xref: /openbmc/linux/mm/memory-failure.c (revision e1e38ea1)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched/signal.h>
44 #include <linux/sched/task.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/memremap.h>
59 #include <linux/kfifo.h>
60 #include <linux/ratelimit.h>
61 #include <linux/page-isolation.h>
62 #include "internal.h"
63 #include "ras/ras_event.h"
64 
65 int sysctl_memory_failure_early_kill __read_mostly = 0;
66 
67 int sysctl_memory_failure_recovery __read_mostly = 1;
68 
69 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
70 
71 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
72 
73 u32 hwpoison_filter_enable = 0;
74 u32 hwpoison_filter_dev_major = ~0U;
75 u32 hwpoison_filter_dev_minor = ~0U;
76 u64 hwpoison_filter_flags_mask;
77 u64 hwpoison_filter_flags_value;
78 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
80 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
81 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
82 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
83 
84 static int hwpoison_filter_dev(struct page *p)
85 {
86 	struct address_space *mapping;
87 	dev_t dev;
88 
89 	if (hwpoison_filter_dev_major == ~0U &&
90 	    hwpoison_filter_dev_minor == ~0U)
91 		return 0;
92 
93 	/*
94 	 * page_mapping() does not accept slab pages.
95 	 */
96 	if (PageSlab(p))
97 		return -EINVAL;
98 
99 	mapping = page_mapping(p);
100 	if (mapping == NULL || mapping->host == NULL)
101 		return -EINVAL;
102 
103 	dev = mapping->host->i_sb->s_dev;
104 	if (hwpoison_filter_dev_major != ~0U &&
105 	    hwpoison_filter_dev_major != MAJOR(dev))
106 		return -EINVAL;
107 	if (hwpoison_filter_dev_minor != ~0U &&
108 	    hwpoison_filter_dev_minor != MINOR(dev))
109 		return -EINVAL;
110 
111 	return 0;
112 }
113 
114 static int hwpoison_filter_flags(struct page *p)
115 {
116 	if (!hwpoison_filter_flags_mask)
117 		return 0;
118 
119 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
120 				    hwpoison_filter_flags_value)
121 		return 0;
122 	else
123 		return -EINVAL;
124 }
125 
126 /*
127  * This allows stress tests to limit test scope to a collection of tasks
128  * by putting them under some memcg. This prevents killing unrelated/important
129  * processes such as /sbin/init. Note that the target task may share clean
130  * pages with init (eg. libc text), which is harmless. If the target task
131  * share _dirty_ pages with another task B, the test scheme must make sure B
132  * is also included in the memcg. At last, due to race conditions this filter
133  * can only guarantee that the page either belongs to the memcg tasks, or is
134  * a freed page.
135  */
136 #ifdef CONFIG_MEMCG
137 u64 hwpoison_filter_memcg;
138 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
139 static int hwpoison_filter_task(struct page *p)
140 {
141 	if (!hwpoison_filter_memcg)
142 		return 0;
143 
144 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
145 		return -EINVAL;
146 
147 	return 0;
148 }
149 #else
150 static int hwpoison_filter_task(struct page *p) { return 0; }
151 #endif
152 
153 int hwpoison_filter(struct page *p)
154 {
155 	if (!hwpoison_filter_enable)
156 		return 0;
157 
158 	if (hwpoison_filter_dev(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_flags(p))
162 		return -EINVAL;
163 
164 	if (hwpoison_filter_task(p))
165 		return -EINVAL;
166 
167 	return 0;
168 }
169 #else
170 int hwpoison_filter(struct page *p)
171 {
172 	return 0;
173 }
174 #endif
175 
176 EXPORT_SYMBOL_GPL(hwpoison_filter);
177 
178 /*
179  * Kill all processes that have a poisoned page mapped and then isolate
180  * the page.
181  *
182  * General strategy:
183  * Find all processes having the page mapped and kill them.
184  * But we keep a page reference around so that the page is not
185  * actually freed yet.
186  * Then stash the page away
187  *
188  * There's no convenient way to get back to mapped processes
189  * from the VMAs. So do a brute-force search over all
190  * running processes.
191  *
192  * Remember that machine checks are not common (or rather
193  * if they are common you have other problems), so this shouldn't
194  * be a performance issue.
195  *
196  * Also there are some races possible while we get from the
197  * error detection to actually handle it.
198  */
199 
200 struct to_kill {
201 	struct list_head nd;
202 	struct task_struct *tsk;
203 	unsigned long addr;
204 	short size_shift;
205 	char addr_valid;
206 };
207 
208 /*
209  * Send all the processes who have the page mapped a signal.
210  * ``action optional'' if they are not immediately affected by the error
211  * ``action required'' if error happened in current execution context
212  */
213 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
214 {
215 	struct task_struct *t = tk->tsk;
216 	short addr_lsb = tk->size_shift;
217 	int ret;
218 
219 	pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
220 		pfn, t->comm, t->pid);
221 
222 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
223 		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
224 				       addr_lsb, current);
225 	} else {
226 		/*
227 		 * Don't use force here, it's convenient if the signal
228 		 * can be temporarily blocked.
229 		 * This could cause a loop when the user sets SIGBUS
230 		 * to SIG_IGN, but hopefully no one will do that?
231 		 */
232 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
233 				      addr_lsb, t);  /* synchronous? */
234 	}
235 	if (ret < 0)
236 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
237 			t->comm, t->pid, ret);
238 	return ret;
239 }
240 
241 /*
242  * When a unknown page type is encountered drain as many buffers as possible
243  * in the hope to turn the page into a LRU or free page, which we can handle.
244  */
245 void shake_page(struct page *p, int access)
246 {
247 	if (PageHuge(p))
248 		return;
249 
250 	if (!PageSlab(p)) {
251 		lru_add_drain_all();
252 		if (PageLRU(p))
253 			return;
254 		drain_all_pages(page_zone(p));
255 		if (PageLRU(p) || is_free_buddy_page(p))
256 			return;
257 	}
258 
259 	/*
260 	 * Only call shrink_node_slabs here (which would also shrink
261 	 * other caches) if access is not potentially fatal.
262 	 */
263 	if (access)
264 		drop_slab_node(page_to_nid(p));
265 }
266 EXPORT_SYMBOL_GPL(shake_page);
267 
268 static unsigned long dev_pagemap_mapping_shift(struct page *page,
269 		struct vm_area_struct *vma)
270 {
271 	unsigned long address = vma_address(page, vma);
272 	pgd_t *pgd;
273 	p4d_t *p4d;
274 	pud_t *pud;
275 	pmd_t *pmd;
276 	pte_t *pte;
277 
278 	pgd = pgd_offset(vma->vm_mm, address);
279 	if (!pgd_present(*pgd))
280 		return 0;
281 	p4d = p4d_offset(pgd, address);
282 	if (!p4d_present(*p4d))
283 		return 0;
284 	pud = pud_offset(p4d, address);
285 	if (!pud_present(*pud))
286 		return 0;
287 	if (pud_devmap(*pud))
288 		return PUD_SHIFT;
289 	pmd = pmd_offset(pud, address);
290 	if (!pmd_present(*pmd))
291 		return 0;
292 	if (pmd_devmap(*pmd))
293 		return PMD_SHIFT;
294 	pte = pte_offset_map(pmd, address);
295 	if (!pte_present(*pte))
296 		return 0;
297 	if (pte_devmap(*pte))
298 		return PAGE_SHIFT;
299 	return 0;
300 }
301 
302 /*
303  * Failure handling: if we can't find or can't kill a process there's
304  * not much we can do.	We just print a message and ignore otherwise.
305  */
306 
307 /*
308  * Schedule a process for later kill.
309  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
310  * TBD would GFP_NOIO be enough?
311  */
312 static void add_to_kill(struct task_struct *tsk, struct page *p,
313 		       struct vm_area_struct *vma,
314 		       struct list_head *to_kill,
315 		       struct to_kill **tkc)
316 {
317 	struct to_kill *tk;
318 
319 	if (*tkc) {
320 		tk = *tkc;
321 		*tkc = NULL;
322 	} else {
323 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
324 		if (!tk) {
325 			pr_err("Memory failure: Out of memory while machine check handling\n");
326 			return;
327 		}
328 	}
329 	tk->addr = page_address_in_vma(p, vma);
330 	tk->addr_valid = 1;
331 	if (is_zone_device_page(p))
332 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
333 	else
334 		tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
335 
336 	/*
337 	 * In theory we don't have to kill when the page was
338 	 * munmaped. But it could be also a mremap. Since that's
339 	 * likely very rare kill anyways just out of paranoia, but use
340 	 * a SIGKILL because the error is not contained anymore.
341 	 */
342 	if (tk->addr == -EFAULT || tk->size_shift == 0) {
343 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
344 			page_to_pfn(p), tsk->comm);
345 		tk->addr_valid = 0;
346 	}
347 	get_task_struct(tsk);
348 	tk->tsk = tsk;
349 	list_add_tail(&tk->nd, to_kill);
350 }
351 
352 /*
353  * Kill the processes that have been collected earlier.
354  *
355  * Only do anything when DOIT is set, otherwise just free the list
356  * (this is used for clean pages which do not need killing)
357  * Also when FAIL is set do a force kill because something went
358  * wrong earlier.
359  */
360 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
361 		unsigned long pfn, int flags)
362 {
363 	struct to_kill *tk, *next;
364 
365 	list_for_each_entry_safe (tk, next, to_kill, nd) {
366 		if (forcekill) {
367 			/*
368 			 * In case something went wrong with munmapping
369 			 * make sure the process doesn't catch the
370 			 * signal and then access the memory. Just kill it.
371 			 */
372 			if (fail || tk->addr_valid == 0) {
373 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
374 				       pfn, tk->tsk->comm, tk->tsk->pid);
375 				force_sig(SIGKILL, tk->tsk);
376 			}
377 
378 			/*
379 			 * In theory the process could have mapped
380 			 * something else on the address in-between. We could
381 			 * check for that, but we need to tell the
382 			 * process anyways.
383 			 */
384 			else if (kill_proc(tk, pfn, flags) < 0)
385 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
386 				       pfn, tk->tsk->comm, tk->tsk->pid);
387 		}
388 		put_task_struct(tk->tsk);
389 		kfree(tk);
390 	}
391 }
392 
393 /*
394  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
395  * on behalf of the thread group. Return task_struct of the (first found)
396  * dedicated thread if found, and return NULL otherwise.
397  *
398  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
399  * have to call rcu_read_lock/unlock() in this function.
400  */
401 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
402 {
403 	struct task_struct *t;
404 
405 	for_each_thread(tsk, t)
406 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
407 			return t;
408 	return NULL;
409 }
410 
411 /*
412  * Determine whether a given process is "early kill" process which expects
413  * to be signaled when some page under the process is hwpoisoned.
414  * Return task_struct of the dedicated thread (main thread unless explicitly
415  * specified) if the process is "early kill," and otherwise returns NULL.
416  */
417 static struct task_struct *task_early_kill(struct task_struct *tsk,
418 					   int force_early)
419 {
420 	struct task_struct *t;
421 	if (!tsk->mm)
422 		return NULL;
423 	if (force_early)
424 		return tsk;
425 	t = find_early_kill_thread(tsk);
426 	if (t)
427 		return t;
428 	if (sysctl_memory_failure_early_kill)
429 		return tsk;
430 	return NULL;
431 }
432 
433 /*
434  * Collect processes when the error hit an anonymous page.
435  */
436 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
437 			      struct to_kill **tkc, int force_early)
438 {
439 	struct vm_area_struct *vma;
440 	struct task_struct *tsk;
441 	struct anon_vma *av;
442 	pgoff_t pgoff;
443 
444 	av = page_lock_anon_vma_read(page);
445 	if (av == NULL)	/* Not actually mapped anymore */
446 		return;
447 
448 	pgoff = page_to_pgoff(page);
449 	read_lock(&tasklist_lock);
450 	for_each_process (tsk) {
451 		struct anon_vma_chain *vmac;
452 		struct task_struct *t = task_early_kill(tsk, force_early);
453 
454 		if (!t)
455 			continue;
456 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
457 					       pgoff, pgoff) {
458 			vma = vmac->vma;
459 			if (!page_mapped_in_vma(page, vma))
460 				continue;
461 			if (vma->vm_mm == t->mm)
462 				add_to_kill(t, page, vma, to_kill, tkc);
463 		}
464 	}
465 	read_unlock(&tasklist_lock);
466 	page_unlock_anon_vma_read(av);
467 }
468 
469 /*
470  * Collect processes when the error hit a file mapped page.
471  */
472 static void collect_procs_file(struct page *page, struct list_head *to_kill,
473 			      struct to_kill **tkc, int force_early)
474 {
475 	struct vm_area_struct *vma;
476 	struct task_struct *tsk;
477 	struct address_space *mapping = page->mapping;
478 
479 	i_mmap_lock_read(mapping);
480 	read_lock(&tasklist_lock);
481 	for_each_process(tsk) {
482 		pgoff_t pgoff = page_to_pgoff(page);
483 		struct task_struct *t = task_early_kill(tsk, force_early);
484 
485 		if (!t)
486 			continue;
487 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
488 				      pgoff) {
489 			/*
490 			 * Send early kill signal to tasks where a vma covers
491 			 * the page but the corrupted page is not necessarily
492 			 * mapped it in its pte.
493 			 * Assume applications who requested early kill want
494 			 * to be informed of all such data corruptions.
495 			 */
496 			if (vma->vm_mm == t->mm)
497 				add_to_kill(t, page, vma, to_kill, tkc);
498 		}
499 	}
500 	read_unlock(&tasklist_lock);
501 	i_mmap_unlock_read(mapping);
502 }
503 
504 /*
505  * Collect the processes who have the corrupted page mapped to kill.
506  * This is done in two steps for locking reasons.
507  * First preallocate one tokill structure outside the spin locks,
508  * so that we can kill at least one process reasonably reliable.
509  */
510 static void collect_procs(struct page *page, struct list_head *tokill,
511 				int force_early)
512 {
513 	struct to_kill *tk;
514 
515 	if (!page->mapping)
516 		return;
517 
518 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
519 	if (!tk)
520 		return;
521 	if (PageAnon(page))
522 		collect_procs_anon(page, tokill, &tk, force_early);
523 	else
524 		collect_procs_file(page, tokill, &tk, force_early);
525 	kfree(tk);
526 }
527 
528 static const char *action_name[] = {
529 	[MF_IGNORED] = "Ignored",
530 	[MF_FAILED] = "Failed",
531 	[MF_DELAYED] = "Delayed",
532 	[MF_RECOVERED] = "Recovered",
533 };
534 
535 static const char * const action_page_types[] = {
536 	[MF_MSG_KERNEL]			= "reserved kernel page",
537 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
538 	[MF_MSG_SLAB]			= "kernel slab page",
539 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
540 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
541 	[MF_MSG_HUGE]			= "huge page",
542 	[MF_MSG_FREE_HUGE]		= "free huge page",
543 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
544 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
545 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
546 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
547 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
548 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
549 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
550 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
551 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
552 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
553 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
554 	[MF_MSG_BUDDY]			= "free buddy page",
555 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
556 	[MF_MSG_DAX]			= "dax page",
557 	[MF_MSG_UNKNOWN]		= "unknown page",
558 };
559 
560 /*
561  * XXX: It is possible that a page is isolated from LRU cache,
562  * and then kept in swap cache or failed to remove from page cache.
563  * The page count will stop it from being freed by unpoison.
564  * Stress tests should be aware of this memory leak problem.
565  */
566 static int delete_from_lru_cache(struct page *p)
567 {
568 	if (!isolate_lru_page(p)) {
569 		/*
570 		 * Clear sensible page flags, so that the buddy system won't
571 		 * complain when the page is unpoison-and-freed.
572 		 */
573 		ClearPageActive(p);
574 		ClearPageUnevictable(p);
575 
576 		/*
577 		 * Poisoned page might never drop its ref count to 0 so we have
578 		 * to uncharge it manually from its memcg.
579 		 */
580 		mem_cgroup_uncharge(p);
581 
582 		/*
583 		 * drop the page count elevated by isolate_lru_page()
584 		 */
585 		put_page(p);
586 		return 0;
587 	}
588 	return -EIO;
589 }
590 
591 static int truncate_error_page(struct page *p, unsigned long pfn,
592 				struct address_space *mapping)
593 {
594 	int ret = MF_FAILED;
595 
596 	if (mapping->a_ops->error_remove_page) {
597 		int err = mapping->a_ops->error_remove_page(mapping, p);
598 
599 		if (err != 0) {
600 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
601 				pfn, err);
602 		} else if (page_has_private(p) &&
603 			   !try_to_release_page(p, GFP_NOIO)) {
604 			pr_info("Memory failure: %#lx: failed to release buffers\n",
605 				pfn);
606 		} else {
607 			ret = MF_RECOVERED;
608 		}
609 	} else {
610 		/*
611 		 * If the file system doesn't support it just invalidate
612 		 * This fails on dirty or anything with private pages
613 		 */
614 		if (invalidate_inode_page(p))
615 			ret = MF_RECOVERED;
616 		else
617 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
618 				pfn);
619 	}
620 
621 	return ret;
622 }
623 
624 /*
625  * Error hit kernel page.
626  * Do nothing, try to be lucky and not touch this instead. For a few cases we
627  * could be more sophisticated.
628  */
629 static int me_kernel(struct page *p, unsigned long pfn)
630 {
631 	return MF_IGNORED;
632 }
633 
634 /*
635  * Page in unknown state. Do nothing.
636  */
637 static int me_unknown(struct page *p, unsigned long pfn)
638 {
639 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
640 	return MF_FAILED;
641 }
642 
643 /*
644  * Clean (or cleaned) page cache page.
645  */
646 static int me_pagecache_clean(struct page *p, unsigned long pfn)
647 {
648 	struct address_space *mapping;
649 
650 	delete_from_lru_cache(p);
651 
652 	/*
653 	 * For anonymous pages we're done the only reference left
654 	 * should be the one m_f() holds.
655 	 */
656 	if (PageAnon(p))
657 		return MF_RECOVERED;
658 
659 	/*
660 	 * Now truncate the page in the page cache. This is really
661 	 * more like a "temporary hole punch"
662 	 * Don't do this for block devices when someone else
663 	 * has a reference, because it could be file system metadata
664 	 * and that's not safe to truncate.
665 	 */
666 	mapping = page_mapping(p);
667 	if (!mapping) {
668 		/*
669 		 * Page has been teared down in the meanwhile
670 		 */
671 		return MF_FAILED;
672 	}
673 
674 	/*
675 	 * Truncation is a bit tricky. Enable it per file system for now.
676 	 *
677 	 * Open: to take i_mutex or not for this? Right now we don't.
678 	 */
679 	return truncate_error_page(p, pfn, mapping);
680 }
681 
682 /*
683  * Dirty pagecache page
684  * Issues: when the error hit a hole page the error is not properly
685  * propagated.
686  */
687 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
688 {
689 	struct address_space *mapping = page_mapping(p);
690 
691 	SetPageError(p);
692 	/* TBD: print more information about the file. */
693 	if (mapping) {
694 		/*
695 		 * IO error will be reported by write(), fsync(), etc.
696 		 * who check the mapping.
697 		 * This way the application knows that something went
698 		 * wrong with its dirty file data.
699 		 *
700 		 * There's one open issue:
701 		 *
702 		 * The EIO will be only reported on the next IO
703 		 * operation and then cleared through the IO map.
704 		 * Normally Linux has two mechanisms to pass IO error
705 		 * first through the AS_EIO flag in the address space
706 		 * and then through the PageError flag in the page.
707 		 * Since we drop pages on memory failure handling the
708 		 * only mechanism open to use is through AS_AIO.
709 		 *
710 		 * This has the disadvantage that it gets cleared on
711 		 * the first operation that returns an error, while
712 		 * the PageError bit is more sticky and only cleared
713 		 * when the page is reread or dropped.  If an
714 		 * application assumes it will always get error on
715 		 * fsync, but does other operations on the fd before
716 		 * and the page is dropped between then the error
717 		 * will not be properly reported.
718 		 *
719 		 * This can already happen even without hwpoisoned
720 		 * pages: first on metadata IO errors (which only
721 		 * report through AS_EIO) or when the page is dropped
722 		 * at the wrong time.
723 		 *
724 		 * So right now we assume that the application DTRT on
725 		 * the first EIO, but we're not worse than other parts
726 		 * of the kernel.
727 		 */
728 		mapping_set_error(mapping, -EIO);
729 	}
730 
731 	return me_pagecache_clean(p, pfn);
732 }
733 
734 /*
735  * Clean and dirty swap cache.
736  *
737  * Dirty swap cache page is tricky to handle. The page could live both in page
738  * cache and swap cache(ie. page is freshly swapped in). So it could be
739  * referenced concurrently by 2 types of PTEs:
740  * normal PTEs and swap PTEs. We try to handle them consistently by calling
741  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
742  * and then
743  *      - clear dirty bit to prevent IO
744  *      - remove from LRU
745  *      - but keep in the swap cache, so that when we return to it on
746  *        a later page fault, we know the application is accessing
747  *        corrupted data and shall be killed (we installed simple
748  *        interception code in do_swap_page to catch it).
749  *
750  * Clean swap cache pages can be directly isolated. A later page fault will
751  * bring in the known good data from disk.
752  */
753 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
754 {
755 	ClearPageDirty(p);
756 	/* Trigger EIO in shmem: */
757 	ClearPageUptodate(p);
758 
759 	if (!delete_from_lru_cache(p))
760 		return MF_DELAYED;
761 	else
762 		return MF_FAILED;
763 }
764 
765 static int me_swapcache_clean(struct page *p, unsigned long pfn)
766 {
767 	delete_from_swap_cache(p);
768 
769 	if (!delete_from_lru_cache(p))
770 		return MF_RECOVERED;
771 	else
772 		return MF_FAILED;
773 }
774 
775 /*
776  * Huge pages. Needs work.
777  * Issues:
778  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
779  *   To narrow down kill region to one page, we need to break up pmd.
780  */
781 static int me_huge_page(struct page *p, unsigned long pfn)
782 {
783 	int res = 0;
784 	struct page *hpage = compound_head(p);
785 	struct address_space *mapping;
786 
787 	if (!PageHuge(hpage))
788 		return MF_DELAYED;
789 
790 	mapping = page_mapping(hpage);
791 	if (mapping) {
792 		res = truncate_error_page(hpage, pfn, mapping);
793 	} else {
794 		unlock_page(hpage);
795 		/*
796 		 * migration entry prevents later access on error anonymous
797 		 * hugepage, so we can free and dissolve it into buddy to
798 		 * save healthy subpages.
799 		 */
800 		if (PageAnon(hpage))
801 			put_page(hpage);
802 		dissolve_free_huge_page(p);
803 		res = MF_RECOVERED;
804 		lock_page(hpage);
805 	}
806 
807 	return res;
808 }
809 
810 /*
811  * Various page states we can handle.
812  *
813  * A page state is defined by its current page->flags bits.
814  * The table matches them in order and calls the right handler.
815  *
816  * This is quite tricky because we can access page at any time
817  * in its live cycle, so all accesses have to be extremely careful.
818  *
819  * This is not complete. More states could be added.
820  * For any missing state don't attempt recovery.
821  */
822 
823 #define dirty		(1UL << PG_dirty)
824 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
825 #define unevict		(1UL << PG_unevictable)
826 #define mlock		(1UL << PG_mlocked)
827 #define writeback	(1UL << PG_writeback)
828 #define lru		(1UL << PG_lru)
829 #define head		(1UL << PG_head)
830 #define slab		(1UL << PG_slab)
831 #define reserved	(1UL << PG_reserved)
832 
833 static struct page_state {
834 	unsigned long mask;
835 	unsigned long res;
836 	enum mf_action_page_type type;
837 	int (*action)(struct page *p, unsigned long pfn);
838 } error_states[] = {
839 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
840 	/*
841 	 * free pages are specially detected outside this table:
842 	 * PG_buddy pages only make a small fraction of all free pages.
843 	 */
844 
845 	/*
846 	 * Could in theory check if slab page is free or if we can drop
847 	 * currently unused objects without touching them. But just
848 	 * treat it as standard kernel for now.
849 	 */
850 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
851 
852 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
853 
854 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
855 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
856 
857 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
858 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
859 
860 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
861 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
862 
863 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
864 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
865 
866 	/*
867 	 * Catchall entry: must be at end.
868 	 */
869 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
870 };
871 
872 #undef dirty
873 #undef sc
874 #undef unevict
875 #undef mlock
876 #undef writeback
877 #undef lru
878 #undef head
879 #undef slab
880 #undef reserved
881 
882 /*
883  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
884  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
885  */
886 static void action_result(unsigned long pfn, enum mf_action_page_type type,
887 			  enum mf_result result)
888 {
889 	trace_memory_failure_event(pfn, type, result);
890 
891 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
892 		pfn, action_page_types[type], action_name[result]);
893 }
894 
895 static int page_action(struct page_state *ps, struct page *p,
896 			unsigned long pfn)
897 {
898 	int result;
899 	int count;
900 
901 	result = ps->action(p, pfn);
902 
903 	count = page_count(p) - 1;
904 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
905 		count--;
906 	if (count > 0) {
907 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
908 		       pfn, action_page_types[ps->type], count);
909 		result = MF_FAILED;
910 	}
911 	action_result(pfn, ps->type, result);
912 
913 	/* Could do more checks here if page looks ok */
914 	/*
915 	 * Could adjust zone counters here to correct for the missing page.
916 	 */
917 
918 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
919 }
920 
921 /**
922  * get_hwpoison_page() - Get refcount for memory error handling:
923  * @page:	raw error page (hit by memory error)
924  *
925  * Return: return 0 if failed to grab the refcount, otherwise true (some
926  * non-zero value.)
927  */
928 int get_hwpoison_page(struct page *page)
929 {
930 	struct page *head = compound_head(page);
931 
932 	if (!PageHuge(head) && PageTransHuge(head)) {
933 		/*
934 		 * Non anonymous thp exists only in allocation/free time. We
935 		 * can't handle such a case correctly, so let's give it up.
936 		 * This should be better than triggering BUG_ON when kernel
937 		 * tries to touch the "partially handled" page.
938 		 */
939 		if (!PageAnon(head)) {
940 			pr_err("Memory failure: %#lx: non anonymous thp\n",
941 				page_to_pfn(page));
942 			return 0;
943 		}
944 	}
945 
946 	if (get_page_unless_zero(head)) {
947 		if (head == compound_head(page))
948 			return 1;
949 
950 		pr_info("Memory failure: %#lx cannot catch tail\n",
951 			page_to_pfn(page));
952 		put_page(head);
953 	}
954 
955 	return 0;
956 }
957 EXPORT_SYMBOL_GPL(get_hwpoison_page);
958 
959 /*
960  * Do all that is necessary to remove user space mappings. Unmap
961  * the pages and send SIGBUS to the processes if the data was dirty.
962  */
963 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
964 				  int flags, struct page **hpagep)
965 {
966 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
967 	struct address_space *mapping;
968 	LIST_HEAD(tokill);
969 	bool unmap_success;
970 	int kill = 1, forcekill;
971 	struct page *hpage = *hpagep;
972 	bool mlocked = PageMlocked(hpage);
973 
974 	/*
975 	 * Here we are interested only in user-mapped pages, so skip any
976 	 * other types of pages.
977 	 */
978 	if (PageReserved(p) || PageSlab(p))
979 		return true;
980 	if (!(PageLRU(hpage) || PageHuge(p)))
981 		return true;
982 
983 	/*
984 	 * This check implies we don't kill processes if their pages
985 	 * are in the swap cache early. Those are always late kills.
986 	 */
987 	if (!page_mapped(hpage))
988 		return true;
989 
990 	if (PageKsm(p)) {
991 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
992 		return false;
993 	}
994 
995 	if (PageSwapCache(p)) {
996 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
997 			pfn);
998 		ttu |= TTU_IGNORE_HWPOISON;
999 	}
1000 
1001 	/*
1002 	 * Propagate the dirty bit from PTEs to struct page first, because we
1003 	 * need this to decide if we should kill or just drop the page.
1004 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
1005 	 * be called inside page lock (it's recommended but not enforced).
1006 	 */
1007 	mapping = page_mapping(hpage);
1008 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1009 	    mapping_cap_writeback_dirty(mapping)) {
1010 		if (page_mkclean(hpage)) {
1011 			SetPageDirty(hpage);
1012 		} else {
1013 			kill = 0;
1014 			ttu |= TTU_IGNORE_HWPOISON;
1015 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1016 				pfn);
1017 		}
1018 	}
1019 
1020 	/*
1021 	 * First collect all the processes that have the page
1022 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1023 	 * because ttu takes the rmap data structures down.
1024 	 *
1025 	 * Error handling: We ignore errors here because
1026 	 * there's nothing that can be done.
1027 	 */
1028 	if (kill)
1029 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1030 
1031 	unmap_success = try_to_unmap(hpage, ttu);
1032 	if (!unmap_success)
1033 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1034 		       pfn, page_mapcount(hpage));
1035 
1036 	/*
1037 	 * try_to_unmap() might put mlocked page in lru cache, so call
1038 	 * shake_page() again to ensure that it's flushed.
1039 	 */
1040 	if (mlocked)
1041 		shake_page(hpage, 0);
1042 
1043 	/*
1044 	 * Now that the dirty bit has been propagated to the
1045 	 * struct page and all unmaps done we can decide if
1046 	 * killing is needed or not.  Only kill when the page
1047 	 * was dirty or the process is not restartable,
1048 	 * otherwise the tokill list is merely
1049 	 * freed.  When there was a problem unmapping earlier
1050 	 * use a more force-full uncatchable kill to prevent
1051 	 * any accesses to the poisoned memory.
1052 	 */
1053 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1054 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1055 
1056 	return unmap_success;
1057 }
1058 
1059 static int identify_page_state(unsigned long pfn, struct page *p,
1060 				unsigned long page_flags)
1061 {
1062 	struct page_state *ps;
1063 
1064 	/*
1065 	 * The first check uses the current page flags which may not have any
1066 	 * relevant information. The second check with the saved page flags is
1067 	 * carried out only if the first check can't determine the page status.
1068 	 */
1069 	for (ps = error_states;; ps++)
1070 		if ((p->flags & ps->mask) == ps->res)
1071 			break;
1072 
1073 	page_flags |= (p->flags & (1UL << PG_dirty));
1074 
1075 	if (!ps->mask)
1076 		for (ps = error_states;; ps++)
1077 			if ((page_flags & ps->mask) == ps->res)
1078 				break;
1079 	return page_action(ps, p, pfn);
1080 }
1081 
1082 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1083 {
1084 	struct page *p = pfn_to_page(pfn);
1085 	struct page *head = compound_head(p);
1086 	int res;
1087 	unsigned long page_flags;
1088 
1089 	if (TestSetPageHWPoison(head)) {
1090 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1091 		       pfn);
1092 		return 0;
1093 	}
1094 
1095 	num_poisoned_pages_inc();
1096 
1097 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1098 		/*
1099 		 * Check "filter hit" and "race with other subpage."
1100 		 */
1101 		lock_page(head);
1102 		if (PageHWPoison(head)) {
1103 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1104 			    || (p != head && TestSetPageHWPoison(head))) {
1105 				num_poisoned_pages_dec();
1106 				unlock_page(head);
1107 				return 0;
1108 			}
1109 		}
1110 		unlock_page(head);
1111 		dissolve_free_huge_page(p);
1112 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1113 		return 0;
1114 	}
1115 
1116 	lock_page(head);
1117 	page_flags = head->flags;
1118 
1119 	if (!PageHWPoison(head)) {
1120 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1121 		num_poisoned_pages_dec();
1122 		unlock_page(head);
1123 		put_hwpoison_page(head);
1124 		return 0;
1125 	}
1126 
1127 	/*
1128 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1129 	 * simply disable it. In order to make it work properly, we need
1130 	 * make sure that:
1131 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1132 	 *    entry properly works, and
1133 	 *  - other mm code walking over page table is aware of pud-aligned
1134 	 *    hwpoison entries.
1135 	 */
1136 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1137 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1138 		res = -EBUSY;
1139 		goto out;
1140 	}
1141 
1142 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1143 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1144 		res = -EBUSY;
1145 		goto out;
1146 	}
1147 
1148 	res = identify_page_state(pfn, p, page_flags);
1149 out:
1150 	unlock_page(head);
1151 	return res;
1152 }
1153 
1154 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1155 		struct dev_pagemap *pgmap)
1156 {
1157 	struct page *page = pfn_to_page(pfn);
1158 	const bool unmap_success = true;
1159 	unsigned long size = 0;
1160 	struct to_kill *tk;
1161 	LIST_HEAD(tokill);
1162 	int rc = -EBUSY;
1163 	loff_t start;
1164 
1165 	/*
1166 	 * Prevent the inode from being freed while we are interrogating
1167 	 * the address_space, typically this would be handled by
1168 	 * lock_page(), but dax pages do not use the page lock. This
1169 	 * also prevents changes to the mapping of this pfn until
1170 	 * poison signaling is complete.
1171 	 */
1172 	if (!dax_lock_mapping_entry(page))
1173 		goto out;
1174 
1175 	if (hwpoison_filter(page)) {
1176 		rc = 0;
1177 		goto unlock;
1178 	}
1179 
1180 	switch (pgmap->type) {
1181 	case MEMORY_DEVICE_PRIVATE:
1182 	case MEMORY_DEVICE_PUBLIC:
1183 		/*
1184 		 * TODO: Handle HMM pages which may need coordination
1185 		 * with device-side memory.
1186 		 */
1187 		goto unlock;
1188 	default:
1189 		break;
1190 	}
1191 
1192 	/*
1193 	 * Use this flag as an indication that the dax page has been
1194 	 * remapped UC to prevent speculative consumption of poison.
1195 	 */
1196 	SetPageHWPoison(page);
1197 
1198 	/*
1199 	 * Unlike System-RAM there is no possibility to swap in a
1200 	 * different physical page at a given virtual address, so all
1201 	 * userspace consumption of ZONE_DEVICE memory necessitates
1202 	 * SIGBUS (i.e. MF_MUST_KILL)
1203 	 */
1204 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1205 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1206 
1207 	list_for_each_entry(tk, &tokill, nd)
1208 		if (tk->size_shift)
1209 			size = max(size, 1UL << tk->size_shift);
1210 	if (size) {
1211 		/*
1212 		 * Unmap the largest mapping to avoid breaking up
1213 		 * device-dax mappings which are constant size. The
1214 		 * actual size of the mapping being torn down is
1215 		 * communicated in siginfo, see kill_proc()
1216 		 */
1217 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1218 		unmap_mapping_range(page->mapping, start, start + size, 0);
1219 	}
1220 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1221 	rc = 0;
1222 unlock:
1223 	dax_unlock_mapping_entry(page);
1224 out:
1225 	/* drop pgmap ref acquired in caller */
1226 	put_dev_pagemap(pgmap);
1227 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1228 	return rc;
1229 }
1230 
1231 /**
1232  * memory_failure - Handle memory failure of a page.
1233  * @pfn: Page Number of the corrupted page
1234  * @flags: fine tune action taken
1235  *
1236  * This function is called by the low level machine check code
1237  * of an architecture when it detects hardware memory corruption
1238  * of a page. It tries its best to recover, which includes
1239  * dropping pages, killing processes etc.
1240  *
1241  * The function is primarily of use for corruptions that
1242  * happen outside the current execution context (e.g. when
1243  * detected by a background scrubber)
1244  *
1245  * Must run in process context (e.g. a work queue) with interrupts
1246  * enabled and no spinlocks hold.
1247  */
1248 int memory_failure(unsigned long pfn, int flags)
1249 {
1250 	struct page *p;
1251 	struct page *hpage;
1252 	struct page *orig_head;
1253 	struct dev_pagemap *pgmap;
1254 	int res;
1255 	unsigned long page_flags;
1256 
1257 	if (!sysctl_memory_failure_recovery)
1258 		panic("Memory failure on page %lx", pfn);
1259 
1260 	if (!pfn_valid(pfn)) {
1261 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1262 			pfn);
1263 		return -ENXIO;
1264 	}
1265 
1266 	pgmap = get_dev_pagemap(pfn, NULL);
1267 	if (pgmap)
1268 		return memory_failure_dev_pagemap(pfn, flags, pgmap);
1269 
1270 	p = pfn_to_page(pfn);
1271 	if (PageHuge(p))
1272 		return memory_failure_hugetlb(pfn, flags);
1273 	if (TestSetPageHWPoison(p)) {
1274 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1275 			pfn);
1276 		return 0;
1277 	}
1278 
1279 	orig_head = hpage = compound_head(p);
1280 	num_poisoned_pages_inc();
1281 
1282 	/*
1283 	 * We need/can do nothing about count=0 pages.
1284 	 * 1) it's a free page, and therefore in safe hand:
1285 	 *    prep_new_page() will be the gate keeper.
1286 	 * 2) it's part of a non-compound high order page.
1287 	 *    Implies some kernel user: cannot stop them from
1288 	 *    R/W the page; let's pray that the page has been
1289 	 *    used and will be freed some time later.
1290 	 * In fact it's dangerous to directly bump up page count from 0,
1291 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1292 	 */
1293 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1294 		if (is_free_buddy_page(p)) {
1295 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1296 			return 0;
1297 		} else {
1298 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1299 			return -EBUSY;
1300 		}
1301 	}
1302 
1303 	if (PageTransHuge(hpage)) {
1304 		lock_page(p);
1305 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1306 			unlock_page(p);
1307 			if (!PageAnon(p))
1308 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1309 					pfn);
1310 			else
1311 				pr_err("Memory failure: %#lx: thp split failed\n",
1312 					pfn);
1313 			if (TestClearPageHWPoison(p))
1314 				num_poisoned_pages_dec();
1315 			put_hwpoison_page(p);
1316 			return -EBUSY;
1317 		}
1318 		unlock_page(p);
1319 		VM_BUG_ON_PAGE(!page_count(p), p);
1320 		hpage = compound_head(p);
1321 	}
1322 
1323 	/*
1324 	 * We ignore non-LRU pages for good reasons.
1325 	 * - PG_locked is only well defined for LRU pages and a few others
1326 	 * - to avoid races with __SetPageLocked()
1327 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1328 	 * The check (unnecessarily) ignores LRU pages being isolated and
1329 	 * walked by the page reclaim code, however that's not a big loss.
1330 	 */
1331 	shake_page(p, 0);
1332 	/* shake_page could have turned it free. */
1333 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1334 		if (flags & MF_COUNT_INCREASED)
1335 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1336 		else
1337 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1338 		return 0;
1339 	}
1340 
1341 	lock_page(p);
1342 
1343 	/*
1344 	 * The page could have changed compound pages during the locking.
1345 	 * If this happens just bail out.
1346 	 */
1347 	if (PageCompound(p) && compound_head(p) != orig_head) {
1348 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1349 		res = -EBUSY;
1350 		goto out;
1351 	}
1352 
1353 	/*
1354 	 * We use page flags to determine what action should be taken, but
1355 	 * the flags can be modified by the error containment action.  One
1356 	 * example is an mlocked page, where PG_mlocked is cleared by
1357 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1358 	 * correctly, we save a copy of the page flags at this time.
1359 	 */
1360 	if (PageHuge(p))
1361 		page_flags = hpage->flags;
1362 	else
1363 		page_flags = p->flags;
1364 
1365 	/*
1366 	 * unpoison always clear PG_hwpoison inside page lock
1367 	 */
1368 	if (!PageHWPoison(p)) {
1369 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1370 		num_poisoned_pages_dec();
1371 		unlock_page(p);
1372 		put_hwpoison_page(p);
1373 		return 0;
1374 	}
1375 	if (hwpoison_filter(p)) {
1376 		if (TestClearPageHWPoison(p))
1377 			num_poisoned_pages_dec();
1378 		unlock_page(p);
1379 		put_hwpoison_page(p);
1380 		return 0;
1381 	}
1382 
1383 	if (!PageTransTail(p) && !PageLRU(p))
1384 		goto identify_page_state;
1385 
1386 	/*
1387 	 * It's very difficult to mess with pages currently under IO
1388 	 * and in many cases impossible, so we just avoid it here.
1389 	 */
1390 	wait_on_page_writeback(p);
1391 
1392 	/*
1393 	 * Now take care of user space mappings.
1394 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1395 	 *
1396 	 * When the raw error page is thp tail page, hpage points to the raw
1397 	 * page after thp split.
1398 	 */
1399 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1400 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1401 		res = -EBUSY;
1402 		goto out;
1403 	}
1404 
1405 	/*
1406 	 * Torn down by someone else?
1407 	 */
1408 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1409 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1410 		res = -EBUSY;
1411 		goto out;
1412 	}
1413 
1414 identify_page_state:
1415 	res = identify_page_state(pfn, p, page_flags);
1416 out:
1417 	unlock_page(p);
1418 	return res;
1419 }
1420 EXPORT_SYMBOL_GPL(memory_failure);
1421 
1422 #define MEMORY_FAILURE_FIFO_ORDER	4
1423 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1424 
1425 struct memory_failure_entry {
1426 	unsigned long pfn;
1427 	int flags;
1428 };
1429 
1430 struct memory_failure_cpu {
1431 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1432 		      MEMORY_FAILURE_FIFO_SIZE);
1433 	spinlock_t lock;
1434 	struct work_struct work;
1435 };
1436 
1437 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1438 
1439 /**
1440  * memory_failure_queue - Schedule handling memory failure of a page.
1441  * @pfn: Page Number of the corrupted page
1442  * @flags: Flags for memory failure handling
1443  *
1444  * This function is called by the low level hardware error handler
1445  * when it detects hardware memory corruption of a page. It schedules
1446  * the recovering of error page, including dropping pages, killing
1447  * processes etc.
1448  *
1449  * The function is primarily of use for corruptions that
1450  * happen outside the current execution context (e.g. when
1451  * detected by a background scrubber)
1452  *
1453  * Can run in IRQ context.
1454  */
1455 void memory_failure_queue(unsigned long pfn, int flags)
1456 {
1457 	struct memory_failure_cpu *mf_cpu;
1458 	unsigned long proc_flags;
1459 	struct memory_failure_entry entry = {
1460 		.pfn =		pfn,
1461 		.flags =	flags,
1462 	};
1463 
1464 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1465 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1466 	if (kfifo_put(&mf_cpu->fifo, entry))
1467 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1468 	else
1469 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1470 		       pfn);
1471 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1472 	put_cpu_var(memory_failure_cpu);
1473 }
1474 EXPORT_SYMBOL_GPL(memory_failure_queue);
1475 
1476 static void memory_failure_work_func(struct work_struct *work)
1477 {
1478 	struct memory_failure_cpu *mf_cpu;
1479 	struct memory_failure_entry entry = { 0, };
1480 	unsigned long proc_flags;
1481 	int gotten;
1482 
1483 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1484 	for (;;) {
1485 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1486 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1487 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1488 		if (!gotten)
1489 			break;
1490 		if (entry.flags & MF_SOFT_OFFLINE)
1491 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1492 		else
1493 			memory_failure(entry.pfn, entry.flags);
1494 	}
1495 }
1496 
1497 static int __init memory_failure_init(void)
1498 {
1499 	struct memory_failure_cpu *mf_cpu;
1500 	int cpu;
1501 
1502 	for_each_possible_cpu(cpu) {
1503 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1504 		spin_lock_init(&mf_cpu->lock);
1505 		INIT_KFIFO(mf_cpu->fifo);
1506 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1507 	}
1508 
1509 	return 0;
1510 }
1511 core_initcall(memory_failure_init);
1512 
1513 #define unpoison_pr_info(fmt, pfn, rs)			\
1514 ({							\
1515 	if (__ratelimit(rs))				\
1516 		pr_info(fmt, pfn);			\
1517 })
1518 
1519 /**
1520  * unpoison_memory - Unpoison a previously poisoned page
1521  * @pfn: Page number of the to be unpoisoned page
1522  *
1523  * Software-unpoison a page that has been poisoned by
1524  * memory_failure() earlier.
1525  *
1526  * This is only done on the software-level, so it only works
1527  * for linux injected failures, not real hardware failures
1528  *
1529  * Returns 0 for success, otherwise -errno.
1530  */
1531 int unpoison_memory(unsigned long pfn)
1532 {
1533 	struct page *page;
1534 	struct page *p;
1535 	int freeit = 0;
1536 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1537 					DEFAULT_RATELIMIT_BURST);
1538 
1539 	if (!pfn_valid(pfn))
1540 		return -ENXIO;
1541 
1542 	p = pfn_to_page(pfn);
1543 	page = compound_head(p);
1544 
1545 	if (!PageHWPoison(p)) {
1546 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1547 				 pfn, &unpoison_rs);
1548 		return 0;
1549 	}
1550 
1551 	if (page_count(page) > 1) {
1552 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1553 				 pfn, &unpoison_rs);
1554 		return 0;
1555 	}
1556 
1557 	if (page_mapped(page)) {
1558 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1559 				 pfn, &unpoison_rs);
1560 		return 0;
1561 	}
1562 
1563 	if (page_mapping(page)) {
1564 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1565 				 pfn, &unpoison_rs);
1566 		return 0;
1567 	}
1568 
1569 	/*
1570 	 * unpoison_memory() can encounter thp only when the thp is being
1571 	 * worked by memory_failure() and the page lock is not held yet.
1572 	 * In such case, we yield to memory_failure() and make unpoison fail.
1573 	 */
1574 	if (!PageHuge(page) && PageTransHuge(page)) {
1575 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1576 				 pfn, &unpoison_rs);
1577 		return 0;
1578 	}
1579 
1580 	if (!get_hwpoison_page(p)) {
1581 		if (TestClearPageHWPoison(p))
1582 			num_poisoned_pages_dec();
1583 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1584 				 pfn, &unpoison_rs);
1585 		return 0;
1586 	}
1587 
1588 	lock_page(page);
1589 	/*
1590 	 * This test is racy because PG_hwpoison is set outside of page lock.
1591 	 * That's acceptable because that won't trigger kernel panic. Instead,
1592 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1593 	 * the free buddy page pool.
1594 	 */
1595 	if (TestClearPageHWPoison(page)) {
1596 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1597 				 pfn, &unpoison_rs);
1598 		num_poisoned_pages_dec();
1599 		freeit = 1;
1600 	}
1601 	unlock_page(page);
1602 
1603 	put_hwpoison_page(page);
1604 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1605 		put_hwpoison_page(page);
1606 
1607 	return 0;
1608 }
1609 EXPORT_SYMBOL(unpoison_memory);
1610 
1611 static struct page *new_page(struct page *p, unsigned long private)
1612 {
1613 	int nid = page_to_nid(p);
1614 
1615 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1616 }
1617 
1618 /*
1619  * Safely get reference count of an arbitrary page.
1620  * Returns 0 for a free page, -EIO for a zero refcount page
1621  * that is not free, and 1 for any other page type.
1622  * For 1 the page is returned with increased page count, otherwise not.
1623  */
1624 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1625 {
1626 	int ret;
1627 
1628 	if (flags & MF_COUNT_INCREASED)
1629 		return 1;
1630 
1631 	/*
1632 	 * When the target page is a free hugepage, just remove it
1633 	 * from free hugepage list.
1634 	 */
1635 	if (!get_hwpoison_page(p)) {
1636 		if (PageHuge(p)) {
1637 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1638 			ret = 0;
1639 		} else if (is_free_buddy_page(p)) {
1640 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1641 			ret = 0;
1642 		} else {
1643 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1644 				__func__, pfn, p->flags);
1645 			ret = -EIO;
1646 		}
1647 	} else {
1648 		/* Not a free page */
1649 		ret = 1;
1650 	}
1651 	return ret;
1652 }
1653 
1654 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1655 {
1656 	int ret = __get_any_page(page, pfn, flags);
1657 
1658 	if (ret == 1 && !PageHuge(page) &&
1659 	    !PageLRU(page) && !__PageMovable(page)) {
1660 		/*
1661 		 * Try to free it.
1662 		 */
1663 		put_hwpoison_page(page);
1664 		shake_page(page, 1);
1665 
1666 		/*
1667 		 * Did it turn free?
1668 		 */
1669 		ret = __get_any_page(page, pfn, 0);
1670 		if (ret == 1 && !PageLRU(page)) {
1671 			/* Drop page reference which is from __get_any_page() */
1672 			put_hwpoison_page(page);
1673 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1674 				pfn, page->flags, &page->flags);
1675 			return -EIO;
1676 		}
1677 	}
1678 	return ret;
1679 }
1680 
1681 static int soft_offline_huge_page(struct page *page, int flags)
1682 {
1683 	int ret;
1684 	unsigned long pfn = page_to_pfn(page);
1685 	struct page *hpage = compound_head(page);
1686 	LIST_HEAD(pagelist);
1687 
1688 	/*
1689 	 * This double-check of PageHWPoison is to avoid the race with
1690 	 * memory_failure(). See also comment in __soft_offline_page().
1691 	 */
1692 	lock_page(hpage);
1693 	if (PageHWPoison(hpage)) {
1694 		unlock_page(hpage);
1695 		put_hwpoison_page(hpage);
1696 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1697 		return -EBUSY;
1698 	}
1699 	unlock_page(hpage);
1700 
1701 	ret = isolate_huge_page(hpage, &pagelist);
1702 	/*
1703 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1704 	 * so need to drop one here.
1705 	 */
1706 	put_hwpoison_page(hpage);
1707 	if (!ret) {
1708 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1709 		return -EBUSY;
1710 	}
1711 
1712 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1713 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1714 	if (ret) {
1715 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1716 			pfn, ret, page->flags, &page->flags);
1717 		if (!list_empty(&pagelist))
1718 			putback_movable_pages(&pagelist);
1719 		if (ret > 0)
1720 			ret = -EIO;
1721 	} else {
1722 		/*
1723 		 * We set PG_hwpoison only when the migration source hugepage
1724 		 * was successfully dissolved, because otherwise hwpoisoned
1725 		 * hugepage remains on free hugepage list, then userspace will
1726 		 * find it as SIGBUS by allocation failure. That's not expected
1727 		 * in soft-offlining.
1728 		 */
1729 		ret = dissolve_free_huge_page(page);
1730 		if (!ret) {
1731 			if (set_hwpoison_free_buddy_page(page))
1732 				num_poisoned_pages_inc();
1733 		}
1734 	}
1735 	return ret;
1736 }
1737 
1738 static int __soft_offline_page(struct page *page, int flags)
1739 {
1740 	int ret;
1741 	unsigned long pfn = page_to_pfn(page);
1742 
1743 	/*
1744 	 * Check PageHWPoison again inside page lock because PageHWPoison
1745 	 * is set by memory_failure() outside page lock. Note that
1746 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1747 	 * so there's no race between soft_offline_page() and memory_failure().
1748 	 */
1749 	lock_page(page);
1750 	wait_on_page_writeback(page);
1751 	if (PageHWPoison(page)) {
1752 		unlock_page(page);
1753 		put_hwpoison_page(page);
1754 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1755 		return -EBUSY;
1756 	}
1757 	/*
1758 	 * Try to invalidate first. This should work for
1759 	 * non dirty unmapped page cache pages.
1760 	 */
1761 	ret = invalidate_inode_page(page);
1762 	unlock_page(page);
1763 	/*
1764 	 * RED-PEN would be better to keep it isolated here, but we
1765 	 * would need to fix isolation locking first.
1766 	 */
1767 	if (ret == 1) {
1768 		put_hwpoison_page(page);
1769 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1770 		SetPageHWPoison(page);
1771 		num_poisoned_pages_inc();
1772 		return 0;
1773 	}
1774 
1775 	/*
1776 	 * Simple invalidation didn't work.
1777 	 * Try to migrate to a new page instead. migrate.c
1778 	 * handles a large number of cases for us.
1779 	 */
1780 	if (PageLRU(page))
1781 		ret = isolate_lru_page(page);
1782 	else
1783 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1784 	/*
1785 	 * Drop page reference which is came from get_any_page()
1786 	 * successful isolate_lru_page() already took another one.
1787 	 */
1788 	put_hwpoison_page(page);
1789 	if (!ret) {
1790 		LIST_HEAD(pagelist);
1791 		/*
1792 		 * After isolated lru page, the PageLRU will be cleared,
1793 		 * so use !__PageMovable instead for LRU page's mapping
1794 		 * cannot have PAGE_MAPPING_MOVABLE.
1795 		 */
1796 		if (!__PageMovable(page))
1797 			inc_node_page_state(page, NR_ISOLATED_ANON +
1798 						page_is_file_cache(page));
1799 		list_add(&page->lru, &pagelist);
1800 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1801 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1802 		if (ret) {
1803 			if (!list_empty(&pagelist))
1804 				putback_movable_pages(&pagelist);
1805 
1806 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1807 				pfn, ret, page->flags, &page->flags);
1808 			if (ret > 0)
1809 				ret = -EIO;
1810 		}
1811 	} else {
1812 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1813 			pfn, ret, page_count(page), page->flags, &page->flags);
1814 	}
1815 	return ret;
1816 }
1817 
1818 static int soft_offline_in_use_page(struct page *page, int flags)
1819 {
1820 	int ret;
1821 	int mt;
1822 	struct page *hpage = compound_head(page);
1823 
1824 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1825 		lock_page(hpage);
1826 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1827 			unlock_page(hpage);
1828 			if (!PageAnon(hpage))
1829 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1830 			else
1831 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1832 			put_hwpoison_page(hpage);
1833 			return -EBUSY;
1834 		}
1835 		unlock_page(hpage);
1836 		get_hwpoison_page(page);
1837 		put_hwpoison_page(hpage);
1838 	}
1839 
1840 	/*
1841 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1842 	 * to free list immediately (not via pcplist) when released after
1843 	 * successful page migration. Otherwise we can't guarantee that the
1844 	 * page is really free after put_page() returns, so
1845 	 * set_hwpoison_free_buddy_page() highly likely fails.
1846 	 */
1847 	mt = get_pageblock_migratetype(page);
1848 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1849 	if (PageHuge(page))
1850 		ret = soft_offline_huge_page(page, flags);
1851 	else
1852 		ret = __soft_offline_page(page, flags);
1853 	set_pageblock_migratetype(page, mt);
1854 	return ret;
1855 }
1856 
1857 static int soft_offline_free_page(struct page *page)
1858 {
1859 	int rc = 0;
1860 	struct page *head = compound_head(page);
1861 
1862 	if (PageHuge(head))
1863 		rc = dissolve_free_huge_page(page);
1864 	if (!rc) {
1865 		if (set_hwpoison_free_buddy_page(page))
1866 			num_poisoned_pages_inc();
1867 		else
1868 			rc = -EBUSY;
1869 	}
1870 	return rc;
1871 }
1872 
1873 /**
1874  * soft_offline_page - Soft offline a page.
1875  * @page: page to offline
1876  * @flags: flags. Same as memory_failure().
1877  *
1878  * Returns 0 on success, otherwise negated errno.
1879  *
1880  * Soft offline a page, by migration or invalidation,
1881  * without killing anything. This is for the case when
1882  * a page is not corrupted yet (so it's still valid to access),
1883  * but has had a number of corrected errors and is better taken
1884  * out.
1885  *
1886  * The actual policy on when to do that is maintained by
1887  * user space.
1888  *
1889  * This should never impact any application or cause data loss,
1890  * however it might take some time.
1891  *
1892  * This is not a 100% solution for all memory, but tries to be
1893  * ``good enough'' for the majority of memory.
1894  */
1895 int soft_offline_page(struct page *page, int flags)
1896 {
1897 	int ret;
1898 	unsigned long pfn = page_to_pfn(page);
1899 
1900 	if (is_zone_device_page(page)) {
1901 		pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1902 				pfn);
1903 		if (flags & MF_COUNT_INCREASED)
1904 			put_page(page);
1905 		return -EIO;
1906 	}
1907 
1908 	if (PageHWPoison(page)) {
1909 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1910 		if (flags & MF_COUNT_INCREASED)
1911 			put_hwpoison_page(page);
1912 		return -EBUSY;
1913 	}
1914 
1915 	get_online_mems();
1916 	ret = get_any_page(page, pfn, flags);
1917 	put_online_mems();
1918 
1919 	if (ret > 0)
1920 		ret = soft_offline_in_use_page(page, flags);
1921 	else if (ret == 0)
1922 		ret = soft_offline_free_page(page);
1923 
1924 	return ret;
1925 }
1926