xref: /openbmc/linux/mm/memory-failure.c (revision e1a3e724)
1 /*
2  * Copyright (C) 2008, 2009 Intel Corporation
3  * Authors: Andi Kleen, Fengguang Wu
4  *
5  * This software may be redistributed and/or modified under the terms of
6  * the GNU General Public License ("GPL") version 2 only as published by the
7  * Free Software Foundation.
8  *
9  * High level machine check handler. Handles pages reported by the
10  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
11  * failure.
12  *
13  * In addition there is a "soft offline" entry point that allows stop using
14  * not-yet-corrupted-by-suspicious pages without killing anything.
15  *
16  * Handles page cache pages in various states.	The tricky part
17  * here is that we can access any page asynchronously in respect to
18  * other VM users, because memory failures could happen anytime and
19  * anywhere. This could violate some of their assumptions. This is why
20  * this code has to be extremely careful. Generally it tries to use
21  * normal locking rules, as in get the standard locks, even if that means
22  * the error handling takes potentially a long time.
23  *
24  * It can be very tempting to add handling for obscure cases here.
25  * In general any code for handling new cases should only be added iff:
26  * - You know how to test it.
27  * - You have a test that can be added to mce-test
28  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29  * - The case actually shows up as a frequent (top 10) page state in
30  *   tools/vm/page-types when running a real workload.
31  *
32  * There are several operations here with exponential complexity because
33  * of unsuitable VM data structures. For example the operation to map back
34  * from RMAP chains to processes has to walk the complete process list and
35  * has non linear complexity with the number. But since memory corruptions
36  * are rare we hope to get away with this. This avoids impacting the core
37  * VM.
38  */
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/kernel-page-flags.h>
43 #include <linux/sched.h>
44 #include <linux/ksm.h>
45 #include <linux/rmap.h>
46 #include <linux/export.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/backing-dev.h>
50 #include <linux/migrate.h>
51 #include <linux/page-isolation.h>
52 #include <linux/suspend.h>
53 #include <linux/slab.h>
54 #include <linux/swapops.h>
55 #include <linux/hugetlb.h>
56 #include <linux/memory_hotplug.h>
57 #include <linux/mm_inline.h>
58 #include <linux/kfifo.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61 
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63 
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65 
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67 
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69 
70 u32 hwpoison_filter_enable = 0;
71 u32 hwpoison_filter_dev_major = ~0U;
72 u32 hwpoison_filter_dev_minor = ~0U;
73 u64 hwpoison_filter_flags_mask;
74 u64 hwpoison_filter_flags_value;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80 
81 static int hwpoison_filter_dev(struct page *p)
82 {
83 	struct address_space *mapping;
84 	dev_t dev;
85 
86 	if (hwpoison_filter_dev_major == ~0U &&
87 	    hwpoison_filter_dev_minor == ~0U)
88 		return 0;
89 
90 	/*
91 	 * page_mapping() does not accept slab pages.
92 	 */
93 	if (PageSlab(p))
94 		return -EINVAL;
95 
96 	mapping = page_mapping(p);
97 	if (mapping == NULL || mapping->host == NULL)
98 		return -EINVAL;
99 
100 	dev = mapping->host->i_sb->s_dev;
101 	if (hwpoison_filter_dev_major != ~0U &&
102 	    hwpoison_filter_dev_major != MAJOR(dev))
103 		return -EINVAL;
104 	if (hwpoison_filter_dev_minor != ~0U &&
105 	    hwpoison_filter_dev_minor != MINOR(dev))
106 		return -EINVAL;
107 
108 	return 0;
109 }
110 
111 static int hwpoison_filter_flags(struct page *p)
112 {
113 	if (!hwpoison_filter_flags_mask)
114 		return 0;
115 
116 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 				    hwpoison_filter_flags_value)
118 		return 0;
119 	else
120 		return -EINVAL;
121 }
122 
123 /*
124  * This allows stress tests to limit test scope to a collection of tasks
125  * by putting them under some memcg. This prevents killing unrelated/important
126  * processes such as /sbin/init. Note that the target task may share clean
127  * pages with init (eg. libc text), which is harmless. If the target task
128  * share _dirty_ pages with another task B, the test scheme must make sure B
129  * is also included in the memcg. At last, due to race conditions this filter
130  * can only guarantee that the page either belongs to the memcg tasks, or is
131  * a freed page.
132  */
133 #ifdef CONFIG_MEMCG
134 u64 hwpoison_filter_memcg;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136 static int hwpoison_filter_task(struct page *p)
137 {
138 	if (!hwpoison_filter_memcg)
139 		return 0;
140 
141 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 		return -EINVAL;
143 
144 	return 0;
145 }
146 #else
147 static int hwpoison_filter_task(struct page *p) { return 0; }
148 #endif
149 
150 int hwpoison_filter(struct page *p)
151 {
152 	if (!hwpoison_filter_enable)
153 		return 0;
154 
155 	if (hwpoison_filter_dev(p))
156 		return -EINVAL;
157 
158 	if (hwpoison_filter_flags(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_task(p))
162 		return -EINVAL;
163 
164 	return 0;
165 }
166 #else
167 int hwpoison_filter(struct page *p)
168 {
169 	return 0;
170 }
171 #endif
172 
173 EXPORT_SYMBOL_GPL(hwpoison_filter);
174 
175 /*
176  * Send all the processes who have the page mapped a signal.
177  * ``action optional'' if they are not immediately affected by the error
178  * ``action required'' if error happened in current execution context
179  */
180 static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
181 			unsigned long pfn, struct page *page, int flags)
182 {
183 	struct siginfo si;
184 	int ret;
185 
186 	printk(KERN_ERR
187 		"MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
188 		pfn, t->comm, t->pid);
189 	si.si_signo = SIGBUS;
190 	si.si_errno = 0;
191 	si.si_addr = (void *)addr;
192 #ifdef __ARCH_SI_TRAPNO
193 	si.si_trapno = trapno;
194 #endif
195 	si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
196 
197 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
198 		si.si_code = BUS_MCEERR_AR;
199 		ret = force_sig_info(SIGBUS, &si, current);
200 	} else {
201 		/*
202 		 * Don't use force here, it's convenient if the signal
203 		 * can be temporarily blocked.
204 		 * This could cause a loop when the user sets SIGBUS
205 		 * to SIG_IGN, but hopefully no one will do that?
206 		 */
207 		si.si_code = BUS_MCEERR_AO;
208 		ret = send_sig_info(SIGBUS, &si, t);  /* synchronous? */
209 	}
210 	if (ret < 0)
211 		printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
212 		       t->comm, t->pid, ret);
213 	return ret;
214 }
215 
216 /*
217  * When a unknown page type is encountered drain as many buffers as possible
218  * in the hope to turn the page into a LRU or free page, which we can handle.
219  */
220 void shake_page(struct page *p, int access)
221 {
222 	if (!PageSlab(p)) {
223 		lru_add_drain_all();
224 		if (PageLRU(p))
225 			return;
226 		drain_all_pages(page_zone(p));
227 		if (PageLRU(p) || is_free_buddy_page(p))
228 			return;
229 	}
230 
231 	/*
232 	 * Only call shrink_node_slabs here (which would also shrink
233 	 * other caches) if access is not potentially fatal.
234 	 */
235 	if (access)
236 		drop_slab_node(page_to_nid(p));
237 }
238 EXPORT_SYMBOL_GPL(shake_page);
239 
240 /*
241  * Kill all processes that have a poisoned page mapped and then isolate
242  * the page.
243  *
244  * General strategy:
245  * Find all processes having the page mapped and kill them.
246  * But we keep a page reference around so that the page is not
247  * actually freed yet.
248  * Then stash the page away
249  *
250  * There's no convenient way to get back to mapped processes
251  * from the VMAs. So do a brute-force search over all
252  * running processes.
253  *
254  * Remember that machine checks are not common (or rather
255  * if they are common you have other problems), so this shouldn't
256  * be a performance issue.
257  *
258  * Also there are some races possible while we get from the
259  * error detection to actually handle it.
260  */
261 
262 struct to_kill {
263 	struct list_head nd;
264 	struct task_struct *tsk;
265 	unsigned long addr;
266 	char addr_valid;
267 };
268 
269 /*
270  * Failure handling: if we can't find or can't kill a process there's
271  * not much we can do.	We just print a message and ignore otherwise.
272  */
273 
274 /*
275  * Schedule a process for later kill.
276  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
277  * TBD would GFP_NOIO be enough?
278  */
279 static void add_to_kill(struct task_struct *tsk, struct page *p,
280 		       struct vm_area_struct *vma,
281 		       struct list_head *to_kill,
282 		       struct to_kill **tkc)
283 {
284 	struct to_kill *tk;
285 
286 	if (*tkc) {
287 		tk = *tkc;
288 		*tkc = NULL;
289 	} else {
290 		tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
291 		if (!tk) {
292 			printk(KERN_ERR
293 		"MCE: Out of memory while machine check handling\n");
294 			return;
295 		}
296 	}
297 	tk->addr = page_address_in_vma(p, vma);
298 	tk->addr_valid = 1;
299 
300 	/*
301 	 * In theory we don't have to kill when the page was
302 	 * munmaped. But it could be also a mremap. Since that's
303 	 * likely very rare kill anyways just out of paranoia, but use
304 	 * a SIGKILL because the error is not contained anymore.
305 	 */
306 	if (tk->addr == -EFAULT) {
307 		pr_info("MCE: Unable to find user space address %lx in %s\n",
308 			page_to_pfn(p), tsk->comm);
309 		tk->addr_valid = 0;
310 	}
311 	get_task_struct(tsk);
312 	tk->tsk = tsk;
313 	list_add_tail(&tk->nd, to_kill);
314 }
315 
316 /*
317  * Kill the processes that have been collected earlier.
318  *
319  * Only do anything when DOIT is set, otherwise just free the list
320  * (this is used for clean pages which do not need killing)
321  * Also when FAIL is set do a force kill because something went
322  * wrong earlier.
323  */
324 static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
325 			  int fail, struct page *page, unsigned long pfn,
326 			  int flags)
327 {
328 	struct to_kill *tk, *next;
329 
330 	list_for_each_entry_safe (tk, next, to_kill, nd) {
331 		if (forcekill) {
332 			/*
333 			 * In case something went wrong with munmapping
334 			 * make sure the process doesn't catch the
335 			 * signal and then access the memory. Just kill it.
336 			 */
337 			if (fail || tk->addr_valid == 0) {
338 				printk(KERN_ERR
339 		"MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
340 					pfn, tk->tsk->comm, tk->tsk->pid);
341 				force_sig(SIGKILL, tk->tsk);
342 			}
343 
344 			/*
345 			 * In theory the process could have mapped
346 			 * something else on the address in-between. We could
347 			 * check for that, but we need to tell the
348 			 * process anyways.
349 			 */
350 			else if (kill_proc(tk->tsk, tk->addr, trapno,
351 					      pfn, page, flags) < 0)
352 				printk(KERN_ERR
353 		"MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
354 					pfn, tk->tsk->comm, tk->tsk->pid);
355 		}
356 		put_task_struct(tk->tsk);
357 		kfree(tk);
358 	}
359 }
360 
361 /*
362  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
363  * on behalf of the thread group. Return task_struct of the (first found)
364  * dedicated thread if found, and return NULL otherwise.
365  *
366  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
367  * have to call rcu_read_lock/unlock() in this function.
368  */
369 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
370 {
371 	struct task_struct *t;
372 
373 	for_each_thread(tsk, t)
374 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
375 			return t;
376 	return NULL;
377 }
378 
379 /*
380  * Determine whether a given process is "early kill" process which expects
381  * to be signaled when some page under the process is hwpoisoned.
382  * Return task_struct of the dedicated thread (main thread unless explicitly
383  * specified) if the process is "early kill," and otherwise returns NULL.
384  */
385 static struct task_struct *task_early_kill(struct task_struct *tsk,
386 					   int force_early)
387 {
388 	struct task_struct *t;
389 	if (!tsk->mm)
390 		return NULL;
391 	if (force_early)
392 		return tsk;
393 	t = find_early_kill_thread(tsk);
394 	if (t)
395 		return t;
396 	if (sysctl_memory_failure_early_kill)
397 		return tsk;
398 	return NULL;
399 }
400 
401 /*
402  * Collect processes when the error hit an anonymous page.
403  */
404 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
405 			      struct to_kill **tkc, int force_early)
406 {
407 	struct vm_area_struct *vma;
408 	struct task_struct *tsk;
409 	struct anon_vma *av;
410 	pgoff_t pgoff;
411 
412 	av = page_lock_anon_vma_read(page);
413 	if (av == NULL)	/* Not actually mapped anymore */
414 		return;
415 
416 	pgoff = page_to_pgoff(page);
417 	read_lock(&tasklist_lock);
418 	for_each_process (tsk) {
419 		struct anon_vma_chain *vmac;
420 		struct task_struct *t = task_early_kill(tsk, force_early);
421 
422 		if (!t)
423 			continue;
424 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
425 					       pgoff, pgoff) {
426 			vma = vmac->vma;
427 			if (!page_mapped_in_vma(page, vma))
428 				continue;
429 			if (vma->vm_mm == t->mm)
430 				add_to_kill(t, page, vma, to_kill, tkc);
431 		}
432 	}
433 	read_unlock(&tasklist_lock);
434 	page_unlock_anon_vma_read(av);
435 }
436 
437 /*
438  * Collect processes when the error hit a file mapped page.
439  */
440 static void collect_procs_file(struct page *page, struct list_head *to_kill,
441 			      struct to_kill **tkc, int force_early)
442 {
443 	struct vm_area_struct *vma;
444 	struct task_struct *tsk;
445 	struct address_space *mapping = page->mapping;
446 
447 	i_mmap_lock_read(mapping);
448 	read_lock(&tasklist_lock);
449 	for_each_process(tsk) {
450 		pgoff_t pgoff = page_to_pgoff(page);
451 		struct task_struct *t = task_early_kill(tsk, force_early);
452 
453 		if (!t)
454 			continue;
455 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
456 				      pgoff) {
457 			/*
458 			 * Send early kill signal to tasks where a vma covers
459 			 * the page but the corrupted page is not necessarily
460 			 * mapped it in its pte.
461 			 * Assume applications who requested early kill want
462 			 * to be informed of all such data corruptions.
463 			 */
464 			if (vma->vm_mm == t->mm)
465 				add_to_kill(t, page, vma, to_kill, tkc);
466 		}
467 	}
468 	read_unlock(&tasklist_lock);
469 	i_mmap_unlock_read(mapping);
470 }
471 
472 /*
473  * Collect the processes who have the corrupted page mapped to kill.
474  * This is done in two steps for locking reasons.
475  * First preallocate one tokill structure outside the spin locks,
476  * so that we can kill at least one process reasonably reliable.
477  */
478 static void collect_procs(struct page *page, struct list_head *tokill,
479 				int force_early)
480 {
481 	struct to_kill *tk;
482 
483 	if (!page->mapping)
484 		return;
485 
486 	tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
487 	if (!tk)
488 		return;
489 	if (PageAnon(page))
490 		collect_procs_anon(page, tokill, &tk, force_early);
491 	else
492 		collect_procs_file(page, tokill, &tk, force_early);
493 	kfree(tk);
494 }
495 
496 static const char *action_name[] = {
497 	[MF_IGNORED] = "Ignored",
498 	[MF_FAILED] = "Failed",
499 	[MF_DELAYED] = "Delayed",
500 	[MF_RECOVERED] = "Recovered",
501 };
502 
503 static const char * const action_page_types[] = {
504 	[MF_MSG_KERNEL]			= "reserved kernel page",
505 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
506 	[MF_MSG_SLAB]			= "kernel slab page",
507 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
508 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
509 	[MF_MSG_HUGE]			= "huge page",
510 	[MF_MSG_FREE_HUGE]		= "free huge page",
511 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
512 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
513 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
514 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
515 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
516 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
517 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
518 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
519 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
520 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
521 	[MF_MSG_BUDDY]			= "free buddy page",
522 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
523 	[MF_MSG_UNKNOWN]		= "unknown page",
524 };
525 
526 /*
527  * XXX: It is possible that a page is isolated from LRU cache,
528  * and then kept in swap cache or failed to remove from page cache.
529  * The page count will stop it from being freed by unpoison.
530  * Stress tests should be aware of this memory leak problem.
531  */
532 static int delete_from_lru_cache(struct page *p)
533 {
534 	if (!isolate_lru_page(p)) {
535 		/*
536 		 * Clear sensible page flags, so that the buddy system won't
537 		 * complain when the page is unpoison-and-freed.
538 		 */
539 		ClearPageActive(p);
540 		ClearPageUnevictable(p);
541 		/*
542 		 * drop the page count elevated by isolate_lru_page()
543 		 */
544 		page_cache_release(p);
545 		return 0;
546 	}
547 	return -EIO;
548 }
549 
550 /*
551  * Error hit kernel page.
552  * Do nothing, try to be lucky and not touch this instead. For a few cases we
553  * could be more sophisticated.
554  */
555 static int me_kernel(struct page *p, unsigned long pfn)
556 {
557 	return MF_IGNORED;
558 }
559 
560 /*
561  * Page in unknown state. Do nothing.
562  */
563 static int me_unknown(struct page *p, unsigned long pfn)
564 {
565 	printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
566 	return MF_FAILED;
567 }
568 
569 /*
570  * Clean (or cleaned) page cache page.
571  */
572 static int me_pagecache_clean(struct page *p, unsigned long pfn)
573 {
574 	int err;
575 	int ret = MF_FAILED;
576 	struct address_space *mapping;
577 
578 	delete_from_lru_cache(p);
579 
580 	/*
581 	 * For anonymous pages we're done the only reference left
582 	 * should be the one m_f() holds.
583 	 */
584 	if (PageAnon(p))
585 		return MF_RECOVERED;
586 
587 	/*
588 	 * Now truncate the page in the page cache. This is really
589 	 * more like a "temporary hole punch"
590 	 * Don't do this for block devices when someone else
591 	 * has a reference, because it could be file system metadata
592 	 * and that's not safe to truncate.
593 	 */
594 	mapping = page_mapping(p);
595 	if (!mapping) {
596 		/*
597 		 * Page has been teared down in the meanwhile
598 		 */
599 		return MF_FAILED;
600 	}
601 
602 	/*
603 	 * Truncation is a bit tricky. Enable it per file system for now.
604 	 *
605 	 * Open: to take i_mutex or not for this? Right now we don't.
606 	 */
607 	if (mapping->a_ops->error_remove_page) {
608 		err = mapping->a_ops->error_remove_page(mapping, p);
609 		if (err != 0) {
610 			printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
611 					pfn, err);
612 		} else if (page_has_private(p) &&
613 				!try_to_release_page(p, GFP_NOIO)) {
614 			pr_info("MCE %#lx: failed to release buffers\n", pfn);
615 		} else {
616 			ret = MF_RECOVERED;
617 		}
618 	} else {
619 		/*
620 		 * If the file system doesn't support it just invalidate
621 		 * This fails on dirty or anything with private pages
622 		 */
623 		if (invalidate_inode_page(p))
624 			ret = MF_RECOVERED;
625 		else
626 			printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
627 				pfn);
628 	}
629 	return ret;
630 }
631 
632 /*
633  * Dirty pagecache page
634  * Issues: when the error hit a hole page the error is not properly
635  * propagated.
636  */
637 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
638 {
639 	struct address_space *mapping = page_mapping(p);
640 
641 	SetPageError(p);
642 	/* TBD: print more information about the file. */
643 	if (mapping) {
644 		/*
645 		 * IO error will be reported by write(), fsync(), etc.
646 		 * who check the mapping.
647 		 * This way the application knows that something went
648 		 * wrong with its dirty file data.
649 		 *
650 		 * There's one open issue:
651 		 *
652 		 * The EIO will be only reported on the next IO
653 		 * operation and then cleared through the IO map.
654 		 * Normally Linux has two mechanisms to pass IO error
655 		 * first through the AS_EIO flag in the address space
656 		 * and then through the PageError flag in the page.
657 		 * Since we drop pages on memory failure handling the
658 		 * only mechanism open to use is through AS_AIO.
659 		 *
660 		 * This has the disadvantage that it gets cleared on
661 		 * the first operation that returns an error, while
662 		 * the PageError bit is more sticky and only cleared
663 		 * when the page is reread or dropped.  If an
664 		 * application assumes it will always get error on
665 		 * fsync, but does other operations on the fd before
666 		 * and the page is dropped between then the error
667 		 * will not be properly reported.
668 		 *
669 		 * This can already happen even without hwpoisoned
670 		 * pages: first on metadata IO errors (which only
671 		 * report through AS_EIO) or when the page is dropped
672 		 * at the wrong time.
673 		 *
674 		 * So right now we assume that the application DTRT on
675 		 * the first EIO, but we're not worse than other parts
676 		 * of the kernel.
677 		 */
678 		mapping_set_error(mapping, EIO);
679 	}
680 
681 	return me_pagecache_clean(p, pfn);
682 }
683 
684 /*
685  * Clean and dirty swap cache.
686  *
687  * Dirty swap cache page is tricky to handle. The page could live both in page
688  * cache and swap cache(ie. page is freshly swapped in). So it could be
689  * referenced concurrently by 2 types of PTEs:
690  * normal PTEs and swap PTEs. We try to handle them consistently by calling
691  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
692  * and then
693  *      - clear dirty bit to prevent IO
694  *      - remove from LRU
695  *      - but keep in the swap cache, so that when we return to it on
696  *        a later page fault, we know the application is accessing
697  *        corrupted data and shall be killed (we installed simple
698  *        interception code in do_swap_page to catch it).
699  *
700  * Clean swap cache pages can be directly isolated. A later page fault will
701  * bring in the known good data from disk.
702  */
703 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
704 {
705 	ClearPageDirty(p);
706 	/* Trigger EIO in shmem: */
707 	ClearPageUptodate(p);
708 
709 	if (!delete_from_lru_cache(p))
710 		return MF_DELAYED;
711 	else
712 		return MF_FAILED;
713 }
714 
715 static int me_swapcache_clean(struct page *p, unsigned long pfn)
716 {
717 	delete_from_swap_cache(p);
718 
719 	if (!delete_from_lru_cache(p))
720 		return MF_RECOVERED;
721 	else
722 		return MF_FAILED;
723 }
724 
725 /*
726  * Huge pages. Needs work.
727  * Issues:
728  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
729  *   To narrow down kill region to one page, we need to break up pmd.
730  */
731 static int me_huge_page(struct page *p, unsigned long pfn)
732 {
733 	int res = 0;
734 	struct page *hpage = compound_head(p);
735 
736 	if (!PageHuge(hpage))
737 		return MF_DELAYED;
738 
739 	/*
740 	 * We can safely recover from error on free or reserved (i.e.
741 	 * not in-use) hugepage by dequeuing it from freelist.
742 	 * To check whether a hugepage is in-use or not, we can't use
743 	 * page->lru because it can be used in other hugepage operations,
744 	 * such as __unmap_hugepage_range() and gather_surplus_pages().
745 	 * So instead we use page_mapping() and PageAnon().
746 	 * We assume that this function is called with page lock held,
747 	 * so there is no race between isolation and mapping/unmapping.
748 	 */
749 	if (!(page_mapping(hpage) || PageAnon(hpage))) {
750 		res = dequeue_hwpoisoned_huge_page(hpage);
751 		if (!res)
752 			return MF_RECOVERED;
753 	}
754 	return MF_DELAYED;
755 }
756 
757 /*
758  * Various page states we can handle.
759  *
760  * A page state is defined by its current page->flags bits.
761  * The table matches them in order and calls the right handler.
762  *
763  * This is quite tricky because we can access page at any time
764  * in its live cycle, so all accesses have to be extremely careful.
765  *
766  * This is not complete. More states could be added.
767  * For any missing state don't attempt recovery.
768  */
769 
770 #define dirty		(1UL << PG_dirty)
771 #define sc		(1UL << PG_swapcache)
772 #define unevict		(1UL << PG_unevictable)
773 #define mlock		(1UL << PG_mlocked)
774 #define writeback	(1UL << PG_writeback)
775 #define lru		(1UL << PG_lru)
776 #define swapbacked	(1UL << PG_swapbacked)
777 #define head		(1UL << PG_head)
778 #define tail		(1UL << PG_tail)
779 #define compound	(1UL << PG_compound)
780 #define slab		(1UL << PG_slab)
781 #define reserved	(1UL << PG_reserved)
782 
783 static struct page_state {
784 	unsigned long mask;
785 	unsigned long res;
786 	enum mf_action_page_type type;
787 	int (*action)(struct page *p, unsigned long pfn);
788 } error_states[] = {
789 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
790 	/*
791 	 * free pages are specially detected outside this table:
792 	 * PG_buddy pages only make a small fraction of all free pages.
793 	 */
794 
795 	/*
796 	 * Could in theory check if slab page is free or if we can drop
797 	 * currently unused objects without touching them. But just
798 	 * treat it as standard kernel for now.
799 	 */
800 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
801 
802 #ifdef CONFIG_PAGEFLAGS_EXTENDED
803 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
804 	{ tail,		tail,		MF_MSG_HUGE,		me_huge_page },
805 #else
806 	{ compound,	compound,	MF_MSG_HUGE,		me_huge_page },
807 #endif
808 
809 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
810 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
811 
812 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
813 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
814 
815 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
816 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
817 
818 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
819 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
820 
821 	/*
822 	 * Catchall entry: must be at end.
823 	 */
824 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
825 };
826 
827 #undef dirty
828 #undef sc
829 #undef unevict
830 #undef mlock
831 #undef writeback
832 #undef lru
833 #undef swapbacked
834 #undef head
835 #undef tail
836 #undef compound
837 #undef slab
838 #undef reserved
839 
840 /*
841  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
842  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
843  */
844 static void action_result(unsigned long pfn, enum mf_action_page_type type,
845 			  enum mf_result result)
846 {
847 	trace_memory_failure_event(pfn, type, result);
848 
849 	pr_err("MCE %#lx: recovery action for %s: %s\n",
850 		pfn, action_page_types[type], action_name[result]);
851 }
852 
853 static int page_action(struct page_state *ps, struct page *p,
854 			unsigned long pfn)
855 {
856 	int result;
857 	int count;
858 
859 	result = ps->action(p, pfn);
860 
861 	count = page_count(p) - 1;
862 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
863 		count--;
864 	if (count != 0) {
865 		printk(KERN_ERR
866 		       "MCE %#lx: %s still referenced by %d users\n",
867 		       pfn, action_page_types[ps->type], count);
868 		result = MF_FAILED;
869 	}
870 	action_result(pfn, ps->type, result);
871 
872 	/* Could do more checks here if page looks ok */
873 	/*
874 	 * Could adjust zone counters here to correct for the missing page.
875 	 */
876 
877 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
878 }
879 
880 /**
881  * get_hwpoison_page() - Get refcount for memory error handling:
882  * @page:	raw error page (hit by memory error)
883  *
884  * Return: return 0 if failed to grab the refcount, otherwise true (some
885  * non-zero value.)
886  */
887 int get_hwpoison_page(struct page *page)
888 {
889 	struct page *head = compound_head(page);
890 
891 	if (PageHuge(head))
892 		return get_page_unless_zero(head);
893 
894 	/*
895 	 * Thp tail page has special refcounting rule (refcount of tail pages
896 	 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
897 	 * directly for tail pages.
898 	 */
899 	if (PageTransHuge(head)) {
900 		/*
901 		 * Non anonymous thp exists only in allocation/free time. We
902 		 * can't handle such a case correctly, so let's give it up.
903 		 * This should be better than triggering BUG_ON when kernel
904 		 * tries to touch the "partially handled" page.
905 		 */
906 		if (!PageAnon(head)) {
907 			pr_err("MCE: %#lx: non anonymous thp\n",
908 				page_to_pfn(page));
909 			return 0;
910 		}
911 
912 		if (get_page_unless_zero(head)) {
913 			if (PageTail(page))
914 				get_page(page);
915 			return 1;
916 		} else {
917 			return 0;
918 		}
919 	}
920 
921 	return get_page_unless_zero(page);
922 }
923 EXPORT_SYMBOL_GPL(get_hwpoison_page);
924 
925 /**
926  * put_hwpoison_page() - Put refcount for memory error handling:
927  * @page:	raw error page (hit by memory error)
928  */
929 void put_hwpoison_page(struct page *page)
930 {
931 	struct page *head = compound_head(page);
932 
933 	if (PageHuge(head)) {
934 		put_page(head);
935 		return;
936 	}
937 
938 	if (PageTransHuge(head))
939 		if (page != head)
940 			put_page(head);
941 
942 	put_page(page);
943 }
944 EXPORT_SYMBOL_GPL(put_hwpoison_page);
945 
946 /*
947  * Do all that is necessary to remove user space mappings. Unmap
948  * the pages and send SIGBUS to the processes if the data was dirty.
949  */
950 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
951 				  int trapno, int flags, struct page **hpagep)
952 {
953 	enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
954 	struct address_space *mapping;
955 	LIST_HEAD(tokill);
956 	int ret;
957 	int kill = 1, forcekill;
958 	struct page *hpage = *hpagep;
959 
960 	/*
961 	 * Here we are interested only in user-mapped pages, so skip any
962 	 * other types of pages.
963 	 */
964 	if (PageReserved(p) || PageSlab(p))
965 		return SWAP_SUCCESS;
966 	if (!(PageLRU(hpage) || PageHuge(p)))
967 		return SWAP_SUCCESS;
968 
969 	/*
970 	 * This check implies we don't kill processes if their pages
971 	 * are in the swap cache early. Those are always late kills.
972 	 */
973 	if (!page_mapped(hpage))
974 		return SWAP_SUCCESS;
975 
976 	if (PageKsm(p)) {
977 		pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
978 		return SWAP_FAIL;
979 	}
980 
981 	if (PageSwapCache(p)) {
982 		printk(KERN_ERR
983 		       "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
984 		ttu |= TTU_IGNORE_HWPOISON;
985 	}
986 
987 	/*
988 	 * Propagate the dirty bit from PTEs to struct page first, because we
989 	 * need this to decide if we should kill or just drop the page.
990 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
991 	 * be called inside page lock (it's recommended but not enforced).
992 	 */
993 	mapping = page_mapping(hpage);
994 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
995 	    mapping_cap_writeback_dirty(mapping)) {
996 		if (page_mkclean(hpage)) {
997 			SetPageDirty(hpage);
998 		} else {
999 			kill = 0;
1000 			ttu |= TTU_IGNORE_HWPOISON;
1001 			printk(KERN_INFO
1002 	"MCE %#lx: corrupted page was clean: dropped without side effects\n",
1003 				pfn);
1004 		}
1005 	}
1006 
1007 	/*
1008 	 * First collect all the processes that have the page
1009 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1010 	 * because ttu takes the rmap data structures down.
1011 	 *
1012 	 * Error handling: We ignore errors here because
1013 	 * there's nothing that can be done.
1014 	 */
1015 	if (kill)
1016 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1017 
1018 	ret = try_to_unmap(hpage, ttu);
1019 	if (ret != SWAP_SUCCESS)
1020 		printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
1021 				pfn, page_mapcount(hpage));
1022 
1023 	/*
1024 	 * Now that the dirty bit has been propagated to the
1025 	 * struct page and all unmaps done we can decide if
1026 	 * killing is needed or not.  Only kill when the page
1027 	 * was dirty or the process is not restartable,
1028 	 * otherwise the tokill list is merely
1029 	 * freed.  When there was a problem unmapping earlier
1030 	 * use a more force-full uncatchable kill to prevent
1031 	 * any accesses to the poisoned memory.
1032 	 */
1033 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1034 	kill_procs(&tokill, forcekill, trapno,
1035 		      ret != SWAP_SUCCESS, p, pfn, flags);
1036 
1037 	return ret;
1038 }
1039 
1040 static void set_page_hwpoison_huge_page(struct page *hpage)
1041 {
1042 	int i;
1043 	int nr_pages = 1 << compound_order(hpage);
1044 	for (i = 0; i < nr_pages; i++)
1045 		SetPageHWPoison(hpage + i);
1046 }
1047 
1048 static void clear_page_hwpoison_huge_page(struct page *hpage)
1049 {
1050 	int i;
1051 	int nr_pages = 1 << compound_order(hpage);
1052 	for (i = 0; i < nr_pages; i++)
1053 		ClearPageHWPoison(hpage + i);
1054 }
1055 
1056 /**
1057  * memory_failure - Handle memory failure of a page.
1058  * @pfn: Page Number of the corrupted page
1059  * @trapno: Trap number reported in the signal to user space.
1060  * @flags: fine tune action taken
1061  *
1062  * This function is called by the low level machine check code
1063  * of an architecture when it detects hardware memory corruption
1064  * of a page. It tries its best to recover, which includes
1065  * dropping pages, killing processes etc.
1066  *
1067  * The function is primarily of use for corruptions that
1068  * happen outside the current execution context (e.g. when
1069  * detected by a background scrubber)
1070  *
1071  * Must run in process context (e.g. a work queue) with interrupts
1072  * enabled and no spinlocks hold.
1073  */
1074 int memory_failure(unsigned long pfn, int trapno, int flags)
1075 {
1076 	struct page_state *ps;
1077 	struct page *p;
1078 	struct page *hpage;
1079 	struct page *orig_head;
1080 	int res;
1081 	unsigned int nr_pages;
1082 	unsigned long page_flags;
1083 
1084 	if (!sysctl_memory_failure_recovery)
1085 		panic("Memory failure from trap %d on page %lx", trapno, pfn);
1086 
1087 	if (!pfn_valid(pfn)) {
1088 		printk(KERN_ERR
1089 		       "MCE %#lx: memory outside kernel control\n",
1090 		       pfn);
1091 		return -ENXIO;
1092 	}
1093 
1094 	p = pfn_to_page(pfn);
1095 	orig_head = hpage = compound_head(p);
1096 	if (TestSetPageHWPoison(p)) {
1097 		printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
1098 		return 0;
1099 	}
1100 
1101 	/*
1102 	 * Currently errors on hugetlbfs pages are measured in hugepage units,
1103 	 * so nr_pages should be 1 << compound_order.  OTOH when errors are on
1104 	 * transparent hugepages, they are supposed to be split and error
1105 	 * measurement is done in normal page units.  So nr_pages should be one
1106 	 * in this case.
1107 	 */
1108 	if (PageHuge(p))
1109 		nr_pages = 1 << compound_order(hpage);
1110 	else /* normal page or thp */
1111 		nr_pages = 1;
1112 	num_poisoned_pages_add(nr_pages);
1113 
1114 	/*
1115 	 * We need/can do nothing about count=0 pages.
1116 	 * 1) it's a free page, and therefore in safe hand:
1117 	 *    prep_new_page() will be the gate keeper.
1118 	 * 2) it's a free hugepage, which is also safe:
1119 	 *    an affected hugepage will be dequeued from hugepage freelist,
1120 	 *    so there's no concern about reusing it ever after.
1121 	 * 3) it's part of a non-compound high order page.
1122 	 *    Implies some kernel user: cannot stop them from
1123 	 *    R/W the page; let's pray that the page has been
1124 	 *    used and will be freed some time later.
1125 	 * In fact it's dangerous to directly bump up page count from 0,
1126 	 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1127 	 */
1128 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1129 		if (is_free_buddy_page(p)) {
1130 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1131 			return 0;
1132 		} else if (PageHuge(hpage)) {
1133 			/*
1134 			 * Check "filter hit" and "race with other subpage."
1135 			 */
1136 			lock_page(hpage);
1137 			if (PageHWPoison(hpage)) {
1138 				if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1139 				    || (p != hpage && TestSetPageHWPoison(hpage))) {
1140 					num_poisoned_pages_sub(nr_pages);
1141 					unlock_page(hpage);
1142 					return 0;
1143 				}
1144 			}
1145 			set_page_hwpoison_huge_page(hpage);
1146 			res = dequeue_hwpoisoned_huge_page(hpage);
1147 			action_result(pfn, MF_MSG_FREE_HUGE,
1148 				      res ? MF_IGNORED : MF_DELAYED);
1149 			unlock_page(hpage);
1150 			return res;
1151 		} else {
1152 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1153 			return -EBUSY;
1154 		}
1155 	}
1156 
1157 	if (!PageHuge(p) && PageTransHuge(hpage)) {
1158 		if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1159 			if (!PageAnon(hpage))
1160 				pr_err("MCE: %#lx: non anonymous thp\n", pfn);
1161 			else
1162 				pr_err("MCE: %#lx: thp split failed\n", pfn);
1163 			if (TestClearPageHWPoison(p))
1164 				num_poisoned_pages_sub(nr_pages);
1165 			put_hwpoison_page(p);
1166 			return -EBUSY;
1167 		}
1168 		VM_BUG_ON_PAGE(!page_count(p), p);
1169 		hpage = compound_head(p);
1170 	}
1171 
1172 	/*
1173 	 * We ignore non-LRU pages for good reasons.
1174 	 * - PG_locked is only well defined for LRU pages and a few others
1175 	 * - to avoid races with __set_page_locked()
1176 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1177 	 * The check (unnecessarily) ignores LRU pages being isolated and
1178 	 * walked by the page reclaim code, however that's not a big loss.
1179 	 */
1180 	if (!PageHuge(p)) {
1181 		if (!PageLRU(p))
1182 			shake_page(p, 0);
1183 		if (!PageLRU(p)) {
1184 			/*
1185 			 * shake_page could have turned it free.
1186 			 */
1187 			if (is_free_buddy_page(p)) {
1188 				if (flags & MF_COUNT_INCREASED)
1189 					action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1190 				else
1191 					action_result(pfn, MF_MSG_BUDDY_2ND,
1192 						      MF_DELAYED);
1193 				return 0;
1194 			}
1195 		}
1196 	}
1197 
1198 	lock_page(hpage);
1199 
1200 	/*
1201 	 * The page could have changed compound pages during the locking.
1202 	 * If this happens just bail out.
1203 	 */
1204 	if (PageCompound(p) && compound_head(p) != orig_head) {
1205 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1206 		res = -EBUSY;
1207 		goto out;
1208 	}
1209 
1210 	/*
1211 	 * We use page flags to determine what action should be taken, but
1212 	 * the flags can be modified by the error containment action.  One
1213 	 * example is an mlocked page, where PG_mlocked is cleared by
1214 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1215 	 * correctly, we save a copy of the page flags at this time.
1216 	 */
1217 	page_flags = p->flags;
1218 
1219 	/*
1220 	 * unpoison always clear PG_hwpoison inside page lock
1221 	 */
1222 	if (!PageHWPoison(p)) {
1223 		printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
1224 		num_poisoned_pages_sub(nr_pages);
1225 		unlock_page(hpage);
1226 		put_hwpoison_page(hpage);
1227 		return 0;
1228 	}
1229 	if (hwpoison_filter(p)) {
1230 		if (TestClearPageHWPoison(p))
1231 			num_poisoned_pages_sub(nr_pages);
1232 		unlock_page(hpage);
1233 		put_hwpoison_page(hpage);
1234 		return 0;
1235 	}
1236 
1237 	if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1238 		goto identify_page_state;
1239 
1240 	/*
1241 	 * For error on the tail page, we should set PG_hwpoison
1242 	 * on the head page to show that the hugepage is hwpoisoned
1243 	 */
1244 	if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
1245 		action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
1246 		unlock_page(hpage);
1247 		put_hwpoison_page(hpage);
1248 		return 0;
1249 	}
1250 	/*
1251 	 * Set PG_hwpoison on all pages in an error hugepage,
1252 	 * because containment is done in hugepage unit for now.
1253 	 * Since we have done TestSetPageHWPoison() for the head page with
1254 	 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1255 	 */
1256 	if (PageHuge(p))
1257 		set_page_hwpoison_huge_page(hpage);
1258 
1259 	/*
1260 	 * It's very difficult to mess with pages currently under IO
1261 	 * and in many cases impossible, so we just avoid it here.
1262 	 */
1263 	wait_on_page_writeback(p);
1264 
1265 	/*
1266 	 * Now take care of user space mappings.
1267 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1268 	 *
1269 	 * When the raw error page is thp tail page, hpage points to the raw
1270 	 * page after thp split.
1271 	 */
1272 	if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1273 	    != SWAP_SUCCESS) {
1274 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1275 		res = -EBUSY;
1276 		goto out;
1277 	}
1278 
1279 	/*
1280 	 * Torn down by someone else?
1281 	 */
1282 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1283 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1284 		res = -EBUSY;
1285 		goto out;
1286 	}
1287 
1288 identify_page_state:
1289 	res = -EBUSY;
1290 	/*
1291 	 * The first check uses the current page flags which may not have any
1292 	 * relevant information. The second check with the saved page flagss is
1293 	 * carried out only if the first check can't determine the page status.
1294 	 */
1295 	for (ps = error_states;; ps++)
1296 		if ((p->flags & ps->mask) == ps->res)
1297 			break;
1298 
1299 	page_flags |= (p->flags & (1UL << PG_dirty));
1300 
1301 	if (!ps->mask)
1302 		for (ps = error_states;; ps++)
1303 			if ((page_flags & ps->mask) == ps->res)
1304 				break;
1305 	res = page_action(ps, p, pfn);
1306 out:
1307 	unlock_page(hpage);
1308 	return res;
1309 }
1310 EXPORT_SYMBOL_GPL(memory_failure);
1311 
1312 #define MEMORY_FAILURE_FIFO_ORDER	4
1313 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1314 
1315 struct memory_failure_entry {
1316 	unsigned long pfn;
1317 	int trapno;
1318 	int flags;
1319 };
1320 
1321 struct memory_failure_cpu {
1322 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1323 		      MEMORY_FAILURE_FIFO_SIZE);
1324 	spinlock_t lock;
1325 	struct work_struct work;
1326 };
1327 
1328 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1329 
1330 /**
1331  * memory_failure_queue - Schedule handling memory failure of a page.
1332  * @pfn: Page Number of the corrupted page
1333  * @trapno: Trap number reported in the signal to user space.
1334  * @flags: Flags for memory failure handling
1335  *
1336  * This function is called by the low level hardware error handler
1337  * when it detects hardware memory corruption of a page. It schedules
1338  * the recovering of error page, including dropping pages, killing
1339  * processes etc.
1340  *
1341  * The function is primarily of use for corruptions that
1342  * happen outside the current execution context (e.g. when
1343  * detected by a background scrubber)
1344  *
1345  * Can run in IRQ context.
1346  */
1347 void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1348 {
1349 	struct memory_failure_cpu *mf_cpu;
1350 	unsigned long proc_flags;
1351 	struct memory_failure_entry entry = {
1352 		.pfn =		pfn,
1353 		.trapno =	trapno,
1354 		.flags =	flags,
1355 	};
1356 
1357 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1358 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1359 	if (kfifo_put(&mf_cpu->fifo, entry))
1360 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1361 	else
1362 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1363 		       pfn);
1364 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1365 	put_cpu_var(memory_failure_cpu);
1366 }
1367 EXPORT_SYMBOL_GPL(memory_failure_queue);
1368 
1369 static void memory_failure_work_func(struct work_struct *work)
1370 {
1371 	struct memory_failure_cpu *mf_cpu;
1372 	struct memory_failure_entry entry = { 0, };
1373 	unsigned long proc_flags;
1374 	int gotten;
1375 
1376 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1377 	for (;;) {
1378 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1379 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1380 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1381 		if (!gotten)
1382 			break;
1383 		if (entry.flags & MF_SOFT_OFFLINE)
1384 			soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1385 		else
1386 			memory_failure(entry.pfn, entry.trapno, entry.flags);
1387 	}
1388 }
1389 
1390 static int __init memory_failure_init(void)
1391 {
1392 	struct memory_failure_cpu *mf_cpu;
1393 	int cpu;
1394 
1395 	for_each_possible_cpu(cpu) {
1396 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1397 		spin_lock_init(&mf_cpu->lock);
1398 		INIT_KFIFO(mf_cpu->fifo);
1399 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1400 	}
1401 
1402 	return 0;
1403 }
1404 core_initcall(memory_failure_init);
1405 
1406 /**
1407  * unpoison_memory - Unpoison a previously poisoned page
1408  * @pfn: Page number of the to be unpoisoned page
1409  *
1410  * Software-unpoison a page that has been poisoned by
1411  * memory_failure() earlier.
1412  *
1413  * This is only done on the software-level, so it only works
1414  * for linux injected failures, not real hardware failures
1415  *
1416  * Returns 0 for success, otherwise -errno.
1417  */
1418 int unpoison_memory(unsigned long pfn)
1419 {
1420 	struct page *page;
1421 	struct page *p;
1422 	int freeit = 0;
1423 	unsigned int nr_pages;
1424 
1425 	if (!pfn_valid(pfn))
1426 		return -ENXIO;
1427 
1428 	p = pfn_to_page(pfn);
1429 	page = compound_head(p);
1430 
1431 	if (!PageHWPoison(p)) {
1432 		pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
1433 		return 0;
1434 	}
1435 
1436 	if (page_count(page) > 1) {
1437 		pr_info("MCE: Someone grabs the hwpoison page %#lx\n", pfn);
1438 		return 0;
1439 	}
1440 
1441 	if (page_mapped(page)) {
1442 		pr_info("MCE: Someone maps the hwpoison page %#lx\n", pfn);
1443 		return 0;
1444 	}
1445 
1446 	if (page_mapping(page)) {
1447 		pr_info("MCE: the hwpoison page has non-NULL mapping %#lx\n",
1448 			pfn);
1449 		return 0;
1450 	}
1451 
1452 	/*
1453 	 * unpoison_memory() can encounter thp only when the thp is being
1454 	 * worked by memory_failure() and the page lock is not held yet.
1455 	 * In such case, we yield to memory_failure() and make unpoison fail.
1456 	 */
1457 	if (!PageHuge(page) && PageTransHuge(page)) {
1458 		pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
1459 		return 0;
1460 	}
1461 
1462 	nr_pages = 1 << compound_order(page);
1463 
1464 	if (!get_hwpoison_page(p)) {
1465 		/*
1466 		 * Since HWPoisoned hugepage should have non-zero refcount,
1467 		 * race between memory failure and unpoison seems to happen.
1468 		 * In such case unpoison fails and memory failure runs
1469 		 * to the end.
1470 		 */
1471 		if (PageHuge(page)) {
1472 			pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
1473 			return 0;
1474 		}
1475 		if (TestClearPageHWPoison(p))
1476 			num_poisoned_pages_dec();
1477 		pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
1478 		return 0;
1479 	}
1480 
1481 	lock_page(page);
1482 	/*
1483 	 * This test is racy because PG_hwpoison is set outside of page lock.
1484 	 * That's acceptable because that won't trigger kernel panic. Instead,
1485 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1486 	 * the free buddy page pool.
1487 	 */
1488 	if (TestClearPageHWPoison(page)) {
1489 		pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
1490 		num_poisoned_pages_sub(nr_pages);
1491 		freeit = 1;
1492 		if (PageHuge(page))
1493 			clear_page_hwpoison_huge_page(page);
1494 	}
1495 	unlock_page(page);
1496 
1497 	put_hwpoison_page(page);
1498 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1499 		put_hwpoison_page(page);
1500 
1501 	return 0;
1502 }
1503 EXPORT_SYMBOL(unpoison_memory);
1504 
1505 static struct page *new_page(struct page *p, unsigned long private, int **x)
1506 {
1507 	int nid = page_to_nid(p);
1508 	if (PageHuge(p))
1509 		return alloc_huge_page_node(page_hstate(compound_head(p)),
1510 						   nid);
1511 	else
1512 		return __alloc_pages_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1513 }
1514 
1515 /*
1516  * Safely get reference count of an arbitrary page.
1517  * Returns 0 for a free page, -EIO for a zero refcount page
1518  * that is not free, and 1 for any other page type.
1519  * For 1 the page is returned with increased page count, otherwise not.
1520  */
1521 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1522 {
1523 	int ret;
1524 
1525 	if (flags & MF_COUNT_INCREASED)
1526 		return 1;
1527 
1528 	/*
1529 	 * When the target page is a free hugepage, just remove it
1530 	 * from free hugepage list.
1531 	 */
1532 	if (!get_hwpoison_page(p)) {
1533 		if (PageHuge(p)) {
1534 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1535 			ret = 0;
1536 		} else if (is_free_buddy_page(p)) {
1537 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1538 			ret = 0;
1539 		} else {
1540 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1541 				__func__, pfn, p->flags);
1542 			ret = -EIO;
1543 		}
1544 	} else {
1545 		/* Not a free page */
1546 		ret = 1;
1547 	}
1548 	return ret;
1549 }
1550 
1551 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1552 {
1553 	int ret = __get_any_page(page, pfn, flags);
1554 
1555 	if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1556 		/*
1557 		 * Try to free it.
1558 		 */
1559 		put_hwpoison_page(page);
1560 		shake_page(page, 1);
1561 
1562 		/*
1563 		 * Did it turn free?
1564 		 */
1565 		ret = __get_any_page(page, pfn, 0);
1566 		if (!PageLRU(page)) {
1567 			/* Drop page reference which is from __get_any_page() */
1568 			put_hwpoison_page(page);
1569 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1570 				pfn, page->flags);
1571 			return -EIO;
1572 		}
1573 	}
1574 	return ret;
1575 }
1576 
1577 static int soft_offline_huge_page(struct page *page, int flags)
1578 {
1579 	int ret;
1580 	unsigned long pfn = page_to_pfn(page);
1581 	struct page *hpage = compound_head(page);
1582 	LIST_HEAD(pagelist);
1583 
1584 	/*
1585 	 * This double-check of PageHWPoison is to avoid the race with
1586 	 * memory_failure(). See also comment in __soft_offline_page().
1587 	 */
1588 	lock_page(hpage);
1589 	if (PageHWPoison(hpage)) {
1590 		unlock_page(hpage);
1591 		put_hwpoison_page(hpage);
1592 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1593 		return -EBUSY;
1594 	}
1595 	unlock_page(hpage);
1596 
1597 	ret = isolate_huge_page(hpage, &pagelist);
1598 	/*
1599 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1600 	 * so need to drop one here.
1601 	 */
1602 	put_hwpoison_page(hpage);
1603 	if (!ret) {
1604 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1605 		return -EBUSY;
1606 	}
1607 
1608 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1609 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1610 	if (ret) {
1611 		pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1612 			pfn, ret, page->flags);
1613 		/*
1614 		 * We know that soft_offline_huge_page() tries to migrate
1615 		 * only one hugepage pointed to by hpage, so we need not
1616 		 * run through the pagelist here.
1617 		 */
1618 		putback_active_hugepage(hpage);
1619 		if (ret > 0)
1620 			ret = -EIO;
1621 	} else {
1622 		/* overcommit hugetlb page will be freed to buddy */
1623 		if (PageHuge(page)) {
1624 			set_page_hwpoison_huge_page(hpage);
1625 			dequeue_hwpoisoned_huge_page(hpage);
1626 			num_poisoned_pages_add(1 << compound_order(hpage));
1627 		} else {
1628 			SetPageHWPoison(page);
1629 			num_poisoned_pages_inc();
1630 		}
1631 	}
1632 	return ret;
1633 }
1634 
1635 static int __soft_offline_page(struct page *page, int flags)
1636 {
1637 	int ret;
1638 	unsigned long pfn = page_to_pfn(page);
1639 
1640 	/*
1641 	 * Check PageHWPoison again inside page lock because PageHWPoison
1642 	 * is set by memory_failure() outside page lock. Note that
1643 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1644 	 * so there's no race between soft_offline_page() and memory_failure().
1645 	 */
1646 	lock_page(page);
1647 	wait_on_page_writeback(page);
1648 	if (PageHWPoison(page)) {
1649 		unlock_page(page);
1650 		put_hwpoison_page(page);
1651 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1652 		return -EBUSY;
1653 	}
1654 	/*
1655 	 * Try to invalidate first. This should work for
1656 	 * non dirty unmapped page cache pages.
1657 	 */
1658 	ret = invalidate_inode_page(page);
1659 	unlock_page(page);
1660 	/*
1661 	 * RED-PEN would be better to keep it isolated here, but we
1662 	 * would need to fix isolation locking first.
1663 	 */
1664 	if (ret == 1) {
1665 		put_hwpoison_page(page);
1666 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1667 		SetPageHWPoison(page);
1668 		num_poisoned_pages_inc();
1669 		return 0;
1670 	}
1671 
1672 	/*
1673 	 * Simple invalidation didn't work.
1674 	 * Try to migrate to a new page instead. migrate.c
1675 	 * handles a large number of cases for us.
1676 	 */
1677 	ret = isolate_lru_page(page);
1678 	/*
1679 	 * Drop page reference which is came from get_any_page()
1680 	 * successful isolate_lru_page() already took another one.
1681 	 */
1682 	put_hwpoison_page(page);
1683 	if (!ret) {
1684 		LIST_HEAD(pagelist);
1685 		inc_zone_page_state(page, NR_ISOLATED_ANON +
1686 					page_is_file_cache(page));
1687 		list_add(&page->lru, &pagelist);
1688 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1689 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1690 		if (ret) {
1691 			if (!list_empty(&pagelist)) {
1692 				list_del(&page->lru);
1693 				dec_zone_page_state(page, NR_ISOLATED_ANON +
1694 						page_is_file_cache(page));
1695 				putback_lru_page(page);
1696 			}
1697 
1698 			pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1699 				pfn, ret, page->flags);
1700 			if (ret > 0)
1701 				ret = -EIO;
1702 		}
1703 	} else {
1704 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1705 			pfn, ret, page_count(page), page->flags);
1706 	}
1707 	return ret;
1708 }
1709 
1710 /**
1711  * soft_offline_page - Soft offline a page.
1712  * @page: page to offline
1713  * @flags: flags. Same as memory_failure().
1714  *
1715  * Returns 0 on success, otherwise negated errno.
1716  *
1717  * Soft offline a page, by migration or invalidation,
1718  * without killing anything. This is for the case when
1719  * a page is not corrupted yet (so it's still valid to access),
1720  * but has had a number of corrected errors and is better taken
1721  * out.
1722  *
1723  * The actual policy on when to do that is maintained by
1724  * user space.
1725  *
1726  * This should never impact any application or cause data loss,
1727  * however it might take some time.
1728  *
1729  * This is not a 100% solution for all memory, but tries to be
1730  * ``good enough'' for the majority of memory.
1731  */
1732 int soft_offline_page(struct page *page, int flags)
1733 {
1734 	int ret;
1735 	unsigned long pfn = page_to_pfn(page);
1736 	struct page *hpage = compound_head(page);
1737 
1738 	if (PageHWPoison(page)) {
1739 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1740 		if (flags & MF_COUNT_INCREASED)
1741 			put_hwpoison_page(page);
1742 		return -EBUSY;
1743 	}
1744 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1745 		if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1746 			pr_info("soft offline: %#lx: failed to split THP\n",
1747 				pfn);
1748 			if (flags & MF_COUNT_INCREASED)
1749 				put_hwpoison_page(page);
1750 			return -EBUSY;
1751 		}
1752 	}
1753 
1754 	get_online_mems();
1755 
1756 	ret = get_any_page(page, pfn, flags);
1757 	put_online_mems();
1758 	if (ret > 0) { /* for in-use pages */
1759 		if (PageHuge(page))
1760 			ret = soft_offline_huge_page(page, flags);
1761 		else
1762 			ret = __soft_offline_page(page, flags);
1763 	} else if (ret == 0) { /* for free pages */
1764 		if (PageHuge(page)) {
1765 			set_page_hwpoison_huge_page(hpage);
1766 			if (!dequeue_hwpoisoned_huge_page(hpage))
1767 				num_poisoned_pages_add(1 << compound_order(hpage));
1768 		} else {
1769 			if (!TestSetPageHWPoison(page))
1770 				num_poisoned_pages_inc();
1771 		}
1772 	}
1773 	return ret;
1774 }
1775