xref: /openbmc/linux/mm/memory-failure.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2008, 2009 Intel Corporation
4  * Authors: Andi Kleen, Fengguang Wu
5  *
6  * High level machine check handler. Handles pages reported by the
7  * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8  * failure.
9  *
10  * In addition there is a "soft offline" entry point that allows stop using
11  * not-yet-corrupted-by-suspicious pages without killing anything.
12  *
13  * Handles page cache pages in various states.	The tricky part
14  * here is that we can access any page asynchronously in respect to
15  * other VM users, because memory failures could happen anytime and
16  * anywhere. This could violate some of their assumptions. This is why
17  * this code has to be extremely careful. Generally it tries to use
18  * normal locking rules, as in get the standard locks, even if that means
19  * the error handling takes potentially a long time.
20  *
21  * It can be very tempting to add handling for obscure cases here.
22  * In general any code for handling new cases should only be added iff:
23  * - You know how to test it.
24  * - You have a test that can be added to mce-test
25  *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26  * - The case actually shows up as a frequent (top 10) page state in
27  *   tools/vm/page-types when running a real workload.
28  *
29  * There are several operations here with exponential complexity because
30  * of unsuitable VM data structures. For example the operation to map back
31  * from RMAP chains to processes has to walk the complete process list and
32  * has non linear complexity with the number. But since memory corruptions
33  * are rare we hope to get away with this. This avoids impacting the core
34  * VM.
35  */
36 #include <linux/kernel.h>
37 #include <linux/mm.h>
38 #include <linux/page-flags.h>
39 #include <linux/kernel-page-flags.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/task.h>
42 #include <linux/ksm.h>
43 #include <linux/rmap.h>
44 #include <linux/export.h>
45 #include <linux/pagemap.h>
46 #include <linux/swap.h>
47 #include <linux/backing-dev.h>
48 #include <linux/migrate.h>
49 #include <linux/suspend.h>
50 #include <linux/slab.h>
51 #include <linux/swapops.h>
52 #include <linux/hugetlb.h>
53 #include <linux/memory_hotplug.h>
54 #include <linux/mm_inline.h>
55 #include <linux/memremap.h>
56 #include <linux/kfifo.h>
57 #include <linux/ratelimit.h>
58 #include <linux/page-isolation.h>
59 #include "internal.h"
60 #include "ras/ras_event.h"
61 
62 int sysctl_memory_failure_early_kill __read_mostly = 0;
63 
64 int sysctl_memory_failure_recovery __read_mostly = 1;
65 
66 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
67 
68 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
69 
70 u32 hwpoison_filter_enable = 0;
71 u32 hwpoison_filter_dev_major = ~0U;
72 u32 hwpoison_filter_dev_minor = ~0U;
73 u64 hwpoison_filter_flags_mask;
74 u64 hwpoison_filter_flags_value;
75 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
76 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
77 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
78 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
79 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
80 
81 static int hwpoison_filter_dev(struct page *p)
82 {
83 	struct address_space *mapping;
84 	dev_t dev;
85 
86 	if (hwpoison_filter_dev_major == ~0U &&
87 	    hwpoison_filter_dev_minor == ~0U)
88 		return 0;
89 
90 	/*
91 	 * page_mapping() does not accept slab pages.
92 	 */
93 	if (PageSlab(p))
94 		return -EINVAL;
95 
96 	mapping = page_mapping(p);
97 	if (mapping == NULL || mapping->host == NULL)
98 		return -EINVAL;
99 
100 	dev = mapping->host->i_sb->s_dev;
101 	if (hwpoison_filter_dev_major != ~0U &&
102 	    hwpoison_filter_dev_major != MAJOR(dev))
103 		return -EINVAL;
104 	if (hwpoison_filter_dev_minor != ~0U &&
105 	    hwpoison_filter_dev_minor != MINOR(dev))
106 		return -EINVAL;
107 
108 	return 0;
109 }
110 
111 static int hwpoison_filter_flags(struct page *p)
112 {
113 	if (!hwpoison_filter_flags_mask)
114 		return 0;
115 
116 	if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
117 				    hwpoison_filter_flags_value)
118 		return 0;
119 	else
120 		return -EINVAL;
121 }
122 
123 /*
124  * This allows stress tests to limit test scope to a collection of tasks
125  * by putting them under some memcg. This prevents killing unrelated/important
126  * processes such as /sbin/init. Note that the target task may share clean
127  * pages with init (eg. libc text), which is harmless. If the target task
128  * share _dirty_ pages with another task B, the test scheme must make sure B
129  * is also included in the memcg. At last, due to race conditions this filter
130  * can only guarantee that the page either belongs to the memcg tasks, or is
131  * a freed page.
132  */
133 #ifdef CONFIG_MEMCG
134 u64 hwpoison_filter_memcg;
135 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
136 static int hwpoison_filter_task(struct page *p)
137 {
138 	if (!hwpoison_filter_memcg)
139 		return 0;
140 
141 	if (page_cgroup_ino(p) != hwpoison_filter_memcg)
142 		return -EINVAL;
143 
144 	return 0;
145 }
146 #else
147 static int hwpoison_filter_task(struct page *p) { return 0; }
148 #endif
149 
150 int hwpoison_filter(struct page *p)
151 {
152 	if (!hwpoison_filter_enable)
153 		return 0;
154 
155 	if (hwpoison_filter_dev(p))
156 		return -EINVAL;
157 
158 	if (hwpoison_filter_flags(p))
159 		return -EINVAL;
160 
161 	if (hwpoison_filter_task(p))
162 		return -EINVAL;
163 
164 	return 0;
165 }
166 #else
167 int hwpoison_filter(struct page *p)
168 {
169 	return 0;
170 }
171 #endif
172 
173 EXPORT_SYMBOL_GPL(hwpoison_filter);
174 
175 /*
176  * Kill all processes that have a poisoned page mapped and then isolate
177  * the page.
178  *
179  * General strategy:
180  * Find all processes having the page mapped and kill them.
181  * But we keep a page reference around so that the page is not
182  * actually freed yet.
183  * Then stash the page away
184  *
185  * There's no convenient way to get back to mapped processes
186  * from the VMAs. So do a brute-force search over all
187  * running processes.
188  *
189  * Remember that machine checks are not common (or rather
190  * if they are common you have other problems), so this shouldn't
191  * be a performance issue.
192  *
193  * Also there are some races possible while we get from the
194  * error detection to actually handle it.
195  */
196 
197 struct to_kill {
198 	struct list_head nd;
199 	struct task_struct *tsk;
200 	unsigned long addr;
201 	short size_shift;
202 };
203 
204 /*
205  * Send all the processes who have the page mapped a signal.
206  * ``action optional'' if they are not immediately affected by the error
207  * ``action required'' if error happened in current execution context
208  */
209 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
210 {
211 	struct task_struct *t = tk->tsk;
212 	short addr_lsb = tk->size_shift;
213 	int ret;
214 
215 	pr_err("Memory failure: %#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
216 		pfn, t->comm, t->pid);
217 
218 	if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
219 		ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
220 				       addr_lsb);
221 	} else {
222 		/*
223 		 * Don't use force here, it's convenient if the signal
224 		 * can be temporarily blocked.
225 		 * This could cause a loop when the user sets SIGBUS
226 		 * to SIG_IGN, but hopefully no one will do that?
227 		 */
228 		ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
229 				      addr_lsb, t);  /* synchronous? */
230 	}
231 	if (ret < 0)
232 		pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
233 			t->comm, t->pid, ret);
234 	return ret;
235 }
236 
237 /*
238  * When a unknown page type is encountered drain as many buffers as possible
239  * in the hope to turn the page into a LRU or free page, which we can handle.
240  */
241 void shake_page(struct page *p, int access)
242 {
243 	if (PageHuge(p))
244 		return;
245 
246 	if (!PageSlab(p)) {
247 		lru_add_drain_all();
248 		if (PageLRU(p))
249 			return;
250 		drain_all_pages(page_zone(p));
251 		if (PageLRU(p) || is_free_buddy_page(p))
252 			return;
253 	}
254 
255 	/*
256 	 * Only call shrink_node_slabs here (which would also shrink
257 	 * other caches) if access is not potentially fatal.
258 	 */
259 	if (access)
260 		drop_slab_node(page_to_nid(p));
261 }
262 EXPORT_SYMBOL_GPL(shake_page);
263 
264 static unsigned long dev_pagemap_mapping_shift(struct page *page,
265 		struct vm_area_struct *vma)
266 {
267 	unsigned long address = vma_address(page, vma);
268 	pgd_t *pgd;
269 	p4d_t *p4d;
270 	pud_t *pud;
271 	pmd_t *pmd;
272 	pte_t *pte;
273 
274 	pgd = pgd_offset(vma->vm_mm, address);
275 	if (!pgd_present(*pgd))
276 		return 0;
277 	p4d = p4d_offset(pgd, address);
278 	if (!p4d_present(*p4d))
279 		return 0;
280 	pud = pud_offset(p4d, address);
281 	if (!pud_present(*pud))
282 		return 0;
283 	if (pud_devmap(*pud))
284 		return PUD_SHIFT;
285 	pmd = pmd_offset(pud, address);
286 	if (!pmd_present(*pmd))
287 		return 0;
288 	if (pmd_devmap(*pmd))
289 		return PMD_SHIFT;
290 	pte = pte_offset_map(pmd, address);
291 	if (!pte_present(*pte))
292 		return 0;
293 	if (pte_devmap(*pte))
294 		return PAGE_SHIFT;
295 	return 0;
296 }
297 
298 /*
299  * Failure handling: if we can't find or can't kill a process there's
300  * not much we can do.	We just print a message and ignore otherwise.
301  */
302 
303 /*
304  * Schedule a process for later kill.
305  * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
306  */
307 static void add_to_kill(struct task_struct *tsk, struct page *p,
308 		       struct vm_area_struct *vma,
309 		       struct list_head *to_kill)
310 {
311 	struct to_kill *tk;
312 
313 	tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
314 	if (!tk) {
315 		pr_err("Memory failure: Out of memory while machine check handling\n");
316 		return;
317 	}
318 
319 	tk->addr = page_address_in_vma(p, vma);
320 	if (is_zone_device_page(p))
321 		tk->size_shift = dev_pagemap_mapping_shift(p, vma);
322 	else
323 		tk->size_shift = page_shift(compound_head(p));
324 
325 	/*
326 	 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
327 	 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
328 	 * so "tk->size_shift == 0" effectively checks no mapping on
329 	 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
330 	 * to a process' address space, it's possible not all N VMAs
331 	 * contain mappings for the page, but at least one VMA does.
332 	 * Only deliver SIGBUS with payload derived from the VMA that
333 	 * has a mapping for the page.
334 	 */
335 	if (tk->addr == -EFAULT) {
336 		pr_info("Memory failure: Unable to find user space address %lx in %s\n",
337 			page_to_pfn(p), tsk->comm);
338 	} else if (tk->size_shift == 0) {
339 		kfree(tk);
340 		return;
341 	}
342 
343 	get_task_struct(tsk);
344 	tk->tsk = tsk;
345 	list_add_tail(&tk->nd, to_kill);
346 }
347 
348 /*
349  * Kill the processes that have been collected earlier.
350  *
351  * Only do anything when DOIT is set, otherwise just free the list
352  * (this is used for clean pages which do not need killing)
353  * Also when FAIL is set do a force kill because something went
354  * wrong earlier.
355  */
356 static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
357 		unsigned long pfn, int flags)
358 {
359 	struct to_kill *tk, *next;
360 
361 	list_for_each_entry_safe (tk, next, to_kill, nd) {
362 		if (forcekill) {
363 			/*
364 			 * In case something went wrong with munmapping
365 			 * make sure the process doesn't catch the
366 			 * signal and then access the memory. Just kill it.
367 			 */
368 			if (fail || tk->addr == -EFAULT) {
369 				pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
370 				       pfn, tk->tsk->comm, tk->tsk->pid);
371 				do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
372 						 tk->tsk, PIDTYPE_PID);
373 			}
374 
375 			/*
376 			 * In theory the process could have mapped
377 			 * something else on the address in-between. We could
378 			 * check for that, but we need to tell the
379 			 * process anyways.
380 			 */
381 			else if (kill_proc(tk, pfn, flags) < 0)
382 				pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
383 				       pfn, tk->tsk->comm, tk->tsk->pid);
384 		}
385 		put_task_struct(tk->tsk);
386 		kfree(tk);
387 	}
388 }
389 
390 /*
391  * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
392  * on behalf of the thread group. Return task_struct of the (first found)
393  * dedicated thread if found, and return NULL otherwise.
394  *
395  * We already hold read_lock(&tasklist_lock) in the caller, so we don't
396  * have to call rcu_read_lock/unlock() in this function.
397  */
398 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
399 {
400 	struct task_struct *t;
401 
402 	for_each_thread(tsk, t)
403 		if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
404 			return t;
405 	return NULL;
406 }
407 
408 /*
409  * Determine whether a given process is "early kill" process which expects
410  * to be signaled when some page under the process is hwpoisoned.
411  * Return task_struct of the dedicated thread (main thread unless explicitly
412  * specified) if the process is "early kill," and otherwise returns NULL.
413  */
414 static struct task_struct *task_early_kill(struct task_struct *tsk,
415 					   int force_early)
416 {
417 	struct task_struct *t;
418 	if (!tsk->mm)
419 		return NULL;
420 	if (force_early)
421 		return tsk;
422 	t = find_early_kill_thread(tsk);
423 	if (t)
424 		return t;
425 	if (sysctl_memory_failure_early_kill)
426 		return tsk;
427 	return NULL;
428 }
429 
430 /*
431  * Collect processes when the error hit an anonymous page.
432  */
433 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
434 				int force_early)
435 {
436 	struct vm_area_struct *vma;
437 	struct task_struct *tsk;
438 	struct anon_vma *av;
439 	pgoff_t pgoff;
440 
441 	av = page_lock_anon_vma_read(page);
442 	if (av == NULL)	/* Not actually mapped anymore */
443 		return;
444 
445 	pgoff = page_to_pgoff(page);
446 	read_lock(&tasklist_lock);
447 	for_each_process (tsk) {
448 		struct anon_vma_chain *vmac;
449 		struct task_struct *t = task_early_kill(tsk, force_early);
450 
451 		if (!t)
452 			continue;
453 		anon_vma_interval_tree_foreach(vmac, &av->rb_root,
454 					       pgoff, pgoff) {
455 			vma = vmac->vma;
456 			if (!page_mapped_in_vma(page, vma))
457 				continue;
458 			if (vma->vm_mm == t->mm)
459 				add_to_kill(t, page, vma, to_kill);
460 		}
461 	}
462 	read_unlock(&tasklist_lock);
463 	page_unlock_anon_vma_read(av);
464 }
465 
466 /*
467  * Collect processes when the error hit a file mapped page.
468  */
469 static void collect_procs_file(struct page *page, struct list_head *to_kill,
470 				int force_early)
471 {
472 	struct vm_area_struct *vma;
473 	struct task_struct *tsk;
474 	struct address_space *mapping = page->mapping;
475 
476 	i_mmap_lock_read(mapping);
477 	read_lock(&tasklist_lock);
478 	for_each_process(tsk) {
479 		pgoff_t pgoff = page_to_pgoff(page);
480 		struct task_struct *t = task_early_kill(tsk, force_early);
481 
482 		if (!t)
483 			continue;
484 		vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
485 				      pgoff) {
486 			/*
487 			 * Send early kill signal to tasks where a vma covers
488 			 * the page but the corrupted page is not necessarily
489 			 * mapped it in its pte.
490 			 * Assume applications who requested early kill want
491 			 * to be informed of all such data corruptions.
492 			 */
493 			if (vma->vm_mm == t->mm)
494 				add_to_kill(t, page, vma, to_kill);
495 		}
496 	}
497 	read_unlock(&tasklist_lock);
498 	i_mmap_unlock_read(mapping);
499 }
500 
501 /*
502  * Collect the processes who have the corrupted page mapped to kill.
503  */
504 static void collect_procs(struct page *page, struct list_head *tokill,
505 				int force_early)
506 {
507 	if (!page->mapping)
508 		return;
509 
510 	if (PageAnon(page))
511 		collect_procs_anon(page, tokill, force_early);
512 	else
513 		collect_procs_file(page, tokill, force_early);
514 }
515 
516 static const char *action_name[] = {
517 	[MF_IGNORED] = "Ignored",
518 	[MF_FAILED] = "Failed",
519 	[MF_DELAYED] = "Delayed",
520 	[MF_RECOVERED] = "Recovered",
521 };
522 
523 static const char * const action_page_types[] = {
524 	[MF_MSG_KERNEL]			= "reserved kernel page",
525 	[MF_MSG_KERNEL_HIGH_ORDER]	= "high-order kernel page",
526 	[MF_MSG_SLAB]			= "kernel slab page",
527 	[MF_MSG_DIFFERENT_COMPOUND]	= "different compound page after locking",
528 	[MF_MSG_POISONED_HUGE]		= "huge page already hardware poisoned",
529 	[MF_MSG_HUGE]			= "huge page",
530 	[MF_MSG_FREE_HUGE]		= "free huge page",
531 	[MF_MSG_NON_PMD_HUGE]		= "non-pmd-sized huge page",
532 	[MF_MSG_UNMAP_FAILED]		= "unmapping failed page",
533 	[MF_MSG_DIRTY_SWAPCACHE]	= "dirty swapcache page",
534 	[MF_MSG_CLEAN_SWAPCACHE]	= "clean swapcache page",
535 	[MF_MSG_DIRTY_MLOCKED_LRU]	= "dirty mlocked LRU page",
536 	[MF_MSG_CLEAN_MLOCKED_LRU]	= "clean mlocked LRU page",
537 	[MF_MSG_DIRTY_UNEVICTABLE_LRU]	= "dirty unevictable LRU page",
538 	[MF_MSG_CLEAN_UNEVICTABLE_LRU]	= "clean unevictable LRU page",
539 	[MF_MSG_DIRTY_LRU]		= "dirty LRU page",
540 	[MF_MSG_CLEAN_LRU]		= "clean LRU page",
541 	[MF_MSG_TRUNCATED_LRU]		= "already truncated LRU page",
542 	[MF_MSG_BUDDY]			= "free buddy page",
543 	[MF_MSG_BUDDY_2ND]		= "free buddy page (2nd try)",
544 	[MF_MSG_DAX]			= "dax page",
545 	[MF_MSG_UNKNOWN]		= "unknown page",
546 };
547 
548 /*
549  * XXX: It is possible that a page is isolated from LRU cache,
550  * and then kept in swap cache or failed to remove from page cache.
551  * The page count will stop it from being freed by unpoison.
552  * Stress tests should be aware of this memory leak problem.
553  */
554 static int delete_from_lru_cache(struct page *p)
555 {
556 	if (!isolate_lru_page(p)) {
557 		/*
558 		 * Clear sensible page flags, so that the buddy system won't
559 		 * complain when the page is unpoison-and-freed.
560 		 */
561 		ClearPageActive(p);
562 		ClearPageUnevictable(p);
563 
564 		/*
565 		 * Poisoned page might never drop its ref count to 0 so we have
566 		 * to uncharge it manually from its memcg.
567 		 */
568 		mem_cgroup_uncharge(p);
569 
570 		/*
571 		 * drop the page count elevated by isolate_lru_page()
572 		 */
573 		put_page(p);
574 		return 0;
575 	}
576 	return -EIO;
577 }
578 
579 static int truncate_error_page(struct page *p, unsigned long pfn,
580 				struct address_space *mapping)
581 {
582 	int ret = MF_FAILED;
583 
584 	if (mapping->a_ops->error_remove_page) {
585 		int err = mapping->a_ops->error_remove_page(mapping, p);
586 
587 		if (err != 0) {
588 			pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
589 				pfn, err);
590 		} else if (page_has_private(p) &&
591 			   !try_to_release_page(p, GFP_NOIO)) {
592 			pr_info("Memory failure: %#lx: failed to release buffers\n",
593 				pfn);
594 		} else {
595 			ret = MF_RECOVERED;
596 		}
597 	} else {
598 		/*
599 		 * If the file system doesn't support it just invalidate
600 		 * This fails on dirty or anything with private pages
601 		 */
602 		if (invalidate_inode_page(p))
603 			ret = MF_RECOVERED;
604 		else
605 			pr_info("Memory failure: %#lx: Failed to invalidate\n",
606 				pfn);
607 	}
608 
609 	return ret;
610 }
611 
612 /*
613  * Error hit kernel page.
614  * Do nothing, try to be lucky and not touch this instead. For a few cases we
615  * could be more sophisticated.
616  */
617 static int me_kernel(struct page *p, unsigned long pfn)
618 {
619 	return MF_IGNORED;
620 }
621 
622 /*
623  * Page in unknown state. Do nothing.
624  */
625 static int me_unknown(struct page *p, unsigned long pfn)
626 {
627 	pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
628 	return MF_FAILED;
629 }
630 
631 /*
632  * Clean (or cleaned) page cache page.
633  */
634 static int me_pagecache_clean(struct page *p, unsigned long pfn)
635 {
636 	struct address_space *mapping;
637 
638 	delete_from_lru_cache(p);
639 
640 	/*
641 	 * For anonymous pages we're done the only reference left
642 	 * should be the one m_f() holds.
643 	 */
644 	if (PageAnon(p))
645 		return MF_RECOVERED;
646 
647 	/*
648 	 * Now truncate the page in the page cache. This is really
649 	 * more like a "temporary hole punch"
650 	 * Don't do this for block devices when someone else
651 	 * has a reference, because it could be file system metadata
652 	 * and that's not safe to truncate.
653 	 */
654 	mapping = page_mapping(p);
655 	if (!mapping) {
656 		/*
657 		 * Page has been teared down in the meanwhile
658 		 */
659 		return MF_FAILED;
660 	}
661 
662 	/*
663 	 * Truncation is a bit tricky. Enable it per file system for now.
664 	 *
665 	 * Open: to take i_mutex or not for this? Right now we don't.
666 	 */
667 	return truncate_error_page(p, pfn, mapping);
668 }
669 
670 /*
671  * Dirty pagecache page
672  * Issues: when the error hit a hole page the error is not properly
673  * propagated.
674  */
675 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
676 {
677 	struct address_space *mapping = page_mapping(p);
678 
679 	SetPageError(p);
680 	/* TBD: print more information about the file. */
681 	if (mapping) {
682 		/*
683 		 * IO error will be reported by write(), fsync(), etc.
684 		 * who check the mapping.
685 		 * This way the application knows that something went
686 		 * wrong with its dirty file data.
687 		 *
688 		 * There's one open issue:
689 		 *
690 		 * The EIO will be only reported on the next IO
691 		 * operation and then cleared through the IO map.
692 		 * Normally Linux has two mechanisms to pass IO error
693 		 * first through the AS_EIO flag in the address space
694 		 * and then through the PageError flag in the page.
695 		 * Since we drop pages on memory failure handling the
696 		 * only mechanism open to use is through AS_AIO.
697 		 *
698 		 * This has the disadvantage that it gets cleared on
699 		 * the first operation that returns an error, while
700 		 * the PageError bit is more sticky and only cleared
701 		 * when the page is reread or dropped.  If an
702 		 * application assumes it will always get error on
703 		 * fsync, but does other operations on the fd before
704 		 * and the page is dropped between then the error
705 		 * will not be properly reported.
706 		 *
707 		 * This can already happen even without hwpoisoned
708 		 * pages: first on metadata IO errors (which only
709 		 * report through AS_EIO) or when the page is dropped
710 		 * at the wrong time.
711 		 *
712 		 * So right now we assume that the application DTRT on
713 		 * the first EIO, but we're not worse than other parts
714 		 * of the kernel.
715 		 */
716 		mapping_set_error(mapping, -EIO);
717 	}
718 
719 	return me_pagecache_clean(p, pfn);
720 }
721 
722 /*
723  * Clean and dirty swap cache.
724  *
725  * Dirty swap cache page is tricky to handle. The page could live both in page
726  * cache and swap cache(ie. page is freshly swapped in). So it could be
727  * referenced concurrently by 2 types of PTEs:
728  * normal PTEs and swap PTEs. We try to handle them consistently by calling
729  * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
730  * and then
731  *      - clear dirty bit to prevent IO
732  *      - remove from LRU
733  *      - but keep in the swap cache, so that when we return to it on
734  *        a later page fault, we know the application is accessing
735  *        corrupted data and shall be killed (we installed simple
736  *        interception code in do_swap_page to catch it).
737  *
738  * Clean swap cache pages can be directly isolated. A later page fault will
739  * bring in the known good data from disk.
740  */
741 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
742 {
743 	ClearPageDirty(p);
744 	/* Trigger EIO in shmem: */
745 	ClearPageUptodate(p);
746 
747 	if (!delete_from_lru_cache(p))
748 		return MF_DELAYED;
749 	else
750 		return MF_FAILED;
751 }
752 
753 static int me_swapcache_clean(struct page *p, unsigned long pfn)
754 {
755 	delete_from_swap_cache(p);
756 
757 	if (!delete_from_lru_cache(p))
758 		return MF_RECOVERED;
759 	else
760 		return MF_FAILED;
761 }
762 
763 /*
764  * Huge pages. Needs work.
765  * Issues:
766  * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
767  *   To narrow down kill region to one page, we need to break up pmd.
768  */
769 static int me_huge_page(struct page *p, unsigned long pfn)
770 {
771 	int res = 0;
772 	struct page *hpage = compound_head(p);
773 	struct address_space *mapping;
774 
775 	if (!PageHuge(hpage))
776 		return MF_DELAYED;
777 
778 	mapping = page_mapping(hpage);
779 	if (mapping) {
780 		res = truncate_error_page(hpage, pfn, mapping);
781 	} else {
782 		unlock_page(hpage);
783 		/*
784 		 * migration entry prevents later access on error anonymous
785 		 * hugepage, so we can free and dissolve it into buddy to
786 		 * save healthy subpages.
787 		 */
788 		if (PageAnon(hpage))
789 			put_page(hpage);
790 		dissolve_free_huge_page(p);
791 		res = MF_RECOVERED;
792 		lock_page(hpage);
793 	}
794 
795 	return res;
796 }
797 
798 /*
799  * Various page states we can handle.
800  *
801  * A page state is defined by its current page->flags bits.
802  * The table matches them in order and calls the right handler.
803  *
804  * This is quite tricky because we can access page at any time
805  * in its live cycle, so all accesses have to be extremely careful.
806  *
807  * This is not complete. More states could be added.
808  * For any missing state don't attempt recovery.
809  */
810 
811 #define dirty		(1UL << PG_dirty)
812 #define sc		((1UL << PG_swapcache) | (1UL << PG_swapbacked))
813 #define unevict		(1UL << PG_unevictable)
814 #define mlock		(1UL << PG_mlocked)
815 #define writeback	(1UL << PG_writeback)
816 #define lru		(1UL << PG_lru)
817 #define head		(1UL << PG_head)
818 #define slab		(1UL << PG_slab)
819 #define reserved	(1UL << PG_reserved)
820 
821 static struct page_state {
822 	unsigned long mask;
823 	unsigned long res;
824 	enum mf_action_page_type type;
825 	int (*action)(struct page *p, unsigned long pfn);
826 } error_states[] = {
827 	{ reserved,	reserved,	MF_MSG_KERNEL,	me_kernel },
828 	/*
829 	 * free pages are specially detected outside this table:
830 	 * PG_buddy pages only make a small fraction of all free pages.
831 	 */
832 
833 	/*
834 	 * Could in theory check if slab page is free or if we can drop
835 	 * currently unused objects without touching them. But just
836 	 * treat it as standard kernel for now.
837 	 */
838 	{ slab,		slab,		MF_MSG_SLAB,	me_kernel },
839 
840 	{ head,		head,		MF_MSG_HUGE,		me_huge_page },
841 
842 	{ sc|dirty,	sc|dirty,	MF_MSG_DIRTY_SWAPCACHE,	me_swapcache_dirty },
843 	{ sc|dirty,	sc,		MF_MSG_CLEAN_SWAPCACHE,	me_swapcache_clean },
844 
845 	{ mlock|dirty,	mlock|dirty,	MF_MSG_DIRTY_MLOCKED_LRU,	me_pagecache_dirty },
846 	{ mlock|dirty,	mlock,		MF_MSG_CLEAN_MLOCKED_LRU,	me_pagecache_clean },
847 
848 	{ unevict|dirty, unevict|dirty,	MF_MSG_DIRTY_UNEVICTABLE_LRU,	me_pagecache_dirty },
849 	{ unevict|dirty, unevict,	MF_MSG_CLEAN_UNEVICTABLE_LRU,	me_pagecache_clean },
850 
851 	{ lru|dirty,	lru|dirty,	MF_MSG_DIRTY_LRU,	me_pagecache_dirty },
852 	{ lru|dirty,	lru,		MF_MSG_CLEAN_LRU,	me_pagecache_clean },
853 
854 	/*
855 	 * Catchall entry: must be at end.
856 	 */
857 	{ 0,		0,		MF_MSG_UNKNOWN,	me_unknown },
858 };
859 
860 #undef dirty
861 #undef sc
862 #undef unevict
863 #undef mlock
864 #undef writeback
865 #undef lru
866 #undef head
867 #undef slab
868 #undef reserved
869 
870 /*
871  * "Dirty/Clean" indication is not 100% accurate due to the possibility of
872  * setting PG_dirty outside page lock. See also comment above set_page_dirty().
873  */
874 static void action_result(unsigned long pfn, enum mf_action_page_type type,
875 			  enum mf_result result)
876 {
877 	trace_memory_failure_event(pfn, type, result);
878 
879 	pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
880 		pfn, action_page_types[type], action_name[result]);
881 }
882 
883 static int page_action(struct page_state *ps, struct page *p,
884 			unsigned long pfn)
885 {
886 	int result;
887 	int count;
888 
889 	result = ps->action(p, pfn);
890 
891 	count = page_count(p) - 1;
892 	if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
893 		count--;
894 	if (count > 0) {
895 		pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
896 		       pfn, action_page_types[ps->type], count);
897 		result = MF_FAILED;
898 	}
899 	action_result(pfn, ps->type, result);
900 
901 	/* Could do more checks here if page looks ok */
902 	/*
903 	 * Could adjust zone counters here to correct for the missing page.
904 	 */
905 
906 	return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
907 }
908 
909 /**
910  * get_hwpoison_page() - Get refcount for memory error handling:
911  * @page:	raw error page (hit by memory error)
912  *
913  * Return: return 0 if failed to grab the refcount, otherwise true (some
914  * non-zero value.)
915  */
916 int get_hwpoison_page(struct page *page)
917 {
918 	struct page *head = compound_head(page);
919 
920 	if (!PageHuge(head) && PageTransHuge(head)) {
921 		/*
922 		 * Non anonymous thp exists only in allocation/free time. We
923 		 * can't handle such a case correctly, so let's give it up.
924 		 * This should be better than triggering BUG_ON when kernel
925 		 * tries to touch the "partially handled" page.
926 		 */
927 		if (!PageAnon(head)) {
928 			pr_err("Memory failure: %#lx: non anonymous thp\n",
929 				page_to_pfn(page));
930 			return 0;
931 		}
932 	}
933 
934 	if (get_page_unless_zero(head)) {
935 		if (head == compound_head(page))
936 			return 1;
937 
938 		pr_info("Memory failure: %#lx cannot catch tail\n",
939 			page_to_pfn(page));
940 		put_page(head);
941 	}
942 
943 	return 0;
944 }
945 EXPORT_SYMBOL_GPL(get_hwpoison_page);
946 
947 /*
948  * Do all that is necessary to remove user space mappings. Unmap
949  * the pages and send SIGBUS to the processes if the data was dirty.
950  */
951 static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
952 				  int flags, struct page **hpagep)
953 {
954 	enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
955 	struct address_space *mapping;
956 	LIST_HEAD(tokill);
957 	bool unmap_success = true;
958 	int kill = 1, forcekill;
959 	struct page *hpage = *hpagep;
960 	bool mlocked = PageMlocked(hpage);
961 
962 	/*
963 	 * Here we are interested only in user-mapped pages, so skip any
964 	 * other types of pages.
965 	 */
966 	if (PageReserved(p) || PageSlab(p))
967 		return true;
968 	if (!(PageLRU(hpage) || PageHuge(p)))
969 		return true;
970 
971 	/*
972 	 * This check implies we don't kill processes if their pages
973 	 * are in the swap cache early. Those are always late kills.
974 	 */
975 	if (!page_mapped(hpage))
976 		return true;
977 
978 	if (PageKsm(p)) {
979 		pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
980 		return false;
981 	}
982 
983 	if (PageSwapCache(p)) {
984 		pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
985 			pfn);
986 		ttu |= TTU_IGNORE_HWPOISON;
987 	}
988 
989 	/*
990 	 * Propagate the dirty bit from PTEs to struct page first, because we
991 	 * need this to decide if we should kill or just drop the page.
992 	 * XXX: the dirty test could be racy: set_page_dirty() may not always
993 	 * be called inside page lock (it's recommended but not enforced).
994 	 */
995 	mapping = page_mapping(hpage);
996 	if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
997 	    mapping_cap_writeback_dirty(mapping)) {
998 		if (page_mkclean(hpage)) {
999 			SetPageDirty(hpage);
1000 		} else {
1001 			kill = 0;
1002 			ttu |= TTU_IGNORE_HWPOISON;
1003 			pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1004 				pfn);
1005 		}
1006 	}
1007 
1008 	/*
1009 	 * First collect all the processes that have the page
1010 	 * mapped in dirty form.  This has to be done before try_to_unmap,
1011 	 * because ttu takes the rmap data structures down.
1012 	 *
1013 	 * Error handling: We ignore errors here because
1014 	 * there's nothing that can be done.
1015 	 */
1016 	if (kill)
1017 		collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1018 
1019 	if (!PageHuge(hpage)) {
1020 		unmap_success = try_to_unmap(hpage, ttu);
1021 	} else {
1022 		/*
1023 		 * For hugetlb pages, try_to_unmap could potentially call
1024 		 * huge_pmd_unshare.  Because of this, take semaphore in
1025 		 * write mode here and set TTU_RMAP_LOCKED to indicate we
1026 		 * have taken the lock at this higer level.
1027 		 *
1028 		 * Note that the call to hugetlb_page_mapping_lock_write
1029 		 * is necessary even if mapping is already set.  It handles
1030 		 * ugliness of potentially having to drop page lock to obtain
1031 		 * i_mmap_rwsem.
1032 		 */
1033 		mapping = hugetlb_page_mapping_lock_write(hpage);
1034 
1035 		if (mapping) {
1036 			unmap_success = try_to_unmap(hpage,
1037 						     ttu|TTU_RMAP_LOCKED);
1038 			i_mmap_unlock_write(mapping);
1039 		} else {
1040 			pr_info("Memory failure: %#lx: could not find mapping for mapped huge page\n",
1041 				pfn);
1042 			unmap_success = false;
1043 		}
1044 	}
1045 	if (!unmap_success)
1046 		pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1047 		       pfn, page_mapcount(hpage));
1048 
1049 	/*
1050 	 * try_to_unmap() might put mlocked page in lru cache, so call
1051 	 * shake_page() again to ensure that it's flushed.
1052 	 */
1053 	if (mlocked)
1054 		shake_page(hpage, 0);
1055 
1056 	/*
1057 	 * Now that the dirty bit has been propagated to the
1058 	 * struct page and all unmaps done we can decide if
1059 	 * killing is needed or not.  Only kill when the page
1060 	 * was dirty or the process is not restartable,
1061 	 * otherwise the tokill list is merely
1062 	 * freed.  When there was a problem unmapping earlier
1063 	 * use a more force-full uncatchable kill to prevent
1064 	 * any accesses to the poisoned memory.
1065 	 */
1066 	forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1067 	kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1068 
1069 	return unmap_success;
1070 }
1071 
1072 static int identify_page_state(unsigned long pfn, struct page *p,
1073 				unsigned long page_flags)
1074 {
1075 	struct page_state *ps;
1076 
1077 	/*
1078 	 * The first check uses the current page flags which may not have any
1079 	 * relevant information. The second check with the saved page flags is
1080 	 * carried out only if the first check can't determine the page status.
1081 	 */
1082 	for (ps = error_states;; ps++)
1083 		if ((p->flags & ps->mask) == ps->res)
1084 			break;
1085 
1086 	page_flags |= (p->flags & (1UL << PG_dirty));
1087 
1088 	if (!ps->mask)
1089 		for (ps = error_states;; ps++)
1090 			if ((page_flags & ps->mask) == ps->res)
1091 				break;
1092 	return page_action(ps, p, pfn);
1093 }
1094 
1095 static int memory_failure_hugetlb(unsigned long pfn, int flags)
1096 {
1097 	struct page *p = pfn_to_page(pfn);
1098 	struct page *head = compound_head(p);
1099 	int res;
1100 	unsigned long page_flags;
1101 
1102 	if (TestSetPageHWPoison(head)) {
1103 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1104 		       pfn);
1105 		return 0;
1106 	}
1107 
1108 	num_poisoned_pages_inc();
1109 
1110 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1111 		/*
1112 		 * Check "filter hit" and "race with other subpage."
1113 		 */
1114 		lock_page(head);
1115 		if (PageHWPoison(head)) {
1116 			if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1117 			    || (p != head && TestSetPageHWPoison(head))) {
1118 				num_poisoned_pages_dec();
1119 				unlock_page(head);
1120 				return 0;
1121 			}
1122 		}
1123 		unlock_page(head);
1124 		dissolve_free_huge_page(p);
1125 		action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1126 		return 0;
1127 	}
1128 
1129 	lock_page(head);
1130 	page_flags = head->flags;
1131 
1132 	if (!PageHWPoison(head)) {
1133 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1134 		num_poisoned_pages_dec();
1135 		unlock_page(head);
1136 		put_hwpoison_page(head);
1137 		return 0;
1138 	}
1139 
1140 	/*
1141 	 * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1142 	 * simply disable it. In order to make it work properly, we need
1143 	 * make sure that:
1144 	 *  - conversion of a pud that maps an error hugetlb into hwpoison
1145 	 *    entry properly works, and
1146 	 *  - other mm code walking over page table is aware of pud-aligned
1147 	 *    hwpoison entries.
1148 	 */
1149 	if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1150 		action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1151 		res = -EBUSY;
1152 		goto out;
1153 	}
1154 
1155 	if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1156 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1157 		res = -EBUSY;
1158 		goto out;
1159 	}
1160 
1161 	res = identify_page_state(pfn, p, page_flags);
1162 out:
1163 	unlock_page(head);
1164 	return res;
1165 }
1166 
1167 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1168 		struct dev_pagemap *pgmap)
1169 {
1170 	struct page *page = pfn_to_page(pfn);
1171 	const bool unmap_success = true;
1172 	unsigned long size = 0;
1173 	struct to_kill *tk;
1174 	LIST_HEAD(tokill);
1175 	int rc = -EBUSY;
1176 	loff_t start;
1177 	dax_entry_t cookie;
1178 
1179 	/*
1180 	 * Prevent the inode from being freed while we are interrogating
1181 	 * the address_space, typically this would be handled by
1182 	 * lock_page(), but dax pages do not use the page lock. This
1183 	 * also prevents changes to the mapping of this pfn until
1184 	 * poison signaling is complete.
1185 	 */
1186 	cookie = dax_lock_page(page);
1187 	if (!cookie)
1188 		goto out;
1189 
1190 	if (hwpoison_filter(page)) {
1191 		rc = 0;
1192 		goto unlock;
1193 	}
1194 
1195 	if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
1196 		/*
1197 		 * TODO: Handle HMM pages which may need coordination
1198 		 * with device-side memory.
1199 		 */
1200 		goto unlock;
1201 	}
1202 
1203 	/*
1204 	 * Use this flag as an indication that the dax page has been
1205 	 * remapped UC to prevent speculative consumption of poison.
1206 	 */
1207 	SetPageHWPoison(page);
1208 
1209 	/*
1210 	 * Unlike System-RAM there is no possibility to swap in a
1211 	 * different physical page at a given virtual address, so all
1212 	 * userspace consumption of ZONE_DEVICE memory necessitates
1213 	 * SIGBUS (i.e. MF_MUST_KILL)
1214 	 */
1215 	flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1216 	collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1217 
1218 	list_for_each_entry(tk, &tokill, nd)
1219 		if (tk->size_shift)
1220 			size = max(size, 1UL << tk->size_shift);
1221 	if (size) {
1222 		/*
1223 		 * Unmap the largest mapping to avoid breaking up
1224 		 * device-dax mappings which are constant size. The
1225 		 * actual size of the mapping being torn down is
1226 		 * communicated in siginfo, see kill_proc()
1227 		 */
1228 		start = (page->index << PAGE_SHIFT) & ~(size - 1);
1229 		unmap_mapping_range(page->mapping, start, start + size, 0);
1230 	}
1231 	kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1232 	rc = 0;
1233 unlock:
1234 	dax_unlock_page(page, cookie);
1235 out:
1236 	/* drop pgmap ref acquired in caller */
1237 	put_dev_pagemap(pgmap);
1238 	action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1239 	return rc;
1240 }
1241 
1242 /**
1243  * memory_failure - Handle memory failure of a page.
1244  * @pfn: Page Number of the corrupted page
1245  * @flags: fine tune action taken
1246  *
1247  * This function is called by the low level machine check code
1248  * of an architecture when it detects hardware memory corruption
1249  * of a page. It tries its best to recover, which includes
1250  * dropping pages, killing processes etc.
1251  *
1252  * The function is primarily of use for corruptions that
1253  * happen outside the current execution context (e.g. when
1254  * detected by a background scrubber)
1255  *
1256  * Must run in process context (e.g. a work queue) with interrupts
1257  * enabled and no spinlocks hold.
1258  */
1259 int memory_failure(unsigned long pfn, int flags)
1260 {
1261 	struct page *p;
1262 	struct page *hpage;
1263 	struct page *orig_head;
1264 	struct dev_pagemap *pgmap;
1265 	int res;
1266 	unsigned long page_flags;
1267 
1268 	if (!sysctl_memory_failure_recovery)
1269 		panic("Memory failure on page %lx", pfn);
1270 
1271 	p = pfn_to_online_page(pfn);
1272 	if (!p) {
1273 		if (pfn_valid(pfn)) {
1274 			pgmap = get_dev_pagemap(pfn, NULL);
1275 			if (pgmap)
1276 				return memory_failure_dev_pagemap(pfn, flags,
1277 								  pgmap);
1278 		}
1279 		pr_err("Memory failure: %#lx: memory outside kernel control\n",
1280 			pfn);
1281 		return -ENXIO;
1282 	}
1283 
1284 	if (PageHuge(p))
1285 		return memory_failure_hugetlb(pfn, flags);
1286 	if (TestSetPageHWPoison(p)) {
1287 		pr_err("Memory failure: %#lx: already hardware poisoned\n",
1288 			pfn);
1289 		return 0;
1290 	}
1291 
1292 	orig_head = hpage = compound_head(p);
1293 	num_poisoned_pages_inc();
1294 
1295 	/*
1296 	 * We need/can do nothing about count=0 pages.
1297 	 * 1) it's a free page, and therefore in safe hand:
1298 	 *    prep_new_page() will be the gate keeper.
1299 	 * 2) it's part of a non-compound high order page.
1300 	 *    Implies some kernel user: cannot stop them from
1301 	 *    R/W the page; let's pray that the page has been
1302 	 *    used and will be freed some time later.
1303 	 * In fact it's dangerous to directly bump up page count from 0,
1304 	 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1305 	 */
1306 	if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1307 		if (is_free_buddy_page(p)) {
1308 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1309 			return 0;
1310 		} else {
1311 			action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1312 			return -EBUSY;
1313 		}
1314 	}
1315 
1316 	if (PageTransHuge(hpage)) {
1317 		lock_page(p);
1318 		if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1319 			unlock_page(p);
1320 			if (!PageAnon(p))
1321 				pr_err("Memory failure: %#lx: non anonymous thp\n",
1322 					pfn);
1323 			else
1324 				pr_err("Memory failure: %#lx: thp split failed\n",
1325 					pfn);
1326 			if (TestClearPageHWPoison(p))
1327 				num_poisoned_pages_dec();
1328 			put_hwpoison_page(p);
1329 			return -EBUSY;
1330 		}
1331 		unlock_page(p);
1332 		VM_BUG_ON_PAGE(!page_count(p), p);
1333 		hpage = compound_head(p);
1334 	}
1335 
1336 	/*
1337 	 * We ignore non-LRU pages for good reasons.
1338 	 * - PG_locked is only well defined for LRU pages and a few others
1339 	 * - to avoid races with __SetPageLocked()
1340 	 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1341 	 * The check (unnecessarily) ignores LRU pages being isolated and
1342 	 * walked by the page reclaim code, however that's not a big loss.
1343 	 */
1344 	shake_page(p, 0);
1345 	/* shake_page could have turned it free. */
1346 	if (!PageLRU(p) && is_free_buddy_page(p)) {
1347 		if (flags & MF_COUNT_INCREASED)
1348 			action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1349 		else
1350 			action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1351 		return 0;
1352 	}
1353 
1354 	lock_page(p);
1355 
1356 	/*
1357 	 * The page could have changed compound pages during the locking.
1358 	 * If this happens just bail out.
1359 	 */
1360 	if (PageCompound(p) && compound_head(p) != orig_head) {
1361 		action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1362 		res = -EBUSY;
1363 		goto out;
1364 	}
1365 
1366 	/*
1367 	 * We use page flags to determine what action should be taken, but
1368 	 * the flags can be modified by the error containment action.  One
1369 	 * example is an mlocked page, where PG_mlocked is cleared by
1370 	 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1371 	 * correctly, we save a copy of the page flags at this time.
1372 	 */
1373 	if (PageHuge(p))
1374 		page_flags = hpage->flags;
1375 	else
1376 		page_flags = p->flags;
1377 
1378 	/*
1379 	 * unpoison always clear PG_hwpoison inside page lock
1380 	 */
1381 	if (!PageHWPoison(p)) {
1382 		pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1383 		num_poisoned_pages_dec();
1384 		unlock_page(p);
1385 		put_hwpoison_page(p);
1386 		return 0;
1387 	}
1388 	if (hwpoison_filter(p)) {
1389 		if (TestClearPageHWPoison(p))
1390 			num_poisoned_pages_dec();
1391 		unlock_page(p);
1392 		put_hwpoison_page(p);
1393 		return 0;
1394 	}
1395 
1396 	if (!PageTransTail(p) && !PageLRU(p))
1397 		goto identify_page_state;
1398 
1399 	/*
1400 	 * It's very difficult to mess with pages currently under IO
1401 	 * and in many cases impossible, so we just avoid it here.
1402 	 */
1403 	wait_on_page_writeback(p);
1404 
1405 	/*
1406 	 * Now take care of user space mappings.
1407 	 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1408 	 *
1409 	 * When the raw error page is thp tail page, hpage points to the raw
1410 	 * page after thp split.
1411 	 */
1412 	if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1413 		action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1414 		res = -EBUSY;
1415 		goto out;
1416 	}
1417 
1418 	/*
1419 	 * Torn down by someone else?
1420 	 */
1421 	if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1422 		action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1423 		res = -EBUSY;
1424 		goto out;
1425 	}
1426 
1427 identify_page_state:
1428 	res = identify_page_state(pfn, p, page_flags);
1429 out:
1430 	unlock_page(p);
1431 	return res;
1432 }
1433 EXPORT_SYMBOL_GPL(memory_failure);
1434 
1435 #define MEMORY_FAILURE_FIFO_ORDER	4
1436 #define MEMORY_FAILURE_FIFO_SIZE	(1 << MEMORY_FAILURE_FIFO_ORDER)
1437 
1438 struct memory_failure_entry {
1439 	unsigned long pfn;
1440 	int flags;
1441 };
1442 
1443 struct memory_failure_cpu {
1444 	DECLARE_KFIFO(fifo, struct memory_failure_entry,
1445 		      MEMORY_FAILURE_FIFO_SIZE);
1446 	spinlock_t lock;
1447 	struct work_struct work;
1448 };
1449 
1450 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1451 
1452 /**
1453  * memory_failure_queue - Schedule handling memory failure of a page.
1454  * @pfn: Page Number of the corrupted page
1455  * @flags: Flags for memory failure handling
1456  *
1457  * This function is called by the low level hardware error handler
1458  * when it detects hardware memory corruption of a page. It schedules
1459  * the recovering of error page, including dropping pages, killing
1460  * processes etc.
1461  *
1462  * The function is primarily of use for corruptions that
1463  * happen outside the current execution context (e.g. when
1464  * detected by a background scrubber)
1465  *
1466  * Can run in IRQ context.
1467  */
1468 void memory_failure_queue(unsigned long pfn, int flags)
1469 {
1470 	struct memory_failure_cpu *mf_cpu;
1471 	unsigned long proc_flags;
1472 	struct memory_failure_entry entry = {
1473 		.pfn =		pfn,
1474 		.flags =	flags,
1475 	};
1476 
1477 	mf_cpu = &get_cpu_var(memory_failure_cpu);
1478 	spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1479 	if (kfifo_put(&mf_cpu->fifo, entry))
1480 		schedule_work_on(smp_processor_id(), &mf_cpu->work);
1481 	else
1482 		pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1483 		       pfn);
1484 	spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1485 	put_cpu_var(memory_failure_cpu);
1486 }
1487 EXPORT_SYMBOL_GPL(memory_failure_queue);
1488 
1489 static void memory_failure_work_func(struct work_struct *work)
1490 {
1491 	struct memory_failure_cpu *mf_cpu;
1492 	struct memory_failure_entry entry = { 0, };
1493 	unsigned long proc_flags;
1494 	int gotten;
1495 
1496 	mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1497 	for (;;) {
1498 		spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1499 		gotten = kfifo_get(&mf_cpu->fifo, &entry);
1500 		spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1501 		if (!gotten)
1502 			break;
1503 		if (entry.flags & MF_SOFT_OFFLINE)
1504 			soft_offline_page(entry.pfn, entry.flags);
1505 		else
1506 			memory_failure(entry.pfn, entry.flags);
1507 	}
1508 }
1509 
1510 static int __init memory_failure_init(void)
1511 {
1512 	struct memory_failure_cpu *mf_cpu;
1513 	int cpu;
1514 
1515 	for_each_possible_cpu(cpu) {
1516 		mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1517 		spin_lock_init(&mf_cpu->lock);
1518 		INIT_KFIFO(mf_cpu->fifo);
1519 		INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1520 	}
1521 
1522 	return 0;
1523 }
1524 core_initcall(memory_failure_init);
1525 
1526 #define unpoison_pr_info(fmt, pfn, rs)			\
1527 ({							\
1528 	if (__ratelimit(rs))				\
1529 		pr_info(fmt, pfn);			\
1530 })
1531 
1532 /**
1533  * unpoison_memory - Unpoison a previously poisoned page
1534  * @pfn: Page number of the to be unpoisoned page
1535  *
1536  * Software-unpoison a page that has been poisoned by
1537  * memory_failure() earlier.
1538  *
1539  * This is only done on the software-level, so it only works
1540  * for linux injected failures, not real hardware failures
1541  *
1542  * Returns 0 for success, otherwise -errno.
1543  */
1544 int unpoison_memory(unsigned long pfn)
1545 {
1546 	struct page *page;
1547 	struct page *p;
1548 	int freeit = 0;
1549 	static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1550 					DEFAULT_RATELIMIT_BURST);
1551 
1552 	if (!pfn_valid(pfn))
1553 		return -ENXIO;
1554 
1555 	p = pfn_to_page(pfn);
1556 	page = compound_head(p);
1557 
1558 	if (!PageHWPoison(p)) {
1559 		unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1560 				 pfn, &unpoison_rs);
1561 		return 0;
1562 	}
1563 
1564 	if (page_count(page) > 1) {
1565 		unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1566 				 pfn, &unpoison_rs);
1567 		return 0;
1568 	}
1569 
1570 	if (page_mapped(page)) {
1571 		unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1572 				 pfn, &unpoison_rs);
1573 		return 0;
1574 	}
1575 
1576 	if (page_mapping(page)) {
1577 		unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1578 				 pfn, &unpoison_rs);
1579 		return 0;
1580 	}
1581 
1582 	/*
1583 	 * unpoison_memory() can encounter thp only when the thp is being
1584 	 * worked by memory_failure() and the page lock is not held yet.
1585 	 * In such case, we yield to memory_failure() and make unpoison fail.
1586 	 */
1587 	if (!PageHuge(page) && PageTransHuge(page)) {
1588 		unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1589 				 pfn, &unpoison_rs);
1590 		return 0;
1591 	}
1592 
1593 	if (!get_hwpoison_page(p)) {
1594 		if (TestClearPageHWPoison(p))
1595 			num_poisoned_pages_dec();
1596 		unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1597 				 pfn, &unpoison_rs);
1598 		return 0;
1599 	}
1600 
1601 	lock_page(page);
1602 	/*
1603 	 * This test is racy because PG_hwpoison is set outside of page lock.
1604 	 * That's acceptable because that won't trigger kernel panic. Instead,
1605 	 * the PG_hwpoison page will be caught and isolated on the entrance to
1606 	 * the free buddy page pool.
1607 	 */
1608 	if (TestClearPageHWPoison(page)) {
1609 		unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1610 				 pfn, &unpoison_rs);
1611 		num_poisoned_pages_dec();
1612 		freeit = 1;
1613 	}
1614 	unlock_page(page);
1615 
1616 	put_hwpoison_page(page);
1617 	if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1618 		put_hwpoison_page(page);
1619 
1620 	return 0;
1621 }
1622 EXPORT_SYMBOL(unpoison_memory);
1623 
1624 static struct page *new_page(struct page *p, unsigned long private)
1625 {
1626 	int nid = page_to_nid(p);
1627 
1628 	return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1629 }
1630 
1631 /*
1632  * Safely get reference count of an arbitrary page.
1633  * Returns 0 for a free page, -EIO for a zero refcount page
1634  * that is not free, and 1 for any other page type.
1635  * For 1 the page is returned with increased page count, otherwise not.
1636  */
1637 static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1638 {
1639 	int ret;
1640 
1641 	if (flags & MF_COUNT_INCREASED)
1642 		return 1;
1643 
1644 	/*
1645 	 * When the target page is a free hugepage, just remove it
1646 	 * from free hugepage list.
1647 	 */
1648 	if (!get_hwpoison_page(p)) {
1649 		if (PageHuge(p)) {
1650 			pr_info("%s: %#lx free huge page\n", __func__, pfn);
1651 			ret = 0;
1652 		} else if (is_free_buddy_page(p)) {
1653 			pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1654 			ret = 0;
1655 		} else {
1656 			pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1657 				__func__, pfn, p->flags);
1658 			ret = -EIO;
1659 		}
1660 	} else {
1661 		/* Not a free page */
1662 		ret = 1;
1663 	}
1664 	return ret;
1665 }
1666 
1667 static int get_any_page(struct page *page, unsigned long pfn, int flags)
1668 {
1669 	int ret = __get_any_page(page, pfn, flags);
1670 
1671 	if (ret == 1 && !PageHuge(page) &&
1672 	    !PageLRU(page) && !__PageMovable(page)) {
1673 		/*
1674 		 * Try to free it.
1675 		 */
1676 		put_hwpoison_page(page);
1677 		shake_page(page, 1);
1678 
1679 		/*
1680 		 * Did it turn free?
1681 		 */
1682 		ret = __get_any_page(page, pfn, 0);
1683 		if (ret == 1 && !PageLRU(page)) {
1684 			/* Drop page reference which is from __get_any_page() */
1685 			put_hwpoison_page(page);
1686 			pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1687 				pfn, page->flags, &page->flags);
1688 			return -EIO;
1689 		}
1690 	}
1691 	return ret;
1692 }
1693 
1694 static int soft_offline_huge_page(struct page *page, int flags)
1695 {
1696 	int ret;
1697 	unsigned long pfn = page_to_pfn(page);
1698 	struct page *hpage = compound_head(page);
1699 	LIST_HEAD(pagelist);
1700 
1701 	/*
1702 	 * This double-check of PageHWPoison is to avoid the race with
1703 	 * memory_failure(). See also comment in __soft_offline_page().
1704 	 */
1705 	lock_page(hpage);
1706 	if (PageHWPoison(hpage)) {
1707 		unlock_page(hpage);
1708 		put_hwpoison_page(hpage);
1709 		pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1710 		return -EBUSY;
1711 	}
1712 	unlock_page(hpage);
1713 
1714 	ret = isolate_huge_page(hpage, &pagelist);
1715 	/*
1716 	 * get_any_page() and isolate_huge_page() takes a refcount each,
1717 	 * so need to drop one here.
1718 	 */
1719 	put_hwpoison_page(hpage);
1720 	if (!ret) {
1721 		pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1722 		return -EBUSY;
1723 	}
1724 
1725 	ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1726 				MIGRATE_SYNC, MR_MEMORY_FAILURE);
1727 	if (ret) {
1728 		pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1729 			pfn, ret, page->flags, &page->flags);
1730 		if (!list_empty(&pagelist))
1731 			putback_movable_pages(&pagelist);
1732 		if (ret > 0)
1733 			ret = -EIO;
1734 	} else {
1735 		/*
1736 		 * We set PG_hwpoison only when the migration source hugepage
1737 		 * was successfully dissolved, because otherwise hwpoisoned
1738 		 * hugepage remains on free hugepage list, then userspace will
1739 		 * find it as SIGBUS by allocation failure. That's not expected
1740 		 * in soft-offlining.
1741 		 */
1742 		ret = dissolve_free_huge_page(page);
1743 		if (!ret) {
1744 			if (set_hwpoison_free_buddy_page(page))
1745 				num_poisoned_pages_inc();
1746 			else
1747 				ret = -EBUSY;
1748 		}
1749 	}
1750 	return ret;
1751 }
1752 
1753 static int __soft_offline_page(struct page *page, int flags)
1754 {
1755 	int ret;
1756 	unsigned long pfn = page_to_pfn(page);
1757 
1758 	/*
1759 	 * Check PageHWPoison again inside page lock because PageHWPoison
1760 	 * is set by memory_failure() outside page lock. Note that
1761 	 * memory_failure() also double-checks PageHWPoison inside page lock,
1762 	 * so there's no race between soft_offline_page() and memory_failure().
1763 	 */
1764 	lock_page(page);
1765 	wait_on_page_writeback(page);
1766 	if (PageHWPoison(page)) {
1767 		unlock_page(page);
1768 		put_hwpoison_page(page);
1769 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1770 		return -EBUSY;
1771 	}
1772 	/*
1773 	 * Try to invalidate first. This should work for
1774 	 * non dirty unmapped page cache pages.
1775 	 */
1776 	ret = invalidate_inode_page(page);
1777 	unlock_page(page);
1778 	/*
1779 	 * RED-PEN would be better to keep it isolated here, but we
1780 	 * would need to fix isolation locking first.
1781 	 */
1782 	if (ret == 1) {
1783 		put_hwpoison_page(page);
1784 		pr_info("soft_offline: %#lx: invalidated\n", pfn);
1785 		SetPageHWPoison(page);
1786 		num_poisoned_pages_inc();
1787 		return 0;
1788 	}
1789 
1790 	/*
1791 	 * Simple invalidation didn't work.
1792 	 * Try to migrate to a new page instead. migrate.c
1793 	 * handles a large number of cases for us.
1794 	 */
1795 	if (PageLRU(page))
1796 		ret = isolate_lru_page(page);
1797 	else
1798 		ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1799 	/*
1800 	 * Drop page reference which is came from get_any_page()
1801 	 * successful isolate_lru_page() already took another one.
1802 	 */
1803 	put_hwpoison_page(page);
1804 	if (!ret) {
1805 		LIST_HEAD(pagelist);
1806 		/*
1807 		 * After isolated lru page, the PageLRU will be cleared,
1808 		 * so use !__PageMovable instead for LRU page's mapping
1809 		 * cannot have PAGE_MAPPING_MOVABLE.
1810 		 */
1811 		if (!__PageMovable(page))
1812 			inc_node_page_state(page, NR_ISOLATED_ANON +
1813 						page_is_file_lru(page));
1814 		list_add(&page->lru, &pagelist);
1815 		ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1816 					MIGRATE_SYNC, MR_MEMORY_FAILURE);
1817 		if (ret) {
1818 			if (!list_empty(&pagelist))
1819 				putback_movable_pages(&pagelist);
1820 
1821 			pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1822 				pfn, ret, page->flags, &page->flags);
1823 			if (ret > 0)
1824 				ret = -EIO;
1825 		}
1826 	} else {
1827 		pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1828 			pfn, ret, page_count(page), page->flags, &page->flags);
1829 	}
1830 	return ret;
1831 }
1832 
1833 static int soft_offline_in_use_page(struct page *page, int flags)
1834 {
1835 	int ret;
1836 	int mt;
1837 	struct page *hpage = compound_head(page);
1838 
1839 	if (!PageHuge(page) && PageTransHuge(hpage)) {
1840 		lock_page(page);
1841 		if (!PageAnon(page) || unlikely(split_huge_page(page))) {
1842 			unlock_page(page);
1843 			if (!PageAnon(page))
1844 				pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1845 			else
1846 				pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1847 			put_hwpoison_page(page);
1848 			return -EBUSY;
1849 		}
1850 		unlock_page(page);
1851 	}
1852 
1853 	/*
1854 	 * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1855 	 * to free list immediately (not via pcplist) when released after
1856 	 * successful page migration. Otherwise we can't guarantee that the
1857 	 * page is really free after put_page() returns, so
1858 	 * set_hwpoison_free_buddy_page() highly likely fails.
1859 	 */
1860 	mt = get_pageblock_migratetype(page);
1861 	set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1862 	if (PageHuge(page))
1863 		ret = soft_offline_huge_page(page, flags);
1864 	else
1865 		ret = __soft_offline_page(page, flags);
1866 	set_pageblock_migratetype(page, mt);
1867 	return ret;
1868 }
1869 
1870 static int soft_offline_free_page(struct page *page)
1871 {
1872 	int rc = dissolve_free_huge_page(page);
1873 
1874 	if (!rc) {
1875 		if (set_hwpoison_free_buddy_page(page))
1876 			num_poisoned_pages_inc();
1877 		else
1878 			rc = -EBUSY;
1879 	}
1880 	return rc;
1881 }
1882 
1883 /**
1884  * soft_offline_page - Soft offline a page.
1885  * @pfn: pfn to soft-offline
1886  * @flags: flags. Same as memory_failure().
1887  *
1888  * Returns 0 on success, otherwise negated errno.
1889  *
1890  * Soft offline a page, by migration or invalidation,
1891  * without killing anything. This is for the case when
1892  * a page is not corrupted yet (so it's still valid to access),
1893  * but has had a number of corrected errors and is better taken
1894  * out.
1895  *
1896  * The actual policy on when to do that is maintained by
1897  * user space.
1898  *
1899  * This should never impact any application or cause data loss,
1900  * however it might take some time.
1901  *
1902  * This is not a 100% solution for all memory, but tries to be
1903  * ``good enough'' for the majority of memory.
1904  */
1905 int soft_offline_page(unsigned long pfn, int flags)
1906 {
1907 	int ret;
1908 	struct page *page;
1909 
1910 	if (!pfn_valid(pfn))
1911 		return -ENXIO;
1912 	/* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
1913 	page = pfn_to_online_page(pfn);
1914 	if (!page)
1915 		return -EIO;
1916 
1917 	if (PageHWPoison(page)) {
1918 		pr_info("soft offline: %#lx page already poisoned\n", pfn);
1919 		if (flags & MF_COUNT_INCREASED)
1920 			put_hwpoison_page(page);
1921 		return -EBUSY;
1922 	}
1923 
1924 	get_online_mems();
1925 	ret = get_any_page(page, pfn, flags);
1926 	put_online_mems();
1927 
1928 	if (ret > 0)
1929 		ret = soft_offline_in_use_page(page, flags);
1930 	else if (ret == 0)
1931 		ret = soft_offline_free_page(page);
1932 
1933 	return ret;
1934 }
1935