss, 1728 * however it might take some time. 1729 * 1730 * This is not a 100% solution for all memory, but tries to be 1731 * ``good enough'' for the majority of memory. 1732 */ 1733 int soft_offline_page(struct page *page, int flags) 1734 { 1735 int ret; 1736 unsigned long pfn = page_to_pfn(page); 1737 1738 if (PageHWPoison(page)) { 1739 pr_info("soft offline: %#lx page already poisoned\n", pfn); 1740 if (flags & MF_COUNT_INCREASED) 1741 put_hwpoison_page(page); 1742 return -EBUSY; 1743 } 1744 1745 get_online_mems(); 1746 ret = get_any_page(page, pfn, flags); 1747 put_online_mems(); 1748 1749 if (ret > 0) 1750 ret = soft_offline_in_use_page(page, flags); 1751 else if (ret == 0) 1752 soft_offline_free_page(page); 1753 1754 return ret; 1755 } 1756